]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
net: fec_mxc: change fec_mii_setspeed parameter
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
e2a66e60 34#include <linux/compiler.h>
0b23fb36
IY
35
36DECLARE_GLOBAL_DATA_PTR;
37
bc1ce150
MV
38/*
39 * Timeout the transfer after 5 mS. This is usually a bit more, since
40 * the code in the tightloops this timeout is used in adds some overhead.
41 */
42#define FEC_XFER_TIMEOUT 5000
43
0b23fb36
IY
44#ifndef CONFIG_MII
45#error "CONFIG_MII has to be defined!"
46#endif
47
5c1ad3e6
EN
48#ifndef CONFIG_FEC_XCV_TYPE
49#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
50#endif
51
be7e87e2
MV
52/*
53 * The i.MX28 operates with packets in big endian. We need to swap them before
54 * sending and after receiving.
55 */
5c1ad3e6
EN
56#ifdef CONFIG_MX28
57#define CONFIG_FEC_MXC_SWAP_PACKET
58#endif
59
60#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61
62/* Check various alignment issues at compile time */
63#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64#error "ARCH_DMA_MINALIGN must be multiple of 16!"
65#endif
66
67#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
69#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
70#endif
71
0b23fb36
IY
72#undef DEBUG
73
74struct nbuf {
75 uint8_t data[1500]; /**< actual data */
76 int length; /**< actual length */
77 int used; /**< buffer in use or not */
78 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
79};
80
5c1ad3e6 81#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
82static void swap_packet(uint32_t *packet, int length)
83{
84 int i;
85
86 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
87 packet[i] = __swab32(packet[i]);
88}
89#endif
90
0b23fb36
IY
91/*
92 * MII-interface related functions
93 */
13947f43
TK
94static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
95 uint8_t regAddr)
0b23fb36 96{
0b23fb36
IY
97 uint32_t reg; /* convenient holder for the PHY register */
98 uint32_t phy; /* convenient holder for the PHY */
99 uint32_t start;
13947f43 100 int val;
0b23fb36
IY
101
102 /*
103 * reading from any PHY's register is done by properly
104 * programming the FEC's MII data register.
105 */
d133b881 106 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
107 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109
110 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 111 phy | reg, &eth->mii_data);
0b23fb36
IY
112
113 /*
114 * wait for the related interrupt
115 */
a60d1e5b 116 start = get_timer(0);
d133b881 117 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
118 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 printf("Read MDIO failed...\n");
120 return -1;
121 }
122 }
123
124 /*
125 * clear mii interrupt bit
126 */
d133b881 127 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
128
129 /*
130 * it's now safe to read the PHY's register
131 */
13947f43
TK
132 val = (unsigned short)readl(&eth->mii_data);
133 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
134 regAddr, val);
135 return val;
0b23fb36
IY
136}
137
575c5cc0 138static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
139{
140 /*
141 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 * and do not drop the Preamble.
