]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
* emultempl/armelf.em: Update copyright to 2010 and 2011.
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
8d67f500
NC
242
243/* Return if no cpu was selected on command-line. */
244static bfd_boolean
245no_cpu_selected (void)
246{
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249}
250
7cc69913 251#ifdef OBJ_ELF
deeaaff8
DJ
252# ifdef EABI_DEFAULT
253static int meabi_flags = EABI_DEFAULT;
254# else
d507cf36 255static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 256# endif
e1da3f5b 257
ee3c0378
AS
258static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
e1da3f5b 260bfd_boolean
5f4273c7 261arm_is_eabi (void)
e1da3f5b
PB
262{
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264}
7cc69913 265#endif
b99bd4ef 266
b99bd4ef 267#ifdef OBJ_ELF
c19d1205 268/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
269symbolS * GOT_symbol;
270#endif
271
b99bd4ef
NC
272/* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276static int thumb_mode = 0;
8dc2430f
NC
277/* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280#define MODE_RECORDED (1 << 4)
b99bd4ef 281
e07e6e58
NC
282/* Specifies the intrinsic IT insn behavior mode. */
283enum implicit_it_mode
284{
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289};
290static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
c19d1205
ZW
292/* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315static bfd_boolean unified_syntax = FALSE;
b99bd4ef 316
5287ad62
JB
317enum neon_el_type
318{
dcbf9037 319 NT_invtype,
5287ad62
JB
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
dcbf9037 325 NT_unsigned
5287ad62
JB
326};
327
328struct neon_type_el
329{
330 enum neon_el_type type;
331 unsigned size;
332};
333
334#define NEON_MAX_TYPE_ELS 4
335
336struct neon_type
337{
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340};
341
e07e6e58
NC
342enum it_instruction_type
343{
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352};
353
b99bd4ef
NC
354struct arm_it
355{
c19d1205 356 const char * error;
b99bd4ef 357 unsigned long instruction;
c19d1205
ZW
358 int size;
359 int size_req;
360 int cond;
037e8744
JB
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
5287ad62 365 struct neon_type vectype;
88714cb8
DG
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
0110f2b8
PB
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
b99bd4ef
NC
372 struct
373 {
374 bfd_reloc_code_real_type type;
c19d1205
ZW
375 expressionS exp;
376 int pc_rel;
b99bd4ef 377 } reloc;
b99bd4ef 378
e07e6e58
NC
379 enum it_instruction_type it_insn_type;
380
c19d1205
ZW
381 struct
382 {
383 unsigned reg;
ca3f61f7 384 signed int imm;
dcbf9037 385 struct neon_type_el vectype;
ca3f61f7
NC
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 405 } operands[6];
b99bd4ef
NC
406};
407
c19d1205 408static struct arm_it inst;
b99bd4ef
NC
409
410#define NUM_FLOAT_VALS 8
411
05d2d07e 412const char * fp_const[] =
b99bd4ef
NC
413{
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415};
416
c19d1205 417/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
418#define MAX_LITTLENUMS 6
419
420LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422#define FAIL (-1)
423#define SUCCESS (0)
424
425#define SUFF_S 1
426#define SUFF_D 2
427#define SUFF_E 3
428#define SUFF_P 4
429
c19d1205
ZW
430#define CP_T_X 0x00008000
431#define CP_T_Y 0x00400000
b99bd4ef 432
c19d1205
ZW
433#define CONDS_BIT 0x00100000
434#define LOAD_BIT 0x00100000
b99bd4ef
NC
435
436#define DOUBLE_LOAD_FLAG 0x00000001
437
438struct asm_cond
439{
d3ce72d0 440 const char * template_name;
c921be7d 441 unsigned long value;
b99bd4ef
NC
442};
443
c19d1205 444#define COND_ALWAYS 0xE
b99bd4ef 445
b99bd4ef
NC
446struct asm_psr
447{
d3ce72d0 448 const char * template_name;
c921be7d 449 unsigned long field;
b99bd4ef
NC
450};
451
62b3e311
PB
452struct asm_barrier_opt
453{
d3ce72d0 454 const char * template_name;
c921be7d 455 unsigned long value;
62b3e311
PB
456};
457
2d2255b5 458/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
459#define SPSR_BIT (1 << 22)
460
c19d1205
ZW
461/* The individual PSR flag bits. */
462#define PSR_c (1 << 16)
463#define PSR_x (1 << 17)
464#define PSR_s (1 << 18)
465#define PSR_f (1 << 19)
b99bd4ef 466
c19d1205 467struct reloc_entry
bfae80f2 468{
c921be7d
NC
469 char * name;
470 bfd_reloc_code_real_type reloc;
bfae80f2
RE
471};
472
5287ad62 473enum vfp_reg_pos
bfae80f2 474{
5287ad62
JB
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
477};
478
479enum vfp_ldstm_type
480{
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482};
483
dcbf9037
JB
484/* Bits for DEFINED field in neon_typed_alias. */
485#define NTA_HASTYPE 1
486#define NTA_HASINDEX 2
487
488struct neon_typed_alias
489{
c921be7d
NC
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
dcbf9037
JB
493};
494
c19d1205
ZW
495/* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497enum arm_reg_type
bfae80f2 498{
c19d1205
ZW
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
5287ad62 505 REG_TYPE_NQ,
037e8744 506 REG_TYPE_VFSD,
5287ad62 507 REG_TYPE_NDQ,
037e8744 508 REG_TYPE_NSDQ,
c19d1205
ZW
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
90ec0d68 520 REG_TYPE_RNB
bfae80f2
RE
521};
522
dcbf9037
JB
523/* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
527struct reg_entry
528{
c921be7d 529 const char * name;
90ec0d68 530 unsigned int number;
c921be7d
NC
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
6c43fab6
RE
534};
535
c19d1205 536/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 537const char * const reg_expected_msgs[] =
c19d1205
ZW
538{
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
5287ad62
JB
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
037e8744 546 N_("VFP single or double precision register expected"),
5287ad62 547 N_("Neon double or quad precision register expected"),
037e8744 548 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
6c43fab6
RE
560};
561
c19d1205
ZW
562/* Some well known registers that we refer to directly elsewhere. */
563#define REG_SP 13
564#define REG_LR 14
565#define REG_PC 15
404ff6b5 566
b99bd4ef
NC
567/* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
c19d1205 569#define INSN_SIZE 4
b99bd4ef
NC
570
571struct asm_opcode
572{
573 /* Basic string to match. */
d3ce72d0 574 const char * template_name;
c19d1205
ZW
575
576 /* Parameters to instruction. */
5be8be5d 577 unsigned int operands[8];
c19d1205
ZW
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
b99bd4ef
NC
581
582 /* Basic instruction code. */
c19d1205 583 unsigned int avalue : 28;
b99bd4ef 584
c19d1205
ZW
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
b99bd4ef 587
90e4755a 588 /* Which architecture variant provides this instruction. */
c921be7d
NC
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
c19d1205
ZW
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
b99bd4ef 594
c19d1205
ZW
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
b99bd4ef
NC
597};
598
a737bd4d
NC
599/* Defines for various bits that we will want to toggle. */
600#define INST_IMMEDIATE 0x02000000
601#define OFFSET_REG 0x02000000
c19d1205 602#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
603#define SHIFT_BY_REG 0x00000010
604#define PRE_INDEX 0x01000000
605#define INDEX_UP 0x00800000
606#define WRITE_BACK 0x00200000
607#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 608#define CPSI_MMOD 0x00020000
90e4755a 609
a737bd4d
NC
610#define LITERAL_MASK 0xf000f000
611#define OPCODE_MASK 0xfe1fffff
612#define V4_STR_BIT 0x00000020
90e4755a 613
efd81785
PB
614#define T2_SUBS_PC_LR 0xf3de8f00
615
a737bd4d 616#define DATA_OP_SHIFT 21
90e4755a 617
ef8d22e6
PB
618#define T2_OPCODE_MASK 0xfe1fffff
619#define T2_DATA_OP_SHIFT 21
620
a737bd4d
NC
621/* Codes to distinguish the arithmetic instructions. */
622#define OPCODE_AND 0
623#define OPCODE_EOR 1
624#define OPCODE_SUB 2
625#define OPCODE_RSB 3
626#define OPCODE_ADD 4
627#define OPCODE_ADC 5
628#define OPCODE_SBC 6
629#define OPCODE_RSC 7
630#define OPCODE_TST 8
631#define OPCODE_TEQ 9
632#define OPCODE_CMP 10
633#define OPCODE_CMN 11
634#define OPCODE_ORR 12
635#define OPCODE_MOV 13
636#define OPCODE_BIC 14
637#define OPCODE_MVN 15
90e4755a 638
ef8d22e6
PB
639#define T2_OPCODE_AND 0
640#define T2_OPCODE_BIC 1
641#define T2_OPCODE_ORR 2
642#define T2_OPCODE_ORN 3
643#define T2_OPCODE_EOR 4
644#define T2_OPCODE_ADD 8
645#define T2_OPCODE_ADC 10
646#define T2_OPCODE_SBC 11
647#define T2_OPCODE_SUB 13
648#define T2_OPCODE_RSB 14
649
a737bd4d
NC
650#define T_OPCODE_MUL 0x4340
651#define T_OPCODE_TST 0x4200
652#define T_OPCODE_CMN 0x42c0
653#define T_OPCODE_NEG 0x4240
654#define T_OPCODE_MVN 0x43c0
90e4755a 655
a737bd4d
NC
656#define T_OPCODE_ADD_R3 0x1800
657#define T_OPCODE_SUB_R3 0x1a00
658#define T_OPCODE_ADD_HI 0x4400
659#define T_OPCODE_ADD_ST 0xb000
660#define T_OPCODE_SUB_ST 0xb080
661#define T_OPCODE_ADD_SP 0xa800
662#define T_OPCODE_ADD_PC 0xa000
663#define T_OPCODE_ADD_I8 0x3000
664#define T_OPCODE_SUB_I8 0x3800
665#define T_OPCODE_ADD_I3 0x1c00
666#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 667
a737bd4d
NC
668#define T_OPCODE_ASR_R 0x4100
669#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
670#define T_OPCODE_LSR_R 0x40c0
671#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
672#define T_OPCODE_ASR_I 0x1000
673#define T_OPCODE_LSL_I 0x0000
674#define T_OPCODE_LSR_I 0x0800
b99bd4ef 675
a737bd4d
NC
676#define T_OPCODE_MOV_I8 0x2000
677#define T_OPCODE_CMP_I8 0x2800
678#define T_OPCODE_CMP_LR 0x4280
679#define T_OPCODE_MOV_HR 0x4600
680#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 681
a737bd4d
NC
682#define T_OPCODE_LDR_PC 0x4800
683#define T_OPCODE_LDR_SP 0x9800
684#define T_OPCODE_STR_SP 0x9000
685#define T_OPCODE_LDR_IW 0x6800
686#define T_OPCODE_STR_IW 0x6000
687#define T_OPCODE_LDR_IH 0x8800
688#define T_OPCODE_STR_IH 0x8000
689#define T_OPCODE_LDR_IB 0x7800
690#define T_OPCODE_STR_IB 0x7000
691#define T_OPCODE_LDR_RW 0x5800
692#define T_OPCODE_STR_RW 0x5000
693#define T_OPCODE_LDR_RH 0x5a00
694#define T_OPCODE_STR_RH 0x5200
695#define T_OPCODE_LDR_RB 0x5c00
696#define T_OPCODE_STR_RB 0x5400
c9b604bd 697
a737bd4d
NC
698#define T_OPCODE_PUSH 0xb400
699#define T_OPCODE_POP 0xbc00
b99bd4ef 700
2fc8bdac 701#define T_OPCODE_BRANCH 0xe000
b99bd4ef 702
a737bd4d 703#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 704#define THUMB_PP_PC_LR 0x0100
c19d1205 705#define THUMB_LOAD_BIT 0x0800
53365c0d 706#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
707
708#define BAD_ARGS _("bad arguments to instruction")
fdfde340 709#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
710#define BAD_PC _("r15 not allowed here")
711#define BAD_COND _("instruction cannot be conditional")
712#define BAD_OVERLAP _("registers may not be the same")
713#define BAD_HIREG _("lo register required")
714#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 715#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
716#define BAD_BRANCH _("branch must be last instruction in IT block")
717#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 718#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
719#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720#define BAD_IT_COND _("incorrect condition in IT block")
721#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 722#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
723#define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725#define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
08f10d51 727#define BAD_RANGE _("branch out of range")
c19d1205 728
c921be7d
NC
729static struct hash_control * arm_ops_hsh;
730static struct hash_control * arm_cond_hsh;
731static struct hash_control * arm_shift_hsh;
732static struct hash_control * arm_psr_hsh;
733static struct hash_control * arm_v7m_psr_hsh;
734static struct hash_control * arm_reg_hsh;
735static struct hash_control * arm_reloc_hsh;
736static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 737
b99bd4ef
NC
738/* Stuff needed to resolve the label ambiguity
739 As:
740 ...
741 label: <insn>
742 may differ from:
743 ...
744 label:
5f4273c7 745 <insn> */
b99bd4ef
NC
746
747symbolS * last_label_seen;
b34976b6 748static int label_is_thumb_function_name = FALSE;
e07e6e58 749
3d0c9500
NC
750/* Literal pool structure. Held on a per-section
751 and per-sub-section basis. */
a737bd4d 752
c19d1205 753#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 754typedef struct literal_pool
b99bd4ef 755{
c921be7d
NC
756 expressionS literals [MAX_LITERAL_POOL_SIZE];
757 unsigned int next_free_entry;
758 unsigned int id;
759 symbolS * symbol;
760 segT section;
761 subsegT sub_section;
a8040cf2
NC
762#ifdef OBJ_ELF
763 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
764#endif
c921be7d 765 struct literal_pool * next;
3d0c9500 766} literal_pool;
b99bd4ef 767
3d0c9500
NC
768/* Pointer to a linked list of literal pools. */
769literal_pool * list_of_pools = NULL;
e27ec89e 770
e07e6e58
NC
771#ifdef OBJ_ELF
772# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
773#else
774static struct current_it now_it;
775#endif
776
777static inline int
778now_it_compatible (int cond)
779{
780 return (cond & ~1) == (now_it.cc & ~1);
781}
782
783static inline int
784conditional_insn (void)
785{
786 return inst.cond != COND_ALWAYS;
787}
788
789static int in_it_block (void);
790
791static int handle_it_state (void);
792
793static void force_automatic_it_block_close (void);
794
c921be7d
NC
795static void it_fsm_post_encode (void);
796
e07e6e58
NC
797#define set_it_insn_type(type) \
798 do \
799 { \
800 inst.it_insn_type = type; \
801 if (handle_it_state () == FAIL) \
802 return; \
803 } \
804 while (0)
805
c921be7d
NC
806#define set_it_insn_type_nonvoid(type, failret) \
807 do \
808 { \
809 inst.it_insn_type = type; \
810 if (handle_it_state () == FAIL) \
811 return failret; \
812 } \
813 while(0)
814
e07e6e58
NC
815#define set_it_insn_type_last() \
816 do \
817 { \
818 if (inst.cond == COND_ALWAYS) \
819 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
820 else \
821 set_it_insn_type (INSIDE_IT_LAST_INSN); \
822 } \
823 while (0)
824
c19d1205 825/* Pure syntax. */
b99bd4ef 826
c19d1205
ZW
827/* This array holds the chars that always start a comment. If the
828 pre-processor is disabled, these aren't very useful. */
829const char comment_chars[] = "@";
3d0c9500 830
c19d1205
ZW
831/* This array holds the chars that only start a comment at the beginning of
832 a line. If the line seems to have the form '# 123 filename'
833 .line and .file directives will appear in the pre-processed output. */
834/* Note that input_file.c hand checks for '#' at the beginning of the
835 first line of the input file. This is because the compiler outputs
836 #NO_APP at the beginning of its output. */
837/* Also note that comments like this one will always work. */
838const char line_comment_chars[] = "#";
3d0c9500 839
c19d1205 840const char line_separator_chars[] = ";";
b99bd4ef 841
c19d1205
ZW
842/* Chars that can be used to separate mant
843 from exp in floating point numbers. */
844const char EXP_CHARS[] = "eE";
3d0c9500 845
c19d1205
ZW
846/* Chars that mean this number is a floating point constant. */
847/* As in 0f12.456 */
848/* or 0d1.2345e12 */
b99bd4ef 849
c19d1205 850const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 851
c19d1205
ZW
852/* Prefix characters that indicate the start of an immediate
853 value. */
854#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 855
c19d1205
ZW
856/* Separator character handling. */
857
858#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
859
860static inline int
861skip_past_char (char ** str, char c)
862{
863 if (**str == c)
864 {
865 (*str)++;
866 return SUCCESS;
3d0c9500 867 }
c19d1205
ZW
868 else
869 return FAIL;
870}
c921be7d 871
c19d1205 872#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 873
c19d1205
ZW
874/* Arithmetic expressions (possibly involving symbols). */
875
876/* Return TRUE if anything in the expression is a bignum. */
877
878static int
879walk_no_bignums (symbolS * sp)
880{
881 if (symbol_get_value_expression (sp)->X_op == O_big)
882 return 1;
883
884 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 885 {
c19d1205
ZW
886 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
887 || (symbol_get_value_expression (sp)->X_op_symbol
888 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
889 }
890
c19d1205 891 return 0;
3d0c9500
NC
892}
893
c19d1205
ZW
894static int in_my_get_expression = 0;
895
896/* Third argument to my_get_expression. */
897#define GE_NO_PREFIX 0
898#define GE_IMM_PREFIX 1
899#define GE_OPT_PREFIX 2
5287ad62
JB
900/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
901 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
902#define GE_OPT_PREFIX_BIG 3
a737bd4d 903
b99bd4ef 904static int
c19d1205 905my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 906{
c19d1205
ZW
907 char * save_in;
908 segT seg;
b99bd4ef 909
c19d1205
ZW
910 /* In unified syntax, all prefixes are optional. */
911 if (unified_syntax)
5287ad62
JB
912 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
913 : GE_OPT_PREFIX;
b99bd4ef 914
c19d1205 915 switch (prefix_mode)
b99bd4ef 916 {
c19d1205
ZW
917 case GE_NO_PREFIX: break;
918 case GE_IMM_PREFIX:
919 if (!is_immediate_prefix (**str))
920 {
921 inst.error = _("immediate expression requires a # prefix");
922 return FAIL;
923 }
924 (*str)++;
925 break;
926 case GE_OPT_PREFIX:
5287ad62 927 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
928 if (is_immediate_prefix (**str))
929 (*str)++;
930 break;
931 default: abort ();
932 }
b99bd4ef 933
c19d1205 934 memset (ep, 0, sizeof (expressionS));
b99bd4ef 935
c19d1205
ZW
936 save_in = input_line_pointer;
937 input_line_pointer = *str;
938 in_my_get_expression = 1;
939 seg = expression (ep);
940 in_my_get_expression = 0;
941
f86adc07 942 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 943 {
f86adc07 944 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
945 *str = input_line_pointer;
946 input_line_pointer = save_in;
947 if (inst.error == NULL)
f86adc07
NS
948 inst.error = (ep->X_op == O_absent
949 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
950 return 1;
951 }
b99bd4ef 952
c19d1205
ZW
953#ifdef OBJ_AOUT
954 if (seg != absolute_section
955 && seg != text_section
956 && seg != data_section
957 && seg != bss_section
958 && seg != undefined_section)
959 {
960 inst.error = _("bad segment");
961 *str = input_line_pointer;
962 input_line_pointer = save_in;
963 return 1;
b99bd4ef 964 }
87975d2a
AM
965#else
966 (void) seg;
c19d1205 967#endif
b99bd4ef 968
c19d1205
ZW
969 /* Get rid of any bignums now, so that we don't generate an error for which
970 we can't establish a line number later on. Big numbers are never valid
971 in instructions, which is where this routine is always called. */
5287ad62
JB
972 if (prefix_mode != GE_OPT_PREFIX_BIG
973 && (ep->X_op == O_big
974 || (ep->X_add_symbol
975 && (walk_no_bignums (ep->X_add_symbol)
976 || (ep->X_op_symbol
977 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
978 {
979 inst.error = _("invalid constant");
980 *str = input_line_pointer;
981 input_line_pointer = save_in;
982 return 1;
983 }
b99bd4ef 984
c19d1205
ZW
985 *str = input_line_pointer;
986 input_line_pointer = save_in;
987 return 0;
b99bd4ef
NC
988}
989
c19d1205
ZW
990/* Turn a string in input_line_pointer into a floating point constant
991 of type TYPE, and store the appropriate bytes in *LITP. The number
992 of LITTLENUMS emitted is stored in *SIZEP. An error message is
993 returned, or NULL on OK.
b99bd4ef 994
c19d1205
ZW
995 Note that fp constants aren't represent in the normal way on the ARM.
996 In big endian mode, things are as expected. However, in little endian
997 mode fp constants are big-endian word-wise, and little-endian byte-wise
998 within the words. For example, (double) 1.1 in big endian mode is
999 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1000 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1001
c19d1205 1002 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1003
c19d1205
ZW
1004char *
1005md_atof (int type, char * litP, int * sizeP)
1006{
1007 int prec;
1008 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1009 char *t;
1010 int i;
b99bd4ef 1011
c19d1205
ZW
1012 switch (type)
1013 {
1014 case 'f':
1015 case 'F':
1016 case 's':
1017 case 'S':
1018 prec = 2;
1019 break;
b99bd4ef 1020
c19d1205
ZW
1021 case 'd':
1022 case 'D':
1023 case 'r':
1024 case 'R':
1025 prec = 4;
1026 break;
b99bd4ef 1027
c19d1205
ZW
1028 case 'x':
1029 case 'X':
499ac353 1030 prec = 5;
c19d1205 1031 break;
b99bd4ef 1032
c19d1205
ZW
1033 case 'p':
1034 case 'P':
499ac353 1035 prec = 5;
c19d1205 1036 break;
a737bd4d 1037
c19d1205
ZW
1038 default:
1039 *sizeP = 0;
499ac353 1040 return _("Unrecognized or unsupported floating point constant");
c19d1205 1041 }
b99bd4ef 1042
c19d1205
ZW
1043 t = atof_ieee (input_line_pointer, type, words);
1044 if (t)
1045 input_line_pointer = t;
499ac353 1046 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1047
c19d1205
ZW
1048 if (target_big_endian)
1049 {
1050 for (i = 0; i < prec; i++)
1051 {
499ac353
NC
1052 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1054 }
1055 }
1056 else
1057 {
e74cfd16 1058 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1059 for (i = prec - 1; i >= 0; i--)
1060 {
499ac353
NC
1061 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1062 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1063 }
1064 else
1065 /* For a 4 byte float the order of elements in `words' is 1 0.
1066 For an 8 byte float the order is 1 0 3 2. */
1067 for (i = 0; i < prec; i += 2)
1068 {
499ac353
NC
1069 md_number_to_chars (litP, (valueT) words[i + 1],
1070 sizeof (LITTLENUM_TYPE));
1071 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1072 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
b99bd4ef 1076
499ac353 1077 return NULL;
c19d1205 1078}
b99bd4ef 1079
c19d1205
ZW
1080/* We handle all bad expressions here, so that we can report the faulty
1081 instruction in the error message. */
1082void
91d6fa6a 1083md_operand (expressionS * exp)
c19d1205
ZW
1084{
1085 if (in_my_get_expression)
91d6fa6a 1086 exp->X_op = O_illegal;
b99bd4ef
NC
1087}
1088
c19d1205 1089/* Immediate values. */
b99bd4ef 1090
c19d1205
ZW
1091/* Generic immediate-value read function for use in directives.
1092 Accepts anything that 'expression' can fold to a constant.
1093 *val receives the number. */
1094#ifdef OBJ_ELF
1095static int
1096immediate_for_directive (int *val)
b99bd4ef 1097{
c19d1205
ZW
1098 expressionS exp;
1099 exp.X_op = O_illegal;
b99bd4ef 1100
c19d1205
ZW
1101 if (is_immediate_prefix (*input_line_pointer))
1102 {
1103 input_line_pointer++;
1104 expression (&exp);
1105 }
b99bd4ef 1106
c19d1205
ZW
1107 if (exp.X_op != O_constant)
1108 {
1109 as_bad (_("expected #constant"));
1110 ignore_rest_of_line ();
1111 return FAIL;
1112 }
1113 *val = exp.X_add_number;
1114 return SUCCESS;
b99bd4ef 1115}
c19d1205 1116#endif
b99bd4ef 1117
c19d1205 1118/* Register parsing. */
b99bd4ef 1119
c19d1205
ZW
1120/* Generic register parser. CCP points to what should be the
1121 beginning of a register name. If it is indeed a valid register
1122 name, advance CCP over it and return the reg_entry structure;
1123 otherwise return NULL. Does not issue diagnostics. */
1124
1125static struct reg_entry *
1126arm_reg_parse_multi (char **ccp)
b99bd4ef 1127{
c19d1205
ZW
1128 char *start = *ccp;
1129 char *p;
1130 struct reg_entry *reg;
b99bd4ef 1131
c19d1205
ZW
1132#ifdef REGISTER_PREFIX
1133 if (*start != REGISTER_PREFIX)
01cfc07f 1134 return NULL;
c19d1205
ZW
1135 start++;
1136#endif
1137#ifdef OPTIONAL_REGISTER_PREFIX
1138 if (*start == OPTIONAL_REGISTER_PREFIX)
1139 start++;
1140#endif
b99bd4ef 1141
c19d1205
ZW
1142 p = start;
1143 if (!ISALPHA (*p) || !is_name_beginner (*p))
1144 return NULL;
b99bd4ef 1145
c19d1205
ZW
1146 do
1147 p++;
1148 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1149
1150 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1151
1152 if (!reg)
1153 return NULL;
1154
1155 *ccp = p;
1156 return reg;
b99bd4ef
NC
1157}
1158
1159static int
dcbf9037
JB
1160arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1161 enum arm_reg_type type)
b99bd4ef 1162{
c19d1205
ZW
1163 /* Alternative syntaxes are accepted for a few register classes. */
1164 switch (type)
1165 {
1166 case REG_TYPE_MVF:
1167 case REG_TYPE_MVD:
1168 case REG_TYPE_MVFX:
1169 case REG_TYPE_MVDX:
1170 /* Generic coprocessor register names are allowed for these. */
79134647 1171 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1172 return reg->number;
1173 break;
69b97547 1174
c19d1205
ZW
1175 case REG_TYPE_CP:
1176 /* For backward compatibility, a bare number is valid here. */
1177 {
1178 unsigned long processor = strtoul (start, ccp, 10);
1179 if (*ccp != start && processor <= 15)
1180 return processor;
1181 }
6057a28f 1182
c19d1205
ZW
1183 case REG_TYPE_MMXWC:
1184 /* WC includes WCG. ??? I'm not sure this is true for all
1185 instructions that take WC registers. */
79134647 1186 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1187 return reg->number;
6057a28f 1188 break;
c19d1205 1189
6057a28f 1190 default:
c19d1205 1191 break;
6057a28f
NC
1192 }
1193
dcbf9037
JB
1194 return FAIL;
1195}
1196
1197/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1198 return value is the register number or FAIL. */
1199
1200static int
1201arm_reg_parse (char **ccp, enum arm_reg_type type)
1202{
1203 char *start = *ccp;
1204 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1205 int ret;
1206
1207 /* Do not allow a scalar (reg+index) to parse as a register. */
1208 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1209 return FAIL;
1210
1211 if (reg && reg->type == type)
1212 return reg->number;
1213
1214 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1215 return ret;
1216
c19d1205
ZW
1217 *ccp = start;
1218 return FAIL;
1219}
69b97547 1220
dcbf9037
JB
1221/* Parse a Neon type specifier. *STR should point at the leading '.'
1222 character. Does no verification at this stage that the type fits the opcode
1223 properly. E.g.,
1224
1225 .i32.i32.s16
1226 .s32.f32
1227 .u16
1228
1229 Can all be legally parsed by this function.
1230
1231 Fills in neon_type struct pointer with parsed information, and updates STR
1232 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1233 type, FAIL if not. */
1234
1235static int
1236parse_neon_type (struct neon_type *type, char **str)
1237{
1238 char *ptr = *str;
1239
1240 if (type)
1241 type->elems = 0;
1242
1243 while (type->elems < NEON_MAX_TYPE_ELS)
1244 {
1245 enum neon_el_type thistype = NT_untyped;
1246 unsigned thissize = -1u;
1247
1248 if (*ptr != '.')
1249 break;
1250
1251 ptr++;
1252
1253 /* Just a size without an explicit type. */
1254 if (ISDIGIT (*ptr))
1255 goto parsesize;
1256
1257 switch (TOLOWER (*ptr))
1258 {
1259 case 'i': thistype = NT_integer; break;
1260 case 'f': thistype = NT_float; break;
1261 case 'p': thistype = NT_poly; break;
1262 case 's': thistype = NT_signed; break;
1263 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1264 case 'd':
1265 thistype = NT_float;
1266 thissize = 64;
1267 ptr++;
1268 goto done;
dcbf9037
JB
1269 default:
1270 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1271 return FAIL;
1272 }
1273
1274 ptr++;
1275
1276 /* .f is an abbreviation for .f32. */
1277 if (thistype == NT_float && !ISDIGIT (*ptr))
1278 thissize = 32;
1279 else
1280 {
1281 parsesize:
1282 thissize = strtoul (ptr, &ptr, 10);
1283
1284 if (thissize != 8 && thissize != 16 && thissize != 32
1285 && thissize != 64)
1286 {
1287 as_bad (_("bad size %d in type specifier"), thissize);
1288 return FAIL;
1289 }
1290 }
1291
037e8744 1292 done:
dcbf9037
JB
1293 if (type)
1294 {
1295 type->el[type->elems].type = thistype;
1296 type->el[type->elems].size = thissize;
1297 type->elems++;
1298 }
1299 }
1300
1301 /* Empty/missing type is not a successful parse. */
1302 if (type->elems == 0)
1303 return FAIL;
1304
1305 *str = ptr;
1306
1307 return SUCCESS;
1308}
1309
1310/* Errors may be set multiple times during parsing or bit encoding
1311 (particularly in the Neon bits), but usually the earliest error which is set
1312 will be the most meaningful. Avoid overwriting it with later (cascading)
1313 errors by calling this function. */
1314
1315static void
1316first_error (const char *err)
1317{
1318 if (!inst.error)
1319 inst.error = err;
1320}
1321
1322/* Parse a single type, e.g. ".s32", leading period included. */
1323static int
1324parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1325{
1326 char *str = *ccp;
1327 struct neon_type optype;
1328
1329 if (*str == '.')
1330 {
1331 if (parse_neon_type (&optype, &str) == SUCCESS)
1332 {
1333 if (optype.elems == 1)
1334 *vectype = optype.el[0];
1335 else
1336 {
1337 first_error (_("only one type should be specified for operand"));
1338 return FAIL;
1339 }
1340 }
1341 else
1342 {
1343 first_error (_("vector type expected"));
1344 return FAIL;
1345 }
1346 }
1347 else
1348 return FAIL;
5f4273c7 1349
dcbf9037 1350 *ccp = str;
5f4273c7 1351
dcbf9037
JB
1352 return SUCCESS;
1353}
1354
1355/* Special meanings for indices (which have a range of 0-7), which will fit into
1356 a 4-bit integer. */
1357
1358#define NEON_ALL_LANES 15
1359#define NEON_INTERLEAVE_LANES 14
1360
1361/* Parse either a register or a scalar, with an optional type. Return the
1362 register number, and optionally fill in the actual type of the register
1363 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1364 type/index information in *TYPEINFO. */
1365
1366static int
1367parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1368 enum arm_reg_type *rtype,
1369 struct neon_typed_alias *typeinfo)
1370{
1371 char *str = *ccp;
1372 struct reg_entry *reg = arm_reg_parse_multi (&str);
1373 struct neon_typed_alias atype;
1374 struct neon_type_el parsetype;
1375
1376 atype.defined = 0;
1377 atype.index = -1;
1378 atype.eltype.type = NT_invtype;
1379 atype.eltype.size = -1;
1380
1381 /* Try alternate syntax for some types of register. Note these are mutually
1382 exclusive with the Neon syntax extensions. */
1383 if (reg == NULL)
1384 {
1385 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1386 if (altreg != FAIL)
1387 *ccp = str;
1388 if (typeinfo)
1389 *typeinfo = atype;
1390 return altreg;
1391 }
1392
037e8744
JB
1393 /* Undo polymorphism when a set of register types may be accepted. */
1394 if ((type == REG_TYPE_NDQ
1395 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1396 || (type == REG_TYPE_VFSD
1397 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1398 || (type == REG_TYPE_NSDQ
1399 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1400 || reg->type == REG_TYPE_NQ))
1401 || (type == REG_TYPE_MMXWC
1402 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1403 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1404
1405 if (type != reg->type)
1406 return FAIL;
1407
1408 if (reg->neon)
1409 atype = *reg->neon;
5f4273c7 1410
dcbf9037
JB
1411 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1412 {
1413 if ((atype.defined & NTA_HASTYPE) != 0)
1414 {
1415 first_error (_("can't redefine type for operand"));
1416 return FAIL;
1417 }
1418 atype.defined |= NTA_HASTYPE;
1419 atype.eltype = parsetype;
1420 }
5f4273c7 1421
dcbf9037
JB
1422 if (skip_past_char (&str, '[') == SUCCESS)
1423 {
1424 if (type != REG_TYPE_VFD)
1425 {
1426 first_error (_("only D registers may be indexed"));
1427 return FAIL;
1428 }
5f4273c7 1429
dcbf9037
JB
1430 if ((atype.defined & NTA_HASINDEX) != 0)
1431 {
1432 first_error (_("can't change index for operand"));
1433 return FAIL;
1434 }
1435
1436 atype.defined |= NTA_HASINDEX;
1437
1438 if (skip_past_char (&str, ']') == SUCCESS)
1439 atype.index = NEON_ALL_LANES;
1440 else
1441 {
1442 expressionS exp;
1443
1444 my_get_expression (&exp, &str, GE_NO_PREFIX);
1445
1446 if (exp.X_op != O_constant)
1447 {
1448 first_error (_("constant expression required"));
1449 return FAIL;
1450 }
1451
1452 if (skip_past_char (&str, ']') == FAIL)
1453 return FAIL;
1454
1455 atype.index = exp.X_add_number;
1456 }
1457 }
5f4273c7 1458
dcbf9037
JB
1459 if (typeinfo)
1460 *typeinfo = atype;
5f4273c7 1461
dcbf9037
JB
1462 if (rtype)
1463 *rtype = type;
5f4273c7 1464
dcbf9037 1465 *ccp = str;
5f4273c7 1466
dcbf9037
JB
1467 return reg->number;
1468}
1469
1470/* Like arm_reg_parse, but allow allow the following extra features:
1471 - If RTYPE is non-zero, return the (possibly restricted) type of the
1472 register (e.g. Neon double or quad reg when either has been requested).
1473 - If this is a Neon vector type with additional type information, fill
1474 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1475 This function will fault on encountering a scalar. */
dcbf9037
JB
1476
1477static int
1478arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1479 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1480{
1481 struct neon_typed_alias atype;
1482 char *str = *ccp;
1483 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1484
1485 if (reg == FAIL)
1486 return FAIL;
1487
0855e32b
NS
1488 /* Do not allow regname(... to parse as a register. */
1489 if (*str == '(')
1490 return FAIL;
1491
dcbf9037
JB
1492 /* Do not allow a scalar (reg+index) to parse as a register. */
1493 if ((atype.defined & NTA_HASINDEX) != 0)
1494 {
1495 first_error (_("register operand expected, but got scalar"));
1496 return FAIL;
1497 }
1498
1499 if (vectype)
1500 *vectype = atype.eltype;
1501
1502 *ccp = str;
1503
1504 return reg;
1505}
1506
1507#define NEON_SCALAR_REG(X) ((X) >> 4)
1508#define NEON_SCALAR_INDEX(X) ((X) & 15)
1509
5287ad62
JB
1510/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1511 have enough information to be able to do a good job bounds-checking. So, we
1512 just do easy checks here, and do further checks later. */
1513
1514static int
dcbf9037 1515parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1516{
dcbf9037 1517 int reg;
5287ad62 1518 char *str = *ccp;
dcbf9037 1519 struct neon_typed_alias atype;
5f4273c7 1520
dcbf9037 1521 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1522
dcbf9037 1523 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1524 return FAIL;
5f4273c7 1525
dcbf9037 1526 if (atype.index == NEON_ALL_LANES)
5287ad62 1527 {
dcbf9037 1528 first_error (_("scalar must have an index"));
5287ad62
JB
1529 return FAIL;
1530 }
dcbf9037 1531 else if (atype.index >= 64 / elsize)
5287ad62 1532 {
dcbf9037 1533 first_error (_("scalar index out of range"));
5287ad62
JB
1534 return FAIL;
1535 }
5f4273c7 1536
dcbf9037
JB
1537 if (type)
1538 *type = atype.eltype;
5f4273c7 1539
5287ad62 1540 *ccp = str;
5f4273c7 1541
dcbf9037 1542 return reg * 16 + atype.index;
5287ad62
JB
1543}
1544
c19d1205 1545/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1546
c19d1205
ZW
1547static long
1548parse_reg_list (char ** strp)
1549{
1550 char * str = * strp;
1551 long range = 0;
1552 int another_range;
a737bd4d 1553
c19d1205
ZW
1554 /* We come back here if we get ranges concatenated by '+' or '|'. */
1555 do
6057a28f 1556 {
c19d1205 1557 another_range = 0;
a737bd4d 1558
c19d1205
ZW
1559 if (*str == '{')
1560 {
1561 int in_range = 0;
1562 int cur_reg = -1;
a737bd4d 1563
c19d1205
ZW
1564 str++;
1565 do
1566 {
1567 int reg;
6057a28f 1568
dcbf9037 1569 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1570 {
dcbf9037 1571 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1572 return FAIL;
1573 }
a737bd4d 1574
c19d1205
ZW
1575 if (in_range)
1576 {
1577 int i;
a737bd4d 1578
c19d1205
ZW
1579 if (reg <= cur_reg)
1580 {
dcbf9037 1581 first_error (_("bad range in register list"));
c19d1205
ZW
1582 return FAIL;
1583 }
40a18ebd 1584
c19d1205
ZW
1585 for (i = cur_reg + 1; i < reg; i++)
1586 {
1587 if (range & (1 << i))
1588 as_tsktsk
1589 (_("Warning: duplicated register (r%d) in register list"),
1590 i);
1591 else
1592 range |= 1 << i;
1593 }
1594 in_range = 0;
1595 }
a737bd4d 1596
c19d1205
ZW
1597 if (range & (1 << reg))
1598 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1599 reg);
1600 else if (reg <= cur_reg)
1601 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1602
c19d1205
ZW
1603 range |= 1 << reg;
1604 cur_reg = reg;
1605 }
1606 while (skip_past_comma (&str) != FAIL
1607 || (in_range = 1, *str++ == '-'));
1608 str--;
a737bd4d 1609
c19d1205
ZW
1610 if (*str++ != '}')
1611 {
dcbf9037 1612 first_error (_("missing `}'"));
c19d1205
ZW
1613 return FAIL;
1614 }
1615 }
1616 else
1617 {
91d6fa6a 1618 expressionS exp;
40a18ebd 1619
91d6fa6a 1620 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1621 return FAIL;
40a18ebd 1622
91d6fa6a 1623 if (exp.X_op == O_constant)
c19d1205 1624 {
91d6fa6a
NC
1625 if (exp.X_add_number
1626 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1627 {
1628 inst.error = _("invalid register mask");
1629 return FAIL;
1630 }
a737bd4d 1631
91d6fa6a 1632 if ((range & exp.X_add_number) != 0)
c19d1205 1633 {
91d6fa6a 1634 int regno = range & exp.X_add_number;
a737bd4d 1635
c19d1205
ZW
1636 regno &= -regno;
1637 regno = (1 << regno) - 1;
1638 as_tsktsk
1639 (_("Warning: duplicated register (r%d) in register list"),
1640 regno);
1641 }
a737bd4d 1642
91d6fa6a 1643 range |= exp.X_add_number;
c19d1205
ZW
1644 }
1645 else
1646 {
1647 if (inst.reloc.type != 0)
1648 {
1649 inst.error = _("expression too complex");
1650 return FAIL;
1651 }
a737bd4d 1652
91d6fa6a 1653 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1654 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1655 inst.reloc.pc_rel = 0;
1656 }
1657 }
a737bd4d 1658
c19d1205
ZW
1659 if (*str == '|' || *str == '+')
1660 {
1661 str++;
1662 another_range = 1;
1663 }
a737bd4d 1664 }
c19d1205 1665 while (another_range);
a737bd4d 1666
c19d1205
ZW
1667 *strp = str;
1668 return range;
a737bd4d
NC
1669}
1670
5287ad62
JB
1671/* Types of registers in a list. */
1672
1673enum reg_list_els
1674{
1675 REGLIST_VFP_S,
1676 REGLIST_VFP_D,
1677 REGLIST_NEON_D
1678};
1679
c19d1205
ZW
1680/* Parse a VFP register list. If the string is invalid return FAIL.
1681 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1682 register. Parses registers of type ETYPE.
1683 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1684 - Q registers can be used to specify pairs of D registers
1685 - { } can be omitted from around a singleton register list
1686 FIXME: This is not implemented, as it would require backtracking in
1687 some cases, e.g.:
1688 vtbl.8 d3,d4,d5
1689 This could be done (the meaning isn't really ambiguous), but doesn't
1690 fit in well with the current parsing framework.
dcbf9037
JB
1691 - 32 D registers may be used (also true for VFPv3).
1692 FIXME: Types are ignored in these register lists, which is probably a
1693 bug. */
6057a28f 1694
c19d1205 1695static int
037e8744 1696parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1697{
037e8744 1698 char *str = *ccp;
c19d1205
ZW
1699 int base_reg;
1700 int new_base;
21d799b5 1701 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1702 int max_regs = 0;
c19d1205
ZW
1703 int count = 0;
1704 int warned = 0;
1705 unsigned long mask = 0;
a737bd4d 1706 int i;
6057a28f 1707
037e8744 1708 if (*str != '{')
5287ad62
JB
1709 {
1710 inst.error = _("expecting {");
1711 return FAIL;
1712 }
6057a28f 1713
037e8744 1714 str++;
6057a28f 1715
5287ad62 1716 switch (etype)
c19d1205 1717 {
5287ad62 1718 case REGLIST_VFP_S:
c19d1205
ZW
1719 regtype = REG_TYPE_VFS;
1720 max_regs = 32;
5287ad62 1721 break;
5f4273c7 1722
5287ad62
JB
1723 case REGLIST_VFP_D:
1724 regtype = REG_TYPE_VFD;
b7fc2769 1725 break;
5f4273c7 1726
b7fc2769
JB
1727 case REGLIST_NEON_D:
1728 regtype = REG_TYPE_NDQ;
1729 break;
1730 }
1731
1732 if (etype != REGLIST_VFP_S)
1733 {
b1cc4aeb
PB
1734 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1735 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1736 {
1737 max_regs = 32;
1738 if (thumb_mode)
1739 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1740 fpu_vfp_ext_d32);
5287ad62
JB
1741 else
1742 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1743 fpu_vfp_ext_d32);
5287ad62
JB
1744 }
1745 else
1746 max_regs = 16;
c19d1205 1747 }
6057a28f 1748
c19d1205 1749 base_reg = max_regs;
a737bd4d 1750
c19d1205
ZW
1751 do
1752 {
5287ad62 1753 int setmask = 1, addregs = 1;
dcbf9037 1754
037e8744 1755 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1756
c19d1205 1757 if (new_base == FAIL)
a737bd4d 1758 {
dcbf9037 1759 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1760 return FAIL;
1761 }
5f4273c7 1762
b7fc2769
JB
1763 if (new_base >= max_regs)
1764 {
1765 first_error (_("register out of range in list"));
1766 return FAIL;
1767 }
5f4273c7 1768
5287ad62
JB
1769 /* Note: a value of 2 * n is returned for the register Q<n>. */
1770 if (regtype == REG_TYPE_NQ)
1771 {
1772 setmask = 3;
1773 addregs = 2;
1774 }
1775
c19d1205
ZW
1776 if (new_base < base_reg)
1777 base_reg = new_base;
a737bd4d 1778
5287ad62 1779 if (mask & (setmask << new_base))
c19d1205 1780 {
dcbf9037 1781 first_error (_("invalid register list"));
c19d1205 1782 return FAIL;
a737bd4d 1783 }
a737bd4d 1784
c19d1205
ZW
1785 if ((mask >> new_base) != 0 && ! warned)
1786 {
1787 as_tsktsk (_("register list not in ascending order"));
1788 warned = 1;
1789 }
0bbf2aa4 1790
5287ad62
JB
1791 mask |= setmask << new_base;
1792 count += addregs;
0bbf2aa4 1793
037e8744 1794 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1795 {
1796 int high_range;
0bbf2aa4 1797
037e8744 1798 str++;
0bbf2aa4 1799
037e8744 1800 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1801 == FAIL)
c19d1205
ZW
1802 {
1803 inst.error = gettext (reg_expected_msgs[regtype]);
1804 return FAIL;
1805 }
0bbf2aa4 1806
b7fc2769
JB
1807 if (high_range >= max_regs)
1808 {
1809 first_error (_("register out of range in list"));
1810 return FAIL;
1811 }
1812
5287ad62
JB
1813 if (regtype == REG_TYPE_NQ)
1814 high_range = high_range + 1;
1815
c19d1205
ZW
1816 if (high_range <= new_base)
1817 {
1818 inst.error = _("register range not in ascending order");
1819 return FAIL;
1820 }
0bbf2aa4 1821
5287ad62 1822 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1823 {
5287ad62 1824 if (mask & (setmask << new_base))
0bbf2aa4 1825 {
c19d1205
ZW
1826 inst.error = _("invalid register list");
1827 return FAIL;
0bbf2aa4 1828 }
c19d1205 1829
5287ad62
JB
1830 mask |= setmask << new_base;
1831 count += addregs;
0bbf2aa4 1832 }
0bbf2aa4 1833 }
0bbf2aa4 1834 }
037e8744 1835 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1836
037e8744 1837 str++;
0bbf2aa4 1838
c19d1205
ZW
1839 /* Sanity check -- should have raised a parse error above. */
1840 if (count == 0 || count > max_regs)
1841 abort ();
1842
1843 *pbase = base_reg;
1844
1845 /* Final test -- the registers must be consecutive. */
1846 mask >>= base_reg;
1847 for (i = 0; i < count; i++)
1848 {
1849 if ((mask & (1u << i)) == 0)
1850 {
1851 inst.error = _("non-contiguous register range");
1852 return FAIL;
1853 }
1854 }
1855
037e8744
JB
1856 *ccp = str;
1857
c19d1205 1858 return count;
b99bd4ef
NC
1859}
1860
dcbf9037
JB
1861/* True if two alias types are the same. */
1862
c921be7d 1863static bfd_boolean
dcbf9037
JB
1864neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1865{
1866 if (!a && !b)
c921be7d 1867 return TRUE;
5f4273c7 1868
dcbf9037 1869 if (!a || !b)
c921be7d 1870 return FALSE;
dcbf9037
JB
1871
1872 if (a->defined != b->defined)
c921be7d 1873 return FALSE;
5f4273c7 1874
dcbf9037
JB
1875 if ((a->defined & NTA_HASTYPE) != 0
1876 && (a->eltype.type != b->eltype.type
1877 || a->eltype.size != b->eltype.size))
c921be7d 1878 return FALSE;
dcbf9037
JB
1879
1880 if ((a->defined & NTA_HASINDEX) != 0
1881 && (a->index != b->index))
c921be7d 1882 return FALSE;
5f4273c7 1883
c921be7d 1884 return TRUE;
dcbf9037
JB
1885}
1886
5287ad62
JB
1887/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1888 The base register is put in *PBASE.
dcbf9037 1889 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1890 the return value.
1891 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1892 Bits [6:5] encode the list length (minus one).
1893 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1894
5287ad62 1895#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1896#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1897#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1898
1899static int
dcbf9037
JB
1900parse_neon_el_struct_list (char **str, unsigned *pbase,
1901 struct neon_type_el *eltype)
5287ad62
JB
1902{
1903 char *ptr = *str;
1904 int base_reg = -1;
1905 int reg_incr = -1;
1906 int count = 0;
1907 int lane = -1;
1908 int leading_brace = 0;
1909 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1910 const char *const incr_error = _("register stride must be 1 or 2");
1911 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1912 struct neon_typed_alias firsttype;
5f4273c7 1913
5287ad62
JB
1914 if (skip_past_char (&ptr, '{') == SUCCESS)
1915 leading_brace = 1;
5f4273c7 1916
5287ad62
JB
1917 do
1918 {
dcbf9037
JB
1919 struct neon_typed_alias atype;
1920 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1921
5287ad62
JB
1922 if (getreg == FAIL)
1923 {
dcbf9037 1924 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1925 return FAIL;
1926 }
5f4273c7 1927
5287ad62
JB
1928 if (base_reg == -1)
1929 {
1930 base_reg = getreg;
1931 if (rtype == REG_TYPE_NQ)
1932 {
1933 reg_incr = 1;
5287ad62 1934 }
dcbf9037 1935 firsttype = atype;
5287ad62
JB
1936 }
1937 else if (reg_incr == -1)
1938 {
1939 reg_incr = getreg - base_reg;
1940 if (reg_incr < 1 || reg_incr > 2)
1941 {
dcbf9037 1942 first_error (_(incr_error));
5287ad62
JB
1943 return FAIL;
1944 }
1945 }
1946 else if (getreg != base_reg + reg_incr * count)
1947 {
dcbf9037
JB
1948 first_error (_(incr_error));
1949 return FAIL;
1950 }
1951
c921be7d 1952 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1953 {
1954 first_error (_(type_error));
5287ad62
JB
1955 return FAIL;
1956 }
5f4273c7 1957
5287ad62
JB
1958 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1959 modes. */
1960 if (ptr[0] == '-')
1961 {
dcbf9037 1962 struct neon_typed_alias htype;
5287ad62
JB
1963 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1964 if (lane == -1)
1965 lane = NEON_INTERLEAVE_LANES;
1966 else if (lane != NEON_INTERLEAVE_LANES)
1967 {
dcbf9037 1968 first_error (_(type_error));
5287ad62
JB
1969 return FAIL;
1970 }
1971 if (reg_incr == -1)
1972 reg_incr = 1;
1973 else if (reg_incr != 1)
1974 {
dcbf9037 1975 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1976 return FAIL;
1977 }
1978 ptr++;
dcbf9037 1979 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1980 if (hireg == FAIL)
1981 {
dcbf9037
JB
1982 first_error (_(reg_expected_msgs[rtype]));
1983 return FAIL;
1984 }
c921be7d 1985 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1986 {
1987 first_error (_(type_error));
5287ad62
JB
1988 return FAIL;
1989 }
1990 count += hireg + dregs - getreg;
1991 continue;
1992 }
5f4273c7 1993
5287ad62
JB
1994 /* If we're using Q registers, we can't use [] or [n] syntax. */
1995 if (rtype == REG_TYPE_NQ)
1996 {
1997 count += 2;
1998 continue;
1999 }
5f4273c7 2000
dcbf9037 2001 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2002 {
dcbf9037
JB
2003 if (lane == -1)
2004 lane = atype.index;
2005 else if (lane != atype.index)
5287ad62 2006 {
dcbf9037
JB
2007 first_error (_(type_error));
2008 return FAIL;
5287ad62
JB
2009 }
2010 }
2011 else if (lane == -1)
2012 lane = NEON_INTERLEAVE_LANES;
2013 else if (lane != NEON_INTERLEAVE_LANES)
2014 {
dcbf9037 2015 first_error (_(type_error));
5287ad62
JB
2016 return FAIL;
2017 }
2018 count++;
2019 }
2020 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2021
5287ad62
JB
2022 /* No lane set by [x]. We must be interleaving structures. */
2023 if (lane == -1)
2024 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2025
5287ad62
JB
2026 /* Sanity check. */
2027 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2028 || (count > 1 && reg_incr == -1))
2029 {
dcbf9037 2030 first_error (_("error parsing element/structure list"));
5287ad62
JB
2031 return FAIL;
2032 }
2033
2034 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2035 {
dcbf9037 2036 first_error (_("expected }"));
5287ad62
JB
2037 return FAIL;
2038 }
5f4273c7 2039
5287ad62
JB
2040 if (reg_incr == -1)
2041 reg_incr = 1;
2042
dcbf9037
JB
2043 if (eltype)
2044 *eltype = firsttype.eltype;
2045
5287ad62
JB
2046 *pbase = base_reg;
2047 *str = ptr;
5f4273c7 2048
5287ad62
JB
2049 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2050}
2051
c19d1205
ZW
2052/* Parse an explicit relocation suffix on an expression. This is
2053 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2054 arm_reloc_hsh contains no entries, so this function can only
2055 succeed if there is no () after the word. Returns -1 on error,
2056 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2057
c19d1205
ZW
2058static int
2059parse_reloc (char **str)
b99bd4ef 2060{
c19d1205
ZW
2061 struct reloc_entry *r;
2062 char *p, *q;
b99bd4ef 2063
c19d1205
ZW
2064 if (**str != '(')
2065 return BFD_RELOC_UNUSED;
b99bd4ef 2066
c19d1205
ZW
2067 p = *str + 1;
2068 q = p;
2069
2070 while (*q && *q != ')' && *q != ',')
2071 q++;
2072 if (*q != ')')
2073 return -1;
2074
21d799b5
NC
2075 if ((r = (struct reloc_entry *)
2076 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2077 return -1;
2078
2079 *str = q + 1;
2080 return r->reloc;
b99bd4ef
NC
2081}
2082
c19d1205
ZW
2083/* Directives: register aliases. */
2084
dcbf9037 2085static struct reg_entry *
90ec0d68 2086insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2087{
d3ce72d0 2088 struct reg_entry *new_reg;
c19d1205 2089 const char *name;
b99bd4ef 2090
d3ce72d0 2091 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2092 {
d3ce72d0 2093 if (new_reg->builtin)
c19d1205 2094 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2095
c19d1205
ZW
2096 /* Only warn about a redefinition if it's not defined as the
2097 same register. */
d3ce72d0 2098 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2099 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2100
d929913e 2101 return NULL;
c19d1205 2102 }
b99bd4ef 2103
c19d1205 2104 name = xstrdup (str);
d3ce72d0 2105 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2106
d3ce72d0
NC
2107 new_reg->name = name;
2108 new_reg->number = number;
2109 new_reg->type = type;
2110 new_reg->builtin = FALSE;
2111 new_reg->neon = NULL;
b99bd4ef 2112
d3ce72d0 2113 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2114 abort ();
5f4273c7 2115
d3ce72d0 2116 return new_reg;
dcbf9037
JB
2117}
2118
2119static void
2120insert_neon_reg_alias (char *str, int number, int type,
2121 struct neon_typed_alias *atype)
2122{
2123 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2124
dcbf9037
JB
2125 if (!reg)
2126 {
2127 first_error (_("attempt to redefine typed alias"));
2128 return;
2129 }
5f4273c7 2130
dcbf9037
JB
2131 if (atype)
2132 {
21d799b5
NC
2133 reg->neon = (struct neon_typed_alias *)
2134 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2135 *reg->neon = *atype;
2136 }
c19d1205 2137}
b99bd4ef 2138
c19d1205 2139/* Look for the .req directive. This is of the form:
b99bd4ef 2140
c19d1205 2141 new_register_name .req existing_register_name
b99bd4ef 2142
c19d1205 2143 If we find one, or if it looks sufficiently like one that we want to
d929913e 2144 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2145
d929913e 2146static bfd_boolean
c19d1205
ZW
2147create_register_alias (char * newname, char *p)
2148{
2149 struct reg_entry *old;
2150 char *oldname, *nbuf;
2151 size_t nlen;
b99bd4ef 2152
c19d1205
ZW
2153 /* The input scrubber ensures that whitespace after the mnemonic is
2154 collapsed to single spaces. */
2155 oldname = p;
2156 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2157 return FALSE;
b99bd4ef 2158
c19d1205
ZW
2159 oldname += 6;
2160 if (*oldname == '\0')
d929913e 2161 return FALSE;
b99bd4ef 2162
21d799b5 2163 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2164 if (!old)
b99bd4ef 2165 {
c19d1205 2166 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2167 return TRUE;
b99bd4ef
NC
2168 }
2169
c19d1205
ZW
2170 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2171 the desired alias name, and p points to its end. If not, then
2172 the desired alias name is in the global original_case_string. */
2173#ifdef TC_CASE_SENSITIVE
2174 nlen = p - newname;
2175#else
2176 newname = original_case_string;
2177 nlen = strlen (newname);
2178#endif
b99bd4ef 2179
21d799b5 2180 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2181 memcpy (nbuf, newname, nlen);
2182 nbuf[nlen] = '\0';
b99bd4ef 2183
c19d1205
ZW
2184 /* Create aliases under the new name as stated; an all-lowercase
2185 version of the new name; and an all-uppercase version of the new
2186 name. */
d929913e
NC
2187 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2188 {
2189 for (p = nbuf; *p; p++)
2190 *p = TOUPPER (*p);
c19d1205 2191
d929913e
NC
2192 if (strncmp (nbuf, newname, nlen))
2193 {
2194 /* If this attempt to create an additional alias fails, do not bother
2195 trying to create the all-lower case alias. We will fail and issue
2196 a second, duplicate error message. This situation arises when the
2197 programmer does something like:
2198 foo .req r0
2199 Foo .req r1
2200 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2201 the artificial FOO alias because it has already been created by the
d929913e
NC
2202 first .req. */
2203 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2204 return TRUE;
2205 }
c19d1205 2206
d929913e
NC
2207 for (p = nbuf; *p; p++)
2208 *p = TOLOWER (*p);
c19d1205 2209
d929913e
NC
2210 if (strncmp (nbuf, newname, nlen))
2211 insert_reg_alias (nbuf, old->number, old->type);
2212 }
c19d1205 2213
d929913e 2214 return TRUE;
b99bd4ef
NC
2215}
2216
dcbf9037
JB
2217/* Create a Neon typed/indexed register alias using directives, e.g.:
2218 X .dn d5.s32[1]
2219 Y .qn 6.s16
2220 Z .dn d7
2221 T .dn Z[0]
2222 These typed registers can be used instead of the types specified after the
2223 Neon mnemonic, so long as all operands given have types. Types can also be
2224 specified directly, e.g.:
5f4273c7 2225 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2226
c921be7d 2227static bfd_boolean
dcbf9037
JB
2228create_neon_reg_alias (char *newname, char *p)
2229{
2230 enum arm_reg_type basetype;
2231 struct reg_entry *basereg;
2232 struct reg_entry mybasereg;
2233 struct neon_type ntype;
2234 struct neon_typed_alias typeinfo;
12d6b0b7 2235 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2236 int namelen;
5f4273c7 2237
dcbf9037
JB
2238 typeinfo.defined = 0;
2239 typeinfo.eltype.type = NT_invtype;
2240 typeinfo.eltype.size = -1;
2241 typeinfo.index = -1;
5f4273c7 2242
dcbf9037 2243 nameend = p;
5f4273c7 2244
dcbf9037
JB
2245 if (strncmp (p, " .dn ", 5) == 0)
2246 basetype = REG_TYPE_VFD;
2247 else if (strncmp (p, " .qn ", 5) == 0)
2248 basetype = REG_TYPE_NQ;
2249 else
c921be7d 2250 return FALSE;
5f4273c7 2251
dcbf9037 2252 p += 5;
5f4273c7 2253
dcbf9037 2254 if (*p == '\0')
c921be7d 2255 return FALSE;
5f4273c7 2256
dcbf9037
JB
2257 basereg = arm_reg_parse_multi (&p);
2258
2259 if (basereg && basereg->type != basetype)
2260 {
2261 as_bad (_("bad type for register"));
c921be7d 2262 return FALSE;
dcbf9037
JB
2263 }
2264
2265 if (basereg == NULL)
2266 {
2267 expressionS exp;
2268 /* Try parsing as an integer. */
2269 my_get_expression (&exp, &p, GE_NO_PREFIX);
2270 if (exp.X_op != O_constant)
2271 {
2272 as_bad (_("expression must be constant"));
c921be7d 2273 return FALSE;
dcbf9037
JB
2274 }
2275 basereg = &mybasereg;
2276 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2277 : exp.X_add_number;
2278 basereg->neon = 0;
2279 }
2280
2281 if (basereg->neon)
2282 typeinfo = *basereg->neon;
2283
2284 if (parse_neon_type (&ntype, &p) == SUCCESS)
2285 {
2286 /* We got a type. */
2287 if (typeinfo.defined & NTA_HASTYPE)
2288 {
2289 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2290 return FALSE;
dcbf9037 2291 }
5f4273c7 2292
dcbf9037
JB
2293 typeinfo.defined |= NTA_HASTYPE;
2294 if (ntype.elems != 1)
2295 {
2296 as_bad (_("you must specify a single type only"));
c921be7d 2297 return FALSE;
dcbf9037
JB
2298 }
2299 typeinfo.eltype = ntype.el[0];
2300 }
5f4273c7 2301
dcbf9037
JB
2302 if (skip_past_char (&p, '[') == SUCCESS)
2303 {
2304 expressionS exp;
2305 /* We got a scalar index. */
5f4273c7 2306
dcbf9037
JB
2307 if (typeinfo.defined & NTA_HASINDEX)
2308 {
2309 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037 2313 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2314
dcbf9037
JB
2315 if (exp.X_op != O_constant)
2316 {
2317 as_bad (_("scalar index must be constant"));
c921be7d 2318 return FALSE;
dcbf9037 2319 }
5f4273c7 2320
dcbf9037
JB
2321 typeinfo.defined |= NTA_HASINDEX;
2322 typeinfo.index = exp.X_add_number;
5f4273c7 2323
dcbf9037
JB
2324 if (skip_past_char (&p, ']') == FAIL)
2325 {
2326 as_bad (_("expecting ]"));
c921be7d 2327 return FALSE;
dcbf9037
JB
2328 }
2329 }
2330
15735687
NS
2331 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2332 the desired alias name, and p points to its end. If not, then
2333 the desired alias name is in the global original_case_string. */
2334#ifdef TC_CASE_SENSITIVE
dcbf9037 2335 namelen = nameend - newname;
15735687
NS
2336#else
2337 newname = original_case_string;
2338 namelen = strlen (newname);
2339#endif
2340
21d799b5 2341 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2342 strncpy (namebuf, newname, namelen);
2343 namebuf[namelen] = '\0';
5f4273c7 2344
dcbf9037
JB
2345 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2346 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2347
dcbf9037
JB
2348 /* Insert name in all uppercase. */
2349 for (p = namebuf; *p; p++)
2350 *p = TOUPPER (*p);
5f4273c7 2351
dcbf9037
JB
2352 if (strncmp (namebuf, newname, namelen))
2353 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2354 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2355
dcbf9037
JB
2356 /* Insert name in all lowercase. */
2357 for (p = namebuf; *p; p++)
2358 *p = TOLOWER (*p);
5f4273c7 2359
dcbf9037
JB
2360 if (strncmp (namebuf, newname, namelen))
2361 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2362 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2363
c921be7d 2364 return TRUE;
dcbf9037
JB
2365}
2366
c19d1205
ZW
2367/* Should never be called, as .req goes between the alias and the
2368 register name, not at the beginning of the line. */
c921be7d 2369
b99bd4ef 2370static void
c19d1205 2371s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2372{
c19d1205
ZW
2373 as_bad (_("invalid syntax for .req directive"));
2374}
b99bd4ef 2375
dcbf9037
JB
2376static void
2377s_dn (int a ATTRIBUTE_UNUSED)
2378{
2379 as_bad (_("invalid syntax for .dn directive"));
2380}
2381
2382static void
2383s_qn (int a ATTRIBUTE_UNUSED)
2384{
2385 as_bad (_("invalid syntax for .qn directive"));
2386}
2387
c19d1205
ZW
2388/* The .unreq directive deletes an alias which was previously defined
2389 by .req. For example:
b99bd4ef 2390
c19d1205
ZW
2391 my_alias .req r11
2392 .unreq my_alias */
b99bd4ef
NC
2393
2394static void
c19d1205 2395s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2396{
c19d1205
ZW
2397 char * name;
2398 char saved_char;
b99bd4ef 2399
c19d1205
ZW
2400 name = input_line_pointer;
2401
2402 while (*input_line_pointer != 0
2403 && *input_line_pointer != ' '
2404 && *input_line_pointer != '\n')
2405 ++input_line_pointer;
2406
2407 saved_char = *input_line_pointer;
2408 *input_line_pointer = 0;
2409
2410 if (!*name)
2411 as_bad (_("invalid syntax for .unreq directive"));
2412 else
2413 {
21d799b5
NC
2414 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2415 name);
c19d1205
ZW
2416
2417 if (!reg)
2418 as_bad (_("unknown register alias '%s'"), name);
2419 else if (reg->builtin)
a1727c1a 2420 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2421 name);
2422 else
2423 {
d929913e
NC
2424 char * p;
2425 char * nbuf;
2426
db0bc284 2427 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2428 free ((char *) reg->name);
dcbf9037
JB
2429 if (reg->neon)
2430 free (reg->neon);
c19d1205 2431 free (reg);
d929913e
NC
2432
2433 /* Also locate the all upper case and all lower case versions.
2434 Do not complain if we cannot find one or the other as it
2435 was probably deleted above. */
5f4273c7 2436
d929913e
NC
2437 nbuf = strdup (name);
2438 for (p = nbuf; *p; p++)
2439 *p = TOUPPER (*p);
21d799b5 2440 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2441 if (reg)
2442 {
db0bc284 2443 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2444 free ((char *) reg->name);
2445 if (reg->neon)
2446 free (reg->neon);
2447 free (reg);
2448 }
2449
2450 for (p = nbuf; *p; p++)
2451 *p = TOLOWER (*p);
21d799b5 2452 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2453 if (reg)
2454 {
db0bc284 2455 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2456 free ((char *) reg->name);
2457 if (reg->neon)
2458 free (reg->neon);
2459 free (reg);
2460 }
2461
2462 free (nbuf);
c19d1205
ZW
2463 }
2464 }
b99bd4ef 2465
c19d1205 2466 *input_line_pointer = saved_char;
b99bd4ef
NC
2467 demand_empty_rest_of_line ();
2468}
2469
c19d1205
ZW
2470/* Directives: Instruction set selection. */
2471
2472#ifdef OBJ_ELF
2473/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2474 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2475 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2476 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2477
cd000bff
DJ
2478/* Create a new mapping symbol for the transition to STATE. */
2479
2480static void
2481make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2482{
a737bd4d 2483 symbolS * symbolP;
c19d1205
ZW
2484 const char * symname;
2485 int type;
b99bd4ef 2486
c19d1205 2487 switch (state)
b99bd4ef 2488 {
c19d1205
ZW
2489 case MAP_DATA:
2490 symname = "$d";
2491 type = BSF_NO_FLAGS;
2492 break;
2493 case MAP_ARM:
2494 symname = "$a";
2495 type = BSF_NO_FLAGS;
2496 break;
2497 case MAP_THUMB:
2498 symname = "$t";
2499 type = BSF_NO_FLAGS;
2500 break;
c19d1205
ZW
2501 default:
2502 abort ();
2503 }
2504
cd000bff 2505 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2506 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2507
2508 switch (state)
2509 {
2510 case MAP_ARM:
2511 THUMB_SET_FUNC (symbolP, 0);
2512 ARM_SET_THUMB (symbolP, 0);
2513 ARM_SET_INTERWORK (symbolP, support_interwork);
2514 break;
2515
2516 case MAP_THUMB:
2517 THUMB_SET_FUNC (symbolP, 1);
2518 ARM_SET_THUMB (symbolP, 1);
2519 ARM_SET_INTERWORK (symbolP, support_interwork);
2520 break;
2521
2522 case MAP_DATA:
2523 default:
cd000bff
DJ
2524 break;
2525 }
2526
2527 /* Save the mapping symbols for future reference. Also check that
2528 we do not place two mapping symbols at the same offset within a
2529 frag. We'll handle overlap between frags in
2de7820f
JZ
2530 check_mapping_symbols.
2531
2532 If .fill or other data filling directive generates zero sized data,
2533 the mapping symbol for the following code will have the same value
2534 as the one generated for the data filling directive. In this case,
2535 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2536 if (value == 0)
2537 {
2de7820f
JZ
2538 if (frag->tc_frag_data.first_map != NULL)
2539 {
2540 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2541 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2542 }
cd000bff
DJ
2543 frag->tc_frag_data.first_map = symbolP;
2544 }
2545 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2546 {
2547 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2548 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2549 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2550 }
cd000bff
DJ
2551 frag->tc_frag_data.last_map = symbolP;
2552}
2553
2554/* We must sometimes convert a region marked as code to data during
2555 code alignment, if an odd number of bytes have to be padded. The
2556 code mapping symbol is pushed to an aligned address. */
2557
2558static void
2559insert_data_mapping_symbol (enum mstate state,
2560 valueT value, fragS *frag, offsetT bytes)
2561{
2562 /* If there was already a mapping symbol, remove it. */
2563 if (frag->tc_frag_data.last_map != NULL
2564 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2565 {
2566 symbolS *symp = frag->tc_frag_data.last_map;
2567
2568 if (value == 0)
2569 {
2570 know (frag->tc_frag_data.first_map == symp);
2571 frag->tc_frag_data.first_map = NULL;
2572 }
2573 frag->tc_frag_data.last_map = NULL;
2574 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2575 }
cd000bff
DJ
2576
2577 make_mapping_symbol (MAP_DATA, value, frag);
2578 make_mapping_symbol (state, value + bytes, frag);
2579}
2580
2581static void mapping_state_2 (enum mstate state, int max_chars);
2582
2583/* Set the mapping state to STATE. Only call this when about to
2584 emit some STATE bytes to the file. */
2585
2586void
2587mapping_state (enum mstate state)
2588{
940b5ce0
DJ
2589 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2590
cd000bff
DJ
2591#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2592
2593 if (mapstate == state)
2594 /* The mapping symbol has already been emitted.
2595 There is nothing else to do. */
2596 return;
49c62a33
NC
2597
2598 if (state == MAP_ARM || state == MAP_THUMB)
2599 /* PR gas/12931
2600 All ARM instructions require 4-byte alignment.
2601 (Almost) all Thumb instructions require 2-byte alignment.
2602
2603 When emitting instructions into any section, mark the section
2604 appropriately.
2605
2606 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2607 but themselves require 2-byte alignment; this applies to some
2608 PC- relative forms. However, these cases will invovle implicit
2609 literal pool generation or an explicit .align >=2, both of
2610 which will cause the section to me marked with sufficient
2611 alignment. Thus, we don't handle those cases here. */
2612 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2613
2614 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2615 /* This case will be evaluated later in the next else. */
2616 return;
2617 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2618 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2619 {
2620 /* Only add the symbol if the offset is > 0:
2621 if we're at the first frag, check it's size > 0;
2622 if we're not at the first frag, then for sure
2623 the offset is > 0. */
2624 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2625 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2626
2627 if (add_symbol)
2628 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2629 }
2630
2631 mapping_state_2 (state, 0);
2632#undef TRANSITION
2633}
2634
2635/* Same as mapping_state, but MAX_CHARS bytes have already been
2636 allocated. Put the mapping symbol that far back. */
2637
2638static void
2639mapping_state_2 (enum mstate state, int max_chars)
2640{
940b5ce0
DJ
2641 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2642
2643 if (!SEG_NORMAL (now_seg))
2644 return;
2645
cd000bff
DJ
2646 if (mapstate == state)
2647 /* The mapping symbol has already been emitted.
2648 There is nothing else to do. */
2649 return;
2650
cd000bff
DJ
2651 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2652 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2653}
2654#else
d3106081
NS
2655#define mapping_state(x) ((void)0)
2656#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2657#endif
2658
2659/* Find the real, Thumb encoded start of a Thumb function. */
2660
4343666d 2661#ifdef OBJ_COFF
c19d1205
ZW
2662static symbolS *
2663find_real_start (symbolS * symbolP)
2664{
2665 char * real_start;
2666 const char * name = S_GET_NAME (symbolP);
2667 symbolS * new_target;
2668
2669 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2670#define STUB_NAME ".real_start_of"
2671
2672 if (name == NULL)
2673 abort ();
2674
37f6032b
ZW
2675 /* The compiler may generate BL instructions to local labels because
2676 it needs to perform a branch to a far away location. These labels
2677 do not have a corresponding ".real_start_of" label. We check
2678 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2679 the ".real_start_of" convention for nonlocal branches. */
2680 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2681 return symbolP;
2682
37f6032b 2683 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2684 new_target = symbol_find (real_start);
2685
2686 if (new_target == NULL)
2687 {
bd3ba5d1 2688 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2689 new_target = symbolP;
2690 }
2691
c19d1205
ZW
2692 return new_target;
2693}
4343666d 2694#endif
c19d1205
ZW
2695
2696static void
2697opcode_select (int width)
2698{
2699 switch (width)
2700 {
2701 case 16:
2702 if (! thumb_mode)
2703 {
e74cfd16 2704 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2705 as_bad (_("selected processor does not support THUMB opcodes"));
2706
2707 thumb_mode = 1;
2708 /* No need to force the alignment, since we will have been
2709 coming from ARM mode, which is word-aligned. */
2710 record_alignment (now_seg, 1);
2711 }
c19d1205
ZW
2712 break;
2713
2714 case 32:
2715 if (thumb_mode)
2716 {
e74cfd16 2717 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2718 as_bad (_("selected processor does not support ARM opcodes"));
2719
2720 thumb_mode = 0;
2721
2722 if (!need_pass_2)
2723 frag_align (2, 0, 0);
2724
2725 record_alignment (now_seg, 1);
2726 }
c19d1205
ZW
2727 break;
2728
2729 default:
2730 as_bad (_("invalid instruction size selected (%d)"), width);
2731 }
2732}
2733
2734static void
2735s_arm (int ignore ATTRIBUTE_UNUSED)
2736{
2737 opcode_select (32);
2738 demand_empty_rest_of_line ();
2739}
2740
2741static void
2742s_thumb (int ignore ATTRIBUTE_UNUSED)
2743{
2744 opcode_select (16);
2745 demand_empty_rest_of_line ();
2746}
2747
2748static void
2749s_code (int unused ATTRIBUTE_UNUSED)
2750{
2751 int temp;
2752
2753 temp = get_absolute_expression ();
2754 switch (temp)
2755 {
2756 case 16:
2757 case 32:
2758 opcode_select (temp);
2759 break;
2760
2761 default:
2762 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2763 }
2764}
2765
2766static void
2767s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2768{
2769 /* If we are not already in thumb mode go into it, EVEN if
2770 the target processor does not support thumb instructions.
2771 This is used by gcc/config/arm/lib1funcs.asm for example
2772 to compile interworking support functions even if the
2773 target processor should not support interworking. */
2774 if (! thumb_mode)
2775 {
2776 thumb_mode = 2;
2777 record_alignment (now_seg, 1);
2778 }
2779
2780 demand_empty_rest_of_line ();
2781}
2782
2783static void
2784s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2785{
2786 s_thumb (0);
2787
2788 /* The following label is the name/address of the start of a Thumb function.
2789 We need to know this for the interworking support. */
2790 label_is_thumb_function_name = TRUE;
2791}
2792
2793/* Perform a .set directive, but also mark the alias as
2794 being a thumb function. */
2795
2796static void
2797s_thumb_set (int equiv)
2798{
2799 /* XXX the following is a duplicate of the code for s_set() in read.c
2800 We cannot just call that code as we need to get at the symbol that
2801 is created. */
2802 char * name;
2803 char delim;
2804 char * end_name;
2805 symbolS * symbolP;
2806
2807 /* Especial apologies for the random logic:
2808 This just grew, and could be parsed much more simply!
2809 Dean - in haste. */
2810 name = input_line_pointer;
2811 delim = get_symbol_end ();
2812 end_name = input_line_pointer;
2813 *end_name = delim;
2814
2815 if (*input_line_pointer != ',')
2816 {
2817 *end_name = 0;
2818 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2819 *end_name = delim;
2820 ignore_rest_of_line ();
2821 return;
2822 }
2823
2824 input_line_pointer++;
2825 *end_name = 0;
2826
2827 if (name[0] == '.' && name[1] == '\0')
2828 {
2829 /* XXX - this should not happen to .thumb_set. */
2830 abort ();
2831 }
2832
2833 if ((symbolP = symbol_find (name)) == NULL
2834 && (symbolP = md_undefined_symbol (name)) == NULL)
2835 {
2836#ifndef NO_LISTING
2837 /* When doing symbol listings, play games with dummy fragments living
2838 outside the normal fragment chain to record the file and line info
c19d1205 2839 for this symbol. */
b99bd4ef
NC
2840 if (listing & LISTING_SYMBOLS)
2841 {
2842 extern struct list_info_struct * listing_tail;
21d799b5 2843 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2844
2845 memset (dummy_frag, 0, sizeof (fragS));
2846 dummy_frag->fr_type = rs_fill;
2847 dummy_frag->line = listing_tail;
2848 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2849 dummy_frag->fr_symbol = symbolP;
2850 }
2851 else
2852#endif
2853 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2854
2855#ifdef OBJ_COFF
2856 /* "set" symbols are local unless otherwise specified. */
2857 SF_SET_LOCAL (symbolP);
2858#endif /* OBJ_COFF */
2859 } /* Make a new symbol. */
2860
2861 symbol_table_insert (symbolP);
2862
2863 * end_name = delim;
2864
2865 if (equiv
2866 && S_IS_DEFINED (symbolP)
2867 && S_GET_SEGMENT (symbolP) != reg_section)
2868 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2869
2870 pseudo_set (symbolP);
2871
2872 demand_empty_rest_of_line ();
2873
c19d1205 2874 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2875
2876 THUMB_SET_FUNC (symbolP, 1);
2877 ARM_SET_THUMB (symbolP, 1);
2878#if defined OBJ_ELF || defined OBJ_COFF
2879 ARM_SET_INTERWORK (symbolP, support_interwork);
2880#endif
2881}
2882
c19d1205 2883/* Directives: Mode selection. */
b99bd4ef 2884
c19d1205
ZW
2885/* .syntax [unified|divided] - choose the new unified syntax
2886 (same for Arm and Thumb encoding, modulo slight differences in what
2887 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2888static void
c19d1205 2889s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2890{
c19d1205
ZW
2891 char *name, delim;
2892
2893 name = input_line_pointer;
2894 delim = get_symbol_end ();
2895
2896 if (!strcasecmp (name, "unified"))
2897 unified_syntax = TRUE;
2898 else if (!strcasecmp (name, "divided"))
2899 unified_syntax = FALSE;
2900 else
2901 {
2902 as_bad (_("unrecognized syntax mode \"%s\""), name);
2903 return;
2904 }
2905 *input_line_pointer = delim;
b99bd4ef
NC
2906 demand_empty_rest_of_line ();
2907}
2908
c19d1205
ZW
2909/* Directives: sectioning and alignment. */
2910
2911/* Same as s_align_ptwo but align 0 => align 2. */
2912
b99bd4ef 2913static void
c19d1205 2914s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2915{
a737bd4d 2916 int temp;
dce323d1 2917 bfd_boolean fill_p;
c19d1205
ZW
2918 long temp_fill;
2919 long max_alignment = 15;
b99bd4ef
NC
2920
2921 temp = get_absolute_expression ();
c19d1205
ZW
2922 if (temp > max_alignment)
2923 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2924 else if (temp < 0)
b99bd4ef 2925 {
c19d1205
ZW
2926 as_bad (_("alignment negative. 0 assumed."));
2927 temp = 0;
2928 }
b99bd4ef 2929
c19d1205
ZW
2930 if (*input_line_pointer == ',')
2931 {
2932 input_line_pointer++;
2933 temp_fill = get_absolute_expression ();
dce323d1 2934 fill_p = TRUE;
b99bd4ef 2935 }
c19d1205 2936 else
dce323d1
PB
2937 {
2938 fill_p = FALSE;
2939 temp_fill = 0;
2940 }
b99bd4ef 2941
c19d1205
ZW
2942 if (!temp)
2943 temp = 2;
b99bd4ef 2944
c19d1205
ZW
2945 /* Only make a frag if we HAVE to. */
2946 if (temp && !need_pass_2)
dce323d1
PB
2947 {
2948 if (!fill_p && subseg_text_p (now_seg))
2949 frag_align_code (temp, 0);
2950 else
2951 frag_align (temp, (int) temp_fill, 0);
2952 }
c19d1205
ZW
2953 demand_empty_rest_of_line ();
2954
2955 record_alignment (now_seg, temp);
b99bd4ef
NC
2956}
2957
c19d1205
ZW
2958static void
2959s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2960{
c19d1205
ZW
2961 /* We don't support putting frags in the BSS segment, we fake it by
2962 marking in_bss, then looking at s_skip for clues. */
2963 subseg_set (bss_section, 0);
2964 demand_empty_rest_of_line ();
cd000bff
DJ
2965
2966#ifdef md_elf_section_change_hook
2967 md_elf_section_change_hook ();
2968#endif
c19d1205 2969}
b99bd4ef 2970
c19d1205
ZW
2971static void
2972s_even (int ignore ATTRIBUTE_UNUSED)
2973{
2974 /* Never make frag if expect extra pass. */
2975 if (!need_pass_2)
2976 frag_align (1, 0, 0);
b99bd4ef 2977
c19d1205 2978 record_alignment (now_seg, 1);
b99bd4ef 2979
c19d1205 2980 demand_empty_rest_of_line ();
b99bd4ef
NC
2981}
2982
c19d1205 2983/* Directives: Literal pools. */
a737bd4d 2984
c19d1205
ZW
2985static literal_pool *
2986find_literal_pool (void)
a737bd4d 2987{
c19d1205 2988 literal_pool * pool;
a737bd4d 2989
c19d1205 2990 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2991 {
c19d1205
ZW
2992 if (pool->section == now_seg
2993 && pool->sub_section == now_subseg)
2994 break;
a737bd4d
NC
2995 }
2996
c19d1205 2997 return pool;
a737bd4d
NC
2998}
2999
c19d1205
ZW
3000static literal_pool *
3001find_or_make_literal_pool (void)
a737bd4d 3002{
c19d1205
ZW
3003 /* Next literal pool ID number. */
3004 static unsigned int latest_pool_num = 1;
3005 literal_pool * pool;
a737bd4d 3006
c19d1205 3007 pool = find_literal_pool ();
a737bd4d 3008
c19d1205 3009 if (pool == NULL)
a737bd4d 3010 {
c19d1205 3011 /* Create a new pool. */
21d799b5 3012 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3013 if (! pool)
3014 return NULL;
a737bd4d 3015
c19d1205
ZW
3016 pool->next_free_entry = 0;
3017 pool->section = now_seg;
3018 pool->sub_section = now_subseg;
3019 pool->next = list_of_pools;
3020 pool->symbol = NULL;
3021
3022 /* Add it to the list. */
3023 list_of_pools = pool;
a737bd4d 3024 }
a737bd4d 3025
c19d1205
ZW
3026 /* New pools, and emptied pools, will have a NULL symbol. */
3027 if (pool->symbol == NULL)
a737bd4d 3028 {
c19d1205
ZW
3029 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3030 (valueT) 0, &zero_address_frag);
3031 pool->id = latest_pool_num ++;
a737bd4d
NC
3032 }
3033
c19d1205
ZW
3034 /* Done. */
3035 return pool;
a737bd4d
NC
3036}
3037
c19d1205 3038/* Add the literal in the global 'inst'
5f4273c7 3039 structure to the relevant literal pool. */
b99bd4ef
NC
3040
3041static int
c19d1205 3042add_to_lit_pool (void)
b99bd4ef 3043{
c19d1205
ZW
3044 literal_pool * pool;
3045 unsigned int entry;
b99bd4ef 3046
c19d1205
ZW
3047 pool = find_or_make_literal_pool ();
3048
3049 /* Check if this literal value is already in the pool. */
3050 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3051 {
c19d1205
ZW
3052 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3053 && (inst.reloc.exp.X_op == O_constant)
3054 && (pool->literals[entry].X_add_number
3055 == inst.reloc.exp.X_add_number)
3056 && (pool->literals[entry].X_unsigned
3057 == inst.reloc.exp.X_unsigned))
3058 break;
3059
3060 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3061 && (inst.reloc.exp.X_op == O_symbol)
3062 && (pool->literals[entry].X_add_number
3063 == inst.reloc.exp.X_add_number)
3064 && (pool->literals[entry].X_add_symbol
3065 == inst.reloc.exp.X_add_symbol)
3066 && (pool->literals[entry].X_op_symbol
3067 == inst.reloc.exp.X_op_symbol))
3068 break;
b99bd4ef
NC
3069 }
3070
c19d1205
ZW
3071 /* Do we need to create a new entry? */
3072 if (entry == pool->next_free_entry)
3073 {
3074 if (entry >= MAX_LITERAL_POOL_SIZE)
3075 {
3076 inst.error = _("literal pool overflow");
3077 return FAIL;
3078 }
3079
3080 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3081#ifdef OBJ_ELF
3082 /* PR ld/12974: Record the location of the first source line to reference
3083 this entry in the literal pool. If it turns out during linking that the
3084 symbol does not exist we will be able to give an accurate line number for
3085 the (first use of the) missing reference. */
3086 if (debug_type == DEBUG_DWARF2)
3087 dwarf2_where (pool->locs + entry);
3088#endif
c19d1205
ZW
3089 pool->next_free_entry += 1;
3090 }
b99bd4ef 3091
c19d1205
ZW
3092 inst.reloc.exp.X_op = O_symbol;
3093 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3094 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3095
c19d1205 3096 return SUCCESS;
b99bd4ef
NC
3097}
3098
c19d1205
ZW
3099/* Can't use symbol_new here, so have to create a symbol and then at
3100 a later date assign it a value. Thats what these functions do. */
e16bb312 3101
c19d1205
ZW
3102static void
3103symbol_locate (symbolS * symbolP,
3104 const char * name, /* It is copied, the caller can modify. */
3105 segT segment, /* Segment identifier (SEG_<something>). */
3106 valueT valu, /* Symbol value. */
3107 fragS * frag) /* Associated fragment. */
3108{
3109 unsigned int name_length;
3110 char * preserved_copy_of_name;
e16bb312 3111
c19d1205
ZW
3112 name_length = strlen (name) + 1; /* +1 for \0. */
3113 obstack_grow (&notes, name, name_length);
21d799b5 3114 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3115
c19d1205
ZW
3116#ifdef tc_canonicalize_symbol_name
3117 preserved_copy_of_name =
3118 tc_canonicalize_symbol_name (preserved_copy_of_name);
3119#endif
b99bd4ef 3120
c19d1205 3121 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3122
c19d1205
ZW
3123 S_SET_SEGMENT (symbolP, segment);
3124 S_SET_VALUE (symbolP, valu);
3125 symbol_clear_list_pointers (symbolP);
b99bd4ef 3126
c19d1205 3127 symbol_set_frag (symbolP, frag);
b99bd4ef 3128
c19d1205
ZW
3129 /* Link to end of symbol chain. */
3130 {
3131 extern int symbol_table_frozen;
b99bd4ef 3132
c19d1205
ZW
3133 if (symbol_table_frozen)
3134 abort ();
3135 }
b99bd4ef 3136
c19d1205 3137 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3138
c19d1205 3139 obj_symbol_new_hook (symbolP);
b99bd4ef 3140
c19d1205
ZW
3141#ifdef tc_symbol_new_hook
3142 tc_symbol_new_hook (symbolP);
3143#endif
3144
3145#ifdef DEBUG_SYMS
3146 verify_symbol_chain (symbol_rootP, symbol_lastP);
3147#endif /* DEBUG_SYMS */
b99bd4ef
NC
3148}
3149
b99bd4ef 3150
c19d1205
ZW
3151static void
3152s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3153{
c19d1205
ZW
3154 unsigned int entry;
3155 literal_pool * pool;
3156 char sym_name[20];
b99bd4ef 3157
c19d1205
ZW
3158 pool = find_literal_pool ();
3159 if (pool == NULL
3160 || pool->symbol == NULL
3161 || pool->next_free_entry == 0)
3162 return;
b99bd4ef 3163
c19d1205 3164 mapping_state (MAP_DATA);
b99bd4ef 3165
c19d1205
ZW
3166 /* Align pool as you have word accesses.
