]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Restore critical section on degraded array
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
9535fc47 668 * -2 - we return longer map /excluding uninitialized state/
5e7b0330 669 */
a965f303 670 struct imsm_map *map = &dev->vol.map[0];
9535fc47 671 struct imsm_map *map2 = NULL;
a965f303 672
9535fc47
AK
673 if (dev->vol.migr_state)
674 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 675
9535fc47
AK
676 switch (second_map) {
677 case 0:
678 break;
679 case 1:
680 map = map2;
681 break;
682 case -1:
683 if (map2)
684 map = map2;
685 break;
686 case -2:
687 if (map2
688 && map2->map_state != IMSM_T_STATE_UNINITIALIZED
689 && map2->num_members > map->num_members)
690 map = map2;
691 break;
692 default:
693 map = NULL;
694 }
695 return map;
5e7b0330 696
a965f303 697}
cdddbdbc 698
3393c6af
DW
699/* return the size of the device.
700 * migr_state increases the returned size if map[0] were to be duplicated
701 */
702static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
703{
704 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
705 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
706
707 /* migrating means an additional map */
a965f303
DW
708 if (dev->vol.migr_state)
709 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
710 else if (migr_state)
711 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
712
713 return size;
714}
715
54c2c1ea
DW
716#ifndef MDASSEMBLE
717/* retrieve disk serial number list from a metadata update */
718static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
719{
720 void *u = update;
721 struct disk_info *inf;
722
723 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
724 sizeof_imsm_dev(&update->dev, 0);
725
726 return inf;
727}
728#endif
729
949c47a0 730static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
731{
732 int offset;
733 int i;
734 void *_mpb = mpb;
735
949c47a0 736 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
737 return NULL;
738
739 /* devices start after all disks */
740 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
741
742 for (i = 0; i <= index; i++)
743 if (i == index)
744 return _mpb + offset;
745 else
3393c6af 746 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
747
748 return NULL;
749}
750
949c47a0
DW
751static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
752{
ba2de7ba
DW
753 struct intel_dev *dv;
754
949c47a0
DW
755 if (index >= super->anchor->num_raid_devs)
756 return NULL;
ba2de7ba
DW
757 for (dv = super->devlist; dv; dv = dv->next)
758 if (dv->index == index)
759 return dv->dev;
760 return NULL;
949c47a0
DW
761}
762
98130f40
AK
763/*
764 * for second_map:
765 * == 0 get first map
766 * == 1 get second map
767 * == -1 than get map according to the current migr_state
768 */
769static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
770 int slot,
771 int second_map)
7eef0453
DW
772{
773 struct imsm_map *map;
774
5e7b0330 775 map = get_imsm_map(dev, second_map);
7eef0453 776
ff077194
DW
777 /* top byte identifies disk under rebuild */
778 return __le32_to_cpu(map->disk_ord_tbl[slot]);
779}
780
781#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 782static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 783{
98130f40 784 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
785
786 return ord_to_idx(ord);
7eef0453
DW
787}
788
be73972f
DW
789static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
790{
791 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
792}
793
f21e18ca 794static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
795{
796 int slot;
797 __u32 ord;
798
799 for (slot = 0; slot < map->num_members; slot++) {
800 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
801 if (ord_to_idx(ord) == idx)
802 return slot;
803 }
804
805 return -1;
806}
807
cdddbdbc
DW
808static int get_imsm_raid_level(struct imsm_map *map)
809{
810 if (map->raid_level == 1) {
811 if (map->num_members == 2)
812 return 1;
813 else
814 return 10;
815 }
816
817 return map->raid_level;
818}
819
c2c087e6
DW
820static int cmp_extent(const void *av, const void *bv)
821{
822 const struct extent *a = av;
823 const struct extent *b = bv;
824 if (a->start < b->start)
825 return -1;
826 if (a->start > b->start)
827 return 1;
828 return 0;
829}
830
0dcecb2e 831static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 832{
c2c087e6 833 int memberships = 0;
620b1713 834 int i;
c2c087e6 835
949c47a0
DW
836 for (i = 0; i < super->anchor->num_raid_devs; i++) {
837 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 838 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 839
620b1713
DW
840 if (get_imsm_disk_slot(map, dl->index) >= 0)
841 memberships++;
c2c087e6 842 }
0dcecb2e
DW
843
844 return memberships;
845}
846
b81221b7
CA
847static __u32 imsm_min_reserved_sectors(struct intel_super *super);
848
0dcecb2e
DW
849static struct extent *get_extents(struct intel_super *super, struct dl *dl)
850{
851 /* find a list of used extents on the given physical device */
852 struct extent *rv, *e;
620b1713 853 int i;
0dcecb2e 854 int memberships = count_memberships(dl, super);
b276dd33
DW
855 __u32 reservation;
856
857 /* trim the reserved area for spares, so they can join any array
858 * regardless of whether the OROM has assigned sectors from the
859 * IMSM_RESERVED_SECTORS region
860 */
861 if (dl->index == -1)
b81221b7 862 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
863 else
864 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 865
c2c087e6
DW
866 rv = malloc(sizeof(struct extent) * (memberships + 1));
867 if (!rv)
868 return NULL;
869 e = rv;
870
949c47a0
DW
871 for (i = 0; i < super->anchor->num_raid_devs; i++) {
872 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 873 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 874
620b1713
DW
875 if (get_imsm_disk_slot(map, dl->index) >= 0) {
876 e->start = __le32_to_cpu(map->pba_of_lba0);
877 e->size = __le32_to_cpu(map->blocks_per_member);
878 e++;
c2c087e6
DW
879 }
880 }
881 qsort(rv, memberships, sizeof(*rv), cmp_extent);
882
14e8215b
DW
883 /* determine the start of the metadata
884 * when no raid devices are defined use the default
885 * ...otherwise allow the metadata to truncate the value
886 * as is the case with older versions of imsm
887 */
888 if (memberships) {
889 struct extent *last = &rv[memberships - 1];
890 __u32 remainder;
891
892 remainder = __le32_to_cpu(dl->disk.total_blocks) -
893 (last->start + last->size);
dda5855f
DW
894 /* round down to 1k block to satisfy precision of the kernel
895 * 'size' interface
896 */
897 remainder &= ~1UL;
898 /* make sure remainder is still sane */
f21e18ca 899 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 900 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
901 if (reservation > remainder)
902 reservation = remainder;
903 }
904 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
905 e->size = 0;
906 return rv;
907}
908
14e8215b
DW
909/* try to determine how much space is reserved for metadata from
910 * the last get_extents() entry, otherwise fallback to the
911 * default
912 */
913static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
914{
915 struct extent *e;
916 int i;
917 __u32 rv;
918
919 /* for spares just return a minimal reservation which will grow
920 * once the spare is picked up by an array
921 */
922 if (dl->index == -1)
923 return MPB_SECTOR_CNT;
924
925 e = get_extents(super, dl);
926 if (!e)
927 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
928
929 /* scroll to last entry */
930 for (i = 0; e[i].size; i++)
931 continue;
932
933 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
934
935 free(e);
936
937 return rv;
938}
939
25ed7e59
DW
940static int is_spare(struct imsm_disk *disk)
941{
942 return (disk->status & SPARE_DISK) == SPARE_DISK;
943}
944
945static int is_configured(struct imsm_disk *disk)
946{
947 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
948}
949
950static int is_failed(struct imsm_disk *disk)
951{
952 return (disk->status & FAILED_DISK) == FAILED_DISK;
953}
954
b81221b7
CA
955/* try to determine how much space is reserved for metadata from
956 * the last get_extents() entry on the smallest active disk,
957 * otherwise fallback to the default
958 */
959static __u32 imsm_min_reserved_sectors(struct intel_super *super)
960{
961 struct extent *e;
962 int i;
963 __u32 min_active, remainder;
964 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
965 struct dl *dl, *dl_min = NULL;
966
967 if (!super)
968 return rv;
969
970 min_active = 0;
971 for (dl = super->disks; dl; dl = dl->next) {
972 if (dl->index < 0)
973 continue;
974 if (dl->disk.total_blocks < min_active || min_active == 0) {
975 dl_min = dl;
976 min_active = dl->disk.total_blocks;
977 }
978 }
979 if (!dl_min)
980 return rv;
981
982 /* find last lba used by subarrays on the smallest active disk */
983 e = get_extents(super, dl_min);
984 if (!e)
985 return rv;
986 for (i = 0; e[i].size; i++)
987 continue;
988
989 remainder = min_active - e[i].start;
990 free(e);
991
992 /* to give priority to recovery we should not require full
993 IMSM_RESERVED_SECTORS from the spare */
994 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
995
996 /* if real reservation is smaller use that value */
997 return (remainder < rv) ? remainder : rv;
998}
999
80e7f8c3
AC
1000/* Return minimum size of a spare that can be used in this array*/
1001static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1002{
1003 struct intel_super *super = st->sb;
1004 struct dl *dl;
1005 struct extent *e;
1006 int i;
1007 unsigned long long rv = 0;
1008
1009 if (!super)
1010 return rv;
1011 /* find first active disk in array */
1012 dl = super->disks;
1013 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1014 dl = dl->next;
1015 if (!dl)
1016 return rv;
1017 /* find last lba used by subarrays */
1018 e = get_extents(super, dl);
1019 if (!e)
1020 return rv;
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023 if (i > 0)
1024 rv = e[i-1].start + e[i-1].size;
1025 free(e);
b81221b7 1026
80e7f8c3 1027 /* add the amount of space needed for metadata */
b81221b7
CA
1028 rv = rv + imsm_min_reserved_sectors(super);
1029
80e7f8c3
AC
1030 return rv * 512;
1031}
1032
1799c9e8 1033#ifndef MDASSEMBLE
c47b0ff6
AK
1034static __u64 blocks_per_migr_unit(struct intel_super *super,
1035 struct imsm_dev *dev);
1e5c6983 1036
464d40e8
LD
1037static int is_gen_migration(struct imsm_dev *dev);
1038
c47b0ff6
AK
1039static void print_imsm_dev(struct intel_super *super,
1040 struct imsm_dev *dev,
1041 char *uuid,
1042 int disk_idx)
cdddbdbc
DW
1043{
1044 __u64 sz;
0d80bb2f 1045 int slot, i;
a965f303 1046 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1047 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1048 __u32 ord;
cdddbdbc
DW
1049
1050 printf("\n");
1e7bc0ed 1051 printf("[%.16s]:\n", dev->volume);
44470971 1052 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1053 printf(" RAID Level : %d", get_imsm_raid_level(map));
1054 if (map2)
1055 printf(" <-- %d", get_imsm_raid_level(map2));
1056 printf("\n");
1057 printf(" Members : %d", map->num_members);
1058 if (map2)
1059 printf(" <-- %d", map2->num_members);
1060 printf("\n");
0d80bb2f
DW
1061 printf(" Slots : [");
1062 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1063 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1064 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1065 }
dd8bcb3b
AK
1066 printf("]");
1067 if (map2) {
1068 printf(" <-- [");
1069 for (i = 0; i < map2->num_members; i++) {
1070 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1071 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1072 }
1073 printf("]");
1074 }
1075 printf("\n");
7095bccb
AK
1076 printf(" Failed disk : ");
1077 if (map->failed_disk_num == 0xff)
1078 printf("none");
1079 else
1080 printf("%i", map->failed_disk_num);
1081 printf("\n");
620b1713
DW
1082 slot = get_imsm_disk_slot(map, disk_idx);
1083 if (slot >= 0) {
98130f40 1084 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1085 printf(" This Slot : %d%s\n", slot,
1086 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1087 } else
cdddbdbc
DW
1088 printf(" This Slot : ?\n");
1089 sz = __le32_to_cpu(dev->size_high);
1090 sz <<= 32;
1091 sz += __le32_to_cpu(dev->size_low);
1092 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1093 human_size(sz * 512));
1094 sz = __le32_to_cpu(map->blocks_per_member);
1095 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1096 human_size(sz * 512));
1097 printf(" Sector Offset : %u\n",
1098 __le32_to_cpu(map->pba_of_lba0));
1099 printf(" Num Stripes : %u\n",
1100 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1101 printf(" Chunk Size : %u KiB",
cdddbdbc 1102 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1103 if (map2)
1104 printf(" <-- %u KiB",
1105 __le16_to_cpu(map2->blocks_per_strip) / 2);
1106 printf("\n");
cdddbdbc 1107 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1108 printf(" Migrate State : ");
1484e727
DW
1109 if (dev->vol.migr_state) {
1110 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1111 printf("initialize\n");
1484e727 1112 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1113 printf("rebuild\n");
1484e727 1114 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1115 printf("check\n");
1484e727 1116 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1117 printf("general migration\n");
1484e727 1118 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1119 printf("state change\n");
1484e727 1120 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1121 printf("repair\n");
1484e727 1122 else
8655a7b1
DW
1123 printf("<unknown:%d>\n", migr_type(dev));
1124 } else
1125 printf("idle\n");
3393c6af
DW
1126 printf(" Map State : %s", map_state_str[map->map_state]);
1127 if (dev->vol.migr_state) {
1128 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1129
b10b37b8 1130 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1131 printf("\n Checkpoint : %u ",
1132 __le32_to_cpu(dev->vol.curr_migr_unit));
1133 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1134 printf("(N/A)");
1135 else
1136 printf("(%llu)", (unsigned long long)
1137 blocks_per_migr_unit(super, dev));
3393c6af
DW
1138 }
1139 printf("\n");
cdddbdbc 1140 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1141}
1142
0ec1f4e8 1143static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1144{
1f24f035 1145 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1146 __u64 sz;
1147
0ec1f4e8 1148 if (index < -1 || !disk)
e9d82038
DW
1149 return;
1150
cdddbdbc 1151 printf("\n");
1f24f035 1152 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1153 if (index >= 0)
1154 printf(" Disk%02d Serial : %s\n", index, str);
1155 else
1156 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1157 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1158 is_configured(disk) ? " active" : "",
1159 is_failed(disk) ? " failed" : "");
cdddbdbc 1160 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1161 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1162 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1163 human_size(sz * 512));
1164}
1165
520e69e2
AK
1166void examine_migr_rec_imsm(struct intel_super *super)
1167{
1168 struct migr_record *migr_rec = super->migr_rec;
1169 struct imsm_super *mpb = super->anchor;
1170 int i;
1171
1172 for (i = 0; i < mpb->num_raid_devs; i++) {
1173 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1174 if (is_gen_migration(dev) == 0)
1175 continue;
1176
1177 printf("\nMigration Record Information:");
1178 if (super->disks->index > 1) {
1179 printf(" Empty\n ");
1180 printf("Examine one of first two disks in array\n");
1181 break;
1182 }
1183 printf("\n Status : ");
1184 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1185 printf("Normal\n");
1186 else
1187 printf("Contains Data\n");
1188 printf(" Current Unit : %u\n",
1189 __le32_to_cpu(migr_rec->curr_migr_unit));
1190 printf(" Family : %u\n",
1191 __le32_to_cpu(migr_rec->family_num));
1192 printf(" Ascending : %u\n",
1193 __le32_to_cpu(migr_rec->ascending_migr));
1194 printf(" Blocks Per Unit : %u\n",
1195 __le32_to_cpu(migr_rec->blocks_per_unit));
1196 printf(" Dest. Depth Per Unit : %u\n",
1197 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1198 printf(" Checkpoint Area pba : %u\n",
1199 __le32_to_cpu(migr_rec->ckpt_area_pba));
1200 printf(" First member lba : %u\n",
1201 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1202 printf(" Total Number of Units : %u\n",
1203 __le32_to_cpu(migr_rec->num_migr_units));
1204 printf(" Size of volume : %u\n",
1205 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1206 printf(" Expansion space for LBA64 : %u\n",
1207 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1208 printf(" Record was read from : %u\n",
1209 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1210
1211 break;
1212 }
1213}
9e2d750d 1214#endif /* MDASSEMBLE */
19482bcc
AK
1215/*******************************************************************************
1216 * function: imsm_check_attributes
1217 * Description: Function checks if features represented by attributes flags
1218 * are supported by mdadm.
1219 * Parameters:
1220 * attributes - Attributes read from metadata
1221 * Returns:
1222 * 0 - passed attributes contains unsupported features flags
1223 * 1 - all features are supported
1224 ******************************************************************************/
1225static int imsm_check_attributes(__u32 attributes)
1226{
1227 int ret_val = 1;
418f9b36
N
1228 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1229
1230 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1231
1232 not_supported &= attributes;
1233 if (not_supported) {
418f9b36
N
1234 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1235 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1236 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1237 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1238 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1239 }
1240 if (not_supported & MPB_ATTRIB_2TB) {
1241 dprintf("\t\tMPB_ATTRIB_2TB\n");
1242 not_supported ^= MPB_ATTRIB_2TB;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAID0) {
1245 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1246 not_supported ^= MPB_ATTRIB_RAID0;
1247 }
1248 if (not_supported & MPB_ATTRIB_RAID1) {
1249 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1250 not_supported ^= MPB_ATTRIB_RAID1;
1251 }
1252 if (not_supported & MPB_ATTRIB_RAID10) {
1253 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1254 not_supported ^= MPB_ATTRIB_RAID10;
1255 }
1256 if (not_supported & MPB_ATTRIB_RAID1E) {
1257 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1258 not_supported ^= MPB_ATTRIB_RAID1E;
1259 }
1260 if (not_supported & MPB_ATTRIB_RAID5) {
1261 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1262 not_supported ^= MPB_ATTRIB_RAID5;
1263 }
1264 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1265 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1266 not_supported ^= MPB_ATTRIB_RAIDCNG;
1267 }
1268 if (not_supported & MPB_ATTRIB_BBM) {
1269 dprintf("\t\tMPB_ATTRIB_BBM\n");
1270 not_supported ^= MPB_ATTRIB_BBM;
1271 }
1272 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1273 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1274 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1275 }
1276 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1277 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1278 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1279 }
1280 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1281 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1282 not_supported ^= MPB_ATTRIB_2TB_DISK;
1283 }
1284 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1285 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1286 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1287 }
1288 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1289 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1290 not_supported ^= MPB_ATTRIB_NEVER_USE;
1291 }
1292
1293 if (not_supported)
1294 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1295
1296 ret_val = 0;
1297 }
1298
1299 return ret_val;
1300}
1301
9e2d750d 1302#ifndef MDASSEMBLE
a5d85af7 1303static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1304
cdddbdbc
DW
1305static void examine_super_imsm(struct supertype *st, char *homehost)
1306{
1307 struct intel_super *super = st->sb;
949c47a0 1308 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1309 char str[MAX_SIGNATURE_LENGTH];
1310 int i;
27fd6274
DW
1311 struct mdinfo info;
1312 char nbuf[64];
cdddbdbc 1313 __u32 sum;
14e8215b 1314 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1315 struct dl *dl;
27fd6274 1316
cdddbdbc
DW
1317 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1318 printf(" Magic : %s\n", str);
1319 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1320 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1321 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1322 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1323 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1324 printf(" Attributes : ");
1325 if (imsm_check_attributes(mpb->attributes))
1326 printf("All supported\n");
1327 else
1328 printf("not supported\n");
a5d85af7 1329 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1330 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1331 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1332 sum = __le32_to_cpu(mpb->check_sum);
1333 printf(" Checksum : %08x %s\n", sum,
949c47a0 1334 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1335 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1336 printf(" Disks : %d\n", mpb->num_disks);
1337 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1338 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1339 if (super->bbm_log) {
1340 struct bbm_log *log = super->bbm_log;
1341
1342 printf("\n");
1343 printf("Bad Block Management Log:\n");
1344 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1345 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1346 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1347 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1348 printf(" First Spare : %llx\n",
1349 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1350 }
44470971
DW
1351 for (i = 0; i < mpb->num_raid_devs; i++) {
1352 struct mdinfo info;
1353 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1354
1355 super->current_vol = i;
a5d85af7 1356 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1357 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1358 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1359 }
cdddbdbc
DW
1360 for (i = 0; i < mpb->num_disks; i++) {
1361 if (i == super->disks->index)
1362 continue;
0ec1f4e8 1363 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1364 }
94827db3 1365
0ec1f4e8
DW
1366 for (dl = super->disks; dl; dl = dl->next)
1367 if (dl->index == -1)
1368 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1369
1370 examine_migr_rec_imsm(super);
cdddbdbc
DW
1371}
1372
061f2c6a 1373static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1374{
27fd6274 1375 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1376 struct mdinfo info;
1377 char nbuf[64];
1e7bc0ed 1378 struct intel_super *super = st->sb;
1e7bc0ed 1379
0d5a423f
DW
1380 if (!super->anchor->num_raid_devs) {
1381 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1382 return;
0d5a423f 1383 }
ff54de6e 1384
a5d85af7 1385 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1386 fname_from_uuid(st, &info, nbuf, ':');
1387 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1388}
1389
1390static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1391{
1392 /* We just write a generic IMSM ARRAY entry */
1393 struct mdinfo info;
1394 char nbuf[64];
1395 char nbuf1[64];
1396 struct intel_super *super = st->sb;
1397 int i;
1398
1399 if (!super->anchor->num_raid_devs)
1400 return;
1401
a5d85af7 1402 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1403 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1405 struct imsm_dev *dev = get_imsm_dev(super, i);
1406
1407 super->current_vol = i;
a5d85af7 1408 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1409 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1410 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1411 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1412 }
cdddbdbc
DW
1413}
1414
9d84c8ea
DW
1415static void export_examine_super_imsm(struct supertype *st)
1416{
1417 struct intel_super *super = st->sb;
1418 struct imsm_super *mpb = super->anchor;
1419 struct mdinfo info;
1420 char nbuf[64];
1421
a5d85af7 1422 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1423 fname_from_uuid(st, &info, nbuf, ':');
1424 printf("MD_METADATA=imsm\n");
1425 printf("MD_LEVEL=container\n");
1426 printf("MD_UUID=%s\n", nbuf+5);
1427 printf("MD_DEVICES=%u\n", mpb->num_disks);
1428}
1429
cdddbdbc
DW
1430static void detail_super_imsm(struct supertype *st, char *homehost)
1431{
3ebe00a1
DW
1432 struct mdinfo info;
1433 char nbuf[64];
1434
a5d85af7 1435 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1436 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1437 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1438}
1439
1440static void brief_detail_super_imsm(struct supertype *st)
1441{
ff54de6e
N
1442 struct mdinfo info;
1443 char nbuf[64];
a5d85af7 1444 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1445 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1446 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1447}
d665cc31
DW
1448
1449static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1450static void fd2devname(int fd, char *name);
1451
120dc887 1452static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1453{
120dc887
LM
1454 /* dump an unsorted list of devices attached to AHCI Intel storage
1455 * controller, as well as non-connected ports
d665cc31
DW
1456 */
1457 int hba_len = strlen(hba_path) + 1;
1458 struct dirent *ent;
1459 DIR *dir;
1460 char *path = NULL;
1461 int err = 0;
1462 unsigned long port_mask = (1 << port_count) - 1;
1463
f21e18ca 1464 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1465 if (verbose)
1466 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1467 return 2;
1468 }
1469
1470 /* scroll through /sys/dev/block looking for devices attached to
1471 * this hba
1472 */
1473 dir = opendir("/sys/dev/block");
1474 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1475 int fd;
1476 char model[64];
1477 char vendor[64];
1478 char buf[1024];
1479 int major, minor;
1480 char *device;
1481 char *c;
1482 int port;
1483 int type;
1484
1485 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1486 continue;
1487 path = devt_to_devpath(makedev(major, minor));
1488 if (!path)
1489 continue;
1490 if (!path_attached_to_hba(path, hba_path)) {
1491 free(path);
1492 path = NULL;
1493 continue;
1494 }
1495
1496 /* retrieve the scsi device type */
1497 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1498 if (verbose)
1499 fprintf(stderr, Name ": failed to allocate 'device'\n");
1500 err = 2;
1501 break;
1502 }
1503 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1504 if (load_sys(device, buf) != 0) {
1505 if (verbose)
1506 fprintf(stderr, Name ": failed to read device type for %s\n",
1507 path);
1508 err = 2;
1509 free(device);
1510 break;
1511 }
1512 type = strtoul(buf, NULL, 10);
1513
1514 /* if it's not a disk print the vendor and model */
1515 if (!(type == 0 || type == 7 || type == 14)) {
1516 vendor[0] = '\0';
1517 model[0] = '\0';
1518 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1519 if (load_sys(device, buf) == 0) {
1520 strncpy(vendor, buf, sizeof(vendor));
1521 vendor[sizeof(vendor) - 1] = '\0';
1522 c = (char *) &vendor[sizeof(vendor) - 1];
1523 while (isspace(*c) || *c == '\0')
1524 *c-- = '\0';
1525
1526 }
1527 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1528 if (load_sys(device, buf) == 0) {
1529 strncpy(model, buf, sizeof(model));
1530 model[sizeof(model) - 1] = '\0';
1531 c = (char *) &model[sizeof(model) - 1];
1532 while (isspace(*c) || *c == '\0')
1533 *c-- = '\0';
1534 }
1535
1536 if (vendor[0] && model[0])
1537 sprintf(buf, "%.64s %.64s", vendor, model);
1538 else
1539 switch (type) { /* numbers from hald/linux/device.c */
1540 case 1: sprintf(buf, "tape"); break;
1541 case 2: sprintf(buf, "printer"); break;
1542 case 3: sprintf(buf, "processor"); break;
1543 case 4:
1544 case 5: sprintf(buf, "cdrom"); break;
1545 case 6: sprintf(buf, "scanner"); break;
1546 case 8: sprintf(buf, "media_changer"); break;
1547 case 9: sprintf(buf, "comm"); break;
1548 case 12: sprintf(buf, "raid"); break;
1549 default: sprintf(buf, "unknown");
1550 }
1551 } else
1552 buf[0] = '\0';
1553 free(device);
1554
1555 /* chop device path to 'host%d' and calculate the port number */
1556 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1557 if (!c) {
1558 if (verbose)
1559 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1560 err = 2;
1561 break;
1562 }
d665cc31
DW
1563 *c = '\0';
1564 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1565 port -= host_base;
1566 else {
1567 if (verbose) {
1568 *c = '/'; /* repair the full string */
1569 fprintf(stderr, Name ": failed to determine port number for %s\n",
1570 path);
1571 }
1572 err = 2;
1573 break;
1574 }
1575
1576 /* mark this port as used */
1577 port_mask &= ~(1 << port);
1578
1579 /* print out the device information */
1580 if (buf[0]) {
1581 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1582 continue;
1583 }
1584
1585 fd = dev_open(ent->d_name, O_RDONLY);
1586 if (fd < 0)
1587 printf(" Port%d : - disk info unavailable -\n", port);
1588 else {
1589 fd2devname(fd, buf);
1590 printf(" Port%d : %s", port, buf);
1591 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1592 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1593 else
664d5325 1594 printf(" ()\n");
4dab422a 1595 close(fd);
d665cc31 1596 }
d665cc31
DW
1597 free(path);
1598 path = NULL;
1599 }
1600 if (path)
1601 free(path);
1602 if (dir)
1603 closedir(dir);
1604 if (err == 0) {
1605 int i;
1606
1607 for (i = 0; i < port_count; i++)
1608 if (port_mask & (1 << i))
1609 printf(" Port%d : - no device attached -\n", i);
1610 }
1611
1612 return err;
1613}
1614
120dc887
LM
1615static void print_found_intel_controllers(struct sys_dev *elem)
1616{
1617 for (; elem; elem = elem->next) {
1618 fprintf(stderr, Name ": found Intel(R) ");
1619 if (elem->type == SYS_DEV_SATA)
1620 fprintf(stderr, "SATA ");
155cbb4c
LM
1621 else if (elem->type == SYS_DEV_SAS)
1622 fprintf(stderr, "SAS ");
120dc887
LM
1623 fprintf(stderr, "RAID controller");
1624 if (elem->pci_id)
1625 fprintf(stderr, " at %s", elem->pci_id);
1626 fprintf(stderr, ".\n");
1627 }
1628 fflush(stderr);
1629}
1630
120dc887
LM
1631static int ahci_get_port_count(const char *hba_path, int *port_count)
1632{
1633 struct dirent *ent;
1634 DIR *dir;
1635 int host_base = -1;
1636
1637 *port_count = 0;
1638 if ((dir = opendir(hba_path)) == NULL)
1639 return -1;
1640
1641 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1642 int host;
1643
1644 if (sscanf(ent->d_name, "host%d", &host) != 1)
1645 continue;
1646 if (*port_count == 0)
1647 host_base = host;
1648 else if (host < host_base)
1649 host_base = host;
1650
1651 if (host + 1 > *port_count + host_base)
1652 *port_count = host + 1 - host_base;
1653 }
1654 closedir(dir);
1655 return host_base;
1656}
1657
a891a3c2
LM
1658static void print_imsm_capability(const struct imsm_orom *orom)
1659{
1660 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1661 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1662 orom->hotfix_ver, orom->build);
1663 printf(" RAID Levels :%s%s%s%s%s\n",
1664 imsm_orom_has_raid0(orom) ? " raid0" : "",
1665 imsm_orom_has_raid1(orom) ? " raid1" : "",
1666 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1667 imsm_orom_has_raid10(orom) ? " raid10" : "",
1668 imsm_orom_has_raid5(orom) ? " raid5" : "");
1669 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1670 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1671 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1672 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1673 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1674 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1675 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1676 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1677 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1678 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1679 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1680 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1681 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1682 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1683 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1684 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1685 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1686 printf(" Max Disks : %d\n", orom->tds);
1687 printf(" Max Volumes : %d\n", orom->vpa);
1688 return;
1689}
1690
5615172f 1691static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1692{
1693 /* There are two components to imsm platform support, the ahci SATA
1694 * controller and the option-rom. To find the SATA controller we
1695 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1696 * controller with the Intel vendor id is present. This approach
1697 * allows mdadm to leverage the kernel's ahci detection logic, with the
1698 * caveat that if ahci.ko is not loaded mdadm will not be able to
1699 * detect platform raid capabilities. The option-rom resides in a
1700 * platform "Adapter ROM". We scan for its signature to retrieve the
1701 * platform capabilities. If raid support is disabled in the BIOS the
1702 * option-rom capability structure will not be available.
1703 */
1704 const struct imsm_orom *orom;
1705 struct sys_dev *list, *hba;
d665cc31
DW
1706 int host_base = 0;
1707 int port_count = 0;
120dc887 1708 int result=0;
d665cc31 1709
5615172f 1710 if (enumerate_only) {
a891a3c2 1711 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1712 return 0;
a891a3c2
LM
1713 list = find_intel_devices();
1714 if (!list)
1715 return 2;
1716 for (hba = list; hba; hba = hba->next) {
1717 orom = find_imsm_capability(hba->type);
1718 if (!orom) {
1719 result = 2;
1720 break;
1721 }
1722 }
1723 free_sys_dev(&list);
1724 return result;
5615172f
DW
1725 }
1726
155cbb4c
LM
1727 list = find_intel_devices();
1728 if (!list) {
d665cc31 1729 if (verbose)
155cbb4c
LM
1730 fprintf(stderr, Name ": no active Intel(R) RAID "
1731 "controller found.\n");
d665cc31
DW
1732 free_sys_dev(&list);
1733 return 2;
1734 } else if (verbose)
155cbb4c 1735 print_found_intel_controllers(list);
d665cc31 1736
a891a3c2
LM
1737 for (hba = list; hba; hba = hba->next) {
1738 orom = find_imsm_capability(hba->type);
1739 if (!orom)
1740 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1741 hba->path, get_sys_dev_type(hba->type));
1742 else
1743 print_imsm_capability(orom);
d665cc31
DW
1744 }
1745
120dc887
LM
1746 for (hba = list; hba; hba = hba->next) {
1747 printf(" I/O Controller : %s (%s)\n",
1748 hba->path, get_sys_dev_type(hba->type));
d665cc31 1749
120dc887
LM
1750 if (hba->type == SYS_DEV_SATA) {
1751 host_base = ahci_get_port_count(hba->path, &port_count);
1752 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1753 if (verbose)
1754 fprintf(stderr, Name ": failed to enumerate "
1755 "ports on SATA controller at %s.", hba->pci_id);
1756 result |= 2;
1757 }
1758 }
d665cc31 1759 }
155cbb4c 1760
120dc887
LM
1761 free_sys_dev(&list);
1762 return result;
d665cc31 1763}
cdddbdbc
DW
1764#endif
1765
1766static int match_home_imsm(struct supertype *st, char *homehost)
1767{
5115ca67
DW
1768 /* the imsm metadata format does not specify any host
1769 * identification information. We return -1 since we can never
1770 * confirm nor deny whether a given array is "meant" for this
148acb7b 1771 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1772 * exclude member disks that do not belong, and we rely on
1773 * mdadm.conf to specify the arrays that should be assembled.
1774 * Auto-assembly may still pick up "foreign" arrays.
1775 */
cdddbdbc 1776
9362c1c8 1777 return -1;
cdddbdbc
DW
1778}
1779
1780static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1781{
51006d85
N
1782 /* The uuid returned here is used for:
1783 * uuid to put into bitmap file (Create, Grow)
1784 * uuid for backup header when saving critical section (Grow)
1785 * comparing uuids when re-adding a device into an array
1786 * In these cases the uuid required is that of the data-array,
1787 * not the device-set.
1788 * uuid to recognise same set when adding a missing device back
1789 * to an array. This is a uuid for the device-set.
1790 *
1791 * For each of these we can make do with a truncated
1792 * or hashed uuid rather than the original, as long as
1793 * everyone agrees.
1794 * In each case the uuid required is that of the data-array,
1795 * not the device-set.
43dad3d6 1796 */
51006d85
N
1797 /* imsm does not track uuid's so we synthesis one using sha1 on
1798 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1799 * - the orig_family_num of the container
51006d85
N
1800 * - the index number of the volume
1801 * - the 'serial' number of the volume.
1802 * Hopefully these are all constant.
1803 */
1804 struct intel_super *super = st->sb;
43dad3d6 1805
51006d85
N
1806 char buf[20];
1807 struct sha1_ctx ctx;
1808 struct imsm_dev *dev = NULL;
148acb7b 1809 __u32 family_num;
51006d85 1810
148acb7b
DW
1811 /* some mdadm versions failed to set ->orig_family_num, in which
1812 * case fall back to ->family_num. orig_family_num will be
1813 * fixed up with the first metadata update.
