]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
util: remove rounding error where reporting "human sizes".
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
1011e834 104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106#define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
108};
109
3b451610
AK
110/* map selector for map managment
111 */
238c0a71
AK
112#define MAP_0 0
113#define MAP_1 1
114#define MAP_X -1
3b451610 115
cdddbdbc
DW
116/* RAID map configuration infos. */
117struct imsm_map {
5551b113
CA
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123#define IMSM_T_STATE_NORMAL 0
124#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
125#define IMSM_T_STATE_DEGRADED 2
126#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
127 __u8 raid_level;
128#define IMSM_T_RAID0 0
129#define IMSM_T_RAID1 1
130#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 134 __u8 ddf;
5551b113
CA
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
7eef0453 139#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
141 * top byte contains some flags
142 */
cdddbdbc
DW
143} __attribute__ ((packed));
144
145struct imsm_vol {
f8f603f1 146 __u32 curr_migr_unit;
fe7ed8cb 147 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 148 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
149#define MIGR_INIT 0
150#define MIGR_REBUILD 1
151#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152#define MIGR_GEN_MIGR 3
153#define MIGR_STATE_CHANGE 4
1484e727 154#define MIGR_REPAIR 5
cdddbdbc
DW
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
fe7ed8cb
DW
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
cdddbdbc
DW
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163} __attribute__ ((packed));
164
165struct imsm_dev {
fe7ed8cb 166 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
167 __u32 size_low;
168 __u32 size_high;
fe7ed8cb
DW
169#define DEV_BOOTABLE __cpu_to_le32(0x01)
170#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171#define DEV_READ_COALESCING __cpu_to_le32(0x04)
172#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194} __attribute__ ((packed));
195
196struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212#define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
604b746f 216 /* here comes BBM logs */
cdddbdbc
DW
217} __attribute__ ((packed));
218
604b746f
JD
219#define BBM_LOG_MAX_ENTRIES 254
220
221struct bbm_log_entry {
222 __u64 defective_block_start;
223#define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227} __attribute__ ((__packed__));
228
229struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236} __attribute__ ((__packed__));
237
cdddbdbc
DW
238#ifndef MDASSEMBLE
239static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240#endif
241
8e59f3d8
AK
242#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
17a4eaf9
AK
246#define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247#define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249 */
250
8e59f3d8
AK
251#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
252 * be recovered using srcMap */
253#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
254 * already been migrated and must
255 * be recovered from checkpoint area */
256struct migr_record {
257 __u32 rec_status; /* Status used to determine how to restart
258 * migration in case it aborts
259 * in some fashion */
260 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
261 __u32 family_num; /* Family number of MPB
262 * containing the RaidDev
263 * that is migrating */
264 __u32 ascending_migr; /* True if migrating in increasing
265 * order of lbas */
266 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
267 __u32 dest_depth_per_unit; /* Num member blocks each destMap
268 * member disk
269 * advances per unit-of-operation */
270 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
271 __u32 dest_1st_member_lba; /* First member lba on first
272 * stripe of destination */
273 __u32 num_migr_units; /* Total num migration units-of-op */