3167 Only make a frag if we have to. */
3168 if (!need_pass_2)
3169 frag_align (2, 0, 0);
b99bd4ef 3170
c19d1205 3171 record_alignment (now_seg, 2);
b99bd4ef 3172
c19d1205 3173 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3174
c19d1205
ZW
3175 symbol_locate (pool->symbol, sym_name, now_seg,
3176 (valueT) frag_now_fix (), frag_now);
3177 symbol_table_insert (pool->symbol);
b99bd4ef 3178
c19d1205 3179 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3180
c19d1205
ZW
3181#if defined OBJ_COFF || defined OBJ_ELF
3182 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3183#endif
6c43fab6 3184
c19d1205 3185 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3186 {
3187#ifdef OBJ_ELF
3188 if (debug_type == DEBUG_DWARF2)
3189 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3190#endif
3191 /* First output the expression in the instruction to the pool. */
3192 emit_expr (&(pool->literals[entry]), 4); /* .word */
3193 }
b99bd4ef 3194
c19d1205
ZW
3195 /* Mark the pool as empty. */
3196 pool->next_free_entry = 0;
3197 pool->symbol = NULL;
b99bd4ef
NC
3198}
3199
c19d1205
ZW
3200#ifdef OBJ_ELF
3201/* Forward declarations for functions below, in the MD interface
3202 section. */
3203static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3204static valueT create_unwind_entry (int);
3205static void start_unwind_section (const segT, int);
3206static void add_unwind_opcode (valueT, int);
3207static void flush_pending_unwind (void);
b99bd4ef 3208
c19d1205 3209/* Directives: Data. */
b99bd4ef 3210
c19d1205
ZW
3211static void
3212s_arm_elf_cons (int nbytes)
3213{
3214 expressionS exp;
b99bd4ef 3215
c19d1205
ZW
3216#ifdef md_flush_pending_output
3217 md_flush_pending_output ();
3218#endif
b99bd4ef 3219
c19d1205 3220 if (is_it_end_of_statement ())
b99bd4ef 3221 {
c19d1205
ZW
3222 demand_empty_rest_of_line ();
3223 return;
b99bd4ef
NC
3224 }
3225
c19d1205
ZW
3226#ifdef md_cons_align
3227 md_cons_align (nbytes);
3228#endif
b99bd4ef 3229
c19d1205
ZW
3230 mapping_state (MAP_DATA);
3231 do
b99bd4ef 3232 {
c19d1205
ZW
3233 int reloc;
3234 char *base = input_line_pointer;
b99bd4ef 3235
c19d1205 3236 expression (& exp);
b99bd4ef 3237
c19d1205
ZW
3238 if (exp.X_op != O_symbol)
3239 emit_expr (&exp, (unsigned int) nbytes);
3240 else
3241 {
3242 char *before_reloc = input_line_pointer;
3243 reloc = parse_reloc (&input_line_pointer);
3244 if (reloc == -1)
3245 {
3246 as_bad (_("unrecognized relocation suffix"));
3247 ignore_rest_of_line ();
3248 return;
3249 }
3250 else if (reloc == BFD_RELOC_UNUSED)
3251 emit_expr (&exp, (unsigned int) nbytes);
3252 else
3253 {
21d799b5
NC
3254 reloc_howto_type *howto = (reloc_howto_type *)
3255 bfd_reloc_type_lookup (stdoutput,
3256 (bfd_reloc_code_real_type) reloc);
c19d1205 3257 int size = bfd_get_reloc_size (howto);
b99bd4ef 3258
2fc8bdac
ZW
3259 if (reloc == BFD_RELOC_ARM_PLT32)
3260 {
3261 as_bad (_("(plt) is only valid on branch targets"));
3262 reloc = BFD_RELOC_UNUSED;
3263 size = 0;
3264 }
3265
c19d1205 3266 if (size > nbytes)
2fc8bdac 3267 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3268 howto->name, nbytes);
3269 else
3270 {
3271 /* We've parsed an expression stopping at O_symbol.
3272 But there may be more expression left now that we
3273 have parsed the relocation marker. Parse it again.
3274 XXX Surely there is a cleaner way to do this. */
3275 char *p = input_line_pointer;
3276 int offset;
21d799b5 3277 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3278 memcpy (save_buf, base, input_line_pointer - base);
3279 memmove (base + (input_line_pointer - before_reloc),
3280 base, before_reloc - base);
3281
3282 input_line_pointer = base + (input_line_pointer-before_reloc);
3283 expression (&exp);
3284 memcpy (base, save_buf, p - base);
3285
3286 offset = nbytes - size;
3287 p = frag_more ((int) nbytes);
3288 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3289 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3290 }
3291 }
3292 }
b99bd4ef 3293 }
c19d1205 3294 while (*input_line_pointer++ == ',');
b99bd4ef 3295
c19d1205
ZW
3296 /* Put terminator back into stream. */
3297 input_line_pointer --;
3298 demand_empty_rest_of_line ();
b99bd4ef
NC
3299}
3300
c921be7d
NC
3301/* Emit an expression containing a 32-bit thumb instruction.
3302 Implementation based on put_thumb32_insn. */
3303
3304static void
3305emit_thumb32_expr (expressionS * exp)
3306{
3307 expressionS exp_high = *exp;
3308
3309 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3310 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3311 exp->X_add_number &= 0xffff;
3312 emit_expr (exp, (unsigned int) THUMB_SIZE);
3313}
3314
3315/* Guess the instruction size based on the opcode. */
3316
3317static int
3318thumb_insn_size (int opcode)
3319{
3320 if ((unsigned int) opcode < 0xe800u)
3321 return 2;
3322 else if ((unsigned int) opcode >= 0xe8000000u)
3323 return 4;
3324 else
3325 return 0;
3326}
3327
3328static bfd_boolean
3329emit_insn (expressionS *exp, int nbytes)
3330{
3331 int size = 0;
3332
3333 if (exp->X_op == O_constant)
3334 {
3335 size = nbytes;
3336
3337 if (size == 0)
3338 size = thumb_insn_size (exp->X_add_number);
3339
3340 if (size != 0)
3341 {
3342 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3343 {
3344 as_bad (_(".inst.n operand too big. "\
3345 "Use .inst.w instead"));
3346 size = 0;
3347 }
3348 else
3349 {
3350 if (now_it.state == AUTOMATIC_IT_BLOCK)
3351 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3352 else
3353 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3354
3355 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3356 emit_thumb32_expr (exp);
3357 else
3358 emit_expr (exp, (unsigned int) size);
3359
3360 it_fsm_post_encode ();
3361 }
3362 }
3363 else
3364 as_bad (_("cannot determine Thumb instruction size. " \
3365 "Use .inst.n/.inst.w instead"));
3366 }
3367 else
3368 as_bad (_("constant expression required"));
3369
3370 return (size != 0);
3371}
3372
3373/* Like s_arm_elf_cons but do not use md_cons_align and
3374 set the mapping state to MAP_ARM/MAP_THUMB. */
3375
3376static void
3377s_arm_elf_inst (int nbytes)
3378{
3379 if (is_it_end_of_statement ())
3380 {
3381 demand_empty_rest_of_line ();
3382 return;
3383 }
3384
3385 /* Calling mapping_state () here will not change ARM/THUMB,
3386 but will ensure not to be in DATA state. */
3387
3388 if (thumb_mode)
3389 mapping_state (MAP_THUMB);
3390 else
3391 {
3392 if (nbytes != 0)
3393 {
3394 as_bad (_("width suffixes are invalid in ARM mode"));
3395 ignore_rest_of_line ();
3396 return;
3397 }
3398
3399 nbytes = 4;
3400
3401 mapping_state (MAP_ARM);
3402 }
3403
3404 do
3405 {
3406 expressionS exp;
3407
3408 expression (& exp);
3409
3410 if (! emit_insn (& exp, nbytes))
3411 {
3412 ignore_rest_of_line ();
3413 return;
3414 }
3415 }
3416 while (*input_line_pointer++ == ',');
3417
3418 /* Put terminator back into stream. */
3419 input_line_pointer --;
3420 demand_empty_rest_of_line ();
3421}
b99bd4ef 3422
c19d1205 3423/* Parse a .rel31 directive. */
b99bd4ef 3424
c19d1205
ZW
3425static void
3426s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3427{
3428 expressionS exp;
3429 char *p;
3430 valueT highbit;
b99bd4ef 3431
c19d1205
ZW
3432 highbit = 0;
3433 if (*input_line_pointer == '1')
3434 highbit = 0x80000000;
3435 else if (*input_line_pointer != '0')
3436 as_bad (_("expected 0 or 1"));
b99bd4ef 3437
c19d1205
ZW
3438 input_line_pointer++;
3439 if (*input_line_pointer != ',')
3440 as_bad (_("missing comma"));
3441 input_line_pointer++;
b99bd4ef 3442
c19d1205
ZW
3443#ifdef md_flush_pending_output
3444 md_flush_pending_output ();
3445#endif
b99bd4ef 3446
c19d1205
ZW
3447#ifdef md_cons_align
3448 md_cons_align (4);
3449#endif
b99bd4ef 3450
c19d1205 3451 mapping_state (MAP_DATA);
b99bd4ef 3452
c19d1205 3453 expression (&exp);
b99bd4ef 3454
c19d1205
ZW
3455 p = frag_more (4);
3456 md_number_to_chars (p, highbit, 4);
3457 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3458 BFD_RELOC_ARM_PREL31);
b99bd4ef 3459
c19d1205 3460 demand_empty_rest_of_line ();
b99bd4ef
NC
3461}
3462
c19d1205 3463/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3464
c19d1205 3465/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3466
c19d1205
ZW
3467static void
3468s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3469{
3470 demand_empty_rest_of_line ();
921e5f0a
PB
3471 if (unwind.proc_start)
3472 {
c921be7d 3473 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3474 return;
3475 }
3476
c19d1205
ZW
3477 /* Mark the start of the function. */
3478 unwind.proc_start = expr_build_dot ();
b99bd4ef 3479
c19d1205
ZW
3480 /* Reset the rest of the unwind info. */
3481 unwind.opcode_count = 0;
3482 unwind.table_entry = NULL;
3483 unwind.personality_routine = NULL;
3484 unwind.personality_index = -1;
3485 unwind.frame_size = 0;
3486 unwind.fp_offset = 0;
fdfde340 3487 unwind.fp_reg = REG_SP;
c19d1205
ZW
3488 unwind.fp_used = 0;
3489 unwind.sp_restored = 0;
3490}
b99bd4ef 3491
b99bd4ef 3492
c19d1205
ZW
3493/* Parse a handlerdata directive. Creates the exception handling table entry
3494 for the function. */
b99bd4ef 3495
c19d1205
ZW
3496static void
3497s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3498{
3499 demand_empty_rest_of_line ();
921e5f0a 3500 if (!unwind.proc_start)
c921be7d 3501 as_bad (MISSING_FNSTART);
921e5f0a 3502
c19d1205 3503 if (unwind.table_entry)
6decc662 3504 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3505
c19d1205
ZW
3506 create_unwind_entry (1);
3507}
a737bd4d 3508
c19d1205 3509/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3510
c19d1205
ZW
3511static void
3512s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3513{
3514 long where;
3515 char *ptr;
3516 valueT val;
940b5ce0 3517 unsigned int marked_pr_dependency;
f02232aa 3518
c19d1205 3519 demand_empty_rest_of_line ();
f02232aa 3520
921e5f0a
PB
3521 if (!unwind.proc_start)
3522 {
c921be7d 3523 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3524 return;
3525 }
3526
c19d1205
ZW
3527 /* Add eh table entry. */
3528 if (unwind.table_entry == NULL)
3529 val = create_unwind_entry (0);
3530 else
3531 val = 0;
f02232aa 3532
c19d1205
ZW
3533 /* Add index table entry. This is two words. */
3534 start_unwind_section (unwind.saved_seg, 1);
3535 frag_align (2, 0, 0);
3536 record_alignment (now_seg, 2);
b99bd4ef 3537
c19d1205
ZW
3538 ptr = frag_more (8);
3539 where = frag_now_fix () - 8;
f02232aa 3540
c19d1205
ZW
3541 /* Self relative offset of the function start. */
3542 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3543 BFD_RELOC_ARM_PREL31);
f02232aa 3544
c19d1205
ZW
3545 /* Indicate dependency on EHABI-defined personality routines to the
3546 linker, if it hasn't been done already. */
940b5ce0
DJ
3547 marked_pr_dependency
3548 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3549 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3550 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3551 {
5f4273c7
NC
3552 static const char *const name[] =
3553 {
3554 "__aeabi_unwind_cpp_pr0",
3555 "__aeabi_unwind_cpp_pr1",
3556 "__aeabi_unwind_cpp_pr2"
3557 };
c19d1205
ZW
3558 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3559 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3560 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3561 |= 1 << unwind.personality_index;
c19d1205 3562 }
f02232aa 3563
c19d1205
ZW
3564 if (val)
3565 /* Inline exception table entry. */
3566 md_number_to_chars (ptr + 4, val, 4);
3567 else
3568 /* Self relative offset of the table entry. */
3569 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3570 BFD_RELOC_ARM_PREL31);
f02232aa 3571
c19d1205
ZW
3572 /* Restore the original section. */
3573 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3574
3575 unwind.proc_start = NULL;
c19d1205 3576}
f02232aa 3577
f02232aa 3578
c19d1205 3579/* Parse an unwind_cantunwind directive. */
b99bd4ef 3580
c19d1205
ZW
3581static void
3582s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3583{
3584 demand_empty_rest_of_line ();
921e5f0a 3585 if (!unwind.proc_start)
c921be7d 3586 as_bad (MISSING_FNSTART);
921e5f0a 3587
c19d1205
ZW
3588 if (unwind.personality_routine || unwind.personality_index != -1)
3589 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3590
c19d1205
ZW
3591 unwind.personality_index = -2;
3592}
b99bd4ef 3593
b99bd4ef 3594
c19d1205 3595/* Parse a personalityindex directive. */
b99bd4ef 3596
c19d1205
ZW
3597static void
3598s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3599{
3600 expressionS exp;
b99bd4ef 3601
921e5f0a 3602 if (!unwind.proc_start)
c921be7d 3603 as_bad (MISSING_FNSTART);
921e5f0a 3604
c19d1205
ZW
3605 if (unwind.personality_routine || unwind.personality_index != -1)
3606 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3607
c19d1205 3608 expression (&exp);
b99bd4ef 3609
c19d1205
ZW
3610 if (exp.X_op != O_constant
3611 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3612 {
c19d1205
ZW
3613 as_bad (_("bad personality routine number"));
3614 ignore_rest_of_line ();
3615 return;
b99bd4ef
NC
3616 }
3617
c19d1205 3618 unwind.personality_index = exp.X_add_number;
b99bd4ef 3619
c19d1205
ZW
3620 demand_empty_rest_of_line ();
3621}
e16bb312 3622
e16bb312 3623
c19d1205 3624/* Parse a personality directive. */
e16bb312 3625
c19d1205
ZW
3626static void
3627s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3628{
3629 char *name, *p, c;
a737bd4d 3630
921e5f0a 3631 if (!unwind.proc_start)
c921be7d 3632 as_bad (MISSING_FNSTART);
921e5f0a 3633
c19d1205
ZW
3634 if (unwind.personality_routine || unwind.personality_index != -1)
3635 as_bad (_("duplicate .personality directive"));
a737bd4d 3636
c19d1205
ZW
3637 name = input_line_pointer;
3638 c = get_symbol_end ();
3639 p = input_line_pointer;
3640 unwind.personality_routine = symbol_find_or_make (name);
3641 *p = c;
3642 demand_empty_rest_of_line ();
3643}
e16bb312 3644
e16bb312 3645
c19d1205 3646/* Parse a directive saving core registers. */
e16bb312 3647
c19d1205
ZW
3648static void
3649s_arm_unwind_save_core (void)
e16bb312 3650{
c19d1205
ZW
3651 valueT op;
3652 long range;
3653 int n;
e16bb312 3654
c19d1205
ZW
3655 range = parse_reg_list (&input_line_pointer);
3656 if (range == FAIL)
e16bb312 3657 {
c19d1205
ZW
3658 as_bad (_("expected register list"));
3659 ignore_rest_of_line ();
3660 return;
3661 }
e16bb312 3662
c19d1205 3663 demand_empty_rest_of_line ();
e16bb312 3664
c19d1205
ZW
3665 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3666 into .unwind_save {..., sp...}. We aren't bothered about the value of
3667 ip because it is clobbered by calls. */
3668 if (unwind.sp_restored && unwind.fp_reg == 12
3669 && (range & 0x3000) == 0x1000)
3670 {
3671 unwind.opcode_count--;
3672 unwind.sp_restored = 0;
3673 range = (range | 0x2000) & ~0x1000;
3674 unwind.pending_offset = 0;
3675 }
e16bb312 3676
01ae4198
DJ
3677 /* Pop r4-r15. */
3678 if (range & 0xfff0)
c19d1205 3679 {
01ae4198
DJ
3680 /* See if we can use the short opcodes. These pop a block of up to 8
3681 registers starting with r4, plus maybe r14. */
3682 for (n = 0; n < 8; n++)
3683 {
3684 /* Break at the first non-saved register. */
3685 if ((range & (1 << (n + 4))) == 0)
3686 break;
3687 }
3688 /* See if there are any other bits set. */
3689 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3690 {
3691 /* Use the long form. */
3692 op = 0x8000 | ((range >> 4) & 0xfff);
3693 add_unwind_opcode (op, 2);
3694 }
0dd132b6 3695 else
01ae4198
DJ
3696 {
3697 /* Use the short form. */
3698 if (range & 0x4000)
3699 op = 0xa8; /* Pop r14. */
3700 else
3701 op = 0xa0; /* Do not pop r14. */
3702 op |= (n - 1);
3703 add_unwind_opcode (op, 1);
3704 }
c19d1205 3705 }
0dd132b6 3706
c19d1205
ZW
3707 /* Pop r0-r3. */
3708 if (range & 0xf)
3709 {
3710 op = 0xb100 | (range & 0xf);
3711 add_unwind_opcode (op, 2);
0dd132b6
NC
3712 }
3713
c19d1205
ZW
3714 /* Record the number of bytes pushed. */
3715 for (n = 0; n < 16; n++)
3716 {
3717 if (range & (1 << n))
3718 unwind.frame_size += 4;
3719 }
0dd132b6
NC
3720}
3721
c19d1205
ZW
3722
3723/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3724
3725static void
c19d1205 3726s_arm_unwind_save_fpa (int reg)
b99bd4ef 3727{
c19d1205
ZW
3728 expressionS exp;
3729 int num_regs;
3730 valueT op;
b99bd4ef 3731
c19d1205
ZW
3732 /* Get Number of registers to transfer. */
3733 if (skip_past_comma (&input_line_pointer) != FAIL)
3734 expression (&exp);
3735 else
3736 exp.X_op = O_illegal;
b99bd4ef 3737
c19d1205 3738 if (exp.X_op != O_constant)
b99bd4ef 3739 {
c19d1205
ZW
3740 as_bad (_("expected , <constant>"));
3741 ignore_rest_of_line ();
b99bd4ef
NC
3742 return;
3743 }
3744
c19d1205
ZW
3745 num_regs = exp.X_add_number;
3746
3747 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3748 {
c19d1205
ZW
3749 as_bad (_("number of registers must be in the range [1:4]"));
3750 ignore_rest_of_line ();
b99bd4ef
NC
3751 return;
3752 }
3753
c19d1205 3754 demand_empty_rest_of_line ();
b99bd4ef 3755
c19d1205
ZW
3756 if (reg == 4)
3757 {
3758 /* Short form. */
3759 op = 0xb4 | (num_regs - 1);
3760 add_unwind_opcode (op, 1);
3761 }
b99bd4ef
NC
3762 else
3763 {
c19d1205
ZW
3764 /* Long form. */
3765 op = 0xc800 | (reg << 4) | (num_regs - 1);
3766 add_unwind_opcode (op, 2);
b99bd4ef 3767 }
c19d1205 3768 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3769}
3770
c19d1205 3771
fa073d69
MS
3772/* Parse a directive saving VFP registers for ARMv6 and above. */
3773
3774static void
3775s_arm_unwind_save_vfp_armv6 (void)
3776{
3777 int count;
3778 unsigned int start;
3779 valueT op;
3780 int num_vfpv3_regs = 0;
3781 int num_regs_below_16;
3782
3783 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3784 if (count == FAIL)
3785 {
3786 as_bad (_("expected register list"));
3787 ignore_rest_of_line ();
3788 return;
3789 }
3790
3791 demand_empty_rest_of_line ();
3792
3793 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3794 than FSTMX/FLDMX-style ones). */
3795
3796 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3797 if (start >= 16)
3798 num_vfpv3_regs = count;
3799 else if (start + count > 16)
3800 num_vfpv3_regs = start + count - 16;
3801
3802 if (num_vfpv3_regs > 0)
3803 {
3804 int start_offset = start > 16 ? start - 16 : 0;
3805 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3806 add_unwind_opcode (op, 2);
3807 }
3808
3809 /* Generate opcode for registers numbered in the range 0 .. 15. */
3810 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3811 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3812 if (num_regs_below_16 > 0)
3813 {
3814 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3815 add_unwind_opcode (op, 2);
3816 }
3817
3818 unwind.frame_size += count * 8;
3819}
3820
3821
3822/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3823
3824static void
c19d1205 3825s_arm_unwind_save_vfp (void)
b99bd4ef 3826{
c19d1205 3827 int count;
ca3f61f7 3828 unsigned int reg;
c19d1205 3829 valueT op;
b99bd4ef 3830
5287ad62 3831 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3832 if (count == FAIL)
b99bd4ef 3833 {
c19d1205
ZW
3834 as_bad (_("expected register list"));
3835 ignore_rest_of_line ();
b99bd4ef
NC
3836 return;
3837 }
3838
c19d1205 3839 demand_empty_rest_of_line ();
b99bd4ef 3840
c19d1205 3841 if (reg == 8)
b99bd4ef 3842 {
c19d1205
ZW
3843 /* Short form. */
3844 op = 0xb8 | (count - 1);
3845 add_unwind_opcode (op, 1);
b99bd4ef 3846 }
c19d1205 3847 else
b99bd4ef 3848 {
c19d1205
ZW
3849 /* Long form. */
3850 op = 0xb300 | (reg << 4) | (count - 1);
3851 add_unwind_opcode (op, 2);
b99bd4ef 3852 }
c19d1205
ZW
3853 unwind.frame_size += count * 8 + 4;
3854}
b99bd4ef 3855
b99bd4ef 3856
c19d1205
ZW
3857/* Parse a directive saving iWMMXt data registers. */
3858
3859static void
3860s_arm_unwind_save_mmxwr (void)
3861{
3862 int reg;
3863 int hi_reg;
3864 int i;
3865 unsigned mask = 0;
3866 valueT op;
b99bd4ef 3867
c19d1205
ZW
3868 if (*input_line_pointer == '{')
3869 input_line_pointer++;
b99bd4ef 3870
c19d1205 3871 do
b99bd4ef 3872 {
dcbf9037 3873 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3874
c19d1205 3875 if (reg == FAIL)
b99bd4ef 3876 {
9b7132d3 3877 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3878 goto error;
b99bd4ef
NC
3879 }
3880
c19d1205
ZW
3881 if (mask >> reg)
3882 as_tsktsk (_("register list not in ascending order"));
3883 mask |= 1 << reg;
b99bd4ef 3884
c19d1205
ZW
3885 if (*input_line_pointer == '-')
3886 {
3887 input_line_pointer++;
dcbf9037 3888 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3889 if (hi_reg == FAIL)
3890 {
9b7132d3 3891 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3892 goto error;
3893 }
3894 else if (reg >= hi_reg)
3895 {
3896 as_bad (_("bad register range"));
3897 goto error;
3898 }
3899 for (; reg < hi_reg; reg++)
3900 mask |= 1 << reg;
3901 }
3902 }
3903 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3904
c19d1205
ZW
3905 if (*input_line_pointer == '}')
3906 input_line_pointer++;
b99bd4ef 3907
c19d1205 3908 demand_empty_rest_of_line ();
b99bd4ef 3909
708587a4 3910 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3911 the list. */
3912 flush_pending_unwind ();
b99bd4ef 3913
c19d1205 3914 for (i = 0; i < 16; i++)
b99bd4ef 3915 {
c19d1205
ZW
3916 if (mask & (1 << i))
3917 unwind.frame_size += 8;
b99bd4ef
NC
3918 }
3919
c19d1205
ZW
3920 /* Attempt to combine with a previous opcode. We do this because gcc
3921 likes to output separate unwind directives for a single block of
3922 registers. */
3923 if (unwind.opcode_count > 0)
b99bd4ef 3924 {
c19d1205
ZW
3925 i = unwind.opcodes[unwind.opcode_count - 1];
3926 if ((i & 0xf8) == 0xc0)
3927 {
3928 i &= 7;
3929 /* Only merge if the blocks are contiguous. */
3930 if (i < 6)
3931 {
3932 if ((mask & 0xfe00) == (1 << 9))
3933 {
3934 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3935 unwind.opcode_count--;
3936 }
3937 }
3938 else if (i == 6 && unwind.opcode_count >= 2)
3939 {
3940 i = unwind.opcodes[unwind.opcode_count - 2];
3941 reg = i >> 4;
3942 i &= 0xf;
b99bd4ef 3943
c19d1205
ZW
3944 op = 0xffff << (reg - 1);
3945 if (reg > 0
87a1fd79 3946 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3947 {
3948 op = (1 << (reg + i + 1)) - 1;
3949 op &= ~((1 << reg) - 1);
3950 mask |= op;
3951 unwind.opcode_count -= 2;
3952 }
3953 }
3954 }
b99bd4ef
NC
3955 }
3956
c19d1205
ZW
3957 hi_reg = 15;
3958 /* We want to generate opcodes in the order the registers have been
3959 saved, ie. descending order. */
3960 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3961 {
c19d1205
ZW
3962 /* Save registers in blocks. */
3963 if (reg < 0
3964 || !(mask & (1 << reg)))
3965 {
3966 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3967 preceding block. */
c19d1205
ZW
3968 if (reg != hi_reg)
3969 {
3970 if (reg == 9)
3971 {
3972 /* Short form. */
3973 op = 0xc0 | (hi_reg - 10);
3974 add_unwind_opcode (op, 1);
3975 }
3976 else
3977 {
3978 /* Long form. */
3979 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3980 add_unwind_opcode (op, 2);
3981 }
3982 }
3983 hi_reg = reg - 1;
3984 }
b99bd4ef
NC
3985 }
3986
c19d1205
ZW
3987 return;
3988error:
3989 ignore_rest_of_line ();
b99bd4ef
NC
3990}
3991
3992static void
c19d1205 3993s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3994{
c19d1205
ZW
3995 int reg;
3996 int hi_reg;
3997 unsigned mask = 0;
3998 valueT op;
b99bd4ef 3999
c19d1205
ZW
4000 if (*input_line_pointer == '{')
4001 input_line_pointer++;
b99bd4ef 4002
c19d1205 4003 do
b99bd4ef 4004 {
dcbf9037 4005 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4006
c19d1205
ZW
4007 if (reg == FAIL)
4008 {
9b7132d3 4009 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4010 goto error;
4011 }
b99bd4ef 4012
c19d1205
ZW
4013 reg -= 8;
4014 if (mask >> reg)
4015 as_tsktsk (_("register list not in ascending order"));
4016 mask |= 1 << reg;
b99bd4ef 4017
c19d1205
ZW
4018 if (*input_line_pointer == '-')
4019 {
4020 input_line_pointer++;
dcbf9037 4021 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4022 if (hi_reg == FAIL)
4023 {
9b7132d3 4024 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4025 goto error;
4026 }
4027 else if (reg >= hi_reg)
4028 {
4029 as_bad (_("bad register range"));
4030 goto error;
4031 }
4032 for (; reg < hi_reg; reg++)
4033 mask |= 1 << reg;
4034 }
b99bd4ef 4035 }
c19d1205 4036 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4037
c19d1205
ZW
4038 if (*input_line_pointer == '}')
4039 input_line_pointer++;
b99bd4ef 4040
c19d1205
ZW
4041 demand_empty_rest_of_line ();
4042
708587a4 4043 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4044 the list. */
4045 flush_pending_unwind ();
b99bd4ef 4046
c19d1205 4047 for (reg = 0; reg < 16; reg++)
b99bd4ef 4048 {
c19d1205
ZW
4049 if (mask & (1 << reg))
4050 unwind.frame_size += 4;
b99bd4ef 4051 }
c19d1205
ZW
4052 op = 0xc700 | mask;
4053 add_unwind_opcode (op, 2);
4054 return;
4055error:
4056 ignore_rest_of_line ();
b99bd4ef
NC
4057}
4058
c19d1205 4059
fa073d69
MS
4060/* Parse an unwind_save directive.
4061 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4062
b99bd4ef 4063static void
fa073d69 4064s_arm_unwind_save (int arch_v6)
b99bd4ef 4065{
c19d1205
ZW
4066 char *peek;
4067 struct reg_entry *reg;
4068 bfd_boolean had_brace = FALSE;
b99bd4ef 4069
921e5f0a 4070 if (!unwind.proc_start)
c921be7d 4071 as_bad (MISSING_FNSTART);
921e5f0a 4072
c19d1205
ZW
4073 /* Figure out what sort of save we have. */
4074 peek = input_line_pointer;
b99bd4ef 4075
c19d1205 4076 if (*peek == '{')
b99bd4ef 4077 {
c19d1205
ZW
4078 had_brace = TRUE;
4079 peek++;
b99bd4ef
NC
4080 }
4081
c19d1205 4082 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4083
c19d1205 4084 if (!reg)
b99bd4ef 4085 {
c19d1205
ZW
4086 as_bad (_("register expected"));
4087 ignore_rest_of_line ();
b99bd4ef
NC
4088 return;
4089 }
4090
c19d1205 4091 switch (reg->type)
b99bd4ef 4092 {
c19d1205
ZW
4093 case REG_TYPE_FN:
4094 if (had_brace)
4095 {
4096 as_bad (_("FPA .unwind_save does not take a register list"));
4097 ignore_rest_of_line ();
4098 return;
4099 }
93ac2687 4100 input_line_pointer = peek;
c19d1205 4101 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4102 return;
c19d1205
ZW
4103
4104 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4105 case REG_TYPE_VFD:
4106 if (arch_v6)
4107 s_arm_unwind_save_vfp_armv6 ();
4108 else
4109 s_arm_unwind_save_vfp ();
4110 return;
c19d1205
ZW
4111 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4112 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4113
4114 default:
4115 as_bad (_(".unwind_save does not support this kind of register"));
4116 ignore_rest_of_line ();
b99bd4ef 4117 }
c19d1205 4118}
b99bd4ef 4119
b99bd4ef 4120
c19d1205
ZW
4121/* Parse an unwind_movsp directive. */
4122
4123static void
4124s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4125{
4126 int reg;
4127 valueT op;
4fa3602b 4128 int offset;
c19d1205 4129
921e5f0a 4130 if (!unwind.proc_start)
c921be7d 4131 as_bad (MISSING_FNSTART);
921e5f0a 4132
dcbf9037 4133 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4134 if (reg == FAIL)
b99bd4ef 4135 {
9b7132d3 4136 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4137 ignore_rest_of_line ();
b99bd4ef
NC
4138 return;
4139 }
4fa3602b
PB
4140
4141 /* Optional constant. */
4142 if (skip_past_comma (&input_line_pointer) != FAIL)
4143 {
4144 if (immediate_for_directive (&offset) == FAIL)
4145 return;
4146 }
4147 else
4148 offset = 0;
4149
c19d1205 4150 demand_empty_rest_of_line ();
b99bd4ef 4151
c19d1205 4152 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4153 {
c19d1205 4154 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4155 return;
4156 }
4157
c19d1205
ZW
4158 if (unwind.fp_reg != REG_SP)
4159 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4160
c19d1205
ZW
4161 /* Generate opcode to restore the value. */
4162 op = 0x90 | reg;
4163 add_unwind_opcode (op, 1);
4164
4165 /* Record the information for later. */
4166 unwind.fp_reg = reg;
4fa3602b 4167 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4168 unwind.sp_restored = 1;
b05fe5cf
ZW
4169}
4170
c19d1205
ZW
4171/* Parse an unwind_pad directive. */
4172
b05fe5cf 4173static void
c19d1205 4174s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4175{
c19d1205 4176 int offset;
b05fe5cf 4177
921e5f0a 4178 if (!unwind.proc_start)
c921be7d 4179 as_bad (MISSING_FNSTART);
921e5f0a 4180
c19d1205
ZW
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
b99bd4ef 4183
c19d1205
ZW
4184 if (offset & 3)
4185 {
4186 as_bad (_("stack increment must be multiple of 4"));
4187 ignore_rest_of_line ();
4188 return;
4189 }
b99bd4ef 4190
c19d1205
ZW
4191 /* Don't generate any opcodes, just record the details for later. */
4192 unwind.frame_size += offset;
4193 unwind.pending_offset += offset;
4194
4195 demand_empty_rest_of_line ();
4196}
4197
4198/* Parse an unwind_setfp directive. */
4199
4200static void
4201s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4202{
c19d1205
ZW
4203 int sp_reg;
4204 int fp_reg;
4205 int offset;
4206
921e5f0a 4207 if (!unwind.proc_start)
c921be7d 4208 as_bad (MISSING_FNSTART);
921e5f0a 4209
dcbf9037 4210 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4211 if (skip_past_comma (&input_line_pointer) == FAIL)
4212 sp_reg = FAIL;
4213 else
dcbf9037 4214 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4215
c19d1205
ZW
4216 if (fp_reg == FAIL || sp_reg == FAIL)
4217 {
4218 as_bad (_("expected <reg>, <reg>"));
4219 ignore_rest_of_line ();
4220 return;
4221 }
b99bd4ef 4222
c19d1205
ZW
4223 /* Optional constant. */
4224 if (skip_past_comma (&input_line_pointer) != FAIL)
4225 {
4226 if (immediate_for_directive (&offset) == FAIL)
4227 return;
4228 }
4229 else
4230 offset = 0;
a737bd4d 4231
c19d1205 4232 demand_empty_rest_of_line ();
a737bd4d 4233
fdfde340 4234 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4235 {
c19d1205
ZW
4236 as_bad (_("register must be either sp or set by a previous"
4237 "unwind_movsp directive"));
4238 return;
a737bd4d
NC
4239 }
4240
c19d1205
ZW
4241 /* Don't generate any opcodes, just record the information for later. */
4242 unwind.fp_reg = fp_reg;
4243 unwind.fp_used = 1;
fdfde340 4244 if (sp_reg == REG_SP)
c19d1205
ZW
4245 unwind.fp_offset = unwind.frame_size - offset;
4246 else
4247 unwind.fp_offset -= offset;
a737bd4d
NC
4248}
4249
c19d1205
ZW
4250/* Parse an unwind_raw directive. */
4251
4252static void
4253s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4254{
c19d1205 4255 expressionS exp;
708587a4 4256 /* This is an arbitrary limit. */
c19d1205
ZW
4257 unsigned char op[16];
4258 int count;
a737bd4d 4259
921e5f0a 4260 if (!unwind.proc_start)
c921be7d 4261 as_bad (MISSING_FNSTART);
921e5f0a 4262
c19d1205
ZW
4263 expression (&exp);
4264 if (exp.X_op == O_constant
4265 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4266 {
c19d1205
ZW
4267 unwind.frame_size += exp.X_add_number;
4268 expression (&exp);
4269 }
4270 else
4271 exp.X_op = O_illegal;
a737bd4d 4272
c19d1205
ZW
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected <offset>, <opcode>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
a737bd4d 4279
c19d1205 4280 count = 0;
a737bd4d 4281
c19d1205
ZW
4282 /* Parse the opcode. */
4283 for (;;)
4284 {
4285 if (count >= 16)
4286 {
4287 as_bad (_("unwind opcode too long"));
4288 ignore_rest_of_line ();
a737bd4d 4289 }
c19d1205 4290 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4291 {
c19d1205
ZW
4292 as_bad (_("invalid unwind opcode"));
4293 ignore_rest_of_line ();
4294 return;
a737bd4d 4295 }
c19d1205 4296 op[count++] = exp.X_add_number;
a737bd4d 4297
c19d1205
ZW
4298 /* Parse the next byte. */
4299 if (skip_past_comma (&input_line_pointer) == FAIL)
4300 break;
a737bd4d 4301
c19d1205
ZW
4302 expression (&exp);
4303 }
b99bd4ef 4304
c19d1205
ZW
4305 /* Add the opcode bytes in reverse order. */
4306 while (count--)
4307 add_unwind_opcode (op[count], 1);
b99bd4ef 4308
c19d1205 4309 demand_empty_rest_of_line ();
b99bd4ef 4310}
ee065d83
PB
4311
4312
4313/* Parse a .eabi_attribute directive. */
4314
4315static void
4316s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4317{
ee3c0378
AS
4318 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4319
4320 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4321 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4322}
4323
0855e32b
NS
4324/* Emit a tls fix for the symbol. */
4325
4326static void
4327s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4328{
4329 char *p;
4330 expressionS exp;
4331#ifdef md_flush_pending_output
4332 md_flush_pending_output ();
4333#endif
4334
4335#ifdef md_cons_align
4336 md_cons_align (4);
4337#endif
4338
4339 /* Since we're just labelling the code, there's no need to define a
4340 mapping symbol. */
4341 expression (&exp);
4342 p = obstack_next_free (&frchain_now->frch_obstack);
4343 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4344 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4345 : BFD_RELOC_ARM_TLS_DESCSEQ);
4346}
cdf9ccec 4347#endif /* OBJ_ELF */
0855e32b 4348
ee065d83 4349static void s_arm_arch (int);
7a1d4c38 4350static void s_arm_object_arch (int);
ee065d83
PB
4351static void s_arm_cpu (int);
4352static void s_arm_fpu (int);
69133863 4353static void s_arm_arch_extension (int);
b99bd4ef 4354
f0927246
NC
4355#ifdef TE_PE
4356
4357static void
5f4273c7 4358pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4359{
4360 expressionS exp;
4361
4362 do
4363 {
4364 expression (&exp);
4365 if (exp.X_op == O_symbol)
4366 exp.X_op = O_secrel;
4367
4368 emit_expr (&exp, 4);
4369 }
4370 while (*input_line_pointer++ == ',');
4371
4372 input_line_pointer--;
4373 demand_empty_rest_of_line ();
4374}
4375#endif /* TE_PE */
4376
c19d1205
ZW
4377/* This table describes all the machine specific pseudo-ops the assembler
4378 has to support. The fields are:
4379 pseudo-op name without dot
4380 function to call to execute this pseudo-op
4381 Integer arg to pass to the function. */
b99bd4ef 4382
c19d1205 4383const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4384{
c19d1205
ZW
4385 /* Never called because '.req' does not start a line. */
4386 { "req", s_req, 0 },
dcbf9037
JB
4387 /* Following two are likewise never called. */
4388 { "dn", s_dn, 0 },
4389 { "qn", s_qn, 0 },
c19d1205
ZW
4390 { "unreq", s_unreq, 0 },
4391 { "bss", s_bss, 0 },
4392 { "align", s_align, 0 },
4393 { "arm", s_arm, 0 },
4394 { "thumb", s_thumb, 0 },
4395 { "code", s_code, 0 },
4396 { "force_thumb", s_force_thumb, 0 },
4397 { "thumb_func", s_thumb_func, 0 },
4398 { "thumb_set", s_thumb_set, 0 },
4399 { "even", s_even, 0 },
4400 { "ltorg", s_ltorg, 0 },
4401 { "pool", s_ltorg, 0 },
4402 { "syntax", s_syntax, 0 },
8463be01
PB
4403 { "cpu", s_arm_cpu, 0 },
4404 { "arch", s_arm_arch, 0 },
7a1d4c38 4405 { "object_arch", s_arm_object_arch, 0 },
8463be01 4406 { "fpu", s_arm_fpu, 0 },
69133863 4407 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4408#ifdef OBJ_ELF
c921be7d
NC
4409 { "word", s_arm_elf_cons, 4 },
4410 { "long", s_arm_elf_cons, 4 },
4411 { "inst.n", s_arm_elf_inst, 2 },
4412 { "inst.w", s_arm_elf_inst, 4 },
4413 { "inst", s_arm_elf_inst, 0 },
4414 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4415 { "fnstart", s_arm_unwind_fnstart, 0 },
4416 { "fnend", s_arm_unwind_fnend, 0 },
4417 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4418 { "personality", s_arm_unwind_personality, 0 },
4419 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4420 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4421 { "save", s_arm_unwind_save, 0 },
fa073d69 4422 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4423 { "movsp", s_arm_unwind_movsp, 0 },
4424 { "pad", s_arm_unwind_pad, 0 },
4425 { "setfp", s_arm_unwind_setfp, 0 },
4426 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4427 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4428 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4429#else
4430 { "word", cons, 4},
f0927246
NC
4431
4432 /* These are used for dwarf. */
4433 {"2byte", cons, 2},
4434 {"4byte", cons, 4},
4435 {"8byte", cons, 8},
4436 /* These are used for dwarf2. */
4437 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4438 { "loc", dwarf2_directive_loc, 0 },
4439 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4440#endif
4441 { "extend", float_cons, 'x' },
4442 { "ldouble", float_cons, 'x' },
4443 { "packed", float_cons, 'p' },
f0927246
NC
4444#ifdef TE_PE
4445 {"secrel32", pe_directive_secrel, 0},
4446#endif
c19d1205
ZW
4447 { 0, 0, 0 }
4448};
4449\f
4450/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4451
c19d1205
ZW
4452/* Generic immediate-value read function for use in insn parsing.
4453 STR points to the beginning of the immediate (the leading #);
4454 VAL receives the value; if the value is outside [MIN, MAX]
4455 issue an error. PREFIX_OPT is true if the immediate prefix is
4456 optional. */
b99bd4ef 4457
c19d1205
ZW
4458static int
4459parse_immediate (char **str, int *val, int min, int max,
4460 bfd_boolean prefix_opt)
4461{
4462 expressionS exp;
4463 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4464 if (exp.X_op != O_constant)
b99bd4ef 4465 {
c19d1205
ZW
4466 inst.error = _("constant expression required");
4467 return FAIL;
4468 }
b99bd4ef 4469
c19d1205
ZW
4470 if (exp.X_add_number < min || exp.X_add_number > max)
4471 {
4472 inst.error = _("immediate value out of range");
4473 return FAIL;
4474 }
b99bd4ef 4475
c19d1205
ZW
4476 *val = exp.X_add_number;
4477 return SUCCESS;
4478}
b99bd4ef 4479
5287ad62 4480/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4481 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4482 instructions. Puts the result directly in inst.operands[i]. */
4483
4484static int
4485parse_big_immediate (char **str, int i)
4486{
4487 expressionS exp;
4488 char *ptr = *str;
4489
4490 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4491
4492 if (exp.X_op == O_constant)
036dc3f7
PB
4493 {
4494 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4495 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4496 O_constant. We have to be careful not to break compilation for
4497 32-bit X_add_number, though. */
58ad575f 4498 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4499 {
4500 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4501 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4502 inst.operands[i].regisimm = 1;
4503 }
4504 }
5287ad62 4505 else if (exp.X_op == O_big
95b75c01 4506 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4507 {
4508 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4509
5287ad62
JB
4510 /* Bignums have their least significant bits in
4511 generic_bignum[0]. Make sure we put 32 bits in imm and
4512 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4513 gas_assert (parts != 0);
95b75c01
NC
4514
4515 /* Make sure that the number is not too big.
4516 PR 11972: Bignums can now be sign-extended to the
4517 size of a .octa so check that the out of range bits
4518 are all zero or all one. */
4519 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4520 {
4521 LITTLENUM_TYPE m = -1;
4522
4523 if (generic_bignum[parts * 2] != 0
4524 && generic_bignum[parts * 2] != m)
4525 return FAIL;
4526
4527 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4528 if (generic_bignum[j] != generic_bignum[j-1])
4529 return FAIL;
4530 }
4531
5287ad62
JB
4532 inst.operands[i].imm = 0;
4533 for (j = 0; j < parts; j++, idx++)
4534 inst.operands[i].imm |= generic_bignum[idx]
4535 << (LITTLENUM_NUMBER_OF_BITS * j);
4536 inst.operands[i].reg = 0;
4537 for (j = 0; j < parts; j++, idx++)
4538 inst.operands[i].reg |= generic_bignum[idx]
4539 << (LITTLENUM_NUMBER_OF_BITS * j);
4540 inst.operands[i].regisimm = 1;
4541 }
4542 else
4543 return FAIL;
5f4273c7 4544
5287ad62
JB
4545 *str = ptr;
4546
4547 return SUCCESS;
4548}
4549
c19d1205
ZW
4550/* Returns the pseudo-register number of an FPA immediate constant,
4551 or FAIL if there isn't a valid constant here. */
b99bd4ef 4552
c19d1205
ZW
4553static int
4554parse_fpa_immediate (char ** str)
4555{
4556 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4557 char * save_in;
4558 expressionS exp;
4559 int i;
4560 int j;
b99bd4ef 4561
c19d1205
ZW
4562 /* First try and match exact strings, this is to guarantee
4563 that some formats will work even for cross assembly. */
b99bd4ef 4564
c19d1205
ZW
4565 for (i = 0; fp_const[i]; i++)
4566 {
4567 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4568 {
c19d1205 4569 char *start = *str;
b99bd4ef 4570
c19d1205
ZW
4571 *str += strlen (fp_const[i]);
4572 if (is_end_of_line[(unsigned char) **str])
4573 return i + 8;
4574 *str = start;
4575 }
4576 }
b99bd4ef 4577
c19d1205
ZW
4578 /* Just because we didn't get a match doesn't mean that the constant
4579 isn't valid, just that it is in a format that we don't
4580 automatically recognize. Try parsing it with the standard
4581 expression routines. */
b99bd4ef 4582
c19d1205 4583 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4584
c19d1205
ZW
4585 /* Look for a raw floating point number. */
4586 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4587 && is_end_of_line[(unsigned char) *save_in])
4588 {
4589 for (i = 0; i < NUM_FLOAT_VALS; i++)
4590 {
4591 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4592 {
c19d1205
ZW
4593 if (words[j] != fp_values[i][j])
4594 break;
b99bd4ef
NC
4595 }
4596
c19d1205 4597 if (j == MAX_LITTLENUMS)
b99bd4ef 4598 {
c19d1205
ZW
4599 *str = save_in;
4600 return i + 8;
b99bd4ef
NC
4601 }
4602 }
4603 }
b99bd4ef 4604
c19d1205
ZW
4605 /* Try and parse a more complex expression, this will probably fail
4606 unless the code uses a floating point prefix (eg "0f"). */
4607 save_in = input_line_pointer;
4608 input_line_pointer = *str;
4609 if (expression (&exp) == absolute_section
4610 && exp.X_op == O_big
4611 && exp.X_add_number < 0)
4612 {
4613 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4614 Ditto for 15. */
4615 if (gen_to_words (words, 5, (long) 15) == 0)
4616 {
4617 for (i = 0; i < NUM_FLOAT_VALS; i++)
4618 {
4619 for (j = 0; j < MAX_LITTLENUMS; j++)
4620 {
4621 if (words[j] != fp_values[i][j])
4622 break;
4623 }
b99bd4ef 4624
c19d1205
ZW
4625 if (j == MAX_LITTLENUMS)
4626 {
4627 *str = input_line_pointer;
4628 input_line_pointer = save_in;
4629 return i + 8;
4630 }
4631 }
4632 }
b99bd4ef
NC
4633 }
4634
c19d1205
ZW
4635 *str = input_line_pointer;
4636 input_line_pointer = save_in;
4637 inst.error = _("invalid FPA immediate expression");
4638 return FAIL;
b99bd4ef
NC
4639}
4640
136da414
JB
4641/* Returns 1 if a number has "quarter-precision" float format
4642 0baBbbbbbc defgh000 00000000 00000000. */
4643
4644static int
4645is_quarter_float (unsigned imm)
4646{
4647 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4648 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4649}
4650
4651/* Parse an 8-bit "quarter-precision" floating point number of the form:
4652 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4653 The zero and minus-zero cases need special handling, since they can't be
4654 encoded in the "quarter-precision" float format, but can nonetheless be
4655 loaded as integer constants. */
136da414
JB
4656
4657static unsigned
4658parse_qfloat_immediate (char **ccp, int *immed)
4659{
4660 char *str = *ccp;
c96612cc 4661 char *fpnum;
136da414 4662 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4663 int found_fpchar = 0;
5f4273c7 4664
136da414 4665 skip_past_char (&str, '#');
5f4273c7 4666
c96612cc
JB
4667 /* We must not accidentally parse an integer as a floating-point number. Make
4668 sure that the value we parse is not an integer by checking for special
4669 characters '.' or 'e'.
4670 FIXME: This is a horrible hack, but doing better is tricky because type
4671 information isn't in a very usable state at parse time. */
4672 fpnum = str;
4673 skip_whitespace (fpnum);
4674
4675 if (strncmp (fpnum, "0x", 2) == 0)
4676 return FAIL;
4677 else
4678 {
4679 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4680 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4681 {
4682 found_fpchar = 1;
4683 break;
4684 }
4685
4686 if (!found_fpchar)
4687 return FAIL;
4688 }
5f4273c7 4689
136da414
JB
4690 if ((str = atof_ieee (str, 's', words)) != NULL)
4691 {
4692 unsigned fpword = 0;
4693 int i;
5f4273c7 4694
136da414
JB
4695 /* Our FP word must be 32 bits (single-precision FP). */
4696 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4697 {
4698 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4699 fpword |= words[i];
4700 }
5f4273c7 4701
c96612cc 4702 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4703 *immed = fpword;
4704 else
4705 return FAIL;
4706
4707 *ccp = str;
5f4273c7 4708
136da414
JB
4709 return SUCCESS;
4710 }
5f4273c7 4711
136da414
JB
4712 return FAIL;
4713}
4714
c19d1205
ZW
4715/* Shift operands. */
4716enum shift_kind
b99bd4ef 4717{
c19d1205
ZW
4718 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4719};
b99bd4ef 4720
c19d1205
ZW
4721struct asm_shift_name
4722{
4723 const char *name;
4724 enum shift_kind kind;
4725};
b99bd4ef 4726
c19d1205
ZW
4727/* Third argument to parse_shift. */
4728enum parse_shift_mode
4729{
4730 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4731 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4732 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4733 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4734 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4735};
b99bd4ef 4736
c19d1205
ZW
4737/* Parse a <shift> specifier on an ARM data processing instruction.
4738 This has three forms:
b99bd4ef 4739
c19d1205
ZW
4740 (LSL|LSR|ASL|ASR|ROR) Rs
4741 (LSL|LSR|ASL|ASR|ROR) #imm
4742 RRX
b99bd4ef 4743
c19d1205
ZW
4744 Note that ASL is assimilated to LSL in the instruction encoding, and
4745 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4746
c19d1205
ZW
4747static int
4748parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4749{
c19d1205
ZW
4750 const struct asm_shift_name *shift_name;
4751 enum shift_kind shift;
4752 char *s = *str;
4753 char *p = s;
4754 int reg;
b99bd4ef 4755
c19d1205
ZW
4756 for (p = *str; ISALPHA (*p); p++)
4757 ;
b99bd4ef 4758
c19d1205 4759 if (p == *str)
b99bd4ef 4760 {
c19d1205
ZW
4761 inst.error = _("shift expression expected");
4762 return FAIL;
b99bd4ef
NC
4763 }
4764
21d799b5
NC
4765 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4766 p - *str);
c19d1205
ZW
4767
4768 if (shift_name == NULL)
b99bd4ef 4769 {
c19d1205
ZW
4770 inst.error = _("shift expression expected");
4771 return FAIL;
b99bd4ef
NC
4772 }
4773
c19d1205 4774 shift = shift_name->kind;
b99bd4ef 4775
c19d1205
ZW
4776 switch (mode)
4777 {
4778 case NO_SHIFT_RESTRICT:
4779 case SHIFT_IMMEDIATE: break;
b99bd4ef 4780
c19d1205
ZW
4781 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4782 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4783 {
4784 inst.error = _("'LSL' or 'ASR' required");
4785 return FAIL;
4786 }
4787 break;
b99bd4ef 4788
c19d1205
ZW
4789 case SHIFT_LSL_IMMEDIATE:
4790 if (shift != SHIFT_LSL)
4791 {
4792 inst.error = _("'LSL' required");
4793 return FAIL;
4794 }
4795 break;
b99bd4ef 4796
c19d1205
ZW
4797 case SHIFT_ASR_IMMEDIATE:
4798 if (shift != SHIFT_ASR)
4799 {
4800 inst.error = _("'ASR' required");
4801 return FAIL;
4802 }
4803 break;
b99bd4ef 4804
c19d1205
ZW
4805 default: abort ();
4806 }
b99bd4ef 4807
c19d1205
ZW
4808 if (shift != SHIFT_RRX)
4809 {
4810 /* Whitespace can appear here if the next thing is a bare digit. */
4811 skip_whitespace (p);
b99bd4ef 4812
c19d1205 4813 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4814 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4815 {
4816 inst.operands[i].imm = reg;
4817 inst.operands[i].immisreg = 1;
4818 }
4819 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4820 return FAIL;
4821 }
4822 inst.operands[i].shift_kind = shift;
4823 inst.operands[i].shifted = 1;
4824 *str = p;
4825 return SUCCESS;
b99bd4ef
NC
4826}
4827
c19d1205 4828/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4829
c19d1205
ZW
4830 #<immediate>
4831 #<immediate>, <rotate>
4832 <Rm>
4833 <Rm>, <shift>
b99bd4ef 4834
c19d1205
ZW
4835 where <shift> is defined by parse_shift above, and <rotate> is a
4836 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4837 is deferred to md_apply_fix. */
b99bd4ef 4838
c19d1205
ZW
4839static int
4840parse_shifter_operand (char **str, int i)
4841{
4842 int value;
91d6fa6a 4843 expressionS exp;
b99bd4ef 4844
dcbf9037 4845 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4846 {
4847 inst.operands[i].reg = value;
4848 inst.operands[i].isreg = 1;
b99bd4ef 4849
c19d1205
ZW
4850 /* parse_shift will override this if appropriate */
4851 inst.reloc.exp.X_op = O_constant;
4852 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4853
c19d1205
ZW
4854 if (skip_past_comma (str) == FAIL)
4855 return SUCCESS;
b99bd4ef 4856
c19d1205
ZW
4857 /* Shift operation on register. */
4858 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4859 }
4860
c19d1205
ZW
4861 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4862 return FAIL;
b99bd4ef 4863
c19d1205 4864 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4865 {
c19d1205 4866 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4867 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4868 return FAIL;
b99bd4ef 4869
91d6fa6a 4870 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4871 {
4872 inst.error = _("constant expression expected");
4873 return FAIL;
4874 }
b99bd4ef 4875
91d6fa6a 4876 value = exp.X_add_number;
c19d1205
ZW
4877 if (value < 0 || value > 30 || value % 2 != 0)
4878 {
4879 inst.error = _("invalid rotation");
4880 return FAIL;
4881 }
4882 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4883 {
4884 inst.error = _("invalid constant");
4885 return FAIL;
4886 }
09d92015 4887
a415b1cd
JB
4888 /* Encode as specified. */
4889 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4890 return SUCCESS;
09d92015
MM
4891 }
4892
c19d1205
ZW
4893 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4894 inst.reloc.pc_rel = 0;
4895 return SUCCESS;
09d92015
MM
4896}
4897
4962c51a
MS
4898/* Group relocation information. Each entry in the table contains the
4899 textual name of the relocation as may appear in assembler source
4900 and must end with a colon.
4901 Along with this textual name are the relocation codes to be used if
4902 the corresponding instruction is an ALU instruction (ADD or SUB only),
4903 an LDR, an LDRS, or an LDC. */
4904
4905struct group_reloc_table_entry
4906{
4907 const char *name;
4908 int alu_code;
4909 int ldr_code;
4910 int ldrs_code;
4911 int ldc_code;
4912};
4913
4914typedef enum
4915{
4916 /* Varieties of non-ALU group relocation. */
4917
4918 GROUP_LDR,
4919 GROUP_LDRS,
4920 GROUP_LDC
4921} group_reloc_type;
4922
4923static struct group_reloc_table_entry group_reloc_table[] =
4924 { /* Program counter relative: */
4925 { "pc_g0_nc",
4926 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4927 0, /* LDR */
4928 0, /* LDRS */
4929 0 }, /* LDC */
4930 { "pc_g0",
4931 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4932 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4933 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4934 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4935 { "pc_g1_nc",
4936 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4937 0, /* LDR */
4938 0, /* LDRS */
4939 0 }, /* LDC */
4940 { "pc_g1",
4941 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4942 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4943 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4944 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4945 { "pc_g2",
4946 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4947 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4948 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4949 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4950 /* Section base relative */
4951 { "sb_g0_nc",
4952 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4953 0, /* LDR */
4954 0, /* LDRS */
4955 0 }, /* LDC */
4956 { "sb_g0",
4957 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4958 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4959 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4960 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4961 { "sb_g1_nc",
4962 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4963 0, /* LDR */
4964 0, /* LDRS */
4965 0 }, /* LDC */
4966 { "sb_g1",
4967 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4968 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4969 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4970 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4971 { "sb_g2",
4972 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4973 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4974 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4975 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4976
4977/* Given the address of a pointer pointing to the textual name of a group
4978 relocation as may appear in assembler source, attempt to find its details
4979 in group_reloc_table. The pointer will be updated to the character after
4980 the trailing colon. On failure, FAIL will be returned; SUCCESS
4981 otherwise. On success, *entry will be updated to point at the relevant
4982 group_reloc_table entry. */
4983
4984static int
4985find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4986{
4987 unsigned int i;
4988 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4989 {
4990 int length = strlen (group_reloc_table[i].name);
4991
5f4273c7
NC
4992 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4993 && (*str)[length] == ':')
4962c51a
MS
4994 {
4995 *out = &group_reloc_table[i];
4996 *str += (length + 1);
4997 return SUCCESS;
4998 }
4999 }
5000
5001 return FAIL;
5002}
5003
5004/* Parse a <shifter_operand> for an ARM data processing instruction
5005 (as for parse_shifter_operand) where group relocations are allowed:
5006
5007 #<immediate>
5008 #<immediate>, <rotate>
5009 #:<group_reloc>:<expression>
5010 <Rm>
5011 <Rm>, <shift>
5012
5013 where <group_reloc> is one of the strings defined in group_reloc_table.
5014 The hashes are optional.
5015
5016 Everything else is as for parse_shifter_operand. */
5017
5018static parse_operand_result
5019parse_shifter_operand_group_reloc (char **str, int i)
5020{
5021 /* Determine if we have the sequence of characters #: or just :
5022 coming next. If we do, then we check for a group relocation.
5023 If we don't, punt the whole lot to parse_shifter_operand. */
5024
5025 if (((*str)[0] == '#' && (*str)[1] == ':')
5026 || (*str)[0] == ':')
5027 {
5028 struct group_reloc_table_entry *entry;
5029
5030 if ((*str)[0] == '#')
5031 (*str) += 2;
5032 else
5033 (*str)++;
5034
5035 /* Try to parse a group relocation. Anything else is an error. */
5036 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5037 {
5038 inst.error = _("unknown group relocation");
5039 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5040 }
5041
5042 /* We now have the group relocation table entry corresponding to
5043 the name in the assembler source. Next, we parse the expression. */
5044 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5045 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5046
5047 /* Record the relocation type (always the ALU variant here). */
21d799b5 5048 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5049 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5050
5051 return PARSE_OPERAND_SUCCESS;
5052 }
5053 else
5054 return parse_shifter_operand (str, i) == SUCCESS
5055 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5056
5057 /* Never reached. */
5058}
5059
8e560766
MGD
5060/* Parse a Neon alignment expression. Information is written to
5061 inst.operands[i]. We assume the initial ':' has been skipped.
5062
5063 align .imm = align << 8, .immisalign=1, .preind=0 */
5064static parse_operand_result
5065parse_neon_alignment (char **str, int i)
5066{
5067 char *p = *str;
5068 expressionS exp;
5069
5070 my_get_expression (&exp, &p, GE_NO_PREFIX);
5071
5072 if (exp.X_op != O_constant)
5073 {
5074 inst.error = _("alignment must be constant");
5075 return PARSE_OPERAND_FAIL;
5076 }
5077
5078 inst.operands[i].imm = exp.X_add_number << 8;
5079 inst.operands[i].immisalign = 1;
5080 /* Alignments are not pre-indexes. */
5081 inst.operands[i].preind = 0;
5082
5083 *str = p;
5084 return PARSE_OPERAND_SUCCESS;
5085}
5086
c19d1205
ZW
5087/* Parse all forms of an ARM address expression. Information is written
5088 to inst.operands[i] and/or inst.reloc.
09d92015 5089
c19d1205 5090 Preindexed addressing (.preind=1):
09d92015 5091
c19d1205
ZW
5092 [Rn, #offset] .reg=Rn .reloc.exp=offset
5093 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5094 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5095 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5096
c19d1205 5097 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5098
c19d1205 5099 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5100
c19d1205
ZW
5101 [Rn], #offset .reg=Rn .reloc.exp=offset
5102 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5103 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5104 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5105
c19d1205 5106 Unindexed addressing (.preind=0, .postind=0):
09d92015 5107
c19d1205 5108 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5109
c19d1205 5110 Other:
09d92015 5111
c19d1205
ZW
5112 [Rn]{!} shorthand for [Rn,#0]{!}
5113 =immediate .isreg=0 .reloc.exp=immediate
5114 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5115
c19d1205
ZW
5116 It is the caller's responsibility to check for addressing modes not
5117 supported by the instruction, and to set inst.reloc.type. */
5118
4962c51a
MS
5119static parse_operand_result
5120parse_address_main (char **str, int i, int group_relocations,
5121 group_reloc_type group_type)
09d92015 5122{
c19d1205
ZW
5123 char *p = *str;
5124 int reg;
09d92015 5125
c19d1205 5126 if (skip_past_char (&p, '[') == FAIL)
09d92015 5127 {
c19d1205
ZW
5128 if (skip_past_char (&p, '=') == FAIL)
5129 {
974da60d 5130 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5131 inst.reloc.pc_rel = 1;
5132 inst.operands[i].reg = REG_PC;
5133 inst.operands[i].isreg = 1;
5134 inst.operands[i].preind = 1;
5135 }
974da60d 5136 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5137
c19d1205 5138 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5139 return PARSE_OPERAND_FAIL;
09d92015 5140
c19d1205 5141 *str = p;
4962c51a 5142 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5143 }
5144
dcbf9037 5145 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5146 {
c19d1205 5147 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5148 return PARSE_OPERAND_FAIL;
09d92015 5149 }
c19d1205
ZW
5150 inst.operands[i].reg = reg;
5151 inst.operands[i].isreg = 1;
09d92015 5152
c19d1205 5153 if (skip_past_comma (&p) == SUCCESS)
09d92015 5154 {
c19d1205 5155 inst.operands[i].preind = 1;
09d92015 5156
c19d1205
ZW
5157 if (*p == '+') p++;
5158 else if (*p == '-') p++, inst.operands[i].negative = 1;
5159
dcbf9037 5160 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5161 {
c19d1205
ZW
5162 inst.operands[i].imm = reg;
5163 inst.operands[i].immisreg = 1;
5164
5165 if (skip_past_comma (&p) == SUCCESS)
5166 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5167 return PARSE_OPERAND_FAIL;
c19d1205 5168 }
5287ad62 5169 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5170 {
5171 /* FIXME: '@' should be used here, but it's filtered out by generic
5172 code before we get to see it here. This may be subject to
5173 change. */
5174 parse_operand_result result = parse_neon_alignment (&p, i);
5175
5176 if (result != PARSE_OPERAND_SUCCESS)
5177 return result;
5178 }
c19d1205
ZW
5179 else
5180 {
5181 if (inst.operands[i].negative)
5182 {
5183 inst.operands[i].negative = 0;
5184 p--;
5185 }
4962c51a 5186
5f4273c7
NC
5187 if (group_relocations
5188 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5189 {
5190 struct group_reloc_table_entry *entry;
5191
5192 /* Skip over the #: or : sequence. */
5193 if (*p == '#')
5194 p += 2;
5195 else
5196 p++;
5197
5198 /* Try to parse a group relocation. Anything else is an
5199 error. */
5200 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5201 {
5202 inst.error = _("unknown group relocation");
5203 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5204 }
5205
5206 /* We now have the group relocation table entry corresponding to
5207 the name in the assembler source. Next, we parse the
5208 expression. */
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5211
5212 /* Record the relocation type. */
5213 switch (group_type)
5214 {
5215 case GROUP_LDR:
21d799b5 5216 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5217 break;
5218
5219 case GROUP_LDRS:
21d799b5 5220 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5221 break;
5222
5223 case GROUP_LDC:
21d799b5 5224 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5225 break;
5226
5227 default:
9c2799c2 5228 gas_assert (0);
4962c51a
MS
5229 }
5230
5231 if (inst.reloc.type == 0)
5232 {
5233 inst.error = _("this group relocation is not allowed on this instruction");
5234 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5235 }
5236 }
5237 else
26d97720
NS
5238 {
5239 char *q = p;
5240 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5241 return PARSE_OPERAND_FAIL;
5242 /* If the offset is 0, find out if it's a +0 or -0. */
5243 if (inst.reloc.exp.X_op == O_constant
5244 && inst.reloc.exp.X_add_number == 0)
5245 {
5246 skip_whitespace (q);
5247 if (*q == '#')
5248 {
5249 q++;
5250 skip_whitespace (q);
5251 }
5252 if (*q == '-')
5253 inst.operands[i].negative = 1;
5254 }
5255 }
09d92015
MM
5256 }
5257 }
8e560766
MGD
5258 else if (skip_past_char (&p, ':') == SUCCESS)
5259 {
5260 /* FIXME: '@' should be used here, but it's filtered out by generic code
5261 before we get to see it here. This may be subject to change. */
5262 parse_operand_result result = parse_neon_alignment (&p, i);
5263
5264 if (result != PARSE_OPERAND_SUCCESS)
5265 return result;
5266 }
09d92015 5267
c19d1205 5268 if (skip_past_char (&p, ']') == FAIL)
09d92015 5269 {
c19d1205 5270 inst.error = _("']' expected");
4962c51a 5271 return PARSE_OPERAND_FAIL;
09d92015
MM
5272 }
5273
c19d1205
ZW
5274 if (skip_past_char (&p, '!') == SUCCESS)
5275 inst.operands[i].writeback = 1;
09d92015 5276
c19d1205 5277 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5278 {
c19d1205
ZW
5279 if (skip_past_char (&p, '{') == SUCCESS)
5280 {
5281 /* [Rn], {expr} - unindexed, with option */
5282 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5283 0, 255, TRUE) == FAIL)
4962c51a 5284 return PARSE_OPERAND_FAIL;
09d92015 5285
c19d1205
ZW
5286 if (skip_past_char (&p, '}') == FAIL)
5287 {
5288 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5289 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5290 }
5291 if (inst.operands[i].preind)
5292 {
5293 inst.error = _("cannot combine index with option");
4962c51a 5294 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5295 }
5296 *str = p;
4962c51a 5297 return PARSE_OPERAND_SUCCESS;
09d92015 5298 }
c19d1205
ZW
5299 else
5300 {
5301 inst.operands[i].postind = 1;
5302 inst.operands[i].writeback = 1;
09d92015 5303
c19d1205
ZW
5304 if (inst.operands[i].preind)
5305 {
5306 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5307 return PARSE_OPERAND_FAIL;
c19d1205 5308 }
09d92015 5309
c19d1205
ZW
5310 if (*p == '+') p++;
5311 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5312
dcbf9037 5313 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5314 {
5287ad62
JB
5315 /* We might be using the immediate for alignment already. If we
5316 are, OR the register number into the low-order bits. */
5317 if (inst.operands[i].immisalign)
5318 inst.operands[i].imm |= reg;
5319 else
5320 inst.operands[i].imm = reg;
c19d1205 5321 inst.operands[i].immisreg = 1;
a737bd4d 5322
c19d1205
ZW
5323 if (skip_past_comma (&p) == SUCCESS)
5324 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5325 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5326 }
5327 else
5328 {
26d97720 5329 char *q = p;
c19d1205
ZW
5330 if (inst.operands[i].negative)
5331 {
5332 inst.operands[i].negative = 0;
5333 p--;
5334 }
5335 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5336 return PARSE_OPERAND_FAIL;
26d97720
NS
5337 /* If the offset is 0, find out if it's a +0 or -0. */
5338 if (inst.reloc.exp.X_op == O_constant
5339 && inst.reloc.exp.X_add_number == 0)
5340 {
5341 skip_whitespace (q);
5342 if (*q == '#')
5343 {
5344 q++;
5345 skip_whitespace (q);
5346 }
5347 if (*q == '-')
5348 inst.operands[i].negative = 1;
5349 }
c19d1205
ZW
5350 }
5351 }
a737bd4d
NC
5352 }
5353
c19d1205
ZW
5354 /* If at this point neither .preind nor .postind is set, we have a
5355 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5356 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5357 {
5358 inst.operands[i].preind = 1;
5359 inst.reloc.exp.X_op = O_constant;
5360 inst.reloc.exp.X_add_number = 0;
5361 }
5362 *str = p;
4962c51a
MS
5363 return PARSE_OPERAND_SUCCESS;
5364}
5365
5366static int
5367parse_address (char **str, int i)
5368{
21d799b5 5369 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5370 ? SUCCESS : FAIL;
5371}
5372
5373static parse_operand_result
5374parse_address_group_reloc (char **str, int i, group_reloc_type type)
5375{
5376 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5377}
5378
b6895b4f
PB
5379/* Parse an operand for a MOVW or MOVT instruction. */
5380static int
5381parse_half (char **str)
5382{
5383 char * p;
5f4273c7 5384
b6895b4f
PB
5385 p = *str;
5386 skip_past_char (&p, '#');
5f4273c7 5387 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5388 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5389 else if (strncasecmp (p, ":upper16:", 9) == 0)
5390 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5391
5392 if (inst.reloc.type != BFD_RELOC_UNUSED)
5393 {
5394 p += 9;
5f4273c7 5395 skip_whitespace (p);
b6895b4f
PB
5396 }
5397
5398 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5399 return FAIL;
5400
5401 if (inst.reloc.type == BFD_RELOC_UNUSED)
5402 {
5403 if (inst.reloc.exp.X_op != O_constant)
5404 {
5405 inst.error = _("constant expression expected");
5406 return FAIL;
5407 }
5408 if (inst.reloc.exp.X_add_number < 0
5409 || inst.reloc.exp.X_add_number > 0xffff)
5410 {
5411 inst.error = _("immediate value out of range");
5412 return FAIL;
5413 }
5414 }
5415 *str = p;
5416 return SUCCESS;
5417}
5418
c19d1205 5419/* Miscellaneous. */
a737bd4d 5420
c19d1205
ZW
5421/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5422 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5423static int
d2cd1205 5424parse_psr (char **str, bfd_boolean lhs)
09d92015 5425{
c19d1205
ZW
5426 char *p;
5427 unsigned long psr_field;
62b3e311
PB
5428 const struct asm_psr *psr;
5429 char *start;
d2cd1205 5430 bfd_boolean is_apsr = FALSE;
ac7f631b 5431 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5432
a4482bb6
NC
5433 /* PR gas/12698: If the user has specified -march=all then m_profile will
5434 be TRUE, but we want to ignore it in this case as we are building for any
5435 CPU type, including non-m variants. */
5436 if (selected_cpu.core == arm_arch_any.core)
5437 m_profile = FALSE;
5438
c19d1205
ZW
5439 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5440 feature for ease of use and backwards compatibility. */
5441 p = *str;
62b3e311 5442 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5443 {
5444 if (m_profile)
5445 goto unsupported_psr;
5446
5447 psr_field = SPSR_BIT;
5448 }
5449 else if (strncasecmp (p, "CPSR", 4) == 0)
5450 {
5451 if (m_profile)
5452 goto unsupported_psr;
5453
5454 psr_field = 0;
5455 }
5456 else if (strncasecmp (p, "APSR", 4) == 0)
5457 {
5458 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5459 and ARMv7-R architecture CPUs. */
5460 is_apsr = TRUE;
5461 psr_field = 0;
5462 }
5463 else if (m_profile)
62b3e311
PB
5464 {
5465 start = p;
5466 do
5467 p++;
5468 while (ISALNUM (*p) || *p == '_');
5469
d2cd1205
JB
5470 if (strncasecmp (start, "iapsr", 5) == 0
5471 || strncasecmp (start, "eapsr", 5) == 0
5472 || strncasecmp (start, "xpsr", 4) == 0
5473 || strncasecmp (start, "psr", 3) == 0)
5474 p = start + strcspn (start, "rR") + 1;
5475
21d799b5
NC
5476 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5477 p - start);
d2cd1205 5478
62b3e311
PB
5479 if (!psr)
5480 return FAIL;
09d92015 5481
d2cd1205
JB
5482 /* If APSR is being written, a bitfield may be specified. Note that
5483 APSR itself is handled above. */
5484 if (psr->field <= 3)
5485 {
5486 psr_field = psr->field;
5487 is_apsr = TRUE;
5488 goto check_suffix;
5489 }
5490
62b3e311 5491 *str = p;
d2cd1205
JB
5492 /* M-profile MSR instructions have the mask field set to "10", except
5493 *PSR variants which modify APSR, which may use a different mask (and
5494 have been handled already). Do that by setting the PSR_f field
5495 here. */
5496 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5497 }
d2cd1205
JB
5498 else
5499 goto unsupported_psr;
09d92015 5500
62b3e311 5501 p += 4;
d2cd1205 5502check_suffix:
c19d1205
ZW
5503 if (*p == '_')
5504 {
5505 /* A suffix follows. */
c19d1205
ZW
5506 p++;
5507 start = p;
a737bd4d 5508
c19d1205
ZW
5509 do
5510 p++;
5511 while (ISALNUM (*p) || *p == '_');
a737bd4d 5512
d2cd1205
JB
5513 if (is_apsr)
5514 {
5515 /* APSR uses a notation for bits, rather than fields. */
5516 unsigned int nzcvq_bits = 0;
5517 unsigned int g_bit = 0;
5518 char *bit;
5519
5520 for (bit = start; bit != p; bit++)
5521 {
5522 switch (TOLOWER (*bit))
5523 {
5524 case 'n':
5525 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5526 break;
5527
5528 case 'z':
5529 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5530 break;
5531
5532 case 'c':
5533 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5534 break;
5535
5536 case 'v':
5537 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5538 break;
5539
5540 case 'q':
5541 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5542 break;
5543
5544 case 'g':
5545 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5546 break;
5547
5548 default:
5549 inst.error = _("unexpected bit specified after APSR");
5550 return FAIL;
5551 }
5552 }
5553
5554 if (nzcvq_bits == 0x1f)
5555 psr_field |= PSR_f;
5556
5557 if (g_bit == 0x1)
5558 {
5559 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5560 {
5561 inst.error = _("selected processor does not "
5562 "support DSP extension");
5563 return FAIL;
5564 }
5565
5566 psr_field |= PSR_s;
5567 }
5568
5569 if ((nzcvq_bits & 0x20) != 0
5570 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5571 || (g_bit & 0x2) != 0)
5572 {
5573 inst.error = _("bad bitmask specified after APSR");
5574 return FAIL;
5575 }
5576 }
5577 else
5578 {
5579 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5580 p - start);
5581 if (!psr)
5582 goto error;
a737bd4d 5583
d2cd1205
JB
5584 psr_field |= psr->field;
5585 }
a737bd4d 5586 }
c19d1205 5587 else
a737bd4d 5588 {
c19d1205
ZW
5589 if (ISALNUM (*p))
5590 goto error; /* Garbage after "[CS]PSR". */
5591
d2cd1205
JB
5592 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5593 is deprecated, but allow it anyway. */
5594 if (is_apsr && lhs)
5595 {
5596 psr_field |= PSR_f;
5597 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5598 "deprecated"));
5599 }
5600 else if (!m_profile)
5601 /* These bits are never right for M-profile devices: don't set them
5602 (only code paths which read/write APSR reach here). */
5603 psr_field |= (PSR_c | PSR_f);
a737bd4d 5604 }
c19d1205
ZW
5605 *str = p;
5606 return psr_field;
a737bd4d 5607
d2cd1205
JB
5608 unsupported_psr:
5609 inst.error = _("selected processor does not support requested special "
5610 "purpose register");
5611 return FAIL;
5612
c19d1205
ZW
5613 error:
5614 inst.error = _("flag for {c}psr instruction expected");
5615 return FAIL;
a737bd4d
NC
5616}
5617
c19d1205
ZW
5618/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5619 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5620
c19d1205
ZW
5621static int
5622parse_cps_flags (char **str)
a737bd4d 5623{
c19d1205
ZW
5624 int val = 0;
5625 int saw_a_flag = 0;
5626 char *s = *str;
a737bd4d 5627
c19d1205
ZW
5628 for (;;)
5629 switch (*s++)
5630 {
5631 case '\0': case ',':
5632 goto done;
a737bd4d 5633
c19d1205
ZW
5634 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5635 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5636 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5637
c19d1205
ZW
5638 default:
5639 inst.error = _("unrecognized CPS flag");
5640 return FAIL;
5641 }
a737bd4d 5642
c19d1205
ZW
5643 done:
5644 if (saw_a_flag == 0)
a737bd4d 5645 {
c19d1205
ZW
5646 inst.error = _("missing CPS flags");
5647 return FAIL;
a737bd4d 5648 }
a737bd4d 5649
c19d1205
ZW
5650 *str = s - 1;
5651 return val;
a737bd4d
NC
5652}
5653
c19d1205
ZW
5654/* Parse an endian specifier ("BE" or "LE", case insensitive);
5655 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5656
5657static int
c19d1205 5658parse_endian_specifier (char **str)
a737bd4d 5659{
c19d1205
ZW
5660 int little_endian;
5661 char *s = *str;
a737bd4d 5662
c19d1205
ZW
5663 if (strncasecmp (s, "BE", 2))
5664 little_endian = 0;
5665 else if (strncasecmp (s, "LE", 2))
5666 little_endian = 1;
5667 else
a737bd4d 5668 {
c19d1205 5669 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5670 return FAIL;
5671 }
5672
c19d1205 5673 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5674 {
c19d1205 5675 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5676 return FAIL;
5677 }
5678
c19d1205
ZW
5679 *str = s + 2;
5680 return little_endian;
5681}
a737bd4d 5682
c19d1205
ZW
5683/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5684 value suitable for poking into the rotate field of an sxt or sxta
5685 instruction, or FAIL on error. */
5686
5687static int
5688parse_ror (char **str)
5689{
5690 int rot;
5691 char *s = *str;
5692
5693 if (strncasecmp (s, "ROR", 3) == 0)
5694 s += 3;
5695 else
a737bd4d 5696 {
c19d1205 5697 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5698 return FAIL;
5699 }
c19d1205
ZW
5700
5701 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5702 return FAIL;
5703
5704 switch (rot)
a737bd4d 5705 {
c19d1205
ZW
5706 case 0: *str = s; return 0x0;
5707 case 8: *str = s; return 0x1;
5708 case 16: *str = s; return 0x2;
5709 case 24: *str = s; return 0x3;
5710
5711 default:
5712 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5713 return FAIL;
5714 }
c19d1205 5715}
a737bd4d 5716
c19d1205
ZW
5717/* Parse a conditional code (from conds[] below). The value returned is in the
5718 range 0 .. 14, or FAIL. */
5719static int
5720parse_cond (char **str)
5721{
c462b453 5722 char *q;
c19d1205 5723 const struct asm_cond *c;
c462b453
PB
5724 int n;
5725 /* Condition codes are always 2 characters, so matching up to
5726 3 characters is sufficient. */
5727 char cond[3];
a737bd4d 5728
c462b453
PB
5729 q = *str;
5730 n = 0;
5731 while (ISALPHA (*q) && n < 3)
5732 {
e07e6e58 5733 cond[n] = TOLOWER (*q);
c462b453
PB
5734 q++;
5735 n++;
5736 }
a737bd4d 5737
21d799b5 5738 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5739 if (!c)
a737bd4d 5740 {
c19d1205 5741 inst.error = _("condition required");
a737bd4d
NC
5742 return FAIL;
5743 }
5744
c19d1205
ZW
5745 *str = q;
5746 return c->value;
5747}
5748
62b3e311
PB
5749/* Parse an option for a barrier instruction. Returns the encoding for the
5750 option, or FAIL. */
5751static int
5752parse_barrier (char **str)
5753{
5754 char *p, *q;
5755 const struct asm_barrier_opt *o;
5756
5757 p = q = *str;
5758 while (ISALPHA (*q))
5759 q++;
5760
21d799b5
NC
5761 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5762 q - p);
62b3e311
PB
5763 if (!o)
5764 return FAIL;
5765
5766 *str = q;
5767 return o->value;
5768}
5769
92e90b6e
PB
5770/* Parse the operands of a table branch instruction. Similar to a memory
5771 operand. */
5772static int
5773parse_tb (char **str)
5774{
5775 char * p = *str;
5776 int reg;
5777
5778 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5779 {
5780 inst.error = _("'[' expected");
5781 return FAIL;
5782 }
92e90b6e 5783
dcbf9037 5784 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5785 {
5786 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5787 return FAIL;
5788 }
5789 inst.operands[0].reg = reg;
5790
5791 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5792 {
5793 inst.error = _("',' expected");
5794 return FAIL;
5795 }
5f4273c7 5796
dcbf9037 5797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5798 {
5799 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5800 return FAIL;
5801 }
5802 inst.operands[0].imm = reg;
5803
5804 if (skip_past_comma (&p) == SUCCESS)
5805 {
5806 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5807 return FAIL;
5808 if (inst.reloc.exp.X_add_number != 1)
5809 {
5810 inst.error = _("invalid shift");
5811 return FAIL;
5812 }
5813 inst.operands[0].shifted = 1;
5814 }
5815
5816 if (skip_past_char (&p, ']') == FAIL)
5817 {
5818 inst.error = _("']' expected");
5819 return FAIL;
5820 }
5821 *str = p;
5822 return SUCCESS;
5823}
5824
5287ad62
JB
5825/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5826 information on the types the operands can take and how they are encoded.
037e8744
JB
5827 Up to four operands may be read; this function handles setting the
5828 ".present" field for each read operand itself.
