]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Grow/raid10: support reducing the devices in a RAID10.
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb 104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106#define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
108};
109
3b451610
AK
110/* map selector for map managment
111 */
238c0a71
AK
112#define MAP_0 0
113#define MAP_1 1
114#define MAP_X -1
3b451610 115
cdddbdbc
DW
116/* RAID map configuration infos. */
117struct imsm_map {
5551b113
CA
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123#define IMSM_T_STATE_NORMAL 0
124#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
125#define IMSM_T_STATE_DEGRADED 2
126#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
127 __u8 raid_level;
128#define IMSM_T_RAID0 0
129#define IMSM_T_RAID1 1
130#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 134 __u8 ddf;
5551b113
CA
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
7eef0453 139#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
141 * top byte contains some flags
142 */
cdddbdbc
DW
143} __attribute__ ((packed));
144
145struct imsm_vol {
f8f603f1 146 __u32 curr_migr_unit;
fe7ed8cb 147 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 148 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
149#define MIGR_INIT 0
150#define MIGR_REBUILD 1
151#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152#define MIGR_GEN_MIGR 3
153#define MIGR_STATE_CHANGE 4
1484e727 154#define MIGR_REPAIR 5
cdddbdbc
DW
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
fe7ed8cb
DW
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
cdddbdbc
DW
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163} __attribute__ ((packed));
164
165struct imsm_dev {
fe7ed8cb 166 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
167 __u32 size_low;
168 __u32 size_high;
fe7ed8cb
DW
169#define DEV_BOOTABLE __cpu_to_le32(0x01)
170#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171#define DEV_READ_COALESCING __cpu_to_le32(0x04)
172#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194} __attribute__ ((packed));
195
196struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212#define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
604b746f 216 /* here comes BBM logs */
cdddbdbc
DW
217} __attribute__ ((packed));
218
604b746f
JD
219#define BBM_LOG_MAX_ENTRIES 254
220
221struct bbm_log_entry {
222 __u64 defective_block_start;
223#define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227} __attribute__ ((__packed__));
228
229struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236} __attribute__ ((__packed__));
237
238
cdddbdbc
DW
239#ifndef MDASSEMBLE
240static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241#endif
242
8e59f3d8
AK
243#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
17a4eaf9
AK
247#define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248#define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
8e59f3d8
AK
253#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282} __attribute__ ((__packed__));
283
ec50f7b6
LM
284struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296};
297
e7b84f9d 298#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 299
1484e727
DW
300static __u8 migr_type(struct imsm_dev *dev)
301{
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307}
308
309static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310{
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321}
322
87eb16df 323static unsigned int sector_count(__u32 bytes)
cdddbdbc 324{
654a3817 325 return ROUND_UP(bytes, 512) / 512;
87eb16df 326}
cdddbdbc 327
87eb16df
DW
328static unsigned int mpb_sectors(struct imsm_super *mpb)
329{
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
331}
332
ba2de7ba
DW
333struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
f21e18ca 336 unsigned index;
ba2de7ba
DW
337};
338
88654014
LM
339struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344};
345
1a64be56
LM
346enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349};
cdddbdbc
DW
350/* internal representation of IMSM metadata */
351struct intel_super {
352 union {
949c47a0
DW
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 355 };
8e59f3d8
AK
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
51d83f5d
AK
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
949c47a0 363 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
c2c087e6 366 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 367 int current_vol; /* index of raid device undergoing creation */
5551b113 368 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 369 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 370 struct intel_dev *devlist;
cdddbdbc
DW
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
b9f594fe 377 struct imsm_disk disk;
cdddbdbc 378 int fd;
0dcecb2e
DW
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
efb30e7f 381 int raiddisk; /* slot to fill in autolayout */
1a64be56 382 enum action action;
ca0748fa 383 } *disks, *current_disk;
1a64be56
LM
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
47ee5a45 386 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 387 struct bbm_log *bbm_log;
88654014 388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 389 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391};
392
393struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
cdddbdbc
DW
398};
399
c2c087e6
DW
400struct extent {
401 unsigned long long start, size;
402};
403
694575e7
KW
404/* definitions of reshape process types */
405enum imsm_reshape_type {
406 CH_TAKEOVER,
b5347799 407 CH_MIGRATION,
7abc9871 408 CH_ARRAY_SIZE,
694575e7
KW
409};
410
88758e9d
DW
411/* definition of messages passed to imsm_process_update */
412enum imsm_update_type {
413 update_activate_spare,
8273f55e 414 update_create_array,
33414a01 415 update_kill_array,
aa534678 416 update_rename_array,
1a64be56 417 update_add_remove_disk,
78b10e66 418 update_reshape_container_disks,
48c5303a 419 update_reshape_migration,
2d40f3a1
AK
420 update_takeover,
421 update_general_migration_checkpoint,
f3871fdc 422 update_size_change,
88758e9d
DW
423};
424
425struct imsm_update_activate_spare {
426 enum imsm_update_type type;
d23fe947 427 struct dl *dl;
88758e9d
DW
428 int slot;
429 int array;
430 struct imsm_update_activate_spare *next;
431};
432
78b10e66
N
433struct geo_params {
434 int dev_id;
435 char *dev_name;
d04f65f4 436 unsigned long long size;
78b10e66
N
437 int level;
438 int layout;
439 int chunksize;
440 int raid_disks;
441};
442
bb025c2f
KW
443enum takeover_direction {
444 R10_TO_R0,
445 R0_TO_R10
446};
447struct imsm_update_takeover {
448 enum imsm_update_type type;
449 int subarray;
450 enum takeover_direction direction;
451};
78b10e66
N
452
453struct imsm_update_reshape {
454 enum imsm_update_type type;
455 int old_raid_disks;
456 int new_raid_disks;
48c5303a
PC
457
458 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
459};
460
461struct imsm_update_reshape_migration {
462 enum imsm_update_type type;
463 int old_raid_disks;
464 int new_raid_disks;
465 /* fields for array migration changes
466 */
467 int subdev;
468 int new_level;
469 int new_layout;
4bba0439 470 int new_chunksize;
48c5303a 471
d195167d 472 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
473};
474
f3871fdc
AK
475struct imsm_update_size_change {
476 enum imsm_update_type type;
477 int subdev;
478 long long new_size;
479};
480
2d40f3a1
AK
481struct imsm_update_general_migration_checkpoint {
482 enum imsm_update_type type;
483 __u32 curr_migr_unit;
484};
485
54c2c1ea
DW
486struct disk_info {
487 __u8 serial[MAX_RAID_SERIAL_LEN];
488};
489
8273f55e
DW
490struct imsm_update_create_array {
491 enum imsm_update_type type;
8273f55e 492 int dev_idx;
6a3e913e 493 struct imsm_dev dev;
8273f55e
DW
494};
495
33414a01
DW
496struct imsm_update_kill_array {
497 enum imsm_update_type type;
498 int dev_idx;
499};
500
aa534678
DW
501struct imsm_update_rename_array {
502 enum imsm_update_type type;
503 __u8 name[MAX_RAID_SERIAL_LEN];
504 int dev_idx;
505};
506
1a64be56 507struct imsm_update_add_remove_disk {
43dad3d6
DW
508 enum imsm_update_type type;
509};
510
88654014
LM
511
512static const char *_sys_dev_type[] = {
513 [SYS_DEV_UNKNOWN] = "Unknown",
514 [SYS_DEV_SAS] = "SAS",
515 [SYS_DEV_SATA] = "SATA"
516};
517
518const char *get_sys_dev_type(enum sys_dev_type type)
519{
520 if (type >= SYS_DEV_MAX)
521 type = SYS_DEV_UNKNOWN;
522
523 return _sys_dev_type[type];
524}
525
526static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
527{
503975b9
N
528 struct intel_hba *result = xmalloc(sizeof(*result));
529
530 result->type = device->type;
531 result->path = xstrdup(device->path);
532 result->next = NULL;
533 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
534 result->pci_id++;
535
88654014
LM
536 return result;
537}
538
539static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
540{
541 struct intel_hba *result=NULL;
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547}
548
b4cf4cba 549static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
550{
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not sypport odf HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 while (hba->next)
571 hba = hba->next;
572
573 hba->next = alloc_intel_hba(device);
574 return 1;
575}
576
577static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
578{
579 struct sys_dev *list, *elem, *prev;
580 char *disk_path;
581
582 if ((list = find_intel_devices()) == NULL)
583 return 0;
584
585 if (fd < 0)
586 disk_path = (char *) devname;
587 else
588 disk_path = diskfd_to_devpath(fd);
589
590 if (!disk_path) {
591 free_sys_dev(&list);
592 return 0;
593 }
594
595 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
596 if (path_attached_to_hba(disk_path, elem->path)) {
597 if (prev == NULL)
598 list = list->next;
599 else
600 prev->next = elem->next;
601 elem->next = NULL;
602 if (disk_path != devname)
603 free(disk_path);
604 free_sys_dev(&list);
605 return elem;
606 }
607 }
608 if (disk_path != devname)
609 free(disk_path);
610 free_sys_dev(&list);
611
612 return NULL;
613}
614
615
d424212e
N
616static int find_intel_hba_capability(int fd, struct intel_super *super,
617 char *devname);
f2f5c343 618
cdddbdbc
DW
619static struct supertype *match_metadata_desc_imsm(char *arg)
620{
621 struct supertype *st;
622
623 if (strcmp(arg, "imsm") != 0 &&
624 strcmp(arg, "default") != 0
625 )
626 return NULL;
627
503975b9 628 st = xcalloc(1, sizeof(*st));
d1d599ea 629 st->container_dev = NoMdDev;
cdddbdbc
DW
630 st->ss = &super_imsm;
631 st->max_devs = IMSM_MAX_DEVICES;
632 st->minor_version = 0;
633 st->sb = NULL;
634 return st;
635}
636
0e600426 637#ifndef MDASSEMBLE
cdddbdbc
DW
638static __u8 *get_imsm_version(struct imsm_super *mpb)
639{
640 return &mpb->sig[MPB_SIG_LEN];
641}
9e2d750d 642#endif
cdddbdbc 643
949c47a0
DW
644/* retrieve a disk directly from the anchor when the anchor is known to be
645 * up-to-date, currently only at load time
646 */
647static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 648{
949c47a0 649 if (index >= mpb->num_disks)
cdddbdbc
DW
650 return NULL;
651 return &mpb->disk[index];
652}
653
95d07a2c
LM
654/* retrieve the disk description based on a index of the disk
655 * in the sub-array
656 */
657static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 658{
b9f594fe
DW
659 struct dl *d;
660
661 for (d = super->disks; d; d = d->next)
662 if (d->index == index)
95d07a2c
LM
663 return d;
664
665 return NULL;
666}
667/* retrieve a disk from the parsed metadata */
668static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
669{
670 struct dl *dl;
671
672 dl = get_imsm_dl_disk(super, index);
673 if (dl)
674 return &dl->disk;
675
b9f594fe 676 return NULL;
949c47a0
DW
677}
678
679/* generate a checksum directly from the anchor when the anchor is known to be
680 * up-to-date, currently only at load or write_super after coalescing
681 */
682static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
683{
684 __u32 end = mpb->mpb_size / sizeof(end);
685 __u32 *p = (__u32 *) mpb;
686 __u32 sum = 0;
687
97f734fd
N
688 while (end--) {
689 sum += __le32_to_cpu(*p);
690 p++;
691 }
cdddbdbc
DW
692
693 return sum - __le32_to_cpu(mpb->check_sum);
694}
695
a965f303
DW
696static size_t sizeof_imsm_map(struct imsm_map *map)
697{
698 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
699}
700
701struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 702{
5e7b0330
AK
703 /* A device can have 2 maps if it is in the middle of a migration.
704 * If second_map is:
238c0a71
AK
705 * MAP_0 - we return the first map
706 * MAP_1 - we return the second map if it exists, else NULL
707 * MAP_X - we return the second map if it exists, else the first
5e7b0330 708 */
a965f303 709 struct imsm_map *map = &dev->vol.map[0];
9535fc47 710 struct imsm_map *map2 = NULL;
a965f303 711
9535fc47
AK
712 if (dev->vol.migr_state)
713 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 714
9535fc47 715 switch (second_map) {
3b451610 716 case MAP_0:
9535fc47 717 break;
3b451610 718 case MAP_1:
9535fc47
AK
719 map = map2;
720 break;
238c0a71 721 case MAP_X:
9535fc47
AK
722 if (map2)
723 map = map2;
724 break;
9535fc47
AK
725 default:
726 map = NULL;
727 }
728 return map;
5e7b0330 729
a965f303 730}
cdddbdbc 731
3393c6af
DW
732/* return the size of the device.
733 * migr_state increases the returned size if map[0] were to be duplicated
734 */
735static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
736{
737 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 738 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
739
740 /* migrating means an additional map */
a965f303 741 if (dev->vol.migr_state)
238c0a71 742 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 743 else if (migr_state)
238c0a71 744 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
745
746 return size;
747}
748
54c2c1ea
DW
749#ifndef MDASSEMBLE
750/* retrieve disk serial number list from a metadata update */
751static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
752{
753 void *u = update;
754 struct disk_info *inf;
755
756 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
757 sizeof_imsm_dev(&update->dev, 0);
758
759 return inf;
760}
761#endif
762
949c47a0 763static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
764{
765 int offset;
766 int i;
767 void *_mpb = mpb;
768
949c47a0 769 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
770 return NULL;
771
772 /* devices start after all disks */
773 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
774
775 for (i = 0; i <= index; i++)
776 if (i == index)
777 return _mpb + offset;
778 else
3393c6af 779 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
780
781 return NULL;
782}
783
949c47a0
DW
784static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
785{
ba2de7ba
DW
786 struct intel_dev *dv;
787
949c47a0
DW
788 if (index >= super->anchor->num_raid_devs)
789 return NULL;
ba2de7ba
DW
790 for (dv = super->devlist; dv; dv = dv->next)
791 if (dv->index == index)
792 return dv->dev;
793 return NULL;
949c47a0
DW
794}
795
98130f40
AK
796/*
797 * for second_map:
238c0a71
AK
798 * == MAP_0 get first map
799 * == MAP_1 get second map
800 * == MAP_X than get map according to the current migr_state
98130f40
AK
801 */
802static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
803 int slot,
804 int second_map)
7eef0453
DW
805{
806 struct imsm_map *map;
807
5e7b0330 808 map = get_imsm_map(dev, second_map);
7eef0453 809
ff077194
DW
810 /* top byte identifies disk under rebuild */
811 return __le32_to_cpu(map->disk_ord_tbl[slot]);
812}
813
814#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 815static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 816{
98130f40 817 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
818
819 return ord_to_idx(ord);
7eef0453
DW
820}
821
be73972f
DW
822static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
823{
824 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
825}
826
f21e18ca 827static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
828{
829 int slot;
830 __u32 ord;
831
832 for (slot = 0; slot < map->num_members; slot++) {
833 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
834 if (ord_to_idx(ord) == idx)
835 return slot;
836 }
837
838 return -1;
839}
840
cdddbdbc
DW
841static int get_imsm_raid_level(struct imsm_map *map)
842{
843 if (map->raid_level == 1) {
844 if (map->num_members == 2)
845 return 1;
846 else
847 return 10;
848 }
849
850 return map->raid_level;
851}
852
c2c087e6
DW
853static int cmp_extent(const void *av, const void *bv)
854{
855 const struct extent *a = av;
856 const struct extent *b = bv;
857 if (a->start < b->start)
858 return -1;
859 if (a->start > b->start)
860 return 1;
861 return 0;
862}
863
0dcecb2e 864static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 865{
c2c087e6 866 int memberships = 0;
620b1713 867 int i;
c2c087e6 868
949c47a0
DW
869 for (i = 0; i < super->anchor->num_raid_devs; i++) {
870 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 871 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 872
620b1713
DW
873 if (get_imsm_disk_slot(map, dl->index) >= 0)
874 memberships++;
c2c087e6 875 }
0dcecb2e
DW
876
877 return memberships;
878}
879
b81221b7
CA
880static __u32 imsm_min_reserved_sectors(struct intel_super *super);
881
5551b113
CA
882static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
883{
884 if (lo == 0 || hi == 0)
885 return 1;
886 *lo = __le32_to_cpu((unsigned)n);
887 *hi = __le32_to_cpu((unsigned)(n >> 32));
888 return 0;
889}
890
891static unsigned long long join_u32(__u32 lo, __u32 hi)
892{
893 return (unsigned long long)__le32_to_cpu(lo) |
894 (((unsigned long long)__le32_to_cpu(hi)) << 32);
895}
896
897static unsigned long long total_blocks(struct imsm_disk *disk)
898{
899 if (disk == NULL)
900 return 0;
901 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
902}
903
904static unsigned long long pba_of_lba0(struct imsm_map *map)
905{
906 if (map == NULL)
907 return 0;
908 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
909}
910
911static unsigned long long blocks_per_member(struct imsm_map *map)
912{
913 if (map == NULL)
914 return 0;
915 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
916}
917
ae2416e7 918#ifndef MDASSEMBLE
5551b113
CA
919static unsigned long long num_data_stripes(struct imsm_map *map)
920{
921 if (map == NULL)
922 return 0;
923 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
924}
925
926static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
927{
928 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
929}
ae2416e7 930#endif
5551b113
CA
931
932static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
933{
934 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
935}
936
937static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
938{
939 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
940}
941
942static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
943{
944 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
945}
946
0dcecb2e
DW
947static struct extent *get_extents(struct intel_super *super, struct dl *dl)
948{
949 /* find a list of used extents on the given physical device */
950 struct extent *rv, *e;
620b1713 951 int i;
0dcecb2e 952 int memberships = count_memberships(dl, super);
b276dd33
DW
953 __u32 reservation;
954
955 /* trim the reserved area for spares, so they can join any array
956 * regardless of whether the OROM has assigned sectors from the
957 * IMSM_RESERVED_SECTORS region
958 */
959 if (dl->index == -1)
b81221b7 960 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
961 else
962 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 963
503975b9 964 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
965 e = rv;
966
949c47a0
DW
967 for (i = 0; i < super->anchor->num_raid_devs; i++) {
968 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 969 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 970
620b1713 971 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
972 e->start = pba_of_lba0(map);
973 e->size = blocks_per_member(map);
620b1713 974 e++;
c2c087e6
DW
975 }
976 }
977 qsort(rv, memberships, sizeof(*rv), cmp_extent);
978
14e8215b
DW
979 /* determine the start of the metadata
980 * when no raid devices are defined use the default
981 * ...otherwise allow the metadata to truncate the value
982 * as is the case with older versions of imsm
983 */
984 if (memberships) {
985 struct extent *last = &rv[memberships - 1];
5551b113 986 unsigned long long remainder;
14e8215b 987
5551b113 988 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
989 /* round down to 1k block to satisfy precision of the kernel
990 * 'size' interface
991 */
992 remainder &= ~1UL;
993 /* make sure remainder is still sane */
f21e18ca 994 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 995 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
996 if (reservation > remainder)
997 reservation = remainder;
998 }
5551b113 999 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1000 e->size = 0;
1001 return rv;
1002}
1003
14e8215b
DW
1004/* try to determine how much space is reserved for metadata from
1005 * the last get_extents() entry, otherwise fallback to the
1006 * default
1007 */
1008static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1009{
1010 struct extent *e;
1011 int i;
1012 __u32 rv;
1013
1014 /* for spares just return a minimal reservation which will grow
1015 * once the spare is picked up by an array
1016 */
1017 if (dl->index == -1)
1018 return MPB_SECTOR_CNT;
1019
1020 e = get_extents(super, dl);
1021 if (!e)
1022 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1023
1024 /* scroll to last entry */
1025 for (i = 0; e[i].size; i++)
1026 continue;
1027
5551b113 1028 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1029
1030 free(e);
1031
1032 return rv;
1033}
1034
25ed7e59
DW
1035static int is_spare(struct imsm_disk *disk)
1036{
1037 return (disk->status & SPARE_DISK) == SPARE_DISK;
1038}
1039
1040static int is_configured(struct imsm_disk *disk)
1041{
1042 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1043}
1044
1045static int is_failed(struct imsm_disk *disk)
1046{
1047 return (disk->status & FAILED_DISK) == FAILED_DISK;
1048}
1049
b81221b7
CA
1050/* try to determine how much space is reserved for metadata from
1051 * the last get_extents() entry on the smallest active disk,
1052 * otherwise fallback to the default
1053 */
1054static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1055{
1056 struct extent *e;
1057 int i;
5551b113
CA
1058 unsigned long long min_active;
1059 __u32 remainder;
b81221b7
CA
1060 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1061 struct dl *dl, *dl_min = NULL;
1062
1063 if (!super)
1064 return rv;
1065
1066 min_active = 0;
1067 for (dl = super->disks; dl; dl = dl->next) {
1068 if (dl->index < 0)
1069 continue;
5551b113
CA
1070 unsigned long long blocks = total_blocks(&dl->disk);
1071 if (blocks < min_active || min_active == 0) {
b81221b7 1072 dl_min = dl;
5551b113 1073 min_active = blocks;
b81221b7
CA
1074 }
1075 }
1076 if (!dl_min)
1077 return rv;
1078
1079 /* find last lba used by subarrays on the smallest active disk */
1080 e = get_extents(super, dl_min);
1081 if (!e)
1082 return rv;
1083 for (i = 0; e[i].size; i++)
1084 continue;
1085
1086 remainder = min_active - e[i].start;
1087 free(e);
1088
1089 /* to give priority to recovery we should not require full
1090 IMSM_RESERVED_SECTORS from the spare */
1091 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1092
1093 /* if real reservation is smaller use that value */
1094 return (remainder < rv) ? remainder : rv;
1095}
1096
80e7f8c3
AC
1097/* Return minimum size of a spare that can be used in this array*/
1098static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1099{
1100 struct intel_super *super = st->sb;
1101 struct dl *dl;
1102 struct extent *e;
1103 int i;
1104 unsigned long long rv = 0;
1105
1106 if (!super)
1107 return rv;
1108 /* find first active disk in array */
1109 dl = super->disks;
1110 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1111 dl = dl->next;
1112 if (!dl)
1113 return rv;
1114 /* find last lba used by subarrays */
1115 e = get_extents(super, dl);
1116 if (!e)
1117 return rv;
1118 for (i = 0; e[i].size; i++)
1119 continue;
1120 if (i > 0)
1121 rv = e[i-1].start + e[i-1].size;
1122 free(e);
b81221b7 1123
80e7f8c3 1124 /* add the amount of space needed for metadata */
b81221b7
CA
1125 rv = rv + imsm_min_reserved_sectors(super);
1126
80e7f8c3
AC
1127 return rv * 512;
1128}
1129
d1e02575
AK
1130static int is_gen_migration(struct imsm_dev *dev);
1131
1799c9e8 1132#ifndef MDASSEMBLE
c47b0ff6
AK
1133static __u64 blocks_per_migr_unit(struct intel_super *super,
1134 struct imsm_dev *dev);
1e5c6983 1135
c47b0ff6
AK
1136static void print_imsm_dev(struct intel_super *super,
1137 struct imsm_dev *dev,
1138 char *uuid,
1139 int disk_idx)
cdddbdbc
DW
1140{
1141 __u64 sz;
0d80bb2f 1142 int slot, i;
238c0a71
AK
1143 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1144 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1145 __u32 ord;
cdddbdbc
DW
1146
1147 printf("\n");
1e7bc0ed 1148 printf("[%.16s]:\n", dev->volume);
44470971 1149 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1150 printf(" RAID Level : %d", get_imsm_raid_level(map));
1151 if (map2)
1152 printf(" <-- %d", get_imsm_raid_level(map2));
1153 printf("\n");
1154 printf(" Members : %d", map->num_members);
1155 if (map2)
1156 printf(" <-- %d", map2->num_members);
1157 printf("\n");
0d80bb2f
DW
1158 printf(" Slots : [");
1159 for (i = 0; i < map->num_members; i++) {
238c0a71 1160 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1161 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1162 }
dd8bcb3b
AK
1163 printf("]");
1164 if (map2) {
1165 printf(" <-- [");
1166 for (i = 0; i < map2->num_members; i++) {
238c0a71 1167 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1168 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1169 }
1170 printf("]");
1171 }
1172 printf("\n");
7095bccb
AK
1173 printf(" Failed disk : ");
1174 if (map->failed_disk_num == 0xff)
1175 printf("none");
1176 else
1177 printf("%i", map->failed_disk_num);
1178 printf("\n");
620b1713
DW
1179 slot = get_imsm_disk_slot(map, disk_idx);
1180 if (slot >= 0) {
238c0a71 1181 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1182 printf(" This Slot : %d%s\n", slot,
1183 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1184 } else
cdddbdbc
DW
1185 printf(" This Slot : ?\n");
1186 sz = __le32_to_cpu(dev->size_high);
1187 sz <<= 32;
1188 sz += __le32_to_cpu(dev->size_low);
1189 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1190 human_size(sz * 512));
5551b113 1191 sz = blocks_per_member(map);
cdddbdbc
DW
1192 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1193 human_size(sz * 512));
5551b113
CA
1194 printf(" Sector Offset : %llu\n",
1195 pba_of_lba0(map));
1196 printf(" Num Stripes : %llu\n",
1197 num_data_stripes(map));
dd8bcb3b 1198 printf(" Chunk Size : %u KiB",
cdddbdbc 1199 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1200 if (map2)
1201 printf(" <-- %u KiB",
1202 __le16_to_cpu(map2->blocks_per_strip) / 2);
1203 printf("\n");
cdddbdbc 1204 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1205 printf(" Migrate State : ");
1484e727
DW
1206 if (dev->vol.migr_state) {
1207 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1208 printf("initialize\n");
1484e727 1209 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1210 printf("rebuild\n");
1484e727 1211 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1212 printf("check\n");
1484e727 1213 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1214 printf("general migration\n");
1484e727 1215 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1216 printf("state change\n");
1484e727 1217 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1218 printf("repair\n");
1484e727 1219 else
8655a7b1
DW
1220 printf("<unknown:%d>\n", migr_type(dev));
1221 } else
1222 printf("idle\n");
3393c6af
DW
1223 printf(" Map State : %s", map_state_str[map->map_state]);
1224 if (dev->vol.migr_state) {
238c0a71 1225 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1226
b10b37b8 1227 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1228 printf("\n Checkpoint : %u ",
1229 __le32_to_cpu(dev->vol.curr_migr_unit));
3136abe5 1230 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
464d40e8
LD
1231 printf("(N/A)");
1232 else
1233 printf("(%llu)", (unsigned long long)
1234 blocks_per_migr_unit(super, dev));
3393c6af
DW
1235 }
1236 printf("\n");
cdddbdbc 1237 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1238}
1239
0ec1f4e8 1240static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1241{
1f24f035 1242 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1243 __u64 sz;
1244
0ec1f4e8 1245 if (index < -1 || !disk)
e9d82038
DW
1246 return;
1247
cdddbdbc 1248 printf("\n");
1f24f035 1249 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1250 if (index >= 0)
1251 printf(" Disk%02d Serial : %s\n", index, str);
1252 else
1253 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1254 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1255 is_configured(disk) ? " active" : "",
1256 is_failed(disk) ? " failed" : "");
cdddbdbc 1257 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1258 sz = total_blocks(disk) - reserved;
cdddbdbc
DW
1259 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1260 human_size(sz * 512));
1261}
1262
520e69e2
AK
1263void examine_migr_rec_imsm(struct intel_super *super)
1264{
1265 struct migr_record *migr_rec = super->migr_rec;
1266 struct imsm_super *mpb = super->anchor;
1267 int i;
1268
1269 for (i = 0; i < mpb->num_raid_devs; i++) {
1270 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1271 struct imsm_map *map;
b4ab44d8 1272 int slot = -1;
3136abe5 1273
520e69e2
AK
1274 if (is_gen_migration(dev) == 0)
1275 continue;
1276
1277 printf("\nMigration Record Information:");
3136abe5 1278
44bfe6df
AK
1279 /* first map under migration */
1280 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1281 if (map)
1282 slot = get_imsm_disk_slot(map, super->disks->index);
1283 if ((map == NULL) || (slot > 1) || (slot < 0)) {
520e69e2
AK
1284 printf(" Empty\n ");
1285 printf("Examine one of first two disks in array\n");
1286 break;
1287 }
1288 printf("\n Status : ");
1289 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1290 printf("Normal\n");
1291 else
1292 printf("Contains Data\n");
1293 printf(" Current Unit : %u\n",
1294 __le32_to_cpu(migr_rec->curr_migr_unit));
1295 printf(" Family : %u\n",
1296 __le32_to_cpu(migr_rec->family_num));
1297 printf(" Ascending : %u\n",
1298 __le32_to_cpu(migr_rec->ascending_migr));
1299 printf(" Blocks Per Unit : %u\n",
1300 __le32_to_cpu(migr_rec->blocks_per_unit));
1301 printf(" Dest. Depth Per Unit : %u\n",
1302 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1303 printf(" Checkpoint Area pba : %u\n",
1304 __le32_to_cpu(migr_rec->ckpt_area_pba));
1305 printf(" First member lba : %u\n",
1306 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1307 printf(" Total Number of Units : %u\n",
1308 __le32_to_cpu(migr_rec->num_migr_units));
1309 printf(" Size of volume : %u\n",
1310 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1311 printf(" Expansion space for LBA64 : %u\n",
1312 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1313 printf(" Record was read from : %u\n",
1314 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1315
1316 break;
1317 }
1318}
9e2d750d 1319#endif /* MDASSEMBLE */
19482bcc
AK
1320/*******************************************************************************
1321 * function: imsm_check_attributes
1322 * Description: Function checks if features represented by attributes flags
1323 * are supported by mdadm.
1324 * Parameters:
1325 * attributes - Attributes read from metadata
1326 * Returns:
1327 * 0 - passed attributes contains unsupported features flags
1328 * 1 - all features are supported
1329 ******************************************************************************/
1330static int imsm_check_attributes(__u32 attributes)
1331{
1332 int ret_val = 1;
418f9b36
N
1333 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1334
1335 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1336
1337 not_supported &= attributes;
1338 if (not_supported) {
e7b84f9d 1339 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1340 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1341 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1342 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1343 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1344 }
1345 if (not_supported & MPB_ATTRIB_2TB) {
1346 dprintf("\t\tMPB_ATTRIB_2TB\n");
1347 not_supported ^= MPB_ATTRIB_2TB;
1348 }
1349 if (not_supported & MPB_ATTRIB_RAID0) {
1350 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1351 not_supported ^= MPB_ATTRIB_RAID0;
1352 }
1353 if (not_supported & MPB_ATTRIB_RAID1) {
1354 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1355 not_supported ^= MPB_ATTRIB_RAID1;
1356 }
1357 if (not_supported & MPB_ATTRIB_RAID10) {
1358 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1359 not_supported ^= MPB_ATTRIB_RAID10;
1360 }
1361 if (not_supported & MPB_ATTRIB_RAID1E) {
1362 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1363 not_supported ^= MPB_ATTRIB_RAID1E;
1364 }
1365 if (not_supported & MPB_ATTRIB_RAID5) {
1366 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1367 not_supported ^= MPB_ATTRIB_RAID5;
1368 }
1369 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1370 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1371 not_supported ^= MPB_ATTRIB_RAIDCNG;
1372 }
1373 if (not_supported & MPB_ATTRIB_BBM) {
1374 dprintf("\t\tMPB_ATTRIB_BBM\n");
1375 not_supported ^= MPB_ATTRIB_BBM;
1376 }
1377 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1378 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1379 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1380 }
1381 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1382 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1383 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1384 }
1385 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1386 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1387 not_supported ^= MPB_ATTRIB_2TB_DISK;
1388 }
1389 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1390 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1391 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1392 }
1393 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1394 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1395 not_supported ^= MPB_ATTRIB_NEVER_USE;
1396 }
1397
1398 if (not_supported)
1399 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1400
1401 ret_val = 0;
1402 }
1403
1404 return ret_val;
1405}
1406
9e2d750d 1407#ifndef MDASSEMBLE
a5d85af7 1408static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1409
cdddbdbc
DW
1410static void examine_super_imsm(struct supertype *st, char *homehost)
1411{
1412 struct intel_super *super = st->sb;
949c47a0 1413 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1414 char str[MAX_SIGNATURE_LENGTH];
1415 int i;
27fd6274
DW
1416 struct mdinfo info;
1417 char nbuf[64];
cdddbdbc 1418 __u32 sum;
14e8215b 1419 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1420 struct dl *dl;
27fd6274 1421
cdddbdbc
DW
1422 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1423 printf(" Magic : %s\n", str);
1424 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1425 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1426 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1427 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1428 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1429 printf(" Attributes : ");
1430 if (imsm_check_attributes(mpb->attributes))
1431 printf("All supported\n");
1432 else
1433 printf("not supported\n");
a5d85af7 1434 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1435 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1436 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1437 sum = __le32_to_cpu(mpb->check_sum);
1438 printf(" Checksum : %08x %s\n", sum,
949c47a0 1439 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1440 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1441 printf(" Disks : %d\n", mpb->num_disks);
1442 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1443 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1444 if (super->bbm_log) {
1445 struct bbm_log *log = super->bbm_log;
1446
1447 printf("\n");
1448 printf("Bad Block Management Log:\n");
1449 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1450 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1451 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1452 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1453 printf(" First Spare : %llx\n",
1454 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1455 }
44470971
DW
1456 for (i = 0; i < mpb->num_raid_devs; i++) {
1457 struct mdinfo info;
1458 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1459
1460 super->current_vol = i;
a5d85af7 1461 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1462 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1463 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1464 }
cdddbdbc
DW
1465 for (i = 0; i < mpb->num_disks; i++) {
1466 if (i == super->disks->index)
1467 continue;
0ec1f4e8 1468 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1469 }
94827db3 1470
0ec1f4e8
DW
1471 for (dl = super->disks; dl; dl = dl->next)
1472 if (dl->index == -1)
1473 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1474
1475 examine_migr_rec_imsm(super);
cdddbdbc
DW
1476}
1477
061f2c6a 1478static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1479{
27fd6274 1480 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1481 struct mdinfo info;
1482 char nbuf[64];
1e7bc0ed 1483 struct intel_super *super = st->sb;
1e7bc0ed 1484
0d5a423f
DW
1485 if (!super->anchor->num_raid_devs) {
1486 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1487 return;
0d5a423f 1488 }
ff54de6e 1489
a5d85af7 1490 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1491 fname_from_uuid(st, &info, nbuf, ':');
1492 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1493}
1494
1495static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1496{
1497 /* We just write a generic IMSM ARRAY entry */
1498 struct mdinfo info;
1499 char nbuf[64];
1500 char nbuf1[64];
1501 struct intel_super *super = st->sb;
1502 int i;
1503
1504 if (!super->anchor->num_raid_devs)
1505 return;
1506
a5d85af7 1507 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1508 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1509 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1510 struct imsm_dev *dev = get_imsm_dev(super, i);
1511
1512 super->current_vol = i;
a5d85af7 1513 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1514 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1515 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1516 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1517 }
cdddbdbc
DW
1518}
1519
9d84c8ea
DW
1520static void export_examine_super_imsm(struct supertype *st)
1521{
1522 struct intel_super *super = st->sb;
1523 struct imsm_super *mpb = super->anchor;
1524 struct mdinfo info;
1525 char nbuf[64];
1526
a5d85af7 1527 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1528 fname_from_uuid(st, &info, nbuf, ':');
1529 printf("MD_METADATA=imsm\n");
1530 printf("MD_LEVEL=container\n");
1531 printf("MD_UUID=%s\n", nbuf+5);
1532 printf("MD_DEVICES=%u\n", mpb->num_disks);
1533}
1534
cdddbdbc
DW
1535static void detail_super_imsm(struct supertype *st, char *homehost)
1536{
3ebe00a1
DW
1537 struct mdinfo info;
1538 char nbuf[64];
1539
a5d85af7 1540 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1541 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1542 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1543}
1544
1545static void brief_detail_super_imsm(struct supertype *st)
1546{
ff54de6e
N
1547 struct mdinfo info;
1548 char nbuf[64];
a5d85af7 1549 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1550 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1551 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1552}
d665cc31
DW
1553
1554static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1555static void fd2devname(int fd, char *name);
1556
120dc887 1557static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1558{
120dc887
LM
1559 /* dump an unsorted list of devices attached to AHCI Intel storage
1560 * controller, as well as non-connected ports
d665cc31
DW
1561 */
1562 int hba_len = strlen(hba_path) + 1;
1563 struct dirent *ent;
1564 DIR *dir;
1565 char *path = NULL;
1566 int err = 0;
1567 unsigned long port_mask = (1 << port_count) - 1;
1568
f21e18ca 1569 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 1570 if (verbose > 0)
e7b84f9d 1571 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
1572 return 2;
1573 }
1574
1575 /* scroll through /sys/dev/block looking for devices attached to
1576 * this hba
1577 */
1578 dir = opendir("/sys/dev/block");
1579 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1580 int fd;
1581 char model[64];
1582 char vendor[64];
1583 char buf[1024];
1584 int major, minor;
1585 char *device;
1586 char *c;
1587 int port;
1588 int type;
1589
1590 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1591 continue;
1592 path = devt_to_devpath(makedev(major, minor));
1593 if (!path)
1594 continue;
1595 if (!path_attached_to_hba(path, hba_path)) {
1596 free(path);
1597 path = NULL;
1598 continue;
1599 }
1600
1601 /* retrieve the scsi device type */
1602 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 1603 if (verbose > 0)
e7b84f9d 1604 pr_err("failed to allocate 'device'\n");
d665cc31
DW
1605 err = 2;
1606 break;
1607 }
1608 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1609 if (load_sys(device, buf) != 0) {
ba728be7 1610 if (verbose > 0)
e7b84f9d 1611 pr_err("failed to read device type for %s\n",
d665cc31
DW
1612 path);
1613 err = 2;
1614 free(device);
1615 break;
1616 }
1617 type = strtoul(buf, NULL, 10);
1618
1619 /* if it's not a disk print the vendor and model */
1620 if (!(type == 0 || type == 7 || type == 14)) {
1621 vendor[0] = '\0';
1622 model[0] = '\0';
1623 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1624 if (load_sys(device, buf) == 0) {
1625 strncpy(vendor, buf, sizeof(vendor));
1626 vendor[sizeof(vendor) - 1] = '\0';
1627 c = (char *) &vendor[sizeof(vendor) - 1];
1628 while (isspace(*c) || *c == '\0')
1629 *c-- = '\0';
1630
1631 }
1632 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1633 if (load_sys(device, buf) == 0) {
1634 strncpy(model, buf, sizeof(model));
1635 model[sizeof(model) - 1] = '\0';
1636 c = (char *) &model[sizeof(model) - 1];
1637 while (isspace(*c) || *c == '\0')
1638 *c-- = '\0';
1639 }
1640
1641 if (vendor[0] && model[0])
1642 sprintf(buf, "%.64s %.64s", vendor, model);
1643 else
1644 switch (type) { /* numbers from hald/linux/device.c */
1645 case 1: sprintf(buf, "tape"); break;
1646 case 2: sprintf(buf, "printer"); break;
1647 case 3: sprintf(buf, "processor"); break;
1648 case 4:
1649 case 5: sprintf(buf, "cdrom"); break;
1650 case 6: sprintf(buf, "scanner"); break;
1651 case 8: sprintf(buf, "media_changer"); break;
1652 case 9: sprintf(buf, "comm"); break;
1653 case 12: sprintf(buf, "raid"); break;
1654 default: sprintf(buf, "unknown");
1655 }
1656 } else
1657 buf[0] = '\0';
1658 free(device);
1659
1660 /* chop device path to 'host%d' and calculate the port number */
1661 c = strchr(&path[hba_len], '/');
4e5e717d 1662 if (!c) {
ba728be7 1663 if (verbose > 0)
e7b84f9d 1664 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
1665 err = 2;
1666 break;
1667 }
d665cc31
DW
1668 *c = '\0';
1669 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1670 port -= host_base;
1671 else {
ba728be7 1672 if (verbose > 0) {
d665cc31 1673 *c = '/'; /* repair the full string */
e7b84f9d 1674 pr_err("failed to determine port number for %s\n",
d665cc31
DW
1675 path);
1676 }
1677 err = 2;
1678 break;
1679 }
1680
1681 /* mark this port as used */
1682 port_mask &= ~(1 << port);
1683
1684 /* print out the device information */
1685 if (buf[0]) {
1686 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1687 continue;
1688 }
1689
1690 fd = dev_open(ent->d_name, O_RDONLY);
1691 if (fd < 0)
1692 printf(" Port%d : - disk info unavailable -\n", port);
1693 else {
1694 fd2devname(fd, buf);
1695 printf(" Port%d : %s", port, buf);
1696 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1697 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1698 else
664d5325 1699 printf(" ()\n");
4dab422a 1700 close(fd);
d665cc31 1701 }
d665cc31
DW
1702 free(path);
1703 path = NULL;
1704 }
1705 if (path)
1706 free(path);
1707 if (dir)
1708 closedir(dir);
1709 if (err == 0) {
1710 int i;
1711
1712 for (i = 0; i < port_count; i++)
1713 if (port_mask & (1 << i))
1714 printf(" Port%d : - no device attached -\n", i);
1715 }
1716
1717 return err;
1718}
1719
120dc887
LM
1720static void print_found_intel_controllers(struct sys_dev *elem)
1721{
1722 for (; elem; elem = elem->next) {
e7b84f9d 1723 pr_err("found Intel(R) ");
120dc887
LM
1724 if (elem->type == SYS_DEV_SATA)
1725 fprintf(stderr, "SATA ");
155cbb4c
LM
1726 else if (elem->type == SYS_DEV_SAS)
1727 fprintf(stderr, "SAS ");
120dc887
LM
1728 fprintf(stderr, "RAID controller");
1729 if (elem->pci_id)
1730 fprintf(stderr, " at %s", elem->pci_id);
1731 fprintf(stderr, ".\n");
1732 }
1733 fflush(stderr);
1734}
1735
120dc887
LM
1736static int ahci_get_port_count(const char *hba_path, int *port_count)
1737{
1738 struct dirent *ent;
1739 DIR *dir;
1740 int host_base = -1;
1741
1742 *port_count = 0;
1743 if ((dir = opendir(hba_path)) == NULL)
1744 return -1;
1745
1746 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1747 int host;
1748
1749 if (sscanf(ent->d_name, "host%d", &host) != 1)
1750 continue;
1751 if (*port_count == 0)
1752 host_base = host;
1753 else if (host < host_base)
1754 host_base = host;
1755
1756 if (host + 1 > *port_count + host_base)
1757 *port_count = host + 1 - host_base;
1758 }
1759 closedir(dir);
1760 return host_base;
1761}
1762
a891a3c2
LM
1763static void print_imsm_capability(const struct imsm_orom *orom)
1764{
1765 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1766 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1767 orom->hotfix_ver, orom->build);
1768 printf(" RAID Levels :%s%s%s%s%s\n",
1769 imsm_orom_has_raid0(orom) ? " raid0" : "",
1770 imsm_orom_has_raid1(orom) ? " raid1" : "",
1771 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1772 imsm_orom_has_raid10(orom) ? " raid10" : "",
1773 imsm_orom_has_raid5(orom) ? " raid5" : "");
1774 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1775 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1776 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1777 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1778 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1779 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1780 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1781 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1782 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1783 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1784 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1785 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1786 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1787 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1788 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1789 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1790 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
1791 printf(" 2TB volumes :%s supported\n",
1792 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1793 printf(" 2TB disks :%s supported\n",
1794 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8
LM
1795 printf(" Max Disks : %d\n", orom->tds);
1796 printf(" Max Volumes : %d per array, %d per controller\n",
1797 orom->vpa, orom->vphba);
a891a3c2
LM
1798 return;
1799}
1800
e50cf220
MN
1801static void print_imsm_capability_export(const struct imsm_orom *orom)
1802{
1803 printf("MD_FIRMWARE_TYPE=imsm\n");
1804 printf("IMSM_VERSION=%d.%d.%d.%d\n",orom->major_ver, orom->minor_ver,
1805 orom->hotfix_ver, orom->build);
1806 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1807 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1808 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1809 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1810 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1811 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1812 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1813 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1814 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1815 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1816 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1817 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1818 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1819 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1820 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1821 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1822 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1823 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1824 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1825 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1826 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1827 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1828 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1829 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1830 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1831 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1832 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1833 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1834}
1835
9eafa1de 1836static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
1837{
1838 /* There are two components to imsm platform support, the ahci SATA
1839 * controller and the option-rom. To find the SATA controller we
1840 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1841 * controller with the Intel vendor id is present. This approach
1842 * allows mdadm to leverage the kernel's ahci detection logic, with the
1843 * caveat that if ahci.ko is not loaded mdadm will not be able to
1844 * detect platform raid capabilities. The option-rom resides in a
1845 * platform "Adapter ROM". We scan for its signature to retrieve the
1846 * platform capabilities. If raid support is disabled in the BIOS the
1847 * option-rom capability structure will not be available.