274 __u32 post_migr_vol_cap; /* Size of volume after
275 * migration completes */
276 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
278 * migration ckpt record was read from
279 * (for recovered migrations) */
280} __attribute__ ((__packed__));
281
ec50f7b6
LM
282struct md_list {
283 /* usage marker:
284 * 1: load metadata
285 * 2: metadata does not match
286 * 4: already checked
287 */
288 int used;
289 char *devname;
290 int found;
291 int container;
292 dev_t st_rdev;
293 struct md_list *next;
294};
295
e7b84f9d 296#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 297
1484e727
DW
298static __u8 migr_type(struct imsm_dev *dev)
299{
300 if (dev->vol.migr_type == MIGR_VERIFY &&
301 dev->status & DEV_VERIFY_AND_FIX)
302 return MIGR_REPAIR;
303 else
304 return dev->vol.migr_type;
305}
306
307static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308{
309 /* for compatibility with older oroms convert MIGR_REPAIR, into
310 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311 */
312 if (migr_type == MIGR_REPAIR) {
313 dev->vol.migr_type = MIGR_VERIFY;
314 dev->status |= DEV_VERIFY_AND_FIX;
315 } else {
316 dev->vol.migr_type = migr_type;
317 dev->status &= ~DEV_VERIFY_AND_FIX;
318 }
319}
320
87eb16df 321static unsigned int sector_count(__u32 bytes)
cdddbdbc 322{
654a3817 323 return ROUND_UP(bytes, 512) / 512;
87eb16df 324}
cdddbdbc 325
87eb16df
DW
326static unsigned int mpb_sectors(struct imsm_super *mpb)
327{
328 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
329}
330
ba2de7ba
DW
331struct intel_dev {
332 struct imsm_dev *dev;
333 struct intel_dev *next;
f21e18ca 334 unsigned index;
ba2de7ba
DW
335};
336
88654014
LM
337struct intel_hba {
338 enum sys_dev_type type;
339 char *path;
340 char *pci_id;
341 struct intel_hba *next;
342};
343
1a64be56
LM
344enum action {
345 DISK_REMOVE = 1,
346 DISK_ADD
347};
cdddbdbc
DW
348/* internal representation of IMSM metadata */
349struct intel_super {
350 union {
949c47a0
DW
351 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 353 };
8e59f3d8
AK
354 union {
355 void *migr_rec_buf; /* buffer for I/O operations */
356 struct migr_record *migr_rec; /* migration record */
357 };
51d83f5d
AK
358 int clean_migration_record_by_mdmon; /* when reshape is switched to next
359 array, it indicates that mdmon is allowed to clean migration
360 record */
949c47a0 361 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
362 void *next_buf; /* for realloc'ing buf from the manager */
363 size_t next_len;
c2c087e6 364 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 365 int current_vol; /* index of raid device undergoing creation */
5551b113 366 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 367 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 368 struct intel_dev *devlist;
cdddbdbc
DW
369 struct dl {
370 struct dl *next;
371 int index;
372 __u8 serial[MAX_RAID_SERIAL_LEN];
373 int major, minor;
374 char *devname;
b9f594fe 375 struct imsm_disk disk;
cdddbdbc 376 int fd;
0dcecb2e
DW
377 int extent_cnt;
378 struct extent *e; /* for determining freespace @ create */
efb30e7f 379 int raiddisk; /* slot to fill in autolayout */
1a64be56 380 enum action action;
ca0748fa 381 } *disks, *current_disk;
1a64be56
LM
382 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383 active */
47ee5a45 384 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 385 struct bbm_log *bbm_log;
88654014 386 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 387 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
388 struct intel_super *next; /* (temp) list for disambiguating family_num */
389};
390
391struct intel_disk {
392 struct imsm_disk disk;
393 #define IMSM_UNKNOWN_OWNER (-1)
394 int owner;
395 struct intel_disk *next;
cdddbdbc
DW
396};
397
c2c087e6
DW
398struct extent {
399 unsigned long long start, size;
400};
401
694575e7
KW
402/* definitions of reshape process types */
403enum imsm_reshape_type {
404 CH_TAKEOVER,
b5347799 405 CH_MIGRATION,
7abc9871 406 CH_ARRAY_SIZE,