5287ad62
JB
5829 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5830 else returns FAIL. */
5831
5832static int
5833parse_neon_mov (char **str, int *which_operand)
5834{
5835 int i = *which_operand, val;
5836 enum arm_reg_type rtype;
5837 char *ptr = *str;
dcbf9037 5838 struct neon_type_el optype;
5f4273c7 5839
dcbf9037 5840 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5841 {
5842 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5843 inst.operands[i].reg = val;
5844 inst.operands[i].isscalar = 1;
dcbf9037 5845 inst.operands[i].vectype = optype;
5287ad62
JB
5846 inst.operands[i++].present = 1;
5847
5848 if (skip_past_comma (&ptr) == FAIL)
5849 goto wanted_comma;
5f4273c7 5850
dcbf9037 5851 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5852 goto wanted_arm;
5f4273c7 5853
5287ad62
JB
5854 inst.operands[i].reg = val;
5855 inst.operands[i].isreg = 1;
5856 inst.operands[i].present = 1;
5857 }
037e8744 5858 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5859 != FAIL)
5287ad62
JB
5860 {
5861 /* Cases 0, 1, 2, 3, 5 (D only). */
5862 if (skip_past_comma (&ptr) == FAIL)
5863 goto wanted_comma;
5f4273c7 5864
5287ad62
JB
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5869 inst.operands[i].isvec = 1;
dcbf9037 5870 inst.operands[i].vectype = optype;
5287ad62
JB
5871 inst.operands[i++].present = 1;
5872
dcbf9037 5873 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5874 {
037e8744
JB
5875 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5876 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5877 inst.operands[i].reg = val;
5878 inst.operands[i].isreg = 1;
037e8744 5879 inst.operands[i].present = 1;
5287ad62
JB
5880
5881 if (rtype == REG_TYPE_NQ)
5882 {
dcbf9037 5883 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5884 return FAIL;
5885 }
037e8744
JB
5886 else if (rtype != REG_TYPE_VFS)
5887 {
5888 i++;
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5891 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5892 goto wanted_arm;
5893 inst.operands[i].reg = val;
5894 inst.operands[i].isreg = 1;
5895 inst.operands[i].present = 1;
5896 }
5287ad62 5897 }
037e8744
JB
5898 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5899 &optype)) != FAIL)
5287ad62
JB
5900 {
5901 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5902 Case 1: VMOV<c><q> <Dd>, <Dm>
5903 Case 8: VMOV.F32 <Sd>, <Sm>
5904 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5905
5906 inst.operands[i].reg = val;
5907 inst.operands[i].isreg = 1;
5908 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5909 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5910 inst.operands[i].isvec = 1;
dcbf9037 5911 inst.operands[i].vectype = optype;
5287ad62 5912 inst.operands[i].present = 1;
5f4273c7 5913
037e8744
JB
5914 if (skip_past_comma (&ptr) == SUCCESS)
5915 {
5916 /* Case 15. */
5917 i++;
5918
5919 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5920 goto wanted_arm;
5921
5922 inst.operands[i].reg = val;
5923 inst.operands[i].isreg = 1;
5924 inst.operands[i++].present = 1;
5f4273c7 5925
037e8744
JB
5926 if (skip_past_comma (&ptr) == FAIL)
5927 goto wanted_comma;
5f4273c7 5928
037e8744
JB
5929 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5930 goto wanted_arm;
5f4273c7 5931
037e8744
JB
5932 inst.operands[i].reg = val;
5933 inst.operands[i].isreg = 1;
5934 inst.operands[i++].present = 1;
5935 }
5287ad62 5936 }
4641781c
PB
5937 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5938 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5939 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5940 Case 10: VMOV.F32 <Sd>, #<imm>
5941 Case 11: VMOV.F64 <Dd>, #<imm> */
5942 inst.operands[i].immisfloat = 1;
5943 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5944 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5945 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5946 ;
5287ad62
JB
5947 else
5948 {
dcbf9037 5949 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5950 return FAIL;
5951 }
5952 }
dcbf9037 5953 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5954 {
5955 /* Cases 6, 7. */
5956 inst.operands[i].reg = val;
5957 inst.operands[i].isreg = 1;
5958 inst.operands[i++].present = 1;
5f4273c7 5959
5287ad62
JB
5960 if (skip_past_comma (&ptr) == FAIL)
5961 goto wanted_comma;
5f4273c7 5962
dcbf9037 5963 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5964 {
5965 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5966 inst.operands[i].reg = val;
5967 inst.operands[i].isscalar = 1;
5968 inst.operands[i].present = 1;
dcbf9037 5969 inst.operands[i].vectype = optype;
5287ad62 5970 }
dcbf9037 5971 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5972 {
5973 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5974 inst.operands[i].reg = val;
5975 inst.operands[i].isreg = 1;
5976 inst.operands[i++].present = 1;
5f4273c7 5977
5287ad62
JB
5978 if (skip_past_comma (&ptr) == FAIL)
5979 goto wanted_comma;
5f4273c7 5980
037e8744 5981 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5982 == FAIL)
5287ad62 5983 {
037e8744 5984 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5985 return FAIL;
5986 }
5987
5988 inst.operands[i].reg = val;
5989 inst.operands[i].isreg = 1;
037e8744
JB
5990 inst.operands[i].isvec = 1;
5991 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5992 inst.operands[i].vectype = optype;
5287ad62 5993 inst.operands[i].present = 1;
5f4273c7 5994
037e8744
JB
5995 if (rtype == REG_TYPE_VFS)
5996 {
5997 /* Case 14. */
5998 i++;
5999 if (skip_past_comma (&ptr) == FAIL)
6000 goto wanted_comma;
6001 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6002 &optype)) == FAIL)
6003 {
6004 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6005 return FAIL;
6006 }
6007 inst.operands[i].reg = val;
6008 inst.operands[i].isreg = 1;
6009 inst.operands[i].isvec = 1;
6010 inst.operands[i].issingle = 1;
6011 inst.operands[i].vectype = optype;
6012 inst.operands[i].present = 1;
6013 }
6014 }
6015 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6016 != FAIL)
6017 {
6018 /* Case 13. */
6019 inst.operands[i].reg = val;
6020 inst.operands[i].isreg = 1;
6021 inst.operands[i].isvec = 1;
6022 inst.operands[i].issingle = 1;
6023 inst.operands[i].vectype = optype;
6024 inst.operands[i++].present = 1;
5287ad62
JB
6025 }
6026 }
6027 else
6028 {
dcbf9037 6029 first_error (_("parse error"));
5287ad62
JB
6030 return FAIL;
6031 }
6032
6033 /* Successfully parsed the operands. Update args. */
6034 *which_operand = i;
6035 *str = ptr;
6036 return SUCCESS;
6037
5f4273c7 6038 wanted_comma:
dcbf9037 6039 first_error (_("expected comma"));
5287ad62 6040 return FAIL;
5f4273c7
NC
6041
6042 wanted_arm:
dcbf9037 6043 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6044 return FAIL;
5287ad62
JB
6045}
6046
5be8be5d
DG
6047/* Use this macro when the operand constraints are different
6048 for ARM and THUMB (e.g. ldrd). */
6049#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6050 ((arm_operand) | ((thumb_operand) << 16))
6051
c19d1205
ZW
6052/* Matcher codes for parse_operands. */
6053enum operand_parse_code
6054{
6055 OP_stop, /* end of line */
6056
6057 OP_RR, /* ARM register */
6058 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6059 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6060 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
6061 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6062 optional trailing ! */
c19d1205
ZW
6063 OP_RRw, /* ARM register, not r15, optional trailing ! */
6064 OP_RCP, /* Coprocessor number */
6065 OP_RCN, /* Coprocessor register */
6066 OP_RF, /* FPA register */
6067 OP_RVS, /* VFP single precision register */
5287ad62
JB
6068 OP_RVD, /* VFP double precision register (0..15) */
6069 OP_RND, /* Neon double precision register (0..31) */
6070 OP_RNQ, /* Neon quad precision register */
037e8744 6071 OP_RVSD, /* VFP single or double precision register */
5287ad62 6072 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6073 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6074 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6075 OP_RVC, /* VFP control register */
6076 OP_RMF, /* Maverick F register */
6077 OP_RMD, /* Maverick D register */
6078 OP_RMFX, /* Maverick FX register */
6079 OP_RMDX, /* Maverick DX register */
6080 OP_RMAX, /* Maverick AX register */
6081 OP_RMDS, /* Maverick DSPSC register */
6082 OP_RIWR, /* iWMMXt wR register */
6083 OP_RIWC, /* iWMMXt wC register */
6084 OP_RIWG, /* iWMMXt wCG register */
6085 OP_RXA, /* XScale accumulator register */
6086
6087 OP_REGLST, /* ARM register list */
6088 OP_VRSLST, /* VFP single-precision register list */
6089 OP_VRDLST, /* VFP double-precision register list */
037e8744 6090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6092 OP_NSTRLST, /* Neon element/structure list */
6093
5287ad62 6094 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6095 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6096 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6097 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6098 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6099 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6100 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6101 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6102 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6103 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6104
6105 OP_I0, /* immediate zero */
c19d1205
ZW
6106 OP_I7, /* immediate value 0 .. 7 */
6107 OP_I15, /* 0 .. 15 */
6108 OP_I16, /* 1 .. 16 */
5287ad62 6109 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6110 OP_I31, /* 0 .. 31 */
6111 OP_I31w, /* 0 .. 31, optional trailing ! */
6112 OP_I32, /* 1 .. 32 */
5287ad62
JB
6113 OP_I32z, /* 0 .. 32 */
6114 OP_I63, /* 0 .. 63 */
c19d1205 6115 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6116 OP_I64, /* 1 .. 64 */
6117 OP_I64z, /* 0 .. 64 */
c19d1205 6118 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6119
6120 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6121 OP_I7b, /* 0 .. 7 */
6122 OP_I15b, /* 0 .. 15 */
6123 OP_I31b, /* 0 .. 31 */
6124
6125 OP_SH, /* shifter operand */
4962c51a 6126 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6127 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6128 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6129 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6130 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6131 OP_EXP, /* arbitrary expression */
6132 OP_EXPi, /* same, with optional immediate prefix */
6133 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6134 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6135
6136 OP_CPSF, /* CPS flags */
6137 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6138 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6139 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6140 OP_COND, /* conditional code */
92e90b6e 6141 OP_TB, /* Table branch. */
c19d1205 6142
037e8744
JB
6143 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6144
c19d1205
ZW
6145 OP_RRnpc_I0, /* ARM register or literal 0 */
6146 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6147 OP_RR_EXi, /* ARM register or expression with imm prefix */
6148 OP_RF_IF, /* FPA register or immediate */
6149 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6150 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6151
6152 /* Optional operands. */
6153 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6154 OP_oI31b, /* 0 .. 31 */
5287ad62 6155 OP_oI32b, /* 1 .. 32 */
5f1af56b 6156 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6157 OP_oIffffb, /* 0 .. 65535 */
6158 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6159
6160 OP_oRR, /* ARM register */
6161 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6162 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6163 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6164 OP_oRND, /* Optional Neon double precision register */
6165 OP_oRNQ, /* Optional Neon quad precision register */
6166 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6167 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6168 OP_oSHll, /* LSL immediate */
6169 OP_oSHar, /* ASR immediate */
6170 OP_oSHllar, /* LSL or ASR immediate */
6171 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6172 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6173
5be8be5d
DG
6174 /* Some pre-defined mixed (ARM/THUMB) operands. */
6175 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6176 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6177 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6178
c19d1205
ZW
6179 OP_FIRST_OPTIONAL = OP_oI7b
6180};
a737bd4d 6181
c19d1205
ZW
6182/* Generic instruction operand parser. This does no encoding and no
6183 semantic validation; it merely squirrels values away in the inst
6184 structure. Returns SUCCESS or FAIL depending on whether the
6185 specified grammar matched. */
6186static int
5be8be5d 6187parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6188{
5be8be5d 6189 unsigned const int *upat = pattern;
c19d1205
ZW
6190 char *backtrack_pos = 0;
6191 const char *backtrack_error = 0;
6192 int i, val, backtrack_index = 0;
5287ad62 6193 enum arm_reg_type rtype;
4962c51a 6194 parse_operand_result result;
5be8be5d 6195 unsigned int op_parse_code;
c19d1205 6196
e07e6e58
NC
6197#define po_char_or_fail(chr) \
6198 do \
6199 { \
6200 if (skip_past_char (&str, chr) == FAIL) \
6201 goto bad_args; \
6202 } \
6203 while (0)
c19d1205 6204
e07e6e58
NC
6205#define po_reg_or_fail(regtype) \
6206 do \
dcbf9037 6207 { \
e07e6e58
NC
6208 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6209 & inst.operands[i].vectype); \
6210 if (val == FAIL) \
6211 { \
6212 first_error (_(reg_expected_msgs[regtype])); \
6213 goto failure; \
6214 } \
6215 inst.operands[i].reg = val; \
6216 inst.operands[i].isreg = 1; \
6217 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6218 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6219 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6220 || rtype == REG_TYPE_VFD \
6221 || rtype == REG_TYPE_NQ); \
dcbf9037 6222 } \
e07e6e58
NC
6223 while (0)
6224
6225#define po_reg_or_goto(regtype, label) \
6226 do \
6227 { \
6228 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6229 & inst.operands[i].vectype); \
6230 if (val == FAIL) \
6231 goto label; \
dcbf9037 6232 \
e07e6e58
NC
6233 inst.operands[i].reg = val; \
6234 inst.operands[i].isreg = 1; \
6235 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6236 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6237 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6238 || rtype == REG_TYPE_VFD \
6239 || rtype == REG_TYPE_NQ); \
6240 } \
6241 while (0)
6242
6243#define po_imm_or_fail(min, max, popt) \
6244 do \
6245 { \
6246 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6247 goto failure; \
6248 inst.operands[i].imm = val; \
6249 } \
6250 while (0)
6251
6252#define po_scalar_or_goto(elsz, label) \
6253 do \
6254 { \
6255 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6256 if (val == FAIL) \
6257 goto label; \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isscalar = 1; \
6260 } \
6261 while (0)
6262
6263#define po_misc_or_fail(expr) \
6264 do \
6265 { \
6266 if (expr) \
6267 goto failure; \
6268 } \
6269 while (0)
6270
6271#define po_misc_or_fail_no_backtrack(expr) \
6272 do \
6273 { \
6274 result = expr; \
6275 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6276 backtrack_pos = 0; \
6277 if (result != PARSE_OPERAND_SUCCESS) \
6278 goto failure; \
6279 } \
6280 while (0)
4962c51a 6281
52e7f43d
RE
6282#define po_barrier_or_imm(str) \
6283 do \
6284 { \
6285 val = parse_barrier (&str); \
6286 if (val == FAIL) \
6287 { \
6288 if (ISALPHA (*str)) \
6289 goto failure; \
6290 else \
6291 goto immediate; \
6292 } \
6293 else \
6294 { \
6295 if ((inst.instruction & 0xf0) == 0x60 \
6296 && val != 0xf) \
6297 { \
6298 /* ISB can only take SY as an option. */ \
6299 inst.error = _("invalid barrier type"); \
6300 goto failure; \
6301 } \
6302 } \
6303 } \
6304 while (0)
6305
c19d1205
ZW
6306 skip_whitespace (str);
6307
6308 for (i = 0; upat[i] != OP_stop; i++)
6309 {
5be8be5d
DG
6310 op_parse_code = upat[i];
6311 if (op_parse_code >= 1<<16)
6312 op_parse_code = thumb ? (op_parse_code >> 16)
6313 : (op_parse_code & ((1<<16)-1));
6314
6315 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6316 {
6317 /* Remember where we are in case we need to backtrack. */
9c2799c2 6318 gas_assert (!backtrack_pos);
c19d1205
ZW
6319 backtrack_pos = str;
6320 backtrack_error = inst.error;
6321 backtrack_index = i;
6322 }
6323
b6702015 6324 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6325 po_char_or_fail (',');
6326
5be8be5d 6327 switch (op_parse_code)
c19d1205
ZW
6328 {
6329 /* Registers */
6330 case OP_oRRnpc:
5be8be5d 6331 case OP_oRRnpcsp:
c19d1205 6332 case OP_RRnpc:
5be8be5d 6333 case OP_RRnpcsp:
c19d1205
ZW
6334 case OP_oRR:
6335 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6336 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6337 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6338 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6339 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6340 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6341 case OP_oRND:
6342 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6343 case OP_RVC:
6344 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6345 break;
6346 /* Also accept generic coprocessor regs for unknown registers. */
6347 coproc_reg:
6348 po_reg_or_fail (REG_TYPE_CN);
6349 break;
c19d1205
ZW
6350 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6351 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6352 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6353 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6354 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6355 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6356 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6357 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6358 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6359 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6360 case OP_oRNQ:
6361 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6362 case OP_oRNDQ:
6363 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6364 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6365 case OP_oRNSDQ:
6366 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6367
6368 /* Neon scalar. Using an element size of 8 means that some invalid
6369 scalars are accepted here, so deal with those in later code. */
6370 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6371
5287ad62
JB
6372 case OP_RNDQ_I0:
6373 {
6374 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6375 break;
6376 try_imm0:
6377 po_imm_or_fail (0, 0, TRUE);
6378 }
6379 break;
6380
037e8744
JB
6381 case OP_RVSD_I0:
6382 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6383 break;
6384
5287ad62
JB
6385 case OP_RR_RNSC:
6386 {
6387 po_scalar_or_goto (8, try_rr);
6388 break;
6389 try_rr:
6390 po_reg_or_fail (REG_TYPE_RN);
6391 }
6392 break;
6393
037e8744
JB
6394 case OP_RNSDQ_RNSC:
6395 {
6396 po_scalar_or_goto (8, try_nsdq);
6397 break;
6398 try_nsdq:
6399 po_reg_or_fail (REG_TYPE_NSDQ);
6400 }
6401 break;
6402
5287ad62
JB
6403 case OP_RNDQ_RNSC:
6404 {
6405 po_scalar_or_goto (8, try_ndq);
6406 break;
6407 try_ndq:
6408 po_reg_or_fail (REG_TYPE_NDQ);
6409 }
6410 break;
6411
6412 case OP_RND_RNSC:
6413 {
6414 po_scalar_or_goto (8, try_vfd);
6415 break;
6416 try_vfd:
6417 po_reg_or_fail (REG_TYPE_VFD);
6418 }
6419 break;
6420
6421 case OP_VMOV:
6422 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6423 not careful then bad things might happen. */
6424 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6425 break;
6426
4316f0d2 6427 case OP_RNDQ_Ibig:
5287ad62 6428 {
4316f0d2 6429 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6430 break;
4316f0d2 6431 try_immbig:
5287ad62
JB
6432 /* There's a possibility of getting a 64-bit immediate here, so
6433 we need special handling. */
6434 if (parse_big_immediate (&str, i) == FAIL)
6435 {
6436 inst.error = _("immediate value is out of range");
6437 goto failure;
6438 }
6439 }
6440 break;
6441
6442 case OP_RNDQ_I63b:
6443 {
6444 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6445 break;
6446 try_shimm:
6447 po_imm_or_fail (0, 63, TRUE);
6448 }
6449 break;
c19d1205
ZW
6450
6451 case OP_RRnpcb:
6452 po_char_or_fail ('[');
6453 po_reg_or_fail (REG_TYPE_RN);
6454 po_char_or_fail (']');
6455 break;
a737bd4d 6456
55881a11 6457 case OP_RRnpctw:
c19d1205 6458 case OP_RRw:
b6702015 6459 case OP_oRRw:
c19d1205
ZW
6460 po_reg_or_fail (REG_TYPE_RN);
6461 if (skip_past_char (&str, '!') == SUCCESS)
6462 inst.operands[i].writeback = 1;
6463 break;
6464
6465 /* Immediates */
6466 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6467 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6468 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6469 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6470 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6471 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6472 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6473 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6474 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6475 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6476 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6477 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6478
6479 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6480 case OP_oI7b:
6481 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6482 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6483 case OP_oI31b:
6484 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6485 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6486 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6487 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6488
6489 /* Immediate variants */
6490 case OP_oI255c:
6491 po_char_or_fail ('{');
6492 po_imm_or_fail (0, 255, TRUE);
6493 po_char_or_fail ('}');
6494 break;
6495
6496 case OP_I31w:
6497 /* The expression parser chokes on a trailing !, so we have
6498 to find it first and zap it. */
6499 {
6500 char *s = str;
6501 while (*s && *s != ',')
6502 s++;
6503 if (s[-1] == '!')
6504 {
6505 s[-1] = '\0';
6506 inst.operands[i].writeback = 1;
6507 }
6508 po_imm_or_fail (0, 31, TRUE);
6509 if (str == s - 1)
6510 str = s;
6511 }
6512 break;
6513
6514 /* Expressions */
6515 case OP_EXPi: EXPi:
6516 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6517 GE_OPT_PREFIX));
6518 break;
6519
6520 case OP_EXP:
6521 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6522 GE_NO_PREFIX));
6523 break;
6524
6525 case OP_EXPr: EXPr:
6526 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6527 GE_NO_PREFIX));
6528 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6529 {
c19d1205
ZW
6530 val = parse_reloc (&str);
6531 if (val == -1)
6532 {
6533 inst.error = _("unrecognized relocation suffix");
6534 goto failure;
6535 }
6536 else if (val != BFD_RELOC_UNUSED)
6537 {
6538 inst.operands[i].imm = val;
6539 inst.operands[i].hasreloc = 1;
6540 }
a737bd4d 6541 }
c19d1205 6542 break;
a737bd4d 6543
b6895b4f
PB
6544 /* Operand for MOVW or MOVT. */
6545 case OP_HALF:
6546 po_misc_or_fail (parse_half (&str));
6547 break;
6548
e07e6e58 6549 /* Register or expression. */
c19d1205
ZW
6550 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6551 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6552
e07e6e58 6553 /* Register or immediate. */
c19d1205
ZW
6554 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6555 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6556
c19d1205
ZW
6557 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6558 IF:
6559 if (!is_immediate_prefix (*str))
6560 goto bad_args;
6561 str++;
6562 val = parse_fpa_immediate (&str);
6563 if (val == FAIL)
6564 goto failure;
6565 /* FPA immediates are encoded as registers 8-15.
6566 parse_fpa_immediate has already applied the offset. */
6567 inst.operands[i].reg = val;
6568 inst.operands[i].isreg = 1;
6569 break;
09d92015 6570
2d447fca
JM
6571 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6572 I32z: po_imm_or_fail (0, 32, FALSE); break;
6573
e07e6e58 6574 /* Two kinds of register. */
c19d1205
ZW
6575 case OP_RIWR_RIWC:
6576 {
6577 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6578 if (!rege
6579 || (rege->type != REG_TYPE_MMXWR
6580 && rege->type != REG_TYPE_MMXWC
6581 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6582 {
6583 inst.error = _("iWMMXt data or control register expected");
6584 goto failure;
6585 }
6586 inst.operands[i].reg = rege->number;
6587 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6588 }
6589 break;
09d92015 6590
41adaa5c
JM
6591 case OP_RIWC_RIWG:
6592 {
6593 struct reg_entry *rege = arm_reg_parse_multi (&str);
6594 if (!rege
6595 || (rege->type != REG_TYPE_MMXWC
6596 && rege->type != REG_TYPE_MMXWCG))
6597 {
6598 inst.error = _("iWMMXt control register expected");
6599 goto failure;
6600 }
6601 inst.operands[i].reg = rege->number;
6602 inst.operands[i].isreg = 1;
6603 }
6604 break;
6605
c19d1205
ZW
6606 /* Misc */
6607 case OP_CPSF: val = parse_cps_flags (&str); break;
6608 case OP_ENDI: val = parse_endian_specifier (&str); break;
6609 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6610 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6611 case OP_oBARRIER_I15:
6612 po_barrier_or_imm (str); break;
6613 immediate:
6614 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6615 goto failure;
6616 break;
c19d1205 6617
d2cd1205
JB
6618 case OP_wPSR:
6619 case OP_rPSR:
90ec0d68
MGD
6620 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6622 {
6623 inst.error = _("Banked registers are not available with this "
6624 "architecture.");
6625 goto failure;
6626 }
6627 break;
d2cd1205
JB
6628 try_psr:
6629 val = parse_psr (&str, op_parse_code == OP_wPSR);
6630 break;
037e8744
JB
6631
6632 case OP_APSR_RR:
6633 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6634 break;
6635 try_apsr:
6636 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6637 instruction). */
6638 if (strncasecmp (str, "APSR_", 5) == 0)
6639 {
6640 unsigned found = 0;
6641 str += 5;
6642 while (found < 15)
6643 switch (*str++)
6644 {
6645 case 'c': found = (found & 1) ? 16 : found | 1; break;
6646 case 'n': found = (found & 2) ? 16 : found | 2; break;
6647 case 'z': found = (found & 4) ? 16 : found | 4; break;
6648 case 'v': found = (found & 8) ? 16 : found | 8; break;
6649 default: found = 16;
6650 }
6651 if (found != 15)
6652 goto failure;
6653 inst.operands[i].isvec = 1;
f7c21dc7
NC
6654 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6655 inst.operands[i].reg = REG_PC;
037e8744
JB
6656 }
6657 else
6658 goto failure;
6659 break;
6660
92e90b6e
PB
6661 case OP_TB:
6662 po_misc_or_fail (parse_tb (&str));
6663 break;
6664
e07e6e58 6665 /* Register lists. */
c19d1205
ZW
6666 case OP_REGLST:
6667 val = parse_reg_list (&str);
6668 if (*str == '^')
6669 {
6670 inst.operands[1].writeback = 1;
6671 str++;
6672 }
6673 break;
09d92015 6674
c19d1205 6675 case OP_VRSLST:
5287ad62 6676 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6677 break;
09d92015 6678
c19d1205 6679 case OP_VRDLST:
5287ad62 6680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6681 break;
a737bd4d 6682
037e8744
JB
6683 case OP_VRSDLST:
6684 /* Allow Q registers too. */
6685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6686 REGLIST_NEON_D);
6687 if (val == FAIL)
6688 {
6689 inst.error = NULL;
6690 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6691 REGLIST_VFP_S);
6692 inst.operands[i].issingle = 1;
6693 }
6694 break;
6695
5287ad62
JB
6696 case OP_NRDLST:
6697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6698 REGLIST_NEON_D);
6699 break;
6700
6701 case OP_NSTRLST:
dcbf9037
JB
6702 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6703 &inst.operands[i].vectype);
5287ad62
JB
6704 break;
6705
c19d1205
ZW
6706 /* Addressing modes */
6707 case OP_ADDR:
6708 po_misc_or_fail (parse_address (&str, i));
6709 break;
09d92015 6710
4962c51a
MS
6711 case OP_ADDRGLDR:
6712 po_misc_or_fail_no_backtrack (
6713 parse_address_group_reloc (&str, i, GROUP_LDR));
6714 break;
6715
6716 case OP_ADDRGLDRS:
6717 po_misc_or_fail_no_backtrack (
6718 parse_address_group_reloc (&str, i, GROUP_LDRS));
6719 break;
6720
6721 case OP_ADDRGLDC:
6722 po_misc_or_fail_no_backtrack (
6723 parse_address_group_reloc (&str, i, GROUP_LDC));
6724 break;
6725
c19d1205
ZW
6726 case OP_SH:
6727 po_misc_or_fail (parse_shifter_operand (&str, i));
6728 break;
09d92015 6729
4962c51a
MS
6730 case OP_SHG:
6731 po_misc_or_fail_no_backtrack (
6732 parse_shifter_operand_group_reloc (&str, i));
6733 break;
6734
c19d1205
ZW
6735 case OP_oSHll:
6736 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6737 break;
09d92015 6738
c19d1205
ZW
6739 case OP_oSHar:
6740 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6741 break;
09d92015 6742
c19d1205
ZW
6743 case OP_oSHllar:
6744 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6745 break;
09d92015 6746
c19d1205 6747 default:
5be8be5d 6748 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6749 }
09d92015 6750
c19d1205
ZW
6751 /* Various value-based sanity checks and shared operations. We
6752 do not signal immediate failures for the register constraints;
6753 this allows a syntax error to take precedence. */
5be8be5d 6754 switch (op_parse_code)
c19d1205
ZW
6755 {
6756 case OP_oRRnpc:
6757 case OP_RRnpc:
6758 case OP_RRnpcb:
6759 case OP_RRw:
b6702015 6760 case OP_oRRw:
c19d1205
ZW
6761 case OP_RRnpc_I0:
6762 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6763 inst.error = BAD_PC;
6764 break;
09d92015 6765
5be8be5d
DG
6766 case OP_oRRnpcsp:
6767 case OP_RRnpcsp:
6768 if (inst.operands[i].isreg)
6769 {
6770 if (inst.operands[i].reg == REG_PC)
6771 inst.error = BAD_PC;
6772 else if (inst.operands[i].reg == REG_SP)
6773 inst.error = BAD_SP;
6774 }
6775 break;
6776
55881a11
MGD
6777 case OP_RRnpctw:
6778 if (inst.operands[i].isreg
6779 && inst.operands[i].reg == REG_PC
6780 && (inst.operands[i].writeback || thumb))
6781 inst.error = BAD_PC;
6782 break;
6783
c19d1205
ZW
6784 case OP_CPSF:
6785 case OP_ENDI:
6786 case OP_oROR:
d2cd1205
JB
6787 case OP_wPSR:
6788 case OP_rPSR:
c19d1205 6789 case OP_COND:
52e7f43d 6790 case OP_oBARRIER_I15:
c19d1205
ZW
6791 case OP_REGLST:
6792 case OP_VRSLST:
6793 case OP_VRDLST:
037e8744 6794 case OP_VRSDLST:
5287ad62
JB
6795 case OP_NRDLST:
6796 case OP_NSTRLST:
c19d1205
ZW
6797 if (val == FAIL)
6798 goto failure;
6799 inst.operands[i].imm = val;
6800 break;
a737bd4d 6801
c19d1205
ZW
6802 default:
6803 break;
6804 }
09d92015 6805
c19d1205
ZW
6806 /* If we get here, this operand was successfully parsed. */
6807 inst.operands[i].present = 1;
6808 continue;
09d92015 6809
c19d1205 6810 bad_args:
09d92015 6811 inst.error = BAD_ARGS;
c19d1205
ZW
6812
6813 failure:
6814 if (!backtrack_pos)
d252fdde
PB
6815 {
6816 /* The parse routine should already have set inst.error, but set a
5f4273c7 6817 default here just in case. */
d252fdde
PB
6818 if (!inst.error)
6819 inst.error = _("syntax error");
6820 return FAIL;
6821 }
c19d1205
ZW
6822
6823 /* Do not backtrack over a trailing optional argument that
6824 absorbed some text. We will only fail again, with the
6825 'garbage following instruction' error message, which is
6826 probably less helpful than the current one. */
6827 if (backtrack_index == i && backtrack_pos != str
6828 && upat[i+1] == OP_stop)
d252fdde
PB
6829 {
6830 if (!inst.error)
6831 inst.error = _("syntax error");
6832 return FAIL;
6833 }
c19d1205
ZW
6834
6835 /* Try again, skipping the optional argument at backtrack_pos. */
6836 str = backtrack_pos;
6837 inst.error = backtrack_error;
6838 inst.operands[backtrack_index].present = 0;
6839 i = backtrack_index;
6840 backtrack_pos = 0;
09d92015 6841 }
09d92015 6842
c19d1205
ZW
6843 /* Check that we have parsed all the arguments. */
6844 if (*str != '\0' && !inst.error)
6845 inst.error = _("garbage following instruction");
09d92015 6846
c19d1205 6847 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6848}
6849
c19d1205
ZW
6850#undef po_char_or_fail
6851#undef po_reg_or_fail
6852#undef po_reg_or_goto
6853#undef po_imm_or_fail
5287ad62 6854#undef po_scalar_or_fail
52e7f43d 6855#undef po_barrier_or_imm
e07e6e58 6856
c19d1205 6857/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6858#define constraint(expr, err) \
6859 do \
c19d1205 6860 { \
e07e6e58
NC
6861 if (expr) \
6862 { \
6863 inst.error = err; \
6864 return; \
6865 } \
c19d1205 6866 } \
e07e6e58 6867 while (0)
c19d1205 6868
fdfde340
JM
6869/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6870 instructions are unpredictable if these registers are used. This
6871 is the BadReg predicate in ARM's Thumb-2 documentation. */
6872#define reject_bad_reg(reg) \
6873 do \
6874 if (reg == REG_SP || reg == REG_PC) \
6875 { \
6876 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6877 return; \
6878 } \
6879 while (0)
6880
94206790
MM
6881/* If REG is R13 (the stack pointer), warn that its use is
6882 deprecated. */
6883#define warn_deprecated_sp(reg) \
6884 do \
6885 if (warn_on_deprecated && reg == REG_SP) \
6886 as_warn (_("use of r13 is deprecated")); \
6887 while (0)
6888
c19d1205
ZW
6889/* Functions for operand encoding. ARM, then Thumb. */
6890
6891#define rotate_left(v, n) (v << n | v >> (32 - n))
6892
6893/* If VAL can be encoded in the immediate field of an ARM instruction,
6894 return the encoded form. Otherwise, return FAIL. */
6895
6896static unsigned int
6897encode_arm_immediate (unsigned int val)
09d92015 6898{
c19d1205
ZW
6899 unsigned int a, i;
6900
6901 for (i = 0; i < 32; i += 2)
6902 if ((a = rotate_left (val, i)) <= 0xff)
6903 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6904
6905 return FAIL;
09d92015
MM
6906}
6907
c19d1205
ZW
6908/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6909 return the encoded form. Otherwise, return FAIL. */
6910static unsigned int
6911encode_thumb32_immediate (unsigned int val)
09d92015 6912{
c19d1205 6913 unsigned int a, i;
09d92015 6914
9c3c69f2 6915 if (val <= 0xff)
c19d1205 6916 return val;
a737bd4d 6917
9c3c69f2 6918 for (i = 1; i <= 24; i++)
09d92015 6919 {
9c3c69f2
PB
6920 a = val >> i;
6921 if ((val & ~(0xff << i)) == 0)
6922 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6923 }
a737bd4d 6924
c19d1205
ZW
6925 a = val & 0xff;
6926 if (val == ((a << 16) | a))
6927 return 0x100 | a;
6928 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6929 return 0x300 | a;
09d92015 6930
c19d1205
ZW
6931 a = val & 0xff00;
6932 if (val == ((a << 16) | a))
6933 return 0x200 | (a >> 8);
a737bd4d 6934
c19d1205 6935 return FAIL;
09d92015 6936}
5287ad62 6937/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6938
6939static void
5287ad62
JB
6940encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6941{
6942 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6943 && reg > 15)
6944 {
b1cc4aeb 6945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6946 {
6947 if (thumb_mode)
6948 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6949 fpu_vfp_ext_d32);
5287ad62
JB
6950 else
6951 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6952 fpu_vfp_ext_d32);
5287ad62
JB
6953 }
6954 else
6955 {
dcbf9037 6956 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6957 return;
6958 }
6959 }
6960
c19d1205 6961 switch (pos)
09d92015 6962 {
c19d1205
ZW
6963 case VFP_REG_Sd:
6964 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6965 break;
6966
6967 case VFP_REG_Sn:
6968 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6969 break;
6970
6971 case VFP_REG_Sm:
6972 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6973 break;
6974
5287ad62
JB
6975 case VFP_REG_Dd:
6976 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6977 break;
5f4273c7 6978
5287ad62
JB
6979 case VFP_REG_Dn:
6980 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6981 break;
5f4273c7 6982
5287ad62
JB
6983 case VFP_REG_Dm:
6984 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6985 break;
6986
c19d1205
ZW
6987 default:
6988 abort ();
09d92015 6989 }
09d92015
MM
6990}
6991
c19d1205 6992/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6993 if any, is handled by md_apply_fix. */
09d92015 6994static void
c19d1205 6995encode_arm_shift (int i)
09d92015 6996{
c19d1205
ZW
6997 if (inst.operands[i].shift_kind == SHIFT_RRX)
6998 inst.instruction |= SHIFT_ROR << 5;
6999 else
09d92015 7000 {
c19d1205
ZW
7001 inst.instruction |= inst.operands[i].shift_kind << 5;
7002 if (inst.operands[i].immisreg)
7003 {
7004 inst.instruction |= SHIFT_BY_REG;
7005 inst.instruction |= inst.operands[i].imm << 8;
7006 }
7007 else
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7009 }
c19d1205 7010}
09d92015 7011
c19d1205
ZW
7012static void
7013encode_arm_shifter_operand (int i)
7014{
7015 if (inst.operands[i].isreg)
09d92015 7016 {
c19d1205
ZW
7017 inst.instruction |= inst.operands[i].reg;
7018 encode_arm_shift (i);
09d92015 7019 }
c19d1205 7020 else
a415b1cd
JB
7021 {
7022 inst.instruction |= INST_IMMEDIATE;
7023 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7024 inst.instruction |= inst.operands[i].imm;
7025 }
09d92015
MM
7026}
7027
c19d1205 7028/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7029static void
c19d1205 7030encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7031{
9c2799c2 7032 gas_assert (inst.operands[i].isreg);
c19d1205 7033 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7034
c19d1205 7035 if (inst.operands[i].preind)
09d92015 7036 {
c19d1205
ZW
7037 if (is_t)
7038 {
7039 inst.error = _("instruction does not accept preindexed addressing");
7040 return;
7041 }
7042 inst.instruction |= PRE_INDEX;
7043 if (inst.operands[i].writeback)
7044 inst.instruction |= WRITE_BACK;
09d92015 7045
c19d1205
ZW
7046 }
7047 else if (inst.operands[i].postind)
7048 {
9c2799c2 7049 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7050 if (is_t)
7051 inst.instruction |= WRITE_BACK;
7052 }
7053 else /* unindexed - only for coprocessor */
09d92015 7054 {
c19d1205 7055 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7056 return;
7057 }
7058
c19d1205
ZW
7059 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7060 && (((inst.instruction & 0x000f0000) >> 16)
7061 == ((inst.instruction & 0x0000f000) >> 12)))
7062 as_warn ((inst.instruction & LOAD_BIT)
7063 ? _("destination register same as write-back base")
7064 : _("source register same as write-back base"));
09d92015
MM
7065}
7066
c19d1205
ZW
7067/* inst.operands[i] was set up by parse_address. Encode it into an
7068 ARM-format mode 2 load or store instruction. If is_t is true,
7069 reject forms that cannot be used with a T instruction (i.e. not
7070 post-indexed). */
a737bd4d 7071static void
c19d1205 7072encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7073{
5be8be5d
DG
7074 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7075
c19d1205 7076 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7077
c19d1205 7078 if (inst.operands[i].immisreg)
09d92015 7079 {
5be8be5d
DG
7080 constraint ((inst.operands[i].imm == REG_PC
7081 || (is_pc && inst.operands[i].writeback)),
7082 BAD_PC_ADDRESSING);
c19d1205
ZW
7083 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7084 inst.instruction |= inst.operands[i].imm;
7085 if (!inst.operands[i].negative)
7086 inst.instruction |= INDEX_UP;
7087 if (inst.operands[i].shifted)
7088 {
7089 if (inst.operands[i].shift_kind == SHIFT_RRX)
7090 inst.instruction |= SHIFT_ROR << 5;
7091 else
7092 {
7093 inst.instruction |= inst.operands[i].shift_kind << 5;
7094 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7095 }
7096 }
09d92015 7097 }
c19d1205 7098 else /* immediate offset in inst.reloc */
09d92015 7099 {
5be8be5d
DG
7100 if (is_pc && !inst.reloc.pc_rel)
7101 {
7102 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7103
7104 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7105 cannot use PC in addressing.
7106 PC cannot be used in writeback addressing, either. */
7107 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7108 BAD_PC_ADDRESSING);
23a10334 7109
dc5ec521 7110 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7111 if (warn_on_deprecated
7112 && !is_load
7113 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7114 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7115 }
7116
c19d1205 7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7123 }
09d92015 7124 }
09d92015
MM
7125}
7126
c19d1205
ZW
7127/* inst.operands[i] was set up by parse_address. Encode it into an
7128 ARM-format mode 3 load or store instruction. Reject forms that
7129 cannot be used with such instructions. If is_t is true, reject
7130 forms that cannot be used with a T instruction (i.e. not
7131 post-indexed). */
7132static void
7133encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7134{
c19d1205 7135 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7136 {
c19d1205
ZW
7137 inst.error = _("instruction does not accept scaled register index");
7138 return;
09d92015 7139 }
a737bd4d 7140
c19d1205 7141 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7142
c19d1205
ZW
7143 if (inst.operands[i].immisreg)
7144 {
5be8be5d
DG
7145 constraint ((inst.operands[i].imm == REG_PC
7146 || inst.operands[i].reg == REG_PC),
7147 BAD_PC_ADDRESSING);
c19d1205
ZW
7148 inst.instruction |= inst.operands[i].imm;
7149 if (!inst.operands[i].negative)
7150 inst.instruction |= INDEX_UP;
7151 }
7152 else /* immediate offset in inst.reloc */
7153 {
5be8be5d
DG
7154 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7155 && inst.operands[i].writeback),
7156 BAD_PC_WRITEBACK);
c19d1205
ZW
7157 inst.instruction |= HWOFFSET_IMM;
7158 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7159 {
7160 /* Prefer + for zero encoded value. */
7161 if (!inst.operands[i].negative)
7162 inst.instruction |= INDEX_UP;
7163
7164 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7165 }
c19d1205 7166 }
a737bd4d
NC
7167}
7168
c19d1205
ZW
7169/* inst.operands[i] was set up by parse_address. Encode it into an
7170 ARM-format instruction. Reject all forms which cannot be encoded
7171 into a coprocessor load/store instruction. If wb_ok is false,
7172 reject use of writeback; if unind_ok is false, reject use of
7173 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7174 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7175 (in which case it is preserved). */
09d92015 7176
c19d1205
ZW
7177static int
7178encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7179{
c19d1205 7180 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7181
9c2799c2 7182 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7183
c19d1205 7184 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7185 {
9c2799c2 7186 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7187 if (!unind_ok)
7188 {
7189 inst.error = _("instruction does not support unindexed addressing");
7190 return FAIL;
7191 }
7192 inst.instruction |= inst.operands[i].imm;
7193 inst.instruction |= INDEX_UP;
7194 return SUCCESS;
09d92015 7195 }
a737bd4d 7196
c19d1205
ZW
7197 if (inst.operands[i].preind)
7198 inst.instruction |= PRE_INDEX;
a737bd4d 7199
c19d1205 7200 if (inst.operands[i].writeback)
09d92015 7201 {
c19d1205
ZW
7202 if (inst.operands[i].reg == REG_PC)
7203 {
7204 inst.error = _("pc may not be used with write-back");
7205 return FAIL;
7206 }
7207 if (!wb_ok)
7208 {
7209 inst.error = _("instruction does not support writeback");
7210 return FAIL;
7211 }
7212 inst.instruction |= WRITE_BACK;
09d92015 7213 }
a737bd4d 7214
c19d1205 7215 if (reloc_override)
21d799b5 7216 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7217 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7218 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7219 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7220 {
7221 if (thumb_mode)
7222 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7223 else
7224 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7225 }
7226
26d97720
NS
7227 /* Prefer + for zero encoded value. */
7228 if (!inst.operands[i].negative)
7229 inst.instruction |= INDEX_UP;
7230
c19d1205
ZW
7231 return SUCCESS;
7232}
a737bd4d 7233
c19d1205
ZW
7234/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7235 Determine whether it can be performed with a move instruction; if
7236 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7237 return TRUE; if it can't, convert inst.instruction to a literal-pool
7238 load and return FALSE. If this is not a valid thing to do in the
7239 current context, set inst.error and return TRUE.
a737bd4d 7240
c19d1205
ZW
7241 inst.operands[i] describes the destination register. */
7242
c921be7d 7243static bfd_boolean
c19d1205
ZW
7244move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7245{
53365c0d
PB
7246 unsigned long tbit;
7247
7248 if (thumb_p)
7249 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7250 else
7251 tbit = LOAD_BIT;
7252
7253 if ((inst.instruction & tbit) == 0)
09d92015 7254 {
c19d1205 7255 inst.error = _("invalid pseudo operation");
c921be7d 7256 return TRUE;
09d92015 7257 }
c19d1205 7258 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7259 {
7260 inst.error = _("constant expression expected");
c921be7d 7261 return TRUE;
09d92015 7262 }
c19d1205 7263 if (inst.reloc.exp.X_op == O_constant)
09d92015 7264 {
c19d1205
ZW
7265 if (thumb_p)
7266 {
53365c0d 7267 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7268 {
7269 /* This can be done with a mov(1) instruction. */
7270 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7271 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7272 return TRUE;
c19d1205
ZW
7273 }
7274 }
7275 else
7276 {
7277 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7278 if (value != FAIL)
7279 {
7280 /* This can be done with a mov instruction. */
7281 inst.instruction &= LITERAL_MASK;
7282 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7283 inst.instruction |= value & 0xfff;
c921be7d 7284 return TRUE;
c19d1205 7285 }
09d92015 7286
c19d1205
ZW
7287 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7288 if (value != FAIL)
7289 {
7290 /* This can be done with a mvn instruction. */
7291 inst.instruction &= LITERAL_MASK;
7292 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7293 inst.instruction |= value & 0xfff;
c921be7d 7294 return TRUE;
c19d1205
ZW
7295 }
7296 }
09d92015
MM
7297 }
7298
c19d1205
ZW
7299 if (add_to_lit_pool () == FAIL)
7300 {
7301 inst.error = _("literal pool insertion failed");
c921be7d 7302 return TRUE;
c19d1205
ZW
7303 }
7304 inst.operands[1].reg = REG_PC;
7305 inst.operands[1].isreg = 1;
7306 inst.operands[1].preind = 1;
7307 inst.reloc.pc_rel = 1;
7308 inst.reloc.type = (thumb_p
7309 ? BFD_RELOC_ARM_THUMB_OFFSET
7310 : (mode_3
7311 ? BFD_RELOC_ARM_HWLITERAL
7312 : BFD_RELOC_ARM_LITERAL));
c921be7d 7313 return FALSE;
09d92015
MM
7314}
7315
5f4273c7 7316/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7317 First some generics; their names are taken from the conventional
7318 bit positions for register arguments in ARM format instructions. */
09d92015 7319
a737bd4d 7320static void
c19d1205 7321do_noargs (void)
09d92015 7322{
c19d1205 7323}
a737bd4d 7324
c19d1205
ZW
7325static void
7326do_rd (void)
7327{
7328 inst.instruction |= inst.operands[0].reg << 12;
7329}
a737bd4d 7330
c19d1205
ZW
7331static void
7332do_rd_rm (void)
7333{
7334 inst.instruction |= inst.operands[0].reg << 12;
7335 inst.instruction |= inst.operands[1].reg;
7336}
09d92015 7337
c19d1205
ZW
7338static void
7339do_rd_rn (void)
7340{
7341 inst.instruction |= inst.operands[0].reg << 12;
7342 inst.instruction |= inst.operands[1].reg << 16;
7343}
a737bd4d 7344
c19d1205
ZW
7345static void
7346do_rn_rd (void)
7347{
7348 inst.instruction |= inst.operands[0].reg << 16;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350}
09d92015 7351
c19d1205
ZW
7352static void
7353do_rd_rm_rn (void)
7354{
9a64e435 7355 unsigned Rn = inst.operands[2].reg;
708587a4 7356 /* Enforce restrictions on SWP instruction. */
9a64e435 7357 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7358 {
7359 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7360 _("Rn must not overlap other operands"));
7361
7362 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7363 if (warn_on_deprecated
7364 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7365 as_warn (_("swp{b} use is deprecated for this architecture"));
7366
7367 }
c19d1205
ZW
7368 inst.instruction |= inst.operands[0].reg << 12;
7369 inst.instruction |= inst.operands[1].reg;
9a64e435 7370 inst.instruction |= Rn << 16;
c19d1205 7371}
09d92015 7372
c19d1205
ZW
7373static void
7374do_rd_rn_rm (void)
7375{
7376 inst.instruction |= inst.operands[0].reg << 12;
7377 inst.instruction |= inst.operands[1].reg << 16;
7378 inst.instruction |= inst.operands[2].reg;
7379}
a737bd4d 7380
c19d1205
ZW
7381static void
7382do_rm_rd_rn (void)
7383{
5be8be5d
DG
7384 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7385 constraint (((inst.reloc.exp.X_op != O_constant
7386 && inst.reloc.exp.X_op != O_illegal)
7387 || inst.reloc.exp.X_add_number != 0),
7388 BAD_ADDR_MODE);
c19d1205
ZW
7389 inst.instruction |= inst.operands[0].reg;
7390 inst.instruction |= inst.operands[1].reg << 12;
7391 inst.instruction |= inst.operands[2].reg << 16;
7392}
09d92015 7393
c19d1205
ZW
7394static void
7395do_imm0 (void)
7396{
7397 inst.instruction |= inst.operands[0].imm;
7398}
09d92015 7399
c19d1205
ZW
7400static void
7401do_rd_cpaddr (void)
7402{
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7405}
a737bd4d 7406
c19d1205
ZW
7407/* ARM instructions, in alphabetical order by function name (except
7408 that wrapper functions appear immediately after the function they
7409 wrap). */
09d92015 7410
c19d1205
ZW
7411/* This is a pseudo-op of the form "adr rd, label" to be converted
7412 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7413
7414static void
c19d1205 7415do_adr (void)
09d92015 7416{
c19d1205 7417 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7418
c19d1205
ZW
7419 /* Frag hacking will turn this into a sub instruction if the offset turns
7420 out to be negative. */
7421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7422 inst.reloc.pc_rel = 1;
2fc8bdac 7423 inst.reloc.exp.X_add_number -= 8;
c19d1205 7424}
b99bd4ef 7425
c19d1205
ZW
7426/* This is a pseudo-op of the form "adrl rd, label" to be converted
7427 into a relative address of the form:
7428 add rd, pc, #low(label-.-8)"
7429 add rd, rd, #high(label-.-8)" */
b99bd4ef 7430
c19d1205
ZW
7431static void
7432do_adrl (void)
7433{
7434 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7435
c19d1205
ZW
7436 /* Frag hacking will turn this into a sub instruction if the offset turns
7437 out to be negative. */
7438 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7439 inst.reloc.pc_rel = 1;
7440 inst.size = INSN_SIZE * 2;
2fc8bdac 7441 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7442}
7443
b99bd4ef 7444static void
c19d1205 7445do_arit (void)
b99bd4ef 7446{
c19d1205
ZW
7447 if (!inst.operands[1].present)
7448 inst.operands[1].reg = inst.operands[0].reg;
7449 inst.instruction |= inst.operands[0].reg << 12;
7450 inst.instruction |= inst.operands[1].reg << 16;
7451 encode_arm_shifter_operand (2);
7452}
b99bd4ef 7453
62b3e311
PB
7454static void
7455do_barrier (void)
7456{
7457 if (inst.operands[0].present)
7458 {
7459 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7460 && inst.operands[0].imm > 0xf
7461 && inst.operands[0].imm < 0x0,
bd3ba5d1 7462 _("bad barrier type"));
62b3e311
PB
7463 inst.instruction |= inst.operands[0].imm;
7464 }
7465 else
7466 inst.instruction |= 0xf;
7467}
7468
c19d1205
ZW
7469static void
7470do_bfc (void)
7471{
7472 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7473 constraint (msb > 32, _("bit-field extends past end of register"));
7474 /* The instruction encoding stores the LSB and MSB,
7475 not the LSB and width. */
7476 inst.instruction |= inst.operands[0].reg << 12;
7477 inst.instruction |= inst.operands[1].imm << 7;
7478 inst.instruction |= (msb - 1) << 16;
7479}
b99bd4ef 7480
c19d1205
ZW
7481static void
7482do_bfi (void)
7483{
7484 unsigned int msb;
b99bd4ef 7485
c19d1205
ZW
7486 /* #0 in second position is alternative syntax for bfc, which is
7487 the same instruction but with REG_PC in the Rm field. */
7488 if (!inst.operands[1].isreg)
7489 inst.operands[1].reg = REG_PC;
b99bd4ef 7490
c19d1205
ZW
7491 msb = inst.operands[2].imm + inst.operands[3].imm;
7492 constraint (msb > 32, _("bit-field extends past end of register"));
7493 /* The instruction encoding stores the LSB and MSB,
7494 not the LSB and width. */
7495 inst.instruction |= inst.operands[0].reg << 12;
7496 inst.instruction |= inst.operands[1].reg;
7497 inst.instruction |= inst.operands[2].imm << 7;
7498 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7499}
7500
b99bd4ef 7501static void
c19d1205 7502do_bfx (void)
b99bd4ef 7503{
c19d1205
ZW
7504 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7505 _("bit-field extends past end of register"));
7506 inst.instruction |= inst.operands[0].reg << 12;
7507 inst.instruction |= inst.operands[1].reg;
7508 inst.instruction |= inst.operands[2].imm << 7;
7509 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7510}
09d92015 7511
c19d1205
ZW
7512/* ARM V5 breakpoint instruction (argument parse)
7513 BKPT <16 bit unsigned immediate>
7514 Instruction is not conditional.
7515 The bit pattern given in insns[] has the COND_ALWAYS condition,
7516 and it is an error if the caller tried to override that. */
b99bd4ef 7517
c19d1205
ZW
7518static void
7519do_bkpt (void)
7520{
7521 /* Top 12 of 16 bits to bits 19:8. */
7522 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7523
c19d1205
ZW
7524 /* Bottom 4 of 16 bits to bits 3:0. */
7525 inst.instruction |= inst.operands[0].imm & 0xf;
7526}
09d92015 7527
c19d1205
ZW
7528static void
7529encode_branch (int default_reloc)
7530{
7531 if (inst.operands[0].hasreloc)
7532 {
0855e32b
NS
7533 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7534 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7535 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7536 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7537 ? BFD_RELOC_ARM_PLT32
7538 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7539 }
b99bd4ef 7540 else
9ae92b05 7541 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7542 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7543}
7544
b99bd4ef 7545static void
c19d1205 7546do_branch (void)
b99bd4ef 7547{
39b41c9c
PB
7548#ifdef OBJ_ELF
7549 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7550 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7551 else
7552#endif
7553 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7554}
7555
7556static void
7557do_bl (void)
7558{
7559#ifdef OBJ_ELF
7560 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7561 {
7562 if (inst.cond == COND_ALWAYS)
7563 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7564 else
7565 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7566 }
7567 else
7568#endif
7569 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7570}
b99bd4ef 7571
c19d1205
ZW
7572/* ARM V5 branch-link-exchange instruction (argument parse)
7573 BLX <target_addr> ie BLX(1)
7574 BLX{<condition>} <Rm> ie BLX(2)
7575 Unfortunately, there are two different opcodes for this mnemonic.
7576 So, the insns[].value is not used, and the code here zaps values
7577 into inst.instruction.
7578 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7579
c19d1205
ZW
7580static void
7581do_blx (void)
7582{
7583 if (inst.operands[0].isreg)
b99bd4ef 7584 {
c19d1205
ZW
7585 /* Arg is a register; the opcode provided by insns[] is correct.
7586 It is not illegal to do "blx pc", just useless. */
7587 if (inst.operands[0].reg == REG_PC)
7588 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7589
c19d1205
ZW
7590 inst.instruction |= inst.operands[0].reg;
7591 }
7592 else
b99bd4ef 7593 {
c19d1205 7594 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7595 conditionally, and the opcode must be adjusted.
7596 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7597 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7598 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7599 inst.instruction = 0xfa000000;
267bf995 7600 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7601 }
c19d1205
ZW
7602}
7603
7604static void
7605do_bx (void)
7606{
845b51d6
PB
7607 bfd_boolean want_reloc;
7608
c19d1205
ZW
7609 if (inst.operands[0].reg == REG_PC)
7610 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7611
c19d1205 7612 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7613 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7614 it is for ARMv4t or earlier. */
7615 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7616 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7617 want_reloc = TRUE;
7618
5ad34203 7619#ifdef OBJ_ELF
845b51d6 7620 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7621#endif
584206db 7622 want_reloc = FALSE;
845b51d6
PB
7623
7624 if (want_reloc)
7625 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7626}
7627
c19d1205
ZW
7628
7629/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7630
7631static void
c19d1205 7632do_bxj (void)
a737bd4d 7633{
c19d1205
ZW
7634 if (inst.operands[0].reg == REG_PC)
7635 as_tsktsk (_("use of r15 in bxj is not really useful"));
7636
7637 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7638}
7639
c19d1205
ZW
7640/* Co-processor data operation:
7641 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7642 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7643static void
7644do_cdp (void)
7645{
7646 inst.instruction |= inst.operands[0].reg << 8;
7647 inst.instruction |= inst.operands[1].imm << 20;
7648 inst.instruction |= inst.operands[2].reg << 12;
7649 inst.instruction |= inst.operands[3].reg << 16;
7650 inst.instruction |= inst.operands[4].reg;
7651 inst.instruction |= inst.operands[5].imm << 5;
7652}
a737bd4d
NC
7653
7654static void
c19d1205 7655do_cmp (void)
a737bd4d 7656{
c19d1205
ZW
7657 inst.instruction |= inst.operands[0].reg << 16;
7658 encode_arm_shifter_operand (1);
a737bd4d
NC
7659}
7660
c19d1205
ZW
7661/* Transfer between coprocessor and ARM registers.
7662 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7663 MRC2
7664 MCR{cond}
7665 MCR2
7666
7667 No special properties. */
09d92015
MM
7668
7669static void
c19d1205 7670do_co_reg (void)
09d92015 7671{
fdfde340
JM
7672 unsigned Rd;
7673
7674 Rd = inst.operands[2].reg;
7675 if (thumb_mode)
7676 {
7677 if (inst.instruction == 0xee000010
7678 || inst.instruction == 0xfe000010)
7679 /* MCR, MCR2 */
7680 reject_bad_reg (Rd);
7681 else
7682 /* MRC, MRC2 */
7683 constraint (Rd == REG_SP, BAD_SP);
7684 }
7685 else
7686 {
7687 /* MCR */
7688 if (inst.instruction == 0xe000010)
7689 constraint (Rd == REG_PC, BAD_PC);
7690 }
7691
7692
c19d1205
ZW
7693 inst.instruction |= inst.operands[0].reg << 8;
7694 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7695 inst.instruction |= Rd << 12;
c19d1205
ZW
7696 inst.instruction |= inst.operands[3].reg << 16;
7697 inst.instruction |= inst.operands[4].reg;
7698 inst.instruction |= inst.operands[5].imm << 5;
7699}
09d92015 7700
c19d1205
ZW
7701/* Transfer between coprocessor register and pair of ARM registers.
7702 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7703 MCRR2
7704 MRRC{cond}
7705 MRRC2
b99bd4ef 7706
c19d1205 7707 Two XScale instructions are special cases of these:
09d92015 7708
c19d1205
ZW
7709 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7710 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7711
5f4273c7 7712 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7713
c19d1205
ZW
7714static void
7715do_co_reg2c (void)
7716{
fdfde340
JM
7717 unsigned Rd, Rn;
7718
7719 Rd = inst.operands[2].reg;
7720 Rn = inst.operands[3].reg;
7721
7722 if (thumb_mode)
7723 {
7724 reject_bad_reg (Rd);
7725 reject_bad_reg (Rn);
7726 }
7727 else
7728 {
7729 constraint (Rd == REG_PC, BAD_PC);
7730 constraint (Rn == REG_PC, BAD_PC);
7731 }
7732
c19d1205
ZW
7733 inst.instruction |= inst.operands[0].reg << 8;
7734 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7735 inst.instruction |= Rd << 12;
7736 inst.instruction |= Rn << 16;
c19d1205 7737 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7738}
7739
c19d1205
ZW
7740static void
7741do_cpsi (void)
7742{
7743 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7744 if (inst.operands[1].present)
7745 {
7746 inst.instruction |= CPSI_MMOD;
7747 inst.instruction |= inst.operands[1].imm;
7748 }
c19d1205 7749}
b99bd4ef 7750
62b3e311
PB
7751static void
7752do_dbg (void)
7753{
7754 inst.instruction |= inst.operands[0].imm;
7755}
7756
eea54501
MGD
7757static void
7758do_div (void)
7759{
7760 unsigned Rd, Rn, Rm;
7761
7762 Rd = inst.operands[0].reg;
7763 Rn = (inst.operands[1].present
7764 ? inst.operands[1].reg : Rd);
7765 Rm = inst.operands[2].reg;
7766
7767 constraint ((Rd == REG_PC), BAD_PC);
7768 constraint ((Rn == REG_PC), BAD_PC);
7769 constraint ((Rm == REG_PC), BAD_PC);
7770
7771 inst.instruction |= Rd << 16;
7772 inst.instruction |= Rn << 0;
7773 inst.instruction |= Rm << 8;
7774}
7775
b99bd4ef 7776static void
c19d1205 7777do_it (void)
b99bd4ef 7778{
c19d1205 7779 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7780 process it to do the validation as if in
7781 thumb mode, just in case the code gets
7782 assembled for thumb using the unified syntax. */
7783
c19d1205 7784 inst.size = 0;
e07e6e58
NC
7785 if (unified_syntax)
7786 {
7787 set_it_insn_type (IT_INSN);
7788 now_it.mask = (inst.instruction & 0xf) | 0x10;
7789 now_it.cc = inst.operands[0].imm;
7790 }
09d92015 7791}
b99bd4ef 7792
09d92015 7793static void
c19d1205 7794do_ldmstm (void)
ea6ef066 7795{
c19d1205
ZW
7796 int base_reg = inst.operands[0].reg;
7797 int range = inst.operands[1].imm;
ea6ef066 7798
c19d1205
ZW
7799 inst.instruction |= base_reg << 16;
7800 inst.instruction |= range;
ea6ef066 7801
c19d1205
ZW
7802 if (inst.operands[1].writeback)
7803 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7804
c19d1205 7805 if (inst.operands[0].writeback)
ea6ef066 7806 {
c19d1205
ZW
7807 inst.instruction |= WRITE_BACK;
7808 /* Check for unpredictable uses of writeback. */
7809 if (inst.instruction & LOAD_BIT)
09d92015 7810 {
c19d1205
ZW
7811 /* Not allowed in LDM type 2. */
7812 if ((inst.instruction & LDM_TYPE_2_OR_3)
7813 && ((range & (1 << REG_PC)) == 0))
7814 as_warn (_("writeback of base register is UNPREDICTABLE"));
7815 /* Only allowed if base reg not in list for other types. */
7816 else if (range & (1 << base_reg))
7817 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7818 }
7819 else /* STM. */
7820 {
7821 /* Not allowed for type 2. */
7822 if (inst.instruction & LDM_TYPE_2_OR_3)
7823 as_warn (_("writeback of base register is UNPREDICTABLE"));
7824 /* Only allowed if base reg not in list, or first in list. */
7825 else if ((range & (1 << base_reg))
7826 && (range & ((1 << base_reg) - 1)))
7827 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7828 }
ea6ef066 7829 }
a737bd4d
NC
7830}
7831
c19d1205
ZW
7832/* ARMv5TE load-consecutive (argument parse)
7833 Mode is like LDRH.
7834
7835 LDRccD R, mode
7836 STRccD R, mode. */
7837
a737bd4d 7838static void
c19d1205 7839do_ldrd (void)
a737bd4d 7840{
c19d1205 7841 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 7842 _("first transfer register must be even"));
c19d1205
ZW
7843 constraint (inst.operands[1].present
7844 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 7845 _("can only transfer two consecutive registers"));
c19d1205
ZW
7846 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7847 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7848
c19d1205
ZW
7849 if (!inst.operands[1].present)
7850 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7851
c56791bb
RE
7852 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7853 register and the first register written; we have to diagnose
7854 overlap between the base and the second register written here. */
ea6ef066 7855
c56791bb
RE
7856 if (inst.operands[2].reg == inst.operands[1].reg
7857 && (inst.operands[2].writeback || inst.operands[2].postind))
7858 as_warn (_("base register written back, and overlaps "
7859 "second transfer register"));
b05fe5cf 7860
c56791bb
RE
7861 if (!(inst.instruction & V4_STR_BIT))
7862 {
c19d1205 7863 /* For an index-register load, the index register must not overlap the
c56791bb
RE
7864 destination (even if not write-back). */
7865 if (inst.operands[2].immisreg
7866 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7867 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7868 as_warn (_("index register overlaps transfer register"));
b05fe5cf 7869 }
c19d1205
ZW
7870 inst.instruction |= inst.operands[0].reg << 12;
7871 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7872}
7873
7874static void
c19d1205 7875do_ldrex (void)
b05fe5cf 7876{
c19d1205
ZW
7877 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7878 || inst.operands[1].postind || inst.operands[1].writeback
7879 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7880 || inst.operands[1].negative
7881 /* This can arise if the programmer has written
7882 strex rN, rM, foo
7883 or if they have mistakenly used a register name as the last
7884 operand, eg:
7885 strex rN, rM, rX
7886 It is very difficult to distinguish between these two cases
7887 because "rX" might actually be a label. ie the register
7888 name has been occluded by a symbol of the same name. So we
7889 just generate a general 'bad addressing mode' type error
7890 message and leave it up to the programmer to discover the
7891 true cause and fix their mistake. */
7892 || (inst.operands[1].reg == REG_PC),
7893 BAD_ADDR_MODE);
b05fe5cf 7894
c19d1205
ZW
7895 constraint (inst.reloc.exp.X_op != O_constant
7896 || inst.reloc.exp.X_add_number != 0,
7897 _("offset must be zero in ARM encoding"));
b05fe5cf 7898
5be8be5d
DG
7899 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7900
c19d1205
ZW
7901 inst.instruction |= inst.operands[0].reg << 12;
7902 inst.instruction |= inst.operands[1].reg << 16;
7903 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7904}
7905
7906static void
c19d1205 7907do_ldrexd (void)
b05fe5cf 7908{
c19d1205
ZW
7909 constraint (inst.operands[0].reg % 2 != 0,
7910 _("even register required"));
7911 constraint (inst.operands[1].present
7912 && inst.operands[1].reg != inst.operands[0].reg + 1,
7913 _("can only load two consecutive registers"));
7914 /* If op 1 were present and equal to PC, this function wouldn't
7915 have been called in the first place. */
7916 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7917
c19d1205
ZW
7918 inst.instruction |= inst.operands[0].reg << 12;
7919 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7920}
7921
1be5fd2e
NC
7922/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
7923 which is not a multiple of four is UNPREDICTABLE. */
7924static void
7925check_ldr_r15_aligned (void)
7926{
7927 constraint (!(inst.operands[1].immisreg)
7928 && (inst.operands[0].reg == REG_PC
7929 && inst.operands[1].reg == REG_PC
7930 && (inst.reloc.exp.X_add_number & 0x3)),
7931 _("ldr to register 15 must be 4-byte alligned"));
7932}
7933
b05fe5cf 7934static void
c19d1205 7935do_ldst (void)
b05fe5cf 7936{
c19d1205
ZW
7937 inst.instruction |= inst.operands[0].reg << 12;
7938 if (!inst.operands[1].isreg)
7939 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7940 return;
c19d1205 7941 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 7942 check_ldr_r15_aligned ();
b05fe5cf
ZW
7943}
7944
7945static void
c19d1205 7946do_ldstt (void)
b05fe5cf 7947{
c19d1205
ZW
7948 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7949 reject [Rn,...]. */
7950 if (inst.operands[1].preind)
b05fe5cf 7951 {
bd3ba5d1
NC
7952 constraint (inst.reloc.exp.X_op != O_constant
7953 || inst.reloc.exp.X_add_number != 0,
c19d1205 7954 _("this instruction requires a post-indexed address"));
b05fe5cf 7955
c19d1205
ZW
7956 inst.operands[1].preind = 0;
7957 inst.operands[1].postind = 1;
7958 inst.operands[1].writeback = 1;
b05fe5cf 7959 }
c19d1205
ZW
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7962}
b05fe5cf 7963
c19d1205 7964/* Halfword and signed-byte load/store operations. */
b05fe5cf 7965
c19d1205
ZW
7966static void
7967do_ldstv4 (void)
7968{
ff4a8d2b 7969 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7970 inst.instruction |= inst.operands[0].reg << 12;
7971 if (!inst.operands[1].isreg)
7972 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7973 return;
c19d1205 7974 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7975}
7976
7977static void
c19d1205 7978do_ldsttv4 (void)
b05fe5cf 7979{
c19d1205
ZW
7980 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7981 reject [Rn,...]. */
7982 if (inst.operands[1].preind)
b05fe5cf 7983 {
bd3ba5d1
NC
7984 constraint (inst.reloc.exp.X_op != O_constant
7985 || inst.reloc.exp.X_add_number != 0,
c19d1205 7986 _("this instruction requires a post-indexed address"));
b05fe5cf 7987
c19d1205
ZW
7988 inst.operands[1].preind = 0;
7989 inst.operands[1].postind = 1;
7990 inst.operands[1].writeback = 1;
b05fe5cf 7991 }
c19d1205
ZW
7992 inst.instruction |= inst.operands[0].reg << 12;
7993 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7994}
b05fe5cf 7995
c19d1205
ZW
7996/* Co-processor register load/store.
7997 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7998static void
7999do_lstc (void)
8000{
8001 inst.instruction |= inst.operands[0].reg << 8;
8002 inst.instruction |= inst.operands[1].reg << 12;
8003 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8004}
8005
b05fe5cf 8006static void
c19d1205 8007do_mlas (void)
b05fe5cf 8008{
8fb9d7b9 8009 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8010 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8011 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8012 && !(inst.instruction & 0x00400000))
8fb9d7b9 8013 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8014
c19d1205
ZW
8015 inst.instruction |= inst.operands[0].reg << 16;
8016 inst.instruction |= inst.operands[1].reg;
8017 inst.instruction |= inst.operands[2].reg << 8;
8018 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8019}
b05fe5cf 8020
c19d1205
ZW
8021static void
8022do_mov (void)
8023{
8024 inst.instruction |= inst.operands[0].reg << 12;
8025 encode_arm_shifter_operand (1);
8026}
b05fe5cf 8027
c19d1205
ZW
8028/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8029static void
8030do_mov16 (void)
8031{
b6895b4f
PB
8032 bfd_vma imm;
8033 bfd_boolean top;
8034
8035 top = (inst.instruction & 0x00400000) != 0;
8036 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8037 _(":lower16: not allowed this instruction"));
8038 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8039 _(":upper16: not allowed instruction"));
c19d1205 8040 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8041 if (inst.reloc.type == BFD_RELOC_UNUSED)
8042 {
8043 imm = inst.reloc.exp.X_add_number;
8044 /* The value is in two pieces: 0:11, 16:19. */
8045 inst.instruction |= (imm & 0x00000fff);
8046 inst.instruction |= (imm & 0x0000f000) << 4;
8047 }
b05fe5cf 8048}
b99bd4ef 8049
037e8744
JB
8050static void do_vfp_nsyn_opcode (const char *);
8051
8052static int
8053do_vfp_nsyn_mrs (void)
8054{
8055 if (inst.operands[0].isvec)
8056 {
8057 if (inst.operands[1].reg != 1)
8058 first_error (_("operand 1 must be FPSCR"));
8059 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8060 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8061 do_vfp_nsyn_opcode ("fmstat");
8062 }
8063 else if (inst.operands[1].isvec)
8064 do_vfp_nsyn_opcode ("fmrx");
8065 else
8066 return FAIL;
5f4273c7 8067
037e8744
JB
8068 return SUCCESS;
8069}
8070
8071static int
8072do_vfp_nsyn_msr (void)
8073{
8074 if (inst.operands[0].isvec)
8075 do_vfp_nsyn_opcode ("fmxr");
8076 else
8077 return FAIL;
8078
8079 return SUCCESS;
8080}
8081
f7c21dc7
NC
8082static void
8083do_vmrs (void)
8084{
8085 unsigned Rt = inst.operands[0].reg;
8086
8087 if (thumb_mode && inst.operands[0].reg == REG_SP)
8088 {
8089 inst.error = BAD_SP;
8090 return;
8091 }
8092
8093 /* APSR_ sets isvec. All other refs to PC are illegal. */
8094 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8095 {
8096 inst.error = BAD_PC;
8097 return;
8098 }
8099
8100 if (inst.operands[1].reg != 1)
8101 first_error (_("operand 1 must be FPSCR"));
8102
8103 inst.instruction |= (Rt << 12);
8104}
8105
8106static void
8107do_vmsr (void)
8108{
8109 unsigned Rt = inst.operands[1].reg;
8110
8111 if (thumb_mode)
8112 reject_bad_reg (Rt);
8113 else if (Rt == REG_PC)
8114 {
8115 inst.error = BAD_PC;
8116 return;
8117 }
8118
8119 if (inst.operands[0].reg != 1)
8120 first_error (_("operand 0 must be FPSCR"));
8121
8122 inst.instruction |= (Rt << 12);
8123}
8124
b99bd4ef 8125static void
c19d1205 8126do_mrs (void)
b99bd4ef 8127{
90ec0d68
MGD
8128 unsigned br;
8129
037e8744
JB
8130 if (do_vfp_nsyn_mrs () == SUCCESS)
8131 return;
8132
ff4a8d2b 8133 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8134 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8135
8136 if (inst.operands[1].isreg)
8137 {
8138 br = inst.operands[1].reg;
8139 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8140 as_bad (_("bad register for mrs"));
8141 }
8142 else
8143 {
8144 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8145 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8146 != (PSR_c|PSR_f),
d2cd1205 8147 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8148 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8149 }
8150
8151 inst.instruction |= br;
c19d1205 8152}
b99bd4ef 8153
c19d1205
ZW
8154/* Two possible forms:
8155 "{C|S}PSR_<field>, Rm",
8156 "{C|S}PSR_f, #expression". */
b99bd4ef 8157
c19d1205
ZW
8158static void
8159do_msr (void)
8160{
037e8744
JB
8161 if (do_vfp_nsyn_msr () == SUCCESS)
8162 return;
8163
c19d1205
ZW
8164 inst.instruction |= inst.operands[0].imm;
8165 if (inst.operands[1].isreg)
8166 inst.instruction |= inst.operands[1].reg;
8167 else
b99bd4ef 8168 {
c19d1205
ZW
8169 inst.instruction |= INST_IMMEDIATE;
8170 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8171 inst.reloc.pc_rel = 0;
b99bd4ef 8172 }
b99bd4ef
NC
8173}
8174
c19d1205
ZW
8175static void
8176do_mul (void)
a737bd4d 8177{
ff4a8d2b
NC
8178 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8179
c19d1205
ZW
8180 if (!inst.operands[2].present)
8181 inst.operands[2].reg = inst.operands[0].reg;
8182 inst.instruction |= inst.operands[0].reg << 16;
8183 inst.instruction |= inst.operands[1].reg;
8184 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8185
8fb9d7b9
MS
8186 if (inst.operands[0].reg == inst.operands[1].reg
8187 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8188 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8189}
8190
c19d1205
ZW
8191/* Long Multiply Parser
8192 UMULL RdLo, RdHi, Rm, Rs
8193 SMULL RdLo, RdHi, Rm, Rs
8194 UMLAL RdLo, RdHi, Rm, Rs
8195 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8196
8197static void
c19d1205 8198do_mull (void)
b99bd4ef 8199{
c19d1205
ZW
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 inst.instruction |= inst.operands[1].reg << 16;
8202 inst.instruction |= inst.operands[2].reg;
8203 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8204
682b27ad
PB
8205 /* rdhi and rdlo must be different. */
8206 if (inst.operands[0].reg == inst.operands[1].reg)
8207 as_tsktsk (_("rdhi and rdlo must be different"));
8208
8209 /* rdhi, rdlo and rm must all be different before armv6. */
8210 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8211 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8212 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8214}
b99bd4ef 8215
c19d1205
ZW
8216static void
8217do_nop (void)
8218{
e7495e45
NS
8219 if (inst.operands[0].present
8220 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8221 {
8222 /* Architectural NOP hints are CPSR sets with no bits selected. */
8223 inst.instruction &= 0xf0000000;
e7495e45
NS
8224 inst.instruction |= 0x0320f000;
8225 if (inst.operands[0].present)
8226 inst.instruction |= inst.operands[0].imm;
c19d1205 8227 }
b99bd4ef
NC
8228}
8229
c19d1205
ZW
8230/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8231 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8232 Condition defaults to COND_ALWAYS.
8233 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8234
8235static void
c19d1205 8236do_pkhbt (void)
b99bd4ef 8237{
c19d1205
ZW
8238 inst.instruction |= inst.operands[0].reg << 12;
8239 inst.instruction |= inst.operands[1].reg << 16;
8240 inst.instruction |= inst.operands[2].reg;
8241 if (inst.operands[3].present)
8242 encode_arm_shift (3);
8243}
b99bd4ef 8244
c19d1205 8245/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8246
c19d1205
ZW
8247static void
8248do_pkhtb (void)
8249{
8250 if (!inst.operands[3].present)
b99bd4ef 8251 {
c19d1205
ZW
8252 /* If the shift specifier is omitted, turn the instruction
8253 into pkhbt rd, rm, rn. */
8254 inst.instruction &= 0xfff00010;
8255 inst.instruction |= inst.operands[0].reg << 12;
8256 inst.instruction |= inst.operands[1].reg;
8257 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8258 }
8259 else
8260 {
c19d1205
ZW
8261 inst.instruction |= inst.operands[0].reg << 12;
8262 inst.instruction |= inst.operands[1].reg << 16;
8263 inst.instruction |= inst.operands[2].reg;
8264 encode_arm_shift (3);
b99bd4ef
NC
8265 }
8266}
8267
c19d1205 8268/* ARMv5TE: Preload-Cache
60e5ef9f 8269 MP Extensions: Preload for write
c19d1205 8270
60e5ef9f 8271 PLD(W) <addr_mode>
c19d1205
ZW
8272
8273 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8274
8275static void
c19d1205 8276do_pld (void)
b99bd4ef 8277{
c19d1205
ZW
8278 constraint (!inst.operands[0].isreg,
8279 _("'[' expected after PLD mnemonic"));
8280 constraint (inst.operands[0].postind,
8281 _("post-indexed expression used in preload instruction"));
8282 constraint (inst.operands[0].writeback,
8283 _("writeback used in preload instruction"));
8284 constraint (!inst.operands[0].preind,
8285 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8286 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8287}
b99bd4ef 8288
62b3e311
PB
8289/* ARMv7: PLI <addr_mode> */
8290static void
8291do_pli (void)
8292{
8293 constraint (!inst.operands[0].isreg,
8294 _("'[' expected after PLI mnemonic"));
8295 constraint (inst.operands[0].postind,
8296 _("post-indexed expression used in preload instruction"));
8297 constraint (inst.operands[0].writeback,
8298 _("writeback used in preload instruction"));
8299 constraint (!inst.operands[0].preind,
8300 _("unindexed addressing used in preload instruction"));
8301 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8302 inst.instruction &= ~PRE_INDEX;
8303}
8304
c19d1205
ZW
8305static void
8306do_push_pop (void)
8307{
8308 inst.operands[1] = inst.operands[0];
8309 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8310 inst.operands[0].isreg = 1;
8311 inst.operands[0].writeback = 1;
8312 inst.operands[0].reg = REG_SP;
8313 do_ldmstm ();
8314}
b99bd4ef 8315
c19d1205
ZW
8316/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8317 word at the specified address and the following word
8318 respectively.
8319 Unconditionally executed.
8320 Error if Rn is R15. */
b99bd4ef 8321
c19d1205
ZW
8322static void
8323do_rfe (void)
8324{
8325 inst.instruction |= inst.operands[0].reg << 16;
8326 if (inst.operands[0].writeback)
8327 inst.instruction |= WRITE_BACK;
8328}
b99bd4ef 8329
c19d1205 8330/* ARM V6 ssat (argument parse). */
b99bd4ef 8331
c19d1205
ZW
8332static void
8333do_ssat (void)
8334{
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8337 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8338
c19d1205
ZW
8339 if (inst.operands[3].present)
8340 encode_arm_shift (3);
b99bd4ef
NC
8341}
8342
c19d1205 8343/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8344
8345static void
c19d1205 8346do_usat (void)
b99bd4ef 8347{
c19d1205
ZW
8348 inst.instruction |= inst.operands[0].reg << 12;
8349 inst.instruction |= inst.operands[1].imm << 16;
8350 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8351
c19d1205
ZW
8352 if (inst.operands[3].present)
8353 encode_arm_shift (3);
b99bd4ef
NC
8354}
8355
c19d1205 8356/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8357
8358static void
c19d1205 8359do_ssat16 (void)
09d92015 8360{
c19d1205
ZW
8361 inst.instruction |= inst.operands[0].reg << 12;
8362 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8363 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8364}
8365
c19d1205
ZW
8366static void
8367do_usat16 (void)
a737bd4d 8368{
c19d1205
ZW
8369 inst.instruction |= inst.operands[0].reg << 12;
8370 inst.instruction |= inst.operands[1].imm << 16;
8371 inst.instruction |= inst.operands[2].reg;
8372}
a737bd4d 8373
c19d1205
ZW
8374/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8375 preserving the other bits.
a737bd4d 8376
c19d1205
ZW
8377 setend <endian_specifier>, where <endian_specifier> is either
8378 BE or LE. */
a737bd4d 8379
c19d1205
ZW
8380static void
8381do_setend (void)
8382{
8383 if (inst.operands[0].imm)
8384 inst.instruction |= 0x200;
a737bd4d
NC
8385}
8386
8387static void
c19d1205 8388do_shift (void)
a737bd4d 8389{
c19d1205
ZW
8390 unsigned int Rm = (inst.operands[1].present
8391 ? inst.operands[1].reg
8392 : inst.operands[0].reg);
a737bd4d 8393
c19d1205
ZW
8394 inst.instruction |= inst.operands[0].reg << 12;
8395 inst.instruction |= Rm;
8396 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8397 {
c19d1205
ZW
8398 inst.instruction |= inst.operands[2].reg << 8;
8399 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8400 /* PR 12854: Error on extraneous shifts. */
8401 constraint (inst.operands[2].shifted,
8402 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8403 }
8404 else
c19d1205 8405 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8406}
8407
09d92015 8408static void
3eb17e6b 8409do_smc (void)
09d92015 8410{
3eb17e6b 8411 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8412 inst.reloc.pc_rel = 0;
09d92015
MM
8413}
8414
90ec0d68
MGD
8415static void
8416do_hvc (void)
8417{
8418 inst.reloc.type = BFD_RELOC_ARM_HVC;
8419 inst.reloc.pc_rel = 0;
8420}
8421
09d92015 8422static void
c19d1205 8423do_swi (void)
09d92015 8424{
c19d1205
ZW
8425 inst.reloc.type = BFD_RELOC_ARM_SWI;
8426 inst.reloc.pc_rel = 0;
09d92015
MM
8427}
8428
c19d1205
ZW
8429/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8430 SMLAxy{cond} Rd,Rm,Rs,Rn
8431 SMLAWy{cond} Rd,Rm,Rs,Rn
8432 Error if any register is R15. */
e16bb312 8433
c19d1205
ZW
8434static void
8435do_smla (void)
e16bb312 8436{
c19d1205
ZW
8437 inst.instruction |= inst.operands[0].reg << 16;
8438 inst.instruction |= inst.operands[1].reg;
8439 inst.instruction |= inst.operands[2].reg << 8;
8440 inst.instruction |= inst.operands[3].reg << 12;
8441}
a737bd4d 8442
c19d1205
ZW
8443/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8444 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8445 Error if any register is R15.
8446 Warning if Rdlo == Rdhi. */
a737bd4d 8447
c19d1205
ZW
8448static void
8449do_smlal (void)
8450{
8451 inst.instruction |= inst.operands[0].reg << 12;
8452 inst.instruction |= inst.operands[1].reg << 16;
8453 inst.instruction |= inst.operands[2].reg;
8454 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8455
c19d1205
ZW
8456 if (inst.operands[0].reg == inst.operands[1].reg)
8457 as_tsktsk (_("rdhi and rdlo must be different"));
8458}
a737bd4d 8459
c19d1205
ZW
8460/* ARM V5E (El Segundo) signed-multiply (argument parse)
8461 SMULxy{cond} Rd,Rm,Rs
8462 Error if any register is R15. */
a737bd4d 8463
c19d1205
ZW
8464static void
8465do_smul (void)
8466{
8467 inst.instruction |= inst.operands[0].reg << 16;
8468 inst.instruction |= inst.operands[1].reg;
8469 inst.instruction |= inst.operands[2].reg << 8;
8470}
a737bd4d 8471
b6702015
PB
8472/* ARM V6 srs (argument parse). The variable fields in the encoding are
8473 the same for both ARM and Thumb-2. */
a737bd4d 8474
c19d1205
ZW
8475static void
8476do_srs (void)
8477{
b6702015
PB
8478 int reg;
8479
8480 if (inst.operands[0].present)
8481 {
8482 reg = inst.operands[0].reg;
fdfde340 8483 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8484 }
8485 else
fdfde340 8486 reg = REG_SP;
b6702015
PB
8487
8488 inst.instruction |= reg << 16;
8489 inst.instruction |= inst.operands[1].imm;
8490 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8491 inst.instruction |= WRITE_BACK;
8492}
a737bd4d 8493
c19d1205 8494/* ARM V6 strex (argument parse). */
a737bd4d 8495
c19d1205
ZW
8496static void
8497do_strex (void)
8498{
8499 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8500 || inst.operands[2].postind || inst.operands[2].writeback
8501 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8502 || inst.operands[2].negative
8503 /* See comment in do_ldrex(). */
8504 || (inst.operands[2].reg == REG_PC),
8505 BAD_ADDR_MODE);
a737bd4d 8506
c19d1205
ZW
8507 constraint (inst.operands[0].reg == inst.operands[1].reg
8508 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8509
c19d1205
ZW
8510 constraint (inst.reloc.exp.X_op != O_constant
8511 || inst.reloc.exp.X_add_number != 0,
8512 _("offset must be zero in ARM encoding"));
a737bd4d 8513
c19d1205
ZW
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].reg;
8516 inst.instruction |= inst.operands[2].reg << 16;
8517 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8518}
8519
877807f8
NC
8520static void
8521do_t_strexbh (void)
8522{
8523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8524 || inst.operands[2].postind || inst.operands[2].writeback
8525 || inst.operands[2].immisreg || inst.operands[2].shifted
8526 || inst.operands[2].negative,
8527 BAD_ADDR_MODE);
8528
8529 constraint (inst.operands[0].reg == inst.operands[1].reg
8530 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8531
8532 do_rm_rd_rn ();
8533}
8534
e16bb312 8535static void
c19d1205 8536do_strexd (void)
e16bb312 8537{
c19d1205
ZW
8538 constraint (inst.operands[1].reg % 2 != 0,
8539 _("even register required"));
8540 constraint (inst.operands[2].present
8541 && inst.operands[2].reg != inst.operands[1].reg + 1,
8542 _("can only store two consecutive registers"));
8543 /* If op 2 were present and equal to PC, this function wouldn't
8544 have been called in the first place. */
8545 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8546
c19d1205
ZW
8547 constraint (inst.operands[0].reg == inst.operands[1].reg
8548 || inst.operands[0].reg == inst.operands[1].reg + 1
8549 || inst.operands[0].reg == inst.operands[3].reg,
8550 BAD_OVERLAP);
e16bb312 8551
c19d1205
ZW
8552 inst.instruction |= inst.operands[0].reg << 12;
8553 inst.instruction |= inst.operands[1].reg;
8554 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8555}
8556
c19d1205
ZW
8557/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8558 extends it to 32-bits, and adds the result to a value in another
8559 register. You can specify a rotation by 0, 8, 16, or 24 bits
8560 before extracting the 16-bit value.
8561 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8562 Condition defaults to COND_ALWAYS.
8563 Error if any register uses R15. */
8564
e16bb312 8565static void
c19d1205 8566do_sxtah (void)
e16bb312 8567{
c19d1205
ZW
8568 inst.instruction |= inst.operands[0].reg << 12;
8569 inst.instruction |= inst.operands[1].reg << 16;
8570 inst.instruction |= inst.operands[2].reg;
8571 inst.instruction |= inst.operands[3].imm << 10;
8572}
e16bb312 8573
c19d1205 8574/* ARM V6 SXTH.
e16bb312 8575
c19d1205
ZW
8576 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8577 Condition defaults to COND_ALWAYS.
8578 Error if any register uses R15. */
e16bb312
NC
8579
8580static void
c19d1205 8581do_sxth (void)
e16bb312 8582{
c19d1205
ZW
8583 inst.instruction |= inst.operands[0].reg << 12;
8584 inst.instruction |= inst.operands[1].reg;
8585 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8586}
c19d1205
ZW
8587\f
8588/* VFP instructions. In a logical order: SP variant first, monad
8589 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8590
8591static void
c19d1205 8592do_vfp_sp_monadic (void)
e16bb312 8593{
5287ad62
JB
8594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8596}
8597
8598static void
c19d1205 8599do_vfp_sp_dyadic (void)
e16bb312 8600{
5287ad62
JB
8601 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8603 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8604}
8605
8606static void
c19d1205 8607do_vfp_sp_compare_z (void)
e16bb312 8608{
5287ad62 8609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8610}
8611
8612static void
c19d1205 8613do_vfp_dp_sp_cvt (void)
e16bb312 8614{
5287ad62
JB
8615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8616 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8617}
8618
8619static void
c19d1205 8620do_vfp_sp_dp_cvt (void)
e16bb312 8621{
5287ad62
JB
8622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8624}
8625
8626static void
c19d1205 8627do_vfp_reg_from_sp (void)
e16bb312 8628{
c19d1205 8629 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8630 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8631}
8632
8633static void
c19d1205 8634do_vfp_reg2_from_sp2 (void)
e16bb312 8635{
c19d1205
ZW
8636 constraint (inst.operands[2].imm != 2,
8637 _("only two consecutive VFP SP registers allowed here"));
8638 inst.instruction |= inst.operands[0].reg << 12;
8639 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8640 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8641}
8642
8643static void
c19d1205 8644do_vfp_sp_from_reg (void)
e16bb312 8645{
5287ad62 8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8647 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8648}
8649
8650static void
c19d1205 8651do_vfp_sp2_from_reg2 (void)
e16bb312 8652{
c19d1205
ZW
8653 constraint (inst.operands[0].imm != 2,
8654 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8656 inst.instruction |= inst.operands[1].reg << 12;
8657 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8658}
8659
8660static void
c19d1205 8661do_vfp_sp_ldst (void)
e16bb312 8662{
5287ad62 8663 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8664 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8665}
8666
8667static void
c19d1205 8668do_vfp_dp_ldst (void)
e16bb312 8669{
5287ad62 8670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8671 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8672}
8673
c19d1205 8674
e16bb312 8675static void
c19d1205 8676vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8677{
c19d1205
ZW
8678 if (inst.operands[0].writeback)
8679 inst.instruction |= WRITE_BACK;
8680 else
8681 constraint (ldstm_type != VFP_LDSTMIA,
8682 _("this addressing mode requires base-register writeback"));
8683 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8684 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8685 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8686}
8687
8688static void
c19d1205 8689vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8690{
c19d1205 8691 int count;
e16bb312 8692
c19d1205
ZW
8693 if (inst.operands[0].writeback)
8694 inst.instruction |= WRITE_BACK;
8695 else
8696 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8697 _("this addressing mode requires base-register writeback"));
e16bb312 8698
c19d1205 8699 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8700 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8701
c19d1205
ZW
8702 count = inst.operands[1].imm << 1;
8703 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8704 count += 1;
e16bb312 8705
c19d1205 8706 inst.instruction |= count;
e16bb312
NC
8707}
8708
8709static void
c19d1205 8710do_vfp_sp_ldstmia (void)
e16bb312 8711{
c19d1205 8712 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8713}
8714
8715static void
c19d1205 8716do_vfp_sp_ldstmdb (void)
e16bb312 8717{
c19d1205 8718 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8719}
8720
8721static void
c19d1205 8722do_vfp_dp_ldstmia (void)
e16bb312 8723{
c19d1205 8724 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8725}
8726
8727static void
c19d1205 8728do_vfp_dp_ldstmdb (void)
e16bb312 8729{
c19d1205 8730 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8731}
8732
8733static void
c19d1205 8734do_vfp_xp_ldstmia (void)
e16bb312 8735{
c19d1205
ZW
8736 vfp_dp_ldstm (VFP_LDSTMIAX);
8737}
e16bb312 8738
c19d1205
ZW
8739static void
8740do_vfp_xp_ldstmdb (void)
8741{
8742 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8743}
5287ad62
JB
8744
8745static void
8746do_vfp_dp_rd_rm (void)
8747{
8748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8749 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8750}
8751
8752static void
8753do_vfp_dp_rn_rd (void)
8754{
8755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8756 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8757}
8758
8759static void
8760do_vfp_dp_rd_rn (void)
8761{
8762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8763 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8764}
8765
8766static void
8767do_vfp_dp_rd_rn_rm (void)
8768{
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8771 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8772}
8773
8774static void
8775do_vfp_dp_rd (void)
8776{
8777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8778}
8779
8780static void
8781do_vfp_dp_rm_rd_rn (void)
8782{
8783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8784 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8785 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8786}
8787
8788/* VFPv3 instructions. */
8789static void
8790do_vfp_sp_const (void)
8791{
8792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8793 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8794 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8795}
8796
8797static void
8798do_vfp_dp_const (void)
8799{
8800 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8801 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8802 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8803}
8804
8805static void
8806vfp_conv (int srcsize)
8807{
5f1af56b
MGD
8808 int immbits = srcsize - inst.operands[1].imm;
8809
8810 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8811 {
8812 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8813 i.e. immbits must be in range 0 - 16. */
8814 inst.error = _("immediate value out of range, expected range [0, 16]");
8815 return;
8816 }
8817 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8818 {
8819 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8820 i.e. immbits must be in range 0 - 31. */
8821 inst.error = _("immediate value out of range, expected range [1, 32]");
8822 return;
8823 }
8824
5287ad62
JB
8825 inst.instruction |= (immbits & 1) << 5;
8826 inst.instruction |= (immbits >> 1);
8827}
8828
8829static void
8830do_vfp_sp_conv_16 (void)
8831{
8832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8833 vfp_conv (16);
8834}
8835
8836static void
8837do_vfp_dp_conv_16 (void)
8838{
8839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8840 vfp_conv (16);
8841}
8842
8843static void
8844do_vfp_sp_conv_32 (void)
8845{
8846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8847 vfp_conv (32);
8848}
8849
8850static void
8851do_vfp_dp_conv_32 (void)
8852{
8853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8854 vfp_conv (32);
8855}
c19d1205
ZW
8856\f
8857/* FPA instructions. Also in a logical order. */
e16bb312 8858
c19d1205
ZW
8859static void
8860do_fpa_cmp (void)
8861{
8862 inst.instruction |= inst.operands[0].reg << 16;
8863 inst.instruction |= inst.operands[1].reg;
8864}
b99bd4ef
NC
8865
8866static void
c19d1205 8867do_fpa_ldmstm (void)
b99bd4ef 8868{
c19d1205
ZW
8869 inst.instruction |= inst.operands[0].reg << 12;
8870 switch (inst.operands[1].imm)
8871 {
8872 case 1: inst.instruction |= CP_T_X; break;
8873 case 2: inst.instruction |= CP_T_Y; break;
8874 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8875 case 4: break;
8876 default: abort ();
8877 }
b99bd4ef 8878
c19d1205
ZW
8879 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8880 {
8881 /* The instruction specified "ea" or "fd", so we can only accept
8882 [Rn]{!}. The instruction does not really support stacking or
8883 unstacking, so we have to emulate these by setting appropriate
8884 bits and offsets. */
8885 constraint (inst.reloc.exp.X_op != O_constant
8886 || inst.reloc.exp.X_add_number != 0,
8887 _("this instruction does not support indexing"));
b99bd4ef 8888
c19d1205
ZW
8889 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8890 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8891
c19d1205
ZW
8892 if (!(inst.instruction & INDEX_UP))
8893 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8894
c19d1205
ZW
8895 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8896 {
8897 inst.operands[2].preind = 0;
8898 inst.operands[2].postind = 1;
8899 }
8900 }
b99bd4ef 8901
c19d1205 8902 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8903}
c19d1205
ZW
8904\f
8905/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8906
c19d1205
ZW
8907static void
8908do_iwmmxt_tandorc (void)
8909{
8910 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8911}
b99bd4ef 8912
c19d1205
ZW
8913static void
8914do_iwmmxt_textrc (void)
8915{
8916 inst.instruction |= inst.operands[0].reg << 12;
8917 inst.instruction |= inst.operands[1].imm;
8918}
b99bd4ef
NC
8919
8920static void
c19d1205 8921do_iwmmxt_textrm (void)
b99bd4ef 8922{
c19d1205
ZW
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 inst.instruction |= inst.operands[2].imm;
8926}
b99bd4ef 8927
c19d1205
ZW
8928static void
8929do_iwmmxt_tinsr (void)
8930{
8931 inst.instruction |= inst.operands[0].reg << 16;
8932 inst.instruction |= inst.operands[1].reg << 12;
8933 inst.instruction |= inst.operands[2].imm;
8934}
b99bd4ef 8935
c19d1205
ZW
8936static void
8937do_iwmmxt_tmia (void)
8938{
8939 inst.instruction |= inst.operands[0].reg << 5;
8940 inst.instruction |= inst.operands[1].reg;
8941 inst.instruction |= inst.operands[2].reg << 12;
8942}
b99bd4ef 8943
c19d1205
ZW
8944static void
8945do_iwmmxt_waligni (void)
8946{
8947 inst.instruction |= inst.operands[0].reg << 12;
8948 inst.instruction |= inst.operands[1].reg << 16;
8949 inst.instruction |= inst.operands[2].reg;
8950 inst.instruction |= inst.operands[3].imm << 20;
8951}
b99bd4ef 8952
2d447fca
JM
8953static void
8954do_iwmmxt_wmerge (void)
8955{
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg << 16;
8958 inst.instruction |= inst.operands[2].reg;
8959 inst.instruction |= inst.operands[3].imm << 21;
8960}
8961
c19d1205
ZW
8962static void
8963do_iwmmxt_wmov (void)
8964{
8965 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8966 inst.instruction |= inst.operands[0].reg << 12;
8967 inst.instruction |= inst.operands[1].reg << 16;
8968 inst.instruction |= inst.operands[1].reg;
8969}
b99bd4ef 8970
c19d1205
ZW
8971static void
8972do_iwmmxt_wldstbh (void)
8973{
8f06b2d8 8974 int reloc;
c19d1205 8975 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8976 if (thumb_mode)
8977 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8978 else
8979 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8980 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8981}
8982
c19d1205
ZW
8983static void
8984do_iwmmxt_wldstw (void)
8985{
8986 /* RIWR_RIWC clears .isreg for a control register. */
8987 if (!inst.operands[0].isreg)
8988 {
8989 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8990 inst.instruction |= 0xf0000000;
8991 }
b99bd4ef 8992
c19d1205
ZW
8993 inst.instruction |= inst.operands[0].reg << 12;
8994 encode_arm_cp_address (1, TRUE, TRUE, 0);
8995}
b99bd4ef
NC
8996
8997static void
c19d1205 8998do_iwmmxt_wldstd (void)
b99bd4ef 8999{
c19d1205 9000 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9001 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9002 && inst.operands[1].immisreg)
9003 {
9004 inst.instruction &= ~0x1a000ff;
9005 inst.instruction |= (0xf << 28);
9006 if (inst.operands[1].preind)
9007 inst.instruction |= PRE_INDEX;
9008 if (!inst.operands[1].negative)
9009 inst.instruction |= INDEX_UP;
9010 if (inst.operands[1].writeback)
9011 inst.instruction |= WRITE_BACK;
9012 inst.instruction |= inst.operands[1].reg << 16;
9013 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9014 inst.instruction |= inst.operands[1].imm;
9015 }
9016 else
9017 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9018}
b99bd4ef 9019
c19d1205
ZW
9020static void
9021do_iwmmxt_wshufh (void)
9022{
9023 inst.instruction |= inst.operands[0].reg << 12;
9024 inst.instruction |= inst.operands[1].reg << 16;
9025 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9026 inst.instruction |= (inst.operands[2].imm & 0x0f);
9027}
b99bd4ef 9028
c19d1205
ZW
9029static void
9030do_iwmmxt_wzero (void)
9031{
9032 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9033 inst.instruction |= inst.operands[0].reg;
9034 inst.instruction |= inst.operands[0].reg << 12;
9035 inst.instruction |= inst.operands[0].reg << 16;
9036}
2d447fca
JM
9037
9038static void
9039do_iwmmxt_wrwrwr_or_imm5 (void)
9040{
9041 if (inst.operands[2].isreg)
9042 do_rd_rn_rm ();
9043 else {
9044 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9045 _("immediate operand requires iWMMXt2"));
9046 do_rd_rn ();
9047 if (inst.operands[2].imm == 0)
9048 {
9049 switch ((inst.instruction >> 20) & 0xf)
9050 {
9051 case 4:
9052 case 5:
9053 case 6:
5f4273c7 9054 case 7:
2d447fca
JM
9055 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9056 inst.operands[2].imm = 16;
9057 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9058 break;
9059 case 8:
9060 case 9:
9061 case 10:
9062 case 11:
9063 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9064 inst.operands[2].imm = 32;
9065 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9066 break;
9067 case 12:
9068 case 13:
9069 case 14:
9070 case 15:
9071 {
9072 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9073 unsigned long wrn;
9074 wrn = (inst.instruction >> 16) & 0xf;
9075 inst.instruction &= 0xff0fff0f;
9076 inst.instruction |= wrn;
9077 /* Bail out here; the instruction is now assembled. */
9078 return;
9079 }
9080 }
9081 }
9082 /* Map 32 -> 0, etc. */
9083 inst.operands[2].imm &= 0x1f;
9084 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9085 }
9086}
c19d1205
ZW
9087\f
9088/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9089 operations first, then control, shift, and load/store. */
b99bd4ef 9090
c19d1205 9091/* Insns like "foo X,Y,Z". */
b99bd4ef 9092
c19d1205
ZW
9093static void
9094do_mav_triple (void)
9095{
9096 inst.instruction |= inst.operands[0].reg << 16;
9097 inst.instruction |= inst.operands[1].reg;
9098 inst.instruction |= inst.operands[2].reg << 12;
9099}
b99bd4ef 9100
c19d1205
ZW
9101/* Insns like "foo W,X,Y,Z".