143 */
144 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
575c5cc0
TK
145 &eth->mii_speed);
146 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 147}
0b23fb36 148
13947f43
TK
149static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
150 uint8_t regAddr, uint16_t data)
151{
0b23fb36
IY
152 uint32_t reg; /* convenient holder for the PHY register */
153 uint32_t phy; /* convenient holder for the PHY */
154 uint32_t start;
155
156 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
157 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
158
159 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 160 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
161
162 /*
163 * wait for the MII interrupt
164 */
a60d1e5b 165 start = get_timer(0);
d133b881 166 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
167 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
168 printf("Write MDIO failed...\n");
169 return -1;
170 }
171 }
172
173 /*
174 * clear MII interrupt bit
175 */
d133b881 176 writel(FEC_IEVENT_MII, &eth->ievent);
13947f43 177 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
0b23fb36
IY
178 regAddr, data);
179
180 return 0;
181}
182
13947f43
TK
183int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
184{
185 return fec_mdio_read(bus->priv, phyAddr, regAddr);
186}
187
188int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
189 u16 data)
190{
191 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
192}
193
194#ifndef CONFIG_PHYLIB
0b23fb36
IY
195static int miiphy_restart_aneg(struct eth_device *dev)
196{
b774fe9d
SB
197 int ret = 0;
198#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 199 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 200 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 201
0b23fb36
IY
202 /*
203 * Wake up from sleep if necessary
204 * Reset PHY, then delay 300ns
205 */
cb17b92d 206#ifdef CONFIG_MX27
13947f43 207 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 208#endif
13947f43 209 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
210 udelay(1000);
211
212 /*
213 * Set the auto-negotiation advertisement register bits
214 */
13947f43 215 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
216 LPA_100FULL | LPA_100HALF | LPA_10FULL |
217 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 218 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
8ef583a0 219 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
220
221 if (fec->mii_postcall)
222 ret = fec->mii_postcall(fec->phy_id);
223
b774fe9d 224#endif
2e5f4421 225 return ret;
0b23fb36
IY
226}
227
228static int miiphy_wait_aneg(struct eth_device *dev)
229{
230 uint32_t start;
13947f43 231 int status;
9e27e9dc 232 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 233 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36
IY
234
235 /*
236 * Wait for AN completion
237 */
a60d1e5b 238 start = get_timer(0);
0b23fb36
IY
239 do {
240 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
241 printf("%s: Autonegotiation timeout\n", dev->name);
242 return -1;
243 }
244
13947f43
TK
245 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
246 if (status < 0) {
247 printf("%s: Autonegotiation failed. status: %d\n",
0b23fb36
IY
248 dev->name, status);
249 return -1;
250 }
8ef583a0 251 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
252
253 return 0;
254}
13947f43
TK
255#endif
256
0b23fb36
IY
257static int fec_rx_task_enable(struct fec_priv *fec)
258{
c0b5a3bb 259 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
260 return 0;
261}
262
263static int fec_rx_task_disable(struct fec_priv *fec)
264{
265 return 0;
266}
267
268static int fec_tx_task_enable(struct fec_priv *fec)
269{
c0b5a3bb 270 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
271 return 0;
272}
273
274static int fec_tx_task_disable(struct fec_priv *fec)
275{
276 return 0;
277}
278
279/**
280 * Initialize receive task's buffer descriptors
281 * @param[in] fec all we know about the device yet
282 * @param[in] count receive buffer count to be allocated
5c1ad3e6 283 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
284 * @return 0 on success
285 *
286 * For this task we need additional memory for the data buffers. And each
287 * data buffer requires some alignment. Thy must be aligned to a specific
5c1ad3e6 288 * boundary each.
0b23fb36 289 */
5c1ad3e6 290static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 291{
5c1ad3e6
EN
292 uint32_t size;
293 int i;
294
0b23fb36 295 /*
5c1ad3e6
EN
296 * Allocate memory for the buffers. This allocation respects the
297 * alignment
0b23fb36 298 */
5c1ad3e6
EN
299 size = roundup(dsize, ARCH_DMA_MINALIGN);
300 for (i = 0; i < count; i++) {
301 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
302 if (data_ptr == 0) {
303 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
304 size);
305 if (!data) {
306 printf("%s: error allocating rxbuf %d\n",
307 __func__, i);
308 goto err;
309 }
310 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
311 } /* needs allocation */
312 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
313 writew(0, &fec->rbd_base[i].data_length);
314 }
315
316 /* Mark the last RBD to close the ring. */
317 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
0b23fb36
IY
318 fec->rbd_index = 0;
319
320 return 0;
5c1ad3e6
EN
321
322err:
323 for (; i >= 0; i--) {
324 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
325 free((void *)data_ptr);
326 }
327
328 return -ENOMEM;
0b23fb36
IY
329}
330
331/**
332 * Initialize transmit task's buffer descriptors
333 * @param[in] fec all we know about the device yet
334 *
335 * Transmit buffers are created externally. We only have to init the BDs here.\n
336 * Note: There is a race condition in the hardware. When only one BD is in
337 * use it must be marked with the WRAP bit to use it for every transmitt.