694575e7
KW
407};
408
88758e9d
DW
409/* definition of messages passed to imsm_process_update */
410enum imsm_update_type {
411 update_activate_spare,
8273f55e 412 update_create_array,
33414a01 413 update_kill_array,
aa534678 414 update_rename_array,
1a64be56 415 update_add_remove_disk,
78b10e66 416 update_reshape_container_disks,
48c5303a 417 update_reshape_migration,
2d40f3a1
AK
418 update_takeover,
419 update_general_migration_checkpoint,
f3871fdc 420 update_size_change,
88758e9d
DW
421};
422
423struct imsm_update_activate_spare {
424 enum imsm_update_type type;
d23fe947 425 struct dl *dl;
88758e9d
DW
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429};
430
78b10e66 431struct geo_params {
4dd2df09 432 char devnm[32];
78b10e66 433 char *dev_name;
d04f65f4 434 unsigned long long size;
78b10e66
N
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439};
440
bb025c2f
KW
441enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444};
445struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449};
78b10e66
N
450
451struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
48c5303a
PC
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457};
458
459struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
4bba0439 468 int new_chunksize;
48c5303a 469
d195167d 470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
471};
472
f3871fdc
AK
473struct imsm_update_size_change {
474 enum imsm_update_type type;
475 int subdev;
476 long long new_size;
477};
478
2d40f3a1
AK
479struct imsm_update_general_migration_checkpoint {
480 enum imsm_update_type type;
481 __u32 curr_migr_unit;
482};
483
54c2c1ea
DW
484struct disk_info {
485 __u8 serial[MAX_RAID_SERIAL_LEN];
486};
487
8273f55e
DW
488struct imsm_update_create_array {
489 enum imsm_update_type type;
8273f55e 490 int dev_idx;
6a3e913e 491 struct imsm_dev dev;
8273f55e
DW
492};
493
33414a01
DW
494struct imsm_update_kill_array {
495 enum imsm_update_type type;
496 int dev_idx;
497};
498
aa534678
DW
499struct imsm_update_rename_array {
500 enum imsm_update_type type;
501 __u8 name[MAX_RAID_SERIAL_LEN];
502 int dev_idx;
503};
504
1a64be56 505struct imsm_update_add_remove_disk {
43dad3d6
DW
506 enum imsm_update_type type;
507};
508
88654014
LM
509static const char *_sys_dev_type[] = {
510 [SYS_DEV_UNKNOWN] = "Unknown",
511 [SYS_DEV_SAS] = "SAS",
614902f6
PB
512 [SYS_DEV_SATA] = "SATA",
513 [SYS_DEV_NVME] = "NVMe"
88654014
LM
514};
515
516const char *get_sys_dev_type(enum sys_dev_type type)
517{
518 if (type >= SYS_DEV_MAX)
519 type = SYS_DEV_UNKNOWN;
520
521 return _sys_dev_type[type];
522}
523
524static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
525{
503975b9
N
526 struct intel_hba *result = xmalloc(sizeof(*result));
527
528 result->type = device->type;
529 result->path = xstrdup(device->path);
530 result->next = NULL;
531 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
532 result->pci_id++;
533
88654014
LM
534 return result;
535}
536
537static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
538{
539 struct intel_hba *result=NULL;
540 for (result = hba; result; result = result->next) {
541 if (result->type == device->type && strcmp(result->path, device->path) == 0)
542 break;
543 }
544 return result;
545}
546
b4cf4cba 547static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
548{
549 struct intel_hba *hba;
550
551 /* check if disk attached to Intel HBA */
552 hba = find_intel_hba(super->hba, device);
553 if (hba != NULL)
554 return 1;
555 /* Check if HBA is already attached to super */
556 if (super->hba == NULL) {
557 super->hba = alloc_intel_hba(device);
558 return 1;
6b781d33
AP
559 }
560
561 hba = super->hba;
562 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 563 * Do not support HBA types mixing
6b781d33
AP
564 */
565 if (device->type != hba->type)
88654014 566 return 2;
6b781d33
AP
567
568 /* Multiple same type HBAs can be used if they share the same OROM */
569 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
570
571 if (device_orom != super->orom)