9102 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9103
c19d1205
ZW
9104static void
9105do_mav_quad (void)
9106{
9107 inst.instruction |= inst.operands[0].reg << 5;
9108 inst.instruction |= inst.operands[1].reg << 12;
9109 inst.instruction |= inst.operands[2].reg << 16;
9110 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9111}
9112
c19d1205
ZW
9113/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9114static void
9115do_mav_dspsc (void)
a737bd4d 9116{
c19d1205
ZW
9117 inst.instruction |= inst.operands[1].reg << 12;
9118}
a737bd4d 9119
c19d1205
ZW
9120/* Maverick shift immediate instructions.
9121 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9122 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9123
c19d1205
ZW
9124static void
9125do_mav_shift (void)
9126{
9127 int imm = inst.operands[2].imm;
a737bd4d 9128
c19d1205
ZW
9129 inst.instruction |= inst.operands[0].reg << 12;
9130 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9131
c19d1205
ZW
9132 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9133 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9134 Bit 4 should be 0. */
9135 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9136
c19d1205
ZW
9137 inst.instruction |= imm;
9138}
9139\f
9140/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9141
c19d1205
ZW
9142/* Xscale multiply-accumulate (argument parse)
9143 MIAcc acc0,Rm,Rs
9144 MIAPHcc acc0,Rm,Rs
9145 MIAxycc acc0,Rm,Rs. */
a737bd4d 9146
c19d1205
ZW
9147static void
9148do_xsc_mia (void)
9149{
9150 inst.instruction |= inst.operands[1].reg;
9151 inst.instruction |= inst.operands[2].reg << 12;
9152}
a737bd4d 9153
c19d1205 9154/* Xscale move-accumulator-register (argument parse)
a737bd4d 9155
c19d1205 9156 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9157
c19d1205
ZW
9158static void
9159do_xsc_mar (void)
9160{
9161 inst.instruction |= inst.operands[1].reg << 12;
9162 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9163}
9164
c19d1205 9165/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9166
c19d1205 9167 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9168
9169static void
c19d1205 9170do_xsc_mra (void)
b99bd4ef 9171{
c19d1205
ZW
9172 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9173 inst.instruction |= inst.operands[0].reg << 12;
9174 inst.instruction |= inst.operands[1].reg << 16;
9175}
9176\f
9177/* Encoding functions relevant only to Thumb. */
b99bd4ef 9178
c19d1205
ZW
9179/* inst.operands[i] is a shifted-register operand; encode
9180 it into inst.instruction in the format used by Thumb32. */
9181
9182static void
9183encode_thumb32_shifted_operand (int i)
9184{
9185 unsigned int value = inst.reloc.exp.X_add_number;
9186 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9187
9c3c69f2
PB
9188 constraint (inst.operands[i].immisreg,
9189 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9190 inst.instruction |= inst.operands[i].reg;
9191 if (shift == SHIFT_RRX)
9192 inst.instruction |= SHIFT_ROR << 4;
9193 else
b99bd4ef 9194 {
c19d1205
ZW
9195 constraint (inst.reloc.exp.X_op != O_constant,
9196 _("expression too complex"));
9197
9198 constraint (value > 32
9199 || (value == 32 && (shift == SHIFT_LSL
9200 || shift == SHIFT_ROR)),
9201 _("shift expression is too large"));
9202
9203 if (value == 0)
9204 shift = SHIFT_LSL;
9205 else if (value == 32)
9206 value = 0;
9207
9208 inst.instruction |= shift << 4;
9209 inst.instruction |= (value & 0x1c) << 10;
9210 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9211 }
c19d1205 9212}
b99bd4ef 9213
b99bd4ef 9214
c19d1205
ZW
9215/* inst.operands[i] was set up by parse_address. Encode it into a
9216 Thumb32 format load or store instruction. Reject forms that cannot
9217 be used with such instructions. If is_t is true, reject forms that
9218 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9219 that cannot be used with a D instruction. If it is a store insn,
9220 reject PC in Rn. */
b99bd4ef 9221
c19d1205
ZW
9222static void
9223encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9224{
5be8be5d 9225 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9226
9227 constraint (!inst.operands[i].isreg,
53365c0d 9228 _("Instruction does not support =N addresses"));
b99bd4ef 9229
c19d1205
ZW
9230 inst.instruction |= inst.operands[i].reg << 16;
9231 if (inst.operands[i].immisreg)
b99bd4ef 9232 {
5be8be5d 9233 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9234 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9235 constraint (inst.operands[i].negative,
9236 _("Thumb does not support negative register indexing"));
9237 constraint (inst.operands[i].postind,
9238 _("Thumb does not support register post-indexing"));
9239 constraint (inst.operands[i].writeback,
9240 _("Thumb does not support register indexing with writeback"));
9241 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9242 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9243
f40d1643 9244 inst.instruction |= inst.operands[i].imm;
c19d1205 9245 if (inst.operands[i].shifted)
b99bd4ef 9246 {
c19d1205
ZW
9247 constraint (inst.reloc.exp.X_op != O_constant,
9248 _("expression too complex"));
9c3c69f2
PB
9249 constraint (inst.reloc.exp.X_add_number < 0
9250 || inst.reloc.exp.X_add_number > 3,
c19d1205 9251 _("shift out of range"));
9c3c69f2 9252 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9253 }
9254 inst.reloc.type = BFD_RELOC_UNUSED;
9255 }
9256 else if (inst.operands[i].preind)
9257 {
5be8be5d 9258 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9259 constraint (is_t && inst.operands[i].writeback,
c19d1205 9260 _("cannot use writeback with this instruction"));
5be8be5d
DG
9261 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9262 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9263
9264 if (is_d)
9265 {
9266 inst.instruction |= 0x01000000;
9267 if (inst.operands[i].writeback)
9268 inst.instruction |= 0x00200000;
b99bd4ef 9269 }
c19d1205 9270 else
b99bd4ef 9271 {
c19d1205
ZW
9272 inst.instruction |= 0x00000c00;
9273 if (inst.operands[i].writeback)
9274 inst.instruction |= 0x00000100;
b99bd4ef 9275 }
c19d1205 9276 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9277 }
c19d1205 9278 else if (inst.operands[i].postind)
b99bd4ef 9279 {
9c2799c2 9280 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9281 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9282 constraint (is_t, _("cannot use post-indexing with this instruction"));
9283
9284 if (is_d)
9285 inst.instruction |= 0x00200000;
9286 else
9287 inst.instruction |= 0x00000900;
9288 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9289 }
9290 else /* unindexed - only for coprocessor */
9291 inst.error = _("instruction does not accept unindexed addressing");
9292}
9293
9294/* Table of Thumb instructions which exist in both 16- and 32-bit
9295 encodings (the latter only in post-V6T2 cores). The index is the
9296 value used in the insns table below. When there is more than one
9297 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9298 holds variant (1).
9299 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9300#define T16_32_TAB \
21d799b5
NC
9301 X(_adc, 4140, eb400000), \
9302 X(_adcs, 4140, eb500000), \
9303 X(_add, 1c00, eb000000), \
9304 X(_adds, 1c00, eb100000), \
9305 X(_addi, 0000, f1000000), \
9306 X(_addis, 0000, f1100000), \
9307 X(_add_pc,000f, f20f0000), \
9308 X(_add_sp,000d, f10d0000), \
9309 X(_adr, 000f, f20f0000), \
9310 X(_and, 4000, ea000000), \
9311 X(_ands, 4000, ea100000), \
9312 X(_asr, 1000, fa40f000), \
9313 X(_asrs, 1000, fa50f000), \
9314 X(_b, e000, f000b000), \
9315 X(_bcond, d000, f0008000), \
9316 X(_bic, 4380, ea200000), \
9317 X(_bics, 4380, ea300000), \
9318 X(_cmn, 42c0, eb100f00), \
9319 X(_cmp, 2800, ebb00f00), \
9320 X(_cpsie, b660, f3af8400), \
9321 X(_cpsid, b670, f3af8600), \
9322 X(_cpy, 4600, ea4f0000), \
9323 X(_dec_sp,80dd, f1ad0d00), \
9324 X(_eor, 4040, ea800000), \
9325 X(_eors, 4040, ea900000), \
9326 X(_inc_sp,00dd, f10d0d00), \
9327 X(_ldmia, c800, e8900000), \
9328 X(_ldr, 6800, f8500000), \
9329 X(_ldrb, 7800, f8100000), \
9330 X(_ldrh, 8800, f8300000), \
9331 X(_ldrsb, 5600, f9100000), \
9332 X(_ldrsh, 5e00, f9300000), \
9333 X(_ldr_pc,4800, f85f0000), \
9334 X(_ldr_pc2,4800, f85f0000), \
9335 X(_ldr_sp,9800, f85d0000), \
9336 X(_lsl, 0000, fa00f000), \
9337 X(_lsls, 0000, fa10f000), \
9338 X(_lsr, 0800, fa20f000), \
9339 X(_lsrs, 0800, fa30f000), \
9340 X(_mov, 2000, ea4f0000), \
9341 X(_movs, 2000, ea5f0000), \
9342 X(_mul, 4340, fb00f000), \
9343 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9344 X(_mvn, 43c0, ea6f0000), \
9345 X(_mvns, 43c0, ea7f0000), \
9346 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9347 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9348 X(_orr, 4300, ea400000), \
9349 X(_orrs, 4300, ea500000), \
9350 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9351 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9352 X(_rev, ba00, fa90f080), \
9353 X(_rev16, ba40, fa90f090), \
9354 X(_revsh, bac0, fa90f0b0), \
9355 X(_ror, 41c0, fa60f000), \
9356 X(_rors, 41c0, fa70f000), \
9357 X(_sbc, 4180, eb600000), \
9358 X(_sbcs, 4180, eb700000), \
9359 X(_stmia, c000, e8800000), \
9360 X(_str, 6000, f8400000), \
9361 X(_strb, 7000, f8000000), \
9362 X(_strh, 8000, f8200000), \
9363 X(_str_sp,9000, f84d0000), \
9364 X(_sub, 1e00, eba00000), \
9365 X(_subs, 1e00, ebb00000), \
9366 X(_subi, 8000, f1a00000), \
9367 X(_subis, 8000, f1b00000), \
9368 X(_sxtb, b240, fa4ff080), \
9369 X(_sxth, b200, fa0ff080), \
9370 X(_tst, 4200, ea100f00), \
9371 X(_uxtb, b2c0, fa5ff080), \
9372 X(_uxth, b280, fa1ff080), \
9373 X(_nop, bf00, f3af8000), \
9374 X(_yield, bf10, f3af8001), \
9375 X(_wfe, bf20, f3af8002), \
9376 X(_wfi, bf30, f3af8003), \
9377 X(_sev, bf40, f3af8004),
c19d1205
ZW
9378
9379/* To catch errors in encoding functions, the codes are all offset by
9380 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9381 as 16-bit instructions. */
21d799b5 9382#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9383enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9384#undef X
9385
9386#define X(a,b,c) 0x##b
9387static const unsigned short thumb_op16[] = { T16_32_TAB };
9388#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9389#undef X
9390
9391#define X(a,b,c) 0x##c
9392static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9393#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9394#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9395#undef X
9396#undef T16_32_TAB
9397
9398/* Thumb instruction encoders, in alphabetical order. */
9399
92e90b6e 9400/* ADDW or SUBW. */
c921be7d 9401
92e90b6e
PB
9402static void
9403do_t_add_sub_w (void)
9404{
9405 int Rd, Rn;
9406
9407 Rd = inst.operands[0].reg;
9408 Rn = inst.operands[1].reg;
9409
539d4391
NC
9410 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9411 is the SP-{plus,minus}-immediate form of the instruction. */
9412 if (Rn == REG_SP)
9413 constraint (Rd == REG_PC, BAD_PC);
9414 else
9415 reject_bad_reg (Rd);
fdfde340 9416
92e90b6e
PB
9417 inst.instruction |= (Rn << 16) | (Rd << 8);
9418 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9419}
9420
c19d1205
ZW
9421/* Parse an add or subtract instruction. We get here with inst.instruction
9422 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9423
9424static void
9425do_t_add_sub (void)
9426{
9427 int Rd, Rs, Rn;
9428
9429 Rd = inst.operands[0].reg;
9430 Rs = (inst.operands[1].present
9431 ? inst.operands[1].reg /* Rd, Rs, foo */
9432 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9433
e07e6e58
NC
9434 if (Rd == REG_PC)
9435 set_it_insn_type_last ();
9436
c19d1205
ZW
9437 if (unified_syntax)
9438 {
0110f2b8
PB
9439 bfd_boolean flags;
9440 bfd_boolean narrow;
9441 int opcode;
9442
9443 flags = (inst.instruction == T_MNEM_adds
9444 || inst.instruction == T_MNEM_subs);
9445 if (flags)
e07e6e58 9446 narrow = !in_it_block ();
0110f2b8 9447 else
e07e6e58 9448 narrow = in_it_block ();
c19d1205 9449 if (!inst.operands[2].isreg)
b99bd4ef 9450 {
16805f35
PB
9451 int add;
9452
fdfde340
JM
9453 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9454
16805f35
PB
9455 add = (inst.instruction == T_MNEM_add
9456 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9457 opcode = 0;
9458 if (inst.size_req != 4)
9459 {
0110f2b8
PB
9460 /* Attempt to use a narrow opcode, with relaxation if
9461 appropriate. */
9462 if (Rd == REG_SP && Rs == REG_SP && !flags)
9463 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9464 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9465 opcode = T_MNEM_add_sp;
9466 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9467 opcode = T_MNEM_add_pc;
9468 else if (Rd <= 7 && Rs <= 7 && narrow)
9469 {
9470 if (flags)
9471 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9472 else
9473 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9474 }
9475 if (opcode)
9476 {
9477 inst.instruction = THUMB_OP16(opcode);
9478 inst.instruction |= (Rd << 4) | Rs;
9479 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9480 if (inst.size_req != 2)
9481 inst.relax = opcode;
9482 }
9483 else
9484 constraint (inst.size_req == 2, BAD_HIREG);
9485 }
9486 if (inst.size_req == 4
9487 || (inst.size_req != 2 && !opcode))
9488 {
efd81785
PB
9489 if (Rd == REG_PC)
9490 {
fdfde340 9491 constraint (add, BAD_PC);
efd81785
PB
9492 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9493 _("only SUBS PC, LR, #const allowed"));
9494 constraint (inst.reloc.exp.X_op != O_constant,
9495 _("expression too complex"));
9496 constraint (inst.reloc.exp.X_add_number < 0
9497 || inst.reloc.exp.X_add_number > 0xff,
9498 _("immediate value out of range"));
9499 inst.instruction = T2_SUBS_PC_LR
9500 | inst.reloc.exp.X_add_number;
9501 inst.reloc.type = BFD_RELOC_UNUSED;
9502 return;
9503 }
9504 else if (Rs == REG_PC)
16805f35
PB
9505 {
9506 /* Always use addw/subw. */
9507 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9508 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9509 }
9510 else
9511 {
9512 inst.instruction = THUMB_OP32 (inst.instruction);
9513 inst.instruction = (inst.instruction & 0xe1ffffff)
9514 | 0x10000000;
9515 if (flags)
9516 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9517 else
9518 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9519 }
dc4503c6
PB
9520 inst.instruction |= Rd << 8;
9521 inst.instruction |= Rs << 16;
0110f2b8 9522 }
b99bd4ef 9523 }
c19d1205
ZW
9524 else
9525 {
5f4cb198
NC
9526 unsigned int value = inst.reloc.exp.X_add_number;
9527 unsigned int shift = inst.operands[2].shift_kind;
9528
c19d1205
ZW
9529 Rn = inst.operands[2].reg;
9530 /* See if we can do this with a 16-bit instruction. */
9531 if (!inst.operands[2].shifted && inst.size_req != 4)
9532 {
e27ec89e
PB
9533 if (Rd > 7 || Rs > 7 || Rn > 7)
9534 narrow = FALSE;
9535
9536 if (narrow)
c19d1205 9537 {
e27ec89e
PB
9538 inst.instruction = ((inst.instruction == T_MNEM_adds
9539 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9540 ? T_OPCODE_ADD_R3
9541 : T_OPCODE_SUB_R3);
9542 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9543 return;
9544 }
b99bd4ef 9545
7e806470 9546 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9547 {
7e806470
PB
9548 /* Thumb-1 cores (except v6-M) require at least one high
9549 register in a narrow non flag setting add. */
9550 if (Rd > 7 || Rn > 7
9551 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9552 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9553 {
7e806470
PB
9554 if (Rd == Rn)
9555 {
9556 Rn = Rs;
9557 Rs = Rd;
9558 }
c19d1205
ZW
9559 inst.instruction = T_OPCODE_ADD_HI;
9560 inst.instruction |= (Rd & 8) << 4;
9561 inst.instruction |= (Rd & 7);
9562 inst.instruction |= Rn << 3;
9563 return;
9564 }
c19d1205
ZW
9565 }
9566 }
c921be7d 9567
fdfde340
JM
9568 constraint (Rd == REG_PC, BAD_PC);
9569 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9570 constraint (Rs == REG_PC, BAD_PC);
9571 reject_bad_reg (Rn);
9572
c19d1205
ZW
9573 /* If we get here, it can't be done in 16 bits. */
9574 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9575 _("shift must be constant"));
9576 inst.instruction = THUMB_OP32 (inst.instruction);
9577 inst.instruction |= Rd << 8;
9578 inst.instruction |= Rs << 16;
5f4cb198
NC
9579 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9580 _("shift value over 3 not allowed in thumb mode"));
9581 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9582 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9583 encode_thumb32_shifted_operand (2);
9584 }
9585 }
9586 else
9587 {
9588 constraint (inst.instruction == T_MNEM_adds
9589 || inst.instruction == T_MNEM_subs,
9590 BAD_THUMB32);
b99bd4ef 9591
c19d1205 9592 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9593 {
c19d1205
ZW
9594 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9595 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9596 BAD_HIREG);
9597
9598 inst.instruction = (inst.instruction == T_MNEM_add
9599 ? 0x0000 : 0x8000);
9600 inst.instruction |= (Rd << 4) | Rs;
9601 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9602 return;
9603 }
9604
c19d1205
ZW
9605 Rn = inst.operands[2].reg;
9606 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9607
c19d1205
ZW
9608 /* We now have Rd, Rs, and Rn set to registers. */
9609 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9610 {
c19d1205
ZW
9611 /* Can't do this for SUB. */
9612 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9613 inst.instruction = T_OPCODE_ADD_HI;
9614 inst.instruction |= (Rd & 8) << 4;
9615 inst.instruction |= (Rd & 7);
9616 if (Rs == Rd)
9617 inst.instruction |= Rn << 3;
9618 else if (Rn == Rd)
9619 inst.instruction |= Rs << 3;
9620 else
9621 constraint (1, _("dest must overlap one source register"));
9622 }
9623 else
9624 {
9625 inst.instruction = (inst.instruction == T_MNEM_add
9626 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9627 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9628 }
b99bd4ef 9629 }
b99bd4ef
NC
9630}
9631
c19d1205
ZW
9632static void
9633do_t_adr (void)
9634{
fdfde340
JM
9635 unsigned Rd;
9636
9637 Rd = inst.operands[0].reg;
9638 reject_bad_reg (Rd);
9639
9640 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9641 {
9642 /* Defer to section relaxation. */
9643 inst.relax = inst.instruction;
9644 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9645 inst.instruction |= Rd << 4;
0110f2b8
PB
9646 }
9647 else if (unified_syntax && inst.size_req != 2)
e9f89963 9648 {
0110f2b8 9649 /* Generate a 32-bit opcode. */
e9f89963 9650 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9651 inst.instruction |= Rd << 8;
e9f89963
PB
9652 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9653 inst.reloc.pc_rel = 1;
9654 }
9655 else
9656 {
0110f2b8 9657 /* Generate a 16-bit opcode. */
e9f89963
PB
9658 inst.instruction = THUMB_OP16 (inst.instruction);
9659 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9660 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9661 inst.reloc.pc_rel = 1;
b99bd4ef 9662
fdfde340 9663 inst.instruction |= Rd << 4;
e9f89963 9664 }
c19d1205 9665}
b99bd4ef 9666
c19d1205
ZW
9667/* Arithmetic instructions for which there is just one 16-bit
9668 instruction encoding, and it allows only two low registers.
9669 For maximal compatibility with ARM syntax, we allow three register
9670 operands even when Thumb-32 instructions are not available, as long
9671 as the first two are identical. For instance, both "sbc r0,r1" and
9672 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9673static void
c19d1205 9674do_t_arit3 (void)
b99bd4ef 9675{
c19d1205 9676 int Rd, Rs, Rn;
b99bd4ef 9677
c19d1205
ZW
9678 Rd = inst.operands[0].reg;
9679 Rs = (inst.operands[1].present
9680 ? inst.operands[1].reg /* Rd, Rs, foo */
9681 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9682 Rn = inst.operands[2].reg;
b99bd4ef 9683
fdfde340
JM
9684 reject_bad_reg (Rd);
9685 reject_bad_reg (Rs);
9686 if (inst.operands[2].isreg)
9687 reject_bad_reg (Rn);
9688
c19d1205 9689 if (unified_syntax)
b99bd4ef 9690 {
c19d1205
ZW
9691 if (!inst.operands[2].isreg)
9692 {
9693 /* For an immediate, we always generate a 32-bit opcode;
9694 section relaxation will shrink it later if possible. */
9695 inst.instruction = THUMB_OP32 (inst.instruction);
9696 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9697 inst.instruction |= Rd << 8;
9698 inst.instruction |= Rs << 16;
9699 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9700 }
9701 else
9702 {
e27ec89e
PB
9703 bfd_boolean narrow;
9704
c19d1205 9705 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9706 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9707 narrow = !in_it_block ();
e27ec89e 9708 else
e07e6e58 9709 narrow = in_it_block ();
e27ec89e
PB
9710
9711 if (Rd > 7 || Rn > 7 || Rs > 7)
9712 narrow = FALSE;
9713 if (inst.operands[2].shifted)
9714 narrow = FALSE;
9715 if (inst.size_req == 4)
9716 narrow = FALSE;
9717
9718 if (narrow
c19d1205
ZW
9719 && Rd == Rs)
9720 {
9721 inst.instruction = THUMB_OP16 (inst.instruction);
9722 inst.instruction |= Rd;
9723 inst.instruction |= Rn << 3;
9724 return;
9725 }
b99bd4ef 9726
c19d1205
ZW
9727 /* If we get here, it can't be done in 16 bits. */
9728 constraint (inst.operands[2].shifted
9729 && inst.operands[2].immisreg,
9730 _("shift must be constant"));
9731 inst.instruction = THUMB_OP32 (inst.instruction);
9732 inst.instruction |= Rd << 8;
9733 inst.instruction |= Rs << 16;
9734 encode_thumb32_shifted_operand (2);
9735 }
a737bd4d 9736 }
c19d1205 9737 else
b99bd4ef 9738 {
c19d1205
ZW
9739 /* On its face this is a lie - the instruction does set the
9740 flags. However, the only supported mnemonic in this mode
9741 says it doesn't. */
9742 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9743
c19d1205
ZW
9744 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9745 _("unshifted register required"));
9746 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9747 constraint (Rd != Rs,
9748 _("dest and source1 must be the same register"));
a737bd4d 9749
c19d1205
ZW
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= Rd;
9752 inst.instruction |= Rn << 3;
b99bd4ef 9753 }
a737bd4d 9754}
b99bd4ef 9755
c19d1205
ZW
9756/* Similarly, but for instructions where the arithmetic operation is
9757 commutative, so we can allow either of them to be different from
9758 the destination operand in a 16-bit instruction. For instance, all
9759 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9760 accepted. */
9761static void
9762do_t_arit3c (void)
a737bd4d 9763{
c19d1205 9764 int Rd, Rs, Rn;
b99bd4ef 9765
c19d1205
ZW
9766 Rd = inst.operands[0].reg;
9767 Rs = (inst.operands[1].present
9768 ? inst.operands[1].reg /* Rd, Rs, foo */
9769 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9770 Rn = inst.operands[2].reg;
c921be7d 9771
fdfde340
JM
9772 reject_bad_reg (Rd);
9773 reject_bad_reg (Rs);
9774 if (inst.operands[2].isreg)
9775 reject_bad_reg (Rn);
a737bd4d 9776
c19d1205 9777 if (unified_syntax)
a737bd4d 9778 {
c19d1205 9779 if (!inst.operands[2].isreg)
b99bd4ef 9780 {
c19d1205
ZW
9781 /* For an immediate, we always generate a 32-bit opcode;
9782 section relaxation will shrink it later if possible. */
9783 inst.instruction = THUMB_OP32 (inst.instruction);
9784 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9785 inst.instruction |= Rd << 8;
9786 inst.instruction |= Rs << 16;
9787 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9788 }
c19d1205 9789 else
a737bd4d 9790 {
e27ec89e
PB
9791 bfd_boolean narrow;
9792
c19d1205 9793 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9794 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9795 narrow = !in_it_block ();
e27ec89e 9796 else
e07e6e58 9797 narrow = in_it_block ();
e27ec89e
PB
9798
9799 if (Rd > 7 || Rn > 7 || Rs > 7)
9800 narrow = FALSE;
9801 if (inst.operands[2].shifted)
9802 narrow = FALSE;
9803 if (inst.size_req == 4)
9804 narrow = FALSE;
9805
9806 if (narrow)
a737bd4d 9807 {
c19d1205 9808 if (Rd == Rs)
a737bd4d 9809 {
c19d1205
ZW
9810 inst.instruction = THUMB_OP16 (inst.instruction);
9811 inst.instruction |= Rd;
9812 inst.instruction |= Rn << 3;
9813 return;
a737bd4d 9814 }
c19d1205 9815 if (Rd == Rn)
a737bd4d 9816 {
c19d1205
ZW
9817 inst.instruction = THUMB_OP16 (inst.instruction);
9818 inst.instruction |= Rd;
9819 inst.instruction |= Rs << 3;
9820 return;
a737bd4d
NC
9821 }
9822 }
c19d1205
ZW
9823
9824 /* If we get here, it can't be done in 16 bits. */
9825 constraint (inst.operands[2].shifted
9826 && inst.operands[2].immisreg,
9827 _("shift must be constant"));
9828 inst.instruction = THUMB_OP32 (inst.instruction);
9829 inst.instruction |= Rd << 8;
9830 inst.instruction |= Rs << 16;
9831 encode_thumb32_shifted_operand (2);
a737bd4d 9832 }
b99bd4ef 9833 }
c19d1205
ZW
9834 else
9835 {
9836 /* On its face this is a lie - the instruction does set the
9837 flags. However, the only supported mnemonic in this mode
9838 says it doesn't. */
9839 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9840
c19d1205
ZW
9841 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9842 _("unshifted register required"));
9843 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9844
9845 inst.instruction = THUMB_OP16 (inst.instruction);
9846 inst.instruction |= Rd;
9847
9848 if (Rd == Rs)
9849 inst.instruction |= Rn << 3;
9850 else if (Rd == Rn)
9851 inst.instruction |= Rs << 3;
9852 else
9853 constraint (1, _("dest must overlap one source register"));
9854 }
a737bd4d
NC
9855}
9856
62b3e311
PB
9857static void
9858do_t_barrier (void)
9859{
9860 if (inst.operands[0].present)
9861 {
9862 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9863 && inst.operands[0].imm > 0xf
9864 && inst.operands[0].imm < 0x0,
bd3ba5d1 9865 _("bad barrier type"));
62b3e311
PB
9866 inst.instruction |= inst.operands[0].imm;
9867 }
9868 else
9869 inst.instruction |= 0xf;
9870}
9871
c19d1205
ZW
9872static void
9873do_t_bfc (void)
a737bd4d 9874{
fdfde340 9875 unsigned Rd;
c19d1205
ZW
9876 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9877 constraint (msb > 32, _("bit-field extends past end of register"));
9878 /* The instruction encoding stores the LSB and MSB,
9879 not the LSB and width. */
fdfde340
JM
9880 Rd = inst.operands[0].reg;
9881 reject_bad_reg (Rd);
9882 inst.instruction |= Rd << 8;
c19d1205
ZW
9883 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9884 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9885 inst.instruction |= msb - 1;
b99bd4ef
NC
9886}
9887
c19d1205
ZW
9888static void
9889do_t_bfi (void)
b99bd4ef 9890{
fdfde340 9891 int Rd, Rn;
c19d1205 9892 unsigned int msb;
b99bd4ef 9893
fdfde340
JM
9894 Rd = inst.operands[0].reg;
9895 reject_bad_reg (Rd);
9896
c19d1205
ZW
9897 /* #0 in second position is alternative syntax for bfc, which is
9898 the same instruction but with REG_PC in the Rm field. */
9899 if (!inst.operands[1].isreg)
fdfde340
JM
9900 Rn = REG_PC;
9901 else
9902 {
9903 Rn = inst.operands[1].reg;
9904 reject_bad_reg (Rn);
9905 }
b99bd4ef 9906
c19d1205
ZW
9907 msb = inst.operands[2].imm + inst.operands[3].imm;
9908 constraint (msb > 32, _("bit-field extends past end of register"));
9909 /* The instruction encoding stores the LSB and MSB,
9910 not the LSB and width. */
fdfde340
JM
9911 inst.instruction |= Rd << 8;
9912 inst.instruction |= Rn << 16;
c19d1205
ZW
9913 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9914 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9915 inst.instruction |= msb - 1;
b99bd4ef
NC
9916}
9917
c19d1205
ZW
9918static void
9919do_t_bfx (void)
b99bd4ef 9920{
fdfde340
JM
9921 unsigned Rd, Rn;
9922
9923 Rd = inst.operands[0].reg;
9924 Rn = inst.operands[1].reg;
9925
9926 reject_bad_reg (Rd);
9927 reject_bad_reg (Rn);
9928
c19d1205
ZW
9929 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9930 _("bit-field extends past end of register"));
fdfde340
JM
9931 inst.instruction |= Rd << 8;
9932 inst.instruction |= Rn << 16;
c19d1205
ZW
9933 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9934 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9935 inst.instruction |= inst.operands[3].imm - 1;
9936}
b99bd4ef 9937
c19d1205
ZW
9938/* ARM V5 Thumb BLX (argument parse)
9939 BLX <target_addr> which is BLX(1)
9940 BLX <Rm> which is BLX(2)
9941 Unfortunately, there are two different opcodes for this mnemonic.
9942 So, the insns[].value is not used, and the code here zaps values
9943 into inst.instruction.
b99bd4ef 9944
c19d1205
ZW
9945 ??? How to take advantage of the additional two bits of displacement
9946 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9947
c19d1205
ZW
9948static void
9949do_t_blx (void)
9950{
e07e6e58
NC
9951 set_it_insn_type_last ();
9952
c19d1205 9953 if (inst.operands[0].isreg)
fdfde340
JM
9954 {
9955 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9956 /* We have a register, so this is BLX(2). */
9957 inst.instruction |= inst.operands[0].reg << 3;
9958 }
b99bd4ef
NC
9959 else
9960 {
c19d1205 9961 /* No register. This must be BLX(1). */
2fc8bdac 9962 inst.instruction = 0xf000e800;
0855e32b 9963 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9964 }
9965}
9966
c19d1205
ZW
9967static void
9968do_t_branch (void)
b99bd4ef 9969{
0110f2b8 9970 int opcode;
dfa9f0d5 9971 int cond;
9ae92b05 9972 int reloc;
dfa9f0d5 9973
e07e6e58
NC
9974 cond = inst.cond;
9975 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9976
9977 if (in_it_block ())
dfa9f0d5
PB
9978 {
9979 /* Conditional branches inside IT blocks are encoded as unconditional
9980 branches. */
9981 cond = COND_ALWAYS;
dfa9f0d5
PB
9982 }
9983 else
9984 cond = inst.cond;
9985
9986 if (cond != COND_ALWAYS)
0110f2b8
PB
9987 opcode = T_MNEM_bcond;
9988 else
9989 opcode = inst.instruction;
9990
12d6b0b7
RS
9991 if (unified_syntax
9992 && (inst.size_req == 4
10960bfb
PB
9993 || (inst.size_req != 2
9994 && (inst.operands[0].hasreloc
9995 || inst.reloc.exp.X_op == O_constant))))
c19d1205 9996 {
0110f2b8 9997 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9998 if (cond == COND_ALWAYS)
9ae92b05 9999 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10000 else
10001 {
9c2799c2 10002 gas_assert (cond != 0xF);
dfa9f0d5 10003 inst.instruction |= cond << 22;
9ae92b05 10004 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10005 }
10006 }
b99bd4ef
NC
10007 else
10008 {
0110f2b8 10009 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10010 if (cond == COND_ALWAYS)
9ae92b05 10011 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10012 else
b99bd4ef 10013 {
dfa9f0d5 10014 inst.instruction |= cond << 8;
9ae92b05 10015 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10016 }
0110f2b8
PB
10017 /* Allow section relaxation. */
10018 if (unified_syntax && inst.size_req != 2)
10019 inst.relax = opcode;
b99bd4ef 10020 }
9ae92b05 10021 inst.reloc.type = reloc;
c19d1205 10022 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10023}
10024
10025static void
c19d1205 10026do_t_bkpt (void)
b99bd4ef 10027{
dfa9f0d5
PB
10028 constraint (inst.cond != COND_ALWAYS,
10029 _("instruction is always unconditional"));
c19d1205 10030 if (inst.operands[0].present)
b99bd4ef 10031 {
c19d1205
ZW
10032 constraint (inst.operands[0].imm > 255,
10033 _("immediate value out of range"));
10034 inst.instruction |= inst.operands[0].imm;
e07e6e58 10035 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 10036 }
b99bd4ef
NC
10037}
10038
10039static void
c19d1205 10040do_t_branch23 (void)
b99bd4ef 10041{
e07e6e58 10042 set_it_insn_type_last ();
0855e32b
NS
10043 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10044
10045 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10046 this file. We used to simply ignore the PLT reloc type here --
10047 the branch encoding is now needed to deal with TLSCALL relocs.
10048 So if we see a PLT reloc now, put it back to how it used to be to
10049 keep the preexisting behaviour. */
10050 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10051 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10052
4343666d 10053#if defined(OBJ_COFF)
c19d1205
ZW
10054 /* If the destination of the branch is a defined symbol which does not have
10055 the THUMB_FUNC attribute, then we must be calling a function which has
10056 the (interfacearm) attribute. We look for the Thumb entry point to that
10057 function and change the branch to refer to that function instead. */
10058 if ( inst.reloc.exp.X_op == O_symbol
10059 && inst.reloc.exp.X_add_symbol != NULL
10060 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10061 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10062 inst.reloc.exp.X_add_symbol =
10063 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10064#endif
90e4755a
RE
10065}
10066
10067static void
c19d1205 10068do_t_bx (void)
90e4755a 10069{
e07e6e58 10070 set_it_insn_type_last ();
c19d1205
ZW
10071 inst.instruction |= inst.operands[0].reg << 3;
10072 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10073 should cause the alignment to be checked once it is known. This is
10074 because BX PC only works if the instruction is word aligned. */
10075}
90e4755a 10076
c19d1205
ZW
10077static void
10078do_t_bxj (void)
10079{
fdfde340 10080 int Rm;
90e4755a 10081
e07e6e58 10082 set_it_insn_type_last ();
fdfde340
JM
10083 Rm = inst.operands[0].reg;
10084 reject_bad_reg (Rm);
10085 inst.instruction |= Rm << 16;
90e4755a
RE
10086}
10087
10088static void
c19d1205 10089do_t_clz (void)
90e4755a 10090{
fdfde340
JM
10091 unsigned Rd;
10092 unsigned Rm;
10093
10094 Rd = inst.operands[0].reg;
10095 Rm = inst.operands[1].reg;
10096
10097 reject_bad_reg (Rd);
10098 reject_bad_reg (Rm);
10099
10100 inst.instruction |= Rd << 8;
10101 inst.instruction |= Rm << 16;
10102 inst.instruction |= Rm;
c19d1205 10103}
90e4755a 10104
dfa9f0d5
PB
10105static void
10106do_t_cps (void)
10107{
e07e6e58 10108 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10109 inst.instruction |= inst.operands[0].imm;
10110}
10111
c19d1205
ZW
10112static void
10113do_t_cpsi (void)
10114{
e07e6e58 10115 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10116 if (unified_syntax
62b3e311
PB
10117 && (inst.operands[1].present || inst.size_req == 4)
10118 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10119 {
c19d1205
ZW
10120 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10121 inst.instruction = 0xf3af8000;
10122 inst.instruction |= imod << 9;
10123 inst.instruction |= inst.operands[0].imm << 5;
10124 if (inst.operands[1].present)
10125 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10126 }
c19d1205 10127 else
90e4755a 10128 {
62b3e311
PB
10129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10130 && (inst.operands[0].imm & 4),
10131 _("selected processor does not support 'A' form "
10132 "of this instruction"));
10133 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10134 _("Thumb does not support the 2-argument "
10135 "form of this instruction"));
10136 inst.instruction |= inst.operands[0].imm;
90e4755a 10137 }
90e4755a
RE
10138}
10139
c19d1205
ZW
10140/* THUMB CPY instruction (argument parse). */
10141
90e4755a 10142static void
c19d1205 10143do_t_cpy (void)
90e4755a 10144{
c19d1205 10145 if (inst.size_req == 4)
90e4755a 10146 {
c19d1205
ZW
10147 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10148 inst.instruction |= inst.operands[0].reg << 8;
10149 inst.instruction |= inst.operands[1].reg;
90e4755a 10150 }
c19d1205 10151 else
90e4755a 10152 {
c19d1205
ZW
10153 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10154 inst.instruction |= (inst.operands[0].reg & 0x7);
10155 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10156 }
90e4755a
RE
10157}
10158
90e4755a 10159static void
25fe350b 10160do_t_cbz (void)
90e4755a 10161{
e07e6e58 10162 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10163 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10164 inst.instruction |= inst.operands[0].reg;
10165 inst.reloc.pc_rel = 1;
10166 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10167}
90e4755a 10168
62b3e311
PB
10169static void
10170do_t_dbg (void)
10171{
10172 inst.instruction |= inst.operands[0].imm;
10173}
10174
10175static void
10176do_t_div (void)
10177{
fdfde340
JM
10178 unsigned Rd, Rn, Rm;
10179
10180 Rd = inst.operands[0].reg;
10181 Rn = (inst.operands[1].present
10182 ? inst.operands[1].reg : Rd);
10183 Rm = inst.operands[2].reg;
10184
10185 reject_bad_reg (Rd);
10186 reject_bad_reg (Rn);
10187 reject_bad_reg (Rm);
10188
10189 inst.instruction |= Rd << 8;
10190 inst.instruction |= Rn << 16;
10191 inst.instruction |= Rm;
62b3e311
PB
10192}
10193
c19d1205
ZW
10194static void
10195do_t_hint (void)
10196{
10197 if (unified_syntax && inst.size_req == 4)
10198 inst.instruction = THUMB_OP32 (inst.instruction);
10199 else
10200 inst.instruction = THUMB_OP16 (inst.instruction);
10201}
90e4755a 10202
c19d1205
ZW
10203static void
10204do_t_it (void)
10205{
10206 unsigned int cond = inst.operands[0].imm;
e27ec89e 10207
e07e6e58
NC
10208 set_it_insn_type (IT_INSN);
10209 now_it.mask = (inst.instruction & 0xf) | 0x10;
10210 now_it.cc = cond;
e27ec89e
PB
10211
10212 /* If the condition is a negative condition, invert the mask. */
c19d1205 10213 if ((cond & 0x1) == 0x0)
90e4755a 10214 {
c19d1205 10215 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10216
c19d1205
ZW
10217 if ((mask & 0x7) == 0)
10218 /* no conversion needed */;
10219 else if ((mask & 0x3) == 0)
e27ec89e
PB
10220 mask ^= 0x8;
10221 else if ((mask & 0x1) == 0)
10222 mask ^= 0xC;
c19d1205 10223 else
e27ec89e 10224 mask ^= 0xE;
90e4755a 10225
e27ec89e
PB
10226 inst.instruction &= 0xfff0;
10227 inst.instruction |= mask;
c19d1205 10228 }
90e4755a 10229
c19d1205
ZW
10230 inst.instruction |= cond << 4;
10231}
90e4755a 10232
3c707909
PB
10233/* Helper function used for both push/pop and ldm/stm. */
10234static void
10235encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10236{
10237 bfd_boolean load;
10238
10239 load = (inst.instruction & (1 << 20)) != 0;
10240
10241 if (mask & (1 << 13))
10242 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10243
10244 if ((mask & (1 << base)) != 0
10245 && writeback)
10246 inst.error = _("having the base register in the register list when "
10247 "using write back is UNPREDICTABLE");
10248
3c707909
PB
10249 if (load)
10250 {
e07e6e58
NC
10251 if (mask & (1 << 15))
10252 {
10253 if (mask & (1 << 14))
10254 inst.error = _("LR and PC should not both be in register list");
10255 else
10256 set_it_insn_type_last ();
10257 }
3c707909
PB
10258 }
10259 else
10260 {
10261 if (mask & (1 << 15))
10262 inst.error = _("PC not allowed in register list");
3c707909
PB
10263 }
10264
10265 if ((mask & (mask - 1)) == 0)
10266 {
10267 /* Single register transfers implemented as str/ldr. */
10268 if (writeback)
10269 {
10270 if (inst.instruction & (1 << 23))
10271 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10272 else
10273 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10274 }
10275 else
10276 {
10277 if (inst.instruction & (1 << 23))
10278 inst.instruction = 0x00800000; /* ia -> [base] */
10279 else
10280 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10281 }
10282
10283 inst.instruction |= 0xf8400000;
10284 if (load)
10285 inst.instruction |= 0x00100000;
10286
5f4273c7 10287 mask = ffs (mask) - 1;
3c707909
PB
10288 mask <<= 12;
10289 }
10290 else if (writeback)
10291 inst.instruction |= WRITE_BACK;
10292
10293 inst.instruction |= mask;
10294 inst.instruction |= base << 16;
10295}
10296
c19d1205
ZW
10297static void
10298do_t_ldmstm (void)
10299{
10300 /* This really doesn't seem worth it. */
10301 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10302 _("expression too complex"));
10303 constraint (inst.operands[1].writeback,
10304 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10305
c19d1205
ZW
10306 if (unified_syntax)
10307 {
3c707909
PB
10308 bfd_boolean narrow;
10309 unsigned mask;
10310
10311 narrow = FALSE;
c19d1205
ZW
10312 /* See if we can use a 16-bit instruction. */
10313 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10314 && inst.size_req != 4
3c707909 10315 && !(inst.operands[1].imm & ~0xff))
90e4755a 10316 {
3c707909 10317 mask = 1 << inst.operands[0].reg;
90e4755a 10318
eab4f823 10319 if (inst.operands[0].reg <= 7)
90e4755a 10320 {
3c707909 10321 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10322 ? inst.operands[0].writeback
10323 : (inst.operands[0].writeback
10324 == !(inst.operands[1].imm & mask)))
10325 {
10326 if (inst.instruction == T_MNEM_stmia
10327 && (inst.operands[1].imm & mask)
10328 && (inst.operands[1].imm & (mask - 1)))
10329 as_warn (_("value stored for r%d is UNKNOWN"),
10330 inst.operands[0].reg);
3c707909 10331
eab4f823
MGD
10332 inst.instruction = THUMB_OP16 (inst.instruction);
10333 inst.instruction |= inst.operands[0].reg << 8;
10334 inst.instruction |= inst.operands[1].imm;
10335 narrow = TRUE;
10336 }
10337 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10338 {
10339 /* This means 1 register in reg list one of 3 situations:
10340 1. Instruction is stmia, but without writeback.
10341 2. lmdia without writeback, but with Rn not in
10342 reglist.
10343 3. ldmia with writeback, but with Rn in reglist.
10344 Case 3 is UNPREDICTABLE behaviour, so we handle
10345 case 1 and 2 which can be converted into a 16-bit
10346 str or ldr. The SP cases are handled below. */
10347 unsigned long opcode;
10348 /* First, record an error for Case 3. */
10349 if (inst.operands[1].imm & mask
10350 && inst.operands[0].writeback)
10351 inst.error =
10352 _("having the base register in the register list when "
10353 "using write back is UNPREDICTABLE");
10354
10355 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10356 : T_MNEM_ldr);
10357 inst.instruction = THUMB_OP16 (opcode);
10358 inst.instruction |= inst.operands[0].reg << 3;
10359 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10360 narrow = TRUE;
10361 }
90e4755a 10362 }
eab4f823 10363 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10364 {
eab4f823
MGD
10365 if (inst.operands[0].writeback)
10366 {
10367 inst.instruction =
10368 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10369 ? T_MNEM_push : T_MNEM_pop);
10370 inst.instruction |= inst.operands[1].imm;
10371 narrow = TRUE;
10372 }
10373 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10374 {
10375 inst.instruction =
10376 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10377 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10378 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10379 narrow = TRUE;
10380 }
90e4755a 10381 }
3c707909
PB
10382 }
10383
10384 if (!narrow)
10385 {
c19d1205
ZW
10386 if (inst.instruction < 0xffff)
10387 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10388
5f4273c7
NC
10389 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10390 inst.operands[0].writeback);
90e4755a
RE
10391 }
10392 }
c19d1205 10393 else
90e4755a 10394 {
c19d1205
ZW
10395 constraint (inst.operands[0].reg > 7
10396 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10397 constraint (inst.instruction != T_MNEM_ldmia
10398 && inst.instruction != T_MNEM_stmia,
10399 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10400 if (inst.instruction == T_MNEM_stmia)
f03698e6 10401 {
c19d1205
ZW
10402 if (!inst.operands[0].writeback)
10403 as_warn (_("this instruction will write back the base register"));
10404 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10405 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10406 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10407 inst.operands[0].reg);
f03698e6 10408 }
c19d1205 10409 else
90e4755a 10410 {
c19d1205
ZW
10411 if (!inst.operands[0].writeback
10412 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10413 as_warn (_("this instruction will write back the base register"));
10414 else if (inst.operands[0].writeback
10415 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10416 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10417 }
10418
c19d1205
ZW
10419 inst.instruction = THUMB_OP16 (inst.instruction);
10420 inst.instruction |= inst.operands[0].reg << 8;
10421 inst.instruction |= inst.operands[1].imm;
10422 }
10423}
e28cd48c 10424
c19d1205
ZW
10425static void
10426do_t_ldrex (void)
10427{
10428 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10429 || inst.operands[1].postind || inst.operands[1].writeback
10430 || inst.operands[1].immisreg || inst.operands[1].shifted
10431 || inst.operands[1].negative,
01cfc07f 10432 BAD_ADDR_MODE);
e28cd48c 10433
5be8be5d
DG
10434 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10435
c19d1205
ZW
10436 inst.instruction |= inst.operands[0].reg << 12;
10437 inst.instruction |= inst.operands[1].reg << 16;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10439}
e28cd48c 10440
c19d1205
ZW
10441static void
10442do_t_ldrexd (void)
10443{
10444 if (!inst.operands[1].present)
1cac9012 10445 {
c19d1205
ZW
10446 constraint (inst.operands[0].reg == REG_LR,
10447 _("r14 not allowed as first register "
10448 "when second register is omitted"));
10449 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10450 }
c19d1205
ZW
10451 constraint (inst.operands[0].reg == inst.operands[1].reg,
10452 BAD_OVERLAP);
b99bd4ef 10453
c19d1205
ZW
10454 inst.instruction |= inst.operands[0].reg << 12;
10455 inst.instruction |= inst.operands[1].reg << 8;
10456 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10457}
10458
10459static void
c19d1205 10460do_t_ldst (void)
b99bd4ef 10461{
0110f2b8
PB
10462 unsigned long opcode;
10463 int Rn;
10464
e07e6e58
NC
10465 if (inst.operands[0].isreg
10466 && !inst.operands[0].preind
10467 && inst.operands[0].reg == REG_PC)
10468 set_it_insn_type_last ();
10469
0110f2b8 10470 opcode = inst.instruction;
c19d1205 10471 if (unified_syntax)
b99bd4ef 10472 {
53365c0d
PB
10473 if (!inst.operands[1].isreg)
10474 {
10475 if (opcode <= 0xffff)
10476 inst.instruction = THUMB_OP32 (opcode);
10477 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10478 return;
10479 }
0110f2b8
PB
10480 if (inst.operands[1].isreg
10481 && !inst.operands[1].writeback
c19d1205
ZW
10482 && !inst.operands[1].shifted && !inst.operands[1].postind
10483 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10484 && opcode <= 0xffff
10485 && inst.size_req != 4)
c19d1205 10486 {
0110f2b8
PB
10487 /* Insn may have a 16-bit form. */
10488 Rn = inst.operands[1].reg;
10489 if (inst.operands[1].immisreg)
10490 {
10491 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10492 /* [Rn, Rik] */
0110f2b8
PB
10493 if (Rn <= 7 && inst.operands[1].imm <= 7)
10494 goto op16;
5be8be5d
DG
10495 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10496 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10497 }
10498 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10499 && opcode != T_MNEM_ldrsb)
10500 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10501 || (Rn == REG_SP && opcode == T_MNEM_str))
10502 {
10503 /* [Rn, #const] */
10504 if (Rn > 7)
10505 {
10506 if (Rn == REG_PC)
10507 {
10508 if (inst.reloc.pc_rel)
10509 opcode = T_MNEM_ldr_pc2;
10510 else
10511 opcode = T_MNEM_ldr_pc;
10512 }
10513 else
10514 {
10515 if (opcode == T_MNEM_ldr)
10516 opcode = T_MNEM_ldr_sp;
10517 else
10518 opcode = T_MNEM_str_sp;
10519 }
10520 inst.instruction = inst.operands[0].reg << 8;
10521 }
10522 else
10523 {
10524 inst.instruction = inst.operands[0].reg;
10525 inst.instruction |= inst.operands[1].reg << 3;
10526 }
10527 inst.instruction |= THUMB_OP16 (opcode);
10528 if (inst.size_req == 2)
10529 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10530 else
10531 inst.relax = opcode;
10532 return;
10533 }
c19d1205 10534 }
0110f2b8 10535 /* Definitely a 32-bit variant. */
5be8be5d 10536
8d67f500
NC
10537 /* Warning for Erratum 752419. */
10538 if (opcode == T_MNEM_ldr
10539 && inst.operands[0].reg == REG_SP
10540 && inst.operands[1].writeback == 1
10541 && !inst.operands[1].immisreg)
10542 {
10543 if (no_cpu_selected ()
10544 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10546 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10547 as_warn (_("This instruction may be unpredictable "
10548 "if executed on M-profile cores "
10549 "with interrupts enabled."));
10550 }
10551
5be8be5d 10552 /* Do some validations regarding addressing modes. */
1be5fd2e 10553 if (inst.operands[1].immisreg)
5be8be5d
DG
10554 reject_bad_reg (inst.operands[1].imm);
10555
1be5fd2e
NC
10556 constraint (inst.operands[1].writeback == 1
10557 && inst.operands[0].reg == inst.operands[1].reg,
10558 BAD_OVERLAP);
10559
0110f2b8 10560 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10561 inst.instruction |= inst.operands[0].reg << 12;
10562 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10563 check_ldr_r15_aligned ();
b99bd4ef
NC
10564 return;
10565 }
10566
c19d1205
ZW
10567 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10568
10569 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10570 {
c19d1205
ZW
10571 /* Only [Rn,Rm] is acceptable. */
10572 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10573 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10574 || inst.operands[1].postind || inst.operands[1].shifted
10575 || inst.operands[1].negative,
10576 _("Thumb does not support this addressing mode"));
10577 inst.instruction = THUMB_OP16 (inst.instruction);
10578 goto op16;
b99bd4ef 10579 }
5f4273c7 10580
c19d1205
ZW
10581 inst.instruction = THUMB_OP16 (inst.instruction);
10582 if (!inst.operands[1].isreg)
10583 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10584 return;
b99bd4ef 10585
c19d1205
ZW
10586 constraint (!inst.operands[1].preind
10587 || inst.operands[1].shifted
10588 || inst.operands[1].writeback,
10589 _("Thumb does not support this addressing mode"));
10590 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10591 {
c19d1205
ZW
10592 constraint (inst.instruction & 0x0600,
10593 _("byte or halfword not valid for base register"));
10594 constraint (inst.operands[1].reg == REG_PC
10595 && !(inst.instruction & THUMB_LOAD_BIT),
10596 _("r15 based store not allowed"));
10597 constraint (inst.operands[1].immisreg,
10598 _("invalid base register for register offset"));
b99bd4ef 10599
c19d1205
ZW
10600 if (inst.operands[1].reg == REG_PC)
10601 inst.instruction = T_OPCODE_LDR_PC;
10602 else if (inst.instruction & THUMB_LOAD_BIT)
10603 inst.instruction = T_OPCODE_LDR_SP;
10604 else
10605 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10606
c19d1205
ZW
10607 inst.instruction |= inst.operands[0].reg << 8;
10608 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10609 return;
10610 }
90e4755a 10611
c19d1205
ZW
10612 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10613 if (!inst.operands[1].immisreg)
10614 {
10615 /* Immediate offset. */
10616 inst.instruction |= inst.operands[0].reg;
10617 inst.instruction |= inst.operands[1].reg << 3;
10618 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10619 return;
10620 }
90e4755a 10621
c19d1205
ZW
10622 /* Register offset. */
10623 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10624 constraint (inst.operands[1].negative,
10625 _("Thumb does not support this addressing mode"));
90e4755a 10626
c19d1205
ZW
10627 op16:
10628 switch (inst.instruction)
10629 {
10630 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10631 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10632 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10633 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10634 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10635 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10636 case 0x5600 /* ldrsb */:
10637 case 0x5e00 /* ldrsh */: break;
10638 default: abort ();
10639 }
90e4755a 10640
c19d1205
ZW
10641 inst.instruction |= inst.operands[0].reg;
10642 inst.instruction |= inst.operands[1].reg << 3;
10643 inst.instruction |= inst.operands[1].imm << 6;
10644}
90e4755a 10645
c19d1205
ZW
10646static void
10647do_t_ldstd (void)
10648{
10649 if (!inst.operands[1].present)
b99bd4ef 10650 {
c19d1205
ZW
10651 inst.operands[1].reg = inst.operands[0].reg + 1;
10652 constraint (inst.operands[0].reg == REG_LR,
10653 _("r14 not allowed here"));
b99bd4ef 10654 }
c19d1205
ZW
10655 inst.instruction |= inst.operands[0].reg << 12;
10656 inst.instruction |= inst.operands[1].reg << 8;
10657 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10658}
10659
c19d1205
ZW
10660static void
10661do_t_ldstt (void)
10662{
10663 inst.instruction |= inst.operands[0].reg << 12;
10664 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10665}
a737bd4d 10666
b99bd4ef 10667static void
c19d1205 10668do_t_mla (void)
b99bd4ef 10669{
fdfde340 10670 unsigned Rd, Rn, Rm, Ra;
c921be7d 10671
fdfde340
JM
10672 Rd = inst.operands[0].reg;
10673 Rn = inst.operands[1].reg;
10674 Rm = inst.operands[2].reg;
10675 Ra = inst.operands[3].reg;
10676
10677 reject_bad_reg (Rd);
10678 reject_bad_reg (Rn);
10679 reject_bad_reg (Rm);
10680 reject_bad_reg (Ra);
10681
10682 inst.instruction |= Rd << 8;
10683 inst.instruction |= Rn << 16;
10684 inst.instruction |= Rm;
10685 inst.instruction |= Ra << 12;
c19d1205 10686}
b99bd4ef 10687
c19d1205
ZW
10688static void
10689do_t_mlal (void)
10690{
fdfde340
JM
10691 unsigned RdLo, RdHi, Rn, Rm;
10692
10693 RdLo = inst.operands[0].reg;
10694 RdHi = inst.operands[1].reg;
10695 Rn = inst.operands[2].reg;
10696 Rm = inst.operands[3].reg;
10697
10698 reject_bad_reg (RdLo);
10699 reject_bad_reg (RdHi);
10700 reject_bad_reg (Rn);
10701 reject_bad_reg (Rm);
10702
10703 inst.instruction |= RdLo << 12;
10704 inst.instruction |= RdHi << 8;
10705 inst.instruction |= Rn << 16;
10706 inst.instruction |= Rm;
c19d1205 10707}
b99bd4ef 10708
c19d1205
ZW
10709static void
10710do_t_mov_cmp (void)
10711{
fdfde340
JM
10712 unsigned Rn, Rm;
10713
10714 Rn = inst.operands[0].reg;
10715 Rm = inst.operands[1].reg;
10716
e07e6e58
NC
10717 if (Rn == REG_PC)
10718 set_it_insn_type_last ();
10719
c19d1205 10720 if (unified_syntax)
b99bd4ef 10721 {
c19d1205
ZW
10722 int r0off = (inst.instruction == T_MNEM_mov
10723 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10724 unsigned long opcode;
3d388997
PB
10725 bfd_boolean narrow;
10726 bfd_boolean low_regs;
10727
fdfde340 10728 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10729 opcode = inst.instruction;
e07e6e58 10730 if (in_it_block ())
0110f2b8 10731 narrow = opcode != T_MNEM_movs;
3d388997 10732 else
0110f2b8 10733 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10734 if (inst.size_req == 4
10735 || inst.operands[1].shifted)
10736 narrow = FALSE;
10737
efd81785
PB
10738 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10739 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10740 && !inst.operands[1].shifted
fdfde340
JM
10741 && Rn == REG_PC
10742 && Rm == REG_LR)
efd81785
PB
10743 {
10744 inst.instruction = T2_SUBS_PC_LR;
10745 return;
10746 }
10747
fdfde340
JM
10748 if (opcode == T_MNEM_cmp)
10749 {
10750 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10751 if (narrow)
10752 {
10753 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10754 but valid. */
10755 warn_deprecated_sp (Rm);
10756 /* R15 was documented as a valid choice for Rm in ARMv6,
10757 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10758 tools reject R15, so we do too. */
10759 constraint (Rm == REG_PC, BAD_PC);
10760 }
10761 else
10762 reject_bad_reg (Rm);
fdfde340
JM
10763 }
10764 else if (opcode == T_MNEM_mov
10765 || opcode == T_MNEM_movs)
10766 {
10767 if (inst.operands[1].isreg)
10768 {
10769 if (opcode == T_MNEM_movs)
10770 {
10771 reject_bad_reg (Rn);
10772 reject_bad_reg (Rm);
10773 }
76fa04a4
MGD
10774 else if (narrow)
10775 {
10776 /* This is mov.n. */
10777 if ((Rn == REG_SP || Rn == REG_PC)
10778 && (Rm == REG_SP || Rm == REG_PC))
10779 {
10780 as_warn (_("Use of r%u as a source register is "
10781 "deprecated when r%u is the destination "
10782 "register."), Rm, Rn);
10783 }
10784 }
10785 else
10786 {
10787 /* This is mov.w. */
10788 constraint (Rn == REG_PC, BAD_PC);
10789 constraint (Rm == REG_PC, BAD_PC);
10790 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10791 }
fdfde340
JM
10792 }
10793 else
10794 reject_bad_reg (Rn);
10795 }
10796
c19d1205
ZW
10797 if (!inst.operands[1].isreg)
10798 {
0110f2b8 10799 /* Immediate operand. */
e07e6e58 10800 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10801 narrow = 0;
10802 if (low_regs && narrow)
10803 {
10804 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10805 inst.instruction |= Rn << 8;
0110f2b8
PB
10806 if (inst.size_req == 2)
10807 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10808 else
10809 inst.relax = opcode;
10810 }
10811 else
10812 {
10813 inst.instruction = THUMB_OP32 (inst.instruction);
10814 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10815 inst.instruction |= Rn << r0off;
0110f2b8
PB
10816 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10817 }
c19d1205 10818 }
728ca7c9
PB
10819 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10820 && (inst.instruction == T_MNEM_mov
10821 || inst.instruction == T_MNEM_movs))
10822 {
10823 /* Register shifts are encoded as separate shift instructions. */
10824 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10825
e07e6e58 10826 if (in_it_block ())
728ca7c9
PB
10827 narrow = !flags;
10828 else
10829 narrow = flags;
10830
10831 if (inst.size_req == 4)
10832 narrow = FALSE;
10833
10834 if (!low_regs || inst.operands[1].imm > 7)
10835 narrow = FALSE;
10836
fdfde340 10837 if (Rn != Rm)
728ca7c9
PB
10838 narrow = FALSE;
10839
10840 switch (inst.operands[1].shift_kind)
10841 {
10842 case SHIFT_LSL:
10843 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10844 break;
10845 case SHIFT_ASR:
10846 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10847 break;
10848 case SHIFT_LSR:
10849 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10850 break;
10851 case SHIFT_ROR:
10852 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10853 break;
10854 default:
5f4273c7 10855 abort ();
728ca7c9
PB
10856 }
10857
10858 inst.instruction = opcode;
10859 if (narrow)
10860 {
fdfde340 10861 inst.instruction |= Rn;
728ca7c9
PB
10862 inst.instruction |= inst.operands[1].imm << 3;
10863 }
10864 else
10865 {
10866 if (flags)
10867 inst.instruction |= CONDS_BIT;
10868
fdfde340
JM
10869 inst.instruction |= Rn << 8;
10870 inst.instruction |= Rm << 16;
728ca7c9
PB
10871 inst.instruction |= inst.operands[1].imm;
10872 }
10873 }
3d388997 10874 else if (!narrow)
c19d1205 10875 {
728ca7c9
PB
10876 /* Some mov with immediate shift have narrow variants.
10877 Register shifts are handled above. */
10878 if (low_regs && inst.operands[1].shifted
10879 && (inst.instruction == T_MNEM_mov
10880 || inst.instruction == T_MNEM_movs))
10881 {
e07e6e58 10882 if (in_it_block ())
728ca7c9
PB
10883 narrow = (inst.instruction == T_MNEM_mov);
10884 else
10885 narrow = (inst.instruction == T_MNEM_movs);
10886 }
10887
10888 if (narrow)
10889 {
10890 switch (inst.operands[1].shift_kind)
10891 {
10892 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10893 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10894 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10895 default: narrow = FALSE; break;
10896 }
10897 }
10898
10899 if (narrow)
10900 {
fdfde340
JM
10901 inst.instruction |= Rn;
10902 inst.instruction |= Rm << 3;
728ca7c9
PB
10903 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10904 }
10905 else
10906 {
10907 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10908 inst.instruction |= Rn << r0off;
728ca7c9
PB
10909 encode_thumb32_shifted_operand (1);
10910 }
c19d1205
ZW
10911 }
10912 else
10913 switch (inst.instruction)
10914 {
10915 case T_MNEM_mov:
837b3435
RE
10916 /* In v4t or v5t a move of two lowregs produces unpredictable
10917 results. Don't allow this.*/
10918 constraint (low_regs && !ARM_CPU_HAS_FEATURE (selected_cpu,
10919 arm_ext_v6),"MOV Rd, Rs with two low registers is not "
10920 "permitted on this architecture");
c19d1205 10921 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10922 inst.instruction |= (Rn & 0x8) << 4;
10923 inst.instruction |= (Rn & 0x7);
10924 inst.instruction |= Rm << 3;
c19d1205 10925 break;
b99bd4ef 10926
c19d1205
ZW
10927 case T_MNEM_movs:
10928 /* We know we have low registers at this point.