338 * This bit in combination with the READY bit results into double transmit
339 * of each data buffer. It seems the state machine checks READY earlier then
340 * resetting it after the first transfer.
341 * Using two BDs solves this issue.
342 */
343static void fec_tbd_init(struct fec_priv *fec)
344{
5c1ad3e6
EN
345 unsigned addr = (unsigned)fec->tbd_base;
346 unsigned size = roundup(2 * sizeof(struct fec_bd),
347 ARCH_DMA_MINALIGN);
0b23fb36
IY
348 writew(0x0000, &fec->tbd_base[0].status);
349 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
350 fec->tbd_index = 0;
5c1ad3e6 351 flush_dcache_range(addr, addr+size);
0b23fb36
IY
352}
353
354/**
355 * Mark the given read buffer descriptor as free
356 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
357 * @param[in] pRbd buffer descriptor to mark free again
358 */
359static void fec_rbd_clean(int last, struct fec_bd *pRbd)
360{
5c1ad3e6 361 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 362 if (last)
5c1ad3e6
EN
363 flags |= FEC_RBD_WRAP;
364 writew(flags, &pRbd->status);
0b23fb36
IY
365 writew(0, &pRbd->data_length);
366}
367
be252b65
FE
368static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
369 unsigned char *mac)
0b23fb36 370{
be252b65 371 imx_get_mac_from_fuse(dev_id, mac);
2e236bf2 372 return !is_valid_ether_addr(mac);
0b23fb36
IY
373}
374
4294b248 375static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 376{
4294b248 377 uchar *mac = dev->enetaddr;
0b23fb36
IY
378 struct fec_priv *fec = (struct fec_priv *)dev->priv;
379
380 writel(0, &fec->eth->iaddr1);
381 writel(0, &fec->eth->iaddr2);
382 writel(0, &fec->eth->gaddr1);
383 writel(0, &fec->eth->gaddr2);
384
385 /*
386 * Set physical address
387 */
388 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
389 &fec->eth->paddr1);
390 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
391
392 return 0;
393}
394
13947f43
TK
395static void fec_eth_phy_config(struct eth_device *dev)
396{
397#ifdef CONFIG_PHYLIB
398 struct fec_priv *fec = (struct fec_priv *)dev->priv;
399 struct phy_device *phydev;
400
401 phydev = phy_connect(fec->bus, fec->phy_id, dev,
402 PHY_INTERFACE_MODE_RGMII);
403 if (phydev) {
404 fec->phydev = phydev;
405 phy_config(phydev);
406 }
407#endif
408}
409
a5990b26
MV
410/*
411 * Do initial configuration of the FEC registers
412 */
413static void fec_reg_setup(struct fec_priv *fec)
414{
415 uint32_t rcntrl;
416
417 /*
418 * Set interrupt mask register
419 */
420 writel(0x00000000, &fec->eth->imask);
421
422 /*
423 * Clear FEC-Lite interrupt event register(IEVENT)
424 */
425 writel(0xffffffff, &fec->eth->ievent);
426
427
428 /*
429 * Set FEC-Lite receive control register(R_CNTRL):
430 */
431
432 /* Start with frame length = 1518, common for all modes. */
433 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 434 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
435 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
436 if (fec->xcv_type == RGMII)
a5990b26
MV
437 rcntrl |= FEC_RCNTRL_RGMII;
438 else if (fec->xcv_type == RMII)
439 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
440
441 writel(rcntrl, &fec->eth->r_cntrl);
442}
443
0b23fb36
IY
444/**
445 * Start the FEC engine
446 * @param[in] dev Our device to handle
447 */
448static int fec_open(struct eth_device *edev)
449{
450 struct fec_priv *fec = (struct fec_priv *)edev->priv;
28774cba 451 int speed;
5c1ad3e6
EN
452 uint32_t addr, size;
453 int i;
0b23fb36
IY
454
455 debug("fec_open: fec_open(dev)\n");