572 return 2;
573
574 while (hba->next)
575 hba = hba->next;
576
577 hba->next = alloc_intel_hba(device);
578 return 1;
88654014
LM
579}
580
581static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
582{
9bc4ae77 583 struct sys_dev *list, *elem;
88654014
LM
584 char *disk_path;
585
586 if ((list = find_intel_devices()) == NULL)
587 return 0;
588
589 if (fd < 0)
590 disk_path = (char *) devname;
591 else
592 disk_path = diskfd_to_devpath(fd);
593
9bc4ae77 594 if (!disk_path)
88654014 595 return 0;
88654014 596
9bc4ae77
N
597 for (elem = list; elem; elem = elem->next)
598 if (path_attached_to_hba(disk_path, elem->path))
88654014 599 return elem;
9bc4ae77 600
88654014
LM
601 if (disk_path != devname)
602 free(disk_path);
88654014
LM
603
604 return NULL;
605}
606
d424212e
N
607static int find_intel_hba_capability(int fd, struct intel_super *super,
608 char *devname);
f2f5c343 609
cdddbdbc
DW
610static struct supertype *match_metadata_desc_imsm(char *arg)
611{
612 struct supertype *st;
613
614 if (strcmp(arg, "imsm") != 0 &&
615 strcmp(arg, "default") != 0
616 )
617 return NULL;
618
503975b9 619 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
620 st->ss = &super_imsm;
621 st->max_devs = IMSM_MAX_DEVICES;
622 st->minor_version = 0;
623 st->sb = NULL;
624 return st;
625}
626
0e600426 627#ifndef MDASSEMBLE
cdddbdbc
DW
628static __u8 *get_imsm_version(struct imsm_super *mpb)
629{
630 return &mpb->sig[MPB_SIG_LEN];
631}
9e2d750d 632#endif
cdddbdbc 633
949c47a0
DW
634/* retrieve a disk directly from the anchor when the anchor is known to be
635 * up-to-date, currently only at load time
636 */
637static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 638{
949c47a0 639 if (index >= mpb->num_disks)
cdddbdbc
DW
640 return NULL;
641 return &mpb->disk[index];
642}
643
95d07a2c
LM
644/* retrieve the disk description based on a index of the disk
645 * in the sub-array
646 */
647static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 648{
b9f594fe
DW
649 struct dl *d;
650
651 for (d = super->disks; d; d = d->next)
652 if (d->index == index)
95d07a2c
LM
653 return d;
654
655 return NULL;
656}
657/* retrieve a disk from the parsed metadata */
658static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
659{
660 struct dl *dl;
661
662 dl = get_imsm_dl_disk(super, index);
663 if (dl)
664 return &dl->disk;
665
b9f594fe 666 return NULL;
949c47a0
DW
667}
668
669/* generate a checksum directly from the anchor when the anchor is known to be
670 * up-to-date, currently only at load or write_super after coalescing
671 */
672static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
673{
674 __u32 end = mpb->mpb_size / sizeof(end);
675 __u32 *p = (__u32 *) mpb;
676 __u32 sum = 0;
677
5d500228
N
678 while (end--) {
679 sum += __le32_to_cpu(*p);
97f734fd
N
680 p++;
681 }
cdddbdbc 682
5d500228 683 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
684}
685
a965f303
DW
686static size_t sizeof_imsm_map(struct imsm_map *map)
687{
688 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
689}
690
691struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 692{
5e7b0330
AK
693 /* A device can have 2 maps if it is in the middle of a migration.
694 * If second_map is:
238c0a71
AK
695 * MAP_0 - we return the first map
696 * MAP_1 - we return the second map if it exists, else NULL
697 * MAP_X - we return the second map if it exists, else the first
5e7b0330 698 */
a965f303 699 struct imsm_map *map = &dev->vol.map[0];
9535fc47 700 struct imsm_map *map2 = NULL;
a965f303 701
9535fc47
AK
702 if (dev->vol.migr_state)
703 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 704
9535fc47 705 switch (second_map) {
3b451610 706 case MAP_0:
9535fc47 707 break;
3b451610 708 case MAP_1:
9535fc47
AK
709 map = map2;
710 break;
238c0a71 711 case MAP_X:
9535fc47
AK
712 if (map2)
713 map = map2;
714 break;
9535fc47
AK
715 default:
716 map = NULL;
717 }
718 return map;
5e7b0330 719
a965f303 720}
cdddbdbc 721
3393c6af
DW
722/* return the size of the device.