1848 */
1849 const struct imsm_orom *orom;
1850 struct sys_dev *list, *hba;
d665cc31
DW
1851 int host_base = 0;
1852 int port_count = 0;
9eafa1de 1853 int result=1;
d665cc31 1854
5615172f 1855 if (enumerate_only) {
a891a3c2 1856 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1857 return 0;
a891a3c2
LM
1858 list = find_intel_devices();
1859 if (!list)
1860 return 2;
1861 for (hba = list; hba; hba = hba->next) {
1862 orom = find_imsm_capability(hba->type);
1863 if (!orom) {
1864 result = 2;
1865 break;
1866 }
9eafa1de
MN
1867 else
1868 result = 0;
a891a3c2
LM
1869 }
1870 free_sys_dev(&list);
1871 return result;
5615172f
DW
1872 }
1873
155cbb4c
LM
1874 list = find_intel_devices();
1875 if (!list) {
ba728be7 1876 if (verbose > 0)
e7b84f9d 1877 pr_err("no active Intel(R) RAID "
155cbb4c 1878 "controller found.\n");
d665cc31
DW
1879 free_sys_dev(&list);
1880 return 2;
ba728be7 1881 } else if (verbose > 0)
155cbb4c 1882 print_found_intel_controllers(list);
d665cc31 1883
a891a3c2 1884 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
1885 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
1886 continue;
a891a3c2
LM
1887 orom = find_imsm_capability(hba->type);
1888 if (!orom)
e7b84f9d 1889 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
a891a3c2 1890 hba->path, get_sys_dev_type(hba->type));
9eafa1de
MN
1891 else {
1892 result = 0;
a891a3c2 1893 print_imsm_capability(orom);
9eafa1de
MN
1894 printf(" I/O Controller : %s (%s)\n",
1895 hba->path, get_sys_dev_type(hba->type));
1896 if (hba->type == SYS_DEV_SATA) {
1897 host_base = ahci_get_port_count(hba->path, &port_count);
1898 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1899 if (verbose > 0)
1900 pr_err("failed to enumerate "
1901 "ports on SATA controller at %s.\n", hba->pci_id);
1902 result |= 2;
1903 }
120dc887
LM
1904 }
1905 }
d665cc31 1906 }
155cbb4c 1907
9eafa1de
MN
1908 if (controller_path && result == 1)
1909 pr_err("no active Intel(R) RAID "
1910 "controller found under %s\n",controller_path);
1911
120dc887
LM
1912 free_sys_dev(&list);
1913 return result;
d665cc31 1914}
e50cf220 1915
9eafa1de 1916static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220
MN
1917{
1918 const struct imsm_orom *orom;
1919 struct sys_dev *list, *hba;
1920 int result=1;
1921
1922 list = find_intel_devices();
1923 if (!list) {
1924 if (verbose > 0)
1925 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
1926 result = 2;
1927 free_sys_dev(&list);
1928 return result;
1929 }
1930
1931 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
1932 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
1933 continue;
e50cf220
MN
1934 orom = find_imsm_capability(hba->type);
1935 if (!orom) {
1936 if (verbose > 0)
1937 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",hba->path);
1938 }
1939 else {
1940 print_imsm_capability_export(orom);
1941 result = 0;
1942 }
1943 }
1944
e50cf220
MN
1945 return result;
1946}
1947
cdddbdbc
DW
1948#endif
1949
1950static int match_home_imsm(struct supertype *st, char *homehost)
1951{
5115ca67
DW
1952 /* the imsm metadata format does not specify any host
1953 * identification information. We return -1 since we can never
1954 * confirm nor deny whether a given array is "meant" for this
148acb7b 1955 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1956 * exclude member disks that do not belong, and we rely on
1957 * mdadm.conf to specify the arrays that should be assembled.
1958 * Auto-assembly may still pick up "foreign" arrays.
1959 */
cdddbdbc 1960
9362c1c8 1961 return -1;
cdddbdbc
DW
1962}
1963
1964static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1965{
51006d85
N
1966 /* The uuid returned here is used for:
1967 * uuid to put into bitmap file (Create, Grow)
1968 * uuid for backup header when saving critical section (Grow)
1969 * comparing uuids when re-adding a device into an array
1970 * In these cases the uuid required is that of the data-array,
1971 * not the device-set.
1972 * uuid to recognise same set when adding a missing device back
1973 * to an array. This is a uuid for the device-set.
1974 *
1975 * For each of these we can make do with a truncated
1976 * or hashed uuid rather than the original, as long as
1977 * everyone agrees.
1978 * In each case the uuid required is that of the data-array,
1979 * not the device-set.
43dad3d6 1980 */
51006d85
N
1981 /* imsm does not track uuid's so we synthesis one using sha1 on
1982 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1983 * - the orig_family_num of the container
51006d85
N
1984 * - the index number of the volume
1985 * - the 'serial' number of the volume.
1986 * Hopefully these are all constant.
1987 */
1988 struct intel_super *super = st->sb;
43dad3d6 1989
51006d85
N
1990 char buf[20];
1991 struct sha1_ctx ctx;
1992 struct imsm_dev *dev = NULL;
148acb7b 1993 __u32 family_num;
51006d85 1994
148acb7b
DW
1995 /* some mdadm versions failed to set ->orig_family_num, in which
1996 * case fall back to ->family_num. orig_family_num will be
1997 * fixed up with the first metadata update.
1998 */
1999 family_num = super->anchor->orig_family_num;
2000 if (family_num == 0)
2001 family_num = super->anchor->family_num;
51006d85 2002 sha1_init_ctx(&ctx);
92bd8f8d 2003 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2004 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2005 if (super->current_vol >= 0)
2006 dev = get_imsm_dev(super, super->current_vol);
2007 if (dev) {
2008 __u32 vol = super->current_vol;
2009 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2010 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2011 }
2012 sha1_finish_ctx(&ctx, buf);
2013 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2014}
2015
0d481d37 2016#if 0
4f5bc454
DW
2017static void
2018get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2019{
cdddbdbc
DW
2020 __u8 *v = get_imsm_version(mpb);
2021 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2022 char major[] = { 0, 0, 0 };
2023 char minor[] = { 0 ,0, 0 };
2024 char patch[] = { 0, 0, 0 };
2025 char *ver_parse[] = { major, minor, patch };
2026 int i, j;
2027
2028 i = j = 0;
2029 while (*v != '\0' && v < end) {
2030 if (*v != '.' && j < 2)
2031 ver_parse[i][j++] = *v;
2032 else {
2033 i++;
2034 j = 0;
2035 }
2036 v++;
2037 }
2038
4f5bc454
DW
2039 *m = strtol(minor, NULL, 0);
2040 *p = strtol(patch, NULL, 0);
2041}
0d481d37 2042#endif
4f5bc454 2043
1e5c6983
DW
2044static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2045{
2046 /* migr_strip_size when repairing or initializing parity */
238c0a71 2047 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2048 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2049
2050 switch (get_imsm_raid_level(map)) {
2051 case 5:
2052 case 10:
2053 return chunk;
2054 default:
2055 return 128*1024 >> 9;
2056 }
2057}
2058
2059static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2060{
2061 /* migr_strip_size when rebuilding a degraded disk, no idea why
2062 * this is different than migr_strip_size_resync(), but it's good
2063 * to be compatible
2064 */
238c0a71 2065 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2066 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2067
2068 switch (get_imsm_raid_level(map)) {
2069 case 1:
2070 case 10:
2071 if (map->num_members % map->num_domains == 0)
2072 return 128*1024 >> 9;
2073 else
2074 return chunk;
2075 case 5:
2076 return max((__u32) 64*1024 >> 9, chunk);
2077 default:
2078 return 128*1024 >> 9;
2079 }
2080}
2081
2082static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2083{
238c0a71
AK
2084 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2085 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2086 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2087 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2088
2089 return max((__u32) 1, hi_chunk / lo_chunk);
2090}
2091
2092static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2093{
238c0a71 2094 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2095 int level = get_imsm_raid_level(lo);
2096
2097 if (level == 1 || level == 10) {
238c0a71 2098 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2099
2100 return hi->num_domains;
2101 } else
2102 return num_stripes_per_unit_resync(dev);
2103}
2104
98130f40 2105static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2106{
2107 /* named 'imsm_' because raid0, raid1 and raid10
2108 * counter-intuitively have the same number of data disks
2109 */
98130f40 2110 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2111
2112 switch (get_imsm_raid_level(map)) {
2113 case 0:
36fd8ccc
AK
2114 return map->num_members;
2115 break;
1e5c6983
DW
2116 case 1:
2117 case 10:
36fd8ccc 2118 return map->num_members/2;
1e5c6983
DW
2119 case 5:
2120 return map->num_members - 1;
2121 default:
2122 dprintf("%s: unsupported raid level\n", __func__);
2123 return 0;
2124 }
2125}
2126
2127static __u32 parity_segment_depth(struct imsm_dev *dev)
2128{
238c0a71 2129 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2130 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2131
2132 switch(get_imsm_raid_level(map)) {
2133 case 1:
2134 case 10:
2135 return chunk * map->num_domains;
2136 case 5:
2137 return chunk * map->num_members;
2138 default:
2139 return chunk;
2140 }
2141}
2142
2143static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2144{
238c0a71 2145 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2146 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2147 __u32 strip = block / chunk;
2148
2149 switch (get_imsm_raid_level(map)) {
2150 case 1:
2151 case 10: {
2152 __u32 vol_strip = (strip * map->num_domains) + 1;
2153 __u32 vol_stripe = vol_strip / map->num_members;
2154
2155 return vol_stripe * chunk + block % chunk;
2156 } case 5: {
2157 __u32 stripe = strip / (map->num_members - 1);
2158
2159 return stripe * chunk + block % chunk;
2160 }
2161 default:
2162 return 0;
2163 }
2164}
2165
c47b0ff6
AK
2166static __u64 blocks_per_migr_unit(struct intel_super *super,
2167 struct imsm_dev *dev)
1e5c6983
DW
2168{
2169 /* calculate the conversion factor between per member 'blocks'
2170 * (md/{resync,rebuild}_start) and imsm migration units, return
2171 * 0 for the 'not migrating' and 'unsupported migration' cases
2172 */
2173 if (!dev->vol.migr_state)
2174 return 0;
2175
2176 switch (migr_type(dev)) {
c47b0ff6
AK
2177 case MIGR_GEN_MIGR: {
2178 struct migr_record *migr_rec = super->migr_rec;
2179 return __le32_to_cpu(migr_rec->blocks_per_unit);
2180 }
1e5c6983
DW
2181 case MIGR_VERIFY:
2182 case MIGR_REPAIR:
2183 case MIGR_INIT: {
238c0a71 2184 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2185 __u32 stripes_per_unit;
2186 __u32 blocks_per_unit;
2187 __u32 parity_depth;
2188 __u32 migr_chunk;
2189 __u32 block_map;
2190 __u32 block_rel;
2191 __u32 segment;
2192 __u32 stripe;
2193 __u8 disks;
2194
2195 /* yes, this is really the translation of migr_units to
2196 * per-member blocks in the 'resync' case
2197 */
2198 stripes_per_unit = num_stripes_per_unit_resync(dev);
2199 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2200 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2201 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2202 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2203 segment = blocks_per_unit / stripe;
2204 block_rel = blocks_per_unit - segment * stripe;
2205 parity_depth = parity_segment_depth(dev);
2206 block_map = map_migr_block(dev, block_rel);
2207 return block_map + parity_depth * segment;
2208 }
2209 case MIGR_REBUILD: {
2210 __u32 stripes_per_unit;
2211 __u32 migr_chunk;
2212
2213 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2214 migr_chunk = migr_strip_blocks_rebuild(dev);
2215 return migr_chunk * stripes_per_unit;
2216 }
1e5c6983
DW
2217 case MIGR_STATE_CHANGE:
2218 default:
2219 return 0;
2220 }
2221}
2222
c2c087e6
DW
2223static int imsm_level_to_layout(int level)
2224{
2225 switch (level) {
2226 case 0:
2227 case 1:
2228 return 0;
2229 case 5:
2230 case 6:
a380c027 2231 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2232 case 10:
c92a2527 2233 return 0x102;
c2c087e6 2234 }
a18a888e 2235 return UnSet;
c2c087e6
DW
2236}
2237
8e59f3d8
AK
2238/*******************************************************************************
2239 * Function: read_imsm_migr_rec
2240 * Description: Function reads imsm migration record from last sector of disk
2241 * Parameters:
2242 * fd : disk descriptor
2243 * super : metadata info
2244 * Returns:
2245 * 0 : success,
2246 * -1 : fail
2247 ******************************************************************************/
2248static int read_imsm_migr_rec(int fd, struct intel_super *super)
2249{
2250 int ret_val = -1;
2251 unsigned long long dsize;
2252
2253 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2254 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
e7b84f9d
N
2255 pr_err("Cannot seek to anchor block: %s\n",
2256 strerror(errno));
8e59f3d8
AK
2257 goto out;
2258 }
17a4eaf9
AK
2259 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2260 MIGR_REC_BUF_SIZE) {
e7b84f9d
N
2261 pr_err("Cannot read migr record block: %s\n",
2262 strerror(errno));
8e59f3d8
AK
2263 goto out;
2264 }
2265 ret_val = 0;
2266
2267out:
2268 return ret_val;
2269}
2270
3136abe5
AK
2271static struct imsm_dev *imsm_get_device_during_migration(
2272 struct intel_super *super)
2273{
2274
2275 struct intel_dev *dv;
2276
2277 for (dv = super->devlist; dv; dv = dv->next) {
2278 if (is_gen_migration(dv->dev))
2279 return dv->dev;
2280 }
2281 return NULL;
2282}
2283
8e59f3d8
AK
2284/*******************************************************************************
2285 * Function: load_imsm_migr_rec
2286 * Description: Function reads imsm migration record (it is stored at the last
2287 * sector of disk)
2288 * Parameters:
2289 * super : imsm internal array info
2290 * info : general array info
2291 * Returns:
2292 * 0 : success
2293 * -1 : fail
4c965cc9 2294 * -2 : no migration in progress
8e59f3d8
AK
2295 ******************************************************************************/
2296static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2297{
2298 struct mdinfo *sd;
2299 struct dl *dl = NULL;
2300 char nm[30];
2301 int retval = -1;
2302 int fd = -1;
3136abe5
AK
2303 struct imsm_dev *dev;
2304 struct imsm_map *map = NULL;
b4ab44d8 2305 int slot = -1;
3136abe5
AK
2306
2307 /* find map under migration */
2308 dev = imsm_get_device_during_migration(super);
2309 /* nothing to load,no migration in progress?
2310 */
2311 if (dev == NULL)
4c965cc9 2312 return -2;
44bfe6df 2313 map = get_imsm_map(dev, MAP_0);
8e59f3d8
AK
2314
2315 if (info) {
2316 for (sd = info->devs ; sd ; sd = sd->next) {
3136abe5
AK
2317 /* skip spare and failed disks
2318 */
2319 if (sd->disk.raid_disk < 0)
2320 continue;
8e59f3d8 2321 /* read only from one of the first two slots */
3136abe5
AK
2322 if (map)
2323 slot = get_imsm_disk_slot(map,
2324 sd->disk.raid_disk);
2325 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8 2326 continue;
3136abe5 2327
8e59f3d8
AK
2328 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2329 fd = dev_open(nm, O_RDONLY);
2330 if (fd >= 0)
2331 break;
2332 }
2333 }
2334 if (fd < 0) {
2335 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2336 /* skip spare and failed disks
2337 */
2338 if (dl->index < 0)
2339 continue;
8e59f3d8 2340 /* read only from one of the first two slots */
3136abe5
AK
2341 if (map)
2342 slot = get_imsm_disk_slot(map, dl->index);
2343 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8
AK
2344 continue;
2345 sprintf(nm, "%d:%d", dl->major, dl->minor);
2346 fd = dev_open(nm, O_RDONLY);
2347 if (fd >= 0)
2348 break;
2349 }
2350 }
2351 if (fd < 0)
2352 goto out;
2353 retval = read_imsm_migr_rec(fd, super);
2354
2355out:
2356 if (fd >= 0)
2357 close(fd);
2358 return retval;
2359}
2360
9e2d750d 2361#ifndef MDASSEMBLE
c17608ea
AK
2362/*******************************************************************************
2363 * function: imsm_create_metadata_checkpoint_update
2364 * Description: It creates update for checkpoint change.
2365 * Parameters:
2366 * super : imsm internal array info
2367 * u : pointer to prepared update
2368 * Returns:
2369 * Uptate length.
2370 * If length is equal to 0, input pointer u contains no update
2371 ******************************************************************************/
2372static int imsm_create_metadata_checkpoint_update(
2373 struct intel_super *super,
2374 struct imsm_update_general_migration_checkpoint **u)
2375{
2376
2377 int update_memory_size = 0;
2378
2379 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2380
2381 if (u == NULL)
2382 return 0;
2383 *u = NULL;
2384
2385 /* size of all update data without anchor */
2386 update_memory_size =
2387 sizeof(struct imsm_update_general_migration_checkpoint);
2388
503975b9 2389 *u = xcalloc(1, update_memory_size);
c17608ea
AK
2390 if (*u == NULL) {
2391 dprintf("error: cannot get memory for "
2392 "imsm_create_metadata_checkpoint_update update\n");
2393 return 0;
2394 }
2395 (*u)->type = update_general_migration_checkpoint;
2396 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2397 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2398 (*u)->curr_migr_unit);
2399
2400 return update_memory_size;
2401}
2402
2403
2404static void imsm_update_metadata_locally(struct supertype *st,
2405 void *buf, int len);
2406
687629c2
AK
2407/*******************************************************************************
2408 * Function: write_imsm_migr_rec
2409 * Description: Function writes imsm migration record
2410 * (at the last sector of disk)
2411 * Parameters:
2412 * super : imsm internal array info
2413 * Returns:
2414 * 0 : success
2415 * -1 : if fail
2416 ******************************************************************************/
2417static int write_imsm_migr_rec(struct supertype *st)
2418{
2419 struct intel_super *super = st->sb;
2420 unsigned long long dsize;
2421 char nm[30];
2422 int fd = -1;
2423 int retval = -1;
2424 struct dl *sd;
c17608ea
AK
2425 int len;
2426 struct imsm_update_general_migration_checkpoint *u;
3136abe5
AK
2427 struct imsm_dev *dev;
2428 struct imsm_map *map = NULL;
2429
2430 /* find map under migration */
2431 dev = imsm_get_device_during_migration(super);
2432 /* if no migration, write buffer anyway to clear migr_record
2433 * on disk based on first available device
2434 */
2435 if (dev == NULL)
2436 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2437 super->current_vol);
2438
44bfe6df 2439 map = get_imsm_map(dev, MAP_0);
687629c2
AK
2440
2441 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 2442 int slot = -1;
3136abe5
AK
2443
2444 /* skip failed and spare devices */
2445 if (sd->index < 0)
2446 continue;
687629c2 2447 /* write to 2 first slots only */
3136abe5
AK
2448 if (map)
2449 slot = get_imsm_disk_slot(map, sd->index);
2450 if ((map == NULL) || (slot > 1) || (slot < 0))
687629c2 2451 continue;
3136abe5 2452
687629c2
AK
2453 sprintf(nm, "%d:%d", sd->major, sd->minor);
2454 fd = dev_open(nm, O_RDWR);
2455 if (fd < 0)
2456 continue;
2457 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2458 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
e7b84f9d
N
2459 pr_err("Cannot seek to anchor block: %s\n",
2460 strerror(errno));
687629c2
AK
2461 goto out;
2462 }
17a4eaf9
AK
2463 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2464 MIGR_REC_BUF_SIZE) {
e7b84f9d
N
2465 pr_err("Cannot write migr record block: %s\n",
2466 strerror(errno));
687629c2
AK
2467 goto out;
2468 }
2469 close(fd);
2470 fd = -1;
2471 }
c17608ea
AK
2472 /* update checkpoint information in metadata */
2473 len = imsm_create_metadata_checkpoint_update(super, &u);
2474
2475 if (len <= 0) {
2476 dprintf("imsm: Cannot prepare update\n");
2477 goto out;
2478 }
2479 /* update metadata locally */
2480 imsm_update_metadata_locally(st, u, len);
2481 /* and possibly remotely */
2482 if (st->update_tail) {
2483 append_metadata_update(st, u, len);
2484 /* during reshape we do all work inside metadata handler
2485 * manage_reshape(), so metadata update has to be triggered
2486 * insida it
2487 */
2488 flush_metadata_updates(st);
2489 st->update_tail = &st->updates;
2490 } else
2491 free(u);
687629c2
AK
2492
2493 retval = 0;
2494 out:
2495 if (fd >= 0)
2496 close(fd);
2497 return retval;
2498}
9e2d750d 2499#endif /* MDASSEMBLE */
687629c2 2500
e2962bfc
AK
2501/* spare/missing disks activations are not allowe when
2502 * array/container performs reshape operation, because
2503 * all arrays in container works on the same disks set
2504 */
2505int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2506{
2507 int rv = 0;
2508 struct intel_dev *i_dev;
2509 struct imsm_dev *dev;
2510
2511 /* check whole container
2512 */
2513 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2514 dev = i_dev->dev;
3ad25638 2515 if (is_gen_migration(dev)) {
e2962bfc
AK
2516 /* No repair during any migration in container
2517 */
2518 rv = 1;
2519 break;
2520 }
2521 }
2522 return rv;
2523}
c41e00b2
AK
2524static unsigned long long imsm_component_size_aligment_check(int level,
2525 int chunk_size,
2526 unsigned long long component_size)
2527{
2528 unsigned int component_size_alligment;
2529
2530 /* check component size aligment
2531 */
2532 component_size_alligment = component_size % (chunk_size/512);
2533
2534 dprintf("imsm_component_size_aligment_check(Level: %i, "
2535 "chunk_size = %i, component_size = %llu), "
2536 "component_size_alligment = %u\n",
2537 level, chunk_size, component_size,
2538 component_size_alligment);
2539
2540 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2541 dprintf("imsm: reported component size alligned from %llu ",
2542 component_size);
2543 component_size -= component_size_alligment;
2544 dprintf("to %llu (%i).\n",
2545 component_size, component_size_alligment);
2546 }
2547
2548 return component_size;
2549}
e2962bfc 2550
a5d85af7 2551static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2552{
2553 struct intel_super *super = st->sb;
c47b0ff6 2554 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2555 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
2556 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2557 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 2558 struct imsm_map *map_to_analyse = map;
efb30e7f 2559 struct dl *dl;
e207da2f 2560 char *devname;
a5d85af7 2561 int map_disks = info->array.raid_disks;
bf5a934a 2562
95eeceeb 2563 memset(info, 0, sizeof(*info));
b335e593
AK
2564 if (prev_map)
2565 map_to_analyse = prev_map;
2566
ca0748fa 2567 dl = super->current_disk;
9894ec0d 2568
bf5a934a 2569 info->container_member = super->current_vol;
cd0430a1 2570 info->array.raid_disks = map->num_members;
b335e593 2571 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2572 info->array.layout = imsm_level_to_layout(info->array.level);
2573 info->array.md_minor = -1;
2574 info->array.ctime = 0;
2575 info->array.utime = 0;
b335e593
AK
2576 info->array.chunk_size =
2577 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2578 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2579 info->custom_array_size = __le32_to_cpu(dev->size_high);
2580 info->custom_array_size <<= 32;
2581 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2582 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2583
3f510843 2584 if (is_gen_migration(dev)) {
3f83228a 2585 info->reshape_active = 1;
b335e593
AK
2586 info->new_level = get_imsm_raid_level(map);
2587 info->new_layout = imsm_level_to_layout(info->new_level);
2588 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2589 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2590 if (info->delta_disks) {
2591 /* this needs to be applied to every array
2592 * in the container.
2593 */
81219e70 2594 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2595 }
3f83228a
N
2596 /* We shape information that we give to md might have to be
2597 * modify to cope with md's requirement for reshaping arrays.
2598 * For example, when reshaping a RAID0, md requires it to be
2599 * presented as a degraded RAID4.
2600 * Also if a RAID0 is migrating to a RAID5 we need to specify
2601 * the array as already being RAID5, but the 'before' layout
2602 * is a RAID4-like layout.
2603 */
2604 switch (info->array.level) {
2605 case 0:
2606 switch(info->new_level) {
2607 case 0:
2608 /* conversion is happening as RAID4 */
2609 info->array.level = 4;
2610 info->array.raid_disks += 1;
2611 break;
2612 case 5:
2613 /* conversion is happening as RAID5 */
2614 info->array.level = 5;
2615 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2616 info->delta_disks -= 1;
2617 break;
2618 default:
2619 /* FIXME error message */
2620 info->array.level = UnSet;
2621 break;
2622 }
2623 break;
2624 }
b335e593
AK
2625 } else {
2626 info->new_level = UnSet;
2627 info->new_layout = UnSet;
2628 info->new_chunk = info->array.chunk_size;
3f83228a 2629 info->delta_disks = 0;
b335e593 2630 }
ca0748fa 2631
efb30e7f
DW
2632 if (dl) {
2633 info->disk.major = dl->major;
2634 info->disk.minor = dl->minor;
ca0748fa 2635 info->disk.number = dl->index;
656b6b5a
N
2636 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2637 dl->index);
efb30e7f 2638 }
bf5a934a 2639
5551b113
CA
2640 info->data_offset = pba_of_lba0(map_to_analyse);
2641 info->component_size = blocks_per_member(map_to_analyse);
139dae11 2642
c41e00b2
AK
2643 info->component_size = imsm_component_size_aligment_check(
2644 info->array.level,
2645 info->array.chunk_size,
2646 info->component_size);
139dae11 2647
301406c9 2648 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2649 info->recovery_start = MaxSector;
bf5a934a 2650
d2e6d5d6 2651 info->reshape_progress = 0;
b6796ce1 2652 info->resync_start = MaxSector;
b9172665
AK
2653 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2654 dev->vol.dirty) &&
2655 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2656 info->resync_start = 0;
b6796ce1
AK
2657 }
2658 if (dev->vol.migr_state) {
1e5c6983
DW
2659 switch (migr_type(dev)) {
2660 case MIGR_REPAIR:
2661 case MIGR_INIT: {
c47b0ff6
AK
2662 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2663 dev);
1e5c6983
DW
2664 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2665
2666 info->resync_start = blocks_per_unit * units;
2667 break;
2668 }
d2e6d5d6 2669 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2670 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2671 dev);
2672 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2673 unsigned long long array_blocks;
2674 int used_disks;
d2e6d5d6 2675
befb629b
AK
2676 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2677 (units <
2678 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2679 (super->migr_rec->rec_status ==
2680 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2681 units++;
2682
d2e6d5d6 2683 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2684
d2e6d5d6
AK
2685 dprintf("IMSM: General Migration checkpoint : %llu "
2686 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2687 (unsigned long long)units,
2688 (unsigned long long)blocks_per_unit,
2689 info->reshape_progress);
75156c46 2690
238c0a71 2691 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 2692 if (used_disks > 0) {
5551b113 2693 array_blocks = blocks_per_member(map) *
75156c46
AK
2694 used_disks;
2695 /* round array size down to closest MB
2696 */
2697 info->custom_array_size = (array_blocks
2698 >> SECT_PER_MB_SHIFT)
2699 << SECT_PER_MB_SHIFT;
2700 }
d2e6d5d6 2701 }
1e5c6983
DW
2702 case MIGR_VERIFY:
2703 /* we could emulate the checkpointing of
2704 * 'sync_action=check' migrations, but for now
2705 * we just immediately complete them
2706 */
2707 case MIGR_REBUILD:
2708 /* this is handled by container_content_imsm() */
1e5c6983
DW
2709 case MIGR_STATE_CHANGE:
2710 /* FIXME handle other migrations */
2711 default:
2712 /* we are not dirty, so... */
2713 info->resync_start = MaxSector;
2714 }
b6796ce1 2715 }
301406c9
DW
2716
2717 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2718 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2719
f35f2525
N
2720 info->array.major_version = -1;
2721 info->array.minor_version = -2;
e207da2f
AW
2722 devname = devnum2devname(st->container_dev);
2723 *info->text_version = '\0';
2724 if (devname)
2725 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2726 free(devname);
a67dd8cc 2727 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2728 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2729
2730 if (dmap) {
2731 int i, j;
2732 for (i=0; i<map_disks; i++) {
2733 dmap[i] = 0;
2734 if (i < info->array.raid_disks) {
2735 struct imsm_disk *dsk;
238c0a71 2736 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
2737 dsk = get_imsm_disk(super, j);
2738 if (dsk && (dsk->status & CONFIGURED_DISK))
2739 dmap[i] = 1;
2740 }
2741 }
2742 }
81ac8b4d 2743}
bf5a934a 2744
3b451610
AK
2745static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2746 int failed, int look_in_map);
2747
2748static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2749 int look_in_map);
2750
b4ab44d8
AK
2751
2752#ifndef MDASSEMBLE
3b451610
AK
2753static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2754{
2755 if (is_gen_migration(dev)) {
2756 int failed;
2757 __u8 map_state;
2758 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2759
2760 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 2761 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
2762 if (map2->map_state != map_state) {
2763 map2->map_state = map_state;
2764 super->updates_pending++;
2765 }
2766 }
2767}
b4ab44d8 2768#endif
97b4d0e9
DW
2769
2770static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2771{
2772 struct dl *d;
2773
2774 for (d = super->missing; d; d = d->next)
2775 if (d->index == index)
2776 return &d->disk;
2777 return NULL;
2778}
2779
a5d85af7 2780static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2781{
2782 struct intel_super *super = st->sb;
4f5bc454 2783 struct imsm_disk *disk;
a5d85af7 2784 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2785 int max_enough = -1;
2786 int i;
2787 struct imsm_super *mpb;
4f5bc454 2788
bf5a934a 2789 if (super->current_vol >= 0) {
a5d85af7 2790 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2791 return;
2792 }
95eeceeb 2793 memset(info, 0, sizeof(*info));
d23fe947
DW
2794
2795 /* Set raid_disks to zero so that Assemble will always pull in valid
2796 * spares
2797 */
2798 info->array.raid_disks = 0;
cdddbdbc
DW
2799 info->array.level = LEVEL_CONTAINER;
2800 info->array.layout = 0;
2801 info->array.md_minor = -1;
c2c087e6 2802 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2803 info->array.utime = 0;
2804 info->array.chunk_size = 0;
2805
2806 info->disk.major = 0;
2807 info->disk.minor = 0;
cdddbdbc 2808 info->disk.raid_disk = -1;
c2c087e6 2809 info->reshape_active = 0;
f35f2525
N
2810 info->array.major_version = -1;
2811 info->array.minor_version = -2;
c2c087e6 2812 strcpy(info->text_version, "imsm");
a67dd8cc 2813 info->safe_mode_delay = 0;
c2c087e6
DW
2814 info->disk.number = -1;
2815 info->disk.state = 0;
c5afc314 2816 info->name[0] = 0;
921d9e16 2817 info->recovery_start = MaxSector;
3ad25638 2818 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2819
97b4d0e9 2820 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2821 mpb = super->anchor;
97b4d0e9 2822
ab3cb6b3
N
2823 for (i = 0; i < mpb->num_raid_devs; i++) {
2824 struct imsm_dev *dev = get_imsm_dev(super, i);
2825 int failed, enough, j, missing = 0;
2826 struct imsm_map *map;
2827 __u8 state;
97b4d0e9 2828
3b451610
AK
2829 failed = imsm_count_failed(super, dev, MAP_0);
2830 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 2831 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
2832
2833 /* any newly missing disks?
2834 * (catches single-degraded vs double-degraded)
2835 */
2836 for (j = 0; j < map->num_members; j++) {
238c0a71 2837 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
2838 __u32 idx = ord_to_idx(ord);
2839
2840 if (!(ord & IMSM_ORD_REBUILD) &&
2841 get_imsm_missing(super, idx)) {
2842 missing = 1;
2843 break;
2844 }
97b4d0e9 2845 }
ab3cb6b3
N
2846
2847 if (state == IMSM_T_STATE_FAILED)
2848 enough = -1;
2849 else if (state == IMSM_T_STATE_DEGRADED &&
2850 (state != map->map_state || missing))
2851 enough = 0;
2852 else /* we're normal, or already degraded */
2853 enough = 1;
d2bde6d3
AK
2854 if (is_gen_migration(dev) && missing) {
2855 /* during general migration we need all disks
2856 * that process is running on.
2857 * No new missing disk is allowed.
2858 */
2859 max_enough = -1;
2860 enough = -1;
2861 /* no more checks necessary
2862 */
2863 break;
2864 }
ab3cb6b3
N
2865 /* in the missing/failed disk case check to see
2866 * if at least one array is runnable
2867 */
2868 max_enough = max(max_enough, enough);
2869 }
2870 dprintf("%s: enough: %d\n", __func__, max_enough);
2871 info->container_enough = max_enough;
97b4d0e9 2872
4a04ec6c 2873 if (super->disks) {
14e8215b
DW
2874 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2875
b9f594fe 2876 disk = &super->disks->disk;
5551b113 2877 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 2878 info->component_size = reserved;
25ed7e59 2879 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2880 /* we don't change info->disk.raid_disk here because
2881 * this state will be finalized in mdmon after we have
2882 * found the 'most fresh' version of the metadata
2883 */
25ed7e59
DW
2884 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2885 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2886 }
a575e2a7
DW
2887
2888 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2889 * ->compare_super may have updated the 'num_raid_devs' field for spares
2890 */
2891 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2892 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2893 else
2894 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2895
2896 /* I don't know how to compute 'map' on imsm, so use safe default */
2897 if (map) {
2898 int i;
2899 for (i = 0; i < map_disks; i++)
2900 map[i] = 1;
2901 }
2902
cdddbdbc
DW
2903}
2904
5c4cd5da
AC
2905/* allocates memory and fills disk in mdinfo structure
2906 * for each disk in array */
2907struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2908{
2909 struct mdinfo *mddev = NULL;
2910 struct intel_super *super = st->sb;
2911 struct imsm_disk *disk;
2912 int count = 0;
2913 struct dl *dl;
2914 if (!super || !super->disks)
2915 return NULL;
2916 dl = super->disks;
503975b9 2917 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
2918 while (dl) {
2919 struct mdinfo *tmp;
2920 disk = &dl->disk;
503975b9 2921 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
2922 if (mddev->devs)
2923 tmp->next = mddev->devs;
2924 mddev->devs = tmp;
2925 tmp->disk.number = count++;
2926 tmp->disk.major = dl->major;
2927 tmp->disk.minor = dl->minor;
2928 tmp->disk.state = is_configured(disk) ?
2929 (1 << MD_DISK_ACTIVE) : 0;
2930 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2931 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2932 tmp->disk.raid_disk = -1;
2933 dl = dl->next;
2934 }
2935 return mddev;
2936}
2937
cdddbdbc
DW
2938static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2939 char *update, char *devname, int verbose,
2940 int uuid_set, char *homehost)
2941{
f352c545
DW
2942 /* For 'assemble' and 'force' we need to return non-zero if any
2943 * change was made. For others, the return value is ignored.
2944 * Update options are:
2945 * force-one : This device looks a bit old but needs to be included,
2946 * update age info appropriately.
2947 * assemble: clear any 'faulty' flag to allow this device to
2948 * be assembled.
2949 * force-array: Array is degraded but being forced, mark it clean
2950 * if that will be needed to assemble it.
2951 *
2952 * newdev: not used ????
2953 * grow: Array has gained a new device - this is currently for
2954 * linear only
2955 * resync: mark as dirty so a resync will happen.
2956 * name: update the name - preserving the homehost
6e46bf34 2957 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2958 *
2959 * Following are not relevant for this imsm:
2960 * sparc2.2 : update from old dodgey metadata
2961 * super-minor: change the preferred_minor number
2962 * summaries: update redundant counters.
f352c545
DW
2963 * homehost: update the recorded homehost
2964 * _reshape_progress: record new reshape_progress position.
2965 */
6e46bf34
DW
2966 int rv = 1;
2967 struct intel_super *super = st->sb;
2968 struct imsm_super *mpb;
f352c545 2969
6e46bf34
DW
2970 /* we can only update container info */
2971 if (!super || super->current_vol >= 0 || !super->anchor)
2972 return 1;
2973
2974 mpb = super->anchor;
2975
81a5b4f5
N
2976 if (strcmp(update, "uuid") == 0) {
2977 /* We take this to mean that the family_num should be updated.
2978 * However that is much smaller than the uuid so we cannot really
2979 * allow an explicit uuid to be given. And it is hard to reliably
2980 * know if one was.
2981 * So if !uuid_set we know the current uuid is random and just used
2982 * the first 'int' and copy it to the other 3 positions.