1814 */
1815 family_num = super->anchor->orig_family_num;
1816 if (family_num == 0)
1817 family_num = super->anchor->family_num;
51006d85 1818 sha1_init_ctx(&ctx);
92bd8f8d 1819 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1820 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1821 if (super->current_vol >= 0)
1822 dev = get_imsm_dev(super, super->current_vol);
1823 if (dev) {
1824 __u32 vol = super->current_vol;
1825 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1826 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1827 }
1828 sha1_finish_ctx(&ctx, buf);
1829 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1830}
1831
0d481d37 1832#if 0
4f5bc454
DW
1833static void
1834get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1835{
cdddbdbc
DW
1836 __u8 *v = get_imsm_version(mpb);
1837 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1838 char major[] = { 0, 0, 0 };
1839 char minor[] = { 0 ,0, 0 };
1840 char patch[] = { 0, 0, 0 };
1841 char *ver_parse[] = { major, minor, patch };
1842 int i, j;
1843
1844 i = j = 0;
1845 while (*v != '\0' && v < end) {
1846 if (*v != '.' && j < 2)
1847 ver_parse[i][j++] = *v;
1848 else {
1849 i++;
1850 j = 0;
1851 }
1852 v++;
1853 }
1854
4f5bc454
DW
1855 *m = strtol(minor, NULL, 0);
1856 *p = strtol(patch, NULL, 0);
1857}
0d481d37 1858#endif
4f5bc454 1859
1e5c6983
DW
1860static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1861{
1862 /* migr_strip_size when repairing or initializing parity */
1863 struct imsm_map *map = get_imsm_map(dev, 0);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 5:
1868 case 10:
1869 return chunk;
1870 default:
1871 return 128*1024 >> 9;
1872 }
1873}
1874
1875static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1876{
1877 /* migr_strip_size when rebuilding a degraded disk, no idea why
1878 * this is different than migr_strip_size_resync(), but it's good
1879 * to be compatible
1880 */
1881 struct imsm_map *map = get_imsm_map(dev, 1);
1882 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1883
1884 switch (get_imsm_raid_level(map)) {
1885 case 1:
1886 case 10:
1887 if (map->num_members % map->num_domains == 0)
1888 return 128*1024 >> 9;
1889 else
1890 return chunk;
1891 case 5:
1892 return max((__u32) 64*1024 >> 9, chunk);
1893 default:
1894 return 128*1024 >> 9;
1895 }
1896}
1897
1898static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1899{
1900 struct imsm_map *lo = get_imsm_map(dev, 0);
1901 struct imsm_map *hi = get_imsm_map(dev, 1);
1902 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1903 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1904
1905 return max((__u32) 1, hi_chunk / lo_chunk);
1906}
1907
1908static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1909{
1910 struct imsm_map *lo = get_imsm_map(dev, 0);
1911 int level = get_imsm_raid_level(lo);
1912
1913 if (level == 1 || level == 10) {
1914 struct imsm_map *hi = get_imsm_map(dev, 1);
1915
1916 return hi->num_domains;
1917 } else
1918 return num_stripes_per_unit_resync(dev);
1919}
1920
98130f40 1921static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1922{
1923 /* named 'imsm_' because raid0, raid1 and raid10
1924 * counter-intuitively have the same number of data disks
1925 */
98130f40 1926 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1927
1928 switch (get_imsm_raid_level(map)) {
1929 case 0:
1930 case 1:
1931 case 10:
1932 return map->num_members;
1933 case 5:
1934 return map->num_members - 1;
1935 default:
1936 dprintf("%s: unsupported raid level\n", __func__);
1937 return 0;
1938 }
1939}
1940
1941static __u32 parity_segment_depth(struct imsm_dev *dev)
1942{
1943 struct imsm_map *map = get_imsm_map(dev, 0);
1944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1945
1946 switch(get_imsm_raid_level(map)) {
1947 case 1:
1948 case 10:
1949 return chunk * map->num_domains;
1950 case 5:
1951 return chunk * map->num_members;
1952 default:
1953 return chunk;
1954 }
1955}
1956
1957static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1958{
1959 struct imsm_map *map = get_imsm_map(dev, 1);
1960 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1961 __u32 strip = block / chunk;
1962
1963 switch (get_imsm_raid_level(map)) {
1964 case 1:
1965 case 10: {
1966 __u32 vol_strip = (strip * map->num_domains) + 1;
1967 __u32 vol_stripe = vol_strip / map->num_members;
1968
1969 return vol_stripe * chunk + block % chunk;
1970 } case 5: {
1971 __u32 stripe = strip / (map->num_members - 1);
1972
1973 return stripe * chunk + block % chunk;
1974 }
1975 default:
1976 return 0;
1977 }
1978}
1979
c47b0ff6
AK
1980static __u64 blocks_per_migr_unit(struct intel_super *super,
1981 struct imsm_dev *dev)
1e5c6983
DW
1982{
1983 /* calculate the conversion factor between per member 'blocks'
1984 * (md/{resync,rebuild}_start) and imsm migration units, return
1985 * 0 for the 'not migrating' and 'unsupported migration' cases
1986 */
1987 if (!dev->vol.migr_state)
1988 return 0;
1989
1990 switch (migr_type(dev)) {
c47b0ff6
AK
1991 case MIGR_GEN_MIGR: {
1992 struct migr_record *migr_rec = super->migr_rec;
1993 return __le32_to_cpu(migr_rec->blocks_per_unit);
1994 }
1e5c6983
DW
1995 case MIGR_VERIFY:
1996 case MIGR_REPAIR:
1997 case MIGR_INIT: {
1998 struct imsm_map *map = get_imsm_map(dev, 0);
1999 __u32 stripes_per_unit;
2000 __u32 blocks_per_unit;
2001 __u32 parity_depth;
2002 __u32 migr_chunk;
2003 __u32 block_map;
2004 __u32 block_rel;
2005 __u32 segment;
2006 __u32 stripe;
2007 __u8 disks;
2008
2009 /* yes, this is really the translation of migr_units to
2010 * per-member blocks in the 'resync' case
2011 */
2012 stripes_per_unit = num_stripes_per_unit_resync(dev);
2013 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 2014 disks = imsm_num_data_members(dev, 0);
1e5c6983 2015 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2016 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2017 segment = blocks_per_unit / stripe;
2018 block_rel = blocks_per_unit - segment * stripe;
2019 parity_depth = parity_segment_depth(dev);
2020 block_map = map_migr_block(dev, block_rel);
2021 return block_map + parity_depth * segment;
2022 }
2023 case MIGR_REBUILD: {
2024 __u32 stripes_per_unit;
2025 __u32 migr_chunk;
2026
2027 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2028 migr_chunk = migr_strip_blocks_rebuild(dev);
2029 return migr_chunk * stripes_per_unit;
2030 }
1e5c6983
DW
2031 case MIGR_STATE_CHANGE:
2032 default:
2033 return 0;
2034 }
2035}
2036
c2c087e6
DW
2037static int imsm_level_to_layout(int level)
2038{
2039 switch (level) {
2040 case 0:
2041 case 1:
2042 return 0;
2043 case 5:
2044 case 6:
a380c027 2045 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2046 case 10:
c92a2527 2047 return 0x102;
c2c087e6 2048 }
a18a888e 2049 return UnSet;
c2c087e6
DW
2050}
2051
8e59f3d8
AK
2052/*******************************************************************************
2053 * Function: read_imsm_migr_rec
2054 * Description: Function reads imsm migration record from last sector of disk
2055 * Parameters:
2056 * fd : disk descriptor
2057 * super : metadata info
2058 * Returns:
2059 * 0 : success,
2060 * -1 : fail
2061 ******************************************************************************/
2062static int read_imsm_migr_rec(int fd, struct intel_super *super)
2063{
2064 int ret_val = -1;
2065 unsigned long long dsize;
2066
2067 get_dev_size(fd, NULL, &dsize);
2068 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2069 fprintf(stderr,
2070 Name ": Cannot seek to anchor block: %s\n",
2071 strerror(errno));
2072 goto out;
2073 }
2074 if (read(fd, super->migr_rec_buf, 512) != 512) {
2075 fprintf(stderr,
2076 Name ": Cannot read migr record block: %s\n",
2077 strerror(errno));
2078 goto out;
2079 }
2080 ret_val = 0;
2081
2082out:
2083 return ret_val;
2084}
2085
2086/*******************************************************************************
2087 * Function: load_imsm_migr_rec
2088 * Description: Function reads imsm migration record (it is stored at the last
2089 * sector of disk)
2090 * Parameters:
2091 * super : imsm internal array info
2092 * info : general array info
2093 * Returns:
2094 * 0 : success
2095 * -1 : fail
2096 ******************************************************************************/
2097static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2098{
2099 struct mdinfo *sd;
2100 struct dl *dl = NULL;
2101 char nm[30];
2102 int retval = -1;
2103 int fd = -1;
2104
2105 if (info) {
2106 for (sd = info->devs ; sd ; sd = sd->next) {
2107 /* read only from one of the first two slots */
2108 if ((sd->disk.raid_disk > 1) ||
2109 (sd->disk.raid_disk < 0))
2110 continue;
2111 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2112 fd = dev_open(nm, O_RDONLY);
2113 if (fd >= 0)
2114 break;
2115 }
2116 }
2117 if (fd < 0) {
2118 for (dl = super->disks; dl; dl = dl->next) {
2119 /* read only from one of the first two slots */
2120 if (dl->index > 1)
2121 continue;
2122 sprintf(nm, "%d:%d", dl->major, dl->minor);
2123 fd = dev_open(nm, O_RDONLY);
2124 if (fd >= 0)
2125 break;
2126 }
2127 }
2128 if (fd < 0)
2129 goto out;
2130 retval = read_imsm_migr_rec(fd, super);
2131
2132out:
2133 if (fd >= 0)
2134 close(fd);
2135 return retval;
2136}
2137
9e2d750d 2138#ifndef MDASSEMBLE
c17608ea
AK
2139/*******************************************************************************
2140 * function: imsm_create_metadata_checkpoint_update
2141 * Description: It creates update for checkpoint change.
2142 * Parameters:
2143 * super : imsm internal array info
2144 * u : pointer to prepared update
2145 * Returns:
2146 * Uptate length.
2147 * If length is equal to 0, input pointer u contains no update
2148 ******************************************************************************/
2149static int imsm_create_metadata_checkpoint_update(
2150 struct intel_super *super,
2151 struct imsm_update_general_migration_checkpoint **u)
2152{
2153
2154 int update_memory_size = 0;
2155
2156 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2157
2158 if (u == NULL)
2159 return 0;
2160 *u = NULL;
2161
2162 /* size of all update data without anchor */
2163 update_memory_size =
2164 sizeof(struct imsm_update_general_migration_checkpoint);
2165
2166 *u = calloc(1, update_memory_size);
2167 if (*u == NULL) {
2168 dprintf("error: cannot get memory for "
2169 "imsm_create_metadata_checkpoint_update update\n");
2170 return 0;
2171 }
2172 (*u)->type = update_general_migration_checkpoint;
2173 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2174 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2175 (*u)->curr_migr_unit);
2176
2177 return update_memory_size;
2178}
2179
2180
2181static void imsm_update_metadata_locally(struct supertype *st,
2182 void *buf, int len);
2183
687629c2
AK
2184/*******************************************************************************
2185 * Function: write_imsm_migr_rec
2186 * Description: Function writes imsm migration record
2187 * (at the last sector of disk)
2188 * Parameters:
2189 * super : imsm internal array info
2190 * Returns:
2191 * 0 : success
2192 * -1 : if fail
2193 ******************************************************************************/
2194static int write_imsm_migr_rec(struct supertype *st)
2195{
2196 struct intel_super *super = st->sb;
2197 unsigned long long dsize;
2198 char nm[30];
2199 int fd = -1;
2200 int retval = -1;
2201 struct dl *sd;
c17608ea
AK
2202 int len;
2203 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2204
2205 for (sd = super->disks ; sd ; sd = sd->next) {
2206 /* write to 2 first slots only */
2207 if ((sd->index < 0) || (sd->index > 1))
2208 continue;
2209 sprintf(nm, "%d:%d", sd->major, sd->minor);
2210 fd = dev_open(nm, O_RDWR);
2211 if (fd < 0)
2212 continue;
2213 get_dev_size(fd, NULL, &dsize);
2214 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2215 fprintf(stderr,
2216 Name ": Cannot seek to anchor block: %s\n",
2217 strerror(errno));
2218 goto out;
2219 }
2220 if (write(fd, super->migr_rec_buf, 512) != 512) {
2221 fprintf(stderr,
2222 Name ": Cannot write migr record block: %s\n",
2223 strerror(errno));
2224 goto out;
2225 }
2226 close(fd);
2227 fd = -1;
2228 }
c17608ea
AK
2229 /* update checkpoint information in metadata */
2230 len = imsm_create_metadata_checkpoint_update(super, &u);
2231
2232 if (len <= 0) {
2233 dprintf("imsm: Cannot prepare update\n");
2234 goto out;
2235 }
2236 /* update metadata locally */
2237 imsm_update_metadata_locally(st, u, len);
2238 /* and possibly remotely */
2239 if (st->update_tail) {
2240 append_metadata_update(st, u, len);
2241 /* during reshape we do all work inside metadata handler
2242 * manage_reshape(), so metadata update has to be triggered
2243 * insida it
2244 */
2245 flush_metadata_updates(st);
2246 st->update_tail = &st->updates;
2247 } else
2248 free(u);
687629c2
AK
2249
2250 retval = 0;
2251 out:
2252 if (fd >= 0)
2253 close(fd);
2254 return retval;
2255}
9e2d750d 2256#endif /* MDASSEMBLE */
687629c2 2257
e2962bfc
AK
2258/* spare/missing disks activations are not allowe when
2259 * array/container performs reshape operation, because
2260 * all arrays in container works on the same disks set
2261 */
2262int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2263{
2264 int rv = 0;
2265 struct intel_dev *i_dev;
2266 struct imsm_dev *dev;
2267
2268 /* check whole container
2269 */
2270 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2271 dev = i_dev->dev;
3ad25638 2272 if (is_gen_migration(dev)) {
e2962bfc
AK
2273 /* No repair during any migration in container
2274 */
2275 rv = 1;
2276 break;
2277 }
2278 }
2279 return rv;
2280}
2281
a5d85af7 2282static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2283{
2284 struct intel_super *super = st->sb;
c47b0ff6 2285 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2286 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2287 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2288 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2289 struct imsm_map *map_to_analyse = map;
efb30e7f 2290 struct dl *dl;
e207da2f 2291 char *devname;
139dae11 2292 unsigned int component_size_alligment;
a5d85af7 2293 int map_disks = info->array.raid_disks;
bf5a934a 2294
95eeceeb 2295 memset(info, 0, sizeof(*info));
b335e593
AK
2296 if (prev_map)
2297 map_to_analyse = prev_map;
2298
ca0748fa 2299 dl = super->current_disk;
9894ec0d 2300
bf5a934a 2301 info->container_member = super->current_vol;
cd0430a1 2302 info->array.raid_disks = map->num_members;
b335e593 2303 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2304 info->array.layout = imsm_level_to_layout(info->array.level);
2305 info->array.md_minor = -1;
2306 info->array.ctime = 0;
2307 info->array.utime = 0;
b335e593
AK
2308 info->array.chunk_size =
2309 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2310 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2311 info->custom_array_size = __le32_to_cpu(dev->size_high);
2312 info->custom_array_size <<= 32;
2313 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2314 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2315
3f510843 2316 if (is_gen_migration(dev)) {
3f83228a 2317 info->reshape_active = 1;
b335e593
AK
2318 info->new_level = get_imsm_raid_level(map);
2319 info->new_layout = imsm_level_to_layout(info->new_level);
2320 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2321 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2322 if (info->delta_disks) {
2323 /* this needs to be applied to every array
2324 * in the container.
2325 */
81219e70 2326 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2327 }
3f83228a
N
2328 /* We shape information that we give to md might have to be
2329 * modify to cope with md's requirement for reshaping arrays.
2330 * For example, when reshaping a RAID0, md requires it to be
2331 * presented as a degraded RAID4.
2332 * Also if a RAID0 is migrating to a RAID5 we need to specify
2333 * the array as already being RAID5, but the 'before' layout
2334 * is a RAID4-like layout.
2335 */
2336 switch (info->array.level) {
2337 case 0:
2338 switch(info->new_level) {
2339 case 0:
2340 /* conversion is happening as RAID4 */
2341 info->array.level = 4;
2342 info->array.raid_disks += 1;
2343 break;
2344 case 5:
2345 /* conversion is happening as RAID5 */
2346 info->array.level = 5;
2347 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2348 info->delta_disks -= 1;
2349 break;
2350 default:
2351 /* FIXME error message */
2352 info->array.level = UnSet;
2353 break;
2354 }
2355 break;
2356 }
b335e593
AK
2357 } else {
2358 info->new_level = UnSet;
2359 info->new_layout = UnSet;
2360 info->new_chunk = info->array.chunk_size;
3f83228a 2361 info->delta_disks = 0;
b335e593 2362 }
ca0748fa 2363
efb30e7f
DW
2364 if (dl) {
2365 info->disk.major = dl->major;
2366 info->disk.minor = dl->minor;
ca0748fa 2367 info->disk.number = dl->index;
656b6b5a
N
2368 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2369 dl->index);
efb30e7f 2370 }
bf5a934a 2371
b335e593
AK
2372 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2373 info->component_size =
2374 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2375
2376 /* check component size aligment
2377 */
2378 component_size_alligment =
2379 info->component_size % (info->array.chunk_size/512);
2380
2381 if (component_size_alligment &&
2382 (info->array.level != 1) && (info->array.level != UnSet)) {
2383 dprintf("imsm: reported component size alligned from %llu ",
2384 info->component_size);
2385 info->component_size -= component_size_alligment;
2386 dprintf("to %llu (%i).\n",
2387 info->component_size, component_size_alligment);
2388 }
2389
301406c9 2390 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2391 info->recovery_start = MaxSector;
bf5a934a 2392
d2e6d5d6 2393 info->reshape_progress = 0;
b6796ce1 2394 info->resync_start = MaxSector;
b9172665
AK
2395 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2396 dev->vol.dirty) &&
2397 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2398 info->resync_start = 0;
b6796ce1
AK
2399 }
2400 if (dev->vol.migr_state) {
1e5c6983
DW
2401 switch (migr_type(dev)) {
2402 case MIGR_REPAIR:
2403 case MIGR_INIT: {
c47b0ff6
AK
2404 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2405 dev);
1e5c6983
DW
2406 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2407
2408 info->resync_start = blocks_per_unit * units;
2409 break;
2410 }
d2e6d5d6 2411 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2412 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2413 dev);
2414 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2415 unsigned long long array_blocks;
2416 int used_disks;
d2e6d5d6 2417
befb629b
AK
2418 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2419 (units <
2420 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2421 (super->migr_rec->rec_status ==
2422 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2423 units++;
2424
d2e6d5d6 2425 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2426
d2e6d5d6
AK
2427 dprintf("IMSM: General Migration checkpoint : %llu "
2428 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2429 (unsigned long long)units,
2430 (unsigned long long)blocks_per_unit,
2431 info->reshape_progress);
75156c46
AK
2432
2433 used_disks = imsm_num_data_members(dev, 1);
2434 if (used_disks > 0) {
2435 array_blocks = map->blocks_per_member *
2436 used_disks;
2437 /* round array size down to closest MB
2438 */
2439 info->custom_array_size = (array_blocks
2440 >> SECT_PER_MB_SHIFT)
2441 << SECT_PER_MB_SHIFT;
2442 }
d2e6d5d6 2443 }
1e5c6983
DW
2444 case MIGR_VERIFY:
2445 /* we could emulate the checkpointing of
2446 * 'sync_action=check' migrations, but for now
2447 * we just immediately complete them
2448 */
2449 case MIGR_REBUILD:
2450 /* this is handled by container_content_imsm() */
1e5c6983
DW
2451 case MIGR_STATE_CHANGE:
2452 /* FIXME handle other migrations */
2453 default:
2454 /* we are not dirty, so... */
2455 info->resync_start = MaxSector;
2456 }
b6796ce1 2457 }
301406c9
DW
2458
2459 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2460 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2461
f35f2525
N
2462 info->array.major_version = -1;
2463 info->array.minor_version = -2;
e207da2f
AW
2464 devname = devnum2devname(st->container_dev);
2465 *info->text_version = '\0';
2466 if (devname)
2467 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2468 free(devname);
a67dd8cc 2469 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2470 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2471
2472 if (dmap) {
2473 int i, j;
2474 for (i=0; i<map_disks; i++) {
2475 dmap[i] = 0;
2476 if (i < info->array.raid_disks) {
2477 struct imsm_disk *dsk;
98130f40 2478 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2479 dsk = get_imsm_disk(super, j);
2480 if (dsk && (dsk->status & CONFIGURED_DISK))
2481 dmap[i] = 1;
2482 }
2483 }
2484 }
81ac8b4d 2485}
bf5a934a 2486
97b4d0e9
DW
2487static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2488static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2489
2490static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2491{
2492 struct dl *d;
2493
2494 for (d = super->missing; d; d = d->next)
2495 if (d->index == index)
2496 return &d->disk;
2497 return NULL;
2498}
2499
a5d85af7 2500static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2501{
2502 struct intel_super *super = st->sb;
4f5bc454 2503 struct imsm_disk *disk;
a5d85af7 2504 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2505 int max_enough = -1;
2506 int i;
2507 struct imsm_super *mpb;
4f5bc454 2508
bf5a934a 2509 if (super->current_vol >= 0) {
a5d85af7 2510 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2511 return;
2512 }
95eeceeb 2513 memset(info, 0, sizeof(*info));
d23fe947
DW
2514
2515 /* Set raid_disks to zero so that Assemble will always pull in valid
2516 * spares
2517 */
2518 info->array.raid_disks = 0;
cdddbdbc
DW
2519 info->array.level = LEVEL_CONTAINER;
2520 info->array.layout = 0;
2521 info->array.md_minor = -1;
c2c087e6 2522 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2523 info->array.utime = 0;
2524 info->array.chunk_size = 0;
2525
2526 info->disk.major = 0;
2527 info->disk.minor = 0;
cdddbdbc 2528 info->disk.raid_disk = -1;
c2c087e6 2529 info->reshape_active = 0;
f35f2525
N
2530 info->array.major_version = -1;
2531 info->array.minor_version = -2;
c2c087e6 2532 strcpy(info->text_version, "imsm");
a67dd8cc 2533 info->safe_mode_delay = 0;
c2c087e6
DW
2534 info->disk.number = -1;
2535 info->disk.state = 0;
c5afc314 2536 info->name[0] = 0;
921d9e16 2537 info->recovery_start = MaxSector;
3ad25638 2538 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2539
97b4d0e9 2540 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2541 mpb = super->anchor;
97b4d0e9 2542
ab3cb6b3
N
2543 for (i = 0; i < mpb->num_raid_devs; i++) {
2544 struct imsm_dev *dev = get_imsm_dev(super, i);
2545 int failed, enough, j, missing = 0;
2546 struct imsm_map *map;
2547 __u8 state;
97b4d0e9 2548
ab3cb6b3
N
2549 failed = imsm_count_failed(super, dev);
2550 state = imsm_check_degraded(super, dev, failed);
a510b1c7 2551 map = get_imsm_map(dev, 0);
ab3cb6b3
N
2552
2553 /* any newly missing disks?
2554 * (catches single-degraded vs double-degraded)
2555 */
2556 for (j = 0; j < map->num_members; j++) {
9645010f 2557 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
ab3cb6b3
N
2558 __u32 idx = ord_to_idx(ord);
2559
2560 if (!(ord & IMSM_ORD_REBUILD) &&
2561 get_imsm_missing(super, idx)) {
2562 missing = 1;
2563 break;
2564 }
97b4d0e9 2565 }
ab3cb6b3
N
2566
2567 if (state == IMSM_T_STATE_FAILED)
2568 enough = -1;
2569 else if (state == IMSM_T_STATE_DEGRADED &&
2570 (state != map->map_state || missing))
2571 enough = 0;
2572 else /* we're normal, or already degraded */
2573 enough = 1;
2574
2575 /* in the missing/failed disk case check to see
2576 * if at least one array is runnable
2577 */
2578 max_enough = max(max_enough, enough);
2579 }
2580 dprintf("%s: enough: %d\n", __func__, max_enough);
2581 info->container_enough = max_enough;
97b4d0e9 2582
4a04ec6c 2583 if (super->disks) {
14e8215b
DW
2584 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2585
b9f594fe 2586 disk = &super->disks->disk;
14e8215b
DW
2587 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2588 info->component_size = reserved;
25ed7e59 2589 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2590 /* we don't change info->disk.raid_disk here because
2591 * this state will be finalized in mdmon after we have
2592 * found the 'most fresh' version of the metadata
2593 */
25ed7e59
DW
2594 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2595 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2596 }
a575e2a7
DW
2597
2598 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2599 * ->compare_super may have updated the 'num_raid_devs' field for spares
2600 */
2601 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2602 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2603 else
2604 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2605
2606 /* I don't know how to compute 'map' on imsm, so use safe default */
2607 if (map) {
2608 int i;
2609 for (i = 0; i < map_disks; i++)
2610 map[i] = 1;
2611 }
2612
cdddbdbc
DW
2613}
2614
5c4cd5da
AC
2615/* allocates memory and fills disk in mdinfo structure
2616 * for each disk in array */
2617struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2618{
2619 struct mdinfo *mddev = NULL;
2620 struct intel_super *super = st->sb;
2621 struct imsm_disk *disk;
2622 int count = 0;
2623 struct dl *dl;
2624 if (!super || !super->disks)
2625 return NULL;
2626 dl = super->disks;
2627 mddev = malloc(sizeof(*mddev));
2628 if (!mddev) {
2629 fprintf(stderr, Name ": Failed to allocate memory.\n");
2630 return NULL;
2631 }
2632 memset(mddev, 0, sizeof(*mddev));
2633 while (dl) {
2634 struct mdinfo *tmp;
2635 disk = &dl->disk;
2636 tmp = malloc(sizeof(*tmp));
2637 if (!tmp) {
2638 fprintf(stderr, Name ": Failed to allocate memory.\n");
2639 if (mddev)
2640 sysfs_free(mddev);
2641 return NULL;
2642 }
2643 memset(tmp, 0, sizeof(*tmp));
2644 if (mddev->devs)
2645 tmp->next = mddev->devs;
2646 mddev->devs = tmp;
2647 tmp->disk.number = count++;
2648 tmp->disk.major = dl->major;
2649 tmp->disk.minor = dl->minor;
2650 tmp->disk.state = is_configured(disk) ?
2651 (1 << MD_DISK_ACTIVE) : 0;
2652 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2653 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2654 tmp->disk.raid_disk = -1;
2655 dl = dl->next;
2656 }
2657 return mddev;
2658}
2659
cdddbdbc
DW
2660static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2661 char *update, char *devname, int verbose,
2662 int uuid_set, char *homehost)
2663{
f352c545
DW
2664 /* For 'assemble' and 'force' we need to return non-zero if any
2665 * change was made. For others, the return value is ignored.
2666 * Update options are:
2667 * force-one : This device looks a bit old but needs to be included,
2668 * update age info appropriately.
2669 * assemble: clear any 'faulty' flag to allow this device to
2670 * be assembled.
2671 * force-array: Array is degraded but being forced, mark it clean
2672 * if that will be needed to assemble it.
2673 *
2674 * newdev: not used ????
2675 * grow: Array has gained a new device - this is currently for
2676 * linear only
2677 * resync: mark as dirty so a resync will happen.
2678 * name: update the name - preserving the homehost
6e46bf34 2679 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2680 *
2681 * Following are not relevant for this imsm:
2682 * sparc2.2 : update from old dodgey metadata
2683 * super-minor: change the preferred_minor number
2684 * summaries: update redundant counters.
f352c545
DW
2685 * homehost: update the recorded homehost
2686 * _reshape_progress: record new reshape_progress position.
2687 */
6e46bf34
DW
2688 int rv = 1;
2689 struct intel_super *super = st->sb;
2690 struct imsm_super *mpb;
f352c545 2691
6e46bf34
DW
2692 /* we can only update container info */
2693 if (!super || super->current_vol >= 0 || !super->anchor)
2694 return 1;
2695
2696 mpb = super->anchor;
2697
2698 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2699 rv = -1;
6e46bf34
DW
2700 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2701 mpb->orig_family_num = *((__u32 *) info->update_private);
2702 rv = 0;
2703 } else if (strcmp(update, "uuid") == 0) {
2704 __u32 *new_family = malloc(sizeof(*new_family));
2705
2706 /* update orig_family_number with the incoming random
2707 * data, report the new effective uuid, and store the
2708 * new orig_family_num for future updates.
2709 */
2710 if (new_family) {
2711 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2712 uuid_from_super_imsm(st, info->uuid);
2713 *new_family = mpb->orig_family_num;
2714 info->update_private = new_family;
2715 rv = 0;
2716 }
2717 } else if (strcmp(update, "assemble") == 0)
2718 rv = 0;
2719 else
1e2b2765 2720 rv = -1;
f352c545 2721
6e46bf34
DW
2722 /* successful update? recompute checksum */
2723 if (rv == 0)
2724 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2725
2726 return rv;
cdddbdbc
DW
2727}
2728
c2c087e6 2729static size_t disks_to_mpb_size(int disks)
cdddbdbc 2730{
c2c087e6 2731 size_t size;
cdddbdbc 2732
c2c087e6
DW
2733 size = sizeof(struct imsm_super);
2734 size += (disks - 1) * sizeof(struct imsm_disk);
2735 size += 2 * sizeof(struct imsm_dev);
2736 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2737 size += (4 - 2) * sizeof(struct imsm_map);
2738 /* 4 possible disk_ord_tbl's */
2739 size += 4 * (disks - 1) * sizeof(__u32);
2740
2741 return size;
2742}
2743
2744static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2745{
2746 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2747 return 0;
2748
2749 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2750}
2751
ba2de7ba
DW
2752static void free_devlist(struct intel_super *super)
2753{
2754 struct intel_dev *dv;
2755
2756 while (super->devlist) {
2757 dv = super->devlist->next;
2758 free(super->devlist->dev);
2759 free(super->devlist);
2760 super->devlist = dv;
2761 }
2762}
2763
2764static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2765{
2766 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2767}
2768
cdddbdbc
DW
2769static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2770{
2771 /*
2772 * return:
2773 * 0 same, or first was empty, and second was copied
2774 * 1 second had wrong number
2775 * 2 wrong uuid
2776 * 3 wrong other info
2777 */
2778 struct intel_super *first = st->sb;
2779 struct intel_super *sec = tst->sb;
2780
2781 if (!first) {
2782 st->sb = tst->sb;
2783 tst->sb = NULL;
2784 return 0;
2785 }
8603ea6f
LM
2786 /* in platform dependent environment test if the disks
2787 * use the same Intel hba
2788 */
2789 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2790 if (!first->hba || !sec->hba ||
2791 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2792 fprintf(stderr,
2793 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2794 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2795 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2796 return 3;
2797 }
2798 }
cdddbdbc 2799
d23fe947
DW
2800 /* if an anchor does not have num_raid_devs set then it is a free
2801 * floating spare
2802 */
2803 if (first->anchor->num_raid_devs > 0 &&
2804 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2805 /* Determine if these disks might ever have been
2806 * related. Further disambiguation can only take place
2807 * in load_super_imsm_all
2808 */
2809 __u32 first_family = first->anchor->orig_family_num;
2810 __u32 sec_family = sec->anchor->orig_family_num;
2811
f796af5d
DW
2812 if (memcmp(first->anchor->sig, sec->anchor->sig,
2813 MAX_SIGNATURE_LENGTH) != 0)
2814 return 3;
2815
a2b97981
DW
2816 if (first_family == 0)
2817 first_family = first->anchor->family_num;
2818 if (sec_family == 0)
2819 sec_family = sec->anchor->family_num;
2820
2821 if (first_family != sec_family)
d23fe947 2822 return 3;
f796af5d 2823
d23fe947 2824 }
cdddbdbc 2825
f796af5d 2826
3e372e5a
DW
2827 /* if 'first' is a spare promote it to a populated mpb with sec's
2828 * family number
2829 */
2830 if (first->anchor->num_raid_devs == 0 &&
2831 sec->anchor->num_raid_devs > 0) {
78d30f94 2832 int i;
ba2de7ba
DW
2833 struct intel_dev *dv;
2834 struct imsm_dev *dev;
78d30f94
DW
2835
2836 /* we need to copy raid device info from sec if an allocation
2837 * fails here we don't associate the spare
2838 */
2839 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2840 dv = malloc(sizeof(*dv));
2841 if (!dv)
2842 break;
2843 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2844 if (!dev) {
2845 free(dv);
2846 break;
78d30f94 2847 }
ba2de7ba
DW
2848 dv->dev = dev;
2849 dv->index = i;
2850 dv->next = first->devlist;
2851 first->devlist = dv;
78d30f94 2852 }
709743c5 2853 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2854 /* allocation failure */
2855 free_devlist(first);
2856 fprintf(stderr, "imsm: failed to associate spare\n");
2857 return 3;
78d30f94 2858 }
3e372e5a 2859 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2860 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2861 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2862 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2863 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2864 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2865 }
2866
cdddbdbc
DW
2867 return 0;
2868}
2869
0030e8d6
DW
2870static void fd2devname(int fd, char *name)
2871{
2872 struct stat st;
2873 char path[256];
33a6535d 2874 char dname[PATH_MAX];
0030e8d6
DW
2875 char *nm;
2876 int rv;
2877
2878 name[0] = '\0';
2879 if (fstat(fd, &st) != 0)
2880 return;
2881 sprintf(path, "/sys/dev/block/%d:%d",
2882 major(st.st_rdev), minor(st.st_rdev));
2883
9cf014ec 2884 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2885 if (rv <= 0)
2886 return;
2887
2888 dname[rv] = '\0';
2889 nm = strrchr(dname, '/');
7897de29
JS
2890 if (nm) {
2891 nm++;
2892 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2893 }
0030e8d6
DW
2894}
2895
cdddbdbc
DW
2896extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2897
2898static int imsm_read_serial(int fd, char *devname,
2899 __u8 serial[MAX_RAID_SERIAL_LEN])
2900{
2901 unsigned char scsi_serial[255];
cdddbdbc
DW
2902 int rv;
2903 int rsp_len;
1f24f035 2904 int len;
316e2bf4
DW
2905 char *dest;
2906 char *src;
2907 char *rsp_buf;
2908 int i;
cdddbdbc
DW
2909
2910 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2911
f9ba0ff1
DW
2912 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2913
40ebbb9c 2914 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2915 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2916 fd2devname(fd, (char *) serial);
0030e8d6
DW
2917 return 0;
2918 }
2919
cdddbdbc
DW
2920 if (rv != 0) {
2921 if (devname)
2922 fprintf(stderr,
2923 Name ": Failed to retrieve serial for %s\n",
2924 devname);
2925 return rv;
2926 }
2927
2928 rsp_len = scsi_serial[3];
03cd4cc8
DW
2929 if (!rsp_len) {
2930 if (devname)
2931 fprintf(stderr,
2932 Name ": Failed to retrieve serial for %s\n",
2933 devname);
2934 return 2;
2935 }
1f24f035 2936 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2937
316e2bf4
DW
2938 /* trim all whitespace and non-printable characters and convert
2939 * ':' to ';'
2940 */
2941 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2942 src = &rsp_buf[i];
2943 if (*src > 0x20) {
2944 /* ':' is reserved for use in placeholder serial
2945 * numbers for missing disks
2946 */
2947 if (*src == ':')
2948 *dest++ = ';';
2949 else
2950 *dest++ = *src;
2951 }
2952 }
2953 len = dest - rsp_buf;
2954 dest = rsp_buf;
2955
2956 /* truncate leading characters */
2957 if (len > MAX_RAID_SERIAL_LEN) {
2958 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2959 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2960 }
5c3db629 2961
5c3db629 2962 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2963 memcpy(serial, dest, len);
cdddbdbc
DW
2964
2965 return 0;
2966}
2967
1f24f035
DW
2968static int serialcmp(__u8 *s1, __u8 *s2)
2969{
2970 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2971}
2972
2973static void serialcpy(__u8 *dest, __u8 *src)
2974{
2975 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2976}
2977
54c2c1ea
DW
2978static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2979{
2980 struct dl *dl;
2981
2982 for (dl = super->disks; dl; dl = dl->next)
2983 if (serialcmp(dl->serial, serial) == 0)
2984 break;
2985
2986 return dl;
2987}
2988
a2b97981
DW
2989static struct imsm_disk *
2990__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2991{
2992 int i;
2993
2994 for (i = 0; i < mpb->num_disks; i++) {
2995 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2996
2997 if (serialcmp(disk->serial, serial) == 0) {
2998 if (idx)
2999 *idx = i;
3000 return disk;
3001 }
3002 }
3003
3004 return NULL;
3005}
3006
cdddbdbc
DW
3007static int
3008load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3009{
a2b97981 3010 struct imsm_disk *disk;
cdddbdbc
DW
3011 struct dl *dl;
3012 struct stat stb;
cdddbdbc 3013 int rv;
a2b97981 3014 char name[40];
d23fe947
DW
3015 __u8 serial[MAX_RAID_SERIAL_LEN];
3016
3017 rv = imsm_read_serial(fd, devname, serial);
3018
3019 if (rv != 0)
3020 return 2;
3021
a2b97981 3022 dl = calloc(1, sizeof(*dl));
b9f594fe 3023 if (!dl) {
cdddbdbc
DW
3024 if (devname)
3025 fprintf(stderr,
3026 Name ": failed to allocate disk buffer for %s\n",
3027 devname);
3028 return 2;
3029 }
cdddbdbc 3030
a2b97981
DW
3031 fstat(fd, &stb);
3032 dl->major = major(stb.st_rdev);
3033 dl->minor = minor(stb.st_rdev);
3034 dl->next = super->disks;
3035 dl->fd = keep_fd ? fd : -1;
3036 assert(super->disks == NULL);
3037 super->disks = dl;
3038 serialcpy(dl->serial, serial);
3039 dl->index = -2;
3040 dl->e = NULL;
3041 fd2devname(fd, name);
3042 if (devname)
3043 dl->devname = strdup(devname);
3044 else
3045 dl->devname = strdup(name);
cdddbdbc 3046
d23fe947 3047 /* look up this disk's index in the current anchor */
a2b97981
DW
3048 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3049 if (disk) {
3050 dl->disk = *disk;
3051 /* only set index on disks that are a member of a
3052 * populated contianer, i.e. one with raid_devs
3053 */
3054 if (is_failed(&dl->disk))
3f6efecc 3055 dl->index = -2;
a2b97981
DW
3056 else if (is_spare(&dl->disk))
3057 dl->index = -1;
3f6efecc
DW
3058 }
3059
949c47a0
DW
3060 return 0;
3061}
3062
0e600426 3063#ifndef MDASSEMBLE
0c046afd
DW
3064/* When migrating map0 contains the 'destination' state while map1
3065 * contains the current state. When not migrating map0 contains the
3066 * current state. This routine assumes that map[0].map_state is set to
3067 * the current array state before being called.