723 * migr_state increases the returned size if map[0] were to be duplicated
724 */
725static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
726{
727 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 728 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
729
730 /* migrating means an additional map */
a965f303 731 if (dev->vol.migr_state)
238c0a71 732 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 733 else if (migr_state)
238c0a71 734 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
735
736 return size;
737}
738
54c2c1ea
DW
739#ifndef MDASSEMBLE
740/* retrieve disk serial number list from a metadata update */
741static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
742{
743 void *u = update;
744 struct disk_info *inf;
745
746 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
747 sizeof_imsm_dev(&update->dev, 0);
748
749 return inf;
750}
751#endif
752
949c47a0 753static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
754{
755 int offset;
756 int i;
757 void *_mpb = mpb;
758
949c47a0 759 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
760 return NULL;
761
762 /* devices start after all disks */
763 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
764
765 for (i = 0; i <= index; i++)
766 if (i == index)
767 return _mpb + offset;
768 else
3393c6af 769 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
770
771 return NULL;
772}
773
949c47a0
DW
774static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
775{
ba2de7ba
DW
776 struct intel_dev *dv;
777
949c47a0
DW
778 if (index >= super->anchor->num_raid_devs)
779 return NULL;
ba2de7ba
DW
780 for (dv = super->devlist; dv; dv = dv->next)
781 if (dv->index == index)
782 return dv->dev;
783 return NULL;
949c47a0
DW
784}
785
98130f40
AK
786/*
787 * for second_map:
238c0a71
AK
788 * == MAP_0 get first map
789 * == MAP_1 get second map
790 * == MAP_X than get map according to the current migr_state
98130f40
AK
791 */
792static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
793 int slot,
794 int second_map)
7eef0453
DW
795{
796 struct imsm_map *map;
797
5e7b0330 798 map = get_imsm_map(dev, second_map);
7eef0453 799
ff077194
DW
800 /* top byte identifies disk under rebuild */
801 return __le32_to_cpu(map->disk_ord_tbl[slot]);
802}
803
804#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 805static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 806{
98130f40 807 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
808
809 return ord_to_idx(ord);
7eef0453
DW
810}
811
be73972f
DW
812static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
813{
814 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
815}
816
f21e18ca 817static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
818{
819 int slot;
820 __u32 ord;
821
822 for (slot = 0; slot < map->num_members; slot++) {
823 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
824 if (ord_to_idx(ord) == idx)
825 return slot;
826 }
827
828 return -1;
829}
830
cdddbdbc
DW
831static int get_imsm_raid_level(struct imsm_map *map)
832{
833 if (map->raid_level == 1) {
834 if (map->num_members == 2)
835 return 1;
836 else
837 return 10;
838 }
839
840 return map->raid_level;
841}
842
c2c087e6
DW
843static int cmp_extent(const void *av, const void *bv)
844{
845 const struct extent *a = av;
846 const struct extent *b = bv;
847 if (a->start < b->start)
848 return -1;
849 if (a->start > b->start)
850 return 1;
851 return 0;
852}
853
0dcecb2e 854static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 855{
c2c087e6 856 int memberships = 0;
620b1713 857 int i;
c2c087e6 858
949c47a0
DW
859 for (i = 0; i < super->anchor->num_raid_devs; i++) {
860 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 861 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 862
620b1713
DW
863 if (get_imsm_disk_slot(map, dl->index) >= 0)
864 memberships++;
c2c087e6 865 }
0dcecb2e
DW
866
867 return memberships;
868}
869
b81221b7
CA
870static __u32 imsm_min_reserved_sectors(struct intel_super *super);
871
5551b113
CA