2983 * Otherwise we require the 4 'int's to be the same as would be the
2984 * case if we are using a random uuid. So an explicit uuid will be
2985 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 2986 */
81a5b4f5
N
2987 if (!uuid_set) {
2988 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 2989 rv = 0;
81a5b4f5
N
2990 } else {
2991 if (info->uuid[0] != info->uuid[1] ||
2992 info->uuid[1] != info->uuid[2] ||
2993 info->uuid[2] != info->uuid[3])
2994 rv = -1;
2995 else
2996 rv = 0;
6e46bf34 2997 }
81a5b4f5
N
2998 if (rv == 0)
2999 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3000 } else if (strcmp(update, "assemble") == 0)
3001 rv = 0;
3002 else
1e2b2765 3003 rv = -1;
f352c545 3004
6e46bf34
DW
3005 /* successful update? recompute checksum */
3006 if (rv == 0)
3007 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3008
3009 return rv;
cdddbdbc
DW
3010}
3011
c2c087e6 3012static size_t disks_to_mpb_size(int disks)
cdddbdbc 3013{
c2c087e6 3014 size_t size;
cdddbdbc 3015
c2c087e6
DW
3016 size = sizeof(struct imsm_super);
3017 size += (disks - 1) * sizeof(struct imsm_disk);
3018 size += 2 * sizeof(struct imsm_dev);
3019 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3020 size += (4 - 2) * sizeof(struct imsm_map);
3021 /* 4 possible disk_ord_tbl's */
3022 size += 4 * (disks - 1) * sizeof(__u32);
3023
3024 return size;
3025}
3026
387fcd59
N
3027static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3028 unsigned long long data_offset)
c2c087e6
DW
3029{
3030 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3031 return 0;
3032
3033 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3034}
3035
ba2de7ba
DW
3036static void free_devlist(struct intel_super *super)
3037{
3038 struct intel_dev *dv;
3039
3040 while (super->devlist) {
3041 dv = super->devlist->next;
3042 free(super->devlist->dev);
3043 free(super->devlist);
3044 super->devlist = dv;
3045 }
3046}
3047
3048static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3049{
3050 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3051}
3052
cdddbdbc
DW
3053static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3054{
3055 /*
3056 * return:
3057 * 0 same, or first was empty, and second was copied
3058 * 1 second had wrong number
3059 * 2 wrong uuid
3060 * 3 wrong other info
3061 */
3062 struct intel_super *first = st->sb;
3063 struct intel_super *sec = tst->sb;
3064
3065 if (!first) {
3066 st->sb = tst->sb;
3067 tst->sb = NULL;
3068 return 0;
3069 }
8603ea6f
LM
3070 /* in platform dependent environment test if the disks
3071 * use the same Intel hba
3072 */
3073 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
3074 if (!first->hba || !sec->hba ||
3075 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
3076 fprintf(stderr,
3077 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
3078 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
3079 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
3080 return 3;
3081 }
3082 }
cdddbdbc 3083
d23fe947
DW
3084 /* if an anchor does not have num_raid_devs set then it is a free
3085 * floating spare
3086 */
3087 if (first->anchor->num_raid_devs > 0 &&
3088 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3089 /* Determine if these disks might ever have been
3090 * related. Further disambiguation can only take place
3091 * in load_super_imsm_all
3092 */
3093 __u32 first_family = first->anchor->orig_family_num;
3094 __u32 sec_family = sec->anchor->orig_family_num;
3095
f796af5d
DW
3096 if (memcmp(first->anchor->sig, sec->anchor->sig,
3097 MAX_SIGNATURE_LENGTH) != 0)
3098 return 3;
3099
a2b97981
DW
3100 if (first_family == 0)
3101 first_family = first->anchor->family_num;
3102 if (sec_family == 0)
3103 sec_family = sec->anchor->family_num;
3104
3105 if (first_family != sec_family)
d23fe947 3106 return 3;
f796af5d 3107
d23fe947 3108 }
cdddbdbc 3109
f796af5d 3110
3e372e5a
DW
3111 /* if 'first' is a spare promote it to a populated mpb with sec's
3112 * family number
3113 */
3114 if (first->anchor->num_raid_devs == 0 &&
3115 sec->anchor->num_raid_devs > 0) {
78d30f94 3116 int i;
ba2de7ba
DW
3117 struct intel_dev *dv;
3118 struct imsm_dev *dev;
78d30f94
DW
3119
3120 /* we need to copy raid device info from sec if an allocation
3121 * fails here we don't associate the spare
3122 */
3123 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3124 dv = xmalloc(sizeof(*dv));
3125 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3126 dv->dev = dev;
3127 dv->index = i;
3128 dv->next = first->devlist;
3129 first->devlist = dv;
78d30f94 3130 }
709743c5 3131 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3132 /* allocation failure */
3133 free_devlist(first);
3134 fprintf(stderr, "imsm: failed to associate spare\n");
3135 return 3;
78d30f94 3136 }
3e372e5a 3137 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3138 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3139 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3140 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3141 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3142 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3143 }
3144
cdddbdbc
DW
3145 return 0;
3146}
3147
0030e8d6
DW
3148static void fd2devname(int fd, char *name)
3149{
3150 struct stat st;
3151 char path[256];
33a6535d 3152 char dname[PATH_MAX];
0030e8d6
DW
3153 char *nm;
3154 int rv;
3155
3156 name[0] = '\0';
3157 if (fstat(fd, &st) != 0)
3158 return;
3159 sprintf(path, "/sys/dev/block/%d:%d",
3160 major(st.st_rdev), minor(st.st_rdev));
3161
9cf014ec 3162 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3163 if (rv <= 0)
3164 return;
9587c373 3165
0030e8d6
DW
3166 dname[rv] = '\0';
3167 nm = strrchr(dname, '/');
7897de29
JS
3168 if (nm) {
3169 nm++;
3170 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3171 }
0030e8d6
DW
3172}
3173
cdddbdbc
DW
3174extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3175
3176static int imsm_read_serial(int fd, char *devname,
3177 __u8 serial[MAX_RAID_SERIAL_LEN])
3178{
3179 unsigned char scsi_serial[255];
cdddbdbc
DW
3180 int rv;
3181 int rsp_len;
1f24f035 3182 int len;
316e2bf4
DW
3183 char *dest;
3184 char *src;
3185 char *rsp_buf;
3186 int i;
cdddbdbc
DW
3187
3188 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 3189
f9ba0ff1
DW
3190 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3191
40ebbb9c 3192 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3193 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3194 fd2devname(fd, (char *) serial);
0030e8d6
DW
3195 return 0;
3196 }
3197
cdddbdbc
DW
3198 if (rv != 0) {
3199 if (devname)
e7b84f9d
N
3200 pr_err("Failed to retrieve serial for %s\n",
3201 devname);
cdddbdbc
DW
3202 return rv;
3203 }
3204
3205 rsp_len = scsi_serial[3];
03cd4cc8
DW
3206 if (!rsp_len) {
3207 if (devname)
e7b84f9d
N
3208 pr_err("Failed to retrieve serial for %s\n",
3209 devname);
03cd4cc8
DW
3210 return 2;
3211 }
1f24f035 3212 rsp_buf = (char *) &scsi_serial[4];
5c3db629 3213
316e2bf4
DW
3214 /* trim all whitespace and non-printable characters and convert
3215 * ':' to ';'
3216 */
3217 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3218 src = &rsp_buf[i];
3219 if (*src > 0x20) {
3220 /* ':' is reserved for use in placeholder serial
3221 * numbers for missing disks
3222 */
3223 if (*src == ':')
3224 *dest++ = ';';
3225 else
3226 *dest++ = *src;
3227 }
3228 }
3229 len = dest - rsp_buf;
3230 dest = rsp_buf;
3231
3232 /* truncate leading characters */
3233 if (len > MAX_RAID_SERIAL_LEN) {
3234 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3235 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3236 }
5c3db629 3237
5c3db629 3238 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3239 memcpy(serial, dest, len);
cdddbdbc
DW
3240
3241 return 0;
3242}
3243
1f24f035
DW
3244static int serialcmp(__u8 *s1, __u8 *s2)
3245{
3246 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3247}
3248
3249static void serialcpy(__u8 *dest, __u8 *src)
3250{
3251 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3252}
3253
54c2c1ea
DW
3254static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3255{
3256 struct dl *dl;
3257
3258 for (dl = super->disks; dl; dl = dl->next)
3259 if (serialcmp(dl->serial, serial) == 0)
3260 break;
3261
3262 return dl;
3263}
3264
a2b97981
DW
3265static struct imsm_disk *
3266__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3267{
3268 int i;
3269
3270 for (i = 0; i < mpb->num_disks; i++) {
3271 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3272
3273 if (serialcmp(disk->serial, serial) == 0) {
3274 if (idx)
3275 *idx = i;
3276 return disk;
3277 }
3278 }
3279
3280 return NULL;
3281}
3282
cdddbdbc
DW
3283static int
3284load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3285{
a2b97981 3286 struct imsm_disk *disk;
cdddbdbc
DW
3287 struct dl *dl;
3288 struct stat stb;
cdddbdbc 3289 int rv;
a2b97981 3290 char name[40];
d23fe947
DW
3291 __u8 serial[MAX_RAID_SERIAL_LEN];
3292
3293 rv = imsm_read_serial(fd, devname, serial);
3294
3295 if (rv != 0)
3296 return 2;
3297
503975b9 3298 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3299
a2b97981
DW
3300 fstat(fd, &stb);
3301 dl->major = major(stb.st_rdev);
3302 dl->minor = minor(stb.st_rdev);
3303 dl->next = super->disks;
3304 dl->fd = keep_fd ? fd : -1;
3305 assert(super->disks == NULL);
3306 super->disks = dl;
3307 serialcpy(dl->serial, serial);
3308 dl->index = -2;
3309 dl->e = NULL;
3310 fd2devname(fd, name);
3311 if (devname)
503975b9 3312 dl->devname = xstrdup(devname);
a2b97981 3313 else
503975b9 3314 dl->devname = xstrdup(name);
cdddbdbc 3315
d23fe947 3316 /* look up this disk's index in the current anchor */
a2b97981
DW
3317 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3318 if (disk) {
3319 dl->disk = *disk;
3320 /* only set index on disks that are a member of a
3321 * populated contianer, i.e. one with raid_devs
3322 */
3323 if (is_failed(&dl->disk))
3f6efecc 3324 dl->index = -2;
a2b97981
DW
3325 else if (is_spare(&dl->disk))
3326 dl->index = -1;
3f6efecc
DW
3327 }
3328
949c47a0
DW
3329 return 0;
3330}
3331
0e600426 3332#ifndef MDASSEMBLE
0c046afd
DW
3333/* When migrating map0 contains the 'destination' state while map1
3334 * contains the current state. When not migrating map0 contains the
3335 * current state. This routine assumes that map[0].map_state is set to
3336 * the current array state before being called.
3337 *
3338 * Migration is indicated by one of the following states
3339 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3340 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3341 * map1state=unitialized)
1484e727 3342 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3343 * map1state=normal)
e3bba0e0 3344 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3345 * map1state=degraded)
8e59f3d8
AK
3346 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3347 * map1state=normal)
0c046afd 3348 */
8e59f3d8
AK
3349static void migrate(struct imsm_dev *dev, struct intel_super *super,
3350 __u8 to_state, int migr_type)
3393c6af 3351{
0c046afd 3352 struct imsm_map *dest;
238c0a71 3353 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3354
0c046afd 3355 dev->vol.migr_state = 1;
1484e727 3356 set_migr_type(dev, migr_type);
f8f603f1 3357 dev->vol.curr_migr_unit = 0;
238c0a71 3358 dest = get_imsm_map(dev, MAP_1);
0c046afd 3359
0556e1a2 3360 /* duplicate and then set the target end state in map[0] */
3393c6af 3361 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3362 if ((migr_type == MIGR_REBUILD) ||
3363 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3364 __u32 ord;
3365 int i;
3366
3367 for (i = 0; i < src->num_members; i++) {
3368 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3369 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3370 }
3371 }
3372
8e59f3d8
AK
3373 if (migr_type == MIGR_GEN_MIGR)
3374 /* Clear migration record */
3375 memset(super->migr_rec, 0, sizeof(struct migr_record));
3376
0c046afd 3377 src->map_state = to_state;
949c47a0 3378}
f8f603f1 3379
809da78e
AK
3380static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3381 __u8 map_state)
f8f603f1 3382{
238c0a71
AK
3383 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3384 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3385 MAP_0 : MAP_1);
28bce06f 3386 int i, j;
0556e1a2
DW
3387
3388 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3389 * completed in the last migration.
3390 *
28bce06f 3391 * FIXME add support for raid-level-migration
0556e1a2 3392 */
809da78e
AK
3393 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3394 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3395 /* when final map state is other than expected
3396 * merge maps (not for migration)
3397 */
3398 int failed;
3399
3400 for (i = 0; i < prev->num_members; i++)
3401 for (j = 0; j < map->num_members; j++)
3402 /* during online capacity expansion
3403 * disks position can be changed
3404 * if takeover is used
3405 */
3406 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3407 ord_to_idx(prev->disk_ord_tbl[i])) {
3408 map->disk_ord_tbl[j] |=
3409 prev->disk_ord_tbl[i];
3410 break;
3411 }
3412 failed = imsm_count_failed(super, dev, MAP_0);
3413 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3414 }
f8f603f1
DW
3415
3416 dev->vol.migr_state = 0;
ea672ee1 3417 set_migr_type(dev, 0);
f8f603f1
DW
3418 dev->vol.curr_migr_unit = 0;
3419 map->map_state = map_state;
3420}
0e600426 3421#endif
949c47a0
DW
3422
3423static int parse_raid_devices(struct intel_super *super)
3424{
3425 int i;
3426 struct imsm_dev *dev_new;
4d7b1503 3427 size_t len, len_migr;
401d313b 3428 size_t max_len = 0;
4d7b1503
DW
3429 size_t space_needed = 0;
3430 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3431
3432 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3433 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3434 struct intel_dev *dv;
949c47a0 3435
4d7b1503
DW
3436 len = sizeof_imsm_dev(dev_iter, 0);
3437 len_migr = sizeof_imsm_dev(dev_iter, 1);
3438 if (len_migr > len)
3439 space_needed += len_migr - len;
ca9de185 3440
503975b9 3441 dv = xmalloc(sizeof(*dv));
401d313b
AK
3442 if (max_len < len_migr)
3443 max_len = len_migr;
3444 if (max_len > len_migr)
3445 space_needed += max_len - len_migr;
503975b9 3446 dev_new = xmalloc(max_len);
949c47a0 3447 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3448 dv->dev = dev_new;
3449 dv->index = i;
3450 dv->next = super->devlist;
3451 super->devlist = dv;
949c47a0 3452 }
cdddbdbc 3453
4d7b1503
DW
3454 /* ensure that super->buf is large enough when all raid devices
3455 * are migrating
3456 */
3457 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3458 void *buf;
3459
3460 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3461 if (posix_memalign(&buf, 512, len) != 0)
3462 return 1;
3463
1f45a8ad
DW
3464 memcpy(buf, super->buf, super->len);
3465 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3466 free(super->buf);
3467 super->buf = buf;
3468 super->len = len;
3469 }
ca9de185 3470
cdddbdbc
DW
3471 return 0;
3472}
3473
604b746f
JD
3474/* retrieve a pointer to the bbm log which starts after all raid devices */
3475struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3476{
3477 void *ptr = NULL;
3478
3479 if (__le32_to_cpu(mpb->bbm_log_size)) {
3480 ptr = mpb;
3481 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3482 }
3483
3484 return ptr;
3485}
3486
e2f41b2c
AK
3487/*******************************************************************************
3488 * Function: check_mpb_migr_compatibility
3489 * Description: Function checks for unsupported migration features:
3490 * - migration optimization area (pba_of_lba0)
3491 * - descending reshape (ascending_migr)
3492 * Parameters:
3493 * super : imsm metadata information
3494 * Returns:
3495 * 0 : migration is compatible
3496 * -1 : migration is not compatible
3497 ******************************************************************************/
3498int check_mpb_migr_compatibility(struct intel_super *super)
3499{
3500 struct imsm_map *map0, *map1;
3501 struct migr_record *migr_rec = super->migr_rec;
3502 int i;
3503
3504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3505 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3506
3507 if (dev_iter &&
3508 dev_iter->vol.migr_state == 1 &&
3509 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3510 /* This device is migrating */
238c0a71
AK
3511 map0 = get_imsm_map(dev_iter, MAP_0);
3512 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 3513 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
3514 /* migration optimization area was used */
3515 return -1;
3516 if (migr_rec->ascending_migr == 0
3517 && migr_rec->dest_depth_per_unit > 0)
3518 /* descending reshape not supported yet */
3519 return -1;
3520 }
3521 }
3522 return 0;
3523}
3524
d23fe947 3525static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3526
cdddbdbc 3527/* load_imsm_mpb - read matrix metadata
f2f5c343 3528 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3529 */
3530static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3531{
3532 unsigned long long dsize;
cdddbdbc
DW
3533 unsigned long long sectors;
3534 struct stat;
6416d527 3535 struct imsm_super *anchor;
cdddbdbc
DW
3536 __u32 check_sum;
3537
cdddbdbc 3538 get_dev_size(fd, NULL, &dsize);
64436f06
N
3539 if (dsize < 1024) {
3540 if (devname)
e7b84f9d
N
3541 pr_err("%s: device to small for imsm\n",
3542 devname);
64436f06
N
3543 return 1;
3544 }
cdddbdbc
DW
3545
3546 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3547 if (devname)
e7b84f9d
N
3548 pr_err("Cannot seek to anchor block on %s: %s\n",
3549 devname, strerror(errno));
cdddbdbc
DW
3550 return 1;
3551 }
3552
949c47a0 3553 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e 3554 if (devname)
e7b84f9d
N
3555 pr_err("Failed to allocate imsm anchor buffer"
3556 " on %s\n", devname);
ad97895e
DW
3557 return 1;
3558 }
949c47a0 3559 if (read(fd, anchor, 512) != 512) {
cdddbdbc 3560 if (devname)
e7b84f9d
N
3561 pr_err("Cannot read anchor block on %s: %s\n",
3562 devname, strerror(errno));
6416d527 3563 free(anchor);
cdddbdbc
DW
3564 return 1;
3565 }
3566
6416d527 3567 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 3568 if (devname)
e7b84f9d 3569 pr_err("no IMSM anchor on %s\n", devname);
6416d527 3570 free(anchor);
cdddbdbc
DW
3571 return 2;
3572 }
3573
d23fe947 3574 __free_imsm(super, 0);
f2f5c343
LM
3575 /* reload capability and hba */
3576
3577 /* capability and hba must be updated with new super allocation */
d424212e 3578 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3579 super->len = ROUND_UP(anchor->mpb_size, 512);
3580 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc 3581 if (devname)
e7b84f9d
N
3582 pr_err("unable to allocate %zu byte mpb buffer\n",
3583 super->len);
6416d527 3584 free(anchor);
cdddbdbc
DW
3585 return 2;
3586 }
949c47a0 3587 memcpy(super->buf, anchor, 512);
cdddbdbc 3588
6416d527
NB
3589 sectors = mpb_sectors(anchor) - 1;
3590 free(anchor);
8e59f3d8 3591
17a4eaf9 3592 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
e7b84f9d 3593 pr_err("%s could not allocate migr_rec buffer\n", __func__);
8e59f3d8
AK
3594 free(super->buf);
3595 return 2;
3596 }
51d83f5d 3597 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 3598
949c47a0 3599 if (!sectors) {
ecf45690
DW
3600 check_sum = __gen_imsm_checksum(super->anchor);
3601 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3602 if (devname)
e7b84f9d
N
3603 pr_err("IMSM checksum %x != %x on %s\n",
3604 check_sum,
3605 __le32_to_cpu(super->anchor->check_sum),
3606 devname);
ecf45690
DW
3607 return 2;
3608 }
3609
a2b97981 3610 return 0;
949c47a0 3611 }
cdddbdbc
DW
3612
3613 /* read the extended mpb */
3614 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3615 if (devname)
e7b84f9d
N
3616 pr_err("Cannot seek to extended mpb on %s: %s\n",
3617 devname, strerror(errno));
cdddbdbc
DW
3618 return 1;
3619 }
3620
f21e18ca 3621 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc 3622 if (devname)
e7b84f9d
N
3623 pr_err("Cannot read extended mpb on %s: %s\n",
3624 devname, strerror(errno));
cdddbdbc
DW
3625 return 2;
3626 }
3627
949c47a0
DW
3628 check_sum = __gen_imsm_checksum(super->anchor);
3629 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 3630 if (devname)
e7b84f9d
N
3631 pr_err("IMSM checksum %x != %x on %s\n",
3632 check_sum, __le32_to_cpu(super->anchor->check_sum),
3633 devname);
db575f3b 3634 return 3;
cdddbdbc
DW
3635 }
3636
604b746f
JD
3637 /* FIXME the BBM log is disk specific so we cannot use this global
3638 * buffer for all disks. Ok for now since we only look at the global
3639 * bbm_log_size parameter to gate assembly
3640 */
3641 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3642
a2b97981
DW
3643 return 0;
3644}
3645
8e59f3d8
AK
3646static int read_imsm_migr_rec(int fd, struct intel_super *super);
3647
97f81ee2
CA
3648/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3649static void clear_hi(struct intel_super *super)
3650{
3651 struct imsm_super *mpb = super->anchor;
3652 int i, n;
3653 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3654 return;
3655 for (i = 0; i < mpb->num_disks; ++i) {
3656 struct imsm_disk *disk = &mpb->disk[i];
3657 disk->total_blocks_hi = 0;
3658 }
3659 for (i = 0; i < mpb->num_raid_devs; ++i) {
3660 struct imsm_dev *dev = get_imsm_dev(super, i);
3661 if (!dev)
3662 return;
3663 for (n = 0; n < 2; ++n) {
3664 struct imsm_map *map = get_imsm_map(dev, n);
3665 if (!map)
3666 continue;
3667 map->pba_of_lba0_hi = 0;
3668 map->blocks_per_member_hi = 0;
3669 map->num_data_stripes_hi = 0;
3670 }
3671 }
3672}
3673
a2b97981
DW
3674static int
3675load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3676{
3677 int err;
3678
3679 err = load_imsm_mpb(fd, super, devname);
3680 if (err)
3681 return err;
3682 err = load_imsm_disk(fd, super, devname, keep_fd);
3683 if (err)
3684 return err;
3685 err = parse_raid_devices(super);
97f81ee2 3686 clear_hi(super);
a2b97981 3687 return err;
cdddbdbc
DW
3688}
3689
ae6aad82
DW
3690static void __free_imsm_disk(struct dl *d)
3691{
3692 if (d->fd >= 0)
3693 close(d->fd);
3694 if (d->devname)
3695 free(d->devname);
0dcecb2e
DW
3696 if (d->e)
3697 free(d->e);
ae6aad82
DW
3698 free(d);
3699
3700}
1a64be56 3701
cdddbdbc
DW
3702static void free_imsm_disks(struct intel_super *super)
3703{
47ee5a45 3704 struct dl *d;
cdddbdbc 3705
47ee5a45
DW
3706 while (super->disks) {
3707 d = super->disks;
cdddbdbc 3708 super->disks = d->next;
ae6aad82 3709 __free_imsm_disk(d);
cdddbdbc 3710 }
cb82edca
AK
3711 while (super->disk_mgmt_list) {
3712 d = super->disk_mgmt_list;
3713 super->disk_mgmt_list = d->next;
3714 __free_imsm_disk(d);
3715 }
47ee5a45
DW
3716 while (super->missing) {
3717 d = super->missing;
3718 super->missing = d->next;
3719 __free_imsm_disk(d);
3720 }
3721
cdddbdbc
DW
3722}
3723
9ca2c81c 3724/* free all the pieces hanging off of a super pointer */
d23fe947 3725static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3726{
88654014
LM
3727 struct intel_hba *elem, *next;
3728
9ca2c81c 3729 if (super->buf) {
949c47a0 3730 free(super->buf);
9ca2c81c
DW
3731 super->buf = NULL;
3732 }
f2f5c343
LM
3733 /* unlink capability description */
3734 super->orom = NULL;
8e59f3d8
AK
3735 if (super->migr_rec_buf) {
3736 free(super->migr_rec_buf);
3737 super->migr_rec_buf = NULL;
3738 }
d23fe947
DW
3739 if (free_disks)
3740 free_imsm_disks(super);
ba2de7ba 3741 free_devlist(super);
88654014
LM
3742 elem = super->hba;
3743 while (elem) {
3744 if (elem->path)
3745 free((void *)elem->path);
3746 next = elem->next;
3747 free(elem);
3748 elem = next;
88c32bb1 3749 }
88654014 3750 super->hba = NULL;
cdddbdbc
DW
3751}
3752
9ca2c81c
DW
3753static void free_imsm(struct intel_super *super)
3754{
d23fe947 3755 __free_imsm(super, 1);
9ca2c81c
DW
3756 free(super);
3757}
cdddbdbc
DW
3758
3759static void free_super_imsm(struct supertype *st)
3760{
3761 struct intel_super *super = st->sb;
3762
3763 if (!super)
3764 return;
3765
3766 free_imsm(super);
3767 st->sb = NULL;
3768}
3769
49133e57 3770static struct intel_super *alloc_super(void)
c2c087e6 3771{
503975b9 3772 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 3773
503975b9
N
3774 super->current_vol = -1;
3775 super->create_offset = ~((unsigned long long) 0);
c2c087e6
DW
3776 return super;
3777}
3778
f0f5a016
LM
3779/*
3780 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3781 */
d424212e 3782static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3783{
3784 struct sys_dev *hba_name;
3785 int rv = 0;
3786
3787 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3788 super->orom = NULL;
f0f5a016
LM
3789 super->hba = NULL;
3790 return 0;
3791 }
3792 hba_name = find_disk_attached_hba(fd, NULL);
3793 if (!hba_name) {
d424212e 3794 if (devname)
e7b84f9d
N
3795 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3796 devname);
f0f5a016
LM
3797 return 1;
3798 }
3799 rv = attach_hba_to_super(super, hba_name);
3800 if (rv == 2) {
d424212e
N
3801 if (devname) {
3802 struct intel_hba *hba = super->hba;
f0f5a016 3803
e7b84f9d 3804 pr_err("%s is attached to Intel(R) %s RAID "
f0f5a016
LM
3805 "controller (%s),\n"
3806 " but the container is assigned to Intel(R) "
3807 "%s RAID controller (",
d424212e 3808 devname,
f0f5a016
LM
3809 hba_name->path,
3810 hba_name->pci_id ? : "Err!",
3811 get_sys_dev_type(hba_name->type));
3812
f0f5a016
LM
3813 while (hba) {
3814 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3815 if (hba->next)
3816 fprintf(stderr, ", ");
3817 hba = hba->next;
3818 }
3819
3820 fprintf(stderr, ").\n"
3821 " Mixing devices attached to different controllers "
3822 "is not allowed.\n");
3823 }
3824 free_sys_dev(&hba_name);
3825 return 2;
3826 }
f2f5c343 3827 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3828 free_sys_dev(&hba_name);
f2f5c343
LM
3829 if (!super->orom)
3830 return 3;
f0f5a016
LM
3831 return 0;
3832}
3833
47ee5a45
DW
3834/* find_missing - helper routine for load_super_imsm_all that identifies
3835 * disks that have disappeared from the system. This routine relies on
3836 * the mpb being uptodate, which it is at load time.
3837 */
3838static int find_missing(struct intel_super *super)
3839{
3840 int i;
3841 struct imsm_super *mpb = super->anchor;
3842 struct dl *dl;
3843 struct imsm_disk *disk;
47ee5a45
DW
3844
3845 for (i = 0; i < mpb->num_disks; i++) {
3846 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3847 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3848 if (dl)
3849 continue;
47ee5a45 3850
503975b9 3851 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
3852 dl->major = 0;
3853 dl->minor = 0;
3854 dl->fd = -1;
503975b9 3855 dl->devname = xstrdup("missing");
47ee5a45
DW
3856 dl->index = i;
3857 serialcpy(dl->serial, disk->serial);
3858 dl->disk = *disk;
689c9bf3 3859 dl->e = NULL;
47ee5a45
DW
3860 dl->next = super->missing;
3861 super->missing = dl;
3862 }
3863
3864 return 0;
3865}
3866
3960e579 3867#ifndef MDASSEMBLE
a2b97981
DW
3868static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3869{
3870 struct intel_disk *idisk = disk_list;
3871
3872 while (idisk) {
3873 if (serialcmp(idisk->disk.serial, serial) == 0)
3874 break;
3875 idisk = idisk->next;
3876 }
3877
3878 return idisk;
3879}
3880
3881static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3882 struct intel_super *super,
3883 struct intel_disk **disk_list)
3884{
3885 struct imsm_disk *d = &super->disks->disk;
3886 struct imsm_super *mpb = super->anchor;
3887 int i, j;
3888
3889 for (i = 0; i < tbl_size; i++) {
3890 struct imsm_super *tbl_mpb = table[i]->anchor;
3891 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3892
3893 if (tbl_mpb->family_num == mpb->family_num) {
3894 if (tbl_mpb->check_sum == mpb->check_sum) {
3895 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3896 __func__, super->disks->major,
3897 super->disks->minor,
3898 table[i]->disks->major,
3899 table[i]->disks->minor);
3900 break;
3901 }
3902
3903 if (((is_configured(d) && !is_configured(tbl_d)) ||
3904 is_configured(d) == is_configured(tbl_d)) &&
3905 tbl_mpb->generation_num < mpb->generation_num) {
3906 /* current version of the mpb is a
3907 * better candidate than the one in
3908 * super_table, but copy over "cross
3909 * generational" status
3910 */
3911 struct intel_disk *idisk;
3912
3913 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3914 __func__, super->disks->major,
3915 super->disks->minor,
3916 table[i]->disks->major,
3917 table[i]->disks->minor);
3918
3919 idisk = disk_list_get(tbl_d->serial, *disk_list);
3920 if (idisk && is_failed(&idisk->disk))
3921 tbl_d->status |= FAILED_DISK;
3922 break;
3923 } else {
3924 struct intel_disk *idisk;
3925 struct imsm_disk *disk;
3926
3927 /* tbl_mpb is more up to date, but copy
3928 * over cross generational status before
3929 * returning
3930 */
3931 disk = __serial_to_disk(d->serial, mpb, NULL);
3932 if (disk && is_failed(disk))
3933 d->status |= FAILED_DISK;
3934
3935 idisk = disk_list_get(d->serial, *disk_list);
3936 if (idisk) {
3937 idisk->owner = i;
3938 if (disk && is_configured(disk))
3939 idisk->disk.status |= CONFIGURED_DISK;
3940 }
3941
3942 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3943 __func__, super->disks->major,
3944 super->disks->minor,
3945 table[i]->disks->major,
3946 table[i]->disks->minor);
3947
3948 return tbl_size;
3949 }
3950 }
3951 }
3952
3953 if (i >= tbl_size)
3954 table[tbl_size++] = super;
3955 else
3956 table[i] = super;
3957
3958 /* update/extend the merged list of imsm_disk records */
3959 for (j = 0; j < mpb->num_disks; j++) {
3960 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3961 struct intel_disk *idisk;
3962
3963 idisk = disk_list_get(disk->serial, *disk_list);
3964 if (idisk) {
3965 idisk->disk.status |= disk->status;
3966 if (is_configured(&idisk->disk) ||
3967 is_failed(&idisk->disk))
3968 idisk->disk.status &= ~(SPARE_DISK);
3969 } else {
503975b9 3970 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
3971 idisk->owner = IMSM_UNKNOWN_OWNER;
3972 idisk->disk = *disk;
3973 idisk->next = *disk_list;
3974 *disk_list = idisk;
3975 }
3976
3977 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3978 idisk->owner = i;
3979 }
3980
3981 return tbl_size;
3982}
3983
3984static struct intel_super *
3985validate_members(struct intel_super *super, struct intel_disk *disk_list,
3986 const int owner)
3987{
3988 struct imsm_super *mpb = super->anchor;
3989 int ok_count = 0;
3990 int i;
3991
3992 for (i = 0; i < mpb->num_disks; i++) {
3993 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3994 struct intel_disk *idisk;
3995
3996 idisk = disk_list_get(disk->serial, disk_list);
3997 if (idisk) {
3998 if (idisk->owner == owner ||
3999 idisk->owner == IMSM_UNKNOWN_OWNER)
4000 ok_count++;
4001 else
4002 dprintf("%s: '%.16s' owner %d != %d\n",
4003 __func__, disk->serial, idisk->owner,
4004 owner);
4005 } else {
4006 dprintf("%s: unknown disk %x [%d]: %.16s\n",
4007 __func__, __le32_to_cpu(mpb->family_num), i,
4008 disk->serial);
4009 break;
4010 }
4011 }
4012
4013 if (ok_count == mpb->num_disks)
4014 return super;
4015 return NULL;
4016}
4017
4018static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4019{
4020 struct intel_super *s;
4021
4022 for (s = super_list; s; s = s->next) {
4023 if (family_num != s->anchor->family_num)
4024 continue;
4025 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
4026 __le32_to_cpu(family_num), s->disks->devname);
4027 }
4028}
4029
4030static struct intel_super *
4031imsm_thunderdome(struct intel_super **super_list, int len)
4032{
4033 struct intel_super *super_table[len];
4034 struct intel_disk *disk_list = NULL;
4035 struct intel_super *champion, *spare;
4036 struct intel_super *s, **del;
4037 int tbl_size = 0;
4038 int conflict;
4039 int i;
4040
4041 memset(super_table, 0, sizeof(super_table));
4042 for (s = *super_list; s; s = s->next)
4043 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4044
4045 for (i = 0; i < tbl_size; i++) {
4046 struct imsm_disk *d;
4047 struct intel_disk *idisk;
4048 struct imsm_super *mpb = super_table[i]->anchor;
4049
4050 s = super_table[i];
4051 d = &s->disks->disk;
4052
4053 /* 'd' must appear in merged disk list for its
4054 * configuration to be valid
4055 */
4056 idisk = disk_list_get(d->serial, disk_list);
4057 if (idisk && idisk->owner == i)
4058 s = validate_members(s, disk_list, i);
4059 else
4060 s = NULL;
4061
4062 if (!s)
4063 dprintf("%s: marking family: %#x from %d:%d offline\n",
4064 __func__, mpb->family_num,
4065 super_table[i]->disks->major,
4066 super_table[i]->disks->minor);
4067 super_table[i] = s;
4068 }
4069
4070 /* This is where the mdadm implementation differs from the Windows
4071 * driver which has no strict concept of a container. We can only
4072 * assemble one family from a container, so when returning a prodigal
4073 * array member to this system the code will not be able to disambiguate
4074 * the container contents that should be assembled ("foreign" versus
4075 * "local"). It requires user intervention to set the orig_family_num
4076 * to a new value to establish a new container. The Windows driver in
4077 * this situation fixes up the volume name in place and manages the
4078 * foreign array as an independent entity.
4079 */
4080 s = NULL;
4081 spare = NULL;
4082 conflict = 0;
4083 for (i = 0; i < tbl_size; i++) {
4084 struct intel_super *tbl_ent = super_table[i];
4085 int is_spare = 0;
4086
4087 if (!tbl_ent)
4088 continue;
4089
4090 if (tbl_ent->anchor->num_raid_devs == 0) {
4091 spare = tbl_ent;
4092 is_spare = 1;
4093 }
4094
4095 if (s && !is_spare) {
4096 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4097 conflict++;
4098 } else if (!s && !is_spare)
4099 s = tbl_ent;
4100 }
4101
4102 if (!s)
4103 s = spare;
4104 if (!s) {
4105 champion = NULL;
4106 goto out;
4107 }
4108 champion = s;
4109
4110 if (conflict)
4111 fprintf(stderr, "Chose family %#x on '%s', "
4112 "assemble conflicts to new container with '--update=uuid'\n",
4113 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4114
4115 /* collect all dl's onto 'champion', and update them to
4116 * champion's version of the status
4117 */
4118 for (s = *super_list; s; s = s->next) {
4119 struct imsm_super *mpb = champion->anchor;
4120 struct dl *dl = s->disks;
4121
4122 if (s == champion)
4123 continue;
4124
5d7b407a
CA
4125 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4126
a2b97981
DW
4127 for (i = 0; i < mpb->num_disks; i++) {
4128 struct imsm_disk *disk;
4129
4130 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4131 if (disk) {
4132 dl->disk = *disk;
4133 /* only set index on disks that are a member of
4134 * a populated contianer, i.e. one with
4135 * raid_devs
4136 */
4137 if (is_failed(&dl->disk))
4138 dl->index = -2;
4139 else if (is_spare(&dl->disk))
4140 dl->index = -1;
4141 break;
4142 }
4143 }
4144
4145 if (i >= mpb->num_disks) {
4146 struct intel_disk *idisk;
4147
4148 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4149 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4150 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4151 dl->index = -1;
4152 else {
4153 dl->index = -2;
4154 continue;
4155 }
4156 }
4157
4158 dl->next = champion->disks;
4159 champion->disks = dl;
4160 s->disks = NULL;
4161 }
4162
4163 /* delete 'champion' from super_list */
4164 for (del = super_list; *del; ) {
4165 if (*del == champion) {
4166 *del = (*del)->next;
4167 break;
4168 } else
4169 del = &(*del)->next;
4170 }
4171 champion->next = NULL;
4172
4173 out:
4174 while (disk_list) {
4175 struct intel_disk *idisk = disk_list;
4176
4177 disk_list = disk_list->next;
4178 free(idisk);
4179 }
4180
4181 return champion;
4182}
4183
9587c373
LM
4184
4185static int
4186get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
9587c373
LM
4187static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4188 int major, int minor, int keep_fd);
ec50f7b6
LM
4189static int
4190get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4191 int *max, int keep_fd);
4192
9587c373 4193
cdddbdbc 4194static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4195 char *devname, struct md_list *devlist,
4196 int keep_fd)
cdddbdbc 4197{
a2b97981
DW
4198 struct intel_super *super_list = NULL;
4199 struct intel_super *super = NULL;
a2b97981 4200 int err = 0;
9587c373 4201 int i = 0;
dab4a513 4202
9587c373
LM
4203 if (fd >= 0)
4204 /* 'fd' is an opened container */
4205 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4206 else
ec50f7b6
LM
4207 /* get super block from devlist devices */
4208 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4209 if (err)
1602d52c 4210 goto error;
a2b97981
DW
4211 /* all mpbs enter, maybe one leaves */
4212 super = imsm_thunderdome(&super_list, i);
4213 if (!super) {
4214 err = 1;
4215 goto error;
cdddbdbc
DW
4216 }
4217
47ee5a45
DW
4218 if (find_missing(super) != 0) {
4219 free_imsm(super);
a2b97981
DW
4220 err = 2;
4221 goto error;
47ee5a45 4222 }
8e59f3d8
AK
4223
4224 /* load migration record */
4225 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4226 if (err == -1) {
4227 /* migration is in progress,
4228 * but migr_rec cannot be loaded,
4229 */
8e59f3d8
AK
4230 err = 4;
4231 goto error;
4232 }
e2f41b2c
AK
4233
4234 /* Check migration compatibility */
4c965cc9 4235 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
e7b84f9d 4236 pr_err("Unsupported migration detected");
e2f41b2c
AK
4237 if (devname)
4238 fprintf(stderr, " on %s\n", devname);
4239 else
4240 fprintf(stderr, " (IMSM).\n");
4241
4242 err = 5;
4243 goto error;
4244 }
4245
a2b97981
DW
4246 err = 0;
4247
4248 error:
4249 while (super_list) {
4250 struct intel_super *s = super_list;
4251
4252 super_list = super_list->next;
4253 free_imsm(s);
4254 }
9587c373 4255
a2b97981
DW
4256
4257 if (err)
4258 return err;
f7e7067b 4259
cdddbdbc 4260 *sbp = super;
9587c373
LM
4261 if (fd >= 0)
4262 st->container_dev = fd2devnum(fd);
4263 else
4264 st->container_dev = NoMdDev;
a2b97981 4265 if (err == 0 && st->ss == NULL) {
bf5a934a 4266 st->ss = &super_imsm;
cdddbdbc
DW
4267 st->minor_version = 0;
4268 st->max_devs = IMSM_MAX_DEVICES;
4269 }
cdddbdbc
DW
4270 return 0;
4271}
2b959fbf 4272
9587c373 4273
ec50f7b6
LM
4274static int
4275get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4276 int *max, int keep_fd)
4277{
4278 struct md_list *tmpdev;
4279 int err = 0;
4280 int i = 0;
9587c373 4281
ec50f7b6
LM
4282 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4283 if (tmpdev->used != 1)
4284 continue;
4285 if (tmpdev->container == 1) {
ca9de185 4286 int lmax = 0;
ec50f7b6
LM
4287 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4288 if (fd < 0) {
e7b84f9d 4289 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4290 tmpdev->devname, strerror(errno));
4291 err = 8;
4292 goto error;
4293 }
4294 err = get_sra_super_block(fd, super_list,
4295 tmpdev->devname, &lmax,
4296 keep_fd);
4297 i += lmax;
4298 close(fd);
4299 if (err) {
4300 err = 7;
4301 goto error;
4302 }
4303 } else {
4304 int major = major(tmpdev->st_rdev);
4305 int minor = minor(tmpdev->st_rdev);
4306 err = get_super_block(super_list,
4307 -1,
4308 tmpdev->devname,
4309 major, minor,
4310 keep_fd);
4311 i++;
4312 if (err) {
4313 err = 6;
4314 goto error;
4315 }
4316 }
4317 }
4318 error:
4319 *max = i;
4320 return err;
4321}
9587c373
LM
4322
4323static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4324 int major, int minor, int keep_fd)
4325{
4326 struct intel_super*s = NULL;
4327 char nm[32];
4328 int dfd = -1;
4329 int rv;
4330 int err = 0;
4331 int retry;
4332
4333 s = alloc_super();
4334 if (!s) {
4335 err = 1;
4336 goto error;
4337 }
4338
4339 sprintf(nm, "%d:%d", major, minor);
4340 dfd = dev_open(nm, O_RDWR);
4341 if (dfd < 0) {
4342 err = 2;
4343 goto error;
4344 }
4345
4346 rv = find_intel_hba_capability(dfd, s, devname);
4347 /* no orom/efi or non-intel hba of the disk */
4348 if (rv != 0) {
4349 err = 4;
4350 goto error;
4351 }
4352
4353 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4354
4355 /* retry the load if we might have raced against mdmon */
4356 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4357 for (retry = 0; retry < 3; retry++) {
4358 usleep(3000);
4359 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4360 if (err != 3)
4361 break;
4362 }
4363 error:
4364 if (!err) {
4365 s->next = *super_list;
4366 *super_list = s;
4367 } else {
4368 if (s)
4369 free(s);
36614e95 4370 if (dfd >= 0)
9587c373
LM
4371 close(dfd);
4372 }
4373 if ((dfd >= 0) && (!keep_fd))
4374 close(dfd);
4375 return err;
4376
4377}
4378
4379static int
4380get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4381{
4382 struct mdinfo *sra;
4383 int devnum;
4384 struct mdinfo *sd;
4385 int err = 0;
4386 int i = 0;
4387 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4388 if (!sra)
4389 return 1;
4390
4391 if (sra->array.major_version != -1 ||
4392 sra->array.minor_version != -2 ||
4393 strcmp(sra->text_version, "imsm") != 0) {
4394 err = 1;
4395 goto error;
4396 }
4397 /* load all mpbs */
4398 devnum = fd2devnum(fd);
4399 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4400 if (get_super_block(super_list, devnum, devname,
4401 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4402 err = 7;
4403 goto error;
4404 }
4405 }
4406 error:
4407 sysfs_free(sra);
4408 *max = i;
4409 return err;
4410}
4411
2b959fbf
N
4412static int load_container_imsm(struct supertype *st, int fd, char *devname)
4413{
ec50f7b6 4414 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 4415}
cdddbdbc
DW
4416#endif
4417
4418static int load_super_imsm(struct supertype *st, int fd, char *devname)
4419{
4420 struct intel_super *super;
4421 int rv;
4422
691c6ee1
N
4423 if (test_partition(fd))
4424 /* IMSM not allowed on partitions */
4425 return 1;
4426
37424f13
DW
4427 free_super_imsm(st);
4428
49133e57 4429 super = alloc_super();
ea2bc72b
LM
4430 /* Load hba and capabilities if they exist.