3068 *
3069 * Migration is indicated by one of the following states
3070 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3071 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3072 * map1state=unitialized)
1484e727 3073 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3074 * map1state=normal)
e3bba0e0 3075 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3076 * map1state=degraded)
8e59f3d8
AK
3077 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3078 * map1state=normal)
0c046afd 3079 */
8e59f3d8
AK
3080static void migrate(struct imsm_dev *dev, struct intel_super *super,
3081 __u8 to_state, int migr_type)
3393c6af 3082{
0c046afd 3083 struct imsm_map *dest;
3393c6af
DW
3084 struct imsm_map *src = get_imsm_map(dev, 0);
3085
0c046afd 3086 dev->vol.migr_state = 1;
1484e727 3087 set_migr_type(dev, migr_type);
f8f603f1 3088 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3089 dest = get_imsm_map(dev, 1);
3090
0556e1a2 3091 /* duplicate and then set the target end state in map[0] */
3393c6af 3092 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3093 if ((migr_type == MIGR_REBUILD) ||
3094 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3095 __u32 ord;
3096 int i;
3097
3098 for (i = 0; i < src->num_members; i++) {
3099 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3100 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3101 }
3102 }
3103
8e59f3d8
AK
3104 if (migr_type == MIGR_GEN_MIGR)
3105 /* Clear migration record */
3106 memset(super->migr_rec, 0, sizeof(struct migr_record));
3107
0c046afd 3108 src->map_state = to_state;
949c47a0 3109}
f8f603f1
DW
3110
3111static void end_migration(struct imsm_dev *dev, __u8 map_state)
3112{
3113 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3114 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3115 int i, j;
0556e1a2
DW
3116
3117 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3118 * completed in the last migration.
3119 *
28bce06f 3120 * FIXME add support for raid-level-migration
0556e1a2
DW
3121 */
3122 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3123 for (j = 0; j < map->num_members; j++)
3124 /* during online capacity expansion
3125 * disks position can be changed if takeover is used
3126 */
3127 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3128 ord_to_idx(prev->disk_ord_tbl[i])) {
3129 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3130 break;
3131 }
f8f603f1
DW
3132
3133 dev->vol.migr_state = 0;
ea672ee1 3134 set_migr_type(dev, 0);
f8f603f1
DW
3135 dev->vol.curr_migr_unit = 0;
3136 map->map_state = map_state;
3137}
0e600426 3138#endif
949c47a0
DW
3139
3140static int parse_raid_devices(struct intel_super *super)
3141{
3142 int i;
3143 struct imsm_dev *dev_new;
4d7b1503 3144 size_t len, len_migr;
401d313b 3145 size_t max_len = 0;
4d7b1503
DW
3146 size_t space_needed = 0;
3147 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3148
3149 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3150 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3151 struct intel_dev *dv;
949c47a0 3152
4d7b1503
DW
3153 len = sizeof_imsm_dev(dev_iter, 0);
3154 len_migr = sizeof_imsm_dev(dev_iter, 1);
3155 if (len_migr > len)
3156 space_needed += len_migr - len;
3157
ba2de7ba
DW
3158 dv = malloc(sizeof(*dv));
3159 if (!dv)
3160 return 1;
401d313b
AK
3161 if (max_len < len_migr)
3162 max_len = len_migr;
3163 if (max_len > len_migr)
3164 space_needed += max_len - len_migr;
3165 dev_new = malloc(max_len);
ba2de7ba
DW
3166 if (!dev_new) {
3167 free(dv);
949c47a0 3168 return 1;
ba2de7ba 3169 }
949c47a0 3170 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3171 dv->dev = dev_new;
3172 dv->index = i;
3173 dv->next = super->devlist;
3174 super->devlist = dv;
949c47a0 3175 }
cdddbdbc 3176
4d7b1503
DW
3177 /* ensure that super->buf is large enough when all raid devices
3178 * are migrating
3179 */
3180 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3181 void *buf;
3182
3183 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3184 if (posix_memalign(&buf, 512, len) != 0)
3185 return 1;
3186
1f45a8ad
DW
3187 memcpy(buf, super->buf, super->len);
3188 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3189 free(super->buf);
3190 super->buf = buf;
3191 super->len = len;
3192 }
3193
cdddbdbc
DW
3194 return 0;
3195}
3196
604b746f
JD
3197/* retrieve a pointer to the bbm log which starts after all raid devices */
3198struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3199{
3200 void *ptr = NULL;
3201
3202 if (__le32_to_cpu(mpb->bbm_log_size)) {
3203 ptr = mpb;
3204 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3205 }
3206
3207 return ptr;
3208}
3209
e2f41b2c
AK
3210/*******************************************************************************
3211 * Function: check_mpb_migr_compatibility
3212 * Description: Function checks for unsupported migration features:
3213 * - migration optimization area (pba_of_lba0)
3214 * - descending reshape (ascending_migr)
3215 * Parameters:
3216 * super : imsm metadata information
3217 * Returns:
3218 * 0 : migration is compatible
3219 * -1 : migration is not compatible
3220 ******************************************************************************/
3221int check_mpb_migr_compatibility(struct intel_super *super)
3222{
3223 struct imsm_map *map0, *map1;
3224 struct migr_record *migr_rec = super->migr_rec;
3225 int i;
3226
3227 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3228 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3229
3230 if (dev_iter &&
3231 dev_iter->vol.migr_state == 1 &&
3232 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3233 /* This device is migrating */
3234 map0 = get_imsm_map(dev_iter, 0);
3235 map1 = get_imsm_map(dev_iter, 1);
3236 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3237 /* migration optimization area was used */
3238 return -1;
3239 if (migr_rec->ascending_migr == 0
3240 && migr_rec->dest_depth_per_unit > 0)
3241 /* descending reshape not supported yet */
3242 return -1;
3243 }
3244 }
3245 return 0;
3246}
3247
d23fe947 3248static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3249
cdddbdbc 3250/* load_imsm_mpb - read matrix metadata
f2f5c343 3251 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3252 */
3253static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3254{
3255 unsigned long long dsize;
cdddbdbc
DW
3256 unsigned long long sectors;
3257 struct stat;
6416d527 3258 struct imsm_super *anchor;
cdddbdbc
DW
3259 __u32 check_sum;
3260
cdddbdbc 3261 get_dev_size(fd, NULL, &dsize);
64436f06
N
3262 if (dsize < 1024) {
3263 if (devname)
3264 fprintf(stderr,
3265 Name ": %s: device to small for imsm\n",
3266 devname);
3267 return 1;
3268 }
cdddbdbc
DW
3269
3270 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3271 if (devname)
2e062e82
AK
3272 fprintf(stderr, Name
3273 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3274 devname, strerror(errno));
3275 return 1;
3276 }
3277
949c47a0 3278 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3279 if (devname)
3280 fprintf(stderr,
3281 Name ": Failed to allocate imsm anchor buffer"
3282 " on %s\n", devname);
3283 return 1;
3284 }
949c47a0 3285 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3286 if (devname)
3287 fprintf(stderr,
3288 Name ": Cannot read anchor block on %s: %s\n",
3289 devname, strerror(errno));
6416d527 3290 free(anchor);
cdddbdbc
DW
3291 return 1;
3292 }
3293
6416d527 3294 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3295 if (devname)
3296 fprintf(stderr,
3297 Name ": no IMSM anchor on %s\n", devname);
6416d527 3298 free(anchor);
cdddbdbc
DW
3299 return 2;
3300 }
3301
d23fe947 3302 __free_imsm(super, 0);
f2f5c343
LM
3303 /* reload capability and hba */
3304
3305 /* capability and hba must be updated with new super allocation */
d424212e 3306 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3307 super->len = ROUND_UP(anchor->mpb_size, 512);
3308 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3309 if (devname)
3310 fprintf(stderr,
3311 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3312 super->len);
6416d527 3313 free(anchor);
cdddbdbc
DW
3314 return 2;
3315 }
949c47a0 3316 memcpy(super->buf, anchor, 512);
cdddbdbc 3317
6416d527
NB
3318 sectors = mpb_sectors(anchor) - 1;
3319 free(anchor);
8e59f3d8
AK
3320
3321 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3322 fprintf(stderr, Name
3323 ": %s could not allocate migr_rec buffer\n", __func__);
3324 free(super->buf);
3325 return 2;
3326 }
3327
949c47a0 3328 if (!sectors) {
ecf45690
DW
3329 check_sum = __gen_imsm_checksum(super->anchor);
3330 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3331 if (devname)
3332 fprintf(stderr,
3333 Name ": IMSM checksum %x != %x on %s\n",
3334 check_sum,
3335 __le32_to_cpu(super->anchor->check_sum),
3336 devname);
3337 return 2;
3338 }
3339
a2b97981 3340 return 0;
949c47a0 3341 }
cdddbdbc
DW
3342
3343 /* read the extended mpb */
3344 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3345 if (devname)
3346 fprintf(stderr,
3347 Name ": Cannot seek to extended mpb on %s: %s\n",
3348 devname, strerror(errno));
3349 return 1;
3350 }
3351
f21e18ca 3352 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3353 if (devname)
3354 fprintf(stderr,
3355 Name ": Cannot read extended mpb on %s: %s\n",
3356 devname, strerror(errno));
3357 return 2;
3358 }
3359
949c47a0
DW
3360 check_sum = __gen_imsm_checksum(super->anchor);
3361 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3362 if (devname)
3363 fprintf(stderr,
3364 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3365 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3366 devname);
db575f3b 3367 return 3;
cdddbdbc
DW
3368 }
3369
604b746f
JD
3370 /* FIXME the BBM log is disk specific so we cannot use this global
3371 * buffer for all disks. Ok for now since we only look at the global
3372 * bbm_log_size parameter to gate assembly
3373 */
3374 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3375
a2b97981
DW
3376 return 0;
3377}
3378
8e59f3d8
AK
3379static int read_imsm_migr_rec(int fd, struct intel_super *super);
3380
a2b97981
DW
3381static int
3382load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3383{
3384 int err;
3385
3386 err = load_imsm_mpb(fd, super, devname);
3387 if (err)
3388 return err;
3389 err = load_imsm_disk(fd, super, devname, keep_fd);
3390 if (err)
3391 return err;
3392 err = parse_raid_devices(super);
4d7b1503 3393
a2b97981 3394 return err;
cdddbdbc
DW
3395}
3396
ae6aad82
DW
3397static void __free_imsm_disk(struct dl *d)
3398{
3399 if (d->fd >= 0)
3400 close(d->fd);
3401 if (d->devname)
3402 free(d->devname);
0dcecb2e
DW
3403 if (d->e)
3404 free(d->e);
ae6aad82
DW
3405 free(d);
3406
3407}
1a64be56 3408
cdddbdbc
DW
3409static void free_imsm_disks(struct intel_super *super)
3410{
47ee5a45 3411 struct dl *d;
cdddbdbc 3412
47ee5a45
DW
3413 while (super->disks) {
3414 d = super->disks;
cdddbdbc 3415 super->disks = d->next;
ae6aad82 3416 __free_imsm_disk(d);
cdddbdbc 3417 }
cb82edca
AK
3418 while (super->disk_mgmt_list) {
3419 d = super->disk_mgmt_list;
3420 super->disk_mgmt_list = d->next;
3421 __free_imsm_disk(d);
3422 }
47ee5a45
DW
3423 while (super->missing) {
3424 d = super->missing;
3425 super->missing = d->next;
3426 __free_imsm_disk(d);
3427 }
3428
cdddbdbc
DW
3429}
3430
9ca2c81c 3431/* free all the pieces hanging off of a super pointer */
d23fe947 3432static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3433{
88654014
LM
3434 struct intel_hba *elem, *next;
3435
9ca2c81c 3436 if (super->buf) {
949c47a0 3437 free(super->buf);
9ca2c81c
DW
3438 super->buf = NULL;
3439 }
f2f5c343
LM
3440 /* unlink capability description */
3441 super->orom = NULL;
8e59f3d8
AK
3442 if (super->migr_rec_buf) {
3443 free(super->migr_rec_buf);
3444 super->migr_rec_buf = NULL;
3445 }
d23fe947
DW
3446 if (free_disks)
3447 free_imsm_disks(super);
ba2de7ba 3448 free_devlist(super);
88654014
LM
3449 elem = super->hba;
3450 while (elem) {
3451 if (elem->path)
3452 free((void *)elem->path);
3453 next = elem->next;
3454 free(elem);
3455 elem = next;
88c32bb1 3456 }
88654014 3457 super->hba = NULL;
cdddbdbc
DW
3458}
3459
9ca2c81c
DW
3460static void free_imsm(struct intel_super *super)
3461{
d23fe947 3462 __free_imsm(super, 1);
9ca2c81c
DW
3463 free(super);
3464}
cdddbdbc
DW
3465
3466static void free_super_imsm(struct supertype *st)
3467{
3468 struct intel_super *super = st->sb;
3469
3470 if (!super)
3471 return;
3472
3473 free_imsm(super);
3474 st->sb = NULL;
3475}
3476
49133e57 3477static struct intel_super *alloc_super(void)
c2c087e6
DW
3478{
3479 struct intel_super *super = malloc(sizeof(*super));
3480
3481 if (super) {
3482 memset(super, 0, sizeof(*super));
bf5a934a 3483 super->current_vol = -1;
0dcecb2e 3484 super->create_offset = ~((__u32 ) 0);
c2c087e6 3485 }
c2c087e6
DW
3486 return super;
3487}
3488
f0f5a016
LM
3489/*
3490 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3491 */
d424212e 3492static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3493{
3494 struct sys_dev *hba_name;
3495 int rv = 0;
3496
3497 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3498 super->orom = NULL;
f0f5a016
LM
3499 super->hba = NULL;
3500 return 0;
3501 }
3502 hba_name = find_disk_attached_hba(fd, NULL);
3503 if (!hba_name) {
d424212e 3504 if (devname)
f0f5a016
LM
3505 fprintf(stderr,
3506 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3507 devname);
f0f5a016
LM
3508 return 1;
3509 }
3510 rv = attach_hba_to_super(super, hba_name);
3511 if (rv == 2) {
d424212e
N
3512 if (devname) {
3513 struct intel_hba *hba = super->hba;
f0f5a016 3514
f0f5a016
LM
3515 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3516 "controller (%s),\n"
3517 " but the container is assigned to Intel(R) "
3518 "%s RAID controller (",
d424212e 3519 devname,
f0f5a016
LM
3520 hba_name->path,
3521 hba_name->pci_id ? : "Err!",
3522 get_sys_dev_type(hba_name->type));
3523
f0f5a016
LM
3524 while (hba) {
3525 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3526 if (hba->next)
3527 fprintf(stderr, ", ");
3528 hba = hba->next;
3529 }
3530
3531 fprintf(stderr, ").\n"
3532 " Mixing devices attached to different controllers "
3533 "is not allowed.\n");
3534 }
3535 free_sys_dev(&hba_name);
3536 return 2;
3537 }
f2f5c343 3538 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3539 free_sys_dev(&hba_name);
f2f5c343
LM
3540 if (!super->orom)
3541 return 3;
f0f5a016
LM
3542 return 0;
3543}
3544
47ee5a45
DW
3545/* find_missing - helper routine for load_super_imsm_all that identifies
3546 * disks that have disappeared from the system. This routine relies on
3547 * the mpb being uptodate, which it is at load time.
3548 */
3549static int find_missing(struct intel_super *super)
3550{
3551 int i;
3552 struct imsm_super *mpb = super->anchor;
3553 struct dl *dl;
3554 struct imsm_disk *disk;
47ee5a45
DW
3555
3556 for (i = 0; i < mpb->num_disks; i++) {
3557 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3558 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3559 if (dl)
3560 continue;
47ee5a45
DW
3561
3562 dl = malloc(sizeof(*dl));
3563 if (!dl)
3564 return 1;
3565 dl->major = 0;
3566 dl->minor = 0;
3567 dl->fd = -1;
3568 dl->devname = strdup("missing");
3569 dl->index = i;
3570 serialcpy(dl->serial, disk->serial);
3571 dl->disk = *disk;
689c9bf3 3572 dl->e = NULL;
47ee5a45
DW
3573 dl->next = super->missing;
3574 super->missing = dl;
3575 }
3576
3577 return 0;
3578}
3579
3960e579 3580#ifndef MDASSEMBLE
a2b97981
DW
3581static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3582{
3583 struct intel_disk *idisk = disk_list;
3584
3585 while (idisk) {
3586 if (serialcmp(idisk->disk.serial, serial) == 0)
3587 break;
3588 idisk = idisk->next;
3589 }
3590
3591 return idisk;
3592}
3593
3594static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3595 struct intel_super *super,
3596 struct intel_disk **disk_list)
3597{
3598 struct imsm_disk *d = &super->disks->disk;
3599 struct imsm_super *mpb = super->anchor;
3600 int i, j;
3601
3602 for (i = 0; i < tbl_size; i++) {
3603 struct imsm_super *tbl_mpb = table[i]->anchor;
3604 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3605
3606 if (tbl_mpb->family_num == mpb->family_num) {
3607 if (tbl_mpb->check_sum == mpb->check_sum) {
3608 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3609 __func__, super->disks->major,
3610 super->disks->minor,
3611 table[i]->disks->major,
3612 table[i]->disks->minor);
3613 break;
3614 }
3615
3616 if (((is_configured(d) && !is_configured(tbl_d)) ||
3617 is_configured(d) == is_configured(tbl_d)) &&
3618 tbl_mpb->generation_num < mpb->generation_num) {
3619 /* current version of the mpb is a
3620 * better candidate than the one in
3621 * super_table, but copy over "cross
3622 * generational" status
3623 */
3624 struct intel_disk *idisk;
3625
3626 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3627 __func__, super->disks->major,
3628 super->disks->minor,
3629 table[i]->disks->major,
3630 table[i]->disks->minor);
3631
3632 idisk = disk_list_get(tbl_d->serial, *disk_list);
3633 if (idisk && is_failed(&idisk->disk))
3634 tbl_d->status |= FAILED_DISK;
3635 break;
3636 } else {
3637 struct intel_disk *idisk;
3638 struct imsm_disk *disk;
3639
3640 /* tbl_mpb is more up to date, but copy
3641 * over cross generational status before
3642 * returning
3643 */
3644 disk = __serial_to_disk(d->serial, mpb, NULL);
3645 if (disk && is_failed(disk))
3646 d->status |= FAILED_DISK;
3647
3648 idisk = disk_list_get(d->serial, *disk_list);
3649 if (idisk) {
3650 idisk->owner = i;
3651 if (disk && is_configured(disk))
3652 idisk->disk.status |= CONFIGURED_DISK;
3653 }
3654
3655 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3656 __func__, super->disks->major,
3657 super->disks->minor,
3658 table[i]->disks->major,
3659 table[i]->disks->minor);
3660
3661 return tbl_size;
3662 }
3663 }
3664 }
3665
3666 if (i >= tbl_size)
3667 table[tbl_size++] = super;
3668 else
3669 table[i] = super;
3670
3671 /* update/extend the merged list of imsm_disk records */
3672 for (j = 0; j < mpb->num_disks; j++) {
3673 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3674 struct intel_disk *idisk;
3675
3676 idisk = disk_list_get(disk->serial, *disk_list);
3677 if (idisk) {
3678 idisk->disk.status |= disk->status;
3679 if (is_configured(&idisk->disk) ||
3680 is_failed(&idisk->disk))
3681 idisk->disk.status &= ~(SPARE_DISK);
3682 } else {
3683 idisk = calloc(1, sizeof(*idisk));
3684 if (!idisk)
3685 return -1;
3686 idisk->owner = IMSM_UNKNOWN_OWNER;
3687 idisk->disk = *disk;
3688 idisk->next = *disk_list;
3689 *disk_list = idisk;
3690 }
3691
3692 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3693 idisk->owner = i;
3694 }
3695
3696 return tbl_size;
3697}
3698
3699static struct intel_super *
3700validate_members(struct intel_super *super, struct intel_disk *disk_list,
3701 const int owner)
3702{
3703 struct imsm_super *mpb = super->anchor;
3704 int ok_count = 0;
3705 int i;
3706
3707 for (i = 0; i < mpb->num_disks; i++) {
3708 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3709 struct intel_disk *idisk;
3710
3711 idisk = disk_list_get(disk->serial, disk_list);
3712 if (idisk) {
3713 if (idisk->owner == owner ||
3714 idisk->owner == IMSM_UNKNOWN_OWNER)
3715 ok_count++;
3716 else
3717 dprintf("%s: '%.16s' owner %d != %d\n",
3718 __func__, disk->serial, idisk->owner,
3719 owner);
3720 } else {
3721 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3722 __func__, __le32_to_cpu(mpb->family_num), i,
3723 disk->serial);
3724 break;
3725 }
3726 }
3727
3728 if (ok_count == mpb->num_disks)
3729 return super;
3730 return NULL;
3731}
3732
3733static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3734{
3735 struct intel_super *s;
3736
3737 for (s = super_list; s; s = s->next) {
3738 if (family_num != s->anchor->family_num)
3739 continue;
3740 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3741 __le32_to_cpu(family_num), s->disks->devname);
3742 }
3743}
3744
3745static struct intel_super *
3746imsm_thunderdome(struct intel_super **super_list, int len)
3747{
3748 struct intel_super *super_table[len];
3749 struct intel_disk *disk_list = NULL;
3750 struct intel_super *champion, *spare;
3751 struct intel_super *s, **del;
3752 int tbl_size = 0;
3753 int conflict;
3754 int i;
3755
3756 memset(super_table, 0, sizeof(super_table));
3757 for (s = *super_list; s; s = s->next)
3758 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3759
3760 for (i = 0; i < tbl_size; i++) {
3761 struct imsm_disk *d;
3762 struct intel_disk *idisk;
3763 struct imsm_super *mpb = super_table[i]->anchor;
3764
3765 s = super_table[i];
3766 d = &s->disks->disk;
3767
3768 /* 'd' must appear in merged disk list for its
3769 * configuration to be valid
3770 */
3771 idisk = disk_list_get(d->serial, disk_list);
3772 if (idisk && idisk->owner == i)
3773 s = validate_members(s, disk_list, i);
3774 else
3775 s = NULL;
3776
3777 if (!s)
3778 dprintf("%s: marking family: %#x from %d:%d offline\n",
3779 __func__, mpb->family_num,
3780 super_table[i]->disks->major,
3781 super_table[i]->disks->minor);
3782 super_table[i] = s;
3783 }
3784
3785 /* This is where the mdadm implementation differs from the Windows
3786 * driver which has no strict concept of a container. We can only
3787 * assemble one family from a container, so when returning a prodigal
3788 * array member to this system the code will not be able to disambiguate
3789 * the container contents that should be assembled ("foreign" versus
3790 * "local"). It requires user intervention to set the orig_family_num
3791 * to a new value to establish a new container. The Windows driver in
3792 * this situation fixes up the volume name in place and manages the
3793 * foreign array as an independent entity.
3794 */
3795 s = NULL;
3796 spare = NULL;
3797 conflict = 0;
3798 for (i = 0; i < tbl_size; i++) {
3799 struct intel_super *tbl_ent = super_table[i];
3800 int is_spare = 0;
3801
3802 if (!tbl_ent)
3803 continue;
3804
3805 if (tbl_ent->anchor->num_raid_devs == 0) {
3806 spare = tbl_ent;
3807 is_spare = 1;
3808 }
3809
3810 if (s && !is_spare) {
3811 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3812 conflict++;
3813 } else if (!s && !is_spare)
3814 s = tbl_ent;
3815 }
3816
3817 if (!s)
3818 s = spare;
3819 if (!s) {
3820 champion = NULL;
3821 goto out;
3822 }
3823 champion = s;
3824
3825 if (conflict)
3826 fprintf(stderr, "Chose family %#x on '%s', "
3827 "assemble conflicts to new container with '--update=uuid'\n",
3828 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3829
3830 /* collect all dl's onto 'champion', and update them to
3831 * champion's version of the status
3832 */
3833 for (s = *super_list; s; s = s->next) {
3834 struct imsm_super *mpb = champion->anchor;
3835 struct dl *dl = s->disks;
3836
3837 if (s == champion)
3838 continue;
3839
3840 for (i = 0; i < mpb->num_disks; i++) {
3841 struct imsm_disk *disk;
3842
3843 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3844 if (disk) {
3845 dl->disk = *disk;
3846 /* only set index on disks that are a member of
3847 * a populated contianer, i.e. one with
3848 * raid_devs
3849 */
3850 if (is_failed(&dl->disk))
3851 dl->index = -2;
3852 else if (is_spare(&dl->disk))
3853 dl->index = -1;
3854 break;
3855 }
3856 }
3857
3858 if (i >= mpb->num_disks) {
3859 struct intel_disk *idisk;
3860
3861 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3862 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3863 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3864 dl->index = -1;
3865 else {
3866 dl->index = -2;
3867 continue;
3868 }
3869 }
3870
3871 dl->next = champion->disks;
3872 champion->disks = dl;
3873 s->disks = NULL;
3874 }
3875
3876 /* delete 'champion' from super_list */
3877 for (del = super_list; *del; ) {
3878 if (*del == champion) {
3879 *del = (*del)->next;
3880 break;
3881 } else
3882 del = &(*del)->next;
3883 }
3884 champion->next = NULL;
3885
3886 out:
3887 while (disk_list) {
3888 struct intel_disk *idisk = disk_list;
3889
3890 disk_list = disk_list->next;
3891 free(idisk);
3892 }
3893
3894 return champion;
3895}
3896
cdddbdbc 3897static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3898 char *devname)
cdddbdbc
DW
3899{
3900 struct mdinfo *sra;
a2b97981
DW
3901 struct intel_super *super_list = NULL;
3902 struct intel_super *super = NULL;
db575f3b 3903 int devnum = fd2devnum(fd);
a2b97981 3904 struct mdinfo *sd;
db575f3b 3905 int retry;
a2b97981
DW
3906 int err = 0;
3907 int i;
dab4a513
DW
3908
3909 /* check if 'fd' an opened container */
b526e52d 3910 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3911 if (!sra)
3912 return 1;
3913
3914 if (sra->array.major_version != -1 ||
3915 sra->array.minor_version != -2 ||
1602d52c
AW
3916 strcmp(sra->text_version, "imsm") != 0) {
3917 err = 1;
3918 goto error;
3919 }
a2b97981
DW
3920 /* load all mpbs */
3921 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3922 struct intel_super *s = alloc_super();
7a6ecd55 3923 char nm[32];
a2b97981 3924 int dfd;
f2f5c343 3925 int rv;
a2b97981
DW
3926
3927 err = 1;
3928 if (!s)
3929 goto error;
3930 s->next = super_list;
3931 super_list = s;
cdddbdbc 3932
a2b97981 3933 err = 2;
cdddbdbc 3934 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3935 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3936 if (dfd < 0)
3937 goto error;
3938
d424212e 3939 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3940 /* no orom/efi or non-intel hba of the disk */
3941 if (rv != 0)
3942 goto error;
3943
e1902a7b 3944 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3945
3946 /* retry the load if we might have raced against mdmon */
a2b97981 3947 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3948 for (retry = 0; retry < 3; retry++) {
3949 usleep(3000);
e1902a7b 3950 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3951 if (err != 3)
db575f3b
DW
3952 break;
3953 }
a2b97981
DW
3954 if (err)
3955 goto error;
cdddbdbc
DW
3956 }
3957
a2b97981
DW
3958 /* all mpbs enter, maybe one leaves */
3959 super = imsm_thunderdome(&super_list, i);
3960 if (!super) {
3961 err = 1;
3962 goto error;
cdddbdbc
DW
3963 }
3964
47ee5a45
DW
3965 if (find_missing(super) != 0) {
3966 free_imsm(super);
a2b97981
DW
3967 err = 2;
3968 goto error;
47ee5a45 3969 }
8e59f3d8
AK
3970
3971 /* load migration record */
3972 err = load_imsm_migr_rec(super, NULL);
3973 if (err) {
3974 err = 4;
3975 goto error;
3976 }
e2f41b2c
AK
3977
3978 /* Check migration compatibility */
3979 if (check_mpb_migr_compatibility(super) != 0) {
3980 fprintf(stderr, Name ": Unsupported migration detected");
3981 if (devname)
3982 fprintf(stderr, " on %s\n", devname);
3983 else
3984 fprintf(stderr, " (IMSM).\n");
3985
3986 err = 5;
3987 goto error;
3988 }
3989
a2b97981
DW
3990 err = 0;
3991
3992 error:
3993 while (super_list) {
3994 struct intel_super *s = super_list;
3995
3996 super_list = super_list->next;
3997 free_imsm(s);
3998 }
1602d52c 3999 sysfs_free(sra);
a2b97981
DW
4000
4001 if (err)
4002 return err;
f7e7067b 4003
cdddbdbc 4004 *sbp = super;
db575f3b 4005 st->container_dev = devnum;
a2b97981 4006 if (err == 0 && st->ss == NULL) {
bf5a934a 4007 st->ss = &super_imsm;
cdddbdbc
DW
4008 st->minor_version = 0;
4009 st->max_devs = IMSM_MAX_DEVICES;
4010 }
cdddbdbc
DW
4011 return 0;
4012}
2b959fbf
N
4013
4014static int load_container_imsm(struct supertype *st, int fd, char *devname)
4015{
4016 return load_super_imsm_all(st, fd, &st->sb, devname);
4017}
cdddbdbc
DW
4018#endif
4019
4020static int load_super_imsm(struct supertype *st, int fd, char *devname)
4021{
4022 struct intel_super *super;
4023 int rv;
4024
691c6ee1
N
4025 if (test_partition(fd))
4026 /* IMSM not allowed on partitions */
4027 return 1;
4028
37424f13
DW
4029 free_super_imsm(st);
4030
49133e57 4031 super = alloc_super();
cdddbdbc
DW
4032 if (!super) {
4033 fprintf(stderr,
4034 Name ": malloc of %zu failed.\n",
4035 sizeof(*super));
4036 return 1;
4037 }
ea2bc72b
LM
4038 /* Load hba and capabilities if they exist.
4039 * But do not preclude loading metadata in case capabilities or hba are
4040 * non-compliant and ignore_hw_compat is set.