872static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
873{
874 if (lo == 0 || hi == 0)
875 return 1;
876 *lo = __le32_to_cpu((unsigned)n);
877 *hi = __le32_to_cpu((unsigned)(n >> 32));
878 return 0;
879}
880
881static unsigned long long join_u32(__u32 lo, __u32 hi)
882{
883 return (unsigned long long)__le32_to_cpu(lo) |
884 (((unsigned long long)__le32_to_cpu(hi)) << 32);
885}
886
887static unsigned long long total_blocks(struct imsm_disk *disk)
888{
889 if (disk == NULL)
890 return 0;
891 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
892}
893
894static unsigned long long pba_of_lba0(struct imsm_map *map)
895{
896 if (map == NULL)
897 return 0;
898 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
899}
900
901static unsigned long long blocks_per_member(struct imsm_map *map)
902{
903 if (map == NULL)
904 return 0;
905 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
906}
907
ae2416e7 908#ifndef MDASSEMBLE
5551b113
CA
909static unsigned long long num_data_stripes(struct imsm_map *map)
910{
911 if (map == NULL)
912 return 0;
913 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
914}
915
916static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
917{
918 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
919}
ae2416e7 920#endif
5551b113
CA
921
922static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
923{
924 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
925}
926
927static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
928{
929 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
930}
931
932static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
933{
934 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
935}
936
0dcecb2e
DW
937static struct extent *get_extents(struct intel_super *super, struct dl *dl)
938{
939 /* find a list of used extents on the given physical device */
940 struct extent *rv, *e;
620b1713 941 int i;
0dcecb2e 942 int memberships = count_memberships(dl, super);
b276dd33
DW
943 __u32 reservation;
944
945 /* trim the reserved area for spares, so they can join any array
946 * regardless of whether the OROM has assigned sectors from the
947 * IMSM_RESERVED_SECTORS region
948 */
949 if (dl->index == -1)
b81221b7 950 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
951 else
952 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 953
503975b9 954 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
955 e = rv;
956
949c47a0
DW
957 for (i = 0; i < super->anchor->num_raid_devs; i++) {
958 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 959 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 960
620b1713 961 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
962 e->start = pba_of_lba0(map);
963 e->size = blocks_per_member(map);
620b1713 964 e++;
c2c087e6
DW
965 }
966 }
967 qsort(rv, memberships, sizeof(*rv), cmp_extent);
968
1011e834 969 /* determine the start of the metadata
14e8215b
DW
970 * when no raid devices are defined use the default
971 * ...otherwise allow the metadata to truncate the value
972 * as is the case with older versions of imsm
973 */
974 if (memberships) {
975 struct extent *last = &rv[memberships - 1];
5551b113 976 unsigned long long remainder;
14e8215b 977
5551b113 978 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
979 /* round down to 1k block to satisfy precision of the kernel
980 * 'size' interface
981 */
982 remainder &= ~1UL;
983 /* make sure remainder is still sane */
f21e18ca 984 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 985 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
986 if (reservation > remainder)
987 reservation = remainder;
988 }
5551b113 989 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
990 e->size = 0;
991 return rv;
992}
993
14e8215b
DW
994/* try to determine how much space is reserved for metadata from
995 * the last get_extents() entry, otherwise fallback to the
996 * default
997 */
998static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
999{
1000 struct extent *e;
1001 int i;
1002 __u32 rv;
1003