4431 * But do not preclude loading metadata in case capabilities or hba are
4432 * non-compliant and ignore_hw_compat is set.
4433 */
d424212e 4434 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4435 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4436 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343 4437 if (devname)
e7b84f9d 4438 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
4439 free_imsm(super);
4440 return 2;
4441 }
a2b97981 4442 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4443
4444 if (rv) {
4445 if (devname)
e7b84f9d
N
4446 pr_err("Failed to load all information "
4447 "sections on %s\n", devname);
cdddbdbc
DW
4448 free_imsm(super);
4449 return rv;
4450 }
4451
4452 st->sb = super;
4453 if (st->ss == NULL) {
4454 st->ss = &super_imsm;
4455 st->minor_version = 0;
4456 st->max_devs = IMSM_MAX_DEVICES;
4457 }
8e59f3d8
AK
4458
4459 /* load migration record */
2e062e82
AK
4460 if (load_imsm_migr_rec(super, NULL) == 0) {
4461 /* Check for unsupported migration features */
4462 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4463 pr_err("Unsupported migration detected");
2e062e82
AK
4464 if (devname)
4465 fprintf(stderr, " on %s\n", devname);
4466 else
4467 fprintf(stderr, " (IMSM).\n");
4468 return 3;
4469 }
e2f41b2c
AK
4470 }
4471
cdddbdbc
DW
4472 return 0;
4473}
4474
ef6ffade
DW
4475static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4476{
4477 if (info->level == 1)
4478 return 128;
4479 return info->chunk_size >> 9;
4480}
4481
5551b113
CA
4482static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4483 unsigned long long size)
fcfd9599 4484{
4025c288 4485 if (info->level == 1)
5551b113 4486 return size * 2;
4025c288 4487 else
5551b113 4488 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4489}
4490
4d1313e9
DW
4491static void imsm_update_version_info(struct intel_super *super)
4492{
4493 /* update the version and attributes */
4494 struct imsm_super *mpb = super->anchor;
4495 char *version;
4496 struct imsm_dev *dev;
4497 struct imsm_map *map;
4498 int i;
4499
4500 for (i = 0; i < mpb->num_raid_devs; i++) {
4501 dev = get_imsm_dev(super, i);
238c0a71 4502 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
4503 if (__le32_to_cpu(dev->size_high) > 0)
4504 mpb->attributes |= MPB_ATTRIB_2TB;
4505
4506 /* FIXME detect when an array spans a port multiplier */
4507 #if 0
4508 mpb->attributes |= MPB_ATTRIB_PM;
4509 #endif
4510
4511 if (mpb->num_raid_devs > 1 ||
4512 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4513 version = MPB_VERSION_ATTRIBS;
4514 switch (get_imsm_raid_level(map)) {
4515 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4516 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4517 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4518 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4519 }
4520 } else {
4521 if (map->num_members >= 5)
4522 version = MPB_VERSION_5OR6_DISK_ARRAY;
4523 else if (dev->status == DEV_CLONE_N_GO)
4524 version = MPB_VERSION_CNG;
4525 else if (get_imsm_raid_level(map) == 5)
4526 version = MPB_VERSION_RAID5;
4527 else if (map->num_members >= 3)
4528 version = MPB_VERSION_3OR4_DISK_ARRAY;
4529 else if (get_imsm_raid_level(map) == 1)
4530 version = MPB_VERSION_RAID1;
4531 else
4532 version = MPB_VERSION_RAID0;
4533 }
4534 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4535 }
4536}
4537
aa534678
DW
4538static int check_name(struct intel_super *super, char *name, int quiet)
4539{
4540 struct imsm_super *mpb = super->anchor;
4541 char *reason = NULL;
4542 int i;
4543
4544 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4545 reason = "must be 16 characters or less";
4546
4547 for (i = 0; i < mpb->num_raid_devs; i++) {
4548 struct imsm_dev *dev = get_imsm_dev(super, i);
4549
4550 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4551 reason = "already exists";
4552 break;
4553 }
4554 }
4555
4556 if (reason && !quiet)
e7b84f9d 4557 pr_err("imsm volume name %s\n", reason);
aa534678
DW
4558
4559 return !reason;
4560}
4561
8b353278
DW
4562static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4563 unsigned long long size, char *name,
83cd1e97
N
4564 char *homehost, int *uuid,
4565 long long data_offset)
cdddbdbc 4566{
c2c087e6
DW
4567 /* We are creating a volume inside a pre-existing container.
4568 * so st->sb is already set.
4569 */
4570 struct intel_super *super = st->sb;
949c47a0 4571 struct imsm_super *mpb = super->anchor;
ba2de7ba 4572 struct intel_dev *dv;
c2c087e6
DW
4573 struct imsm_dev *dev;
4574 struct imsm_vol *vol;
4575 struct imsm_map *map;
4576 int idx = mpb->num_raid_devs;
4577 int i;
4578 unsigned long long array_blocks;
2c092cad 4579 size_t size_old, size_new;
5551b113 4580 unsigned long long num_data_stripes;
cdddbdbc 4581
88c32bb1 4582 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
e7b84f9d 4583 pr_err("This imsm-container already has the "
88c32bb1 4584 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4585 return 0;
4586 }
4587
2c092cad
DW
4588 /* ensure the mpb is large enough for the new data */
4589 size_old = __le32_to_cpu(mpb->mpb_size);
4590 size_new = disks_to_mpb_size(info->nr_disks);
4591 if (size_new > size_old) {
4592 void *mpb_new;
4593 size_t size_round = ROUND_UP(size_new, 512);
4594
4595 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
e7b84f9d 4596 pr_err("could not allocate new mpb\n");
2c092cad
DW
4597 return 0;
4598 }
17a4eaf9
AK
4599 if (posix_memalign(&super->migr_rec_buf, 512,
4600 MIGR_REC_BUF_SIZE) != 0) {
e7b84f9d
N
4601 pr_err("%s could not allocate migr_rec buffer\n",
4602 __func__);
8e59f3d8
AK
4603 free(super->buf);
4604 free(super);
ea944c8f 4605 free(mpb_new);
8e59f3d8
AK
4606 return 0;
4607 }
2c092cad
DW
4608 memcpy(mpb_new, mpb, size_old);
4609 free(mpb);
4610 mpb = mpb_new;
949c47a0 4611 super->anchor = mpb_new;
2c092cad
DW
4612 mpb->mpb_size = __cpu_to_le32(size_new);
4613 memset(mpb_new + size_old, 0, size_round - size_old);
4614 }
bf5a934a 4615 super->current_vol = idx;
3960e579
DW
4616
4617 /* handle 'failed_disks' by either:
4618 * a) create dummy disk entries in the table if this the first
4619 * volume in the array. We add them here as this is the only
4620 * opportunity to add them. add_to_super_imsm_volume()
4621 * handles the non-failed disks and continues incrementing
4622 * mpb->num_disks.
4623 * b) validate that 'failed_disks' matches the current number
4624 * of missing disks if the container is populated
d23fe947 4625 */
3960e579 4626 if (super->current_vol == 0) {
d23fe947 4627 mpb->num_disks = 0;
3960e579
DW
4628 for (i = 0; i < info->failed_disks; i++) {
4629 struct imsm_disk *disk;
4630
4631 mpb->num_disks++;
4632 disk = __get_imsm_disk(mpb, i);
4633 disk->status = CONFIGURED_DISK | FAILED_DISK;
4634 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4635 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4636 "missing:%d", i);
4637 }
4638 find_missing(super);
4639 } else {
4640 int missing = 0;
4641 struct dl *d;
4642
4643 for (d = super->missing; d; d = d->next)
4644 missing++;
4645 if (info->failed_disks > missing) {
e7b84f9d 4646 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
4647 return 0;
4648 }
4649 }
5a038140 4650
aa534678
DW
4651 if (!check_name(super, name, 0))
4652 return 0;
503975b9
N
4653 dv = xmalloc(sizeof(*dv));
4654 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 4655 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 4656 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 4657 info->layout, info->chunk_size,
5551b113 4658 size * 2);
979d38be
DW
4659 /* round array size down to closest MB */
4660 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4661
c2c087e6
DW
4662 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4663 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4664 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4665 vol = &dev->vol;
4666 vol->migr_state = 0;
1484e727 4667 set_migr_type(dev, MIGR_INIT);
3960e579 4668 vol->dirty = !info->state;
f8f603f1 4669 vol->curr_migr_unit = 0;
238c0a71 4670 map = get_imsm_map(dev, MAP_0);
5551b113
CA
4671 set_pba_of_lba0(map, super->create_offset);
4672 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
ef6ffade 4673 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4674 map->failed_disk_num = ~0;
bf4442ab
AK
4675 if (info->level > 0)
4676 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4677 else
4678 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4679 IMSM_T_STATE_NORMAL;
252d23c0 4680 map->ddf = 1;
ef6ffade
DW
4681
4682 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4683 free(dev);
4684 free(dv);
e7b84f9d 4685 pr_err("imsm does not support more than 2 disks"
ef6ffade
DW
4686 "in a raid1 volume\n");
4687 return 0;
4688 }
81062a36
DW
4689
4690 map->raid_level = info->level;
4d1313e9 4691 if (info->level == 10) {
c2c087e6 4692 map->raid_level = 1;
4d1313e9 4693 map->num_domains = info->raid_disks / 2;
81062a36
DW
4694 } else if (info->level == 1)
4695 map->num_domains = info->raid_disks;
4696 else
ff596308 4697 map->num_domains = 1;
81062a36 4698
5551b113
CA
4699 /* info->size is only int so use the 'size' parameter instead */
4700 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4701 num_data_stripes /= map->num_domains;
4702 set_num_data_stripes(map, num_data_stripes);
ef6ffade 4703
c2c087e6
DW
4704 map->num_members = info->raid_disks;
4705 for (i = 0; i < map->num_members; i++) {
4706 /* initialized in add_to_super */
4eb26970 4707 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4708 }
949c47a0 4709 mpb->num_raid_devs++;
ba2de7ba
DW
4710
4711 dv->dev = dev;
4712 dv->index = super->current_vol;
4713 dv->next = super->devlist;
4714 super->devlist = dv;
c2c087e6 4715
4d1313e9
DW
4716 imsm_update_version_info(super);
4717
c2c087e6 4718 return 1;
cdddbdbc
DW
4719}
4720
bf5a934a
DW
4721static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4722 unsigned long long size, char *name,
83cd1e97
N
4723 char *homehost, int *uuid,
4724 unsigned long long data_offset)
bf5a934a
DW
4725{
4726 /* This is primarily called by Create when creating a new array.
4727 * We will then get add_to_super called for each component, and then
4728 * write_init_super called to write it out to each device.
4729 * For IMSM, Create can create on fresh devices or on a pre-existing
4730 * array.
4731 * To create on a pre-existing array a different method will be called.
4732 * This one is just for fresh drives.
4733 */
4734 struct intel_super *super;
4735 struct imsm_super *mpb;
4736 size_t mpb_size;
4d1313e9 4737 char *version;
bf5a934a 4738
83cd1e97
N
4739 if (data_offset != INVALID_SECTORS) {
4740 fprintf(stderr, Name ": data-offset not supported by imsm\n");
4741 return 0;
4742 }
4743
bf5a934a 4744 if (st->sb)
83cd1e97
N
4745 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4746 data_offset);
e683ca88
DW
4747
4748 if (info)
4749 mpb_size = disks_to_mpb_size(info->nr_disks);
4750 else
4751 mpb_size = 512;
bf5a934a 4752
49133e57 4753 super = alloc_super();
e683ca88 4754 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4755 free(super);
e683ca88
DW
4756 super = NULL;
4757 }
4758 if (!super) {
e7b84f9d 4759 pr_err("%s could not allocate superblock\n", __func__);
bf5a934a
DW
4760 return 0;
4761 }
17a4eaf9 4762 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
e7b84f9d 4763 pr_err("%s could not allocate migr_rec buffer\n", __func__);
8e59f3d8
AK
4764 free(super->buf);
4765 free(super);
4766 return 0;
4767 }
e683ca88 4768 memset(super->buf, 0, mpb_size);
ef649044 4769 mpb = super->buf;
e683ca88
DW
4770 mpb->mpb_size = __cpu_to_le32(mpb_size);
4771 st->sb = super;
4772
4773 if (info == NULL) {
4774 /* zeroing superblock */
4775 return 0;
4776 }
bf5a934a 4777
4d1313e9
DW
4778 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4779
4780 version = (char *) mpb->sig;
4781 strcpy(version, MPB_SIGNATURE);
4782 version += strlen(MPB_SIGNATURE);
4783 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4784
bf5a934a
DW
4785 return 1;
4786}
4787
0e600426 4788#ifndef MDASSEMBLE
f20c3968 4789static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4790 int fd, char *devname)
4791{
4792 struct intel_super *super = st->sb;
d23fe947 4793 struct imsm_super *mpb = super->anchor;
3960e579 4794 struct imsm_disk *_disk;
bf5a934a
DW
4795 struct imsm_dev *dev;
4796 struct imsm_map *map;
3960e579 4797 struct dl *dl, *df;
4eb26970 4798 int slot;
bf5a934a 4799
949c47a0 4800 dev = get_imsm_dev(super, super->current_vol);
238c0a71 4801 map = get_imsm_map(dev, MAP_0);
bf5a934a 4802
208933a7 4803 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 4804 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
4805 devname);
4806 return 1;
4807 }
4808
efb30e7f
DW
4809 if (fd == -1) {
4810 /* we're doing autolayout so grab the pre-marked (in
4811 * validate_geometry) raid_disk
4812 */
4813 for (dl = super->disks; dl; dl = dl->next)
4814 if (dl->raiddisk == dk->raid_disk)
4815 break;
4816 } else {
4817 for (dl = super->disks; dl ; dl = dl->next)
4818 if (dl->major == dk->major &&
4819 dl->minor == dk->minor)
4820 break;
4821 }
d23fe947 4822
208933a7 4823 if (!dl) {
e7b84f9d 4824 pr_err("%s is not a member of the same container\n", devname);
f20c3968 4825 return 1;
208933a7 4826 }
bf5a934a 4827
d23fe947
DW
4828 /* add a pristine spare to the metadata */
4829 if (dl->index < 0) {
4830 dl->index = super->anchor->num_disks;
4831 super->anchor->num_disks++;
4832 }
4eb26970
DW
4833 /* Check the device has not already been added */
4834 slot = get_imsm_disk_slot(map, dl->index);
4835 if (slot >= 0 &&
238c0a71 4836 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 4837 pr_err("%s has been included in this array twice\n",
4eb26970
DW
4838 devname);
4839 return 1;
4840 }
656b6b5a 4841 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4842 dl->disk.status = CONFIGURED_DISK;
d23fe947 4843
3960e579
DW
4844 /* update size of 'missing' disks to be at least as large as the
4845 * largest acitve member (we only have dummy missing disks when
4846 * creating the first volume)
4847 */
4848 if (super->current_vol == 0) {
4849 for (df = super->missing; df; df = df->next) {
5551b113
CA
4850 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4851 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
4852 _disk = __get_imsm_disk(mpb, df->index);
4853 *_disk = df->disk;
4854 }
4855 }
4856
4857 /* refresh unset/failed slots to point to valid 'missing' entries */
4858 for (df = super->missing; df; df = df->next)
4859 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 4860 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
4861
4862 if ((ord & IMSM_ORD_REBUILD) == 0)
4863 continue;
4864 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 4865 if (is_gen_migration(dev)) {
238c0a71
AK
4866 struct imsm_map *map2 = get_imsm_map(dev,
4867 MAP_1);
0a108d63
AK
4868 int slot2 = get_imsm_disk_slot(map2, df->index);
4869 if ((slot2 < map2->num_members) &&
4870 (slot2 >= 0)) {
1ace8403 4871 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
4872 slot2,
4873 MAP_1);
1ace8403
AK
4874 if ((unsigned)df->index ==
4875 ord_to_idx(ord2))
4876 set_imsm_ord_tbl_ent(map2,
0a108d63 4877 slot2,
1ace8403
AK
4878 df->index |
4879 IMSM_ORD_REBUILD);
4880 }
4881 }
3960e579
DW
4882 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4883 break;
4884 }
4885
d23fe947
DW
4886 /* if we are creating the first raid device update the family number */
4887 if (super->current_vol == 0) {
4888 __u32 sum;
4889 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4890
3960e579 4891 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 4892 if (!_dev || !_disk) {
e7b84f9d 4893 pr_err("BUG mpb setup error\n");
791b666a
AW
4894 return 1;
4895 }
d23fe947
DW
4896 *_dev = *dev;
4897 *_disk = dl->disk;
148acb7b
DW
4898 sum = random32();
4899 sum += __gen_imsm_checksum(mpb);
d23fe947 4900 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4901 mpb->orig_family_num = mpb->family_num;
d23fe947 4902 }
ca0748fa 4903 super->current_disk = dl;
f20c3968 4904 return 0;
bf5a934a
DW
4905}
4906
a8619d23
AK
4907/* mark_spare()
4908 * Function marks disk as spare and restores disk serial
4909 * in case it was previously marked as failed by takeover operation
4910 * reruns:
4911 * -1 : critical error
4912 * 0 : disk is marked as spare but serial is not set
4913 * 1 : success
4914 */
4915int mark_spare(struct dl *disk)
4916{
4917 __u8 serial[MAX_RAID_SERIAL_LEN];
4918 int ret_val = -1;
4919
4920 if (!disk)
4921 return ret_val;
4922
4923 ret_val = 0;
4924 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4925 /* Restore disk serial number, because takeover marks disk
4926 * as failed and adds to serial ':0' before it becomes
4927 * a spare disk.
4928 */
4929 serialcpy(disk->serial, serial);
4930 serialcpy(disk->disk.serial, serial);
4931 ret_val = 1;
4932 }
4933 disk->disk.status = SPARE_DISK;
4934 disk->index = -1;
4935
4936 return ret_val;
4937}
88654014 4938
f20c3968 4939static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4940 int fd, char *devname)
cdddbdbc 4941{
c2c087e6 4942 struct intel_super *super = st->sb;
c2c087e6
DW
4943 struct dl *dd;
4944 unsigned long long size;
f2f27e63 4945 __u32 id;
c2c087e6
DW
4946 int rv;
4947 struct stat stb;
4948
88654014
LM
4949 /* If we are on an RAID enabled platform check that the disk is
4950 * attached to the raid controller.
4951 * We do not need to test disks attachment for container based additions,
4952 * they shall be already tested when container was created/assembled.
88c32bb1 4953 */
d424212e 4954 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4955 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4956 if (rv != 0) {
4957 dprintf("capability: %p fd: %d ret: %d\n",
4958 super->orom, fd, rv);
4959 return 1;
88c32bb1
DW
4960 }
4961
f20c3968
DW
4962 if (super->current_vol >= 0)
4963 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4964
c2c087e6 4965 fstat(fd, &stb);
503975b9 4966 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
4967 dd->major = major(stb.st_rdev);
4968 dd->minor = minor(stb.st_rdev);
503975b9 4969 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 4970 dd->fd = fd;
689c9bf3 4971 dd->e = NULL;
1a64be56 4972 dd->action = DISK_ADD;
c2c087e6 4973 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4974 if (rv) {
e7b84f9d 4975 pr_err("failed to retrieve scsi serial, aborting\n");
949c47a0 4976 free(dd);
0030e8d6 4977 abort();
c2c087e6
DW
4978 }
4979
c2c087e6
DW
4980 get_dev_size(fd, NULL, &size);
4981 size /= 512;
1f24f035 4982 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
4983 set_total_blocks(&dd->disk, size);
4984 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4985 struct imsm_super *mpb = super->anchor;
4986 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4987 }
a8619d23 4988 mark_spare(dd);
c2c087e6 4989 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4990 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4991 else
b9f594fe 4992 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4993
4994 if (st->update_tail) {
1a64be56
LM
4995 dd->next = super->disk_mgmt_list;
4996 super->disk_mgmt_list = dd;
43dad3d6
DW
4997 } else {
4998 dd->next = super->disks;
4999 super->disks = dd;
ceaf0ee1 5000 super->updates_pending++;
43dad3d6 5001 }
f20c3968
DW
5002
5003 return 0;
cdddbdbc
DW
5004}
5005
1a64be56
LM
5006
5007static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5008{
5009 struct intel_super *super = st->sb;
5010 struct dl *dd;
5011
5012 /* remove from super works only in mdmon - for communication
5013 * manager - monitor. Check if communication memory buffer
5014 * is prepared.
5015 */
5016 if (!st->update_tail) {
e7b84f9d
N
5017 pr_err("%s shall be used in mdmon context only"
5018 "(line %d).\n", __func__, __LINE__);
1a64be56
LM
5019 return 1;
5020 }
503975b9 5021 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5022 dd->major = dk->major;
5023 dd->minor = dk->minor;
1a64be56 5024 dd->fd = -1;
a8619d23 5025 mark_spare(dd);
1a64be56
LM
5026 dd->action = DISK_REMOVE;
5027
5028 dd->next = super->disk_mgmt_list;
5029 super->disk_mgmt_list = dd;
5030
5031
5032 return 0;
5033}
5034
f796af5d
DW
5035static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5036
5037static union {
5038 char buf[512];
5039 struct imsm_super anchor;
5040} spare_record __attribute__ ((aligned(512)));
c2c087e6 5041
d23fe947
DW
5042/* spare records have their own family number and do not have any defined raid
5043 * devices
5044 */
5045static int write_super_imsm_spares(struct intel_super *super, int doclose)
5046{
d23fe947 5047 struct imsm_super *mpb = super->anchor;
f796af5d 5048 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5049 __u32 sum;
5050 struct dl *d;
5051
f796af5d
DW
5052 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5053 spare->generation_num = __cpu_to_le32(1UL),
5054 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5055 spare->num_disks = 1,
5056 spare->num_raid_devs = 0,
5057 spare->cache_size = mpb->cache_size,
5058 spare->pwr_cycle_count = __cpu_to_le32(1),
5059
5060 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5061 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5062
5063 for (d = super->disks; d; d = d->next) {
8796fdc4 5064 if (d->index != -1)
d23fe947
DW
5065 continue;
5066
f796af5d 5067 spare->disk[0] = d->disk;
027c374f
CA
5068 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5069 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5070
f796af5d
DW
5071 sum = __gen_imsm_checksum(spare);
5072 spare->family_num = __cpu_to_le32(sum);
5073 spare->orig_family_num = 0;
5074 sum = __gen_imsm_checksum(spare);
5075 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5076
f796af5d 5077 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
5078 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5079 __func__, d->major, d->minor, strerror(errno));
e74255d9 5080 return 1;
d23fe947
DW
5081 }
5082 if (doclose) {
5083 close(d->fd);
5084 d->fd = -1;
5085 }
5086 }
5087
e74255d9 5088 return 0;
d23fe947
DW
5089}
5090
36988a3d 5091static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5092{
36988a3d 5093 struct intel_super *super = st->sb;
949c47a0 5094 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5095 struct dl *d;
5096 __u32 generation;
5097 __u32 sum;
d23fe947 5098 int spares = 0;
949c47a0 5099 int i;
a48ac0a8 5100 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5101 int num_disks = 0;
146c6260 5102 int clear_migration_record = 1;
cdddbdbc 5103
c2c087e6
DW
5104 /* 'generation' is incremented everytime the metadata is written */
5105 generation = __le32_to_cpu(mpb->generation_num);
5106 generation++;
5107 mpb->generation_num = __cpu_to_le32(generation);
5108
148acb7b
DW
5109 /* fix up cases where previous mdadm releases failed to set
5110 * orig_family_num
5111 */
5112 if (mpb->orig_family_num == 0)
5113 mpb->orig_family_num = mpb->family_num;
5114
d23fe947 5115 for (d = super->disks; d; d = d->next) {
8796fdc4 5116 if (d->index == -1)
d23fe947 5117 spares++;
36988a3d 5118 else {
d23fe947 5119 mpb->disk[d->index] = d->disk;
36988a3d
AK
5120 num_disks++;
5121 }
d23fe947 5122 }
36988a3d 5123 for (d = super->missing; d; d = d->next) {
47ee5a45 5124 mpb->disk[d->index] = d->disk;
36988a3d
AK
5125 num_disks++;
5126 }
5127 mpb->num_disks = num_disks;
5128 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5129
949c47a0
DW
5130 for (i = 0; i < mpb->num_raid_devs; i++) {
5131 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5132 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5133 if (dev && dev2) {
5134 imsm_copy_dev(dev, dev2);
5135 mpb_size += sizeof_imsm_dev(dev, 0);
5136 }
146c6260
AK
5137 if (is_gen_migration(dev2))
5138 clear_migration_record = 0;
949c47a0 5139 }
a48ac0a8
DW
5140 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5141 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5142
c2c087e6 5143 /* recalculate checksum */
949c47a0 5144 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5145 mpb->check_sum = __cpu_to_le32(sum);
5146
51d83f5d
AK
5147 if (super->clean_migration_record_by_mdmon) {
5148 clear_migration_record = 1;
5149 super->clean_migration_record_by_mdmon = 0;
5150 }
146c6260 5151 if (clear_migration_record)
17a4eaf9 5152 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
146c6260 5153
d23fe947 5154 /* write the mpb for disks that compose raid devices */
c2c087e6 5155 for (d = super->disks; d ; d = d->next) {
86c54047 5156 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5157 continue;
30602f53 5158
146c6260
AK
5159 if (clear_migration_record) {
5160 unsigned long long dsize;
5161
5162 get_dev_size(d->fd, NULL, &dsize);
5163 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
17a4eaf9
AK
5164 if (write(d->fd, super->migr_rec_buf,
5165 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
9e2d750d 5166 perror("Write migr_rec failed");
146c6260
AK
5167 }
5168 }
51d83f5d
AK
5169
5170 if (store_imsm_mpb(d->fd, mpb))
5171 fprintf(stderr,
5172 "%s: failed for device %d:%d (fd: %d)%s\n",
5173 __func__, d->major, d->minor,
5174 d->fd, strerror(errno));
5175
c2c087e6
DW
5176 if (doclose) {
5177 close(d->fd);
5178 d->fd = -1;
5179 }
5180 }
5181
d23fe947
DW
5182 if (spares)
5183 return write_super_imsm_spares(super, doclose);
5184
e74255d9 5185 return 0;
c2c087e6
DW
5186}
5187
0e600426 5188
9b1fb677 5189static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5190{
5191 size_t len;
5192 struct imsm_update_create_array *u;
5193 struct intel_super *super = st->sb;
9b1fb677 5194 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5195 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5196 struct disk_info *inf;
5197 struct imsm_disk *disk;
5198 int i;
43dad3d6 5199
54c2c1ea
DW
5200 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5201 sizeof(*inf) * map->num_members;
503975b9 5202 u = xmalloc(len);
43dad3d6 5203 u->type = update_create_array;
9b1fb677 5204 u->dev_idx = dev_idx;
43dad3d6 5205 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
5206 inf = get_disk_info(u);
5207 for (i = 0; i < map->num_members; i++) {
238c0a71 5208 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 5209
54c2c1ea
DW
5210 disk = get_imsm_disk(super, idx);
5211 serialcpy(inf[i].serial, disk->serial);
5212 }
43dad3d6
DW
5213 append_metadata_update(st, u, len);
5214
5215 return 0;
5216}
5217
1a64be56 5218static int mgmt_disk(struct supertype *st)
43dad3d6
DW
5219{
5220 struct intel_super *super = st->sb;
5221 size_t len;
1a64be56 5222 struct imsm_update_add_remove_disk *u;
43dad3d6 5223
1a64be56 5224 if (!super->disk_mgmt_list)
43dad3d6
DW
5225 return 0;
5226
5227 len = sizeof(*u);
503975b9 5228 u = xmalloc(len);
1a64be56 5229 u->type = update_add_remove_disk;
43dad3d6
DW
5230 append_metadata_update(st, u, len);
5231
5232 return 0;
5233}
5234
c2c087e6
DW
5235static int write_init_super_imsm(struct supertype *st)
5236{
9b1fb677
DW
5237 struct intel_super *super = st->sb;
5238 int current_vol = super->current_vol;
5239
5240 /* we are done with current_vol reset it to point st at the container */
5241 super->current_vol = -1;
5242
8273f55e 5243 if (st->update_tail) {
43dad3d6
DW
5244 /* queue the recently created array / added disk
5245 * as a metadata update */
43dad3d6 5246 int rv;
8273f55e 5247
43dad3d6 5248 /* determine if we are creating a volume or adding a disk */
9b1fb677 5249 if (current_vol < 0) {
1a64be56
LM
5250 /* in the mgmt (add/remove) disk case we are running
5251 * in mdmon context, so don't close fd's
43dad3d6 5252 */
1a64be56 5253 return mgmt_disk(st);
43dad3d6 5254 } else
9b1fb677 5255 rv = create_array(st, current_vol);
8273f55e 5256
43dad3d6 5257 return rv;
d682f344
N
5258 } else {
5259 struct dl *d;
5260 for (d = super->disks; d; d = d->next)
ba728be7 5261 Kill(d->devname, NULL, 0, -1, 1);
36988a3d 5262 return write_super_imsm(st, 1);
d682f344 5263 }
cdddbdbc 5264}
0e600426 5265#endif
cdddbdbc 5266
e683ca88 5267static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 5268{
e683ca88
DW
5269 struct intel_super *super = st->sb;
5270 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 5271
e683ca88 5272 if (!mpb)
ad97895e
DW
5273 return 1;
5274
1799c9e8 5275#ifndef MDASSEMBLE
e683ca88 5276 return store_imsm_mpb(fd, mpb);
1799c9e8
N
5277#else
5278 return 1;
5279#endif
cdddbdbc
DW
5280}
5281
0e600426
N
5282static int imsm_bbm_log_size(struct imsm_super *mpb)
5283{
5284 return __le32_to_cpu(mpb->bbm_log_size);
5285}
5286
5287#ifndef MDASSEMBLE
cdddbdbc
DW
5288static int validate_geometry_imsm_container(struct supertype *st, int level,
5289 int layout, int raiddisks, int chunk,
af4348dd
N
5290 unsigned long long size,
5291 unsigned long long data_offset,
5292 char *dev,
2c514b71
NB
5293 unsigned long long *freesize,
5294 int verbose)
cdddbdbc 5295{
c2c087e6
DW
5296 int fd;
5297 unsigned long long ldsize;
f2f5c343
LM
5298 struct intel_super *super=NULL;
5299 int rv = 0;
cdddbdbc 5300
c2c087e6
DW
5301 if (level != LEVEL_CONTAINER)
5302 return 0;
5303 if (!dev)
5304 return 1;
5305
5306 fd = open(dev, O_RDONLY|O_EXCL, 0);
5307 if (fd < 0) {
ba728be7 5308 if (verbose > 0)
e7b84f9d 5309 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 5310 dev, strerror(errno));
c2c087e6
DW
5311 return 0;
5312 }
5313 if (!get_dev_size(fd, dev, &ldsize)) {
5314 close(fd);
5315 return 0;
5316 }
f2f5c343
LM
5317
5318 /* capabilities retrieve could be possible
5319 * note that there is no fd for the disks in array.
5320 */
5321 super = alloc_super();
ba728be7 5322 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
5323 if (rv != 0) {
5324#if DEBUG
5325 char str[256];
5326 fd2devname(fd, str);
5327 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5328 fd, str, super->orom, rv, raiddisks);
5329#endif
5330 /* no orom/efi or non-intel hba of the disk */
5331 close(fd);
5332 free_imsm(super);
5333 return 0;
5334 }
c2c087e6 5335 close(fd);
9126b9a8
CA
5336 if (super->orom) {
5337 if (raiddisks > super->orom->tds) {
5338 if (verbose)
e7b84f9d 5339 pr_err("%d exceeds maximum number of"
9126b9a8
CA
5340 " platform supported disks: %d\n",
5341 raiddisks, super->orom->tds);
5342 free_imsm(super);
5343 return 0;
5344 }
5345 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5346 (ldsize >> 9) >> 32 > 0) {
5347 if (verbose)
e7b84f9d 5348 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
5349 free_imsm(super);
5350 return 0;
5351 }
f2f5c343 5352 }
c2c087e6 5353
af4348dd 5354 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 5355 free_imsm(super);
c2c087e6
DW
5356
5357 return 1;
cdddbdbc
DW
5358}
5359
0dcecb2e
DW
5360static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5361{
5362 const unsigned long long base_start = e[*idx].start;
5363 unsigned long long end = base_start + e[*idx].size;
5364 int i;
5365
5366 if (base_start == end)
5367 return 0;
5368
5369 *idx = *idx + 1;
5370 for (i = *idx; i < num_extents; i++) {
5371 /* extend overlapping extents */
5372 if (e[i].start >= base_start &&
5373 e[i].start <= end) {
5374 if (e[i].size == 0)
5375 return 0;
5376 if (e[i].start + e[i].size > end)
5377 end = e[i].start + e[i].size;
5378 } else if (e[i].start > end) {
5379 *idx = i;
5380 break;
5381 }
5382 }
5383
5384 return end - base_start;
5385}
5386
5387static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5388{
5389 /* build a composite disk with all known extents and generate a new
5390 * 'maxsize' given the "all disks in an array must share a common start
5391 * offset" constraint
5392 */
503975b9 5393 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
5394 struct dl *dl;
5395 int i, j;
5396 int start_extent;
5397 unsigned long long pos;
b9d77223 5398 unsigned long long start = 0;
0dcecb2e
DW
5399 unsigned long long maxsize;
5400 unsigned long reserve;
5401
0dcecb2e
DW
5402 /* coalesce and sort all extents. also, check to see if we need to
5403 * reserve space between member arrays
5404 */
5405 j = 0;
5406 for (dl = super->disks; dl; dl = dl->next) {
5407 if (!dl->e)
5408 continue;
5409 for (i = 0; i < dl->extent_cnt; i++)
5410 e[j++] = dl->e[i];
5411 }
5412 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5413
5414 /* merge extents */
5415 i = 0;
5416 j = 0;
5417 while (i < sum_extents) {
5418 e[j].start = e[i].start;
5419 e[j].size = find_size(e, &i, sum_extents);
5420 j++;
5421 if (e[j-1].size == 0)
5422 break;
5423 }
5424
5425 pos = 0;
5426 maxsize = 0;
5427 start_extent = 0;
5428 i = 0;
5429 do {
5430 unsigned long long esize;
5431
5432 esize = e[i].start - pos;
5433 if (esize >= maxsize) {
5434 maxsize = esize;
5435 start = pos;
5436 start_extent = i;
5437 }
5438 pos = e[i].start + e[i].size;
5439 i++;
5440 } while (e[i-1].size);
5441 free(e);
5442
a7dd165b
DW
5443 if (maxsize == 0)
5444 return 0;
5445
5446 /* FIXME assumes volume at offset 0 is the first volume in a
5447 * container
5448 */
0dcecb2e
DW
5449 if (start_extent > 0)
5450 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5451 else
5452 reserve = 0;
5453
5454 if (maxsize < reserve)
a7dd165b 5455 return 0;
0dcecb2e 5456
5551b113 5457 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 5458 if (start + reserve > super->create_offset)
a7dd165b 5459 return 0; /* start overflows create_offset */
0dcecb2e
DW
5460 super->create_offset = start + reserve;
5461
5462 return maxsize - reserve;
5463}
5464
88c32bb1
DW
5465static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5466{
5467 if (level < 0 || level == 6 || level == 4)
5468 return 0;
5469
5470 /* if we have an orom prevent invalid raid levels */
5471 if (orom)
5472 switch (level) {
5473 case 0: return imsm_orom_has_raid0(orom);
5474 case 1:
5475 if (raiddisks > 2)
5476 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5477 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5478 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5479 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5480 }
5481 else
5482 return 1; /* not on an Intel RAID platform so anything goes */
5483
5484 return 0;
5485}
5486
ca9de185
LM
5487
5488static int
5489active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5490 int dpa, int verbose)
5491{
5492 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5493 struct mdstat_ent *memb = NULL;
5494 int count = 0;
5495 int num = 0;
5496 struct md_list *dv = NULL;
5497 int found;
5498
5499 for (memb = mdstat ; memb ; memb = memb->next) {
5500 if (memb->metadata_version &&
5501 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5502 (strcmp(&memb->metadata_version[9], name) == 0) &&
5503 !is_subarray(memb->metadata_version+9) &&
5504 memb->members) {
5505 struct dev_member *dev = memb->members;
5506 int fd = -1;
5507 while(dev && (fd < 0)) {
503975b9
N
5508 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5509 num = sprintf(path, "%s%s", "/dev/", dev->name);
5510 if (num > 0)
5511 fd = open(path, O_RDONLY, 0);
5512 if ((num <= 0) || (fd < 0)) {
5513 pr_vrb(": Cannot open %s: %s\n",
5514 dev->name, strerror(errno));
ca9de185 5515 }
503975b9 5516 free(path);
ca9de185
LM
5517 dev = dev->next;
5518 }
5519 found = 0;
5520 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5521 struct mdstat_ent *vol;
5522 for (vol = mdstat ; vol ; vol = vol->next) {
5523 if ((vol->active > 0) &&
5524 vol->metadata_version &&
5525 is_container_member(vol, memb->dev)) {
5526 found++;
5527 count++;
5528 }
5529 }
5530 if (*devlist && (found < dpa)) {
503975b9
N
5531 dv = xcalloc(1, sizeof(*dv));
5532 dv->devname = xmalloc(strlen(memb->dev) + strlen("/dev/") + 1);
5533 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5534 dv->found = found;
5535 dv->used = 0;
5536 dv->next = *devlist;
5537 *devlist = dv;
ca9de185
LM
5538 }
5539 }
5540 if (fd >= 0)
5541 close(fd);
5542 }
5543 }
5544 free_mdstat(mdstat);
5545 return count;
5546}
5547
5548#ifdef DEBUG_LOOP
5549static struct md_list*
5550get_loop_devices(void)
5551{
5552 int i;
5553 struct md_list *devlist = NULL;
5554 struct md_list *dv = NULL;
5555
5556 for(i = 0; i < 12; i++) {
503975b9
N
5557 dv = xcalloc(1, sizeof(*dv));
5558 dv->devname = xmalloc(40);
ca9de185
LM
5559 sprintf(dv->devname, "/dev/loop%d", i);
5560 dv->next = devlist;
5561 devlist = dv;
5562 }
5563 return devlist;
5564}
5565#endif
5566
5567static struct md_list*
5568get_devices(const char *hba_path)
5569{
5570 struct md_list *devlist = NULL;
5571 struct md_list *dv = NULL;
5572 struct dirent *ent;
5573 DIR *dir;
5574 int err = 0;
5575
5576#if DEBUG_LOOP
5577 devlist = get_loop_devices();
5578 return devlist;
5579#endif
5580 /* scroll through /sys/dev/block looking for devices attached to
5581 * this hba
5582 */
5583 dir = opendir("/sys/dev/block");
5584 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5585 int fd;
5586 char buf[1024];
5587 int major, minor;
5588 char *path = NULL;
5589 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5590 continue;
5591 path = devt_to_devpath(makedev(major, minor));
5592 if (!path)
5593 continue;
5594 if (!path_attached_to_hba(path, hba_path)) {
5595 free(path);
5596 path = NULL;
5597 continue;
5598 }
5599 free(path);
5600 path = NULL;
5601 fd = dev_open(ent->d_name, O_RDONLY);
5602 if (fd >= 0) {
5603 fd2devname(fd, buf);
5604 close(fd);
5605 } else {
e7b84f9d 5606 pr_err("cannot open device: %s\n",
ca9de185
LM
5607 ent->d_name);
5608 continue;
5609 }
5610
5611
503975b9
N
5612 dv = xcalloc(1, sizeof(*dv));
5613 dv->devname = xstrdup(buf);
ca9de185
LM
5614 dv->next = devlist;
5615 devlist = dv;
5616 }
5617 if (err) {
5618 while(devlist) {
5619 dv = devlist;
5620 devlist = devlist->next;
5621 free(dv->devname);
5622 free(dv);
5623 }
5624 }
562aa102 5625 closedir(dir);
ca9de185
LM
5626 return devlist;
5627}
5628
5629static int
5630count_volumes_list(struct md_list *devlist, char *homehost,
5631 int verbose, int *found)
5632{
5633 struct md_list *tmpdev;
5634 int count = 0;
5635 struct supertype *st = NULL;
5636
5637 /* first walk the list of devices to find a consistent set
5638 * that match the criterea, if that is possible.