941a8a52
MGD
10929 Generate LSLS Rd, Rs, #0. */
10930 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10931 inst.instruction |= Rn;
10932 inst.instruction |= Rm << 3;
c19d1205
ZW
10933 break;
10934
10935 case T_MNEM_cmp:
3d388997 10936 if (low_regs)
c19d1205
ZW
10937 {
10938 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10939 inst.instruction |= Rn;
10940 inst.instruction |= Rm << 3;
c19d1205
ZW
10941 }
10942 else
10943 {
10944 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10945 inst.instruction |= (Rn & 0x8) << 4;
10946 inst.instruction |= (Rn & 0x7);
10947 inst.instruction |= Rm << 3;
c19d1205
ZW
10948 }
10949 break;
10950 }
b99bd4ef
NC
10951 return;
10952 }
10953
c19d1205 10954 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10955
10956 /* PR 10443: Do not silently ignore shifted operands. */
10957 constraint (inst.operands[1].shifted,
10958 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10959
c19d1205 10960 if (inst.operands[1].isreg)
b99bd4ef 10961 {
fdfde340 10962 if (Rn < 8 && Rm < 8)
b99bd4ef 10963 {
c19d1205
ZW
10964 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10965 since a MOV instruction produces unpredictable results. */
10966 if (inst.instruction == T_OPCODE_MOV_I8)
10967 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10968 else
c19d1205 10969 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10970
fdfde340
JM
10971 inst.instruction |= Rn;
10972 inst.instruction |= Rm << 3;
b99bd4ef
NC
10973 }
10974 else
10975 {
c19d1205
ZW
10976 if (inst.instruction == T_OPCODE_MOV_I8)
10977 inst.instruction = T_OPCODE_MOV_HR;
10978 else
10979 inst.instruction = T_OPCODE_CMP_HR;
10980 do_t_cpy ();
b99bd4ef
NC
10981 }
10982 }
c19d1205 10983 else
b99bd4ef 10984 {
fdfde340 10985 constraint (Rn > 7,
c19d1205 10986 _("only lo regs allowed with immediate"));
fdfde340 10987 inst.instruction |= Rn << 8;
c19d1205
ZW
10988 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10989 }
10990}
b99bd4ef 10991
c19d1205
ZW
10992static void
10993do_t_mov16 (void)
10994{
fdfde340 10995 unsigned Rd;
b6895b4f
PB
10996 bfd_vma imm;
10997 bfd_boolean top;
10998
10999 top = (inst.instruction & 0x00800000) != 0;
11000 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11001 {
11002 constraint (top, _(":lower16: not allowed this instruction"));
11003 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11004 }
11005 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11006 {
11007 constraint (!top, _(":upper16: not allowed this instruction"));
11008 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11009 }
11010
fdfde340
JM
11011 Rd = inst.operands[0].reg;
11012 reject_bad_reg (Rd);
11013
11014 inst.instruction |= Rd << 8;
b6895b4f
PB
11015 if (inst.reloc.type == BFD_RELOC_UNUSED)
11016 {
11017 imm = inst.reloc.exp.X_add_number;
11018 inst.instruction |= (imm & 0xf000) << 4;
11019 inst.instruction |= (imm & 0x0800) << 15;
11020 inst.instruction |= (imm & 0x0700) << 4;
11021 inst.instruction |= (imm & 0x00ff);
11022 }
c19d1205 11023}
b99bd4ef 11024
c19d1205
ZW
11025static void
11026do_t_mvn_tst (void)
11027{
fdfde340 11028 unsigned Rn, Rm;
c921be7d 11029
fdfde340
JM
11030 Rn = inst.operands[0].reg;
11031 Rm = inst.operands[1].reg;
11032
11033 if (inst.instruction == T_MNEM_cmp
11034 || inst.instruction == T_MNEM_cmn)
11035 constraint (Rn == REG_PC, BAD_PC);
11036 else
11037 reject_bad_reg (Rn);
11038 reject_bad_reg (Rm);
11039
c19d1205
ZW
11040 if (unified_syntax)
11041 {
11042 int r0off = (inst.instruction == T_MNEM_mvn
11043 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11044 bfd_boolean narrow;
11045
11046 if (inst.size_req == 4
11047 || inst.instruction > 0xffff
11048 || inst.operands[1].shifted
fdfde340 11049 || Rn > 7 || Rm > 7)
3d388997
PB
11050 narrow = FALSE;
11051 else if (inst.instruction == T_MNEM_cmn)
11052 narrow = TRUE;
11053 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11054 narrow = !in_it_block ();
3d388997 11055 else
e07e6e58 11056 narrow = in_it_block ();
3d388997 11057
c19d1205 11058 if (!inst.operands[1].isreg)
b99bd4ef 11059 {
c19d1205
ZW
11060 /* For an immediate, we always generate a 32-bit opcode;
11061 section relaxation will shrink it later if possible. */
11062 if (inst.instruction < 0xffff)
11063 inst.instruction = THUMB_OP32 (inst.instruction);
11064 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11065 inst.instruction |= Rn << r0off;
c19d1205 11066 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11067 }
c19d1205 11068 else
b99bd4ef 11069 {
c19d1205 11070 /* See if we can do this with a 16-bit instruction. */
3d388997 11071 if (narrow)
b99bd4ef 11072 {
c19d1205 11073 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11074 inst.instruction |= Rn;
11075 inst.instruction |= Rm << 3;
b99bd4ef 11076 }
c19d1205 11077 else
b99bd4ef 11078 {
c19d1205
ZW
11079 constraint (inst.operands[1].shifted
11080 && inst.operands[1].immisreg,
11081 _("shift must be constant"));
11082 if (inst.instruction < 0xffff)
11083 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11084 inst.instruction |= Rn << r0off;
c19d1205 11085 encode_thumb32_shifted_operand (1);
b99bd4ef 11086 }
b99bd4ef
NC
11087 }
11088 }
11089 else
11090 {
c19d1205
ZW
11091 constraint (inst.instruction > 0xffff
11092 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11093 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11094 _("unshifted register required"));
fdfde340 11095 constraint (Rn > 7 || Rm > 7,
c19d1205 11096 BAD_HIREG);
b99bd4ef 11097
c19d1205 11098 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11099 inst.instruction |= Rn;
11100 inst.instruction |= Rm << 3;
b99bd4ef 11101 }
b99bd4ef
NC
11102}
11103
b05fe5cf 11104static void
c19d1205 11105do_t_mrs (void)
b05fe5cf 11106{
fdfde340 11107 unsigned Rd;
037e8744
JB
11108
11109 if (do_vfp_nsyn_mrs () == SUCCESS)
11110 return;
11111
90ec0d68
MGD
11112 Rd = inst.operands[0].reg;
11113 reject_bad_reg (Rd);
11114 inst.instruction |= Rd << 8;
11115
11116 if (inst.operands[1].isreg)
62b3e311 11117 {
90ec0d68
MGD
11118 unsigned br = inst.operands[1].reg;
11119 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11120 as_bad (_("bad register for mrs"));
11121
11122 inst.instruction |= br & (0xf << 16);
11123 inst.instruction |= (br & 0x300) >> 4;
11124 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11125 }
11126 else
11127 {
90ec0d68 11128 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11129
d2cd1205
JB
11130 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11131 constraint (flags != 0, _("selected processor does not support "
11132 "requested special purpose register"));
90ec0d68 11133 else
d2cd1205
JB
11134 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11135 devices). */
11136 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11137 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11138
90ec0d68
MGD
11139 inst.instruction |= (flags & SPSR_BIT) >> 2;
11140 inst.instruction |= inst.operands[1].imm & 0xff;
11141 inst.instruction |= 0xf0000;
11142 }
c19d1205 11143}
b05fe5cf 11144
c19d1205
ZW
11145static void
11146do_t_msr (void)
11147{
62b3e311 11148 int flags;
fdfde340 11149 unsigned Rn;
62b3e311 11150
037e8744
JB
11151 if (do_vfp_nsyn_msr () == SUCCESS)
11152 return;
11153
c19d1205
ZW
11154 constraint (!inst.operands[1].isreg,
11155 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11156
11157 if (inst.operands[0].isreg)
11158 flags = (int)(inst.operands[0].reg);
11159 else
11160 flags = inst.operands[0].imm;
11161
d2cd1205 11162 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11163 {
d2cd1205
JB
11164 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11165
11166 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11167 && (bits & ~(PSR_s | PSR_f)) != 0)
11168 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11169 && bits != PSR_f),
11170 _("selected processor does not support requested special "
11171 "purpose register"));
62b3e311
PB
11172 }
11173 else
d2cd1205
JB
11174 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11175 "requested special purpose register"));
c921be7d 11176
fdfde340
JM
11177 Rn = inst.operands[1].reg;
11178 reject_bad_reg (Rn);
11179
62b3e311 11180 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11181 inst.instruction |= (flags & 0xf0000) >> 8;
11182 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11183 inst.instruction |= (flags & 0xff);
fdfde340 11184 inst.instruction |= Rn << 16;
c19d1205 11185}
b05fe5cf 11186
c19d1205
ZW
11187static void
11188do_t_mul (void)
11189{
17828f45 11190 bfd_boolean narrow;
fdfde340 11191 unsigned Rd, Rn, Rm;
17828f45 11192
c19d1205
ZW
11193 if (!inst.operands[2].present)
11194 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11195
fdfde340
JM
11196 Rd = inst.operands[0].reg;
11197 Rn = inst.operands[1].reg;
11198 Rm = inst.operands[2].reg;
11199
17828f45 11200 if (unified_syntax)
b05fe5cf 11201 {
17828f45 11202 if (inst.size_req == 4
fdfde340
JM
11203 || (Rd != Rn
11204 && Rd != Rm)
11205 || Rn > 7
11206 || Rm > 7)
17828f45
JM
11207 narrow = FALSE;
11208 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11209 narrow = !in_it_block ();
17828f45 11210 else
e07e6e58 11211 narrow = in_it_block ();
b05fe5cf 11212 }
c19d1205 11213 else
b05fe5cf 11214 {
17828f45 11215 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11216 constraint (Rn > 7 || Rm > 7,
c19d1205 11217 BAD_HIREG);
17828f45
JM
11218 narrow = TRUE;
11219 }
b05fe5cf 11220
17828f45
JM
11221 if (narrow)
11222 {
11223 /* 16-bit MULS/Conditional MUL. */
c19d1205 11224 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11225 inst.instruction |= Rd;
b05fe5cf 11226
fdfde340
JM
11227 if (Rd == Rn)
11228 inst.instruction |= Rm << 3;
11229 else if (Rd == Rm)
11230 inst.instruction |= Rn << 3;
c19d1205
ZW
11231 else
11232 constraint (1, _("dest must overlap one source register"));
11233 }
17828f45
JM
11234 else
11235 {
e07e6e58
NC
11236 constraint (inst.instruction != T_MNEM_mul,
11237 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11238 /* 32-bit MUL. */
11239 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11240 inst.instruction |= Rd << 8;
11241 inst.instruction |= Rn << 16;
11242 inst.instruction |= Rm << 0;
11243
11244 reject_bad_reg (Rd);
11245 reject_bad_reg (Rn);
11246 reject_bad_reg (Rm);
17828f45 11247 }
c19d1205 11248}
b05fe5cf 11249
c19d1205
ZW
11250static void
11251do_t_mull (void)
11252{
fdfde340 11253 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11254
fdfde340
JM
11255 RdLo = inst.operands[0].reg;
11256 RdHi = inst.operands[1].reg;
11257 Rn = inst.operands[2].reg;
11258 Rm = inst.operands[3].reg;
11259
11260 reject_bad_reg (RdLo);
11261 reject_bad_reg (RdHi);
11262 reject_bad_reg (Rn);
11263 reject_bad_reg (Rm);
11264
11265 inst.instruction |= RdLo << 12;
11266 inst.instruction |= RdHi << 8;
11267 inst.instruction |= Rn << 16;
11268 inst.instruction |= Rm;
11269
11270 if (RdLo == RdHi)
c19d1205
ZW
11271 as_tsktsk (_("rdhi and rdlo must be different"));
11272}
b05fe5cf 11273
c19d1205
ZW
11274static void
11275do_t_nop (void)
11276{
e07e6e58
NC
11277 set_it_insn_type (NEUTRAL_IT_INSN);
11278
c19d1205
ZW
11279 if (unified_syntax)
11280 {
11281 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11282 {
c19d1205
ZW
11283 inst.instruction = THUMB_OP32 (inst.instruction);
11284 inst.instruction |= inst.operands[0].imm;
11285 }
11286 else
11287 {
bc2d1808
NC
11288 /* PR9722: Check for Thumb2 availability before
11289 generating a thumb2 nop instruction. */
afa62d5e 11290 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11291 {
11292 inst.instruction = THUMB_OP16 (inst.instruction);
11293 inst.instruction |= inst.operands[0].imm << 4;
11294 }
11295 else
11296 inst.instruction = 0x46c0;
c19d1205
ZW
11297 }
11298 }
11299 else
11300 {
11301 constraint (inst.operands[0].present,
11302 _("Thumb does not support NOP with hints"));
11303 inst.instruction = 0x46c0;
11304 }
11305}
b05fe5cf 11306
c19d1205
ZW
11307static void
11308do_t_neg (void)
11309{
11310 if (unified_syntax)
11311 {
3d388997
PB
11312 bfd_boolean narrow;
11313
11314 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11315 narrow = !in_it_block ();
3d388997 11316 else
e07e6e58 11317 narrow = in_it_block ();
3d388997
PB
11318 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11319 narrow = FALSE;
11320 if (inst.size_req == 4)
11321 narrow = FALSE;
11322
11323 if (!narrow)
c19d1205
ZW
11324 {
11325 inst.instruction = THUMB_OP32 (inst.instruction);
11326 inst.instruction |= inst.operands[0].reg << 8;
11327 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11328 }
11329 else
11330 {
c19d1205
ZW
11331 inst.instruction = THUMB_OP16 (inst.instruction);
11332 inst.instruction |= inst.operands[0].reg;
11333 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11334 }
11335 }
11336 else
11337 {
c19d1205
ZW
11338 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11339 BAD_HIREG);
11340 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11341
11342 inst.instruction = THUMB_OP16 (inst.instruction);
11343 inst.instruction |= inst.operands[0].reg;
11344 inst.instruction |= inst.operands[1].reg << 3;
11345 }
11346}
11347
1c444d06
JM
11348static void
11349do_t_orn (void)
11350{
11351 unsigned Rd, Rn;
11352
11353 Rd = inst.operands[0].reg;
11354 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11355
fdfde340
JM
11356 reject_bad_reg (Rd);
11357 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11358 reject_bad_reg (Rn);
11359
1c444d06
JM
11360 inst.instruction |= Rd << 8;
11361 inst.instruction |= Rn << 16;
11362
11363 if (!inst.operands[2].isreg)
11364 {
11365 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11366 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11367 }
11368 else
11369 {
11370 unsigned Rm;
11371
11372 Rm = inst.operands[2].reg;
fdfde340 11373 reject_bad_reg (Rm);
1c444d06
JM
11374
11375 constraint (inst.operands[2].shifted
11376 && inst.operands[2].immisreg,
11377 _("shift must be constant"));
11378 encode_thumb32_shifted_operand (2);
11379 }
11380}
11381
c19d1205
ZW
11382static void
11383do_t_pkhbt (void)
11384{
fdfde340
JM
11385 unsigned Rd, Rn, Rm;
11386
11387 Rd = inst.operands[0].reg;
11388 Rn = inst.operands[1].reg;
11389 Rm = inst.operands[2].reg;
11390
11391 reject_bad_reg (Rd);
11392 reject_bad_reg (Rn);
11393 reject_bad_reg (Rm);
11394
11395 inst.instruction |= Rd << 8;
11396 inst.instruction |= Rn << 16;
11397 inst.instruction |= Rm;
c19d1205
ZW
11398 if (inst.operands[3].present)
11399 {
11400 unsigned int val = inst.reloc.exp.X_add_number;
11401 constraint (inst.reloc.exp.X_op != O_constant,
11402 _("expression too complex"));
11403 inst.instruction |= (val & 0x1c) << 10;
11404 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11405 }
c19d1205 11406}
b05fe5cf 11407
c19d1205
ZW
11408static void
11409do_t_pkhtb (void)
11410{
11411 if (!inst.operands[3].present)
1ef52f49
NC
11412 {
11413 unsigned Rtmp;
11414
11415 inst.instruction &= ~0x00000020;
11416
11417 /* PR 10168. Swap the Rm and Rn registers. */
11418 Rtmp = inst.operands[1].reg;
11419 inst.operands[1].reg = inst.operands[2].reg;
11420 inst.operands[2].reg = Rtmp;
11421 }
c19d1205 11422 do_t_pkhbt ();
b05fe5cf
ZW
11423}
11424
c19d1205
ZW
11425static void
11426do_t_pld (void)
11427{
fdfde340
JM
11428 if (inst.operands[0].immisreg)
11429 reject_bad_reg (inst.operands[0].imm);
11430
c19d1205
ZW
11431 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11432}
b05fe5cf 11433
c19d1205
ZW
11434static void
11435do_t_push_pop (void)
b99bd4ef 11436{
e9f89963 11437 unsigned mask;
5f4273c7 11438
c19d1205
ZW
11439 constraint (inst.operands[0].writeback,
11440 _("push/pop do not support {reglist}^"));
11441 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11442 _("expression too complex"));
b99bd4ef 11443
e9f89963
PB
11444 mask = inst.operands[0].imm;
11445 if ((mask & ~0xff) == 0)
3c707909 11446 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11447 else if ((inst.instruction == T_MNEM_push
e9f89963 11448 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11449 || (inst.instruction == T_MNEM_pop
e9f89963 11450 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11451 {
c19d1205
ZW
11452 inst.instruction = THUMB_OP16 (inst.instruction);
11453 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11454 inst.instruction |= mask & 0xff;
c19d1205
ZW
11455 }
11456 else if (unified_syntax)
11457 {
3c707909 11458 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11459 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11460 }
11461 else
11462 {
11463 inst.error = _("invalid register list to push/pop instruction");
11464 return;
11465 }
c19d1205 11466}
b99bd4ef 11467
c19d1205
ZW
11468static void
11469do_t_rbit (void)
11470{
fdfde340
JM
11471 unsigned Rd, Rm;
11472
11473 Rd = inst.operands[0].reg;
11474 Rm = inst.operands[1].reg;
11475
11476 reject_bad_reg (Rd);
11477 reject_bad_reg (Rm);
11478
11479 inst.instruction |= Rd << 8;
11480 inst.instruction |= Rm << 16;
11481 inst.instruction |= Rm;
c19d1205 11482}
b99bd4ef 11483
c19d1205
ZW
11484static void
11485do_t_rev (void)
11486{
fdfde340
JM
11487 unsigned Rd, Rm;
11488
11489 Rd = inst.operands[0].reg;
11490 Rm = inst.operands[1].reg;
11491
11492 reject_bad_reg (Rd);
11493 reject_bad_reg (Rm);
11494
11495 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11496 && inst.size_req != 4)
11497 {
11498 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11499 inst.instruction |= Rd;
11500 inst.instruction |= Rm << 3;
c19d1205
ZW
11501 }
11502 else if (unified_syntax)
11503 {
11504 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11505 inst.instruction |= Rd << 8;
11506 inst.instruction |= Rm << 16;
11507 inst.instruction |= Rm;
c19d1205
ZW
11508 }
11509 else
11510 inst.error = BAD_HIREG;
11511}
b99bd4ef 11512
1c444d06
JM
11513static void
11514do_t_rrx (void)
11515{
11516 unsigned Rd, Rm;
11517
11518 Rd = inst.operands[0].reg;
11519 Rm = inst.operands[1].reg;
11520
fdfde340
JM
11521 reject_bad_reg (Rd);
11522 reject_bad_reg (Rm);
c921be7d 11523
1c444d06
JM
11524 inst.instruction |= Rd << 8;
11525 inst.instruction |= Rm;
11526}
11527
c19d1205
ZW
11528static void
11529do_t_rsb (void)
11530{
fdfde340 11531 unsigned Rd, Rs;
b99bd4ef 11532
c19d1205
ZW
11533 Rd = inst.operands[0].reg;
11534 Rs = (inst.operands[1].present
11535 ? inst.operands[1].reg /* Rd, Rs, foo */
11536 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11537
fdfde340
JM
11538 reject_bad_reg (Rd);
11539 reject_bad_reg (Rs);
11540 if (inst.operands[2].isreg)
11541 reject_bad_reg (inst.operands[2].reg);
11542
c19d1205
ZW
11543 inst.instruction |= Rd << 8;
11544 inst.instruction |= Rs << 16;
11545 if (!inst.operands[2].isreg)
11546 {
026d3abb
PB
11547 bfd_boolean narrow;
11548
11549 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11550 narrow = !in_it_block ();
026d3abb 11551 else
e07e6e58 11552 narrow = in_it_block ();
026d3abb
PB
11553
11554 if (Rd > 7 || Rs > 7)
11555 narrow = FALSE;
11556
11557 if (inst.size_req == 4 || !unified_syntax)
11558 narrow = FALSE;
11559
11560 if (inst.reloc.exp.X_op != O_constant
11561 || inst.reloc.exp.X_add_number != 0)
11562 narrow = FALSE;
11563
11564 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11565 relaxation, but it doesn't seem worth the hassle. */
11566 if (narrow)
11567 {
11568 inst.reloc.type = BFD_RELOC_UNUSED;
11569 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11570 inst.instruction |= Rs << 3;
11571 inst.instruction |= Rd;
11572 }
11573 else
11574 {
11575 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11576 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11577 }
c19d1205
ZW
11578 }
11579 else
11580 encode_thumb32_shifted_operand (2);
11581}
b99bd4ef 11582
c19d1205
ZW
11583static void
11584do_t_setend (void)
11585{
e07e6e58 11586 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11587 if (inst.operands[0].imm)
11588 inst.instruction |= 0x8;
11589}
b99bd4ef 11590
c19d1205
ZW
11591static void
11592do_t_shift (void)
11593{
11594 if (!inst.operands[1].present)
11595 inst.operands[1].reg = inst.operands[0].reg;
11596
11597 if (unified_syntax)
11598 {
3d388997
PB
11599 bfd_boolean narrow;
11600 int shift_kind;
11601
11602 switch (inst.instruction)
11603 {
11604 case T_MNEM_asr:
11605 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11606 case T_MNEM_lsl:
11607 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11608 case T_MNEM_lsr:
11609 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11610 case T_MNEM_ror:
11611 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11612 default: abort ();
11613 }
11614
11615 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11616 narrow = !in_it_block ();
3d388997 11617 else
e07e6e58 11618 narrow = in_it_block ();
3d388997
PB
11619 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11620 narrow = FALSE;
11621 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11622 narrow = FALSE;
11623 if (inst.operands[2].isreg
11624 && (inst.operands[1].reg != inst.operands[0].reg
11625 || inst.operands[2].reg > 7))
11626 narrow = FALSE;
11627 if (inst.size_req == 4)
11628 narrow = FALSE;
11629
fdfde340
JM
11630 reject_bad_reg (inst.operands[0].reg);
11631 reject_bad_reg (inst.operands[1].reg);
c921be7d 11632
3d388997 11633 if (!narrow)
c19d1205
ZW
11634 {
11635 if (inst.operands[2].isreg)
b99bd4ef 11636 {
fdfde340 11637 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11638 inst.instruction = THUMB_OP32 (inst.instruction);
11639 inst.instruction |= inst.operands[0].reg << 8;
11640 inst.instruction |= inst.operands[1].reg << 16;
11641 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11642
11643 /* PR 12854: Error on extraneous shifts. */
11644 constraint (inst.operands[2].shifted,
11645 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11646 }
11647 else
11648 {
11649 inst.operands[1].shifted = 1;
3d388997 11650 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11651 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11652 ? T_MNEM_movs : T_MNEM_mov);
11653 inst.instruction |= inst.operands[0].reg << 8;
11654 encode_thumb32_shifted_operand (1);
11655 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11656 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11657 }
11658 }
11659 else
11660 {
c19d1205 11661 if (inst.operands[2].isreg)
b99bd4ef 11662 {
3d388997 11663 switch (shift_kind)
b99bd4ef 11664 {
3d388997
PB
11665 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11666 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11667 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11668 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11669 default: abort ();
b99bd4ef 11670 }
5f4273c7 11671
c19d1205
ZW
11672 inst.instruction |= inst.operands[0].reg;
11673 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11674
11675 /* PR 12854: Error on extraneous shifts. */
11676 constraint (inst.operands[2].shifted,
11677 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11678 }
11679 else
11680 {
3d388997 11681 switch (shift_kind)
b99bd4ef 11682 {
3d388997
PB
11683 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11684 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11685 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11686 default: abort ();
b99bd4ef 11687 }
c19d1205
ZW
11688 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11689 inst.instruction |= inst.operands[0].reg;
11690 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11691 }
11692 }
c19d1205
ZW
11693 }
11694 else
11695 {
11696 constraint (inst.operands[0].reg > 7
11697 || inst.operands[1].reg > 7, BAD_HIREG);
11698 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11699
c19d1205
ZW
11700 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11701 {
11702 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11703 constraint (inst.operands[0].reg != inst.operands[1].reg,
11704 _("source1 and dest must be same register"));
b99bd4ef 11705
c19d1205
ZW
11706 switch (inst.instruction)
11707 {
11708 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11709 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11710 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11711 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11712 default: abort ();
11713 }
5f4273c7 11714
c19d1205
ZW
11715 inst.instruction |= inst.operands[0].reg;
11716 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11717
11718 /* PR 12854: Error on extraneous shifts. */
11719 constraint (inst.operands[2].shifted,
11720 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11721 }
11722 else
b99bd4ef 11723 {
c19d1205
ZW
11724 switch (inst.instruction)
11725 {
11726 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11727 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11728 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11729 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11730 default: abort ();
11731 }
11732 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11733 inst.instruction |= inst.operands[0].reg;
11734 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11735 }
11736 }
b99bd4ef
NC
11737}
11738
11739static void
c19d1205 11740do_t_simd (void)
b99bd4ef 11741{
fdfde340
JM
11742 unsigned Rd, Rn, Rm;
11743
11744 Rd = inst.operands[0].reg;
11745 Rn = inst.operands[1].reg;
11746 Rm = inst.operands[2].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rn);
11750 reject_bad_reg (Rm);
11751
11752 inst.instruction |= Rd << 8;
11753 inst.instruction |= Rn << 16;
11754 inst.instruction |= Rm;
c19d1205 11755}
b99bd4ef 11756
03ee1b7f
NC
11757static void
11758do_t_simd2 (void)
11759{
11760 unsigned Rd, Rn, Rm;
11761
11762 Rd = inst.operands[0].reg;
11763 Rm = inst.operands[1].reg;
11764 Rn = inst.operands[2].reg;
11765
11766 reject_bad_reg (Rd);
11767 reject_bad_reg (Rn);
11768 reject_bad_reg (Rm);
11769
11770 inst.instruction |= Rd << 8;
11771 inst.instruction |= Rn << 16;
11772 inst.instruction |= Rm;
11773}
11774
c19d1205 11775static void
3eb17e6b 11776do_t_smc (void)
c19d1205
ZW
11777{
11778 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11779 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11780 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11781 constraint (inst.reloc.exp.X_op != O_constant,
11782 _("expression too complex"));
11783 inst.reloc.type = BFD_RELOC_UNUSED;
11784 inst.instruction |= (value & 0xf000) >> 12;
11785 inst.instruction |= (value & 0x0ff0);
11786 inst.instruction |= (value & 0x000f) << 16;
11787}
b99bd4ef 11788
90ec0d68
MGD
11789static void
11790do_t_hvc (void)
11791{
11792 unsigned int value = inst.reloc.exp.X_add_number;
11793
11794 inst.reloc.type = BFD_RELOC_UNUSED;
11795 inst.instruction |= (value & 0x0fff);
11796 inst.instruction |= (value & 0xf000) << 4;
11797}
11798
c19d1205 11799static void
3a21c15a 11800do_t_ssat_usat (int bias)
c19d1205 11801{
fdfde340
JM
11802 unsigned Rd, Rn;
11803
11804 Rd = inst.operands[0].reg;
11805 Rn = inst.operands[2].reg;
11806
11807 reject_bad_reg (Rd);
11808 reject_bad_reg (Rn);
11809
11810 inst.instruction |= Rd << 8;
3a21c15a 11811 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11812 inst.instruction |= Rn << 16;
b99bd4ef 11813
c19d1205 11814 if (inst.operands[3].present)
b99bd4ef 11815 {
3a21c15a
NC
11816 offsetT shift_amount = inst.reloc.exp.X_add_number;
11817
11818 inst.reloc.type = BFD_RELOC_UNUSED;
11819
c19d1205
ZW
11820 constraint (inst.reloc.exp.X_op != O_constant,
11821 _("expression too complex"));
b99bd4ef 11822
3a21c15a 11823 if (shift_amount != 0)
6189168b 11824 {
3a21c15a
NC
11825 constraint (shift_amount > 31,
11826 _("shift expression is too large"));
11827
c19d1205 11828 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11829 inst.instruction |= 0x00200000; /* sh bit. */
11830
11831 inst.instruction |= (shift_amount & 0x1c) << 10;
11832 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11833 }
11834 }
b99bd4ef 11835}
c921be7d 11836
3a21c15a
NC
11837static void
11838do_t_ssat (void)
11839{
11840 do_t_ssat_usat (1);
11841}
b99bd4ef 11842
0dd132b6 11843static void
c19d1205 11844do_t_ssat16 (void)
0dd132b6 11845{
fdfde340
JM
11846 unsigned Rd, Rn;
11847
11848 Rd = inst.operands[0].reg;
11849 Rn = inst.operands[2].reg;
11850
11851 reject_bad_reg (Rd);
11852 reject_bad_reg (Rn);
11853
11854 inst.instruction |= Rd << 8;
c19d1205 11855 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11856 inst.instruction |= Rn << 16;
c19d1205 11857}
0dd132b6 11858
c19d1205
ZW
11859static void
11860do_t_strex (void)
11861{
11862 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11863 || inst.operands[2].postind || inst.operands[2].writeback
11864 || inst.operands[2].immisreg || inst.operands[2].shifted
11865 || inst.operands[2].negative,
01cfc07f 11866 BAD_ADDR_MODE);
0dd132b6 11867
5be8be5d
DG
11868 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11869
c19d1205
ZW
11870 inst.instruction |= inst.operands[0].reg << 8;
11871 inst.instruction |= inst.operands[1].reg << 12;
11872 inst.instruction |= inst.operands[2].reg << 16;
11873 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11874}
11875
b99bd4ef 11876static void
c19d1205 11877do_t_strexd (void)
b99bd4ef 11878{
c19d1205
ZW
11879 if (!inst.operands[2].present)
11880 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11881
c19d1205
ZW
11882 constraint (inst.operands[0].reg == inst.operands[1].reg
11883 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11884 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11885 BAD_OVERLAP);
b99bd4ef 11886
c19d1205
ZW
11887 inst.instruction |= inst.operands[0].reg;
11888 inst.instruction |= inst.operands[1].reg << 12;
11889 inst.instruction |= inst.operands[2].reg << 8;
11890 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11891}
11892
11893static void
c19d1205 11894do_t_sxtah (void)
b99bd4ef 11895{
fdfde340
JM
11896 unsigned Rd, Rn, Rm;
11897
11898 Rd = inst.operands[0].reg;
11899 Rn = inst.operands[1].reg;
11900 Rm = inst.operands[2].reg;
11901
11902 reject_bad_reg (Rd);
11903 reject_bad_reg (Rn);
11904 reject_bad_reg (Rm);
11905
11906 inst.instruction |= Rd << 8;
11907 inst.instruction |= Rn << 16;
11908 inst.instruction |= Rm;
c19d1205
ZW
11909 inst.instruction |= inst.operands[3].imm << 4;
11910}
b99bd4ef 11911
c19d1205
ZW
11912static void
11913do_t_sxth (void)
11914{
fdfde340
JM
11915 unsigned Rd, Rm;
11916
11917 Rd = inst.operands[0].reg;
11918 Rm = inst.operands[1].reg;
11919
11920 reject_bad_reg (Rd);
11921 reject_bad_reg (Rm);
c921be7d
NC
11922
11923 if (inst.instruction <= 0xffff
11924 && inst.size_req != 4
fdfde340 11925 && Rd <= 7 && Rm <= 7
c19d1205 11926 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11927 {
c19d1205 11928 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11929 inst.instruction |= Rd;
11930 inst.instruction |= Rm << 3;
b99bd4ef 11931 }
c19d1205 11932 else if (unified_syntax)
b99bd4ef 11933 {
c19d1205
ZW
11934 if (inst.instruction <= 0xffff)
11935 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11936 inst.instruction |= Rd << 8;
11937 inst.instruction |= Rm;
c19d1205 11938 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11939 }
c19d1205 11940 else
b99bd4ef 11941 {
c19d1205
ZW
11942 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11943 _("Thumb encoding does not support rotation"));
11944 constraint (1, BAD_HIREG);
b99bd4ef 11945 }
c19d1205 11946}
b99bd4ef 11947
c19d1205
ZW
11948static void
11949do_t_swi (void)
11950{
b2a5fbdc
MGD
11951 /* We have to do the following check manually as ARM_EXT_OS only applies
11952 to ARM_EXT_V6M. */
11953 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11954 {
ac7f631b
NC
11955 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11956 /* This only applies to the v6m howver, not later architectures. */
11957 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11958 as_bad (_("SVC is not permitted on this architecture"));
11959 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11960 }
11961
c19d1205
ZW
11962 inst.reloc.type = BFD_RELOC_ARM_SWI;
11963}
b99bd4ef 11964
92e90b6e
PB
11965static void
11966do_t_tb (void)
11967{
fdfde340 11968 unsigned Rn, Rm;
92e90b6e
PB
11969 int half;
11970
11971 half = (inst.instruction & 0x10) != 0;
e07e6e58 11972 set_it_insn_type_last ();
dfa9f0d5
PB
11973 constraint (inst.operands[0].immisreg,
11974 _("instruction requires register index"));
fdfde340
JM
11975
11976 Rn = inst.operands[0].reg;
11977 Rm = inst.operands[0].imm;
c921be7d 11978
fdfde340
JM
11979 constraint (Rn == REG_SP, BAD_SP);
11980 reject_bad_reg (Rm);
11981
92e90b6e
PB
11982 constraint (!half && inst.operands[0].shifted,
11983 _("instruction does not allow shifted index"));
fdfde340 11984 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11985}
11986
c19d1205
ZW
11987static void
11988do_t_usat (void)
11989{
3a21c15a 11990 do_t_ssat_usat (0);
b99bd4ef
NC
11991}
11992
11993static void
c19d1205 11994do_t_usat16 (void)
b99bd4ef 11995{
fdfde340
JM
11996 unsigned Rd, Rn;
11997
11998 Rd = inst.operands[0].reg;
11999 Rn = inst.operands[2].reg;
12000
12001 reject_bad_reg (Rd);
12002 reject_bad_reg (Rn);
12003
12004 inst.instruction |= Rd << 8;
c19d1205 12005 inst.instruction |= inst.operands[1].imm;
fdfde340 12006 inst.instruction |= Rn << 16;
b99bd4ef 12007}
c19d1205 12008
5287ad62 12009/* Neon instruction encoder helpers. */
5f4273c7 12010
5287ad62 12011/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12012
5287ad62
JB
12013/* An "invalid" code for the following tables. */
12014#define N_INV -1u
12015
12016struct neon_tab_entry
b99bd4ef 12017{
5287ad62
JB
12018 unsigned integer;
12019 unsigned float_or_poly;
12020 unsigned scalar_or_imm;
12021};
5f4273c7 12022
5287ad62
JB
12023/* Map overloaded Neon opcodes to their respective encodings. */
12024#define NEON_ENC_TAB \
12025 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12026 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12027 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12028 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12029 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12030 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12031 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12032 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12033 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12034 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12035 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12036 /* Register variants of the following two instructions are encoded as
e07e6e58 12037 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12038 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12039 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12040 X(vfma, N_INV, 0x0000c10, N_INV), \
12041 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12042 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12043 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12044 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12045 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12046 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12047 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12048 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12049 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12050 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12051 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12052 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12053 X(vshl, 0x0000400, N_INV, 0x0800510), \
12054 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12055 X(vand, 0x0000110, N_INV, 0x0800030), \
12056 X(vbic, 0x0100110, N_INV, 0x0800030), \
12057 X(veor, 0x1000110, N_INV, N_INV), \
12058 X(vorn, 0x0300110, N_INV, 0x0800010), \
12059 X(vorr, 0x0200110, N_INV, 0x0800010), \
12060 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12061 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12062 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12063 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12064 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12065 X(vst1, 0x0000000, 0x0800000, N_INV), \
12066 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12067 X(vst2, 0x0000100, 0x0800100, N_INV), \
12068 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12069 X(vst3, 0x0000200, 0x0800200, N_INV), \
12070 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12071 X(vst4, 0x0000300, 0x0800300, N_INV), \
12072 X(vmovn, 0x1b20200, N_INV, N_INV), \
12073 X(vtrn, 0x1b20080, N_INV, N_INV), \
12074 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12075 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12076 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12077 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12078 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12079 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12080 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12081 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12082 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12083 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12084 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
12085
12086enum neon_opc
12087{
12088#define X(OPC,I,F,S) N_MNEM_##OPC
12089NEON_ENC_TAB
12090#undef X
12091};
b99bd4ef 12092
5287ad62
JB
12093static const struct neon_tab_entry neon_enc_tab[] =
12094{
12095#define X(OPC,I,F,S) { (I), (F), (S) }
12096NEON_ENC_TAB
12097#undef X
12098};
b99bd4ef 12099
88714cb8
DG
12100/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12101#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12102#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12103#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12104#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12105#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12106#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12107#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12108#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12109#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12110#define NEON_ENC_SINGLE_(X) \
037e8744 12111 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12112#define NEON_ENC_DOUBLE_(X) \
037e8744 12113 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 12114
88714cb8
DG
12115#define NEON_ENCODE(type, inst) \
12116 do \
12117 { \
12118 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12119 inst.is_neon = 1; \
12120 } \
12121 while (0)
12122
12123#define check_neon_suffixes \
12124 do \
12125 { \
12126 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12127 { \
12128 as_bad (_("invalid neon suffix for non neon instruction")); \
12129 return; \
12130 } \
12131 } \
12132 while (0)
12133
037e8744
JB
12134/* Define shapes for instruction operands. The following mnemonic characters
12135 are used in this table:
5287ad62 12136
037e8744 12137 F - VFP S<n> register
5287ad62
JB
12138 D - Neon D<n> register
12139 Q - Neon Q<n> register
12140 I - Immediate
12141 S - Scalar
12142 R - ARM register
12143 L - D<n> register list
5f4273c7 12144
037e8744
JB
12145 This table is used to generate various data:
12146 - enumerations of the form NS_DDR to be used as arguments to
12147 neon_select_shape.
12148 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12149 - a table used to drive neon_select_shape. */
b99bd4ef 12150
037e8744
JB
12151#define NEON_SHAPE_DEF \
12152 X(3, (D, D, D), DOUBLE), \
12153 X(3, (Q, Q, Q), QUAD), \
12154 X(3, (D, D, I), DOUBLE), \
12155 X(3, (Q, Q, I), QUAD), \
12156 X(3, (D, D, S), DOUBLE), \
12157 X(3, (Q, Q, S), QUAD), \
12158 X(2, (D, D), DOUBLE), \
12159 X(2, (Q, Q), QUAD), \
12160 X(2, (D, S), DOUBLE), \
12161 X(2, (Q, S), QUAD), \
12162 X(2, (D, R), DOUBLE), \
12163 X(2, (Q, R), QUAD), \
12164 X(2, (D, I), DOUBLE), \
12165 X(2, (Q, I), QUAD), \
12166 X(3, (D, L, D), DOUBLE), \
12167 X(2, (D, Q), MIXED), \
12168 X(2, (Q, D), MIXED), \
12169 X(3, (D, Q, I), MIXED), \
12170 X(3, (Q, D, I), MIXED), \
12171 X(3, (Q, D, D), MIXED), \
12172 X(3, (D, Q, Q), MIXED), \
12173 X(3, (Q, Q, D), MIXED), \
12174 X(3, (Q, D, S), MIXED), \
12175 X(3, (D, Q, S), MIXED), \
12176 X(4, (D, D, D, I), DOUBLE), \
12177 X(4, (Q, Q, Q, I), QUAD), \
12178 X(2, (F, F), SINGLE), \
12179 X(3, (F, F, F), SINGLE), \
12180 X(2, (F, I), SINGLE), \
12181 X(2, (F, D), MIXED), \
12182 X(2, (D, F), MIXED), \
12183 X(3, (F, F, I), MIXED), \
12184 X(4, (R, R, F, F), SINGLE), \
12185 X(4, (F, F, R, R), SINGLE), \
12186 X(3, (D, R, R), DOUBLE), \
12187 X(3, (R, R, D), DOUBLE), \
12188 X(2, (S, R), SINGLE), \
12189 X(2, (R, S), SINGLE), \
12190 X(2, (F, R), SINGLE), \
12191 X(2, (R, F), SINGLE)
12192
12193#define S2(A,B) NS_##A##B
12194#define S3(A,B,C) NS_##A##B##C
12195#define S4(A,B,C,D) NS_##A##B##C##D
12196
12197#define X(N, L, C) S##N L
12198
5287ad62
JB
12199enum neon_shape
12200{
037e8744
JB
12201 NEON_SHAPE_DEF,
12202 NS_NULL
5287ad62 12203};
b99bd4ef 12204
037e8744
JB
12205#undef X
12206#undef S2
12207#undef S3
12208#undef S4
12209
12210enum neon_shape_class
12211{
12212 SC_SINGLE,
12213 SC_DOUBLE,
12214 SC_QUAD,
12215 SC_MIXED
12216};
12217
12218#define X(N, L, C) SC_##C
12219
12220static enum neon_shape_class neon_shape_class[] =
12221{
12222 NEON_SHAPE_DEF
12223};
12224
12225#undef X
12226
12227enum neon_shape_el
12228{
12229 SE_F,
12230 SE_D,
12231 SE_Q,
12232 SE_I,
12233 SE_S,
12234 SE_R,
12235 SE_L
12236};
12237
12238/* Register widths of above. */
12239static unsigned neon_shape_el_size[] =
12240{
12241 32,
12242 64,
12243 128,
12244 0,
12245 32,
12246 32,
12247 0
12248};
12249
12250struct neon_shape_info
12251{
12252 unsigned els;
12253 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12254};
12255
12256#define S2(A,B) { SE_##A, SE_##B }
12257#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12258#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12259
12260#define X(N, L, C) { N, S##N L }
12261
12262static struct neon_shape_info neon_shape_tab[] =
12263{
12264 NEON_SHAPE_DEF
12265};
12266
12267#undef X
12268#undef S2
12269#undef S3
12270#undef S4
12271
5287ad62
JB
12272/* Bit masks used in type checking given instructions.
12273 'N_EQK' means the type must be the same as (or based on in some way) the key
12274 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12275 set, various other bits can be set as well in order to modify the meaning of
12276 the type constraint. */
12277
12278enum neon_type_mask
12279{
8e79c3df
CM
12280 N_S8 = 0x0000001,
12281 N_S16 = 0x0000002,
12282 N_S32 = 0x0000004,
12283 N_S64 = 0x0000008,
12284 N_U8 = 0x0000010,
12285 N_U16 = 0x0000020,
12286 N_U32 = 0x0000040,
12287 N_U64 = 0x0000080,
12288 N_I8 = 0x0000100,
12289 N_I16 = 0x0000200,
12290 N_I32 = 0x0000400,
12291 N_I64 = 0x0000800,
12292 N_8 = 0x0001000,
12293 N_16 = 0x0002000,
12294 N_32 = 0x0004000,
12295 N_64 = 0x0008000,
12296 N_P8 = 0x0010000,
12297 N_P16 = 0x0020000,
12298 N_F16 = 0x0040000,
12299 N_F32 = 0x0080000,
12300 N_F64 = 0x0100000,
c921be7d
NC
12301 N_KEY = 0x1000000, /* Key element (main type specifier). */
12302 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12303 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12304 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12305 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12306 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12307 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12308 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12309 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12310 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12311 N_UTYP = 0,
037e8744 12312 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12313};
12314
dcbf9037
JB
12315#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12316
5287ad62
JB
12317#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12318#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12319#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12320#define N_SUF_32 (N_SU_32 | N_F32)
12321#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12322#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12323
12324/* Pass this as the first type argument to neon_check_type to ignore types
12325 altogether. */
12326#define N_IGNORE_TYPE (N_KEY | N_EQK)
12327
037e8744
JB
12328/* Select a "shape" for the current instruction (describing register types or
12329 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12330 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12331 function of operand parsing, so this function doesn't need to be called.
12332 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12333
12334static enum neon_shape
037e8744 12335neon_select_shape (enum neon_shape shape, ...)
5287ad62 12336{
037e8744
JB
12337 va_list ap;
12338 enum neon_shape first_shape = shape;
5287ad62
JB
12339
12340 /* Fix missing optional operands. FIXME: we don't know at this point how
12341 many arguments we should have, so this makes the assumption that we have
12342 > 1. This is true of all current Neon opcodes, I think, but may not be
12343 true in the future. */
12344 if (!inst.operands[1].present)
12345 inst.operands[1] = inst.operands[0];
12346
037e8744 12347 va_start (ap, shape);
5f4273c7 12348
21d799b5 12349 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12350 {
12351 unsigned j;
12352 int matches = 1;
12353
12354 for (j = 0; j < neon_shape_tab[shape].els; j++)
12355 {
12356 if (!inst.operands[j].present)
12357 {
12358 matches = 0;
12359 break;
12360 }
12361
12362 switch (neon_shape_tab[shape].el[j])
12363 {
12364 case SE_F:
12365 if (!(inst.operands[j].isreg
12366 && inst.operands[j].isvec
12367 && inst.operands[j].issingle
12368 && !inst.operands[j].isquad))
12369 matches = 0;
12370 break;
12371
12372 case SE_D:
12373 if (!(inst.operands[j].isreg
12374 && inst.operands[j].isvec
12375 && !inst.operands[j].isquad
12376 && !inst.operands[j].issingle))
12377 matches = 0;
12378 break;
12379
12380 case SE_R:
12381 if (!(inst.operands[j].isreg
12382 && !inst.operands[j].isvec))
12383 matches = 0;
12384 break;
12385
12386 case SE_Q:
12387 if (!(inst.operands[j].isreg
12388 && inst.operands[j].isvec
12389 && inst.operands[j].isquad
12390 && !inst.operands[j].issingle))
12391 matches = 0;
12392 break;
12393
12394 case SE_I:
12395 if (!(!inst.operands[j].isreg
12396 && !inst.operands[j].isscalar))
12397 matches = 0;
12398 break;
12399
12400 case SE_S:
12401 if (!(!inst.operands[j].isreg
12402 && inst.operands[j].isscalar))
12403 matches = 0;
12404 break;
12405
12406 case SE_L:
12407 break;
12408 }
3fde54a2
JZ
12409 if (!matches)
12410 break;
037e8744
JB
12411 }
12412 if (matches)
5287ad62 12413 break;
037e8744 12414 }
5f4273c7 12415
037e8744 12416 va_end (ap);
5287ad62 12417
037e8744
JB
12418 if (shape == NS_NULL && first_shape != NS_NULL)
12419 first_error (_("invalid instruction shape"));
5287ad62 12420
037e8744
JB
12421 return shape;
12422}
5287ad62 12423
037e8744
JB
12424/* True if SHAPE is predominantly a quadword operation (most of the time, this
12425 means the Q bit should be set). */
12426
12427static int
12428neon_quad (enum neon_shape shape)
12429{
12430 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12431}
037e8744 12432
5287ad62
JB
12433static void
12434neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12435 unsigned *g_size)
12436{
12437 /* Allow modification to be made to types which are constrained to be
12438 based on the key element, based on bits set alongside N_EQK. */
12439 if ((typebits & N_EQK) != 0)
12440 {
12441 if ((typebits & N_HLF) != 0)
12442 *g_size /= 2;
12443 else if ((typebits & N_DBL) != 0)
12444 *g_size *= 2;
12445 if ((typebits & N_SGN) != 0)
12446 *g_type = NT_signed;
12447 else if ((typebits & N_UNS) != 0)
12448 *g_type = NT_unsigned;
12449 else if ((typebits & N_INT) != 0)
12450 *g_type = NT_integer;
12451 else if ((typebits & N_FLT) != 0)
12452 *g_type = NT_float;
dcbf9037
JB
12453 else if ((typebits & N_SIZ) != 0)
12454 *g_type = NT_untyped;
5287ad62
JB
12455 }
12456}
5f4273c7 12457
5287ad62
JB
12458/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12459 operand type, i.e. the single type specified in a Neon instruction when it
12460 is the only one given. */
12461
12462static struct neon_type_el
12463neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12464{
12465 struct neon_type_el dest = *key;
5f4273c7 12466
9c2799c2 12467 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12468
5287ad62
JB
12469 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12470
12471 return dest;
12472}
12473
12474/* Convert Neon type and size into compact bitmask representation. */
12475
12476static enum neon_type_mask
12477type_chk_of_el_type (enum neon_el_type type, unsigned size)
12478{
12479 switch (type)
12480 {
12481 case NT_untyped:
12482 switch (size)
12483 {
12484 case 8: return N_8;
12485 case 16: return N_16;
12486 case 32: return N_32;
12487 case 64: return N_64;
12488 default: ;
12489 }
12490 break;
12491
12492 case NT_integer:
12493 switch (size)
12494 {
12495 case 8: return N_I8;
12496 case 16: return N_I16;
12497 case 32: return N_I32;
12498 case 64: return N_I64;
12499 default: ;
12500 }
12501 break;
12502
12503 case NT_float:
037e8744
JB
12504 switch (size)
12505 {
8e79c3df 12506 case 16: return N_F16;
037e8744
JB
12507 case 32: return N_F32;
12508 case 64: return N_F64;
12509 default: ;
12510 }
5287ad62
JB
12511 break;
12512
12513 case NT_poly:
12514 switch (size)
12515 {
12516 case 8: return N_P8;
12517 case 16: return N_P16;
12518 default: ;
12519 }
12520 break;
12521
12522 case NT_signed:
12523 switch (size)
12524 {
12525 case 8: return N_S8;
12526 case 16: return N_S16;
12527 case 32: return N_S32;
12528 case 64: return N_S64;
12529 default: ;
12530 }
12531 break;
12532
12533 case NT_unsigned:
12534 switch (size)
12535 {
12536 case 8: return N_U8;
12537 case 16: return N_U16;
12538 case 32: return N_U32;
12539 case 64: return N_U64;
12540 default: ;
12541 }
12542 break;
12543
12544 default: ;
12545 }
5f4273c7 12546
5287ad62
JB
12547 return N_UTYP;
12548}
12549
12550/* Convert compact Neon bitmask type representation to a type and size. Only
12551 handles the case where a single bit is set in the mask. */
12552
dcbf9037 12553static int
5287ad62
JB
12554el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12555 enum neon_type_mask mask)
12556{
dcbf9037
JB
12557 if ((mask & N_EQK) != 0)
12558 return FAIL;
12559
5287ad62
JB
12560 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12561 *size = 8;
dcbf9037 12562 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12563 *size = 16;
dcbf9037 12564 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12565 *size = 32;
037e8744 12566 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12567 *size = 64;
dcbf9037
JB
12568 else
12569 return FAIL;
12570
5287ad62
JB
12571 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12572 *type = NT_signed;
dcbf9037 12573 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12574 *type = NT_unsigned;
dcbf9037 12575 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12576 *type = NT_integer;
dcbf9037 12577 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12578 *type = NT_untyped;
dcbf9037 12579 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12580 *type = NT_poly;
037e8744 12581 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12582 *type = NT_float;
dcbf9037
JB
12583 else
12584 return FAIL;
5f4273c7 12585
dcbf9037 12586 return SUCCESS;
5287ad62
JB
12587}
12588
12589/* Modify a bitmask of allowed types. This is only needed for type
12590 relaxation. */
12591
12592static unsigned
12593modify_types_allowed (unsigned allowed, unsigned mods)
12594{
12595 unsigned size;
12596 enum neon_el_type type;
12597 unsigned destmask;
12598 int i;
5f4273c7 12599
5287ad62 12600 destmask = 0;
5f4273c7 12601
5287ad62
JB
12602 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12603 {
21d799b5
NC
12604 if (el_type_of_type_chk (&type, &size,
12605 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12606 {
12607 neon_modify_type_size (mods, &type, &size);
12608 destmask |= type_chk_of_el_type (type, size);
12609 }
5287ad62 12610 }
5f4273c7 12611
5287ad62
JB
12612 return destmask;
12613}
12614
12615/* Check type and return type classification.
12616 The manual states (paraphrase): If one datatype is given, it indicates the
12617 type given in:
12618 - the second operand, if there is one
12619 - the operand, if there is no second operand
12620 - the result, if there are no operands.
12621 This isn't quite good enough though, so we use a concept of a "key" datatype
12622 which is set on a per-instruction basis, which is the one which matters when
12623 only one data type is written.
12624 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12625 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12626
12627static struct neon_type_el
12628neon_check_type (unsigned els, enum neon_shape ns, ...)
12629{
12630 va_list ap;
12631 unsigned i, pass, key_el = 0;
12632 unsigned types[NEON_MAX_TYPE_ELS];
12633 enum neon_el_type k_type = NT_invtype;
12634 unsigned k_size = -1u;
12635 struct neon_type_el badtype = {NT_invtype, -1};
12636 unsigned key_allowed = 0;
12637
12638 /* Optional registers in Neon instructions are always (not) in operand 1.
12639 Fill in the missing operand here, if it was omitted. */
12640 if (els > 1 && !inst.operands[1].present)
12641 inst.operands[1] = inst.operands[0];
12642
12643 /* Suck up all the varargs. */
12644 va_start (ap, ns);
12645 for (i = 0; i < els; i++)
12646 {
12647 unsigned thisarg = va_arg (ap, unsigned);
12648 if (thisarg == N_IGNORE_TYPE)
12649 {
12650 va_end (ap);
12651 return badtype;
12652 }
12653 types[i] = thisarg;
12654 if ((thisarg & N_KEY) != 0)
12655 key_el = i;
12656 }
12657 va_end (ap);
12658
dcbf9037
JB
12659 if (inst.vectype.elems > 0)
12660 for (i = 0; i < els; i++)
12661 if (inst.operands[i].vectype.type != NT_invtype)
12662 {
12663 first_error (_("types specified in both the mnemonic and operands"));
12664 return badtype;
12665 }
12666
5287ad62
JB
12667 /* Duplicate inst.vectype elements here as necessary.
12668 FIXME: No idea if this is exactly the same as the ARM assembler,
12669 particularly when an insn takes one register and one non-register
12670 operand. */
12671 if (inst.vectype.elems == 1 && els > 1)
12672 {
12673 unsigned j;
12674 inst.vectype.elems = els;
12675 inst.vectype.el[key_el] = inst.vectype.el[0];
12676 for (j = 0; j < els; j++)
dcbf9037
JB
12677 if (j != key_el)
12678 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12679 types[j]);
12680 }
12681 else if (inst.vectype.elems == 0 && els > 0)
12682 {
12683 unsigned j;
12684 /* No types were given after the mnemonic, so look for types specified
12685 after each operand. We allow some flexibility here; as long as the
12686 "key" operand has a type, we can infer the others. */
12687 for (j = 0; j < els; j++)
12688 if (inst.operands[j].vectype.type != NT_invtype)
12689 inst.vectype.el[j] = inst.operands[j].vectype;
12690
12691 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12692 {
dcbf9037
JB
12693 for (j = 0; j < els; j++)
12694 if (inst.operands[j].vectype.type == NT_invtype)
12695 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12696 types[j]);
12697 }
12698 else
12699 {
12700 first_error (_("operand types can't be inferred"));
12701 return badtype;
5287ad62
JB
12702 }
12703 }
12704 else if (inst.vectype.elems != els)
12705 {
dcbf9037 12706 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12707 return badtype;
12708 }
12709
12710 for (pass = 0; pass < 2; pass++)
12711 {
12712 for (i = 0; i < els; i++)
12713 {
12714 unsigned thisarg = types[i];
12715 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12716 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12717 enum neon_el_type g_type = inst.vectype.el[i].type;
12718 unsigned g_size = inst.vectype.el[i].size;
12719
12720 /* Decay more-specific signed & unsigned types to sign-insensitive
12721 integer types if sign-specific variants are unavailable. */
12722 if ((g_type == NT_signed || g_type == NT_unsigned)
12723 && (types_allowed & N_SU_ALL) == 0)
12724 g_type = NT_integer;
12725
12726 /* If only untyped args are allowed, decay any more specific types to
12727 them. Some instructions only care about signs for some element
12728 sizes, so handle that properly. */
12729 if ((g_size == 8 && (types_allowed & N_8) != 0)
12730 || (g_size == 16 && (types_allowed & N_16) != 0)
12731 || (g_size == 32 && (types_allowed & N_32) != 0)
12732 || (g_size == 64 && (types_allowed & N_64) != 0))
12733 g_type = NT_untyped;
12734
12735 if (pass == 0)
12736 {
12737 if ((thisarg & N_KEY) != 0)
12738 {
12739 k_type = g_type;
12740 k_size = g_size;
12741 key_allowed = thisarg & ~N_KEY;
12742 }
12743 }
12744 else
12745 {
037e8744
JB
12746 if ((thisarg & N_VFP) != 0)
12747 {
99b253c5
NC
12748 enum neon_shape_el regshape;
12749 unsigned regwidth, match;
12750
12751 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12752 if (ns == NS_NULL)
12753 {
12754 first_error (_("invalid instruction shape"));
12755 return badtype;
12756 }
12757 regshape = neon_shape_tab[ns].el[i];
12758 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12759
12760 /* In VFP mode, operands must match register widths. If we
12761 have a key operand, use its width, else use the width of
12762 the current operand. */
12763 if (k_size != -1u)
12764 match = k_size;
12765 else
12766 match = g_size;
12767
12768 if (regwidth != match)
12769 {
12770 first_error (_("operand size must match register width"));
12771 return badtype;
12772 }
12773 }
5f4273c7 12774
5287ad62
JB
12775 if ((thisarg & N_EQK) == 0)
12776 {
12777 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12778
12779 if ((given_type & types_allowed) == 0)
12780 {
dcbf9037 12781 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12782 return badtype;
12783 }
12784 }
12785 else
12786 {
12787 enum neon_el_type mod_k_type = k_type;
12788 unsigned mod_k_size = k_size;
12789 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12790 if (g_type != mod_k_type || g_size != mod_k_size)
12791 {
dcbf9037 12792 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12793 return badtype;
12794 }
12795 }
12796 }
12797 }
12798 }
12799
12800 return inst.vectype.el[key_el];
12801}
12802
037e8744 12803/* Neon-style VFP instruction forwarding. */
5287ad62 12804
037e8744
JB
12805/* Thumb VFP instructions have 0xE in the condition field. */
12806
12807static void
12808do_vfp_cond_or_thumb (void)
5287ad62 12809{
88714cb8
DG
12810 inst.is_neon = 1;
12811
5287ad62 12812 if (thumb_mode)
037e8744 12813 inst.instruction |= 0xe0000000;
5287ad62 12814 else
037e8744 12815 inst.instruction |= inst.cond << 28;
5287ad62
JB
12816}
12817
037e8744
JB
12818/* Look up and encode a simple mnemonic, for use as a helper function for the
12819 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12820 etc. It is assumed that operand parsing has already been done, and that the
12821 operands are in the form expected by the given opcode (this isn't necessarily
12822 the same as the form in which they were parsed, hence some massaging must
12823 take place before this function is called).
12824 Checks current arch version against that in the looked-up opcode. */
5287ad62 12825
037e8744
JB
12826static void
12827do_vfp_nsyn_opcode (const char *opname)
5287ad62 12828{
037e8744 12829 const struct asm_opcode *opcode;
5f4273c7 12830
21d799b5 12831 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12832
037e8744
JB
12833 if (!opcode)
12834 abort ();
5287ad62 12835
037e8744
JB
12836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12837 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12838 _(BAD_FPU));
5287ad62 12839
88714cb8
DG
12840 inst.is_neon = 1;
12841
037e8744
JB
12842 if (thumb_mode)
12843 {
12844 inst.instruction = opcode->tvalue;
12845 opcode->tencode ();
12846 }
12847 else
12848 {
12849 inst.instruction = (inst.cond << 28) | opcode->avalue;
12850 opcode->aencode ();
12851 }
12852}
5287ad62
JB
12853
12854static void
037e8744 12855do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12856{
037e8744
JB
12857 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12858
12859 if (rs == NS_FFF)
12860 {
12861 if (is_add)
12862 do_vfp_nsyn_opcode ("fadds");
12863 else
12864 do_vfp_nsyn_opcode ("fsubs");
12865 }
12866 else
12867 {
12868 if (is_add)
12869 do_vfp_nsyn_opcode ("faddd");
12870 else
12871 do_vfp_nsyn_opcode ("fsubd");
12872 }
12873}
12874
12875/* Check operand types to see if this is a VFP instruction, and if so call
12876 PFN (). */
12877
12878static int
12879try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12880{
12881 enum neon_shape rs;
12882 struct neon_type_el et;
12883
12884 switch (args)
12885 {
12886 case 2:
12887 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12888 et = neon_check_type (2, rs,
12889 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12890 break;
5f4273c7 12891
037e8744
JB
12892 case 3:
12893 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12894 et = neon_check_type (3, rs,
12895 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12896 break;
12897
12898 default:
12899 abort ();
12900 }
12901
12902 if (et.type != NT_invtype)
12903 {
12904 pfn (rs);
12905 return SUCCESS;
12906 }
037e8744 12907
99b253c5 12908 inst.error = NULL;
037e8744
JB
12909 return FAIL;
12910}
12911
12912static void
12913do_vfp_nsyn_mla_mls (enum neon_shape rs)
12914{
12915 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12916
037e8744
JB
12917 if (rs == NS_FFF)
12918 {
12919 if (is_mla)
12920 do_vfp_nsyn_opcode ("fmacs");
12921 else
1ee69515 12922 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12923 }
12924 else
12925 {
12926 if (is_mla)
12927 do_vfp_nsyn_opcode ("fmacd");
12928 else
1ee69515 12929 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12930 }
12931}
12932
62f3b8c8
PB
12933static void
12934do_vfp_nsyn_fma_fms (enum neon_shape rs)
12935{
12936 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12937
12938 if (rs == NS_FFF)
12939 {
12940 if (is_fma)
12941 do_vfp_nsyn_opcode ("ffmas");
12942 else
12943 do_vfp_nsyn_opcode ("ffnmas");
12944 }
12945 else
12946 {
12947 if (is_fma)
12948 do_vfp_nsyn_opcode ("ffmad");
12949 else
12950 do_vfp_nsyn_opcode ("ffnmad");
12951 }
12952}
12953
037e8744
JB
12954static void
12955do_vfp_nsyn_mul (enum neon_shape rs)
12956{
12957 if (rs == NS_FFF)
12958 do_vfp_nsyn_opcode ("fmuls");
12959 else
12960 do_vfp_nsyn_opcode ("fmuld");
12961}
12962
12963static void
12964do_vfp_nsyn_abs_neg (enum neon_shape rs)
12965{
12966 int is_neg = (inst.instruction & 0x80) != 0;
12967 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12968
12969 if (rs == NS_FF)
12970 {
12971 if (is_neg)
12972 do_vfp_nsyn_opcode ("fnegs");
12973 else
12974 do_vfp_nsyn_opcode ("fabss");
12975 }
12976 else
12977 {
12978 if (is_neg)
12979 do_vfp_nsyn_opcode ("fnegd");
12980 else
12981 do_vfp_nsyn_opcode ("fabsd");
12982 }
12983}
12984
12985/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12986 insns belong to Neon, and are handled elsewhere. */
12987
12988static void
12989do_vfp_nsyn_ldm_stm (int is_dbmode)
12990{
12991 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12992 if (is_ldm)
12993 {
12994 if (is_dbmode)
12995 do_vfp_nsyn_opcode ("fldmdbs");
12996 else
12997 do_vfp_nsyn_opcode ("fldmias");
12998 }
12999 else
13000 {
13001 if (is_dbmode)
13002 do_vfp_nsyn_opcode ("fstmdbs");
13003 else
13004 do_vfp_nsyn_opcode ("fstmias");
13005 }
13006}
13007
037e8744
JB
13008static void
13009do_vfp_nsyn_sqrt (void)
13010{
13011 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13012 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13013
037e8744
JB
13014 if (rs == NS_FF)
13015 do_vfp_nsyn_opcode ("fsqrts");
13016 else
13017 do_vfp_nsyn_opcode ("fsqrtd");
13018}
13019
13020static void
13021do_vfp_nsyn_div (void)
13022{
13023 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13024 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13025 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13026
037e8744
JB
13027 if (rs == NS_FFF)
13028 do_vfp_nsyn_opcode ("fdivs");
13029 else
13030 do_vfp_nsyn_opcode ("fdivd");
13031}
13032
13033static void
13034do_vfp_nsyn_nmul (void)
13035{
13036 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13037 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13038 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13039
037e8744
JB
13040 if (rs == NS_FFF)
13041 {
88714cb8 13042 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13043 do_vfp_sp_dyadic ();
13044 }
13045 else
13046 {
88714cb8 13047 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13048 do_vfp_dp_rd_rn_rm ();
13049 }
13050 do_vfp_cond_or_thumb ();
13051}
13052
13053static void
13054do_vfp_nsyn_cmp (void)
13055{
13056 if (inst.operands[1].isreg)
13057 {
13058 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13059 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13060
037e8744
JB
13061 if (rs == NS_FF)
13062 {
88714cb8 13063 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13064 do_vfp_sp_monadic ();
13065 }
13066 else
13067 {
88714cb8 13068 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13069 do_vfp_dp_rd_rm ();
13070 }
13071 }
13072 else
13073 {
13074 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13075 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13076
13077 switch (inst.instruction & 0x0fffffff)
13078 {
13079 case N_MNEM_vcmp:
13080 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13081 break;
13082 case N_MNEM_vcmpe:
13083 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13084 break;
13085 default:
13086 abort ();
13087 }
5f4273c7 13088
037e8744
JB
13089 if (rs == NS_FI)
13090 {
88714cb8 13091 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13092 do_vfp_sp_compare_z ();
13093 }
13094 else
13095 {
88714cb8 13096 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13097 do_vfp_dp_rd ();
13098 }
13099 }
13100 do_vfp_cond_or_thumb ();
13101}
13102
13103static void
13104nsyn_insert_sp (void)
13105{
13106 inst.operands[1] = inst.operands[0];
13107 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13108 inst.operands[0].reg = REG_SP;
037e8744
JB
13109 inst.operands[0].isreg = 1;
13110 inst.operands[0].writeback = 1;
13111 inst.operands[0].present = 1;
13112}
13113
13114static void
13115do_vfp_nsyn_push (void)
13116{
13117 nsyn_insert_sp ();
13118 if (inst.operands[1].issingle)
13119 do_vfp_nsyn_opcode ("fstmdbs");
13120 else
13121 do_vfp_nsyn_opcode ("fstmdbd");
13122}
13123
13124static void
13125do_vfp_nsyn_pop (void)
13126{
13127 nsyn_insert_sp ();
13128 if (inst.operands[1].issingle)
22b5b651 13129 do_vfp_nsyn_opcode ("fldmias");
037e8744 13130 else
22b5b651 13131 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13132}
13133
13134/* Fix up Neon data-processing instructions, ORing in the correct bits for
13135 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13136
88714cb8
DG
13137static void
13138neon_dp_fixup (struct arm_it* insn)
037e8744 13139{
88714cb8
DG
13140 unsigned int i = insn->instruction;
13141 insn->is_neon = 1;
13142
037e8744
JB
13143 if (thumb_mode)
13144 {
13145 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13146 if (i & (1 << 24))
13147 i |= 1 << 28;
5f4273c7 13148
037e8744 13149 i &= ~(1 << 24);
5f4273c7 13150
037e8744
JB
13151 i |= 0xef000000;
13152 }
13153 else
13154 i |= 0xf2000000;
5f4273c7 13155
88714cb8 13156 insn->instruction = i;
037e8744
JB
13157}
13158
13159/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13160 (0, 1, 2, 3). */
13161
13162static unsigned
13163neon_logbits (unsigned x)
13164{
13165 return ffs (x) - 4;
13166}
13167
13168#define LOW4(R) ((R) & 0xf)
13169#define HI1(R) (((R) >> 4) & 1)
13170
13171/* Encode insns with bit pattern:
13172
13173 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13174 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13175
037e8744
JB
13176 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13177 different meaning for some instruction. */
13178
13179static void
13180neon_three_same (int isquad, int ubit, int size)
13181{
13182 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13183 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13184 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13185 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13186 inst.instruction |= LOW4 (inst.operands[2].reg);
13187 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13188 inst.instruction |= (isquad != 0) << 6;
13189 inst.instruction |= (ubit != 0) << 24;
13190 if (size != -1)
13191 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13192
88714cb8 13193 neon_dp_fixup (&inst);
037e8744
JB
13194}
13195
13196/* Encode instructions of the form:
13197
13198 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13199 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13200
13201 Don't write size if SIZE == -1. */
13202
13203static void
13204neon_two_same (int qbit, int ubit, int size)
13205{
13206 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13207 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13208 inst.instruction |= LOW4 (inst.operands[1].reg);
13209 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13210 inst.instruction |= (qbit != 0) << 6;
13211 inst.instruction |= (ubit != 0) << 24;
13212
13213 if (size != -1)
13214 inst.instruction |= neon_logbits (size) << 18;
13215
88714cb8 13216 neon_dp_fixup (&inst);
5287ad62
JB
13217}
13218
13219/* Neon instruction encoders, in approximate order of appearance. */
13220
13221static void
13222do_neon_dyadic_i_su (void)
13223{
037e8744 13224 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13225 struct neon_type_el et = neon_check_type (3, rs,
13226 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13227 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13228}
13229
13230static void
13231do_neon_dyadic_i64_su (void)
13232{
037e8744 13233 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13234 struct neon_type_el et = neon_check_type (3, rs,
13235 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13236 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13237}
13238
13239static void
13240neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13241 unsigned immbits)
13242{
13243 unsigned size = et.size >> 3;
13244 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13245 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13246 inst.instruction |= LOW4 (inst.operands[1].reg);
13247 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13248 inst.instruction |= (isquad != 0) << 6;
13249 inst.instruction |= immbits << 16;
13250 inst.instruction |= (size >> 3) << 7;
13251 inst.instruction |= (size & 0x7) << 19;
13252 if (write_ubit)
13253 inst.instruction |= (uval != 0) << 24;
13254
88714cb8 13255 neon_dp_fixup (&inst);
5287ad62
JB
13256}
13257
13258static void
13259do_neon_shl_imm (void)
13260{
13261 if (!inst.operands[2].isreg)
13262 {
037e8744 13263 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13264 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13265 NEON_ENCODE (IMMED, inst);
037e8744 13266 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13267 }
13268 else
13269 {
037e8744 13270 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13271 struct neon_type_el et = neon_check_type (3, rs,
13272 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13273 unsigned int tmp;
13274
13275 /* VSHL/VQSHL 3-register variants have syntax such as:
13276 vshl.xx Dd, Dm, Dn
13277 whereas other 3-register operations encoded by neon_three_same have
13278 syntax like:
13279 vadd.xx Dd, Dn, Dm
13280 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13281 here. */
13282 tmp = inst.operands[2].reg;
13283 inst.operands[2].reg = inst.operands[1].reg;
13284 inst.operands[1].reg = tmp;
88714cb8 13285 NEON_ENCODE (INTEGER, inst);
037e8744 13286 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13287 }
13288}
13289
13290static void
13291do_neon_qshl_imm (void)
13292{
13293 if (!inst.operands[2].isreg)
13294 {
037e8744 13295 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13296 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13297
88714cb8 13298 NEON_ENCODE (IMMED, inst);
037e8744 13299 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13300 inst.operands[2].imm);
13301 }
13302 else
13303 {
037e8744 13304 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13305 struct neon_type_el et = neon_check_type (3, rs,
13306 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13307 unsigned int tmp;
13308
13309 /* See note in do_neon_shl_imm. */
13310 tmp = inst.operands[2].reg;
13311 inst.operands[2].reg = inst.operands[1].reg;
13312 inst.operands[1].reg = tmp;
88714cb8 13313 NEON_ENCODE (INTEGER, inst);
037e8744 13314 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13315 }
13316}
13317
627907b7
JB
13318static void
13319do_neon_rshl (void)
13320{
13321 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13322 struct neon_type_el et = neon_check_type (3, rs,
13323 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13324 unsigned int tmp;
13325
13326 tmp = inst.operands[2].reg;
13327 inst.operands[2].reg = inst.operands[1].reg;
13328 inst.operands[1].reg = tmp;
13329 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13330}
13331
5287ad62
JB
13332static int
13333neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13334{
036dc3f7
PB
13335 /* Handle .I8 pseudo-instructions. */
13336 if (size == 8)
5287ad62 13337 {
5287ad62
JB
13338 /* Unfortunately, this will make everything apart from zero out-of-range.
13339 FIXME is this the intended semantics? There doesn't seem much point in
13340 accepting .I8 if so. */
13341 immediate |= immediate << 8;
13342 size = 16;
036dc3f7
PB
13343 }
13344
13345 if (size >= 32)
13346 {
13347 if (immediate == (immediate & 0x000000ff))
13348 {
13349 *immbits = immediate;
13350 return 0x1;
13351 }
13352 else if (immediate == (immediate & 0x0000ff00))
13353 {
13354 *immbits = immediate >> 8;
13355 return 0x3;
13356 }
13357 else if (immediate == (immediate & 0x00ff0000))
13358 {
13359 *immbits = immediate >> 16;
13360 return 0x5;
13361 }
13362 else if (immediate == (immediate & 0xff000000))
13363 {
13364 *immbits = immediate >> 24;
13365 return 0x7;
13366 }
13367 if ((immediate & 0xffff) != (immediate >> 16))
13368 goto bad_immediate;
13369 immediate &= 0xffff;
5287ad62
JB
13370 }
13371
13372 if (immediate == (immediate & 0x000000ff))
13373 {
13374 *immbits = immediate;
036dc3f7 13375 return 0x9;
5287ad62
JB
13376 }
13377 else if (immediate == (immediate & 0x0000ff00))
13378 {
13379 *immbits = immediate >> 8;
036dc3f7 13380 return 0xb;
5287ad62
JB
13381 }
13382
13383 bad_immediate:
dcbf9037 13384 first_error (_("immediate value out of range"));
5287ad62
JB
13385 return FAIL;
13386}
13387
13388/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13389 A, B, C, D. */
13390
13391static int
13392neon_bits_same_in_bytes (unsigned imm)
13393{
13394 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13395 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13396 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13397 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13398}
13399
13400/* For immediate of above form, return 0bABCD. */
13401
13402static unsigned
13403neon_squash_bits (unsigned imm)
13404{
13405 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13406 | ((imm & 0x01000000) >> 21);
13407}
13408
136da414 13409/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13410
13411static unsigned
13412neon_qfloat_bits (unsigned imm)
13413{
136da414 13414 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13415}
13416
13417/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13418 the instruction. *OP is passed as the initial value of the op field, and
13419 may be set to a different value depending on the constant (i.e.
13420 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13421 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13422 try smaller element sizes. */
5287ad62
JB
13423
13424static int
c96612cc
JB
13425neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13426 unsigned *immbits, int *op, int size,
13427 enum neon_el_type type)
5287ad62 13428{
c96612cc
JB
13429 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13430 float. */
13431 if (type == NT_float && !float_p)
13432 return FAIL;
13433
136da414
JB
13434 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13435 {
13436 if (size != 32 || *op == 1)
13437 return FAIL;
13438 *immbits = neon_qfloat_bits (immlo);
13439 return 0xf;
13440 }
036dc3f7
PB
13441
13442 if (size == 64)
5287ad62 13443 {
036dc3f7
PB
13444 if (neon_bits_same_in_bytes (immhi)
13445 && neon_bits_same_in_bytes (immlo))
13446 {
13447 if (*op == 1)
13448 return FAIL;
13449 *immbits = (neon_squash_bits (immhi) << 4)
13450 | neon_squash_bits (immlo);
13451 *op = 1;
13452 return 0xe;
13453 }
13454
13455 if (immhi != immlo)
13456 return FAIL;
5287ad62 13457 }
036dc3f7
PB
13458
13459 if (size >= 32)
5287ad62 13460 {
036dc3f7
PB
13461 if (immlo == (immlo & 0x000000ff))
13462 {
13463 *immbits = immlo;
13464 return 0x0;
13465 }
13466 else if (immlo == (immlo & 0x0000ff00))
13467 {
13468 *immbits = immlo >> 8;
13469 return 0x2;
13470 }
13471 else if (immlo == (immlo & 0x00ff0000))
13472 {
13473 *immbits = immlo >> 16;
13474 return 0x4;
13475 }
13476 else if (immlo == (immlo & 0xff000000))
13477 {
13478 *immbits = immlo >> 24;
13479 return 0x6;
13480 }
13481 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13482 {
13483 *immbits = (immlo >> 8) & 0xff;
13484 return 0xc;
13485 }
13486 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13487 {
13488 *immbits = (immlo >> 16) & 0xff;
13489 return 0xd;
13490 }
13491
13492 if ((immlo & 0xffff) != (immlo >> 16))
13493 return FAIL;
13494 immlo &= 0xffff;
5287ad62 13495 }
036dc3f7
PB
13496
13497 if (size >= 16)
5287ad62 13498 {
036dc3f7
PB
13499 if (immlo == (immlo & 0x000000ff))
13500 {
13501 *immbits = immlo;
13502 return 0x8;
13503 }
13504 else if (immlo == (immlo & 0x0000ff00))
13505 {
13506 *immbits = immlo >> 8;
13507 return 0xa;
13508 }
13509
13510 if ((immlo & 0xff) != (immlo >> 8))
13511 return FAIL;
13512 immlo &= 0xff;
5287ad62 13513 }
036dc3f7
PB
13514
13515 if (immlo == (immlo & 0x000000ff))
5287ad62 13516 {
036dc3f7
PB
13517 /* Don't allow MVN with 8-bit immediate. */
13518 if (*op == 1)
13519 return FAIL;
13520 *immbits = immlo;
13521 return 0xe;
5287ad62 13522 }
5287ad62
JB
13523
13524 return FAIL;
13525}
13526
13527/* Write immediate bits [7:0] to the following locations:
13528
13529 |28/24|23 19|18 16|15 4|3 0|
13530 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13531
13532 This function is used by VMOV/VMVN/VORR/VBIC. */
13533
13534static void
13535neon_write_immbits (unsigned immbits)
13536{
13537 inst.instruction |= immbits & 0xf;
13538 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13539 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13540}
13541
13542/* Invert low-order SIZE bits of XHI:XLO. */
13543
13544static void
13545neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13546{
13547 unsigned immlo = xlo ? *xlo : 0;
13548 unsigned immhi = xhi ? *xhi : 0;
13549
13550 switch (size)
13551 {
13552 case 8:
13553 immlo = (~immlo) & 0xff;
13554 break;
13555
13556 case 16:
13557 immlo = (~immlo) & 0xffff;
13558 break;
13559
13560 case 64:
13561 immhi = (~immhi) & 0xffffffff;
13562 /* fall through. */
13563
13564 case 32:
13565 immlo = (~immlo) & 0xffffffff;
13566 break;
13567
13568 default:
13569 abort ();
13570 }
13571
13572 if (xlo)
13573 *xlo = immlo;
13574
13575 if (xhi)
13576 *xhi = immhi;
13577}
13578
13579static void
13580do_neon_logic (void)
13581{
13582 if (inst.operands[2].present && inst.operands[2].isreg)
13583 {
037e8744 13584 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13585 neon_check_type (3, rs, N_IGNORE_TYPE);
13586 /* U bit and size field were set as part of the bitmask. */
88714cb8 13587 NEON_ENCODE (INTEGER, inst);
037e8744 13588 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13589 }
13590 else
13591 {
4316f0d2
DG
13592 const int three_ops_form = (inst.operands[2].present
13593 && !inst.operands[2].isreg);
13594 const int immoperand = (three_ops_form ? 2 : 1);
13595 enum neon_shape rs = (three_ops_form
13596 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13597 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13598 struct neon_type_el et = neon_check_type (2, rs,
13599 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13600 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13601 unsigned immbits;
13602 int cmode;
5f4273c7 13603
5287ad62
JB
13604 if (et.type == NT_invtype)
13605 return;
5f4273c7 13606
4316f0d2
DG
13607 if (three_ops_form)
13608 constraint (inst.operands[0].reg != inst.operands[1].reg,
13609 _("first and second operands shall be the same register"));
13610
88714cb8 13611 NEON_ENCODE (IMMED, inst);
5287ad62 13612
4316f0d2 13613 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13614 if (et.size == 64)
13615 {
13616 /* .i64 is a pseudo-op, so the immediate must be a repeating
13617 pattern. */
4316f0d2
DG
13618 if (immbits != (inst.operands[immoperand].regisimm ?
13619 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13620 {
13621 /* Set immbits to an invalid constant. */
13622 immbits = 0xdeadbeef;
13623 }
13624 }
13625
5287ad62
JB
13626 switch (opcode)
13627 {
13628 case N_MNEM_vbic:
036dc3f7 13629 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13630 break;
5f4273c7 13631
5287ad62 13632 case N_MNEM_vorr:
036dc3f7 13633 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13634 break;
5f4273c7 13635
5287ad62
JB
13636 case N_MNEM_vand:
13637 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13638 neon_invert_size (&immbits, 0, et.size);
13639 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13640 break;
5f4273c7 13641
5287ad62
JB
13642 case N_MNEM_vorn:
13643 /* Pseudo-instruction for VORR. */
5287ad62
JB
13644 neon_invert_size (&immbits, 0, et.size);
13645 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13646 break;
5f4273c7 13647
5287ad62
JB
13648 default:
13649 abort ();
13650 }
13651
13652 if (cmode == FAIL)
13653 return;
13654
037e8744 13655 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13658 inst.instruction |= cmode << 8;
13659 neon_write_immbits (immbits);
5f4273c7 13660
88714cb8 13661 neon_dp_fixup (&inst);
5287ad62
JB
13662 }
13663}
13664
13665static void
13666do_neon_bitfield (void)
13667{
037e8744 13668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13669 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13670 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13671}
13672
13673static void
dcbf9037
JB
13674neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13675 unsigned destbits)
5287ad62 13676{
037e8744 13677 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13678 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13679 types | N_KEY);
5287ad62
JB
13680 if (et.type == NT_float)
13681 {
88714cb8 13682 NEON_ENCODE (FLOAT, inst);
037e8744 13683 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13684 }
13685 else
13686 {
88714cb8 13687 NEON_ENCODE (INTEGER, inst);
037e8744 13688 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13689 }
13690}
13691
13692static void
13693do_neon_dyadic_if_su (void)
13694{
dcbf9037 13695 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13696}
13697
13698static void
13699do_neon_dyadic_if_su_d (void)
13700{
13701 /* This version only allow D registers, but that constraint is enforced during
13702 operand parsing so we don't need to do anything extra here. */
dcbf9037 13703 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13704}
13705
5287ad62
JB
13706static void
13707do_neon_dyadic_if_i_d (void)
13708{
428e3f1f
PB
13709 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13710 affected if we specify unsigned args. */
13711 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13712}
13713
037e8744
JB
13714enum vfp_or_neon_is_neon_bits
13715{
13716 NEON_CHECK_CC = 1,
13717 NEON_CHECK_ARCH = 2
13718};
13719
13720/* Call this function if an instruction which may have belonged to the VFP or
13721 Neon instruction sets, but turned out to be a Neon instruction (due to the
13722 operand types involved, etc.). We have to check and/or fix-up a couple of
13723 things:
13724
13725 - Make sure the user hasn't attempted to make a Neon instruction
13726 conditional.
13727 - Alter the value in the condition code field if necessary.
13728 - Make sure that the arch supports Neon instructions.
13729
13730 Which of these operations take place depends on bits from enum
13731 vfp_or_neon_is_neon_bits.
13732
13733 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13734 current instruction's condition is COND_ALWAYS, the condition field is
13735 changed to inst.uncond_value. This is necessary because instructions shared
13736 between VFP and Neon may be conditional for the VFP variants only, and the
13737 unconditional Neon version must have, e.g., 0xF in the condition field. */
13738
13739static int
13740vfp_or_neon_is_neon (unsigned check)
13741{
13742 /* Conditions are always legal in Thumb mode (IT blocks). */
13743 if (!thumb_mode && (check & NEON_CHECK_CC))
13744 {
13745 if (inst.cond != COND_ALWAYS)
13746 {
13747 first_error (_(BAD_COND));
13748 return FAIL;
13749 }
13750 if (inst.uncond_value != -1)
13751 inst.instruction |= inst.uncond_value << 28;
13752 }
5f4273c7 13753
037e8744
JB
13754 if ((check & NEON_CHECK_ARCH)
13755 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13756 {
13757 first_error (_(BAD_FPU));
13758 return FAIL;
13759 }
5f4273c7 13760
037e8744
JB
13761 return SUCCESS;
13762}
13763
5287ad62
JB
13764static void
13765do_neon_addsub_if_i (void)
13766{
037e8744
JB
13767 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13768 return;
13769
13770 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13771 return;
13772
5287ad62
JB
13773 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13774 affected if we specify unsigned args. */
dcbf9037 13775 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13776}
13777
13778/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13779 result to be:
13780 V<op> A,B (A is operand 0, B is operand 2)
13781 to mean:
13782 V<op> A,B,A
13783 not:
13784 V<op> A,B,B
13785 so handle that case specially. */
13786
13787static void
13788neon_exchange_operands (void)
13789{
13790 void *scratch = alloca (sizeof (inst.operands[0]));
13791 if (inst.operands[1].present)
13792 {
13793 /* Swap operands[1] and operands[2]. */
13794 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13795 inst.operands[1] = inst.operands[2];
13796 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13797 }
13798 else
13799 {
13800 inst.operands[1] = inst.operands[2];
13801 inst.operands[2] = inst.operands[0];
13802 }
13803}
13804
13805static void
13806neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13807{
13808 if (inst.operands[2].isreg)
13809 {
13810 if (invert)
13811 neon_exchange_operands ();
dcbf9037 13812 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13813 }
13814 else
13815 {
037e8744 13816 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13817 struct neon_type_el et = neon_check_type (2, rs,
13818 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13819
88714cb8 13820 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13821 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13822 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13823 inst.instruction |= LOW4 (inst.operands[1].reg);
13824 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13825 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13826 inst.instruction |= (et.type == NT_float) << 10;
13827 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13828
88714cb8 13829 neon_dp_fixup (&inst);
5287ad62
JB
13830 }
13831}
13832
13833static void
13834do_neon_cmp (void)
13835{
13836 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13837}
13838
13839static void
13840do_neon_cmp_inv (void)
13841{
13842 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13843}
13844
13845static void
13846do_neon_ceq (void)
13847{
13848 neon_compare (N_IF_32, N_IF_32, FALSE);
13849}
13850
13851/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13852 scalars, which are encoded in 5 bits, M : Rm.
13853 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13854 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13855 index in M. */
13856
13857static unsigned
13858neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13859{
dcbf9037
JB
13860 unsigned regno = NEON_SCALAR_REG (scalar);
13861 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13862
13863 switch (elsize)
13864 {
13865 case 16:
13866 if (regno > 7 || elno > 3)
13867 goto bad_scalar;
13868 return regno | (elno << 3);
5f4273c7 13869
5287ad62
JB
13870 case 32:
13871 if (regno > 15 || elno > 1)
13872 goto bad_scalar;
13873 return regno | (elno << 4);
13874
13875 default:
13876 bad_scalar:
dcbf9037 13877 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13878 }
13879
13880 return 0;
13881}
13882
13883/* Encode multiply / multiply-accumulate scalar instructions. */
13884
13885static void
13886neon_mul_mac (struct neon_type_el et, int ubit)
13887{
dcbf9037
JB
13888 unsigned scalar;
13889
13890 /* Give a more helpful error message if we have an invalid type. */
13891 if (et.type == NT_invtype)
13892 return;
5f4273c7 13893
dcbf9037 13894 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13895 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13896 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13897 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13898 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13899 inst.instruction |= LOW4 (scalar);
13900 inst.instruction |= HI1 (scalar) << 5;
13901 inst.instruction |= (et.type == NT_float) << 8;
13902 inst.instruction |= neon_logbits (et.size) << 20;
13903 inst.instruction |= (ubit != 0) << 24;
13904
88714cb8 13905 neon_dp_fixup (&inst);
5287ad62
JB
13906}
13907
13908static void
13909do_neon_mac_maybe_scalar (void)
13910{
037e8744
JB
13911 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13912 return;
13913
13914 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13915 return;
13916
5287ad62
JB
13917 if (inst.operands[2].isscalar)
13918 {
037e8744 13919 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13920 struct neon_type_el et = neon_check_type (3, rs,
13921 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13922 NEON_ENCODE (SCALAR, inst);
037e8744 13923 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13924 }
13925 else
428e3f1f
PB
13926 {
13927 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13928 affected if we specify unsigned args. */
13929 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13930 }
5287ad62
JB
13931}
13932
62f3b8c8
PB
13933static void
13934do_neon_fmac (void)
13935{
13936 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13937 return;
13938
13939 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13940 return;
13941
13942 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13943}
13944
5287ad62
JB
13945static void
13946do_neon_tst (void)
13947{
037e8744 13948 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13949 struct neon_type_el et = neon_check_type (3, rs,
13950 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13951 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13952}
13953
13954/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13955 same types as the MAC equivalents. The polynomial type for this instruction
13956 is encoded the same as the integer type. */
13957
13958static void
13959do_neon_mul (void)
13960{
037e8744
JB
13961 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13962 return;
13963
13964 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13965 return;
13966
5287ad62
JB
13967 if (inst.operands[2].isscalar)
13968 do_neon_mac_maybe_scalar ();
13969 else
dcbf9037 13970 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13971}
13972
13973static void
13974do_neon_qdmulh (void)
13975{
13976 if (inst.operands[2].isscalar)
13977 {
037e8744 13978 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13979 struct neon_type_el et = neon_check_type (3, rs,
13980 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13981 NEON_ENCODE (SCALAR, inst);
037e8744 13982 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13983 }
13984 else
13985 {
037e8744 13986 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13987 struct neon_type_el et = neon_check_type (3, rs,
13988 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13989 NEON_ENCODE (INTEGER, inst);
5287ad62 13990 /* The U bit (rounding) comes from bit mask. */
037e8744 13991 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13992 }
13993}
13994
13995static void
13996do_neon_fcmp_absolute (void)
13997{
037e8744 13998 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13999 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14000 /* Size field comes from bit mask. */
037e8744 14001 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14002}
14003
14004static void
14005do_neon_fcmp_absolute_inv (void)
14006{
14007 neon_exchange_operands ();
14008 do_neon_fcmp_absolute ();
14009}
14010
14011static void
14012do_neon_step (void)
14013{
037e8744 14014 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14015 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14016 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14017}
14018
14019static void
14020do_neon_abs_neg (void)
14021{
037e8744
JB
14022 enum neon_shape rs;
14023 struct neon_type_el et;
5f4273c7 14024
037e8744
JB
14025 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14026 return;
14027
14028 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14029 return;
14030
14031 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14032 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14033
5287ad62
JB
14034 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14035 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14036 inst.instruction |= LOW4 (inst.operands[1].reg);
14037 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14038 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14039 inst.instruction |= (et.type == NT_float) << 10;
14040 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14041
88714cb8 14042 neon_dp_fixup (&inst);
5287ad62
JB
14043}
14044
14045static void
14046do_neon_sli (void)
14047{
037e8744 14048 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14049 struct neon_type_el et = neon_check_type (2, rs,
14050 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14051 int imm = inst.operands[2].imm;
14052 constraint (imm < 0 || (unsigned)imm >= et.size,
14053 _("immediate out of range for insert"));
037e8744 14054 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14055}
14056
14057static void
14058do_neon_sri (void)
14059{
037e8744 14060 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14061 struct neon_type_el et = neon_check_type (2, rs,
14062 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14063 int imm = inst.operands[2].imm;
14064 constraint (imm < 1 || (unsigned)imm > et.size,
14065 _("immediate out of range for insert"));
037e8744 14066 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14067}
14068
14069static void
14070do_neon_qshlu_imm (void)
14071{
037e8744 14072 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14073 struct neon_type_el et = neon_check_type (2, rs,
14074 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14075 int imm = inst.operands[2].imm;
14076 constraint (imm < 0 || (unsigned)imm >= et.size,
14077 _("immediate out of range for shift"));
14078 /* Only encodes the 'U present' variant of the instruction.
14079 In this case, signed types have OP (bit 8) set to 0.
14080 Unsigned types have OP set to 1. */
14081 inst.instruction |= (et.type == NT_unsigned) << 8;
14082 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14083 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14084}
14085
14086static void
14087do_neon_qmovn (void)
14088{
14089 struct neon_type_el et = neon_check_type (2, NS_DQ,
14090 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14091 /* Saturating move where operands can be signed or unsigned, and the
14092 destination has the same signedness. */
88714cb8 14093 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14094 if (et.type == NT_unsigned)
14095 inst.instruction |= 0xc0;
14096 else
14097 inst.instruction |= 0x80;
14098 neon_two_same (0, 1, et.size / 2);
14099}
14100
14101static void
14102do_neon_qmovun (void)
14103{
14104 struct neon_type_el et = neon_check_type (2, NS_DQ,
14105 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14106 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14107 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14108 neon_two_same (0, 1, et.size / 2);
14109}
14110
14111static void
14112do_neon_rshift_sat_narrow (void)
14113{
14114 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14115 or unsigned. If operands are unsigned, results must also be unsigned. */
14116 struct neon_type_el et = neon_check_type (2, NS_DQI,
14117 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14118 int imm = inst.operands[2].imm;
14119 /* This gets the bounds check, size encoding and immediate bits calculation
14120 right. */
14121 et.size /= 2;
5f4273c7 14122
5287ad62
JB
14123 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14124 VQMOVN.I<size> <Dd>, <Qm>. */
14125 if (imm == 0)
14126 {
14127 inst.operands[2].present = 0;
14128 inst.instruction = N_MNEM_vqmovn;
14129 do_neon_qmovn ();
14130 return;
14131 }
5f4273c7 14132
5287ad62
JB
14133 constraint (imm < 1 || (unsigned)imm > et.size,
14134 _("immediate out of range"));
14135 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14136}
14137
14138static void
14139do_neon_rshift_sat_narrow_u (void)
14140{
14141 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14142 or unsigned. If operands are unsigned, results must also be unsigned. */
14143 struct neon_type_el et = neon_check_type (2, NS_DQI,
14144 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14145 int imm = inst.operands[2].imm;
14146 /* This gets the bounds check, size encoding and immediate bits calculation
14147 right. */
14148 et.size /= 2;
14149
14150 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14151 VQMOVUN.I<size> <Dd>, <Qm>. */
14152 if (imm == 0)
14153 {
14154 inst.operands[2].present = 0;
14155 inst.instruction = N_MNEM_vqmovun;
14156 do_neon_qmovun ();
14157 return;
14158 }
14159
14160 constraint (imm < 1 || (unsigned)imm > et.size,
14161 _("immediate out of range"));
14162 /* FIXME: The manual is kind of unclear about what value U should have in
14163 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14164 must be 1. */
14165 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14166}
14167
14168static void
14169do_neon_movn (void)
14170{
14171 struct neon_type_el et = neon_check_type (2, NS_DQ,
14172 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14173 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14174 neon_two_same (0, 1, et.size / 2);
14175}
14176
14177static void
14178do_neon_rshift_narrow (void)
14179{
14180 struct neon_type_el et = neon_check_type (2, NS_DQI,
14181 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14182 int imm = inst.operands[2].imm;
14183 /* This gets the bounds check, size encoding and immediate bits calculation
14184 right. */
14185 et.size /= 2;
5f4273c7 14186
5287ad62
JB
14187 /* If immediate is zero then we are a pseudo-instruction for
14188 VMOVN.I<size> <Dd>, <Qm> */
14189 if (imm == 0)
14190 {
14191 inst.operands[2].present = 0;
14192 inst.instruction = N_MNEM_vmovn;
14193 do_neon_movn ();
14194 return;
14195 }
5f4273c7 14196
5287ad62
JB
14197 constraint (imm < 1 || (unsigned)imm > et.size,
14198 _("immediate out of range for narrowing operation"));
14199 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14200}
14201
14202static void
14203do_neon_shll (void)
14204{
14205 /* FIXME: Type checking when lengthening. */
14206 struct neon_type_el et = neon_check_type (2, NS_QDI,
14207 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14208 unsigned imm = inst.operands[2].imm;
14209
14210 if (imm == et.size)
14211 {
14212 /* Maximum shift variant. */
88714cb8 14213 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14214 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14215 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14216 inst.instruction |= LOW4 (inst.operands[1].reg);
14217 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14218 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14219
88714cb8 14220 neon_dp_fixup (&inst);
5287ad62
JB
14221 }
14222 else
14223 {
14224 /* A more-specific type check for non-max versions. */
14225 et = neon_check_type (2, NS_QDI,
14226 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14227 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14228 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14229 }
14230}
14231
037e8744 14232/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14233 the current instruction is. */
14234
14235static int
14236neon_cvt_flavour (enum neon_shape rs)
14237{
037e8744
JB
14238#define CVT_VAR(C,X,Y) \
14239 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14240 if (et.type != NT_invtype) \
14241 { \
14242 inst.error = NULL; \
14243 return (C); \
5287ad62
JB
14244 }
14245 struct neon_type_el et;
037e8744
JB
14246 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14247 || rs == NS_FF) ? N_VFP : 0;
14248 /* The instruction versions which take an immediate take one register
14249 argument, which is extended to the width of the full register. Thus the
14250 "source" and "destination" registers must have the same width. Hack that
14251 here by making the size equal to the key (wider, in this case) operand. */
14252 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14253
5287ad62
JB
14254 CVT_VAR (0, N_S32, N_F32);
14255 CVT_VAR (1, N_U32, N_F32);
14256 CVT_VAR (2, N_F32, N_S32);
14257 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14258 /* Half-precision conversions. */
14259 CVT_VAR (4, N_F32, N_F16);
14260 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14261
037e8744 14262 whole_reg = N_VFP;
5f4273c7 14263
037e8744 14264 /* VFP instructions. */
8e79c3df
CM
14265 CVT_VAR (6, N_F32, N_F64);
14266 CVT_VAR (7, N_F64, N_F32);
14267 CVT_VAR (8, N_S32, N_F64 | key);
14268 CVT_VAR (9, N_U32, N_F64 | key);
14269 CVT_VAR (10, N_F64 | key, N_S32);
14270 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14271 /* VFP instructions with bitshift. */
8e79c3df
CM
14272 CVT_VAR (12, N_F32 | key, N_S16);
14273 CVT_VAR (13, N_F32 | key, N_U16);
14274 CVT_VAR (14, N_F64 | key, N_S16);
14275 CVT_VAR (15, N_F64 | key, N_U16);
14276 CVT_VAR (16, N_S16, N_F32 | key);
14277 CVT_VAR (17, N_U16, N_F32 | key);
14278 CVT_VAR (18, N_S16, N_F64 | key);
14279 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14280
5287ad62
JB
14281 return -1;
14282#undef CVT_VAR
14283}
14284
037e8744
JB
14285/* Neon-syntax VFP conversions. */
14286
5287ad62 14287static void
037e8744 14288do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14289{
037e8744 14290 const char *opname = 0;
5f4273c7 14291
037e8744 14292 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14293 {
037e8744
JB
14294 /* Conversions with immediate bitshift. */
14295 const char *enc[] =
14296 {
14297 "ftosls",
14298 "ftouls",
14299 "fsltos",
14300 "fultos",
14301 NULL,
14302 NULL,
8e79c3df
CM
14303 NULL,
14304 NULL,
037e8744
JB
14305 "ftosld",
14306 "ftould",
14307 "fsltod",
14308 "fultod",
14309 "fshtos",
14310 "fuhtos",
14311 "fshtod",
14312 "fuhtod",
14313 "ftoshs",
14314 "ftouhs",
14315 "ftoshd",
14316 "ftouhd"
14317 };
14318
14319 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14320 {
14321 opname = enc[flavour];
14322 constraint (inst.operands[0].reg != inst.operands[1].reg,
14323 _("operands 0 and 1 must be the same register"));
14324 inst.operands[1] = inst.operands[2];
14325 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14326 }
5287ad62
JB
14327 }
14328 else
14329 {
037e8744
JB
14330 /* Conversions without bitshift. */
14331 const char *enc[] =
14332 {
14333 "ftosis",
14334 "ftouis",
14335 "fsitos",
14336 "fuitos",
8e79c3df
CM
14337 "NULL",
14338 "NULL",
037e8744
JB
14339 "fcvtsd",
14340 "fcvtds",
14341 "ftosid",
14342 "ftouid",
14343 "fsitod",
14344 "fuitod"
14345 };
14346
14347 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14348 opname = enc[flavour];
14349 }
14350
14351 if (opname)
14352 do_vfp_nsyn_opcode (opname);
14353}
14354
14355static void
14356do_vfp_nsyn_cvtz (void)
14357{
14358 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14359 int flavour = neon_cvt_flavour (rs);
14360 const char *enc[] =
14361 {
14362 "ftosizs",
14363 "ftouizs",
14364 NULL,
14365 NULL,
14366 NULL,
14367 NULL,
8e79c3df
CM
14368 NULL,
14369 NULL,
037e8744
JB
14370 "ftosizd",
14371 "ftouizd"
14372 };
14373
14374 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14375 do_vfp_nsyn_opcode (enc[flavour]);
14376}
f31fef98 14377
037e8744 14378static void
e3e535bc 14379do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14380{
14381 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14382 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14383 int flavour = neon_cvt_flavour (rs);
14384
e3e535bc
NC
14385 /* PR11109: Handle round-to-zero for VCVT conversions. */
14386 if (round_to_zero
14387 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14388 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14389 && (rs == NS_FD || rs == NS_FF))
14390 {
14391 do_vfp_nsyn_cvtz ();
14392 return;
14393 }
14394
037e8744 14395 /* VFP rather than Neon conversions. */
8e79c3df 14396 if (flavour >= 6)
037e8744
JB
14397 {
14398 do_vfp_nsyn_cvt (rs, flavour);
14399 return;
14400 }
14401
14402 switch (rs)
14403 {
14404 case NS_DDI:
14405 case NS_QQI:
14406 {
35997600
NC
14407 unsigned immbits;
14408 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14409
037e8744
JB
14410 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14411 return;
14412
14413 /* Fixed-point conversion with #0 immediate is encoded as an
14414 integer conversion. */
14415 if (inst.operands[2].present && inst.operands[2].imm == 0)
14416 goto int_encode;
35997600 14417 immbits = 32 - inst.operands[2].imm;
88714cb8 14418 NEON_ENCODE (IMMED, inst);
037e8744
JB
14419 if (flavour != -1)
14420 inst.instruction |= enctab[flavour];
14421 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14422 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14423 inst.instruction |= LOW4 (inst.operands[1].reg);
14424 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14425 inst.instruction |= neon_quad (rs) << 6;
14426 inst.instruction |= 1 << 21;
14427 inst.instruction |= immbits << 16;
14428
88714cb8 14429 neon_dp_fixup (&inst);
037e8744
JB
14430 }
14431 break;
14432
14433 case NS_DD:
14434 case NS_QQ:
14435 int_encode:
14436 {
14437 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14438
88714cb8 14439 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14440
14441 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14442 return;
14443
14444 if (flavour != -1)
14445 inst.instruction |= enctab[flavour];
14446
14447 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14448 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14449 inst.instruction |= LOW4 (inst.operands[1].reg);
14450 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14451 inst.instruction |= neon_quad (rs) << 6;
14452 inst.instruction |= 2 << 18;
14453
88714cb8 14454 neon_dp_fixup (&inst);
037e8744
JB
14455 }
14456 break;
14457
8e79c3df
CM
14458 /* Half-precision conversions for Advanced SIMD -- neon. */
14459 case NS_QD:
14460 case NS_DQ:
14461
14462 if ((rs == NS_DQ)
14463 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14464 {
14465 as_bad (_("operand size must match register width"));
14466 break;
14467 }
14468
14469 if ((rs == NS_QD)
14470 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14471 {
14472 as_bad (_("operand size must match register width"));
14473 break;
14474 }
14475
14476 if (rs == NS_DQ)
14477 inst.instruction = 0x3b60600;
14478 else
14479 inst.instruction = 0x3b60700;
14480
14481 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14482 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14483 inst.instruction |= LOW4 (inst.operands[1].reg);
14484 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14485 neon_dp_fixup (&inst);
8e79c3df
CM
14486 break;
14487
037e8744
JB
14488 default:
14489 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14490 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14491 }
5287ad62
JB
14492}
14493
e3e535bc
NC
14494static void
14495do_neon_cvtr (void)
14496{
14497 do_neon_cvt_1 (FALSE);
14498}
14499
14500static void
14501do_neon_cvt (void)
14502{
14503 do_neon_cvt_1 (TRUE);
14504}
14505
8e79c3df
CM
14506static void
14507do_neon_cvtb (void)
14508{
14509 inst.instruction = 0xeb20a40;
14510
14511 /* The sizes are attached to the mnemonic. */
14512 if (inst.vectype.el[0].type != NT_invtype
14513 && inst.vectype.el[0].size == 16)
14514 inst.instruction |= 0x00010000;
14515
14516 /* Programmer's syntax: the sizes are attached to the operands. */
14517 else if (inst.operands[0].vectype.type != NT_invtype
14518 && inst.operands[0].vectype.size == 16)
14519 inst.instruction |= 0x00010000;
14520
14521 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14522 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14523 do_vfp_cond_or_thumb ();
14524}
14525
14526
14527static void
14528do_neon_cvtt (void)
14529{
14530 do_neon_cvtb ();
14531 inst.instruction |= 0x80;
14532}
14533
5287ad62
JB
14534static void
14535neon_move_immediate (void)
14536{
037e8744
JB
14537 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14538 struct neon_type_el et = neon_check_type (2, rs,
14539 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14540 unsigned immlo, immhi = 0, immbits;
c96612cc 14541 int op, cmode, float_p;
5287ad62 14542
037e8744
JB
14543 constraint (et.type == NT_invtype,
14544 _("operand size must be specified for immediate VMOV"));
14545
5287ad62
JB
14546 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14547 op = (inst.instruction & (1 << 5)) != 0;
14548
14549 immlo = inst.operands[1].imm;
14550 if (inst.operands[1].regisimm)
14551 immhi = inst.operands[1].reg;
14552
14553 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14554 _("immediate has bits set outside the operand size"));
14555
c96612cc
JB
14556 float_p = inst.operands[1].immisfloat;
14557
14558 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14559 et.size, et.type)) == FAIL)
5287ad62
JB
14560 {
14561 /* Invert relevant bits only. */
14562 neon_invert_size (&immlo, &immhi, et.size);
14563 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14564 with one or the other; those cases are caught by
14565 neon_cmode_for_move_imm. */
14566 op = !op;
c96612cc
JB
14567 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14568 &op, et.size, et.type)) == FAIL)
5287ad62 14569 {
dcbf9037 14570 first_error (_("immediate out of range"));
5287ad62
JB
14571 return;
14572 }
14573 }
14574
14575 inst.instruction &= ~(1 << 5);
14576 inst.instruction |= op << 5;
14577
14578 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14579 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14580 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14581 inst.instruction |= cmode << 8;
14582
14583 neon_write_immbits (immbits);
14584}
14585
14586static void
14587do_neon_mvn (void)
14588{
14589 if (inst.operands[1].isreg)
14590 {
037e8744 14591 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14592
88714cb8 14593 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14594 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14595 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14596 inst.instruction |= LOW4 (inst.operands[1].reg);
14597 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14598 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14599 }
14600 else
14601 {
88714cb8 14602 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14603 neon_move_immediate ();
14604 }
14605
88714cb8 14606 neon_dp_fixup (&inst);
5287ad62
JB
14607}
14608
14609/* Encode instructions of form:
14610
14611 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14612 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14613
14614static void
14615neon_mixed_length (struct neon_type_el et, unsigned size)
14616{
14617 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14618 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14619 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14620 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14621 inst.instruction |= LOW4 (inst.operands[2].reg);
14622 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14623 inst.instruction |= (et.type == NT_unsigned) << 24;
14624 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14625
88714cb8 14626 neon_dp_fixup (&inst);
5287ad62
JB
14627}
14628
14629static void
14630do_neon_dyadic_long (void)
14631{
14632 /* FIXME: Type checking for lengthening op. */
14633 struct neon_type_el et = neon_check_type (3, NS_QDD,
14634 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14635 neon_mixed_length (et, et.size);
14636}
14637
14638static void
14639do_neon_abal (void)
14640{
14641 struct neon_type_el et = neon_check_type (3, NS_QDD,
14642 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14643 neon_mixed_length (et, et.size);
14644}
14645
14646static void
14647neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14648{
14649 if (inst.operands[2].isscalar)
14650 {
dcbf9037
JB
14651 struct neon_type_el et = neon_check_type (3, NS_QDS,
14652 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14653 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14654 neon_mul_mac (et, et.type == NT_unsigned);
14655 }
14656 else
14657 {
14658 struct neon_type_el et = neon_check_type (3, NS_QDD,
14659 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14660 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14661 neon_mixed_length (et, et.size);
14662 }
14663}
14664
14665static void
14666do_neon_mac_maybe_scalar_long (void)
14667{
14668 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14669}
14670
14671static void
14672do_neon_dyadic_wide (void)
14673{
14674 struct neon_type_el et = neon_check_type (3, NS_QQD,
14675 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14676 neon_mixed_length (et, et.size);
14677}
14678
14679static void
14680do_neon_dyadic_narrow (void)
14681{
14682 struct neon_type_el et = neon_check_type (3, NS_QDD,
14683 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14684 /* Operand sign is unimportant, and the U bit is part of the opcode,
14685 so force the operand type to integer. */
14686 et.type = NT_integer;
5287ad62
JB
14687 neon_mixed_length (et, et.size / 2);
14688}
14689
14690static void
14691do_neon_mul_sat_scalar_long (void)
14692{
14693 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14694}
14695
14696static void
14697do_neon_vmull (void)
14698{
14699 if (inst.operands[2].isscalar)
14700 do_neon_mac_maybe_scalar_long ();
14701 else
14702 {
14703 struct neon_type_el et = neon_check_type (3, NS_QDD,
14704 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14705 if (et.type == NT_poly)
88714cb8 14706 NEON_ENCODE (POLY, inst);
5287ad62 14707 else
88714cb8 14708 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14709 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14710 zero. Should be OK as-is. */
14711 neon_mixed_length (et, et.size);
14712 }
14713}
14714
14715static void
14716do_neon_ext (void)
14717{
037e8744 14718 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14719 struct neon_type_el et = neon_check_type (3, rs,
14720 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14721 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14722
14723 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14724 _("shift out of range"));
5287ad62
JB
14725 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14726 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14727 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14728 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14729 inst.instruction |= LOW4 (inst.operands[2].reg);
14730 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14731 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14732 inst.instruction |= imm << 8;
5f4273c7 14733
88714cb8 14734 neon_dp_fixup (&inst);
5287ad62
JB
14735}
14736
14737static void
14738do_neon_rev (void)
14739{
037e8744 14740 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14741 struct neon_type_el et = neon_check_type (2, rs,
14742 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14743 unsigned op = (inst.instruction >> 7) & 3;
14744 /* N (width of reversed regions) is encoded as part of the bitmask. We
14745 extract it here to check the elements to be reversed are smaller.
