]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
fs/fnctl: fix missing __user in fcntl_rw_hint()
[people/ms/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
f87fd4c2 76/* /sys/fs */
00d26666
GKH
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 79
99b7db7b
NP
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
48a066e7 88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 89
38129a13 90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 91{
b58fed8b
RP
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
103}
104
b105e270 105static int mnt_alloc_id(struct mount *mnt)
73cd49ec 106{
169b480e
MW
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
73cd49ec
MS
113}
114
b105e270 115static void mnt_free_id(struct mount *mnt)
73cd49ec 116{
169b480e 117 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
118}
119
719f5d7f
MS
120/*
121 * Allocate a new peer group ID
719f5d7f 122 */
4b8b21f4 123static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 124{
169b480e 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 126
169b480e
MW
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
719f5d7f
MS
131}
132
133/*
134 * Release a peer group ID
135 */
4b8b21f4 136void mnt_release_group_id(struct mount *mnt)
719f5d7f 137{
169b480e 138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 139 mnt->mnt_group_id = 0;
719f5d7f
MS
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for read
144 */
83adc753 145static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
68e8a9fe 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
149#else
150 preempt_disable();
68e8a9fe 151 mnt->mnt_count += n;
b3e19d92
NP
152 preempt_enable();
153#endif
154}
155
b3e19d92
NP
156/*
157 * vfsmount lock must be held for write
158 */
83adc753 159unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
160{
161#ifdef CONFIG_SMP
f03c6599 162 unsigned int count = 0;
b3e19d92
NP
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
68e8a9fe 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
167 }
168
169 return count;
170#else
68e8a9fe 171 return mnt->mnt_count;
b3e19d92
NP
172#endif
173}
174
b105e270 175static struct mount *alloc_vfsmnt(const char *name)
1da177e4 176{
c63181e6
AV
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
73cd49ec
MS
179 int err;
180
c63181e6 181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
fcc139ae 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 187 if (!mnt->mnt_devname)
88b38782 188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92 191#ifdef CONFIG_SMP
c63181e6
AV
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
b3e19d92
NP
194 goto out_free_devname;
195
c63181e6 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 197#else
c63181e6
AV
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
b3e19d92
NP
200#endif
201
38129a13 202 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 211 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
1da177e4 213 }
c63181e6 214 return mnt;
88b38782 215
d3ef3d73
NP
216#ifdef CONFIG_SMP
217out_free_devname:
fcc139ae 218 kfree_const(mnt->mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
c63181e6 221 mnt_free_id(mnt);
88b38782 222out_free_cache:
c63181e6 223 kmem_cache_free(mnt_cache, mnt);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
43f5e655 246bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 247{
43f5e655 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
83adc753 252static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
253{
254#ifdef CONFIG_SMP
68e8a9fe 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 256#else
68e8a9fe 257 mnt->mnt_writers++;
d3ef3d73
NP
258#endif
259}
3d733633 260
83adc753 261static inline void mnt_dec_writers(struct mount *mnt)
3d733633 262{
d3ef3d73 263#ifdef CONFIG_SMP
68e8a9fe 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 265#else
68e8a9fe 266 mnt->mnt_writers--;
d3ef3d73 267#endif
3d733633 268}
3d733633 269
83adc753 270static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 271{
d3ef3d73
NP
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
3d733633 274 int cpu;
3d733633
DH
275
276 for_each_possible_cpu(cpu) {
68e8a9fe 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 278 }
3d733633 279
d3ef3d73
NP
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
3d733633
DH
284}
285
4ed5e82f
MS
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
8366025e 295/*
eb04c282
JK
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
8366025e
DH
300 */
301/**
eb04c282 302 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 303 * @m: the mount on which to take a write
8366025e 304 *
eb04c282
JK
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
8366025e 310 */
eb04c282 311int __mnt_want_write(struct vfsmount *m)
8366025e 312{
83adc753 313 struct mount *mnt = real_mount(m);
3d733633 314 int ret = 0;
3d733633 315
d3ef3d73 316 preempt_disable();
c6653a83 317 mnt_inc_writers(mnt);
d3ef3d73 318 /*
c6653a83 319 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
6aa7de05 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
4ed5e82f 332 if (mnt_is_readonly(m)) {
c6653a83 333 mnt_dec_writers(mnt);
3d733633 334 ret = -EROFS;
3d733633 335 }
d3ef3d73 336 preempt_enable();
eb04c282
JK
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
3d733633 358 return ret;
8366025e
DH
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
96029c4e
NP
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
83adc753 380 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
eb04c282 387 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
388 * @file: the file who's mount on which to take a write
389 *
eb04c282 390 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
391 * do some optimisations if the file is open for write already
392 */
eb04c282 393int __mnt_want_write_file(struct file *file)
96029c4e 394{
83f936c7 395 if (!(file->f_mode & FMODE_WRITER))
eb04c282 396 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
eb04c282 400
7c6893e3
MS
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
7c6893e3
MS
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
a6795a58 412 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
413 ret = __mnt_want_write_file(file);
414 if (ret)
a6795a58 415 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
416 return ret;
417}
96029c4e
NP
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
8366025e 420/**
eb04c282 421 * __mnt_drop_write - give up write access to a mount
8366025e
DH
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
eb04c282 426 * __mnt_want_write() call above.
8366025e 427 */
eb04c282 428void __mnt_drop_write(struct vfsmount *mnt)
8366025e 429{
d3ef3d73 430 preempt_disable();
83adc753 431 mnt_dec_writers(real_mount(mnt));
d3ef3d73 432 preempt_enable();
8366025e 433}
eb04c282
JK
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
8366025e
DH
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
eb04c282
JK
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
7c6893e3
MS
455void mnt_drop_write_file(struct file *file)
456{
a6795a58 457 __mnt_drop_write_file(file);
7c6893e3
MS
458 sb_end_write(file_inode(file)->i_sb);
459}
2a79f17e
AV
460EXPORT_SYMBOL(mnt_drop_write_file);
461
83adc753 462static int mnt_make_readonly(struct mount *mnt)
8366025e 463{
3d733633
DH
464 int ret = 0;
465
719ea2fb 466 lock_mount_hash();
83adc753 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 468 /*
d3ef3d73
NP
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
3d733633 471 */
d3ef3d73
NP
472 smp_mb();
473
3d733633 474 /*
d3ef3d73
NP
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
3d733633 489 */
c6653a83 490 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
491 ret = -EBUSY;
492 else
83adc753 493 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
83adc753 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 500 unlock_mount_hash();
3d733633 501 return ret;
8366025e 502}
8366025e 503
43f5e655 504static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 505{
719ea2fb 506 lock_mount_hash();
83adc753 507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 508 unlock_mount_hash();
43f5e655 509 return 0;
2e4b7fcd
DH
510}
511
4ed5e82f
MS
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
8e8b8796
MS
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
719ea2fb 521 lock_mount_hash();
4ed5e82f
MS
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
8e8b8796
MS
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
4ed5e82f
MS
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
719ea2fb 543 unlock_mount_hash();
4ed5e82f
MS
544
545 return err;
546}
547
b105e270 548static void free_vfsmnt(struct mount *mnt)
1da177e4 549{
fcc139ae 550 kfree_const(mnt->mnt_devname);
d3ef3d73 551#ifdef CONFIG_SMP
68e8a9fe 552 free_percpu(mnt->mnt_pcp);
d3ef3d73 553#endif
b105e270 554 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
555}
556
8ffcb32e
DH
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
48a066e7 562/* call under rcu_read_lock */
294d71ff 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
294d71ff 567 return 1;
48a066e7 568 if (bastard == NULL)
294d71ff 569 return 0;
48a066e7
AV
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
119e1ef8 572 smp_mb(); // see mntput_no_expire()
48a066e7 573 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 574 return 0;
48a066e7
AV
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
294d71ff
AV
577 return 1;
578 }
119e1ef8
AV
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
294d71ff
AV
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
48a066e7 600 }
48a066e7
AV
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
a05964f3 619/*
f015f126
DH
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 634 */
ca71cf71 635struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 636{
c7105365 637 struct mount *child_mnt;
48a066e7
AV
638 struct vfsmount *m;
639 unsigned seq;
99b7db7b 640
48a066e7
AV
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
a05964f3
RP
649}
650
7af1364f
EB
651/*
652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653 * current mount namespace.
654 *
655 * The common case is dentries are not mountpoints at all and that
656 * test is handled inline. For the slow case when we are actually
657 * dealing with a mountpoint of some kind, walk through all of the
658 * mounts in the current mount namespace and test to see if the dentry
659 * is a mountpoint.
660 *
661 * The mount_hashtable is not usable in the context because we
662 * need to identify all mounts that may be in the current mount
663 * namespace not just a mount that happens to have some specified
664 * parent mount.
665 */
666bool __is_local_mountpoint(struct dentry *dentry)
667{
668 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 struct mount *mnt;
670 bool is_covered = false;
671
672 if (!d_mountpoint(dentry))
673 goto out;
674
675 down_read(&namespace_sem);
676 list_for_each_entry(mnt, &ns->list, mnt_list) {
677 is_covered = (mnt->mnt_mountpoint == dentry);
678 if (is_covered)
679 break;
680 }
681 up_read(&namespace_sem);
682out:
683 return is_covered;
684}
685
e2dfa935 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 687{
0818bf27 688 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
689 struct mountpoint *mp;
690
0818bf27 691 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 692 if (mp->m_dentry == dentry) {
84d17192
AV
693 mp->m_count++;
694 return mp;
695 }
696 }
e2dfa935
EB
697 return NULL;
698}
699
3895dbf8 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 701{
3895dbf8 702 struct mountpoint *mp, *new = NULL;
e2dfa935 703 int ret;
84d17192 704
3895dbf8 705 if (d_mountpoint(dentry)) {
1e9c75fb
BC
706 /* might be worth a WARN_ON() */
707 if (d_unlinked(dentry))
708 return ERR_PTR(-ENOENT);
3895dbf8
EB
709mountpoint:
710 read_seqlock_excl(&mount_lock);
711 mp = lookup_mountpoint(dentry);
712 read_sequnlock_excl(&mount_lock);
713 if (mp)
714 goto done;
715 }
716
717 if (!new)
718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 if (!new)
84d17192
AV
720 return ERR_PTR(-ENOMEM);
721
3895dbf8
EB
722
723 /* Exactly one processes may set d_mounted */
eed81007 724 ret = d_set_mounted(dentry);
eed81007 725
3895dbf8
EB
726 /* Someone else set d_mounted? */
727 if (ret == -EBUSY)
728 goto mountpoint;
729
730 /* The dentry is not available as a mountpoint? */
731 mp = ERR_PTR(ret);
732 if (ret)
733 goto done;
734
735 /* Add the new mountpoint to the hash table */
736 read_seqlock_excl(&mount_lock);
4edbe133 737 new->m_dentry = dget(dentry);
3895dbf8
EB
738 new->m_count = 1;
739 hlist_add_head(&new->m_hash, mp_hash(dentry));
740 INIT_HLIST_HEAD(&new->m_list);
741 read_sequnlock_excl(&mount_lock);
742
743 mp = new;
744 new = NULL;
745done:
746 kfree(new);
84d17192
AV
747 return mp;
748}
749
4edbe133
AV
750/*
751 * vfsmount lock must be held. Additionally, the caller is responsible
752 * for serializing calls for given disposal list.
753 */
754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 758 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
4edbe133 762 dput_to_list(dentry, list);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
4edbe133
AV
768/* called with namespace_lock and vfsmount lock */
769static void put_mountpoint(struct mountpoint *mp)
770{
771 __put_mountpoint(mp, &ex_mountpoints);
772}
773
143c8c91 774static inline int check_mnt(struct mount *mnt)
1da177e4 775{
6b3286ed 776 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
777}
778
99b7db7b
NP
779/*
780 * vfsmount lock must be held for write
781 */
6b3286ed 782static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
783{
784 if (ns) {
785 ns->event = ++event;
786 wake_up_interruptible(&ns->poll);
787 }
788}
789
99b7db7b
NP
790/*
791 * vfsmount lock must be held for write
792 */
6b3286ed 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
794{
795 if (ns && ns->event != event) {
796 ns->event = event;
797 wake_up_interruptible(&ns->poll);
798 }
799}
800
99b7db7b
NP
801/*
802 * vfsmount lock must be held for write
803 */
e4e59906 804static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 805{
e4e59906 806 struct mountpoint *mp;
0714a533 807 mnt->mnt_parent = mnt;
a73324da 808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 809 list_del_init(&mnt->mnt_child);
38129a13 810 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 811 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 812 mp = mnt->mnt_mp;
84d17192 813 mnt->mnt_mp = NULL;
e4e59906 814 return mp;
7bdb11de
EB
815}
816
6a46c573
EB
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
e4e59906 822 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
823}
824
99b7db7b
NP
825/*
826 * vfsmount lock must be held for write
827 */
84d17192
AV
828void mnt_set_mountpoint(struct mount *mnt,
829 struct mountpoint *mp,
44d964d6 830 struct mount *child_mnt)
b90fa9ae 831{
84d17192 832 mp->m_count++;
3a2393d7 833 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 834 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 835 child_mnt->mnt_parent = mnt;
84d17192 836 child_mnt->mnt_mp = mp;
0a5eb7c8 837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
838}
839
1064f874
EB
840static void __attach_mnt(struct mount *mnt, struct mount *parent)
841{
842 hlist_add_head_rcu(&mnt->mnt_hash,
843 m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845}
846
99b7db7b
NP
847/*
848 * vfsmount lock must be held for write
849 */
84d17192
AV
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
1da177e4 853{
84d17192 854 mnt_set_mountpoint(parent, mp, mnt);
1064f874 855 __attach_mnt(mnt, parent);
b90fa9ae
RP
856}
857
1064f874 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 859{
1064f874 860 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
861 struct mount *old_parent = mnt->mnt_parent;
862
863 list_del_init(&mnt->mnt_child);
864 hlist_del_init(&mnt->mnt_mp_list);
865 hlist_del_init_rcu(&mnt->mnt_hash);
866
867 attach_mnt(mnt, parent, mp);
868
869 put_mountpoint(old_mp);
1064f874 870 mnt_add_count(old_parent, -1);
12a5b529
AV
871}
872
b90fa9ae 873/*
99b7db7b 874 * vfsmount lock must be held for write
b90fa9ae 875 */
1064f874 876static void commit_tree(struct mount *mnt)
b90fa9ae 877{
0714a533 878 struct mount *parent = mnt->mnt_parent;
83adc753 879 struct mount *m;
b90fa9ae 880 LIST_HEAD(head);
143c8c91 881 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 882
0714a533 883 BUG_ON(parent == mnt);
b90fa9ae 884
1a4eeaf2 885 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 886 list_for_each_entry(m, &head, mnt_list)
143c8c91 887 m->mnt_ns = n;
f03c6599 888
b90fa9ae
RP
889 list_splice(&head, n->list.prev);
890
d2921684
EB
891 n->mounts += n->pending_mounts;
892 n->pending_mounts = 0;
893
1064f874 894 __attach_mnt(mnt, parent);
6b3286ed 895 touch_mnt_namespace(n);
1da177e4
LT
896}
897
909b0a88 898static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 899{
6b41d536
AV
900 struct list_head *next = p->mnt_mounts.next;
901 if (next == &p->mnt_mounts) {
1da177e4 902 while (1) {
909b0a88 903 if (p == root)
1da177e4 904 return NULL;
6b41d536
AV
905 next = p->mnt_child.next;
906 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 907 break;
0714a533 908 p = p->mnt_parent;
1da177e4
LT
909 }
910 }
6b41d536 911 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
912}
913
315fc83e 914static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 915{
6b41d536
AV
916 struct list_head *prev = p->mnt_mounts.prev;
917 while (prev != &p->mnt_mounts) {
918 p = list_entry(prev, struct mount, mnt_child);
919 prev = p->mnt_mounts.prev;
9676f0c6
RP
920 }
921 return p;
922}
923
8f291889
AV
924/**
925 * vfs_create_mount - Create a mount for a configured superblock
926 * @fc: The configuration context with the superblock attached
927 *
928 * Create a mount to an already configured superblock. If necessary, the
929 * caller should invoke vfs_get_tree() before calling this.
