]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
vfs_get_tree(): evict the call of security_sb_kern_mount()
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
57c8a661 26#include <linux/memblock.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a 28#include <linux/sched/task.h>
e262e32d 29#include <uapi/linux/mount.h>
9bc61ab1 30#include <linux/fs_context.h>
9164bb4a 31
07b20889 32#include "pnode.h"
948730b0 33#include "internal.h"
1da177e4 34
d2921684
EB
35/* Maximum number of mounts in a mount namespace */
36unsigned int sysctl_mount_max __read_mostly = 100000;
37
0818bf27
AV
38static unsigned int m_hash_mask __read_mostly;
39static unsigned int m_hash_shift __read_mostly;
40static unsigned int mp_hash_mask __read_mostly;
41static unsigned int mp_hash_shift __read_mostly;
42
43static __initdata unsigned long mhash_entries;
44static int __init set_mhash_entries(char *str)
45{
46 if (!str)
47 return 0;
48 mhash_entries = simple_strtoul(str, &str, 0);
49 return 1;
50}
51__setup("mhash_entries=", set_mhash_entries);
52
53static __initdata unsigned long mphash_entries;
54static int __init set_mphash_entries(char *str)
55{
56 if (!str)
57 return 0;
58 mphash_entries = simple_strtoul(str, &str, 0);
59 return 1;
60}
61__setup("mphash_entries=", set_mphash_entries);
13f14b4d 62
c7999c36 63static u64 event;
73cd49ec 64static DEFINE_IDA(mnt_id_ida);
719f5d7f 65static DEFINE_IDA(mnt_group_ida);
1da177e4 66
38129a13 67static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 68static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 69static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 70static DECLARE_RWSEM(namespace_sem);
1da177e4 71
f87fd4c2 72/* /sys/fs */
00d26666
GKH
73struct kobject *fs_kobj;
74EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 75
99b7db7b
NP
76/*
77 * vfsmount lock may be taken for read to prevent changes to the
78 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * up the tree.
80 *
81 * It should be taken for write in all cases where the vfsmount
82 * tree or hash is modified or when a vfsmount structure is modified.
83 */
48a066e7 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 85
38129a13 86static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 87{
b58fed8b
RP
88 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
89 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
90 tmp = tmp + (tmp >> m_hash_shift);
91 return &mount_hashtable[tmp & m_hash_mask];
92}
93
94static inline struct hlist_head *mp_hash(struct dentry *dentry)
95{
96 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
97 tmp = tmp + (tmp >> mp_hash_shift);
98 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
99}
100
b105e270 101static int mnt_alloc_id(struct mount *mnt)
73cd49ec 102{
169b480e
MW
103 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
104
105 if (res < 0)
106 return res;
107 mnt->mnt_id = res;
108 return 0;
73cd49ec
MS
109}
110
b105e270 111static void mnt_free_id(struct mount *mnt)
73cd49ec 112{
169b480e 113 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
114}
115
719f5d7f
MS
116/*
117 * Allocate a new peer group ID
719f5d7f 118 */
4b8b21f4 119static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 120{
169b480e 121 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 122
169b480e
MW
123 if (res < 0)
124 return res;
125 mnt->mnt_group_id = res;
126 return 0;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
169b480e 134 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 135 mnt->mnt_group_id = 0;
719f5d7f
MS
136}
137
b3e19d92
NP
138/*
139 * vfsmount lock must be held for read
140 */
83adc753 141static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
142{
143#ifdef CONFIG_SMP
68e8a9fe 144 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
145#else
146 preempt_disable();
68e8a9fe 147 mnt->mnt_count += n;
b3e19d92
NP
148 preempt_enable();
149#endif
150}
151
b3e19d92
NP
152/*
153 * vfsmount lock must be held for write
154 */
83adc753 155unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
156{
157#ifdef CONFIG_SMP
f03c6599 158 unsigned int count = 0;
b3e19d92
NP
159 int cpu;
160
161 for_each_possible_cpu(cpu) {
68e8a9fe 162 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
163 }
164
165 return count;
166#else
68e8a9fe 167 return mnt->mnt_count;
b3e19d92
NP
168#endif
169}
170
87b95ce0
AV
171static void drop_mountpoint(struct fs_pin *p)
172{
173 struct mount *m = container_of(p, struct mount, mnt_umount);
174 dput(m->mnt_ex_mountpoint);
175 pin_remove(p);
176 mntput(&m->mnt);
177}
178
b105e270 179static struct mount *alloc_vfsmnt(const char *name)
1da177e4 180{
c63181e6
AV
181 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
182 if (mnt) {
73cd49ec
MS
183 int err;
184
c63181e6 185 err = mnt_alloc_id(mnt);
88b38782
LZ
186 if (err)
187 goto out_free_cache;
188
189 if (name) {
fcc139ae 190 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 191 if (!mnt->mnt_devname)
88b38782 192 goto out_free_id;
73cd49ec
MS
193 }
194
b3e19d92 195#ifdef CONFIG_SMP
c63181e6
AV
196 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
197 if (!mnt->mnt_pcp)
b3e19d92
NP
198 goto out_free_devname;
199
c63181e6 200 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 201#else
c63181e6
AV
202 mnt->mnt_count = 1;
203 mnt->mnt_writers = 0;
b3e19d92
NP
204#endif
205
38129a13 206 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
207 INIT_LIST_HEAD(&mnt->mnt_child);
208 INIT_LIST_HEAD(&mnt->mnt_mounts);
209 INIT_LIST_HEAD(&mnt->mnt_list);
210 INIT_LIST_HEAD(&mnt->mnt_expire);
211 INIT_LIST_HEAD(&mnt->mnt_share);
212 INIT_LIST_HEAD(&mnt->mnt_slave_list);
213 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 214 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 215 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 216 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 217 }
c63181e6 218 return mnt;
88b38782 219
d3ef3d73
NP
220#ifdef CONFIG_SMP
221out_free_devname:
fcc139ae 222 kfree_const(mnt->mnt_devname);
d3ef3d73 223#endif
88b38782 224out_free_id:
c63181e6 225 mnt_free_id(mnt);
88b38782 226out_free_cache:
c63181e6 227 kmem_cache_free(mnt_cache, mnt);
88b38782 228 return NULL;
1da177e4
LT
229}
230
3d733633
DH
231/*
232 * Most r/o checks on a fs are for operations that take
233 * discrete amounts of time, like a write() or unlink().
234 * We must keep track of when those operations start
235 * (for permission checks) and when they end, so that
236 * we can determine when writes are able to occur to
237 * a filesystem.
238 */
239/*
240 * __mnt_is_readonly: check whether a mount is read-only
241 * @mnt: the mount to check for its write status
242 *
243 * This shouldn't be used directly ouside of the VFS.
244 * It does not guarantee that the filesystem will stay
245 * r/w, just that it is right *now*. This can not and
246 * should not be used in place of IS_RDONLY(inode).
247 * mnt_want/drop_write() will _keep_ the filesystem
248 * r/w.
249 */
43f5e655 250bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 251{
43f5e655 252 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
253}
254EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
83adc753 256static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
257{
258#ifdef CONFIG_SMP
68e8a9fe 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 260#else
68e8a9fe 261 mnt->mnt_writers++;
d3ef3d73
NP
262#endif
263}
3d733633 264
83adc753 265static inline void mnt_dec_writers(struct mount *mnt)
3d733633 266{
d3ef3d73 267#ifdef CONFIG_SMP
68e8a9fe 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 269#else
68e8a9fe 270 mnt->mnt_writers--;
d3ef3d73 271#endif
3d733633 272}
3d733633 273
83adc753 274static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 275{
d3ef3d73
NP
276#ifdef CONFIG_SMP
277 unsigned int count = 0;
3d733633 278 int cpu;
3d733633
DH
279
280 for_each_possible_cpu(cpu) {
68e8a9fe 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 282 }
3d733633 283
d3ef3d73
NP
284 return count;
285#else
286 return mnt->mnt_writers;
287#endif
3d733633
DH
288}
289
4ed5e82f
MS
290static int mnt_is_readonly(struct vfsmount *mnt)
291{
292 if (mnt->mnt_sb->s_readonly_remount)
293 return 1;
294 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
295 smp_rmb();
296 return __mnt_is_readonly(mnt);
297}
298
8366025e 299/*
eb04c282
JK
300 * Most r/o & frozen checks on a fs are for operations that take discrete
301 * amounts of time, like a write() or unlink(). We must keep track of when
302 * those operations start (for permission checks) and when they end, so that we
303 * can determine when writes are able to occur to a filesystem.
8366025e
DH
304 */
305/**
eb04c282 306 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 307 * @m: the mount on which to take a write
8366025e 308 *
eb04c282
JK
309 * This tells the low-level filesystem that a write is about to be performed to
310 * it, and makes sure that writes are allowed (mnt it read-write) before
311 * returning success. This operation does not protect against filesystem being
312 * frozen. When the write operation is finished, __mnt_drop_write() must be
313 * called. This is effectively a refcount.
8366025e 314 */
eb04c282 315int __mnt_want_write(struct vfsmount *m)
8366025e 316{
83adc753 317 struct mount *mnt = real_mount(m);
3d733633 318 int ret = 0;
3d733633 319
d3ef3d73 320 preempt_disable();
c6653a83 321 mnt_inc_writers(mnt);
d3ef3d73 322 /*
c6653a83 323 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
324 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
325 * incremented count after it has set MNT_WRITE_HOLD.
326 */
327 smp_mb();
6aa7de05 328 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
329 cpu_relax();
330 /*
331 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
332 * be set to match its requirements. So we must not load that until
333 * MNT_WRITE_HOLD is cleared.
334 */
335 smp_rmb();
4ed5e82f 336 if (mnt_is_readonly(m)) {
c6653a83 337 mnt_dec_writers(mnt);
3d733633 338 ret = -EROFS;
3d733633 339 }
d3ef3d73 340 preempt_enable();
eb04c282
JK
341
342 return ret;
343}
344
345/**
346 * mnt_want_write - get write access to a mount
347 * @m: the mount on which to take a write
348 *
349 * This tells the low-level filesystem that a write is about to be performed to
350 * it, and makes sure that writes are allowed (mount is read-write, filesystem
351 * is not frozen) before returning success. When the write operation is
352 * finished, mnt_drop_write() must be called. This is effectively a refcount.
353 */
354int mnt_want_write(struct vfsmount *m)
355{
356 int ret;
357
358 sb_start_write(m->mnt_sb);
359 ret = __mnt_want_write(m);
360 if (ret)
361 sb_end_write(m->mnt_sb);
3d733633 362 return ret;
8366025e
DH
363}
364EXPORT_SYMBOL_GPL(mnt_want_write);
365
96029c4e
NP
366/**
367 * mnt_clone_write - get write access to a mount
368 * @mnt: the mount on which to take a write
369 *
370 * This is effectively like mnt_want_write, except
371 * it must only be used to take an extra write reference
372 * on a mountpoint that we already know has a write reference
373 * on it. This allows some optimisation.
374 *
375 * After finished, mnt_drop_write must be called as usual to
376 * drop the reference.
377 */
378int mnt_clone_write(struct vfsmount *mnt)
379{
380 /* superblock may be r/o */
381 if (__mnt_is_readonly(mnt))
382 return -EROFS;
383 preempt_disable();
83adc753 384 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
385 preempt_enable();
386 return 0;
387}
388EXPORT_SYMBOL_GPL(mnt_clone_write);
389
390/**
eb04c282 391 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
392 * @file: the file who's mount on which to take a write
393 *
eb04c282 394 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
395 * do some optimisations if the file is open for write already
396 */
eb04c282 397int __mnt_want_write_file(struct file *file)
96029c4e 398{
83f936c7 399 if (!(file->f_mode & FMODE_WRITER))
eb04c282 400 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
401 else
402 return mnt_clone_write(file->f_path.mnt);
403}
eb04c282 404
7c6893e3
MS
405/**
406 * mnt_want_write_file - get write access to a file's mount
407 * @file: the file who's mount on which to take a write
408 *
409 * This is like mnt_want_write, but it takes a file and can
410 * do some optimisations if the file is open for write already
7c6893e3
MS
411 */
412int mnt_want_write_file(struct file *file)
413{
414 int ret;
415
a6795a58 416 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
417 ret = __mnt_want_write_file(file);
418 if (ret)
a6795a58 419 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
420 return ret;
421}
96029c4e
NP
422EXPORT_SYMBOL_GPL(mnt_want_write_file);
423
8366025e 424/**
eb04c282 425 * __mnt_drop_write - give up write access to a mount
8366025e
DH
426 * @mnt: the mount on which to give up write access
427 *
428 * Tells the low-level filesystem that we are done
429 * performing writes to it. Must be matched with
eb04c282 430 * __mnt_want_write() call above.
8366025e 431 */
eb04c282 432void __mnt_drop_write(struct vfsmount *mnt)
8366025e 433{
d3ef3d73 434 preempt_disable();
83adc753 435 mnt_dec_writers(real_mount(mnt));
d3ef3d73 436 preempt_enable();
8366025e 437}
eb04c282
JK
438
439/**
440 * mnt_drop_write - give up write access to a mount
441 * @mnt: the mount on which to give up write access
442 *
443 * Tells the low-level filesystem that we are done performing writes to it and
444 * also allows filesystem to be frozen again. Must be matched with
445 * mnt_want_write() call above.
446 */
447void mnt_drop_write(struct vfsmount *mnt)
448{
449 __mnt_drop_write(mnt);
450 sb_end_write(mnt->mnt_sb);
451}
8366025e
DH
452EXPORT_SYMBOL_GPL(mnt_drop_write);
453
eb04c282
JK
454void __mnt_drop_write_file(struct file *file)
455{
456 __mnt_drop_write(file->f_path.mnt);
457}
458
7c6893e3
MS
459void mnt_drop_write_file(struct file *file)
460{
a6795a58 461 __mnt_drop_write_file(file);
7c6893e3
MS
462 sb_end_write(file_inode(file)->i_sb);
463}
2a79f17e
AV
464EXPORT_SYMBOL(mnt_drop_write_file);
465
83adc753 466static int mnt_make_readonly(struct mount *mnt)
8366025e 467{
3d733633
DH
468 int ret = 0;
469
719ea2fb 470 lock_mount_hash();
83adc753 471 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 472 /*
d3ef3d73
NP
473 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
474 * should be visible before we do.
3d733633 475 */
d3ef3d73
NP
476 smp_mb();
477
3d733633 478 /*
d3ef3d73
NP
479 * With writers on hold, if this value is zero, then there are
480 * definitely no active writers (although held writers may subsequently
481 * increment the count, they'll have to wait, and decrement it after
482 * seeing MNT_READONLY).