5639 * We flag the ones we like with 'used'.
5640 */
5641 *found = 0;
5642 st = match_metadata_desc_imsm("imsm");
5643 if (st == NULL) {
5644 pr_vrb(": cannot allocate memory for imsm supertype\n");
5645 return 0;
5646 }
5647
5648 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5649 char *devname = tmpdev->devname;
5650 struct stat stb;
5651 struct supertype *tst;
5652 int dfd;
5653 if (tmpdev->used > 1)
5654 continue;
5655 tst = dup_super(st);
5656 if (tst == NULL) {
5657 pr_vrb(": cannot allocate memory for imsm supertype\n");
5658 goto err_1;
5659 }
5660 tmpdev->container = 0;
5661 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5662 if (dfd < 0) {
5663 dprintf(": cannot open device %s: %s\n",
5664 devname, strerror(errno));
5665 tmpdev->used = 2;
5666 } else if (fstat(dfd, &stb)< 0) {
5667 /* Impossible! */
5668 dprintf(": fstat failed for %s: %s\n",
5669 devname, strerror(errno));
5670 tmpdev->used = 2;
5671 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5672 dprintf(": %s is not a block device.\n",
5673 devname);
5674 tmpdev->used = 2;
5675 } else if (must_be_container(dfd)) {
5676 struct supertype *cst;
5677 cst = super_by_fd(dfd, NULL);
5678 if (cst == NULL) {
5679 dprintf(": cannot recognize container type %s\n",
5680 devname);
5681 tmpdev->used = 2;
5682 } else if (tst->ss != st->ss) {
5683 dprintf(": non-imsm container - ignore it: %s\n",
5684 devname);
5685 tmpdev->used = 2;
5686 } else if (!tst->ss->load_container ||
5687 tst->ss->load_container(tst, dfd, NULL))
5688 tmpdev->used = 2;
5689 else {
5690 tmpdev->container = 1;
5691 }
5692 if (cst)
5693 cst->ss->free_super(cst);
5694 } else {
5695 tmpdev->st_rdev = stb.st_rdev;
5696 if (tst->ss->load_super(tst,dfd, NULL)) {
5697 dprintf(": no RAID superblock on %s\n",
5698 devname);
5699 tmpdev->used = 2;
5700 } else if (tst->ss->compare_super == NULL) {
5701 dprintf(": Cannot assemble %s metadata on %s\n",
5702 tst->ss->name, devname);
5703 tmpdev->used = 2;
5704 }
5705 }
5706 if (dfd >= 0)
5707 close(dfd);
5708 if (tmpdev->used == 2 || tmpdev->used == 4) {
5709 /* Ignore unrecognised devices during auto-assembly */
5710 goto loop;
5711 }
5712 else {
5713 struct mdinfo info;
5714 tst->ss->getinfo_super(tst, &info, NULL);
5715
5716 if (st->minor_version == -1)
5717 st->minor_version = tst->minor_version;
5718
5719 if (memcmp(info.uuid, uuid_zero,
5720 sizeof(int[4])) == 0) {
5721 /* this is a floating spare. It cannot define
5722 * an array unless there are no more arrays of
5723 * this type to be found. It can be included
5724 * in an array of this type though.
5725 */
5726 tmpdev->used = 3;
5727 goto loop;
5728 }
5729
5730 if (st->ss != tst->ss ||
5731 st->minor_version != tst->minor_version ||
5732 st->ss->compare_super(st, tst) != 0) {
5733 /* Some mismatch. If exactly one array matches this host,
5734 * we can resolve on that one.
5735 * Or, if we are auto assembling, we just ignore the second
5736 * for now.
5737 */
5738 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5739 devname);
5740 goto loop;
5741 }
5742 tmpdev->used = 1;
5743 *found = 1;
5744 dprintf("found: devname: %s\n", devname);
5745 }
5746 loop:
5747 if (tst)
5748 tst->ss->free_super(tst);
5749 }
5750 if (*found != 0) {
5751 int err;
5752 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5753 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5754 for (iter = head; iter; iter = iter->next) {
5755 dprintf("content->text_version: %s vol\n",
5756 iter->text_version);
5757 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5758 /* do not assemble arrays with unsupported
5759 configurations */
5760 dprintf(": Cannot activate member %s.\n",
5761 iter->text_version);
5762 } else
5763 count++;
5764 }
5765 sysfs_free(head);
5766
5767 } else {
5768 dprintf(" no valid super block on device list: err: %d %p\n",
5769 err, st->sb);
5770 }
5771 } else {
5772 dprintf(" no more devices to examin\n");
5773 }
5774
5775 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5776 if ((tmpdev->used == 1) && (tmpdev->found)) {
5777 if (count) {
5778 if (count < tmpdev->found)
5779 count = 0;
5780 else
5781 count -= tmpdev->found;
5782 }
5783 }
5784 if (tmpdev->used == 1)
5785 tmpdev->used = 4;
5786 }
5787 err_1:
5788 if (st)
5789 st->ss->free_super(st);
5790 return count;
5791}
5792
5793
5794static int
5795count_volumes(char *hba, int dpa, int verbose)
5796{
5797 struct md_list *devlist = NULL;
5798 int count = 0;
5799 int found = 0;;
5800
5801 devlist = get_devices(hba);
5802 /* if no intel devices return zero volumes */
5803 if (devlist == NULL)
5804 return 0;
5805
5806 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5807 dprintf(" path: %s active arrays: %d\n", hba, count);
5808 if (devlist == NULL)
5809 return 0;
5810 do {
5811 found = 0;
5812 count += count_volumes_list(devlist,
5813 NULL,
5814 verbose,
5815 &found);
5816 dprintf("found %d count: %d\n", found, count);
5817 } while (found);
5818
5819 dprintf("path: %s total number of volumes: %d\n", hba, count);
5820
5821 while(devlist) {
5822 struct md_list *dv = devlist;
5823 devlist = devlist->next;
5824 free(dv->devname);
5825 free(dv);
5826 }
5827 return count;
5828}
5829
cd9d1ac7
DW
5830static int imsm_default_chunk(const struct imsm_orom *orom)
5831{
5832 /* up to 512 if the plaform supports it, otherwise the platform max.
5833 * 128 if no platform detected
5834 */
5835 int fs = max(7, orom ? fls(orom->sss) : 0);
5836
5837 return min(512, (1 << fs));
5838}
73408129 5839
6592ce37
DW
5840static int
5841validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 5842 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 5843{
660260d0
DW
5844 /* check/set platform and metadata limits/defaults */
5845 if (super->orom && raiddisks > super->orom->dpa) {
5846 pr_vrb(": platform supports a maximum of %d disks per array\n",
5847 super->orom->dpa);
73408129
LM
5848 return 0;
5849 }
5850
5851 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5852 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5853 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5854 level, raiddisks, raiddisks > 1 ? "s" : "");
5855 return 0;
5856 }
cd9d1ac7
DW
5857
5858 if (chunk && (*chunk == 0 || *chunk == UnSet))
5859 *chunk = imsm_default_chunk(super->orom);
5860
5861 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5862 pr_vrb(": platform does not support a chunk size of: "
5863 "%d\n", *chunk);
5864 return 0;
6592ce37 5865 }
cd9d1ac7 5866
6592ce37
DW
5867 if (layout != imsm_level_to_layout(level)) {
5868 if (level == 5)
5869 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5870 else if (level == 10)
5871 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5872 else
5873 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5874 layout, level);
5875 return 0;
5876 }
2cc699af
CA
5877
5878 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && chunk &&
5879 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5880 pr_vrb(": platform does not support a volume size over 2TB\n");
5881 return 0;
5882 }
6592ce37
DW
5883 return 1;
5884}
5885
c2c087e6
DW
5886/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5887 * FIX ME add ahci details
5888 */
8b353278 5889static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5890 int layout, int raiddisks, int *chunk,
af4348dd
N
5891 unsigned long long size,
5892 unsigned long long data_offset,
5893 char *dev,
2c514b71
NB
5894 unsigned long long *freesize,
5895 int verbose)
cdddbdbc 5896{
c2c087e6
DW
5897 struct stat stb;
5898 struct intel_super *super = st->sb;
b2916f25 5899 struct imsm_super *mpb;
c2c087e6
DW
5900 struct dl *dl;
5901 unsigned long long pos = 0;
5902 unsigned long long maxsize;
5903 struct extent *e;
5904 int i;
cdddbdbc 5905
88c32bb1
DW
5906 /* We must have the container info already read in. */
5907 if (!super)
c2c087e6
DW
5908 return 0;
5909
b2916f25
JS
5910 mpb = super->anchor;
5911
2cc699af 5912 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
e7b84f9d 5913 pr_err("RAID gemetry validation failed. "
d54559f0 5914 "Cannot proceed with the action(s).\n");
c2c087e6 5915 return 0;
d54559f0 5916 }
c2c087e6
DW
5917 if (!dev) {
5918 /* General test: make sure there is space for
2da8544a
DW
5919 * 'raiddisks' device extents of size 'size' at a given
5920 * offset
c2c087e6 5921 */
e46273eb 5922 unsigned long long minsize = size;
b7528a20 5923 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5924 int dcnt = 0;
5925 if (minsize == 0)
5926 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5927 for (dl = super->disks; dl ; dl = dl->next) {
5928 int found = 0;
5929
bf5a934a 5930 pos = 0;
c2c087e6
DW
5931 i = 0;
5932 e = get_extents(super, dl);
5933 if (!e) continue;
5934 do {
5935 unsigned long long esize;
5936 esize = e[i].start - pos;
5937 if (esize >= minsize)
5938 found = 1;
b7528a20 5939 if (found && start_offset == MaxSector) {
2da8544a
DW
5940 start_offset = pos;
5941 break;
5942 } else if (found && pos != start_offset) {
5943 found = 0;
5944 break;
5945 }
c2c087e6
DW
5946 pos = e[i].start + e[i].size;
5947 i++;
5948 } while (e[i-1].size);
5949 if (found)
5950 dcnt++;
5951 free(e);
5952 }
5953 if (dcnt < raiddisks) {
2c514b71 5954 if (verbose)
e7b84f9d 5955 pr_err("imsm: Not enough "
2c514b71
NB
5956 "devices with space for this array "
5957 "(%d < %d)\n",
5958 dcnt, raiddisks);
c2c087e6
DW
5959 return 0;
5960 }
5961 return 1;
5962 }
0dcecb2e 5963
c2c087e6
DW
5964 /* This device must be a member of the set */
5965 if (stat(dev, &stb) < 0)
5966 return 0;
5967 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5968 return 0;
5969 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5970 if (dl->major == (int)major(stb.st_rdev) &&
5971 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5972 break;
5973 }
5974 if (!dl) {
2c514b71 5975 if (verbose)
e7b84f9d 5976 pr_err("%s is not in the "
2c514b71 5977 "same imsm set\n", dev);
c2c087e6 5978 return 0;
a20d2ba5
DW
5979 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5980 /* If a volume is present then the current creation attempt
5981 * cannot incorporate new spares because the orom may not
5982 * understand this configuration (all member disks must be
5983 * members of each array in the container).
5984 */
e7b84f9d 5985 pr_err("%s is a spare and a volume"
a20d2ba5 5986 " is already defined for this container\n", dev);
e7b84f9d 5987 pr_err("The option-rom requires all member"
a20d2ba5
DW
5988 " disks to be a member of all volumes\n");
5989 return 0;
5fe62b94
WD
5990 } else if (super->orom && mpb->num_raid_devs > 0 &&
5991 mpb->num_disks != raiddisks) {
e7b84f9d 5992 pr_err("The option-rom requires all member"
5fe62b94
WD
5993 " disks to be a member of all volumes\n");
5994 return 0;
c2c087e6 5995 }
0dcecb2e
DW
5996
5997 /* retrieve the largest free space block */
c2c087e6
DW
5998 e = get_extents(super, dl);
5999 maxsize = 0;
6000 i = 0;
0dcecb2e
DW
6001 if (e) {
6002 do {
6003 unsigned long long esize;
6004
6005 esize = e[i].start - pos;
6006 if (esize >= maxsize)
6007 maxsize = esize;
6008 pos = e[i].start + e[i].size;
6009 i++;
6010 } while (e[i-1].size);
6011 dl->e = e;
6012 dl->extent_cnt = i;
6013 } else {
6014 if (verbose)
e7b84f9d 6015 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6016 dev);
6017 return 0;
6018 }
6019 if (maxsize < size) {
6020 if (verbose)
e7b84f9d 6021 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6022 dev, maxsize, size);
6023 return 0;
6024 }
6025
6026 /* count total number of extents for merge */
6027 i = 0;
6028 for (dl = super->disks; dl; dl = dl->next)
6029 if (dl->e)
6030 i += dl->extent_cnt;
6031
6032 maxsize = merge_extents(super, i);
3baa56ab
LO
6033
6034 if (!check_env("IMSM_NO_PLATFORM") &&
6035 mpb->num_raid_devs > 0 && size && size != maxsize) {
e7b84f9d 6036 pr_err("attempting to create a second "
3baa56ab
LO
6037 "volume with size less then remaining space. "
6038 "Aborting...\n");
6039 return 0;
6040 }
6041
a7dd165b 6042 if (maxsize < size || maxsize == 0) {
b3071342
LD
6043 if (verbose) {
6044 if (maxsize == 0)
e7b84f9d 6045 pr_err("no free space"
b3071342
LD
6046 " left on device. Aborting...\n");
6047 else
e7b84f9d 6048 pr_err("not enough space"
b3071342
LD
6049 " to create volume of given size"
6050 " (%llu < %llu). Aborting...\n",
6051 maxsize, size);
6052 }
0dcecb2e 6053 return 0;
0dcecb2e
DW
6054 }
6055
c2c087e6
DW
6056 *freesize = maxsize;
6057
ca9de185
LM
6058 if (super->orom) {
6059 int count = count_volumes(super->hba->path,
6060 super->orom->dpa, verbose);
6061 if (super->orom->vphba <= count) {
40110b90 6062 pr_vrb(": platform does not support more than %d raid volumes.\n",
ca9de185
LM
6063 super->orom->vphba);
6064 return 0;
6065 }
6066 }
c2c087e6 6067 return 1;
cdddbdbc
DW
6068}
6069
13bcac90 6070static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
6071 unsigned long long size, int chunk,
6072 unsigned long long *freesize)
6073{
6074 struct intel_super *super = st->sb;
6075 struct imsm_super *mpb = super->anchor;
6076 struct dl *dl;
6077 int i;
6078 int extent_cnt;
6079 struct extent *e;
6080 unsigned long long maxsize;
6081 unsigned long long minsize;
6082 int cnt;
6083 int used;
6084
6085 /* find the largest common start free region of the possible disks */
6086 used = 0;
6087 extent_cnt = 0;
6088 cnt = 0;
6089 for (dl = super->disks; dl; dl = dl->next) {
6090 dl->raiddisk = -1;
6091
6092 if (dl->index >= 0)
6093 used++;
6094
6095 /* don't activate new spares if we are orom constrained
6096 * and there is already a volume active in the container
6097 */
6098 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6099 continue;
6100
6101 e = get_extents(super, dl);
6102 if (!e)
6103 continue;
6104 for (i = 1; e[i-1].size; i++)
6105 ;
6106 dl->e = e;
6107 dl->extent_cnt = i;
6108 extent_cnt += i;
6109 cnt++;
6110 }
6111
6112 maxsize = merge_extents(super, extent_cnt);
6113 minsize = size;
6114 if (size == 0)
612e59d8
CA
6115 /* chunk is in K */
6116 minsize = chunk * 2;
efb30e7f
DW
6117
6118 if (cnt < raiddisks ||
6119 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
6120 maxsize < minsize ||
6121 maxsize == 0) {
e7b84f9d 6122 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
6123 return 0; /* No enough free spaces large enough */
6124 }
6125
6126 if (size == 0) {
6127 size = maxsize;
6128 if (chunk) {
612e59d8
CA
6129 size /= 2 * chunk;
6130 size *= 2 * chunk;
efb30e7f 6131 }
f878b242
LM
6132 maxsize = size;
6133 }
6134 if (!check_env("IMSM_NO_PLATFORM") &&
6135 mpb->num_raid_devs > 0 && size && size != maxsize) {
e7b84f9d 6136 pr_err("attempting to create a second "
f878b242
LM
6137 "volume with size less then remaining space. "
6138 "Aborting...\n");
6139 return 0;
efb30e7f 6140 }
efb30e7f
DW
6141 cnt = 0;
6142 for (dl = super->disks; dl; dl = dl->next)
6143 if (dl->e)
6144 dl->raiddisk = cnt++;
6145
6146 *freesize = size;
6147
13bcac90
AK
6148 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6149
efb30e7f
DW
6150 return 1;
6151}
6152
13bcac90
AK
6153static int reserve_space(struct supertype *st, int raiddisks,
6154 unsigned long long size, int chunk,
6155 unsigned long long *freesize)
6156{
6157 struct intel_super *super = st->sb;
6158 struct dl *dl;
6159 int cnt;
6160 int rv = 0;
6161
6162 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6163 if (rv) {
6164 cnt = 0;
6165 for (dl = super->disks; dl; dl = dl->next)
6166 if (dl->e)
6167 dl->raiddisk = cnt++;
6168 rv = 1;
6169 }
6170
6171 return rv;
6172}
6173
bf5a934a 6174static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 6175 int raiddisks, int *chunk, unsigned long long size,
af4348dd 6176 unsigned long long data_offset,
bf5a934a
DW
6177 char *dev, unsigned long long *freesize,
6178 int verbose)
6179{
6180 int fd, cfd;
6181 struct mdinfo *sra;
20cbe8d2 6182 int is_member = 0;
bf5a934a 6183
d54559f0
LM
6184 /* load capability
6185 * if given unused devices create a container
bf5a934a
DW
6186 * if given given devices in a container create a member volume
6187 */
6188 if (level == LEVEL_CONTAINER) {
6189 /* Must be a fresh device to add to a container */
6190 return validate_geometry_imsm_container(st, level, layout,
c21e737b 6191 raiddisks,
af4348dd
N
6192 chunk?*chunk:0,
6193 size, data_offset,
bf5a934a
DW
6194 dev, freesize,
6195 verbose);
6196 }
9587c373 6197
8592f29d 6198 if (!dev) {
e91a3bad 6199 if (st->sb) {
ca9de185 6200 struct intel_super *super = st->sb;
e91a3bad 6201 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 6202 raiddisks, chunk, size,
e91a3bad
LM
6203 verbose))
6204 return 0;
efb30e7f
DW
6205 /* we are being asked to automatically layout a
6206 * new volume based on the current contents of
6207 * the container. If the the parameters can be
6208 * satisfied reserve_space will record the disks,
6209 * start offset, and size of the volume to be
6210 * created. add_to_super and getinfo_super
6211 * detect when autolayout is in progress.
6212 */
ca9de185
LM
6213 /* assuming that freesize is always given when array is
6214 created */
6215 if (super->orom && freesize) {
6216 int count;
6217 count = count_volumes(super->hba->path,
6218 super->orom->dpa, verbose);
6219 if (super->orom->vphba <= count) {
6220 pr_vrb(": platform does not support more"
40110b90 6221 " than %d raid volumes.\n",
ca9de185
LM
6222 super->orom->vphba);
6223 return 0;
6224 }
6225 }
e91a3bad
LM
6226 if (freesize)
6227 return reserve_space(st, raiddisks, size,
6228 chunk?*chunk:0, freesize);
8592f29d
N
6229 }
6230 return 1;
6231 }
bf5a934a
DW
6232 if (st->sb) {
6233 /* creating in a given container */
6234 return validate_geometry_imsm_volume(st, level, layout,
6235 raiddisks, chunk, size,
af4348dd 6236 data_offset,
bf5a934a
DW
6237 dev, freesize, verbose);
6238 }
6239
bf5a934a
DW
6240 /* This device needs to be a device in an 'imsm' container */
6241 fd = open(dev, O_RDONLY|O_EXCL, 0);
6242 if (fd >= 0) {
6243 if (verbose)
e7b84f9d
N
6244 pr_err("Cannot create this array on device %s\n",
6245 dev);
bf5a934a
DW
6246 close(fd);
6247 return 0;
6248 }
6249 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6250 if (verbose)
e7b84f9d 6251 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
6252 dev, strerror(errno));
6253 return 0;
6254 }
6255 /* Well, it is in use by someone, maybe an 'imsm' container. */
6256 cfd = open_container(fd);
20cbe8d2 6257 close(fd);
bf5a934a 6258 if (cfd < 0) {
bf5a934a 6259 if (verbose)
e7b84f9d 6260 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
6261 dev);
6262 return 0;
6263 }
6264 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 6265 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
6266 strcmp(sra->text_version, "imsm") == 0)
6267 is_member = 1;
6268 sysfs_free(sra);
6269 if (is_member) {
bf5a934a
DW
6270 /* This is a member of a imsm container. Load the container
6271 * and try to create a volume
6272 */
6273 struct intel_super *super;
6274
ec50f7b6 6275 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a
DW
6276 st->sb = super;
6277 st->container_dev = fd2devnum(cfd);
6278 close(cfd);
6279 return validate_geometry_imsm_volume(st, level, layout,
6280 raiddisks, chunk,
af4348dd 6281 size, data_offset, dev,
ecbd9e81
N
6282 freesize, 1)
6283 ? 1 : -1;
bf5a934a 6284 }
20cbe8d2 6285 }
bf5a934a 6286
20cbe8d2 6287 if (verbose)
e7b84f9d 6288 pr_err("failed container membership check\n");
20cbe8d2
AW
6289
6290 close(cfd);
6291 return 0;
bf5a934a 6292}
0bd16cf2 6293
30f58b22 6294static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
6295{
6296 struct intel_super *super = st->sb;
6297
30f58b22
DW
6298 if (level && *level == UnSet)
6299 *level = LEVEL_CONTAINER;
6300
6301 if (level && layout && *layout == UnSet)
6302 *layout = imsm_level_to_layout(*level);
0bd16cf2 6303
cd9d1ac7
DW
6304 if (chunk && (*chunk == UnSet || *chunk == 0))
6305 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
6306}
6307
33414a01
DW
6308static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6309
6310static int kill_subarray_imsm(struct supertype *st)
6311{
6312 /* remove the subarray currently referenced by ->current_vol */
6313 __u8 i;
6314 struct intel_dev **dp;
6315 struct intel_super *super = st->sb;
6316 __u8 current_vol = super->current_vol;
6317 struct imsm_super *mpb = super->anchor;
6318
6319 if (super->current_vol < 0)
6320 return 2;
6321 super->current_vol = -1; /* invalidate subarray cursor */
6322
6323 /* block deletions that would change the uuid of active subarrays
6324 *
6325 * FIXME when immutable ids are available, but note that we'll
6326 * also need to fixup the invalidated/active subarray indexes in
6327 * mdstat
6328 */
6329 for (i = 0; i < mpb->num_raid_devs; i++) {
6330 char subarray[4];
6331
6332 if (i < current_vol)
6333 continue;
6334 sprintf(subarray, "%u", i);
6335 if (is_subarray_active(subarray, st->devname)) {
e7b84f9d
N
6336 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6337 current_vol, i);
33414a01
DW
6338
6339 return 2;
6340 }
6341 }
6342
6343 if (st->update_tail) {
503975b9 6344 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 6345
33414a01
DW
6346 u->type = update_kill_array;
6347 u->dev_idx = current_vol;
6348 append_metadata_update(st, u, sizeof(*u));
6349
6350 return 0;
6351 }
6352
6353 for (dp = &super->devlist; *dp;)
6354 if ((*dp)->index == current_vol) {
6355 *dp = (*dp)->next;
6356 } else {
6357 handle_missing(super, (*dp)->dev);
6358 if ((*dp)->index > current_vol)
6359 (*dp)->index--;
6360 dp = &(*dp)->next;
6361 }
6362
6363 /* no more raid devices, all active components are now spares,
6364 * but of course failed are still failed
6365 */
6366 if (--mpb->num_raid_devs == 0) {
6367 struct dl *d;
6368
6369 for (d = super->disks; d; d = d->next)
a8619d23
AK
6370 if (d->index > -2)
6371 mark_spare(d);
33414a01
DW
6372 }
6373
6374 super->updates_pending++;
6375
6376 return 0;
6377}
aa534678 6378
a951a4f7 6379static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 6380 char *update, struct mddev_ident *ident)
aa534678
DW
6381{
6382 /* update the subarray currently referenced by ->current_vol */
6383 struct intel_super *super = st->sb;
6384 struct imsm_super *mpb = super->anchor;
6385
aa534678
DW
6386 if (strcmp(update, "name") == 0) {
6387 char *name = ident->name;
a951a4f7
N
6388 char *ep;
6389 int vol;
aa534678 6390
a951a4f7 6391 if (is_subarray_active(subarray, st->devname)) {
e7b84f9d 6392 pr_err("Unable to update name of active subarray\n");
aa534678
DW
6393 return 2;
6394 }
6395
6396 if (!check_name(super, name, 0))
6397 return 2;
6398
a951a4f7
N
6399 vol = strtoul(subarray, &ep, 10);
6400 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6401 return 2;
6402
aa534678 6403 if (st->update_tail) {
503975b9 6404 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 6405
aa534678 6406 u->type = update_rename_array;
a951a4f7 6407 u->dev_idx = vol;
aa534678
DW
6408 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6409 append_metadata_update(st, u, sizeof(*u));
6410 } else {
6411 struct imsm_dev *dev;
6412 int i;
6413
a951a4f7 6414 dev = get_imsm_dev(super, vol);
aa534678
DW
6415 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6416 for (i = 0; i < mpb->num_raid_devs; i++) {
6417 dev = get_imsm_dev(super, i);
6418 handle_missing(super, dev);
6419 }
6420 super->updates_pending++;
6421 }
6422 } else
6423 return 2;
6424
6425 return 0;
6426}
d1e02575 6427#endif /* MDASSEMBLE */
bf5a934a 6428
28bce06f
AK
6429static int is_gen_migration(struct imsm_dev *dev)
6430{
7534230b
AK
6431 if (dev == NULL)
6432 return 0;
6433
28bce06f
AK
6434 if (!dev->vol.migr_state)
6435 return 0;
6436
6437 if (migr_type(dev) == MIGR_GEN_MIGR)
6438 return 1;
6439
6440 return 0;
6441}
6442
1e5c6983
DW
6443static int is_rebuilding(struct imsm_dev *dev)
6444{
6445 struct imsm_map *migr_map;
6446
6447 if (!dev->vol.migr_state)
6448 return 0;
6449
6450 if (migr_type(dev) != MIGR_REBUILD)
6451 return 0;
6452
238c0a71 6453 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
6454
6455 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6456 return 1;
6457 else
6458 return 0;
6459}
6460
b4ab44d8 6461#ifndef MDASSEMBLE
6ce1fbf1
AK
6462static int is_initializing(struct imsm_dev *dev)
6463{
6464 struct imsm_map *migr_map;
6465
6466 if (!dev->vol.migr_state)
6467 return 0;
6468
6469 if (migr_type(dev) != MIGR_INIT)
6470 return 0;
6471
238c0a71 6472 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
6473
6474 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6475 return 1;
6476
6477 return 0;
6ce1fbf1 6478}
b4ab44d8 6479#endif
6ce1fbf1 6480
c47b0ff6
AK
6481static void update_recovery_start(struct intel_super *super,
6482 struct imsm_dev *dev,
6483 struct mdinfo *array)
1e5c6983
DW
6484{
6485 struct mdinfo *rebuild = NULL;
6486 struct mdinfo *d;
6487 __u32 units;
6488
6489 if (!is_rebuilding(dev))
6490 return;
6491
6492 /* Find the rebuild target, but punt on the dual rebuild case */
6493 for (d = array->devs; d; d = d->next)
6494 if (d->recovery_start == 0) {
6495 if (rebuild)
6496 return;
6497 rebuild = d;
6498 }
6499
4363fd80
DW
6500 if (!rebuild) {
6501 /* (?) none of the disks are marked with
6502 * IMSM_ORD_REBUILD, so assume they are missing and the
6503 * disk_ord_tbl was not correctly updated
6504 */
6505 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6506 return;
6507 }
6508
1e5c6983 6509 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 6510 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
6511}
6512
9e2d750d 6513#ifndef MDASSEMBLE
276d77db 6514static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 6515#endif
1e5c6983 6516
00bbdbda 6517static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 6518{
4f5bc454
DW
6519 /* Given a container loaded by load_super_imsm_all,
6520 * extract information about all the arrays into
6521 * an mdinfo tree.
00bbdbda 6522 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
6523 *
6524 * For each imsm_dev create an mdinfo, fill it in,
6525 * then look for matching devices in super->disks
6526 * and create appropriate device mdinfo.
6527 */
6528 struct intel_super *super = st->sb;
949c47a0 6529 struct imsm_super *mpb = super->anchor;
4f5bc454 6530 struct mdinfo *rest = NULL;
00bbdbda 6531 unsigned int i;
81219e70 6532 int sb_errors = 0;
abef11a3
AK
6533 struct dl *d;
6534 int spare_disks = 0;
cdddbdbc 6535
19482bcc
AK
6536 /* do not assemble arrays when not all attributes are supported */
6537 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 6538 sb_errors = 1;
e7b84f9d 6539 pr_err("Unsupported attributes in IMSM metadata."
81219e70 6540 "Arrays activation is blocked.\n");
19482bcc
AK
6541 }
6542
a06d022d 6543 /* check for bad blocks */
81219e70 6544 if (imsm_bbm_log_size(super->anchor)) {
e7b84f9d
N
6545 pr_err("BBM log found in IMSM metadata."
6546 "Arrays activation is blocked.\n");
81219e70
LM
6547 sb_errors = 1;
6548 }
6549
604b746f 6550
abef11a3
AK
6551 /* count spare devices, not used in maps
6552 */
6553 for (d = super->disks; d; d = d->next)
6554 if (d->index == -1)
6555 spare_disks++;
6556
4f5bc454 6557 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
6558 struct imsm_dev *dev;
6559 struct imsm_map *map;
86e3692b 6560 struct imsm_map *map2;
4f5bc454 6561 struct mdinfo *this;
a6482415
N
6562 int slot;
6563#ifndef MDASSEMBLE
6564 int chunk;
6565#endif
00bbdbda
N
6566 char *ep;
6567
6568 if (subarray &&
6569 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6570 continue;
6571
6572 dev = get_imsm_dev(super, i);
238c0a71
AK
6573 map = get_imsm_map(dev, MAP_0);
6574 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 6575
1ce0101c
DW
6576 /* do not publish arrays that are in the middle of an
6577 * unsupported migration
6578 */
6579 if (dev->vol.migr_state &&
28bce06f 6580 (migr_type(dev) == MIGR_STATE_CHANGE)) {
e7b84f9d 6581 pr_err("cannot assemble volume '%.16s':"
1ce0101c
DW
6582 " unsupported migration in progress\n",
6583 dev->volume);
6584 continue;
6585 }
2db86302
LM
6586 /* do not publish arrays that are not support by controller's
6587 * OROM/EFI
6588 */
1ce0101c 6589
503975b9 6590 this = xmalloc(sizeof(*this));
4f5bc454 6591
301406c9 6592 super->current_vol = i;
a5d85af7 6593 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 6594 this->next = rest;
81219e70 6595#ifndef MDASSEMBLE
a6482415 6596 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
6597 /* mdadm does not support all metadata features- set the bit in all arrays state */
6598 if (!validate_geometry_imsm_orom(super,
6599 get_imsm_raid_level(map), /* RAID level */
6600 imsm_level_to_layout(get_imsm_raid_level(map)),
6601 map->num_members, /* raid disks */
2cc699af 6602 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 6603 1 /* verbose */)) {
e7b84f9d 6604 pr_err("IMSM RAID geometry validation"
446894ea 6605 " failed. Array %s activation is blocked.\n",
81219e70
LM
6606 dev->volume);
6607 this->array.state |=
6608 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6609 (1<<MD_SB_BLOCK_VOLUME);
6610 }
6611#endif
6612
6613 /* if array has bad blocks, set suitable bit in all arrays state */
6614 if (sb_errors)
6615 this->array.state |=
6616 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6617 (1<<MD_SB_BLOCK_VOLUME);
6618
4f5bc454 6619 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 6620 unsigned long long recovery_start;
4f5bc454
DW
6621 struct mdinfo *info_d;
6622 struct dl *d;
6623 int idx;
9a1608e5 6624 int skip;
7eef0453 6625 __u32 ord;
4f5bc454 6626
9a1608e5 6627 skip = 0;
238c0a71
AK
6628 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6629 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
6630 for (d = super->disks; d ; d = d->next)
6631 if (d->index == idx)
0fbd635c 6632 break;
4f5bc454 6633
1e5c6983 6634 recovery_start = MaxSector;
4f5bc454 6635 if (d == NULL)
9a1608e5 6636 skip = 1;
25ed7e59 6637 if (d && is_failed(&d->disk))
9a1608e5 6638 skip = 1;
7eef0453 6639 if (ord & IMSM_ORD_REBUILD)
1e5c6983 6640 recovery_start = 0;
9a1608e5
DW
6641
6642 /*
6643 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
6644 * reset resync start to avoid a dirty-degraded
6645 * situation when performing the intial sync
9a1608e5
DW
6646 *
6647 * FIXME handle dirty degraded
6648 */
1e5c6983 6649 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 6650 this->resync_start = MaxSector;
9a1608e5
DW
6651 if (skip)
6652 continue;
4f5bc454 6653
503975b9 6654 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
6655 info_d->next = this->devs;
6656 this->devs = info_d;
6657
4f5bc454
DW
6658 info_d->disk.number = d->index;
6659 info_d->disk.major = d->major;
6660 info_d->disk.minor = d->minor;
6661 info_d->disk.raid_disk = slot;
1e5c6983 6662 info_d->recovery_start = recovery_start;
86e3692b
AK
6663 if (map2) {
6664 if (slot < map2->num_members)
6665 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6666 else
6667 this->array.spare_disks++;
86e3692b
AK
6668 } else {
6669 if (slot < map->num_members)
6670 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6671 else
6672 this->array.spare_disks++;
86e3692b 6673 }
1e5c6983
DW
6674 if (info_d->recovery_start == MaxSector)
6675 this->array.working_disks++;
4f5bc454
DW
6676
6677 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113
CA
6678 info_d->data_offset = pba_of_lba0(map);
6679 info_d->component_size = blocks_per_member(map);
4f5bc454 6680 }
1e5c6983 6681 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 6682 update_recovery_start(super, dev, this);
abef11a3 6683 this->array.spare_disks += spare_disks;
276d77db 6684
9e2d750d 6685#ifndef MDASSEMBLE
276d77db
AK
6686 /* check for reshape */
6687 if (this->reshape_active == 1)
6688 recover_backup_imsm(st, this);
9e2d750d 6689#endif
9a1608e5 6690 rest = this;
4f5bc454
DW
6691 }
6692
6693 return rest;
cdddbdbc
DW
6694}
6695
845dea95 6696
3b451610
AK
6697static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6698 int failed, int look_in_map)
c2a1e7da 6699{
3b451610
AK
6700 struct imsm_map *map;
6701
6702 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
6703
6704 if (!failed)
3393c6af
DW
6705 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6706 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
6707
6708 switch (get_imsm_raid_level(map)) {
6709 case 0:
6710 return IMSM_T_STATE_FAILED;
6711 break;
6712 case 1:
6713 if (failed < map->num_members)
6714 return IMSM_T_STATE_DEGRADED;
6715 else
6716 return IMSM_T_STATE_FAILED;
6717 break;
6718 case 10:
6719 {
6720 /**
c92a2527
DW
6721 * check to see if any mirrors have failed, otherwise we
6722 * are degraded. Even numbered slots are mirrored on
6723 * slot+1
c2a1e7da 6724 */
c2a1e7da 6725 int i;
d9b420a5
N
6726 /* gcc -Os complains that this is unused */
6727 int insync = insync;
c2a1e7da
DW
6728
6729 for (i = 0; i < map->num_members; i++) {
238c0a71 6730 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
6731 int idx = ord_to_idx(ord);
6732 struct imsm_disk *disk;
c2a1e7da 6733
c92a2527
DW
6734 /* reset the potential in-sync count on even-numbered
6735 * slots. num_copies is always 2 for imsm raid10
6736 */
6737 if ((i & 1) == 0)
6738 insync = 2;
c2a1e7da 6739
c92a2527 6740 disk = get_imsm_disk(super, idx);
25ed7e59 6741 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 6742 insync--;
c2a1e7da 6743
c92a2527
DW
6744 /* no in-sync disks left in this mirror the
6745 * array has failed
6746 */
6747 if (insync == 0)
6748 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
6749 }
6750
6751 return IMSM_T_STATE_DEGRADED;
6752 }
6753 case 5:
6754 if (failed < 2)
6755 return IMSM_T_STATE_DEGRADED;
6756 else
6757 return IMSM_T_STATE_FAILED;
6758 break;
6759 default:
6760 break;
6761 }
6762
6763 return map->map_state;
6764}
6765
3b451610
AK
6766static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6767 int look_in_map)
c2a1e7da
DW
6768{
6769 int i;
6770 int failed = 0;
6771 struct imsm_disk *disk;
d5985138
AK
6772 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6773 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 6774 struct imsm_map *map_for_loop;
0556e1a2
DW
6775 __u32 ord;
6776 int idx;
d5985138 6777 int idx_1;
c2a1e7da 6778
0556e1a2
DW
6779 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6780 * disks that are being rebuilt. New failures are recorded to
6781 * map[0]. So we look through all the disks we started with and
6782 * see if any failures are still present, or if any new ones
6783 * have arrived
0556e1a2 6784 */
d5985138
AK
6785 map_for_loop = map;
6786 if (prev && (map->num_members < prev->num_members))
6787 map_for_loop = prev;
68fe4598
LD
6788
6789 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 6790 idx_1 = -255;
238c0a71
AK
6791 /* when MAP_X is passed both maps failures are counted
6792 */
d5985138 6793 if (prev &&
238c0a71
AK
6794 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6795 (i < prev->num_members)) {
d5985138
AK
6796 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6797 idx_1 = ord_to_idx(ord);
c2a1e7da 6798
d5985138
AK
6799 disk = get_imsm_disk(super, idx_1);
6800 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6801 failed++;
6802 }
238c0a71
AK
6803 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6804 (i < map->num_members)) {
d5985138
AK
6805 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6806 idx = ord_to_idx(ord);
6807
6808 if (idx != idx_1) {
6809 disk = get_imsm_disk(super, idx);
6810 if (!disk || is_failed(disk) ||
6811 ord & IMSM_ORD_REBUILD)
6812 failed++;
6813 }
6814 }
c2a1e7da
DW
6815 }
6816
6817 return failed;
845dea95
NB
6818}
6819
97b4d0e9
DW
6820#ifndef MDASSEMBLE
6821static int imsm_open_new(struct supertype *c, struct active_array *a,
6822 char *inst)
6823{
6824 struct intel_super *super = c->sb;
6825 struct imsm_super *mpb = super->anchor;
9587c373 6826
97b4d0e9
DW
6827 if (atoi(inst) >= mpb->num_raid_devs) {
6828 fprintf(stderr, "%s: subarry index %d, out of range\n",
6829 __func__, atoi(inst));
6830 return -ENODEV;
6831 }
6832
6833 dprintf("imsm: open_new %s\n", inst);
6834 a->info.container_member = atoi(inst);
6835 return 0;
6836}
6837
0c046afd
DW
6838static int is_resyncing(struct imsm_dev *dev)
6839{
6840 struct imsm_map *migr_map;
6841
6842 if (!dev->vol.migr_state)
6843 return 0;
6844
1484e727
DW
6845 if (migr_type(dev) == MIGR_INIT ||
6846 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6847 return 1;
6848
4c9bc37b
AK
6849 if (migr_type(dev) == MIGR_GEN_MIGR)
6850 return 0;
6851
238c0a71 6852 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 6853
4c9bc37b
AK
6854 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6855 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6856 return 1;
6857 else
6858 return 0;
6859}
6860
0556e1a2
DW
6861/* return true if we recorded new information */
6862static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6863{
0556e1a2
DW
6864 __u32 ord;
6865 int slot;
6866 struct imsm_map *map;
86c54047
DW
6867 char buf[MAX_RAID_SERIAL_LEN+3];
6868 unsigned int len, shift = 0;
0556e1a2
DW
6869
6870 /* new failures are always set in map[0] */
238c0a71 6871 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
6872
6873 slot = get_imsm_disk_slot(map, idx);
6874 if (slot < 0)
6875 return 0;
6876
6877 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6878 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6879 return 0;
6880
7d0c5e24
LD
6881 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6882 buf[MAX_RAID_SERIAL_LEN] = '\000';
6883 strcat(buf, ":0");
86c54047
DW
6884 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6885 shift = len - MAX_RAID_SERIAL_LEN + 1;
6886 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6887
f2f27e63 6888 disk->status |= FAILED_DISK;
0556e1a2 6889 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
6890 /* mark failures in second map if second map exists and this disk
6891 * in this slot.