930 *
931 * Note that this does not attach the mount to anything.
932 */
933struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 934{
b105e270 935 struct mount *mnt;
9d412a43 936
8f291889
AV
937 if (!fc->root)
938 return ERR_PTR(-EINVAL);
9d412a43 939
8f291889 940 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
941 if (!mnt)
942 return ERR_PTR(-ENOMEM);
943
8f291889 944 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 945 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 946
8f291889
AV
947 atomic_inc(&fc->root->d_sb->s_active);
948 mnt->mnt.mnt_sb = fc->root->d_sb;
949 mnt->mnt.mnt_root = dget(fc->root);
950 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
951 mnt->mnt_parent = mnt;
9d412a43 952
719ea2fb 953 lock_mount_hash();
8f291889 954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 955 unlock_mount_hash();
b105e270 956 return &mnt->mnt;
9d412a43 957}
8f291889
AV
958EXPORT_SYMBOL(vfs_create_mount);
959
960struct vfsmount *fc_mount(struct fs_context *fc)
961{
962 int err = vfs_get_tree(fc);
963 if (!err) {
964 up_write(&fc->root->d_sb->s_umount);
965 return vfs_create_mount(fc);
966 }
967 return ERR_PTR(err);
968}
969EXPORT_SYMBOL(fc_mount);
970
9bc61ab1
DH
971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 int flags, const char *name,
973 void *data)
9d412a43 974{
9bc61ab1 975 struct fs_context *fc;
8f291889 976 struct vfsmount *mnt;
9bc61ab1 977 int ret = 0;
9d412a43
AV
978
979 if (!type)
3e1aeb00 980 return ERR_PTR(-EINVAL);
9d412a43 981
9bc61ab1
DH
982 fc = fs_context_for_mount(type, flags);
983 if (IS_ERR(fc))
984 return ERR_CAST(fc);
985
3e1aeb00
DH
986 if (name)
987 ret = vfs_parse_fs_string(fc, "source",
988 name, strlen(name));
9bc61ab1
DH
989 if (!ret)
990 ret = parse_monolithic_mount_data(fc, data);
991 if (!ret)
8f291889
AV
992 mnt = fc_mount(fc);
993 else
994 mnt = ERR_PTR(ret);
9d412a43 995
9bc61ab1 996 put_fs_context(fc);
8f291889 997 return mnt;
9d412a43
AV
998}
999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
93faccbb
EB
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 const char *name, void *data)
1004{
1005 /* Until it is worked out how to pass the user namespace
1006 * through from the parent mount to the submount don't support
1007 * unprivileged mounts with submounts.
1008 */
1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 return ERR_PTR(-EPERM);
1011
e462ec50 1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
87129cc0 1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1017 int flag)
1da177e4 1018{
87129cc0 1019 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1020 struct mount *mnt;
1021 int err;
1da177e4 1022
be34d1a3
DH
1023 mnt = alloc_vfsmnt(old->mnt_devname);
1024 if (!mnt)
1025 return ERR_PTR(-ENOMEM);
719f5d7f 1026
7a472ef4 1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1028 mnt->mnt_group_id = 0; /* not a peer of original */
1029 else
1030 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1031
be34d1a3
DH
1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 err = mnt_alloc_group_id(mnt);
1034 if (err)
1035 goto out_free;
1da177e4 1036 }
be34d1a3 1037
16a34adb
AV
1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1040
be34d1a3
DH
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
719ea2fb 1046 lock_mount_hash();
be34d1a3 1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1048 unlock_mount_hash();
be34d1a3 1049
7a472ef4
EB
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
5235d448
AV
1061 } else {
1062 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1063 }
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1066
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 }
1073
cb338d06 1074 return mnt;
719f5d7f
MS
1075
1076 out_free:
8ffcb32e 1077 mnt_free_id(mnt);
719f5d7f 1078 free_vfsmnt(mnt);
be34d1a3 1079 return ERR_PTR(err);
1da177e4
LT
1080}
1081
9ea459e1
AV
1082static void cleanup_mnt(struct mount *mnt)
1083{
56cbb429
AV
1084 struct hlist_node *p;
1085 struct mount *m;
9ea459e1 1086 /*
56cbb429
AV
1087 * The warning here probably indicates that somebody messed
1088 * up a mnt_want/drop_write() pair. If this happens, the
1089 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
56cbb429
AV
1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 hlist_del(&m->mnt_umount);
1098 mntput(&m->mnt);
1099 }
9ea459e1
AV
1100 fsnotify_vfsmount_delete(&mnt->mnt);
1101 dput(mnt->mnt.mnt_root);
1102 deactivate_super(mnt->mnt.mnt_sb);
1103 mnt_free_id(mnt);
1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1116 struct mount *m, *t;
9ea459e1 1117
29785735
BP
1118 llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 cleanup_mnt(m);
9ea459e1
AV
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
900148dc 1123static void mntput_no_expire(struct mount *mnt)
b3e19d92 1124{
4edbe133
AV
1125 LIST_HEAD(list);
1126
48a066e7 1127 rcu_read_lock();
9ea0a46c
AV
1128 if (likely(READ_ONCE(mnt->mnt_ns))) {
1129 /*
1130 * Since we don't do lock_mount_hash() here,
1131 * ->mnt_ns can change under us. However, if it's
1132 * non-NULL, then there's a reference that won't
1133 * be dropped until after an RCU delay done after
1134 * turning ->mnt_ns NULL. So if we observe it
1135 * non-NULL under rcu_read_lock(), the reference
1136 * we are dropping is not the final one.
1137 */
1138 mnt_add_count(mnt, -1);
48a066e7 1139 rcu_read_unlock();
f03c6599 1140 return;
b3e19d92 1141 }
719ea2fb 1142 lock_mount_hash();
119e1ef8
AV
1143 /*
1144 * make sure that if __legitimize_mnt() has not seen us grab
1145 * mount_lock, we'll see their refcount increment here.
1146 */
1147 smp_mb();
9ea0a46c 1148 mnt_add_count(mnt, -1);
b3e19d92 1149 if (mnt_get_count(mnt)) {
48a066e7 1150 rcu_read_unlock();
719ea2fb 1151 unlock_mount_hash();
99b7db7b
NP
1152 return;
1153 }
48a066e7
AV
1154 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155 rcu_read_unlock();
1156 unlock_mount_hash();
1157 return;
1158 }
1159 mnt->mnt.mnt_flags |= MNT_DOOMED;
1160 rcu_read_unlock();
962830df 1161
39f7c4db 1162 list_del(&mnt->mnt_instance);
ce07d891
EB
1163
1164 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165 struct mount *p, *tmp;
1166 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1167 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1168 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1169 }
1170 }
719ea2fb 1171 unlock_mount_hash();
4edbe133 1172 shrink_dentry_list(&list);
649a795a 1173
9ea459e1
AV
1174 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175 struct task_struct *task = current;
1176 if (likely(!(task->flags & PF_KTHREAD))) {
1177 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178 if (!task_work_add(task, &mnt->mnt_rcu, true))
1179 return;
1180 }
1181 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182 schedule_delayed_work(&delayed_mntput_work, 1);
1183 return;
1184 }
1185 cleanup_mnt(mnt);
b3e19d92 1186}
b3e19d92
NP
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190 if (mnt) {
863d684f 1191 struct mount *m = real_mount(mnt);
b3e19d92 1192 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1193 if (unlikely(m->mnt_expiry_mark))
1194 m->mnt_expiry_mark = 0;
1195 mntput_no_expire(m);
b3e19d92
NP
1196 }
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202 if (mnt)
83adc753 1203 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1204 return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
c6609c0a
IK
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 * namespace.
1210 *
1211 * d_mountpoint() can only be used reliably to establish if a dentry is
1212 * not mounted in any namespace and that common case is handled inline.
1213 * d_mountpoint() isn't aware of the possibility there may be multiple
1214 * mounts using a given dentry in a different namespace. This function
1215 * checks if the passed in path is a mountpoint rather than the dentry
1216 * alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220 unsigned seq;
1221 bool res;
1222
1223 if (!d_mountpoint(path->dentry))
1224 return false;
1225
1226 rcu_read_lock();
1227 do {
1228 seq = read_seqbegin(&mount_lock);
1229 res = __path_is_mountpoint(path);
1230 } while (read_seqretry(&mount_lock, seq));
1231 rcu_read_unlock();
1232
1233 return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
ca71cf71 1237struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1238{
3064c356
AV
1239 struct mount *p;
1240 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241 if (IS_ERR(p))
1242 return ERR_CAST(p);
1243 p->mnt.mnt_flags |= MNT_INTERNAL;
1244 return &p->mnt;
7b7b1ace 1245}
1da177e4 1246
a1a2c409 1247#ifdef CONFIG_PROC_FS
0226f492 1248/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
ede1bf0d 1251 struct proc_mounts *p = m->private;
1da177e4 1252
390c6843 1253 down_read(&namespace_sem);
c7999c36
AV
1254 if (p->cached_event == p->ns->event) {
1255 void *v = p->cached_mount;
1256 if (*pos == p->cached_index)
1257 return v;
1258 if (*pos == p->cached_index + 1) {
1259 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260 return p->cached_mount = v;
1261 }
1262 }
1263
1264 p->cached_event = p->ns->event;
1265 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266 p->cached_index = *pos;
1267 return p->cached_mount;
1da177e4
LT
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
ede1bf0d 1272 struct proc_mounts *p = m->private;
b0765fb8 1273
c7999c36
AV
1274 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275 p->cached_index = *pos;
1276 return p->cached_mount;
1da177e4
LT
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
390c6843 1281 up_read(&namespace_sem);
1da177e4
LT
1282}
1283
0226f492 1284static int m_show(struct seq_file *m, void *v)
2d4d4864 1285{
ede1bf0d 1286 struct proc_mounts *p = m->private;
1a4eeaf2 1287 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1288 return p->show(m, &r->mnt);
1da177e4
LT
1289}
1290
a1a2c409 1291const struct seq_operations mounts_op = {
1da177e4
LT
1292 .start = m_start,
1293 .next = m_next,
1294 .stop = m_stop,
0226f492 1295 .show = m_show,
b4629fe2 1296};
a1a2c409 1297#endif /* CONFIG_PROC_FS */
b4629fe2 1298
1da177e4
LT
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
909b0a88 1307int may_umount_tree(struct vfsmount *m)
1da177e4 1308{
909b0a88 1309 struct mount *mnt = real_mount(m);
36341f64
RP
1310 int actual_refs = 0;
1311 int minimum_refs = 0;
315fc83e 1312 struct mount *p;
909b0a88 1313 BUG_ON(!m);
1da177e4 1314
b3e19d92 1315 /* write lock needed for mnt_get_count */
719ea2fb 1316 lock_mount_hash();
909b0a88 1317 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1318 actual_refs += mnt_get_count(p);
1da177e4 1319 minimum_refs += 2;
1da177e4 1320 }
719ea2fb 1321 unlock_mount_hash();
1da177e4
LT
1322
1323 if (actual_refs > minimum_refs)
e3474a8e 1324 return 0;
1da177e4 1325
e3474a8e 1326 return 1;
1da177e4
LT
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
e3474a8e 1346 int ret = 1;
8ad08d8a 1347 down_read(&namespace_sem);
719ea2fb 1348 lock_mount_hash();
1ab59738 1349 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1350 ret = 0;
719ea2fb 1351 unlock_mount_hash();
8ad08d8a 1352 up_read(&namespace_sem);
a05964f3 1353 return ret;
1da177e4
LT
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
97216be0 1358static void namespace_unlock(void)
70fbcdf4 1359{
a3b3c562 1360 struct hlist_head head;
56cbb429
AV
1361 struct hlist_node *p;
1362 struct mount *m;
4edbe133 1363 LIST_HEAD(list);
97216be0 1364
a3b3c562 1365 hlist_move_list(&unmounted, &head);
4edbe133 1366 list_splice_init(&ex_mountpoints, &list);
97216be0 1367
97216be0
AV
1368 up_write(&namespace_sem);
1369
4edbe133
AV
1370 shrink_dentry_list(&list);
1371
a3b3c562
EB
1372 if (likely(hlist_empty(&head)))
1373 return;
1374
22cb7405 1375 synchronize_rcu_expedited();
48a066e7 1376
56cbb429
AV
1377 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378 hlist_del(&m->mnt_umount);
1379 mntput(&m->mnt);
1380 }
70fbcdf4
RP
1381}
1382
97216be0 1383static inline void namespace_lock(void)
e3197d83 1384{
97216be0 1385 down_write(&namespace_sem);
e3197d83
AV
1386}
1387
e819f152
EB
1388enum umount_tree_flags {
1389 UMOUNT_SYNC = 1,
1390 UMOUNT_PROPAGATE = 2,
e0c9c0af 1391 UMOUNT_CONNECTED = 4,
e819f152 1392};
f2d0a123
EB
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396 /* Leaving mounts connected is only valid for lazy umounts */
1397 if (how & UMOUNT_SYNC)
1398 return true;
1399
1400 /* A mount without a parent has nothing to be connected to */
1401 if (!mnt_has_parent(mnt))
1402 return true;
1403
1404 /* Because the reference counting rules change when mounts are
1405 * unmounted and connected, umounted mounts may not be
1406 * connected to mounted mounts.