483 *
484 * It is OK to have counter incremented on one CPU and decremented on
485 * another: the sum will add up correctly. The danger would be when we
486 * sum up each counter, if we read a counter before it is incremented,
487 * but then read another CPU's count which it has been subsequently
488 * decremented from -- we would see more decrements than we should.
489 * MNT_WRITE_HOLD protects against this scenario, because
490 * mnt_want_write first increments count, then smp_mb, then spins on
491 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
492 * we're counting up here.
3d733633 493 */
c6653a83 494 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
495 ret = -EBUSY;
496 else
83adc753 497 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
498 /*
499 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
500 * that become unheld will see MNT_READONLY.
501 */
502 smp_wmb();
83adc753 503 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 504 unlock_mount_hash();
3d733633 505 return ret;
8366025e 506}
8366025e 507
43f5e655 508static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 509{
719ea2fb 510 lock_mount_hash();
83adc753 511 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 512 unlock_mount_hash();
43f5e655 513 return 0;
2e4b7fcd
DH
514}
515
4ed5e82f
MS
516int sb_prepare_remount_readonly(struct super_block *sb)
517{
518 struct mount *mnt;
519 int err = 0;
520
8e8b8796
MS
521 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
522 if (atomic_long_read(&sb->s_remove_count))
523 return -EBUSY;
524
719ea2fb 525 lock_mount_hash();
4ed5e82f
MS
526 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
527 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
528 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
529 smp_mb();
530 if (mnt_get_writers(mnt) > 0) {
531 err = -EBUSY;
532 break;
533 }
534 }
535 }
8e8b8796
MS
536 if (!err && atomic_long_read(&sb->s_remove_count))
537 err = -EBUSY;
538
4ed5e82f
MS
539 if (!err) {
540 sb->s_readonly_remount = 1;
541 smp_wmb();
542 }
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
545 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
546 }
719ea2fb 547 unlock_mount_hash();
4ed5e82f
MS
548
549 return err;
550}
551
b105e270 552static void free_vfsmnt(struct mount *mnt)
1da177e4 553{
fcc139ae 554 kfree_const(mnt->mnt_devname);
d3ef3d73 555#ifdef CONFIG_SMP
68e8a9fe 556 free_percpu(mnt->mnt_pcp);
d3ef3d73 557#endif
b105e270 558 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
559}
560
8ffcb32e
DH
561static void delayed_free_vfsmnt(struct rcu_head *head)
562{
563 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
564}
565
48a066e7 566/* call under rcu_read_lock */
294d71ff 567int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
568{
569 struct mount *mnt;
570 if (read_seqretry(&mount_lock, seq))
294d71ff 571 return 1;
48a066e7 572 if (bastard == NULL)
294d71ff 573 return 0;
48a066e7
AV
574 mnt = real_mount(bastard);
575 mnt_add_count(mnt, 1);
119e1ef8 576 smp_mb(); // see mntput_no_expire()
48a066e7 577 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 578 return 0;
48a066e7
AV
579 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
580 mnt_add_count(mnt, -1);
294d71ff
AV
581 return 1;
582 }
119e1ef8
AV
583 lock_mount_hash();
584 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
585 mnt_add_count(mnt, -1);
586 unlock_mount_hash();
587 return 1;
588 }
589 unlock_mount_hash();
590 /* caller will mntput() */
294d71ff
AV
591 return -1;
592}
593
594/* call under rcu_read_lock */
595bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596{
597 int res = __legitimize_mnt(bastard, seq);
598 if (likely(!res))
599 return true;
600 if (unlikely(res < 0)) {
601 rcu_read_unlock();
602 mntput(bastard);
603 rcu_read_lock();
48a066e7 604 }
48a066e7
AV
605 return false;
606}
607
1da177e4 608/*
474279dc 609 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 610 * call under rcu_read_lock()
1da177e4 611 */
474279dc 612struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 613{
38129a13 614 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
615 struct mount *p;
616
38129a13 617 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
618 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
619 return p;
620 return NULL;
621}
622
a05964f3 623/*
f015f126
DH
624 * lookup_mnt - Return the first child mount mounted at path
625 *
626 * "First" means first mounted chronologically. If you create the
627 * following mounts:
628 *
629 * mount /dev/sda1 /mnt
630 * mount /dev/sda2 /mnt
631 * mount /dev/sda3 /mnt
632 *
633 * Then lookup_mnt() on the base /mnt dentry in the root mount will
634 * return successively the root dentry and vfsmount of /dev/sda1, then
635 * /dev/sda2, then /dev/sda3, then NULL.
636 *
637 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 638 */
ca71cf71 639struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 640{
c7105365 641 struct mount *child_mnt;
48a066e7
AV
642 struct vfsmount *m;
643 unsigned seq;
99b7db7b 644
48a066e7
AV
645 rcu_read_lock();
646 do {
647 seq = read_seqbegin(&mount_lock);
648 child_mnt = __lookup_mnt(path->mnt, path->dentry);
649 m = child_mnt ? &child_mnt->mnt : NULL;
650 } while (!legitimize_mnt(m, seq));
651 rcu_read_unlock();
652 return m;
a05964f3
RP
653}
654
7af1364f
EB
655/*
656 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
657 * current mount namespace.
658 *
659 * The common case is dentries are not mountpoints at all and that
660 * test is handled inline. For the slow case when we are actually
661 * dealing with a mountpoint of some kind, walk through all of the
662 * mounts in the current mount namespace and test to see if the dentry
663 * is a mountpoint.
664 *
665 * The mount_hashtable is not usable in the context because we
666 * need to identify all mounts that may be in the current mount
667 * namespace not just a mount that happens to have some specified
668 * parent mount.
669 */
670bool __is_local_mountpoint(struct dentry *dentry)
671{
672 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
673 struct mount *mnt;
674 bool is_covered = false;
675
676 if (!d_mountpoint(dentry))
677 goto out;
678
679 down_read(&namespace_sem);
680 list_for_each_entry(mnt, &ns->list, mnt_list) {
681 is_covered = (mnt->mnt_mountpoint == dentry);
682 if (is_covered)
683 break;
684 }
685 up_read(&namespace_sem);
686out:
687 return is_covered;
688}
689
e2dfa935 690static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 691{
0818bf27 692 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
693 struct mountpoint *mp;
694
0818bf27 695 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 696 if (mp->m_dentry == dentry) {
84d17192
AV
697 mp->m_count++;
698 return mp;
699 }
700 }
e2dfa935
EB
701 return NULL;
702}
703
3895dbf8 704static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 705{
3895dbf8 706 struct mountpoint *mp, *new = NULL;
e2dfa935 707 int ret;
84d17192 708
3895dbf8 709 if (d_mountpoint(dentry)) {
1e9c75fb
BC
710 /* might be worth a WARN_ON() */
711 if (d_unlinked(dentry))
712 return ERR_PTR(-ENOENT);
3895dbf8
EB
713mountpoint:
714 read_seqlock_excl(&mount_lock);
715 mp = lookup_mountpoint(dentry);
716 read_sequnlock_excl(&mount_lock);
717 if (mp)
718 goto done;
719 }
720
721 if (!new)
722 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
723 if (!new)
84d17192
AV
724 return ERR_PTR(-ENOMEM);
725
3895dbf8
EB
726
727 /* Exactly one processes may set d_mounted */
eed81007 728 ret = d_set_mounted(dentry);
eed81007 729
3895dbf8
EB
730 /* Someone else set d_mounted? */
731 if (ret == -EBUSY)
732 goto mountpoint;
733
734 /* The dentry is not available as a mountpoint? */
735 mp = ERR_PTR(ret);
736 if (ret)
737 goto done;
738
739 /* Add the new mountpoint to the hash table */
740 read_seqlock_excl(&mount_lock);
741 new->m_dentry = dentry;
742 new->m_count = 1;
743 hlist_add_head(&new->m_hash, mp_hash(dentry));
744 INIT_HLIST_HEAD(&new->m_list);
745 read_sequnlock_excl(&mount_lock);
746
747 mp = new;
748 new = NULL;
749done:
750 kfree(new);
84d17192
AV
751 return mp;
752}
753
754static void put_mountpoint(struct mountpoint *mp)
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 758 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
0818bf27 762 hlist_del(&mp->m_hash);
84d17192
AV
763 kfree(mp);
764 }
765}
766
143c8c91 767static inline int check_mnt(struct mount *mnt)
1da177e4 768{
6b3286ed 769 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
770}
771
99b7db7b
NP
772/*
773 * vfsmount lock must be held for write
774 */
6b3286ed 775static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
776{
777 if (ns) {
778 ns->event = ++event;
779 wake_up_interruptible(&ns->poll);
780 }
781}
782
99b7db7b
NP
783/*
784 * vfsmount lock must be held for write
785 */
6b3286ed 786static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
787{
788 if (ns && ns->event != event) {
789 ns->event = event;
790 wake_up_interruptible(&ns->poll);
791 }
792}
793
99b7db7b
NP
794/*
795 * vfsmount lock must be held for write
796 */
7bdb11de 797static void unhash_mnt(struct mount *mnt)
419148da 798{
0714a533 799 mnt->mnt_parent = mnt;
a73324da 800 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 801 list_del_init(&mnt->mnt_child);
38129a13 802 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 803 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
804 put_mountpoint(mnt->mnt_mp);
805 mnt->mnt_mp = NULL;
1da177e4
LT
806}
807
7bdb11de
EB
808/*
809 * vfsmount lock must be held for write
810 */
811static void detach_mnt(struct mount *mnt, struct path *old_path)
812{
813 old_path->dentry = mnt->mnt_mountpoint;
814 old_path->mnt = &mnt->mnt_parent->mnt;
815 unhash_mnt(mnt);
816}
817
6a46c573
EB
818/*
819 * vfsmount lock must be held for write
820 */
821static void umount_mnt(struct mount *mnt)
822{
823 /* old mountpoint will be dropped when we can do that */
824 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
825 unhash_mnt(mnt);
826}
827
99b7db7b
NP
828/*
829 * vfsmount lock must be held for write
830 */
84d17192
AV
831void mnt_set_mountpoint(struct mount *mnt,
832 struct mountpoint *mp,
44d964d6 833 struct mount *child_mnt)
b90fa9ae 834{
84d17192 835 mp->m_count++;
3a2393d7 836 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 837 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 838 child_mnt->mnt_parent = mnt;
84d17192 839 child_mnt->mnt_mp = mp;
0a5eb7c8 840 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
841}
842
1064f874
EB
843static void __attach_mnt(struct mount *mnt, struct mount *parent)
844{
845 hlist_add_head_rcu(&mnt->mnt_hash,
846 m_hash(&parent->mnt, mnt->mnt_mountpoint));
847 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
848}
849
99b7db7b
NP
850/*
851 * vfsmount lock must be held for write
852 */
84d17192
AV
853static void attach_mnt(struct mount *mnt,
854 struct mount *parent,
855 struct mountpoint *mp)
1da177e4 856{
84d17192 857 mnt_set_mountpoint(parent, mp, mnt);
1064f874 858 __attach_mnt(mnt, parent);
b90fa9ae
RP
859}
860
1064f874 861void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 862{
1064f874
EB
863 struct mountpoint *old_mp = mnt->mnt_mp;
864 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
865 struct mount *old_parent = mnt->mnt_parent;
866
867 list_del_init(&mnt->mnt_child);
868 hlist_del_init(&mnt->mnt_mp_list);
869 hlist_del_init_rcu(&mnt->mnt_hash);
870
871 attach_mnt(mnt, parent, mp);
872
873 put_mountpoint(old_mp);
874
875 /*
876 * Safely avoid even the suggestion this code might sleep or
877 * lock the mount hash by taking advantage of the knowledge that
878 * mnt_change_mountpoint will not release the final reference
879 * to a mountpoint.
880 *
881 * During mounting, the mount passed in as the parent mount will
882 * continue to use the old mountpoint and during unmounting, the
883 * old mountpoint will continue to exist until namespace_unlock,
884 * which happens well after mnt_change_mountpoint.
885 */
886 spin_lock(&old_mountpoint->d_lock);
887 old_mountpoint->d_lockref.count--;
888 spin_unlock(&old_mountpoint->d_lock);
889
890 mnt_add_count(old_parent, -1);
12a5b529
AV
891}
892
b90fa9ae 893/*
99b7db7b 894 * vfsmount lock must be held for write
b90fa9ae 895 */
1064f874 896static void commit_tree(struct mount *mnt)
b90fa9ae 897{
0714a533 898 struct mount *parent = mnt->mnt_parent;
83adc753 899 struct mount *m;
b90fa9ae 900 LIST_HEAD(head);
143c8c91 901 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 902
0714a533 903 BUG_ON(parent == mnt);
b90fa9ae 904
1a4eeaf2 905 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 906 list_for_each_entry(m, &head, mnt_list)
143c8c91 907 m->mnt_ns = n;
f03c6599 908
b90fa9ae
RP
909 list_splice(&head, n->list.prev);
910
d2921684
EB
911 n->mounts += n->pending_mounts;
912 n->pending_mounts = 0;
913
1064f874 914 __attach_mnt(mnt, parent);
6b3286ed 915 touch_mnt_namespace(n);
1da177e4
LT
916}
917
909b0a88 918static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 919{
6b41d536
AV
920 struct list_head *next = p->mnt_mounts.next;
921 if (next == &p->mnt_mounts) {
1da177e4 922 while (1) {
909b0a88 923 if (p == root)
1da177e4 924 return NULL;
6b41d536
AV
925 next = p->mnt_child.next;
926 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 927 break;
0714a533 928 p = p->mnt_parent;
1da177e4
LT
929 }
930 }
6b41d536 931 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
932}
933
315fc83e 934static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 935{
6b41d536
AV
936 struct list_head *prev = p->mnt_mounts.prev;
937 while (prev != &p->mnt_mounts) {
938 p = list_entry(prev, struct mount, mnt_child);
939 prev = p->mnt_mounts.prev;
9676f0c6
RP
940 }
941 return p;
942}
943
8f291889
AV
944/**
945 * vfs_create_mount - Create a mount for a configured superblock
946 * @fc: The configuration context with the superblock attached
947 *
948 * Create a mount to an already configured superblock. If necessary, the
949 * caller should invoke vfs_get_tree() before calling this.
950 *
951 * Note that this does not attach the mount to anything.