456 /* full-duplex, heartbeat disabled */
457 writel(1 << 2, &fec->eth->x_cntrl);
458 fec->rbd_index = 0;
459
5c1ad3e6
EN
460 /* Invalidate all descriptors */
461 for (i = 0; i < FEC_RBD_NUM - 1; i++)
462 fec_rbd_clean(0, &fec->rbd_base[i]);
463 fec_rbd_clean(1, &fec->rbd_base[i]);
464
465 /* Flush the descriptors into RAM */
466 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
467 ARCH_DMA_MINALIGN);
468 addr = (uint32_t)fec->rbd_base;
469 flush_dcache_range(addr, addr + size);
470
28774cba 471#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
472 /* Enable ENET HW endian SWAP */
473 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
474 &fec->eth->ecntrl);
475 /* Enable ENET store and forward mode */
476 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
477 &fec->eth->x_wmrk);
478#endif
0b23fb36
IY
479 /*
480 * Enable FEC-Lite controller
481 */
cb17b92d
JR
482 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
483 &fec->eth->ecntrl);
96912453 484#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
485 udelay(100);
486 /*
487 * setup the MII gasket for RMII mode
488 */
489
490 /* disable the gasket */
491 writew(0, &fec->eth->miigsk_enr);
492
493 /* wait for the gasket to be disabled */
494 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
495 udelay(2);
496
497 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
498 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
499
500 /* re-enable the gasket */
501 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
502
503 /* wait until MII gasket is ready */
504 int max_loops = 10;
505 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
506 if (--max_loops <= 0) {
507 printf("WAIT for MII Gasket ready timed out\n");
508 break;
509 }
510 }
511#endif
0b23fb36 512
13947f43
TK
513#ifdef CONFIG_PHYLIB
514 if (!fec->phydev)
515 fec_eth_phy_config(edev);
516 if (fec->phydev) {
517 /* Start up the PHY */
11af8d65
TT
518 int ret = phy_startup(fec->phydev);
519
520 if (ret) {
521 printf("Could not initialize PHY %s\n",
522 fec->phydev->dev->name);
523 return ret;
524 }
13947f43
TK
525 speed = fec->phydev->speed;
526 } else {
527 speed = _100BASET;
528 }
529#else
0b23fb36 530 miiphy_wait_aneg(edev);
28774cba 531 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 532 miiphy_duplex(edev->name, fec->phy_id);
13947f43 533#endif
0b23fb36 534
28774cba
TK
535#ifdef FEC_QUIRK_ENET_MAC
536 {
537 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
538 u32 rcr = (readl(&fec->eth->r_cntrl) &
539 ~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
540 FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
541 if (speed == _1000BASET)
542 ecr |= FEC_ECNTRL_SPEED;
543 else if (speed != _100BASET)
544 rcr |= FEC_RCNTRL_RMII_10T;
545 writel(ecr, &fec->eth->ecntrl);
546 writel(rcr, &fec->eth->r_cntrl);
547 }
548#endif
549 debug("%s:Speed=%i\n", __func__, speed);
550
0b23fb36
IY
551 /*
552 * Enable SmartDMA receive task
553 */
554 fec_rx_task_enable(fec);
555
556 udelay(100000);
557 return 0;
558}
559
560static int fec_init(struct eth_device *dev, bd_t* bd)
561{
0b23fb36 562 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 563 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
5c1ad3e6
EN
564 uint32_t size;
565 int i, ret;
0b23fb36 566
e9319f11
JR
567 /* Initialize MAC address */
568 fec_set_hwaddr(dev);
569
0b23fb36 570 /*
5c1ad3e6
EN
571 * Allocate transmit descriptors, there are two in total. This
572 * allocation respects cache alignment.