14746 Otherwise we'd get a reserved instruction. */
14747 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14748 gas_assert (elsize != 0);
5287ad62
JB
14749 constraint (et.size >= elsize,
14750 _("elements must be smaller than reversal region"));
037e8744 14751 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14752}
14753
14754static void
14755do_neon_dup (void)
14756{
14757 if (inst.operands[1].isscalar)
14758 {
037e8744 14759 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14760 struct neon_type_el et = neon_check_type (2, rs,
14761 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14762 unsigned sizebits = et.size >> 3;
dcbf9037 14763 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14764 int logsize = neon_logbits (et.size);
dcbf9037 14765 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14766
14767 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14768 return;
14769
88714cb8 14770 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14771 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14772 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14773 inst.instruction |= LOW4 (dm);
14774 inst.instruction |= HI1 (dm) << 5;
037e8744 14775 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14776 inst.instruction |= x << 17;
14777 inst.instruction |= sizebits << 16;
5f4273c7 14778
88714cb8 14779 neon_dp_fixup (&inst);
5287ad62
JB
14780 }
14781 else
14782 {
037e8744
JB
14783 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14784 struct neon_type_el et = neon_check_type (2, rs,
14785 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14786 /* Duplicate ARM register to lanes of vector. */
88714cb8 14787 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14788 switch (et.size)
14789 {
14790 case 8: inst.instruction |= 0x400000; break;
14791 case 16: inst.instruction |= 0x000020; break;
14792 case 32: inst.instruction |= 0x000000; break;
14793 default: break;
14794 }
14795 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14796 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14797 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14798 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14799 /* The encoding for this instruction is identical for the ARM and Thumb
14800 variants, except for the condition field. */
037e8744 14801 do_vfp_cond_or_thumb ();
5287ad62
JB
14802 }
14803}
14804
14805/* VMOV has particularly many variations. It can be one of:
14806 0. VMOV<c><q> <Qd>, <Qm>
14807 1. VMOV<c><q> <Dd>, <Dm>
14808 (Register operations, which are VORR with Rm = Rn.)
14809 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14810 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14811 (Immediate loads.)
14812 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14813 (ARM register to scalar.)
14814 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14815 (Two ARM registers to vector.)
14816 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14817 (Scalar to ARM register.)
14818 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14819 (Vector to two ARM registers.)
037e8744
JB
14820 8. VMOV.F32 <Sd>, <Sm>
14821 9. VMOV.F64 <Dd>, <Dm>
14822 (VFP register moves.)
14823 10. VMOV.F32 <Sd>, #imm
14824 11. VMOV.F64 <Dd>, #imm
14825 (VFP float immediate load.)
14826 12. VMOV <Rd>, <Sm>
14827 (VFP single to ARM reg.)
14828 13. VMOV <Sd>, <Rm>
14829 (ARM reg to VFP single.)
14830 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14831 (Two ARM regs to two VFP singles.)
14832 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14833 (Two VFP singles to two ARM regs.)
5f4273c7 14834
037e8744
JB
14835 These cases can be disambiguated using neon_select_shape, except cases 1/9
14836 and 3/11 which depend on the operand type too.
5f4273c7 14837
5287ad62 14838 All the encoded bits are hardcoded by this function.
5f4273c7 14839
b7fc2769
JB
14840 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14841 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14842
5287ad62 14843 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14844 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14845
14846static void
14847do_neon_mov (void)
14848{
037e8744
JB
14849 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14850 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14851 NS_NULL);
14852 struct neon_type_el et;
14853 const char *ldconst = 0;
5287ad62 14854
037e8744 14855 switch (rs)
5287ad62 14856 {
037e8744
JB
14857 case NS_DD: /* case 1/9. */
14858 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14859 /* It is not an error here if no type is given. */
14860 inst.error = NULL;
14861 if (et.type == NT_float && et.size == 64)
5287ad62 14862 {
037e8744
JB
14863 do_vfp_nsyn_opcode ("fcpyd");
14864 break;
5287ad62 14865 }
037e8744 14866 /* fall through. */
5287ad62 14867
037e8744
JB
14868 case NS_QQ: /* case 0/1. */
14869 {
14870 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14871 return;
14872 /* The architecture manual I have doesn't explicitly state which
14873 value the U bit should have for register->register moves, but
14874 the equivalent VORR instruction has U = 0, so do that. */
14875 inst.instruction = 0x0200110;
14876 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14877 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14878 inst.instruction |= LOW4 (inst.operands[1].reg);
14879 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14880 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14881 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14882 inst.instruction |= neon_quad (rs) << 6;
14883
88714cb8 14884 neon_dp_fixup (&inst);
037e8744
JB
14885 }
14886 break;
5f4273c7 14887
037e8744
JB
14888 case NS_DI: /* case 3/11. */
14889 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14890 inst.error = NULL;
14891 if (et.type == NT_float && et.size == 64)
5287ad62 14892 {
037e8744
JB
14893 /* case 11 (fconstd). */
14894 ldconst = "fconstd";
14895 goto encode_fconstd;
5287ad62 14896 }
037e8744
JB
14897 /* fall through. */
14898
14899 case NS_QI: /* case 2/3. */
14900 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14901 return;
14902 inst.instruction = 0x0800010;
14903 neon_move_immediate ();
88714cb8 14904 neon_dp_fixup (&inst);
5287ad62 14905 break;
5f4273c7 14906
037e8744
JB
14907 case NS_SR: /* case 4. */
14908 {
14909 unsigned bcdebits = 0;
91d6fa6a 14910 int logsize;
037e8744
JB
14911 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14912 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14913
91d6fa6a
NC
14914 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14915 logsize = neon_logbits (et.size);
14916
037e8744
JB
14917 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14918 _(BAD_FPU));
14919 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14920 && et.size != 32, _(BAD_FPU));
14921 constraint (et.type == NT_invtype, _("bad type for scalar"));
14922 constraint (x >= 64 / et.size, _("scalar index out of range"));
14923
14924 switch (et.size)
14925 {
14926 case 8: bcdebits = 0x8; break;
14927 case 16: bcdebits = 0x1; break;
14928 case 32: bcdebits = 0x0; break;
14929 default: ;
14930 }
14931
14932 bcdebits |= x << logsize;
14933
14934 inst.instruction = 0xe000b10;
14935 do_vfp_cond_or_thumb ();
14936 inst.instruction |= LOW4 (dn) << 16;
14937 inst.instruction |= HI1 (dn) << 7;
14938 inst.instruction |= inst.operands[1].reg << 12;
14939 inst.instruction |= (bcdebits & 3) << 5;
14940 inst.instruction |= (bcdebits >> 2) << 21;
14941 }
14942 break;
5f4273c7 14943
037e8744 14944 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14945 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14946 _(BAD_FPU));
b7fc2769 14947
037e8744
JB
14948 inst.instruction = 0xc400b10;
14949 do_vfp_cond_or_thumb ();
14950 inst.instruction |= LOW4 (inst.operands[0].reg);
14951 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14952 inst.instruction |= inst.operands[1].reg << 12;
14953 inst.instruction |= inst.operands[2].reg << 16;
14954 break;
5f4273c7 14955
037e8744
JB
14956 case NS_RS: /* case 6. */
14957 {
91d6fa6a 14958 unsigned logsize;
037e8744
JB
14959 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14960 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14961 unsigned abcdebits = 0;
14962
91d6fa6a
NC
14963 et = neon_check_type (2, NS_NULL,
14964 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14965 logsize = neon_logbits (et.size);
14966
037e8744
JB
14967 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14968 _(BAD_FPU));
14969 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14970 && et.size != 32, _(BAD_FPU));
14971 constraint (et.type == NT_invtype, _("bad type for scalar"));
14972 constraint (x >= 64 / et.size, _("scalar index out of range"));
14973
14974 switch (et.size)
14975 {
14976 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14977 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14978 case 32: abcdebits = 0x00; break;
14979 default: ;
14980 }
14981
14982 abcdebits |= x << logsize;
14983 inst.instruction = 0xe100b10;
14984 do_vfp_cond_or_thumb ();
14985 inst.instruction |= LOW4 (dn) << 16;
14986 inst.instruction |= HI1 (dn) << 7;
14987 inst.instruction |= inst.operands[0].reg << 12;
14988 inst.instruction |= (abcdebits & 3) << 5;
14989 inst.instruction |= (abcdebits >> 2) << 21;
14990 }
14991 break;
5f4273c7 14992
037e8744
JB
14993 case NS_RRD: /* case 7 (fmrrd). */
14994 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14995 _(BAD_FPU));
14996
14997 inst.instruction = 0xc500b10;
14998 do_vfp_cond_or_thumb ();
14999 inst.instruction |= inst.operands[0].reg << 12;
15000 inst.instruction |= inst.operands[1].reg << 16;
15001 inst.instruction |= LOW4 (inst.operands[2].reg);
15002 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15003 break;
5f4273c7 15004
037e8744
JB
15005 case NS_FF: /* case 8 (fcpys). */
15006 do_vfp_nsyn_opcode ("fcpys");
15007 break;
5f4273c7 15008
037e8744
JB
15009 case NS_FI: /* case 10 (fconsts). */
15010 ldconst = "fconsts";
15011 encode_fconstd:
15012 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15013 {
037e8744
JB
15014 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15015 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15016 }
15017 else
037e8744
JB
15018 first_error (_("immediate out of range"));
15019 break;
5f4273c7 15020
037e8744
JB
15021 case NS_RF: /* case 12 (fmrs). */
15022 do_vfp_nsyn_opcode ("fmrs");
15023 break;
5f4273c7 15024
037e8744
JB
15025 case NS_FR: /* case 13 (fmsr). */
15026 do_vfp_nsyn_opcode ("fmsr");
15027 break;
5f4273c7 15028
037e8744
JB
15029 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15030 (one of which is a list), but we have parsed four. Do some fiddling to
15031 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15032 expect. */
15033 case NS_RRFF: /* case 14 (fmrrs). */
15034 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15035 _("VFP registers must be adjacent"));
15036 inst.operands[2].imm = 2;
15037 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15038 do_vfp_nsyn_opcode ("fmrrs");
15039 break;
5f4273c7 15040
037e8744
JB
15041 case NS_FFRR: /* case 15 (fmsrr). */
15042 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15043 _("VFP registers must be adjacent"));
15044 inst.operands[1] = inst.operands[2];
15045 inst.operands[2] = inst.operands[3];
15046 inst.operands[0].imm = 2;
15047 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15048 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15049 break;
5f4273c7 15050
5287ad62
JB
15051 default:
15052 abort ();
15053 }
15054}
15055
15056static void
15057do_neon_rshift_round_imm (void)
15058{
037e8744 15059 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15060 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15061 int imm = inst.operands[2].imm;
15062
15063 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15064 if (imm == 0)
15065 {
15066 inst.operands[2].present = 0;
15067 do_neon_mov ();
15068 return;
15069 }
15070
15071 constraint (imm < 1 || (unsigned)imm > et.size,
15072 _("immediate out of range for shift"));
037e8744 15073 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15074 et.size - imm);
15075}
15076
15077static void
15078do_neon_movl (void)
15079{
15080 struct neon_type_el et = neon_check_type (2, NS_QD,
15081 N_EQK | N_DBL, N_SU_32 | N_KEY);
15082 unsigned sizebits = et.size >> 3;
15083 inst.instruction |= sizebits << 19;
15084 neon_two_same (0, et.type == NT_unsigned, -1);
15085}
15086
15087static void
15088do_neon_trn (void)
15089{
037e8744 15090 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15091 struct neon_type_el et = neon_check_type (2, rs,
15092 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15093 NEON_ENCODE (INTEGER, inst);
037e8744 15094 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15095}
15096
15097static void
15098do_neon_zip_uzp (void)
15099{
037e8744 15100 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15101 struct neon_type_el et = neon_check_type (2, rs,
15102 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15103 if (rs == NS_DD && et.size == 32)
15104 {
15105 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15106 inst.instruction = N_MNEM_vtrn;
15107 do_neon_trn ();
15108 return;
15109 }
037e8744 15110 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15111}
15112
15113static void
15114do_neon_sat_abs_neg (void)
15115{
037e8744 15116 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15117 struct neon_type_el et = neon_check_type (2, rs,
15118 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15119 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15120}
15121
15122static void
15123do_neon_pair_long (void)
15124{
037e8744 15125 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15126 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15127 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15128 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15129 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15130}
15131
15132static void
15133do_neon_recip_est (void)
15134{
037e8744 15135 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15136 struct neon_type_el et = neon_check_type (2, rs,
15137 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15138 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15139 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15140}
15141
15142static void
15143do_neon_cls (void)
15144{
037e8744 15145 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15146 struct neon_type_el et = neon_check_type (2, rs,
15147 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15148 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15149}
15150
15151static void
15152do_neon_clz (void)
15153{
037e8744 15154 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15155 struct neon_type_el et = neon_check_type (2, rs,
15156 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15157 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15158}
15159
15160static void
15161do_neon_cnt (void)
15162{
037e8744 15163 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15164 struct neon_type_el et = neon_check_type (2, rs,
15165 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15166 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15167}
15168
15169static void
15170do_neon_swp (void)
15171{
037e8744
JB
15172 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15173 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15174}
15175
15176static void
15177do_neon_tbl_tbx (void)
15178{
15179 unsigned listlenbits;
dcbf9037 15180 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15181
5287ad62
JB
15182 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15183 {
dcbf9037 15184 first_error (_("bad list length for table lookup"));
5287ad62
JB
15185 return;
15186 }
5f4273c7 15187
5287ad62
JB
15188 listlenbits = inst.operands[1].imm - 1;
15189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15190 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15191 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15192 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15193 inst.instruction |= LOW4 (inst.operands[2].reg);
15194 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15195 inst.instruction |= listlenbits << 8;
5f4273c7 15196
88714cb8 15197 neon_dp_fixup (&inst);
5287ad62
JB
15198}
15199
15200static void
15201do_neon_ldm_stm (void)
15202{
15203 /* P, U and L bits are part of bitmask. */
15204 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15205 unsigned offsetbits = inst.operands[1].imm * 2;
15206
037e8744
JB
15207 if (inst.operands[1].issingle)
15208 {
15209 do_vfp_nsyn_ldm_stm (is_dbmode);
15210 return;
15211 }
15212
5287ad62
JB
15213 constraint (is_dbmode && !inst.operands[0].writeback,
15214 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15215
15216 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15217 _("register list must contain at least 1 and at most 16 "
15218 "registers"));
15219
15220 inst.instruction |= inst.operands[0].reg << 16;
15221 inst.instruction |= inst.operands[0].writeback << 21;
15222 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15223 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15224
15225 inst.instruction |= offsetbits;
5f4273c7 15226
037e8744 15227 do_vfp_cond_or_thumb ();
5287ad62
JB
15228}
15229
15230static void
15231do_neon_ldr_str (void)
15232{
5287ad62 15233 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15234
6844b2c2
MGD
15235 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15236 And is UNPREDICTABLE in thumb mode. */
15237 if (!is_ldr
15238 && inst.operands[1].reg == REG_PC
15239 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15240 {
15241 if (!thumb_mode && warn_on_deprecated)
15242 as_warn (_("Use of PC here is deprecated"));
15243 else
15244 inst.error = _("Use of PC here is UNPREDICTABLE");
15245 }
15246
037e8744
JB
15247 if (inst.operands[0].issingle)
15248 {
cd2f129f
JB
15249 if (is_ldr)
15250 do_vfp_nsyn_opcode ("flds");
15251 else
15252 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15253 }
15254 else
5287ad62 15255 {
cd2f129f
JB
15256 if (is_ldr)
15257 do_vfp_nsyn_opcode ("fldd");
5287ad62 15258 else
cd2f129f 15259 do_vfp_nsyn_opcode ("fstd");
5287ad62 15260 }
5287ad62
JB
15261}
15262
15263/* "interleave" version also handles non-interleaving register VLD1/VST1
15264 instructions. */
15265
15266static void
15267do_neon_ld_st_interleave (void)
15268{
037e8744 15269 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15270 N_8 | N_16 | N_32 | N_64);
15271 unsigned alignbits = 0;
15272 unsigned idx;
15273 /* The bits in this table go:
15274 0: register stride of one (0) or two (1)
15275 1,2: register list length, minus one (1, 2, 3, 4).
15276 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15277 We use -1 for invalid entries. */
15278 const int typetable[] =
15279 {
15280 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15281 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15282 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15283 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15284 };
15285 int typebits;
15286
dcbf9037
JB
15287 if (et.type == NT_invtype)
15288 return;
15289
5287ad62
JB
15290 if (inst.operands[1].immisalign)
15291 switch (inst.operands[1].imm >> 8)
15292 {
15293 case 64: alignbits = 1; break;
15294 case 128:
e23c0ad8
JZ
15295 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15296 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15297 goto bad_alignment;
15298 alignbits = 2;
15299 break;
15300 case 256:
e23c0ad8 15301 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15302 goto bad_alignment;
15303 alignbits = 3;
15304 break;
15305 default:
15306 bad_alignment:
dcbf9037 15307 first_error (_("bad alignment"));
5287ad62
JB
15308 return;
15309 }
15310
15311 inst.instruction |= alignbits << 4;
15312 inst.instruction |= neon_logbits (et.size) << 6;
15313
15314 /* Bits [4:6] of the immediate in a list specifier encode register stride
15315 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15316 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15317 up the right value for "type" in a table based on this value and the given
15318 list style, then stick it back. */
15319 idx = ((inst.operands[0].imm >> 4) & 7)
15320 | (((inst.instruction >> 8) & 3) << 3);
15321
15322 typebits = typetable[idx];
5f4273c7 15323
5287ad62
JB
15324 constraint (typebits == -1, _("bad list type for instruction"));
15325
15326 inst.instruction &= ~0xf00;
15327 inst.instruction |= typebits << 8;
15328}
15329
15330/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15331 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15332 otherwise. The variable arguments are a list of pairs of legal (size, align)
15333 values, terminated with -1. */
15334
15335static int
15336neon_alignment_bit (int size, int align, int *do_align, ...)
15337{
15338 va_list ap;
15339 int result = FAIL, thissize, thisalign;
5f4273c7 15340
5287ad62
JB
15341 if (!inst.operands[1].immisalign)
15342 {
15343 *do_align = 0;
15344 return SUCCESS;
15345 }
5f4273c7 15346
5287ad62
JB
15347 va_start (ap, do_align);
15348
15349 do
15350 {
15351 thissize = va_arg (ap, int);
15352 if (thissize == -1)
15353 break;
15354 thisalign = va_arg (ap, int);
15355
15356 if (size == thissize && align == thisalign)
15357 result = SUCCESS;
15358 }
15359 while (result != SUCCESS);
15360
15361 va_end (ap);
15362
15363 if (result == SUCCESS)
15364 *do_align = 1;
15365 else
dcbf9037 15366 first_error (_("unsupported alignment for instruction"));
5f4273c7 15367
5287ad62
JB
15368 return result;
15369}
15370
15371static void
15372do_neon_ld_st_lane (void)
15373{
037e8744 15374 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15375 int align_good, do_align = 0;
15376 int logsize = neon_logbits (et.size);
15377 int align = inst.operands[1].imm >> 8;
15378 int n = (inst.instruction >> 8) & 3;
15379 int max_el = 64 / et.size;
5f4273c7 15380
dcbf9037
JB
15381 if (et.type == NT_invtype)
15382 return;
5f4273c7 15383
5287ad62
JB
15384 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15385 _("bad list length"));
15386 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15387 _("scalar index out of range"));
15388 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15389 && et.size == 8,
15390 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15391
5287ad62
JB
15392 switch (n)
15393 {
15394 case 0: /* VLD1 / VST1. */
15395 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15396 32, 32, -1);
15397 if (align_good == FAIL)
15398 return;
15399 if (do_align)
15400 {
15401 unsigned alignbits = 0;
15402 switch (et.size)
15403 {
15404 case 16: alignbits = 0x1; break;
15405 case 32: alignbits = 0x3; break;
15406 default: ;
15407 }
15408 inst.instruction |= alignbits << 4;
15409 }
15410 break;
15411
15412 case 1: /* VLD2 / VST2. */
15413 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15414 32, 64, -1);
15415 if (align_good == FAIL)
15416 return;
15417 if (do_align)
15418 inst.instruction |= 1 << 4;
15419 break;
15420
15421 case 2: /* VLD3 / VST3. */
15422 constraint (inst.operands[1].immisalign,
15423 _("can't use alignment with this instruction"));
15424 break;
15425
15426 case 3: /* VLD4 / VST4. */
15427 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15428 16, 64, 32, 64, 32, 128, -1);
15429 if (align_good == FAIL)
15430 return;
15431 if (do_align)
15432 {
15433 unsigned alignbits = 0;
15434 switch (et.size)
15435 {
15436 case 8: alignbits = 0x1; break;
15437 case 16: alignbits = 0x1; break;
15438 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15439 default: ;
15440 }
15441 inst.instruction |= alignbits << 4;
15442 }
15443 break;
15444
15445 default: ;
15446 }
15447
15448 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15449 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15450 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15451
5287ad62
JB
15452 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15453 inst.instruction |= logsize << 10;
15454}
15455
15456/* Encode single n-element structure to all lanes VLD<n> instructions. */
15457
15458static void
15459do_neon_ld_dup (void)
15460{
037e8744 15461 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15462 int align_good, do_align = 0;
15463
dcbf9037
JB
15464 if (et.type == NT_invtype)
15465 return;
15466
5287ad62
JB
15467 switch ((inst.instruction >> 8) & 3)
15468 {
15469 case 0: /* VLD1. */
9c2799c2 15470 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15471 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15472 &do_align, 16, 16, 32, 32, -1);
15473 if (align_good == FAIL)
15474 return;
15475 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15476 {
15477 case 1: break;
15478 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15479 default: first_error (_("bad list length")); return;
5287ad62
JB
15480 }
15481 inst.instruction |= neon_logbits (et.size) << 6;
15482 break;
15483
15484 case 1: /* VLD2. */
15485 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15486 &do_align, 8, 16, 16, 32, 32, 64, -1);
15487 if (align_good == FAIL)
15488 return;
15489 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15490 _("bad list length"));
15491 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15492 inst.instruction |= 1 << 5;
15493 inst.instruction |= neon_logbits (et.size) << 6;
15494 break;
15495
15496 case 2: /* VLD3. */
15497 constraint (inst.operands[1].immisalign,
15498 _("can't use alignment with this instruction"));
15499 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15500 _("bad list length"));
15501 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15502 inst.instruction |= 1 << 5;
15503 inst.instruction |= neon_logbits (et.size) << 6;
15504 break;
15505
15506 case 3: /* VLD4. */
15507 {
15508 int align = inst.operands[1].imm >> 8;
15509 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15510 16, 64, 32, 64, 32, 128, -1);
15511 if (align_good == FAIL)
15512 return;
15513 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15514 _("bad list length"));
15515 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15516 inst.instruction |= 1 << 5;
15517 if (et.size == 32 && align == 128)
15518 inst.instruction |= 0x3 << 6;
15519 else
15520 inst.instruction |= neon_logbits (et.size) << 6;
15521 }
15522 break;
15523
15524 default: ;
15525 }
15526
15527 inst.instruction |= do_align << 4;
15528}
15529
15530/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15531 apart from bits [11:4]. */
15532
15533static void
15534do_neon_ldx_stx (void)
15535{
b1a769ed
DG
15536 if (inst.operands[1].isreg)
15537 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15538
5287ad62
JB
15539 switch (NEON_LANE (inst.operands[0].imm))
15540 {
15541 case NEON_INTERLEAVE_LANES:
88714cb8 15542 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15543 do_neon_ld_st_interleave ();
15544 break;
5f4273c7 15545
5287ad62 15546 case NEON_ALL_LANES:
88714cb8 15547 NEON_ENCODE (DUP, inst);
5287ad62
JB
15548 do_neon_ld_dup ();
15549 break;
5f4273c7 15550
5287ad62 15551 default:
88714cb8 15552 NEON_ENCODE (LANE, inst);
5287ad62
JB
15553 do_neon_ld_st_lane ();
15554 }
15555
15556 /* L bit comes from bit mask. */
15557 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15558 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15559 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15560
5287ad62
JB
15561 if (inst.operands[1].postind)
15562 {
15563 int postreg = inst.operands[1].imm & 0xf;
15564 constraint (!inst.operands[1].immisreg,
15565 _("post-index must be a register"));
15566 constraint (postreg == 0xd || postreg == 0xf,
15567 _("bad register for post-index"));
15568 inst.instruction |= postreg;
15569 }
15570 else if (inst.operands[1].writeback)
15571 {
15572 inst.instruction |= 0xd;
15573 }
15574 else
5f4273c7
NC
15575 inst.instruction |= 0xf;
15576
5287ad62
JB
15577 if (thumb_mode)
15578 inst.instruction |= 0xf9000000;
15579 else
15580 inst.instruction |= 0xf4000000;
15581}
5287ad62
JB
15582\f
15583/* Overall per-instruction processing. */
15584
15585/* We need to be able to fix up arbitrary expressions in some statements.
15586 This is so that we can handle symbols that are an arbitrary distance from
15587 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15588 which returns part of an address in a form which will be valid for
15589 a data instruction. We do this by pushing the expression into a symbol
15590 in the expr_section, and creating a fix for that. */
15591
15592static void
15593fix_new_arm (fragS * frag,
15594 int where,
15595 short int size,
15596 expressionS * exp,
15597 int pc_rel,
15598 int reloc)
15599{
15600 fixS * new_fix;
15601
15602 switch (exp->X_op)
15603 {
15604 case O_constant:
6e7ce2cd
PB
15605 if (pc_rel)
15606 {
15607 /* Create an absolute valued symbol, so we have something to
15608 refer to in the object file. Unfortunately for us, gas's
15609 generic expression parsing will already have folded out
15610 any use of .set foo/.type foo %function that may have
15611 been used to set type information of the target location,
15612 that's being specified symbolically. We have to presume
15613 the user knows what they are doing. */
15614 char name[16 + 8];
15615 symbolS *symbol;
15616
15617 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15618
15619 symbol = symbol_find_or_make (name);
15620 S_SET_SEGMENT (symbol, absolute_section);
15621 symbol_set_frag (symbol, &zero_address_frag);
15622 S_SET_VALUE (symbol, exp->X_add_number);
15623 exp->X_op = O_symbol;
15624 exp->X_add_symbol = symbol;
15625 exp->X_add_number = 0;
15626 }
15627 /* FALLTHROUGH */
5287ad62
JB
15628 case O_symbol:
15629 case O_add:
15630 case O_subtract:
21d799b5
NC
15631 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15632 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15633 break;
15634
15635 default:
21d799b5
NC
15636 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15637 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15638 break;
15639 }
15640
15641 /* Mark whether the fix is to a THUMB instruction, or an ARM
15642 instruction. */
15643 new_fix->tc_fix_data = thumb_mode;
15644}
15645
15646/* Create a frg for an instruction requiring relaxation. */
15647static void
15648output_relax_insn (void)
15649{
15650 char * to;
15651 symbolS *sym;
0110f2b8
PB
15652 int offset;
15653
6e1cb1a6
PB
15654 /* The size of the instruction is unknown, so tie the debug info to the
15655 start of the instruction. */
15656 dwarf2_emit_insn (0);
6e1cb1a6 15657
0110f2b8
PB
15658 switch (inst.reloc.exp.X_op)
15659 {
15660 case O_symbol:
15661 sym = inst.reloc.exp.X_add_symbol;
15662 offset = inst.reloc.exp.X_add_number;
15663 break;
15664 case O_constant:
15665 sym = NULL;
15666 offset = inst.reloc.exp.X_add_number;
15667 break;
15668 default:
15669 sym = make_expr_symbol (&inst.reloc.exp);
15670 offset = 0;
15671 break;
15672 }
15673 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15674 inst.relax, sym, offset, NULL/*offset, opcode*/);
15675 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15676}
15677
15678/* Write a 32-bit thumb instruction to buf. */
15679static void
15680put_thumb32_insn (char * buf, unsigned long insn)
15681{
15682 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15683 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15684}
15685
b99bd4ef 15686static void
c19d1205 15687output_inst (const char * str)
b99bd4ef 15688{
c19d1205 15689 char * to = NULL;
b99bd4ef 15690
c19d1205 15691 if (inst.error)
b99bd4ef 15692 {
c19d1205 15693 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15694 return;
15695 }
5f4273c7
NC
15696 if (inst.relax)
15697 {
15698 output_relax_insn ();
0110f2b8 15699 return;
5f4273c7 15700 }
c19d1205
ZW
15701 if (inst.size == 0)
15702 return;
b99bd4ef 15703
c19d1205 15704 to = frag_more (inst.size);
8dc2430f
NC
15705 /* PR 9814: Record the thumb mode into the current frag so that we know
15706 what type of NOP padding to use, if necessary. We override any previous
15707 setting so that if the mode has changed then the NOPS that we use will
15708 match the encoding of the last instruction in the frag. */
cd000bff 15709 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15710
15711 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15712 {
9c2799c2 15713 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15714 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15715 }
c19d1205 15716 else if (inst.size > INSN_SIZE)
b99bd4ef 15717 {
9c2799c2 15718 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15719 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15720 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15721 }
c19d1205
ZW
15722 else
15723 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15724
c19d1205
ZW
15725 if (inst.reloc.type != BFD_RELOC_UNUSED)
15726 fix_new_arm (frag_now, to - frag_now->fr_literal,
15727 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15728 inst.reloc.type);
b99bd4ef 15729
c19d1205 15730 dwarf2_emit_insn (inst.size);
c19d1205 15731}
b99bd4ef 15732
e07e6e58
NC
15733static char *
15734output_it_inst (int cond, int mask, char * to)
15735{
15736 unsigned long instruction = 0xbf00;
15737
15738 mask &= 0xf;
15739 instruction |= mask;
15740 instruction |= cond << 4;
15741
15742 if (to == NULL)
15743 {
15744 to = frag_more (2);
15745#ifdef OBJ_ELF
15746 dwarf2_emit_insn (2);
15747#endif
15748 }
15749
15750 md_number_to_chars (to, instruction, 2);
15751
15752 return to;
15753}
15754
c19d1205
ZW
15755/* Tag values used in struct asm_opcode's tag field. */
15756enum opcode_tag
15757{
15758 OT_unconditional, /* Instruction cannot be conditionalized.
15759 The ARM condition field is still 0xE. */
15760 OT_unconditionalF, /* Instruction cannot be conditionalized
15761 and carries 0xF in its ARM condition field. */
15762 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15763 OT_csuffixF, /* Some forms of the instruction take a conditional
15764 suffix, others place 0xF where the condition field
15765 would be. */
c19d1205
ZW
15766 OT_cinfix3, /* Instruction takes a conditional infix,
15767 beginning at character index 3. (In
15768 unified mode, it becomes a suffix.) */
088fa78e
KH
15769 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15770 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15771 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15772 character index 3, even in unified mode. Used for
15773 legacy instructions where suffix and infix forms
15774 may be ambiguous. */
c19d1205 15775 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15776 suffix or an infix at character index 3. */
c19d1205
ZW
15777 OT_odd_infix_unc, /* This is the unconditional variant of an
15778 instruction that takes a conditional infix
15779 at an unusual position. In unified mode,
15780 this variant will accept a suffix. */
15781 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15782 are the conditional variants of instructions that
15783 take conditional infixes in unusual positions.
15784 The infix appears at character index
15785 (tag - OT_odd_infix_0). These are not accepted
15786 in unified mode. */
15787};
b99bd4ef 15788
c19d1205
ZW
15789/* Subroutine of md_assemble, responsible for looking up the primary
15790 opcode from the mnemonic the user wrote. STR points to the
15791 beginning of the mnemonic.
15792
15793 This is not simply a hash table lookup, because of conditional
15794 variants. Most instructions have conditional variants, which are
15795 expressed with a _conditional affix_ to the mnemonic. If we were
15796 to encode each conditional variant as a literal string in the opcode
15797 table, it would have approximately 20,000 entries.
15798
15799 Most mnemonics take this affix as a suffix, and in unified syntax,
15800 'most' is upgraded to 'all'. However, in the divided syntax, some
15801 instructions take the affix as an infix, notably the s-variants of
15802 the arithmetic instructions. Of those instructions, all but six
15803 have the infix appear after the third character of the mnemonic.
15804
15805 Accordingly, the algorithm for looking up primary opcodes given
15806 an identifier is:
15807
15808 1. Look up the identifier in the opcode table.
15809 If we find a match, go to step U.
15810
15811 2. Look up the last two characters of the identifier in the
15812 conditions table. If we find a match, look up the first N-2
15813 characters of the identifier in the opcode table. If we
15814 find a match, go to step CE.
15815
15816 3. Look up the fourth and fifth characters of the identifier in
15817 the conditions table. If we find a match, extract those
15818 characters from the identifier, and look up the remaining
15819 characters in the opcode table. If we find a match, go
15820 to step CM.
15821
15822 4. Fail.
15823
15824 U. Examine the tag field of the opcode structure, in case this is
15825 one of the six instructions with its conditional infix in an
15826 unusual place. If it is, the tag tells us where to find the
15827 infix; look it up in the conditions table and set inst.cond
15828 accordingly. Otherwise, this is an unconditional instruction.
15829 Again set inst.cond accordingly. Return the opcode structure.
15830
15831 CE. Examine the tag field to make sure this is an instruction that
15832 should receive a conditional suffix. If it is not, fail.
15833 Otherwise, set inst.cond from the suffix we already looked up,
15834 and return the opcode structure.
15835
15836 CM. Examine the tag field to make sure this is an instruction that
15837 should receive a conditional infix after the third character.
15838 If it is not, fail. Otherwise, undo the edits to the current
15839 line of input and proceed as for case CE. */
15840
15841static const struct asm_opcode *
15842opcode_lookup (char **str)
15843{
15844 char *end, *base;
15845 char *affix;
15846 const struct asm_opcode *opcode;
15847 const struct asm_cond *cond;
e3cb604e 15848 char save[2];
c19d1205
ZW
15849
15850 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15851 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15852 for (base = end = *str; *end != '\0'; end++)
721a8186 15853 if (*end == ' ' || *end == '.')
c19d1205 15854 break;
b99bd4ef 15855
c19d1205 15856 if (end == base)
c921be7d 15857 return NULL;
b99bd4ef 15858
5287ad62 15859 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15860 if (end[0] == '.')
b99bd4ef 15861 {
5287ad62 15862 int offset = 2;
5f4273c7 15863
267d2029
JB
15864 /* The .w and .n suffixes are only valid if the unified syntax is in
15865 use. */
15866 if (unified_syntax && end[1] == 'w')
c19d1205 15867 inst.size_req = 4;
267d2029 15868 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15869 inst.size_req = 2;
15870 else
5287ad62
JB
15871 offset = 0;
15872
15873 inst.vectype.elems = 0;
15874
15875 *str = end + offset;
b99bd4ef 15876
5f4273c7 15877 if (end[offset] == '.')
5287ad62 15878 {
267d2029
JB
15879 /* See if we have a Neon type suffix (possible in either unified or
15880 non-unified ARM syntax mode). */
dcbf9037 15881 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15882 return NULL;
5287ad62
JB
15883 }
15884 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15885 return NULL;
b99bd4ef 15886 }
c19d1205
ZW
15887 else
15888 *str = end;
b99bd4ef 15889
c19d1205 15890 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15891 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15892 end - base);
c19d1205 15893 if (opcode)
b99bd4ef 15894 {
c19d1205
ZW
15895 /* step U */
15896 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15897 {
c19d1205
ZW
15898 inst.cond = COND_ALWAYS;
15899 return opcode;
b99bd4ef 15900 }
b99bd4ef 15901
278df34e 15902 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15903 as_warn (_("conditional infixes are deprecated in unified syntax"));
15904 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15905 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15906 gas_assert (cond);
b99bd4ef 15907
c19d1205
ZW
15908 inst.cond = cond->value;
15909 return opcode;
15910 }
b99bd4ef 15911
c19d1205
ZW
15912 /* Cannot have a conditional suffix on a mnemonic of less than two
15913 characters. */
15914 if (end - base < 3)
c921be7d 15915 return NULL;
b99bd4ef 15916
c19d1205
ZW
15917 /* Look for suffixed mnemonic. */
15918 affix = end - 2;
21d799b5
NC
15919 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15920 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15921 affix - base);
c19d1205
ZW
15922 if (opcode && cond)
15923 {
15924 /* step CE */
15925 switch (opcode->tag)
15926 {
e3cb604e
PB
15927 case OT_cinfix3_legacy:
15928 /* Ignore conditional suffixes matched on infix only mnemonics. */
15929 break;
15930
c19d1205 15931 case OT_cinfix3:
088fa78e 15932 case OT_cinfix3_deprecated:
c19d1205
ZW
15933 case OT_odd_infix_unc:
15934 if (!unified_syntax)
e3cb604e 15935 return 0;
c19d1205
ZW
15936 /* else fall through */
15937
15938 case OT_csuffix:
037e8744 15939 case OT_csuffixF:
c19d1205
ZW
15940 case OT_csuf_or_in3:
15941 inst.cond = cond->value;
15942 return opcode;
15943
15944 case OT_unconditional:
15945 case OT_unconditionalF:
dfa9f0d5 15946 if (thumb_mode)
c921be7d 15947 inst.cond = cond->value;
dfa9f0d5
PB
15948 else
15949 {
c921be7d 15950 /* Delayed diagnostic. */
dfa9f0d5
PB
15951 inst.error = BAD_COND;
15952 inst.cond = COND_ALWAYS;
15953 }
c19d1205 15954 return opcode;
b99bd4ef 15955
c19d1205 15956 default:
c921be7d 15957 return NULL;
c19d1205
ZW
15958 }
15959 }
b99bd4ef 15960
c19d1205
ZW
15961 /* Cannot have a usual-position infix on a mnemonic of less than
15962 six characters (five would be a suffix). */
15963 if (end - base < 6)
c921be7d 15964 return NULL;
b99bd4ef 15965
c19d1205
ZW
15966 /* Look for infixed mnemonic in the usual position. */
15967 affix = base + 3;
21d799b5 15968 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15969 if (!cond)
c921be7d 15970 return NULL;
e3cb604e
PB
15971
15972 memcpy (save, affix, 2);
15973 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15974 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15975 (end - base) - 2);
e3cb604e
PB
15976 memmove (affix + 2, affix, (end - affix) - 2);
15977 memcpy (affix, save, 2);
15978
088fa78e
KH
15979 if (opcode
15980 && (opcode->tag == OT_cinfix3
15981 || opcode->tag == OT_cinfix3_deprecated
15982 || opcode->tag == OT_csuf_or_in3
15983 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15984 {
c921be7d 15985 /* Step CM. */
278df34e 15986 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15987 && (opcode->tag == OT_cinfix3
15988 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15989 as_warn (_("conditional infixes are deprecated in unified syntax"));
15990
15991 inst.cond = cond->value;
15992 return opcode;
b99bd4ef
NC
15993 }
15994
c921be7d 15995 return NULL;
b99bd4ef
NC
15996}
15997
e07e6e58
NC
15998/* This function generates an initial IT instruction, leaving its block
15999 virtually open for the new instructions. Eventually,
16000 the mask will be updated by now_it_add_mask () each time
16001 a new instruction needs to be included in the IT block.
16002 Finally, the block is closed with close_automatic_it_block ().
16003 The block closure can be requested either from md_assemble (),
16004 a tencode (), or due to a label hook. */
16005
16006static void
16007new_automatic_it_block (int cond)
16008{
16009 now_it.state = AUTOMATIC_IT_BLOCK;
16010 now_it.mask = 0x18;
16011 now_it.cc = cond;
16012 now_it.block_length = 1;
cd000bff 16013 mapping_state (MAP_THUMB);
e07e6e58
NC
16014 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16015}
16016
16017/* Close an automatic IT block.
16018 See comments in new_automatic_it_block (). */
16019
16020static void
16021close_automatic_it_block (void)
16022{
16023 now_it.mask = 0x10;
16024 now_it.block_length = 0;
16025}
16026
16027/* Update the mask of the current automatically-generated IT
16028 instruction. See comments in new_automatic_it_block (). */
16029
16030static void
16031now_it_add_mask (int cond)
16032{
16033#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16034#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16035 | ((bitvalue) << (nbit)))
e07e6e58 16036 const int resulting_bit = (cond & 1);
c921be7d 16037
e07e6e58
NC
16038 now_it.mask &= 0xf;
16039 now_it.mask = SET_BIT_VALUE (now_it.mask,
16040 resulting_bit,
16041 (5 - now_it.block_length));
16042 now_it.mask = SET_BIT_VALUE (now_it.mask,
16043 1,
16044 ((5 - now_it.block_length) - 1) );
16045 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16046
16047#undef CLEAR_BIT
16048#undef SET_BIT_VALUE
e07e6e58
NC
16049}
16050
16051/* The IT blocks handling machinery is accessed through the these functions:
16052 it_fsm_pre_encode () from md_assemble ()
16053 set_it_insn_type () optional, from the tencode functions
16054 set_it_insn_type_last () ditto
16055 in_it_block () ditto
16056 it_fsm_post_encode () from md_assemble ()
16057 force_automatic_it_block_close () from label habdling functions
16058
16059 Rationale:
16060 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16061 initializing the IT insn type with a generic initial value depending
16062 on the inst.condition.
16063 2) During the tencode function, two things may happen:
16064 a) The tencode function overrides the IT insn type by
16065 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16066 b) The tencode function queries the IT block state by
16067 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16068
16069 Both set_it_insn_type and in_it_block run the internal FSM state
16070 handling function (handle_it_state), because: a) setting the IT insn
16071 type may incur in an invalid state (exiting the function),
16072 and b) querying the state requires the FSM to be updated.
16073 Specifically we want to avoid creating an IT block for conditional
16074 branches, so it_fsm_pre_encode is actually a guess and we can't
16075 determine whether an IT block is required until the tencode () routine
16076 has decided what type of instruction this actually it.
16077 Because of this, if set_it_insn_type and in_it_block have to be used,
16078 set_it_insn_type has to be called first.
16079
16080 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16081 determines the insn IT type depending on the inst.cond code.
16082 When a tencode () routine encodes an instruction that can be
16083 either outside an IT block, or, in the case of being inside, has to be
16084 the last one, set_it_insn_type_last () will determine the proper
16085 IT instruction type based on the inst.cond code. Otherwise,
16086 set_it_insn_type can be called for overriding that logic or
16087 for covering other cases.
16088
16089 Calling handle_it_state () may not transition the IT block state to
16090 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16091 still queried. Instead, if the FSM determines that the state should
16092 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16093 after the tencode () function: that's what it_fsm_post_encode () does.
16094
16095 Since in_it_block () calls the state handling function to get an
16096 updated state, an error may occur (due to invalid insns combination).
16097 In that case, inst.error is set.
16098 Therefore, inst.error has to be checked after the execution of
16099 the tencode () routine.
16100
16101 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16102 any pending state change (if any) that didn't take place in
16103 handle_it_state () as explained above. */
16104
16105static void
16106it_fsm_pre_encode (void)
16107{
16108 if (inst.cond != COND_ALWAYS)
16109 inst.it_insn_type = INSIDE_IT_INSN;
16110 else
16111 inst.it_insn_type = OUTSIDE_IT_INSN;
16112
16113 now_it.state_handled = 0;
16114}
16115
16116/* IT state FSM handling function. */
16117
16118static int
16119handle_it_state (void)
16120{
16121 now_it.state_handled = 1;
16122
16123 switch (now_it.state)
16124 {
16125 case OUTSIDE_IT_BLOCK:
16126 switch (inst.it_insn_type)
16127 {
16128 case OUTSIDE_IT_INSN:
16129 break;
16130
16131 case INSIDE_IT_INSN:
16132 case INSIDE_IT_LAST_INSN:
16133 if (thumb_mode == 0)
16134 {
c921be7d 16135 if (unified_syntax
e07e6e58
NC
16136 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16137 as_tsktsk (_("Warning: conditional outside an IT block"\
16138 " for Thumb."));
16139 }
16140 else
16141 {
16142 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16143 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16144 {
16145 /* Automatically generate the IT instruction. */
16146 new_automatic_it_block (inst.cond);
16147 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16148 close_automatic_it_block ();
16149 }
16150 else
16151 {
16152 inst.error = BAD_OUT_IT;
16153 return FAIL;
16154 }
16155 }
16156 break;
16157
16158 case IF_INSIDE_IT_LAST_INSN:
16159 case NEUTRAL_IT_INSN:
16160 break;
16161
16162 case IT_INSN:
16163 now_it.state = MANUAL_IT_BLOCK;
16164 now_it.block_length = 0;
16165 break;
16166 }
16167 break;
16168
16169 case AUTOMATIC_IT_BLOCK:
16170 /* Three things may happen now:
16171 a) We should increment current it block size;
16172 b) We should close current it block (closing insn or 4 insns);
16173 c) We should close current it block and start a new one (due
16174 to incompatible conditions or
16175 4 insns-length block reached). */
16176
16177 switch (inst.it_insn_type)
16178 {
16179 case OUTSIDE_IT_INSN:
16180 /* The closure of the block shall happen immediatelly,
16181 so any in_it_block () call reports the block as closed. */
16182 force_automatic_it_block_close ();
16183 break;
16184
16185 case INSIDE_IT_INSN:
16186 case INSIDE_IT_LAST_INSN:
16187 case IF_INSIDE_IT_LAST_INSN:
16188 now_it.block_length++;
16189
16190 if (now_it.block_length > 4
16191 || !now_it_compatible (inst.cond))
16192 {
16193 force_automatic_it_block_close ();
16194 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16195 new_automatic_it_block (inst.cond);
16196 }
16197 else
16198 {
16199 now_it_add_mask (inst.cond);
16200 }
16201
16202 if (now_it.state == AUTOMATIC_IT_BLOCK
16203 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16204 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16205 close_automatic_it_block ();
16206 break;
16207
16208 case NEUTRAL_IT_INSN:
16209 now_it.block_length++;
16210
16211 if (now_it.block_length > 4)
16212 force_automatic_it_block_close ();
16213 else
16214 now_it_add_mask (now_it.cc & 1);
16215 break;
16216
16217 case IT_INSN:
16218 close_automatic_it_block ();
16219 now_it.state = MANUAL_IT_BLOCK;
16220 break;
16221 }
16222 break;
16223
16224 case MANUAL_IT_BLOCK:
16225 {
16226 /* Check conditional suffixes. */
16227 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16228 int is_last;
16229 now_it.mask <<= 1;
16230 now_it.mask &= 0x1f;
16231 is_last = (now_it.mask == 0x10);
16232
16233 switch (inst.it_insn_type)
16234 {
16235 case OUTSIDE_IT_INSN:
16236 inst.error = BAD_NOT_IT;
16237 return FAIL;
16238
16239 case INSIDE_IT_INSN:
16240 if (cond != inst.cond)
16241 {
16242 inst.error = BAD_IT_COND;
16243 return FAIL;
16244 }
16245 break;
16246
16247 case INSIDE_IT_LAST_INSN:
16248 case IF_INSIDE_IT_LAST_INSN:
16249 if (cond != inst.cond)
16250 {
16251 inst.error = BAD_IT_COND;
16252 return FAIL;
16253 }
16254 if (!is_last)
16255 {
16256 inst.error = BAD_BRANCH;
16257 return FAIL;
16258 }
16259 break;
16260
16261 case NEUTRAL_IT_INSN:
16262 /* The BKPT instruction is unconditional even in an IT block. */
16263 break;
16264
16265 case IT_INSN:
16266 inst.error = BAD_IT_IT;
16267 return FAIL;
16268 }
16269 }
16270 break;
16271 }
16272
16273 return SUCCESS;
16274}
16275
16276static void
16277it_fsm_post_encode (void)
16278{
16279 int is_last;
16280
16281 if (!now_it.state_handled)
16282 handle_it_state ();
16283
16284 is_last = (now_it.mask == 0x10);
16285 if (is_last)
16286 {
16287 now_it.state = OUTSIDE_IT_BLOCK;
16288 now_it.mask = 0;
16289 }
16290}
16291
16292static void
16293force_automatic_it_block_close (void)
16294{
16295 if (now_it.state == AUTOMATIC_IT_BLOCK)
16296 {
16297 close_automatic_it_block ();
16298 now_it.state = OUTSIDE_IT_BLOCK;
16299 now_it.mask = 0;
16300 }
16301}
16302
16303static int
16304in_it_block (void)
16305{
16306 if (!now_it.state_handled)
16307 handle_it_state ();
16308
16309 return now_it.state != OUTSIDE_IT_BLOCK;
16310}
16311
c19d1205
ZW
16312void
16313md_assemble (char *str)
b99bd4ef 16314{
c19d1205
ZW
16315 char *p = str;
16316 const struct asm_opcode * opcode;
b99bd4ef 16317
c19d1205
ZW
16318 /* Align the previous label if needed. */
16319 if (last_label_seen != NULL)
b99bd4ef 16320 {
c19d1205
ZW
16321 symbol_set_frag (last_label_seen, frag_now);
16322 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16323 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16324 }
16325
c19d1205
ZW
16326 memset (&inst, '\0', sizeof (inst));
16327 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16328
c19d1205
ZW
16329 opcode = opcode_lookup (&p);
16330 if (!opcode)
b99bd4ef 16331 {
c19d1205 16332 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16333 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16334 if (! create_register_alias (str, p)
16335 && ! create_neon_reg_alias (str, p))
c19d1205 16336 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16337
b99bd4ef
NC
16338 return;
16339 }
16340
278df34e 16341 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16342 as_warn (_("s suffix on comparison instruction is deprecated"));
16343
037e8744
JB
16344 /* The value which unconditional instructions should have in place of the
16345 condition field. */
16346 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16347
c19d1205 16348 if (thumb_mode)
b99bd4ef 16349 {
e74cfd16 16350 arm_feature_set variant;
8f06b2d8
PB
16351
16352 variant = cpu_variant;
16353 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16354 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16355 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16356 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16357 if (!opcode->tvariant
16358 || (thumb_mode == 1
16359 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16360 {
bf3eeda7 16361 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16362 return;
16363 }
c19d1205
ZW
16364 if (inst.cond != COND_ALWAYS && !unified_syntax
16365 && opcode->tencode != do_t_branch)
b99bd4ef 16366 {
c19d1205 16367 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16368 return;
16369 }
16370
752d5da4 16371 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16372 {
7e806470 16373 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16374 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16375 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16376 {
16377 /* Two things are addressed here.
16378 1) Implicit require narrow instructions on Thumb-1.
16379 This avoids relaxation accidentally introducing Thumb-2
16380 instructions.
16381 2) Reject wide instructions in non Thumb-2 cores. */
16382 if (inst.size_req == 0)
16383 inst.size_req = 2;
16384 else if (inst.size_req == 4)
16385 {
bf3eeda7 16386 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16387 return;
16388 }
16389 }
076d447c
PB
16390 }
16391
c19d1205
ZW
16392 inst.instruction = opcode->tvalue;
16393
5be8be5d 16394 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16395 {
16396 /* Prepare the it_insn_type for those encodings that don't set
16397 it. */
16398 it_fsm_pre_encode ();
c19d1205 16399
e07e6e58
NC
16400 opcode->tencode ();
16401
16402 it_fsm_post_encode ();
16403 }
e27ec89e 16404
0110f2b8 16405 if (!(inst.error || inst.relax))
b99bd4ef 16406 {
9c2799c2 16407 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16408 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16409 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16410 {
c19d1205 16411 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16412 return;
16413 }
16414 }
076d447c
PB
16415
16416 /* Something has gone badly wrong if we try to relax a fixed size
16417 instruction. */
9c2799c2 16418 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16419
e74cfd16
PB
16420 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16421 *opcode->tvariant);
ee065d83 16422 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16423 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16424 anything other than bl/blx and v6-M instructions.
ee065d83 16425 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16426 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16427 || inst.relax)
e07e6e58
NC
16428 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16429 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16430 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16431 arm_ext_v6t2);
cd000bff 16432
88714cb8
DG
16433 check_neon_suffixes;
16434
cd000bff 16435 if (!inst.error)
c877a2f2
NC
16436 {
16437 mapping_state (MAP_THUMB);
16438 }
c19d1205 16439 }
3e9e4fcf 16440 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16441 {
845b51d6
PB
16442 bfd_boolean is_bx;
16443
16444 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16445 is_bx = (opcode->aencode == do_bx);
16446
c19d1205 16447 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16448 if (!(is_bx && fix_v4bx)
16449 && !(opcode->avariant &&
16450 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16451 {
bf3eeda7 16452 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16453 return;
b99bd4ef 16454 }
c19d1205 16455 if (inst.size_req)
b99bd4ef 16456 {
c19d1205
ZW
16457 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16458 return;
b99bd4ef
NC
16459 }
16460
c19d1205
ZW
16461 inst.instruction = opcode->avalue;
16462 if (opcode->tag == OT_unconditionalF)
16463 inst.instruction |= 0xF << 28;
16464 else
16465 inst.instruction |= inst.cond << 28;
16466 inst.size = INSN_SIZE;
5be8be5d 16467 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16468 {
16469 it_fsm_pre_encode ();
16470 opcode->aencode ();
16471 it_fsm_post_encode ();
16472 }
ee065d83
PB
16473 /* Arm mode bx is marked as both v4T and v5 because it's still required
16474 on a hypothetical non-thumb v5 core. */
845b51d6 16475 if (is_bx)
e74cfd16 16476 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16477 else
e74cfd16
PB
16478 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16479 *opcode->avariant);
88714cb8
DG
16480
16481 check_neon_suffixes;
16482
cd000bff 16483 if (!inst.error)
c877a2f2
NC
16484 {
16485 mapping_state (MAP_ARM);
16486 }
b99bd4ef 16487 }
3e9e4fcf
JB
16488 else
16489 {
16490 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16491 "-- `%s'"), str);
16492 return;
16493 }
c19d1205
ZW
16494 output_inst (str);
16495}
b99bd4ef 16496
e07e6e58
NC
16497static void
16498check_it_blocks_finished (void)
16499{
16500#ifdef OBJ_ELF
16501 asection *sect;
16502
16503 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16504 if (seg_info (sect)->tc_segment_info_data.current_it.state
16505 == MANUAL_IT_BLOCK)
16506 {
16507 as_warn (_("section '%s' finished with an open IT block."),
16508 sect->name);
16509 }
16510#else
16511 if (now_it.state == MANUAL_IT_BLOCK)
16512 as_warn (_("file finished with an open IT block."));
16513#endif
16514}
16515
c19d1205
ZW
16516/* Various frobbings of labels and their addresses. */
16517
16518void
16519arm_start_line_hook (void)
16520{
16521 last_label_seen = NULL;
b99bd4ef
NC
16522}
16523
c19d1205
ZW
16524void
16525arm_frob_label (symbolS * sym)
b99bd4ef 16526{
c19d1205 16527 last_label_seen = sym;
b99bd4ef 16528
c19d1205 16529 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16530
c19d1205
ZW
16531#if defined OBJ_COFF || defined OBJ_ELF
16532 ARM_SET_INTERWORK (sym, support_interwork);
16533#endif
b99bd4ef 16534
e07e6e58
NC
16535 force_automatic_it_block_close ();
16536
5f4273c7 16537 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16538 as Thumb functions. This is because these labels, whilst
16539 they exist inside Thumb code, are not the entry points for
16540 possible ARM->Thumb calls. Also, these labels can be used
16541 as part of a computed goto or switch statement. eg gcc
16542 can generate code that looks like this:
b99bd4ef 16543
c19d1205
ZW
16544 ldr r2, [pc, .Laaa]
16545 lsl r3, r3, #2
16546 ldr r2, [r3, r2]
16547 mov pc, r2
b99bd4ef 16548
c19d1205
ZW
16549 .Lbbb: .word .Lxxx
16550 .Lccc: .word .Lyyy
16551 ..etc...
16552 .Laaa: .word Lbbb
b99bd4ef 16553
c19d1205
ZW
16554 The first instruction loads the address of the jump table.
16555 The second instruction converts a table index into a byte offset.
16556 The third instruction gets the jump address out of the table.
16557 The fourth instruction performs the jump.
b99bd4ef 16558
c19d1205
ZW
16559 If the address stored at .Laaa is that of a symbol which has the
16560 Thumb_Func bit set, then the linker will arrange for this address
16561 to have the bottom bit set, which in turn would mean that the
16562 address computation performed by the third instruction would end
16563 up with the bottom bit set. Since the ARM is capable of unaligned
16564 word loads, the instruction would then load the incorrect address
16565 out of the jump table, and chaos would ensue. */
16566 if (label_is_thumb_function_name
16567 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16568 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16569 {
c19d1205
ZW
16570 /* When the address of a Thumb function is taken the bottom
16571 bit of that address should be set. This will allow
16572 interworking between Arm and Thumb functions to work
16573 correctly. */
b99bd4ef 16574
c19d1205 16575 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16576
c19d1205 16577 label_is_thumb_function_name = FALSE;
b99bd4ef 16578 }
07a53e5c 16579
07a53e5c 16580 dwarf2_emit_label (sym);
b99bd4ef
NC
16581}
16582
c921be7d 16583bfd_boolean
c19d1205 16584arm_data_in_code (void)
b99bd4ef 16585{
c19d1205 16586 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16587 {
c19d1205
ZW
16588 *input_line_pointer = '/';
16589 input_line_pointer += 5;
16590 *input_line_pointer = 0;
c921be7d 16591 return TRUE;
b99bd4ef
NC
16592 }
16593
c921be7d 16594 return FALSE;
b99bd4ef
NC
16595}
16596
c19d1205
ZW
16597char *
16598arm_canonicalize_symbol_name (char * name)
b99bd4ef 16599{
c19d1205 16600 int len;
b99bd4ef 16601
c19d1205
ZW
16602 if (thumb_mode && (len = strlen (name)) > 5
16603 && streq (name + len - 5, "/data"))
16604 *(name + len - 5) = 0;
b99bd4ef 16605
c19d1205 16606 return name;
b99bd4ef 16607}
c19d1205
ZW
16608\f
16609/* Table of all register names defined by default. The user can
16610 define additional names with .req. Note that all register names
16611 should appear in both upper and lowercase variants. Some registers
16612 also have mixed-case names. */
b99bd4ef 16613
dcbf9037 16614#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16615#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16616#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16617#define REGSET(p,t) \
16618 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16619 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16620 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16621 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16622#define REGSETH(p,t) \
16623 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16624 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16625 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16626 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16627#define REGSET2(p,t) \
16628 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16629 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16630 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16631 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16632#define SPLRBANK(base,bank,t) \
16633 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16634 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16635 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16636 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16637 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16638 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16639
c19d1205 16640static const struct reg_entry reg_names[] =
7ed4c4c5 16641{
c19d1205
ZW
16642 /* ARM integer registers. */
16643 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16644
c19d1205
ZW
16645 /* ATPCS synonyms. */
16646 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16647 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16648 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16649
c19d1205
ZW
16650 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16651 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16652 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16653
c19d1205
ZW
16654 /* Well-known aliases. */
16655 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16656 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16657
16658 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16659 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16660
16661 /* Coprocessor numbers. */
16662 REGSET(p, CP), REGSET(P, CP),
16663
16664 /* Coprocessor register numbers. The "cr" variants are for backward
16665 compatibility. */
16666 REGSET(c, CN), REGSET(C, CN),
16667 REGSET(cr, CN), REGSET(CR, CN),
16668
90ec0d68
MGD
16669 /* ARM banked registers. */
16670 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16671 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16672 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16673 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16674 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16675 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16676 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16677
16678 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16679 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16680 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16681 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16682 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16683 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16684 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16685 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16686
16687 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16688 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16689 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16690 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16691 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16692 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16693 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16694 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16695 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16696
c19d1205
ZW
16697 /* FPA registers. */
16698 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16699 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16700
16701 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16702 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16703
16704 /* VFP SP registers. */
5287ad62
JB
16705 REGSET(s,VFS), REGSET(S,VFS),
16706 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16707
16708 /* VFP DP Registers. */
5287ad62
JB
16709 REGSET(d,VFD), REGSET(D,VFD),
16710 /* Extra Neon DP registers. */
16711 REGSETH(d,VFD), REGSETH(D,VFD),
16712
16713 /* Neon QP registers. */
16714 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16715
16716 /* VFP control registers. */
16717 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16718 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16719 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16720 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16721 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16722 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16723
16724 /* Maverick DSP coprocessor registers. */
16725 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16726 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16727
16728 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16729 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16730 REGDEF(dspsc,0,DSPSC),
16731
16732 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16733 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16734 REGDEF(DSPSC,0,DSPSC),
16735
16736 /* iWMMXt data registers - p0, c0-15. */
16737 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16738
16739 /* iWMMXt control registers - p1, c0-3. */
16740 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16741 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16742 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16743 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16744
16745 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16746 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16747 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16748 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16749 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16750
16751 /* XScale accumulator registers. */
16752 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16753};
16754#undef REGDEF
16755#undef REGNUM
16756#undef REGSET
7ed4c4c5 16757
c19d1205
ZW
16758/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16759 within psr_required_here. */
16760static const struct asm_psr psrs[] =
16761{
16762 /* Backward compatibility notation. Note that "all" is no longer
16763 truly all possible PSR bits. */
16764 {"all", PSR_c | PSR_f},
16765 {"flg", PSR_f},
16766 {"ctl", PSR_c},
16767
16768 /* Individual flags. */
16769 {"f", PSR_f},
16770 {"c", PSR_c},
16771 {"x", PSR_x},
16772 {"s", PSR_s},
59b42a0d 16773
c19d1205
ZW
16774 /* Combinations of flags. */
16775 {"fs", PSR_f | PSR_s},
16776 {"fx", PSR_f | PSR_x},
16777 {"fc", PSR_f | PSR_c},
16778 {"sf", PSR_s | PSR_f},
16779 {"sx", PSR_s | PSR_x},
16780 {"sc", PSR_s | PSR_c},
16781 {"xf", PSR_x | PSR_f},
16782 {"xs", PSR_x | PSR_s},
16783 {"xc", PSR_x | PSR_c},
16784 {"cf", PSR_c | PSR_f},
16785 {"cs", PSR_c | PSR_s},
16786 {"cx", PSR_c | PSR_x},
16787 {"fsx", PSR_f | PSR_s | PSR_x},
16788 {"fsc", PSR_f | PSR_s | PSR_c},
16789 {"fxs", PSR_f | PSR_x | PSR_s},
16790 {"fxc", PSR_f | PSR_x | PSR_c},
16791 {"fcs", PSR_f | PSR_c | PSR_s},
16792 {"fcx", PSR_f | PSR_c | PSR_x},
16793 {"sfx", PSR_s | PSR_f | PSR_x},
16794 {"sfc", PSR_s | PSR_f | PSR_c},
16795 {"sxf", PSR_s | PSR_x | PSR_f},
16796 {"sxc", PSR_s | PSR_x | PSR_c},
16797 {"scf", PSR_s | PSR_c | PSR_f},
16798 {"scx", PSR_s | PSR_c | PSR_x},
16799 {"xfs", PSR_x | PSR_f | PSR_s},
16800 {"xfc", PSR_x | PSR_f | PSR_c},
16801 {"xsf", PSR_x | PSR_s | PSR_f},
16802 {"xsc", PSR_x | PSR_s | PSR_c},
16803 {"xcf", PSR_x | PSR_c | PSR_f},
16804 {"xcs", PSR_x | PSR_c | PSR_s},
16805 {"cfs", PSR_c | PSR_f | PSR_s},
16806 {"cfx", PSR_c | PSR_f | PSR_x},
16807 {"csf", PSR_c | PSR_s | PSR_f},
16808 {"csx", PSR_c | PSR_s | PSR_x},
16809 {"cxf", PSR_c | PSR_x | PSR_f},
16810 {"cxs", PSR_c | PSR_x | PSR_s},
16811 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16812 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16813 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16814 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16815 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16816 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16817 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16818 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16819 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16820 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16821 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16822 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16823 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16824 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16825 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16826 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16827 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16828 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16829 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16830 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16831 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16832 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16833 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16834 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16835};
16836
62b3e311
PB
16837/* Table of V7M psr names. */
16838static const struct asm_psr v7m_psrs[] =
16839{
2b744c99
PB
16840 {"apsr", 0 }, {"APSR", 0 },
16841 {"iapsr", 1 }, {"IAPSR", 1 },
16842 {"eapsr", 2 }, {"EAPSR", 2 },
16843 {"psr", 3 }, {"PSR", 3 },
16844 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16845 {"ipsr", 5 }, {"IPSR", 5 },
16846 {"epsr", 6 }, {"EPSR", 6 },
16847 {"iepsr", 7 }, {"IEPSR", 7 },
16848 {"msp", 8 }, {"MSP", 8 },
16849 {"psp", 9 }, {"PSP", 9 },
16850 {"primask", 16}, {"PRIMASK", 16},
16851 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16852 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16853 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16854 {"faultmask", 19}, {"FAULTMASK", 19},
16855 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16856};
16857
c19d1205
ZW
16858/* Table of all shift-in-operand names. */
16859static const struct asm_shift_name shift_names [] =
b99bd4ef 16860{
c19d1205
ZW
16861 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16862 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16863 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16864 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16865 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16866 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16867};
b99bd4ef 16868
c19d1205
ZW
16869/* Table of all explicit relocation names. */
16870#ifdef OBJ_ELF
16871static struct reloc_entry reloc_names[] =
16872{
16873 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16874 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16875 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16876 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16877 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16878 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16879 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16880 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16881 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16882 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16883 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16884 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16885 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16886 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16887 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16888 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16889 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16890 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16891};
16892#endif
b99bd4ef 16893
c19d1205
ZW
16894/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16895static const struct asm_cond conds[] =
16896{
16897 {"eq", 0x0},
16898 {"ne", 0x1},
16899 {"cs", 0x2}, {"hs", 0x2},
16900 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16901 {"mi", 0x4},
16902 {"pl", 0x5},
16903 {"vs", 0x6},
16904 {"vc", 0x7},
16905 {"hi", 0x8},
16906 {"ls", 0x9},
16907 {"ge", 0xa},
16908 {"lt", 0xb},
16909 {"gt", 0xc},
16910 {"le", 0xd},
16911 {"al", 0xe}
16912};
bfae80f2 16913
62b3e311
PB
16914static struct asm_barrier_opt barrier_opt_names[] =
16915{
52e7f43d
RE
16916 { "sy", 0xf }, { "SY", 0xf },
16917 { "un", 0x7 }, { "UN", 0x7 },
16918 { "st", 0xe }, { "ST", 0xe },
16919 { "unst", 0x6 }, { "UNST", 0x6 },
16920 { "ish", 0xb }, { "ISH", 0xb },
16921 { "sh", 0xb }, { "SH", 0xb },
16922 { "ishst", 0xa }, { "ISHST", 0xa },
16923 { "shst", 0xa }, { "SHST", 0xa },
16924 { "nsh", 0x7 }, { "NSH", 0x7 },
16925 { "nshst", 0x6 }, { "NSHST", 0x6 },
16926 { "osh", 0x3 }, { "OSH", 0x3 },
16927 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16928};
16929
c19d1205
ZW
16930/* Table of ARM-format instructions. */
16931
16932/* Macros for gluing together operand strings. N.B. In all cases
16933 other than OPS0, the trailing OP_stop comes from default
16934 zero-initialization of the unspecified elements of the array. */
16935#define OPS0() { OP_stop, }
16936#define OPS1(a) { OP_##a, }
16937#define OPS2(a,b) { OP_##a,OP_##b, }
16938#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16939#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16940#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16941#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16942
5be8be5d
DG
16943/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16944 This is useful when mixing operands for ARM and THUMB, i.e. using the
16945 MIX_ARM_THUMB_OPERANDS macro.
16946 In order to use these macros, prefix the number of operands with _
16947 e.g. _3. */
16948#define OPS_1(a) { a, }
16949#define OPS_2(a,b) { a,b, }
16950#define OPS_3(a,b,c) { a,b,c, }
16951#define OPS_4(a,b,c,d) { a,b,c,d, }
16952#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16953#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16954
c19d1205
ZW
16955/* These macros abstract out the exact format of the mnemonic table and
16956 save some repeated characters. */
16957
16958/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16959#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16960 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16961 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16962
16963/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16964 a T_MNEM_xyz enumerator. */
16965#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16966 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16967#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16968 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16969
16970/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16971 infix after the third character. */
16972#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16973 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16974 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16975#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16976 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16977 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16978#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16979 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16980#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16981 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16982#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16983 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16984#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16985 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16986
16987/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16988 appear in the condition table. */
16989#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16990 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16991 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16992
16993#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16994 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16995 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16996 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16997 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16998 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16999 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17000 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17001 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17002 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17003 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17004 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17005 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17006 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17007 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17008 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17009 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17010 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17011 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17012 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17013
17014#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17015 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17016#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17017 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17018
17019/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17020 field is still 0xE. Many of the Thumb variants can be executed
17021 conditionally, so this is checked separately. */
c19d1205 17022#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17023 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17024 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17025
17026/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17027 condition code field. */
17028#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17029 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17030 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17031
17032/* ARM-only variants of all the above. */
6a86118a 17033#define CE(mnem, op, nops, ops, ae) \
21d799b5 17034 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17035
17036#define C3(mnem, op, nops, ops, ae) \
17037 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17038
e3cb604e
PB
17039/* Legacy mnemonics that always have conditional infix after the third
17040 character. */
17041#define CL(mnem, op, nops, ops, ae) \
21d799b5 17042 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17043 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17044
8f06b2d8
PB
17045/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17046#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17047 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17048
e3cb604e
PB
17049/* Legacy coprocessor instructions where conditional infix and conditional
17050 suffix are ambiguous. For consistency this includes all FPA instructions,
17051 not just the potentially ambiguous ones. */
17052#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17053 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17054 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17055
17056/* Coprocessor, takes either a suffix or a position-3 infix
17057 (for an FPA corner case). */
17058#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17059 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17060 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17061
6a86118a 17062#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17063 { m1 #m2 m3, OPS##nops ops, \
17064 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17065 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17066
17067#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17068 xCM_ (m1, , m2, op, nops, ops, ae), \
17069 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17070 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17071 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17072 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17073 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17074 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17075 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17076 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17077 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17078 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17079 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17080 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17081 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17082 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17083 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17084 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17085 xCM_ (m1, le, m2, op, nops, ops, ae), \
17086 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17087
17088#define UE(mnem, op, nops, ops, ae) \
17089 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17090
17091#define UF(mnem, op, nops, ops, ae) \
17092 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17093
5287ad62
JB
17094/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17095 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17096 use the same encoding function for each. */
17097#define NUF(mnem, op, nops, ops, enc) \
17098 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17099 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17100
17101/* Neon data processing, version which indirects through neon_enc_tab for
17102 the various overloaded versions of opcodes. */
17103#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17104 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17105 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17106
17107/* Neon insn with conditional suffix for the ARM version, non-overloaded
17108 version. */
037e8744
JB
17109#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17110 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17111 THUMB_VARIANT, do_##enc, do_##enc }
17112
037e8744 17113#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17114 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17115
17116#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17117 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17118
5287ad62 17119/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17120#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17121 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17122 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17123
037e8744 17124#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17125 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17126
17127#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17128 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17129
c19d1205
ZW
17130#define do_0 0
17131
c19d1205 17132static const struct asm_opcode insns[] =
bfae80f2 17133{
e74cfd16
PB
17134#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17135#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17136 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17137 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17138 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17139 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17140 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17141 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17142 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17143 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17144 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17145 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17146 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17147 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17148 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17149 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17150 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17151 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17152
17153 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17154 for setting PSR flag bits. They are obsolete in V6 and do not
17155 have Thumb equivalents. */
21d799b5
NC
17156 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17157 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17158 CL("tstp", 110f000, 2, (RR, SH), cmp),
17159 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17160 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17161 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17162 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17163 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17164 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17165
17166 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17167 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17168 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17169 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17170
17171 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17172 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17173 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17174 OP_RRnpc),
17175 OP_ADDRGLDR),ldst, t_ldst),
17176 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17177
17178 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17179 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17180 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17181 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17182 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17183 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17184
17185 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17186 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17187 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17188 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17189
c19d1205 17190 /* Pseudo ops. */
21d799b5 17191 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17192 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17193 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17194
17195 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17196 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17197 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17198 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17199 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17200 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17201 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17202 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17203 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17204 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17205 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17206 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17207 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17208
16a4cf17 17209 /* These may simplify to neg. */
21d799b5
NC
17210 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17211 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17212
c921be7d
NC
17213#undef THUMB_VARIANT
17214#define THUMB_VARIANT & arm_ext_v6
17215
21d799b5 17216 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17217
17218 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17219#undef THUMB_VARIANT
17220#define THUMB_VARIANT & arm_ext_v6t2
17221
21d799b5
NC
17222 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17223 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17224 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17225
5be8be5d
DG
17226 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17227 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17228 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17229 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17230
21d799b5
NC
17231 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17232 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17233
21d799b5
NC
17234 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17235 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17236
17237 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17238 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17239 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17240
17241 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17242 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17243 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17244 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17245 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17246 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17247 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17248 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17249
c921be7d
NC
17250#undef ARM_VARIANT
17251#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17252#undef THUMB_VARIANT
17253#define THUMB_VARIANT & arm_ext_v4t
17254
21d799b5
NC
17255 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17256 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17257
c921be7d
NC
17258#undef THUMB_VARIANT
17259#define THUMB_VARIANT & arm_ext_v6t2
17260
21d799b5 17261 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17262 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17263
17264 /* Generic coprocessor instructions. */
21d799b5
NC
17265 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17266 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17267 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17268 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17269 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17270 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17271 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17272
c921be7d
NC
17273#undef ARM_VARIANT
17274#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17275
21d799b5 17276 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17277 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17278
c921be7d
NC
17279#undef ARM_VARIANT
17280#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17281#undef THUMB_VARIANT
17282#define THUMB_VARIANT & arm_ext_msr
17283
d2cd1205
JB
17284 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17285 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17286
c921be7d
NC
17287#undef ARM_VARIANT
17288#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17289#undef THUMB_VARIANT
17290#define THUMB_VARIANT & arm_ext_v6t2
17291
21d799b5
NC
17292 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17293 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17294 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17295 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17296 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17297 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17298 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17299 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17300
c921be7d
NC
17301#undef ARM_VARIANT
17302#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17303#undef THUMB_VARIANT
17304#define THUMB_VARIANT & arm_ext_v4t
17305
5be8be5d
DG
17306 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17307 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17308 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17309 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17310 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17311 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17312
c921be7d
NC
17313#undef ARM_VARIANT
17314#define ARM_VARIANT & arm_ext_v4t_5
17315
c19d1205
ZW
17316 /* ARM Architecture 4T. */
17317 /* Note: bx (and blx) are required on V5, even if the processor does
17318 not support Thumb. */
21d799b5 17319 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17320
c921be7d
NC
17321#undef ARM_VARIANT
17322#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17323#undef THUMB_VARIANT
17324#define THUMB_VARIANT & arm_ext_v5t
17325
c19d1205
ZW
17326 /* Note: blx has 2 variants; the .value coded here is for
17327 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17328 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17329 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17330
c921be7d
NC
17331#undef THUMB_VARIANT
17332#define THUMB_VARIANT & arm_ext_v6t2
17333
21d799b5
NC
17334 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17335 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17336 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17337 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17338 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17339 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17340 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17341 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17342
c921be7d
NC
17343#undef ARM_VARIANT
17344#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17345#undef THUMB_VARIANT
17346#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17347
21d799b5
NC
17348 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17349 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17350 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17351 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17352
21d799b5
NC
17353 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17354 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17355
21d799b5
NC
17356 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17357 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17358 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17359 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17360
21d799b5
NC
17361 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17362 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17363 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17364 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17365
21d799b5
NC
17366 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17367 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17368
03ee1b7f
NC
17369 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17370 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17371 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17372 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17373
c921be7d
NC
17374#undef ARM_VARIANT
17375#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17376#undef THUMB_VARIANT
17377#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17378
21d799b5 17379 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17380 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17381 ldrd, t_ldstd),
17382 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17383 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17384
21d799b5
NC
17385 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17386 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17387
c921be7d
NC
17388#undef ARM_VARIANT
17389#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17390
21d799b5 17391 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17392
c921be7d
NC
17393#undef ARM_VARIANT
17394#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17395#undef THUMB_VARIANT
17396#define THUMB_VARIANT & arm_ext_v6
17397
21d799b5
NC
17398 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17399 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17400 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17401 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17402 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17403 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17404 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17405 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17406 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17407 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17408
c921be7d
NC
17409#undef THUMB_VARIANT
17410#define THUMB_VARIANT & arm_ext_v6t2
17411
5be8be5d
DG
17412 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17413 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17414 strex, t_strex),
21d799b5
NC
17415 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17416 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17417
21d799b5
NC
17418 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17419 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17420
9e3c6df6 17421/* ARM V6 not included in V7M. */
c921be7d
NC
17422#undef THUMB_VARIANT
17423#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17424 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17425 UF(rfeib, 9900a00, 1, (RRw), rfe),
17426 UF(rfeda, 8100a00, 1, (RRw), rfe),
17427 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17428 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17429 UF(rfefa, 9900a00, 1, (RRw), rfe),
17430 UF(rfeea, 8100a00, 1, (RRw), rfe),
17431 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17432 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17433 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17434 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17435 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17436
9e3c6df6
PB
17437/* ARM V6 not included in V7M (eg. integer SIMD). */
17438#undef THUMB_VARIANT
17439#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17440 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17441 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17442 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17443 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17444 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17445 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17446 /* Old name for QASX. */
21d799b5
NC
17447 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17448 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17449 /* Old name for QSAX. */
21d799b5
NC
17450 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17451 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17452 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17453 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17454 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17455 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17456 /* Old name for SASX. */
21d799b5
NC
17457 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17458 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17459 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17460 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17461 /* Old name for SHASX. */
21d799b5
NC
17462 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17463 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17464 /* Old name for SHSAX. */
21d799b5
NC
17465 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17466 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17467 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17468 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17469 /* Old name for SSAX. */
21d799b5
NC
17470 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17471 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17472 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17473 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17474 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17475 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17476 /* Old name for UASX. */
21d799b5
NC
17477 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17478 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17479 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17480 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17481 /* Old name for UHASX. */
21d799b5
NC
17482 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17483 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17484 /* Old name for UHSAX. */
21d799b5
NC
17485 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17486 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17487 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17488 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17489 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17490 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17491 /* Old name for UQASX. */
21d799b5
NC
17492 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17493 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17494 /* Old name for UQSAX. */
21d799b5
NC
17495 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17496 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17497 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17498 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17499 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17500 /* Old name for USAX. */
21d799b5
NC
17501 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17502 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17503 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17504 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17505 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17506 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17507 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17508 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17509 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17510 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17511 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17512 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17513 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17514 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17515 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17516 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17517 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17518 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17519 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17520 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17521 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17522 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17523 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17524 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17525 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17526 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17527 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17528 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17529 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17530 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17531 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17532 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17533 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17534 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17535
c921be7d
NC
17536#undef ARM_VARIANT
17537#define ARM_VARIANT & arm_ext_v6k
17538#undef THUMB_VARIANT
17539#define THUMB_VARIANT & arm_ext_v6k
17540
21d799b5
NC
17541 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17542 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17543 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17544 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17545
c921be7d
NC
17546#undef THUMB_VARIANT
17547#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17548 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17549 ldrexd, t_ldrexd),
17550 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17551 RRnpcb), strexd, t_strexd),
ebdca51a 17552
c921be7d
NC
17553#undef THUMB_VARIANT
17554#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17555 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17556 rd_rn, rd_rn),
17557 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17558 rd_rn, rd_rn),
17559 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17560 strex, t_strexbh),
5be8be5d 17561 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17562 strex, t_strexbh),
21d799b5 17563 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17564
c921be7d 17565#undef ARM_VARIANT
f4c65163
MGD
17566#define ARM_VARIANT & arm_ext_sec
17567#undef THUMB_VARIANT
17568#define THUMB_VARIANT & arm_ext_sec
c921be7d 17569
21d799b5 17570 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17571
90ec0d68
MGD
17572#undef ARM_VARIANT
17573#define ARM_VARIANT & arm_ext_virt
17574#undef THUMB_VARIANT
17575#define THUMB_VARIANT & arm_ext_virt
17576
17577 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17578 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17579
c921be7d
NC
17580#undef ARM_VARIANT
17581#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17582#undef THUMB_VARIANT
17583#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17584
21d799b5
NC
17585 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17586 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17587 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17588 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17589
21d799b5
NC
17590 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17591 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17592 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17593 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17594
5be8be5d
DG
17595 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17596 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17597 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17598 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17599
bf3eeda7
NS
17600 /* Thumb-only instructions. */
17601#undef ARM_VARIANT
17602#define ARM_VARIANT NULL
17603 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17604 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17605
17606 /* ARM does not really have an IT instruction, so always allow it.
17607 The opcode is copied from Thumb in order to allow warnings in
17608 -mimplicit-it=[never | arm] modes. */
17609#undef ARM_VARIANT
17610#define ARM_VARIANT & arm_ext_v1
17611
21d799b5
NC
17612 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17613 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17614 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17615 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17616 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17617 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17618 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17619 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17620 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17621 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17622 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17623 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17624 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17625 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17626 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17627 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17628 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17629 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17630
92e90b6e 17631 /* Thumb2 only instructions. */
c921be7d
NC
17632#undef ARM_VARIANT
17633#define ARM_VARIANT NULL
92e90b6e 17634
21d799b5
NC
17635 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17636 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17637 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17638 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17639 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17640 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17641
eea54501
MGD
17642 /* Hardware division instructions. */
17643#undef ARM_VARIANT
17644#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17645#undef THUMB_VARIANT
17646#define THUMB_VARIANT & arm_ext_div
17647
eea54501
MGD
17648 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17649 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17650
7e806470 17651 /* ARM V6M/V7 instructions. */
c921be7d
NC
17652#undef ARM_VARIANT
17653#define ARM_VARIANT & arm_ext_barrier
17654#undef THUMB_VARIANT
17655#define THUMB_VARIANT & arm_ext_barrier
17656
52e7f43d
RE
17657 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17658 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17659 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17660
62b3e311 17661 /* ARM V7 instructions. */
c921be7d
NC
17662#undef ARM_VARIANT
17663#define ARM_VARIANT & arm_ext_v7
17664#undef THUMB_VARIANT
17665#define THUMB_VARIANT & arm_ext_v7
17666
21d799b5
NC
17667 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17668 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17669
60e5ef9f
MGD
17670#undef ARM_VARIANT
17671#define ARM_VARIANT & arm_ext_mp
17672#undef THUMB_VARIANT
17673#define THUMB_VARIANT & arm_ext_mp
17674
17675 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17676
c921be7d
NC
17677#undef ARM_VARIANT
17678#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17679
21d799b5
NC
17680 cCE("wfs", e200110, 1, (RR), rd),
17681 cCE("rfs", e300110, 1, (RR), rd),
17682 cCE("wfc", e400110, 1, (RR), rd),
17683 cCE("rfc", e500110, 1, (RR), rd),
17684
17685 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17686 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17687 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17688 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17689
17690 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17691 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17692 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17693 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17694
17695 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17696 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17697 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17698 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17699 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17700 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17701 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17702 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17703 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17704 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17705 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17706 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17707
17708 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17709 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17710 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17711 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17712 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17713 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17714 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17715 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17716 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17717 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17718 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17719 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17720
17721 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17722 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17723 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17724 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17725 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17726 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17727 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17728 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17729 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17730 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17731 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17732 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17733
17734 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17735 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17736 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17737 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17738 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17739 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17740 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17741 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17742 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17743 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17744 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17745 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17746
17747 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17748 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17749 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17750 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17751 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17752 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17753 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17754 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17755 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17756 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17757 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17758 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17759
17760 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17761 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17762 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17763 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17764 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17765 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17766 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17767 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17768 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17769 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17770 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17771 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17772
17773 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17774 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17775 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17776 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17777 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17778 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17779 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17780 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17781 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17782 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17783 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17784 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17785
17786 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17787 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17788 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17789 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17790 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17791 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17792 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17793 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17794 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17795 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17796 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17797 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17798
17799 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17800 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17801 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17802 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17803 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17804 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17805 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17806 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17807 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17808 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17809 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17810 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17811
17812 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17813 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17814 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17815 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17816 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17817 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17818 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17819 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17820 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17821 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17822 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17823 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17824
17825 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17826 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17827 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17828 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17829 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17830 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17831 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17832 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17833 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17834 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17835 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17836 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17837
17838 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17839 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17840 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17841 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17842 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17843 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17844 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17845 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17846 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17847 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17848 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17849 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17850
17851 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17852 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17853 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17854 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17855 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17856 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17857 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17858 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17859 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17860 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17861 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17862 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17863
17864 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17865 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17866 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17867 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17868 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17869 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17870 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17871 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17872 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17873 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17874 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17875 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17876
17877 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17878 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17879 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17880 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17881 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17882 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17883 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17884 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17885 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17886 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17887 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17888 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17889
17890 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17891 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17892 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17893 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17894 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17895 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17896 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17897 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17898 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17899 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17900 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17901 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17902
17903 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17904 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17905 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17906 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17915
17916 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17928
17929 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17941
17942 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17954
17955 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17957 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17958 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17960 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17961 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17962 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17963 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17965 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17966 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17967
17968 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17970 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17971 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17972 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17973 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17974 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17975 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17976 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17977 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17978 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17979 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17980
17981 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17982 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17983 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17984 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17985 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17986 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17987 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17988 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17989 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17990 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17991 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17992 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17993
17994 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17995 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17996 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17997 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17998 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17999 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18000 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18001 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18002 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18003 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18004 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18005 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18006
18007 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18008 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18009 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18010 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18011 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18012 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18013 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18014 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18015 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18016 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18017 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18018 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18019
18020 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18021 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18022 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18023 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18024 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18025 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18026 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18027 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18028 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18029 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18030 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18031 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18032
18033 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18034 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18035 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18036 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18037 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18038 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18039 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18040 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18041 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18042 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18043 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18044 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18045
18046 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18047 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18048 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18049 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18050 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18051 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18052 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18053 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18054 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18055 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18056 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18057 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18058
18059 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18060 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18061 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18062 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18063 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18064 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18065 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18066 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18067 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18068 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18069 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18070 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18071
18072 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18073 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18074 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18075 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18076
18077 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18078 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18079 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18080 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18081 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18082 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18083 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18084 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18085 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18086 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18087 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18088 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18089
c19d1205
ZW
18090 /* The implementation of the FIX instruction is broken on some
18091 assemblers, in that it accepts a precision specifier as well as a
18092 rounding specifier, despite the fact that this is meaningless.