952 */
953struct vfsmount *vfs_create_mount(struct fs_context *fc)
954{
955 struct mount *mnt;
956
957 if (!fc->root)
958 return ERR_PTR(-EINVAL);
959
960 mnt = alloc_vfsmnt(fc->source ?: "none");
961 if (!mnt)
962 return ERR_PTR(-ENOMEM);
963
964 if (fc->sb_flags & SB_KERNMOUNT)
965 mnt->mnt.mnt_flags = MNT_INTERNAL;
966
967 atomic_inc(&fc->root->d_sb->s_active);
968 mnt->mnt.mnt_sb = fc->root->d_sb;
969 mnt->mnt.mnt_root = dget(fc->root);
970 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
971 mnt->mnt_parent = mnt;
972
973 lock_mount_hash();
974 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
975 unlock_mount_hash();
976 return &mnt->mnt;
977}
978EXPORT_SYMBOL(vfs_create_mount);
979
980struct vfsmount *fc_mount(struct fs_context *fc)
981{
982 int err = vfs_get_tree(fc);
983 if (!err) {
984 up_write(&fc->root->d_sb->s_umount);
985 return vfs_create_mount(fc);
986 }
987 return ERR_PTR(err);
988}
989EXPORT_SYMBOL(fc_mount);
990
9bc61ab1
DH
991struct vfsmount *vfs_kern_mount(struct file_system_type *type,
992 int flags, const char *name,
993 void *data)
9d412a43 994{
9bc61ab1 995 struct fs_context *fc;
8f291889 996 struct vfsmount *mnt;
9bc61ab1 997 int ret = 0;
9d412a43
AV
998
999 if (!type)
1000 return ERR_PTR(-ENODEV);
1001
9bc61ab1
DH
1002 fc = fs_context_for_mount(type, flags);
1003 if (IS_ERR(fc))
1004 return ERR_CAST(fc);
1005
1006 if (name) {
1007 fc->source = kstrdup(name, GFP_KERNEL);
1008 if (!fc->source)
1009 ret = -ENOMEM;
1010 }
1011 if (!ret)
1012 ret = parse_monolithic_mount_data(fc, data);
1013 if (!ret)
8f291889
AV
1014 mnt = fc_mount(fc);
1015 else
1016 mnt = ERR_PTR(ret);
9d412a43 1017
9bc61ab1 1018 put_fs_context(fc);
8f291889 1019 return mnt;
9d412a43
AV
1020}
1021EXPORT_SYMBOL_GPL(vfs_kern_mount);
1022
93faccbb
EB
1023struct vfsmount *
1024vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1025 const char *name, void *data)
1026{
1027 /* Until it is worked out how to pass the user namespace
1028 * through from the parent mount to the submount don't support
1029 * unprivileged mounts with submounts.
1030 */
1031 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1032 return ERR_PTR(-EPERM);
1033
e462ec50 1034 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1035}
1036EXPORT_SYMBOL_GPL(vfs_submount);
1037
87129cc0 1038static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1039 int flag)
1da177e4 1040{
87129cc0 1041 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1042 struct mount *mnt;
1043 int err;
1da177e4 1044
be34d1a3
DH
1045 mnt = alloc_vfsmnt(old->mnt_devname);
1046 if (!mnt)
1047 return ERR_PTR(-ENOMEM);
719f5d7f 1048
7a472ef4 1049 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1050 mnt->mnt_group_id = 0; /* not a peer of original */
1051 else
1052 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1053
be34d1a3
DH
1054 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1055 err = mnt_alloc_group_id(mnt);
1056 if (err)
1057 goto out_free;
1da177e4 1058 }
be34d1a3 1059
16a34adb
AV
1060 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1061 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1062
be34d1a3
DH
1063 atomic_inc(&sb->s_active);
1064 mnt->mnt.mnt_sb = sb;
1065 mnt->mnt.mnt_root = dget(root);
1066 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1067 mnt->mnt_parent = mnt;
719ea2fb 1068 lock_mount_hash();
be34d1a3 1069 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1070 unlock_mount_hash();
be34d1a3 1071
7a472ef4
EB
1072 if ((flag & CL_SLAVE) ||
1073 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1074 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1075 mnt->mnt_master = old;
1076 CLEAR_MNT_SHARED(mnt);
1077 } else if (!(flag & CL_PRIVATE)) {
1078 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1079 list_add(&mnt->mnt_share, &old->mnt_share);
1080 if (IS_MNT_SLAVE(old))
1081 list_add(&mnt->mnt_slave, &old->mnt_slave);
1082 mnt->mnt_master = old->mnt_master;
5235d448
AV
1083 } else {
1084 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1085 }
1086 if (flag & CL_MAKE_SHARED)
1087 set_mnt_shared(mnt);
1088
1089 /* stick the duplicate mount on the same expiry list
1090 * as the original if that was on one */
1091 if (flag & CL_EXPIRE) {
1092 if (!list_empty(&old->mnt_expire))
1093 list_add(&mnt->mnt_expire, &old->mnt_expire);
1094 }
1095
cb338d06 1096 return mnt;
719f5d7f
MS
1097
1098 out_free:
8ffcb32e 1099 mnt_free_id(mnt);
719f5d7f 1100 free_vfsmnt(mnt);
be34d1a3 1101 return ERR_PTR(err);
1da177e4
LT
1102}
1103
9ea459e1
AV
1104static void cleanup_mnt(struct mount *mnt)
1105{
1106 /*
1107 * This probably indicates that somebody messed
1108 * up a mnt_want/drop_write() pair. If this
1109 * happens, the filesystem was probably unable
1110 * to make r/w->r/o transitions.
1111 */
1112 /*
1113 * The locking used to deal with mnt_count decrement provides barriers,
1114 * so mnt_get_writers() below is safe.
1115 */
1116 WARN_ON(mnt_get_writers(mnt));
1117 if (unlikely(mnt->mnt_pins.first))
1118 mnt_pin_kill(mnt);
1119 fsnotify_vfsmount_delete(&mnt->mnt);
1120 dput(mnt->mnt.mnt_root);
1121 deactivate_super(mnt->mnt.mnt_sb);
1122 mnt_free_id(mnt);
1123 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1124}
1125
1126static void __cleanup_mnt(struct rcu_head *head)
1127{
1128 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1129}
1130
1131static LLIST_HEAD(delayed_mntput_list);
1132static void delayed_mntput(struct work_struct *unused)
1133{
1134 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1135 struct mount *m, *t;
9ea459e1 1136
29785735
BP
1137 llist_for_each_entry_safe(m, t, node, mnt_llist)
1138 cleanup_mnt(m);
9ea459e1
AV
1139}
1140static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1141
900148dc 1142static void mntput_no_expire(struct mount *mnt)
b3e19d92 1143{
48a066e7 1144 rcu_read_lock();
9ea0a46c
AV
1145 if (likely(READ_ONCE(mnt->mnt_ns))) {
1146 /*
1147 * Since we don't do lock_mount_hash() here,
1148 * ->mnt_ns can change under us. However, if it's
1149 * non-NULL, then there's a reference that won't
1150 * be dropped until after an RCU delay done after
1151 * turning ->mnt_ns NULL. So if we observe it
1152 * non-NULL under rcu_read_lock(), the reference
1153 * we are dropping is not the final one.
1154 */
1155 mnt_add_count(mnt, -1);
48a066e7 1156 rcu_read_unlock();
f03c6599 1157 return;
b3e19d92 1158 }
719ea2fb 1159 lock_mount_hash();
119e1ef8
AV
1160 /*
1161 * make sure that if __legitimize_mnt() has not seen us grab
1162 * mount_lock, we'll see their refcount increment here.
1163 */
1164 smp_mb();
9ea0a46c 1165 mnt_add_count(mnt, -1);
b3e19d92 1166 if (mnt_get_count(mnt)) {
48a066e7 1167 rcu_read_unlock();
719ea2fb 1168 unlock_mount_hash();
99b7db7b
NP
1169 return;
1170 }
48a066e7
AV
1171 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1172 rcu_read_unlock();
1173 unlock_mount_hash();
1174 return;
1175 }
1176 mnt->mnt.mnt_flags |= MNT_DOOMED;
1177 rcu_read_unlock();
962830df 1178
39f7c4db 1179 list_del(&mnt->mnt_instance);
ce07d891
EB
1180
1181 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1182 struct mount *p, *tmp;
1183 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1184 umount_mnt(p);
1185 }
1186 }
719ea2fb 1187 unlock_mount_hash();
649a795a 1188
9ea459e1
AV
1189 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1190 struct task_struct *task = current;
1191 if (likely(!(task->flags & PF_KTHREAD))) {
1192 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1193 if (!task_work_add(task, &mnt->mnt_rcu, true))
1194 return;
1195 }
1196 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1197 schedule_delayed_work(&delayed_mntput_work, 1);
1198 return;
1199 }
1200 cleanup_mnt(mnt);
b3e19d92 1201}
b3e19d92
NP
1202
1203void mntput(struct vfsmount *mnt)
1204{
1205 if (mnt) {
863d684f 1206 struct mount *m = real_mount(mnt);
b3e19d92 1207 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1208 if (unlikely(m->mnt_expiry_mark))
1209 m->mnt_expiry_mark = 0;
1210 mntput_no_expire(m);
b3e19d92
NP
1211 }
1212}
1213EXPORT_SYMBOL(mntput);
1214
1215struct vfsmount *mntget(struct vfsmount *mnt)
1216{
1217 if (mnt)
83adc753 1218 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1219 return mnt;
1220}
1221EXPORT_SYMBOL(mntget);
1222
c6609c0a
IK
1223/* path_is_mountpoint() - Check if path is a mount in the current
1224 * namespace.
1225 *
1226 * d_mountpoint() can only be used reliably to establish if a dentry is
1227 * not mounted in any namespace and that common case is handled inline.
1228 * d_mountpoint() isn't aware of the possibility there may be multiple
1229 * mounts using a given dentry in a different namespace. This function
1230 * checks if the passed in path is a mountpoint rather than the dentry
1231 * alone.
1232 */
1233bool path_is_mountpoint(const struct path *path)
1234{
1235 unsigned seq;
1236 bool res;
1237
1238 if (!d_mountpoint(path->dentry))
1239 return false;
1240
1241 rcu_read_lock();
1242 do {
1243 seq = read_seqbegin(&mount_lock);
1244 res = __path_is_mountpoint(path);
1245 } while (read_seqretry(&mount_lock, seq));
1246 rcu_read_unlock();
1247
1248 return res;
1249}
1250EXPORT_SYMBOL(path_is_mountpoint);
1251
ca71cf71 1252struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1253{
3064c356
AV
1254 struct mount *p;
1255 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1256 if (IS_ERR(p))
1257 return ERR_CAST(p);
1258 p->mnt.mnt_flags |= MNT_INTERNAL;
1259 return &p->mnt;
7b7b1ace 1260}
1da177e4 1261
a1a2c409 1262#ifdef CONFIG_PROC_FS
0226f492 1263/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1264static void *m_start(struct seq_file *m, loff_t *pos)
1265{
ede1bf0d 1266 struct proc_mounts *p = m->private;
1da177e4 1267
390c6843 1268 down_read(&namespace_sem);
c7999c36
AV
1269 if (p->cached_event == p->ns->event) {
1270 void *v = p->cached_mount;
1271 if (*pos == p->cached_index)
1272 return v;
1273 if (*pos == p->cached_index + 1) {
1274 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1275 return p->cached_mount = v;
1276 }
1277 }
1278
1279 p->cached_event = p->ns->event;
1280 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1281 p->cached_index = *pos;
1282 return p->cached_mount;
1da177e4
LT
1283}
1284
1285static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1286{
ede1bf0d 1287 struct proc_mounts *p = m->private;
b0765fb8 1288
c7999c36
AV
1289 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1290 p->cached_index = *pos;
1291 return p->cached_mount;
1da177e4
LT
1292}
1293
1294static void m_stop(struct seq_file *m, void *v)
1295{
390c6843 1296 up_read(&namespace_sem);
1da177e4
LT
1297}
1298
0226f492 1299static int m_show(struct seq_file *m, void *v)
2d4d4864 1300{
ede1bf0d 1301 struct proc_mounts *p = m->private;
1a4eeaf2 1302 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1303 return p->show(m, &r->mnt);
1da177e4
LT
1304}
1305
a1a2c409 1306const struct seq_operations mounts_op = {
1da177e4
LT
1307 .start = m_start,
1308 .next = m_next,
1309 .stop = m_stop,
0226f492 1310 .show = m_show,
b4629fe2 1311};
a1a2c409 1312#endif /* CONFIG_PROC_FS */
b4629fe2 1313
1da177e4
LT
1314/**
1315 * may_umount_tree - check if a mount tree is busy
1316 * @mnt: root of mount tree
1317 *
1318 * This is called to check if a tree of mounts has any
1319 * open files, pwds, chroots or sub mounts that are
1320 * busy.
1321 */
909b0a88 1322int may_umount_tree(struct vfsmount *m)
1da177e4 1323{
909b0a88 1324 struct mount *mnt = real_mount(m);
36341f64
RP
1325 int actual_refs = 0;
1326 int minimum_refs = 0;
315fc83e 1327 struct mount *p;
909b0a88 1328 BUG_ON(!m);
1da177e4 1329
b3e19d92 1330 /* write lock needed for mnt_get_count */
719ea2fb 1331 lock_mount_hash();
909b0a88 1332 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1333 actual_refs += mnt_get_count(p);
1da177e4 1334 minimum_refs += 2;
1da177e4 1335 }
719ea2fb 1336 unlock_mount_hash();
1da177e4
LT
1337
1338 if (actual_refs > minimum_refs)
e3474a8e 1339 return 0;
1da177e4 1340
e3474a8e 1341 return 1;
1da177e4
LT
1342}
1343
1344EXPORT_SYMBOL(may_umount_tree);
1345
1346/**
1347 * may_umount - check if a mount point is busy
1348 * @mnt: root of mount
1349 *
1350 * This is called to check if a mount point has any
1351 * open files, pwds, chroots or sub mounts. If the
1352 * mount has sub mounts this will return busy
1353 * regardless of whether the sub mounts are busy.
1354 *
1355 * Doesn't take quota and stuff into account. IOW, in some cases it will
1356 * give false negatives. The main reason why it's here is that we need
1357 * a non-destructive way to look for easily umountable filesystems.
1358 */
1359int may_umount(struct vfsmount *mnt)
1360{
e3474a8e 1361 int ret = 1;
8ad08d8a 1362 down_read(&namespace_sem);
719ea2fb 1363 lock_mount_hash();
1ab59738 1364 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1365 ret = 0;
719ea2fb 1366 unlock_mount_hash();
8ad08d8a 1367 up_read(&namespace_sem);
a05964f3 1368 return ret;
1da177e4
LT
1369}
1370
1371EXPORT_SYMBOL(may_umount);
1372
38129a13 1373static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1374
97216be0 1375static void namespace_unlock(void)
70fbcdf4 1376{
a3b3c562 1377 struct hlist_head head;
97216be0 1378
a3b3c562 1379 hlist_move_list(&unmounted, &head);
97216be0 1380
97216be0
AV
1381 up_write(&namespace_sem);
1382
a3b3c562
EB
1383 if (likely(hlist_empty(&head)))
1384 return;
1385
22cb7405 1386 synchronize_rcu_expedited();
48a066e7 1387
87b95ce0 1388 group_pin_kill(&head);
70fbcdf4
RP
1389}
1390
97216be0 1391static inline void namespace_lock(void)
e3197d83 1392{
97216be0 1393 down_write(&namespace_sem);
e3197d83
AV
1394}
1395
e819f152
EB
1396enum umount_tree_flags {
1397 UMOUNT_SYNC = 1,
1398 UMOUNT_PROPAGATE = 2,
e0c9c0af 1399 UMOUNT_CONNECTED = 4,
e819f152 1400};
f2d0a123
EB
1401
1402static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1403{
1404 /* Leaving mounts connected is only valid for lazy umounts */
1405 if (how & UMOUNT_SYNC)
1406 return true;
1407
1408 /* A mount without a parent has nothing to be connected to */
1409 if (!mnt_has_parent(mnt))
1410 return true;
1411
1412 /* Because the reference counting rules change when mounts are
1413 * unmounted and connected, umounted mounts may not be
1414 * connected to mounted mounts.