1407 */
1408 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409 return true;
1410
1411 /* Has it been requested that the mount remain connected? */
1412 if (how & UMOUNT_CONNECTED)
1413 return false;
1414
1415 /* Is the mount locked such that it needs to remain connected? */
1416 if (IS_MNT_LOCKED(mnt))
1417 return false;
1418
1419 /* By default disconnect the mount */
1420 return true;
1421}
1422
99b7db7b 1423/*
48a066e7 1424 * mount_lock must be held
99b7db7b
NP
1425 * namespace_sem must be held for write
1426 */
e819f152 1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1428{
c003b26f 1429 LIST_HEAD(tmp_list);
315fc83e 1430 struct mount *p;
1da177e4 1431
5d88457e
EB
1432 if (how & UMOUNT_PROPAGATE)
1433 propagate_mount_unlock(mnt);
1434
c003b26f 1435 /* Gather the mounts to umount */
590ce4bc
EB
1436 for (p = mnt; p; p = next_mnt(p, mnt)) {
1437 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1438 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1439 }
1da177e4 1440
411a938b 1441 /* Hide the mounts from mnt_mounts */
c003b26f 1442 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1443 list_del_init(&p->mnt_child);
c003b26f 1444 }
88b368f2 1445
c003b26f 1446 /* Add propogated mounts to the tmp_list */
e819f152 1447 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1448 propagate_umount(&tmp_list);
a05964f3 1449
c003b26f 1450 while (!list_empty(&tmp_list)) {
d2921684 1451 struct mnt_namespace *ns;
ce07d891 1452 bool disconnect;
c003b26f 1453 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1454 list_del_init(&p->mnt_expire);
1a4eeaf2 1455 list_del_init(&p->mnt_list);
d2921684
EB
1456 ns = p->mnt_ns;
1457 if (ns) {
1458 ns->mounts--;
1459 __touch_mnt_namespace(ns);
1460 }
143c8c91 1461 p->mnt_ns = NULL;
e819f152 1462 if (how & UMOUNT_SYNC)
48a066e7 1463 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1464
f2d0a123 1465 disconnect = disconnect_mount(p, how);
676da58d 1466 if (mnt_has_parent(p)) {
81b6b061 1467 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1468 if (!disconnect) {
1469 /* Don't forget about p */
1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471 } else {
1472 umount_mnt(p);
1473 }
7c4b93d8 1474 }
0f0afb1d 1475 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1476 if (disconnect)
1477 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1478 }
1479}
1480
b54b9be7 1481static void shrink_submounts(struct mount *mnt);
c35038be 1482
8d0347f6
DH
1483static int do_umount_root(struct super_block *sb)
1484{
1485 int ret = 0;
1486
1487 down_write(&sb->s_umount);
1488 if (!sb_rdonly(sb)) {
1489 struct fs_context *fc;
1490
1491 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492 SB_RDONLY);
1493 if (IS_ERR(fc)) {
1494 ret = PTR_ERR(fc);
1495 } else {
1496 ret = parse_monolithic_mount_data(fc, NULL);
1497 if (!ret)
1498 ret = reconfigure_super(fc);
1499 put_fs_context(fc);
1500 }
1501 }
1502 up_write(&sb->s_umount);
1503 return ret;
1504}
1505
1ab59738 1506static int do_umount(struct mount *mnt, int flags)
1da177e4 1507{
1ab59738 1508 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1509 int retval;
1510
1ab59738 1511 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1512 if (retval)
1513 return retval;
1514
1515 /*
1516 * Allow userspace to request a mountpoint be expired rather than
1517 * unmounting unconditionally. Unmount only happens if:
1518 * (1) the mark is already set (the mark is cleared by mntput())
1519 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520 */
1521 if (flags & MNT_EXPIRE) {
1ab59738 1522 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1523 flags & (MNT_FORCE | MNT_DETACH))
1524 return -EINVAL;
1525
b3e19d92
NP
1526 /*
1527 * probably don't strictly need the lock here if we examined
1528 * all race cases, but it's a slowpath.
1529 */
719ea2fb 1530 lock_mount_hash();
83adc753 1531 if (mnt_get_count(mnt) != 2) {
719ea2fb 1532 unlock_mount_hash();
1da177e4 1533 return -EBUSY;
b3e19d92 1534 }
719ea2fb 1535 unlock_mount_hash();
1da177e4 1536
863d684f 1537 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1538 return -EAGAIN;
1539 }
1540
1541 /*
1542 * If we may have to abort operations to get out of this
1543 * mount, and they will themselves hold resources we must
1544 * allow the fs to do things. In the Unix tradition of
1545 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546 * might fail to complete on the first run through as other tasks
1547 * must return, and the like. Thats for the mount program to worry
1548 * about for the moment.
1549 */
1550
42faad99 1551 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1552 sb->s_op->umount_begin(sb);
42faad99 1553 }
1da177e4
LT
1554
1555 /*
1556 * No sense to grab the lock for this test, but test itself looks
1557 * somewhat bogus. Suggestions for better replacement?
1558 * Ho-hum... In principle, we might treat that as umount + switch
1559 * to rootfs. GC would eventually take care of the old vfsmount.
1560 * Actually it makes sense, especially if rootfs would contain a
1561 * /reboot - static binary that would close all descriptors and
1562 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563 */
1ab59738 1564 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1565 /*
1566 * Special case for "unmounting" root ...
1567 * we just try to remount it readonly.
1568 */
bc6155d1 1569 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1570 return -EPERM;
8d0347f6 1571 return do_umount_root(sb);
1da177e4
LT
1572 }
1573
97216be0 1574 namespace_lock();
719ea2fb 1575 lock_mount_hash();
1da177e4 1576
25d202ed
EB
1577 /* Recheck MNT_LOCKED with the locks held */
1578 retval = -EINVAL;
1579 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580 goto out;
1581
1582 event++;
48a066e7 1583 if (flags & MNT_DETACH) {
1a4eeaf2 1584 if (!list_empty(&mnt->mnt_list))
e819f152 1585 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1586 retval = 0;
48a066e7
AV
1587 } else {
1588 shrink_submounts(mnt);
1589 retval = -EBUSY;
1590 if (!propagate_mount_busy(mnt, 2)) {
1591 if (!list_empty(&mnt->mnt_list))
e819f152 1592 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1593 retval = 0;
1594 }
1da177e4 1595 }
25d202ed 1596out:
719ea2fb 1597 unlock_mount_hash();
e3197d83 1598 namespace_unlock();
1da177e4
LT
1599 return retval;
1600}
1601
80b5dce8
EB
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614 struct mountpoint *mp;
1615 struct mount *mnt;
1616
1617 namespace_lock();
3895dbf8 1618 lock_mount_hash();
80b5dce8 1619 mp = lookup_mountpoint(dentry);
adc9b5c0 1620 if (!mp)
80b5dce8
EB
1621 goto out_unlock;
1622
e06b933e 1623 event++;
80b5dce8
EB
1624 while (!hlist_empty(&mp->m_list)) {
1625 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1626 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1627 umount_mnt(mnt);
56cbb429 1628 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1629 }
e0c9c0af 1630 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1631 }
80b5dce8
EB
1632 put_mountpoint(mp);
1633out_unlock:
3895dbf8 1634 unlock_mount_hash();
80b5dce8
EB
1635 namespace_unlock();
1636}
1637
dd111b31 1638/*
9b40bc90
AV
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
df2474a2 1646#ifdef CONFIG_MANDATORY_FILE_LOCKING
9e8925b6
JL
1647static inline bool may_mandlock(void)
1648{
95ace754 1649 return capable(CAP_SYS_ADMIN);
9e8925b6 1650}
df2474a2
JL
1651#else
1652static inline bool may_mandlock(void)
1653{
1654 pr_warn("VFS: \"mand\" mount option not supported");
1655 return false;
1656}
1657#endif
9e8925b6 1658
1da177e4
LT
1659/*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
3a18ef5c 1667int ksys_umount(char __user *name, int flags)
1da177e4 1668{
2d8f3038 1669 struct path path;
900148dc 1670 struct mount *mnt;
1da177e4 1671 int retval;
db1f05bb 1672 int lookup_flags = 0;
1da177e4 1673
db1f05bb
MS
1674 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675 return -EINVAL;
1676
9b40bc90
AV
1677 if (!may_mount())
1678 return -EPERM;
1679
db1f05bb
MS
1680 if (!(flags & UMOUNT_NOFOLLOW))
1681 lookup_flags |= LOOKUP_FOLLOW;
1682
197df04c 1683 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1684 if (retval)
1685 goto out;
900148dc 1686 mnt = real_mount(path.mnt);
1da177e4 1687 retval = -EINVAL;
2d8f3038 1688 if (path.dentry != path.mnt->mnt_root)
1da177e4 1689 goto dput_and_out;
143c8c91 1690 if (!check_mnt(mnt))
1da177e4 1691 goto dput_and_out;
25d202ed 1692 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1693 goto dput_and_out;
b2f5d4dc
EB
1694 retval = -EPERM;
1695 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696 goto dput_and_out;
1da177e4 1697
900148dc 1698 retval = do_umount(mnt, flags);
1da177e4 1699dput_and_out:
429731b1 1700 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1701 dput(path.dentry);
900148dc 1702 mntput_no_expire(mnt);
1da177e4
LT
1703out:
1704 return retval;
1705}
1706
3a18ef5c
DB
1707SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708{
1709 return ksys_umount(name, flags);
1710}
1711
1da177e4
LT
1712#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713
1714/*
b58fed8b 1715 * The 2.0 compatible umount. No flags.
1da177e4 1716 */
bdc480e3 1717SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1718{
3a18ef5c 1719 return ksys_umount(name, 0);
1da177e4
LT
1720}
1721
1722#endif
1723
4ce5d2b1 1724static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1725{
4ce5d2b1 1726 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1727 return dentry->d_op == &ns_dentry_operations &&
1728 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1729}
1730
58be2825
AV
1731struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1732{
1733 return container_of(ns, struct mnt_namespace, ns);
1734}
1735
4ce5d2b1
EB
1736static bool mnt_ns_loop(struct dentry *dentry)
1737{
1738 /* Could bind mounting the mount namespace inode cause a
1739 * mount namespace loop?
1740 */
1741 struct mnt_namespace *mnt_ns;
1742 if (!is_mnt_ns_file(dentry))
1743 return false;
1744
f77c8014 1745 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1746 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1747}
1748
87129cc0 1749struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1750 int flag)
1da177e4 1751{
84d17192 1752 struct mount *res, *p, *q, *r, *parent;
1da177e4 1753
4ce5d2b1
EB
1754 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1755 return ERR_PTR(-EINVAL);
1756
1757 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1758 return ERR_PTR(-EINVAL);
9676f0c6 1759
36341f64 1760 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1761 if (IS_ERR(q))
1762 return q;
1763
a73324da 1764 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1765
1766 p = mnt;
6b41d536 1767 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1768 struct mount *s;
7ec02ef1 1769 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1770 continue;
1771
909b0a88 1772 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1773 if (!(flag & CL_COPY_UNBINDABLE) &&
1774 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1775 if (s->mnt.mnt_flags & MNT_LOCKED) {
1776 /* Both unbindable and locked. */
1777 q = ERR_PTR(-EPERM);
1778 goto out;
1779 } else {
1780 s = skip_mnt_tree(s);
1781 continue;
1782 }
4ce5d2b1
EB
1783 }
1784 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1785 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1786 s = skip_mnt_tree(s);
1787 continue;
1788 }
0714a533
AV
1789 while (p != s->mnt_parent) {
1790 p = p->mnt_parent;
1791 q = q->mnt_parent;
1da177e4 1792 }
87129cc0 1793 p = s;
84d17192 1794 parent = q;
87129cc0 1795 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1796 if (IS_ERR(q))
1797 goto out;
719ea2fb 1798 lock_mount_hash();
1a4eeaf2 1799 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1800 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1801 unlock_mount_hash();
1da177e4
LT
1802 }
1803 }
1804 return res;
be34d1a3 1805out:
1da177e4 1806 if (res) {
719ea2fb 1807 lock_mount_hash();
e819f152 1808 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1809 unlock_mount_hash();
1da177e4 1810 }
be34d1a3 1811 return q;
1da177e4
LT
1812}
1813
be34d1a3
DH
1814/* Caller should check returned pointer for errors */
1815
ca71cf71 1816struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1817{
cb338d06 1818 struct mount *tree;
97216be0 1819 namespace_lock();
cd4a4017
EB
1820 if (!check_mnt(real_mount(path->mnt)))
1821 tree = ERR_PTR(-EINVAL);
1822 else
1823 tree = copy_tree(real_mount(path->mnt), path->dentry,
1824 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1825 namespace_unlock();
be34d1a3 1826 if (IS_ERR(tree))
52e220d3 1827 return ERR_CAST(tree);
be34d1a3 1828 return &tree->mnt;
8aec0809
AV
1829}
1830
a07b2000
AV
1831static void free_mnt_ns(struct mnt_namespace *);
1832static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1833
1834void dissolve_on_fput(struct vfsmount *mnt)
1835{
1836 struct mnt_namespace *ns;
1837 namespace_lock();
1838 lock_mount_hash();
1839 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1840 if (ns) {
1841 if (is_anon_ns(ns))
1842 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1843 else
1844 ns = NULL;
1845 }
a07b2000
AV
1846 unlock_mount_hash();
1847 namespace_unlock();
44dfd84a
DH
1848 if (ns)
1849 free_mnt_ns(ns);
a07b2000
AV
1850}
1851
8aec0809
AV
1852void drop_collected_mounts(struct vfsmount *mnt)
1853{
97216be0 1854 namespace_lock();
719ea2fb 1855 lock_mount_hash();
9c8e0a1b 1856 umount_tree(real_mount(mnt), 0);
719ea2fb 1857 unlock_mount_hash();
3ab6abee 1858 namespace_unlock();
8aec0809
AV
1859}
1860
c771d683
MS
1861/**
1862 * clone_private_mount - create a private clone of a path
1863 *
1864 * This creates a new vfsmount, which will be the clone of @path. The new will
1865 * not be attached anywhere in the namespace and will be private (i.e. changes
1866 * to the originating mount won't be propagated into this).