18093 To be more compatible, we accept it as well, though of course it
18094 does not set any bits. */
21d799b5
NC
18095 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18096 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18097 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18098 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18099 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18100 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18101 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18102 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18103 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18104 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18105 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18106 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18107 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18108
c19d1205 18109 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18110#undef ARM_VARIANT
18111#define ARM_VARIANT & fpu_fpa_ext_v2
18112
21d799b5
NC
18113 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18114 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18115 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18116 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18117 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18118 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18119
c921be7d
NC
18120#undef ARM_VARIANT
18121#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18122
c19d1205 18123 /* Moves and type conversions. */
21d799b5
NC
18124 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18125 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18126 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18127 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
18128 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18129 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18130 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18131 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18132 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18133 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18134 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18135 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18136 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18137 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18138
18139 /* Memory operations. */
21d799b5
NC
18140 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18141 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18142 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18143 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18144 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18145 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18146 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18147 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18148 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18149 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18150 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18151 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18152 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18153 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18154 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18155 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18156 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18157 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18158
c19d1205 18159 /* Monadic operations. */
21d799b5
NC
18160 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18161 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18162 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18163
18164 /* Dyadic operations. */
21d799b5
NC
18165 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18166 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18167 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18168 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18169 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18170 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18171 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18172 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18173 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18174
c19d1205 18175 /* Comparisons. */
21d799b5
NC
18176 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18177 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18178 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18179 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18180
62f3b8c8
PB
18181 /* Double precision load/store are still present on single precision
18182 implementations. */
18183 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18184 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18185 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18186 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18187 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18188 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18189 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18190 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18191 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18192 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18193
c921be7d
NC
18194#undef ARM_VARIANT
18195#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18196
c19d1205 18197 /* Moves and type conversions. */
21d799b5
NC
18198 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18199 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18200 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18201 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18202 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18203 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18204 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18205 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18206 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18207 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18208 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18209 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18210 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18211
c19d1205 18212 /* Monadic operations. */
21d799b5
NC
18213 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18214 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18215 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18216
18217 /* Dyadic operations. */
21d799b5
NC
18218 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18219 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18220 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18221 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18222 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18223 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18224 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18225 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18226 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18227
c19d1205 18228 /* Comparisons. */
21d799b5
NC
18229 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18230 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18231 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18232 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18233
c921be7d
NC
18234#undef ARM_VARIANT
18235#define ARM_VARIANT & fpu_vfp_ext_v2
18236
21d799b5
NC
18237 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18238 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18239 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18240 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18241
037e8744
JB
18242/* Instructions which may belong to either the Neon or VFP instruction sets.
18243 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18244#undef ARM_VARIANT
18245#define ARM_VARIANT & fpu_vfp_ext_v1xd
18246#undef THUMB_VARIANT
18247#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18248
037e8744
JB
18249 /* These mnemonics are unique to VFP. */
18250 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18251 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18252 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18253 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18254 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18255 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18256 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18257 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18258 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18259 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18260
18261 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18262 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18263 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18264 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18265
21d799b5
NC
18266 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18267 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18268
18269 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18270 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18271
55881a11
MGD
18272 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18273 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18274 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18275 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18276 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18277 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18278 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18279 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18280
5f1af56b 18281 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 18282 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18283 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18284 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18285
037e8744
JB
18286
18287 /* NOTE: All VMOV encoding is special-cased! */
18288 NCE(vmov, 0, 1, (VMOV), neon_mov),
18289 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18290
c921be7d
NC
18291#undef THUMB_VARIANT
18292#define THUMB_VARIANT & fpu_neon_ext_v1
18293#undef ARM_VARIANT
18294#define ARM_VARIANT & fpu_neon_ext_v1
18295
5287ad62
JB
18296 /* Data processing with three registers of the same length. */
18297 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18298 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18299 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18300 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18301 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18302 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18303 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18304 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18305 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18306 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18307 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18308 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18309 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18310 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18311 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18312 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18313 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18314 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18315 /* If not immediate, fall back to neon_dyadic_i64_su.
18316 shl_imm should accept I8 I16 I32 I64,
18317 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18318 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18319 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18320 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18321 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18322 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18323 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18324 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18325 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18326 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18327 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18328 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18329 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18330 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18331 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18332 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18333 /* Bitfield ops, untyped. */
18334 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18335 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18336 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18337 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18338 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18339 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18340 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18341 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18342 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18343 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18344 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18345 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18346 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18347 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18348 back to neon_dyadic_if_su. */
21d799b5
NC
18349 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18350 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18351 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18352 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18353 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18354 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18355 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18356 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18357 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18358 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18359 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18360 /* As above, D registers only. */
21d799b5
NC
18361 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18362 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18363 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18364 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18365 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18366 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18367 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18368 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18369 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18370 /* vtst takes sizes 8, 16, 32. */
18371 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18372 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18373 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18374 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18375 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18376 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18377 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18378 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18379 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18380 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18381 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18382 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18383 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18384 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18385 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18386 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18387 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18388 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18389 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18390 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18391 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18392
18393 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18394 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18395 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18396
18397 /* Data processing with two registers and a shift amount. */
18398 /* Right shifts, and variants with rounding.
18399 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18400 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18401 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18402 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18403 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18404 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18405 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18406 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18407 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18408 /* Shift and insert. Sizes accepted 8 16 32 64. */
18409 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18410 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18411 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18412 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18413 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18414 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18415 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18416 /* Right shift immediate, saturating & narrowing, with rounding variants.
18417 Types accepted S16 S32 S64 U16 U32 U64. */
18418 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18419 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18420 /* As above, unsigned. Types accepted S16 S32 S64. */
18421 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18422 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18423 /* Right shift narrowing. Types accepted I16 I32 I64. */
18424 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18425 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18426 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18427 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18428 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18429 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18430
4316f0d2
DG
18431 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18432 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18433
18434 /* Data processing, three registers of different lengths. */
18435 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18436 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18437 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18438 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18439 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18440 /* If not scalar, fall back to neon_dyadic_long.
18441 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18442 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18443 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18444 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18445 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18446 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18447 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18448 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18449 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18450 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18451 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18452 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18453 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18454 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18455 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18456 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18457 S16 S32 U16 U32. */
21d799b5 18458 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18459
18460 /* Extract. Size 8. */
3b8d421e
PB
18461 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18462 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18463
18464 /* Two registers, miscellaneous. */
18465 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18466 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18467 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18468 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18469 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18470 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18471 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18472 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18473 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18474 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18475 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18476 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18477 /* VMOVN. Types I16 I32 I64. */
21d799b5 18478 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18479 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18480 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18481 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18482 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18483 /* VZIP / VUZP. Sizes 8 16 32. */
18484 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18485 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18486 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18487 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18488 /* VQABS / VQNEG. Types S8 S16 S32. */
18489 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18490 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18491 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18492 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18493 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18494 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18495 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18496 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18497 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18498 /* Reciprocal estimates. Types U32 F32. */
18499 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18500 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18501 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18502 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18503 /* VCLS. Types S8 S16 S32. */
18504 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18505 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18506 /* VCLZ. Types I8 I16 I32. */
18507 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18508 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18509 /* VCNT. Size 8. */
18510 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18511 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18512 /* Two address, untyped. */
18513 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18514 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18515 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18516 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18517 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18518
18519 /* Table lookup. Size 8. */
18520 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18521 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18522
c921be7d
NC
18523#undef THUMB_VARIANT
18524#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18525#undef ARM_VARIANT
18526#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18527
5287ad62 18528 /* Neon element/structure load/store. */
21d799b5
NC
18529 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18530 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18531 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18532 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18533 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18534 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18535 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18536 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18537
c921be7d 18538#undef THUMB_VARIANT
62f3b8c8
PB
18539#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18540#undef ARM_VARIANT
18541#define ARM_VARIANT &fpu_vfp_ext_v3xd
18542 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18543 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18544 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18545 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18546 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18547 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18548 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18549 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18550 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18551
18552#undef THUMB_VARIANT
c921be7d
NC
18553#define THUMB_VARIANT & fpu_vfp_ext_v3
18554#undef ARM_VARIANT
18555#define ARM_VARIANT & fpu_vfp_ext_v3
18556
21d799b5 18557 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18558 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18559 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18560 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18561 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18562 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18563 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18564 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18565 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18566
62f3b8c8
PB
18567#undef ARM_VARIANT
18568#define ARM_VARIANT &fpu_vfp_ext_fma
18569#undef THUMB_VARIANT
18570#define THUMB_VARIANT &fpu_vfp_ext_fma
18571 /* Mnemonics shared by Neon and VFP. These are included in the
18572 VFP FMA variant; NEON and VFP FMA always includes the NEON
18573 FMA instructions. */
18574 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18575 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18576 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18577 the v form should always be used. */
18578 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18579 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18580 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18581 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18582 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18583 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18584
5287ad62 18585#undef THUMB_VARIANT
c921be7d
NC
18586#undef ARM_VARIANT
18587#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18588
21d799b5
NC
18589 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18590 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18591 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18592 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18593 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18594 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18595 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18596 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18597
c921be7d
NC
18598#undef ARM_VARIANT
18599#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18600
21d799b5
NC
18601 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18602 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18603 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18604 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18605 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18606 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18607 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18608 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18609 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18610 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18611 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18612 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18613 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18614 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18615 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18616 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18617 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18618 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18619 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18620 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18621 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18622 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18623 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18624 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18625 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18626 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18627 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18628 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18629 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18630 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18631 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18632 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18633 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18634 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18635 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18636 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18637 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18638 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18642 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18643 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18644 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18648 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18668 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18669 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18670 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18671 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18690 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18702 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18703 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18704 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18705 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18706 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18707 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18708 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18709 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18710 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18711 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18712 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18713 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18714 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18715 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18716 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18717 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18718 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18719 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18720 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18721 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18722 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18723 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18724 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18725 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18726 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18727 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18728 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18729 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18730 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18731 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18732 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18733 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18734 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18735 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18736 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18737 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18738 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18739 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18740 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18741 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18742 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18743 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18744 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18745 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18746 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18747 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18748 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18749 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18750 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18751 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18752 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18753 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18754 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18755 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18756 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18757 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18758 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18759 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18760 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18761 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18762 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18763
c921be7d
NC
18764#undef ARM_VARIANT
18765#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18766
21d799b5
NC
18767 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18768 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18769 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18770 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18771 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18772 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18773 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18774 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18775 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18776 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18777 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18778 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18779 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18780 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18781 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18782 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18783 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18784 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18785 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18786 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18787 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18788 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18789 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18790 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18791 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18792 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18793 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18794 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18795 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18796 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18797 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18798 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18799 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18800 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18801 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18802 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18803 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18804 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18805 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18806 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18807 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18808 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18809 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18810 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18811 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18812 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18813 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18814 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18815 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18816 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18817 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18818 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18819 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18820 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18821 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18822 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18823 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18824
c921be7d
NC
18825#undef ARM_VARIANT
18826#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18827
21d799b5
NC
18828 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18829 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18830 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18831 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18832 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18833 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18834 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18835 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18836 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18837 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18838 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18839 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18840 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18841 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18842 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18843 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18844 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18845 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18846 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18847 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18848 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18849 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18850 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18851 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18852 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18853 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18854 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18855 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18856 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18857 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18858 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18859 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18860 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18861 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18862 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18863 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18864 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18865 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18866 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18867 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18868 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18869 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18870 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18871 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18872 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18873 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18874 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18875 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18876 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18877 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18878 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18879 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18880 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18881 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18882 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18883 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18884 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18885 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18886 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18887 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18888 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18889 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18890 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18891 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18892 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18893 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18894 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18895 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18896 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18897 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18898 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18899 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18900 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18901 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18902 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18903 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18904};
18905#undef ARM_VARIANT
18906#undef THUMB_VARIANT
18907#undef TCE
18908#undef TCM
18909#undef TUE
18910#undef TUF
18911#undef TCC
8f06b2d8 18912#undef cCE
e3cb604e
PB
18913#undef cCL
18914#undef C3E
c19d1205
ZW
18915#undef CE
18916#undef CM
18917#undef UE
18918#undef UF
18919#undef UT
5287ad62
JB
18920#undef NUF
18921#undef nUF
18922#undef NCE
18923#undef nCE
c19d1205
ZW
18924#undef OPS0
18925#undef OPS1
18926#undef OPS2
18927#undef OPS3
18928#undef OPS4
18929#undef OPS5
18930#undef OPS6
18931#undef do_0
18932\f
18933/* MD interface: bits in the object file. */
bfae80f2 18934
c19d1205
ZW
18935/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18936 for use in the a.out file, and stores them in the array pointed to by buf.
18937 This knows about the endian-ness of the target machine and does
18938 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18939 2 (short) and 4 (long) Floating numbers are put out as a series of
18940 LITTLENUMS (shorts, here at least). */
b99bd4ef 18941
c19d1205
ZW
18942void
18943md_number_to_chars (char * buf, valueT val, int n)
18944{
18945 if (target_big_endian)
18946 number_to_chars_bigendian (buf, val, n);
18947 else
18948 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18949}
18950
c19d1205
ZW
18951static valueT
18952md_chars_to_number (char * buf, int n)
bfae80f2 18953{
c19d1205
ZW
18954 valueT result = 0;
18955 unsigned char * where = (unsigned char *) buf;
bfae80f2 18956
c19d1205 18957 if (target_big_endian)
b99bd4ef 18958 {
c19d1205
ZW
18959 while (n--)
18960 {
18961 result <<= 8;
18962 result |= (*where++ & 255);
18963 }
b99bd4ef 18964 }
c19d1205 18965 else
b99bd4ef 18966 {
c19d1205
ZW
18967 while (n--)
18968 {
18969 result <<= 8;
18970 result |= (where[n] & 255);
18971 }
bfae80f2 18972 }
b99bd4ef 18973
c19d1205 18974 return result;
bfae80f2 18975}
b99bd4ef 18976
c19d1205 18977/* MD interface: Sections. */
b99bd4ef 18978
0110f2b8
PB
18979/* Estimate the size of a frag before relaxing. Assume everything fits in
18980 2 bytes. */
18981
c19d1205 18982int
0110f2b8 18983md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18984 segT segtype ATTRIBUTE_UNUSED)
18985{
0110f2b8
PB
18986 fragp->fr_var = 2;
18987 return 2;
18988}
18989
18990/* Convert a machine dependent frag. */
18991
18992void
18993md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18994{
18995 unsigned long insn;
18996 unsigned long old_op;
18997 char *buf;
18998 expressionS exp;
18999 fixS *fixp;
19000 int reloc_type;
19001 int pc_rel;
19002 int opcode;
19003
19004 buf = fragp->fr_literal + fragp->fr_fix;
19005
19006 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19007 if (fragp->fr_symbol)
19008 {
0110f2b8
PB
19009 exp.X_op = O_symbol;
19010 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19011 }
19012 else
19013 {
0110f2b8 19014 exp.X_op = O_constant;
5f4273c7 19015 }
0110f2b8
PB
19016 exp.X_add_number = fragp->fr_offset;
19017 opcode = fragp->fr_subtype;
19018 switch (opcode)
19019 {
19020 case T_MNEM_ldr_pc:
19021 case T_MNEM_ldr_pc2:
19022 case T_MNEM_ldr_sp:
19023 case T_MNEM_str_sp:
19024 case T_MNEM_ldr:
19025 case T_MNEM_ldrb:
19026 case T_MNEM_ldrh:
19027 case T_MNEM_str:
19028 case T_MNEM_strb:
19029 case T_MNEM_strh:
19030 if (fragp->fr_var == 4)
19031 {
5f4273c7 19032 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19033 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19034 {
19035 insn |= (old_op & 0x700) << 4;
19036 }
19037 else
19038 {
19039 insn |= (old_op & 7) << 12;
19040 insn |= (old_op & 0x38) << 13;
19041 }
19042 insn |= 0x00000c00;
19043 put_thumb32_insn (buf, insn);
19044 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19045 }
19046 else
19047 {
19048 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19049 }
19050 pc_rel = (opcode == T_MNEM_ldr_pc2);
19051 break;
19052 case T_MNEM_adr:
19053 if (fragp->fr_var == 4)
19054 {
19055 insn = THUMB_OP32 (opcode);
19056 insn |= (old_op & 0xf0) << 4;
19057 put_thumb32_insn (buf, insn);
19058 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19059 }
19060 else
19061 {
19062 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19063 exp.X_add_number -= 4;
19064 }
19065 pc_rel = 1;
19066 break;
19067 case T_MNEM_mov:
19068 case T_MNEM_movs:
19069 case T_MNEM_cmp:
19070 case T_MNEM_cmn:
19071 if (fragp->fr_var == 4)
19072 {
19073 int r0off = (opcode == T_MNEM_mov
19074 || opcode == T_MNEM_movs) ? 0 : 8;
19075 insn = THUMB_OP32 (opcode);
19076 insn = (insn & 0xe1ffffff) | 0x10000000;
19077 insn |= (old_op & 0x700) << r0off;
19078 put_thumb32_insn (buf, insn);
19079 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19080 }
19081 else
19082 {
19083 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19084 }
19085 pc_rel = 0;
19086 break;
19087 case T_MNEM_b:
19088 if (fragp->fr_var == 4)
19089 {
19090 insn = THUMB_OP32(opcode);
19091 put_thumb32_insn (buf, insn);
19092 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19093 }
19094 else
19095 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19096 pc_rel = 1;
19097 break;
19098 case T_MNEM_bcond:
19099 if (fragp->fr_var == 4)
19100 {
19101 insn = THUMB_OP32(opcode);
19102 insn |= (old_op & 0xf00) << 14;
19103 put_thumb32_insn (buf, insn);
19104 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19105 }
19106 else
19107 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19108 pc_rel = 1;
19109 break;
19110 case T_MNEM_add_sp:
19111 case T_MNEM_add_pc:
19112 case T_MNEM_inc_sp:
19113 case T_MNEM_dec_sp:
19114 if (fragp->fr_var == 4)
19115 {
19116 /* ??? Choose between add and addw. */
19117 insn = THUMB_OP32 (opcode);
19118 insn |= (old_op & 0xf0) << 4;
19119 put_thumb32_insn (buf, insn);
16805f35
PB
19120 if (opcode == T_MNEM_add_pc)
19121 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19122 else
19123 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19124 }
19125 else
19126 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19127 pc_rel = 0;
19128 break;
19129
19130 case T_MNEM_addi:
19131 case T_MNEM_addis:
19132 case T_MNEM_subi:
19133 case T_MNEM_subis:
19134 if (fragp->fr_var == 4)
19135 {
19136 insn = THUMB_OP32 (opcode);
19137 insn |= (old_op & 0xf0) << 4;
19138 insn |= (old_op & 0xf) << 16;
19139 put_thumb32_insn (buf, insn);
16805f35
PB
19140 if (insn & (1 << 20))
19141 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19142 else
19143 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19144 }
19145 else
19146 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19147 pc_rel = 0;
19148 break;
19149 default:
5f4273c7 19150 abort ();
0110f2b8
PB
19151 }
19152 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19153 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19154 fixp->fx_file = fragp->fr_file;
19155 fixp->fx_line = fragp->fr_line;
19156 fragp->fr_fix += fragp->fr_var;
19157}
19158
19159/* Return the size of a relaxable immediate operand instruction.
19160 SHIFT and SIZE specify the form of the allowable immediate. */
19161static int
19162relax_immediate (fragS *fragp, int size, int shift)
19163{
19164 offsetT offset;
19165 offsetT mask;
19166 offsetT low;
19167
19168 /* ??? Should be able to do better than this. */
19169 if (fragp->fr_symbol)
19170 return 4;
19171
19172 low = (1 << shift) - 1;
19173 mask = (1 << (shift + size)) - (1 << shift);
19174 offset = fragp->fr_offset;
19175 /* Force misaligned offsets to 32-bit variant. */
19176 if (offset & low)
5e77afaa 19177 return 4;
0110f2b8
PB
19178 if (offset & ~mask)
19179 return 4;
19180 return 2;
19181}
19182
5e77afaa
PB
19183/* Get the address of a symbol during relaxation. */
19184static addressT
5f4273c7 19185relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19186{
19187 fragS *sym_frag;
19188 addressT addr;
19189 symbolS *sym;
19190
19191 sym = fragp->fr_symbol;
19192 sym_frag = symbol_get_frag (sym);
19193 know (S_GET_SEGMENT (sym) != absolute_section
19194 || sym_frag == &zero_address_frag);
19195 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19196
19197 /* If frag has yet to be reached on this pass, assume it will
19198 move by STRETCH just as we did. If this is not so, it will
19199 be because some frag between grows, and that will force
19200 another pass. */
19201
19202 if (stretch != 0
19203 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19204 {
19205 fragS *f;
19206
19207 /* Adjust stretch for any alignment frag. Note that if have
19208 been expanding the earlier code, the symbol may be
19209 defined in what appears to be an earlier frag. FIXME:
19210 This doesn't handle the fr_subtype field, which specifies
19211 a maximum number of bytes to skip when doing an
19212 alignment. */
19213 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19214 {
19215 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19216 {
19217 if (stretch < 0)
19218 stretch = - ((- stretch)
19219 & ~ ((1 << (int) f->fr_offset) - 1));
19220 else
19221 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19222 if (stretch == 0)
19223 break;
19224 }
19225 }
19226 if (f != NULL)
19227 addr += stretch;
19228 }
5e77afaa
PB
19229
19230 return addr;
19231}
19232
0110f2b8
PB
19233/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19234 load. */
19235static int
5e77afaa 19236relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19237{
19238 addressT addr;
19239 offsetT val;
19240
19241 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19242 if (fragp->fr_symbol == NULL
19243 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19244 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19245 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19246 return 4;
19247
5f4273c7 19248 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19249 addr = fragp->fr_address + fragp->fr_fix;
19250 addr = (addr + 4) & ~3;
5e77afaa 19251 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19252 if (val & 3)
5e77afaa 19253 return 4;
0110f2b8
PB
19254 val -= addr;
19255 if (val < 0 || val > 1020)
19256 return 4;
19257 return 2;
19258}
19259
19260/* Return the size of a relaxable add/sub immediate instruction. */
19261static int
19262relax_addsub (fragS *fragp, asection *sec)
19263{
19264 char *buf;
19265 int op;
19266
19267 buf = fragp->fr_literal + fragp->fr_fix;
19268 op = bfd_get_16(sec->owner, buf);
19269 if ((op & 0xf) == ((op >> 4) & 0xf))
19270 return relax_immediate (fragp, 8, 0);
19271 else
19272 return relax_immediate (fragp, 3, 0);
19273}
19274
19275
19276/* Return the size of a relaxable branch instruction. BITS is the
19277 size of the offset field in the narrow instruction. */
19278
19279static int
5e77afaa 19280relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19281{
19282 addressT addr;
19283 offsetT val;
19284 offsetT limit;
19285
19286 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19287 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19288 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19289 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19290 return 4;
19291
267bf995
RR
19292#ifdef OBJ_ELF
19293 if (S_IS_DEFINED (fragp->fr_symbol)
19294 && ARM_IS_FUNC (fragp->fr_symbol))
19295 return 4;
0d9b4b55
NC
19296
19297 /* PR 12532. Global symbols with default visibility might
19298 be preempted, so do not relax relocations to them. */
19299 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19300 && (! S_IS_LOCAL (fragp->fr_symbol)))
19301 return 4;
267bf995
RR
19302#endif
19303
5f4273c7 19304 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19305 addr = fragp->fr_address + fragp->fr_fix + 4;
19306 val -= addr;
19307
19308 /* Offset is a signed value *2 */
19309 limit = 1 << bits;
19310 if (val >= limit || val < -limit)
19311 return 4;
19312 return 2;
19313}
19314
19315
19316/* Relax a machine dependent frag. This returns the amount by which
19317 the current size of the frag should change. */
19318
19319int
5e77afaa 19320arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19321{
19322 int oldsize;
19323 int newsize;
19324
19325 oldsize = fragp->fr_var;
19326 switch (fragp->fr_subtype)
19327 {
19328 case T_MNEM_ldr_pc2:
5f4273c7 19329 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19330 break;
19331 case T_MNEM_ldr_pc:
19332 case T_MNEM_ldr_sp:
19333 case T_MNEM_str_sp:
5f4273c7 19334 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19335 break;
19336 case T_MNEM_ldr:
19337 case T_MNEM_str:
5f4273c7 19338 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19339 break;
19340 case T_MNEM_ldrh:
19341 case T_MNEM_strh:
5f4273c7 19342 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19343 break;
19344 case T_MNEM_ldrb:
19345 case T_MNEM_strb:
5f4273c7 19346 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19347 break;
19348 case T_MNEM_adr:
5f4273c7 19349 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19350 break;
19351 case T_MNEM_mov:
19352 case T_MNEM_movs:
19353 case T_MNEM_cmp:
19354 case T_MNEM_cmn:
5f4273c7 19355 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19356 break;
19357 case T_MNEM_b:
5f4273c7 19358 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19359 break;
19360 case T_MNEM_bcond:
5f4273c7 19361 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19362 break;
19363 case T_MNEM_add_sp:
19364 case T_MNEM_add_pc:
19365 newsize = relax_immediate (fragp, 8, 2);
19366 break;
19367 case T_MNEM_inc_sp:
19368 case T_MNEM_dec_sp:
19369 newsize = relax_immediate (fragp, 7, 2);
19370 break;
19371 case T_MNEM_addi:
19372 case T_MNEM_addis:
19373 case T_MNEM_subi:
19374 case T_MNEM_subis:
19375 newsize = relax_addsub (fragp, sec);
19376 break;
19377 default:
5f4273c7 19378 abort ();
0110f2b8 19379 }
5e77afaa
PB
19380
19381 fragp->fr_var = newsize;
19382 /* Freeze wide instructions that are at or before the same location as
19383 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19384 Don't freeze them unconditionally because targets may be artificially
19385 misaligned by the expansion of preceding frags. */
5e77afaa 19386 if (stretch <= 0 && newsize > 2)
0110f2b8 19387 {
0110f2b8 19388 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19389 frag_wane (fragp);
0110f2b8 19390 }
5e77afaa 19391
0110f2b8 19392 return newsize - oldsize;
c19d1205 19393}
b99bd4ef 19394
c19d1205 19395/* Round up a section size to the appropriate boundary. */
b99bd4ef 19396
c19d1205
ZW
19397valueT
19398md_section_align (segT segment ATTRIBUTE_UNUSED,
19399 valueT size)
19400{
f0927246
NC
19401#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19402 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19403 {
19404 /* For a.out, force the section size to be aligned. If we don't do
19405 this, BFD will align it for us, but it will not write out the
19406 final bytes of the section. This may be a bug in BFD, but it is
19407 easier to fix it here since that is how the other a.out targets
19408 work. */
19409 int align;
19410
19411 align = bfd_get_section_alignment (stdoutput, segment);
19412 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19413 }
c19d1205 19414#endif
f0927246
NC
19415
19416 return size;
bfae80f2 19417}
b99bd4ef 19418
c19d1205
ZW
19419/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19420 of an rs_align_code fragment. */
19421
19422void
19423arm_handle_align (fragS * fragP)
bfae80f2 19424{
e7495e45
NS
19425 static char const arm_noop[2][2][4] =
19426 {
19427 { /* ARMv1 */
19428 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19429 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19430 },
19431 { /* ARMv6k */
19432 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19433 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19434 },
19435 };
19436 static char const thumb_noop[2][2][2] =
19437 {
19438 { /* Thumb-1 */
19439 {0xc0, 0x46}, /* LE */
19440 {0x46, 0xc0}, /* BE */
19441 },
19442 { /* Thumb-2 */
19443 {0x00, 0xbf}, /* LE */
19444 {0xbf, 0x00} /* BE */
19445 }
19446 };
19447 static char const wide_thumb_noop[2][4] =
19448 { /* Wide Thumb-2 */
19449 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19450 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19451 };
c921be7d 19452
e7495e45 19453 unsigned bytes, fix, noop_size;
c19d1205
ZW
19454 char * p;
19455 const char * noop;
e7495e45 19456 const char *narrow_noop = NULL;
cd000bff
DJ
19457#ifdef OBJ_ELF
19458 enum mstate state;
19459#endif
bfae80f2 19460
c19d1205 19461 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19462 return;
19463
c19d1205
ZW
19464 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19465 p = fragP->fr_literal + fragP->fr_fix;
19466 fix = 0;
bfae80f2 19467
c19d1205
ZW
19468 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19469 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19470
cd000bff 19471 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19472
cd000bff 19473 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19474 {
e7495e45
NS
19475 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19476 {
19477 narrow_noop = thumb_noop[1][target_big_endian];
19478 noop = wide_thumb_noop[target_big_endian];
19479 }
c19d1205 19480 else
e7495e45
NS
19481 noop = thumb_noop[0][target_big_endian];
19482 noop_size = 2;
cd000bff
DJ
19483#ifdef OBJ_ELF
19484 state = MAP_THUMB;
19485#endif
7ed4c4c5
NC
19486 }
19487 else
19488 {
e7495e45
NS
19489 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19490 [target_big_endian];
19491 noop_size = 4;
cd000bff
DJ
19492#ifdef OBJ_ELF
19493 state = MAP_ARM;
19494#endif
7ed4c4c5 19495 }
c921be7d 19496
e7495e45 19497 fragP->fr_var = noop_size;
c921be7d 19498
c19d1205 19499 if (bytes & (noop_size - 1))
7ed4c4c5 19500 {
c19d1205 19501 fix = bytes & (noop_size - 1);
cd000bff
DJ
19502#ifdef OBJ_ELF
19503 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19504#endif
c19d1205
ZW
19505 memset (p, 0, fix);
19506 p += fix;
19507 bytes -= fix;
a737bd4d 19508 }
a737bd4d 19509
e7495e45
NS
19510 if (narrow_noop)
19511 {
19512 if (bytes & noop_size)
19513 {
19514 /* Insert a narrow noop. */
19515 memcpy (p, narrow_noop, noop_size);
19516 p += noop_size;
19517 bytes -= noop_size;
19518 fix += noop_size;
19519 }
19520
19521 /* Use wide noops for the remainder */
19522 noop_size = 4;
19523 }
19524
c19d1205 19525 while (bytes >= noop_size)
a737bd4d 19526 {
c19d1205
ZW
19527 memcpy (p, noop, noop_size);
19528 p += noop_size;
19529 bytes -= noop_size;
19530 fix += noop_size;
a737bd4d
NC
19531 }
19532
c19d1205 19533 fragP->fr_fix += fix;
a737bd4d
NC
19534}
19535
c19d1205
ZW
19536/* Called from md_do_align. Used to create an alignment
19537 frag in a code section. */
19538
19539void
19540arm_frag_align_code (int n, int max)
bfae80f2 19541{
c19d1205 19542 char * p;
7ed4c4c5 19543
c19d1205 19544 /* We assume that there will never be a requirement
6ec8e702 19545 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19546 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19547 {
19548 char err_msg[128];
19549
19550 sprintf (err_msg,
19551 _("alignments greater than %d bytes not supported in .text sections."),
19552 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19553 as_fatal ("%s", err_msg);
6ec8e702 19554 }
bfae80f2 19555
c19d1205
ZW
19556 p = frag_var (rs_align_code,
19557 MAX_MEM_FOR_RS_ALIGN_CODE,
19558 1,
19559 (relax_substateT) max,
19560 (symbolS *) NULL,
19561 (offsetT) n,
19562 (char *) NULL);
19563 *p = 0;
19564}
bfae80f2 19565
8dc2430f
NC
19566/* Perform target specific initialisation of a frag.
19567 Note - despite the name this initialisation is not done when the frag
19568 is created, but only when its type is assigned. A frag can be created
19569 and used a long time before its type is set, so beware of assuming that
19570 this initialisationis performed first. */
bfae80f2 19571
cd000bff
DJ
19572#ifndef OBJ_ELF
19573void
19574arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19575{
19576 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19577 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19578}
19579
19580#else /* OBJ_ELF is defined. */
c19d1205 19581void
cd000bff 19582arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19583{
8dc2430f
NC
19584 /* If the current ARM vs THUMB mode has not already
19585 been recorded into this frag then do so now. */
cd000bff
DJ
19586 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19587 {
19588 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19589
19590 /* Record a mapping symbol for alignment frags. We will delete this
19591 later if the alignment ends up empty. */
19592 switch (fragP->fr_type)
19593 {
19594 case rs_align:
19595 case rs_align_test:
19596 case rs_fill:
19597 mapping_state_2 (MAP_DATA, max_chars);
19598 break;
19599 case rs_align_code:
19600 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19601 break;
19602 default:
19603 break;
19604 }
19605 }
bfae80f2
RE
19606}
19607
c19d1205
ZW
19608/* When we change sections we need to issue a new mapping symbol. */
19609
19610void
19611arm_elf_change_section (void)
bfae80f2 19612{
c19d1205
ZW
19613 /* Link an unlinked unwind index table section to the .text section. */
19614 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19615 && elf_linked_to_section (now_seg) == NULL)
19616 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19617}
19618
c19d1205
ZW
19619int
19620arm_elf_section_type (const char * str, size_t len)
e45d0630 19621{
c19d1205
ZW
19622 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19623 return SHT_ARM_EXIDX;
e45d0630 19624
c19d1205
ZW
19625 return -1;
19626}
19627\f
19628/* Code to deal with unwinding tables. */
e45d0630 19629
c19d1205 19630static void add_unwind_adjustsp (offsetT);
e45d0630 19631
5f4273c7 19632/* Generate any deferred unwind frame offset. */
e45d0630 19633
bfae80f2 19634static void
c19d1205 19635flush_pending_unwind (void)
bfae80f2 19636{
c19d1205 19637 offsetT offset;
bfae80f2 19638
c19d1205
ZW
19639 offset = unwind.pending_offset;
19640 unwind.pending_offset = 0;
19641 if (offset != 0)
19642 add_unwind_adjustsp (offset);
bfae80f2
RE
19643}
19644
c19d1205
ZW
19645/* Add an opcode to this list for this function. Two-byte opcodes should
19646 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19647 order. */
19648
bfae80f2 19649static void
c19d1205 19650add_unwind_opcode (valueT op, int length)
bfae80f2 19651{
c19d1205
ZW
19652 /* Add any deferred stack adjustment. */
19653 if (unwind.pending_offset)
19654 flush_pending_unwind ();
bfae80f2 19655
c19d1205 19656 unwind.sp_restored = 0;
bfae80f2 19657
c19d1205 19658 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19659 {
c19d1205
ZW
19660 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19661 if (unwind.opcodes)
21d799b5
NC
19662 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19663 unwind.opcode_alloc);
c19d1205 19664 else
21d799b5 19665 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19666 }
c19d1205 19667 while (length > 0)
bfae80f2 19668 {
c19d1205
ZW
19669 length--;
19670 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19671 op >>= 8;
19672 unwind.opcode_count++;
bfae80f2 19673 }
bfae80f2
RE
19674}
19675
c19d1205
ZW
19676/* Add unwind opcodes to adjust the stack pointer. */
19677
bfae80f2 19678static void
c19d1205 19679add_unwind_adjustsp (offsetT offset)
bfae80f2 19680{
c19d1205 19681 valueT op;
bfae80f2 19682
c19d1205 19683 if (offset > 0x200)
bfae80f2 19684 {
c19d1205
ZW
19685 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19686 char bytes[5];
19687 int n;
19688 valueT o;
bfae80f2 19689
c19d1205
ZW
19690 /* Long form: 0xb2, uleb128. */
19691 /* This might not fit in a word so add the individual bytes,
19692 remembering the list is built in reverse order. */
19693 o = (valueT) ((offset - 0x204) >> 2);
19694 if (o == 0)
19695 add_unwind_opcode (0, 1);
bfae80f2 19696
c19d1205
ZW
19697 /* Calculate the uleb128 encoding of the offset. */
19698 n = 0;
19699 while (o)
19700 {
19701 bytes[n] = o & 0x7f;
19702 o >>= 7;
19703 if (o)
19704 bytes[n] |= 0x80;
19705 n++;
19706 }
19707 /* Add the insn. */
19708 for (; n; n--)
19709 add_unwind_opcode (bytes[n - 1], 1);
19710 add_unwind_opcode (0xb2, 1);
19711 }
19712 else if (offset > 0x100)
bfae80f2 19713 {
c19d1205
ZW
19714 /* Two short opcodes. */
19715 add_unwind_opcode (0x3f, 1);
19716 op = (offset - 0x104) >> 2;
19717 add_unwind_opcode (op, 1);
bfae80f2 19718 }
c19d1205
ZW
19719 else if (offset > 0)
19720 {
19721 /* Short opcode. */
19722 op = (offset - 4) >> 2;
19723 add_unwind_opcode (op, 1);
19724 }
19725 else if (offset < 0)
bfae80f2 19726 {
c19d1205
ZW
19727 offset = -offset;
19728 while (offset > 0x100)
bfae80f2 19729 {
c19d1205
ZW
19730 add_unwind_opcode (0x7f, 1);
19731 offset -= 0x100;
bfae80f2 19732 }
c19d1205
ZW
19733 op = ((offset - 4) >> 2) | 0x40;
19734 add_unwind_opcode (op, 1);
bfae80f2 19735 }
bfae80f2
RE
19736}
19737
c19d1205
ZW
19738/* Finish the list of unwind opcodes for this function. */
19739static void
19740finish_unwind_opcodes (void)
bfae80f2 19741{
c19d1205 19742 valueT op;
bfae80f2 19743
c19d1205 19744 if (unwind.fp_used)
bfae80f2 19745 {
708587a4 19746 /* Adjust sp as necessary. */
c19d1205
ZW
19747 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19748 flush_pending_unwind ();
bfae80f2 19749
c19d1205
ZW
19750 /* After restoring sp from the frame pointer. */
19751 op = 0x90 | unwind.fp_reg;
19752 add_unwind_opcode (op, 1);
19753 }
19754 else
19755 flush_pending_unwind ();
bfae80f2
RE
19756}
19757
bfae80f2 19758
c19d1205
ZW
19759/* Start an exception table entry. If idx is nonzero this is an index table
19760 entry. */
bfae80f2
RE
19761
19762static void
c19d1205 19763start_unwind_section (const segT text_seg, int idx)
bfae80f2 19764{
c19d1205
ZW
19765 const char * text_name;
19766 const char * prefix;
19767 const char * prefix_once;
19768 const char * group_name;
19769 size_t prefix_len;
19770 size_t text_len;
19771 char * sec_name;
19772 size_t sec_name_len;
19773 int type;
19774 int flags;
19775 int linkonce;
bfae80f2 19776
c19d1205 19777 if (idx)
bfae80f2 19778 {
c19d1205
ZW
19779 prefix = ELF_STRING_ARM_unwind;
19780 prefix_once = ELF_STRING_ARM_unwind_once;
19781 type = SHT_ARM_EXIDX;
bfae80f2 19782 }
c19d1205 19783 else
bfae80f2 19784 {
c19d1205
ZW
19785 prefix = ELF_STRING_ARM_unwind_info;
19786 prefix_once = ELF_STRING_ARM_unwind_info_once;
19787 type = SHT_PROGBITS;
bfae80f2
RE
19788 }
19789
c19d1205
ZW
19790 text_name = segment_name (text_seg);
19791 if (streq (text_name, ".text"))
19792 text_name = "";
19793
19794 if (strncmp (text_name, ".gnu.linkonce.t.",
19795 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19796 {
c19d1205
ZW
19797 prefix = prefix_once;
19798 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19799 }
19800
c19d1205
ZW
19801 prefix_len = strlen (prefix);
19802 text_len = strlen (text_name);
19803 sec_name_len = prefix_len + text_len;
21d799b5 19804 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19805 memcpy (sec_name, prefix, prefix_len);
19806 memcpy (sec_name + prefix_len, text_name, text_len);
19807 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19808
c19d1205
ZW
19809 flags = SHF_ALLOC;
19810 linkonce = 0;
19811 group_name = 0;
bfae80f2 19812
c19d1205
ZW
19813 /* Handle COMDAT group. */
19814 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19815 {
c19d1205
ZW
19816 group_name = elf_group_name (text_seg);
19817 if (group_name == NULL)
19818 {
bd3ba5d1 19819 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19820 segment_name (text_seg));
19821 ignore_rest_of_line ();
19822 return;
19823 }
19824 flags |= SHF_GROUP;
19825 linkonce = 1;
bfae80f2
RE
19826 }
19827
c19d1205 19828 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19829
5f4273c7 19830 /* Set the section link for index tables. */
c19d1205
ZW
19831 if (idx)
19832 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19833}
19834
bfae80f2 19835
c19d1205
ZW
19836/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19837 personality routine data. Returns zero, or the index table value for
19838 and inline entry. */
19839
19840static valueT
19841create_unwind_entry (int have_data)
bfae80f2 19842{
c19d1205
ZW
19843 int size;
19844 addressT where;
19845 char *ptr;
19846 /* The current word of data. */
19847 valueT data;
19848 /* The number of bytes left in this word. */
19849 int n;
bfae80f2 19850
c19d1205 19851 finish_unwind_opcodes ();
bfae80f2 19852
c19d1205
ZW
19853 /* Remember the current text section. */
19854 unwind.saved_seg = now_seg;
19855 unwind.saved_subseg = now_subseg;
bfae80f2 19856
c19d1205 19857 start_unwind_section (now_seg, 0);
bfae80f2 19858
c19d1205 19859 if (unwind.personality_routine == NULL)
bfae80f2 19860 {
c19d1205
ZW
19861 if (unwind.personality_index == -2)
19862 {
19863 if (have_data)
5f4273c7 19864 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19865 return 1; /* EXIDX_CANTUNWIND. */
19866 }
bfae80f2 19867
c19d1205
ZW
19868 /* Use a default personality routine if none is specified. */
19869 if (unwind.personality_index == -1)
19870 {
19871 if (unwind.opcode_count > 3)
19872 unwind.personality_index = 1;
19873 else
19874 unwind.personality_index = 0;
19875 }
bfae80f2 19876
c19d1205
ZW
19877 /* Space for the personality routine entry. */
19878 if (unwind.personality_index == 0)
19879 {
19880 if (unwind.opcode_count > 3)
19881 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19882
c19d1205
ZW
19883 if (!have_data)
19884 {
19885 /* All the data is inline in the index table. */
19886 data = 0x80;
19887 n = 3;
19888 while (unwind.opcode_count > 0)
19889 {
19890 unwind.opcode_count--;
19891 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19892 n--;
19893 }
bfae80f2 19894
c19d1205
ZW
19895 /* Pad with "finish" opcodes. */
19896 while (n--)
19897 data = (data << 8) | 0xb0;
bfae80f2 19898
c19d1205
ZW
19899 return data;
19900 }
19901 size = 0;
19902 }
19903 else
19904 /* We get two opcodes "free" in the first word. */
19905 size = unwind.opcode_count - 2;
19906 }
19907 else
19908 /* An extra byte is required for the opcode count. */
19909 size = unwind.opcode_count + 1;
bfae80f2 19910
c19d1205
ZW
19911 size = (size + 3) >> 2;
19912 if (size > 0xff)
19913 as_bad (_("too many unwind opcodes"));
bfae80f2 19914
c19d1205
ZW
19915 frag_align (2, 0, 0);
19916 record_alignment (now_seg, 2);
19917 unwind.table_entry = expr_build_dot ();
19918
19919 /* Allocate the table entry. */
19920 ptr = frag_more ((size << 2) + 4);
19921 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19922
c19d1205 19923 switch (unwind.personality_index)
bfae80f2 19924 {
c19d1205
ZW
19925 case -1:
19926 /* ??? Should this be a PLT generating relocation? */
19927 /* Custom personality routine. */
19928 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19929 BFD_RELOC_ARM_PREL31);
bfae80f2 19930
c19d1205
ZW
19931 where += 4;
19932 ptr += 4;
bfae80f2 19933
c19d1205
ZW
19934 /* Set the first byte to the number of additional words. */
19935 data = size - 1;
19936 n = 3;
19937 break;
bfae80f2 19938
c19d1205
ZW
19939 /* ABI defined personality routines. */
19940 case 0:
19941 /* Three opcodes bytes are packed into the first word. */
19942 data = 0x80;
19943 n = 3;
19944 break;
bfae80f2 19945
c19d1205
ZW
19946 case 1:
19947 case 2:
19948 /* The size and first two opcode bytes go in the first word. */
19949 data = ((0x80 + unwind.personality_index) << 8) | size;
19950 n = 2;
19951 break;
bfae80f2 19952
c19d1205
ZW
19953 default:
19954 /* Should never happen. */
19955 abort ();
19956 }
bfae80f2 19957
c19d1205
ZW
19958 /* Pack the opcodes into words (MSB first), reversing the list at the same
19959 time. */
19960 while (unwind.opcode_count > 0)
19961 {
19962 if (n == 0)
19963 {
19964 md_number_to_chars (ptr, data, 4);
19965 ptr += 4;
19966 n = 4;
19967 data = 0;
19968 }
19969 unwind.opcode_count--;
19970 n--;
19971 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19972 }
19973
19974 /* Finish off the last word. */
19975 if (n < 4)
19976 {
19977 /* Pad with "finish" opcodes. */
19978 while (n--)
19979 data = (data << 8) | 0xb0;
19980
19981 md_number_to_chars (ptr, data, 4);
19982 }
19983
19984 if (!have_data)
19985 {
19986 /* Add an empty descriptor if there is no user-specified data. */
19987 ptr = frag_more (4);
19988 md_number_to_chars (ptr, 0, 4);
19989 }
19990
19991 return 0;
bfae80f2
RE
19992}
19993
f0927246
NC
19994
19995/* Initialize the DWARF-2 unwind information for this procedure. */
19996
19997void
19998tc_arm_frame_initial_instructions (void)
19999{
20000 cfi_add_CFA_def_cfa (REG_SP, 0);
20001}
20002#endif /* OBJ_ELF */
20003
c19d1205
ZW
20004/* Convert REGNAME to a DWARF-2 register number. */
20005
20006int
1df69f4f 20007tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20008{
1df69f4f 20009 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20010
20011 if (reg == FAIL)
20012 return -1;
20013
20014 return reg;
bfae80f2
RE
20015}
20016
f0927246 20017#ifdef TE_PE
c19d1205 20018void
f0927246 20019tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20020{
91d6fa6a 20021 expressionS exp;
bfae80f2 20022
91d6fa6a
NC
20023 exp.X_op = O_secrel;
20024 exp.X_add_symbol = symbol;
20025 exp.X_add_number = 0;
20026 emit_expr (&exp, size);
f0927246
NC
20027}
20028#endif
bfae80f2 20029
c19d1205 20030/* MD interface: Symbol and relocation handling. */
bfae80f2 20031
2fc8bdac
ZW
20032/* Return the address within the segment that a PC-relative fixup is
20033 relative to. For ARM, PC-relative fixups applied to instructions
20034 are generally relative to the location of the fixup plus 8 bytes.
20035 Thumb branches are offset by 4, and Thumb loads relative to PC
20036 require special handling. */
bfae80f2 20037
c19d1205 20038long
2fc8bdac 20039md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20040{
2fc8bdac
ZW
20041 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20042
20043 /* If this is pc-relative and we are going to emit a relocation
20044 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20045 will need. Otherwise we want to use the calculated base.
20046 For WinCE we skip the bias for externals as well, since this
20047 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20048 if (fixP->fx_pcrel
2fc8bdac 20049 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20050 || (arm_force_relocation (fixP)
20051#ifdef TE_WINCE
20052 && !S_IS_EXTERNAL (fixP->fx_addsy)
20053#endif
20054 )))
2fc8bdac 20055 base = 0;
bfae80f2 20056
267bf995 20057
c19d1205 20058 switch (fixP->fx_r_type)
bfae80f2 20059 {
2fc8bdac
ZW
20060 /* PC relative addressing on the Thumb is slightly odd as the
20061 bottom two bits of the PC are forced to zero for the
20062 calculation. This happens *after* application of the
20063 pipeline offset. However, Thumb adrl already adjusts for
20064 this, so we need not do it again. */
c19d1205 20065 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20066 return base & ~3;
c19d1205
ZW
20067
20068 case BFD_RELOC_ARM_THUMB_OFFSET:
20069 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20070 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20071 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20072 return (base + 4) & ~3;
c19d1205 20073
2fc8bdac
ZW
20074 /* Thumb branches are simply offset by +4. */
20075 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20076 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20077 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20078 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20079 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20080 return base + 4;
bfae80f2 20081
267bf995 20082 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20083 if (fixP->fx_addsy
20084 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20085 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20086 && ARM_IS_FUNC (fixP->fx_addsy)
20087 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20088 base = fixP->fx_where + fixP->fx_frag->fr_address;
20089 return base + 4;
20090
00adf2d4
JB
20091 /* BLX is like branches above, but forces the low two bits of PC to
20092 zero. */
486499d0
CL
20093 case BFD_RELOC_THUMB_PCREL_BLX:
20094 if (fixP->fx_addsy
20095 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20096 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20097 && THUMB_IS_FUNC (fixP->fx_addsy)
20098 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20099 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
20100 return (base + 4) & ~3;
20101
2fc8bdac
ZW
20102 /* ARM mode branches are offset by +8. However, the Windows CE
20103 loader expects the relocation not to take this into account. */
267bf995 20104 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20105 if (fixP->fx_addsy
20106 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20107 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20108 && ARM_IS_FUNC (fixP->fx_addsy)
20109 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20110 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20111 return base + 8;
267bf995 20112
486499d0
CL
20113 case BFD_RELOC_ARM_PCREL_CALL:
20114 if (fixP->fx_addsy
20115 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20116 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20117 && THUMB_IS_FUNC (fixP->fx_addsy)
20118 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20119 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20120 return base + 8;
267bf995 20121
2fc8bdac 20122 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20123 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20124 case BFD_RELOC_ARM_PLT32:
c19d1205 20125#ifdef TE_WINCE
5f4273c7 20126 /* When handling fixups immediately, because we have already
53baae48
NC
20127 discovered the value of a symbol, or the address of the frag involved
20128 we must account for the offset by +8, as the OS loader will never see the reloc.
20129 see fixup_segment() in write.c
20130 The S_IS_EXTERNAL test handles the case of global symbols.
20131 Those need the calculated base, not just the pipe compensation the linker will need. */
20132 if (fixP->fx_pcrel
20133 && fixP->fx_addsy != NULL
20134 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20135 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20136 return base + 8;
2fc8bdac 20137 return base;
c19d1205 20138#else
2fc8bdac 20139 return base + 8;
c19d1205 20140#endif
2fc8bdac 20141
267bf995 20142
2fc8bdac
ZW
20143 /* ARM mode loads relative to PC are also offset by +8. Unlike
20144 branches, the Windows CE loader *does* expect the relocation
20145 to take this into account. */
20146 case BFD_RELOC_ARM_OFFSET_IMM:
20147 case BFD_RELOC_ARM_OFFSET_IMM8:
20148 case BFD_RELOC_ARM_HWLITERAL:
20149 case BFD_RELOC_ARM_LITERAL:
20150 case BFD_RELOC_ARM_CP_OFF_IMM:
20151 return base + 8;
20152
20153
20154 /* Other PC-relative relocations are un-offset. */
20155 default:
20156 return base;
20157 }
bfae80f2
RE
20158}
20159
c19d1205
ZW
20160/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20161 Otherwise we have no need to default values of symbols. */
20162
20163symbolS *
20164md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20165{
c19d1205
ZW
20166#ifdef OBJ_ELF
20167 if (name[0] == '_' && name[1] == 'G'
20168 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20169 {
20170 if (!GOT_symbol)
20171 {
20172 if (symbol_find (name))
bd3ba5d1 20173 as_bad (_("GOT already in the symbol table"));
bfae80f2 20174
c19d1205
ZW
20175 GOT_symbol = symbol_new (name, undefined_section,
20176 (valueT) 0, & zero_address_frag);
20177 }
bfae80f2 20178
c19d1205 20179 return GOT_symbol;
bfae80f2 20180 }
c19d1205 20181#endif
bfae80f2 20182
c921be7d 20183 return NULL;
bfae80f2
RE
20184}
20185
55cf6793 20186/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20187 computed as two separate immediate values, added together. We
20188 already know that this value cannot be computed by just one ARM
20189 instruction. */
20190
20191static unsigned int
20192validate_immediate_twopart (unsigned int val,
20193 unsigned int * highpart)
bfae80f2 20194{
c19d1205
ZW
20195 unsigned int a;
20196 unsigned int i;
bfae80f2 20197
c19d1205
ZW
20198 for (i = 0; i < 32; i += 2)
20199 if (((a = rotate_left (val, i)) & 0xff) != 0)
20200 {
20201 if (a & 0xff00)
20202 {
20203 if (a & ~ 0xffff)
20204 continue;
20205 * highpart = (a >> 8) | ((i + 24) << 7);
20206 }
20207 else if (a & 0xff0000)
20208 {
20209 if (a & 0xff000000)
20210 continue;
20211 * highpart = (a >> 16) | ((i + 16) << 7);
20212 }
20213 else
20214 {
9c2799c2 20215 gas_assert (a & 0xff000000);
c19d1205
ZW
20216 * highpart = (a >> 24) | ((i + 8) << 7);
20217 }
bfae80f2 20218
c19d1205
ZW
20219 return (a & 0xff) | (i << 7);
20220 }
bfae80f2 20221
c19d1205 20222 return FAIL;
bfae80f2
RE
20223}
20224
c19d1205
ZW
20225static int
20226validate_offset_imm (unsigned int val, int hwse)
20227{
20228 if ((hwse && val > 255) || val > 4095)
20229 return FAIL;
20230 return val;
20231}
bfae80f2 20232
55cf6793 20233/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20234 negative immediate constant by altering the instruction. A bit of
20235 a hack really.
20236 MOV <-> MVN
20237 AND <-> BIC
20238 ADC <-> SBC
20239 by inverting the second operand, and
20240 ADD <-> SUB
20241 CMP <-> CMN
20242 by negating the second operand. */
bfae80f2 20243
c19d1205
ZW
20244static int
20245negate_data_op (unsigned long * instruction,
20246 unsigned long value)
bfae80f2 20247{
c19d1205
ZW
20248 int op, new_inst;
20249 unsigned long negated, inverted;
bfae80f2 20250
c19d1205
ZW
20251 negated = encode_arm_immediate (-value);
20252 inverted = encode_arm_immediate (~value);
bfae80f2 20253
c19d1205
ZW
20254 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20255 switch (op)
bfae80f2 20256 {
c19d1205
ZW
20257 /* First negates. */
20258 case OPCODE_SUB: /* ADD <-> SUB */
20259 new_inst = OPCODE_ADD;
20260 value = negated;
20261 break;
bfae80f2 20262
c19d1205
ZW
20263 case OPCODE_ADD:
20264 new_inst = OPCODE_SUB;
20265 value = negated;
20266 break;
bfae80f2 20267
c19d1205
ZW
20268 case OPCODE_CMP: /* CMP <-> CMN */
20269 new_inst = OPCODE_CMN;
20270 value = negated;
20271 break;
bfae80f2 20272
c19d1205
ZW
20273 case OPCODE_CMN:
20274 new_inst = OPCODE_CMP;
20275 value = negated;
20276 break;
bfae80f2 20277
c19d1205
ZW
20278 /* Now Inverted ops. */
20279 case OPCODE_MOV: /* MOV <-> MVN */
20280 new_inst = OPCODE_MVN;
20281 value = inverted;
20282 break;
bfae80f2 20283
c19d1205
ZW
20284 case OPCODE_MVN:
20285 new_inst = OPCODE_MOV;
20286 value = inverted;
20287 break;
bfae80f2 20288
c19d1205
ZW
20289 case OPCODE_AND: /* AND <-> BIC */
20290 new_inst = OPCODE_BIC;
20291 value = inverted;
20292 break;
bfae80f2 20293
c19d1205
ZW
20294 case OPCODE_BIC:
20295 new_inst = OPCODE_AND;
20296 value = inverted;
20297 break;
bfae80f2 20298
c19d1205
ZW
20299 case OPCODE_ADC: /* ADC <-> SBC */
20300 new_inst = OPCODE_SBC;
20301 value = inverted;
20302 break;
bfae80f2 20303
c19d1205
ZW
20304 case OPCODE_SBC:
20305 new_inst = OPCODE_ADC;
20306 value = inverted;
20307 break;
bfae80f2 20308
c19d1205
ZW
20309 /* We cannot do anything. */
20310 default:
20311 return FAIL;
b99bd4ef
NC
20312 }
20313
c19d1205
ZW
20314 if (value == (unsigned) FAIL)
20315 return FAIL;
20316
20317 *instruction &= OPCODE_MASK;
20318 *instruction |= new_inst << DATA_OP_SHIFT;
20319 return value;
b99bd4ef
NC
20320}
20321
ef8d22e6
PB
20322/* Like negate_data_op, but for Thumb-2. */
20323
20324static unsigned int
16dd5e42 20325thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20326{
20327 int op, new_inst;
20328 int rd;
16dd5e42 20329 unsigned int negated, inverted;
ef8d22e6
PB
20330
20331 negated = encode_thumb32_immediate (-value);
20332 inverted = encode_thumb32_immediate (~value);
20333
20334 rd = (*instruction >> 8) & 0xf;
20335 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20336 switch (op)
20337 {
20338 /* ADD <-> SUB. Includes CMP <-> CMN. */
20339 case T2_OPCODE_SUB:
20340 new_inst = T2_OPCODE_ADD;
20341 value = negated;
20342 break;
20343
20344 case T2_OPCODE_ADD:
20345 new_inst = T2_OPCODE_SUB;
20346 value = negated;
20347 break;
20348
20349 /* ORR <-> ORN. Includes MOV <-> MVN. */
20350 case T2_OPCODE_ORR:
20351 new_inst = T2_OPCODE_ORN;
20352 value = inverted;
20353 break;
20354
20355 case T2_OPCODE_ORN:
20356 new_inst = T2_OPCODE_ORR;
20357 value = inverted;
20358 break;
20359
20360 /* AND <-> BIC. TST has no inverted equivalent. */
20361 case T2_OPCODE_AND:
20362 new_inst = T2_OPCODE_BIC;
20363 if (rd == 15)
20364 value = FAIL;
20365 else
20366 value = inverted;
20367 break;
20368
20369 case T2_OPCODE_BIC:
20370 new_inst = T2_OPCODE_AND;
20371 value = inverted;
20372 break;
20373
20374 /* ADC <-> SBC */
20375 case T2_OPCODE_ADC:
20376 new_inst = T2_OPCODE_SBC;
20377 value = inverted;
20378 break;
20379
20380 case T2_OPCODE_SBC:
20381 new_inst = T2_OPCODE_ADC;
20382 value = inverted;
20383 break;
20384
20385 /* We cannot do anything. */
20386 default:
20387 return FAIL;
20388 }
20389
16dd5e42 20390 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20391 return FAIL;
20392
20393 *instruction &= T2_OPCODE_MASK;
20394 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20395 return value;
20396}
20397
8f06b2d8
PB
20398/* Read a 32-bit thumb instruction from buf. */
20399static unsigned long
20400get_thumb32_insn (char * buf)
20401{
20402 unsigned long insn;
20403 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20404 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20405
20406 return insn;
20407}
20408
a8bc6c78
PB
20409
20410/* We usually want to set the low bit on the address of thumb function
20411 symbols. In particular .word foo - . should have the low bit set.
20412 Generic code tries to fold the difference of two symbols to
20413 a constant. Prevent this and force a relocation when the first symbols
20414 is a thumb function. */
c921be7d
NC
20415
20416bfd_boolean
a8bc6c78
PB
20417arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20418{
20419 if (op == O_subtract
20420 && l->X_op == O_symbol
20421 && r->X_op == O_symbol
20422 && THUMB_IS_FUNC (l->X_add_symbol))
20423 {
20424 l->X_op = O_subtract;
20425 l->X_op_symbol = r->X_add_symbol;
20426 l->X_add_number -= r->X_add_number;
c921be7d 20427 return TRUE;
a8bc6c78 20428 }
c921be7d 20429
a8bc6c78 20430 /* Process as normal. */
c921be7d 20431 return FALSE;
a8bc6c78
PB
20432}
20433
4a42ebbc
RR
20434/* Encode Thumb2 unconditional branches and calls. The encoding
20435 for the 2 are identical for the immediate values. */
20436
20437static void
20438encode_thumb2_b_bl_offset (char * buf, offsetT value)
20439{
20440#define T2I1I2MASK ((1 << 13) | (1 << 11))
20441 offsetT newval;
20442 offsetT newval2;
20443 addressT S, I1, I2, lo, hi;
20444
20445 S = (value >> 24) & 0x01;
20446 I1 = (value >> 23) & 0x01;
20447 I2 = (value >> 22) & 0x01;
20448 hi = (value >> 12) & 0x3ff;
20449 lo = (value >> 1) & 0x7ff;
20450 newval = md_chars_to_number (buf, THUMB_SIZE);
20451 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20452 newval |= (S << 10) | hi;
20453 newval2 &= ~T2I1I2MASK;
20454 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20455 md_number_to_chars (buf, newval, THUMB_SIZE);
20456 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20457}
20458
c19d1205 20459void
55cf6793 20460md_apply_fix (fixS * fixP,
c19d1205
ZW
20461 valueT * valP,
20462 segT seg)
20463{
20464 offsetT value = * valP;
20465 offsetT newval;
20466 unsigned int newimm;
20467 unsigned long temp;
20468 int sign;
20469 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20470
9c2799c2 20471 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20472
c19d1205 20473 /* Note whether this will delete the relocation. */
4962c51a 20474
c19d1205
ZW
20475 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20476 fixP->fx_done = 1;
b99bd4ef 20477
adbaf948 20478 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20479 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20480 for emit_reloc. */
20481 value &= 0xffffffff;
20482 value ^= 0x80000000;
5f4273c7 20483 value -= 0x80000000;
adbaf948
ZW
20484
20485 *valP = value;
c19d1205 20486 fixP->fx_addnumber = value;
b99bd4ef 20487
adbaf948
ZW
20488 /* Same treatment for fixP->fx_offset. */
20489 fixP->fx_offset &= 0xffffffff;
20490 fixP->fx_offset ^= 0x80000000;
20491 fixP->fx_offset -= 0x80000000;
20492
c19d1205 20493 switch (fixP->fx_r_type)
b99bd4ef 20494 {
c19d1205
ZW
20495 case BFD_RELOC_NONE:
20496 /* This will need to go in the object file. */
20497 fixP->fx_done = 0;
20498 break;
b99bd4ef 20499
c19d1205
ZW
20500 case BFD_RELOC_ARM_IMMEDIATE:
20501 /* We claim that this fixup has been processed here,
20502 even if in fact we generate an error because we do
20503 not have a reloc for it, so tc_gen_reloc will reject it. */
20504 fixP->fx_done = 1;
b99bd4ef 20505
77db8e2e 20506 if (fixP->fx_addsy)
b99bd4ef 20507 {
77db8e2e 20508 const char *msg = 0;
b99bd4ef 20509
77db8e2e
NC
20510 if (! S_IS_DEFINED (fixP->fx_addsy))
20511 msg = _("undefined symbol %s used as an immediate value");
20512 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20513 msg = _("symbol %s is in a different section");
20514 else if (S_IS_WEAK (fixP->fx_addsy))
20515 msg = _("symbol %s is weak and may be overridden later");
20516
20517 if (msg)
20518 {
20519 as_bad_where (fixP->fx_file, fixP->fx_line,
20520 msg, S_GET_NAME (fixP->fx_addsy));
20521 break;
20522 }
42e5fcbf
AS
20523 }
20524
c19d1205
ZW
20525 newimm = encode_arm_immediate (value);
20526 temp = md_chars_to_number (buf, INSN_SIZE);
20527
20528 /* If the instruction will fail, see if we can fix things up by
20529 changing the opcode. */
20530 if (newimm == (unsigned int) FAIL
20531 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20532 {
c19d1205
ZW
20533 as_bad_where (fixP->fx_file, fixP->fx_line,
20534 _("invalid constant (%lx) after fixup"),
20535 (unsigned long) value);
20536 break;
b99bd4ef 20537 }
b99bd4ef 20538
c19d1205
ZW
20539 newimm |= (temp & 0xfffff000);
20540 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20541 break;
b99bd4ef 20542
c19d1205
ZW
20543 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20544 {
20545 unsigned int highpart = 0;
20546 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20547
77db8e2e 20548 if (fixP->fx_addsy)
42e5fcbf 20549 {
77db8e2e 20550 const char *msg = 0;
42e5fcbf 20551
77db8e2e
NC
20552 if (! S_IS_DEFINED (fixP->fx_addsy))
20553 msg = _("undefined symbol %s used as an immediate value");
20554 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20555 msg = _("symbol %s is in a different section");
20556 else if (S_IS_WEAK (fixP->fx_addsy))
20557 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20558
77db8e2e
NC
20559 if (msg)
20560 {
20561 as_bad_where (fixP->fx_file, fixP->fx_line,
20562 msg, S_GET_NAME (fixP->fx_addsy));
20563 break;
20564 }
20565 }
20566
c19d1205
ZW
20567 newimm = encode_arm_immediate (value);
20568 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20569
c19d1205
ZW
20570 /* If the instruction will fail, see if we can fix things up by
20571 changing the opcode. */
20572 if (newimm == (unsigned int) FAIL
20573 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20574 {
20575 /* No ? OK - try using two ADD instructions to generate
20576 the value. */
20577 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20578
c19d1205
ZW
20579 /* Yes - then make sure that the second instruction is
20580 also an add. */
20581 if (newimm != (unsigned int) FAIL)
20582 newinsn = temp;
20583 /* Still No ? Try using a negated value. */
20584 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20585 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20586 /* Otherwise - give up. */
20587 else
20588 {
20589 as_bad_where (fixP->fx_file, fixP->fx_line,
20590 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20591 (long) value);
20592 break;
20593 }
b99bd4ef 20594
c19d1205
ZW
20595 /* Replace the first operand in the 2nd instruction (which
20596 is the PC) with the destination register. We have
20597 already added in the PC in the first instruction and we
20598 do not want to do it again. */
20599 newinsn &= ~ 0xf0000;
20600 newinsn |= ((newinsn & 0x0f000) << 4);
20601 }
b99bd4ef 20602
c19d1205
ZW
20603 newimm |= (temp & 0xfffff000);
20604 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20605
c19d1205
ZW
20606 highpart |= (newinsn & 0xfffff000);
20607 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20608 }
20609 break;
b99bd4ef 20610
c19d1205 20611 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20612 if (!fixP->fx_done && seg->use_rela_p)
20613 value = 0;
20614
c19d1205 20615 case BFD_RELOC_ARM_LITERAL:
26d97720 20616 sign = value > 0;
b99bd4ef 20617
c19d1205
ZW
20618 if (value < 0)
20619 value = - value;
b99bd4ef 20620
c19d1205 20621 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20622 {
c19d1205
ZW
20623 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20624 as_bad_where (fixP->fx_file, fixP->fx_line,
20625 _("invalid literal constant: pool needs to be closer"));
20626 else
20627 as_bad_where (fixP->fx_file, fixP->fx_line,
20628 _("bad immediate value for offset (%ld)"),
20629 (long) value);
20630 break;
f03698e6
RE
20631 }
20632
c19d1205 20633 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20634 if (value == 0)
20635 newval &= 0xfffff000;
20636 else
20637 {
20638 newval &= 0xff7ff000;
20639 newval |= value | (sign ? INDEX_UP : 0);
20640 }
c19d1205
ZW
20641 md_number_to_chars (buf, newval, INSN_SIZE);
20642 break;
b99bd4ef 20643
c19d1205
ZW
20644 case BFD_RELOC_ARM_OFFSET_IMM8:
20645 case BFD_RELOC_ARM_HWLITERAL:
26d97720 20646 sign = value > 0;
b99bd4ef 20647
c19d1205
ZW
20648 if (value < 0)
20649 value = - value;
b99bd4ef 20650
c19d1205 20651 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20652 {
c19d1205
ZW
20653 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20654 as_bad_where (fixP->fx_file, fixP->fx_line,
20655 _("invalid literal constant: pool needs to be closer"));
20656 else
f9d4405b 20657 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20658 (long) value);
20659 break;
b99bd4ef
NC
20660 }
20661
c19d1205 20662 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20663 if (value == 0)
20664 newval &= 0xfffff0f0;
20665 else
20666 {
20667 newval &= 0xff7ff0f0;
20668 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20669 }
c19d1205
ZW
20670 md_number_to_chars (buf, newval, INSN_SIZE);
20671 break;
b99bd4ef 20672
c19d1205
ZW
20673 case BFD_RELOC_ARM_T32_OFFSET_U8:
20674 if (value < 0 || value > 1020 || value % 4 != 0)
20675 as_bad_where (fixP->fx_file, fixP->fx_line,
20676 _("bad immediate value for offset (%ld)"), (long) value);
20677 value /= 4;
b99bd4ef 20678
c19d1205 20679 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20680 newval |= value;
20681 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20682 break;
b99bd4ef 20683
c19d1205
ZW
20684 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20685 /* This is a complicated relocation used for all varieties of Thumb32
20686 load/store instruction with immediate offset:
20687
20688 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20689 *4, optional writeback(W)
20690 (doubleword load/store)
20691
20692 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20693 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20694 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20695 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20696 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20697
20698 Uppercase letters indicate bits that are already encoded at
20699 this point. Lowercase letters are our problem. For the
20700 second block of instructions, the secondary opcode nybble
20701 (bits 8..11) is present, and bit 23 is zero, even if this is
20702 a PC-relative operation. */
20703 newval = md_chars_to_number (buf, THUMB_SIZE);
20704 newval <<= 16;
20705 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20706
c19d1205 20707 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20708 {
c19d1205
ZW
20709 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20710 if (value >= 0)
20711 newval |= (1 << 23);
20712 else
20713 value = -value;
20714 if (value % 4 != 0)
20715 {
20716 as_bad_where (fixP->fx_file, fixP->fx_line,
20717 _("offset not a multiple of 4"));
20718 break;
20719 }
20720 value /= 4;
216d22bc 20721 if (value > 0xff)
c19d1205
ZW
20722 {
20723 as_bad_where (fixP->fx_file, fixP->fx_line,
20724 _("offset out of range"));
20725 break;
20726 }
20727 newval &= ~0xff;
b99bd4ef 20728 }
c19d1205 20729 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20730 {
c19d1205
ZW
20731 /* PC-relative, 12-bit offset. */
20732 if (value >= 0)
20733 newval |= (1 << 23);
20734 else
20735 value = -value;
216d22bc 20736 if (value > 0xfff)
c19d1205
ZW
20737 {
20738 as_bad_where (fixP->fx_file, fixP->fx_line,
20739 _("offset out of range"));
20740 break;
20741 }
20742 newval &= ~0xfff;
b99bd4ef 20743 }
c19d1205 20744 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20745 {
c19d1205
ZW
20746 /* Writeback: 8-bit, +/- offset. */
20747 if (value >= 0)
20748 newval |= (1 << 9);
20749 else
20750 value = -value;
216d22bc 20751 if (value > 0xff)
c19d1205
ZW
20752 {
20753 as_bad_where (fixP->fx_file, fixP->fx_line,
20754 _("offset out of range"));
20755 break;
20756 }
20757 newval &= ~0xff;
b99bd4ef 20758 }
c19d1205 20759 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20760 {
c19d1205 20761 /* T-instruction: positive 8-bit offset. */
216d22bc 20762 if (value < 0 || value > 0xff)
b99bd4ef 20763 {
c19d1205
ZW
20764 as_bad_where (fixP->fx_file, fixP->fx_line,
20765 _("offset out of range"));
20766 break;
b99bd4ef 20767 }
c19d1205
ZW
20768 newval &= ~0xff;
20769 newval |= value;
b99bd4ef
NC
20770 }
20771 else
b99bd4ef 20772 {
c19d1205
ZW
20773 /* Positive 12-bit or negative 8-bit offset. */
20774 int limit;
20775 if (value >= 0)
b99bd4ef 20776 {
c19d1205
ZW
20777 newval |= (1 << 23);
20778 limit = 0xfff;
20779 }
20780 else
20781 {
20782 value = -value;
20783 limit = 0xff;
20784 }
20785 if (value > limit)
20786 {
20787 as_bad_where (fixP->fx_file, fixP->fx_line,
20788 _("offset out of range"));
20789 break;
b99bd4ef 20790 }
c19d1205 20791 newval &= ~limit;
b99bd4ef 20792 }
b99bd4ef 20793
c19d1205
ZW
20794 newval |= value;
20795 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20796 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20797 break;
404ff6b5 20798
c19d1205
ZW
20799 case BFD_RELOC_ARM_SHIFT_IMM:
20800 newval = md_chars_to_number (buf, INSN_SIZE);
20801 if (((unsigned long) value) > 32
20802 || (value == 32
20803 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20804 {
20805 as_bad_where (fixP->fx_file, fixP->fx_line,
20806 _("shift expression is too large"));
20807 break;
20808 }
404ff6b5 20809
c19d1205
ZW
20810 if (value == 0)
20811 /* Shifts of zero must be done as lsl. */
20812 newval &= ~0x60;
20813 else if (value == 32)
20814 value = 0;
20815 newval &= 0xfffff07f;
20816 newval |= (value & 0x1f) << 7;
20817 md_number_to_chars (buf, newval, INSN_SIZE);
20818 break;
404ff6b5 20819
c19d1205 20820 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20821 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20822 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20823 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20824 /* We claim that this fixup has been processed here,
20825 even if in fact we generate an error because we do
20826 not have a reloc for it, so tc_gen_reloc will reject it. */
20827 fixP->fx_done = 1;
404ff6b5 20828
c19d1205
ZW
20829 if (fixP->fx_addsy
20830 && ! S_IS_DEFINED (fixP->fx_addsy))
20831 {
20832 as_bad_where (fixP->fx_file, fixP->fx_line,
20833 _("undefined symbol %s used as an immediate value"),
20834 S_GET_NAME (fixP->fx_addsy));
20835 break;
20836 }
404ff6b5 20837
c19d1205
ZW
20838 newval = md_chars_to_number (buf, THUMB_SIZE);
20839 newval <<= 16;
20840 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20841
16805f35
PB
20842 newimm = FAIL;
20843 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20844 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20845 {
20846 newimm = encode_thumb32_immediate (value);
20847 if (newimm == (unsigned int) FAIL)
20848 newimm = thumb32_negate_data_op (&newval, value);
20849 }
16805f35
PB
20850 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20851 && newimm == (unsigned int) FAIL)
92e90b6e 20852 {
16805f35
PB
20853 /* Turn add/sum into addw/subw. */
20854 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20855 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20856 /* No flat 12-bit imm encoding for addsw/subsw. */
20857 if ((newval & 0x00100000) == 0)
e9f89963 20858 {
40f246e3
NC
20859 /* 12 bit immediate for addw/subw. */
20860 if (value < 0)
20861 {
20862 value = -value;
20863 newval ^= 0x00a00000;
20864 }
20865 if (value > 0xfff)
20866 newimm = (unsigned int) FAIL;
20867 else
20868 newimm = value;
e9f89963 20869 }
92e90b6e 20870 }
cc8a6dd0 20871
c19d1205 20872 if (newimm == (unsigned int)FAIL)
3631a3c8 20873 {
c19d1205
ZW
20874 as_bad_where (fixP->fx_file, fixP->fx_line,
20875 _("invalid constant (%lx) after fixup"),
20876 (unsigned long) value);
20877 break;
3631a3c8
NC
20878 }
20879
c19d1205
ZW
20880 newval |= (newimm & 0x800) << 15;
20881 newval |= (newimm & 0x700) << 4;
20882 newval |= (newimm & 0x0ff);
cc8a6dd0 20883
c19d1205
ZW
20884 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20885 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20886 break;
a737bd4d 20887
3eb17e6b 20888 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20889 if (((unsigned long) value) > 0xffff)
20890 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20891 _("invalid smc expression"));
2fc8bdac 20892 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20893 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20894 md_number_to_chars (buf, newval, INSN_SIZE);
20895 break;
a737bd4d 20896
90ec0d68
MGD
20897 case BFD_RELOC_ARM_HVC:
20898 if (((unsigned long) value) > 0xffff)
20899 as_bad_where (fixP->fx_file, fixP->fx_line,
20900 _("invalid hvc expression"));
20901 newval = md_chars_to_number (buf, INSN_SIZE);
20902 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20903 md_number_to_chars (buf, newval, INSN_SIZE);
20904 break;
20905
c19d1205 20906 case BFD_RELOC_ARM_SWI:
adbaf948 20907 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20908 {
20909 if (((unsigned long) value) > 0xff)
20910 as_bad_where (fixP->fx_file, fixP->fx_line,
20911 _("invalid swi expression"));
2fc8bdac 20912 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20913 newval |= value;
20914 md_number_to_chars (buf, newval, THUMB_SIZE);
20915 }
20916 else
20917 {
20918 if (((unsigned long) value) > 0x00ffffff)
20919 as_bad_where (fixP->fx_file, fixP->fx_line,
20920 _("invalid swi expression"));
2fc8bdac 20921 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20922 newval |= value;
20923 md_number_to_chars (buf, newval, INSN_SIZE);
20924 }
20925 break;
a737bd4d 20926
c19d1205
ZW
20927 case BFD_RELOC_ARM_MULTI:
20928 if (((unsigned long) value) > 0xffff)
20929 as_bad_where (fixP->fx_file, fixP->fx_line,
20930 _("invalid expression in load/store multiple"));
20931 newval = value | md_chars_to_number (buf, INSN_SIZE);
20932 md_number_to_chars (buf, newval, INSN_SIZE);
20933 break;
a737bd4d 20934
c19d1205 20935#ifdef OBJ_ELF
39b41c9c 20936 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20937
20938 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20939 && fixP->fx_addsy
34e77a92 20940 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20941 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20942 && THUMB_IS_FUNC (fixP->fx_addsy))
20943 /* Flip the bl to blx. This is a simple flip
20944 bit here because we generate PCREL_CALL for
20945 unconditional bls. */
20946 {
20947 newval = md_chars_to_number (buf, INSN_SIZE);
20948 newval = newval | 0x10000000;
20949 md_number_to_chars (buf, newval, INSN_SIZE);
20950 temp = 1;
20951 fixP->fx_done = 1;
20952 }
39b41c9c
PB
20953 else
20954 temp = 3;
20955 goto arm_branch_common;
20956
20957 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20958 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20959 && fixP->fx_addsy
34e77a92 20960 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20961 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20962 && THUMB_IS_FUNC (fixP->fx_addsy))
20963 {
20964 /* This would map to a bl<cond>, b<cond>,
20965 b<always> to a Thumb function. We
20966 need to force a relocation for this particular
20967 case. */
20968 newval = md_chars_to_number (buf, INSN_SIZE);
20969 fixP->fx_done = 0;
20970 }
20971
2fc8bdac 20972 case BFD_RELOC_ARM_PLT32:
c19d1205 20973#endif
39b41c9c
PB
20974 case BFD_RELOC_ARM_PCREL_BRANCH:
20975 temp = 3;
20976 goto arm_branch_common;
a737bd4d 20977
39b41c9c 20978 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20979
39b41c9c 20980 temp = 1;
267bf995
RR
20981 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20982 && fixP->fx_addsy
34e77a92 20983 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20984 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20985 && ARM_IS_FUNC (fixP->fx_addsy))
20986 {
20987 /* Flip the blx to a bl and warn. */
20988 const char *name = S_GET_NAME (fixP->fx_addsy);
20989 newval = 0xeb000000;
20990 as_warn_where (fixP->fx_file, fixP->fx_line,
20991 _("blx to '%s' an ARM ISA state function changed to bl"),
20992 name);
20993 md_number_to_chars (buf, newval, INSN_SIZE);
20994 temp = 3;
20995 fixP->fx_done = 1;
20996 }
20997
20998#ifdef OBJ_ELF
20999 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21000 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21001#endif
21002
39b41c9c 21003 arm_branch_common:
c19d1205 21004 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21005 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21006 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21007 also be be clear. */
21008 if (value & temp)
c19d1205 21009 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21010 _("misaligned branch destination"));
21011 if ((value & (offsetT)0xfe000000) != (offsetT)0
21012 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21013 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21014
2fc8bdac 21015 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21016 {
2fc8bdac
ZW
21017 newval = md_chars_to_number (buf, INSN_SIZE);
21018 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21019 /* Set the H bit on BLX instructions. */
21020 if (temp == 1)
21021 {
21022 if (value & 2)
21023 newval |= 0x01000000;
21024 else
21025 newval &= ~0x01000000;
21026 }
2fc8bdac 21027 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21028 }
c19d1205 21029 break;
a737bd4d 21030
25fe350b
MS
21031 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21032 /* CBZ can only branch forward. */
a737bd4d 21033
738755b0
MS
21034 /* Attempts to use CBZ to branch to the next instruction
21035 (which, strictly speaking, are prohibited) will be turned into
21036 no-ops.