1415 */
1416 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1417 return true;
1418
1419 /* Has it been requested that the mount remain connected? */
1420 if (how & UMOUNT_CONNECTED)
1421 return false;
1422
1423 /* Is the mount locked such that it needs to remain connected? */
1424 if (IS_MNT_LOCKED(mnt))
1425 return false;
1426
1427 /* By default disconnect the mount */
1428 return true;
1429}
1430
99b7db7b 1431/*
48a066e7 1432 * mount_lock must be held
99b7db7b
NP
1433 * namespace_sem must be held for write
1434 */
e819f152 1435static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1436{
c003b26f 1437 LIST_HEAD(tmp_list);
315fc83e 1438 struct mount *p;
1da177e4 1439
5d88457e
EB
1440 if (how & UMOUNT_PROPAGATE)
1441 propagate_mount_unlock(mnt);
1442
c003b26f 1443 /* Gather the mounts to umount */
590ce4bc
EB
1444 for (p = mnt; p; p = next_mnt(p, mnt)) {
1445 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1446 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1447 }
1da177e4 1448
411a938b 1449 /* Hide the mounts from mnt_mounts */
c003b26f 1450 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1451 list_del_init(&p->mnt_child);
c003b26f 1452 }
88b368f2 1453
c003b26f 1454 /* Add propogated mounts to the tmp_list */
e819f152 1455 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1456 propagate_umount(&tmp_list);
a05964f3 1457
c003b26f 1458 while (!list_empty(&tmp_list)) {
d2921684 1459 struct mnt_namespace *ns;
ce07d891 1460 bool disconnect;
c003b26f 1461 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1462 list_del_init(&p->mnt_expire);
1a4eeaf2 1463 list_del_init(&p->mnt_list);
d2921684
EB
1464 ns = p->mnt_ns;
1465 if (ns) {
1466 ns->mounts--;
1467 __touch_mnt_namespace(ns);
1468 }
143c8c91 1469 p->mnt_ns = NULL;
e819f152 1470 if (how & UMOUNT_SYNC)
48a066e7 1471 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1472
f2d0a123 1473 disconnect = disconnect_mount(p, how);
ce07d891
EB
1474
1475 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1476 disconnect ? &unmounted : NULL);
676da58d 1477 if (mnt_has_parent(p)) {
81b6b061 1478 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1479 if (!disconnect) {
1480 /* Don't forget about p */
1481 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1482 } else {
1483 umount_mnt(p);
1484 }
7c4b93d8 1485 }
0f0afb1d 1486 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1487 }
1488}
1489
b54b9be7 1490static void shrink_submounts(struct mount *mnt);
c35038be 1491
1ab59738 1492static int do_umount(struct mount *mnt, int flags)
1da177e4 1493{
1ab59738 1494 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1495 int retval;
1496
1ab59738 1497 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1498 if (retval)
1499 return retval;
1500
1501 /*
1502 * Allow userspace to request a mountpoint be expired rather than
1503 * unmounting unconditionally. Unmount only happens if:
1504 * (1) the mark is already set (the mark is cleared by mntput())
1505 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1506 */
1507 if (flags & MNT_EXPIRE) {
1ab59738 1508 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1509 flags & (MNT_FORCE | MNT_DETACH))
1510 return -EINVAL;
1511
b3e19d92
NP
1512 /*
1513 * probably don't strictly need the lock here if we examined
1514 * all race cases, but it's a slowpath.
1515 */
719ea2fb 1516 lock_mount_hash();
83adc753 1517 if (mnt_get_count(mnt) != 2) {
719ea2fb 1518 unlock_mount_hash();
1da177e4 1519 return -EBUSY;
b3e19d92 1520 }
719ea2fb 1521 unlock_mount_hash();
1da177e4 1522
863d684f 1523 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1524 return -EAGAIN;
1525 }
1526
1527 /*
1528 * If we may have to abort operations to get out of this
1529 * mount, and they will themselves hold resources we must
1530 * allow the fs to do things. In the Unix tradition of
1531 * 'Gee thats tricky lets do it in userspace' the umount_begin
1532 * might fail to complete on the first run through as other tasks
1533 * must return, and the like. Thats for the mount program to worry
1534 * about for the moment.
1535 */
1536
42faad99 1537 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1538 sb->s_op->umount_begin(sb);
42faad99 1539 }
1da177e4
LT
1540
1541 /*
1542 * No sense to grab the lock for this test, but test itself looks
1543 * somewhat bogus. Suggestions for better replacement?
1544 * Ho-hum... In principle, we might treat that as umount + switch
1545 * to rootfs. GC would eventually take care of the old vfsmount.
1546 * Actually it makes sense, especially if rootfs would contain a
1547 * /reboot - static binary that would close all descriptors and
1548 * call reboot(9). Then init(8) could umount root and exec /reboot.
1549 */
1ab59738 1550 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1551 /*
1552 * Special case for "unmounting" root ...
1553 * we just try to remount it readonly.
1554 */
bc6155d1 1555 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1556 return -EPERM;
1da177e4 1557 down_write(&sb->s_umount);
bc98a42c 1558 if (!sb_rdonly(sb))
e462ec50 1559 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1560 up_write(&sb->s_umount);
1561 return retval;
1562 }
1563
97216be0 1564 namespace_lock();
719ea2fb 1565 lock_mount_hash();
1da177e4 1566
25d202ed
EB
1567 /* Recheck MNT_LOCKED with the locks held */
1568 retval = -EINVAL;
1569 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1570 goto out;
1571
1572 event++;
48a066e7 1573 if (flags & MNT_DETACH) {
1a4eeaf2 1574 if (!list_empty(&mnt->mnt_list))
e819f152 1575 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1576 retval = 0;
48a066e7
AV
1577 } else {
1578 shrink_submounts(mnt);
1579 retval = -EBUSY;
1580 if (!propagate_mount_busy(mnt, 2)) {
1581 if (!list_empty(&mnt->mnt_list))
e819f152 1582 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1583 retval = 0;
1584 }
1da177e4 1585 }
25d202ed 1586out:
719ea2fb 1587 unlock_mount_hash();
e3197d83 1588 namespace_unlock();
1da177e4
LT
1589 return retval;
1590}
1591
80b5dce8
EB
1592/*
1593 * __detach_mounts - lazily unmount all mounts on the specified dentry
1594 *
1595 * During unlink, rmdir, and d_drop it is possible to loose the path
1596 * to an existing mountpoint, and wind up leaking the mount.
1597 * detach_mounts allows lazily unmounting those mounts instead of
1598 * leaking them.
1599 *
1600 * The caller may hold dentry->d_inode->i_mutex.
1601 */
1602void __detach_mounts(struct dentry *dentry)
1603{
1604 struct mountpoint *mp;
1605 struct mount *mnt;
1606
1607 namespace_lock();
3895dbf8 1608 lock_mount_hash();
80b5dce8 1609 mp = lookup_mountpoint(dentry);
f53e5797 1610 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1611 goto out_unlock;
1612
e06b933e 1613 event++;
80b5dce8
EB
1614 while (!hlist_empty(&mp->m_list)) {
1615 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1616 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1617 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1618 umount_mnt(mnt);
ce07d891 1619 }
e0c9c0af 1620 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1621 }
80b5dce8
EB
1622 put_mountpoint(mp);
1623out_unlock:
3895dbf8 1624 unlock_mount_hash();
80b5dce8
EB
1625 namespace_unlock();
1626}
1627
dd111b31 1628/*
9b40bc90
AV
1629 * Is the caller allowed to modify his namespace?
1630 */
1631static inline bool may_mount(void)
1632{
1633 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1634}
1635
9e8925b6
JL
1636static inline bool may_mandlock(void)
1637{
1638#ifndef CONFIG_MANDATORY_FILE_LOCKING
1639 return false;
1640#endif
95ace754 1641 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1642}
1643
1da177e4
LT
1644/*
1645 * Now umount can handle mount points as well as block devices.
1646 * This is important for filesystems which use unnamed block devices.
1647 *
1648 * We now support a flag for forced unmount like the other 'big iron'
1649 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1650 */
1651
3a18ef5c 1652int ksys_umount(char __user *name, int flags)
1da177e4 1653{
2d8f3038 1654 struct path path;
900148dc 1655 struct mount *mnt;
1da177e4 1656 int retval;
db1f05bb 1657 int lookup_flags = 0;
1da177e4 1658
db1f05bb
MS
1659 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1660 return -EINVAL;
1661
9b40bc90
AV
1662 if (!may_mount())
1663 return -EPERM;
1664
db1f05bb
MS
1665 if (!(flags & UMOUNT_NOFOLLOW))
1666 lookup_flags |= LOOKUP_FOLLOW;
1667
197df04c 1668 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1669 if (retval)
1670 goto out;
900148dc 1671 mnt = real_mount(path.mnt);
1da177e4 1672 retval = -EINVAL;
2d8f3038 1673 if (path.dentry != path.mnt->mnt_root)
1da177e4 1674 goto dput_and_out;
143c8c91 1675 if (!check_mnt(mnt))
1da177e4 1676 goto dput_and_out;
25d202ed 1677 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1678 goto dput_and_out;
b2f5d4dc
EB
1679 retval = -EPERM;
1680 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1681 goto dput_and_out;
1da177e4 1682
900148dc 1683 retval = do_umount(mnt, flags);
1da177e4 1684dput_and_out:
429731b1 1685 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1686 dput(path.dentry);
900148dc 1687 mntput_no_expire(mnt);
1da177e4
LT
1688out:
1689 return retval;
1690}
1691
3a18ef5c
DB
1692SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1693{
1694 return ksys_umount(name, flags);
1695}
1696
1da177e4
LT
1697#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1698
1699/*
b58fed8b 1700 * The 2.0 compatible umount. No flags.
1da177e4 1701 */
bdc480e3 1702SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1703{
3a18ef5c 1704 return ksys_umount(name, 0);
1da177e4
LT
1705}
1706
1707#endif
1708
4ce5d2b1 1709static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1710{
4ce5d2b1 1711 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1712 return dentry->d_op == &ns_dentry_operations &&
1713 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1714}
1715
58be2825
AV
1716struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1717{
1718 return container_of(ns, struct mnt_namespace, ns);
1719}
1720
4ce5d2b1
EB
1721static bool mnt_ns_loop(struct dentry *dentry)
1722{
1723 /* Could bind mounting the mount namespace inode cause a
1724 * mount namespace loop?
1725 */
1726 struct mnt_namespace *mnt_ns;
1727 if (!is_mnt_ns_file(dentry))
1728 return false;
1729
f77c8014 1730 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1731 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1732}
1733
87129cc0 1734struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1735 int flag)
1da177e4 1736{
84d17192 1737 struct mount *res, *p, *q, *r, *parent;
1da177e4 1738
4ce5d2b1
EB
1739 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1740 return ERR_PTR(-EINVAL);
1741
1742 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1743 return ERR_PTR(-EINVAL);
9676f0c6 1744
36341f64 1745 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1746 if (IS_ERR(q))
1747 return q;
1748
a73324da 1749 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1750
1751 p = mnt;
6b41d536 1752 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1753 struct mount *s;
7ec02ef1 1754 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1755 continue;
1756
909b0a88 1757 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1758 if (!(flag & CL_COPY_UNBINDABLE) &&
1759 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1760 if (s->mnt.mnt_flags & MNT_LOCKED) {
1761 /* Both unbindable and locked. */
1762 q = ERR_PTR(-EPERM);
1763 goto out;
1764 } else {
1765 s = skip_mnt_tree(s);
1766 continue;
1767 }
4ce5d2b1
EB
1768 }
1769 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1770 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1771 s = skip_mnt_tree(s);
1772 continue;
1773 }
0714a533
AV
1774 while (p != s->mnt_parent) {
1775 p = p->mnt_parent;
1776 q = q->mnt_parent;
1da177e4 1777 }
87129cc0 1778 p = s;
84d17192 1779 parent = q;
87129cc0 1780 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1781 if (IS_ERR(q))
1782 goto out;
719ea2fb 1783 lock_mount_hash();
1a4eeaf2 1784 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1785 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1786 unlock_mount_hash();
1da177e4
LT
1787 }
1788 }
1789 return res;
be34d1a3 1790out:
1da177e4 1791 if (res) {
719ea2fb 1792 lock_mount_hash();
e819f152 1793 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1794 unlock_mount_hash();
1da177e4 1795 }
be34d1a3 1796 return q;
1da177e4
LT
1797}
1798
be34d1a3
DH
1799/* Caller should check returned pointer for errors */
1800
ca71cf71 1801struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1802{
cb338d06 1803 struct mount *tree;
97216be0 1804 namespace_lock();
cd4a4017
EB
1805 if (!check_mnt(real_mount(path->mnt)))
1806 tree = ERR_PTR(-EINVAL);
1807 else
1808 tree = copy_tree(real_mount(path->mnt), path->dentry,
1809 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1810 namespace_unlock();
be34d1a3 1811 if (IS_ERR(tree))
52e220d3 1812 return ERR_CAST(tree);
be34d1a3 1813 return &tree->mnt;
8aec0809
AV
1814}
1815
1816void drop_collected_mounts(struct vfsmount *mnt)
1817{
97216be0 1818 namespace_lock();
719ea2fb 1819 lock_mount_hash();
9c8e0a1b 1820 umount_tree(real_mount(mnt), 0);
719ea2fb 1821 unlock_mount_hash();
3ab6abee 1822 namespace_unlock();
8aec0809
AV
1823}
1824
c771d683
MS
1825/**
1826 * clone_private_mount - create a private clone of a path
1827 *
1828 * This creates a new vfsmount, which will be the clone of @path. The new will
1829 * not be attached anywhere in the namespace and will be private (i.e. changes
1830 * to the originating mount won't be propagated into this).
1831 *
1832 * Release with mntput().