6892 * This is valid for migration, initialization and rebuild
6893 */
6894 if (dev->vol.migr_state) {
238c0a71 6895 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
6896 int slot2 = get_imsm_disk_slot(map2, idx);
6897
6898 if ((slot2 < map2->num_members) &&
6899 (slot2 >= 0))
6900 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
6901 idx | IMSM_ORD_REBUILD);
6902 }
f21e18ca 6903 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6904 map->failed_disk_num = slot;
6905 return 1;
6906}
6907
6908static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6909{
6910 mark_failure(dev, disk, idx);
6911
6912 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6913 return;
6914
47ee5a45
DW
6915 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6916 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6917}
6918
33414a01
DW
6919static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6920{
33414a01 6921 struct dl *dl;
33414a01
DW
6922
6923 if (!super->missing)
6924 return;
33414a01
DW
6925
6926 dprintf("imsm: mark missing\n");
3d59f0c0
AK
6927 /* end process for initialization and rebuild only
6928 */
6929 if (is_gen_migration(dev) == 0) {
6930 __u8 map_state;
6931 int failed;
6932
6933 failed = imsm_count_failed(super, dev, MAP_0);
6934 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6935
6936 end_migration(dev, super, map_state);
6937 }
33414a01
DW
6938 for (dl = super->missing; dl; dl = dl->next)
6939 mark_missing(dev, &dl->disk, dl->index);
6940 super->updates_pending++;
6941}
6942
f3871fdc
AK
6943static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
6944 long long new_size)
70bdf0dc 6945{
238c0a71 6946 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
6947 unsigned long long array_blocks;
6948 struct imsm_map *map;
6949
6950 if (used_disks == 0) {
6951 /* when problems occures
6952 * return current array_blocks value
6953 */
6954 array_blocks = __le32_to_cpu(dev->size_high);
6955 array_blocks = array_blocks << 32;
6956 array_blocks += __le32_to_cpu(dev->size_low);
6957
6958 return array_blocks;
6959 }
6960
6961 /* set array size in metadata
6962 */
f3871fdc
AK
6963 if (new_size <= 0) {
6964 /* OLCE size change is caused by added disks
6965 */
6966 map = get_imsm_map(dev, MAP_0);
6967 array_blocks = blocks_per_member(map) * used_disks;
6968 } else {
6969 /* Online Volume Size Change
6970 * Using available free space
6971 */
6972 array_blocks = new_size;
6973 }
70bdf0dc
AK
6974
6975 /* round array size down to closest MB
6976 */
6977 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6978 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6979 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6980
6981 return array_blocks;
6982}
6983
28bce06f
AK
6984static void imsm_set_disk(struct active_array *a, int n, int state);
6985
0e2d1a4e
AK
6986static void imsm_progress_container_reshape(struct intel_super *super)
6987{
6988 /* if no device has a migr_state, but some device has a
6989 * different number of members than the previous device, start
6990 * changing the number of devices in this device to match
6991 * previous.
6992 */
6993 struct imsm_super *mpb = super->anchor;
6994 int prev_disks = -1;
6995 int i;
1dfaa380 6996 int copy_map_size;
0e2d1a4e
AK
6997
6998 for (i = 0; i < mpb->num_raid_devs; i++) {
6999 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7000 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7001 struct imsm_map *map2;
7002 int prev_num_members;
0e2d1a4e
AK
7003
7004 if (dev->vol.migr_state)
7005 return;
7006
7007 if (prev_disks == -1)
7008 prev_disks = map->num_members;
7009 if (prev_disks == map->num_members)
7010 continue;
7011
7012 /* OK, this array needs to enter reshape mode.
7013 * i.e it needs a migr_state
7014 */
7015
1dfaa380 7016 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
7017 prev_num_members = map->num_members;
7018 map->num_members = prev_disks;
7019 dev->vol.migr_state = 1;
7020 dev->vol.curr_migr_unit = 0;
ea672ee1 7021 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
7022 for (i = prev_num_members;
7023 i < map->num_members; i++)
7024 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 7025 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 7026 /* Copy the current map */
1dfaa380 7027 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
7028 map2->num_members = prev_num_members;
7029
f3871fdc 7030 imsm_set_array_size(dev, -1);
51d83f5d 7031 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
7032 super->updates_pending++;
7033 }
7034}
7035
aad6f216 7036/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
7037 * states are handled in imsm_set_disk() with one exception, when a
7038 * resync is stopped due to a new failure this routine will set the
7039 * 'degraded' state for the array.
7040 */
01f157d7 7041static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
7042{
7043 int inst = a->info.container_member;
7044 struct intel_super *super = a->container->sb;
949c47a0 7045 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7046 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
7047 int failed = imsm_count_failed(super, dev, MAP_0);
7048 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 7049 __u32 blocks_per_unit;
a862209d 7050
1af97990
AK
7051 if (dev->vol.migr_state &&
7052 dev->vol.migr_type == MIGR_GEN_MIGR) {
7053 /* array state change is blocked due to reshape action
aad6f216
N
7054 * We might need to
7055 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7056 * - finish the reshape (if last_checkpoint is big and action != reshape)
7057 * - update curr_migr_unit
1af97990 7058 */
aad6f216
N
7059 if (a->curr_action == reshape) {
7060 /* still reshaping, maybe update curr_migr_unit */
633b5610 7061 goto mark_checkpoint;
aad6f216
N
7062 } else {
7063 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7064 /* for some reason we aborted the reshape.
b66e591b
AK
7065 *
7066 * disable automatic metadata rollback
7067 * user action is required to recover process
aad6f216 7068 */
b66e591b 7069 if (0) {
238c0a71
AK
7070 struct imsm_map *map2 =
7071 get_imsm_map(dev, MAP_1);
7072 dev->vol.migr_state = 0;
7073 set_migr_type(dev, 0);
7074 dev->vol.curr_migr_unit = 0;
7075 memcpy(map, map2,
7076 sizeof_imsm_map(map2));
7077 super->updates_pending++;
b66e591b 7078 }
aad6f216
N
7079 }
7080 if (a->last_checkpoint >= a->info.component_size) {
7081 unsigned long long array_blocks;
7082 int used_disks;
e154ced3 7083 struct mdinfo *mdi;
aad6f216 7084
238c0a71 7085 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
7086 if (used_disks > 0) {
7087 array_blocks =
5551b113 7088 blocks_per_member(map) *
d55adef9
AK
7089 used_disks;
7090 /* round array size down to closest MB
7091 */
7092 array_blocks = (array_blocks
7093 >> SECT_PER_MB_SHIFT)
7094 << SECT_PER_MB_SHIFT;
d55adef9
AK
7095 a->info.custom_array_size = array_blocks;
7096 /* encourage manager to update array
7097 * size
7098 */
e154ced3 7099
d55adef9 7100 a->check_reshape = 1;
633b5610 7101 }
e154ced3
AK
7102 /* finalize online capacity expansion/reshape */
7103 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7104 imsm_set_disk(a,
7105 mdi->disk.raid_disk,
7106 mdi->curr_state);
7107
0e2d1a4e 7108 imsm_progress_container_reshape(super);
e154ced3 7109 }
aad6f216 7110 }
1af97990
AK
7111 }
7112
47ee5a45 7113 /* before we activate this array handle any missing disks */
33414a01
DW
7114 if (consistent == 2)
7115 handle_missing(super, dev);
1e5c6983 7116
0c046afd 7117 if (consistent == 2 &&
b7941fd6 7118 (!is_resync_complete(&a->info) ||
0c046afd
DW
7119 map_state != IMSM_T_STATE_NORMAL ||
7120 dev->vol.migr_state))
01f157d7 7121 consistent = 0;
272906ef 7122
b7941fd6 7123 if (is_resync_complete(&a->info)) {
0c046afd 7124 /* complete intialization / resync,
0556e1a2
DW
7125 * recovery and interrupted recovery is completed in
7126 * ->set_disk
0c046afd
DW
7127 */
7128 if (is_resyncing(dev)) {
7129 dprintf("imsm: mark resync done\n");
809da78e 7130 end_migration(dev, super, map_state);
115c3803 7131 super->updates_pending++;
484240d8 7132 a->last_checkpoint = 0;
115c3803 7133 }
b9172665
AK
7134 } else if ((!is_resyncing(dev) && !failed) &&
7135 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 7136 /* mark the start of the init process if nothing is failed */
b7941fd6 7137 dprintf("imsm: mark resync start\n");
1484e727 7138 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 7139 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 7140 else
8e59f3d8 7141 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 7142 super->updates_pending++;
115c3803 7143 }
a862209d 7144
633b5610 7145mark_checkpoint:
5b83bacf
AK
7146 /* skip checkpointing for general migration,
7147 * it is controlled in mdadm
7148 */
7149 if (is_gen_migration(dev))
7150 goto skip_mark_checkpoint;
7151
1e5c6983 7152 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 7153 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 7154 if (blocks_per_unit) {
1e5c6983
DW
7155 __u32 units32;
7156 __u64 units;
7157
4f0a7acc 7158 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
7159 units32 = units;
7160
7161 /* check that we did not overflow 32-bits, and that
7162 * curr_migr_unit needs updating
7163 */
7164 if (units32 == units &&
bfd80a56 7165 units32 != 0 &&
1e5c6983
DW
7166 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7167 dprintf("imsm: mark checkpoint (%u)\n", units32);
7168 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7169 super->updates_pending++;
7170 }
7171 }
f8f603f1 7172
5b83bacf 7173skip_mark_checkpoint:
3393c6af 7174 /* mark dirty / clean */
0c046afd 7175 if (dev->vol.dirty != !consistent) {
b7941fd6 7176 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
7177 if (consistent)
7178 dev->vol.dirty = 0;
7179 else
7180 dev->vol.dirty = 1;
a862209d
DW
7181 super->updates_pending++;
7182 }
28bce06f 7183
01f157d7 7184 return consistent;
a862209d
DW
7185}
7186
8d45d196 7187static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 7188{
8d45d196
DW
7189 int inst = a->info.container_member;
7190 struct intel_super *super = a->container->sb;
949c47a0 7191 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7192 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 7193 struct imsm_disk *disk;
7ce05701
LD
7194 struct mdinfo *mdi;
7195 int recovery_not_finished = 0;
0c046afd 7196 int failed;
b10b37b8 7197 __u32 ord;
0c046afd 7198 __u8 map_state;
8d45d196
DW
7199
7200 if (n > map->num_members)
7201 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7202 n, map->num_members - 1);
7203
7204 if (n < 0)
7205 return;
7206
4e6e574a 7207 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 7208
238c0a71 7209 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
b10b37b8 7210 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 7211
5802a811 7212 /* check for new failures */
0556e1a2
DW
7213 if (state & DS_FAULTY) {
7214 if (mark_failure(dev, disk, ord_to_idx(ord)))
7215 super->updates_pending++;
8d45d196 7216 }
47ee5a45 7217
19859edc 7218 /* check if in_sync */
0556e1a2 7219 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 7220 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
7221
7222 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
7223 super->updates_pending++;
7224 }
8d45d196 7225
3b451610
AK
7226 failed = imsm_count_failed(super, dev, MAP_0);
7227 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 7228
0c046afd 7229 /* check if recovery complete, newly degraded, or failed */
94002678
AK
7230 dprintf("imsm: Detected transition to state ");
7231 switch (map_state) {
7232 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7233 dprintf("normal: ");
7234 if (is_rebuilding(dev)) {
7235 dprintf("while rebuilding");
7ce05701
LD
7236 /* check if recovery is really finished */
7237 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7238 if (mdi->recovery_start != MaxSector) {
7239 recovery_not_finished = 1;
7240 break;
7241 }
7242 if (recovery_not_finished) {
7243 dprintf("\nimsm: Rebuild has not finished yet, "
7244 "state not changed");
7245 if (a->last_checkpoint < mdi->recovery_start) {
7246 a->last_checkpoint = mdi->recovery_start;
7247 super->updates_pending++;
7248 }
7249 break;
7250 }
94002678 7251 end_migration(dev, super, map_state);
238c0a71 7252 map = get_imsm_map(dev, MAP_0);
94002678
AK
7253 map->failed_disk_num = ~0;
7254 super->updates_pending++;
7255 a->last_checkpoint = 0;
7256 break;
7257 }
7258 if (is_gen_migration(dev)) {
7259 dprintf("while general migration");
bf2f0071 7260 if (a->last_checkpoint >= a->info.component_size)
809da78e 7261 end_migration(dev, super, map_state);
94002678
AK
7262 else
7263 map->map_state = map_state;
238c0a71 7264 map = get_imsm_map(dev, MAP_0);
28bce06f 7265 map->failed_disk_num = ~0;
94002678 7266 super->updates_pending++;
bf2f0071 7267 break;
94002678
AK
7268 }
7269 break;
7270 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7271 dprintf("degraded: ");
7272 if ((map->map_state != map_state) &&
7273 !dev->vol.migr_state) {
7274 dprintf("mark degraded");
7275 map->map_state = map_state;
7276 super->updates_pending++;
7277 a->last_checkpoint = 0;
7278 break;
7279 }
7280 if (is_rebuilding(dev)) {
7281 dprintf("while rebuilding.");
7282 if (map->map_state != map_state) {
7283 dprintf(" Map state change");
7284 end_migration(dev, super, map_state);
7285 super->updates_pending++;
7286 }
7287 break;
7288 }
7289 if (is_gen_migration(dev)) {
7290 dprintf("while general migration");
bf2f0071 7291 if (a->last_checkpoint >= a->info.component_size)
809da78e 7292 end_migration(dev, super, map_state);
94002678
AK
7293 else {
7294 map->map_state = map_state;
3b451610 7295 manage_second_map(super, dev);
94002678
AK
7296 }
7297 super->updates_pending++;
bf2f0071 7298 break;
28bce06f 7299 }
6ce1fbf1
AK
7300 if (is_initializing(dev)) {
7301 dprintf("while initialization.");
7302 map->map_state = map_state;
7303 super->updates_pending++;
7304 break;
7305 }
94002678
AK
7306 break;
7307 case IMSM_T_STATE_FAILED: /* transition to failed state */
7308 dprintf("failed: ");
7309 if (is_gen_migration(dev)) {
7310 dprintf("while general migration");
7311 map->map_state = map_state;
7312 super->updates_pending++;
7313 break;
7314 }
7315 if (map->map_state != map_state) {
7316 dprintf("mark failed");
7317 end_migration(dev, super, map_state);
7318 super->updates_pending++;
7319 a->last_checkpoint = 0;
7320 break;
7321 }
7322 break;
7323 default:
7324 dprintf("state %i\n", map_state);
5802a811 7325 }
94002678
AK
7326 dprintf("\n");
7327
845dea95
NB
7328}
7329
f796af5d 7330static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 7331{
f796af5d 7332 void *buf = mpb;
c2a1e7da
DW
7333 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7334 unsigned long long dsize;
7335 unsigned long long sectors;
7336
7337 get_dev_size(fd, NULL, &dsize);
7338
272f648f
DW
7339 if (mpb_size > 512) {
7340 /* -1 to account for anchor */
7341 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 7342
272f648f
DW
7343 /* write the extended mpb to the sectors preceeding the anchor */
7344 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7345 return 1;
c2a1e7da 7346
f21e18ca
N
7347 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7348 != 512 * sectors)
272f648f
DW
7349 return 1;
7350 }
c2a1e7da 7351
272f648f
DW
7352 /* first block is stored on second to last sector of the disk */
7353 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
7354 return 1;
7355
f796af5d 7356 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
7357 return 1;
7358
c2a1e7da
DW
7359 return 0;
7360}
7361
2e735d19 7362static void imsm_sync_metadata(struct supertype *container)
845dea95 7363{
2e735d19 7364 struct intel_super *super = container->sb;
c2a1e7da 7365
1a64be56 7366 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
7367 if (!super->updates_pending)
7368 return;
7369
36988a3d 7370 write_super_imsm(container, 0);
c2a1e7da
DW
7371
7372 super->updates_pending = 0;
845dea95
NB
7373}
7374
272906ef
DW
7375static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7376{
7377 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7378 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
7379 struct dl *dl;
7380
7381 for (dl = super->disks; dl; dl = dl->next)
7382 if (dl->index == i)
7383 break;
7384
25ed7e59 7385 if (dl && is_failed(&dl->disk))
272906ef
DW
7386 dl = NULL;
7387
7388 if (dl)
7389 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7390
7391 return dl;
7392}
7393
a20d2ba5 7394static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
7395 struct active_array *a, int activate_new,
7396 struct mdinfo *additional_test_list)
272906ef
DW
7397{
7398 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7399 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
7400 struct imsm_super *mpb = super->anchor;
7401 struct imsm_map *map;
272906ef
DW
7402 unsigned long long pos;
7403 struct mdinfo *d;
7404 struct extent *ex;
a20d2ba5 7405 int i, j;
272906ef 7406 int found;
569cc43f
DW
7407 __u32 array_start = 0;
7408 __u32 array_end = 0;
272906ef 7409 struct dl *dl;
6c932028 7410 struct mdinfo *test_list;
272906ef
DW
7411
7412 for (dl = super->disks; dl; dl = dl->next) {
7413 /* If in this array, skip */
7414 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
7415 if (d->state_fd >= 0 &&
7416 d->disk.major == dl->major &&
272906ef 7417 d->disk.minor == dl->minor) {
8ba77d32
AK
7418 dprintf("%x:%x already in array\n",
7419 dl->major, dl->minor);
272906ef
DW
7420 break;
7421 }
7422 if (d)
7423 continue;
6c932028
AK
7424 test_list = additional_test_list;
7425 while (test_list) {
7426 if (test_list->disk.major == dl->major &&
7427 test_list->disk.minor == dl->minor) {
8ba77d32
AK
7428 dprintf("%x:%x already in additional test list\n",
7429 dl->major, dl->minor);
7430 break;
7431 }
6c932028 7432 test_list = test_list->next;
8ba77d32 7433 }
6c932028 7434 if (test_list)
8ba77d32 7435 continue;
272906ef 7436
e553d2a4 7437 /* skip in use or failed drives */
25ed7e59 7438 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
7439 dl->index == -2) {
7440 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 7441 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
7442 continue;
7443 }
7444
a20d2ba5
DW
7445 /* skip pure spares when we are looking for partially
7446 * assimilated drives
7447 */
7448 if (dl->index == -1 && !activate_new)
7449 continue;
7450
272906ef 7451 /* Does this unused device have the requisite free space?
a20d2ba5 7452 * It needs to be able to cover all member volumes
272906ef
DW
7453 */
7454 ex = get_extents(super, dl);
7455 if (!ex) {
7456 dprintf("cannot get extents\n");
7457 continue;
7458 }
a20d2ba5
DW
7459 for (i = 0; i < mpb->num_raid_devs; i++) {
7460 dev = get_imsm_dev(super, i);
238c0a71 7461 map = get_imsm_map(dev, MAP_0);
272906ef 7462
a20d2ba5
DW
7463 /* check if this disk is already a member of
7464 * this array
272906ef 7465 */
620b1713 7466 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
7467 continue;
7468
7469 found = 0;
7470 j = 0;
7471 pos = 0;
5551b113 7472 array_start = pba_of_lba0(map);
329c8278 7473 array_end = array_start +
5551b113 7474 blocks_per_member(map) - 1;
a20d2ba5
DW
7475
7476 do {
7477 /* check that we can start at pba_of_lba0 with
7478 * blocks_per_member of space
7479 */
329c8278 7480 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
7481 found = 1;
7482 break;
7483 }
7484 pos = ex[j].start + ex[j].size;
7485 j++;
7486 } while (ex[j-1].size);
7487
7488 if (!found)
272906ef 7489 break;
a20d2ba5 7490 }
272906ef
DW
7491
7492 free(ex);
a20d2ba5 7493 if (i < mpb->num_raid_devs) {
329c8278
DW
7494 dprintf("%x:%x does not have %u to %u available\n",
7495 dl->major, dl->minor, array_start, array_end);
272906ef
DW
7496 /* No room */
7497 continue;
a20d2ba5
DW
7498 }
7499 return dl;
272906ef
DW
7500 }
7501
7502 return dl;
7503}
7504
95d07a2c
LM
7505
7506static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7507{
7508 struct imsm_dev *dev2;
7509 struct imsm_map *map;
7510 struct dl *idisk;
7511 int slot;
7512 int idx;
7513 __u8 state;
7514
7515 dev2 = get_imsm_dev(cont->sb, dev_idx);
7516 if (dev2) {
238c0a71 7517 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 7518 if (state == IMSM_T_STATE_FAILED) {
238c0a71 7519 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
7520 if (!map)
7521 return 1;
7522 for (slot = 0; slot < map->num_members; slot++) {
7523 /*
7524 * Check if failed disks are deleted from intel
7525 * disk list or are marked to be deleted
7526 */
238c0a71 7527 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
7528 idisk = get_imsm_dl_disk(cont->sb, idx);
7529 /*
7530 * Do not rebuild the array if failed disks
7531 * from failed sub-array are not removed from
7532 * container.
7533 */
7534 if (idisk &&
7535 is_failed(&idisk->disk) &&
7536 (idisk->action != DISK_REMOVE))
7537 return 0;
7538 }
7539 }
7540 }
7541 return 1;
7542}
7543
88758e9d
DW
7544static struct mdinfo *imsm_activate_spare(struct active_array *a,
7545 struct metadata_update **updates)
7546{
7547 /**
d23fe947
DW
7548 * Find a device with unused free space and use it to replace a
7549 * failed/vacant region in an array. We replace failed regions one a
7550 * array at a time. The result is that a new spare disk will be added
7551 * to the first failed array and after the monitor has finished
7552 * propagating failures the remainder will be consumed.
88758e9d 7553 *
d23fe947
DW
7554 * FIXME add a capability for mdmon to request spares from another
7555 * container.
88758e9d
DW
7556 */
7557
7558 struct intel_super *super = a->container->sb;
88758e9d 7559 int inst = a->info.container_member;
949c47a0 7560 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7561 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
7562 int failed = a->info.array.raid_disks;
7563 struct mdinfo *rv = NULL;
7564 struct mdinfo *d;
7565 struct mdinfo *di;
7566 struct metadata_update *mu;
7567 struct dl *dl;
7568 struct imsm_update_activate_spare *u;
7569 int num_spares = 0;
7570 int i;
95d07a2c 7571 int allowed;
88758e9d
DW
7572
7573 for (d = a->info.devs ; d ; d = d->next) {
7574 if ((d->curr_state & DS_FAULTY) &&
7575 d->state_fd >= 0)
7576 /* wait for Removal to happen */
7577 return NULL;
7578 if (d->state_fd >= 0)
7579 failed--;
7580 }
7581
7582 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7583 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 7584
e2962bfc
AK
7585 if (imsm_reshape_blocks_arrays_changes(super))
7586 return NULL;
1af97990 7587
fc8ca064
AK
7588 /* Cannot activate another spare if rebuild is in progress already
7589 */
7590 if (is_rebuilding(dev)) {
7591 dprintf("imsm: No spare activation allowed. "
7592 "Rebuild in progress already.\n");
7593 return NULL;
7594 }
7595
89c67882
AK
7596 if (a->info.array.level == 4)
7597 /* No repair for takeovered array
7598 * imsm doesn't support raid4
7599 */
7600 return NULL;
7601
3b451610
AK
7602 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7603 IMSM_T_STATE_DEGRADED)
88758e9d
DW
7604 return NULL;
7605
95d07a2c
LM
7606 /*
7607 * If there are any failed disks check state of the other volume.
7608 * Block rebuild if the another one is failed until failed disks
7609 * are removed from container.
7610 */
7611 if (failed) {
c4acd1e5 7612 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 7613 "failed sub-array.\n",
c4acd1e5 7614 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
7615 /* check if states of the other volumes allow for rebuild */
7616 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7617 if (i != inst) {
7618 allowed = imsm_rebuild_allowed(a->container,
7619 i, failed);
7620 if (!allowed)
7621 return NULL;
7622 }
7623 }
7624 }
7625
88758e9d 7626 /* For each slot, if it is not working, find a spare */
88758e9d
DW
7627 for (i = 0; i < a->info.array.raid_disks; i++) {
7628 for (d = a->info.devs ; d ; d = d->next)
7629 if (d->disk.raid_disk == i)
7630 break;
7631 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7632 if (d && (d->state_fd >= 0))
7633 continue;
7634
272906ef 7635 /*
a20d2ba5
DW
7636 * OK, this device needs recovery. Try to re-add the
7637 * previous occupant of this slot, if this fails see if
7638 * we can continue the assimilation of a spare that was
7639 * partially assimilated, finally try to activate a new
7640 * spare.
272906ef
DW
7641 */
7642 dl = imsm_readd(super, i, a);
7643 if (!dl)
b303fe21 7644 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 7645 if (!dl)
b303fe21 7646 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
7647 if (!dl)
7648 continue;
7649
7650 /* found a usable disk with enough space */
503975b9 7651 di = xcalloc(1, sizeof(*di));
272906ef
DW
7652
7653 /* dl->index will be -1 in the case we are activating a
7654 * pristine spare. imsm_process_update() will create a
7655 * new index in this case. Once a disk is found to be
7656 * failed in all member arrays it is kicked from the
7657 * metadata
7658 */
7659 di->disk.number = dl->index;
d23fe947 7660
272906ef
DW
7661 /* (ab)use di->devs to store a pointer to the device
7662 * we chose
7663 */
7664 di->devs = (struct mdinfo *) dl;
7665
7666 di->disk.raid_disk = i;
7667 di->disk.major = dl->major;
7668 di->disk.minor = dl->minor;
7669 di->disk.state = 0;
d23534e4 7670 di->recovery_start = 0;
5551b113 7671 di->data_offset = pba_of_lba0(map);
272906ef
DW
7672 di->component_size = a->info.component_size;
7673 di->container_member = inst;
148acb7b 7674 super->random = random32();
272906ef
DW
7675 di->next = rv;
7676 rv = di;
7677 num_spares++;
7678 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7679 i, di->data_offset);
88758e9d
DW
7680 }
7681
7682 if (!rv)
7683 /* No spares found */
7684 return rv;
7685 /* Now 'rv' has a list of devices to return.
7686 * Create a metadata_update record to update the
7687 * disk_ord_tbl for the array
7688 */
503975b9
N
7689 mu = xmalloc(sizeof(*mu));
7690 mu->buf = xcalloc(num_spares,
7691 sizeof(struct imsm_update_activate_spare));
88758e9d 7692 mu->space = NULL;
cb23f1f4 7693 mu->space_list = NULL;
88758e9d
DW
7694 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7695 mu->next = *updates;
7696 u = (struct imsm_update_activate_spare *) mu->buf;
7697
7698 for (di = rv ; di ; di = di->next) {
7699 u->type = update_activate_spare;
d23fe947
DW
7700 u->dl = (struct dl *) di->devs;
7701 di->devs = NULL;
88758e9d
DW
7702 u->slot = di->disk.raid_disk;
7703 u->array = inst;
7704 u->next = u + 1;
7705 u++;
7706 }
7707 (u-1)->next = NULL;
7708 *updates = mu;
7709
7710 return rv;
7711}
7712
54c2c1ea 7713static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 7714{
54c2c1ea 7715 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
7716 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7717 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
7718 struct disk_info *inf = get_disk_info(u);
7719 struct imsm_disk *disk;
8273f55e
DW
7720 int i;
7721 int j;
8273f55e 7722
54c2c1ea 7723 for (i = 0; i < map->num_members; i++) {
238c0a71 7724 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
7725 for (j = 0; j < new_map->num_members; j++)
7726 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
7727 return 1;
7728 }
7729
7730 return 0;
7731}
7732
1a64be56
LM
7733
7734static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7735{
7736 struct dl *dl = NULL;
7737 for (dl = super->disks; dl; dl = dl->next)
7738 if ((dl->major == major) && (dl->minor == minor))
7739 return dl;
7740 return NULL;
7741}
7742
7743static int remove_disk_super(struct intel_super *super, int major, int minor)
7744{
7745 struct dl *prev = NULL;
7746 struct dl *dl;
7747
7748 prev = NULL;
7749 for (dl = super->disks; dl; dl = dl->next) {
7750 if ((dl->major == major) && (dl->minor == minor)) {
7751 /* remove */
7752 if (prev)
7753 prev->next = dl->next;
7754 else
7755 super->disks = dl->next;
7756 dl->next = NULL;
7757 __free_imsm_disk(dl);
7758 dprintf("%s: removed %x:%x\n",
7759 __func__, major, minor);
7760 break;
7761 }
7762 prev = dl;
7763 }
7764 return 0;
7765}
7766
f21e18ca 7767static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 7768
1a64be56
LM
7769static int add_remove_disk_update(struct intel_super *super)
7770{
7771 int check_degraded = 0;
7772 struct dl *disk = NULL;
7773 /* add/remove some spares to/from the metadata/contrainer */
7774 while (super->disk_mgmt_list) {
7775 struct dl *disk_cfg;
7776
7777 disk_cfg = super->disk_mgmt_list;
7778 super->disk_mgmt_list = disk_cfg->next;
7779 disk_cfg->next = NULL;
7780
7781 if (disk_cfg->action == DISK_ADD) {
7782 disk_cfg->next = super->disks;
7783 super->disks = disk_cfg;
7784 check_degraded = 1;
7785 dprintf("%s: added %x:%x\n",
7786 __func__, disk_cfg->major,
7787 disk_cfg->minor);
7788 } else if (disk_cfg->action == DISK_REMOVE) {
7789 dprintf("Disk remove action processed: %x.%x\n",
7790 disk_cfg->major, disk_cfg->minor);
7791 disk = get_disk_super(super,
7792 disk_cfg->major,
7793 disk_cfg->minor);
7794 if (disk) {
7795 /* store action status */
7796 disk->action = DISK_REMOVE;
7797 /* remove spare disks only */
7798 if (disk->index == -1) {
7799 remove_disk_super(super,
7800 disk_cfg->major,
7801 disk_cfg->minor);
7802 }
7803 }
7804 /* release allocate disk structure */
7805 __free_imsm_disk(disk_cfg);
7806 }
7807 }
7808 return check_degraded;
7809}
7810
a29911da
PC
7811
7812static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7813 struct intel_super *super,
7814 void ***space_list)
7815{
7816 struct intel_dev *id;
7817 void **tofree = NULL;
7818 int ret_val = 0;
7819
7820 dprintf("apply_reshape_migration_update()\n");
7821 if ((u->subdev < 0) ||
7822 (u->subdev > 1)) {
7823 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7824 return ret_val;
7825 }
7826 if ((space_list == NULL) || (*space_list == NULL)) {
7827 dprintf("imsm: Error: Memory is not allocated\n");
7828 return ret_val;
7829 }
7830
7831 for (id = super->devlist ; id; id = id->next) {
7832 if (id->index == (unsigned)u->subdev) {
7833 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7834 struct imsm_map *map;
7835 struct imsm_dev *new_dev =
7836 (struct imsm_dev *)*space_list;
238c0a71 7837 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
7838 int to_state;
7839 struct dl *new_disk;
7840
7841 if (new_dev == NULL)
7842 return ret_val;
7843 *space_list = **space_list;
7844 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 7845 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
7846 if (migr_map) {
7847 dprintf("imsm: Error: migration in progress");
7848 return ret_val;
7849 }
7850
7851 to_state = map->map_state;
7852 if ((u->new_level == 5) && (map->raid_level == 0)) {
7853 map->num_members++;
7854 /* this should not happen */
7855 if (u->new_disks[0] < 0) {
7856 map->failed_disk_num =
7857 map->num_members - 1;
7858 to_state = IMSM_T_STATE_DEGRADED;
7859 } else
7860 to_state = IMSM_T_STATE_NORMAL;
7861 }
8e59f3d8 7862 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
7863 if (u->new_level > -1)
7864 map->raid_level = u->new_level;
238c0a71 7865 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
7866 if ((u->new_level == 5) &&
7867 (migr_map->raid_level == 0)) {
7868 int ord = map->num_members - 1;
7869 migr_map->num_members--;
7870 if (u->new_disks[0] < 0)
7871 ord |= IMSM_ORD_REBUILD;
7872 set_imsm_ord_tbl_ent(map,
7873 map->num_members - 1,
7874 ord);
7875 }
7876 id->dev = new_dev;
7877 tofree = (void **)dev;
7878
4bba0439
PC
7879 /* update chunk size
7880 */
7881 if (u->new_chunksize > 0)
7882 map->blocks_per_strip =
7883 __cpu_to_le16(u->new_chunksize * 2);
7884
a29911da
PC
7885 /* add disk
7886 */
7887 if ((u->new_level != 5) ||
7888 (migr_map->raid_level != 0) ||
7889 (migr_map->raid_level == map->raid_level))
7890 goto skip_disk_add;
7891
7892 if (u->new_disks[0] >= 0) {
7893 /* use passes spare
7894 */
7895 new_disk = get_disk_super(super,
7896 major(u->new_disks[0]),
7897 minor(u->new_disks[0]));
7898 dprintf("imsm: new disk for reshape is: %i:%i "
7899 "(%p, index = %i)\n",
7900 major(u->new_disks[0]),
7901 minor(u->new_disks[0]),
7902 new_disk, new_disk->index);
7903 if (new_disk == NULL)
7904 goto error_disk_add;
7905
7906 new_disk->index = map->num_members - 1;
7907 /* slot to fill in autolayout
7908 */
7909 new_disk->raiddisk = new_disk->index;
7910 new_disk->disk.status |= CONFIGURED_DISK;
7911 new_disk->disk.status &= ~SPARE_DISK;
7912 } else
7913 goto error_disk_add;
7914
7915skip_disk_add:
7916 *tofree = *space_list;
7917 /* calculate new size
7918 */
f3871fdc 7919 imsm_set_array_size(new_dev, -1);
a29911da
PC
7920
7921 ret_val = 1;
7922 }
7923 }
7924
7925 if (tofree)
7926 *space_list = tofree;
7927 return ret_val;
7928
7929error_disk_add:
7930 dprintf("Error: imsm: Cannot find disk.\n");
7931 return ret_val;
7932}
7933
f3871fdc
AK
7934static int apply_size_change_update(struct imsm_update_size_change *u,
7935 struct intel_super *super)
7936{
7937 struct intel_dev *id;
7938 int ret_val = 0;
7939
7940 dprintf("apply_size_change_update()\n");
7941 if ((u->subdev < 0) ||
7942 (u->subdev > 1)) {
7943 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7944 return ret_val;
7945 }
7946
7947 for (id = super->devlist ; id; id = id->next) {
7948 if (id->index == (unsigned)u->subdev) {
7949 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7950 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7951 int used_disks = imsm_num_data_members(dev, MAP_0);
7952 unsigned long long blocks_per_member;
7953
7954 /* calculate new size
7955 */
7956 blocks_per_member = u->new_size / used_disks;
7957 dprintf("imsm: apply_size_change_update(size: %llu, "
7958 "blocks per member: %llu)\n",
7959 u->new_size, blocks_per_member);
7960 set_blocks_per_member(map, blocks_per_member);
7961 imsm_set_array_size(dev, u->new_size);
7962
7963 ret_val = 1;
7964 break;
7965 }
7966 }
7967
7968 return ret_val;
7969}
7970
7971
061d7da3 7972static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 7973 struct intel_super *super,
061d7da3
LO
7974 struct active_array *active_array)
7975{
7976 struct imsm_super *mpb = super->anchor;
7977 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 7978 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
7979 struct imsm_map *migr_map;
7980 struct active_array *a;
7981 struct imsm_disk *disk;
7982 __u8 to_state;
7983 struct dl *dl;
7984 unsigned int found;
7985 int failed;
5961eeec 7986 int victim;
061d7da3 7987 int i;
5961eeec 7988 int second_map_created = 0;
061d7da3 7989
5961eeec 7990 for (; u; u = u->next) {
238c0a71 7991 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 7992
5961eeec 7993 if (victim < 0)
7994 return 0;
061d7da3 7995
5961eeec 7996 for (dl = super->disks; dl; dl = dl->next)
7997 if (dl == u->dl)
7998 break;
061d7da3 7999
5961eeec 8000 if (!dl) {
8001 fprintf(stderr, "error: imsm_activate_spare passed "
8002 "an unknown disk (index: %d)\n",
8003 u->dl->index);
8004 return 0;
8005 }
061d7da3 8006
5961eeec 8007 /* count failures (excluding rebuilds and the victim)
8008 * to determine map[0] state
8009 */
8010 failed = 0;
8011 for (i = 0; i < map->num_members; i++) {
8012 if (i == u->slot)
8013 continue;
8014 disk = get_imsm_disk(super,
238c0a71 8015 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 8016 if (!disk || is_failed(disk))
8017 failed++;
8018 }
061d7da3 8019
5961eeec 8020 /* adding a pristine spare, assign a new index */
8021 if (dl->index < 0) {
8022 dl->index = super->anchor->num_disks;
8023 super->anchor->num_disks++;
8024 }
8025 disk = &dl->disk;
8026 disk->status |= CONFIGURED_DISK;
8027 disk->status &= ~SPARE_DISK;
8028
8029 /* mark rebuild */
238c0a71 8030 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 8031 if (!second_map_created) {
8032 second_map_created = 1;
8033 map->map_state = IMSM_T_STATE_DEGRADED;
8034 migrate(dev, super, to_state, MIGR_REBUILD);
8035 } else
8036 map->map_state = to_state;
238c0a71 8037 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 8038 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8039 set_imsm_ord_tbl_ent(migr_map, u->slot,
8040 dl->index | IMSM_ORD_REBUILD);
8041
8042 /* update the family_num to mark a new container
8043 * generation, being careful to record the existing
8044 * family_num in orig_family_num to clean up after
8045 * earlier mdadm versions that neglected to set it.