4041 */
d424212e 4042 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4043 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4044 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4045 if (devname)
4046 fprintf(stderr,
4047 Name ": No OROM/EFI properties for %s\n", devname);
4048 free_imsm(super);
4049 return 2;
4050 }
a2b97981 4051 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4052
4053 if (rv) {
4054 if (devname)
4055 fprintf(stderr,
4056 Name ": Failed to load all information "
4057 "sections on %s\n", devname);
4058 free_imsm(super);
4059 return rv;
4060 }
4061
4062 st->sb = super;
4063 if (st->ss == NULL) {
4064 st->ss = &super_imsm;
4065 st->minor_version = 0;
4066 st->max_devs = IMSM_MAX_DEVICES;
4067 }
8e59f3d8
AK
4068
4069 /* load migration record */
2e062e82
AK
4070 if (load_imsm_migr_rec(super, NULL) == 0) {
4071 /* Check for unsupported migration features */
4072 if (check_mpb_migr_compatibility(super) != 0) {
4073 fprintf(stderr,
4074 Name ": Unsupported migration detected");
4075 if (devname)
4076 fprintf(stderr, " on %s\n", devname);
4077 else
4078 fprintf(stderr, " (IMSM).\n");
4079 return 3;
4080 }
e2f41b2c
AK
4081 }
4082
cdddbdbc
DW
4083 return 0;
4084}
4085
ef6ffade
DW
4086static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4087{
4088 if (info->level == 1)
4089 return 128;
4090 return info->chunk_size >> 9;
4091}
4092
ff596308 4093static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4094{
4095 __u32 num_stripes;
4096
4097 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4098 num_stripes /= num_domains;
ef6ffade
DW
4099
4100 return num_stripes;
4101}
4102
fcfd9599
DW
4103static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4104{
4025c288
DW
4105 if (info->level == 1)
4106 return info->size * 2;
4107 else
4108 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4109}
4110
4d1313e9
DW
4111static void imsm_update_version_info(struct intel_super *super)
4112{
4113 /* update the version and attributes */
4114 struct imsm_super *mpb = super->anchor;
4115 char *version;
4116 struct imsm_dev *dev;
4117 struct imsm_map *map;
4118 int i;
4119
4120 for (i = 0; i < mpb->num_raid_devs; i++) {
4121 dev = get_imsm_dev(super, i);
4122 map = get_imsm_map(dev, 0);
4123 if (__le32_to_cpu(dev->size_high) > 0)
4124 mpb->attributes |= MPB_ATTRIB_2TB;
4125
4126 /* FIXME detect when an array spans a port multiplier */
4127 #if 0
4128 mpb->attributes |= MPB_ATTRIB_PM;
4129 #endif
4130
4131 if (mpb->num_raid_devs > 1 ||
4132 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4133 version = MPB_VERSION_ATTRIBS;
4134 switch (get_imsm_raid_level(map)) {
4135 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4136 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4137 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4138 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4139 }
4140 } else {
4141 if (map->num_members >= 5)
4142 version = MPB_VERSION_5OR6_DISK_ARRAY;
4143 else if (dev->status == DEV_CLONE_N_GO)
4144 version = MPB_VERSION_CNG;
4145 else if (get_imsm_raid_level(map) == 5)
4146 version = MPB_VERSION_RAID5;
4147 else if (map->num_members >= 3)
4148 version = MPB_VERSION_3OR4_DISK_ARRAY;
4149 else if (get_imsm_raid_level(map) == 1)
4150 version = MPB_VERSION_RAID1;
4151 else
4152 version = MPB_VERSION_RAID0;
4153 }
4154 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4155 }
4156}
4157
aa534678
DW
4158static int check_name(struct intel_super *super, char *name, int quiet)
4159{
4160 struct imsm_super *mpb = super->anchor;
4161 char *reason = NULL;
4162 int i;
4163
4164 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4165 reason = "must be 16 characters or less";
4166
4167 for (i = 0; i < mpb->num_raid_devs; i++) {
4168 struct imsm_dev *dev = get_imsm_dev(super, i);
4169
4170 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4171 reason = "already exists";
4172 break;
4173 }
4174 }
4175
4176 if (reason && !quiet)
4177 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4178
4179 return !reason;
4180}
4181
8b353278
DW
4182static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4183 unsigned long long size, char *name,
4184 char *homehost, int *uuid)
cdddbdbc 4185{
c2c087e6
DW
4186 /* We are creating a volume inside a pre-existing container.
4187 * so st->sb is already set.
4188 */
4189 struct intel_super *super = st->sb;
949c47a0 4190 struct imsm_super *mpb = super->anchor;
ba2de7ba 4191 struct intel_dev *dv;
c2c087e6
DW
4192 struct imsm_dev *dev;
4193 struct imsm_vol *vol;
4194 struct imsm_map *map;
4195 int idx = mpb->num_raid_devs;
4196 int i;
4197 unsigned long long array_blocks;
2c092cad 4198 size_t size_old, size_new;
ff596308 4199 __u32 num_data_stripes;
cdddbdbc 4200
88c32bb1 4201 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4202 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4203 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4204 return 0;
4205 }
4206
2c092cad
DW
4207 /* ensure the mpb is large enough for the new data */
4208 size_old = __le32_to_cpu(mpb->mpb_size);
4209 size_new = disks_to_mpb_size(info->nr_disks);
4210 if (size_new > size_old) {
4211 void *mpb_new;
4212 size_t size_round = ROUND_UP(size_new, 512);
4213
4214 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4215 fprintf(stderr, Name": could not allocate new mpb\n");
4216 return 0;
4217 }
8e59f3d8
AK
4218 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4219 fprintf(stderr, Name
4220 ": %s could not allocate migr_rec buffer\n",
4221 __func__);
4222 free(super->buf);
4223 free(super);
ea944c8f 4224 free(mpb_new);
8e59f3d8
AK
4225 return 0;
4226 }
2c092cad
DW
4227 memcpy(mpb_new, mpb, size_old);
4228 free(mpb);
4229 mpb = mpb_new;
949c47a0 4230 super->anchor = mpb_new;
2c092cad
DW
4231 mpb->mpb_size = __cpu_to_le32(size_new);
4232 memset(mpb_new + size_old, 0, size_round - size_old);
4233 }
bf5a934a 4234 super->current_vol = idx;
3960e579
DW
4235
4236 /* handle 'failed_disks' by either:
4237 * a) create dummy disk entries in the table if this the first
4238 * volume in the array. We add them here as this is the only
4239 * opportunity to add them. add_to_super_imsm_volume()
4240 * handles the non-failed disks and continues incrementing
4241 * mpb->num_disks.
4242 * b) validate that 'failed_disks' matches the current number
4243 * of missing disks if the container is populated
d23fe947 4244 */
3960e579 4245 if (super->current_vol == 0) {
d23fe947 4246 mpb->num_disks = 0;
3960e579
DW
4247 for (i = 0; i < info->failed_disks; i++) {
4248 struct imsm_disk *disk;
4249
4250 mpb->num_disks++;
4251 disk = __get_imsm_disk(mpb, i);
4252 disk->status = CONFIGURED_DISK | FAILED_DISK;
4253 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4254 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4255 "missing:%d", i);
4256 }
4257 find_missing(super);
4258 } else {
4259 int missing = 0;
4260 struct dl *d;
4261
4262 for (d = super->missing; d; d = d->next)
4263 missing++;
4264 if (info->failed_disks > missing) {
4265 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4266 return 0;
4267 }
4268 }
5a038140 4269
aa534678
DW
4270 if (!check_name(super, name, 0))
4271 return 0;
ba2de7ba
DW
4272 dv = malloc(sizeof(*dv));
4273 if (!dv) {
4274 fprintf(stderr, Name ": failed to allocate device list entry\n");
4275 return 0;
4276 }
1a2487c2 4277 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4278 if (!dev) {
ba2de7ba 4279 free(dv);
949c47a0
DW
4280 fprintf(stderr, Name": could not allocate raid device\n");
4281 return 0;
4282 }
1a2487c2 4283
c2c087e6 4284 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4285 if (info->level == 1)
4286 array_blocks = info_to_blocks_per_member(info);
4287 else
4288 array_blocks = calc_array_size(info->level, info->raid_disks,
4289 info->layout, info->chunk_size,
4290 info->size*2);
979d38be
DW
4291 /* round array size down to closest MB */
4292 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4293
c2c087e6
DW
4294 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4295 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4296 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4297 vol = &dev->vol;
4298 vol->migr_state = 0;
1484e727 4299 set_migr_type(dev, MIGR_INIT);
3960e579 4300 vol->dirty = !info->state;
f8f603f1 4301 vol->curr_migr_unit = 0;
a965f303 4302 map = get_imsm_map(dev, 0);
0dcecb2e 4303 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4304 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4305 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4306 map->failed_disk_num = ~0;
3960e579 4307 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4308 map->ddf = 1;
ef6ffade
DW
4309
4310 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4311 free(dev);
4312 free(dv);
ef6ffade
DW
4313 fprintf(stderr, Name": imsm does not support more than 2 disks"
4314 "in a raid1 volume\n");
4315 return 0;
4316 }
81062a36
DW
4317
4318 map->raid_level = info->level;
4d1313e9 4319 if (info->level == 10) {
c2c087e6 4320 map->raid_level = 1;
4d1313e9 4321 map->num_domains = info->raid_disks / 2;
81062a36
DW
4322 } else if (info->level == 1)
4323 map->num_domains = info->raid_disks;
4324 else
ff596308 4325 map->num_domains = 1;
81062a36 4326
ff596308
DW
4327 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4328 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4329
c2c087e6
DW
4330 map->num_members = info->raid_disks;
4331 for (i = 0; i < map->num_members; i++) {
4332 /* initialized in add_to_super */
4eb26970 4333 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4334 }
949c47a0 4335 mpb->num_raid_devs++;
ba2de7ba
DW
4336
4337 dv->dev = dev;
4338 dv->index = super->current_vol;
4339 dv->next = super->devlist;
4340 super->devlist = dv;
c2c087e6 4341
4d1313e9
DW
4342 imsm_update_version_info(super);
4343
c2c087e6 4344 return 1;
cdddbdbc
DW
4345}
4346
bf5a934a
DW
4347static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4348 unsigned long long size, char *name,
4349 char *homehost, int *uuid)
4350{
4351 /* This is primarily called by Create when creating a new array.
4352 * We will then get add_to_super called for each component, and then
4353 * write_init_super called to write it out to each device.
4354 * For IMSM, Create can create on fresh devices or on a pre-existing
4355 * array.
4356 * To create on a pre-existing array a different method will be called.
4357 * This one is just for fresh drives.
4358 */
4359 struct intel_super *super;
4360 struct imsm_super *mpb;
4361 size_t mpb_size;
4d1313e9 4362 char *version;
bf5a934a 4363
bf5a934a 4364 if (st->sb)
e683ca88
DW
4365 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4366
4367 if (info)
4368 mpb_size = disks_to_mpb_size(info->nr_disks);
4369 else
4370 mpb_size = 512;
bf5a934a 4371
49133e57 4372 super = alloc_super();
e683ca88 4373 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4374 free(super);
e683ca88
DW
4375 super = NULL;
4376 }
4377 if (!super) {
4378 fprintf(stderr, Name
4379 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4380 return 0;
4381 }
8e59f3d8
AK
4382 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4383 fprintf(stderr, Name
4384 ": %s could not allocate migr_rec buffer\n", __func__);
4385 free(super->buf);
4386 free(super);
4387 return 0;
4388 }
e683ca88 4389 memset(super->buf, 0, mpb_size);
ef649044 4390 mpb = super->buf;
e683ca88
DW
4391 mpb->mpb_size = __cpu_to_le32(mpb_size);
4392 st->sb = super;
4393
4394 if (info == NULL) {
4395 /* zeroing superblock */
4396 return 0;
4397 }
bf5a934a 4398
4d1313e9
DW
4399 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4400
4401 version = (char *) mpb->sig;
4402 strcpy(version, MPB_SIGNATURE);
4403 version += strlen(MPB_SIGNATURE);
4404 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4405
bf5a934a
DW
4406 return 1;
4407}
4408
0e600426 4409#ifndef MDASSEMBLE
f20c3968 4410static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4411 int fd, char *devname)
4412{
4413 struct intel_super *super = st->sb;
d23fe947 4414 struct imsm_super *mpb = super->anchor;
3960e579 4415 struct imsm_disk *_disk;
bf5a934a
DW
4416 struct imsm_dev *dev;
4417 struct imsm_map *map;
3960e579 4418 struct dl *dl, *df;
4eb26970 4419 int slot;
bf5a934a 4420
949c47a0 4421 dev = get_imsm_dev(super, super->current_vol);
a965f303 4422 map = get_imsm_map(dev, 0);
bf5a934a 4423
208933a7
N
4424 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4425 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4426 devname);
4427 return 1;
4428 }
4429
efb30e7f
DW
4430 if (fd == -1) {
4431 /* we're doing autolayout so grab the pre-marked (in
4432 * validate_geometry) raid_disk
4433 */
4434 for (dl = super->disks; dl; dl = dl->next)
4435 if (dl->raiddisk == dk->raid_disk)
4436 break;
4437 } else {
4438 for (dl = super->disks; dl ; dl = dl->next)
4439 if (dl->major == dk->major &&
4440 dl->minor == dk->minor)
4441 break;
4442 }
d23fe947 4443
208933a7
N
4444 if (!dl) {
4445 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4446 return 1;
208933a7 4447 }
bf5a934a 4448
d23fe947
DW
4449 /* add a pristine spare to the metadata */
4450 if (dl->index < 0) {
4451 dl->index = super->anchor->num_disks;
4452 super->anchor->num_disks++;
4453 }
4eb26970
DW
4454 /* Check the device has not already been added */
4455 slot = get_imsm_disk_slot(map, dl->index);
4456 if (slot >= 0 &&
98130f40 4457 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4458 fprintf(stderr, Name ": %s has been included in this array twice\n",
4459 devname);
4460 return 1;
4461 }
656b6b5a 4462 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4463 dl->disk.status = CONFIGURED_DISK;
d23fe947 4464
3960e579
DW
4465 /* update size of 'missing' disks to be at least as large as the
4466 * largest acitve member (we only have dummy missing disks when
4467 * creating the first volume)
4468 */
4469 if (super->current_vol == 0) {
4470 for (df = super->missing; df; df = df->next) {
4471 if (dl->disk.total_blocks > df->disk.total_blocks)
4472 df->disk.total_blocks = dl->disk.total_blocks;
4473 _disk = __get_imsm_disk(mpb, df->index);
4474 *_disk = df->disk;
4475 }
4476 }
4477
4478 /* refresh unset/failed slots to point to valid 'missing' entries */
4479 for (df = super->missing; df; df = df->next)
4480 for (slot = 0; slot < mpb->num_disks; slot++) {
4481 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4482
4483 if ((ord & IMSM_ORD_REBUILD) == 0)
4484 continue;
4485 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403
AK
4486 if (is_gen_migration(dev)) {
4487 struct imsm_map *map2 = get_imsm_map(dev, 1);
4488 if (slot < map2->num_members) {
4489 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4490 slot,
4491 1);
4492 if ((unsigned)df->index ==
4493 ord_to_idx(ord2))
4494 set_imsm_ord_tbl_ent(map2,
4495 slot,
4496 df->index |
4497 IMSM_ORD_REBUILD);
4498 }
4499 }
3960e579
DW
4500 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4501 break;
4502 }
4503
d23fe947
DW
4504 /* if we are creating the first raid device update the family number */
4505 if (super->current_vol == 0) {
4506 __u32 sum;
4507 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4508
3960e579 4509 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4510 if (!_dev || !_disk) {
4511 fprintf(stderr, Name ": BUG mpb setup error\n");
4512 return 1;
4513 }
d23fe947
DW
4514 *_dev = *dev;
4515 *_disk = dl->disk;
148acb7b
DW
4516 sum = random32();
4517 sum += __gen_imsm_checksum(mpb);
d23fe947 4518 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4519 mpb->orig_family_num = mpb->family_num;
d23fe947 4520 }
ca0748fa 4521 super->current_disk = dl;
f20c3968 4522 return 0;
bf5a934a
DW
4523}
4524
a8619d23
AK
4525/* mark_spare()
4526 * Function marks disk as spare and restores disk serial
4527 * in case it was previously marked as failed by takeover operation
4528 * reruns:
4529 * -1 : critical error
4530 * 0 : disk is marked as spare but serial is not set
4531 * 1 : success
4532 */
4533int mark_spare(struct dl *disk)
4534{
4535 __u8 serial[MAX_RAID_SERIAL_LEN];
4536 int ret_val = -1;
4537
4538 if (!disk)
4539 return ret_val;
4540
4541 ret_val = 0;
4542 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4543 /* Restore disk serial number, because takeover marks disk
4544 * as failed and adds to serial ':0' before it becomes
4545 * a spare disk.
4546 */
4547 serialcpy(disk->serial, serial);
4548 serialcpy(disk->disk.serial, serial);
4549 ret_val = 1;
4550 }
4551 disk->disk.status = SPARE_DISK;
4552 disk->index = -1;
4553
4554 return ret_val;
4555}
88654014 4556
f20c3968 4557static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4558 int fd, char *devname)
cdddbdbc 4559{
c2c087e6 4560 struct intel_super *super = st->sb;
c2c087e6
DW
4561 struct dl *dd;
4562 unsigned long long size;
f2f27e63 4563 __u32 id;
c2c087e6
DW
4564 int rv;
4565 struct stat stb;
4566
88654014
LM
4567 /* If we are on an RAID enabled platform check that the disk is
4568 * attached to the raid controller.
4569 * We do not need to test disks attachment for container based additions,
4570 * they shall be already tested when container was created/assembled.
88c32bb1 4571 */
d424212e 4572 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4573 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4574 if (rv != 0) {
4575 dprintf("capability: %p fd: %d ret: %d\n",
4576 super->orom, fd, rv);
4577 return 1;
88c32bb1
DW
4578 }
4579
f20c3968
DW
4580 if (super->current_vol >= 0)
4581 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4582
c2c087e6
DW
4583 fstat(fd, &stb);
4584 dd = malloc(sizeof(*dd));
b9f594fe 4585 if (!dd) {
c2c087e6
DW
4586 fprintf(stderr,
4587 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4588 return 1;
c2c087e6
DW
4589 }
4590 memset(dd, 0, sizeof(*dd));
4591 dd->major = major(stb.st_rdev);
4592 dd->minor = minor(stb.st_rdev);
c2c087e6 4593 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4594 dd->fd = fd;
689c9bf3 4595 dd->e = NULL;
1a64be56 4596 dd->action = DISK_ADD;
c2c087e6 4597 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4598 if (rv) {
c2c087e6 4599 fprintf(stderr,
0030e8d6 4600 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4601 free(dd);
0030e8d6 4602 abort();
c2c087e6
DW
4603 }
4604
c2c087e6
DW
4605 get_dev_size(fd, NULL, &size);
4606 size /= 512;
1f24f035 4607 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4608 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4609 mark_spare(dd);
c2c087e6 4610 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4611 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4612 else
b9f594fe 4613 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4614
4615 if (st->update_tail) {
1a64be56
LM
4616 dd->next = super->disk_mgmt_list;
4617 super->disk_mgmt_list = dd;
43dad3d6
DW
4618 } else {
4619 dd->next = super->disks;
4620 super->disks = dd;
ceaf0ee1 4621 super->updates_pending++;
43dad3d6 4622 }
f20c3968
DW
4623
4624 return 0;
cdddbdbc
DW
4625}
4626
1a64be56
LM
4627
4628static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4629{
4630 struct intel_super *super = st->sb;
4631 struct dl *dd;
4632
4633 /* remove from super works only in mdmon - for communication
4634 * manager - monitor. Check if communication memory buffer
4635 * is prepared.
4636 */
4637 if (!st->update_tail) {
4638 fprintf(stderr,
4639 Name ": %s shall be used in mdmon context only"
4640 "(line %d).\n", __func__, __LINE__);
4641 return 1;
4642 }
4643 dd = malloc(sizeof(*dd));
4644 if (!dd) {
4645 fprintf(stderr,
4646 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4647 return 1;
4648 }
4649 memset(dd, 0, sizeof(*dd));
4650 dd->major = dk->major;
4651 dd->minor = dk->minor;
1a64be56 4652 dd->fd = -1;
a8619d23 4653 mark_spare(dd);
1a64be56
LM
4654 dd->action = DISK_REMOVE;
4655
4656 dd->next = super->disk_mgmt_list;
4657 super->disk_mgmt_list = dd;
4658
4659
4660 return 0;
4661}
4662
f796af5d
DW
4663static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4664
4665static union {
4666 char buf[512];
4667 struct imsm_super anchor;
4668} spare_record __attribute__ ((aligned(512)));
c2c087e6 4669
d23fe947
DW
4670/* spare records have their own family number and do not have any defined raid
4671 * devices
4672 */
4673static int write_super_imsm_spares(struct intel_super *super, int doclose)
4674{
d23fe947 4675 struct imsm_super *mpb = super->anchor;
f796af5d 4676 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4677 __u32 sum;
4678 struct dl *d;
4679
f796af5d
DW
4680 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4681 spare->generation_num = __cpu_to_le32(1UL),
4682 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4683 spare->num_disks = 1,
4684 spare->num_raid_devs = 0,
4685 spare->cache_size = mpb->cache_size,
4686 spare->pwr_cycle_count = __cpu_to_le32(1),
4687
4688 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4689 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4690
4691 for (d = super->disks; d; d = d->next) {
8796fdc4 4692 if (d->index != -1)
d23fe947
DW
4693 continue;
4694
f796af5d
DW
4695 spare->disk[0] = d->disk;
4696 sum = __gen_imsm_checksum(spare);
4697 spare->family_num = __cpu_to_le32(sum);
4698 spare->orig_family_num = 0;
4699 sum = __gen_imsm_checksum(spare);
4700 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4701
f796af5d 4702 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4703 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4704 __func__, d->major, d->minor, strerror(errno));
e74255d9 4705 return 1;
d23fe947
DW
4706 }
4707 if (doclose) {
4708 close(d->fd);
4709 d->fd = -1;
4710 }
4711 }
4712
e74255d9 4713 return 0;
d23fe947
DW
4714}
4715
36988a3d 4716static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4717{
36988a3d 4718 struct intel_super *super = st->sb;
949c47a0 4719 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4720 struct dl *d;
4721 __u32 generation;
4722 __u32 sum;
d23fe947 4723 int spares = 0;
949c47a0 4724 int i;
a48ac0a8 4725 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4726 int num_disks = 0;
146c6260 4727 int clear_migration_record = 1;
cdddbdbc 4728
c2c087e6
DW
4729 /* 'generation' is incremented everytime the metadata is written */
4730 generation = __le32_to_cpu(mpb->generation_num);
4731 generation++;
4732 mpb->generation_num = __cpu_to_le32(generation);
4733
148acb7b
DW
4734 /* fix up cases where previous mdadm releases failed to set
4735 * orig_family_num
4736 */
4737 if (mpb->orig_family_num == 0)
4738 mpb->orig_family_num = mpb->family_num;
4739
d23fe947 4740 for (d = super->disks; d; d = d->next) {
8796fdc4 4741 if (d->index == -1)
d23fe947 4742 spares++;
36988a3d 4743 else {
d23fe947 4744 mpb->disk[d->index] = d->disk;
36988a3d
AK
4745 num_disks++;
4746 }
d23fe947 4747 }
36988a3d 4748 for (d = super->missing; d; d = d->next) {
47ee5a45 4749 mpb->disk[d->index] = d->disk;
36988a3d
AK
4750 num_disks++;
4751 }
4752 mpb->num_disks = num_disks;
4753 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4754
949c47a0
DW
4755 for (i = 0; i < mpb->num_raid_devs; i++) {
4756 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4757 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4758 if (dev && dev2) {
4759 imsm_copy_dev(dev, dev2);
4760 mpb_size += sizeof_imsm_dev(dev, 0);
4761 }
146c6260
AK
4762 if (is_gen_migration(dev2))
4763 clear_migration_record = 0;
949c47a0 4764 }
a48ac0a8
DW
4765 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4766 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4767
c2c087e6 4768 /* recalculate checksum */
949c47a0 4769 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4770 mpb->check_sum = __cpu_to_le32(sum);
4771
146c6260
AK
4772 if (clear_migration_record)
4773 memset(super->migr_rec_buf, 0, 512);
4774
d23fe947 4775 /* write the mpb for disks that compose raid devices */
c2c087e6 4776 for (d = super->disks; d ; d = d->next) {
86c54047 4777 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4778 continue;
f796af5d 4779 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4780 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4781 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4782 if (clear_migration_record) {
4783 unsigned long long dsize;
4784
4785 get_dev_size(d->fd, NULL, &dsize);
4786 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4787 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4788 perror("Write migr_rec failed");
146c6260
AK
4789 }
4790 }
c2c087e6
DW
4791 if (doclose) {
4792 close(d->fd);
4793 d->fd = -1;
4794 }
4795 }
4796
d23fe947
DW
4797 if (spares)
4798 return write_super_imsm_spares(super, doclose);
4799
e74255d9 4800 return 0;
c2c087e6
DW
4801}
4802
0e600426 4803
9b1fb677 4804static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4805{
4806 size_t len;
4807 struct imsm_update_create_array *u;
4808 struct intel_super *super = st->sb;
9b1fb677 4809 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4810 struct imsm_map *map = get_imsm_map(dev, 0);
4811 struct disk_info *inf;
4812 struct imsm_disk *disk;
4813 int i;
43dad3d6 4814
54c2c1ea
DW
4815 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4816 sizeof(*inf) * map->num_members;
43dad3d6
DW
4817 u = malloc(len);
4818 if (!u) {
4819 fprintf(stderr, "%s: failed to allocate update buffer\n",
4820 __func__);
4821 return 1;
4822 }
4823
4824 u->type = update_create_array;
9b1fb677 4825 u->dev_idx = dev_idx;
43dad3d6 4826 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4827 inf = get_disk_info(u);
4828 for (i = 0; i < map->num_members; i++) {
98130f40 4829 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4830
54c2c1ea
DW
4831 disk = get_imsm_disk(super, idx);
4832 serialcpy(inf[i].serial, disk->serial);
4833 }
43dad3d6
DW
4834 append_metadata_update(st, u, len);
4835
4836 return 0;
4837}
4838
1a64be56 4839static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4840{
4841 struct intel_super *super = st->sb;
4842 size_t len;
1a64be56 4843 struct imsm_update_add_remove_disk *u;
43dad3d6 4844
1a64be56 4845 if (!super->disk_mgmt_list)
43dad3d6
DW
4846 return 0;
4847
4848 len = sizeof(*u);
4849 u = malloc(len);
4850 if (!u) {
4851 fprintf(stderr, "%s: failed to allocate update buffer\n",
4852 __func__);
4853 return 1;
4854 }
4855
1a64be56 4856 u->type = update_add_remove_disk;
43dad3d6
DW
4857 append_metadata_update(st, u, len);
4858
4859 return 0;
4860}
4861
c2c087e6
DW
4862static int write_init_super_imsm(struct supertype *st)
4863{
9b1fb677
DW
4864 struct intel_super *super = st->sb;
4865 int current_vol = super->current_vol;
4866
4867 /* we are done with current_vol reset it to point st at the container */
4868 super->current_vol = -1;
4869
8273f55e 4870 if (st->update_tail) {
43dad3d6
DW
4871 /* queue the recently created array / added disk
4872 * as a metadata update */
43dad3d6 4873 int rv;
8273f55e 4874
43dad3d6 4875 /* determine if we are creating a volume or adding a disk */
9b1fb677 4876 if (current_vol < 0) {
1a64be56
LM
4877 /* in the mgmt (add/remove) disk case we are running
4878 * in mdmon context, so don't close fd's
43dad3d6 4879 */
1a64be56 4880 return mgmt_disk(st);
43dad3d6 4881 } else
9b1fb677 4882 rv = create_array(st, current_vol);
8273f55e 4883
43dad3d6 4884 return rv;
d682f344
N
4885 } else {
4886 struct dl *d;
4887 for (d = super->disks; d; d = d->next)
4888 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4889 return write_super_imsm(st, 1);
d682f344 4890 }
cdddbdbc 4891}
0e600426 4892#endif
cdddbdbc 4893
e683ca88 4894static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4895{
e683ca88
DW
4896 struct intel_super *super = st->sb;
4897 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4898
e683ca88 4899 if (!mpb)
ad97895e
DW
4900 return 1;
4901
1799c9e8 4902#ifndef MDASSEMBLE
e683ca88 4903 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4904#else
4905 return 1;
4906#endif
cdddbdbc
DW
4907}
4908
0e600426
N
4909static int imsm_bbm_log_size(struct imsm_super *mpb)
4910{
4911 return __le32_to_cpu(mpb->bbm_log_size);
4912}
4913
4914#ifndef MDASSEMBLE
cdddbdbc
DW
4915static int validate_geometry_imsm_container(struct supertype *st, int level,
4916 int layout, int raiddisks, int chunk,
c2c087e6 4917 unsigned long long size, char *dev,
2c514b71
NB
4918 unsigned long long *freesize,
4919 int verbose)
cdddbdbc 4920{
c2c087e6
DW
4921 int fd;
4922 unsigned long long ldsize;
f2f5c343
LM
4923 struct intel_super *super=NULL;
4924 int rv = 0;
cdddbdbc 4925
c2c087e6
DW
4926 if (level != LEVEL_CONTAINER)
4927 return 0;
4928 if (!dev)
4929 return 1;
4930
4931 fd = open(dev, O_RDONLY|O_EXCL, 0);
4932 if (fd < 0) {
2c514b71
NB
4933 if (verbose)
4934 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4935 dev, strerror(errno));
c2c087e6
DW
4936 return 0;
4937 }
4938 if (!get_dev_size(fd, dev, &ldsize)) {
4939 close(fd);
4940 return 0;
4941 }
f2f5c343
LM
4942
4943 /* capabilities retrieve could be possible
4944 * note that there is no fd for the disks in array.
4945 */
4946 super = alloc_super();
4947 if (!super) {
4948 fprintf(stderr,
4949 Name ": malloc of %zu failed.\n",
4950 sizeof(*super));
4951 close(fd);
4952 return 0;
4953 }
4954
d424212e 4955 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4956 if (rv != 0) {
4957#if DEBUG
4958 char str[256];
4959 fd2devname(fd, str);
4960 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4961 fd, str, super->orom, rv, raiddisks);
4962#endif
4963 /* no orom/efi or non-intel hba of the disk */
4964 close(fd);
4965 free_imsm(super);
4966 return 0;
4967 }
c2c087e6 4968 close(fd);
f2f5c343
LM
4969 if (super->orom && raiddisks > super->orom->tds) {
4970 if (verbose)
4971 fprintf(stderr, Name ": %d exceeds maximum number of"
4972 " platform supported disks: %d\n",
4973 raiddisks, super->orom->tds);
4974
4975 free_imsm(super);
4976 return 0;
4977 }
c2c087e6
DW
4978
4979 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4980 free_imsm(super);
c2c087e6
DW
4981
4982 return 1;
cdddbdbc
DW
4983}
4984
0dcecb2e
DW
4985static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4986{
4987 const unsigned long long base_start = e[*idx].start;
4988 unsigned long long end = base_start + e[*idx].size;
4989 int i;
4990
4991 if (base_start == end)
4992 return 0;
4993
4994 *idx = *idx + 1;
4995 for (i = *idx; i < num_extents; i++) {
4996 /* extend overlapping extents */
4997 if (e[i].start >= base_start &&
4998 e[i].start <= end) {
4999 if (e[i].size == 0)
5000 return 0;
5001 if (e[i].start + e[i].size > end)
5002 end = e[i].start + e[i].size;
5003 } else if (e[i].start > end) {
5004 *idx = i;
5005 break;
5006 }
5007 }
5008
5009 return end - base_start;
5010}
5011
5012static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5013{
5014 /* build a composite disk with all known extents and generate a new
5015 * 'maxsize' given the "all disks in an array must share a common start
5016 * offset" constraint
5017 */
5018 struct extent *e = calloc(sum_extents, sizeof(*e));
5019 struct dl *dl;
5020 int i, j;
5021 int start_extent;
5022 unsigned long long pos;
b9d77223 5023 unsigned long long start = 0;
0dcecb2e
DW
5024 unsigned long long maxsize;
5025 unsigned long reserve;
5026
5027 if (!e)
a7dd165b 5028 return 0;
0dcecb2e
DW
5029
5030 /* coalesce and sort all extents. also, check to see if we need to
5031 * reserve space between member arrays
5032 */
5033 j = 0;
5034 for (dl = super->disks; dl; dl = dl->next) {
5035 if (!dl->e)
5036 continue;
5037 for (i = 0; i < dl->extent_cnt; i++)
5038 e[j++] = dl->e[i];
5039 }
5040 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5041
5042 /* merge extents */
5043 i = 0;
5044 j = 0;
5045 while (i < sum_extents) {
5046 e[j].start = e[i].start;
5047 e[j].size = find_size(e, &i, sum_extents);
5048 j++;
5049 if (e[j-1].size == 0)
5050 break;
5051 }
5052
5053 pos = 0;
5054 maxsize = 0;
5055 start_extent = 0;
5056 i = 0;
5057 do {
5058 unsigned long long esize;
5059
5060 esize = e[i].start - pos;
5061 if (esize >= maxsize) {
5062 maxsize = esize;
5063 start = pos;
5064 start_extent = i;
5065 }
5066 pos = e[i].start + e[i].size;
5067 i++;
5068 } while (e[i-1].size);
5069 free(e);
5070
a7dd165b
DW
5071 if (maxsize == 0)
5072 return 0;
5073
5074 /* FIXME assumes volume at offset 0 is the first volume in a
5075 * container
5076 */
0dcecb2e
DW
5077 if (start_extent > 0)
5078 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5079 else
5080 reserve = 0;
5081
5082 if (maxsize < reserve)
a7dd165b 5083 return 0;
0dcecb2e
DW
5084
5085 super->create_offset = ~((__u32) 0);
5086 if (start + reserve > super->create_offset)
a7dd165b 5087 return 0; /* start overflows create_offset */
0dcecb2e
DW
5088 super->create_offset = start + reserve;
5089
5090 return maxsize - reserve;
5091}
5092
88c32bb1
DW
5093static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5094{
5095 if (level < 0 || level == 6 || level == 4)
5096 return 0;
5097
5098 /* if we have an orom prevent invalid raid levels */
5099 if (orom)
5100 switch (level) {
5101 case 0: return imsm_orom_has_raid0(orom);
5102 case 1:
5103 if (raiddisks > 2)
5104 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5105 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5106 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5107 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5108 }
5109 else
5110 return 1; /* not on an Intel RAID platform so anything goes */
5111
5112 return 0;
5113}
5114
cd9d1ac7
DW
5115static int imsm_default_chunk(const struct imsm_orom *orom)
5116{
5117 /* up to 512 if the plaform supports it, otherwise the platform max.