1004 /* for spares just return a minimal reservation which will grow
1005 * once the spare is picked up by an array
1006 */
1007 if (dl->index == -1)
1008 return MPB_SECTOR_CNT;
1009
1010 e = get_extents(super, dl);
1011 if (!e)
1012 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1013
1014 /* scroll to last entry */
1015 for (i = 0; e[i].size; i++)
1016 continue;
1017
5551b113 1018 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1019
1020 free(e);
1021
1022 return rv;
1023}
1024
25ed7e59
DW
1025static int is_spare(struct imsm_disk *disk)
1026{
1027 return (disk->status & SPARE_DISK) == SPARE_DISK;
1028}
1029
1030static int is_configured(struct imsm_disk *disk)
1031{
1032 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1033}
1034
1035static int is_failed(struct imsm_disk *disk)
1036{
1037 return (disk->status & FAILED_DISK) == FAILED_DISK;
1038}
1039
b81221b7
CA
1040/* try to determine how much space is reserved for metadata from
1041 * the last get_extents() entry on the smallest active disk,
1042 * otherwise fallback to the default
1043 */
1044static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1045{
1046 struct extent *e;
1047 int i;
5551b113
CA
1048 unsigned long long min_active;
1049 __u32 remainder;
b81221b7
CA
1050 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1051 struct dl *dl, *dl_min = NULL;
1052
1053 if (!super)
1054 return rv;
1055
1056 min_active = 0;
1057 for (dl = super->disks; dl; dl = dl->next) {
1058 if (dl->index < 0)
1059 continue;
5551b113
CA
1060 unsigned long long blocks = total_blocks(&dl->disk);
1061 if (blocks < min_active || min_active == 0) {
b81221b7 1062 dl_min = dl;
5551b113 1063 min_active = blocks;
b81221b7
CA
1064 }
1065 }
1066 if (!dl_min)
1067 return rv;
1068
1069 /* find last lba used by subarrays on the smallest active disk */
1070 e = get_extents(super, dl_min);
1071 if (!e)
1072 return rv;
1073 for (i = 0; e[i].size; i++)
1074 continue;
1075
1076 remainder = min_active - e[i].start;
1077 free(e);
1078
1079 /* to give priority to recovery we should not require full
1080 IMSM_RESERVED_SECTORS from the spare */
1081 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1082
1083 /* if real reservation is smaller use that value */
1084 return (remainder < rv) ? remainder : rv;
1085}
1086
80e7f8c3
AC
1087/* Return minimum size of a spare that can be used in this array*/
1088static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1089{
1090 struct intel_super *super = st->sb;
1091 struct dl *dl;
1092 struct extent *e;
1093 int i;
1094 unsigned long long rv = 0;
1095
1096 if (!super)
1097 return rv;
1098 /* find first active disk in array */
1099 dl = super->disks;
1100 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1101 dl = dl->next;
1102 if (!dl)
1103 return rv;
1104 /* find last lba used by subarrays */
1105 e = get_extents(super, dl);
1106 if (!e)
1107 return rv;
1108 for (i = 0; e[i].size; i++)
1109 continue;
1110 if (i > 0)
1111 rv = e[i-1].start + e[i-1].size;
1112 free(e);
b81221b7 1113
80e7f8c3 1114 /* add the amount of space needed for metadata */
b81221b7
CA
1115 rv = rv + imsm_min_reserved_sectors(super);
1116
80e7f8c3
AC
1117 return rv * 512;
1118}
1119
d1e02575
AK
1120static int is_gen_migration(struct imsm_dev *dev);
1121
1799c9e8 1122#ifndef MDASSEMBLE
c47b0ff6
AK
1123static __u64 blocks_per_migr_unit(struct intel_super *super,
1124 struct imsm_dev *dev);
1e5c6983 1125
c47b0ff6
AK
1126static void print_imsm_dev(struct intel_super *super,
1127 struct imsm_dev *dev,
1128 char *uuid,
1129 int disk_idx)
cdddbdbc
DW
1130{
1131 __u64 sz;
0d80bb2f 1132 int slot, i;
238c0a71
AK
1133 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1134 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1135 __u32 ord;
cdddbdbc
DW
1136
1137 printf("\n");
1e7bc0ed 1138 printf("[%.16s]:\n", dev->volume);
44470971 1139 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1140 printf(" RAID Level : %d", get_imsm_raid_level(map));
1141 if (map2)
1142 printf(" <-- %d", get_imsm_raid_level(map2));
1143 printf("\n");