1833 */
ca71cf71 1834struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1835{
1836 struct mount *old_mnt = real_mount(path->mnt);
1837 struct mount *new_mnt;
1838
1839 if (IS_MNT_UNBINDABLE(old_mnt))
1840 return ERR_PTR(-EINVAL);
1841
c771d683 1842 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1843 if (IS_ERR(new_mnt))
1844 return ERR_CAST(new_mnt);
1845
1846 return &new_mnt->mnt;
1847}
1848EXPORT_SYMBOL_GPL(clone_private_mount);
1849
1f707137
AV
1850int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1851 struct vfsmount *root)
1852{
1a4eeaf2 1853 struct mount *mnt;
1f707137
AV
1854 int res = f(root, arg);
1855 if (res)
1856 return res;
1a4eeaf2
AV
1857 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1858 res = f(&mnt->mnt, arg);
1f707137
AV
1859 if (res)
1860 return res;
1861 }
1862 return 0;
1863}
1864
3bd045cc
AV
1865static void lock_mnt_tree(struct mount *mnt)
1866{
1867 struct mount *p;
1868
1869 for (p = mnt; p; p = next_mnt(p, mnt)) {
1870 int flags = p->mnt.mnt_flags;
1871 /* Don't allow unprivileged users to change mount flags */
1872 flags |= MNT_LOCK_ATIME;
1873
1874 if (flags & MNT_READONLY)
1875 flags |= MNT_LOCK_READONLY;
1876
1877 if (flags & MNT_NODEV)
1878 flags |= MNT_LOCK_NODEV;
1879
1880 if (flags & MNT_NOSUID)
1881 flags |= MNT_LOCK_NOSUID;
1882
1883 if (flags & MNT_NOEXEC)
1884 flags |= MNT_LOCK_NOEXEC;
1885 /* Don't allow unprivileged users to reveal what is under a mount */
1886 if (list_empty(&p->mnt_expire))
1887 flags |= MNT_LOCKED;
1888 p->mnt.mnt_flags = flags;
1889 }
1890}
1891
4b8b21f4 1892static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1893{
315fc83e 1894 struct mount *p;
719f5d7f 1895
909b0a88 1896 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1897 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1898 mnt_release_group_id(p);
719f5d7f
MS
1899 }
1900}
1901
4b8b21f4 1902static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1903{
315fc83e 1904 struct mount *p;
719f5d7f 1905
909b0a88 1906 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1907 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1908 int err = mnt_alloc_group_id(p);
719f5d7f 1909 if (err) {
4b8b21f4 1910 cleanup_group_ids(mnt, p);
719f5d7f
MS
1911 return err;
1912 }
1913 }
1914 }
1915
1916 return 0;
1917}
1918
d2921684
EB
1919int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1920{
1921 unsigned int max = READ_ONCE(sysctl_mount_max);
1922 unsigned int mounts = 0, old, pending, sum;
1923 struct mount *p;
1924
1925 for (p = mnt; p; p = next_mnt(p, mnt))
1926 mounts++;
1927
1928 old = ns->mounts;
1929 pending = ns->pending_mounts;
1930 sum = old + pending;
1931 if ((old > sum) ||
1932 (pending > sum) ||
1933 (max < sum) ||
1934 (mounts > (max - sum)))
1935 return -ENOSPC;
1936
1937 ns->pending_mounts = pending + mounts;
1938 return 0;
1939}
1940
b90fa9ae
RP
1941/*
1942 * @source_mnt : mount tree to be attached
21444403
RP
1943 * @nd : place the mount tree @source_mnt is attached
1944 * @parent_nd : if non-null, detach the source_mnt from its parent and
1945 * store the parent mount and mountpoint dentry.
1946 * (done when source_mnt is moved)
b90fa9ae
RP
1947 *
1948 * NOTE: in the table below explains the semantics when a source mount
1949 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1950 * ---------------------------------------------------------------------------
1951 * | BIND MOUNT OPERATION |
1952 * |**************************************************************************
1953 * | source-->| shared | private | slave | unbindable |
1954 * | dest | | | | |
1955 * | | | | | | |
1956 * | v | | | | |
1957 * |**************************************************************************
1958 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1959 * | | | | | |
1960 * |non-shared| shared (+) | private | slave (*) | invalid |
1961 * ***************************************************************************
b90fa9ae
RP
1962 * A bind operation clones the source mount and mounts the clone on the
1963 * destination mount.
1964 *
1965 * (++) the cloned mount is propagated to all the mounts in the propagation
1966 * tree of the destination mount and the cloned mount is added to
1967 * the peer group of the source mount.
1968 * (+) the cloned mount is created under the destination mount and is marked
1969 * as shared. The cloned mount is added to the peer group of the source
1970 * mount.
5afe0022
RP
1971 * (+++) the mount is propagated to all the mounts in the propagation tree
1972 * of the destination mount and the cloned mount is made slave
1973 * of the same master as that of the source mount. The cloned mount
1974 * is marked as 'shared and slave'.
1975 * (*) the cloned mount is made a slave of the same master as that of the
1976 * source mount.
1977 *
9676f0c6
RP
1978 * ---------------------------------------------------------------------------
1979 * | MOVE MOUNT OPERATION |
1980 * |**************************************************************************
1981 * | source-->| shared | private | slave | unbindable |
1982 * | dest | | | | |
1983 * | | | | | | |
1984 * | v | | | | |
1985 * |**************************************************************************
1986 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1987 * | | | | | |
1988 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1989 * ***************************************************************************
5afe0022
RP
1990 *
1991 * (+) the mount is moved to the destination. And is then propagated to
1992 * all the mounts in the propagation tree of the destination mount.
21444403 1993 * (+*) the mount is moved to the destination.
5afe0022
RP
1994 * (+++) the mount is moved to the destination and is then propagated to
1995 * all the mounts belonging to the destination mount's propagation tree.
1996 * the mount is marked as 'shared and slave'.
1997 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1998 *
1999 * if the source mount is a tree, the operations explained above is
2000 * applied to each mount in the tree.
2001 * Must be called without spinlocks held, since this function can sleep
2002 * in allocations.
2003 */
0fb54e50 2004static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2005 struct mount *dest_mnt,
2006 struct mountpoint *dest_mp,
2007 struct path *parent_path)
b90fa9ae 2008{
3bd045cc 2009 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2010 HLIST_HEAD(tree_list);
d2921684 2011 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2012 struct mountpoint *smp;
315fc83e 2013 struct mount *child, *p;
38129a13 2014 struct hlist_node *n;
719f5d7f 2015 int err;
b90fa9ae 2016
1064f874
EB
2017 /* Preallocate a mountpoint in case the new mounts need
2018 * to be tucked under other mounts.
2019 */
2020 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2021 if (IS_ERR(smp))
2022 return PTR_ERR(smp);
2023
d2921684
EB
2024 /* Is there space to add these mounts to the mount namespace? */
2025 if (!parent_path) {
2026 err = count_mounts(ns, source_mnt);
2027 if (err)
2028 goto out;
2029 }
2030
fc7be130 2031 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2032 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2033 if (err)
2034 goto out;
0b1b901b 2035 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2036 lock_mount_hash();
0b1b901b
AV
2037 if (err)
2038 goto out_cleanup_ids;
909b0a88 2039 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2040 set_mnt_shared(p);
0b1b901b
AV
2041 } else {
2042 lock_mount_hash();
b90fa9ae 2043 }
1a390689 2044 if (parent_path) {
0fb54e50 2045 detach_mnt(source_mnt, parent_path);
84d17192 2046 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2047 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2048 } else {
84d17192 2049 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2050 commit_tree(source_mnt);
21444403 2051 }
b90fa9ae 2052
38129a13 2053 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2054 struct mount *q;
38129a13 2055 hlist_del_init(&child->mnt_hash);
1064f874
EB
2056 q = __lookup_mnt(&child->mnt_parent->mnt,
2057 child->mnt_mountpoint);
2058 if (q)
2059 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2060 /* Notice when we are propagating across user namespaces */
2061 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2062 lock_mnt_tree(child);
1064f874 2063 commit_tree(child);
b90fa9ae 2064 }
1064f874 2065 put_mountpoint(smp);
719ea2fb 2066 unlock_mount_hash();
99b7db7b 2067
b90fa9ae 2068 return 0;
719f5d7f
MS
2069
2070 out_cleanup_ids:
f2ebb3a9
AV
2071 while (!hlist_empty(&tree_list)) {
2072 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2073 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2074 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2075 }
2076 unlock_mount_hash();
0b1b901b 2077 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2078 out:
d2921684 2079 ns->pending_mounts = 0;
1064f874
EB
2080
2081 read_seqlock_excl(&mount_lock);
2082 put_mountpoint(smp);
2083 read_sequnlock_excl(&mount_lock);
2084
719f5d7f 2085 return err;
b90fa9ae
RP
2086}
2087
84d17192 2088static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2089{
2090 struct vfsmount *mnt;
84d17192 2091 struct dentry *dentry = path->dentry;
b12cea91 2092retry:
5955102c 2093 inode_lock(dentry->d_inode);
84d17192 2094 if (unlikely(cant_mount(dentry))) {
5955102c 2095 inode_unlock(dentry->d_inode);
84d17192 2096 return ERR_PTR(-ENOENT);
b12cea91 2097 }
97216be0 2098 namespace_lock();
b12cea91 2099 mnt = lookup_mnt(path);
84d17192 2100 if (likely(!mnt)) {
3895dbf8 2101 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2102 if (IS_ERR(mp)) {
97216be0 2103 namespace_unlock();
5955102c 2104 inode_unlock(dentry->d_inode);
84d17192
AV
2105 return mp;
2106 }
2107 return mp;
2108 }
97216be0 2109 namespace_unlock();
5955102c 2110 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2111 path_put(path);
2112 path->mnt = mnt;
84d17192 2113 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2114 goto retry;
2115}
2116
84d17192 2117static void unlock_mount(struct mountpoint *where)
b12cea91 2118{
84d17192 2119 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2120
2121 read_seqlock_excl(&mount_lock);
84d17192 2122 put_mountpoint(where);
3895dbf8
EB
2123 read_sequnlock_excl(&mount_lock);
2124
328e6d90 2125 namespace_unlock();
5955102c 2126 inode_unlock(dentry->d_inode);
b12cea91
AV
2127}
2128
84d17192 2129static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2130{
e462ec50 2131 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2132 return -EINVAL;
2133
e36cb0b8
DH
2134 if (d_is_dir(mp->m_dentry) !=
2135 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2136 return -ENOTDIR;
2137
84d17192 2138 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2139}
2140
7a2e8a8f
VA
2141/*
2142 * Sanity check the flags to change_mnt_propagation.
2143 */
2144
e462ec50 2145static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2146{
e462ec50 2147 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2148
2149 /* Fail if any non-propagation flags are set */
2150 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2151 return 0;
2152 /* Only one propagation flag should be set */
2153 if (!is_power_of_2(type))
2154 return 0;
2155 return type;
2156}
2157
07b20889
RP
2158/*
2159 * recursively change the type of the mountpoint.
2160 */
e462ec50 2161static int do_change_type(struct path *path, int ms_flags)
07b20889 2162{
315fc83e 2163 struct mount *m;
4b8b21f4 2164 struct mount *mnt = real_mount(path->mnt);
e462ec50 2165 int recurse = ms_flags & MS_REC;
7a2e8a8f 2166 int type;
719f5d7f 2167 int err = 0;
07b20889 2168
2d92ab3c 2169 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2170 return -EINVAL;
2171
e462ec50 2172 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2173 if (!type)
2174 return -EINVAL;
2175
97216be0 2176 namespace_lock();
719f5d7f
MS
2177 if (type == MS_SHARED) {
2178 err = invent_group_ids(mnt, recurse);
2179 if (err)
2180 goto out_unlock;
2181 }
2182
719ea2fb 2183 lock_mount_hash();
909b0a88 2184 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2185 change_mnt_propagation(m, type);
719ea2fb 2186 unlock_mount_hash();
719f5d7f
MS
2187
2188 out_unlock:
97216be0 2189 namespace_unlock();
719f5d7f 2190 return err;
07b20889
RP
2191}
2192
5ff9d8a6
EB
2193static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2194{
2195 struct mount *child;
2196 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2197 if (!is_subdir(child->mnt_mountpoint, dentry))
2198 continue;
2199
2200 if (child->mnt.mnt_flags & MNT_LOCKED)
2201 return true;
2202 }
2203 return false;
2204}
2205
1da177e4
LT
2206/*
2207 * do loopback mount.
2208 */
808d4e3c 2209static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2210 int recurse)
1da177e4 2211{
2d92ab3c 2212 struct path old_path;
84d17192
AV
2213 struct mount *mnt = NULL, *old, *parent;
2214 struct mountpoint *mp;
57eccb83 2215 int err;
1da177e4
LT
2216 if (!old_name || !*old_name)
2217 return -EINVAL;
815d405c 2218 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2219 if (err)
2220 return err;
2221
8823c079 2222 err = -EINVAL;
4ce5d2b1 2223 if (mnt_ns_loop(old_path.dentry))
dd111b31 2224 goto out;
8823c079 2225
84d17192
AV
2226 mp = lock_mount(path);
2227 err = PTR_ERR(mp);
2228 if (IS_ERR(mp))
b12cea91
AV
2229 goto out;
2230
87129cc0 2231 old = real_mount(old_path.mnt);
84d17192 2232 parent = real_mount(path->mnt);
87129cc0 2233
1da177e4 2234 err = -EINVAL;
fc7be130 2235 if (IS_MNT_UNBINDABLE(old))
b12cea91 2236 goto out2;
9676f0c6 2237
e149ed2b
AV
2238 if (!check_mnt(parent))
2239 goto out2;
2240
2241 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2242 goto out2;
1da177e4 2243
5ff9d8a6
EB
2244 if (!recurse && has_locked_children(old, old_path.dentry))
2245 goto out2;
2246
ccd48bc7 2247 if (recurse)
4ce5d2b1 2248 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2249 else
87129cc0 2250 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2251
be34d1a3
DH
2252 if (IS_ERR(mnt)) {
2253 err = PTR_ERR(mnt);
e9c5d8a5 2254 goto out2;
be34d1a3 2255 }
ccd48bc7 2256
5ff9d8a6
EB
2257 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2258
84d17192 2259 err = graft_tree(mnt, parent, mp);
ccd48bc7 2260 if (err) {
719ea2fb 2261 lock_mount_hash();
e819f152 2262 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2263 unlock_mount_hash();
5b83d2c5 2264 }
b12cea91 2265out2:
84d17192 2266 unlock_mount(mp);
ccd48bc7 2267out:
2d92ab3c 2268 path_put(&old_path);
1da177e4
LT
2269 return err;
2270}
2271
43f5e655
DH
2272/*
2273 * Don't allow locked mount flags to be cleared.