1867 *
1868 * Release with mntput().
1869 */
ca71cf71 1870struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1871{
1872 struct mount *old_mnt = real_mount(path->mnt);
1873 struct mount *new_mnt;
1874
1875 if (IS_MNT_UNBINDABLE(old_mnt))
1876 return ERR_PTR(-EINVAL);
1877
c771d683 1878 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1879 if (IS_ERR(new_mnt))
1880 return ERR_CAST(new_mnt);
1881
1882 return &new_mnt->mnt;
1883}
1884EXPORT_SYMBOL_GPL(clone_private_mount);
1885
1f707137
AV
1886int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1887 struct vfsmount *root)
1888{
1a4eeaf2 1889 struct mount *mnt;
1f707137
AV
1890 int res = f(root, arg);
1891 if (res)
1892 return res;
1a4eeaf2
AV
1893 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1894 res = f(&mnt->mnt, arg);
1f707137
AV
1895 if (res)
1896 return res;
1897 }
1898 return 0;
1899}
1900
3bd045cc
AV
1901static void lock_mnt_tree(struct mount *mnt)
1902{
1903 struct mount *p;
1904
1905 for (p = mnt; p; p = next_mnt(p, mnt)) {
1906 int flags = p->mnt.mnt_flags;
1907 /* Don't allow unprivileged users to change mount flags */
1908 flags |= MNT_LOCK_ATIME;
1909
1910 if (flags & MNT_READONLY)
1911 flags |= MNT_LOCK_READONLY;
1912
1913 if (flags & MNT_NODEV)
1914 flags |= MNT_LOCK_NODEV;
1915
1916 if (flags & MNT_NOSUID)
1917 flags |= MNT_LOCK_NOSUID;
1918
1919 if (flags & MNT_NOEXEC)
1920 flags |= MNT_LOCK_NOEXEC;
1921 /* Don't allow unprivileged users to reveal what is under a mount */
1922 if (list_empty(&p->mnt_expire))
1923 flags |= MNT_LOCKED;
1924 p->mnt.mnt_flags = flags;
1925 }
1926}
1927
4b8b21f4 1928static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1929{
315fc83e 1930 struct mount *p;
719f5d7f 1931
909b0a88 1932 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1933 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1934 mnt_release_group_id(p);
719f5d7f
MS
1935 }
1936}
1937
4b8b21f4 1938static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1939{
315fc83e 1940 struct mount *p;
719f5d7f 1941
909b0a88 1942 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1943 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1944 int err = mnt_alloc_group_id(p);
719f5d7f 1945 if (err) {
4b8b21f4 1946 cleanup_group_ids(mnt, p);
719f5d7f
MS
1947 return err;
1948 }
1949 }
1950 }
1951
1952 return 0;
1953}
1954
d2921684
EB
1955int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1956{
1957 unsigned int max = READ_ONCE(sysctl_mount_max);
1958 unsigned int mounts = 0, old, pending, sum;
1959 struct mount *p;
1960
1961 for (p = mnt; p; p = next_mnt(p, mnt))
1962 mounts++;
1963
1964 old = ns->mounts;
1965 pending = ns->pending_mounts;
1966 sum = old + pending;
1967 if ((old > sum) ||
1968 (pending > sum) ||
1969 (max < sum) ||
1970 (mounts > (max - sum)))
1971 return -ENOSPC;
1972
1973 ns->pending_mounts = pending + mounts;
1974 return 0;
1975}
1976
b90fa9ae
RP
1977/*
1978 * @source_mnt : mount tree to be attached
21444403
RP
1979 * @nd : place the mount tree @source_mnt is attached
1980 * @parent_nd : if non-null, detach the source_mnt from its parent and
1981 * store the parent mount and mountpoint dentry.
1982 * (done when source_mnt is moved)
b90fa9ae
RP
1983 *
1984 * NOTE: in the table below explains the semantics when a source mount
1985 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1986 * ---------------------------------------------------------------------------
1987 * | BIND MOUNT OPERATION |
1988 * |**************************************************************************
1989 * | source-->| shared | private | slave | unbindable |
1990 * | dest | | | | |
1991 * | | | | | | |
1992 * | v | | | | |
1993 * |**************************************************************************
1994 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1995 * | | | | | |
1996 * |non-shared| shared (+) | private | slave (*) | invalid |
1997 * ***************************************************************************
b90fa9ae
RP
1998 * A bind operation clones the source mount and mounts the clone on the
1999 * destination mount.
2000 *
2001 * (++) the cloned mount is propagated to all the mounts in the propagation
2002 * tree of the destination mount and the cloned mount is added to
2003 * the peer group of the source mount.
2004 * (+) the cloned mount is created under the destination mount and is marked
2005 * as shared. The cloned mount is added to the peer group of the source
2006 * mount.
5afe0022
RP
2007 * (+++) the mount is propagated to all the mounts in the propagation tree
2008 * of the destination mount and the cloned mount is made slave
2009 * of the same master as that of the source mount. The cloned mount
2010 * is marked as 'shared and slave'.
2011 * (*) the cloned mount is made a slave of the same master as that of the
2012 * source mount.
2013 *
9676f0c6
RP
2014 * ---------------------------------------------------------------------------
2015 * | MOVE MOUNT OPERATION |
2016 * |**************************************************************************
2017 * | source-->| shared | private | slave | unbindable |
2018 * | dest | | | | |
2019 * | | | | | | |
2020 * | v | | | | |
2021 * |**************************************************************************
2022 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2023 * | | | | | |
2024 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2025 * ***************************************************************************
5afe0022
RP
2026 *
2027 * (+) the mount is moved to the destination. And is then propagated to
2028 * all the mounts in the propagation tree of the destination mount.
21444403 2029 * (+*) the mount is moved to the destination.
5afe0022
RP
2030 * (+++) the mount is moved to the destination and is then propagated to
2031 * all the mounts belonging to the destination mount's propagation tree.
2032 * the mount is marked as 'shared and slave'.
2033 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2034 *
2035 * if the source mount is a tree, the operations explained above is
2036 * applied to each mount in the tree.
2037 * Must be called without spinlocks held, since this function can sleep
2038 * in allocations.
2039 */
0fb54e50 2040static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2041 struct mount *dest_mnt,
2042 struct mountpoint *dest_mp,
2763d119 2043 bool moving)
b90fa9ae 2044{
3bd045cc 2045 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2046 HLIST_HEAD(tree_list);
d2921684 2047 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2048 struct mountpoint *smp;
315fc83e 2049 struct mount *child, *p;
38129a13 2050 struct hlist_node *n;
719f5d7f 2051 int err;
b90fa9ae 2052
1064f874
EB
2053 /* Preallocate a mountpoint in case the new mounts need
2054 * to be tucked under other mounts.
2055 */
2056 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2057 if (IS_ERR(smp))
2058 return PTR_ERR(smp);
2059
d2921684 2060 /* Is there space to add these mounts to the mount namespace? */
2763d119 2061 if (!moving) {
d2921684
EB
2062 err = count_mounts(ns, source_mnt);
2063 if (err)
2064 goto out;
2065 }
2066
fc7be130 2067 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2068 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2069 if (err)
2070 goto out;
0b1b901b 2071 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2072 lock_mount_hash();
0b1b901b
AV
2073 if (err)
2074 goto out_cleanup_ids;
909b0a88 2075 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2076 set_mnt_shared(p);
0b1b901b
AV
2077 } else {
2078 lock_mount_hash();
b90fa9ae 2079 }
2763d119
AV
2080 if (moving) {
2081 unhash_mnt(source_mnt);
84d17192 2082 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2083 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2084 } else {
44dfd84a
DH
2085 if (source_mnt->mnt_ns) {
2086 /* move from anon - the caller will destroy */
2087 list_del_init(&source_mnt->mnt_ns->list);
2088 }
84d17192 2089 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2090 commit_tree(source_mnt);
21444403 2091 }
b90fa9ae 2092
38129a13 2093 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2094 struct mount *q;
38129a13 2095 hlist_del_init(&child->mnt_hash);
1064f874
EB
2096 q = __lookup_mnt(&child->mnt_parent->mnt,
2097 child->mnt_mountpoint);
2098 if (q)
2099 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2100 /* Notice when we are propagating across user namespaces */
2101 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2102 lock_mnt_tree(child);
d728cf79 2103 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2104 commit_tree(child);
b90fa9ae 2105 }
1064f874 2106 put_mountpoint(smp);
719ea2fb 2107 unlock_mount_hash();
99b7db7b 2108
b90fa9ae 2109 return 0;
719f5d7f
MS
2110
2111 out_cleanup_ids:
f2ebb3a9
AV
2112 while (!hlist_empty(&tree_list)) {
2113 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2114 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2115 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2116 }
2117 unlock_mount_hash();
0b1b901b 2118 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2119 out:
d2921684 2120 ns->pending_mounts = 0;
1064f874
EB
2121
2122 read_seqlock_excl(&mount_lock);
2123 put_mountpoint(smp);
2124 read_sequnlock_excl(&mount_lock);
2125
719f5d7f 2126 return err;
b90fa9ae
RP
2127}
2128
84d17192 2129static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2130{
2131 struct vfsmount *mnt;
84d17192 2132 struct dentry *dentry = path->dentry;
b12cea91 2133retry:
5955102c 2134 inode_lock(dentry->d_inode);
84d17192 2135 if (unlikely(cant_mount(dentry))) {
5955102c 2136 inode_unlock(dentry->d_inode);
84d17192 2137 return ERR_PTR(-ENOENT);
b12cea91 2138 }
97216be0 2139 namespace_lock();
b12cea91 2140 mnt = lookup_mnt(path);
84d17192 2141 if (likely(!mnt)) {
3895dbf8 2142 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2143 if (IS_ERR(mp)) {
97216be0 2144 namespace_unlock();
5955102c 2145 inode_unlock(dentry->d_inode);
84d17192
AV
2146 return mp;
2147 }
2148 return mp;
2149 }
97216be0 2150 namespace_unlock();
5955102c 2151 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2152 path_put(path);
2153 path->mnt = mnt;
84d17192 2154 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2155 goto retry;
2156}
2157
84d17192 2158static void unlock_mount(struct mountpoint *where)
b12cea91 2159{
84d17192 2160 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2161
2162 read_seqlock_excl(&mount_lock);
84d17192 2163 put_mountpoint(where);
3895dbf8
EB
2164 read_sequnlock_excl(&mount_lock);
2165
328e6d90 2166 namespace_unlock();
5955102c 2167 inode_unlock(dentry->d_inode);
b12cea91
AV
2168}
2169
84d17192 2170static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2171{
e462ec50 2172 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2173 return -EINVAL;
2174
e36cb0b8
DH
2175 if (d_is_dir(mp->m_dentry) !=
2176 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2177 return -ENOTDIR;
2178
2763d119 2179 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2180}
2181
7a2e8a8f
VA
2182/*
2183 * Sanity check the flags to change_mnt_propagation.
2184 */
2185
e462ec50 2186static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2187{
e462ec50 2188 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2189
2190 /* Fail if any non-propagation flags are set */
2191 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2192 return 0;
2193 /* Only one propagation flag should be set */
2194 if (!is_power_of_2(type))
2195 return 0;
2196 return type;
2197}
2198
07b20889
RP
2199/*
2200 * recursively change the type of the mountpoint.
2201 */
e462ec50 2202static int do_change_type(struct path *path, int ms_flags)
07b20889 2203{
315fc83e 2204 struct mount *m;
4b8b21f4 2205 struct mount *mnt = real_mount(path->mnt);
e462ec50 2206 int recurse = ms_flags & MS_REC;
7a2e8a8f 2207 int type;
719f5d7f 2208 int err = 0;
07b20889 2209
2d92ab3c 2210 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2211 return -EINVAL;
2212
e462ec50 2213 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2214 if (!type)
2215 return -EINVAL;
2216
97216be0 2217 namespace_lock();
719f5d7f
MS
2218 if (type == MS_SHARED) {
2219 err = invent_group_ids(mnt, recurse);
2220 if (err)
2221 goto out_unlock;
2222 }
2223
719ea2fb 2224 lock_mount_hash();
909b0a88 2225 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2226 change_mnt_propagation(m, type);
719ea2fb 2227 unlock_mount_hash();
719f5d7f
MS
2228
2229 out_unlock:
97216be0 2230 namespace_unlock();
719f5d7f 2231 return err;
07b20889
RP
2232}
2233
5ff9d8a6
EB
2234static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235{
2236 struct mount *child;
2237 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2238 if (!is_subdir(child->mnt_mountpoint, dentry))
2239 continue;
2240
2241 if (child->mnt.mnt_flags & MNT_LOCKED)
2242 return true;
2243 }
2244 return false;
2245}
2246
a07b2000
AV
2247static struct mount *__do_loopback(struct path *old_path, int recurse)
2248{
2249 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2250
2251 if (IS_MNT_UNBINDABLE(old))
2252 return mnt;
2253
2254 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2255 return mnt;
2256
2257 if (!recurse && has_locked_children(old, old_path->dentry))
2258 return mnt;
2259
2260 if (recurse)
2261 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2262 else
2263 mnt = clone_mnt(old, old_path->dentry, 0);
2264
2265 if (!IS_ERR(mnt))
2266 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267
2268 return mnt;
2269}
2270
1da177e4
LT
2271/*
2272 * do loopback mount.