5118 * 128 if no platform detected
5119 */
5120 int fs = max(7, orom ? fls(orom->sss) : 0);
5121
5122 return min(512, (1 << fs));
5123}
73408129 5124
35f81cbb 5125#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5126static int
5127validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5128 int raiddisks, int *chunk, int verbose)
6592ce37 5129{
660260d0
DW
5130 /* check/set platform and metadata limits/defaults */
5131 if (super->orom && raiddisks > super->orom->dpa) {
5132 pr_vrb(": platform supports a maximum of %d disks per array\n",
5133 super->orom->dpa);
73408129
LM
5134 return 0;
5135 }
5136
5137 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5138 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5139 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5140 level, raiddisks, raiddisks > 1 ? "s" : "");
5141 return 0;
5142 }
cd9d1ac7
DW
5143
5144 if (chunk && (*chunk == 0 || *chunk == UnSet))
5145 *chunk = imsm_default_chunk(super->orom);
5146
5147 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5148 pr_vrb(": platform does not support a chunk size of: "
5149 "%d\n", *chunk);
5150 return 0;
6592ce37 5151 }
cd9d1ac7 5152
6592ce37
DW
5153 if (layout != imsm_level_to_layout(level)) {
5154 if (level == 5)
5155 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5156 else if (level == 10)
5157 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5158 else
5159 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5160 layout, level);
5161 return 0;
5162 }
6592ce37
DW
5163 return 1;
5164}
5165
c2c087e6
DW
5166/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5167 * FIX ME add ahci details
5168 */
8b353278 5169static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5170 int layout, int raiddisks, int *chunk,
c2c087e6 5171 unsigned long long size, char *dev,
2c514b71
NB
5172 unsigned long long *freesize,
5173 int verbose)
cdddbdbc 5174{
c2c087e6
DW
5175 struct stat stb;
5176 struct intel_super *super = st->sb;
b2916f25 5177 struct imsm_super *mpb;
c2c087e6
DW
5178 struct dl *dl;
5179 unsigned long long pos = 0;
5180 unsigned long long maxsize;
5181 struct extent *e;
5182 int i;
cdddbdbc 5183
88c32bb1
DW
5184 /* We must have the container info already read in. */
5185 if (!super)
c2c087e6
DW
5186 return 0;
5187
b2916f25
JS
5188 mpb = super->anchor;
5189
e7cb06c8
LO
5190 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5191 fprintf(stderr, Name ": the option-rom requires all "
5192 "member disks to be a member of all volumes.\n");
5193 return 0;
5194 }
5195
d54559f0
LM
5196 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5197 fprintf(stderr, Name ": RAID gemetry validation failed. "
5198 "Cannot proceed with the action(s).\n");
c2c087e6 5199 return 0;
d54559f0 5200 }
c2c087e6
DW
5201 if (!dev) {
5202 /* General test: make sure there is space for
2da8544a
DW
5203 * 'raiddisks' device extents of size 'size' at a given
5204 * offset
c2c087e6 5205 */
e46273eb 5206 unsigned long long minsize = size;
b7528a20 5207 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5208 int dcnt = 0;
5209 if (minsize == 0)
5210 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5211 for (dl = super->disks; dl ; dl = dl->next) {
5212 int found = 0;
5213
bf5a934a 5214 pos = 0;
c2c087e6
DW
5215 i = 0;
5216 e = get_extents(super, dl);
5217 if (!e) continue;
5218 do {
5219 unsigned long long esize;
5220 esize = e[i].start - pos;
5221 if (esize >= minsize)
5222 found = 1;
b7528a20 5223 if (found && start_offset == MaxSector) {
2da8544a
DW
5224 start_offset = pos;
5225 break;
5226 } else if (found && pos != start_offset) {
5227 found = 0;
5228 break;
5229 }
c2c087e6
DW
5230 pos = e[i].start + e[i].size;
5231 i++;
5232 } while (e[i-1].size);
5233 if (found)
5234 dcnt++;
5235 free(e);
5236 }
5237 if (dcnt < raiddisks) {
2c514b71
NB
5238 if (verbose)
5239 fprintf(stderr, Name ": imsm: Not enough "
5240 "devices with space for this array "
5241 "(%d < %d)\n",
5242 dcnt, raiddisks);
c2c087e6
DW
5243 return 0;
5244 }
5245 return 1;
5246 }
0dcecb2e 5247
c2c087e6
DW
5248 /* This device must be a member of the set */
5249 if (stat(dev, &stb) < 0)
5250 return 0;
5251 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5252 return 0;
5253 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5254 if (dl->major == (int)major(stb.st_rdev) &&
5255 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5256 break;
5257 }
5258 if (!dl) {
2c514b71
NB
5259 if (verbose)
5260 fprintf(stderr, Name ": %s is not in the "
5261 "same imsm set\n", dev);
c2c087e6 5262 return 0;
a20d2ba5
DW
5263 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5264 /* If a volume is present then the current creation attempt
5265 * cannot incorporate new spares because the orom may not
5266 * understand this configuration (all member disks must be
5267 * members of each array in the container).
5268 */
5269 fprintf(stderr, Name ": %s is a spare and a volume"
5270 " is already defined for this container\n", dev);
5271 fprintf(stderr, Name ": The option-rom requires all member"
5272 " disks to be a member of all volumes\n");
5273 return 0;
c2c087e6 5274 }
0dcecb2e
DW
5275
5276 /* retrieve the largest free space block */
c2c087e6
DW
5277 e = get_extents(super, dl);
5278 maxsize = 0;
5279 i = 0;
0dcecb2e
DW
5280 if (e) {
5281 do {
5282 unsigned long long esize;
5283
5284 esize = e[i].start - pos;
5285 if (esize >= maxsize)
5286 maxsize = esize;
5287 pos = e[i].start + e[i].size;
5288 i++;
5289 } while (e[i-1].size);
5290 dl->e = e;
5291 dl->extent_cnt = i;
5292 } else {
5293 if (verbose)
5294 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5295 dev);
5296 return 0;
5297 }
5298 if (maxsize < size) {
5299 if (verbose)
5300 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5301 dev, maxsize, size);
5302 return 0;
5303 }
5304
5305 /* count total number of extents for merge */
5306 i = 0;
5307 for (dl = super->disks; dl; dl = dl->next)
5308 if (dl->e)
5309 i += dl->extent_cnt;
5310
5311 maxsize = merge_extents(super, i);
3baa56ab
LO
5312
5313 if (!check_env("IMSM_NO_PLATFORM") &&
5314 mpb->num_raid_devs > 0 && size && size != maxsize) {
5315 fprintf(stderr, Name ": attempting to create a second "
5316 "volume with size less then remaining space. "
5317 "Aborting...\n");
5318 return 0;
5319 }
5320
a7dd165b 5321 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5322 if (verbose)
5323 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5324 maxsize, size);
5325 return 0;
0dcecb2e
DW
5326 }
5327
c2c087e6
DW
5328 *freesize = maxsize;
5329
5330 return 1;
cdddbdbc
DW
5331}
5332
efb30e7f
DW
5333static int reserve_space(struct supertype *st, int raiddisks,
5334 unsigned long long size, int chunk,
5335 unsigned long long *freesize)
5336{
5337 struct intel_super *super = st->sb;
5338 struct imsm_super *mpb = super->anchor;
5339 struct dl *dl;
5340 int i;
5341 int extent_cnt;
5342 struct extent *e;
5343 unsigned long long maxsize;
5344 unsigned long long minsize;
5345 int cnt;
5346 int used;
5347
5348 /* find the largest common start free region of the possible disks */
5349 used = 0;
5350 extent_cnt = 0;
5351 cnt = 0;
5352 for (dl = super->disks; dl; dl = dl->next) {
5353 dl->raiddisk = -1;
5354
5355 if (dl->index >= 0)
5356 used++;
5357
5358 /* don't activate new spares if we are orom constrained
5359 * and there is already a volume active in the container
5360 */
5361 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5362 continue;
5363
5364 e = get_extents(super, dl);
5365 if (!e)
5366 continue;
5367 for (i = 1; e[i-1].size; i++)
5368 ;
5369 dl->e = e;
5370 dl->extent_cnt = i;
5371 extent_cnt += i;
5372 cnt++;
5373 }
5374
5375 maxsize = merge_extents(super, extent_cnt);
5376 minsize = size;
5377 if (size == 0)
612e59d8
CA
5378 /* chunk is in K */
5379 minsize = chunk * 2;
efb30e7f
DW
5380
5381 if (cnt < raiddisks ||
5382 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5383 maxsize < minsize ||
5384 maxsize == 0) {
efb30e7f
DW
5385 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5386 return 0; /* No enough free spaces large enough */
5387 }
5388
5389 if (size == 0) {
5390 size = maxsize;
5391 if (chunk) {
612e59d8
CA
5392 size /= 2 * chunk;
5393 size *= 2 * chunk;
efb30e7f
DW
5394 }
5395 }
5396
5397 cnt = 0;
5398 for (dl = super->disks; dl; dl = dl->next)
5399 if (dl->e)
5400 dl->raiddisk = cnt++;
5401
5402 *freesize = size;
5403
5404 return 1;
5405}
5406
bf5a934a 5407static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5408 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5409 char *dev, unsigned long long *freesize,
5410 int verbose)
5411{
5412 int fd, cfd;
5413 struct mdinfo *sra;
20cbe8d2 5414 int is_member = 0;
bf5a934a 5415
d54559f0
LM
5416 /* load capability
5417 * if given unused devices create a container
bf5a934a
DW
5418 * if given given devices in a container create a member volume
5419 */
5420 if (level == LEVEL_CONTAINER) {
5421 /* Must be a fresh device to add to a container */
5422 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5423 raiddisks,
5424 chunk?*chunk:0, size,
bf5a934a
DW
5425 dev, freesize,
5426 verbose);
5427 }
5428
8592f29d 5429 if (!dev) {
e91a3bad
LM
5430 if (st->sb) {
5431 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5432 raiddisks, chunk,
5433 verbose))
5434 return 0;
efb30e7f
DW
5435 /* we are being asked to automatically layout a
5436 * new volume based on the current contents of
5437 * the container. If the the parameters can be
5438 * satisfied reserve_space will record the disks,
5439 * start offset, and size of the volume to be
5440 * created. add_to_super and getinfo_super
5441 * detect when autolayout is in progress.
5442 */
e91a3bad
LM
5443 if (freesize)
5444 return reserve_space(st, raiddisks, size,
5445 chunk?*chunk:0, freesize);
8592f29d
N
5446 }
5447 return 1;
5448 }
bf5a934a
DW
5449 if (st->sb) {
5450 /* creating in a given container */
5451 return validate_geometry_imsm_volume(st, level, layout,
5452 raiddisks, chunk, size,
5453 dev, freesize, verbose);
5454 }
5455
bf5a934a
DW
5456 /* This device needs to be a device in an 'imsm' container */
5457 fd = open(dev, O_RDONLY|O_EXCL, 0);
5458 if (fd >= 0) {
5459 if (verbose)
5460 fprintf(stderr,
5461 Name ": Cannot create this array on device %s\n",
5462 dev);
5463 close(fd);
5464 return 0;
5465 }
5466 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5467 if (verbose)
5468 fprintf(stderr, Name ": Cannot open %s: %s\n",
5469 dev, strerror(errno));
5470 return 0;
5471 }
5472 /* Well, it is in use by someone, maybe an 'imsm' container. */
5473 cfd = open_container(fd);
20cbe8d2 5474 close(fd);
bf5a934a 5475 if (cfd < 0) {
bf5a934a
DW
5476 if (verbose)
5477 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5478 dev);
5479 return 0;
5480 }
5481 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5482 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5483 strcmp(sra->text_version, "imsm") == 0)
5484 is_member = 1;
5485 sysfs_free(sra);
5486 if (is_member) {
bf5a934a
DW
5487 /* This is a member of a imsm container. Load the container
5488 * and try to create a volume
5489 */
5490 struct intel_super *super;
5491
e1902a7b 5492 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5493 st->sb = super;
5494 st->container_dev = fd2devnum(cfd);
5495 close(cfd);
5496 return validate_geometry_imsm_volume(st, level, layout,
5497 raiddisks, chunk,
5498 size, dev,
ecbd9e81
N
5499 freesize, 1)
5500 ? 1 : -1;
bf5a934a 5501 }
20cbe8d2 5502 }
bf5a934a 5503
20cbe8d2
AW
5504 if (verbose)
5505 fprintf(stderr, Name ": failed container membership check\n");
5506
5507 close(cfd);
5508 return 0;
bf5a934a 5509}
0bd16cf2 5510
30f58b22 5511static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5512{
5513 struct intel_super *super = st->sb;
5514
30f58b22
DW
5515 if (level && *level == UnSet)
5516 *level = LEVEL_CONTAINER;
5517
5518 if (level && layout && *layout == UnSet)
5519 *layout = imsm_level_to_layout(*level);
0bd16cf2 5520
cd9d1ac7
DW
5521 if (chunk && (*chunk == UnSet || *chunk == 0))
5522 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5523}
5524
33414a01
DW
5525static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5526
5527static int kill_subarray_imsm(struct supertype *st)
5528{
5529 /* remove the subarray currently referenced by ->current_vol */
5530 __u8 i;
5531 struct intel_dev **dp;
5532 struct intel_super *super = st->sb;
5533 __u8 current_vol = super->current_vol;
5534 struct imsm_super *mpb = super->anchor;
5535
5536 if (super->current_vol < 0)
5537 return 2;
5538 super->current_vol = -1; /* invalidate subarray cursor */
5539
5540 /* block deletions that would change the uuid of active subarrays
5541 *
5542 * FIXME when immutable ids are available, but note that we'll
5543 * also need to fixup the invalidated/active subarray indexes in
5544 * mdstat
5545 */
5546 for (i = 0; i < mpb->num_raid_devs; i++) {
5547 char subarray[4];
5548
5549 if (i < current_vol)
5550 continue;
5551 sprintf(subarray, "%u", i);
5552 if (is_subarray_active(subarray, st->devname)) {
5553 fprintf(stderr,
5554 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5555 current_vol, i);
5556
5557 return 2;
5558 }
5559 }
5560
5561 if (st->update_tail) {
5562 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5563
5564 if (!u)
5565 return 2;
5566 u->type = update_kill_array;
5567 u->dev_idx = current_vol;
5568 append_metadata_update(st, u, sizeof(*u));
5569
5570 return 0;
5571 }
5572
5573 for (dp = &super->devlist; *dp;)
5574 if ((*dp)->index == current_vol) {
5575 *dp = (*dp)->next;
5576 } else {
5577 handle_missing(super, (*dp)->dev);
5578 if ((*dp)->index > current_vol)
5579 (*dp)->index--;
5580 dp = &(*dp)->next;
5581 }
5582
5583 /* no more raid devices, all active components are now spares,
5584 * but of course failed are still failed
5585 */
5586 if (--mpb->num_raid_devs == 0) {
5587 struct dl *d;
5588
5589 for (d = super->disks; d; d = d->next)
a8619d23
AK
5590 if (d->index > -2)
5591 mark_spare(d);
33414a01
DW
5592 }
5593
5594 super->updates_pending++;
5595
5596 return 0;
5597}
aa534678 5598
a951a4f7 5599static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5600 char *update, struct mddev_ident *ident)
aa534678
DW
5601{
5602 /* update the subarray currently referenced by ->current_vol */
5603 struct intel_super *super = st->sb;
5604 struct imsm_super *mpb = super->anchor;
5605
aa534678
DW
5606 if (strcmp(update, "name") == 0) {
5607 char *name = ident->name;
a951a4f7
N
5608 char *ep;
5609 int vol;
aa534678 5610
a951a4f7 5611 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5612 fprintf(stderr,
5613 Name ": Unable to update name of active subarray\n");
5614 return 2;
5615 }
5616
5617 if (!check_name(super, name, 0))
5618 return 2;
5619
a951a4f7
N
5620 vol = strtoul(subarray, &ep, 10);
5621 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5622 return 2;
5623
aa534678
DW
5624 if (st->update_tail) {
5625 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5626
5627 if (!u)
5628 return 2;
5629 u->type = update_rename_array;
a951a4f7 5630 u->dev_idx = vol;
aa534678
DW
5631 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5632 append_metadata_update(st, u, sizeof(*u));
5633 } else {
5634 struct imsm_dev *dev;
5635 int i;
5636
a951a4f7 5637 dev = get_imsm_dev(super, vol);
aa534678
DW
5638 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5639 for (i = 0; i < mpb->num_raid_devs; i++) {
5640 dev = get_imsm_dev(super, i);
5641 handle_missing(super, dev);
5642 }
5643 super->updates_pending++;
5644 }
5645 } else
5646 return 2;
5647
5648 return 0;
5649}
bf5a934a 5650
28bce06f
AK
5651static int is_gen_migration(struct imsm_dev *dev)
5652{
7534230b
AK
5653 if (dev == NULL)
5654 return 0;
5655
28bce06f
AK
5656 if (!dev->vol.migr_state)
5657 return 0;
5658
5659 if (migr_type(dev) == MIGR_GEN_MIGR)
5660 return 1;
5661
5662 return 0;
5663}
71204a50 5664#endif /* MDASSEMBLE */
28bce06f 5665
1e5c6983
DW
5666static int is_rebuilding(struct imsm_dev *dev)
5667{
5668 struct imsm_map *migr_map;
5669
5670 if (!dev->vol.migr_state)
5671 return 0;
5672
5673 if (migr_type(dev) != MIGR_REBUILD)
5674 return 0;
5675
5676 migr_map = get_imsm_map(dev, 1);
5677
5678 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5679 return 1;
5680 else
5681 return 0;
5682}
5683
c47b0ff6
AK
5684static void update_recovery_start(struct intel_super *super,
5685 struct imsm_dev *dev,
5686 struct mdinfo *array)
1e5c6983
DW
5687{
5688 struct mdinfo *rebuild = NULL;
5689 struct mdinfo *d;
5690 __u32 units;
5691
5692 if (!is_rebuilding(dev))
5693 return;
5694
5695 /* Find the rebuild target, but punt on the dual rebuild case */
5696 for (d = array->devs; d; d = d->next)
5697 if (d->recovery_start == 0) {
5698 if (rebuild)
5699 return;
5700 rebuild = d;
5701 }
5702
4363fd80
DW
5703 if (!rebuild) {
5704 /* (?) none of the disks are marked with
5705 * IMSM_ORD_REBUILD, so assume they are missing and the
5706 * disk_ord_tbl was not correctly updated
5707 */
5708 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5709 return;
5710 }
5711
1e5c6983 5712 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5713 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5714}
5715
9e2d750d 5716#ifndef MDASSEMBLE
276d77db 5717static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5718#endif
1e5c6983 5719
00bbdbda 5720static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5721{
4f5bc454
DW
5722 /* Given a container loaded by load_super_imsm_all,
5723 * extract information about all the arrays into
5724 * an mdinfo tree.
00bbdbda 5725 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5726 *
5727 * For each imsm_dev create an mdinfo, fill it in,
5728 * then look for matching devices in super->disks
5729 * and create appropriate device mdinfo.
5730 */
5731 struct intel_super *super = st->sb;
949c47a0 5732 struct imsm_super *mpb = super->anchor;
4f5bc454 5733 struct mdinfo *rest = NULL;
00bbdbda 5734 unsigned int i;
81219e70 5735 int sb_errors = 0;
abef11a3
AK
5736 struct dl *d;
5737 int spare_disks = 0;
cdddbdbc 5738
19482bcc
AK
5739 /* do not assemble arrays when not all attributes are supported */
5740 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5741 sb_errors = 1;
5742 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5743 "Arrays activation is blocked.\n");
19482bcc
AK
5744 }
5745
a06d022d 5746 /* check for bad blocks */
81219e70
LM
5747 if (imsm_bbm_log_size(super->anchor)) {
5748 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5749 "Arrays activation is blocked.\n");
5750 sb_errors = 1;
5751 }
5752
604b746f 5753
abef11a3
AK
5754 /* count spare devices, not used in maps
5755 */
5756 for (d = super->disks; d; d = d->next)
5757 if (d->index == -1)
5758 spare_disks++;
5759
4f5bc454 5760 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5761 struct imsm_dev *dev;
5762 struct imsm_map *map;
86e3692b 5763 struct imsm_map *map2;
4f5bc454 5764 struct mdinfo *this;
2db86302 5765 int slot, chunk;
00bbdbda
N
5766 char *ep;
5767
5768 if (subarray &&
5769 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5770 continue;
5771
5772 dev = get_imsm_dev(super, i);
5773 map = get_imsm_map(dev, 0);
86e3692b 5774 map2 = get_imsm_map(dev, 1);
4f5bc454 5775
1ce0101c
DW
5776 /* do not publish arrays that are in the middle of an
5777 * unsupported migration
5778 */
5779 if (dev->vol.migr_state &&
28bce06f 5780 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5781 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5782 " unsupported migration in progress\n",
5783 dev->volume);
5784 continue;
5785 }
2db86302
LM
5786 /* do not publish arrays that are not support by controller's
5787 * OROM/EFI
5788 */
1ce0101c 5789
2db86302 5790 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5791 this = malloc(sizeof(*this));
0fbd635c 5792 if (!this) {
cf1be220 5793 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5794 sizeof(*this));
5795 break;
5796 }
4f5bc454 5797
301406c9 5798 super->current_vol = i;
a5d85af7 5799 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5800 this->next = rest;
81219e70
LM
5801#ifndef MDASSEMBLE
5802 /* mdadm does not support all metadata features- set the bit in all arrays state */
5803 if (!validate_geometry_imsm_orom(super,
5804 get_imsm_raid_level(map), /* RAID level */
5805 imsm_level_to_layout(get_imsm_raid_level(map)),
5806 map->num_members, /* raid disks */
5807 &chunk,
5808 1 /* verbose */)) {
446894ea
N
5809 fprintf(stderr, Name ": IMSM RAID geometry validation"
5810 " failed. Array %s activation is blocked.\n",
81219e70
LM
5811 dev->volume);
5812 this->array.state |=
5813 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5814 (1<<MD_SB_BLOCK_VOLUME);
5815 }
5816#endif
5817
5818 /* if array has bad blocks, set suitable bit in all arrays state */
5819 if (sb_errors)
5820 this->array.state |=
5821 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5822 (1<<MD_SB_BLOCK_VOLUME);
5823
4f5bc454 5824 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5825 unsigned long long recovery_start;
4f5bc454
DW
5826 struct mdinfo *info_d;
5827 struct dl *d;
5828 int idx;
9a1608e5 5829 int skip;
7eef0453 5830 __u32 ord;
4f5bc454 5831
9a1608e5 5832 skip = 0;
98130f40 5833 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5834 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5835 for (d = super->disks; d ; d = d->next)
5836 if (d->index == idx)
0fbd635c 5837 break;
4f5bc454 5838
1e5c6983 5839 recovery_start = MaxSector;
4f5bc454 5840 if (d == NULL)
9a1608e5 5841 skip = 1;
25ed7e59 5842 if (d && is_failed(&d->disk))
9a1608e5 5843 skip = 1;
7eef0453 5844 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5845 recovery_start = 0;
9a1608e5
DW
5846
5847 /*
5848 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5849 * reset resync start to avoid a dirty-degraded
5850 * situation when performing the intial sync
9a1608e5
DW
5851 *
5852 * FIXME handle dirty degraded
5853 */
1e5c6983 5854 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5855 this->resync_start = MaxSector;
9a1608e5
DW
5856 if (skip)
5857 continue;
4f5bc454 5858
1e5c6983 5859 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5860 if (!info_d) {
5861 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5862 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5863 info_d = this->devs;
5864 while (info_d) {
5865 struct mdinfo *d = info_d->next;
5866
5867 free(info_d);
5868 info_d = d;
5869 }
9a1608e5
DW
5870 free(this);
5871 this = rest;
5872 break;
5873 }
4f5bc454
DW
5874 info_d->next = this->devs;
5875 this->devs = info_d;
5876
4f5bc454
DW
5877 info_d->disk.number = d->index;
5878 info_d->disk.major = d->major;
5879 info_d->disk.minor = d->minor;
5880 info_d->disk.raid_disk = slot;
1e5c6983 5881 info_d->recovery_start = recovery_start;
86e3692b
AK
5882 if (map2) {
5883 if (slot < map2->num_members)
5884 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5885 else
5886 this->array.spare_disks++;
86e3692b
AK
5887 } else {
5888 if (slot < map->num_members)
5889 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5890 else
5891 this->array.spare_disks++;
86e3692b 5892 }
1e5c6983
DW
5893 if (info_d->recovery_start == MaxSector)
5894 this->array.working_disks++;
4f5bc454
DW
5895
5896 info_d->events = __le32_to_cpu(mpb->generation_num);
5897 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5898 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5899 }
1e5c6983 5900 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5901 update_recovery_start(super, dev, this);
abef11a3 5902 this->array.spare_disks += spare_disks;
276d77db 5903
9e2d750d 5904#ifndef MDASSEMBLE
276d77db
AK
5905 /* check for reshape */
5906 if (this->reshape_active == 1)
5907 recover_backup_imsm(st, this);
9e2d750d 5908#endif
9a1608e5 5909 rest = this;
4f5bc454
DW
5910 }
5911
5912 return rest;
cdddbdbc
DW
5913}
5914
845dea95 5915
fb49eef2 5916static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5917{
a965f303 5918 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5919
5920 if (!failed)
3393c6af
DW
5921 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5922 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5923
5924 switch (get_imsm_raid_level(map)) {
5925 case 0:
5926 return IMSM_T_STATE_FAILED;
5927 break;
5928 case 1:
5929 if (failed < map->num_members)
5930 return IMSM_T_STATE_DEGRADED;
5931 else
5932 return IMSM_T_STATE_FAILED;
5933 break;
5934 case 10:
5935 {
5936 /**
c92a2527
DW
5937 * check to see if any mirrors have failed, otherwise we
5938 * are degraded. Even numbered slots are mirrored on
5939 * slot+1
c2a1e7da 5940 */
c2a1e7da 5941 int i;
d9b420a5
N
5942 /* gcc -Os complains that this is unused */
5943 int insync = insync;
c2a1e7da
DW
5944
5945 for (i = 0; i < map->num_members; i++) {
98130f40 5946 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5947 int idx = ord_to_idx(ord);
5948 struct imsm_disk *disk;
c2a1e7da 5949
c92a2527
DW
5950 /* reset the potential in-sync count on even-numbered
5951 * slots. num_copies is always 2 for imsm raid10
5952 */
5953 if ((i & 1) == 0)
5954 insync = 2;
c2a1e7da 5955
c92a2527 5956 disk = get_imsm_disk(super, idx);
25ed7e59 5957 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5958 insync--;
c2a1e7da 5959
c92a2527
DW
5960 /* no in-sync disks left in this mirror the
5961 * array has failed
5962 */
5963 if (insync == 0)
5964 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5965 }
5966
5967 return IMSM_T_STATE_DEGRADED;
5968 }
5969 case 5:
5970 if (failed < 2)
5971 return IMSM_T_STATE_DEGRADED;
5972 else
5973 return IMSM_T_STATE_FAILED;
5974 break;
5975 default:
5976 break;
5977 }
5978
5979 return map->map_state;
5980}
5981
ff077194 5982static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5983{
5984 int i;
5985 int failed = 0;
5986 struct imsm_disk *disk;
ff077194 5987 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 5988 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
68fe4598 5989 struct imsm_map *map_for_loop;
0556e1a2
DW
5990 __u32 ord;
5991 int idx;
c2a1e7da 5992
0556e1a2
DW
5993 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5994 * disks that are being rebuilt. New failures are recorded to
5995 * map[0]. So we look through all the disks we started with and
5996 * see if any failures are still present, or if any new ones
5997 * have arrived
0556e1a2 5998 */
68fe4598
LD
5999 map_for_loop = prev;
6000 if (is_gen_migration(dev))
6001 if (prev && (map->num_members > prev->num_members))
6002 map_for_loop = map;
6003
6004 for (i = 0; i < map_for_loop->num_members; i++) {
6005 ord = 0;
6006 if (i < prev->num_members)
6007 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
6008 if (i < map->num_members)
6009 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
0556e1a2 6010 idx = ord_to_idx(ord);
c2a1e7da 6011
949c47a0 6012 disk = get_imsm_disk(super, idx);
25ed7e59 6013 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 6014 failed++;
c2a1e7da
DW
6015 }
6016
6017 return failed;
845dea95
NB
6018}
6019
97b4d0e9
DW
6020#ifndef MDASSEMBLE
6021static int imsm_open_new(struct supertype *c, struct active_array *a,
6022 char *inst)
6023{
6024 struct intel_super *super = c->sb;
6025 struct imsm_super *mpb = super->anchor;
6026
6027 if (atoi(inst) >= mpb->num_raid_devs) {
6028 fprintf(stderr, "%s: subarry index %d, out of range\n",
6029 __func__, atoi(inst));
6030 return -ENODEV;
6031 }
6032
6033 dprintf("imsm: open_new %s\n", inst);
6034 a->info.container_member = atoi(inst);
6035 return 0;
6036}
6037
0c046afd
DW
6038static int is_resyncing(struct imsm_dev *dev)
6039{
6040 struct imsm_map *migr_map;
6041
6042 if (!dev->vol.migr_state)
6043 return 0;
6044
1484e727
DW
6045 if (migr_type(dev) == MIGR_INIT ||
6046 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6047 return 1;
6048
4c9bc37b
AK
6049 if (migr_type(dev) == MIGR_GEN_MIGR)
6050 return 0;
6051
0c046afd
DW
6052 migr_map = get_imsm_map(dev, 1);
6053
4c9bc37b
AK
6054 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6055 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6056 return 1;
6057 else
6058 return 0;
6059}
6060
0556e1a2
DW
6061/* return true if we recorded new information */
6062static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6063{
0556e1a2
DW
6064 __u32 ord;
6065 int slot;
6066 struct imsm_map *map;
86c54047
DW
6067 char buf[MAX_RAID_SERIAL_LEN+3];
6068 unsigned int len, shift = 0;
0556e1a2
DW
6069
6070 /* new failures are always set in map[0] */
6071 map = get_imsm_map(dev, 0);
6072
6073 slot = get_imsm_disk_slot(map, idx);
6074 if (slot < 0)
6075 return 0;
6076
6077 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6078 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6079 return 0;
6080
7d0c5e24
LD
6081 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6082 buf[MAX_RAID_SERIAL_LEN] = '\000';
6083 strcat(buf, ":0");
86c54047
DW
6084 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6085 shift = len - MAX_RAID_SERIAL_LEN + 1;
6086 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6087
f2f27e63 6088 disk->status |= FAILED_DISK;
0556e1a2 6089 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
1ace8403
AK
6090 if (is_gen_migration(dev)) {
6091 struct imsm_map *map2 = get_imsm_map(dev, 1);
6092 if (slot < map2->num_members)
6093 set_imsm_ord_tbl_ent(map2, slot,
6094 idx | IMSM_ORD_REBUILD);
6095 }
f21e18ca 6096 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6097 map->failed_disk_num = slot;
6098 return 1;
6099}
6100
6101static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6102{
6103 mark_failure(dev, disk, idx);
6104
6105 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6106 return;
6107
47ee5a45
DW
6108 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6109 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6110}
6111
33414a01
DW
6112static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6113{
33414a01 6114 struct dl *dl;
33414a01
DW
6115
6116 if (!super->missing)
6117 return;
33414a01
DW
6118
6119 dprintf("imsm: mark missing\n");
33414a01
DW
6120 for (dl = super->missing; dl; dl = dl->next)
6121 mark_missing(dev, &dl->disk, dl->index);
6122 super->updates_pending++;
6123}
6124
70bdf0dc
AK
6125static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6126{
6127 int used_disks = imsm_num_data_members(dev, 0);
6128 unsigned long long array_blocks;
6129 struct imsm_map *map;
6130
6131 if (used_disks == 0) {
6132 /* when problems occures
6133 * return current array_blocks value
6134 */
6135 array_blocks = __le32_to_cpu(dev->size_high);
6136 array_blocks = array_blocks << 32;
6137 array_blocks += __le32_to_cpu(dev->size_low);
6138
6139 return array_blocks;
6140 }
6141
6142 /* set array size in metadata
6143 */
6144 map = get_imsm_map(dev, 0);
6145 array_blocks = map->blocks_per_member * used_disks;
6146
6147 /* round array size down to closest MB
6148 */
6149 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6150 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6151 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6152
6153 return array_blocks;
6154}
6155
28bce06f
AK
6156static void imsm_set_disk(struct active_array *a, int n, int state);
6157
0e2d1a4e
AK
6158static void imsm_progress_container_reshape(struct intel_super *super)
6159{
6160 /* if no device has a migr_state, but some device has a
6161 * different number of members than the previous device, start
6162 * changing the number of devices in this device to match
6163 * previous.
6164 */
6165 struct imsm_super *mpb = super->anchor;
6166 int prev_disks = -1;
6167 int i;
1dfaa380 6168 int copy_map_size;
0e2d1a4e
AK
6169
6170 for (i = 0; i < mpb->num_raid_devs; i++) {
6171 struct imsm_dev *dev = get_imsm_dev(super, i);
6172 struct imsm_map *map = get_imsm_map(dev, 0);
6173 struct imsm_map *map2;
6174 int prev_num_members;
0e2d1a4e
AK
6175
6176 if (dev->vol.migr_state)
6177 return;
6178
6179 if (prev_disks == -1)
6180 prev_disks = map->num_members;
6181 if (prev_disks == map->num_members)
6182 continue;
6183
6184 /* OK, this array needs to enter reshape mode.
6185 * i.e it needs a migr_state
6186 */
6187
1dfaa380 6188 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6189 prev_num_members = map->num_members;
6190 map->num_members = prev_disks;
6191 dev->vol.migr_state = 1;
6192 dev->vol.curr_migr_unit = 0;
ea672ee1 6193 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6194 for (i = prev_num_members;
6195 i < map->num_members; i++)
6196 set_imsm_ord_tbl_ent(map, i, i);
6197 map2 = get_imsm_map(dev, 1);
6198 /* Copy the current map */
1dfaa380 6199 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6200 map2->num_members = prev_num_members;
6201
70bdf0dc 6202 imsm_set_array_size(dev);
0e2d1a4e
AK
6203 super->updates_pending++;
6204 }
6205}
6206
aad6f216 6207/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6208 * states are handled in imsm_set_disk() with one exception, when a
6209 * resync is stopped due to a new failure this routine will set the
6210 * 'degraded' state for the array.