2274 *
2275 * No locks need to be held here while testing the various MNT_LOCK
2276 * flags because those flags can never be cleared once they are set.
2277 */
2278static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2279{
43f5e655
DH
2280 unsigned int fl = mnt->mnt.mnt_flags;
2281
2282 if ((fl & MNT_LOCK_READONLY) &&
2283 !(mnt_flags & MNT_READONLY))
2284 return false;
2285
2286 if ((fl & MNT_LOCK_NODEV) &&
2287 !(mnt_flags & MNT_NODEV))
2288 return false;
2289
2290 if ((fl & MNT_LOCK_NOSUID) &&
2291 !(mnt_flags & MNT_NOSUID))
2292 return false;
2293
2294 if ((fl & MNT_LOCK_NOEXEC) &&
2295 !(mnt_flags & MNT_NOEXEC))
2296 return false;
2297
2298 if ((fl & MNT_LOCK_ATIME) &&
2299 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2300 return false;
2e4b7fcd 2301
43f5e655
DH
2302 return true;
2303}
2304
2305static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2306{
43f5e655 2307 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2308
43f5e655 2309 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2310 return 0;
2311
2312 if (readonly_request)
43f5e655
DH
2313 return mnt_make_readonly(mnt);
2314
2315 return __mnt_unmake_readonly(mnt);
2316}
2317
2318/*
2319 * Update the user-settable attributes on a mount. The caller must hold
2320 * sb->s_umount for writing.
2321 */
2322static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2323{
2324 lock_mount_hash();
2325 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2326 mnt->mnt.mnt_flags = mnt_flags;
2327 touch_mnt_namespace(mnt->mnt_ns);
2328 unlock_mount_hash();
2329}
2330
2331/*
2332 * Handle reconfiguration of the mountpoint only without alteration of the
2333 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2334 * to mount(2).
2335 */
2336static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2337{
2338 struct super_block *sb = path->mnt->mnt_sb;
2339 struct mount *mnt = real_mount(path->mnt);
2340 int ret;
2341
2342 if (!check_mnt(mnt))
2343 return -EINVAL;
2344
2345 if (path->dentry != mnt->mnt.mnt_root)
2346 return -EINVAL;
2347
2348 if (!can_change_locked_flags(mnt, mnt_flags))
2349 return -EPERM;
2350
2351 down_write(&sb->s_umount);
2352 ret = change_mount_ro_state(mnt, mnt_flags);
2353 if (ret == 0)
2354 set_mount_attributes(mnt, mnt_flags);
2355 up_write(&sb->s_umount);
2356 return ret;
2e4b7fcd
DH
2357}
2358
1da177e4
LT
2359/*
2360 * change filesystem flags. dir should be a physical root of filesystem.
2361 * If you've mounted a non-root directory somewhere and want to do remount
2362 * on it - tough luck.
2363 */
e462ec50
DH
2364static int do_remount(struct path *path, int ms_flags, int sb_flags,
2365 int mnt_flags, void *data)
1da177e4
LT
2366{
2367 int err;
2d92ab3c 2368 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2369 struct mount *mnt = real_mount(path->mnt);
204cc0cc 2370 void *sec_opts = NULL;
1da177e4 2371
143c8c91 2372 if (!check_mnt(mnt))
1da177e4
LT
2373 return -EINVAL;
2374
2d92ab3c 2375 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2376 return -EINVAL;
2377
43f5e655 2378 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2379 return -EPERM;
9566d674 2380
c039bc3c 2381 if (data && !(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)) {
204cc0cc 2382 err = security_sb_eat_lsm_opts(data, &sec_opts);
c039bc3c
AV
2383 if (err)
2384 return err;
2385 }
204cc0cc
AV
2386 err = security_sb_remount(sb, sec_opts);
2387 security_free_mnt_opts(&sec_opts);
ff36fe2c
EP
2388 if (err)
2389 return err;
2390
1da177e4 2391 down_write(&sb->s_umount);
43f5e655
DH
2392 err = -EPERM;
2393 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
e462ec50 2394 err = do_remount_sb(sb, sb_flags, data, 0);
43f5e655
DH
2395 if (!err)
2396 set_mount_attributes(mnt, mnt_flags);
0e55a7cc 2397 }
6339dab8 2398 up_write(&sb->s_umount);
1da177e4
LT
2399 return err;
2400}
2401
cbbe362c 2402static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2403{
315fc83e 2404 struct mount *p;
909b0a88 2405 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2406 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2407 return 1;
2408 }
2409 return 0;
2410}
2411
808d4e3c 2412static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2413{
2d92ab3c 2414 struct path old_path, parent_path;
676da58d 2415 struct mount *p;
0fb54e50 2416 struct mount *old;
84d17192 2417 struct mountpoint *mp;
57eccb83 2418 int err;
1da177e4
LT
2419 if (!old_name || !*old_name)
2420 return -EINVAL;
2d92ab3c 2421 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2422 if (err)
2423 return err;
2424
84d17192
AV
2425 mp = lock_mount(path);
2426 err = PTR_ERR(mp);
2427 if (IS_ERR(mp))
cc53ce53
DH
2428 goto out;
2429
143c8c91 2430 old = real_mount(old_path.mnt);
fc7be130 2431 p = real_mount(path->mnt);
143c8c91 2432
1da177e4 2433 err = -EINVAL;
fc7be130 2434 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2435 goto out1;
2436
5ff9d8a6
EB
2437 if (old->mnt.mnt_flags & MNT_LOCKED)
2438 goto out1;
2439
1da177e4 2440 err = -EINVAL;
2d92ab3c 2441 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2442 goto out1;
1da177e4 2443
676da58d 2444 if (!mnt_has_parent(old))
21444403 2445 goto out1;
1da177e4 2446
e36cb0b8
DH
2447 if (d_is_dir(path->dentry) !=
2448 d_is_dir(old_path.dentry))
21444403
RP
2449 goto out1;
2450 /*
2451 * Don't move a mount residing in a shared parent.
2452 */
fc7be130 2453 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2454 goto out1;
9676f0c6
RP
2455 /*
2456 * Don't move a mount tree containing unbindable mounts to a destination
2457 * mount which is shared.
2458 */
fc7be130 2459 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2460 goto out1;
1da177e4 2461 err = -ELOOP;
fc7be130 2462 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2463 if (p == old)
21444403 2464 goto out1;
1da177e4 2465
84d17192 2466 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2467 if (err)
21444403 2468 goto out1;
1da177e4
LT
2469
2470 /* if the mount is moved, it should no longer be expire
2471 * automatically */
6776db3d 2472 list_del_init(&old->mnt_expire);
1da177e4 2473out1:
84d17192 2474 unlock_mount(mp);
1da177e4 2475out:
1da177e4 2476 if (!err)
1a390689 2477 path_put(&parent_path);
2d92ab3c 2478 path_put(&old_path);
1da177e4
LT
2479 return err;
2480}
2481
9d412a43
AV
2482/*
2483 * add a mount into a namespace's mount tree
2484 */
95bc5f25 2485static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2486{
84d17192
AV
2487 struct mountpoint *mp;
2488 struct mount *parent;
9d412a43
AV
2489 int err;
2490
f2ebb3a9 2491 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2492
84d17192
AV
2493 mp = lock_mount(path);
2494 if (IS_ERR(mp))
2495 return PTR_ERR(mp);
9d412a43 2496
84d17192 2497 parent = real_mount(path->mnt);
9d412a43 2498 err = -EINVAL;
84d17192 2499 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2500 /* that's acceptable only for automounts done in private ns */
2501 if (!(mnt_flags & MNT_SHRINKABLE))
2502 goto unlock;
2503 /* ... and for those we'd better have mountpoint still alive */
84d17192 2504 if (!parent->mnt_ns)
156cacb1
AV
2505 goto unlock;
2506 }
9d412a43
AV
2507
2508 /* Refuse the same filesystem on the same mount point */
2509 err = -EBUSY;
95bc5f25 2510 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2511 path->mnt->mnt_root == path->dentry)
2512 goto unlock;
2513
2514 err = -EINVAL;
e36cb0b8 2515 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2516 goto unlock;
2517
95bc5f25 2518 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2519 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2520
2521unlock:
84d17192 2522 unlock_mount(mp);
9d412a43
AV
2523 return err;
2524}
b1e75df4 2525
132e4608
DH
2526static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2527
2528/*
2529 * Create a new mount using a superblock configuration and request it
2530 * be added to the namespace tree.
2531 */
2532static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2533 unsigned int mnt_flags)
2534{
2535 struct vfsmount *mnt;
2536 struct super_block *sb = fc->root->d_sb;
2537 int error;
2538
c9ce29ed
AV
2539 error = security_sb_kern_mount(sb);
2540 if (!error && mount_too_revealing(sb, &mnt_flags))
2541 error = -EPERM;
2542
2543 if (unlikely(error)) {
2544 fc_drop_locked(fc);
2545 return error;
132e4608
DH
2546 }
2547
2548 up_write(&sb->s_umount);
2549
2550 mnt = vfs_create_mount(fc);
2551 if (IS_ERR(mnt))
2552 return PTR_ERR(mnt);
2553
2554 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2555 if (error < 0)
2556 mntput(mnt);
2557 return error;
2558}
1b852bce 2559
1da177e4
LT
2560/*
2561 * create a new mount for userspace and request it to be added into the
2562 * namespace's tree
2563 */
e462ec50 2564static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2565 int mnt_flags, const char *name, void *data)
1da177e4 2566{
0c55cfc4 2567 struct file_system_type *type;
a0c9a8b8
AV
2568 struct fs_context *fc;
2569 const char *subtype = NULL;
2570 int err = 0;
1da177e4 2571
0c55cfc4 2572 if (!fstype)
1da177e4
LT
2573 return -EINVAL;
2574
0c55cfc4
EB
2575 type = get_fs_type(fstype);
2576 if (!type)
2577 return -ENODEV;
2578
a0c9a8b8
AV
2579 if (type->fs_flags & FS_HAS_SUBTYPE) {
2580 subtype = strchr(fstype, '.');
2581 if (subtype) {
2582 subtype++;
2583 if (!*subtype) {
2584 put_filesystem(type);
2585 return -EINVAL;
2586 }
2587 } else {
2588 subtype = "";
2589 }
2590 }
0c55cfc4 2591
a0c9a8b8 2592 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2593 put_filesystem(type);
a0c9a8b8
AV
2594 if (IS_ERR(fc))
2595 return PTR_ERR(fc);
2596
2597 if (subtype) {
2598 fc->subtype = kstrdup(subtype, GFP_KERNEL);
2599 if (!fc->subtype)
2600 err = -ENOMEM;
2601 }
2602 if (!err && name) {
2603 fc->source = kstrdup(name, GFP_KERNEL);
2604 if (!fc->source)
2605 err = -ENOMEM;
2606 }
2607 if (!err)
2608 err = parse_monolithic_mount_data(fc, data);
2609 if (!err)
2610 err = vfs_get_tree(fc);
132e4608
DH
2611 if (!err)
2612 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2613
a0c9a8b8 2614 put_fs_context(fc);
15f9a3f3 2615 return err;
1da177e4
LT
2616}
2617
19a167af
AV
2618int finish_automount(struct vfsmount *m, struct path *path)
2619{
6776db3d 2620 struct mount *mnt = real_mount(m);
19a167af
AV
2621 int err;
2622 /* The new mount record should have at least 2 refs to prevent it being
2623 * expired before we get a chance to add it
2624 */
6776db3d 2625 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2626
2627 if (m->mnt_sb == path->mnt->mnt_sb &&
2628 m->mnt_root == path->dentry) {
b1e75df4
AV
2629 err = -ELOOP;
2630 goto fail;
19a167af
AV
2631 }
2632
95bc5f25 2633 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2634 if (!err)
2635 return 0;
2636fail:
2637 /* remove m from any expiration list it may be on */
6776db3d 2638 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2639 namespace_lock();
6776db3d 2640 list_del_init(&mnt->mnt_expire);
97216be0 2641 namespace_unlock();
19a167af 2642 }
b1e75df4
AV
2643 mntput(m);
2644 mntput(m);
19a167af
AV
2645 return err;
2646}
2647
ea5b778a
DH
2648/**
2649 * mnt_set_expiry - Put a mount on an expiration list
2650 * @mnt: The mount to list.
2651 * @expiry_list: The list to add the mount to.
2652 */
2653void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2654{
97216be0 2655 namespace_lock();
ea5b778a 2656
6776db3d 2657 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2658
97216be0 2659 namespace_unlock();
ea5b778a
DH
2660}
2661EXPORT_SYMBOL(mnt_set_expiry);
2662
1da177e4
LT
2663/*
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * mountpoints that aren't in use and haven't been touched since last we came
2666 * here
2667 */
2668void mark_mounts_for_expiry(struct list_head *mounts)
2669{
761d5c38 2670 struct mount *mnt, *next;
1da177e4
LT
2671 LIST_HEAD(graveyard);
2672
2673 if (list_empty(mounts))
2674 return;
2675
97216be0 2676 namespace_lock();
719ea2fb 2677 lock_mount_hash();
1da177e4
LT
2678
2679 /* extract from the expiration list every vfsmount that matches the
2680 * following criteria:
2681 * - only referenced by its parent vfsmount
2682 * - still marked for expiry (marked on the last call here; marks are
2683 * cleared by mntput())
2684 */
6776db3d 2685 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2686 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2687 propagate_mount_busy(mnt, 1))
1da177e4 2688 continue;
6776db3d 2689 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2690 }
bcc5c7d2 2691 while (!list_empty(&graveyard)) {
6776db3d 2692 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2693 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2694 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2695 }
719ea2fb 2696 unlock_mount_hash();
3ab6abee 2697 namespace_unlock();
5528f911
TM
2698}
2699
2700EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2701
2702/*
2703 * Ripoff of 'select_parent()'
2704 *
2705 * search the list of submounts for a given mountpoint, and move any
2706 * shrinkable submounts to the 'graveyard' list.
2707 */
692afc31 2708static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2709{
692afc31 2710 struct mount *this_parent = parent;
5528f911
TM
2711 struct list_head *next;
2712 int found = 0;
2713
2714repeat:
6b41d536 2715 next = this_parent->mnt_mounts.next;
5528f911 2716resume:
6b41d536 2717 while (next != &this_parent->mnt_mounts) {
5528f911 2718 struct list_head *tmp = next;
6b41d536 2719 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2720
2721 next = tmp->next;
692afc31 2722 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2723 continue;
5528f911
TM
2724 /*
2725 * Descend a level if the d_mounts list is non-empty.