2273 */
808d4e3c 2274static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2275 int recurse)
1da177e4 2276{
2d92ab3c 2277 struct path old_path;
a07b2000 2278 struct mount *mnt = NULL, *parent;
84d17192 2279 struct mountpoint *mp;
57eccb83 2280 int err;
1da177e4
LT
2281 if (!old_name || !*old_name)
2282 return -EINVAL;
815d405c 2283 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2284 if (err)
2285 return err;
2286
8823c079 2287 err = -EINVAL;
4ce5d2b1 2288 if (mnt_ns_loop(old_path.dentry))
dd111b31 2289 goto out;
8823c079 2290
84d17192 2291 mp = lock_mount(path);
a07b2000
AV
2292 if (IS_ERR(mp)) {
2293 err = PTR_ERR(mp);
b12cea91 2294 goto out;
a07b2000 2295 }
b12cea91 2296
84d17192 2297 parent = real_mount(path->mnt);
e149ed2b
AV
2298 if (!check_mnt(parent))
2299 goto out2;
2300
a07b2000 2301 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2302 if (IS_ERR(mnt)) {
2303 err = PTR_ERR(mnt);
e9c5d8a5 2304 goto out2;
be34d1a3 2305 }
ccd48bc7 2306
84d17192 2307 err = graft_tree(mnt, parent, mp);
ccd48bc7 2308 if (err) {
719ea2fb 2309 lock_mount_hash();
e819f152 2310 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2311 unlock_mount_hash();
5b83d2c5 2312 }
b12cea91 2313out2:
84d17192 2314 unlock_mount(mp);
ccd48bc7 2315out:
2d92ab3c 2316 path_put(&old_path);
1da177e4
LT
2317 return err;
2318}
2319
a07b2000
AV
2320static struct file *open_detached_copy(struct path *path, bool recursive)
2321{
2322 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2323 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2324 struct mount *mnt, *p;
2325 struct file *file;
2326
2327 if (IS_ERR(ns))
2328 return ERR_CAST(ns);
2329
2330 namespace_lock();
2331 mnt = __do_loopback(path, recursive);
2332 if (IS_ERR(mnt)) {
2333 namespace_unlock();
2334 free_mnt_ns(ns);
2335 return ERR_CAST(mnt);
2336 }
2337
2338 lock_mount_hash();
2339 for (p = mnt; p; p = next_mnt(p, mnt)) {
2340 p->mnt_ns = ns;
2341 ns->mounts++;
2342 }
2343 ns->root = mnt;
2344 list_add_tail(&ns->list, &mnt->mnt_list);
2345 mntget(&mnt->mnt);
2346 unlock_mount_hash();
2347 namespace_unlock();
2348
2349 mntput(path->mnt);
2350 path->mnt = &mnt->mnt;
2351 file = dentry_open(path, O_PATH, current_cred());
2352 if (IS_ERR(file))
2353 dissolve_on_fput(path->mnt);
2354 else
2355 file->f_mode |= FMODE_NEED_UNMOUNT;
2356 return file;
2357}
2358
2359SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2360{
2361 struct file *file;
2362 struct path path;
2363 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2364 bool detached = flags & OPEN_TREE_CLONE;
2365 int error;
2366 int fd;
2367
2368 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2369
2370 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2371 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2372 OPEN_TREE_CLOEXEC))
2373 return -EINVAL;
2374
2375 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2376 return -EINVAL;
2377
2378 if (flags & AT_NO_AUTOMOUNT)
2379 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2380 if (flags & AT_SYMLINK_NOFOLLOW)
2381 lookup_flags &= ~LOOKUP_FOLLOW;
2382 if (flags & AT_EMPTY_PATH)
2383 lookup_flags |= LOOKUP_EMPTY;
2384
2385 if (detached && !may_mount())
2386 return -EPERM;
2387
2388 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2389 if (fd < 0)
2390 return fd;
2391
2392 error = user_path_at(dfd, filename, lookup_flags, &path);
2393 if (unlikely(error)) {
2394 file = ERR_PTR(error);
2395 } else {
2396 if (detached)
2397 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2398 else
2399 file = dentry_open(&path, O_PATH, current_cred());
2400 path_put(&path);
2401 }
2402 if (IS_ERR(file)) {
2403 put_unused_fd(fd);
2404 return PTR_ERR(file);
2405 }
2406 fd_install(fd, file);
2407 return fd;
2408}
2409
43f5e655
DH
2410/*
2411 * Don't allow locked mount flags to be cleared.
2412 *
2413 * No locks need to be held here while testing the various MNT_LOCK
2414 * flags because those flags can never be cleared once they are set.
2415 */
2416static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2417{
43f5e655
DH
2418 unsigned int fl = mnt->mnt.mnt_flags;
2419
2420 if ((fl & MNT_LOCK_READONLY) &&
2421 !(mnt_flags & MNT_READONLY))
2422 return false;
2423
2424 if ((fl & MNT_LOCK_NODEV) &&
2425 !(mnt_flags & MNT_NODEV))
2426 return false;
2427
2428 if ((fl & MNT_LOCK_NOSUID) &&
2429 !(mnt_flags & MNT_NOSUID))
2430 return false;
2431
2432 if ((fl & MNT_LOCK_NOEXEC) &&
2433 !(mnt_flags & MNT_NOEXEC))
2434 return false;
2435
2436 if ((fl & MNT_LOCK_ATIME) &&
2437 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2438 return false;
2e4b7fcd 2439
43f5e655
DH
2440 return true;
2441}
2442
2443static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2444{
43f5e655 2445 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2446
43f5e655 2447 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2448 return 0;
2449
2450 if (readonly_request)
43f5e655
DH
2451 return mnt_make_readonly(mnt);
2452
2453 return __mnt_unmake_readonly(mnt);
2454}
2455
2456/*
2457 * Update the user-settable attributes on a mount. The caller must hold
2458 * sb->s_umount for writing.
2459 */
2460static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2461{
2462 lock_mount_hash();
2463 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2464 mnt->mnt.mnt_flags = mnt_flags;
2465 touch_mnt_namespace(mnt->mnt_ns);
2466 unlock_mount_hash();
2467}
2468
f8b92ba6
DD
2469static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2470{
2471 struct super_block *sb = mnt->mnt_sb;
2472
2473 if (!__mnt_is_readonly(mnt) &&
2474 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2475 char *buf = (char *)__get_free_page(GFP_KERNEL);
2476 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2477 struct tm tm;
2478
2479 time64_to_tm(sb->s_time_max, 0, &tm);
2480
2481 pr_warn("Mounted %s file system at %s supports timestamps until %04ld (0x%llx)\n",
2482 sb->s_type->name, mntpath,
2483 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2484
2485 free_page((unsigned long)buf);
2486 }
2487}
2488
43f5e655
DH
2489/*
2490 * Handle reconfiguration of the mountpoint only without alteration of the
2491 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2492 * to mount(2).
2493 */
2494static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2495{
2496 struct super_block *sb = path->mnt->mnt_sb;
2497 struct mount *mnt = real_mount(path->mnt);
2498 int ret;
2499
2500 if (!check_mnt(mnt))
2501 return -EINVAL;
2502
2503 if (path->dentry != mnt->mnt.mnt_root)
2504 return -EINVAL;
2505
2506 if (!can_change_locked_flags(mnt, mnt_flags))
2507 return -EPERM;
2508
2509 down_write(&sb->s_umount);
2510 ret = change_mount_ro_state(mnt, mnt_flags);
2511 if (ret == 0)
2512 set_mount_attributes(mnt, mnt_flags);
2513 up_write(&sb->s_umount);
f8b92ba6
DD
2514
2515 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2516
43f5e655 2517 return ret;
2e4b7fcd
DH
2518}
2519
1da177e4
LT
2520/*
2521 * change filesystem flags. dir should be a physical root of filesystem.
2522 * If you've mounted a non-root directory somewhere and want to do remount
2523 * on it - tough luck.
2524 */
e462ec50
DH
2525static int do_remount(struct path *path, int ms_flags, int sb_flags,
2526 int mnt_flags, void *data)
1da177e4
LT
2527{
2528 int err;
2d92ab3c 2529 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2530 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2531 struct fs_context *fc;
1da177e4 2532
143c8c91 2533 if (!check_mnt(mnt))
1da177e4
LT
2534 return -EINVAL;
2535
2d92ab3c 2536 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2537 return -EINVAL;
2538
43f5e655 2539 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2540 return -EPERM;
9566d674 2541
8d0347f6
DH
2542 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2543 if (IS_ERR(fc))
2544 return PTR_ERR(fc);
ff36fe2c 2545
8d0347f6
DH
2546 err = parse_monolithic_mount_data(fc, data);
2547 if (!err) {
2548 down_write(&sb->s_umount);
2549 err = -EPERM;
2550 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2551 err = reconfigure_super(fc);
2552 if (!err)
2553 set_mount_attributes(mnt, mnt_flags);
2554 }
2555 up_write(&sb->s_umount);
0e55a7cc 2556 }
f8b92ba6
DD
2557
2558 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2559
8d0347f6 2560 put_fs_context(fc);
1da177e4
LT
2561 return err;
2562}
2563
cbbe362c 2564static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2565{
315fc83e 2566 struct mount *p;
909b0a88 2567 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2568 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2569 return 1;
2570 }
2571 return 0;
2572}
2573
44dfd84a
DH
2574/*
2575 * Check that there aren't references to earlier/same mount namespaces in the
2576 * specified subtree. Such references can act as pins for mount namespaces
2577 * that aren't checked by the mount-cycle checking code, thereby allowing
2578 * cycles to be made.
2579 */
2580static bool check_for_nsfs_mounts(struct mount *subtree)
2581{
2582 struct mount *p;
2583 bool ret = false;
2584
2585 lock_mount_hash();
2586 for (p = subtree; p; p = next_mnt(p, subtree))
2587 if (mnt_ns_loop(p->mnt.mnt_root))
2588 goto out;
2589
2590 ret = true;
2591out:
2592 unlock_mount_hash();
2593 return ret;
2594}
2595
2db154b3 2596static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2597{
44dfd84a 2598 struct mnt_namespace *ns;
676da58d 2599 struct mount *p;
0fb54e50 2600 struct mount *old;
2763d119
AV
2601 struct mount *parent;
2602 struct mountpoint *mp, *old_mp;
57eccb83 2603 int err;
44dfd84a 2604 bool attached;
1da177e4 2605
2db154b3 2606 mp = lock_mount(new_path);
84d17192 2607 if (IS_ERR(mp))
2db154b3 2608 return PTR_ERR(mp);
cc53ce53 2609
2db154b3
DH
2610 old = real_mount(old_path->mnt);
2611 p = real_mount(new_path->mnt);
2763d119 2612 parent = old->mnt_parent;
44dfd84a 2613 attached = mnt_has_parent(old);
2763d119 2614 old_mp = old->mnt_mp;
44dfd84a 2615 ns = old->mnt_ns;
143c8c91 2616
1da177e4 2617 err = -EINVAL;
44dfd84a
DH
2618 /* The mountpoint must be in our namespace. */
2619 if (!check_mnt(p))
2db154b3 2620 goto out;
1da177e4 2621
570d7a98
EB
2622 /* The thing moved must be mounted... */
2623 if (!is_mounted(&old->mnt))
44dfd84a
DH
2624 goto out;
2625
570d7a98
EB
2626 /* ... and either ours or the root of anon namespace */
2627 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2628 goto out;
5ff9d8a6 2629
2db154b3
DH
2630 if (old->mnt.mnt_flags & MNT_LOCKED)
2631 goto out;
1da177e4 2632
2db154b3
DH
2633 if (old_path->dentry != old_path->mnt->mnt_root)
2634 goto out;
1da177e4 2635
2db154b3
DH
2636 if (d_is_dir(new_path->dentry) !=
2637 d_is_dir(old_path->dentry))
2638 goto out;
21444403
RP
2639 /*
2640 * Don't move a mount residing in a shared parent.
2641 */
2763d119 2642 if (attached && IS_MNT_SHARED(parent))
2db154b3 2643 goto out;
9676f0c6
RP
2644 /*
2645 * Don't move a mount tree containing unbindable mounts to a destination
2646 * mount which is shared.
2647 */
fc7be130 2648 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2649 goto out;
1da177e4 2650 err = -ELOOP;
44dfd84a
DH
2651 if (!check_for_nsfs_mounts(old))
2652 goto out;
fc7be130 2653 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2654 if (p == old)
2db154b3 2655 goto out;
1da177e4 2656
2db154b3 2657 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2658 attached);
4ac91378 2659 if (err)
2db154b3 2660 goto out;
1da177e4
LT
2661
2662 /* if the mount is moved, it should no longer be expire
2663 * automatically */
6776db3d 2664 list_del_init(&old->mnt_expire);
2763d119
AV
2665 if (attached)
2666 put_mountpoint(old_mp);
1da177e4 2667out:
2db154b3 2668 unlock_mount(mp);
44dfd84a 2669 if (!err) {
2763d119
AV
2670 if (attached)
2671 mntput_no_expire(parent);
2672 else
44dfd84a
DH
2673 free_mnt_ns(ns);
2674 }
2db154b3
DH
2675 return err;
2676}
2677
2678static int do_move_mount_old(struct path *path, const char *old_name)
2679{
2680 struct path old_path;
2681 int err;
2682
2683 if (!old_name || !*old_name)
2684 return -EINVAL;
2685
2686 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2687 if (err)
2688 return err;
2689
2690 err = do_move_mount(&old_path, path);
2d92ab3c 2691 path_put(&old_path);
1da177e4
LT
2692 return err;
2693}
2694
9d412a43
AV
2695/*
2696 * add a mount into a namespace's mount tree
2697 */
95bc5f25 2698static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2699{
84d17192
AV
2700 struct mountpoint *mp;
2701 struct mount *parent;
9d412a43
AV
2702 int err;
2703
f2ebb3a9 2704 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2705
84d17192
AV
2706 mp = lock_mount(path);
2707 if (IS_ERR(mp))
2708 return PTR_ERR(mp);
9d412a43 2709
84d17192 2710 parent = real_mount(path->mnt);
9d412a43 2711 err = -EINVAL;
84d17192 2712 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2713 /* that's acceptable only for automounts done in private ns */
2714 if (!(mnt_flags & MNT_SHRINKABLE))
2715 goto unlock;
2716 /* ... and for those we'd better have mountpoint still alive */
84d17192 2717 if (!parent->mnt_ns)
156cacb1
AV
2718 goto unlock;
2719 }
9d412a43
AV
2720
2721 /* Refuse the same filesystem on the same mount point */
2722 err = -EBUSY;
95bc5f25 2723 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2724 path->mnt->mnt_root == path->dentry)
2725 goto unlock;
2726
2727 err = -EINVAL;
e36cb0b8 2728 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2729 goto unlock;
2730
95bc5f25 2731 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2732 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2733
2734unlock:
84d17192 2735 unlock_mount(mp);
9d412a43
AV
2736 return err;
2737}
b1e75df4 2738
132e4608
DH
2739static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2740
2741/*
2742 * Create a new mount using a superblock configuration and request it
2743 * be added to the namespace tree.