8046 */
8047 if (mpb->orig_family_num == 0)
8048 mpb->orig_family_num = mpb->family_num;
8049 mpb->family_num += super->random;
8050
8051 /* count arrays using the victim in the metadata */
8052 found = 0;
8053 for (a = active_array; a ; a = a->next) {
8054 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8055 map = get_imsm_map(dev, MAP_0);
061d7da3 8056
5961eeec 8057 if (get_imsm_disk_slot(map, victim) >= 0)
8058 found++;
8059 }
061d7da3 8060
5961eeec 8061 /* delete the victim if it is no longer being
8062 * utilized anywhere
061d7da3 8063 */
5961eeec 8064 if (!found) {
8065 struct dl **dlp;
061d7da3 8066
5961eeec 8067 /* We know that 'manager' isn't touching anything,
8068 * so it is safe to delete
8069 */
8070 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
8071 if ((*dlp)->index == victim)
8072 break;
5961eeec 8073
8074 /* victim may be on the missing list */
8075 if (!*dlp)
8076 for (dlp = &super->missing; *dlp;
8077 dlp = &(*dlp)->next)
8078 if ((*dlp)->index == victim)
8079 break;
8080 imsm_delete(super, dlp, victim);
8081 }
061d7da3
LO
8082 }
8083
8084 return 1;
8085}
a29911da 8086
2e5dc010
N
8087static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8088 struct intel_super *super,
8089 void ***space_list)
8090{
8091 struct dl *new_disk;
8092 struct intel_dev *id;
8093 int i;
8094 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 8095 int disk_count = u->old_raid_disks;
2e5dc010
N
8096 void **tofree = NULL;
8097 int devices_to_reshape = 1;
8098 struct imsm_super *mpb = super->anchor;
8099 int ret_val = 0;
d098291a 8100 unsigned int dev_id;
2e5dc010 8101
ed7333bd 8102 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
8103
8104 /* enable spares to use in array */
8105 for (i = 0; i < delta_disks; i++) {
8106 new_disk = get_disk_super(super,
8107 major(u->new_disks[i]),
8108 minor(u->new_disks[i]));
ed7333bd
AK
8109 dprintf("imsm: new disk for reshape is: %i:%i "
8110 "(%p, index = %i)\n",
2e5dc010
N
8111 major(u->new_disks[i]), minor(u->new_disks[i]),
8112 new_disk, new_disk->index);
8113 if ((new_disk == NULL) ||
8114 ((new_disk->index >= 0) &&
8115 (new_disk->index < u->old_raid_disks)))
8116 goto update_reshape_exit;
ee4beede 8117 new_disk->index = disk_count++;
2e5dc010
N
8118 /* slot to fill in autolayout
8119 */
8120 new_disk->raiddisk = new_disk->index;
8121 new_disk->disk.status |=
8122 CONFIGURED_DISK;
8123 new_disk->disk.status &= ~SPARE_DISK;
8124 }
8125
ed7333bd
AK
8126 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8127 mpb->num_raid_devs);
2e5dc010
N
8128 /* manage changes in volume
8129 */
d098291a 8130 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
8131 void **sp = *space_list;
8132 struct imsm_dev *newdev;
8133 struct imsm_map *newmap, *oldmap;
8134
d098291a
AK
8135 for (id = super->devlist ; id; id = id->next) {
8136 if (id->index == dev_id)
8137 break;
8138 }
8139 if (id == NULL)
8140 break;
2e5dc010
N
8141 if (!sp)
8142 continue;
8143 *space_list = *sp;
8144 newdev = (void*)sp;
8145 /* Copy the dev, but not (all of) the map */
8146 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
8147 oldmap = get_imsm_map(id->dev, MAP_0);
8148 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
8149 /* Copy the current map */
8150 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8151 /* update one device only
8152 */
8153 if (devices_to_reshape) {
ed7333bd
AK
8154 dprintf("imsm: modifying subdev: %i\n",
8155 id->index);
2e5dc010
N
8156 devices_to_reshape--;
8157 newdev->vol.migr_state = 1;
8158 newdev->vol.curr_migr_unit = 0;
ea672ee1 8159 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
8160 newmap->num_members = u->new_raid_disks;
8161 for (i = 0; i < delta_disks; i++) {
8162 set_imsm_ord_tbl_ent(newmap,
8163 u->old_raid_disks + i,
8164 u->old_raid_disks + i);
8165 }
8166 /* New map is correct, now need to save old map
8167 */
238c0a71 8168 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
8169 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8170
f3871fdc 8171 imsm_set_array_size(newdev, -1);
2e5dc010
N
8172 }
8173
8174 sp = (void **)id->dev;
8175 id->dev = newdev;
8176 *sp = tofree;
8177 tofree = sp;
8e59f3d8
AK
8178
8179 /* Clear migration record */
8180 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 8181 }
819bc634
AK
8182 if (tofree)
8183 *space_list = tofree;
2e5dc010
N
8184 ret_val = 1;
8185
8186update_reshape_exit:
8187
8188 return ret_val;
8189}
8190
bb025c2f 8191static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
8192 struct intel_super *super,
8193 void ***space_list)
bb025c2f
KW
8194{
8195 struct imsm_dev *dev = NULL;
8ca6df95
KW
8196 struct intel_dev *dv;
8197 struct imsm_dev *dev_new;
bb025c2f
KW
8198 struct imsm_map *map;
8199 struct dl *dm, *du;
8ca6df95 8200 int i;
bb025c2f
KW
8201
8202 for (dv = super->devlist; dv; dv = dv->next)
8203 if (dv->index == (unsigned int)u->subarray) {
8204 dev = dv->dev;
8205 break;
8206 }
8207
8208 if (dev == NULL)
8209 return 0;
8210
238c0a71 8211 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
8212
8213 if (u->direction == R10_TO_R0) {
43d5ec18 8214 /* Number of failed disks must be half of initial disk number */
3b451610
AK
8215 if (imsm_count_failed(super, dev, MAP_0) !=
8216 (map->num_members / 2))
43d5ec18
KW
8217 return 0;
8218
bb025c2f
KW
8219 /* iterate through devices to mark removed disks as spare */
8220 for (dm = super->disks; dm; dm = dm->next) {
8221 if (dm->disk.status & FAILED_DISK) {
8222 int idx = dm->index;
8223 /* update indexes on the disk list */
8224/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8225 the index values will end up being correct.... NB */
8226 for (du = super->disks; du; du = du->next)
8227 if (du->index > idx)
8228 du->index--;
8229 /* mark as spare disk */
a8619d23 8230 mark_spare(dm);
bb025c2f
KW
8231 }
8232 }
bb025c2f
KW
8233 /* update map */
8234 map->num_members = map->num_members / 2;
8235 map->map_state = IMSM_T_STATE_NORMAL;
8236 map->num_domains = 1;
8237 map->raid_level = 0;
8238 map->failed_disk_num = -1;
8239 }
8240
8ca6df95
KW
8241 if (u->direction == R0_TO_R10) {
8242 void **space;
8243 /* update slots in current disk list */
8244 for (dm = super->disks; dm; dm = dm->next) {
8245 if (dm->index >= 0)
8246 dm->index *= 2;
8247 }
8248 /* create new *missing* disks */
8249 for (i = 0; i < map->num_members; i++) {
8250 space = *space_list;
8251 if (!space)
8252 continue;
8253 *space_list = *space;
8254 du = (void *)space;
8255 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
8256 du->fd = -1;
8257 du->minor = 0;
8258 du->major = 0;
8259 du->index = (i * 2) + 1;
8260 sprintf((char *)du->disk.serial,
8261 " MISSING_%d", du->index);
8262 sprintf((char *)du->serial,
8263 "MISSING_%d", du->index);
8264 du->next = super->missing;
8265 super->missing = du;
8266 }
8267 /* create new dev and map */
8268 space = *space_list;
8269 if (!space)
8270 return 0;
8271 *space_list = *space;
8272 dev_new = (void *)space;
8273 memcpy(dev_new, dev, sizeof(*dev));
8274 /* update new map */
238c0a71 8275 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 8276 map->num_members = map->num_members * 2;
1a2487c2 8277 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
8278 map->num_domains = 2;
8279 map->raid_level = 1;
8280 /* replace dev<->dev_new */
8281 dv->dev = dev_new;
8282 }
bb025c2f
KW
8283 /* update disk order table */
8284 for (du = super->disks; du; du = du->next)
8285 if (du->index >= 0)
8286 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 8287 for (du = super->missing; du; du = du->next)
1a2487c2
KW
8288 if (du->index >= 0) {
8289 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 8290 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 8291 }
bb025c2f
KW
8292
8293 return 1;
8294}
8295
e8319a19
DW
8296static void imsm_process_update(struct supertype *st,
8297 struct metadata_update *update)
8298{
8299 /**
8300 * crack open the metadata_update envelope to find the update record
8301 * update can be one of:
d195167d
AK
8302 * update_reshape_container_disks - all the arrays in the container
8303 * are being reshaped to have more devices. We need to mark
8304 * the arrays for general migration and convert selected spares
8305 * into active devices.
8306 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
8307 * device in an array, update the disk_ord_tbl. If this disk is
8308 * present in all member arrays then also clear the SPARE_DISK
8309 * flag
d195167d
AK
8310 * update_create_array
8311 * update_kill_array
8312 * update_rename_array
8313 * update_add_remove_disk
e8319a19
DW
8314 */
8315 struct intel_super *super = st->sb;
4d7b1503 8316 struct imsm_super *mpb;
e8319a19
DW
8317 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8318
4d7b1503
DW
8319 /* update requires a larger buf but the allocation failed */
8320 if (super->next_len && !super->next_buf) {
8321 super->next_len = 0;
8322 return;
8323 }
8324
8325 if (super->next_buf) {
8326 memcpy(super->next_buf, super->buf, super->len);
8327 free(super->buf);
8328 super->len = super->next_len;
8329 super->buf = super->next_buf;
8330
8331 super->next_len = 0;
8332 super->next_buf = NULL;
8333 }
8334
8335 mpb = super->anchor;
8336
e8319a19 8337 switch (type) {
0ec5d470
AK
8338 case update_general_migration_checkpoint: {
8339 struct intel_dev *id;
8340 struct imsm_update_general_migration_checkpoint *u =
8341 (void *)update->buf;
8342
8343 dprintf("imsm: process_update() "
8344 "for update_general_migration_checkpoint called\n");
8345
8346 /* find device under general migration */
8347 for (id = super->devlist ; id; id = id->next) {
8348 if (is_gen_migration(id->dev)) {
8349 id->dev->vol.curr_migr_unit =
8350 __cpu_to_le32(u->curr_migr_unit);
8351 super->updates_pending++;
8352 }
8353 }
8354 break;
8355 }
bb025c2f
KW
8356 case update_takeover: {
8357 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
8358 if (apply_takeover_update(u, super, &update->space_list)) {
8359 imsm_update_version_info(super);
bb025c2f 8360 super->updates_pending++;
1a2487c2 8361 }
bb025c2f
KW
8362 break;
8363 }
8364
78b10e66 8365 case update_reshape_container_disks: {
d195167d 8366 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
8367 if (apply_reshape_container_disks_update(
8368 u, super, &update->space_list))
8369 super->updates_pending++;
78b10e66
N
8370 break;
8371 }
48c5303a 8372 case update_reshape_migration: {
a29911da
PC
8373 struct imsm_update_reshape_migration *u = (void *)update->buf;
8374 if (apply_reshape_migration_update(
8375 u, super, &update->space_list))
8376 super->updates_pending++;
48c5303a
PC
8377 break;
8378 }
f3871fdc
AK
8379 case update_size_change: {
8380 struct imsm_update_size_change *u = (void *)update->buf;
8381 if (apply_size_change_update(u, super))
8382 super->updates_pending++;
8383 break;
8384 }
e8319a19
DW
8385 case update_activate_spare: {
8386 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
8387 if (apply_update_activate_spare(u, super, st->arrays))
8388 super->updates_pending++;
8273f55e
DW
8389 break;
8390 }
8391 case update_create_array: {
8392 /* someone wants to create a new array, we need to be aware of
8393 * a few races/collisions:
8394 * 1/ 'Create' called by two separate instances of mdadm
8395 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8396 * devices that have since been assimilated via
8397 * activate_spare.
8398 * In the event this update can not be carried out mdadm will
8399 * (FIX ME) notice that its update did not take hold.
8400 */
8401 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8402 struct intel_dev *dv;
8273f55e
DW
8403 struct imsm_dev *dev;
8404 struct imsm_map *map, *new_map;
8405 unsigned long long start, end;
8406 unsigned long long new_start, new_end;
8407 int i;
54c2c1ea
DW
8408 struct disk_info *inf;
8409 struct dl *dl;
8273f55e
DW
8410
8411 /* handle racing creates: first come first serve */
8412 if (u->dev_idx < mpb->num_raid_devs) {
8413 dprintf("%s: subarray %d already defined\n",
8414 __func__, u->dev_idx);
ba2de7ba 8415 goto create_error;
8273f55e
DW
8416 }
8417
8418 /* check update is next in sequence */
8419 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
8420 dprintf("%s: can not create array %d expected index %d\n",
8421 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 8422 goto create_error;
8273f55e
DW
8423 }
8424
238c0a71 8425 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
8426 new_start = pba_of_lba0(new_map);
8427 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 8428 inf = get_disk_info(u);
8273f55e
DW
8429
8430 /* handle activate_spare versus create race:
8431 * check to make sure that overlapping arrays do not include
8432 * overalpping disks
8433 */
8434 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 8435 dev = get_imsm_dev(super, i);
238c0a71 8436 map = get_imsm_map(dev, MAP_0);
5551b113
CA
8437 start = pba_of_lba0(map);
8438 end = start + blocks_per_member(map);
8273f55e
DW
8439 if ((new_start >= start && new_start <= end) ||
8440 (start >= new_start && start <= new_end))
54c2c1ea
DW
8441 /* overlap */;
8442 else
8443 continue;
8444
8445 if (disks_overlap(super, i, u)) {
8273f55e 8446 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 8447 goto create_error;
8273f55e
DW
8448 }
8449 }
8273f55e 8450
949c47a0
DW
8451 /* check that prepare update was successful */
8452 if (!update->space) {
8453 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 8454 goto create_error;
949c47a0
DW
8455 }
8456
54c2c1ea
DW
8457 /* check that all disks are still active before committing
8458 * changes. FIXME: could we instead handle this by creating a
8459 * degraded array? That's probably not what the user expects,
8460 * so better to drop this update on the floor.
8461 */
8462 for (i = 0; i < new_map->num_members; i++) {
8463 dl = serial_to_dl(inf[i].serial, super);
8464 if (!dl) {
8465 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 8466 goto create_error;
54c2c1ea 8467 }
949c47a0
DW
8468 }
8469
8273f55e 8470 super->updates_pending++;
54c2c1ea
DW
8471
8472 /* convert spares to members and fixup ord_tbl */
8473 for (i = 0; i < new_map->num_members; i++) {
8474 dl = serial_to_dl(inf[i].serial, super);
8475 if (dl->index == -1) {
8476 dl->index = mpb->num_disks;
8477 mpb->num_disks++;
8478 dl->disk.status |= CONFIGURED_DISK;
8479 dl->disk.status &= ~SPARE_DISK;
8480 }
8481 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8482 }
8483
ba2de7ba
DW
8484 dv = update->space;
8485 dev = dv->dev;
949c47a0
DW
8486 update->space = NULL;
8487 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
8488 dv->index = u->dev_idx;
8489 dv->next = super->devlist;
8490 super->devlist = dv;
8273f55e 8491 mpb->num_raid_devs++;
8273f55e 8492
4d1313e9 8493 imsm_update_version_info(super);
8273f55e 8494 break;
ba2de7ba
DW
8495 create_error:
8496 /* mdmon knows how to release update->space, but not
8497 * ((struct intel_dev *) update->space)->dev
8498 */
8499 if (update->space) {
8500 dv = update->space;
8501 free(dv->dev);
8502 }
8273f55e 8503 break;
e8319a19 8504 }
33414a01
DW
8505 case update_kill_array: {
8506 struct imsm_update_kill_array *u = (void *) update->buf;
8507 int victim = u->dev_idx;
8508 struct active_array *a;
8509 struct intel_dev **dp;
8510 struct imsm_dev *dev;
8511
8512 /* sanity check that we are not affecting the uuid of
8513 * active arrays, or deleting an active array
8514 *
8515 * FIXME when immutable ids are available, but note that
8516 * we'll also need to fixup the invalidated/active
8517 * subarray indexes in mdstat
8518 */
8519 for (a = st->arrays; a; a = a->next)
8520 if (a->info.container_member >= victim)
8521 break;
8522 /* by definition if mdmon is running at least one array
8523 * is active in the container, so checking
8524 * mpb->num_raid_devs is just extra paranoia
8525 */
8526 dev = get_imsm_dev(super, victim);
8527 if (a || !dev || mpb->num_raid_devs == 1) {
8528 dprintf("failed to delete subarray-%d\n", victim);
8529 break;
8530 }
8531
8532 for (dp = &super->devlist; *dp;)
f21e18ca 8533 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
8534 *dp = (*dp)->next;
8535 } else {
f21e18ca 8536 if ((*dp)->index > (unsigned)victim)
33414a01
DW
8537 (*dp)->index--;
8538 dp = &(*dp)->next;
8539 }
8540 mpb->num_raid_devs--;
8541 super->updates_pending++;
8542 break;
8543 }
aa534678
DW
8544 case update_rename_array: {
8545 struct imsm_update_rename_array *u = (void *) update->buf;
8546 char name[MAX_RAID_SERIAL_LEN+1];
8547 int target = u->dev_idx;
8548 struct active_array *a;
8549 struct imsm_dev *dev;
8550
8551 /* sanity check that we are not affecting the uuid of
8552 * an active array
8553 */
8554 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8555 name[MAX_RAID_SERIAL_LEN] = '\0';
8556 for (a = st->arrays; a; a = a->next)
8557 if (a->info.container_member == target)
8558 break;
8559 dev = get_imsm_dev(super, u->dev_idx);
8560 if (a || !dev || !check_name(super, name, 1)) {
8561 dprintf("failed to rename subarray-%d\n", target);
8562 break;
8563 }
8564
cdbe98cd 8565 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
8566 super->updates_pending++;
8567 break;
8568 }
1a64be56 8569 case update_add_remove_disk: {
43dad3d6 8570 /* we may be able to repair some arrays if disks are
1a64be56
LM
8571 * being added, check teh status of add_remove_disk
8572 * if discs has been added.
8573 */
8574 if (add_remove_disk_update(super)) {
43dad3d6 8575 struct active_array *a;
072b727f
DW
8576
8577 super->updates_pending++;
1a64be56 8578 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
8579 a->check_degraded = 1;
8580 }
43dad3d6 8581 break;
e8319a19 8582 }
1a64be56
LM
8583 default:
8584 fprintf(stderr, "error: unsuported process update type:"
8585 "(type: %d)\n", type);
8586 }
e8319a19 8587}
88758e9d 8588
bc0b9d34
PC
8589static struct mdinfo *get_spares_for_grow(struct supertype *st);
8590
8273f55e
DW
8591static void imsm_prepare_update(struct supertype *st,
8592 struct metadata_update *update)
8593{
949c47a0 8594 /**
4d7b1503
DW
8595 * Allocate space to hold new disk entries, raid-device entries or a new
8596 * mpb if necessary. The manager synchronously waits for updates to
8597 * complete in the monitor, so new mpb buffers allocated here can be
8598 * integrated by the monitor thread without worrying about live pointers
8599 * in the manager thread.
8273f55e 8600 */
949c47a0 8601 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
8602 struct intel_super *super = st->sb;
8603 struct imsm_super *mpb = super->anchor;
8604 size_t buf_len;
8605 size_t len = 0;
949c47a0
DW
8606
8607 switch (type) {
0ec5d470
AK
8608 case update_general_migration_checkpoint:
8609 dprintf("imsm: prepare_update() "
8610 "for update_general_migration_checkpoint called\n");
8611 break;
abedf5fc
KW
8612 case update_takeover: {
8613 struct imsm_update_takeover *u = (void *)update->buf;
8614 if (u->direction == R0_TO_R10) {
8615 void **tail = (void **)&update->space_list;
8616 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 8617 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
8618 int num_members = map->num_members;
8619 void *space;
8620 int size, i;
abedf5fc
KW
8621 /* allocate memory for added disks */
8622 for (i = 0; i < num_members; i++) {
8623 size = sizeof(struct dl);
503975b9 8624 space = xmalloc(size);
abedf5fc
KW
8625 *tail = space;
8626 tail = space;
8627 *tail = NULL;
8628 }
8629 /* allocate memory for new device */
8630 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8631 (num_members * sizeof(__u32));
503975b9
N
8632 space = xmalloc(size);
8633 *tail = space;
8634 tail = space;
8635 *tail = NULL;
8636 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
8637 }
8638
8639 break;
8640 }
78b10e66 8641 case update_reshape_container_disks: {
d195167d
AK
8642 /* Every raid device in the container is about to
8643 * gain some more devices, and we will enter a
8644 * reconfiguration.
8645 * So each 'imsm_map' will be bigger, and the imsm_vol
8646 * will now hold 2 of them.
8647 * Thus we need new 'struct imsm_dev' allocations sized
8648 * as sizeof_imsm_dev but with more devices in both maps.
8649 */
8650 struct imsm_update_reshape *u = (void *)update->buf;
8651 struct intel_dev *dl;
8652 void **space_tail = (void**)&update->space_list;
8653
8654 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8655
8656 for (dl = super->devlist; dl; dl = dl->next) {
8657 int size = sizeof_imsm_dev(dl->dev, 1);
8658 void *s;
d677e0b8
AK
8659 if (u->new_raid_disks > u->old_raid_disks)
8660 size += sizeof(__u32)*2*
8661 (u->new_raid_disks - u->old_raid_disks);
503975b9 8662 s = xmalloc(size);
d195167d
AK
8663 *space_tail = s;
8664 space_tail = s;
8665 *space_tail = NULL;
8666 }
8667
8668 len = disks_to_mpb_size(u->new_raid_disks);
8669 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
8670 break;
8671 }
48c5303a 8672 case update_reshape_migration: {
bc0b9d34
PC
8673 /* for migration level 0->5 we need to add disks
8674 * so the same as for container operation we will copy
8675 * device to the bigger location.
8676 * in memory prepared device and new disk area are prepared
8677 * for usage in process update
8678 */
8679 struct imsm_update_reshape_migration *u = (void *)update->buf;
8680 struct intel_dev *id;
8681 void **space_tail = (void **)&update->space_list;
8682 int size;
8683 void *s;
8684 int current_level = -1;
8685
8686 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8687
8688 /* add space for bigger array in update
8689 */
8690 for (id = super->devlist; id; id = id->next) {
8691 if (id->index == (unsigned)u->subdev) {
8692 size = sizeof_imsm_dev(id->dev, 1);
8693 if (u->new_raid_disks > u->old_raid_disks)
8694 size += sizeof(__u32)*2*
8695 (u->new_raid_disks - u->old_raid_disks);
503975b9 8696 s = xmalloc(size);
bc0b9d34
PC
8697 *space_tail = s;
8698 space_tail = s;
8699 *space_tail = NULL;
8700 break;
8701 }
8702 }
8703 if (update->space_list == NULL)
8704 break;
8705
8706 /* add space for disk in update
8707 */
8708 size = sizeof(struct dl);
503975b9 8709 s = xmalloc(size);
bc0b9d34
PC
8710 *space_tail = s;
8711 space_tail = s;
8712 *space_tail = NULL;
8713
8714 /* add spare device to update
8715 */
8716 for (id = super->devlist ; id; id = id->next)
8717 if (id->index == (unsigned)u->subdev) {
8718 struct imsm_dev *dev;
8719 struct imsm_map *map;
8720
8721 dev = get_imsm_dev(super, u->subdev);
238c0a71 8722 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
8723 current_level = map->raid_level;
8724 break;
8725 }
8726 if ((u->new_level == 5) && (u->new_level != current_level)) {
8727 struct mdinfo *spares;
8728
8729 spares = get_spares_for_grow(st);
8730 if (spares) {
8731 struct dl *dl;
8732 struct mdinfo *dev;
8733
8734 dev = spares->devs;
8735 if (dev) {
8736 u->new_disks[0] =
8737 makedev(dev->disk.major,
8738 dev->disk.minor);
8739 dl = get_disk_super(super,
8740 dev->disk.major,
8741 dev->disk.minor);
8742 dl->index = u->old_raid_disks;
8743 dev = dev->next;
8744 }
8745 sysfs_free(spares);
8746 }
8747 }
8748 len = disks_to_mpb_size(u->new_raid_disks);
8749 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
8750 break;
8751 }
f3871fdc
AK
8752 case update_size_change: {
8753 break;
8754 }
949c47a0
DW
8755 case update_create_array: {
8756 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8757 struct intel_dev *dv;
54c2c1ea 8758 struct imsm_dev *dev = &u->dev;
238c0a71 8759 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
8760 struct dl *dl;
8761 struct disk_info *inf;
8762 int i;
8763 int activate = 0;
949c47a0 8764
54c2c1ea
DW
8765 inf = get_disk_info(u);
8766 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 8767 /* allocate a new super->devlist entry */
503975b9
N
8768 dv = xmalloc(sizeof(*dv));
8769 dv->dev = xmalloc(len);
8770 update->space = dv;
949c47a0 8771
54c2c1ea
DW
8772 /* count how many spares will be converted to members */
8773 for (i = 0; i < map->num_members; i++) {
8774 dl = serial_to_dl(inf[i].serial, super);
8775 if (!dl) {
8776 /* hmm maybe it failed?, nothing we can do about
8777 * it here
8778 */
8779 continue;
8780 }
8781 if (count_memberships(dl, super) == 0)
8782 activate++;
8783 }
8784 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
8785 break;
8786 default:
8787 break;
8788 }
8789 }
8273f55e 8790
4d7b1503
DW
8791 /* check if we need a larger metadata buffer */
8792 if (super->next_buf)
8793 buf_len = super->next_len;
8794 else
8795 buf_len = super->len;
8796
8797 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8798 /* ok we need a larger buf than what is currently allocated
8799 * if this allocation fails process_update will notice that
8800 * ->next_len is set and ->next_buf is NULL
8801 */
8802 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8803 if (super->next_buf)
8804 free(super->next_buf);
8805
8806 super->next_len = buf_len;
1f45a8ad
DW
8807 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8808 memset(super->next_buf, 0, buf_len);
8809 else
4d7b1503
DW
8810 super->next_buf = NULL;
8811 }
8273f55e
DW
8812}
8813
ae6aad82 8814/* must be called while manager is quiesced */
f21e18ca 8815static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
8816{
8817 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
8818 struct dl *iter;
8819 struct imsm_dev *dev;
8820 struct imsm_map *map;
24565c9a
DW
8821 int i, j, num_members;
8822 __u32 ord;
ae6aad82 8823
24565c9a
DW
8824 dprintf("%s: deleting device[%d] from imsm_super\n",
8825 __func__, index);
ae6aad82
DW
8826
8827 /* shift all indexes down one */
8828 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 8829 if (iter->index > (int)index)
ae6aad82 8830 iter->index--;
47ee5a45 8831 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 8832 if (iter->index > (int)index)
47ee5a45 8833 iter->index--;
ae6aad82
DW
8834
8835 for (i = 0; i < mpb->num_raid_devs; i++) {
8836 dev = get_imsm_dev(super, i);
238c0a71 8837 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
8838 num_members = map->num_members;
8839 for (j = 0; j < num_members; j++) {
8840 /* update ord entries being careful not to propagate
8841 * ord-flags to the first map
8842 */
238c0a71 8843 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 8844
24565c9a
DW
8845 if (ord_to_idx(ord) <= index)
8846 continue;
ae6aad82 8847
238c0a71 8848 map = get_imsm_map(dev, MAP_0);
24565c9a 8849 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 8850 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
8851 if (map)
8852 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
8853 }
8854 }
8855
8856 mpb->num_disks--;
8857 super->updates_pending++;
24565c9a
DW
8858 if (*dlp) {
8859 struct dl *dl = *dlp;
8860
8861 *dlp = (*dlp)->next;
8862 __free_imsm_disk(dl);
8863 }
ae6aad82 8864}
9e2d750d 8865#endif /* MDASSEMBLE */
9a717282
AK
8866
8867static void close_targets(int *targets, int new_disks)
8868{
8869 int i;
8870
8871 if (!targets)
8872 return;
8873
8874 for (i = 0; i < new_disks; i++) {
8875 if (targets[i] >= 0) {
8876 close(targets[i]);
8877 targets[i] = -1;
8878 }
8879 }
8880}
8881
8882static int imsm_get_allowed_degradation(int level, int raid_disks,
8883 struct intel_super *super,
8884 struct imsm_dev *dev)
8885{
8886 switch (level) {
bf5cf7c7 8887 case 1:
9a717282
AK
8888 case 10:{
8889 int ret_val = 0;
8890 struct imsm_map *map;
8891 int i;
8892
8893 ret_val = raid_disks/2;
8894 /* check map if all disks pairs not failed
8895 * in both maps
8896 */
238c0a71 8897 map = get_imsm_map(dev, MAP_0);
9a717282
AK
8898 for (i = 0; i < ret_val; i++) {
8899 int degradation = 0;
8900 if (get_imsm_disk(super, i) == NULL)
8901 degradation++;
8902 if (get_imsm_disk(super, i + 1) == NULL)
8903 degradation++;
8904 if (degradation == 2)
8905 return 0;
8906 }
238c0a71 8907 map = get_imsm_map(dev, MAP_1);
9a717282
AK
8908 /* if there is no second map
8909 * result can be returned
8910 */
8911 if (map == NULL)
8912 return ret_val;
8913 /* check degradation in second map
8914 */
8915 for (i = 0; i < ret_val; i++) {
8916 int degradation = 0;
8917 if (get_imsm_disk(super, i) == NULL)
8918 degradation++;
8919 if (get_imsm_disk(super, i + 1) == NULL)
8920 degradation++;
8921 if (degradation == 2)
8922 return 0;
8923 }
8924 return ret_val;
8925 }
8926 case 5:
8927 return 1;
8928 case 6:
8929 return 2;
8930 default:
8931 return 0;
8932 }
8933}
8934
8935
687629c2
AK
8936/*******************************************************************************
8937 * Function: open_backup_targets
8938 * Description: Function opens file descriptors for all devices given in
8939 * info->devs
8940 * Parameters:
8941 * info : general array info
8942 * raid_disks : number of disks
8943 * raid_fds : table of device's file descriptors
9a717282
AK
8944 * super : intel super for raid10 degradation check
8945 * dev : intel device for raid10 degradation check
687629c2
AK
8946 * Returns:
8947 * 0 : success
8948 * -1 : fail
8949 ******************************************************************************/
9a717282
AK
8950int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8951 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
8952{
8953 struct mdinfo *sd;
f627f5ad 8954 int i;
9a717282 8955 int opened = 0;
f627f5ad
AK
8956
8957 for (i = 0; i < raid_disks; i++)
8958 raid_fds[i] = -1;
687629c2
AK
8959
8960 for (sd = info->devs ; sd ; sd = sd->next) {
8961 char *dn;
8962
8963 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8964 dprintf("disk is faulty!!\n");
8965 continue;
8966 }
8967
8968 if ((sd->disk.raid_disk >= raid_disks) ||
8969 (sd->disk.raid_disk < 0))
8970 continue;
8971
8972 dn = map_dev(sd->disk.major,
8973 sd->disk.minor, 1);
8974 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8975 if (raid_fds[sd->disk.raid_disk] < 0) {
8976 fprintf(stderr, "cannot open component\n");
9a717282 8977 continue;
687629c2 8978 }
9a717282
AK
8979 opened++;
8980 }
8981 /* check if maximum array degradation level is not exceeded
8982 */
8983 if ((raid_disks - opened) >
8984 imsm_get_allowed_degradation(info->new_level,
8985 raid_disks,
8986 super, dev)) {
8987 fprintf(stderr, "Not enough disks can be opened.\n");
8988 close_targets(raid_fds, raid_disks);
8989 return -2;
687629c2
AK
8990 }
8991 return 0;
8992}
8993
9e2d750d 8994#ifndef MDASSEMBLE
687629c2
AK
8995/*******************************************************************************
8996 * Function: init_migr_record_imsm
8997 * Description: Function inits imsm migration record
8998 * Parameters:
8999 * super : imsm internal array info
9000 * dev : device under migration
9001 * info : general array info to find the smallest device
9002 * Returns:
9003 * none
9004 ******************************************************************************/
9005void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9006 struct mdinfo *info)
9007{
9008 struct intel_super *super = st->sb;
9009 struct migr_record *migr_rec = super->migr_rec;
9010 int new_data_disks;
9011 unsigned long long dsize, dev_sectors;
9012 long long unsigned min_dev_sectors = -1LLU;
9013 struct mdinfo *sd;
9014 char nm[30];
9015 int fd;
238c0a71
AK
9016 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9017 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 9018 unsigned long long num_migr_units;
3ef4403c 9019 unsigned long long array_blocks;
687629c2
AK
9020
9021 memset(migr_rec, 0, sizeof(struct migr_record));
9022 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9023
9024 /* only ascending reshape supported now */
9025 migr_rec->ascending_migr = __cpu_to_le32(1);
9026
9027 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9028 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
9029 migr_rec->dest_depth_per_unit *=
9030 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 9031 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
9032 migr_rec->blocks_per_unit =
9033 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9034 migr_rec->dest_depth_per_unit =
9035 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 9036 array_blocks = info->component_size * new_data_disks;
687629c2
AK
9037 num_migr_units =
9038 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9039
9040 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9041 num_migr_units++;
9042 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9043
9044 migr_rec->post_migr_vol_cap = dev->size_low;
9045 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9046
9047
9048 /* Find the smallest dev */
9049 for (sd = info->devs ; sd ; sd = sd->next) {
9050 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9051 fd = dev_open(nm, O_RDONLY);
9052 if (fd < 0)
9053 continue;
9054 get_dev_size(fd, NULL, &dsize);
9055 dev_sectors = dsize / 512;
9056 if (dev_sectors < min_dev_sectors)
9057 min_dev_sectors = dev_sectors;
9058 close(fd);
9059 }
9060 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9061 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9062
9063 write_imsm_migr_rec(st);
9064
9065 return;
9066}
9067
9068/*******************************************************************************
9069 * Function: save_backup_imsm
9070 * Description: Function saves critical data stripes to Migration Copy Area
9071 * and updates the current migration unit status.
9072 * Use restore_stripes() to form a destination stripe,
9073 * and to write it to the Copy Area.
9074 * Parameters:
9075 * st : supertype information
aea93171 9076 * dev : imsm device that backup is saved for
687629c2
AK
9077 * info : general array info
9078 * buf : input buffer
687629c2
AK
9079 * length : length of data to backup (blocks_per_unit)
9080 * Returns:
9081 * 0 : success
9082 *, -1 : fail
9083 ******************************************************************************/
9084int save_backup_imsm(struct supertype *st,
9085 struct imsm_dev *dev,
9086 struct mdinfo *info,
9087 void *buf,
687629c2
AK
9088 int length)
9089{
9090 int rv = -1;
9091 struct intel_super *super = st->sb;
9092 unsigned long long *target_offsets = NULL;
9093 int *targets = NULL;
9094 int i;
238c0a71 9095 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 9096 int new_disks = map_dest->num_members;
ab724b98
AK
9097 int dest_layout = 0;
9098 int dest_chunk;
d1877f69 9099 unsigned long long start;
238c0a71 9100 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 9101
503975b9 9102 targets = xmalloc(new_disks * sizeof(int));
687629c2 9103
7e45b550
AK
9104 for (i = 0; i < new_disks; i++)
9105 targets[i] = -1;
9106
503975b9 9107 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 9108
d1877f69 9109 start = info->reshape_progress * 512;
687629c2 9110 for (i = 0; i < new_disks; i++) {
687629c2
AK
9111 target_offsets[i] = (unsigned long long)
9112 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
9113 /* move back copy area adderss, it will be moved forward
9114 * in restore_stripes() using start input variable
9115 */
9116 target_offsets[i] -= start/data_disks;
687629c2
AK
9117 }
9118
9a717282
AK
9119 if (open_backup_targets(info, new_disks, targets,
9120 super, dev))
687629c2
AK
9121 goto abort;
9122
68eb8bc6 9123 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
9124 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9125
687629c2
AK
9126 if (restore_stripes(targets, /* list of dest devices */
9127 target_offsets, /* migration record offsets */
9128 new_disks,
ab724b98
AK
9129 dest_chunk,
9130 map_dest->raid_level,
9131 dest_layout,
9132 -1, /* source backup file descriptor */
9133 0, /* input buf offset
9134 * always 0 buf is already offseted */
d1877f69 9135 start,
687629c2
AK
9136 length,
9137 buf) != 0) {
e7b84f9d 9138 pr_err("Error restoring stripes\n");
687629c2
AK
9139 goto abort;
9140 }
9141
9142 rv = 0;
9143
9144abort:
9145 if (targets) {
9a717282 9146 close_targets(targets, new_disks);
687629c2
AK
9147 free(targets);
9148 }
9149 free(target_offsets);
9150
9151 return rv;
9152}
9153
9154/*******************************************************************************
9155 * Function: save_checkpoint_imsm
9156 * Description: Function called for current unit status update
9157 * in the migration record. It writes it to disk.
9158 * Parameters:
9159 * super : imsm internal array info
9160 * info : general array info
9161 * Returns:
9162 * 0: success
9163 * 1: failure
0228d92c
AK
9164 * 2: failure, means no valid migration record
9165 * / no general migration in progress /
687629c2
AK
9166 ******************************************************************************/
9167int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9168{
9169 struct intel_super *super = st->sb;
f8b72ef5
AK
9170 unsigned long long blocks_per_unit;
9171 unsigned long long curr_migr_unit;
9172
2e062e82
AK
9173 if (load_imsm_migr_rec(super, info) != 0) {
9174 dprintf("imsm: ERROR: Cannot read migration record "
9175 "for checkpoint save.\n");
9176 return 1;
9177 }
9178
f8b72ef5
AK
9179 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9180 if (blocks_per_unit == 0) {
0228d92c
AK
9181 dprintf("imsm: no migration in progress.\n");
9182 return 2;
687629c2 9183 }
f8b72ef5
AK
9184 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9185 /* check if array is alligned to copy area
9186 * if it is not alligned, add one to current migration unit value
9187 * this can happend on array reshape finish only
9188 */
9189 if (info->reshape_progress % blocks_per_unit)
9190 curr_migr_unit++;
687629c2
AK
9191
9192 super->migr_rec->curr_migr_unit =
f8b72ef5 9193 __cpu_to_le32(curr_migr_unit);
687629c2
AK
9194 super->migr_rec->rec_status = __cpu_to_le32(state);
9195 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
9196 __cpu_to_le32(curr_migr_unit *
9197 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
9198 if (write_imsm_migr_rec(st) < 0) {
9199 dprintf("imsm: Cannot write migration record "
9200 "outside backup area\n");
9201 return 1;
9202 }
9203
9204 return 0;
9205}
9206
276d77db
AK
9207/*******************************************************************************
9208 * Function: recover_backup_imsm
9209 * Description: Function recovers critical data from the Migration Copy Area
9210 * while assembling an array.
9211 * Parameters:
9212 * super : imsm internal array info
9213 * info : general array info
9214 * Returns:
9215 * 0 : success (or there is no data to recover)
9216 * 1 : fail
9217 ******************************************************************************/
9218int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9219{
9220 struct intel_super *super = st->sb;
9221 struct migr_record *migr_rec = super->migr_rec;
9222 struct imsm_map *map_dest = NULL;
9223 struct intel_dev *id = NULL;
9224 unsigned long long read_offset;
9225 unsigned long long write_offset;
9226 unsigned unit_len;
9227 int *targets = NULL;
9228 int new_disks, i, err;
9229 char *buf = NULL;
9230 int retval = 1;
9231 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9232 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 9233 char buffer[20];
6c3560c0 9234 int skipped_disks = 0;
276d77db
AK
9235
9236 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9237 if (err < 1)
9238 return 1;
9239
9240 /* recover data only during assemblation */
9241 if (strncmp(buffer, "inactive", 8) != 0)
9242 return 0;
9243 /* no data to recover */
9244 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9245 return 0;
9246 if (curr_migr_unit >= num_migr_units)
9247 return 1;
9248
9249 /* find device during reshape */
9250 for (id = super->devlist; id; id = id->next)
9251 if (is_gen_migration(id->dev))
9252 break;
9253 if (id == NULL)
9254 return 1;
9255
238c0a71 9256 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
9257 new_disks = map_dest->num_members;
9258
9259 read_offset = (unsigned long long)
9260 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9261
9262 write_offset = ((unsigned long long)
9263 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 9264 pba_of_lba0(map_dest)) * 512;
276d77db
AK
9265
9266 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9267 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9268 goto abort;
503975b9 9269 targets = xcalloc(new_disks, sizeof(int));
276d77db 9270
9a717282 9271 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 9272 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
9273 goto abort;
9274 }
276d77db
AK
9275
9276 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
9277 if (targets[i] < 0) {
9278 skipped_disks++;
9279 continue;
9280 }
276d77db 9281 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
9282 pr_err("Cannot seek to block: %s\n",
9283 strerror(errno));
137debce
AK
9284 skipped_disks++;
9285 continue;
276d77db 9286 }
9ec11d1a 9287 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
9288 pr_err("Cannot read copy area block: %s\n",
9289 strerror(errno));
137debce
AK
9290 skipped_disks++;
9291 continue;
276d77db
AK
9292 }
9293 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
9294 pr_err("Cannot seek to block: %s\n",
9295 strerror(errno));
137debce
AK
9296 skipped_disks++;
9297 continue;
276d77db 9298 }
9ec11d1a 9299 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
9300 pr_err("Cannot restore block: %s\n",
9301 strerror(errno));
137debce
AK
9302 skipped_disks++;
9303 continue;
276d77db
AK
9304 }
9305 }
9306
137debce
AK
9307 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9308 new_disks,
9309 super,
9310 id->dev)) {
e7b84f9d
N
9311 pr_err("Cannot restore data from backup."
9312 " Too many failed disks\n");
6c3560c0
AK
9313 goto abort;
9314 }
9315
befb629b
AK
9316 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9317 /* ignore error == 2, this can mean end of reshape here
9318 */
9319 dprintf("imsm: Cannot write checkpoint to "
9320 "migration record (UNIT_SRC_NORMAL) during restart\n");
9321 } else
276d77db 9322 retval = 0;
276d77db
AK
9323
9324abort:
9325 if (targets) {
9326 for (i = 0; i < new_disks; i++)
9327 if (targets[i])
9328 close(targets[i]);
9329 free(targets);
9330 }
9331 free(buf);
9332 return retval;
9333}
9334
2cda7640
ML
9335static char disk_by_path[] = "/dev/disk/by-path/";
9336
9337static const char *imsm_get_disk_controller_domain(const char *path)
9338{
2cda7640 9339 char disk_path[PATH_MAX];
96234762
LM
9340 char *drv=NULL;
9341 struct stat st;
2cda7640 9342
96234762
LM
9343 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9344 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9345 if (stat(disk_path, &st) == 0) {
9346 struct sys_dev* hba;
9347 char *path=NULL;
9348
9349 path = devt_to_devpath(st.st_rdev);
9350 if (path == NULL)
9351 return "unknown";
9352 hba = find_disk_attached_hba(-1, path);
9353 if (hba && hba->type == SYS_DEV_SAS)
9354 drv = "isci";
9355 else if (hba && hba->type == SYS_DEV_SATA)
9356 drv = "ahci";
9357 else
9358 drv = "unknown";
9359 dprintf("path: %s hba: %s attached: %s\n",
9360 path, (hba) ? hba->path : "NULL", drv);
9361 free(path);
9362 if (hba)
9363 free_sys_dev(&hba);
2cda7640 9364 }
96234762 9365 return drv;
2cda7640
ML
9366}
9367
78b10e66
N
9368static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9369{
9370 char subdev_name[20];
9371 struct mdstat_ent *mdstat;
9372
9373 sprintf(subdev_name, "%d", subdev);
9374 mdstat = mdstat_by_subdev(subdev_name, container);
9375 if (!mdstat)
9376 return -1;
9377
9378 *minor = mdstat->devnum;
9379 free_mdstat(mdstat);
9380 return 0;
9381}
9382
9383static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9384 struct geo_params *geo,
fbf3d202
AK
9385 int *old_raid_disks,
9386 int direction)
78b10e66 9387{
694575e7
KW
9388 /* currently we only support increasing the number of devices
9389 * for a container. This increases the number of device for each
9390 * member array. They must all be RAID0 or RAID5.