0b23fb36 573 */
5c1ad3e6
EN
574 if (!fec->tbd_base) {
575 size = roundup(2 * sizeof(struct fec_bd),
576 ARCH_DMA_MINALIGN);
577 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
578 if (!fec->tbd_base) {
579 ret = -ENOMEM;
580 goto err1;
581 }
582 memset(fec->tbd_base, 0, size);
583 fec_tbd_init(fec);
584 flush_dcache_range((unsigned)fec->tbd_base, size);
0b23fb36 585 }
0b23fb36 586
5c1ad3e6
EN
587 /*
588 * Allocate receive descriptors. This allocation respects cache
589 * alignment.
590 */
591 if (!fec->rbd_base) {
592 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
593 ARCH_DMA_MINALIGN);
594 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
595 if (!fec->rbd_base) {
596 ret = -ENOMEM;
597 goto err2;
598 }
599 memset(fec->rbd_base, 0, size);
600 /*
601 * Initialize RxBD ring
602 */
603 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
604 ret = -ENOMEM;
605 goto err3;
606 }
607 flush_dcache_range((unsigned)fec->rbd_base,
608 (unsigned)fec->rbd_base + size);
609 }
0b23fb36 610
a5990b26 611 fec_reg_setup(fec);
9eb3770b 612
f41471e6 613 if (fec->xcv_type != SEVENWIRE)
575c5cc0 614 fec_mii_setspeed(fec->bus->priv);
9eb3770b 615
0b23fb36
IY
616 /*
617 * Set Opcode/Pause Duration Register
618 */
619 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
620 writel(0x2, &fec->eth->x_wmrk);
621 /*
622 * Set multicast address filter
623 */
624 writel(0x00000000, &fec->eth->gaddr1);
625 writel(0x00000000, &fec->eth->gaddr2);
626
627
628 /* clear MIB RAM */
9e27e9dc
MV
629 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
630 writel(0, i);
0b23fb36
IY
631
632 /* FIFO receive start register */
633 writel(0x520, &fec->eth->r_fstart);
634
635 /* size and address of each buffer */
636 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
637 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
638 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
639
13947f43 640#ifndef CONFIG_PHYLIB
0b23fb36
IY
641 if (fec->xcv_type != SEVENWIRE)
642 miiphy_restart_aneg(dev);
13947f43 643#endif
0b23fb36
IY
644 fec_open(dev);
645 return 0;
5c1ad3e6
EN
646
647err3:
648 free(fec->rbd_base);
649err2:
650 free(fec->tbd_base);
651err1:
652 return ret;
0b23fb36
IY
653}
654
655/**
656 * Halt the FEC engine
657 * @param[in] dev Our device to handle
658 */
659static void fec_halt(struct eth_device *dev)
660{
9e27e9dc 661 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
662 int counter = 0xffff;
663
664 /*
665 * issue graceful stop command to the FEC transmitter if necessary
666 */
cb17b92d 667 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
668 &fec->eth->x_cntrl);
669
670 debug("eth_halt: wait for stop regs\n");
671 /*
672 * wait for graceful stop to register
673 */
674 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 675 udelay(1);
0b23fb36
IY
676
677 /*
678 * Disable SmartDMA tasks
679 */
680 fec_tx_task_disable(fec);
681 fec_rx_task_disable(fec);
682
683 /*
684 * Disable the Ethernet Controller
685 * Note: this will also reset the BD index counter!
686 */
740d6ae5
JR
687 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
688 &fec->eth->ecntrl);
0b23fb36
IY
689 fec->rbd_index = 0;
690 fec->tbd_index = 0;
0b23fb36
IY
691 debug("eth_halt: done\n");
692}
693
694/**
695 * Transmit one frame
696 * @param[in] dev Our ethernet device to handle
697 * @param[in] packet Pointer to the data to be transmitted
698 * @param[in] length Data count in bytes
699 * @return 0 on success
700 */
442dac4c 701static int fec_send(struct eth_device *dev, void *packet, int length)
0b23fb36
IY
702{
703 unsigned int status;
efe24d2e 704 uint32_t size, end;
5c1ad3e6 705 uint32_t addr;
bc1ce150
MV
706 int timeout = FEC_XFER_TIMEOUT;
707 int ret = 0;
0b23fb36
IY
708
709 /*
710 * This routine transmits one frame. This routine only accepts
711 * 6-byte Ethernet addresses.