2744 */
2745static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2746 unsigned int mnt_flags)
2747{
2748 struct vfsmount *mnt;
2749 struct super_block *sb = fc->root->d_sb;
2750 int error;
2751
c9ce29ed
AV
2752 error = security_sb_kern_mount(sb);
2753 if (!error && mount_too_revealing(sb, &mnt_flags))
2754 error = -EPERM;
2755
2756 if (unlikely(error)) {
2757 fc_drop_locked(fc);
2758 return error;
132e4608
DH
2759 }
2760
2761 up_write(&sb->s_umount);
2762
2763 mnt = vfs_create_mount(fc);
2764 if (IS_ERR(mnt))
2765 return PTR_ERR(mnt);
2766
2767 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
f8b92ba6 2768 if (error < 0) {
132e4608 2769 mntput(mnt);
f8b92ba6
DD
2770 return error;
2771 }
2772
2773 mnt_warn_timestamp_expiry(mountpoint, mnt);
2774
132e4608
DH
2775 return error;
2776}
1b852bce 2777
1da177e4
LT
2778/*
2779 * create a new mount for userspace and request it to be added into the
2780 * namespace's tree
2781 */
e462ec50 2782static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2783 int mnt_flags, const char *name, void *data)
1da177e4 2784{
0c55cfc4 2785 struct file_system_type *type;
a0c9a8b8
AV
2786 struct fs_context *fc;
2787 const char *subtype = NULL;
2788 int err = 0;
1da177e4 2789
0c55cfc4 2790 if (!fstype)
1da177e4
LT
2791 return -EINVAL;
2792
0c55cfc4
EB
2793 type = get_fs_type(fstype);
2794 if (!type)
2795 return -ENODEV;
2796
a0c9a8b8
AV
2797 if (type->fs_flags & FS_HAS_SUBTYPE) {
2798 subtype = strchr(fstype, '.');
2799 if (subtype) {
2800 subtype++;
2801 if (!*subtype) {
2802 put_filesystem(type);
2803 return -EINVAL;
2804 }
a0c9a8b8
AV
2805 }
2806 }
0c55cfc4 2807
a0c9a8b8 2808 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2809 put_filesystem(type);
a0c9a8b8
AV
2810 if (IS_ERR(fc))
2811 return PTR_ERR(fc);
2812
3e1aeb00
DH
2813 if (subtype)
2814 err = vfs_parse_fs_string(fc, "subtype",
2815 subtype, strlen(subtype));
2816 if (!err && name)
2817 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2818 if (!err)
2819 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2820 if (!err && !mount_capable(fc))
2821 err = -EPERM;
a0c9a8b8
AV
2822 if (!err)
2823 err = vfs_get_tree(fc);
132e4608
DH
2824 if (!err)
2825 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2826
a0c9a8b8 2827 put_fs_context(fc);
15f9a3f3 2828 return err;
1da177e4
LT
2829}
2830
19a167af
AV
2831int finish_automount(struct vfsmount *m, struct path *path)
2832{
6776db3d 2833 struct mount *mnt = real_mount(m);
19a167af
AV
2834 int err;
2835 /* The new mount record should have at least 2 refs to prevent it being
2836 * expired before we get a chance to add it
2837 */
6776db3d 2838 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2839
2840 if (m->mnt_sb == path->mnt->mnt_sb &&
2841 m->mnt_root == path->dentry) {
b1e75df4
AV
2842 err = -ELOOP;
2843 goto fail;
19a167af
AV
2844 }
2845
95bc5f25 2846 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2847 if (!err)
2848 return 0;
2849fail:
2850 /* remove m from any expiration list it may be on */
6776db3d 2851 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2852 namespace_lock();
6776db3d 2853 list_del_init(&mnt->mnt_expire);
97216be0 2854 namespace_unlock();
19a167af 2855 }
b1e75df4
AV
2856 mntput(m);
2857 mntput(m);
19a167af
AV
2858 return err;
2859}
2860
ea5b778a
DH
2861/**
2862 * mnt_set_expiry - Put a mount on an expiration list
2863 * @mnt: The mount to list.
2864 * @expiry_list: The list to add the mount to.
2865 */
2866void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2867{
97216be0 2868 namespace_lock();
ea5b778a 2869
6776db3d 2870 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2871
97216be0 2872 namespace_unlock();
ea5b778a
DH
2873}
2874EXPORT_SYMBOL(mnt_set_expiry);
2875
1da177e4
LT
2876/*
2877 * process a list of expirable mountpoints with the intent of discarding any
2878 * mountpoints that aren't in use and haven't been touched since last we came
2879 * here
2880 */
2881void mark_mounts_for_expiry(struct list_head *mounts)
2882{
761d5c38 2883 struct mount *mnt, *next;
1da177e4
LT
2884 LIST_HEAD(graveyard);
2885
2886 if (list_empty(mounts))
2887 return;
2888
97216be0 2889 namespace_lock();
719ea2fb 2890 lock_mount_hash();
1da177e4
LT
2891
2892 /* extract from the expiration list every vfsmount that matches the
2893 * following criteria:
2894 * - only referenced by its parent vfsmount
2895 * - still marked for expiry (marked on the last call here; marks are
2896 * cleared by mntput())
2897 */
6776db3d 2898 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2899 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2900 propagate_mount_busy(mnt, 1))
1da177e4 2901 continue;
6776db3d 2902 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2903 }
bcc5c7d2 2904 while (!list_empty(&graveyard)) {
6776db3d 2905 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2906 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2907 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2908 }
719ea2fb 2909 unlock_mount_hash();
3ab6abee 2910 namespace_unlock();
5528f911
TM
2911}
2912
2913EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2914
2915/*
2916 * Ripoff of 'select_parent()'
2917 *
2918 * search the list of submounts for a given mountpoint, and move any
2919 * shrinkable submounts to the 'graveyard' list.
2920 */
692afc31 2921static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2922{
692afc31 2923 struct mount *this_parent = parent;
5528f911
TM
2924 struct list_head *next;
2925 int found = 0;
2926
2927repeat:
6b41d536 2928 next = this_parent->mnt_mounts.next;
5528f911 2929resume:
6b41d536 2930 while (next != &this_parent->mnt_mounts) {
5528f911 2931 struct list_head *tmp = next;
6b41d536 2932 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2933
2934 next = tmp->next;
692afc31 2935 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2936 continue;
5528f911
TM
2937 /*
2938 * Descend a level if the d_mounts list is non-empty.
2939 */
6b41d536 2940 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2941 this_parent = mnt;
2942 goto repeat;
2943 }
1da177e4 2944
1ab59738 2945 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2946 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2947 found++;
2948 }
1da177e4 2949 }
5528f911
TM
2950 /*
2951 * All done at this level ... ascend and resume the search
2952 */
2953 if (this_parent != parent) {
6b41d536 2954 next = this_parent->mnt_child.next;
0714a533 2955 this_parent = this_parent->mnt_parent;
5528f911
TM
2956 goto resume;
2957 }
2958 return found;
2959}
2960
2961/*
2962 * process a list of expirable mountpoints with the intent of discarding any
2963 * submounts of a specific parent mountpoint
99b7db7b 2964 *
48a066e7 2965 * mount_lock must be held for write
5528f911 2966 */
b54b9be7 2967static void shrink_submounts(struct mount *mnt)
5528f911
TM
2968{
2969 LIST_HEAD(graveyard);
761d5c38 2970 struct mount *m;
5528f911 2971
5528f911 2972 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2973 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2974 while (!list_empty(&graveyard)) {
761d5c38 2975 m = list_first_entry(&graveyard, struct mount,
6776db3d 2976 mnt_expire);
143c8c91 2977 touch_mnt_namespace(m->mnt_ns);
e819f152 2978 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2979 }
2980 }
1da177e4
LT
2981}
2982
1da177e4
LT
2983/*
2984 * Some copy_from_user() implementations do not return the exact number of
2985 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2986 * Note that this function differs from copy_from_user() in that it will oops
2987 * on bad values of `to', rather than returning a short copy.
2988 */
b58fed8b
RP
2989static long exact_copy_from_user(void *to, const void __user * from,
2990 unsigned long n)
1da177e4
LT
2991{
2992 char *t = to;
2993 const char __user *f = from;
2994 char c;
2995
96d4f267 2996 if (!access_ok(from, n))
1da177e4
LT
2997 return n;
2998
2999 while (n) {
3000 if (__get_user(c, f)) {
3001 memset(t, 0, n);
3002 break;
3003 }
3004 *t++ = c;
3005 f++;
3006 n--;
3007 }
3008 return n;
3009}
3010
b40ef869 3011void *copy_mount_options(const void __user * data)
1da177e4
LT
3012{
3013 int i;
1da177e4 3014 unsigned long size;
b40ef869 3015 char *copy;
b58fed8b 3016
1da177e4 3017 if (!data)
b40ef869 3018 return NULL;
1da177e4 3019
b40ef869
AV
3020 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3021 if (!copy)
3022 return ERR_PTR(-ENOMEM);
1da177e4
LT
3023
3024 /* We only care that *some* data at the address the user
3025 * gave us is valid. Just in case, we'll zero
3026 * the remainder of the page.
3027 */
3028 /* copy_from_user cannot cross TASK_SIZE ! */
ed8a66b8 3029 size = TASK_SIZE - (unsigned long)untagged_addr(data);
1da177e4
LT
3030 if (size > PAGE_SIZE)
3031 size = PAGE_SIZE;
3032
b40ef869 3033 i = size - exact_copy_from_user(copy, data, size);
1da177e4 3034 if (!i) {
b40ef869
AV
3035 kfree(copy);
3036 return ERR_PTR(-EFAULT);
1da177e4
LT
3037 }
3038 if (i != PAGE_SIZE)
b40ef869
AV
3039 memset(copy + i, 0, PAGE_SIZE - i);
3040 return copy;
1da177e4
LT
3041}
3042
b8850d1f 3043char *copy_mount_string(const void __user *data)
eca6f534 3044{
fbdb4401 3045 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3046}
3047
1da177e4
LT
3048/*
3049 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3050 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3051 *
3052 * data is a (void *) that can point to any structure up to
3053 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3054 * information (or be NULL).
3055 *
3056 * Pre-0.97 versions of mount() didn't have a flags word.
3057 * When the flags word was introduced its top half was required
3058 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3059 * Therefore, if this magic number is present, it carries no information
3060 * and must be discarded.
3061 */
5e6123f3 3062long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3063 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3064{
2d92ab3c 3065 struct path path;
e462ec50 3066 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3067 int retval = 0;
1da177e4
LT
3068
3069 /* Discard magic */
3070 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3071 flags &= ~MS_MGC_MSK;
3072
3073 /* Basic sanity checks */
1da177e4
LT
3074 if (data_page)
3075 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3076
e462ec50
DH
3077 if (flags & MS_NOUSER)
3078 return -EINVAL;
3079
a27ab9f2 3080 /* ... and get the mountpoint */
ce6595a2 3081 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
a27ab9f2
TH
3082 if (retval)
3083 return retval;
3084
3085 retval = security_sb_mount(dev_name, &path,
3086 type_page, flags, data_page);
0d5cadb8
AV
3087 if (!retval && !may_mount())
3088 retval = -EPERM;
e462ec50 3089 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3090 retval = -EPERM;
a27ab9f2
TH
3091 if (retval)
3092 goto dput_out;
3093
613cbe3d
AK
3094 /* Default to relatime unless overriden */
3095 if (!(flags & MS_NOATIME))
3096 mnt_flags |= MNT_RELATIME;
0a1c01c9 3097
1da177e4
LT
3098 /* Separate the per-mountpoint flags */
3099 if (flags & MS_NOSUID)
3100 mnt_flags |= MNT_NOSUID;
3101 if (flags & MS_NODEV)
3102 mnt_flags |= MNT_NODEV;
3103 if (flags & MS_NOEXEC)
3104 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3105 if (flags & MS_NOATIME)
3106 mnt_flags |= MNT_NOATIME;
3107 if (flags & MS_NODIRATIME)
3108 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3109 if (flags & MS_STRICTATIME)
3110 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3111 if (flags & MS_RDONLY)
2e4b7fcd 3112 mnt_flags |= MNT_READONLY;
fc33a7bb 3113
ffbc6f0e
EB
3114 /* The default atime for remount is preservation */
3115 if ((flags & MS_REMOUNT) &&
3116 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3117 MS_STRICTATIME)) == 0)) {
3118 mnt_flags &= ~MNT_ATIME_MASK;
3119 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3120 }
3121
e462ec50
DH
3122 sb_flags = flags & (SB_RDONLY |
3123 SB_SYNCHRONOUS |
3124 SB_MANDLOCK |
3125 SB_DIRSYNC |
3126 SB_SILENT |
917086ff 3127 SB_POSIXACL |
d7ee9469 3128 SB_LAZYTIME |
917086ff 3129 SB_I_VERSION);
1da177e4 3130
43f5e655
DH
3131 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3132 retval = do_reconfigure_mnt(&path, mnt_flags);
3133 else if (flags & MS_REMOUNT)
e462ec50 3134 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3135 data_page);
3136 else if (flags & MS_BIND)
2d92ab3c 3137 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3138 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3139 retval = do_change_type(&path, flags);
1da177e4 3140 else if (flags & MS_MOVE)
2db154b3 3141 retval = do_move_mount_old(&path, dev_name);
1da177e4 3142 else
e462ec50 3143 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3144 dev_name, data_page);
3145dput_out:
2d92ab3c 3146 path_put(&path);
1da177e4
LT
3147 return retval;
3148}
3149
537f7ccb
EB
3150static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3151{
3152 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3153}
3154
3155static void dec_mnt_namespaces(struct ucounts *ucounts)
3156{
3157 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3158}
3159
771b1371
EB
3160static void free_mnt_ns(struct mnt_namespace *ns)
3161{
74e83122
AV
3162 if (!is_anon_ns(ns))
3163 ns_free_inum(&ns->ns);
537f7ccb 3164 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3165 put_user_ns(ns->user_ns);
3166 kfree(ns);
3167}
3168
8823c079
EB
3169/*
3170 * Assign a sequence number so we can detect when we attempt to bind
3171 * mount a reference to an older mount namespace into the current
3172 * mount namespace, preventing reference counting loops. A 64bit
3173 * number incrementing at 10Ghz will take 12,427 years to wrap which
3174 * is effectively never, so we can ignore the possibility.