21037
21038 FIXME: It may be better to remove the instruction completely and
21039 perform relaxation. */
21040 if (value == -2)
2fc8bdac
ZW
21041 {
21042 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21043 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21044 md_number_to_chars (buf, newval, THUMB_SIZE);
21045 }
738755b0
MS
21046 else
21047 {
21048 if (value & ~0x7e)
08f10d51 21049 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21050
21051 if (fixP->fx_done || !seg->use_rela_p)
21052 {
21053 newval = md_chars_to_number (buf, THUMB_SIZE);
21054 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21055 md_number_to_chars (buf, newval, THUMB_SIZE);
21056 }
21057 }
c19d1205 21058 break;
a737bd4d 21059
c19d1205 21060 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21061 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21062 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21063
2fc8bdac
ZW
21064 if (fixP->fx_done || !seg->use_rela_p)
21065 {
21066 newval = md_chars_to_number (buf, THUMB_SIZE);
21067 newval |= (value & 0x1ff) >> 1;
21068 md_number_to_chars (buf, newval, THUMB_SIZE);
21069 }
c19d1205 21070 break;
a737bd4d 21071
c19d1205 21072 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21073 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21074 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21075
2fc8bdac
ZW
21076 if (fixP->fx_done || !seg->use_rela_p)
21077 {
21078 newval = md_chars_to_number (buf, THUMB_SIZE);
21079 newval |= (value & 0xfff) >> 1;
21080 md_number_to_chars (buf, newval, THUMB_SIZE);
21081 }
c19d1205 21082 break;
a737bd4d 21083
c19d1205 21084 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21085 if (fixP->fx_addsy
21086 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21087 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21088 && ARM_IS_FUNC (fixP->fx_addsy)
21089 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21090 {
21091 /* Force a relocation for a branch 20 bits wide. */
21092 fixP->fx_done = 0;
21093 }
08f10d51 21094 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
21095 as_bad_where (fixP->fx_file, fixP->fx_line,
21096 _("conditional branch out of range"));
404ff6b5 21097
2fc8bdac
ZW
21098 if (fixP->fx_done || !seg->use_rela_p)
21099 {
21100 offsetT newval2;
21101 addressT S, J1, J2, lo, hi;
404ff6b5 21102
2fc8bdac
ZW
21103 S = (value & 0x00100000) >> 20;
21104 J2 = (value & 0x00080000) >> 19;
21105 J1 = (value & 0x00040000) >> 18;
21106 hi = (value & 0x0003f000) >> 12;
21107 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21108
2fc8bdac
ZW
21109 newval = md_chars_to_number (buf, THUMB_SIZE);
21110 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21111 newval |= (S << 10) | hi;
21112 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21113 md_number_to_chars (buf, newval, THUMB_SIZE);
21114 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21115 }
c19d1205 21116 break;
6c43fab6 21117
c19d1205 21118 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21119 /* If there is a blx from a thumb state function to
21120 another thumb function flip this to a bl and warn
21121 about it. */
21122
21123 if (fixP->fx_addsy
34e77a92 21124 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21125 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21126 && THUMB_IS_FUNC (fixP->fx_addsy))
21127 {
21128 const char *name = S_GET_NAME (fixP->fx_addsy);
21129 as_warn_where (fixP->fx_file, fixP->fx_line,
21130 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21131 name);
21132 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21133 newval = newval | 0x1000;
21134 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21135 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21136 fixP->fx_done = 1;
21137 }
21138
21139
21140 goto thumb_bl_common;
21141
c19d1205 21142 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21143 /* A bl from Thumb state ISA to an internal ARM state function
21144 is converted to a blx. */
21145 if (fixP->fx_addsy
21146 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21147 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21148 && ARM_IS_FUNC (fixP->fx_addsy)
21149 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21150 {
21151 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21152 newval = newval & ~0x1000;
21153 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21154 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21155 fixP->fx_done = 1;
21156 }
21157
21158 thumb_bl_common:
21159
21160#ifdef OBJ_ELF
21161 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21162 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21163 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21164#endif
21165
2fc8bdac
ZW
21166 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21167 /* For a BLX instruction, make sure that the relocation is rounded up
21168 to a word boundary. This follows the semantics of the instruction
21169 which specifies that bit 1 of the target address will come from bit
21170 1 of the base address. */
21171 value = (value + 1) & ~ 1;
404ff6b5 21172
4a42ebbc 21173 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
08f10d51
NC
21174 {
21175 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21176 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21177 else if ((value & ~0x1ffffff)
21178 && ((value & ~0x1ffffff) != ~0x1ffffff))
21179 as_bad_where (fixP->fx_file, fixP->fx_line,
21180 _("Thumb2 branch out of range"));
21181 }
4a42ebbc
RR
21182
21183 if (fixP->fx_done || !seg->use_rela_p)
21184 encode_thumb2_b_bl_offset (buf, value);
21185
c19d1205 21186 break;
404ff6b5 21187
c19d1205 21188 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
21189 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21190 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 21191
2fc8bdac 21192 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21193 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21194
2fc8bdac 21195 break;
a737bd4d 21196
2fc8bdac
ZW
21197 case BFD_RELOC_8:
21198 if (fixP->fx_done || !seg->use_rela_p)
21199 md_number_to_chars (buf, value, 1);
c19d1205 21200 break;
a737bd4d 21201
c19d1205 21202 case BFD_RELOC_16:
2fc8bdac 21203 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21204 md_number_to_chars (buf, value, 2);
c19d1205 21205 break;
a737bd4d 21206
c19d1205 21207#ifdef OBJ_ELF
0855e32b
NS
21208 case BFD_RELOC_ARM_TLS_CALL:
21209 case BFD_RELOC_ARM_THM_TLS_CALL:
21210 case BFD_RELOC_ARM_TLS_DESCSEQ:
21211 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21212 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21213 break;
21214
21215 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21216 case BFD_RELOC_ARM_TLS_GD32:
21217 case BFD_RELOC_ARM_TLS_LE32:
21218 case BFD_RELOC_ARM_TLS_IE32:
21219 case BFD_RELOC_ARM_TLS_LDM32:
21220 case BFD_RELOC_ARM_TLS_LDO32:
21221 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21222 /* fall through */
6c43fab6 21223
c19d1205
ZW
21224 case BFD_RELOC_ARM_GOT32:
21225 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21226 if (fixP->fx_done || !seg->use_rela_p)
21227 md_number_to_chars (buf, 0, 4);
c19d1205 21228 break;
b43420e6
NC
21229
21230 case BFD_RELOC_ARM_GOT_PREL:
21231 if (fixP->fx_done || !seg->use_rela_p)
21232 md_number_to_chars (buf, value, 4);
21233 break;
21234
9a6f4e97
NS
21235 case BFD_RELOC_ARM_TARGET2:
21236 /* TARGET2 is not partial-inplace, so we need to write the
21237 addend here for REL targets, because it won't be written out
21238 during reloc processing later. */
21239 if (fixP->fx_done || !seg->use_rela_p)
21240 md_number_to_chars (buf, fixP->fx_offset, 4);
21241 break;
c19d1205 21242#endif
6c43fab6 21243
c19d1205
ZW
21244 case BFD_RELOC_RVA:
21245 case BFD_RELOC_32:
21246 case BFD_RELOC_ARM_TARGET1:
21247 case BFD_RELOC_ARM_ROSEGREL32:
21248 case BFD_RELOC_ARM_SBREL32:
21249 case BFD_RELOC_32_PCREL:
f0927246
NC
21250#ifdef TE_PE
21251 case BFD_RELOC_32_SECREL:
21252#endif
2fc8bdac 21253 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21254#ifdef TE_WINCE
21255 /* For WinCE we only do this for pcrel fixups. */
21256 if (fixP->fx_done || fixP->fx_pcrel)
21257#endif
21258 md_number_to_chars (buf, value, 4);
c19d1205 21259 break;
6c43fab6 21260
c19d1205
ZW
21261#ifdef OBJ_ELF
21262 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21263 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21264 {
21265 newval = md_chars_to_number (buf, 4) & 0x80000000;
21266 if ((value ^ (value >> 1)) & 0x40000000)
21267 {
21268 as_bad_where (fixP->fx_file, fixP->fx_line,
21269 _("rel31 relocation overflow"));
21270 }
21271 newval |= value & 0x7fffffff;
21272 md_number_to_chars (buf, newval, 4);
21273 }
21274 break;
c19d1205 21275#endif
a737bd4d 21276
c19d1205 21277 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21278 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21279 if (value < -1023 || value > 1023 || (value & 3))
21280 as_bad_where (fixP->fx_file, fixP->fx_line,
21281 _("co-processor offset out of range"));
21282 cp_off_common:
26d97720 21283 sign = value > 0;
c19d1205
ZW
21284 if (value < 0)
21285 value = -value;
8f06b2d8
PB
21286 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21287 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21288 newval = md_chars_to_number (buf, INSN_SIZE);
21289 else
21290 newval = get_thumb32_insn (buf);
26d97720
NS
21291 if (value == 0)
21292 newval &= 0xffffff00;
21293 else
21294 {
21295 newval &= 0xff7fff00;
21296 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21297 }
8f06b2d8
PB
21298 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21299 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21300 md_number_to_chars (buf, newval, INSN_SIZE);
21301 else
21302 put_thumb32_insn (buf, newval);
c19d1205 21303 break;
a737bd4d 21304
c19d1205 21305 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21306 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21307 if (value < -255 || value > 255)
21308 as_bad_where (fixP->fx_file, fixP->fx_line,
21309 _("co-processor offset out of range"));
df7849c5 21310 value *= 4;
c19d1205 21311 goto cp_off_common;
6c43fab6 21312
c19d1205
ZW
21313 case BFD_RELOC_ARM_THUMB_OFFSET:
21314 newval = md_chars_to_number (buf, THUMB_SIZE);
21315 /* Exactly what ranges, and where the offset is inserted depends
21316 on the type of instruction, we can establish this from the
21317 top 4 bits. */
21318 switch (newval >> 12)
21319 {
21320 case 4: /* PC load. */
21321 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21322 forced to zero for these loads; md_pcrel_from has already
21323 compensated for this. */
21324 if (value & 3)
21325 as_bad_where (fixP->fx_file, fixP->fx_line,
21326 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21327 (((unsigned long) fixP->fx_frag->fr_address
21328 + (unsigned long) fixP->fx_where) & ~3)
21329 + (unsigned long) value);
a737bd4d 21330
c19d1205
ZW
21331 if (value & ~0x3fc)
21332 as_bad_where (fixP->fx_file, fixP->fx_line,
21333 _("invalid offset, value too big (0x%08lX)"),
21334 (long) value);
a737bd4d 21335
c19d1205
ZW
21336 newval |= value >> 2;
21337 break;
a737bd4d 21338
c19d1205
ZW
21339 case 9: /* SP load/store. */
21340 if (value & ~0x3fc)
21341 as_bad_where (fixP->fx_file, fixP->fx_line,
21342 _("invalid offset, value too big (0x%08lX)"),
21343 (long) value);
21344 newval |= value >> 2;
21345 break;
6c43fab6 21346
c19d1205
ZW
21347 case 6: /* Word load/store. */
21348 if (value & ~0x7c)
21349 as_bad_where (fixP->fx_file, fixP->fx_line,
21350 _("invalid offset, value too big (0x%08lX)"),
21351 (long) value);
21352 newval |= value << 4; /* 6 - 2. */
21353 break;
a737bd4d 21354
c19d1205
ZW
21355 case 7: /* Byte load/store. */
21356 if (value & ~0x1f)
21357 as_bad_where (fixP->fx_file, fixP->fx_line,
21358 _("invalid offset, value too big (0x%08lX)"),
21359 (long) value);
21360 newval |= value << 6;
21361 break;
a737bd4d 21362
c19d1205
ZW
21363 case 8: /* Halfword load/store. */
21364 if (value & ~0x3e)
21365 as_bad_where (fixP->fx_file, fixP->fx_line,
21366 _("invalid offset, value too big (0x%08lX)"),
21367 (long) value);
21368 newval |= value << 5; /* 6 - 1. */
21369 break;
a737bd4d 21370
c19d1205
ZW
21371 default:
21372 as_bad_where (fixP->fx_file, fixP->fx_line,
21373 "Unable to process relocation for thumb opcode: %lx",
21374 (unsigned long) newval);
21375 break;
21376 }
21377 md_number_to_chars (buf, newval, THUMB_SIZE);
21378 break;
a737bd4d 21379
c19d1205
ZW
21380 case BFD_RELOC_ARM_THUMB_ADD:
21381 /* This is a complicated relocation, since we use it for all of
21382 the following immediate relocations:
a737bd4d 21383
c19d1205
ZW
21384 3bit ADD/SUB
21385 8bit ADD/SUB
21386 9bit ADD/SUB SP word-aligned
21387 10bit ADD PC/SP word-aligned
a737bd4d 21388
c19d1205
ZW
21389 The type of instruction being processed is encoded in the
21390 instruction field:
a737bd4d 21391
c19d1205
ZW
21392 0x8000 SUB
21393 0x00F0 Rd
21394 0x000F Rs
21395 */
21396 newval = md_chars_to_number (buf, THUMB_SIZE);
21397 {
21398 int rd = (newval >> 4) & 0xf;
21399 int rs = newval & 0xf;
21400 int subtract = !!(newval & 0x8000);
a737bd4d 21401
c19d1205
ZW
21402 /* Check for HI regs, only very restricted cases allowed:
21403 Adjusting SP, and using PC or SP to get an address. */
21404 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21405 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21406 as_bad_where (fixP->fx_file, fixP->fx_line,
21407 _("invalid Hi register with immediate"));
a737bd4d 21408
c19d1205
ZW
21409 /* If value is negative, choose the opposite instruction. */
21410 if (value < 0)
21411 {
21412 value = -value;
21413 subtract = !subtract;
21414 if (value < 0)
21415 as_bad_where (fixP->fx_file, fixP->fx_line,
21416 _("immediate value out of range"));
21417 }
a737bd4d 21418
c19d1205
ZW
21419 if (rd == REG_SP)
21420 {
21421 if (value & ~0x1fc)
21422 as_bad_where (fixP->fx_file, fixP->fx_line,
21423 _("invalid immediate for stack address calculation"));
21424 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21425 newval |= value >> 2;
21426 }
21427 else if (rs == REG_PC || rs == REG_SP)
21428 {
21429 if (subtract || value & ~0x3fc)
21430 as_bad_where (fixP->fx_file, fixP->fx_line,
21431 _("invalid immediate for address calculation (value = 0x%08lX)"),
21432 (unsigned long) value);
21433 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21434 newval |= rd << 8;
21435 newval |= value >> 2;
21436 }
21437 else if (rs == rd)
21438 {
21439 if (value & ~0xff)
21440 as_bad_where (fixP->fx_file, fixP->fx_line,
21441 _("immediate value out of range"));
21442 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21443 newval |= (rd << 8) | value;
21444 }
21445 else
21446 {
21447 if (value & ~0x7)
21448 as_bad_where (fixP->fx_file, fixP->fx_line,
21449 _("immediate value out of range"));
21450 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21451 newval |= rd | (rs << 3) | (value << 6);
21452 }
21453 }
21454 md_number_to_chars (buf, newval, THUMB_SIZE);
21455 break;
a737bd4d 21456
c19d1205
ZW
21457 case BFD_RELOC_ARM_THUMB_IMM:
21458 newval = md_chars_to_number (buf, THUMB_SIZE);
21459 if (value < 0 || value > 255)
21460 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21461 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21462 (long) value);
21463 newval |= value;
21464 md_number_to_chars (buf, newval, THUMB_SIZE);
21465 break;
a737bd4d 21466
c19d1205
ZW
21467 case BFD_RELOC_ARM_THUMB_SHIFT:
21468 /* 5bit shift value (0..32). LSL cannot take 32. */
21469 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21470 temp = newval & 0xf800;
21471 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21472 as_bad_where (fixP->fx_file, fixP->fx_line,
21473 _("invalid shift value: %ld"), (long) value);
21474 /* Shifts of zero must be encoded as LSL. */
21475 if (value == 0)
21476 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21477 /* Shifts of 32 are encoded as zero. */
21478 else if (value == 32)
21479 value = 0;
21480 newval |= value << 6;
21481 md_number_to_chars (buf, newval, THUMB_SIZE);
21482 break;
a737bd4d 21483
c19d1205
ZW
21484 case BFD_RELOC_VTABLE_INHERIT:
21485 case BFD_RELOC_VTABLE_ENTRY:
21486 fixP->fx_done = 0;
21487 return;
6c43fab6 21488
b6895b4f
PB
21489 case BFD_RELOC_ARM_MOVW:
21490 case BFD_RELOC_ARM_MOVT:
21491 case BFD_RELOC_ARM_THUMB_MOVW:
21492 case BFD_RELOC_ARM_THUMB_MOVT:
21493 if (fixP->fx_done || !seg->use_rela_p)
21494 {
21495 /* REL format relocations are limited to a 16-bit addend. */
21496 if (!fixP->fx_done)
21497 {
39623e12 21498 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21499 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21500 _("offset out of range"));
b6895b4f
PB
21501 }
21502 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21503 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21504 {
21505 value >>= 16;
21506 }
21507
21508 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21509 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21510 {
21511 newval = get_thumb32_insn (buf);
21512 newval &= 0xfbf08f00;
21513 newval |= (value & 0xf000) << 4;
21514 newval |= (value & 0x0800) << 15;
21515 newval |= (value & 0x0700) << 4;
21516 newval |= (value & 0x00ff);
21517 put_thumb32_insn (buf, newval);
21518 }
21519 else
21520 {
21521 newval = md_chars_to_number (buf, 4);
21522 newval &= 0xfff0f000;
21523 newval |= value & 0x0fff;
21524 newval |= (value & 0xf000) << 4;
21525 md_number_to_chars (buf, newval, 4);
21526 }
21527 }
21528 return;
21529
4962c51a
MS
21530 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21531 case BFD_RELOC_ARM_ALU_PC_G0:
21532 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21533 case BFD_RELOC_ARM_ALU_PC_G1:
21534 case BFD_RELOC_ARM_ALU_PC_G2:
21535 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21536 case BFD_RELOC_ARM_ALU_SB_G0:
21537 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21538 case BFD_RELOC_ARM_ALU_SB_G1:
21539 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21540 gas_assert (!fixP->fx_done);
4962c51a
MS
21541 if (!seg->use_rela_p)
21542 {
21543 bfd_vma insn;
21544 bfd_vma encoded_addend;
21545 bfd_vma addend_abs = abs (value);
21546
21547 /* Check that the absolute value of the addend can be
21548 expressed as an 8-bit constant plus a rotation. */
21549 encoded_addend = encode_arm_immediate (addend_abs);
21550 if (encoded_addend == (unsigned int) FAIL)
21551 as_bad_where (fixP->fx_file, fixP->fx_line,
21552 _("the offset 0x%08lX is not representable"),
495bde8e 21553 (unsigned long) addend_abs);
4962c51a
MS
21554
21555 /* Extract the instruction. */
21556 insn = md_chars_to_number (buf, INSN_SIZE);
21557
21558 /* If the addend is positive, use an ADD instruction.
21559 Otherwise use a SUB. Take care not to destroy the S bit. */
21560 insn &= 0xff1fffff;
21561 if (value < 0)
21562 insn |= 1 << 22;
21563 else
21564 insn |= 1 << 23;
21565
21566 /* Place the encoded addend into the first 12 bits of the
21567 instruction. */
21568 insn &= 0xfffff000;
21569 insn |= encoded_addend;
5f4273c7
NC
21570
21571 /* Update the instruction. */
4962c51a
MS
21572 md_number_to_chars (buf, insn, INSN_SIZE);
21573 }
21574 break;
21575
21576 case BFD_RELOC_ARM_LDR_PC_G0:
21577 case BFD_RELOC_ARM_LDR_PC_G1:
21578 case BFD_RELOC_ARM_LDR_PC_G2:
21579 case BFD_RELOC_ARM_LDR_SB_G0:
21580 case BFD_RELOC_ARM_LDR_SB_G1:
21581 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21582 gas_assert (!fixP->fx_done);
4962c51a
MS
21583 if (!seg->use_rela_p)
21584 {
21585 bfd_vma insn;
21586 bfd_vma addend_abs = abs (value);
21587
21588 /* Check that the absolute value of the addend can be
21589 encoded in 12 bits. */
21590 if (addend_abs >= 0x1000)
21591 as_bad_where (fixP->fx_file, fixP->fx_line,
21592 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21593 (unsigned long) addend_abs);
4962c51a
MS
21594
21595 /* Extract the instruction. */
21596 insn = md_chars_to_number (buf, INSN_SIZE);
21597
21598 /* If the addend is negative, clear bit 23 of the instruction.
21599 Otherwise set it. */
21600 if (value < 0)
21601 insn &= ~(1 << 23);
21602 else
21603 insn |= 1 << 23;
21604
21605 /* Place the absolute value of the addend into the first 12 bits
21606 of the instruction. */
21607 insn &= 0xfffff000;
21608 insn |= addend_abs;
5f4273c7
NC
21609
21610 /* Update the instruction. */
4962c51a
MS
21611 md_number_to_chars (buf, insn, INSN_SIZE);
21612 }
21613 break;
21614
21615 case BFD_RELOC_ARM_LDRS_PC_G0:
21616 case BFD_RELOC_ARM_LDRS_PC_G1:
21617 case BFD_RELOC_ARM_LDRS_PC_G2:
21618 case BFD_RELOC_ARM_LDRS_SB_G0:
21619 case BFD_RELOC_ARM_LDRS_SB_G1:
21620 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21621 gas_assert (!fixP->fx_done);
4962c51a
MS
21622 if (!seg->use_rela_p)
21623 {
21624 bfd_vma insn;
21625 bfd_vma addend_abs = abs (value);
21626
21627 /* Check that the absolute value of the addend can be
21628 encoded in 8 bits. */
21629 if (addend_abs >= 0x100)
21630 as_bad_where (fixP->fx_file, fixP->fx_line,
21631 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21632 (unsigned long) addend_abs);
4962c51a
MS
21633
21634 /* Extract the instruction. */
21635 insn = md_chars_to_number (buf, INSN_SIZE);
21636
21637 /* If the addend is negative, clear bit 23 of the instruction.
21638 Otherwise set it. */
21639 if (value < 0)
21640 insn &= ~(1 << 23);
21641 else
21642 insn |= 1 << 23;
21643
21644 /* Place the first four bits of the absolute value of the addend
21645 into the first 4 bits of the instruction, and the remaining
21646 four into bits 8 .. 11. */
21647 insn &= 0xfffff0f0;
21648 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21649
21650 /* Update the instruction. */
4962c51a
MS
21651 md_number_to_chars (buf, insn, INSN_SIZE);
21652 }
21653 break;
21654
21655 case BFD_RELOC_ARM_LDC_PC_G0:
21656 case BFD_RELOC_ARM_LDC_PC_G1:
21657 case BFD_RELOC_ARM_LDC_PC_G2:
21658 case BFD_RELOC_ARM_LDC_SB_G0:
21659 case BFD_RELOC_ARM_LDC_SB_G1:
21660 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21661 gas_assert (!fixP->fx_done);
4962c51a
MS
21662 if (!seg->use_rela_p)
21663 {
21664 bfd_vma insn;
21665 bfd_vma addend_abs = abs (value);
21666
21667 /* Check that the absolute value of the addend is a multiple of
21668 four and, when divided by four, fits in 8 bits. */
21669 if (addend_abs & 0x3)
21670 as_bad_where (fixP->fx_file, fixP->fx_line,
21671 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21672 (unsigned long) addend_abs);
4962c51a
MS
21673
21674 if ((addend_abs >> 2) > 0xff)
21675 as_bad_where (fixP->fx_file, fixP->fx_line,
21676 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21677 (unsigned long) addend_abs);
4962c51a
MS
21678
21679 /* Extract the instruction. */
21680 insn = md_chars_to_number (buf, INSN_SIZE);
21681
21682 /* If the addend is negative, clear bit 23 of the instruction.
21683 Otherwise set it. */
21684 if (value < 0)
21685 insn &= ~(1 << 23);
21686 else
21687 insn |= 1 << 23;
21688
21689 /* Place the addend (divided by four) into the first eight
21690 bits of the instruction. */
21691 insn &= 0xfffffff0;
21692 insn |= addend_abs >> 2;
5f4273c7
NC
21693
21694 /* Update the instruction. */
4962c51a
MS
21695 md_number_to_chars (buf, insn, INSN_SIZE);
21696 }
21697 break;
21698
845b51d6
PB
21699 case BFD_RELOC_ARM_V4BX:
21700 /* This will need to go in the object file. */
21701 fixP->fx_done = 0;
21702 break;
21703
c19d1205
ZW
21704 case BFD_RELOC_UNUSED:
21705 default:
21706 as_bad_where (fixP->fx_file, fixP->fx_line,
21707 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21708 }
6c43fab6
RE
21709}
21710
c19d1205
ZW
21711/* Translate internal representation of relocation info to BFD target
21712 format. */
a737bd4d 21713
c19d1205 21714arelent *
00a97672 21715tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21716{
c19d1205
ZW
21717 arelent * reloc;
21718 bfd_reloc_code_real_type code;
a737bd4d 21719
21d799b5 21720 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21721
21d799b5 21722 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21723 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21724 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21725
2fc8bdac 21726 if (fixp->fx_pcrel)
00a97672
RS
21727 {
21728 if (section->use_rela_p)
21729 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21730 else
21731 fixp->fx_offset = reloc->address;
21732 }
c19d1205 21733 reloc->addend = fixp->fx_offset;
a737bd4d 21734
c19d1205 21735 switch (fixp->fx_r_type)
a737bd4d 21736 {
c19d1205
ZW
21737 case BFD_RELOC_8:
21738 if (fixp->fx_pcrel)
21739 {
21740 code = BFD_RELOC_8_PCREL;
21741 break;
21742 }
a737bd4d 21743
c19d1205
ZW
21744 case BFD_RELOC_16:
21745 if (fixp->fx_pcrel)
21746 {
21747 code = BFD_RELOC_16_PCREL;
21748 break;
21749 }
6c43fab6 21750
c19d1205
ZW
21751 case BFD_RELOC_32:
21752 if (fixp->fx_pcrel)
21753 {
21754 code = BFD_RELOC_32_PCREL;
21755 break;
21756 }
a737bd4d 21757
b6895b4f
PB
21758 case BFD_RELOC_ARM_MOVW:
21759 if (fixp->fx_pcrel)
21760 {
21761 code = BFD_RELOC_ARM_MOVW_PCREL;
21762 break;
21763 }
21764
21765 case BFD_RELOC_ARM_MOVT:
21766 if (fixp->fx_pcrel)
21767 {
21768 code = BFD_RELOC_ARM_MOVT_PCREL;
21769 break;
21770 }
21771
21772 case BFD_RELOC_ARM_THUMB_MOVW:
21773 if (fixp->fx_pcrel)
21774 {
21775 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21776 break;
21777 }
21778
21779 case BFD_RELOC_ARM_THUMB_MOVT:
21780 if (fixp->fx_pcrel)
21781 {
21782 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21783 break;
21784 }
21785
c19d1205
ZW
21786 case BFD_RELOC_NONE:
21787 case BFD_RELOC_ARM_PCREL_BRANCH:
21788 case BFD_RELOC_ARM_PCREL_BLX:
21789 case BFD_RELOC_RVA:
21790 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21791 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21792 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21793 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21794 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21795 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21796 case BFD_RELOC_VTABLE_ENTRY:
21797 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21798#ifdef TE_PE
21799 case BFD_RELOC_32_SECREL:
21800#endif
c19d1205
ZW
21801 code = fixp->fx_r_type;
21802 break;
a737bd4d 21803
00adf2d4
JB
21804 case BFD_RELOC_THUMB_PCREL_BLX:
21805#ifdef OBJ_ELF
21806 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21807 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21808 else
21809#endif
21810 code = BFD_RELOC_THUMB_PCREL_BLX;
21811 break;
21812
c19d1205
ZW
21813 case BFD_RELOC_ARM_LITERAL:
21814 case BFD_RELOC_ARM_HWLITERAL:
21815 /* If this is called then the a literal has
21816 been referenced across a section boundary. */
21817 as_bad_where (fixp->fx_file, fixp->fx_line,
21818 _("literal referenced across section boundary"));
21819 return NULL;
a737bd4d 21820
c19d1205 21821#ifdef OBJ_ELF
0855e32b
NS
21822 case BFD_RELOC_ARM_TLS_CALL:
21823 case BFD_RELOC_ARM_THM_TLS_CALL:
21824 case BFD_RELOC_ARM_TLS_DESCSEQ:
21825 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21826 case BFD_RELOC_ARM_GOT32:
21827 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21828 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21829 case BFD_RELOC_ARM_PLT32:
21830 case BFD_RELOC_ARM_TARGET1:
21831 case BFD_RELOC_ARM_ROSEGREL32:
21832 case BFD_RELOC_ARM_SBREL32:
21833 case BFD_RELOC_ARM_PREL31:
21834 case BFD_RELOC_ARM_TARGET2:
21835 case BFD_RELOC_ARM_TLS_LE32:
21836 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21837 case BFD_RELOC_ARM_PCREL_CALL:
21838 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21839 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21840 case BFD_RELOC_ARM_ALU_PC_G0:
21841 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21842 case BFD_RELOC_ARM_ALU_PC_G1:
21843 case BFD_RELOC_ARM_ALU_PC_G2:
21844 case BFD_RELOC_ARM_LDR_PC_G0:
21845 case BFD_RELOC_ARM_LDR_PC_G1:
21846 case BFD_RELOC_ARM_LDR_PC_G2:
21847 case BFD_RELOC_ARM_LDRS_PC_G0:
21848 case BFD_RELOC_ARM_LDRS_PC_G1:
21849 case BFD_RELOC_ARM_LDRS_PC_G2:
21850 case BFD_RELOC_ARM_LDC_PC_G0:
21851 case BFD_RELOC_ARM_LDC_PC_G1:
21852 case BFD_RELOC_ARM_LDC_PC_G2:
21853 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21854 case BFD_RELOC_ARM_ALU_SB_G0:
21855 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21856 case BFD_RELOC_ARM_ALU_SB_G1:
21857 case BFD_RELOC_ARM_ALU_SB_G2:
21858 case BFD_RELOC_ARM_LDR_SB_G0:
21859 case BFD_RELOC_ARM_LDR_SB_G1:
21860 case BFD_RELOC_ARM_LDR_SB_G2:
21861 case BFD_RELOC_ARM_LDRS_SB_G0:
21862 case BFD_RELOC_ARM_LDRS_SB_G1:
21863 case BFD_RELOC_ARM_LDRS_SB_G2:
21864 case BFD_RELOC_ARM_LDC_SB_G0:
21865 case BFD_RELOC_ARM_LDC_SB_G1:
21866 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21867 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21868 code = fixp->fx_r_type;
21869 break;
a737bd4d 21870
0855e32b 21871 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21872 case BFD_RELOC_ARM_TLS_GD32:
21873 case BFD_RELOC_ARM_TLS_IE32:
21874 case BFD_RELOC_ARM_TLS_LDM32:
21875 /* BFD will include the symbol's address in the addend.
21876 But we don't want that, so subtract it out again here. */
21877 if (!S_IS_COMMON (fixp->fx_addsy))
21878 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21879 code = fixp->fx_r_type;
21880 break;
21881#endif
a737bd4d 21882
c19d1205
ZW
21883 case BFD_RELOC_ARM_IMMEDIATE:
21884 as_bad_where (fixp->fx_file, fixp->fx_line,
21885 _("internal relocation (type: IMMEDIATE) not fixed up"));
21886 return NULL;
a737bd4d 21887
c19d1205
ZW
21888 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21889 as_bad_where (fixp->fx_file, fixp->fx_line,
21890 _("ADRL used for a symbol not defined in the same file"));
21891 return NULL;
a737bd4d 21892
c19d1205 21893 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21894 if (section->use_rela_p)
21895 {
21896 code = fixp->fx_r_type;
21897 break;
21898 }
21899
c19d1205
ZW
21900 if (fixp->fx_addsy != NULL
21901 && !S_IS_DEFINED (fixp->fx_addsy)
21902 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21903 {
c19d1205
ZW
21904 as_bad_where (fixp->fx_file, fixp->fx_line,
21905 _("undefined local label `%s'"),
21906 S_GET_NAME (fixp->fx_addsy));
21907 return NULL;
a737bd4d
NC
21908 }
21909
c19d1205
ZW
21910 as_bad_where (fixp->fx_file, fixp->fx_line,
21911 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21912 return NULL;
a737bd4d 21913
c19d1205
ZW
21914 default:
21915 {
21916 char * type;
6c43fab6 21917
c19d1205
ZW
21918 switch (fixp->fx_r_type)
21919 {
21920 case BFD_RELOC_NONE: type = "NONE"; break;
21921 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21922 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21923 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21924 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21925 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21926 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21927 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21928 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21929 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21930 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21931 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21932 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21933 default: type = _("<unknown>"); break;
21934 }
21935 as_bad_where (fixp->fx_file, fixp->fx_line,
21936 _("cannot represent %s relocation in this object file format"),
21937 type);
21938 return NULL;
21939 }
a737bd4d 21940 }
6c43fab6 21941
c19d1205
ZW
21942#ifdef OBJ_ELF
21943 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21944 && GOT_symbol
21945 && fixp->fx_addsy == GOT_symbol)
21946 {
21947 code = BFD_RELOC_ARM_GOTPC;
21948 reloc->addend = fixp->fx_offset = reloc->address;
21949 }
21950#endif
6c43fab6 21951
c19d1205 21952 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21953
c19d1205
ZW
21954 if (reloc->howto == NULL)
21955 {
21956 as_bad_where (fixp->fx_file, fixp->fx_line,
21957 _("cannot represent %s relocation in this object file format"),
21958 bfd_get_reloc_code_name (code));
21959 return NULL;
21960 }
6c43fab6 21961
c19d1205
ZW
21962 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21963 vtable entry to be used in the relocation's section offset. */
21964 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21965 reloc->address = fixp->fx_offset;
6c43fab6 21966
c19d1205 21967 return reloc;
6c43fab6
RE
21968}
21969
c19d1205 21970/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21971
c19d1205
ZW
21972void
21973cons_fix_new_arm (fragS * frag,
21974 int where,
21975 int size,
21976 expressionS * exp)
6c43fab6 21977{
c19d1205
ZW
21978 bfd_reloc_code_real_type type;
21979 int pcrel = 0;
6c43fab6 21980
c19d1205
ZW
21981 /* Pick a reloc.
21982 FIXME: @@ Should look at CPU word size. */
21983 switch (size)
21984 {
21985 case 1:
21986 type = BFD_RELOC_8;
21987 break;
21988 case 2:
21989 type = BFD_RELOC_16;
21990 break;
21991 case 4:
21992 default:
21993 type = BFD_RELOC_32;
21994 break;
21995 case 8:
21996 type = BFD_RELOC_64;
21997 break;
21998 }
6c43fab6 21999
f0927246
NC
22000#ifdef TE_PE
22001 if (exp->X_op == O_secrel)
22002 {
22003 exp->X_op = O_symbol;
22004 type = BFD_RELOC_32_SECREL;
22005 }
22006#endif
22007
c19d1205
ZW
22008 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22009}
6c43fab6 22010
4343666d 22011#if defined (OBJ_COFF)
c19d1205
ZW
22012void
22013arm_validate_fix (fixS * fixP)
6c43fab6 22014{
c19d1205
ZW
22015 /* If the destination of the branch is a defined symbol which does not have
22016 the THUMB_FUNC attribute, then we must be calling a function which has
22017 the (interfacearm) attribute. We look for the Thumb entry point to that
22018 function and change the branch to refer to that function instead. */
22019 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22020 && fixP->fx_addsy != NULL
22021 && S_IS_DEFINED (fixP->fx_addsy)
22022 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22023 {
c19d1205 22024 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22025 }
c19d1205
ZW
22026}
22027#endif
6c43fab6 22028
267bf995 22029
c19d1205
ZW
22030int
22031arm_force_relocation (struct fix * fixp)
22032{
22033#if defined (OBJ_COFF) && defined (TE_PE)
22034 if (fixp->fx_r_type == BFD_RELOC_RVA)
22035 return 1;
22036#endif
6c43fab6 22037
267bf995
RR
22038 /* In case we have a call or a branch to a function in ARM ISA mode from
22039 a thumb function or vice-versa force the relocation. These relocations
22040 are cleared off for some cores that might have blx and simple transformations
22041 are possible. */
22042
22043#ifdef OBJ_ELF
22044 switch (fixp->fx_r_type)
22045 {
22046 case BFD_RELOC_ARM_PCREL_JUMP:
22047 case BFD_RELOC_ARM_PCREL_CALL:
22048 case BFD_RELOC_THUMB_PCREL_BLX:
22049 if (THUMB_IS_FUNC (fixp->fx_addsy))
22050 return 1;
22051 break;
22052
22053 case BFD_RELOC_ARM_PCREL_BLX:
22054 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22055 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22056 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22057 if (ARM_IS_FUNC (fixp->fx_addsy))
22058 return 1;
22059 break;
22060
22061 default:
22062 break;
22063 }
22064#endif
22065
b5884301
PB
22066 /* Resolve these relocations even if the symbol is extern or weak.
22067 Technically this is probably wrong due to symbol preemption.
22068 In practice these relocations do not have enough range to be useful
22069 at dynamic link time, and some code (e.g. in the Linux kernel)
22070 expects these references to be resolved. */
c19d1205
ZW
22071 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22072 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22073 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22074 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22075 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22076 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22077 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22078 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22079 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22080 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22081 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22082 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22083 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22084 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22085 return 0;
a737bd4d 22086
4962c51a
MS
22087 /* Always leave these relocations for the linker. */
22088 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22089 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22090 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22091 return 1;
22092
f0291e4c
PB
22093 /* Always generate relocations against function symbols. */
22094 if (fixp->fx_r_type == BFD_RELOC_32
22095 && fixp->fx_addsy
22096 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22097 return 1;
22098
c19d1205 22099 return generic_force_reloc (fixp);
404ff6b5
AH
22100}
22101
0ffdc86c 22102#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22103/* Relocations against function names must be left unadjusted,
22104 so that the linker can use this information to generate interworking
22105 stubs. The MIPS version of this function
c19d1205
ZW
22106 also prevents relocations that are mips-16 specific, but I do not
22107 know why it does this.
404ff6b5 22108
c19d1205
ZW
22109 FIXME:
22110 There is one other problem that ought to be addressed here, but
22111 which currently is not: Taking the address of a label (rather
22112 than a function) and then later jumping to that address. Such
22113 addresses also ought to have their bottom bit set (assuming that
22114 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22115
c19d1205
ZW
22116bfd_boolean
22117arm_fix_adjustable (fixS * fixP)
404ff6b5 22118{
c19d1205
ZW
22119 if (fixP->fx_addsy == NULL)
22120 return 1;
404ff6b5 22121
e28387c3
PB
22122 /* Preserve relocations against symbols with function type. */
22123 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22124 return FALSE;
e28387c3 22125
c19d1205
ZW
22126 if (THUMB_IS_FUNC (fixP->fx_addsy)
22127 && fixP->fx_subsy == NULL)
c921be7d 22128 return FALSE;
a737bd4d 22129
c19d1205
ZW
22130 /* We need the symbol name for the VTABLE entries. */
22131 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22132 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22133 return FALSE;
404ff6b5 22134
c19d1205
ZW
22135 /* Don't allow symbols to be discarded on GOT related relocs. */
22136 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22137 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22138 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22139 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22140 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22141 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22142 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22143 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22144 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22145 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22146 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22147 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22148 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22149 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22150 return FALSE;
a737bd4d 22151
4962c51a
MS
22152 /* Similarly for group relocations. */
22153 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22154 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22155 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22156 return FALSE;
4962c51a 22157
79947c54
CD
22158 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22159 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22160 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22161 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22162 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22163 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22164 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22165 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22166 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22167 return FALSE;
79947c54 22168
c921be7d 22169 return TRUE;
a737bd4d 22170}
0ffdc86c
NC
22171#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22172
22173#ifdef OBJ_ELF
404ff6b5 22174
c19d1205
ZW
22175const char *
22176elf32_arm_target_format (void)
404ff6b5 22177{
c19d1205
ZW
22178#ifdef TE_SYMBIAN
22179 return (target_big_endian
22180 ? "elf32-bigarm-symbian"
22181 : "elf32-littlearm-symbian");
22182#elif defined (TE_VXWORKS)
22183 return (target_big_endian
22184 ? "elf32-bigarm-vxworks"
22185 : "elf32-littlearm-vxworks");
22186#else
22187 if (target_big_endian)
22188 return "elf32-bigarm";
22189 else
22190 return "elf32-littlearm";
22191#endif
404ff6b5
AH
22192}
22193
c19d1205
ZW
22194void
22195armelf_frob_symbol (symbolS * symp,
22196 int * puntp)
404ff6b5 22197{
c19d1205
ZW
22198 elf_frob_symbol (symp, puntp);
22199}
22200#endif
404ff6b5 22201
c19d1205 22202/* MD interface: Finalization. */
a737bd4d 22203
c19d1205
ZW
22204void
22205arm_cleanup (void)
22206{
22207 literal_pool * pool;
a737bd4d 22208
e07e6e58
NC
22209 /* Ensure that all the IT blocks are properly closed. */
22210 check_it_blocks_finished ();
22211
c19d1205
ZW
22212 for (pool = list_of_pools; pool; pool = pool->next)
22213 {
5f4273c7 22214 /* Put it at the end of the relevant section. */
c19d1205
ZW
22215 subseg_set (pool->section, pool->sub_section);
22216#ifdef OBJ_ELF
22217 arm_elf_change_section ();
22218#endif
22219 s_ltorg (0);
22220 }
404ff6b5
AH
22221}
22222
cd000bff
DJ
22223#ifdef OBJ_ELF
22224/* Remove any excess mapping symbols generated for alignment frags in
22225 SEC. We may have created a mapping symbol before a zero byte
22226 alignment; remove it if there's a mapping symbol after the
22227 alignment. */
22228static void
22229check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22230 void *dummy ATTRIBUTE_UNUSED)
22231{
22232 segment_info_type *seginfo = seg_info (sec);
22233 fragS *fragp;
22234
22235 if (seginfo == NULL || seginfo->frchainP == NULL)
22236 return;
22237
22238 for (fragp = seginfo->frchainP->frch_root;
22239 fragp != NULL;
22240 fragp = fragp->fr_next)
22241 {
22242 symbolS *sym = fragp->tc_frag_data.last_map;
22243 fragS *next = fragp->fr_next;
22244
22245 /* Variable-sized frags have been converted to fixed size by
22246 this point. But if this was variable-sized to start with,
22247 there will be a fixed-size frag after it. So don't handle
22248 next == NULL. */
22249 if (sym == NULL || next == NULL)
22250 continue;
22251
22252 if (S_GET_VALUE (sym) < next->fr_address)
22253 /* Not at the end of this frag. */
22254 continue;
22255 know (S_GET_VALUE (sym) == next->fr_address);
22256
22257 do
22258 {
22259 if (next->tc_frag_data.first_map != NULL)
22260 {
22261 /* Next frag starts with a mapping symbol. Discard this
22262 one. */
22263 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22264 break;
22265 }
22266
22267 if (next->fr_next == NULL)
22268 {
22269 /* This mapping symbol is at the end of the section. Discard
22270 it. */
22271 know (next->fr_fix == 0 && next->fr_var == 0);
22272 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22273 break;
22274 }
22275
22276 /* As long as we have empty frags without any mapping symbols,
22277 keep looking. */
22278 /* If the next frag is non-empty and does not start with a
22279 mapping symbol, then this mapping symbol is required. */
22280 if (next->fr_address != next->fr_next->fr_address)
22281 break;
22282
22283 next = next->fr_next;
22284 }
22285 while (next != NULL);
22286 }
22287}
22288#endif
22289
c19d1205
ZW
22290/* Adjust the symbol table. This marks Thumb symbols as distinct from
22291 ARM ones. */
404ff6b5 22292
c19d1205
ZW
22293void
22294arm_adjust_symtab (void)
404ff6b5 22295{
c19d1205
ZW
22296#ifdef OBJ_COFF
22297 symbolS * sym;
404ff6b5 22298
c19d1205
ZW
22299 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22300 {
22301 if (ARM_IS_THUMB (sym))
22302 {
22303 if (THUMB_IS_FUNC (sym))
22304 {
22305 /* Mark the symbol as a Thumb function. */
22306 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22307 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22308 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22309
c19d1205
ZW
22310 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22311 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22312 else
22313 as_bad (_("%s: unexpected function type: %d"),
22314 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22315 }
22316 else switch (S_GET_STORAGE_CLASS (sym))
22317 {
22318 case C_EXT:
22319 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22320 break;
22321 case C_STAT:
22322 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22323 break;
22324 case C_LABEL:
22325 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22326 break;
22327 default:
22328 /* Do nothing. */
22329 break;
22330 }
22331 }
a737bd4d 22332
c19d1205
ZW
22333 if (ARM_IS_INTERWORK (sym))
22334 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22335 }
c19d1205
ZW
22336#endif
22337#ifdef OBJ_ELF
22338 symbolS * sym;
22339 char bind;
404ff6b5 22340
c19d1205 22341 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22342 {
c19d1205
ZW
22343 if (ARM_IS_THUMB (sym))
22344 {
22345 elf_symbol_type * elf_sym;
404ff6b5 22346
c19d1205
ZW
22347 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22348 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22349
b0796911
PB
22350 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22351 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22352 {
22353 /* If it's a .thumb_func, declare it as so,
22354 otherwise tag label as .code 16. */
22355 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22356 elf_sym->internal_elf_sym.st_target_internal
22357 = ST_BRANCH_TO_THUMB;
3ba67470 22358 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22359 elf_sym->internal_elf_sym.st_info =
22360 ELF_ST_INFO (bind, STT_ARM_16BIT);
22361 }
22362 }
22363 }
cd000bff
DJ
22364
22365 /* Remove any overlapping mapping symbols generated by alignment frags. */
22366 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22367 /* Now do generic ELF adjustments. */
22368 elf_adjust_symtab ();
c19d1205 22369#endif
404ff6b5
AH
22370}
22371
c19d1205 22372/* MD interface: Initialization. */
404ff6b5 22373
a737bd4d 22374static void
c19d1205 22375set_constant_flonums (void)
a737bd4d 22376{
c19d1205 22377 int i;
404ff6b5 22378
c19d1205
ZW
22379 for (i = 0; i < NUM_FLOAT_VALS; i++)
22380 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22381 abort ();
a737bd4d 22382}
404ff6b5 22383
3e9e4fcf
JB
22384/* Auto-select Thumb mode if it's the only available instruction set for the
22385 given architecture. */
22386
22387static void
22388autoselect_thumb_from_cpu_variant (void)
22389{
22390 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22391 opcode_select (16);
22392}
22393
c19d1205
ZW
22394void
22395md_begin (void)
a737bd4d 22396{
c19d1205
ZW
22397 unsigned mach;
22398 unsigned int i;
404ff6b5 22399
c19d1205
ZW
22400 if ( (arm_ops_hsh = hash_new ()) == NULL
22401 || (arm_cond_hsh = hash_new ()) == NULL
22402 || (arm_shift_hsh = hash_new ()) == NULL
22403 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22404 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22405 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22406 || (arm_reloc_hsh = hash_new ()) == NULL
22407 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22408 as_fatal (_("virtual memory exhausted"));
22409
22410 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22411 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22412 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22413 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22414 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22415 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22416 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22417 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22418 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22419 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22420 (void *) (v7m_psrs + i));
c19d1205 22421 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22422 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22423 for (i = 0;
22424 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22425 i++)
d3ce72d0 22426 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22427 (void *) (barrier_opt_names + i));
c19d1205 22428#ifdef OBJ_ELF
3da1d841
NC
22429 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22430 {
22431 struct reloc_entry * entry = reloc_names + i;
22432
22433 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22434 /* This makes encode_branch() use the EABI versions of this relocation. */
22435 entry->reloc = BFD_RELOC_UNUSED;
22436
22437 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22438 }
c19d1205
ZW
22439#endif
22440
22441 set_constant_flonums ();
404ff6b5 22442
c19d1205
ZW
22443 /* Set the cpu variant based on the command-line options. We prefer
22444 -mcpu= over -march= if both are set (as for GCC); and we prefer
22445 -mfpu= over any other way of setting the floating point unit.
22446 Use of legacy options with new options are faulted. */
e74cfd16 22447 if (legacy_cpu)
404ff6b5 22448 {
e74cfd16 22449 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22450 as_bad (_("use of old and new-style options to set CPU type"));
22451
22452 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22453 }
e74cfd16 22454 else if (!mcpu_cpu_opt)
c19d1205 22455 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22456
e74cfd16 22457 if (legacy_fpu)
c19d1205 22458 {
e74cfd16 22459 if (mfpu_opt)
c19d1205 22460 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22461
22462 mfpu_opt = legacy_fpu;
22463 }
e74cfd16 22464 else if (!mfpu_opt)
03b1477f 22465 {
45eb4c1b
NS
22466#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22467 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22468 /* Some environments specify a default FPU. If they don't, infer it
22469 from the processor. */
e74cfd16 22470 if (mcpu_fpu_opt)
03b1477f
RE
22471 mfpu_opt = mcpu_fpu_opt;
22472 else
22473 mfpu_opt = march_fpu_opt;
39c2da32 22474#else
e74cfd16 22475 mfpu_opt = &fpu_default;
39c2da32 22476#endif
03b1477f
RE
22477 }
22478
e74cfd16 22479 if (!mfpu_opt)
03b1477f 22480 {
493cb6ef 22481 if (mcpu_cpu_opt != NULL)
e74cfd16 22482 mfpu_opt = &fpu_default;
493cb6ef 22483 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22484 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22485 else
e74cfd16 22486 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22487 }
22488
ee065d83 22489#ifdef CPU_DEFAULT
e74cfd16 22490 if (!mcpu_cpu_opt)
ee065d83 22491 {
e74cfd16
PB
22492 mcpu_cpu_opt = &cpu_default;
22493 selected_cpu = cpu_default;
ee065d83 22494 }
e74cfd16
PB
22495#else
22496 if (mcpu_cpu_opt)
22497 selected_cpu = *mcpu_cpu_opt;
ee065d83 22498 else
e74cfd16 22499 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22500#endif
03b1477f 22501
e74cfd16 22502 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22503
3e9e4fcf
JB
22504 autoselect_thumb_from_cpu_variant ();
22505
e74cfd16 22506 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22507
f17c130b 22508#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22509 {
7cc69913
NC
22510 unsigned int flags = 0;
22511
22512#if defined OBJ_ELF
22513 flags = meabi_flags;
d507cf36
PB
22514
22515 switch (meabi_flags)
33a392fb 22516 {
d507cf36 22517 case EF_ARM_EABI_UNKNOWN:
7cc69913 22518#endif
d507cf36
PB
22519 /* Set the flags in the private structure. */
22520 if (uses_apcs_26) flags |= F_APCS26;
22521 if (support_interwork) flags |= F_INTERWORK;
22522 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22523 if (pic_code) flags |= F_PIC;
e74cfd16 22524 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22525 flags |= F_SOFT_FLOAT;
22526
d507cf36
PB
22527 switch (mfloat_abi_opt)
22528 {
22529 case ARM_FLOAT_ABI_SOFT:
22530 case ARM_FLOAT_ABI_SOFTFP:
22531 flags |= F_SOFT_FLOAT;
22532 break;
33a392fb 22533
d507cf36
PB
22534 case ARM_FLOAT_ABI_HARD:
22535 if (flags & F_SOFT_FLOAT)
22536 as_bad (_("hard-float conflicts with specified fpu"));
22537 break;
22538 }
03b1477f 22539
e74cfd16
PB
22540 /* Using pure-endian doubles (even if soft-float). */
22541 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22542 flags |= F_VFP_FLOAT;
f17c130b 22543
fde78edd 22544#if defined OBJ_ELF
e74cfd16 22545 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22546 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22547 break;
22548
8cb51566 22549 case EF_ARM_EABI_VER4:
3a4a14e9 22550 case EF_ARM_EABI_VER5:
c19d1205 22551 /* No additional flags to set. */
d507cf36
PB
22552 break;
22553
22554 default:
22555 abort ();
22556 }
7cc69913 22557#endif
b99bd4ef
NC
22558 bfd_set_private_flags (stdoutput, flags);
22559
22560 /* We have run out flags in the COFF header to encode the
22561 status of ATPCS support, so instead we create a dummy,
c19d1205 22562 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22563 if (atpcs)
22564 {
22565 asection * sec;
22566
22567 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22568
22569 if (sec != NULL)
22570 {
22571 bfd_set_section_flags
22572 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22573 bfd_set_section_size (stdoutput, sec, 0);
22574 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22575 }
22576 }
7cc69913 22577 }
f17c130b 22578#endif
b99bd4ef
NC
22579
22580 /* Record the CPU type as well. */
2d447fca
JM
22581 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22582 mach = bfd_mach_arm_iWMMXt2;
22583 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22584 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22585 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22586 mach = bfd_mach_arm_XScale;
e74cfd16 22587 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22588 mach = bfd_mach_arm_ep9312;
e74cfd16 22589 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22590 mach = bfd_mach_arm_5TE;
e74cfd16 22591 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22592 {
e74cfd16 22593 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22594 mach = bfd_mach_arm_5T;
22595 else
22596 mach = bfd_mach_arm_5;
22597 }
e74cfd16 22598 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22599 {
e74cfd16 22600 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22601 mach = bfd_mach_arm_4T;
22602 else
22603 mach = bfd_mach_arm_4;
22604 }
e74cfd16 22605 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22606 mach = bfd_mach_arm_3M;
e74cfd16
PB
22607 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22608 mach = bfd_mach_arm_3;
22609 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22610 mach = bfd_mach_arm_2a;
22611 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22612 mach = bfd_mach_arm_2;
22613 else
22614 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22615
22616 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22617}
22618
c19d1205 22619/* Command line processing. */
b99bd4ef 22620
c19d1205
ZW
22621/* md_parse_option
22622 Invocation line includes a switch not recognized by the base assembler.
22623 See if it's a processor-specific option.
b99bd4ef 22624
c19d1205
ZW
22625 This routine is somewhat complicated by the need for backwards
22626 compatibility (since older releases of gcc can't be changed).
22627 The new options try to make the interface as compatible as
22628 possible with GCC.
b99bd4ef 22629
c19d1205 22630 New options (supported) are:
b99bd4ef 22631
c19d1205
ZW
22632 -mcpu=<cpu name> Assemble for selected processor
22633 -march=<architecture name> Assemble for selected architecture
22634 -mfpu=<fpu architecture> Assemble for selected FPU.
22635 -EB/-mbig-endian Big-endian
22636 -EL/-mlittle-endian Little-endian
22637 -k Generate PIC code
22638 -mthumb Start in Thumb mode
22639 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22640
278df34e 22641 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22642
c19d1205 22643 For now we will also provide support for:
b99bd4ef 22644
c19d1205
ZW
22645 -mapcs-32 32-bit Program counter
22646 -mapcs-26 26-bit Program counter
22647 -macps-float Floats passed in FP registers
22648 -mapcs-reentrant Reentrant code
22649 -matpcs
22650 (sometime these will probably be replaced with -mapcs=<list of options>
22651 and -matpcs=<list of options>)
b99bd4ef 22652
c19d1205
ZW
22653 The remaining options are only supported for back-wards compatibility.
22654 Cpu variants, the arm part is optional:
22655 -m[arm]1 Currently not supported.
22656 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22657 -m[arm]3 Arm 3 processor
22658 -m[arm]6[xx], Arm 6 processors
22659 -m[arm]7[xx][t][[d]m] Arm 7 processors
22660 -m[arm]8[10] Arm 8 processors
22661 -m[arm]9[20][tdmi] Arm 9 processors
22662 -mstrongarm[110[0]] StrongARM processors
22663 -mxscale XScale processors
22664 -m[arm]v[2345[t[e]]] Arm architectures
22665 -mall All (except the ARM1)
22666 FP variants:
22667 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22668 -mfpe-old (No float load/store multiples)
22669 -mvfpxd VFP Single precision
22670 -mvfp All VFP
22671 -mno-fpu Disable all floating point instructions
b99bd4ef 22672
c19d1205
ZW
22673 The following CPU names are recognized:
22674 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22675 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22676 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22677 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22678 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22679 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22680 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22681
c19d1205 22682 */
b99bd4ef 22683
c19d1205 22684const char * md_shortopts = "m:k";
b99bd4ef 22685
c19d1205
ZW
22686#ifdef ARM_BI_ENDIAN
22687#define OPTION_EB (OPTION_MD_BASE + 0)
22688#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22689#else
c19d1205
ZW
22690#if TARGET_BYTES_BIG_ENDIAN
22691#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22692#else
c19d1205
ZW
22693#define OPTION_EL (OPTION_MD_BASE + 1)
22694#endif
b99bd4ef 22695#endif
845b51d6 22696#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22697
c19d1205 22698struct option md_longopts[] =
b99bd4ef 22699{
c19d1205
ZW
22700#ifdef OPTION_EB
22701 {"EB", no_argument, NULL, OPTION_EB},
22702#endif
22703#ifdef OPTION_EL
22704 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22705#endif
845b51d6 22706 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22707 {NULL, no_argument, NULL, 0}
22708};
b99bd4ef 22709
c19d1205 22710size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22711
c19d1205 22712struct arm_option_table
b99bd4ef 22713{
c19d1205
ZW
22714 char *option; /* Option name to match. */
22715 char *help; /* Help information. */
22716 int *var; /* Variable to change. */
22717 int value; /* What to change it to. */
22718 char *deprecated; /* If non-null, print this message. */
22719};
b99bd4ef 22720
c19d1205
ZW
22721struct arm_option_table arm_opts[] =
22722{
22723 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22724 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22725 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22726 &support_interwork, 1, NULL},
22727 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22728 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22729 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22730 1, NULL},
22731 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22732 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22733 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22734 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22735 NULL},
b99bd4ef 22736
c19d1205
ZW
22737 /* These are recognized by the assembler, but have no affect on code. */
22738 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22739 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22740
22741 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22742 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22743 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22744 {NULL, NULL, NULL, 0, NULL}
22745};
22746
22747struct arm_legacy_option_table
22748{
22749 char *option; /* Option name to match. */
22750 const arm_feature_set **var; /* Variable to change. */
22751 const arm_feature_set value; /* What to change it to. */
22752 char *deprecated; /* If non-null, print this message. */
22753};
b99bd4ef 22754
e74cfd16
PB
22755const struct arm_legacy_option_table arm_legacy_opts[] =
22756{
c19d1205
ZW
22757 /* DON'T add any new processors to this list -- we want the whole list
22758 to go away... Add them to the processors table instead. */
e74cfd16
PB
22759 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22760 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22761 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22762 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22763 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22764 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22765 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22766 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22767 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22768 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22769 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22770 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22771 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22772 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22773 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22774 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22775 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22776 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22777 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22778 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22779 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22780 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22781 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22782 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22783 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22784 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22785 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22786 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22787 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22788 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22789 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22790 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22791 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22792 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22793 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22794 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22795 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22796 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22797 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22798 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22799 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22800 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22801 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22802 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22803 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22804 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22805 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22806 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22807 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22808 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22809 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22810 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22811 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22812 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22813 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22814 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22815 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22816 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22817 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22818 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22819 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22820 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22821 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22822 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22823 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22824 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22825 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22826 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22827 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22828 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22829 N_("use -mcpu=strongarm110")},
e74cfd16 22830 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22831 N_("use -mcpu=strongarm1100")},
e74cfd16 22832 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22833 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22834 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22835 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22836 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22837
c19d1205 22838 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22839 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22840 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22841 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22842 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22843 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22844 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22845 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22846 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22847 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22848 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22849 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22850 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22851 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22852 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22853 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22854 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22855 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22856 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22857
c19d1205 22858 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22859 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22860 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22861 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22862 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22863 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22864
e74cfd16 22865 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22866};
7ed4c4c5 22867
c19d1205 22868struct arm_cpu_option_table
7ed4c4c5 22869{
c19d1205 22870 char *name;
e74cfd16 22871 const arm_feature_set value;
c19d1205
ZW
22872 /* For some CPUs we assume an FPU unless the user explicitly sets
22873 -mfpu=... */
e74cfd16 22874 const arm_feature_set default_fpu;
ee065d83
PB
22875 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22876 case. */
22877 const char *canonical_name;
c19d1205 22878};
7ed4c4c5 22879
c19d1205
ZW
22880/* This list should, at a minimum, contain all the cpu names
22881 recognized by GCC. */
e74cfd16 22882static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22883{
ee065d83
PB
22884 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22885 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22886 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22887 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22888 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22889 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22890 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22891 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22892 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22893 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22894 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22895 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22896 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22897 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22898 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22899 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22900 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22901 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22902 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22903 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22904 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22905 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22906 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22907 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22908 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22909 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22910 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22911 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22912 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22913 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22914 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22915 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22916 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22917 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22918 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22919 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22920 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22921 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22922 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22923 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22924 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22925 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22926 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22927 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22928 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22929 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22930 /* For V5 or later processors we default to using VFP; but the user
22931 should really set the FPU type explicitly. */
ee065d83
PB
22932 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22933 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22934 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22935 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22936 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22937 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22938 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22939 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22940 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22941 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22942 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22943 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22944 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22945 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22946 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22947 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22948 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22949 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22950 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22951 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22952 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
4a58c4bd
NC
22953 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22954 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22955 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22956 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
7fac0536 22957 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22958 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22959 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22960 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22961 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22962 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22963 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22964 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22965 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22966 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22967 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22968 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22969 FPU_NONE, "Cortex-A5"},
c90460e4
MGD
22970 {"cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22971 FPU_ARCH_NEON_VFP_V4,
22972 "Cortex-A7"},
f4c65163
MGD
22973 {"cortex-a8", ARM_ARCH_V7A_SEC,
22974 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22975 | FPU_NEON_EXT_V1),
4ff9b924 22976 "Cortex-A8"},
f4c65163
MGD
22977 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22978 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22979 | FPU_NEON_EXT_V1),
4ff9b924 22980 "Cortex-A9"},
90ec0d68 22981 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22982 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22983 "Cortex-A15"},
4ff9b924
MGD
22984 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22985 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22986 "Cortex-R4F"},
3b2f0793
PB
22987 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22988 FPU_NONE, "Cortex-R5"},
4ff9b924
MGD
22989 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22990 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22991 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22992 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22993 /* ??? XSCALE is really an architecture. */
ee065d83 22994 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22995 /* ??? iwmmxt is not a processor. */
ee065d83 22996 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22997 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22998 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22999 /* Maverick */
e07e6e58 23000 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 23001 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 23002};
7ed4c4c5 23003
c19d1205 23004struct arm_arch_option_table
7ed4c4c5 23005{
c19d1205 23006 char *name;
e74cfd16
PB
23007 const arm_feature_set value;
23008 const arm_feature_set default_fpu;
c19d1205 23009};
7ed4c4c5 23010
c19d1205
ZW
23011/* This list should, at a minimum, contain all the architecture names
23012 recognized by GCC. */
e74cfd16 23013static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
23014{
23015 {"all", ARM_ANY, FPU_ARCH_FPA},
23016 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
23017 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
23018 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
23019 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
23020 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
23021 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
23022 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
23023 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
23024 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
23025 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
23026 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
23027 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
23028 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
23029 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
23030 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
23031 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
23032 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
23033 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
23034 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
23035 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
23036 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
23037 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
23038 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
23039 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
23040 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 23041 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 23042 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 23043 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
23044 /* The official spelling of the ARMv7 profile variants is the dashed form.
23045 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
23046 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
23047 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
23048 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
23049 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
23050 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
23051 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 23052 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
23053 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
23054 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 23055 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 23056 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 23057};
7ed4c4c5 23058
69133863
MGD
23059/* ISA extensions in the co-processor and main instruction set space. */
23060struct arm_option_extension_value_table
c19d1205
ZW
23061{
23062 char *name;
e74cfd16 23063 const arm_feature_set value;
69133863 23064 const arm_feature_set allowed_archs;
c19d1205 23065};
7ed4c4c5 23066
69133863
MGD
23067/* The following table must be in alphabetical order with a NULL last entry.
23068 */
23069static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23070{
eea54501 23071 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
3b2f0793 23072 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
69133863
MGD
23073 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
23074 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
23075 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
23076 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
23077 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
23078 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
23079 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
23080 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23081 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
23082 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23083 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 23084 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 23085 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
23086};
23087
23088/* ISA floating-point and Advanced SIMD extensions. */
23089struct arm_option_fpu_value_table
23090{
23091 char *name;
23092 const arm_feature_set value;
c19d1205 23093};
7ed4c4c5 23094
c19d1205
ZW
23095/* This list should, at a minimum, contain all the fpu names
23096 recognized by GCC. */
69133863 23097static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
23098{
23099 {"softfpa", FPU_NONE},
23100 {"fpe", FPU_ARCH_FPE},
23101 {"fpe2", FPU_ARCH_FPE},
23102 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23103 {"fpa", FPU_ARCH_FPA},
23104 {"fpa10", FPU_ARCH_FPA},
23105 {"fpa11", FPU_ARCH_FPA},
23106 {"arm7500fe", FPU_ARCH_FPA},
23107 {"softvfp", FPU_ARCH_VFP},
23108 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23109 {"vfp", FPU_ARCH_VFP_V2},
23110 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23111 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23112 {"vfp10", FPU_ARCH_VFP_V2},
23113 {"vfp10-r0", FPU_ARCH_VFP_V1},
23114 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23115 {"vfpv2", FPU_ARCH_VFP_V2},
23116 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23117 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23118 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23119 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23120 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23121 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23122 {"arm1020t", FPU_ARCH_VFP_V1},
23123 {"arm1020e", FPU_ARCH_VFP_V2},
23124 {"arm1136jfs", FPU_ARCH_VFP_V2},
23125 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23126 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23127 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23128 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23129 {"vfpv4", FPU_ARCH_VFP_V4},
23130 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23131 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23132 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
23133 {NULL, ARM_ARCH_NONE}
23134};
23135
23136struct arm_option_value_table
23137{
23138 char *name;
23139 long value;
c19d1205 23140};
7ed4c4c5 23141
e74cfd16 23142static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23143{
23144 {"hard", ARM_FLOAT_ABI_HARD},
23145 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23146 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23147 {NULL, 0}
c19d1205 23148};
7ed4c4c5 23149
c19d1205 23150#ifdef OBJ_ELF
3a4a14e9 23151/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23152static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23153{
23154 {"gnu", EF_ARM_EABI_UNKNOWN},
23155 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23156 {"5", EF_ARM_EABI_VER5},
e74cfd16 23157 {NULL, 0}
c19d1205
ZW
23158};
23159#endif
7ed4c4c5 23160
c19d1205
ZW
23161struct arm_long_option_table
23162{
23163 char * option; /* Substring to match. */
23164 char * help; /* Help information. */
23165 int (* func) (char * subopt); /* Function to decode sub-option. */
23166 char * deprecated; /* If non-null, print this message. */
23167};
7ed4c4c5 23168
c921be7d 23169static bfd_boolean
e74cfd16 23170arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 23171{
21d799b5
NC
23172 arm_feature_set *ext_set = (arm_feature_set *)
23173 xmalloc (sizeof (arm_feature_set));
e74cfd16 23174
69133863
MGD
23175 /* We insist on extensions being specified in alphabetical order, and with
23176 extensions being added before being removed. We achieve this by having
23177 the global ARM_EXTENSIONS table in alphabetical order, and using the
23178 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23179 or removing it (0) and only allowing it to change in the order
23180 -1 -> 1 -> 0. */
23181 const struct arm_option_extension_value_table * opt = NULL;
23182 int adding_value = -1;
23183
e74cfd16
PB
23184 /* Copy the feature set, so that we can modify it. */
23185 *ext_set = **opt_p;
23186 *opt_p = ext_set;
23187
c19d1205 23188 while (str != NULL && *str != 0)
7ed4c4c5 23189 {
c19d1205 23190 char * ext;
69133863 23191 size_t optlen;
7ed4c4c5 23192
c19d1205
ZW
23193 if (*str != '+')
23194 {
23195 as_bad (_("invalid architectural extension"));
c921be7d 23196 return FALSE;
c19d1205 23197 }
7ed4c4c5 23198
c19d1205
ZW
23199 str++;
23200 ext = strchr (str, '+');
7ed4c4c5 23201
c19d1205
ZW
23202 if (ext != NULL)
23203 optlen = ext - str;
23204 else
23205 optlen = strlen (str);
7ed4c4c5 23206
69133863
MGD
23207 if (optlen >= 2
23208 && strncmp (str, "no", 2) == 0)
23209 {
23210 if (adding_value != 0)
23211 {
23212 adding_value = 0;
23213 opt = arm_extensions;
23214 }
23215
23216 optlen -= 2;
23217 str += 2;
23218 }
23219 else if (optlen > 0)
23220 {
23221 if (adding_value == -1)
23222 {
23223 adding_value = 1;
23224 opt = arm_extensions;
23225 }
23226 else if (adding_value != 1)
23227 {
23228 as_bad (_("must specify extensions to add before specifying "
23229 "those to remove"));
23230 return FALSE;
23231 }
23232 }
23233
c19d1205
ZW
23234 if (optlen == 0)
23235 {
23236 as_bad (_("missing architectural extension"));
c921be7d 23237 return FALSE;
c19d1205 23238 }
7ed4c4c5 23239
69133863
MGD
23240 gas_assert (adding_value != -1);
23241 gas_assert (opt != NULL);
23242
23243 /* Scan over the options table trying to find an exact match. */
23244 for (; opt->name != NULL; opt++)
23245 if (strncmp (opt->name, str, optlen) == 0
23246 && strlen (opt->name) == optlen)
c19d1205 23247 {
69133863
MGD
23248 /* Check we can apply the extension to this architecture. */
23249 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23250 {
23251 as_bad (_("extension does not apply to the base architecture"));
23252 return FALSE;
23253 }
23254
23255 /* Add or remove the extension. */
23256 if (adding_value)
23257 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23258 else
23259 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23260
c19d1205
ZW
23261 break;
23262 }
7ed4c4c5 23263
c19d1205
ZW
23264 if (opt->name == NULL)
23265 {
69133863
MGD
23266 /* Did we fail to find an extension because it wasn't specified in
23267 alphabetical order, or because it does not exist? */
23268
23269 for (opt = arm_extensions; opt->name != NULL; opt++)
23270 if (strncmp (opt->name, str, optlen) == 0)
23271 break;
23272
23273 if (opt->name == NULL)
23274 as_bad (_("unknown architectural extension `%s'"), str);
23275 else
23276 as_bad (_("architectural extensions must be specified in "
23277 "alphabetical order"));
23278
c921be7d 23279 return FALSE;
c19d1205 23280 }
69133863
MGD
23281 else
23282 {
23283 /* We should skip the extension we've just matched the next time
23284 round. */
23285 opt++;
23286 }
7ed4c4c5 23287
c19d1205
ZW
23288 str = ext;
23289 };
7ed4c4c5 23290
c921be7d 23291 return TRUE;
c19d1205 23292}
7ed4c4c5 23293
c921be7d 23294static bfd_boolean
c19d1205 23295arm_parse_cpu (char * str)
7ed4c4c5 23296{
e74cfd16 23297 const struct arm_cpu_option_table * opt;
c19d1205
ZW
23298 char * ext = strchr (str, '+');
23299 int optlen;
7ed4c4c5 23300
c19d1205
ZW
23301 if (ext != NULL)
23302 optlen = ext - str;
7ed4c4c5 23303 else
c19d1205 23304 optlen = strlen (str);
7ed4c4c5 23305
c19d1205 23306 if (optlen == 0)
7ed4c4c5 23307 {
c19d1205 23308 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23309 return FALSE;
7ed4c4c5
NC
23310 }
23311
c19d1205
ZW
23312 for (opt = arm_cpus; opt->name != NULL; opt++)
23313 if (strncmp (opt->name, str, optlen) == 0)
23314 {
e74cfd16
PB
23315 mcpu_cpu_opt = &opt->value;
23316 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23317 if (opt->canonical_name)
5f4273c7 23318 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23319 else
23320 {
23321 int i;
c921be7d 23322
ee065d83
PB
23323 for (i = 0; i < optlen; i++)
23324 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23325 selected_cpu_name[i] = 0;
23326 }
7ed4c4c5 23327
c19d1205
ZW
23328 if (ext != NULL)
23329 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23330
c921be7d 23331 return TRUE;
c19d1205 23332 }
7ed4c4c5 23333
c19d1205 23334 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23335 return FALSE;
7ed4c4c5
NC
23336}
23337
c921be7d 23338static bfd_boolean
c19d1205 23339arm_parse_arch (char * str)
7ed4c4c5 23340{
e74cfd16 23341 const struct arm_arch_option_table *opt;
c19d1205
ZW
23342 char *ext = strchr (str, '+');
23343 int optlen;
7ed4c4c5 23344
c19d1205
ZW
23345 if (ext != NULL)
23346 optlen = ext - str;
7ed4c4c5 23347 else
c19d1205 23348 optlen = strlen (str);
7ed4c4c5 23349
c19d1205 23350 if (optlen == 0)
7ed4c4c5 23351 {
c19d1205 23352 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23353 return FALSE;
7ed4c4c5
NC
23354 }
23355
c19d1205 23356 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 23357 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 23358 {
e74cfd16
PB
23359 march_cpu_opt = &opt->value;
23360 march_fpu_opt = &opt->default_fpu;
5f4273c7 23361 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23362
c19d1205
ZW
23363 if (ext != NULL)
23364 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23365
c921be7d 23366 return TRUE;
c19d1205
ZW
23367 }
23368
23369 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23370 return FALSE;
7ed4c4c5 23371}
eb043451 23372
c921be7d 23373static bfd_boolean
c19d1205
ZW
23374arm_parse_fpu (char * str)
23375{
69133863 23376 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23377
c19d1205
ZW
23378 for (opt = arm_fpus; opt->name != NULL; opt++)
23379 if (streq (opt->name, str))
23380 {
e74cfd16 23381 mfpu_opt = &opt->value;
c921be7d 23382 return TRUE;
c19d1205 23383 }
b99bd4ef 23384
c19d1205 23385 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23386 return FALSE;
c19d1205
ZW
23387}
23388
c921be7d 23389static bfd_boolean
c19d1205 23390arm_parse_float_abi (char * str)
b99bd4ef 23391{
e74cfd16 23392 const struct arm_option_value_table * opt;
b99bd4ef 23393
c19d1205
ZW
23394 for (opt = arm_float_abis; opt->name != NULL; opt++)
23395 if (streq (opt->name, str))
23396 {
23397 mfloat_abi_opt = opt->value;
c921be7d 23398 return TRUE;
c19d1205 23399 }
cc8a6dd0 23400
c19d1205 23401 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23402 return FALSE;
c19d1205 23403}
b99bd4ef 23404
c19d1205 23405#ifdef OBJ_ELF
c921be7d 23406static bfd_boolean
c19d1205
ZW
23407arm_parse_eabi (char * str)
23408{
e74cfd16 23409 const struct arm_option_value_table *opt;
cc8a6dd0 23410
c19d1205
ZW
23411 for (opt = arm_eabis; opt->name != NULL; opt++)
23412 if (streq (opt->name, str))
23413 {
23414 meabi_flags = opt->value;
c921be7d 23415 return TRUE;
c19d1205
ZW
23416 }
23417 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23418 return FALSE;
c19d1205
ZW
23419}
23420#endif
cc8a6dd0 23421
c921be7d 23422static bfd_boolean
e07e6e58
NC
23423arm_parse_it_mode (char * str)
23424{
c921be7d 23425 bfd_boolean ret = TRUE;
e07e6e58
NC
23426
23427 if (streq ("arm", str))
23428 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23429 else if (streq ("thumb", str))
23430 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23431 else if (streq ("always", str))
23432 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23433 else if (streq ("never", str))
23434 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23435 else
23436 {
23437 as_bad (_("unknown implicit IT mode `%s', should be "\
23438 "arm, thumb, always, or never."), str);
c921be7d 23439 ret = FALSE;
e07e6e58
NC
23440 }
23441
23442 return ret;
23443}
23444
c19d1205
ZW
23445struct arm_long_option_table arm_long_opts[] =
23446{
23447 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23448 arm_parse_cpu, NULL},
23449 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23450 arm_parse_arch, NULL},
23451 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23452 arm_parse_fpu, NULL},
23453 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23454 arm_parse_float_abi, NULL},
23455#ifdef OBJ_ELF
7fac0536 23456 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23457 arm_parse_eabi, NULL},
23458#endif
e07e6e58
NC
23459 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23460 arm_parse_it_mode, NULL},
c19d1205
ZW
23461 {NULL, NULL, 0, NULL}
23462};
cc8a6dd0 23463
c19d1205
ZW
23464int
23465md_parse_option (int c, char * arg)
23466{
23467 struct arm_option_table *opt;
e74cfd16 23468 const struct arm_legacy_option_table *fopt;
c19d1205 23469 struct arm_long_option_table *lopt;
b99bd4ef 23470
c19d1205 23471 switch (c)
b99bd4ef 23472 {
c19d1205
ZW
23473#ifdef OPTION_EB
23474 case OPTION_EB:
23475 target_big_endian = 1;
23476 break;
23477#endif
cc8a6dd0 23478
c19d1205
ZW
23479#ifdef OPTION_EL
23480 case OPTION_EL:
23481 target_big_endian = 0;
23482 break;
23483#endif
b99bd4ef 23484
845b51d6
PB
23485 case OPTION_FIX_V4BX:
23486 fix_v4bx = TRUE;
23487 break;
23488
c19d1205
ZW
23489 case 'a':
23490 /* Listing option. Just ignore these, we don't support additional
23491 ones. */
23492 return 0;
b99bd4ef 23493
c19d1205
ZW
23494 default:
23495 for (opt = arm_opts; opt->option != NULL; opt++)
23496 {
23497 if (c == opt->option[0]
23498 && ((arg == NULL && opt->option[1] == 0)
23499 || streq (arg, opt->option + 1)))
23500 {
c19d1205 23501 /* If the option is deprecated, tell the user. */
278df34e 23502 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23503 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23504 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23505
c19d1205
ZW
23506 if (opt->var != NULL)
23507 *opt->var = opt->value;
cc8a6dd0 23508
c19d1205
ZW
23509 return 1;
23510 }
23511 }
b99bd4ef 23512
e74cfd16
PB
23513 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23514 {
23515 if (c == fopt->option[0]
23516 && ((arg == NULL && fopt->option[1] == 0)
23517 || streq (arg, fopt->option + 1)))
23518 {
e74cfd16 23519 /* If the option is deprecated, tell the user. */
278df34e 23520 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23521 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23522 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23523
23524 if (fopt->var != NULL)
23525 *fopt->var = &fopt->value;
23526
23527 return 1;
23528 }
23529 }
23530
c19d1205
ZW
23531 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23532 {
23533 /* These options are expected to have an argument. */
23534 if (c == lopt->option[0]
23535 && arg != NULL
23536 && strncmp (arg, lopt->option + 1,
23537 strlen (lopt->option + 1)) == 0)
23538 {
c19d1205 23539 /* If the option is deprecated, tell the user. */
278df34e 23540 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23541 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23542 _(lopt->deprecated));
b99bd4ef 23543
c19d1205
ZW
23544 /* Call the sup-option parser. */
23545 return lopt->func (arg + strlen (lopt->option) - 1);
23546 }
23547 }
a737bd4d 23548
c19d1205
ZW
23549 return 0;
23550 }
a394c00f 23551
c19d1205
ZW
23552 return 1;
23553}
a394c00f 23554
c19d1205
ZW
23555void
23556md_show_usage (FILE * fp)
a394c00f 23557{
c19d1205
ZW
23558 struct arm_option_table *opt;
23559 struct arm_long_option_table *lopt;
a394c00f 23560
c19d1205 23561 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23562
c19d1205
ZW
23563 for (opt = arm_opts; opt->option != NULL; opt++)
23564 if (opt->help != NULL)
23565 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23566
c19d1205
ZW
23567 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23568 if (lopt->help != NULL)
23569 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23570
c19d1205
ZW
23571#ifdef OPTION_EB
23572 fprintf (fp, _("\
23573 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23574#endif
23575
c19d1205
ZW
23576#ifdef OPTION_EL
23577 fprintf (fp, _("\
23578 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23579#endif
845b51d6
PB
23580
23581 fprintf (fp, _("\
23582 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23583}
ee065d83
PB
23584
23585
23586#ifdef OBJ_ELF
62b3e311
PB
23587typedef struct
23588{
23589 int val;
23590 arm_feature_set flags;
23591} cpu_arch_ver_table;
23592
23593/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23594 least features first. */
23595static const cpu_arch_ver_table cpu_arch_ver[] =
23596{
23597 {1, ARM_ARCH_V4},
23598 {2, ARM_ARCH_V4T},
23599 {3, ARM_ARCH_V5},
ee3c0378 23600 {3, ARM_ARCH_V5T},
62b3e311
PB
23601 {4, ARM_ARCH_V5TE},
23602 {5, ARM_ARCH_V5TEJ},
23603 {6, ARM_ARCH_V6},
7e806470 23604 {9, ARM_ARCH_V6K},
f4c65163 23605 {7, ARM_ARCH_V6Z},
91e22acd 23606 {11, ARM_ARCH_V6M},
b2a5fbdc 23607 {12, ARM_ARCH_V6SM},
7e806470 23608 {8, ARM_ARCH_V6T2},
62b3e311
PB
23609 {10, ARM_ARCH_V7A},
23610 {10, ARM_ARCH_V7R},
23611 {10, ARM_ARCH_V7M},
23612 {0, ARM_ARCH_NONE}
23613};
23614
ee3c0378
AS
23615/* Set an attribute if it has not already been set by the user. */
23616static void
23617aeabi_set_attribute_int (int tag, int value)
23618{
23619 if (tag < 1
23620 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23621 || !attributes_set_explicitly[tag])
23622 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23623}
23624
23625static void
23626aeabi_set_attribute_string (int tag, const char *value)
23627{
23628 if (tag < 1
23629 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23630 || !attributes_set_explicitly[tag])
23631 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23632}
23633
ee065d83
PB
23634/* Set the public EABI object attributes. */
23635static void
23636aeabi_set_public_attributes (void)
23637{
23638 int arch;
90ec0d68 23639 int virt_sec = 0;
e74cfd16 23640 arm_feature_set flags;
62b3e311
PB
23641 arm_feature_set tmp;
23642 const cpu_arch_ver_table *p;
ee065d83
PB
23643
23644 /* Choose the architecture based on the capabilities of the requested cpu
23645 (if any) and/or the instructions actually used. */
e74cfd16
PB
23646 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23647 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23648 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23649 /*Allow the user to override the reported architecture. */
23650 if (object_arch)
23651 {
23652 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23653 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23654 }
23655
251665fc
MGD
23656 /* We need to make sure that the attributes do not identify us as v6S-M
23657 when the only v6S-M feature in use is the Operating System Extensions. */
23658 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23659 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23660 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23661
62b3e311
PB
23662 tmp = flags;
23663 arch = 0;
23664 for (p = cpu_arch_ver; p->val; p++)
23665 {
23666 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23667 {
23668 arch = p->val;
23669 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23670 }
23671 }
ee065d83 23672
9e3c6df6
PB
23673 /* The table lookup above finds the last architecture to contribute
23674 a new feature. Unfortunately, Tag13 is a subset of the union of
23675 v6T2 and v7-M, so it is never seen as contributing a new feature.
23676 We can not search for the last entry which is entirely used,
23677 because if no CPU is specified we build up only those flags
23678 actually used. Perhaps we should separate out the specified
23679 and implicit cases. Avoid taking this path for -march=all by
23680 checking for contradictory v7-A / v7-M features. */
23681 if (arch == 10
23682 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23683 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23684 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23685 arch = 13;
23686
ee065d83
PB
23687 /* Tag_CPU_name. */
23688 if (selected_cpu_name[0])
23689 {
91d6fa6a 23690 char *q;
ee065d83 23691
91d6fa6a
NC
23692 q = selected_cpu_name;
23693 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23694 {
23695 int i;
5f4273c7 23696
91d6fa6a
NC
23697 q += 4;
23698 for (i = 0; q[i]; i++)
23699 q[i] = TOUPPER (q[i]);
ee065d83 23700 }
91d6fa6a 23701 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23702 }
62f3b8c8 23703
ee065d83 23704 /* Tag_CPU_arch. */
ee3c0378 23705 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23706
62b3e311
PB
23707 /* Tag_CPU_arch_profile. */
23708 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23709 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23710 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23711 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23712 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23713 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23714
ee065d83 23715 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23716 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23717 || arch == 0)
23718 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23719
ee065d83 23720 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23721 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23722 || arch == 0)
23723 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23724 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23725
ee065d83 23726 /* Tag_VFP_arch. */
62f3b8c8
PB
23727 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23728 aeabi_set_attribute_int (Tag_VFP_arch,
23729 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23730 ? 5 : 6);
23731 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23732 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23733 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23734 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23735 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23736 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23737 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23738 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23739 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23740
4547cb56
NC
23741 /* Tag_ABI_HardFP_use. */
23742 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23743 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23744 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23745
ee065d83 23746 /* Tag_WMMX_arch. */
ee3c0378
AS
23747 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23748 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23749 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23750 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23751
ee3c0378 23752 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23753 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23754 aeabi_set_attribute_int
23755 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23756 ? 2 : 1));
23757
ee3c0378 23758 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23759 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23760 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23761
23762 /* Tag_DIV_use. */
eea54501
MGD
23763 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23764 aeabi_set_attribute_int (Tag_DIV_use, 2);
23765 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23766 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23767 else
23768 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23769
23770 /* Tag_MP_extension_use. */
23771 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23772 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23773
23774 /* Tag Virtualization_use. */
23775 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23776 virt_sec |= 1;
23777 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23778 virt_sec |= 2;
23779 if (virt_sec != 0)
23780 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23781}
23782
104d59d1 23783/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23784void
23785arm_md_end (void)
23786{
ee065d83
PB
23787 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23788 return;
23789
23790 aeabi_set_public_attributes ();
ee065d83 23791}
8463be01 23792#endif /* OBJ_ELF */
ee065d83
PB
23793
23794
23795/* Parse a .cpu directive. */
23796
23797static void
23798s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23799{
e74cfd16 23800 const struct arm_cpu_option_table *opt;
ee065d83
PB
23801 char *name;
23802 char saved_char;
23803
23804 name = input_line_pointer;
5f4273c7 23805 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23806 input_line_pointer++;
23807 saved_char = *input_line_pointer;
23808 *input_line_pointer = 0;
23809
23810 /* Skip the first "all" entry. */
23811 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23812 if (streq (opt->name, name))
23813 {
e74cfd16
PB
23814 mcpu_cpu_opt = &opt->value;
23815 selected_cpu = opt->value;
ee065d83 23816 if (opt->canonical_name)
5f4273c7 23817 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23818 else
23819 {
23820 int i;
23821 for (i = 0; opt->name[i]; i++)
23822 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23823 selected_cpu_name[i] = 0;
23824 }
e74cfd16 23825 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23826 *input_line_pointer = saved_char;
23827 demand_empty_rest_of_line ();
23828 return;
23829 }
23830 as_bad (_("unknown cpu `%s'"), name);
23831 *input_line_pointer = saved_char;
23832 ignore_rest_of_line ();
23833}
23834
23835
23836/* Parse a .arch directive. */
23837
23838static void
23839s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23840{
e74cfd16 23841 const struct arm_arch_option_table *opt;
ee065d83
PB
23842 char saved_char;
23843 char *name;
23844
23845 name = input_line_pointer;
5f4273c7 23846 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23847 input_line_pointer++;
23848 saved_char = *input_line_pointer;
23849 *input_line_pointer = 0;
23850
23851 /* Skip the first "all" entry. */
23852 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23853 if (streq (opt->name, name))
23854 {
e74cfd16
PB
23855 mcpu_cpu_opt = &opt->value;
23856 selected_cpu = opt->value;
5f4273c7 23857 strcpy (selected_cpu_name, opt->name);
e74cfd16 23858 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23859 *input_line_pointer = saved_char;
23860 demand_empty_rest_of_line ();
23861 return;
23862 }
23863
23864 as_bad (_("unknown architecture `%s'\n"), name);
23865 *input_line_pointer = saved_char;
23866 ignore_rest_of_line ();
23867}
23868
23869
7a1d4c38
PB
23870/* Parse a .object_arch directive. */
23871
23872static void
23873s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23874{
23875 const struct arm_arch_option_table *opt;
23876 char saved_char;
23877 char *name;
23878
23879 name = input_line_pointer;
5f4273c7 23880 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23881 input_line_pointer++;
23882 saved_char = *input_line_pointer;
23883 *input_line_pointer = 0;
23884
23885 /* Skip the first "all" entry. */
23886 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23887 if (streq (opt->name, name))
23888 {
23889 object_arch = &opt->value;
23890 *input_line_pointer = saved_char;
23891 demand_empty_rest_of_line ();
23892 return;
23893 }
23894
23895 as_bad (_("unknown architecture `%s'\n"), name);
23896 *input_line_pointer = saved_char;
23897 ignore_rest_of_line ();
23898}
23899
69133863
MGD
23900/* Parse a .arch_extension directive. */
23901
23902static void
23903s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23904{
23905 const struct arm_option_extension_value_table *opt;
23906 char saved_char;
23907 char *name;
23908 int adding_value = 1;
23909
23910 name = input_line_pointer;
23911 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23912 input_line_pointer++;
23913 saved_char = *input_line_pointer;
23914 *input_line_pointer = 0;
23915
23916 if (strlen (name) >= 2
23917 && strncmp (name, "no", 2) == 0)
23918 {
23919 adding_value = 0;
23920 name += 2;
23921 }
23922
23923 for (opt = arm_extensions; opt->name != NULL; opt++)
23924 if (streq (opt->name, name))
23925 {
23926 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23927 {
23928 as_bad (_("architectural extension `%s' is not allowed for the "
23929 "current base architecture"), name);
23930 break;
23931 }
23932
23933 if (adding_value)
23934 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23935 else
23936 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23937
23938 mcpu_cpu_opt = &selected_cpu;
23939 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23940 *input_line_pointer = saved_char;
23941 demand_empty_rest_of_line ();
23942 return;
23943 }
23944
23945 if (opt->name == NULL)
23946 as_bad (_("unknown architecture `%s'\n"), name);
23947
23948 *input_line_pointer = saved_char;
23949 ignore_rest_of_line ();
23950}
23951
ee065d83
PB
23952/* Parse a .fpu directive. */
23953
23954static void
23955s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23956{
69133863 23957 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23958 char saved_char;
23959 char *name;
23960
23961 name = input_line_pointer;
5f4273c7 23962 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23963 input_line_pointer++;
23964 saved_char = *input_line_pointer;
23965 *input_line_pointer = 0;
5f4273c7 23966
ee065d83
PB
23967 for (opt = arm_fpus; opt->name != NULL; opt++)
23968 if (streq (opt->name, name))
23969 {
e74cfd16
PB
23970 mfpu_opt = &opt->value;
23971 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23972 *input_line_pointer = saved_char;
23973 demand_empty_rest_of_line ();
23974 return;
23975 }
23976
23977 as_bad (_("unknown floating point format `%s'\n"), name);
23978 *input_line_pointer = saved_char;
23979 ignore_rest_of_line ();
23980}
ee065d83 23981
794ba86a 23982/* Copy symbol information. */
f31fef98 23983
794ba86a
DJ
23984void
23985arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23986{
23987 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23988}
e04befd0 23989
f31fef98 23990#ifdef OBJ_ELF
e04befd0
AS
23991/* Given a symbolic attribute NAME, return the proper integer value.
23992 Returns -1 if the attribute is not known. */
f31fef98 23993
e04befd0
AS
23994int
23995arm_convert_symbolic_attribute (const char *name)
23996{
f31fef98
NC
23997 static const struct
23998 {
23999 const char * name;
24000 const int tag;
24001 }
24002 attribute_table[] =
24003 {
24004 /* When you modify this table you should
24005 also modify the list in doc/c-arm.texi. */
e04befd0 24006#define T(tag) {#tag, tag}
f31fef98
NC
24007 T (Tag_CPU_raw_name),
24008 T (Tag_CPU_name),
24009 T (Tag_CPU_arch),
24010 T (Tag_CPU_arch_profile),
24011 T (Tag_ARM_ISA_use),
24012 T (Tag_THUMB_ISA_use),
75375b3e 24013 T (Tag_FP_arch),
f31fef98
NC
24014 T (Tag_VFP_arch),
24015 T (Tag_WMMX_arch),
24016 T (Tag_Advanced_SIMD_arch),
24017 T (Tag_PCS_config),
24018 T (Tag_ABI_PCS_R9_use),
24019 T (Tag_ABI_PCS_RW_data),
24020 T (Tag_ABI_PCS_RO_data),
24021 T (Tag_ABI_PCS_GOT_use),
24022 T (Tag_ABI_PCS_wchar_t),
24023 T (Tag_ABI_FP_rounding),
24024 T (Tag_ABI_FP_denormal),
24025 T (Tag_ABI_FP_exceptions),
24026 T (Tag_ABI_FP_user_exceptions),
24027 T (Tag_ABI_FP_number_model),
75375b3e 24028 T (Tag_ABI_align_needed),
f31fef98 24029 T (Tag_ABI_align8_needed),
75375b3e 24030 T (Tag_ABI_align_preserved),
f31fef98
NC
24031 T (Tag_ABI_align8_preserved),
24032 T (Tag_ABI_enum_size),
24033 T (Tag_ABI_HardFP_use),
24034 T (Tag_ABI_VFP_args),
24035 T (Tag_ABI_WMMX_args),
24036 T (Tag_ABI_optimization_goals),
24037 T (Tag_ABI_FP_optimization_goals),
24038 T (Tag_compatibility),
24039 T (Tag_CPU_unaligned_access),
75375b3e 24040 T (Tag_FP_HP_extension),
f31fef98
NC
24041 T (Tag_VFP_HP_extension),
24042 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
24043 T (Tag_MPextension_use),
24044 T (Tag_DIV_use),
f31fef98
NC
24045 T (Tag_nodefaults),
24046 T (Tag_also_compatible_with),
24047 T (Tag_conformance),
24048 T (Tag_T2EE_use),
24049 T (Tag_Virtualization_use),
cd21e546 24050 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 24051#undef T
f31fef98 24052 };
e04befd0
AS
24053 unsigned int i;
24054
24055 if (name == NULL)
24056 return -1;
24057
f31fef98 24058 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 24059 if (streq (name, attribute_table[i].name))
e04befd0
AS
24060 return attribute_table[i].tag;
24061
24062 return -1;
24063}
267bf995
RR
24064
24065
24066/* Apply sym value for relocations only in the case that
24067 they are for local symbols and you have the respective
24068 architectural feature for blx and simple switches. */
24069int
24070arm_apply_sym_value (struct fix * fixP)
24071{
24072 if (fixP->fx_addsy
24073 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 24074 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
24075 {
24076 switch (fixP->fx_r_type)
24077 {
24078 case BFD_RELOC_ARM_PCREL_BLX:
24079 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24080 if (ARM_IS_FUNC (fixP->fx_addsy))
24081 return 1;
24082 break;
24083
24084 case BFD_RELOC_ARM_PCREL_CALL:
24085 case BFD_RELOC_THUMB_PCREL_BLX:
24086 if (THUMB_IS_FUNC (fixP->fx_addsy))
24087 return 1;
24088 break;
24089
24090 default:
24091 break;
24092 }
24093
24094 }
24095 return 0;
24096}
f31fef98 24097#endif /* OBJ_ELF */