2726 */
6b41d536 2727 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2728 this_parent = mnt;
2729 goto repeat;
2730 }
1da177e4 2731
1ab59738 2732 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2733 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2734 found++;
2735 }
1da177e4 2736 }
5528f911
TM
2737 /*
2738 * All done at this level ... ascend and resume the search
2739 */
2740 if (this_parent != parent) {
6b41d536 2741 next = this_parent->mnt_child.next;
0714a533 2742 this_parent = this_parent->mnt_parent;
5528f911
TM
2743 goto resume;
2744 }
2745 return found;
2746}
2747
2748/*
2749 * process a list of expirable mountpoints with the intent of discarding any
2750 * submounts of a specific parent mountpoint
99b7db7b 2751 *
48a066e7 2752 * mount_lock must be held for write
5528f911 2753 */
b54b9be7 2754static void shrink_submounts(struct mount *mnt)
5528f911
TM
2755{
2756 LIST_HEAD(graveyard);
761d5c38 2757 struct mount *m;
5528f911 2758
5528f911 2759 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2760 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2761 while (!list_empty(&graveyard)) {
761d5c38 2762 m = list_first_entry(&graveyard, struct mount,
6776db3d 2763 mnt_expire);
143c8c91 2764 touch_mnt_namespace(m->mnt_ns);
e819f152 2765 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2766 }
2767 }
1da177e4
LT
2768}
2769
1da177e4
LT
2770/*
2771 * Some copy_from_user() implementations do not return the exact number of
2772 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2773 * Note that this function differs from copy_from_user() in that it will oops
2774 * on bad values of `to', rather than returning a short copy.
2775 */
b58fed8b
RP
2776static long exact_copy_from_user(void *to, const void __user * from,
2777 unsigned long n)
1da177e4
LT
2778{
2779 char *t = to;
2780 const char __user *f = from;
2781 char c;
2782
96d4f267 2783 if (!access_ok(from, n))
1da177e4
LT
2784 return n;
2785
9da3f2b7 2786 current->kernel_uaccess_faults_ok++;
1da177e4
LT
2787 while (n) {
2788 if (__get_user(c, f)) {
2789 memset(t, 0, n);
2790 break;
2791 }
2792 *t++ = c;
2793 f++;
2794 n--;
2795 }
9da3f2b7 2796 current->kernel_uaccess_faults_ok--;
1da177e4
LT
2797 return n;
2798}
2799
b40ef869 2800void *copy_mount_options(const void __user * data)
1da177e4
LT
2801{
2802 int i;
1da177e4 2803 unsigned long size;
b40ef869 2804 char *copy;
b58fed8b 2805
1da177e4 2806 if (!data)
b40ef869 2807 return NULL;
1da177e4 2808
b40ef869
AV
2809 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2810 if (!copy)
2811 return ERR_PTR(-ENOMEM);
1da177e4
LT
2812
2813 /* We only care that *some* data at the address the user
2814 * gave us is valid. Just in case, we'll zero
2815 * the remainder of the page.
2816 */
2817 /* copy_from_user cannot cross TASK_SIZE ! */
2818 size = TASK_SIZE - (unsigned long)data;
2819 if (size > PAGE_SIZE)
2820 size = PAGE_SIZE;
2821
b40ef869 2822 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2823 if (!i) {
b40ef869
AV
2824 kfree(copy);
2825 return ERR_PTR(-EFAULT);
1da177e4
LT
2826 }
2827 if (i != PAGE_SIZE)
b40ef869
AV
2828 memset(copy + i, 0, PAGE_SIZE - i);
2829 return copy;
1da177e4
LT
2830}
2831
b8850d1f 2832char *copy_mount_string(const void __user *data)
eca6f534 2833{
b8850d1f 2834 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2835}
2836
1da177e4
LT
2837/*
2838 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2839 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2840 *
2841 * data is a (void *) that can point to any structure up to
2842 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2843 * information (or be NULL).
2844 *
2845 * Pre-0.97 versions of mount() didn't have a flags word.
2846 * When the flags word was introduced its top half was required
2847 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2848 * Therefore, if this magic number is present, it carries no information
2849 * and must be discarded.
2850 */
5e6123f3 2851long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2852 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2853{
2d92ab3c 2854 struct path path;
e462ec50 2855 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2856 int retval = 0;
1da177e4
LT
2857
2858 /* Discard magic */
2859 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2860 flags &= ~MS_MGC_MSK;
2861
2862 /* Basic sanity checks */
1da177e4
LT
2863 if (data_page)
2864 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2865
e462ec50
DH
2866 if (flags & MS_NOUSER)
2867 return -EINVAL;
2868
a27ab9f2 2869 /* ... and get the mountpoint */
5e6123f3 2870 retval = user_path(dir_name, &path);
a27ab9f2
TH
2871 if (retval)
2872 return retval;
2873
2874 retval = security_sb_mount(dev_name, &path,
2875 type_page, flags, data_page);
0d5cadb8
AV
2876 if (!retval && !may_mount())
2877 retval = -EPERM;
e462ec50 2878 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2879 retval = -EPERM;
a27ab9f2
TH
2880 if (retval)
2881 goto dput_out;
2882
613cbe3d
AK
2883 /* Default to relatime unless overriden */
2884 if (!(flags & MS_NOATIME))
2885 mnt_flags |= MNT_RELATIME;
0a1c01c9 2886
1da177e4
LT
2887 /* Separate the per-mountpoint flags */
2888 if (flags & MS_NOSUID)
2889 mnt_flags |= MNT_NOSUID;
2890 if (flags & MS_NODEV)
2891 mnt_flags |= MNT_NODEV;
2892 if (flags & MS_NOEXEC)
2893 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2894 if (flags & MS_NOATIME)
2895 mnt_flags |= MNT_NOATIME;
2896 if (flags & MS_NODIRATIME)
2897 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2898 if (flags & MS_STRICTATIME)
2899 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2900 if (flags & MS_RDONLY)
2e4b7fcd 2901 mnt_flags |= MNT_READONLY;
fc33a7bb 2902
ffbc6f0e
EB
2903 /* The default atime for remount is preservation */
2904 if ((flags & MS_REMOUNT) &&
2905 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2906 MS_STRICTATIME)) == 0)) {
2907 mnt_flags &= ~MNT_ATIME_MASK;
2908 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2909 }
2910
e462ec50
DH
2911 sb_flags = flags & (SB_RDONLY |
2912 SB_SYNCHRONOUS |
2913 SB_MANDLOCK |
2914 SB_DIRSYNC |
2915 SB_SILENT |
917086ff 2916 SB_POSIXACL |
d7ee9469 2917 SB_LAZYTIME |
917086ff 2918 SB_I_VERSION);
1da177e4 2919
43f5e655
DH
2920 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2921 retval = do_reconfigure_mnt(&path, mnt_flags);
2922 else if (flags & MS_REMOUNT)
e462ec50 2923 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2924 data_page);
2925 else if (flags & MS_BIND)
2d92ab3c 2926 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2927 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2928 retval = do_change_type(&path, flags);
1da177e4 2929 else if (flags & MS_MOVE)
2d92ab3c 2930 retval = do_move_mount(&path, dev_name);
1da177e4 2931 else
e462ec50 2932 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2933 dev_name, data_page);
2934dput_out:
2d92ab3c 2935 path_put(&path);
1da177e4
LT
2936 return retval;
2937}
2938
537f7ccb
EB
2939static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2940{
2941 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2942}
2943
2944static void dec_mnt_namespaces(struct ucounts *ucounts)
2945{
2946 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2947}
2948
771b1371
EB
2949static void free_mnt_ns(struct mnt_namespace *ns)
2950{
74e83122
AV
2951 if (!is_anon_ns(ns))
2952 ns_free_inum(&ns->ns);
537f7ccb 2953 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2954 put_user_ns(ns->user_ns);
2955 kfree(ns);
2956}
2957
8823c079
EB
2958/*
2959 * Assign a sequence number so we can detect when we attempt to bind
2960 * mount a reference to an older mount namespace into the current
2961 * mount namespace, preventing reference counting loops. A 64bit
2962 * number incrementing at 10Ghz will take 12,427 years to wrap which
2963 * is effectively never, so we can ignore the possibility.
2964 */
2965static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2966
74e83122 2967static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
2968{
2969 struct mnt_namespace *new_ns;
537f7ccb 2970 struct ucounts *ucounts;
98f842e6 2971 int ret;
cf8d2c11 2972
537f7ccb
EB
2973 ucounts = inc_mnt_namespaces(user_ns);
2974 if (!ucounts)
df75e774 2975 return ERR_PTR(-ENOSPC);
537f7ccb 2976
74e83122 2977 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2978 if (!new_ns) {
2979 dec_mnt_namespaces(ucounts);
cf8d2c11 2980 return ERR_PTR(-ENOMEM);
537f7ccb 2981 }
74e83122
AV
2982 if (!anon) {
2983 ret = ns_alloc_inum(&new_ns->ns);
2984 if (ret) {
2985 kfree(new_ns);
2986 dec_mnt_namespaces(ucounts);
2987 return ERR_PTR(ret);
2988 }
98f842e6 2989 }
33c42940 2990 new_ns->ns.ops = &mntns_operations;
74e83122
AV
2991 if (!anon)
2992 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 2993 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
2994 INIT_LIST_HEAD(&new_ns->list);
2995 init_waitqueue_head(&new_ns->poll);
771b1371 2996 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2997 new_ns->ucounts = ucounts;
cf8d2c11
TM
2998 return new_ns;
2999}
3000
0766f788 3001__latent_entropy
9559f689
AV
3002struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3003 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3004{
6b3286ed 3005 struct mnt_namespace *new_ns;
7f2da1e7 3006 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3007 struct mount *p, *q;
9559f689 3008 struct mount *old;
cb338d06 3009 struct mount *new;
7a472ef4 3010 int copy_flags;
1da177e4 3011
9559f689
AV
3012 BUG_ON(!ns);
3013
3014 if (likely(!(flags & CLONE_NEWNS))) {
3015 get_mnt_ns(ns);
3016 return ns;
3017 }
3018
3019 old = ns->root;
3020
74e83122 3021 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3022 if (IS_ERR(new_ns))
3023 return new_ns;
1da177e4 3024
97216be0 3025 namespace_lock();
1da177e4 3026 /* First pass: copy the tree topology */
4ce5d2b1 3027 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3028 if (user_ns != ns->user_ns)
3bd045cc 3029 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3030 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3031 if (IS_ERR(new)) {
328e6d90 3032 namespace_unlock();
771b1371 3033 free_mnt_ns(new_ns);
be34d1a3 3034 return ERR_CAST(new);
1da177e4 3035 }
3bd045cc
AV
3036 if (user_ns != ns->user_ns) {
3037 lock_mount_hash();
3038 lock_mnt_tree(new);
3039 unlock_mount_hash();
3040 }
be08d6d2 3041 new_ns->root = new;
1a4eeaf2 3042 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3043
3044 /*
3045 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3046 * as belonging to new namespace. We have already acquired a private
3047 * fs_struct, so tsk->fs->lock is not needed.
3048 */
909b0a88 3049 p = old;
cb338d06 3050 q = new;
1da177e4 3051 while (p) {
143c8c91 3052 q->mnt_ns = new_ns;
d2921684 3053 new_ns->mounts++;
9559f689
AV
3054 if (new_fs) {
3055 if (&p->mnt == new_fs->root.mnt) {
3056 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3057 rootmnt = &p->mnt;
1da177e4 3058 }
9559f689
AV
3059 if (&p->mnt == new_fs->pwd.mnt) {
3060 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3061 pwdmnt = &p->mnt;
1da177e4 3062 }
1da177e4 3063 }
909b0a88
AV
3064 p = next_mnt(p, old);
3065 q = next_mnt(q, new);
4ce5d2b1
EB
3066 if (!q)
3067 break;
3068 while (p->mnt.mnt_root != q->mnt.mnt_root)
3069 p = next_mnt(p, old);
1da177e4 3070 }
328e6d90 3071 namespace_unlock();
1da177e4 3072
1da177e4 3073 if (rootmnt)
f03c6599 3074 mntput(rootmnt);
1da177e4 3075 if (pwdmnt)
f03c6599 3076 mntput(pwdmnt);
1da177e4 3077
741a2951 3078 return new_ns;
1da177e4
LT
3079}
3080
74e83122 3081struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3082{
74e83122 3083 struct mount *mnt = real_mount(m);
ea441d11 3084 struct mnt_namespace *ns;
d31da0f0 3085 struct super_block *s;
ea441d11
AV
3086 struct path path;
3087 int err;
3088
74e83122
AV
3089 ns = alloc_mnt_ns(&init_user_ns, true);
3090 if (IS_ERR(ns)) {
3091 mntput(m);
ea441d11 3092 return ERR_CAST(ns);
74e83122
AV
3093 }
3094 mnt->mnt_ns = ns;
3095 ns->root = mnt;
3096 ns->mounts++;
3097 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3098
74e83122 3099 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3100 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3101
3102 put_mnt_ns(ns);
3103
3104 if (err)
3105 return ERR_PTR(err);
3106
3107 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3108 s = path.mnt->mnt_sb;
3109 atomic_inc(&s->s_active);
ea441d11
AV
3110 mntput(path.mnt);
3111 /* lock the sucker */
d31da0f0 3112 down_write(&s->s_umount);
ea441d11
AV
3113 /* ... and return the root of (sub)tree on it */
3114 return path.dentry;
3115}
3116EXPORT_SYMBOL(mount_subtree);
3117
312db1aa
DB
3118int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3119 unsigned long flags, void __user *data)
1da177e4 3120{
eca6f534
VN
3121 int ret;
3122 char *kernel_type;
eca6f534 3123 char *kernel_dev;
b40ef869 3124 void *options;
1da177e4 3125
b8850d1f
TG
3126 kernel_type = copy_mount_string(type);
3127 ret = PTR_ERR(kernel_type);
3128 if (IS_ERR(kernel_type))
eca6f534 3129 goto out_type;
1da177e4 3130
b8850d1f
TG
3131 kernel_dev = copy_mount_string(dev_name);
3132 ret = PTR_ERR(kernel_dev);
3133 if (IS_ERR(kernel_dev))
eca6f534 3134 goto out_dev;
1da177e4 3135
b40ef869
AV
3136 options = copy_mount_options(data);
3137 ret = PTR_ERR(options);
3138 if (IS_ERR(options))
eca6f534 3139 goto out_data;
1da177e4 3140
b40ef869 3141 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3142
b40ef869 3143 kfree(options);
eca6f534
VN
3144out_data:
3145 kfree(kernel_dev);
3146out_dev:
eca6f534
VN
3147 kfree(kernel_type);
3148out_type:
3149 return ret;
1da177e4
LT
3150}
3151
312db1aa
DB
3152SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3153 char __user *, type, unsigned long, flags, void __user *, data)
3154{
3155 return ksys_mount(dev_name, dir_name, type, flags, data);
3156}
3157
afac7cba
AV
3158/*
3159 * Return true if path is reachable from root
3160 *
48a066e7 3161 * namespace_sem or mount_lock is held
afac7cba 3162 */
643822b4 3163bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3164 const struct path *root)
3165{
643822b4 3166 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3167 dentry = mnt->mnt_mountpoint;
0714a533 3168 mnt = mnt->mnt_parent;
afac7cba 3169 }
643822b4 3170 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3171}
3172
640eb7e7 3173bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3174{
25ab4c9b 3175 bool res;
48a066e7 3176 read_seqlock_excl(&mount_lock);
643822b4 3177 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3178 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3179 return res;
3180}
3181EXPORT_SYMBOL(path_is_under);
3182
1da177e4
LT
3183/*
3184 * pivot_root Semantics:
3185 * Moves the root file system of the current process to the directory put_old,
3186 * makes new_root as the new root file system of the current process, and sets
3187 * root/cwd of all processes which had them on the current root to new_root.