3175 */
3176static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3177
74e83122 3178static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3179{
3180 struct mnt_namespace *new_ns;
537f7ccb 3181 struct ucounts *ucounts;
98f842e6 3182 int ret;
cf8d2c11 3183
537f7ccb
EB
3184 ucounts = inc_mnt_namespaces(user_ns);
3185 if (!ucounts)
df75e774 3186 return ERR_PTR(-ENOSPC);
537f7ccb 3187
74e83122 3188 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3189 if (!new_ns) {
3190 dec_mnt_namespaces(ucounts);
cf8d2c11 3191 return ERR_PTR(-ENOMEM);
537f7ccb 3192 }
74e83122
AV
3193 if (!anon) {
3194 ret = ns_alloc_inum(&new_ns->ns);
3195 if (ret) {
3196 kfree(new_ns);
3197 dec_mnt_namespaces(ucounts);
3198 return ERR_PTR(ret);
3199 }
98f842e6 3200 }
33c42940 3201 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3202 if (!anon)
3203 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3204 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3205 INIT_LIST_HEAD(&new_ns->list);
3206 init_waitqueue_head(&new_ns->poll);
771b1371 3207 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3208 new_ns->ucounts = ucounts;
cf8d2c11
TM
3209 return new_ns;
3210}
3211
0766f788 3212__latent_entropy
9559f689
AV
3213struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3214 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3215{
6b3286ed 3216 struct mnt_namespace *new_ns;
7f2da1e7 3217 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3218 struct mount *p, *q;
9559f689 3219 struct mount *old;
cb338d06 3220 struct mount *new;
7a472ef4 3221 int copy_flags;
1da177e4 3222
9559f689
AV
3223 BUG_ON(!ns);
3224
3225 if (likely(!(flags & CLONE_NEWNS))) {
3226 get_mnt_ns(ns);
3227 return ns;
3228 }
3229
3230 old = ns->root;
3231
74e83122 3232 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3233 if (IS_ERR(new_ns))
3234 return new_ns;
1da177e4 3235
97216be0 3236 namespace_lock();
1da177e4 3237 /* First pass: copy the tree topology */
4ce5d2b1 3238 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3239 if (user_ns != ns->user_ns)
3bd045cc 3240 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3241 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3242 if (IS_ERR(new)) {
328e6d90 3243 namespace_unlock();
771b1371 3244 free_mnt_ns(new_ns);
be34d1a3 3245 return ERR_CAST(new);
1da177e4 3246 }
3bd045cc
AV
3247 if (user_ns != ns->user_ns) {
3248 lock_mount_hash();
3249 lock_mnt_tree(new);
3250 unlock_mount_hash();
3251 }
be08d6d2 3252 new_ns->root = new;
1a4eeaf2 3253 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3254
3255 /*
3256 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3257 * as belonging to new namespace. We have already acquired a private
3258 * fs_struct, so tsk->fs->lock is not needed.
3259 */
909b0a88 3260 p = old;
cb338d06 3261 q = new;
1da177e4 3262 while (p) {
143c8c91 3263 q->mnt_ns = new_ns;
d2921684 3264 new_ns->mounts++;
9559f689
AV
3265 if (new_fs) {
3266 if (&p->mnt == new_fs->root.mnt) {
3267 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3268 rootmnt = &p->mnt;
1da177e4 3269 }
9559f689
AV
3270 if (&p->mnt == new_fs->pwd.mnt) {
3271 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3272 pwdmnt = &p->mnt;
1da177e4 3273 }
1da177e4 3274 }
909b0a88
AV
3275 p = next_mnt(p, old);
3276 q = next_mnt(q, new);
4ce5d2b1
EB
3277 if (!q)
3278 break;
3279 while (p->mnt.mnt_root != q->mnt.mnt_root)
3280 p = next_mnt(p, old);
1da177e4 3281 }
328e6d90 3282 namespace_unlock();
1da177e4 3283
1da177e4 3284 if (rootmnt)
f03c6599 3285 mntput(rootmnt);
1da177e4 3286 if (pwdmnt)
f03c6599 3287 mntput(pwdmnt);
1da177e4 3288
741a2951 3289 return new_ns;
1da177e4
LT
3290}
3291
74e83122 3292struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3293{
74e83122 3294 struct mount *mnt = real_mount(m);
ea441d11 3295 struct mnt_namespace *ns;
d31da0f0 3296 struct super_block *s;
ea441d11
AV
3297 struct path path;
3298 int err;
3299
74e83122
AV
3300 ns = alloc_mnt_ns(&init_user_ns, true);
3301 if (IS_ERR(ns)) {
3302 mntput(m);
ea441d11 3303 return ERR_CAST(ns);
74e83122
AV
3304 }
3305 mnt->mnt_ns = ns;
3306 ns->root = mnt;
3307 ns->mounts++;
3308 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3309
74e83122 3310 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3311 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3312
3313 put_mnt_ns(ns);
3314
3315 if (err)
3316 return ERR_PTR(err);
3317
3318 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3319 s = path.mnt->mnt_sb;
3320 atomic_inc(&s->s_active);
ea441d11
AV
3321 mntput(path.mnt);
3322 /* lock the sucker */
d31da0f0 3323 down_write(&s->s_umount);
ea441d11
AV
3324 /* ... and return the root of (sub)tree on it */
3325 return path.dentry;
3326}
3327EXPORT_SYMBOL(mount_subtree);
3328
33488845
AV
3329int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3330 const char __user *type, unsigned long flags, void __user *data)
1da177e4 3331{
eca6f534
VN
3332 int ret;
3333 char *kernel_type;
eca6f534 3334 char *kernel_dev;
b40ef869 3335 void *options;
1da177e4 3336
b8850d1f
TG
3337 kernel_type = copy_mount_string(type);
3338 ret = PTR_ERR(kernel_type);
3339 if (IS_ERR(kernel_type))
eca6f534 3340 goto out_type;
1da177e4 3341
b8850d1f
TG
3342 kernel_dev = copy_mount_string(dev_name);
3343 ret = PTR_ERR(kernel_dev);
3344 if (IS_ERR(kernel_dev))
eca6f534 3345 goto out_dev;
1da177e4 3346
b40ef869
AV
3347 options = copy_mount_options(data);
3348 ret = PTR_ERR(options);
3349 if (IS_ERR(options))
eca6f534 3350 goto out_data;
1da177e4 3351
b40ef869 3352 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3353
b40ef869 3354 kfree(options);
eca6f534
VN
3355out_data:
3356 kfree(kernel_dev);
3357out_dev:
eca6f534
VN
3358 kfree(kernel_type);
3359out_type:
3360 return ret;
1da177e4
LT
3361}
3362
312db1aa
DB
3363SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3364 char __user *, type, unsigned long, flags, void __user *, data)
3365{
3366 return ksys_mount(dev_name, dir_name, type, flags, data);
3367}
3368
2db154b3 3369/*
93766fbd
DH
3370 * Create a kernel mount representation for a new, prepared superblock
3371 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3372 */
3373SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3374 unsigned int, attr_flags)
3375{
3376 struct mnt_namespace *ns;
3377 struct fs_context *fc;
3378 struct file *file;
3379 struct path newmount;
3380 struct mount *mnt;
3381 struct fd f;
3382 unsigned int mnt_flags = 0;
3383 long ret;
3384
3385 if (!may_mount())
3386 return -EPERM;
3387
3388 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3389 return -EINVAL;
3390
3391 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3392 MOUNT_ATTR_NOSUID |
3393 MOUNT_ATTR_NODEV |
3394 MOUNT_ATTR_NOEXEC |
3395 MOUNT_ATTR__ATIME |
3396 MOUNT_ATTR_NODIRATIME))
3397 return -EINVAL;
3398
3399 if (attr_flags & MOUNT_ATTR_RDONLY)
3400 mnt_flags |= MNT_READONLY;
3401 if (attr_flags & MOUNT_ATTR_NOSUID)
3402 mnt_flags |= MNT_NOSUID;
3403 if (attr_flags & MOUNT_ATTR_NODEV)
3404 mnt_flags |= MNT_NODEV;
3405 if (attr_flags & MOUNT_ATTR_NOEXEC)
3406 mnt_flags |= MNT_NOEXEC;
3407 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3408 mnt_flags |= MNT_NODIRATIME;
3409
3410 switch (attr_flags & MOUNT_ATTR__ATIME) {
3411 case MOUNT_ATTR_STRICTATIME:
3412 break;
3413 case MOUNT_ATTR_NOATIME:
3414 mnt_flags |= MNT_NOATIME;
3415 break;
3416 case MOUNT_ATTR_RELATIME:
3417 mnt_flags |= MNT_RELATIME;
3418 break;
3419 default:
3420 return -EINVAL;
3421 }
3422
3423 f = fdget(fs_fd);
3424 if (!f.file)
3425 return -EBADF;
3426
3427 ret = -EINVAL;
3428 if (f.file->f_op != &fscontext_fops)
3429 goto err_fsfd;
3430
3431 fc = f.file->private_data;
3432
3433 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3434 if (ret < 0)
3435 goto err_fsfd;
3436
3437 /* There must be a valid superblock or we can't mount it */
3438 ret = -EINVAL;
3439 if (!fc->root)
3440 goto err_unlock;
3441
3442 ret = -EPERM;
3443 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3444 pr_warn("VFS: Mount too revealing\n");
3445 goto err_unlock;
3446 }
3447
3448 ret = -EBUSY;
3449 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3450 goto err_unlock;
3451
3452 ret = -EPERM;
3453 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3454 goto err_unlock;
3455
3456 newmount.mnt = vfs_create_mount(fc);
3457 if (IS_ERR(newmount.mnt)) {
3458 ret = PTR_ERR(newmount.mnt);
3459 goto err_unlock;
3460 }
3461 newmount.dentry = dget(fc->root);
3462 newmount.mnt->mnt_flags = mnt_flags;
3463
3464 /* We've done the mount bit - now move the file context into more or
3465 * less the same state as if we'd done an fspick(). We don't want to
3466 * do any memory allocation or anything like that at this point as we
3467 * don't want to have to handle any errors incurred.
3468 */
3469 vfs_clean_context(fc);
3470
3471 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3472 if (IS_ERR(ns)) {
3473 ret = PTR_ERR(ns);
3474 goto err_path;
3475 }
3476 mnt = real_mount(newmount.mnt);
3477 mnt->mnt_ns = ns;
3478 ns->root = mnt;
3479 ns->mounts = 1;
3480 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3481 mntget(newmount.mnt);
93766fbd
DH
3482
3483 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3484 * it, not just simply put it.
3485 */
3486 file = dentry_open(&newmount, O_PATH, fc->cred);
3487 if (IS_ERR(file)) {
3488 dissolve_on_fput(newmount.mnt);
3489 ret = PTR_ERR(file);
3490 goto err_path;
3491 }
3492 file->f_mode |= FMODE_NEED_UNMOUNT;
3493
3494 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3495 if (ret >= 0)
3496 fd_install(ret, file);
3497 else
3498 fput(file);
3499
3500err_path:
3501 path_put(&newmount);
3502err_unlock:
3503 mutex_unlock(&fc->uapi_mutex);
3504err_fsfd:
3505 fdput(f);
3506 return ret;
3507}
3508
3509/*
3510 * Move a mount from one place to another. In combination with
3511 * fsopen()/fsmount() this is used to install a new mount and in combination
3512 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3513 * a mount subtree.
2db154b3
DH
3514 *
3515 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3516 */
3517SYSCALL_DEFINE5(move_mount,
3518 int, from_dfd, const char *, from_pathname,
3519 int, to_dfd, const char *, to_pathname,
3520 unsigned int, flags)
3521{
3522 struct path from_path, to_path;
3523 unsigned int lflags;
3524 int ret = 0;
3525
3526 if (!may_mount())
3527 return -EPERM;
3528
3529 if (flags & ~MOVE_MOUNT__MASK)
3530 return -EINVAL;
3531
3532 /* If someone gives a pathname, they aren't permitted to move
3533 * from an fd that requires unmount as we can't get at the flag
3534 * to clear it afterwards.
3535 */
3536 lflags = 0;
3537 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3538 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3539 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3540
3541 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3542 if (ret < 0)
3543 return ret;
3544
3545 lflags = 0;
3546 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3547 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3548 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3549
3550 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3551 if (ret < 0)
3552 goto out_from;
3553
3554 ret = security_move_mount(&from_path, &to_path);
3555 if (ret < 0)
3556 goto out_to;
3557
3558 ret = do_move_mount(&from_path, &to_path);
3559
3560out_to:
3561 path_put(&to_path);
3562out_from:
3563 path_put(&from_path);
3564 return ret;
3565}
3566
afac7cba
AV
3567/*
3568 * Return true if path is reachable from root
3569 *
48a066e7 3570 * namespace_sem or mount_lock is held
afac7cba 3571 */
643822b4 3572bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3573 const struct path *root)
3574{
643822b4 3575 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3576 dentry = mnt->mnt_mountpoint;
0714a533 3577 mnt = mnt->mnt_parent;
afac7cba 3578 }
643822b4 3579 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3580}
3581
640eb7e7 3582bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3583{
25ab4c9b 3584 bool res;
48a066e7 3585 read_seqlock_excl(&mount_lock);
643822b4 3586 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3587 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3588 return res;
3589}
3590EXPORT_SYMBOL(path_is_under);
3591
1da177e4
LT
3592/*
3593 * pivot_root Semantics:
3594 * Moves the root file system of the current process to the directory put_old,
3595 * makes new_root as the new root file system of the current process, and sets
3596 * root/cwd of all processes which had them on the current root to new_root.