9391 */
78b10e66
N
9392 int ret_val = 0;
9393 struct mdinfo *info, *member;
9394 int devices_that_can_grow = 0;
9395
9396 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9397 "st->devnum = (%i)\n",
9398 st->devnum);
9399
d04f65f4 9400 if (geo->size > 0 ||
78b10e66
N
9401 geo->level != UnSet ||
9402 geo->layout != UnSet ||
9403 geo->chunksize != 0 ||
9404 geo->raid_disks == UnSet) {
9405 dprintf("imsm: Container operation is allowed for "
9406 "raid disks number change only.\n");
9407 return ret_val;
9408 }
9409
fbf3d202
AK
9410 if (direction == ROLLBACK_METADATA_CHANGES) {
9411 dprintf("imsm: Metadata changes rollback is not supported for "
9412 "container operation.\n");
9413 return ret_val;
9414 }
9415
78b10e66
N
9416 info = container_content_imsm(st, NULL);
9417 for (member = info; member; member = member->next) {
9418 int result;
9419 int minor;
9420
9421 dprintf("imsm: checking device_num: %i\n",
9422 member->container_member);
9423
d7d205bd 9424 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
9425 /* we work on container for Online Capacity Expansion
9426 * only so raid_disks has to grow
9427 */
9428 dprintf("imsm: for container operation raid disks "
9429 "increase is required\n");
9430 break;
9431 }
9432
9433 if ((info->array.level != 0) &&
9434 (info->array.level != 5)) {
9435 /* we cannot use this container with other raid level
9436 */
690aae1a 9437 dprintf("imsm: for container operation wrong"
78b10e66
N
9438 " raid level (%i) detected\n",
9439 info->array.level);
9440 break;
9441 } else {
9442 /* check for platform support
9443 * for this raid level configuration
9444 */
9445 struct intel_super *super = st->sb;
9446 if (!is_raid_level_supported(super->orom,
9447 member->array.level,
9448 geo->raid_disks)) {
690aae1a 9449 dprintf("platform does not support raid%d with"
78b10e66
N
9450 " %d disk%s\n",
9451 info->array.level,
9452 geo->raid_disks,
9453 geo->raid_disks > 1 ? "s" : "");
9454 break;
9455 }
2a4a08e7
AK
9456 /* check if component size is aligned to chunk size
9457 */
9458 if (info->component_size %
9459 (info->array.chunk_size/512)) {
9460 dprintf("Component size is not aligned to "
9461 "chunk size\n");
9462 break;
9463 }
78b10e66
N
9464 }
9465
9466 if (*old_raid_disks &&
9467 info->array.raid_disks != *old_raid_disks)
9468 break;
9469 *old_raid_disks = info->array.raid_disks;
9470
9471 /* All raid5 and raid0 volumes in container
9472 * have to be ready for Online Capacity Expansion
9473 * so they need to be assembled. We have already
9474 * checked that no recovery etc is happening.
9475 */
9476 result = imsm_find_array_minor_by_subdev(member->container_member,
9477 st->container_dev,
9478 &minor);
9479 if (result < 0) {
9480 dprintf("imsm: cannot find array\n");
9481 break;
9482 }
9483 devices_that_can_grow++;
9484 }
9485 sysfs_free(info);
9486 if (!member && devices_that_can_grow)
9487 ret_val = 1;
9488
9489 if (ret_val)
9490 dprintf("\tContainer operation allowed\n");
9491 else
9492 dprintf("\tError: %i\n", ret_val);
9493
9494 return ret_val;
9495}
9496
9497/* Function: get_spares_for_grow
9498 * Description: Allocates memory and creates list of spare devices
9499 * avaliable in container. Checks if spare drive size is acceptable.
9500 * Parameters: Pointer to the supertype structure
9501 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9502 * NULL if fail
9503 */
9504static struct mdinfo *get_spares_for_grow(struct supertype *st)
9505{
78b10e66 9506 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 9507 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
9508}
9509
9510/******************************************************************************
9511 * function: imsm_create_metadata_update_for_reshape
9512 * Function creates update for whole IMSM container.
9513 *
9514 ******************************************************************************/
9515static int imsm_create_metadata_update_for_reshape(
9516 struct supertype *st,
9517 struct geo_params *geo,
9518 int old_raid_disks,
9519 struct imsm_update_reshape **updatep)
9520{
9521 struct intel_super *super = st->sb;
9522 struct imsm_super *mpb = super->anchor;
9523 int update_memory_size = 0;
9524 struct imsm_update_reshape *u = NULL;
9525 struct mdinfo *spares = NULL;
9526 int i;
9527 int delta_disks = 0;
bbd24d86 9528 struct mdinfo *dev;
78b10e66
N
9529
9530 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9531 geo->raid_disks);
9532
9533 delta_disks = geo->raid_disks - old_raid_disks;
9534
9535 /* size of all update data without anchor */
9536 update_memory_size = sizeof(struct imsm_update_reshape);
9537
9538 /* now add space for spare disks that we need to add. */
9539 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9540
503975b9 9541 u = xcalloc(1, update_memory_size);
78b10e66
N
9542 u->type = update_reshape_container_disks;
9543 u->old_raid_disks = old_raid_disks;
9544 u->new_raid_disks = geo->raid_disks;
9545
9546 /* now get spare disks list
9547 */
9548 spares = get_spares_for_grow(st);
9549
9550 if (spares == NULL
9551 || delta_disks > spares->array.spare_disks) {
e7b84f9d 9552 pr_err("imsm: ERROR: Cannot get spare devices "
e14e5960 9553 "for %s.\n", geo->dev_name);
e4c72d1d 9554 i = -1;
78b10e66
N
9555 goto abort;
9556 }
9557
9558 /* we have got spares
9559 * update disk list in imsm_disk list table in anchor
9560 */
9561 dprintf("imsm: %i spares are available.\n\n",
9562 spares->array.spare_disks);
9563
bbd24d86 9564 dev = spares->devs;
78b10e66 9565 for (i = 0; i < delta_disks; i++) {
78b10e66
N
9566 struct dl *dl;
9567
bbd24d86
AK
9568 if (dev == NULL)
9569 break;
78b10e66
N
9570 u->new_disks[i] = makedev(dev->disk.major,
9571 dev->disk.minor);
9572 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
9573 dl->index = mpb->num_disks;
9574 mpb->num_disks++;
bbd24d86 9575 dev = dev->next;
78b10e66 9576 }
78b10e66
N
9577
9578abort:
9579 /* free spares
9580 */
9581 sysfs_free(spares);
9582
d677e0b8 9583 dprintf("imsm: reshape update preparation :");
78b10e66 9584 if (i == delta_disks) {
d677e0b8 9585 dprintf(" OK\n");
78b10e66
N
9586 *updatep = u;
9587 return update_memory_size;
9588 }
9589 free(u);
d677e0b8 9590 dprintf(" Error\n");
78b10e66
N
9591
9592 return 0;
9593}
9594
f3871fdc
AK
9595
9596/******************************************************************************
9597 * function: imsm_create_metadata_update_for_size_change()
9598 * Creates update for IMSM array for array size change.
9599 *
9600 ******************************************************************************/
9601static int imsm_create_metadata_update_for_size_change(
9602 struct supertype *st,
9603 struct geo_params *geo,
9604 struct imsm_update_size_change **updatep)
9605{
9606 struct intel_super *super = st->sb;
9607 int update_memory_size = 0;
9608 struct imsm_update_size_change *u = NULL;
9609
9610 dprintf("imsm_create_metadata_update_for_size_change(enter)"
9611 " New size = %llu\n", geo->size);
9612
9613 /* size of all update data without anchor */
9614 update_memory_size = sizeof(struct imsm_update_size_change);
9615
503975b9 9616 u = xcalloc(1, update_memory_size);
f3871fdc
AK
9617 u->type = update_size_change;
9618 u->subdev = super->current_vol;
9619 u->new_size = geo->size;
9620
9621 dprintf("imsm: reshape update preparation : OK\n");
9622 *updatep = u;
9623
9624 return update_memory_size;
9625}
9626
48c5303a
PC
9627/******************************************************************************
9628 * function: imsm_create_metadata_update_for_migration()
9629 * Creates update for IMSM array.
9630 *
9631 ******************************************************************************/
9632static int imsm_create_metadata_update_for_migration(
9633 struct supertype *st,
9634 struct geo_params *geo,
9635 struct imsm_update_reshape_migration **updatep)
9636{
9637 struct intel_super *super = st->sb;
9638 int update_memory_size = 0;
9639 struct imsm_update_reshape_migration *u = NULL;
9640 struct imsm_dev *dev;
9641 int previous_level = -1;
9642
9643 dprintf("imsm_create_metadata_update_for_migration(enter)"
9644 " New Level = %i\n", geo->level);
9645
9646 /* size of all update data without anchor */
9647 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9648
503975b9 9649 u = xcalloc(1, update_memory_size);
48c5303a
PC
9650 u->type = update_reshape_migration;
9651 u->subdev = super->current_vol;
9652 u->new_level = geo->level;
9653 u->new_layout = geo->layout;
9654 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9655 u->new_disks[0] = -1;
4bba0439 9656 u->new_chunksize = -1;
48c5303a
PC
9657
9658 dev = get_imsm_dev(super, u->subdev);
9659 if (dev) {
9660 struct imsm_map *map;
9661
238c0a71 9662 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
9663 if (map) {
9664 int current_chunk_size =
9665 __le16_to_cpu(map->blocks_per_strip) / 2;
9666
9667 if (geo->chunksize != current_chunk_size) {
9668 u->new_chunksize = geo->chunksize / 1024;
9669 dprintf("imsm: "
9670 "chunk size change from %i to %i\n",
9671 current_chunk_size, u->new_chunksize);
9672 }
48c5303a 9673 previous_level = map->raid_level;
4bba0439 9674 }
48c5303a
PC
9675 }
9676 if ((geo->level == 5) && (previous_level == 0)) {
9677 struct mdinfo *spares = NULL;
9678
9679 u->new_raid_disks++;
9680 spares = get_spares_for_grow(st);
9681 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9682 free(u);
9683 sysfs_free(spares);
9684 update_memory_size = 0;
9685 dprintf("error: cannot get spare device "
9686 "for requested migration");
9687 return 0;
9688 }
9689 sysfs_free(spares);
9690 }
9691 dprintf("imsm: reshape update preparation : OK\n");
9692 *updatep = u;
9693
9694 return update_memory_size;
9695}
9696
8dd70bce
AK
9697static void imsm_update_metadata_locally(struct supertype *st,
9698 void *buf, int len)
9699{
9700 struct metadata_update mu;
9701
9702 mu.buf = buf;
9703 mu.len = len;
9704 mu.space = NULL;
9705 mu.space_list = NULL;
9706 mu.next = NULL;
9707 imsm_prepare_update(st, &mu);
9708 imsm_process_update(st, &mu);
9709
9710 while (mu.space_list) {
9711 void **space = mu.space_list;
9712 mu.space_list = *space;
9713 free(space);
9714 }
9715}
78b10e66 9716
471bceb6 9717/***************************************************************************
694575e7 9718* Function: imsm_analyze_change
471bceb6
KW
9719* Description: Function analyze change for single volume
9720* and validate if transition is supported
fbf3d202
AK
9721* Parameters: Geometry parameters, supertype structure,
9722* metadata change direction (apply/rollback)
694575e7 9723* Returns: Operation type code on success, -1 if fail
471bceb6
KW
9724****************************************************************************/
9725enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
9726 struct geo_params *geo,
9727 int direction)
694575e7 9728{
471bceb6
KW
9729 struct mdinfo info;
9730 int change = -1;
9731 int check_devs = 0;
c21e737b 9732 int chunk;
67a2db32
AK
9733 /* number of added/removed disks in operation result */
9734 int devNumChange = 0;
9735 /* imsm compatible layout value for array geometry verification */
9736 int imsm_layout = -1;
7abc9871
AK
9737 int data_disks;
9738 struct imsm_dev *dev;
9739 struct intel_super *super;
d04f65f4 9740 unsigned long long current_size;
65d38cca 9741 unsigned long long free_size;
d04f65f4 9742 unsigned long long max_size;
65d38cca 9743 int rv;
471bceb6
KW
9744
9745 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
9746 if ((geo->level != info.array.level) &&
9747 (geo->level >= 0) &&
9748 (geo->level != UnSet)) {
9749 switch (info.array.level) {
9750 case 0:
9751 if (geo->level == 5) {
b5347799 9752 change = CH_MIGRATION;
e13ce846 9753 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
e7b84f9d
N
9754 pr_err("Error. Requested Layout "
9755 "not supported (left-asymmetric layout "
9756 "is supported only)!\n");
e13ce846
AK
9757 change = -1;
9758 goto analyse_change_exit;
9759 }
67a2db32 9760 imsm_layout = geo->layout;
471bceb6 9761 check_devs = 1;
e91a3bad
LM
9762 devNumChange = 1; /* parity disk added */
9763 } else if (geo->level == 10) {
471bceb6
KW
9764 change = CH_TAKEOVER;
9765 check_devs = 1;
e91a3bad 9766 devNumChange = 2; /* two mirrors added */
67a2db32 9767 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 9768 }
dfe77a9e
KW
9769 break;
9770 case 1:
471bceb6
KW
9771 case 10:
9772 if (geo->level == 0) {
9773 change = CH_TAKEOVER;
9774 check_devs = 1;
e91a3bad 9775 devNumChange = -(geo->raid_disks/2);
67a2db32 9776 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
9777 }
9778 break;
9779 }
9780 if (change == -1) {
e7b84f9d
N
9781 pr_err("Error. Level Migration from %d to %d "
9782 "not supported!\n",
9783 info.array.level, geo->level);
471bceb6
KW
9784 goto analyse_change_exit;
9785 }
9786 } else
9787 geo->level = info.array.level;
9788
9789 if ((geo->layout != info.array.layout)
9790 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 9791 change = CH_MIGRATION;
471bceb6
KW
9792 if ((info.array.layout == 0)
9793 && (info.array.level == 5)
9794 && (geo->layout == 5)) {
9795 /* reshape 5 -> 4 */
9796 } else if ((info.array.layout == 5)
9797 && (info.array.level == 5)
9798 && (geo->layout == 0)) {
9799 /* reshape 4 -> 5 */
9800 geo->layout = 0;
9801 geo->level = 5;
9802 } else {
e7b84f9d
N
9803 pr_err("Error. Layout Migration from %d to %d "
9804 "not supported!\n",
9805 info.array.layout, geo->layout);
471bceb6
KW
9806 change = -1;
9807 goto analyse_change_exit;
9808 }
67a2db32 9809 } else {
471bceb6 9810 geo->layout = info.array.layout;
67a2db32
AK
9811 if (imsm_layout == -1)
9812 imsm_layout = info.array.layout;
9813 }
471bceb6
KW
9814
9815 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9816 && (geo->chunksize != info.array.chunk_size))
b5347799 9817 change = CH_MIGRATION;
471bceb6
KW
9818 else
9819 geo->chunksize = info.array.chunk_size;
9820
c21e737b 9821 chunk = geo->chunksize / 1024;
7abc9871
AK
9822
9823 super = st->sb;
9824 dev = get_imsm_dev(super, super->current_vol);
9825 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 9826 /* compute current size per disk member
7abc9871 9827 */
c41e00b2
AK
9828 current_size = info.custom_array_size / data_disks;
9829
d5d2c614 9830 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
c41e00b2
AK
9831 /* align component size
9832 */
9833 geo->size = imsm_component_size_aligment_check(
9834 get_imsm_raid_level(dev->vol.map),
9835 chunk * 1024,
9836 geo->size * 2);
65d0b4ce
LD
9837 if (geo->size == 0) {
9838 pr_err("Error. Size expansion is " \
9839 "supported only (current size is %llu, " \
9840 "requested size /rounded/ is 0).\n",
9841 current_size);
9842 goto analyse_change_exit;
9843 }
c41e00b2 9844 }
7abc9871 9845
d04f65f4 9846 if ((current_size != geo->size) && (geo->size > 0)) {
7abc9871 9847 if (change != -1) {
e7b84f9d 9848 pr_err("Error. Size change should be the only "
7abc9871
AK
9849 "one at a time.\n");
9850 change = -1;
9851 goto analyse_change_exit;
9852 }
9853 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
e7b84f9d
N
9854 pr_err("Error. The last volume in container "
9855 "can be expanded only (%i/%i).\n",
9856 super->current_vol, st->devnum);
7abc9871
AK
9857 goto analyse_change_exit;
9858 }
65d38cca
LD
9859 /* check the maximum available size
9860 */
9861 rv = imsm_get_free_size(st, dev->vol.map->num_members,
9862 0, chunk, &free_size);
9863 if (rv == 0)
9864 /* Cannot find maximum available space
9865 */
9866 max_size = 0;
9867 else {
9868 max_size = free_size + current_size;
9869 /* align component size
9870 */
9871 max_size = imsm_component_size_aligment_check(
9872 get_imsm_raid_level(dev->vol.map),
9873 chunk * 1024,
9874 max_size);
9875 }
d04f65f4 9876 if (geo->size == MAX_SIZE) {
b130333f
AK
9877 /* requested size change to the maximum available size
9878 */
65d38cca 9879 if (max_size == 0) {
e7b84f9d 9880 pr_err("Error. Cannot find "
b130333f
AK
9881 "maximum available space.\n");
9882 change = -1;
9883 goto analyse_change_exit;
65d38cca
LD
9884 } else
9885 geo->size = max_size;
c41e00b2 9886 }
b130333f 9887
fbf3d202
AK
9888 if ((direction == ROLLBACK_METADATA_CHANGES)) {
9889 /* accept size for rollback only
9890 */
9891 } else {
9892 /* round size due to metadata compatibility
9893 */
9894 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
9895 << SECT_PER_MB_SHIFT;
9896 dprintf("Prepare update for size change to %llu\n",
9897 geo->size );
9898 if (current_size >= geo->size) {
e7b84f9d
N
9899 pr_err("Error. Size expansion is "
9900 "supported only (current size is %llu, "
9901 "requested size /rounded/ is %llu).\n",
9902 current_size, geo->size);
fbf3d202
AK
9903 goto analyse_change_exit;
9904 }
65d38cca 9905 if (max_size && geo->size > max_size) {
e7b84f9d
N
9906 pr_err("Error. Requested size is larger "
9907 "than maximum available size (maximum "
9908 "available size is %llu, "
9909 "requested size /rounded/ is %llu).\n",
9910 max_size, geo->size);
65d38cca
LD
9911 goto analyse_change_exit;
9912 }
7abc9871
AK
9913 }
9914 geo->size *= data_disks;
9915 geo->raid_disks = dev->vol.map->num_members;
9916 change = CH_ARRAY_SIZE;
9917 }
471bceb6
KW
9918 if (!validate_geometry_imsm(st,
9919 geo->level,
67a2db32 9920 imsm_layout,
e91a3bad 9921 geo->raid_disks + devNumChange,
c21e737b 9922 &chunk,
af4348dd 9923 geo->size, INVALID_SECTORS,
471bceb6
KW
9924 0, 0, 1))
9925 change = -1;
9926
9927 if (check_devs) {
9928 struct intel_super *super = st->sb;
9929 struct imsm_super *mpb = super->anchor;
9930
9931 if (mpb->num_raid_devs > 1) {
e7b84f9d
N
9932 pr_err("Error. Cannot perform operation on %s"
9933 "- for this operation it MUST be single "
9934 "array in container\n",
9935 geo->dev_name);
471bceb6
KW
9936 change = -1;
9937 }
9938 }
9939
9940analyse_change_exit:
fbf3d202
AK
9941 if ((direction == ROLLBACK_METADATA_CHANGES) &&
9942 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
9943 dprintf("imsm: Metadata changes rollback is not supported for "
9944 "migration and takeover operations.\n");
9945 change = -1;
9946 }
471bceb6 9947 return change;
694575e7
KW
9948}
9949
bb025c2f
KW
9950int imsm_takeover(struct supertype *st, struct geo_params *geo)
9951{
9952 struct intel_super *super = st->sb;
9953 struct imsm_update_takeover *u;
9954
503975b9 9955 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
9956
9957 u->type = update_takeover;
9958 u->subarray = super->current_vol;
9959
9960 /* 10->0 transition */
9961 if (geo->level == 0)
9962 u->direction = R10_TO_R0;
9963
0529c688
KW
9964 /* 0->10 transition */
9965 if (geo->level == 10)
9966 u->direction = R0_TO_R10;
9967
bb025c2f
KW
9968 /* update metadata locally */
9969 imsm_update_metadata_locally(st, u,
9970 sizeof(struct imsm_update_takeover));
9971 /* and possibly remotely */
9972 if (st->update_tail)
9973 append_metadata_update(st, u,
9974 sizeof(struct imsm_update_takeover));
9975 else
9976 free(u);
9977
9978 return 0;
9979}
9980
d04f65f4
N
9981static int imsm_reshape_super(struct supertype *st, unsigned long long size,
9982 int level,
78b10e66 9983 int layout, int chunksize, int raid_disks,
41784c88 9984 int delta_disks, char *backup, char *dev,
016e00f5 9985 int direction, int verbose)
78b10e66 9986{
78b10e66
N
9987 int ret_val = 1;
9988 struct geo_params geo;
9989
9990 dprintf("imsm: reshape_super called.\n");
9991
71204a50 9992 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
9993
9994 geo.dev_name = dev;
694575e7 9995 geo.dev_id = st->devnum;
78b10e66
N
9996 geo.size = size;
9997 geo.level = level;
9998 geo.layout = layout;
9999 geo.chunksize = chunksize;
10000 geo.raid_disks = raid_disks;
41784c88
AK
10001 if (delta_disks != UnSet)
10002 geo.raid_disks += delta_disks;
78b10e66
N
10003
10004 dprintf("\tfor level : %i\n", geo.level);
10005 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
10006
10007 if (experimental() == 0)
10008 return ret_val;
10009
78b10e66 10010 if (st->container_dev == st->devnum) {
694575e7
KW
10011 /* On container level we can only increase number of devices. */
10012 dprintf("imsm: info: Container operation\n");
78b10e66 10013 int old_raid_disks = 0;
6dc0be30 10014
78b10e66 10015 if (imsm_reshape_is_allowed_on_container(
fbf3d202 10016 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
10017 struct imsm_update_reshape *u = NULL;
10018 int len;
10019
10020 len = imsm_create_metadata_update_for_reshape(
10021 st, &geo, old_raid_disks, &u);
10022
ed08d51c
AK
10023 if (len <= 0) {
10024 dprintf("imsm: Cannot prepare update\n");
10025 goto exit_imsm_reshape_super;
10026 }
10027
8dd70bce
AK
10028 ret_val = 0;
10029 /* update metadata locally */
10030 imsm_update_metadata_locally(st, u, len);
10031 /* and possibly remotely */
10032 if (st->update_tail)
10033 append_metadata_update(st, u, len);
10034 else
ed08d51c 10035 free(u);
8dd70bce 10036
694575e7 10037 } else {
e7b84f9d 10038 pr_err("(imsm) Operation "
e7ff7e40 10039 "is not allowed on this container\n");
694575e7
KW
10040 }
10041 } else {
10042 /* On volume level we support following operations
471bceb6
KW
10043 * - takeover: raid10 -> raid0; raid0 -> raid10
10044 * - chunk size migration
10045 * - migration: raid5 -> raid0; raid0 -> raid5
10046 */
10047 struct intel_super *super = st->sb;
10048 struct intel_dev *dev = super->devlist;
10049 int change, devnum;
694575e7 10050 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
10051 /* find requested device */
10052 while (dev) {
19986c72
MB
10053 if (imsm_find_array_minor_by_subdev(
10054 dev->index, st->container_dev, &devnum) == 0
10055 && devnum == geo.dev_id)
471bceb6
KW
10056 break;
10057 dev = dev->next;
10058 }
10059 if (dev == NULL) {
e7b84f9d 10060 pr_err("Cannot find %s (%i) subarray\n",
471bceb6
KW
10061 geo.dev_name, geo.dev_id);
10062 goto exit_imsm_reshape_super;
10063 }
10064 super->current_vol = dev->index;
fbf3d202 10065 change = imsm_analyze_change(st, &geo, direction);
694575e7 10066 switch (change) {
471bceb6 10067 case CH_TAKEOVER:
bb025c2f 10068 ret_val = imsm_takeover(st, &geo);
694575e7 10069 break;
48c5303a
PC
10070 case CH_MIGRATION: {
10071 struct imsm_update_reshape_migration *u = NULL;
10072 int len =
10073 imsm_create_metadata_update_for_migration(
10074 st, &geo, &u);
10075 if (len < 1) {
10076 dprintf("imsm: "
10077 "Cannot prepare update\n");
10078 break;
10079 }
471bceb6 10080 ret_val = 0;
48c5303a
PC
10081 /* update metadata locally */
10082 imsm_update_metadata_locally(st, u, len);
10083 /* and possibly remotely */
10084 if (st->update_tail)
10085 append_metadata_update(st, u, len);
10086 else
10087 free(u);
10088 }
10089 break;
7abc9871 10090 case CH_ARRAY_SIZE: {
f3871fdc
AK
10091 struct imsm_update_size_change *u = NULL;
10092 int len =
10093 imsm_create_metadata_update_for_size_change(
10094 st, &geo, &u);
10095 if (len < 1) {
10096 dprintf("imsm: "
10097 "Cannot prepare update\n");
10098 break;
10099 }
10100 ret_val = 0;
10101 /* update metadata locally */
10102 imsm_update_metadata_locally(st, u, len);
10103 /* and possibly remotely */
10104 if (st->update_tail)
10105 append_metadata_update(st, u, len);
10106 else
10107 free(u);
7abc9871
AK
10108 }
10109 break;
471bceb6
KW
10110 default:
10111 ret_val = 1;
694575e7 10112 }
694575e7 10113 }
78b10e66 10114
ed08d51c 10115exit_imsm_reshape_super:
78b10e66
N
10116 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10117 return ret_val;
10118}
2cda7640 10119
eee67a47
AK
10120/*******************************************************************************
10121 * Function: wait_for_reshape_imsm
10122 * Description: Function writes new sync_max value and waits until
10123 * reshape process reach new position
10124 * Parameters:
10125 * sra : general array info
eee67a47
AK
10126 * ndata : number of disks in new array's layout
10127 * Returns:
10128 * 0 : success,
10129 * 1 : there is no reshape in progress,
10130 * -1 : fail
10131 ******************************************************************************/
ae9f01f8 10132int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
10133{
10134 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
10135 unsigned long long completed;
ae9f01f8
AK
10136 /* to_complete : new sync_max position */
10137 unsigned long long to_complete = sra->reshape_progress;
10138 unsigned long long position_to_set = to_complete / ndata;
eee67a47 10139
ae9f01f8
AK
10140 if (fd < 0) {
10141 dprintf("imsm: wait_for_reshape_imsm() "
10142 "cannot open reshape_position\n");
eee67a47 10143 return 1;
ae9f01f8 10144 }
eee67a47 10145
ae9f01f8
AK
10146 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10147 dprintf("imsm: wait_for_reshape_imsm() "
10148 "cannot read reshape_position (no reshape in progres)\n");
10149 close(fd);
10150 return 0;
10151 }
eee67a47 10152
ae9f01f8
AK
10153 if (completed > to_complete) {
10154 dprintf("imsm: wait_for_reshape_imsm() "
10155 "wrong next position to set %llu (%llu)\n",
10156 to_complete, completed);
10157 close(fd);
10158 return -1;
10159 }
10160 dprintf("Position set: %llu\n", position_to_set);
10161 if (sysfs_set_num(sra, NULL, "sync_max",
10162 position_to_set) != 0) {
10163 dprintf("imsm: wait_for_reshape_imsm() "
10164 "cannot set reshape position to %llu\n",
10165 position_to_set);
10166 close(fd);
10167 return -1;
eee67a47
AK
10168 }
10169
eee67a47
AK
10170 do {
10171 char action[20];
10172 fd_set rfds;
10173 FD_ZERO(&rfds);
10174 FD_SET(fd, &rfds);
a47e44fb
AK
10175 select(fd+1, &rfds, NULL, NULL, NULL);
10176 if (sysfs_get_str(sra, NULL, "sync_action",
10177 action, 20) > 0 &&
10178 strncmp(action, "reshape", 7) != 0)
10179 break;
eee67a47 10180 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
10181 dprintf("imsm: wait_for_reshape_imsm() "
10182 "cannot read reshape_position (in loop)\n");
eee67a47
AK
10183 close(fd);
10184 return 1;
10185 }
eee67a47
AK
10186 } while (completed < to_complete);
10187 close(fd);
10188 return 0;
10189
10190}
10191
b915c95f
AK
10192/*******************************************************************************
10193 * Function: check_degradation_change
10194 * Description: Check that array hasn't become failed.
10195 * Parameters:
10196 * info : for sysfs access
10197 * sources : source disks descriptors
10198 * degraded: previous degradation level
10199 * Returns:
10200 * degradation level
10201 ******************************************************************************/
10202int check_degradation_change(struct mdinfo *info,
10203 int *sources,
10204 int degraded)
10205{
10206 unsigned long long new_degraded;
e1993023
LD
10207 int rv;
10208
10209 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10210 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
10211 /* check each device to ensure it is still working */
10212 struct mdinfo *sd;
10213 new_degraded = 0;
10214 for (sd = info->devs ; sd ; sd = sd->next) {
10215 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10216 continue;
10217 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10218 char sbuf[20];
10219 if (sysfs_get_str(info,
10220 sd, "state", sbuf, 20) < 0 ||
10221 strstr(sbuf, "faulty") ||
10222 strstr(sbuf, "in_sync") == NULL) {
10223 /* this device is dead */
10224 sd->disk.state = (1<<MD_DISK_FAULTY);
10225 if (sd->disk.raid_disk >= 0 &&
10226 sources[sd->disk.raid_disk] >= 0) {
10227 close(sources[
10228 sd->disk.raid_disk]);
10229 sources[sd->disk.raid_disk] =
10230 -1;
10231 }
10232 new_degraded++;
10233 }
10234 }
10235 }
10236 }
10237
10238 return new_degraded;
10239}
10240
10f22854
AK
10241/*******************************************************************************
10242 * Function: imsm_manage_reshape
10243 * Description: Function finds array under reshape and it manages reshape
10244 * process. It creates stripes backups (if required) and sets
10245 * checheckpoits.
10246 * Parameters:
10247 * afd : Backup handle (nattive) - not used
10248 * sra : general array info
10249 * reshape : reshape parameters - not used
10250 * st : supertype structure
10251 * blocks : size of critical section [blocks]
10252 * fds : table of source device descriptor
10253 * offsets : start of array (offest per devices)
10254 * dests : not used
10255 * destfd : table of destination device descriptor
10256 * destoffsets : table of destination offsets (per device)
10257 * Returns:
10258 * 1 : success, reshape is done
10259 * 0 : fail
10260 ******************************************************************************/
999b4972
N
10261static int imsm_manage_reshape(
10262 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 10263 struct supertype *st, unsigned long backup_blocks,
999b4972
N
10264 int *fds, unsigned long long *offsets,
10265 int dests, int *destfd, unsigned long long *destoffsets)
10266{
10f22854
AK
10267 int ret_val = 0;
10268 struct intel_super *super = st->sb;
10269 struct intel_dev *dv = NULL;
10270 struct imsm_dev *dev = NULL;
a6b6d984 10271 struct imsm_map *map_src;
10f22854
AK
10272 int migr_vol_qan = 0;
10273 int ndata, odata; /* [bytes] */
10274 int chunk; /* [bytes] */
10275 struct migr_record *migr_rec;
10276 char *buf = NULL;
10277 unsigned int buf_size; /* [bytes] */
10278 unsigned long long max_position; /* array size [bytes] */
10279 unsigned long long next_step; /* [blocks]/[bytes] */
10280 unsigned long long old_data_stripe_length;
10f22854
AK
10281 unsigned long long start_src; /* [bytes] */
10282 unsigned long long start; /* [bytes] */
10283 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 10284 int degraded = 0;
ab724b98 10285 int source_layout = 0;
10f22854 10286
1ab242d8 10287 if (!fds || !offsets || !sra)
10f22854
AK
10288 goto abort;
10289
10290 /* Find volume during the reshape */
10291 for (dv = super->devlist; dv; dv = dv->next) {
10292 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10293 && dv->dev->vol.migr_state == 1) {
10294 dev = dv->dev;
10295 migr_vol_qan++;
10296 }
10297 }
10298 /* Only one volume can migrate at the same time */
10299 if (migr_vol_qan != 1) {
e7b84f9d 10300 pr_err(": %s", migr_vol_qan ?
10f22854
AK
10301 "Number of migrating volumes greater than 1\n" :
10302 "There is no volume during migrationg\n");
10303 goto abort;
10304 }
10305
238c0a71 10306 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
10307 if (map_src == NULL)
10308 goto abort;
10f22854 10309
238c0a71
AK
10310 ndata = imsm_num_data_members(dev, MAP_0);
10311 odata = imsm_num_data_members(dev, MAP_1);
10f22854 10312
7b1ab482 10313 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
10314 old_data_stripe_length = odata * chunk;
10315
10316 migr_rec = super->migr_rec;
10317
10f22854
AK
10318 /* initialize migration record for start condition */
10319 if (sra->reshape_progress == 0)
10320 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
10321 else {
10322 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10323 dprintf("imsm: cannot restart migration when data "
10324 "are present in copy area.\n");
10325 goto abort;
10326 }
6a75c8ca
AK
10327 /* Save checkpoint to update migration record for current
10328 * reshape position (in md). It can be farther than current
10329 * reshape position in metadata.
10330 */
10331 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10332 /* ignore error == 2, this can mean end of reshape here
10333 */
10334 dprintf("imsm: Cannot write checkpoint to "
10335 "migration record (UNIT_SRC_NORMAL, "
10336 "initial save)\n");
10337 goto abort;
10338 }
b2c59438 10339 }
10f22854
AK
10340
10341 /* size for data */
10342 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10343 /* extend buffer size for parity disk */
10344 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10345 /* add space for stripe aligment */
10346 buf_size += old_data_stripe_length;
10347 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10348 dprintf("imsm: Cannot allocate checpoint buffer\n");
10349 goto abort;
10350 }
10351
3ef4403c 10352 max_position = sra->component_size * ndata;
68eb8bc6 10353 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
10354
10355 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10356 __le32_to_cpu(migr_rec->num_migr_units)) {
10357 /* current reshape position [blocks] */
10358 unsigned long long current_position =
10359 __le32_to_cpu(migr_rec->blocks_per_unit)
10360 * __le32_to_cpu(migr_rec->curr_migr_unit);
10361 unsigned long long border;
10362
b915c95f
AK
10363 /* Check that array hasn't become failed.
10364 */
10365 degraded = check_degradation_change(sra, fds, degraded);
10366 if (degraded > 1) {
10367 dprintf("imsm: Abort reshape due to degradation"
10368 " level (%i)\n", degraded);
10369 goto abort;
10370 }
10371
10f22854
AK
10372 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10373
10374 if ((current_position + next_step) > max_position)
10375 next_step = max_position - current_position;
10376
92144abf 10377 start = current_position * 512;
10f22854
AK
10378
10379 /* allign reading start to old geometry */
10380 start_buf_shift = start % old_data_stripe_length;
10381 start_src = start - start_buf_shift;
10382
10383 border = (start_src / odata) - (start / ndata);
10384 border /= 512;
10385 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10386 /* save critical stripes to buf
10387 * start - start address of current unit
10388 * to backup [bytes]
10389 * start_src - start address of current unit
10390 * to backup alligned to source array
10391 * [bytes]
10392 */
10393 unsigned long long next_step_filler = 0;
10394 unsigned long long copy_length = next_step * 512;
10395
10396 /* allign copy area length to stripe in old geometry */
10397 next_step_filler = ((copy_length + start_buf_shift)
10398 % old_data_stripe_length);
10399 if (next_step_filler)
10400 next_step_filler = (old_data_stripe_length
10401 - next_step_filler);
10402 dprintf("save_stripes() parameters: start = %llu,"
10403 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10404 "\tstart_in_buf_shift = %llu,"
10405 "\tnext_step_filler = %llu\n",
10406 start, start_src, copy_length,
10407 start_buf_shift, next_step_filler);
10408
10409 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
10410 chunk, map_src->raid_level,
10411 source_layout, 0, NULL, start_src,
10f22854
AK
10412 copy_length +
10413 next_step_filler + start_buf_shift,
10414 buf)) {
10415 dprintf("imsm: Cannot save stripes"
10416 " to buffer\n");
10417 goto abort;
10418 }
10419 /* Convert data to destination format and store it
10420 * in backup general migration area
10421 */
10422 if (save_backup_imsm(st, dev, sra,
aea93171 10423 buf + start_buf_shift, copy_length)) {
10f22854
AK
10424 dprintf("imsm: Cannot save stripes to "
10425 "target devices\n");
10426 goto abort;
10427 }
10428 if (save_checkpoint_imsm(st, sra,
10429 UNIT_SRC_IN_CP_AREA)) {
10430 dprintf("imsm: Cannot write checkpoint to "
10431 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10432 goto abort;
10433 }
8016a6d4
AK
10434 } else {
10435 /* set next step to use whole border area */
10436 border /= next_step;
10437 if (border > 1)
10438 next_step *= border;
10f22854
AK
10439 }
10440 /* When data backed up, checkpoint stored,
10441 * kick the kernel to reshape unit of data
10442 */
10443 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
10444 /* limit next step to array max position */
10445 if (next_step > max_position)
10446 next_step = max_position;
10f22854
AK
10447 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10448 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 10449 sra->reshape_progress = next_step;
10f22854
AK
10450
10451 /* wait until reshape finish */
ae9f01f8 10452 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
10453 dprintf("wait_for_reshape_imsm returned error!\n");
10454 goto abort;
10455 }
10f22854 10456
0228d92c
AK
10457 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10458 /* ignore error == 2, this can mean end of reshape here
10459 */
10f22854
AK
10460 dprintf("imsm: Cannot write checkpoint to "
10461 "migration record (UNIT_SRC_NORMAL)\n");
10462 goto abort;
10463 }
10464
10465 }
10466
10467 /* return '1' if done */
10468 ret_val = 1;
10469abort:
10470 free(buf);
10471 abort_reshape(sra);
10472
10473 return ret_val;
999b4972 10474}
71204a50 10475#endif /* MDASSEMBLE */
999b4972 10476
cdddbdbc
DW
10477struct superswitch super_imsm = {
10478#ifndef MDASSEMBLE
10479 .examine_super = examine_super_imsm,
10480 .brief_examine_super = brief_examine_super_imsm,
4737ae25 10481 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 10482 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
10483 .detail_super = detail_super_imsm,
10484 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 10485 .write_init_super = write_init_super_imsm,
0e600426
N
10486 .validate_geometry = validate_geometry_imsm,
10487 .add_to_super = add_to_super_imsm,
1a64be56 10488 .remove_from_super = remove_from_super_imsm,
d665cc31 10489 .detail_platform = detail_platform_imsm,
e50cf220 10490 .export_detail_platform = export_detail_platform_imsm,
33414a01 10491 .kill_subarray = kill_subarray_imsm,
aa534678 10492 .update_subarray = update_subarray_imsm,
2b959fbf 10493 .load_container = load_container_imsm,
71204a50
N
10494 .default_geometry = default_geometry_imsm,
10495 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10496 .reshape_super = imsm_reshape_super,
10497 .manage_reshape = imsm_manage_reshape,
9e2d750d 10498 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
10499#endif
10500 .match_home = match_home_imsm,
10501 .uuid_from_super= uuid_from_super_imsm,
10502 .getinfo_super = getinfo_super_imsm,
5c4cd5da 10503 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
10504 .update_super = update_super_imsm,
10505
10506 .avail_size = avail_size_imsm,
80e7f8c3 10507 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
10508
10509 .compare_super = compare_super_imsm,
10510
10511 .load_super = load_super_imsm,
bf5a934a 10512 .init_super = init_super_imsm,
e683ca88 10513 .store_super = store_super_imsm,
cdddbdbc
DW
10514 .free_super = free_super_imsm,
10515 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 10516 .container_content = container_content_imsm,
cdddbdbc 10517
276d77db 10518
cdddbdbc 10519 .external = 1,
4cce4069 10520 .name = "imsm",
845dea95 10521
0e600426 10522#ifndef MDASSEMBLE
845dea95
NB
10523/* for mdmon */
10524 .open_new = imsm_open_new,
ed9d66aa 10525 .set_array_state= imsm_set_array_state,
845dea95
NB
10526 .set_disk = imsm_set_disk,
10527 .sync_metadata = imsm_sync_metadata,
88758e9d 10528 .activate_spare = imsm_activate_spare,
e8319a19 10529 .process_update = imsm_process_update,
8273f55e 10530 .prepare_update = imsm_prepare_update,
0e600426 10531#endif /* MDASSEMBLE */
cdddbdbc 10532};