712 */
713 struct fec_priv *fec = (struct fec_priv *)dev->priv;
714
715 /*
716 * Check for valid length of data.
717 */
718 if ((length > 1500) || (length <= 0)) {
4294b248 719 printf("Payload (%d) too large\n", length);
0b23fb36
IY
720 return -1;
721 }
722
723 /*
5c1ad3e6
EN
724 * Setup the transmit buffer. We are always using the first buffer for
725 * transmission, the second will be empty and only used to stop the DMA
726 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 727 */
5c1ad3e6 728#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
729 swap_packet((uint32_t *)packet, length);
730#endif
5c1ad3e6
EN
731
732 addr = (uint32_t)packet;
efe24d2e
MV
733 end = roundup(addr + length, ARCH_DMA_MINALIGN);
734 addr &= ~(ARCH_DMA_MINALIGN - 1);
735 flush_dcache_range(addr, end);
5c1ad3e6 736
0b23fb36 737 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
5c1ad3e6
EN
738 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
739
0b23fb36
IY
740 /*
741 * update BD's status now
742 * This block:
743 * - is always the last in a chain (means no chain)
744 * - should transmitt the CRC
745 * - might be the last BD in the list, so the address counter should
746 * wrap (-> keep the WRAP flag)
747 */
748 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
749 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
750 writew(status, &fec->tbd_base[fec->tbd_index].status);
751
5c1ad3e6
EN
752 /*
753 * Flush data cache. This code flushes both TX descriptors to RAM.
754 * After this code, the descriptors will be safely in RAM and we
755 * can start DMA.
756 */
757 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
758 addr = (uint32_t)fec->tbd_base;
759 flush_dcache_range(addr, addr + size);
760
0b23fb36
IY
761 /*
762 * Enable SmartDMA transmit task
763 */
764 fec_tx_task_enable(fec);
765
766 /*
5c1ad3e6
EN
767 * Wait until frame is sent. On each turn of the wait cycle, we must
768 * invalidate data cache to see what's really in RAM. Also, we need
769 * barrier here.
0b23fb36 770 */
67449098 771 while (--timeout) {
c0b5a3bb 772 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 773 break;
0b23fb36 774 }
5c1ad3e6 775
67449098
MV
776 if (!timeout)
777 ret = -EINVAL;
778
779 invalidate_dcache_range(addr, addr + size);
780 if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
781 ret = -EINVAL;
782
783 debug("fec_send: status 0x%x index %d ret %i\n",
0b23fb36 784 readw(&fec->tbd_base[fec->tbd_index].status),
67449098 785 fec->tbd_index, ret);
0b23fb36
IY
786 /* for next transmission use the other buffer */
787 if (fec->tbd_index)
788 fec->tbd_index = 0;
789 else
790 fec->tbd_index = 1;
791
bc1ce150 792 return ret;
0b23fb36
IY
793}
794
795/**
796 * Pull one frame from the card
797 * @param[in] dev Our ethernet device to handle
798 * @return Length of packet read
799 */
800static int fec_recv(struct eth_device *dev)
801{
802 struct fec_priv *fec = (struct fec_priv *)dev->priv;
803 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
804 unsigned long ievent;
805 int frame_length, len = 0;
806 struct nbuf *frame;
807 uint16_t bd_status;
efe24d2e 808 uint32_t addr, size, end;
5c1ad3e6 809 int i;
e2a66e60 810 uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
0b23fb36
IY
811
812 /*
813 * Check if any critical events have happened
814 */
815 ievent = readl(&fec->eth->ievent);
816 writel(ievent, &fec->eth->ievent);
eda959f3 817 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
818 if (ievent & FEC_IEVENT_BABR) {
819 fec_halt(dev);
820 fec_init(dev, fec->bd);
821 printf("some error: 0x%08lx\n", ievent);
822 return 0;
823 }
824 if (ievent & FEC_IEVENT_HBERR) {
825 /* Heartbeat error */
826 writel(0x00000001 | readl(&fec->eth->x_cntrl),
827 &fec->eth->x_cntrl);
828 }
829 if (ievent & FEC_IEVENT_GRA) {
830 /* Graceful stop complete */
831 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
832 fec_halt(dev);
833 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
834 &fec->eth->x_cntrl);
835 fec_init(dev, fec->bd);
836 }
837 }
838
839 /*
5c1ad3e6
EN
840 * Read the buffer status. Before the status can be read, the data cache
841 * must be invalidated, because the data in RAM might have been changed
842 * by DMA. The descriptors are properly aligned to cachelines so there's
843 * no need to worry they'd overlap.