6211 */
01f157d7 6212static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6213{
6214 int inst = a->info.container_member;
6215 struct intel_super *super = a->container->sb;
949c47a0 6216 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6217 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6218 int failed = imsm_count_failed(super, dev);
6219 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6220 __u32 blocks_per_unit;
a862209d 6221
1af97990
AK
6222 if (dev->vol.migr_state &&
6223 dev->vol.migr_type == MIGR_GEN_MIGR) {
6224 /* array state change is blocked due to reshape action
aad6f216
N
6225 * We might need to
6226 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6227 * - finish the reshape (if last_checkpoint is big and action != reshape)
6228 * - update curr_migr_unit
1af97990 6229 */
aad6f216
N
6230 if (a->curr_action == reshape) {
6231 /* still reshaping, maybe update curr_migr_unit */
633b5610 6232 goto mark_checkpoint;
aad6f216
N
6233 } else {
6234 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6235 /* for some reason we aborted the reshape.
b66e591b
AK
6236 *
6237 * disable automatic metadata rollback
6238 * user action is required to recover process
aad6f216 6239 */
b66e591b 6240 if (0) {
aad6f216
N
6241 struct imsm_map *map2 = get_imsm_map(dev, 1);
6242 dev->vol.migr_state = 0;
ea672ee1 6243 set_migr_type(dev, 0);
aad6f216
N
6244 dev->vol.curr_migr_unit = 0;
6245 memcpy(map, map2, sizeof_imsm_map(map2));
6246 super->updates_pending++;
b66e591b 6247 }
aad6f216
N
6248 }
6249 if (a->last_checkpoint >= a->info.component_size) {
6250 unsigned long long array_blocks;
6251 int used_disks;
e154ced3 6252 struct mdinfo *mdi;
aad6f216 6253
9653001d 6254 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6255 if (used_disks > 0) {
6256 array_blocks =
6257 map->blocks_per_member *
6258 used_disks;
6259 /* round array size down to closest MB
6260 */
6261 array_blocks = (array_blocks
6262 >> SECT_PER_MB_SHIFT)
6263 << SECT_PER_MB_SHIFT;
d55adef9
AK
6264 a->info.custom_array_size = array_blocks;
6265 /* encourage manager to update array
6266 * size
6267 */
e154ced3 6268
d55adef9 6269 a->check_reshape = 1;
633b5610 6270 }
e154ced3
AK
6271 /* finalize online capacity expansion/reshape */
6272 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6273 imsm_set_disk(a,
6274 mdi->disk.raid_disk,
6275 mdi->curr_state);
6276
0e2d1a4e 6277 imsm_progress_container_reshape(super);
e154ced3 6278 }
aad6f216 6279 }
1af97990
AK
6280 }
6281
47ee5a45 6282 /* before we activate this array handle any missing disks */
33414a01
DW
6283 if (consistent == 2)
6284 handle_missing(super, dev);
1e5c6983 6285
0c046afd 6286 if (consistent == 2 &&
b7941fd6 6287 (!is_resync_complete(&a->info) ||
0c046afd
DW
6288 map_state != IMSM_T_STATE_NORMAL ||
6289 dev->vol.migr_state))
01f157d7 6290 consistent = 0;
272906ef 6291
b7941fd6 6292 if (is_resync_complete(&a->info)) {
0c046afd 6293 /* complete intialization / resync,
0556e1a2
DW
6294 * recovery and interrupted recovery is completed in
6295 * ->set_disk
0c046afd
DW
6296 */
6297 if (is_resyncing(dev)) {
6298 dprintf("imsm: mark resync done\n");
f8f603f1 6299 end_migration(dev, map_state);
115c3803 6300 super->updates_pending++;
484240d8 6301 a->last_checkpoint = 0;
115c3803 6302 }
b9172665
AK
6303 } else if ((!is_resyncing(dev) && !failed) &&
6304 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6305 /* mark the start of the init process if nothing is failed */
b7941fd6 6306 dprintf("imsm: mark resync start\n");
1484e727 6307 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6308 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6309 else
8e59f3d8 6310 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6311 super->updates_pending++;
115c3803 6312 }
a862209d 6313
633b5610 6314mark_checkpoint:
5b83bacf
AK
6315 /* skip checkpointing for general migration,
6316 * it is controlled in mdadm
6317 */
6318 if (is_gen_migration(dev))
6319 goto skip_mark_checkpoint;
6320
1e5c6983 6321 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6322 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6323 if (blocks_per_unit) {
1e5c6983
DW
6324 __u32 units32;
6325 __u64 units;
6326
4f0a7acc 6327 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6328 units32 = units;
6329
6330 /* check that we did not overflow 32-bits, and that
6331 * curr_migr_unit needs updating
6332 */
6333 if (units32 == units &&
bfd80a56 6334 units32 != 0 &&
1e5c6983
DW
6335 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6336 dprintf("imsm: mark checkpoint (%u)\n", units32);
6337 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6338 super->updates_pending++;
6339 }
6340 }
f8f603f1 6341
5b83bacf 6342skip_mark_checkpoint:
3393c6af 6343 /* mark dirty / clean */
0c046afd 6344 if (dev->vol.dirty != !consistent) {
b7941fd6 6345 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6346 if (consistent)
6347 dev->vol.dirty = 0;
6348 else
6349 dev->vol.dirty = 1;
a862209d
DW
6350 super->updates_pending++;
6351 }
28bce06f 6352
01f157d7 6353 return consistent;
a862209d
DW
6354}
6355
8d45d196 6356static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6357{
8d45d196
DW
6358 int inst = a->info.container_member;
6359 struct intel_super *super = a->container->sb;
949c47a0 6360 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6361 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6362 struct imsm_disk *disk;
0c046afd 6363 int failed;
b10b37b8 6364 __u32 ord;
0c046afd 6365 __u8 map_state;
8d45d196
DW
6366
6367 if (n > map->num_members)
6368 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6369 n, map->num_members - 1);
6370
6371 if (n < 0)
6372 return;
6373
4e6e574a 6374 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6375
9535fc47 6376 ord = get_imsm_ord_tbl_ent(dev, n, -2);
b10b37b8 6377 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6378
5802a811 6379 /* check for new failures */
0556e1a2
DW
6380 if (state & DS_FAULTY) {
6381 if (mark_failure(dev, disk, ord_to_idx(ord)))
6382 super->updates_pending++;
8d45d196 6383 }
47ee5a45 6384
19859edc 6385 /* check if in_sync */
0556e1a2 6386 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6387 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6388
6389 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6390 super->updates_pending++;
6391 }
8d45d196 6392
0c046afd
DW
6393 failed = imsm_count_failed(super, dev);
6394 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6395
0c046afd
DW
6396 /* check if recovery complete, newly degraded, or failed */
6397 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6398 end_migration(dev, map_state);
0556e1a2
DW
6399 map = get_imsm_map(dev, 0);
6400 map->failed_disk_num = ~0;
0c046afd 6401 super->updates_pending++;
484240d8 6402 a->last_checkpoint = 0;
0c046afd
DW
6403 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6404 map->map_state != map_state &&
6405 !dev->vol.migr_state) {
6406 dprintf("imsm: mark degraded\n");
6407 map->map_state = map_state;
6408 super->updates_pending++;
484240d8 6409 a->last_checkpoint = 0;
0c046afd
DW
6410 } else if (map_state == IMSM_T_STATE_FAILED &&
6411 map->map_state != map_state) {
6412 dprintf("imsm: mark failed\n");
f8f603f1 6413 end_migration(dev, map_state);
0c046afd 6414 super->updates_pending++;
484240d8 6415 a->last_checkpoint = 0;
28bce06f
AK
6416 } else if (is_gen_migration(dev)) {
6417 dprintf("imsm: Detected General Migration in state: ");
bf2f0071
AK
6418
6419 switch (map_state) {
6420 case IMSM_T_STATE_NORMAL:
6421 dprintf("normal\n");
6422 if (a->last_checkpoint >= a->info.component_size)
6423 end_migration(dev, map_state);
28bce06f
AK
6424 map = get_imsm_map(dev, 0);
6425 map->failed_disk_num = ~0;
bf2f0071
AK
6426 break;
6427 case IMSM_T_STATE_DEGRADED:
6428 dprintf("degraded\n");
6429 if (a->last_checkpoint >= a->info.component_size)
28bce06f 6430 end_migration(dev, map_state);
bf2f0071
AK
6431 break;
6432 default:
6433 dprintf("failed\n");
28bce06f 6434 }
bf2f0071 6435 map->map_state = map_state;
28bce06f 6436 super->updates_pending++;
5802a811 6437 }
845dea95
NB
6438}
6439
f796af5d 6440static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6441{
f796af5d 6442 void *buf = mpb;
c2a1e7da
DW
6443 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6444 unsigned long long dsize;
6445 unsigned long long sectors;
6446
6447 get_dev_size(fd, NULL, &dsize);
6448
272f648f
DW
6449 if (mpb_size > 512) {
6450 /* -1 to account for anchor */
6451 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6452
272f648f
DW
6453 /* write the extended mpb to the sectors preceeding the anchor */
6454 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6455 return 1;
c2a1e7da 6456
f21e18ca
N
6457 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6458 != 512 * sectors)
272f648f
DW
6459 return 1;
6460 }
c2a1e7da 6461
272f648f
DW
6462 /* first block is stored on second to last sector of the disk */
6463 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6464 return 1;
6465
f796af5d 6466 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6467 return 1;
6468
c2a1e7da
DW
6469 return 0;
6470}
6471
2e735d19 6472static void imsm_sync_metadata(struct supertype *container)
845dea95 6473{
2e735d19 6474 struct intel_super *super = container->sb;
c2a1e7da 6475
1a64be56 6476 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6477 if (!super->updates_pending)
6478 return;
6479
36988a3d 6480 write_super_imsm(container, 0);
c2a1e7da
DW
6481
6482 super->updates_pending = 0;
845dea95
NB
6483}
6484
272906ef
DW
6485static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6486{
6487 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6488 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6489 struct dl *dl;
6490
6491 for (dl = super->disks; dl; dl = dl->next)
6492 if (dl->index == i)
6493 break;
6494
25ed7e59 6495 if (dl && is_failed(&dl->disk))
272906ef
DW
6496 dl = NULL;
6497
6498 if (dl)
6499 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6500
6501 return dl;
6502}
6503
a20d2ba5 6504static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6505 struct active_array *a, int activate_new,
6506 struct mdinfo *additional_test_list)
272906ef
DW
6507{
6508 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6509 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6510 struct imsm_super *mpb = super->anchor;
6511 struct imsm_map *map;
272906ef
DW
6512 unsigned long long pos;
6513 struct mdinfo *d;
6514 struct extent *ex;
a20d2ba5 6515 int i, j;
272906ef 6516 int found;
569cc43f
DW
6517 __u32 array_start = 0;
6518 __u32 array_end = 0;
272906ef 6519 struct dl *dl;
6c932028 6520 struct mdinfo *test_list;
272906ef
DW
6521
6522 for (dl = super->disks; dl; dl = dl->next) {
6523 /* If in this array, skip */
6524 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6525 if (d->state_fd >= 0 &&
6526 d->disk.major == dl->major &&
272906ef 6527 d->disk.minor == dl->minor) {
8ba77d32
AK
6528 dprintf("%x:%x already in array\n",
6529 dl->major, dl->minor);
272906ef
DW
6530 break;
6531 }
6532 if (d)
6533 continue;
6c932028
AK
6534 test_list = additional_test_list;
6535 while (test_list) {
6536 if (test_list->disk.major == dl->major &&
6537 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6538 dprintf("%x:%x already in additional test list\n",
6539 dl->major, dl->minor);
6540 break;
6541 }
6c932028 6542 test_list = test_list->next;
8ba77d32 6543 }
6c932028 6544 if (test_list)
8ba77d32 6545 continue;
272906ef 6546
e553d2a4 6547 /* skip in use or failed drives */
25ed7e59 6548 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6549 dl->index == -2) {
6550 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6551 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6552 continue;
6553 }
6554
a20d2ba5
DW
6555 /* skip pure spares when we are looking for partially
6556 * assimilated drives
6557 */
6558 if (dl->index == -1 && !activate_new)
6559 continue;
6560
272906ef 6561 /* Does this unused device have the requisite free space?
a20d2ba5 6562 * It needs to be able to cover all member volumes
272906ef
DW
6563 */
6564 ex = get_extents(super, dl);
6565 if (!ex) {
6566 dprintf("cannot get extents\n");
6567 continue;
6568 }
a20d2ba5
DW
6569 for (i = 0; i < mpb->num_raid_devs; i++) {
6570 dev = get_imsm_dev(super, i);
6571 map = get_imsm_map(dev, 0);
272906ef 6572
a20d2ba5
DW
6573 /* check if this disk is already a member of
6574 * this array
272906ef 6575 */
620b1713 6576 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6577 continue;
6578
6579 found = 0;
6580 j = 0;
6581 pos = 0;
6582 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6583 array_end = array_start +
6584 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6585
6586 do {
6587 /* check that we can start at pba_of_lba0 with
6588 * blocks_per_member of space
6589 */
329c8278 6590 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6591 found = 1;
6592 break;
6593 }
6594 pos = ex[j].start + ex[j].size;
6595 j++;
6596 } while (ex[j-1].size);
6597
6598 if (!found)
272906ef 6599 break;
a20d2ba5 6600 }
272906ef
DW
6601
6602 free(ex);
a20d2ba5 6603 if (i < mpb->num_raid_devs) {
329c8278
DW
6604 dprintf("%x:%x does not have %u to %u available\n",
6605 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6606 /* No room */
6607 continue;
a20d2ba5
DW
6608 }
6609 return dl;
272906ef
DW
6610 }
6611
6612 return dl;
6613}
6614
95d07a2c
LM
6615
6616static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6617{
6618 struct imsm_dev *dev2;
6619 struct imsm_map *map;
6620 struct dl *idisk;
6621 int slot;
6622 int idx;
6623 __u8 state;
6624
6625 dev2 = get_imsm_dev(cont->sb, dev_idx);
6626 if (dev2) {
6627 state = imsm_check_degraded(cont->sb, dev2, failed);
6628 if (state == IMSM_T_STATE_FAILED) {
6629 map = get_imsm_map(dev2, 0);
6630 if (!map)
6631 return 1;
6632 for (slot = 0; slot < map->num_members; slot++) {
6633 /*
6634 * Check if failed disks are deleted from intel
6635 * disk list or are marked to be deleted
6636 */
98130f40 6637 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6638 idisk = get_imsm_dl_disk(cont->sb, idx);
6639 /*
6640 * Do not rebuild the array if failed disks
6641 * from failed sub-array are not removed from
6642 * container.
6643 */
6644 if (idisk &&
6645 is_failed(&idisk->disk) &&
6646 (idisk->action != DISK_REMOVE))
6647 return 0;
6648 }
6649 }
6650 }
6651 return 1;
6652}
6653
88758e9d
DW
6654static struct mdinfo *imsm_activate_spare(struct active_array *a,
6655 struct metadata_update **updates)
6656{
6657 /**
d23fe947
DW
6658 * Find a device with unused free space and use it to replace a
6659 * failed/vacant region in an array. We replace failed regions one a
6660 * array at a time. The result is that a new spare disk will be added
6661 * to the first failed array and after the monitor has finished
6662 * propagating failures the remainder will be consumed.
88758e9d 6663 *
d23fe947
DW
6664 * FIXME add a capability for mdmon to request spares from another
6665 * container.
88758e9d
DW
6666 */
6667
6668 struct intel_super *super = a->container->sb;
88758e9d 6669 int inst = a->info.container_member;
949c47a0 6670 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6671 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6672 int failed = a->info.array.raid_disks;
6673 struct mdinfo *rv = NULL;
6674 struct mdinfo *d;
6675 struct mdinfo *di;
6676 struct metadata_update *mu;
6677 struct dl *dl;
6678 struct imsm_update_activate_spare *u;
6679 int num_spares = 0;
6680 int i;
95d07a2c 6681 int allowed;
88758e9d
DW
6682
6683 for (d = a->info.devs ; d ; d = d->next) {
6684 if ((d->curr_state & DS_FAULTY) &&
6685 d->state_fd >= 0)
6686 /* wait for Removal to happen */
6687 return NULL;
6688 if (d->state_fd >= 0)
6689 failed--;
6690 }
6691
6692 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6693 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6694
e2962bfc
AK
6695 if (imsm_reshape_blocks_arrays_changes(super))
6696 return NULL;
1af97990 6697
89c67882
AK
6698 if (a->info.array.level == 4)
6699 /* No repair for takeovered array
6700 * imsm doesn't support raid4
6701 */
6702 return NULL;
6703
fb49eef2 6704 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6705 return NULL;
6706
95d07a2c
LM
6707 /*
6708 * If there are any failed disks check state of the other volume.
6709 * Block rebuild if the another one is failed until failed disks
6710 * are removed from container.
6711 */
6712 if (failed) {
c4acd1e5 6713 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6714 "failed sub-array.\n",
c4acd1e5 6715 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6716 /* check if states of the other volumes allow for rebuild */
6717 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6718 if (i != inst) {
6719 allowed = imsm_rebuild_allowed(a->container,
6720 i, failed);
6721 if (!allowed)
6722 return NULL;
6723 }
6724 }
6725 }
6726
88758e9d 6727 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6728 for (i = 0; i < a->info.array.raid_disks; i++) {
6729 for (d = a->info.devs ; d ; d = d->next)
6730 if (d->disk.raid_disk == i)
6731 break;
6732 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6733 if (d && (d->state_fd >= 0))
6734 continue;
6735
272906ef 6736 /*
a20d2ba5
DW
6737 * OK, this device needs recovery. Try to re-add the
6738 * previous occupant of this slot, if this fails see if
6739 * we can continue the assimilation of a spare that was
6740 * partially assimilated, finally try to activate a new
6741 * spare.
272906ef
DW
6742 */
6743 dl = imsm_readd(super, i, a);
6744 if (!dl)
b303fe21 6745 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6746 if (!dl)
b303fe21 6747 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6748 if (!dl)
6749 continue;
6750
6751 /* found a usable disk with enough space */
6752 di = malloc(sizeof(*di));
79244939
DW
6753 if (!di)
6754 continue;
272906ef
DW
6755 memset(di, 0, sizeof(*di));
6756
6757 /* dl->index will be -1 in the case we are activating a
6758 * pristine spare. imsm_process_update() will create a
6759 * new index in this case. Once a disk is found to be
6760 * failed in all member arrays it is kicked from the
6761 * metadata
6762 */
6763 di->disk.number = dl->index;
d23fe947 6764
272906ef
DW
6765 /* (ab)use di->devs to store a pointer to the device
6766 * we chose
6767 */
6768 di->devs = (struct mdinfo *) dl;
6769
6770 di->disk.raid_disk = i;
6771 di->disk.major = dl->major;
6772 di->disk.minor = dl->minor;
6773 di->disk.state = 0;
d23534e4 6774 di->recovery_start = 0;
272906ef
DW
6775 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6776 di->component_size = a->info.component_size;
6777 di->container_member = inst;
148acb7b 6778 super->random = random32();
272906ef
DW
6779 di->next = rv;
6780 rv = di;
6781 num_spares++;
6782 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6783 i, di->data_offset);
88758e9d
DW
6784 }
6785
6786 if (!rv)
6787 /* No spares found */
6788 return rv;
6789 /* Now 'rv' has a list of devices to return.
6790 * Create a metadata_update record to update the
6791 * disk_ord_tbl for the array
6792 */
6793 mu = malloc(sizeof(*mu));
79244939
DW
6794 if (mu) {
6795 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6796 if (mu->buf == NULL) {
6797 free(mu);
6798 mu = NULL;
6799 }
6800 }
6801 if (!mu) {
6802 while (rv) {
6803 struct mdinfo *n = rv->next;
6804
6805 free(rv);
6806 rv = n;
6807 }
6808 return NULL;
6809 }
6810
88758e9d 6811 mu->space = NULL;
cb23f1f4 6812 mu->space_list = NULL;
88758e9d
DW
6813 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6814 mu->next = *updates;
6815 u = (struct imsm_update_activate_spare *) mu->buf;
6816
6817 for (di = rv ; di ; di = di->next) {
6818 u->type = update_activate_spare;
d23fe947
DW
6819 u->dl = (struct dl *) di->devs;
6820 di->devs = NULL;
88758e9d
DW
6821 u->slot = di->disk.raid_disk;
6822 u->array = inst;
6823 u->next = u + 1;
6824 u++;
6825 }
6826 (u-1)->next = NULL;
6827 *updates = mu;
6828
6829 return rv;
6830}
6831
54c2c1ea 6832static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6833{
54c2c1ea
DW
6834 struct imsm_dev *dev = get_imsm_dev(super, idx);
6835 struct imsm_map *map = get_imsm_map(dev, 0);
6836 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6837 struct disk_info *inf = get_disk_info(u);
6838 struct imsm_disk *disk;
8273f55e
DW
6839 int i;
6840 int j;
8273f55e 6841
54c2c1ea 6842 for (i = 0; i < map->num_members; i++) {
98130f40 6843 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6844 for (j = 0; j < new_map->num_members; j++)
6845 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6846 return 1;
6847 }
6848
6849 return 0;
6850}
6851
1a64be56
LM
6852
6853static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6854{
6855 struct dl *dl = NULL;
6856 for (dl = super->disks; dl; dl = dl->next)
6857 if ((dl->major == major) && (dl->minor == minor))
6858 return dl;
6859 return NULL;
6860}
6861
6862static int remove_disk_super(struct intel_super *super, int major, int minor)
6863{
6864 struct dl *prev = NULL;
6865 struct dl *dl;
6866
6867 prev = NULL;
6868 for (dl = super->disks; dl; dl = dl->next) {
6869 if ((dl->major == major) && (dl->minor == minor)) {
6870 /* remove */
6871 if (prev)
6872 prev->next = dl->next;
6873 else
6874 super->disks = dl->next;
6875 dl->next = NULL;
6876 __free_imsm_disk(dl);
6877 dprintf("%s: removed %x:%x\n",
6878 __func__, major, minor);
6879 break;
6880 }
6881 prev = dl;
6882 }
6883 return 0;
6884}
6885
f21e18ca 6886static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6887
1a64be56
LM
6888static int add_remove_disk_update(struct intel_super *super)
6889{
6890 int check_degraded = 0;
6891 struct dl *disk = NULL;
6892 /* add/remove some spares to/from the metadata/contrainer */
6893 while (super->disk_mgmt_list) {
6894 struct dl *disk_cfg;
6895
6896 disk_cfg = super->disk_mgmt_list;
6897 super->disk_mgmt_list = disk_cfg->next;
6898 disk_cfg->next = NULL;
6899
6900 if (disk_cfg->action == DISK_ADD) {
6901 disk_cfg->next = super->disks;
6902 super->disks = disk_cfg;
6903 check_degraded = 1;
6904 dprintf("%s: added %x:%x\n",
6905 __func__, disk_cfg->major,
6906 disk_cfg->minor);
6907 } else if (disk_cfg->action == DISK_REMOVE) {
6908 dprintf("Disk remove action processed: %x.%x\n",
6909 disk_cfg->major, disk_cfg->minor);
6910 disk = get_disk_super(super,
6911 disk_cfg->major,
6912 disk_cfg->minor);
6913 if (disk) {
6914 /* store action status */
6915 disk->action = DISK_REMOVE;
6916 /* remove spare disks only */
6917 if (disk->index == -1) {
6918 remove_disk_super(super,
6919 disk_cfg->major,
6920 disk_cfg->minor);
6921 }
6922 }
6923 /* release allocate disk structure */
6924 __free_imsm_disk(disk_cfg);
6925 }
6926 }
6927 return check_degraded;
6928}
6929
a29911da
PC
6930
6931static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6932 struct intel_super *super,
6933 void ***space_list)
6934{
6935 struct intel_dev *id;
6936 void **tofree = NULL;
6937 int ret_val = 0;
6938
6939 dprintf("apply_reshape_migration_update()\n");
6940 if ((u->subdev < 0) ||
6941 (u->subdev > 1)) {
6942 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6943 return ret_val;
6944 }
6945 if ((space_list == NULL) || (*space_list == NULL)) {
6946 dprintf("imsm: Error: Memory is not allocated\n");
6947 return ret_val;
6948 }
6949
6950 for (id = super->devlist ; id; id = id->next) {
6951 if (id->index == (unsigned)u->subdev) {
6952 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6953 struct imsm_map *map;
6954 struct imsm_dev *new_dev =
6955 (struct imsm_dev *)*space_list;
6956 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6957 int to_state;
6958 struct dl *new_disk;
6959
6960 if (new_dev == NULL)
6961 return ret_val;
6962 *space_list = **space_list;
6963 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6964 map = get_imsm_map(new_dev, 0);
6965 if (migr_map) {
6966 dprintf("imsm: Error: migration in progress");
6967 return ret_val;
6968 }
6969
6970 to_state = map->map_state;
6971 if ((u->new_level == 5) && (map->raid_level == 0)) {
6972 map->num_members++;
6973 /* this should not happen */
6974 if (u->new_disks[0] < 0) {
6975 map->failed_disk_num =
6976 map->num_members - 1;
6977 to_state = IMSM_T_STATE_DEGRADED;
6978 } else
6979 to_state = IMSM_T_STATE_NORMAL;
6980 }
8e59f3d8 6981 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6982 if (u->new_level > -1)
6983 map->raid_level = u->new_level;
6984 migr_map = get_imsm_map(new_dev, 1);
6985 if ((u->new_level == 5) &&
6986 (migr_map->raid_level == 0)) {
6987 int ord = map->num_members - 1;
6988 migr_map->num_members--;
6989 if (u->new_disks[0] < 0)
6990 ord |= IMSM_ORD_REBUILD;
6991 set_imsm_ord_tbl_ent(map,
6992 map->num_members - 1,
6993 ord);
6994 }
6995 id->dev = new_dev;
6996 tofree = (void **)dev;
6997
4bba0439
PC
6998 /* update chunk size
6999 */
7000 if (u->new_chunksize > 0)
7001 map->blocks_per_strip =
7002 __cpu_to_le16(u->new_chunksize * 2);
7003
a29911da
PC
7004 /* add disk
7005 */
7006 if ((u->new_level != 5) ||
7007 (migr_map->raid_level != 0) ||
7008 (migr_map->raid_level == map->raid_level))
7009 goto skip_disk_add;
7010
7011 if (u->new_disks[0] >= 0) {
7012 /* use passes spare
7013 */
7014 new_disk = get_disk_super(super,
7015 major(u->new_disks[0]),
7016 minor(u->new_disks[0]));
7017 dprintf("imsm: new disk for reshape is: %i:%i "
7018 "(%p, index = %i)\n",
7019 major(u->new_disks[0]),
7020 minor(u->new_disks[0]),
7021 new_disk, new_disk->index);
7022 if (new_disk == NULL)
7023 goto error_disk_add;
7024
7025 new_disk->index = map->num_members - 1;
7026 /* slot to fill in autolayout
7027 */
7028 new_disk->raiddisk = new_disk->index;
7029 new_disk->disk.status |= CONFIGURED_DISK;
7030 new_disk->disk.status &= ~SPARE_DISK;
7031 } else
7032 goto error_disk_add;
7033
7034skip_disk_add:
7035 *tofree = *space_list;
7036 /* calculate new size
7037 */
7038 imsm_set_array_size(new_dev);
7039
7040 ret_val = 1;
7041 }
7042 }
7043
7044 if (tofree)
7045 *space_list = tofree;
7046 return ret_val;
7047
7048error_disk_add:
7049 dprintf("Error: imsm: Cannot find disk.\n");
7050 return ret_val;
7051}
7052
061d7da3
LO
7053static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7054 struct intel_super *super,
7055 struct active_array *active_array)
7056{
7057 struct imsm_super *mpb = super->anchor;
7058 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7059 struct imsm_map *map = get_imsm_map(dev, 0);
7060 struct imsm_map *migr_map;
7061 struct active_array *a;
7062 struct imsm_disk *disk;
7063 __u8 to_state;
7064 struct dl *dl;
7065 unsigned int found;
7066 int failed;
5961eeec 7067 int victim;
061d7da3 7068 int i;
5961eeec 7069 int second_map_created = 0;
061d7da3 7070
5961eeec 7071 for (; u; u = u->next) {
7072 victim = get_imsm_disk_idx(dev, u->slot, -1);
061d7da3 7073
5961eeec 7074 if (victim < 0)
7075 return 0;
061d7da3 7076
5961eeec 7077 for (dl = super->disks; dl; dl = dl->next)
7078 if (dl == u->dl)
7079 break;
061d7da3 7080
5961eeec 7081 if (!dl) {
7082 fprintf(stderr, "error: imsm_activate_spare passed "
7083 "an unknown disk (index: %d)\n",
7084 u->dl->index);
7085 return 0;
7086 }
061d7da3 7087
5961eeec 7088 /* count failures (excluding rebuilds and the victim)
7089 * to determine map[0] state
7090 */
7091 failed = 0;
7092 for (i = 0; i < map->num_members; i++) {
7093 if (i == u->slot)
7094 continue;
7095 disk = get_imsm_disk(super,
7096 get_imsm_disk_idx(dev, i, -1));
7097 if (!disk || is_failed(disk))
7098 failed++;
7099 }
061d7da3 7100
5961eeec 7101 /* adding a pristine spare, assign a new index */
7102 if (dl->index < 0) {
7103 dl->index = super->anchor->num_disks;
7104 super->anchor->num_disks++;
7105 }
7106 disk = &dl->disk;
7107 disk->status |= CONFIGURED_DISK;
7108 disk->status &= ~SPARE_DISK;
7109
7110 /* mark rebuild */
7111 to_state = imsm_check_degraded(super, dev, failed);
7112 if (!second_map_created) {
7113 second_map_created = 1;
7114 map->map_state = IMSM_T_STATE_DEGRADED;
7115 migrate(dev, super, to_state, MIGR_REBUILD);
7116 } else
7117 map->map_state = to_state;
7118 migr_map = get_imsm_map(dev, 1);
7119 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7120 set_imsm_ord_tbl_ent(migr_map, u->slot,
7121 dl->index | IMSM_ORD_REBUILD);
7122
7123 /* update the family_num to mark a new container
7124 * generation, being careful to record the existing
7125 * family_num in orig_family_num to clean up after
7126 * earlier mdadm versions that neglected to set it.
7127 */
7128 if (mpb->orig_family_num == 0)
7129 mpb->orig_family_num = mpb->family_num;
7130 mpb->family_num += super->random;
7131
7132 /* count arrays using the victim in the metadata */
7133 found = 0;
7134 for (a = active_array; a ; a = a->next) {
7135 dev = get_imsm_dev(super, a->info.container_member);
7136 map = get_imsm_map(dev, 0);
061d7da3 7137
5961eeec 7138 if (get_imsm_disk_slot(map, victim) >= 0)
7139 found++;
7140 }
061d7da3 7141
5961eeec 7142 /* delete the victim if it is no longer being
7143 * utilized anywhere
061d7da3 7144 */
5961eeec 7145 if (!found) {
7146 struct dl **dlp;
061d7da3 7147
5961eeec 7148 /* We know that 'manager' isn't touching anything,
7149 * so it is safe to delete
7150 */
7151 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7152 if ((*dlp)->index == victim)
7153 break;
5961eeec 7154
7155 /* victim may be on the missing list */
7156 if (!*dlp)
7157 for (dlp = &super->missing; *dlp;
7158 dlp = &(*dlp)->next)
7159 if ((*dlp)->index == victim)
7160 break;
7161 imsm_delete(super, dlp, victim);
7162 }
061d7da3
LO
7163 }
7164
7165 return 1;
7166}
a29911da 7167
2e5dc010
N
7168static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7169 struct intel_super *super,
7170 void ***space_list)
7171{
7172 struct dl *new_disk;
7173 struct intel_dev *id;
7174 int i;
7175 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7176 int disk_count = u->old_raid_disks;
2e5dc010
N
7177 void **tofree = NULL;
7178 int devices_to_reshape = 1;
7179 struct imsm_super *mpb = super->anchor;
7180 int ret_val = 0;
d098291a 7181 unsigned int dev_id;
2e5dc010 7182
ed7333bd 7183 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7184
7185 /* enable spares to use in array */
7186 for (i = 0; i < delta_disks; i++) {
7187 new_disk = get_disk_super(super,
7188 major(u->new_disks[i]),
7189 minor(u->new_disks[i]));
ed7333bd
AK
7190 dprintf("imsm: new disk for reshape is: %i:%i "
7191 "(%p, index = %i)\n",
2e5dc010
N
7192 major(u->new_disks[i]), minor(u->new_disks[i]),
7193 new_disk, new_disk->index);
7194 if ((new_disk == NULL) ||
7195 ((new_disk->index >= 0) &&
7196 (new_disk->index < u->old_raid_disks)))
7197 goto update_reshape_exit;
ee4beede 7198 new_disk->index = disk_count++;
2e5dc010
N
7199 /* slot to fill in autolayout
7200 */
7201 new_disk->raiddisk = new_disk->index;
7202 new_disk->disk.status |=
7203 CONFIGURED_DISK;
7204 new_disk->disk.status &= ~SPARE_DISK;
7205 }
7206
ed7333bd
AK
7207 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7208 mpb->num_raid_devs);
2e5dc010
N
7209 /* manage changes in volume
7210 */
d098291a 7211 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7212 void **sp = *space_list;
7213 struct imsm_dev *newdev;
7214 struct imsm_map *newmap, *oldmap;
7215
d098291a
AK
7216 for (id = super->devlist ; id; id = id->next) {
7217 if (id->index == dev_id)
7218 break;
7219 }
7220 if (id == NULL)
7221 break;
2e5dc010
N
7222 if (!sp)
7223 continue;
7224 *space_list = *sp;
7225 newdev = (void*)sp;
7226 /* Copy the dev, but not (all of) the map */
7227 memcpy(newdev, id->dev, sizeof(*newdev));
7228 oldmap = get_imsm_map(id->dev, 0);
7229 newmap = get_imsm_map(newdev, 0);
7230 /* Copy the current map */
7231 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7232 /* update one device only
7233 */
7234 if (devices_to_reshape) {
ed7333bd
AK
7235 dprintf("imsm: modifying subdev: %i\n",
7236 id->index);
2e5dc010
N
7237 devices_to_reshape--;
7238 newdev->vol.migr_state = 1;
7239 newdev->vol.curr_migr_unit = 0;
ea672ee1 7240 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7241 newmap->num_members = u->new_raid_disks;
7242 for (i = 0; i < delta_disks; i++) {
7243 set_imsm_ord_tbl_ent(newmap,
7244 u->old_raid_disks + i,
7245 u->old_raid_disks + i);
7246 }
7247 /* New map is correct, now need to save old map
7248 */
7249 newmap = get_imsm_map(newdev, 1);
7250 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7251
70bdf0dc 7252 imsm_set_array_size(newdev);
2e5dc010
N
7253 }
7254
7255 sp = (void **)id->dev;
7256 id->dev = newdev;
7257 *sp = tofree;
7258 tofree = sp;
8e59f3d8
AK
7259
7260 /* Clear migration record */
7261 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7262 }
819bc634
AK
7263 if (tofree)
7264 *space_list = tofree;
2e5dc010
N
7265 ret_val = 1;
7266
7267update_reshape_exit:
7268
7269 return ret_val;
7270}
7271
bb025c2f 7272static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7273 struct intel_super *super,
7274 void ***space_list)
bb025c2f
KW
7275{
7276 struct imsm_dev *dev = NULL;
8ca6df95
KW
7277 struct intel_dev *dv;
7278 struct imsm_dev *dev_new;
bb025c2f
KW
7279 struct imsm_map *map;
7280 struct dl *dm, *du;
8ca6df95 7281 int i;
bb025c2f
KW
7282
7283 for (dv = super->devlist; dv; dv = dv->next)
7284 if (dv->index == (unsigned int)u->subarray) {
7285 dev = dv->dev;
7286 break;
7287 }
7288
7289 if (dev == NULL)
7290 return 0;
7291
7292 map = get_imsm_map(dev, 0);
7293
7294 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7295 /* Number of failed disks must be half of initial disk number */
7296 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7297 return 0;
7298
bb025c2f
KW
7299 /* iterate through devices to mark removed disks as spare */
7300 for (dm = super->disks; dm; dm = dm->next) {
7301 if (dm->disk.status & FAILED_DISK) {
7302 int idx = dm->index;
7303 /* update indexes on the disk list */
7304/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7305 the index values will end up being correct.... NB */
7306 for (du = super->disks; du; du = du->next)
7307 if (du->index > idx)
7308 du->index--;
7309 /* mark as spare disk */
a8619d23 7310 mark_spare(dm);
bb025c2f
KW
7311 }
7312 }
bb025c2f
KW
7313 /* update map */
7314 map->num_members = map->num_members / 2;
7315 map->map_state = IMSM_T_STATE_NORMAL;
7316 map->num_domains = 1;
7317 map->raid_level = 0;
7318 map->failed_disk_num = -1;
7319 }
7320
8ca6df95
KW
7321 if (u->direction == R0_TO_R10) {
7322 void **space;
7323 /* update slots in current disk list */
7324 for (dm = super->disks; dm; dm = dm->next) {
7325 if (dm->index >= 0)
7326 dm->index *= 2;
7327 }
7328 /* create new *missing* disks */
7329 for (i = 0; i < map->num_members; i++) {
7330 space = *space_list;
7331 if (!space)
7332 continue;
7333 *space_list = *space;
7334 du = (void *)space;
7335 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7336 du->fd = -1;
7337 du->minor = 0;
7338 du->major = 0;
7339 du->index = (i * 2) + 1;
7340 sprintf((char *)du->disk.serial,
7341 " MISSING_%d", du->index);
7342 sprintf((char *)du->serial,
7343 "MISSING_%d", du->index);
7344 du->next = super->missing;
7345 super->missing = du;
7346 }
7347 /* create new dev and map */
7348 space = *space_list;
7349 if (!space)
7350 return 0;
7351 *space_list = *space;
7352 dev_new = (void *)space;
7353 memcpy(dev_new, dev, sizeof(*dev));
7354 /* update new map */
7355 map = get_imsm_map(dev_new, 0);
8ca6df95 7356 map->num_members = map->num_members * 2;
1a2487c2 7357 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7358 map->num_domains = 2;
7359 map->raid_level = 1;
7360 /* replace dev<->dev_new */
7361 dv->dev = dev_new;
7362 }
bb025c2f
KW
7363 /* update disk order table */
7364 for (du = super->disks; du; du = du->next)
7365 if (du->index >= 0)
7366 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7367 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7368 if (du->index >= 0) {
7369 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7370 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7371 }
bb025c2f
KW
7372
7373 return 1;
7374}
7375
e8319a19
DW
7376static void imsm_process_update(struct supertype *st,
7377 struct metadata_update *update)
7378{
7379 /**
7380 * crack open the metadata_update envelope to find the update record
7381 * update can be one of:
d195167d
AK
7382 * update_reshape_container_disks - all the arrays in the container
7383 * are being reshaped to have more devices. We need to mark
7384 * the arrays for general migration and convert selected spares
7385 * into active devices.