3188 *
3189 * Restrictions:
3190 * The new_root and put_old must be directories, and must not be on the
3191 * same file system as the current process root. The put_old must be
3192 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3193 * pointed to by put_old must yield the same directory as new_root. No other
3194 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3195 *
4a0d11fa
NB
3196 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3197 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3198 * in this situation.
3199 *
1da177e4
LT
3200 * Notes:
3201 * - we don't move root/cwd if they are not at the root (reason: if something
3202 * cared enough to change them, it's probably wrong to force them elsewhere)
3203 * - it's okay to pick a root that isn't the root of a file system, e.g.
3204 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3205 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3206 * first.
3207 */
3480b257
HC
3208SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3209 const char __user *, put_old)
1da177e4 3210{
2d8f3038 3211 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3212 struct mount *new_mnt, *root_mnt, *old_mnt;
3213 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3214 int error;
3215
9b40bc90 3216 if (!may_mount())
1da177e4
LT
3217 return -EPERM;
3218
2d8f3038 3219 error = user_path_dir(new_root, &new);
1da177e4
LT
3220 if (error)
3221 goto out0;
1da177e4 3222
2d8f3038 3223 error = user_path_dir(put_old, &old);
1da177e4
LT
3224 if (error)
3225 goto out1;
3226
2d8f3038 3227 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3228 if (error)
3229 goto out2;
1da177e4 3230
f7ad3c6b 3231 get_fs_root(current->fs, &root);
84d17192
AV
3232 old_mp = lock_mount(&old);
3233 error = PTR_ERR(old_mp);
3234 if (IS_ERR(old_mp))
b12cea91
AV
3235 goto out3;
3236
1da177e4 3237 error = -EINVAL;
419148da
AV
3238 new_mnt = real_mount(new.mnt);
3239 root_mnt = real_mount(root.mnt);
84d17192
AV
3240 old_mnt = real_mount(old.mnt);
3241 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3242 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3243 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3244 goto out4;
143c8c91 3245 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3246 goto out4;
5ff9d8a6
EB
3247 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3248 goto out4;
1da177e4 3249 error = -ENOENT;
f3da392e 3250 if (d_unlinked(new.dentry))
b12cea91 3251 goto out4;
1da177e4 3252 error = -EBUSY;
84d17192 3253 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3254 goto out4; /* loop, on the same file system */
1da177e4 3255 error = -EINVAL;
8c3ee42e 3256 if (root.mnt->mnt_root != root.dentry)
b12cea91 3257 goto out4; /* not a mountpoint */
676da58d 3258 if (!mnt_has_parent(root_mnt))
b12cea91 3259 goto out4; /* not attached */
84d17192 3260 root_mp = root_mnt->mnt_mp;
2d8f3038 3261 if (new.mnt->mnt_root != new.dentry)
b12cea91 3262 goto out4; /* not a mountpoint */
676da58d 3263 if (!mnt_has_parent(new_mnt))
b12cea91 3264 goto out4; /* not attached */
4ac91378 3265 /* make sure we can reach put_old from new_root */
84d17192 3266 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3267 goto out4;
0d082601
EB
3268 /* make certain new is below the root */
3269 if (!is_path_reachable(new_mnt, new.dentry, &root))
3270 goto out4;
84d17192 3271 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3272 lock_mount_hash();
419148da
AV
3273 detach_mnt(new_mnt, &parent_path);
3274 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3275 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3276 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3277 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3278 }
4ac91378 3279 /* mount old root on put_old */
84d17192 3280 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3281 /* mount new_root on / */
84d17192 3282 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3283 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3284 /* A moved mount should not expire automatically */
3285 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3286 put_mountpoint(root_mp);
719ea2fb 3287 unlock_mount_hash();
2d8f3038 3288 chroot_fs_refs(&root, &new);
1da177e4 3289 error = 0;
b12cea91 3290out4:
84d17192 3291 unlock_mount(old_mp);
b12cea91
AV
3292 if (!error) {
3293 path_put(&root_parent);
3294 path_put(&parent_path);
3295 }
3296out3:
8c3ee42e 3297 path_put(&root);
b12cea91 3298out2:
2d8f3038 3299 path_put(&old);
1da177e4 3300out1:
2d8f3038 3301 path_put(&new);
1da177e4 3302out0:
1da177e4 3303 return error;
1da177e4
LT
3304}
3305
3306static void __init init_mount_tree(void)
3307{
3308 struct vfsmount *mnt;
74e83122 3309 struct mount *m;
6b3286ed 3310 struct mnt_namespace *ns;
ac748a09 3311 struct path root;
0c55cfc4 3312 struct file_system_type *type;
1da177e4 3313
0c55cfc4
EB
3314 type = get_fs_type("rootfs");
3315 if (!type)
3316 panic("Can't find rootfs type");
3317 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3318 put_filesystem(type);
1da177e4
LT
3319 if (IS_ERR(mnt))
3320 panic("Can't create rootfs");
b3e19d92 3321
74e83122 3322 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3323 if (IS_ERR(ns))
1da177e4 3324 panic("Can't allocate initial namespace");
74e83122
AV
3325 m = real_mount(mnt);
3326 m->mnt_ns = ns;
3327 ns->root = m;
3328 ns->mounts = 1;
3329 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3330 init_task.nsproxy->mnt_ns = ns;
3331 get_mnt_ns(ns);
3332
be08d6d2
AV
3333 root.mnt = mnt;
3334 root.dentry = mnt->mnt_root;
da362b09 3335 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3336
3337 set_fs_pwd(current->fs, &root);
3338 set_fs_root(current->fs, &root);
1da177e4
LT
3339}
3340
74bf17cf 3341void __init mnt_init(void)
1da177e4 3342{
15a67dd8 3343 int err;
1da177e4 3344
7d6fec45 3345 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3346 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3347
0818bf27 3348 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3349 sizeof(struct hlist_head),
0818bf27 3350 mhash_entries, 19,
3d375d78 3351 HASH_ZERO,
0818bf27
AV
3352 &m_hash_shift, &m_hash_mask, 0, 0);
3353 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3354 sizeof(struct hlist_head),
3355 mphash_entries, 19,
3d375d78 3356 HASH_ZERO,
0818bf27 3357 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3358
84d17192 3359 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3360 panic("Failed to allocate mount hash table\n");
3361
4b93dc9b
TH
3362 kernfs_init();
3363
15a67dd8
RD
3364 err = sysfs_init();
3365 if (err)
3366 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3367 __func__, err);
00d26666
GKH
3368 fs_kobj = kobject_create_and_add("fs", NULL);
3369 if (!fs_kobj)
8e24eea7 3370 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3371 init_rootfs();
3372 init_mount_tree();
3373}
3374
616511d0 3375void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3376{
d498b25a 3377 if (!atomic_dec_and_test(&ns->count))
616511d0 3378 return;
7b00ed6f 3379 drop_collected_mounts(&ns->root->mnt);
771b1371 3380 free_mnt_ns(ns);
1da177e4 3381}
9d412a43
AV
3382
3383struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3384{
423e0ab0 3385 struct vfsmount *mnt;
e462ec50 3386 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3387 if (!IS_ERR(mnt)) {
3388 /*
3389 * it is a longterm mount, don't release mnt until
3390 * we unmount before file sys is unregistered
3391 */
f7a99c5b 3392 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3393 }
3394 return mnt;
9d412a43
AV
3395}
3396EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3397
3398void kern_unmount(struct vfsmount *mnt)
3399{
3400 /* release long term mount so mount point can be released */
3401 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3402 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3403 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3404 mntput(mnt);
3405 }
3406}
3407EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3408
3409bool our_mnt(struct vfsmount *mnt)
3410{
143c8c91 3411 return check_mnt(real_mount(mnt));
02125a82 3412}
8823c079 3413
3151527e
EB
3414bool current_chrooted(void)
3415{
3416 /* Does the current process have a non-standard root */
3417 struct path ns_root;
3418 struct path fs_root;
3419 bool chrooted;
3420
3421 /* Find the namespace root */
3422 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3423 ns_root.dentry = ns_root.mnt->mnt_root;
3424 path_get(&ns_root);
3425 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3426 ;
3427
3428 get_fs_root(current->fs, &fs_root);
3429
3430 chrooted = !path_equal(&fs_root, &ns_root);
3431
3432 path_put(&fs_root);
3433 path_put(&ns_root);
3434
3435 return chrooted;
3436}
3437
132e4608
DH
3438static bool mnt_already_visible(struct mnt_namespace *ns,
3439 const struct super_block *sb,
8654df4e 3440 int *new_mnt_flags)
87a8ebd6 3441{
8c6cf9cc 3442 int new_flags = *new_mnt_flags;
87a8ebd6 3443 struct mount *mnt;
e51db735 3444 bool visible = false;
87a8ebd6 3445
44bb4385 3446 down_read(&namespace_sem);
87a8ebd6 3447 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3448 struct mount *child;
77b1a97d
EB
3449 int mnt_flags;
3450
132e4608 3451 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3452 continue;
3453
7e96c1b0
EB
3454 /* This mount is not fully visible if it's root directory
3455 * is not the root directory of the filesystem.
3456 */
3457 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3458 continue;
3459
a1935c17 3460 /* A local view of the mount flags */
77b1a97d 3461 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3462
695e9df0 3463 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3464 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3465 mnt_flags |= MNT_LOCK_READONLY;
3466
8c6cf9cc
EB
3467 /* Verify the mount flags are equal to or more permissive
3468 * than the proposed new mount.
3469 */
77b1a97d 3470 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3471 !(new_flags & MNT_READONLY))
3472 continue;
77b1a97d
EB
3473 if ((mnt_flags & MNT_LOCK_ATIME) &&
3474 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3475 continue;
3476
ceeb0e5d
EB
3477 /* This mount is not fully visible if there are any
3478 * locked child mounts that cover anything except for
3479 * empty directories.
e51db735
EB
3480 */
3481 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3482 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3483 /* Only worry about locked mounts */
d71ed6c9 3484 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3485 continue;
7236c85e
EB
3486 /* Is the directory permanetly empty? */
3487 if (!is_empty_dir_inode(inode))
e51db735 3488 goto next;
87a8ebd6 3489 }
8c6cf9cc 3490 /* Preserve the locked attributes */
77b1a97d 3491 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3492 MNT_LOCK_ATIME);
e51db735
EB
3493 visible = true;
3494 goto found;
3495 next: ;
87a8ebd6 3496 }
e51db735 3497found:
44bb4385 3498 up_read(&namespace_sem);
e51db735 3499 return visible;
87a8ebd6
EB
3500}
3501
132e4608 3502static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3503{
a1935c17 3504 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3505 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3506 unsigned long s_iflags;
3507
3508 if (ns->user_ns == &init_user_ns)
3509 return false;
3510
3511 /* Can this filesystem be too revealing? */
132e4608 3512 s_iflags = sb->s_iflags;
8654df4e
EB
3513 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3514 return false;
3515
a1935c17
EB
3516 if ((s_iflags & required_iflags) != required_iflags) {
3517 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3518 required_iflags);
3519 return true;
3520 }
3521
132e4608 3522 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3523}
3524
380cf5ba
AL
3525bool mnt_may_suid(struct vfsmount *mnt)
3526{
3527 /*
3528 * Foreign mounts (accessed via fchdir or through /proc
3529 * symlinks) are always treated as if they are nosuid. This
3530 * prevents namespaces from trusting potentially unsafe
3531 * suid/sgid bits, file caps, or security labels that originate
3532 * in other namespaces.
3533 */
3534 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3535 current_in_userns(mnt->mnt_sb->s_user_ns);
3536}
3537
64964528 3538static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3539{
58be2825 3540 struct ns_common *ns = NULL;
8823c079
EB
3541 struct nsproxy *nsproxy;
3542
728dba3a
EB
3543 task_lock(task);
3544 nsproxy = task->nsproxy;
8823c079 3545 if (nsproxy) {
58be2825
AV
3546 ns = &nsproxy->mnt_ns->ns;
3547 get_mnt_ns(to_mnt_ns(ns));
8823c079 3548 }
728dba3a 3549 task_unlock(task);
8823c079
EB
3550
3551 return ns;
3552}
3553
64964528 3554static void mntns_put(struct ns_common *ns)
8823c079 3555{
58be2825 3556 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3557}
3558
64964528 3559static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3560{
3561 struct fs_struct *fs = current->fs;
4f757f3c 3562 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3563 struct path root;
4f757f3c 3564 int err;
8823c079 3565
0c55cfc4 3566 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3567 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3568 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3569 return -EPERM;
8823c079 3570
74e83122
AV
3571 if (is_anon_ns(mnt_ns))
3572 return -EINVAL;
3573
8823c079
EB
3574 if (fs->users != 1)
3575 return -EINVAL;
3576
3577 get_mnt_ns(mnt_ns);
4f757f3c 3578 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3579 nsproxy->mnt_ns = mnt_ns;
3580
3581 /* Find the root */
4f757f3c
AV
3582 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3583 "/", LOOKUP_DOWN, &root);
3584 if (err) {
3585 /* revert to old namespace */
3586 nsproxy->mnt_ns = old_mnt_ns;
3587 put_mnt_ns(mnt_ns);
3588 return err;
3589 }
8823c079 3590
4068367c
AV
3591 put_mnt_ns(old_mnt_ns);
3592
8823c079
EB
3593 /* Update the pwd and root */
3594 set_fs_pwd(fs, &root);
3595 set_fs_root(fs, &root);
3596
3597 path_put(&root);
3598 return 0;
3599}
3600
bcac25a5
AV
3601static struct user_namespace *mntns_owner(struct ns_common *ns)
3602{
3603 return to_mnt_ns(ns)->user_ns;
3604}
3605
8823c079
EB
3606const struct proc_ns_operations mntns_operations = {
3607 .name = "mnt",
3608 .type = CLONE_NEWNS,
3609 .get = mntns_get,
3610 .put = mntns_put,
3611 .install = mntns_install,
bcac25a5 3612 .owner = mntns_owner,
8823c079 3613};