844 *
845 * WARNING: By invalidating the descriptor here, we also invalidate
846 * the descriptors surrounding this one. Therefore we can NOT change the
847 * contents of this descriptor nor the surrounding ones. The problem is
848 * that in order to mark the descriptor as processed, we need to change
849 * the descriptor. The solution is to mark the whole cache line when all
850 * descriptors in the cache line are processed.
0b23fb36 851 */
5c1ad3e6
EN
852 addr = (uint32_t)rbd;
853 addr &= ~(ARCH_DMA_MINALIGN - 1);
854 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
855 invalidate_dcache_range(addr, addr + size);
856
0b23fb36
IY
857 bd_status = readw(&rbd->status);
858 debug("fec_recv: status 0x%x\n", bd_status);
859
860 if (!(bd_status & FEC_RBD_EMPTY)) {
861 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
862 ((readw(&rbd->data_length) - 4) > 14)) {
863 /*
864 * Get buffer address and size
865 */
866 frame = (struct nbuf *)readl(&rbd->data_pointer);
867 frame_length = readw(&rbd->data_length) - 4;
5c1ad3e6
EN
868 /*
869 * Invalidate data cache over the buffer
870 */
871 addr = (uint32_t)frame;
efe24d2e
MV
872 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 addr &= ~(ARCH_DMA_MINALIGN - 1);
874 invalidate_dcache_range(addr, end);
5c1ad3e6 875
0b23fb36
IY
876 /*
877 * Fill the buffer and pass it to upper layers
878 */
5c1ad3e6 879#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
880 swap_packet((uint32_t *)frame->data, frame_length);
881#endif
0b23fb36
IY
882 memcpy(buff, frame->data, frame_length);
883 NetReceive(buff, frame_length);
884 len = frame_length;
885 } else {
886 if (bd_status & FEC_RBD_ERR)
887 printf("error frame: 0x%08lx 0x%08x\n",
888 (ulong)rbd->data_pointer,
889 bd_status);
890 }
5c1ad3e6 891
0b23fb36 892 /*
5c1ad3e6
EN
893 * Free the current buffer, restart the engine and move forward
894 * to the next buffer. Here we check if the whole cacheline of
895 * descriptors was already processed and if so, we mark it free
896 * as whole.