7386 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7387 * device in an array, update the disk_ord_tbl. If this disk is
7388 * present in all member arrays then also clear the SPARE_DISK
7389 * flag
d195167d
AK
7390 * update_create_array
7391 * update_kill_array
7392 * update_rename_array
7393 * update_add_remove_disk
e8319a19
DW
7394 */
7395 struct intel_super *super = st->sb;
4d7b1503 7396 struct imsm_super *mpb;
e8319a19
DW
7397 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7398
4d7b1503
DW
7399 /* update requires a larger buf but the allocation failed */
7400 if (super->next_len && !super->next_buf) {
7401 super->next_len = 0;
7402 return;
7403 }
7404
7405 if (super->next_buf) {
7406 memcpy(super->next_buf, super->buf, super->len);
7407 free(super->buf);
7408 super->len = super->next_len;
7409 super->buf = super->next_buf;
7410
7411 super->next_len = 0;
7412 super->next_buf = NULL;
7413 }
7414
7415 mpb = super->anchor;
7416
e8319a19 7417 switch (type) {
0ec5d470
AK
7418 case update_general_migration_checkpoint: {
7419 struct intel_dev *id;
7420 struct imsm_update_general_migration_checkpoint *u =
7421 (void *)update->buf;
7422
7423 dprintf("imsm: process_update() "
7424 "for update_general_migration_checkpoint called\n");
7425
7426 /* find device under general migration */
7427 for (id = super->devlist ; id; id = id->next) {
7428 if (is_gen_migration(id->dev)) {
7429 id->dev->vol.curr_migr_unit =
7430 __cpu_to_le32(u->curr_migr_unit);
7431 super->updates_pending++;
7432 }
7433 }
7434 break;
7435 }
bb025c2f
KW
7436 case update_takeover: {
7437 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7438 if (apply_takeover_update(u, super, &update->space_list)) {
7439 imsm_update_version_info(super);
bb025c2f 7440 super->updates_pending++;
1a2487c2 7441 }
bb025c2f
KW
7442 break;
7443 }
7444
78b10e66 7445 case update_reshape_container_disks: {
d195167d 7446 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7447 if (apply_reshape_container_disks_update(
7448 u, super, &update->space_list))
7449 super->updates_pending++;
78b10e66
N
7450 break;
7451 }
48c5303a 7452 case update_reshape_migration: {
a29911da
PC
7453 struct imsm_update_reshape_migration *u = (void *)update->buf;
7454 if (apply_reshape_migration_update(
7455 u, super, &update->space_list))
7456 super->updates_pending++;
48c5303a
PC
7457 break;
7458 }
e8319a19
DW
7459 case update_activate_spare: {
7460 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7461 if (apply_update_activate_spare(u, super, st->arrays))
7462 super->updates_pending++;
8273f55e
DW
7463 break;
7464 }
7465 case update_create_array: {
7466 /* someone wants to create a new array, we need to be aware of
7467 * a few races/collisions:
7468 * 1/ 'Create' called by two separate instances of mdadm
7469 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7470 * devices that have since been assimilated via
7471 * activate_spare.
7472 * In the event this update can not be carried out mdadm will
7473 * (FIX ME) notice that its update did not take hold.
7474 */
7475 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7476 struct intel_dev *dv;
8273f55e
DW
7477 struct imsm_dev *dev;
7478 struct imsm_map *map, *new_map;
7479 unsigned long long start, end;
7480 unsigned long long new_start, new_end;
7481 int i;
54c2c1ea
DW
7482 struct disk_info *inf;
7483 struct dl *dl;
8273f55e
DW
7484
7485 /* handle racing creates: first come first serve */
7486 if (u->dev_idx < mpb->num_raid_devs) {
7487 dprintf("%s: subarray %d already defined\n",
7488 __func__, u->dev_idx);
ba2de7ba 7489 goto create_error;
8273f55e
DW
7490 }
7491
7492 /* check update is next in sequence */
7493 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7494 dprintf("%s: can not create array %d expected index %d\n",
7495 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7496 goto create_error;
8273f55e
DW
7497 }
7498
a965f303 7499 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7500 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7501 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7502 inf = get_disk_info(u);
8273f55e
DW
7503
7504 /* handle activate_spare versus create race:
7505 * check to make sure that overlapping arrays do not include
7506 * overalpping disks
7507 */
7508 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7509 dev = get_imsm_dev(super, i);
a965f303 7510 map = get_imsm_map(dev, 0);
8273f55e
DW
7511 start = __le32_to_cpu(map->pba_of_lba0);
7512 end = start + __le32_to_cpu(map->blocks_per_member);
7513 if ((new_start >= start && new_start <= end) ||
7514 (start >= new_start && start <= new_end))
54c2c1ea
DW
7515 /* overlap */;
7516 else
7517 continue;
7518
7519 if (disks_overlap(super, i, u)) {
8273f55e 7520 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7521 goto create_error;
8273f55e
DW
7522 }
7523 }
8273f55e 7524
949c47a0
DW
7525 /* check that prepare update was successful */
7526 if (!update->space) {
7527 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7528 goto create_error;
949c47a0
DW
7529 }
7530
54c2c1ea
DW
7531 /* check that all disks are still active before committing
7532 * changes. FIXME: could we instead handle this by creating a
7533 * degraded array? That's probably not what the user expects,
7534 * so better to drop this update on the floor.
7535 */
7536 for (i = 0; i < new_map->num_members; i++) {
7537 dl = serial_to_dl(inf[i].serial, super);
7538 if (!dl) {
7539 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7540 goto create_error;
54c2c1ea 7541 }
949c47a0
DW
7542 }
7543
8273f55e 7544 super->updates_pending++;
54c2c1ea
DW
7545
7546 /* convert spares to members and fixup ord_tbl */
7547 for (i = 0; i < new_map->num_members; i++) {
7548 dl = serial_to_dl(inf[i].serial, super);
7549 if (dl->index == -1) {
7550 dl->index = mpb->num_disks;
7551 mpb->num_disks++;
7552 dl->disk.status |= CONFIGURED_DISK;
7553 dl->disk.status &= ~SPARE_DISK;
7554 }
7555 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7556 }
7557
ba2de7ba
DW
7558 dv = update->space;
7559 dev = dv->dev;
949c47a0
DW
7560 update->space = NULL;
7561 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7562 dv->index = u->dev_idx;
7563 dv->next = super->devlist;
7564 super->devlist = dv;
8273f55e 7565 mpb->num_raid_devs++;
8273f55e 7566
4d1313e9 7567 imsm_update_version_info(super);
8273f55e 7568 break;
ba2de7ba
DW
7569 create_error:
7570 /* mdmon knows how to release update->space, but not
7571 * ((struct intel_dev *) update->space)->dev
7572 */
7573 if (update->space) {
7574 dv = update->space;
7575 free(dv->dev);
7576 }
8273f55e 7577 break;
e8319a19 7578 }
33414a01
DW
7579 case update_kill_array: {
7580 struct imsm_update_kill_array *u = (void *) update->buf;
7581 int victim = u->dev_idx;
7582 struct active_array *a;
7583 struct intel_dev **dp;
7584 struct imsm_dev *dev;
7585
7586 /* sanity check that we are not affecting the uuid of
7587 * active arrays, or deleting an active array
7588 *
7589 * FIXME when immutable ids are available, but note that
7590 * we'll also need to fixup the invalidated/active
7591 * subarray indexes in mdstat
7592 */
7593 for (a = st->arrays; a; a = a->next)
7594 if (a->info.container_member >= victim)
7595 break;
7596 /* by definition if mdmon is running at least one array
7597 * is active in the container, so checking
7598 * mpb->num_raid_devs is just extra paranoia
7599 */
7600 dev = get_imsm_dev(super, victim);
7601 if (a || !dev || mpb->num_raid_devs == 1) {
7602 dprintf("failed to delete subarray-%d\n", victim);
7603 break;
7604 }
7605
7606 for (dp = &super->devlist; *dp;)
f21e18ca 7607 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7608 *dp = (*dp)->next;
7609 } else {
f21e18ca 7610 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7611 (*dp)->index--;
7612 dp = &(*dp)->next;
7613 }
7614 mpb->num_raid_devs--;
7615 super->updates_pending++;
7616 break;
7617 }
aa534678
DW
7618 case update_rename_array: {
7619 struct imsm_update_rename_array *u = (void *) update->buf;
7620 char name[MAX_RAID_SERIAL_LEN+1];
7621 int target = u->dev_idx;
7622 struct active_array *a;
7623 struct imsm_dev *dev;
7624
7625 /* sanity check that we are not affecting the uuid of
7626 * an active array
7627 */
7628 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7629 name[MAX_RAID_SERIAL_LEN] = '\0';
7630 for (a = st->arrays; a; a = a->next)
7631 if (a->info.container_member == target)
7632 break;
7633 dev = get_imsm_dev(super, u->dev_idx);
7634 if (a || !dev || !check_name(super, name, 1)) {
7635 dprintf("failed to rename subarray-%d\n", target);
7636 break;
7637 }
7638
cdbe98cd 7639 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7640 super->updates_pending++;
7641 break;
7642 }
1a64be56 7643 case update_add_remove_disk: {
43dad3d6 7644 /* we may be able to repair some arrays if disks are
1a64be56
LM
7645 * being added, check teh status of add_remove_disk
7646 * if discs has been added.
7647 */
7648 if (add_remove_disk_update(super)) {
43dad3d6 7649 struct active_array *a;
072b727f
DW
7650
7651 super->updates_pending++;
1a64be56 7652 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7653 a->check_degraded = 1;
7654 }
43dad3d6 7655 break;
e8319a19 7656 }
1a64be56
LM
7657 default:
7658 fprintf(stderr, "error: unsuported process update type:"
7659 "(type: %d)\n", type);
7660 }
e8319a19 7661}
88758e9d 7662
bc0b9d34
PC
7663static struct mdinfo *get_spares_for_grow(struct supertype *st);
7664
8273f55e
DW
7665static void imsm_prepare_update(struct supertype *st,
7666 struct metadata_update *update)
7667{
949c47a0 7668 /**
4d7b1503
DW
7669 * Allocate space to hold new disk entries, raid-device entries or a new
7670 * mpb if necessary. The manager synchronously waits for updates to
7671 * complete in the monitor, so new mpb buffers allocated here can be
7672 * integrated by the monitor thread without worrying about live pointers
7673 * in the manager thread.
8273f55e 7674 */
949c47a0 7675 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7676 struct intel_super *super = st->sb;
7677 struct imsm_super *mpb = super->anchor;
7678 size_t buf_len;
7679 size_t len = 0;
949c47a0
DW
7680
7681 switch (type) {
0ec5d470
AK
7682 case update_general_migration_checkpoint:
7683 dprintf("imsm: prepare_update() "
7684 "for update_general_migration_checkpoint called\n");
7685 break;
abedf5fc
KW
7686 case update_takeover: {
7687 struct imsm_update_takeover *u = (void *)update->buf;
7688 if (u->direction == R0_TO_R10) {
7689 void **tail = (void **)&update->space_list;
7690 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7691 struct imsm_map *map = get_imsm_map(dev, 0);
7692 int num_members = map->num_members;
7693 void *space;
7694 int size, i;
7695 int err = 0;
7696 /* allocate memory for added disks */
7697 for (i = 0; i < num_members; i++) {
7698 size = sizeof(struct dl);
7699 space = malloc(size);
7700 if (!space) {
7701 err++;
7702 break;
7703 }
7704 *tail = space;
7705 tail = space;
7706 *tail = NULL;
7707 }
7708 /* allocate memory for new device */
7709 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7710 (num_members * sizeof(__u32));
7711 space = malloc(size);
7712 if (!space)
7713 err++;
7714 else {
7715 *tail = space;
7716 tail = space;
7717 *tail = NULL;
7718 }
7719 if (!err) {
7720 len = disks_to_mpb_size(num_members * 2);
7721 } else {
7722 /* if allocation didn't success, free buffer */
7723 while (update->space_list) {
7724 void **sp = update->space_list;
7725 update->space_list = *sp;
7726 free(sp);
7727 }
7728 }
7729 }
7730
7731 break;
7732 }
78b10e66 7733 case update_reshape_container_disks: {
d195167d
AK
7734 /* Every raid device in the container is about to
7735 * gain some more devices, and we will enter a
7736 * reconfiguration.
7737 * So each 'imsm_map' will be bigger, and the imsm_vol
7738 * will now hold 2 of them.
7739 * Thus we need new 'struct imsm_dev' allocations sized
7740 * as sizeof_imsm_dev but with more devices in both maps.
7741 */
7742 struct imsm_update_reshape *u = (void *)update->buf;
7743 struct intel_dev *dl;
7744 void **space_tail = (void**)&update->space_list;
7745
7746 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7747
7748 for (dl = super->devlist; dl; dl = dl->next) {
7749 int size = sizeof_imsm_dev(dl->dev, 1);
7750 void *s;
d677e0b8
AK
7751 if (u->new_raid_disks > u->old_raid_disks)
7752 size += sizeof(__u32)*2*
7753 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7754 s = malloc(size);
7755 if (!s)
7756 break;
7757 *space_tail = s;
7758 space_tail = s;
7759 *space_tail = NULL;
7760 }
7761
7762 len = disks_to_mpb_size(u->new_raid_disks);
7763 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7764 break;
7765 }
48c5303a 7766 case update_reshape_migration: {
bc0b9d34
PC
7767 /* for migration level 0->5 we need to add disks
7768 * so the same as for container operation we will copy
7769 * device to the bigger location.
7770 * in memory prepared device and new disk area are prepared
7771 * for usage in process update
7772 */
7773 struct imsm_update_reshape_migration *u = (void *)update->buf;
7774 struct intel_dev *id;
7775 void **space_tail = (void **)&update->space_list;
7776 int size;
7777 void *s;
7778 int current_level = -1;
7779
7780 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7781
7782 /* add space for bigger array in update
7783 */
7784 for (id = super->devlist; id; id = id->next) {
7785 if (id->index == (unsigned)u->subdev) {
7786 size = sizeof_imsm_dev(id->dev, 1);
7787 if (u->new_raid_disks > u->old_raid_disks)
7788 size += sizeof(__u32)*2*
7789 (u->new_raid_disks - u->old_raid_disks);
7790 s = malloc(size);
7791 if (!s)
7792 break;
7793 *space_tail = s;
7794 space_tail = s;
7795 *space_tail = NULL;
7796 break;
7797 }
7798 }
7799 if (update->space_list == NULL)
7800 break;
7801
7802 /* add space for disk in update
7803 */
7804 size = sizeof(struct dl);
7805 s = malloc(size);
7806 if (!s) {
7807 free(update->space_list);
7808 update->space_list = NULL;
7809 break;
7810 }
7811 *space_tail = s;
7812 space_tail = s;
7813 *space_tail = NULL;
7814
7815 /* add spare device to update
7816 */
7817 for (id = super->devlist ; id; id = id->next)
7818 if (id->index == (unsigned)u->subdev) {
7819 struct imsm_dev *dev;
7820 struct imsm_map *map;
7821
7822 dev = get_imsm_dev(super, u->subdev);
7823 map = get_imsm_map(dev, 0);
7824 current_level = map->raid_level;
7825 break;
7826 }
7827 if ((u->new_level == 5) && (u->new_level != current_level)) {
7828 struct mdinfo *spares;
7829
7830 spares = get_spares_for_grow(st);
7831 if (spares) {
7832 struct dl *dl;
7833 struct mdinfo *dev;
7834
7835 dev = spares->devs;
7836 if (dev) {
7837 u->new_disks[0] =
7838 makedev(dev->disk.major,
7839 dev->disk.minor);
7840 dl = get_disk_super(super,
7841 dev->disk.major,
7842 dev->disk.minor);
7843 dl->index = u->old_raid_disks;
7844 dev = dev->next;
7845 }
7846 sysfs_free(spares);
7847 }
7848 }
7849 len = disks_to_mpb_size(u->new_raid_disks);
7850 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7851 break;
7852 }
949c47a0
DW
7853 case update_create_array: {
7854 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7855 struct intel_dev *dv;
54c2c1ea
DW
7856 struct imsm_dev *dev = &u->dev;
7857 struct imsm_map *map = get_imsm_map(dev, 0);
7858 struct dl *dl;
7859 struct disk_info *inf;
7860 int i;
7861 int activate = 0;
949c47a0 7862
54c2c1ea
DW
7863 inf = get_disk_info(u);
7864 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7865 /* allocate a new super->devlist entry */
7866 dv = malloc(sizeof(*dv));
7867 if (dv) {
7868 dv->dev = malloc(len);
7869 if (dv->dev)
7870 update->space = dv;
7871 else {
7872 free(dv);
7873 update->space = NULL;
7874 }
7875 }
949c47a0 7876
54c2c1ea
DW
7877 /* count how many spares will be converted to members */
7878 for (i = 0; i < map->num_members; i++) {
7879 dl = serial_to_dl(inf[i].serial, super);
7880 if (!dl) {
7881 /* hmm maybe it failed?, nothing we can do about
7882 * it here
7883 */
7884 continue;
7885 }
7886 if (count_memberships(dl, super) == 0)
7887 activate++;
7888 }
7889 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7890 break;
7891 default:
7892 break;
7893 }
7894 }
8273f55e 7895
4d7b1503
DW
7896 /* check if we need a larger metadata buffer */
7897 if (super->next_buf)
7898 buf_len = super->next_len;
7899 else
7900 buf_len = super->len;
7901
7902 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7903 /* ok we need a larger buf than what is currently allocated
7904 * if this allocation fails process_update will notice that
7905 * ->next_len is set and ->next_buf is NULL
7906 */
7907 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7908 if (super->next_buf)
7909 free(super->next_buf);
7910
7911 super->next_len = buf_len;
1f45a8ad
DW
7912 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7913 memset(super->next_buf, 0, buf_len);
7914 else
4d7b1503
DW
7915 super->next_buf = NULL;
7916 }
8273f55e
DW
7917}
7918
ae6aad82 7919/* must be called while manager is quiesced */
f21e18ca 7920static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7921{
7922 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7923 struct dl *iter;
7924 struct imsm_dev *dev;
7925 struct imsm_map *map;
24565c9a
DW
7926 int i, j, num_members;
7927 __u32 ord;
ae6aad82 7928
24565c9a
DW
7929 dprintf("%s: deleting device[%d] from imsm_super\n",
7930 __func__, index);
ae6aad82
DW
7931
7932 /* shift all indexes down one */
7933 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7934 if (iter->index > (int)index)
ae6aad82 7935 iter->index--;
47ee5a45 7936 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7937 if (iter->index > (int)index)
47ee5a45 7938 iter->index--;
ae6aad82
DW
7939
7940 for (i = 0; i < mpb->num_raid_devs; i++) {
7941 dev = get_imsm_dev(super, i);
7942 map = get_imsm_map(dev, 0);
24565c9a
DW
7943 num_members = map->num_members;
7944 for (j = 0; j < num_members; j++) {
7945 /* update ord entries being careful not to propagate
7946 * ord-flags to the first map
7947 */
98130f40 7948 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7949
24565c9a
DW
7950 if (ord_to_idx(ord) <= index)
7951 continue;
ae6aad82 7952
24565c9a
DW
7953 map = get_imsm_map(dev, 0);
7954 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7955 map = get_imsm_map(dev, 1);
7956 if (map)
7957 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7958 }
7959 }
7960
7961 mpb->num_disks--;
7962 super->updates_pending++;
24565c9a
DW
7963 if (*dlp) {
7964 struct dl *dl = *dlp;
7965
7966 *dlp = (*dlp)->next;
7967 __free_imsm_disk(dl);
7968 }
ae6aad82 7969}
9e2d750d 7970#endif /* MDASSEMBLE */
687629c2
AK
7971/*******************************************************************************
7972 * Function: open_backup_targets
7973 * Description: Function opens file descriptors for all devices given in
7974 * info->devs
7975 * Parameters:
7976 * info : general array info
7977 * raid_disks : number of disks
7978 * raid_fds : table of device's file descriptors
7979 * Returns:
7980 * 0 : success
7981 * -1 : fail
7982 ******************************************************************************/
7983int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7984{
7985 struct mdinfo *sd;
f627f5ad
AK
7986 int i;
7987
7988 for (i = 0; i < raid_disks; i++)
7989 raid_fds[i] = -1;
687629c2
AK
7990
7991 for (sd = info->devs ; sd ; sd = sd->next) {
7992 char *dn;
7993
7994 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7995 dprintf("disk is faulty!!\n");
7996 continue;
7997 }
7998
7999 if ((sd->disk.raid_disk >= raid_disks) ||
8000 (sd->disk.raid_disk < 0))
8001 continue;
8002
8003 dn = map_dev(sd->disk.major,
8004 sd->disk.minor, 1);
8005 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8006 if (raid_fds[sd->disk.raid_disk] < 0) {
8007 fprintf(stderr, "cannot open component\n");
8008 return -1;
8009 }
8010 }
8011 return 0;
8012}
8013
9e2d750d 8014#ifndef MDASSEMBLE
687629c2
AK
8015/*******************************************************************************
8016 * Function: init_migr_record_imsm
8017 * Description: Function inits imsm migration record
8018 * Parameters:
8019 * super : imsm internal array info
8020 * dev : device under migration
8021 * info : general array info to find the smallest device
8022 * Returns:
8023 * none
8024 ******************************************************************************/
8025void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8026 struct mdinfo *info)
8027{
8028 struct intel_super *super = st->sb;
8029 struct migr_record *migr_rec = super->migr_rec;
8030 int new_data_disks;
8031 unsigned long long dsize, dev_sectors;
8032 long long unsigned min_dev_sectors = -1LLU;
8033 struct mdinfo *sd;
8034 char nm[30];
8035 int fd;
8036 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8037 struct imsm_map *map_src = get_imsm_map(dev, 1);
8038 unsigned long long num_migr_units;
3ef4403c 8039 unsigned long long array_blocks;
687629c2
AK
8040
8041 memset(migr_rec, 0, sizeof(struct migr_record));
8042 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8043
8044 /* only ascending reshape supported now */
8045 migr_rec->ascending_migr = __cpu_to_le32(1);
8046
8047 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8048 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8049 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8050 new_data_disks = imsm_num_data_members(dev, 0);
8051 migr_rec->blocks_per_unit =
8052 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8053 migr_rec->dest_depth_per_unit =
8054 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8055 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8056 num_migr_units =
8057 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8058
8059 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8060 num_migr_units++;
8061 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8062
8063 migr_rec->post_migr_vol_cap = dev->size_low;
8064 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8065
8066
8067 /* Find the smallest dev */
8068 for (sd = info->devs ; sd ; sd = sd->next) {
8069 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8070 fd = dev_open(nm, O_RDONLY);
8071 if (fd < 0)
8072 continue;
8073 get_dev_size(fd, NULL, &dsize);
8074 dev_sectors = dsize / 512;
8075 if (dev_sectors < min_dev_sectors)
8076 min_dev_sectors = dev_sectors;
8077 close(fd);
8078 }
8079 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8080 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8081
8082 write_imsm_migr_rec(st);
8083
8084 return;
8085}
8086
8087/*******************************************************************************
8088 * Function: save_backup_imsm
8089 * Description: Function saves critical data stripes to Migration Copy Area
8090 * and updates the current migration unit status.
8091 * Use restore_stripes() to form a destination stripe,
8092 * and to write it to the Copy Area.
8093 * Parameters:
8094 * st : supertype information
aea93171 8095 * dev : imsm device that backup is saved for
687629c2
AK
8096 * info : general array info
8097 * buf : input buffer
687629c2
AK
8098 * length : length of data to backup (blocks_per_unit)
8099 * Returns:
8100 * 0 : success
8101 *, -1 : fail
8102 ******************************************************************************/
8103int save_backup_imsm(struct supertype *st,
8104 struct imsm_dev *dev,
8105 struct mdinfo *info,
8106 void *buf,
687629c2
AK
8107 int length)
8108{
8109 int rv = -1;
8110 struct intel_super *super = st->sb;
8111 unsigned long long *target_offsets = NULL;
8112 int *targets = NULL;
8113 int i;
8114 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8115 int new_disks = map_dest->num_members;
ab724b98
AK
8116 int dest_layout = 0;
8117 int dest_chunk;
d1877f69
AK
8118 unsigned long long start;
8119 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8120
8121 targets = malloc(new_disks * sizeof(int));
8122 if (!targets)
8123 goto abort;
8124
7e45b550
AK
8125 for (i = 0; i < new_disks; i++)
8126 targets[i] = -1;
8127
687629c2
AK
8128 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8129 if (!target_offsets)
8130 goto abort;
8131
d1877f69 8132 start = info->reshape_progress * 512;
687629c2 8133 for (i = 0; i < new_disks; i++) {
687629c2
AK
8134 target_offsets[i] = (unsigned long long)
8135 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8136 /* move back copy area adderss, it will be moved forward
8137 * in restore_stripes() using start input variable
8138 */
8139 target_offsets[i] -= start/data_disks;
687629c2
AK
8140 }
8141
8142 if (open_backup_targets(info, new_disks, targets))
8143 goto abort;
8144
68eb8bc6 8145 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8146 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8147
687629c2
AK
8148 if (restore_stripes(targets, /* list of dest devices */
8149 target_offsets, /* migration record offsets */
8150 new_disks,
ab724b98
AK
8151 dest_chunk,
8152 map_dest->raid_level,
8153 dest_layout,
8154 -1, /* source backup file descriptor */
8155 0, /* input buf offset
8156 * always 0 buf is already offseted */
d1877f69 8157 start,
687629c2
AK
8158 length,
8159 buf) != 0) {
8160 fprintf(stderr, Name ": Error restoring stripes\n");
8161 goto abort;
8162 }
8163
8164 rv = 0;
8165
8166abort:
8167 if (targets) {
8168 for (i = 0; i < new_disks; i++)
8169 if (targets[i] >= 0)
8170 close(targets[i]);
8171 free(targets);
8172 }
8173 free(target_offsets);
8174
8175 return rv;
8176}
8177
8178/*******************************************************************************
8179 * Function: save_checkpoint_imsm
8180 * Description: Function called for current unit status update
8181 * in the migration record. It writes it to disk.
8182 * Parameters:
8183 * super : imsm internal array info
8184 * info : general array info
8185 * Returns:
8186 * 0: success
8187 * 1: failure
0228d92c
AK
8188 * 2: failure, means no valid migration record
8189 * / no general migration in progress /
687629c2
AK
8190 ******************************************************************************/
8191int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8192{
8193 struct intel_super *super = st->sb;
f8b72ef5
AK
8194 unsigned long long blocks_per_unit;
8195 unsigned long long curr_migr_unit;
8196
2e062e82
AK
8197 if (load_imsm_migr_rec(super, info) != 0) {
8198 dprintf("imsm: ERROR: Cannot read migration record "
8199 "for checkpoint save.\n");
8200 return 1;
8201 }
8202
f8b72ef5
AK
8203 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8204 if (blocks_per_unit == 0) {
0228d92c
AK
8205 dprintf("imsm: no migration in progress.\n");
8206 return 2;
687629c2 8207 }
f8b72ef5
AK
8208 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8209 /* check if array is alligned to copy area
8210 * if it is not alligned, add one to current migration unit value
8211 * this can happend on array reshape finish only
8212 */
8213 if (info->reshape_progress % blocks_per_unit)
8214 curr_migr_unit++;
687629c2
AK
8215
8216 super->migr_rec->curr_migr_unit =
f8b72ef5 8217 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8218 super->migr_rec->rec_status = __cpu_to_le32(state);
8219 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8220 __cpu_to_le32(curr_migr_unit *
8221 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8222 if (write_imsm_migr_rec(st) < 0) {
8223 dprintf("imsm: Cannot write migration record "
8224 "outside backup area\n");
8225 return 1;
8226 }
8227
8228 return 0;
8229}
8230
276d77db
AK
8231/*******************************************************************************
8232 * Function: recover_backup_imsm
8233 * Description: Function recovers critical data from the Migration Copy Area
8234 * while assembling an array.
8235 * Parameters:
8236 * super : imsm internal array info
8237 * info : general array info
8238 * Returns:
8239 * 0 : success (or there is no data to recover)
8240 * 1 : fail
8241 ******************************************************************************/
8242int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8243{
8244 struct intel_super *super = st->sb;
8245 struct migr_record *migr_rec = super->migr_rec;
8246 struct imsm_map *map_dest = NULL;
8247 struct intel_dev *id = NULL;
8248 unsigned long long read_offset;
8249 unsigned long long write_offset;
8250 unsigned unit_len;
8251 int *targets = NULL;
8252 int new_disks, i, err;
8253 char *buf = NULL;
8254 int retval = 1;
8255 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8256 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8257 char buffer[20];
6c3560c0
AK
8258 int skipped_disks = 0;
8259 int max_degradation;
276d77db
AK
8260
8261 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8262 if (err < 1)
8263 return 1;
8264
8265 /* recover data only during assemblation */
8266 if (strncmp(buffer, "inactive", 8) != 0)
8267 return 0;
8268 /* no data to recover */
8269 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8270 return 0;
8271 if (curr_migr_unit >= num_migr_units)
8272 return 1;
8273
8274 /* find device during reshape */
8275 for (id = super->devlist; id; id = id->next)
8276 if (is_gen_migration(id->dev))
8277 break;
8278 if (id == NULL)
8279 return 1;
8280
8281 map_dest = get_imsm_map(id->dev, 0);
8282 new_disks = map_dest->num_members;
6c3560c0 8283 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8284
8285 read_offset = (unsigned long long)
8286 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8287
8288 write_offset = ((unsigned long long)
8289 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8290 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8291
8292 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8293 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8294 goto abort;
8295 targets = malloc(new_disks * sizeof(int));
8296 if (!targets)
8297 goto abort;
8298
f627f5ad
AK
8299 if (open_backup_targets(info, new_disks, targets)) {
8300 fprintf(stderr,
8301 Name ": Cannot open some devices belonging to array.\n");
8302 goto abort;
8303 }
276d77db
AK
8304
8305 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8306 if (targets[i] < 0) {
8307 skipped_disks++;
8308 continue;
8309 }
276d77db
AK
8310 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8311 fprintf(stderr,
8312 Name ": Cannot seek to block: %s\n",
8313 strerror(errno));
8314 goto abort;
8315 }
9ec11d1a 8316 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8317 fprintf(stderr,
8318 Name ": Cannot read copy area block: %s\n",
8319 strerror(errno));
8320 goto abort;
8321 }
8322 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8323 fprintf(stderr,
8324 Name ": Cannot seek to block: %s\n",
8325 strerror(errno));
8326 goto abort;
8327 }
9ec11d1a 8328 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8329 fprintf(stderr,
8330 Name ": Cannot restore block: %s\n",
8331 strerror(errno));
8332 goto abort;
8333 }
8334 }
8335
6c3560c0
AK
8336 if (skipped_disks > max_degradation) {
8337 fprintf(stderr,
8338 Name ": Cannot restore data from backup."
8339 " Too many failed disks\n");
8340 goto abort;
8341 }
8342
befb629b
AK
8343 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8344 /* ignore error == 2, this can mean end of reshape here
8345 */
8346 dprintf("imsm: Cannot write checkpoint to "
8347 "migration record (UNIT_SRC_NORMAL) during restart\n");
8348 } else
276d77db 8349 retval = 0;
276d77db
AK
8350
8351abort:
8352 if (targets) {
8353 for (i = 0; i < new_disks; i++)
8354 if (targets[i])
8355 close(targets[i]);
8356 free(targets);
8357 }
8358 free(buf);
8359 return retval;
8360}
8361
2cda7640
ML
8362static char disk_by_path[] = "/dev/disk/by-path/";
8363
8364static const char *imsm_get_disk_controller_domain(const char *path)
8365{
2cda7640 8366 char disk_path[PATH_MAX];
96234762
LM
8367 char *drv=NULL;
8368 struct stat st;
2cda7640 8369
96234762
LM
8370 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8371 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8372 if (stat(disk_path, &st) == 0) {
8373 struct sys_dev* hba;
8374 char *path=NULL;
8375
8376 path = devt_to_devpath(st.st_rdev);
8377 if (path == NULL)
8378 return "unknown";
8379 hba = find_disk_attached_hba(-1, path);
8380 if (hba && hba->type == SYS_DEV_SAS)
8381 drv = "isci";
8382 else if (hba && hba->type == SYS_DEV_SATA)
8383 drv = "ahci";
8384 else
8385 drv = "unknown";
8386 dprintf("path: %s hba: %s attached: %s\n",
8387 path, (hba) ? hba->path : "NULL", drv);
8388 free(path);
8389 if (hba)
8390 free_sys_dev(&hba);
2cda7640 8391 }
96234762 8392 return drv;
2cda7640
ML
8393}
8394
78b10e66
N
8395static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8396{
8397 char subdev_name[20];
8398 struct mdstat_ent *mdstat;
8399
8400 sprintf(subdev_name, "%d", subdev);
8401 mdstat = mdstat_by_subdev(subdev_name, container);
8402 if (!mdstat)
8403 return -1;
8404
8405 *minor = mdstat->devnum;
8406 free_mdstat(mdstat);
8407 return 0;
8408}
8409
8410static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8411 struct geo_params *geo,
8412 int *old_raid_disks)
8413{
694575e7
KW
8414 /* currently we only support increasing the number of devices
8415 * for a container. This increases the number of device for each
8416 * member array. They must all be RAID0 or RAID5.