3597 *
3598 * Restrictions:
3599 * The new_root and put_old must be directories, and must not be on the
3600 * same file system as the current process root. The put_old must be
3601 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3602 * pointed to by put_old must yield the same directory as new_root. No other
3603 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3604 *
4a0d11fa
NB
3605 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3606 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3607 * in this situation.
3608 *
1da177e4
LT
3609 * Notes:
3610 * - we don't move root/cwd if they are not at the root (reason: if something
3611 * cared enough to change them, it's probably wrong to force them elsewhere)
3612 * - it's okay to pick a root that isn't the root of a file system, e.g.
3613 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3614 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3615 * first.
3616 */
3480b257
HC
3617SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3618 const char __user *, put_old)
1da177e4 3619{
2763d119
AV
3620 struct path new, old, root;
3621 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3622 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3623 int error;
3624
9b40bc90 3625 if (!may_mount())
1da177e4
LT
3626 return -EPERM;
3627
ce6595a2
AV
3628 error = user_path_at(AT_FDCWD, new_root,
3629 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3630 if (error)
3631 goto out0;
1da177e4 3632
ce6595a2
AV
3633 error = user_path_at(AT_FDCWD, put_old,
3634 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3635 if (error)
3636 goto out1;
3637
2d8f3038 3638 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3639 if (error)
3640 goto out2;
1da177e4 3641
f7ad3c6b 3642 get_fs_root(current->fs, &root);
84d17192
AV
3643 old_mp = lock_mount(&old);
3644 error = PTR_ERR(old_mp);
3645 if (IS_ERR(old_mp))
b12cea91
AV
3646 goto out3;
3647
1da177e4 3648 error = -EINVAL;
419148da
AV
3649 new_mnt = real_mount(new.mnt);
3650 root_mnt = real_mount(root.mnt);
84d17192 3651 old_mnt = real_mount(old.mnt);
2763d119
AV
3652 ex_parent = new_mnt->mnt_parent;
3653 root_parent = root_mnt->mnt_parent;
84d17192 3654 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3655 IS_MNT_SHARED(ex_parent) ||
3656 IS_MNT_SHARED(root_parent))
b12cea91 3657 goto out4;
143c8c91 3658 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3659 goto out4;
5ff9d8a6
EB
3660 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3661 goto out4;
1da177e4 3662 error = -ENOENT;
f3da392e 3663 if (d_unlinked(new.dentry))
b12cea91 3664 goto out4;
1da177e4 3665 error = -EBUSY;
84d17192 3666 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3667 goto out4; /* loop, on the same file system */
1da177e4 3668 error = -EINVAL;
8c3ee42e 3669 if (root.mnt->mnt_root != root.dentry)
b12cea91 3670 goto out4; /* not a mountpoint */
676da58d 3671 if (!mnt_has_parent(root_mnt))
b12cea91 3672 goto out4; /* not attached */
2d8f3038 3673 if (new.mnt->mnt_root != new.dentry)
b12cea91 3674 goto out4; /* not a mountpoint */
676da58d 3675 if (!mnt_has_parent(new_mnt))
b12cea91 3676 goto out4; /* not attached */
4ac91378 3677 /* make sure we can reach put_old from new_root */
84d17192 3678 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3679 goto out4;
0d082601
EB
3680 /* make certain new is below the root */
3681 if (!is_path_reachable(new_mnt, new.dentry, &root))
3682 goto out4;
719ea2fb 3683 lock_mount_hash();
2763d119
AV
3684 umount_mnt(new_mnt);
3685 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3686 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3687 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3688 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3689 }
4ac91378 3690 /* mount old root on put_old */
84d17192 3691 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3692 /* mount new_root on / */
2763d119
AV
3693 attach_mnt(new_mnt, root_parent, root_mp);
3694 mnt_add_count(root_parent, -1);
6b3286ed 3695 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3696 /* A moved mount should not expire automatically */
3697 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3698 put_mountpoint(root_mp);
719ea2fb 3699 unlock_mount_hash();
2d8f3038 3700 chroot_fs_refs(&root, &new);
1da177e4 3701 error = 0;
b12cea91 3702out4:
84d17192 3703 unlock_mount(old_mp);
2763d119
AV
3704 if (!error)
3705 mntput_no_expire(ex_parent);
b12cea91 3706out3:
8c3ee42e 3707 path_put(&root);
b12cea91 3708out2:
2d8f3038 3709 path_put(&old);
1da177e4 3710out1:
2d8f3038 3711 path_put(&new);
1da177e4 3712out0:
1da177e4 3713 return error;
1da177e4
LT
3714}
3715
3716static void __init init_mount_tree(void)
3717{
3718 struct vfsmount *mnt;
74e83122 3719 struct mount *m;
6b3286ed 3720 struct mnt_namespace *ns;
ac748a09 3721 struct path root;
1da177e4 3722
fd3e007f 3723 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
3724 if (IS_ERR(mnt))
3725 panic("Can't create rootfs");
b3e19d92 3726
74e83122 3727 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3728 if (IS_ERR(ns))
1da177e4 3729 panic("Can't allocate initial namespace");
74e83122
AV
3730 m = real_mount(mnt);
3731 m->mnt_ns = ns;
3732 ns->root = m;
3733 ns->mounts = 1;
3734 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3735 init_task.nsproxy->mnt_ns = ns;
3736 get_mnt_ns(ns);
3737
be08d6d2
AV
3738 root.mnt = mnt;
3739 root.dentry = mnt->mnt_root;
da362b09 3740 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3741
3742 set_fs_pwd(current->fs, &root);
3743 set_fs_root(current->fs, &root);
1da177e4
LT
3744}
3745
74bf17cf 3746void __init mnt_init(void)
1da177e4 3747{
15a67dd8 3748 int err;
1da177e4 3749
7d6fec45 3750 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3751 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3752
0818bf27 3753 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3754 sizeof(struct hlist_head),
0818bf27 3755 mhash_entries, 19,
3d375d78 3756 HASH_ZERO,
0818bf27
AV
3757 &m_hash_shift, &m_hash_mask, 0, 0);
3758 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3759 sizeof(struct hlist_head),
3760 mphash_entries, 19,
3d375d78 3761 HASH_ZERO,
0818bf27 3762 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3763
84d17192 3764 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3765 panic("Failed to allocate mount hash table\n");
3766
4b93dc9b
TH
3767 kernfs_init();
3768
15a67dd8
RD
3769 err = sysfs_init();
3770 if (err)
3771 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3772 __func__, err);
00d26666
GKH
3773 fs_kobj = kobject_create_and_add("fs", NULL);
3774 if (!fs_kobj)
8e24eea7 3775 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 3776 shmem_init();
1da177e4
LT
3777 init_rootfs();
3778 init_mount_tree();
3779}
3780
616511d0 3781void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3782{
d498b25a 3783 if (!atomic_dec_and_test(&ns->count))
616511d0 3784 return;
7b00ed6f 3785 drop_collected_mounts(&ns->root->mnt);
771b1371 3786 free_mnt_ns(ns);
1da177e4 3787}
9d412a43 3788
d911b458 3789struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3790{
423e0ab0 3791 struct vfsmount *mnt;
d911b458 3792 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3793 if (!IS_ERR(mnt)) {
3794 /*
3795 * it is a longterm mount, don't release mnt until
3796 * we unmount before file sys is unregistered
3797 */
f7a99c5b 3798 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3799 }
3800 return mnt;
9d412a43 3801}
d911b458 3802EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3803
3804void kern_unmount(struct vfsmount *mnt)
3805{
3806 /* release long term mount so mount point can be released */
3807 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3808 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3809 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3810 mntput(mnt);
3811 }
3812}
3813EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3814
3815bool our_mnt(struct vfsmount *mnt)
3816{
143c8c91 3817 return check_mnt(real_mount(mnt));
02125a82 3818}
8823c079 3819
3151527e
EB
3820bool current_chrooted(void)
3821{
3822 /* Does the current process have a non-standard root */
3823 struct path ns_root;
3824 struct path fs_root;
3825 bool chrooted;
3826
3827 /* Find the namespace root */
3828 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3829 ns_root.dentry = ns_root.mnt->mnt_root;
3830 path_get(&ns_root);
3831 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3832 ;
3833
3834 get_fs_root(current->fs, &fs_root);
3835
3836 chrooted = !path_equal(&fs_root, &ns_root);
3837
3838 path_put(&fs_root);
3839 path_put(&ns_root);
3840
3841 return chrooted;
3842}
3843
132e4608
DH
3844static bool mnt_already_visible(struct mnt_namespace *ns,
3845 const struct super_block *sb,
8654df4e 3846 int *new_mnt_flags)
87a8ebd6 3847{
8c6cf9cc 3848 int new_flags = *new_mnt_flags;
87a8ebd6 3849 struct mount *mnt;
e51db735 3850 bool visible = false;
87a8ebd6 3851
44bb4385 3852 down_read(&namespace_sem);
87a8ebd6 3853 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3854 struct mount *child;
77b1a97d
EB
3855 int mnt_flags;
3856
132e4608 3857 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3858 continue;
3859
7e96c1b0
EB
3860 /* This mount is not fully visible if it's root directory
3861 * is not the root directory of the filesystem.
3862 */
3863 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3864 continue;
3865
a1935c17 3866 /* A local view of the mount flags */
77b1a97d 3867 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3868
695e9df0 3869 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3870 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3871 mnt_flags |= MNT_LOCK_READONLY;
3872
8c6cf9cc
EB
3873 /* Verify the mount flags are equal to or more permissive
3874 * than the proposed new mount.
3875 */
77b1a97d 3876 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3877 !(new_flags & MNT_READONLY))
3878 continue;
77b1a97d
EB
3879 if ((mnt_flags & MNT_LOCK_ATIME) &&
3880 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3881 continue;
3882
ceeb0e5d
EB
3883 /* This mount is not fully visible if there are any
3884 * locked child mounts that cover anything except for
3885 * empty directories.
e51db735
EB
3886 */
3887 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3888 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3889 /* Only worry about locked mounts */
d71ed6c9 3890 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3891 continue;
7236c85e
EB
3892 /* Is the directory permanetly empty? */
3893 if (!is_empty_dir_inode(inode))
e51db735 3894 goto next;
87a8ebd6 3895 }
8c6cf9cc 3896 /* Preserve the locked attributes */
77b1a97d 3897 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3898 MNT_LOCK_ATIME);
e51db735
EB
3899 visible = true;
3900 goto found;
3901 next: ;
87a8ebd6 3902 }
e51db735 3903found:
44bb4385 3904 up_read(&namespace_sem);
e51db735 3905 return visible;
87a8ebd6
EB
3906}
3907
132e4608 3908static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3909{
a1935c17 3910 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3911 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3912 unsigned long s_iflags;
3913
3914 if (ns->user_ns == &init_user_ns)
3915 return false;
3916
3917 /* Can this filesystem be too revealing? */
132e4608 3918 s_iflags = sb->s_iflags;
8654df4e
EB
3919 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3920 return false;
3921
a1935c17
EB
3922 if ((s_iflags & required_iflags) != required_iflags) {
3923 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3924 required_iflags);
3925 return true;
3926 }
3927
132e4608 3928 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3929}
3930
380cf5ba
AL
3931bool mnt_may_suid(struct vfsmount *mnt)
3932{
3933 /*
3934 * Foreign mounts (accessed via fchdir or through /proc
3935 * symlinks) are always treated as if they are nosuid. This
3936 * prevents namespaces from trusting potentially unsafe
3937 * suid/sgid bits, file caps, or security labels that originate
3938 * in other namespaces.
3939 */
3940 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3941 current_in_userns(mnt->mnt_sb->s_user_ns);
3942}
3943
64964528 3944static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3945{
58be2825 3946 struct ns_common *ns = NULL;
8823c079
EB
3947 struct nsproxy *nsproxy;
3948
728dba3a
EB
3949 task_lock(task);
3950 nsproxy = task->nsproxy;
8823c079 3951 if (nsproxy) {
58be2825
AV
3952 ns = &nsproxy->mnt_ns->ns;
3953 get_mnt_ns(to_mnt_ns(ns));
8823c079 3954 }
728dba3a 3955 task_unlock(task);
8823c079
EB
3956
3957 return ns;
3958}
3959
64964528 3960static void mntns_put(struct ns_common *ns)
8823c079 3961{
58be2825 3962 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3963}
3964
64964528 3965static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3966{
3967 struct fs_struct *fs = current->fs;
4f757f3c 3968 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3969 struct path root;
4f757f3c 3970 int err;
8823c079 3971
0c55cfc4 3972 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3973 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3974 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3975 return -EPERM;
8823c079 3976
74e83122
AV
3977 if (is_anon_ns(mnt_ns))
3978 return -EINVAL;
3979
8823c079
EB
3980 if (fs->users != 1)
3981 return -EINVAL;
3982
3983 get_mnt_ns(mnt_ns);
4f757f3c 3984 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3985 nsproxy->mnt_ns = mnt_ns;
3986
3987 /* Find the root */
4f757f3c
AV
3988 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3989 "/", LOOKUP_DOWN, &root);
3990 if (err) {
3991 /* revert to old namespace */
3992 nsproxy->mnt_ns = old_mnt_ns;
3993 put_mnt_ns(mnt_ns);
3994 return err;
3995 }
8823c079 3996
4068367c
AV
3997 put_mnt_ns(old_mnt_ns);
3998
8823c079
EB
3999 /* Update the pwd and root */
4000 set_fs_pwd(fs, &root);
4001 set_fs_root(fs, &root);
4002
4003 path_put(&root);
4004 return 0;
4005}
4006
bcac25a5
AV
4007static struct user_namespace *mntns_owner(struct ns_common *ns)
4008{
4009 return to_mnt_ns(ns)->user_ns;
4010}
4011
8823c079
EB
4012const struct proc_ns_operations mntns_operations = {
4013 .name = "mnt",
4014 .type = CLONE_NEWNS,
4015 .get = mntns_get,
4016 .put = mntns_put,
4017 .install = mntns_install,
bcac25a5 4018 .owner = mntns_owner,
8823c079 4019};