0b23fb36 897 */
5c1ad3e6
EN
898 size = RXDESC_PER_CACHELINE - 1;
899 if ((fec->rbd_index & size) == size) {
900 i = fec->rbd_index - size;
901 addr = (uint32_t)&fec->rbd_base[i];
902 for (; i <= fec->rbd_index ; i++) {
903 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
904 &fec->rbd_base[i]);
905 }
906 flush_dcache_range(addr,
907 addr + ARCH_DMA_MINALIGN);
908 }
909
0b23fb36
IY
910 fec_rx_task_enable(fec);
911 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
912 }
913 debug("fec_recv: stop\n");
914
915 return len;
916}
917
9e27e9dc 918static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
0b23fb36 919{
0b23fb36 920 struct eth_device *edev;
9e27e9dc 921 struct fec_priv *fec;
13947f43 922 struct mii_dev *bus;
0b23fb36 923 unsigned char ethaddr[6];
e382fb48
MV
924 uint32_t start;
925 int ret = 0;
0b23fb36
IY
926
927 /* create and fill edev struct */
928 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
929 if (!edev) {
9e27e9dc 930 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
931 ret = -ENOMEM;
932 goto err1;
9e27e9dc
MV
933 }
934
935 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
936 if (!fec) {
937 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
938 ret = -ENOMEM;
939 goto err2;
0b23fb36 940 }
9e27e9dc 941
de0b9576 942 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
943 memset(fec, 0, sizeof(*fec));
944
0b23fb36
IY
945 edev->priv = fec;
946 edev->init = fec_init;
947 edev->send = fec_send;
948 edev->recv = fec_recv;
949 edev->halt = fec_halt;
fb57ec97 950 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 951
9e27e9dc 952 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
953 fec->bd = bd;
954
392b8502 955 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
956
957 /* Reset chip. */
cb17b92d 958 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
959 start = get_timer(0);
960 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
961 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
962 printf("FEC MXC: Timeout reseting chip\n");
963 goto err3;
964 }
0b23fb36 965 udelay(10);
e382fb48 966 }
0b23fb36 967
a5990b26 968 fec_reg_setup(fec);
0b23fb36 969
9e27e9dc
MV
970 if (dev_id == -1) {
971 sprintf(edev->name, "FEC");
972 fec->dev_id = 0;
973 } else {
974 sprintf(edev->name, "FEC%i", dev_id);
975 fec->dev_id = dev_id;
976 }
977 fec->phy_id = phy_id;
0b23fb36 978
13947f43
TK
979 bus = mdio_alloc();
980 if (!bus) {
981 printf("mdio_alloc failed\n");
982 ret = -ENOMEM;
983 goto err3;
984 }
985 bus->read = fec_phy_read;
986 bus->write = fec_phy_write;
987 sprintf(bus->name, edev->name);
5c1ad3e6 988#ifdef CONFIG_MX28
13947f43
TK
989 /*
990 * The i.MX28 has two ethernet interfaces, but they are not equal.
991 * Only the first one can access the MDIO bus.
992 */
993 bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
994#else
995 bus->priv = fec->eth;
996#endif
575c5cc0 997 fec_mii_setspeed(bus->priv);
13947f43
TK
998 ret = mdio_register(bus);
999 if (ret) {
1000 printf("mdio_register failed\n");
1001 free(bus);
1002 ret = -ENOMEM;
1003 goto err3;
1004 }
1005 fec->bus = bus;
0b23fb36
IY
1006 eth_register(edev);
1007
be252b65
FE
1008 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1009 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
4294b248 1010 memcpy(edev->enetaddr, ethaddr, 6);
0b23fb36 1011 }
13947f43
TK
1012 /* Configure phy */
1013 fec_eth_phy_config(edev);
e382fb48
MV
1014 return ret;
1015
1016err3:
1017 free(fec);
1018err2:
1019 free(edev);
1020err1:
1021 return ret;
0b23fb36
IY
1022}
1023
09439c31 1024#ifdef CONFIG_FEC_MXC_PHYADDR
0b23fb36
IY
1025int fecmxc_initialize(bd_t *bd)
1026{
1027 int lout = 1;
1028
1029 debug("eth_init: fec_probe(bd)\n");
9e27e9dc
MV
1030 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1031
1032 return lout;
1033}
1034#endif
1035
1036int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1037{
1038 int lout = 1;
1039
1040 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1041 lout = fec_probe(bd, dev_id, phy_id, addr);
0b23fb36
IY
1042
1043 return lout;
1044}
2e5f4421 1045
13947f43 1046#ifndef CONFIG_PHYLIB
2e5f4421
MV
1047int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1048{
1049 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1050 fec->mii_postcall = cb;
1051 return 0;
1052}
13947f43 1053#endif