8417 */
78b10e66
N
8418 int ret_val = 0;
8419 struct mdinfo *info, *member;
8420 int devices_that_can_grow = 0;
8421
8422 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8423 "st->devnum = (%i)\n",
8424 st->devnum);
8425
8426 if (geo->size != -1 ||
8427 geo->level != UnSet ||
8428 geo->layout != UnSet ||
8429 geo->chunksize != 0 ||
8430 geo->raid_disks == UnSet) {
8431 dprintf("imsm: Container operation is allowed for "
8432 "raid disks number change only.\n");
8433 return ret_val;
8434 }
8435
8436 info = container_content_imsm(st, NULL);
8437 for (member = info; member; member = member->next) {
8438 int result;
8439 int minor;
8440
8441 dprintf("imsm: checking device_num: %i\n",
8442 member->container_member);
8443
d7d205bd 8444 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8445 /* we work on container for Online Capacity Expansion
8446 * only so raid_disks has to grow
8447 */
8448 dprintf("imsm: for container operation raid disks "
8449 "increase is required\n");
8450 break;
8451 }
8452
8453 if ((info->array.level != 0) &&
8454 (info->array.level != 5)) {
8455 /* we cannot use this container with other raid level
8456 */
690aae1a 8457 dprintf("imsm: for container operation wrong"
78b10e66
N
8458 " raid level (%i) detected\n",
8459 info->array.level);
8460 break;
8461 } else {
8462 /* check for platform support
8463 * for this raid level configuration
8464 */
8465 struct intel_super *super = st->sb;
8466 if (!is_raid_level_supported(super->orom,
8467 member->array.level,
8468 geo->raid_disks)) {
690aae1a 8469 dprintf("platform does not support raid%d with"
78b10e66
N
8470 " %d disk%s\n",
8471 info->array.level,
8472 geo->raid_disks,
8473 geo->raid_disks > 1 ? "s" : "");
8474 break;
8475 }
2a4a08e7
AK
8476 /* check if component size is aligned to chunk size
8477 */
8478 if (info->component_size %
8479 (info->array.chunk_size/512)) {
8480 dprintf("Component size is not aligned to "
8481 "chunk size\n");
8482 break;
8483 }
78b10e66
N
8484 }
8485
8486 if (*old_raid_disks &&
8487 info->array.raid_disks != *old_raid_disks)
8488 break;
8489 *old_raid_disks = info->array.raid_disks;
8490
8491 /* All raid5 and raid0 volumes in container
8492 * have to be ready for Online Capacity Expansion
8493 * so they need to be assembled. We have already
8494 * checked that no recovery etc is happening.
8495 */
8496 result = imsm_find_array_minor_by_subdev(member->container_member,
8497 st->container_dev,
8498 &minor);
8499 if (result < 0) {
8500 dprintf("imsm: cannot find array\n");
8501 break;
8502 }
8503 devices_that_can_grow++;
8504 }
8505 sysfs_free(info);
8506 if (!member && devices_that_can_grow)
8507 ret_val = 1;
8508
8509 if (ret_val)
8510 dprintf("\tContainer operation allowed\n");
8511 else
8512 dprintf("\tError: %i\n", ret_val);
8513
8514 return ret_val;
8515}
8516
8517/* Function: get_spares_for_grow
8518 * Description: Allocates memory and creates list of spare devices
8519 * avaliable in container. Checks if spare drive size is acceptable.
8520 * Parameters: Pointer to the supertype structure
8521 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8522 * NULL if fail
8523 */
8524static struct mdinfo *get_spares_for_grow(struct supertype *st)
8525{
78b10e66 8526 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8527 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8528}
8529
8530/******************************************************************************
8531 * function: imsm_create_metadata_update_for_reshape
8532 * Function creates update for whole IMSM container.
8533 *
8534 ******************************************************************************/
8535static int imsm_create_metadata_update_for_reshape(
8536 struct supertype *st,
8537 struct geo_params *geo,
8538 int old_raid_disks,
8539 struct imsm_update_reshape **updatep)
8540{
8541 struct intel_super *super = st->sb;
8542 struct imsm_super *mpb = super->anchor;
8543 int update_memory_size = 0;
8544 struct imsm_update_reshape *u = NULL;
8545 struct mdinfo *spares = NULL;
8546 int i;
8547 int delta_disks = 0;
bbd24d86 8548 struct mdinfo *dev;
78b10e66
N
8549
8550 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8551 geo->raid_disks);
8552
8553 delta_disks = geo->raid_disks - old_raid_disks;
8554
8555 /* size of all update data without anchor */
8556 update_memory_size = sizeof(struct imsm_update_reshape);
8557
8558 /* now add space for spare disks that we need to add. */
8559 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8560
8561 u = calloc(1, update_memory_size);
8562 if (u == NULL) {
8563 dprintf("error: "
8564 "cannot get memory for imsm_update_reshape update\n");
8565 return 0;
8566 }
8567 u->type = update_reshape_container_disks;
8568 u->old_raid_disks = old_raid_disks;
8569 u->new_raid_disks = geo->raid_disks;
8570
8571 /* now get spare disks list
8572 */
8573 spares = get_spares_for_grow(st);
8574
8575 if (spares == NULL
8576 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8577 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8578 "for %s.\n", geo->dev_name);
e4c72d1d 8579 i = -1;
78b10e66
N
8580 goto abort;
8581 }
8582
8583 /* we have got spares
8584 * update disk list in imsm_disk list table in anchor
8585 */
8586 dprintf("imsm: %i spares are available.\n\n",
8587 spares->array.spare_disks);
8588
bbd24d86 8589 dev = spares->devs;
78b10e66 8590 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8591 struct dl *dl;
8592
bbd24d86
AK
8593 if (dev == NULL)
8594 break;
78b10e66
N
8595 u->new_disks[i] = makedev(dev->disk.major,
8596 dev->disk.minor);
8597 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8598 dl->index = mpb->num_disks;
8599 mpb->num_disks++;
bbd24d86 8600 dev = dev->next;
78b10e66 8601 }
78b10e66
N
8602
8603abort:
8604 /* free spares
8605 */
8606 sysfs_free(spares);
8607
d677e0b8 8608 dprintf("imsm: reshape update preparation :");
78b10e66 8609 if (i == delta_disks) {
d677e0b8 8610 dprintf(" OK\n");
78b10e66
N
8611 *updatep = u;
8612 return update_memory_size;
8613 }
8614 free(u);
d677e0b8 8615 dprintf(" Error\n");
78b10e66
N
8616
8617 return 0;
8618}
8619
48c5303a
PC
8620/******************************************************************************
8621 * function: imsm_create_metadata_update_for_migration()
8622 * Creates update for IMSM array.
8623 *
8624 ******************************************************************************/
8625static int imsm_create_metadata_update_for_migration(
8626 struct supertype *st,
8627 struct geo_params *geo,
8628 struct imsm_update_reshape_migration **updatep)
8629{
8630 struct intel_super *super = st->sb;
8631 int update_memory_size = 0;
8632 struct imsm_update_reshape_migration *u = NULL;
8633 struct imsm_dev *dev;
8634 int previous_level = -1;
8635
8636 dprintf("imsm_create_metadata_update_for_migration(enter)"
8637 " New Level = %i\n", geo->level);
8638
8639 /* size of all update data without anchor */
8640 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8641
8642 u = calloc(1, update_memory_size);
8643 if (u == NULL) {
8644 dprintf("error: cannot get memory for "
8645 "imsm_create_metadata_update_for_migration\n");
8646 return 0;
8647 }
8648 u->type = update_reshape_migration;
8649 u->subdev = super->current_vol;
8650 u->new_level = geo->level;
8651 u->new_layout = geo->layout;
8652 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8653 u->new_disks[0] = -1;
4bba0439 8654 u->new_chunksize = -1;
48c5303a
PC
8655
8656 dev = get_imsm_dev(super, u->subdev);
8657 if (dev) {
8658 struct imsm_map *map;
8659
8660 map = get_imsm_map(dev, 0);
4bba0439
PC
8661 if (map) {
8662 int current_chunk_size =
8663 __le16_to_cpu(map->blocks_per_strip) / 2;
8664
8665 if (geo->chunksize != current_chunk_size) {
8666 u->new_chunksize = geo->chunksize / 1024;
8667 dprintf("imsm: "
8668 "chunk size change from %i to %i\n",
8669 current_chunk_size, u->new_chunksize);
8670 }
48c5303a 8671 previous_level = map->raid_level;
4bba0439 8672 }
48c5303a
PC
8673 }
8674 if ((geo->level == 5) && (previous_level == 0)) {
8675 struct mdinfo *spares = NULL;
8676
8677 u->new_raid_disks++;
8678 spares = get_spares_for_grow(st);
8679 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8680 free(u);
8681 sysfs_free(spares);
8682 update_memory_size = 0;
8683 dprintf("error: cannot get spare device "
8684 "for requested migration");
8685 return 0;
8686 }
8687 sysfs_free(spares);
8688 }
8689 dprintf("imsm: reshape update preparation : OK\n");
8690 *updatep = u;
8691
8692 return update_memory_size;
8693}
8694
8dd70bce
AK
8695static void imsm_update_metadata_locally(struct supertype *st,
8696 void *buf, int len)
8697{
8698 struct metadata_update mu;
8699
8700 mu.buf = buf;
8701 mu.len = len;
8702 mu.space = NULL;
8703 mu.space_list = NULL;
8704 mu.next = NULL;
8705 imsm_prepare_update(st, &mu);
8706 imsm_process_update(st, &mu);
8707
8708 while (mu.space_list) {
8709 void **space = mu.space_list;
8710 mu.space_list = *space;
8711 free(space);
8712 }
8713}
78b10e66 8714
471bceb6 8715/***************************************************************************
694575e7 8716* Function: imsm_analyze_change
471bceb6
KW
8717* Description: Function analyze change for single volume
8718* and validate if transition is supported
694575e7
KW
8719* Parameters: Geometry parameters, supertype structure
8720* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8721****************************************************************************/
8722enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8723 struct geo_params *geo)
694575e7 8724{
471bceb6
KW
8725 struct mdinfo info;
8726 int change = -1;
8727 int check_devs = 0;
c21e737b 8728 int chunk;
e91a3bad
LM
8729 int devNumChange=0;
8730 int layout = -1;
471bceb6
KW
8731
8732 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8733 if ((geo->level != info.array.level) &&
8734 (geo->level >= 0) &&
8735 (geo->level != UnSet)) {
8736 switch (info.array.level) {
8737 case 0:
8738 if (geo->level == 5) {
b5347799 8739 change = CH_MIGRATION;
e13ce846
AK
8740 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8741 fprintf(stderr,
8742 Name " Error. Requested Layout "
8743 "not supported (left-asymmetric layout "
8744 "is supported only)!\n");
8745 change = -1;
8746 goto analyse_change_exit;
8747 }
e91a3bad 8748 layout = geo->layout;
471bceb6 8749 check_devs = 1;
e91a3bad
LM
8750 devNumChange = 1; /* parity disk added */
8751 } else if (geo->level == 10) {
471bceb6
KW
8752 change = CH_TAKEOVER;
8753 check_devs = 1;
e91a3bad
LM
8754 devNumChange = 2; /* two mirrors added */
8755 layout = 0x102; /* imsm supported layout */
471bceb6 8756 }
dfe77a9e
KW
8757 break;
8758 case 1:
471bceb6
KW
8759 case 10:
8760 if (geo->level == 0) {
8761 change = CH_TAKEOVER;
8762 check_devs = 1;
e91a3bad
LM
8763 devNumChange = -(geo->raid_disks/2);
8764 layout = 0; /* imsm raid0 layout */
471bceb6
KW
8765 }
8766 break;
8767 }
8768 if (change == -1) {
8769 fprintf(stderr,
8770 Name " Error. Level Migration from %d to %d "
8771 "not supported!\n",
8772 info.array.level, geo->level);
8773 goto analyse_change_exit;
8774 }
8775 } else
8776 geo->level = info.array.level;
8777
8778 if ((geo->layout != info.array.layout)
8779 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8780 change = CH_MIGRATION;
471bceb6
KW
8781 if ((info.array.layout == 0)
8782 && (info.array.level == 5)
8783 && (geo->layout == 5)) {
8784 /* reshape 5 -> 4 */
8785 } else if ((info.array.layout == 5)
8786 && (info.array.level == 5)
8787 && (geo->layout == 0)) {
8788 /* reshape 4 -> 5 */
8789 geo->layout = 0;
8790 geo->level = 5;
8791 } else {
8792 fprintf(stderr,
8793 Name " Error. Layout Migration from %d to %d "
8794 "not supported!\n",
8795 info.array.layout, geo->layout);
8796 change = -1;
8797 goto analyse_change_exit;
8798 }
8799 } else
8800 geo->layout = info.array.layout;
8801
8802 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8803 && (geo->chunksize != info.array.chunk_size))
b5347799 8804 change = CH_MIGRATION;
471bceb6
KW
8805 else
8806 geo->chunksize = info.array.chunk_size;
8807
c21e737b 8808 chunk = geo->chunksize / 1024;
471bceb6
KW
8809 if (!validate_geometry_imsm(st,
8810 geo->level,
e91a3bad
LM
8811 layout,
8812 geo->raid_disks + devNumChange,
c21e737b 8813 &chunk,
471bceb6
KW
8814 geo->size,
8815 0, 0, 1))
8816 change = -1;
8817
8818 if (check_devs) {
8819 struct intel_super *super = st->sb;
8820 struct imsm_super *mpb = super->anchor;
8821
8822 if (mpb->num_raid_devs > 1) {
8823 fprintf(stderr,
8824 Name " Error. Cannot perform operation on %s"
8825 "- for this operation it MUST be single "
8826 "array in container\n",
8827 geo->dev_name);
8828 change = -1;
8829 }
8830 }
8831
8832analyse_change_exit:
8833
8834 return change;
694575e7
KW
8835}
8836
bb025c2f
KW
8837int imsm_takeover(struct supertype *st, struct geo_params *geo)
8838{
8839 struct intel_super *super = st->sb;
8840 struct imsm_update_takeover *u;
8841
8842 u = malloc(sizeof(struct imsm_update_takeover));
8843 if (u == NULL)
8844 return 1;
8845
8846 u->type = update_takeover;
8847 u->subarray = super->current_vol;
8848
8849 /* 10->0 transition */
8850 if (geo->level == 0)
8851 u->direction = R10_TO_R0;
8852
0529c688
KW
8853 /* 0->10 transition */
8854 if (geo->level == 10)
8855 u->direction = R0_TO_R10;
8856
bb025c2f
KW
8857 /* update metadata locally */
8858 imsm_update_metadata_locally(st, u,
8859 sizeof(struct imsm_update_takeover));
8860 /* and possibly remotely */
8861 if (st->update_tail)
8862 append_metadata_update(st, u,
8863 sizeof(struct imsm_update_takeover));
8864 else
8865 free(u);
8866
8867 return 0;
8868}
8869
78b10e66
N
8870static int imsm_reshape_super(struct supertype *st, long long size, int level,
8871 int layout, int chunksize, int raid_disks,
41784c88
AK
8872 int delta_disks, char *backup, char *dev,
8873 int verbose)
78b10e66 8874{
78b10e66
N
8875 int ret_val = 1;
8876 struct geo_params geo;
8877
8878 dprintf("imsm: reshape_super called.\n");
8879
71204a50 8880 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8881
8882 geo.dev_name = dev;
694575e7 8883 geo.dev_id = st->devnum;
78b10e66
N
8884 geo.size = size;
8885 geo.level = level;
8886 geo.layout = layout;
8887 geo.chunksize = chunksize;
8888 geo.raid_disks = raid_disks;
41784c88
AK
8889 if (delta_disks != UnSet)
8890 geo.raid_disks += delta_disks;
78b10e66
N
8891
8892 dprintf("\tfor level : %i\n", geo.level);
8893 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8894
8895 if (experimental() == 0)
8896 return ret_val;
8897
78b10e66 8898 if (st->container_dev == st->devnum) {
694575e7
KW
8899 /* On container level we can only increase number of devices. */
8900 dprintf("imsm: info: Container operation\n");
78b10e66 8901 int old_raid_disks = 0;
6dc0be30 8902
78b10e66
N
8903 if (imsm_reshape_is_allowed_on_container(
8904 st, &geo, &old_raid_disks)) {
8905 struct imsm_update_reshape *u = NULL;
8906 int len;
8907
8908 len = imsm_create_metadata_update_for_reshape(
8909 st, &geo, old_raid_disks, &u);
8910
ed08d51c
AK
8911 if (len <= 0) {
8912 dprintf("imsm: Cannot prepare update\n");
8913 goto exit_imsm_reshape_super;
8914 }
8915
8dd70bce
AK
8916 ret_val = 0;
8917 /* update metadata locally */
8918 imsm_update_metadata_locally(st, u, len);
8919 /* and possibly remotely */
8920 if (st->update_tail)
8921 append_metadata_update(st, u, len);
8922 else
ed08d51c 8923 free(u);
8dd70bce 8924
694575e7 8925 } else {
e7ff7e40
AK
8926 fprintf(stderr, Name ": (imsm) Operation "
8927 "is not allowed on this container\n");
694575e7
KW
8928 }
8929 } else {
8930 /* On volume level we support following operations
471bceb6
KW
8931 * - takeover: raid10 -> raid0; raid0 -> raid10
8932 * - chunk size migration
8933 * - migration: raid5 -> raid0; raid0 -> raid5
8934 */
8935 struct intel_super *super = st->sb;
8936 struct intel_dev *dev = super->devlist;
8937 int change, devnum;
694575e7 8938 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8939 /* find requested device */
8940 while (dev) {
19986c72
MB
8941 if (imsm_find_array_minor_by_subdev(
8942 dev->index, st->container_dev, &devnum) == 0
8943 && devnum == geo.dev_id)
471bceb6
KW
8944 break;
8945 dev = dev->next;
8946 }
8947 if (dev == NULL) {
8948 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8949 geo.dev_name, geo.dev_id);
8950 goto exit_imsm_reshape_super;
8951 }
8952 super->current_vol = dev->index;
694575e7
KW
8953 change = imsm_analyze_change(st, &geo);
8954 switch (change) {
471bceb6 8955 case CH_TAKEOVER:
bb025c2f 8956 ret_val = imsm_takeover(st, &geo);
694575e7 8957 break;
48c5303a
PC
8958 case CH_MIGRATION: {
8959 struct imsm_update_reshape_migration *u = NULL;
8960 int len =
8961 imsm_create_metadata_update_for_migration(
8962 st, &geo, &u);
8963 if (len < 1) {
8964 dprintf("imsm: "
8965 "Cannot prepare update\n");
8966 break;
8967 }
471bceb6 8968 ret_val = 0;
48c5303a
PC
8969 /* update metadata locally */
8970 imsm_update_metadata_locally(st, u, len);
8971 /* and possibly remotely */
8972 if (st->update_tail)
8973 append_metadata_update(st, u, len);
8974 else
8975 free(u);
8976 }
8977 break;
471bceb6
KW
8978 default:
8979 ret_val = 1;
694575e7 8980 }
694575e7 8981 }
78b10e66 8982
ed08d51c 8983exit_imsm_reshape_super:
78b10e66
N
8984 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8985 return ret_val;
8986}
2cda7640 8987
eee67a47
AK
8988/*******************************************************************************
8989 * Function: wait_for_reshape_imsm
8990 * Description: Function writes new sync_max value and waits until
8991 * reshape process reach new position
8992 * Parameters:
8993 * sra : general array info
eee67a47
AK
8994 * ndata : number of disks in new array's layout
8995 * Returns:
8996 * 0 : success,
8997 * 1 : there is no reshape in progress,
8998 * -1 : fail
8999 ******************************************************************************/
ae9f01f8 9000int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
9001{
9002 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9003 unsigned long long completed;
ae9f01f8
AK
9004 /* to_complete : new sync_max position */
9005 unsigned long long to_complete = sra->reshape_progress;
9006 unsigned long long position_to_set = to_complete / ndata;
eee67a47 9007
ae9f01f8
AK
9008 if (fd < 0) {
9009 dprintf("imsm: wait_for_reshape_imsm() "
9010 "cannot open reshape_position\n");
eee67a47 9011 return 1;
ae9f01f8 9012 }
eee67a47 9013
ae9f01f8
AK
9014 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9015 dprintf("imsm: wait_for_reshape_imsm() "
9016 "cannot read reshape_position (no reshape in progres)\n");
9017 close(fd);
9018 return 0;
9019 }
eee67a47 9020
ae9f01f8
AK
9021 if (completed > to_complete) {
9022 dprintf("imsm: wait_for_reshape_imsm() "
9023 "wrong next position to set %llu (%llu)\n",
9024 to_complete, completed);
9025 close(fd);
9026 return -1;
9027 }
9028 dprintf("Position set: %llu\n", position_to_set);
9029 if (sysfs_set_num(sra, NULL, "sync_max",
9030 position_to_set) != 0) {
9031 dprintf("imsm: wait_for_reshape_imsm() "
9032 "cannot set reshape position to %llu\n",
9033 position_to_set);
9034 close(fd);
9035 return -1;
eee67a47
AK
9036 }
9037
eee67a47
AK
9038 do {
9039 char action[20];
9040 fd_set rfds;
9041 FD_ZERO(&rfds);
9042 FD_SET(fd, &rfds);
a47e44fb
AK
9043 select(fd+1, &rfds, NULL, NULL, NULL);
9044 if (sysfs_get_str(sra, NULL, "sync_action",
9045 action, 20) > 0 &&
9046 strncmp(action, "reshape", 7) != 0)
9047 break;
eee67a47 9048 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9049 dprintf("imsm: wait_for_reshape_imsm() "
9050 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9051 close(fd);
9052 return 1;
9053 }
eee67a47
AK
9054 } while (completed < to_complete);
9055 close(fd);
9056 return 0;
9057
9058}
9059
b915c95f
AK
9060/*******************************************************************************
9061 * Function: check_degradation_change
9062 * Description: Check that array hasn't become failed.
9063 * Parameters:
9064 * info : for sysfs access
9065 * sources : source disks descriptors
9066 * degraded: previous degradation level
9067 * Returns:
9068 * degradation level
9069 ******************************************************************************/
9070int check_degradation_change(struct mdinfo *info,
9071 int *sources,
9072 int degraded)
9073{
9074 unsigned long long new_degraded;
9075 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9076 if (new_degraded != (unsigned long long)degraded) {
9077 /* check each device to ensure it is still working */
9078 struct mdinfo *sd;
9079 new_degraded = 0;
9080 for (sd = info->devs ; sd ; sd = sd->next) {
9081 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9082 continue;
9083 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9084 char sbuf[20];
9085 if (sysfs_get_str(info,
9086 sd, "state", sbuf, 20) < 0 ||
9087 strstr(sbuf, "faulty") ||
9088 strstr(sbuf, "in_sync") == NULL) {
9089 /* this device is dead */
9090 sd->disk.state = (1<<MD_DISK_FAULTY);
9091 if (sd->disk.raid_disk >= 0 &&
9092 sources[sd->disk.raid_disk] >= 0) {
9093 close(sources[
9094 sd->disk.raid_disk]);
9095 sources[sd->disk.raid_disk] =
9096 -1;
9097 }
9098 new_degraded++;
9099 }
9100 }
9101 }
9102 }
9103
9104 return new_degraded;
9105}
9106
10f22854
AK
9107/*******************************************************************************
9108 * Function: imsm_manage_reshape
9109 * Description: Function finds array under reshape and it manages reshape
9110 * process. It creates stripes backups (if required) and sets
9111 * checheckpoits.
9112 * Parameters:
9113 * afd : Backup handle (nattive) - not used
9114 * sra : general array info
9115 * reshape : reshape parameters - not used
9116 * st : supertype structure
9117 * blocks : size of critical section [blocks]
9118 * fds : table of source device descriptor
9119 * offsets : start of array (offest per devices)
9120 * dests : not used
9121 * destfd : table of destination device descriptor
9122 * destoffsets : table of destination offsets (per device)
9123 * Returns:
9124 * 1 : success, reshape is done
9125 * 0 : fail
9126 ******************************************************************************/
999b4972
N
9127static int imsm_manage_reshape(
9128 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9129 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9130 int *fds, unsigned long long *offsets,
9131 int dests, int *destfd, unsigned long long *destoffsets)
9132{
10f22854
AK
9133 int ret_val = 0;
9134 struct intel_super *super = st->sb;
9135 struct intel_dev *dv = NULL;
9136 struct imsm_dev *dev = NULL;
a6b6d984 9137 struct imsm_map *map_src;
10f22854
AK
9138 int migr_vol_qan = 0;
9139 int ndata, odata; /* [bytes] */
9140 int chunk; /* [bytes] */
9141 struct migr_record *migr_rec;
9142 char *buf = NULL;
9143 unsigned int buf_size; /* [bytes] */
9144 unsigned long long max_position; /* array size [bytes] */
9145 unsigned long long next_step; /* [blocks]/[bytes] */
9146 unsigned long long old_data_stripe_length;
10f22854
AK
9147 unsigned long long start_src; /* [bytes] */
9148 unsigned long long start; /* [bytes] */
9149 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9150 int degraded = 0;
ab724b98 9151 int source_layout = 0;
10f22854 9152
1ab242d8 9153 if (!fds || !offsets || !sra)
10f22854
AK
9154 goto abort;
9155
9156 /* Find volume during the reshape */
9157 for (dv = super->devlist; dv; dv = dv->next) {
9158 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9159 && dv->dev->vol.migr_state == 1) {
9160 dev = dv->dev;
9161 migr_vol_qan++;
9162 }
9163 }
9164 /* Only one volume can migrate at the same time */
9165 if (migr_vol_qan != 1) {
9166 fprintf(stderr, Name " : %s", migr_vol_qan ?
9167 "Number of migrating volumes greater than 1\n" :
9168 "There is no volume during migrationg\n");
9169 goto abort;
9170 }
9171
9172 map_src = get_imsm_map(dev, 1);
9173 if (map_src == NULL)
9174 goto abort;
10f22854
AK
9175
9176 ndata = imsm_num_data_members(dev, 0);
9177 odata = imsm_num_data_members(dev, 1);
9178
7b1ab482 9179 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9180 old_data_stripe_length = odata * chunk;
9181
9182 migr_rec = super->migr_rec;
9183
10f22854
AK
9184 /* initialize migration record for start condition */
9185 if (sra->reshape_progress == 0)
9186 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9187 else {
9188 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9189 dprintf("imsm: cannot restart migration when data "
9190 "are present in copy area.\n");
9191 goto abort;
9192 }
9193 }
10f22854
AK
9194
9195 /* size for data */
9196 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9197 /* extend buffer size for parity disk */
9198 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9199 /* add space for stripe aligment */
9200 buf_size += old_data_stripe_length;
9201 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9202 dprintf("imsm: Cannot allocate checpoint buffer\n");
9203 goto abort;
9204 }
9205
3ef4403c 9206 max_position = sra->component_size * ndata;
68eb8bc6 9207 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9208
9209 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9210 __le32_to_cpu(migr_rec->num_migr_units)) {
9211 /* current reshape position [blocks] */
9212 unsigned long long current_position =
9213 __le32_to_cpu(migr_rec->blocks_per_unit)
9214 * __le32_to_cpu(migr_rec->curr_migr_unit);
9215 unsigned long long border;
9216
b915c95f
AK
9217 /* Check that array hasn't become failed.
9218 */
9219 degraded = check_degradation_change(sra, fds, degraded);
9220 if (degraded > 1) {
9221 dprintf("imsm: Abort reshape due to degradation"
9222 " level (%i)\n", degraded);
9223 goto abort;
9224 }
9225
10f22854
AK
9226 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9227
9228 if ((current_position + next_step) > max_position)
9229 next_step = max_position - current_position;
9230
92144abf 9231 start = current_position * 512;
10f22854
AK
9232
9233 /* allign reading start to old geometry */
9234 start_buf_shift = start % old_data_stripe_length;
9235 start_src = start - start_buf_shift;
9236
9237 border = (start_src / odata) - (start / ndata);
9238 border /= 512;
9239 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9240 /* save critical stripes to buf
9241 * start - start address of current unit
9242 * to backup [bytes]
9243 * start_src - start address of current unit
9244 * to backup alligned to source array
9245 * [bytes]
9246 */
9247 unsigned long long next_step_filler = 0;
9248 unsigned long long copy_length = next_step * 512;
9249
9250 /* allign copy area length to stripe in old geometry */
9251 next_step_filler = ((copy_length + start_buf_shift)
9252 % old_data_stripe_length);
9253 if (next_step_filler)
9254 next_step_filler = (old_data_stripe_length
9255 - next_step_filler);
9256 dprintf("save_stripes() parameters: start = %llu,"
9257 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9258 "\tstart_in_buf_shift = %llu,"
9259 "\tnext_step_filler = %llu\n",
9260 start, start_src, copy_length,
9261 start_buf_shift, next_step_filler);
9262
9263 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9264 chunk, map_src->raid_level,
9265 source_layout, 0, NULL, start_src,
10f22854
AK
9266 copy_length +
9267 next_step_filler + start_buf_shift,
9268 buf)) {
9269 dprintf("imsm: Cannot save stripes"
9270 " to buffer\n");
9271 goto abort;
9272 }
9273 /* Convert data to destination format and store it
9274 * in backup general migration area
9275 */
9276 if (save_backup_imsm(st, dev, sra,
aea93171 9277 buf + start_buf_shift, copy_length)) {
10f22854
AK
9278 dprintf("imsm: Cannot save stripes to "
9279 "target devices\n");
9280 goto abort;
9281 }
9282 if (save_checkpoint_imsm(st, sra,
9283 UNIT_SRC_IN_CP_AREA)) {
9284 dprintf("imsm: Cannot write checkpoint to "
9285 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9286 goto abort;
9287 }
8016a6d4
AK
9288 } else {
9289 /* set next step to use whole border area */
9290 border /= next_step;
9291 if (border > 1)
9292 next_step *= border;
10f22854
AK
9293 }
9294 /* When data backed up, checkpoint stored,
9295 * kick the kernel to reshape unit of data
9296 */
9297 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9298 /* limit next step to array max position */
9299 if (next_step > max_position)
9300 next_step = max_position;
10f22854
AK
9301 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9302 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9303 sra->reshape_progress = next_step;
10f22854
AK
9304
9305 /* wait until reshape finish */
ae9f01f8 9306 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9307 dprintf("wait_for_reshape_imsm returned error!\n");
9308 goto abort;
9309 }
10f22854 9310
0228d92c
AK
9311 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9312 /* ignore error == 2, this can mean end of reshape here
9313 */
10f22854
AK
9314 dprintf("imsm: Cannot write checkpoint to "
9315 "migration record (UNIT_SRC_NORMAL)\n");
9316 goto abort;
9317 }
9318
9319 }
9320
9321 /* return '1' if done */
9322 ret_val = 1;
9323abort:
9324 free(buf);
9325 abort_reshape(sra);
9326
9327 return ret_val;
999b4972 9328}
71204a50 9329#endif /* MDASSEMBLE */
999b4972 9330
cdddbdbc
DW
9331struct superswitch super_imsm = {
9332#ifndef MDASSEMBLE
9333 .examine_super = examine_super_imsm,
9334 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9335 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9336 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9337 .detail_super = detail_super_imsm,
9338 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9339 .write_init_super = write_init_super_imsm,
0e600426
N
9340 .validate_geometry = validate_geometry_imsm,
9341 .add_to_super = add_to_super_imsm,
1a64be56 9342 .remove_from_super = remove_from_super_imsm,
d665cc31 9343 .detail_platform = detail_platform_imsm,
33414a01 9344 .kill_subarray = kill_subarray_imsm,
aa534678 9345 .update_subarray = update_subarray_imsm,
2b959fbf 9346 .load_container = load_container_imsm,
71204a50
N
9347 .default_geometry = default_geometry_imsm,
9348 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9349 .reshape_super = imsm_reshape_super,
9350 .manage_reshape = imsm_manage_reshape,
9e2d750d 9351 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9352#endif
9353 .match_home = match_home_imsm,
9354 .uuid_from_super= uuid_from_super_imsm,
9355 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9356 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9357 .update_super = update_super_imsm,
9358
9359 .avail_size = avail_size_imsm,
80e7f8c3 9360 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9361
9362 .compare_super = compare_super_imsm,
9363
9364 .load_super = load_super_imsm,
bf5a934a 9365 .init_super = init_super_imsm,
e683ca88 9366 .store_super = store_super_imsm,
cdddbdbc
DW
9367 .free_super = free_super_imsm,
9368 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9369 .container_content = container_content_imsm,
cdddbdbc 9370
276d77db 9371
cdddbdbc 9372 .external = 1,
4cce4069 9373 .name = "imsm",
845dea95 9374
0e600426 9375#ifndef MDASSEMBLE
845dea95
NB
9376/* for mdmon */
9377 .open_new = imsm_open_new,
ed9d66aa 9378 .set_array_state= imsm_set_array_state,
845dea95
NB
9379 .set_disk = imsm_set_disk,
9380 .sync_metadata = imsm_sync_metadata,
88758e9d 9381 .activate_spare = imsm_activate_spare,
e8319a19 9382 .process_update = imsm_process_update,
8273f55e 9383 .prepare_update = imsm_prepare_update,
0e600426 9384#endif /* MDASSEMBLE */
cdddbdbc 9385};