1144 printf(" Members : %d", map->num_members);
1145 if (map2)
1146 printf(" <-- %d", map2->num_members);
1147 printf("\n");
0d80bb2f
DW
1148 printf(" Slots : [");
1149 for (i = 0; i < map->num_members; i++) {
238c0a71 1150 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1151 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1152 }
dd8bcb3b
AK
1153 printf("]");
1154 if (map2) {
1155 printf(" <-- [");
1156 for (i = 0; i < map2->num_members; i++) {
238c0a71 1157 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1158 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1159 }
1160 printf("]");
1161 }
1162 printf("\n");
7095bccb
AK
1163 printf(" Failed disk : ");
1164 if (map->failed_disk_num == 0xff)
1165 printf("none");
1166 else
1167 printf("%i", map->failed_disk_num);
1168 printf("\n");
620b1713
DW
1169 slot = get_imsm_disk_slot(map, disk_idx);
1170 if (slot >= 0) {
238c0a71 1171 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1172 printf(" This Slot : %d%s\n", slot,
1173 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1174 } else
cdddbdbc
DW
1175 printf(" This Slot : ?\n");
1176 sz = __le32_to_cpu(dev->size_high);
1177 sz <<= 32;
1178 sz += __le32_to_cpu(dev->size_low);
1179 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1180 human_size(sz * 512));
5551b113 1181 sz = blocks_per_member(map);
cdddbdbc
DW
1182 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1183 human_size(sz * 512));
5551b113
CA
1184 printf(" Sector Offset : %llu\n",
1185 pba_of_lba0(map));
1186 printf(" Num Stripes : %llu\n",
1187 num_data_stripes(map));
dd8bcb3b 1188 printf(" Chunk Size : %u KiB",
cdddbdbc 1189 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1190 if (map2)
1191 printf(" <-- %u KiB",
1192 __le16_to_cpu(map2->blocks_per_strip) / 2);
1193 printf("\n");
cdddbdbc 1194 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1195 printf(" Migrate State : ");
1484e727
DW
1196 if (dev->vol.migr_state) {
1197 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1198 printf("initialize\n");
1484e727 1199 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1200 printf("rebuild\n");
1484e727 1201 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1202 printf("check\n");
1484e727 1203 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1204 printf("general migration\n");
1484e727 1205 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1206 printf("state change\n");
1484e727 1207 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1208 printf("repair\n");
1484e727 1209 else
8655a7b1
DW
1210 printf("<unknown:%d>\n", migr_type(dev));
1211 } else
1212 printf("idle\n");
3393c6af
DW
1213 printf(" Map State : %s", map_state_str[map->map_state]);
1214 if (dev->vol.migr_state) {
238c0a71 1215 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1216
b10b37b8 1217 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1218 printf("\n Checkpoint : %u ",
1219 __le32_to_cpu(dev->vol.curr_migr_unit));
3136abe5 1220 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
464d40e8
LD
1221 printf("(N/A)");
1222 else
1223 printf("(%llu)", (unsigned long long)
1224 blocks_per_migr_unit(super, dev));
3393c6af
DW
1225 }
1226 printf("\n");
cdddbdbc 1227 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1228}
1229
0ec1f4e8 1230static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1231{
1f24f035 1232 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1233 __u64 sz;
1234
0ec1f4e8 1235 if (index < -1 || !disk)
e9d82038
DW
1236 return;
1237
cdddbdbc 1238 printf("\n");
1f24f035 1239 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1240 if (index >= 0)
1241 printf(" Disk%02d Serial : %s\n", index, str);
1242 else
1243 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1244 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1245 is_configured(disk) ? " active" : "",
1246 is_failed(disk) ? " failed" : "");
cdddbdbc 1247 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1248 sz = total_blocks(disk) - reserved;
cdddbdbc
DW
1249 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1250 human_size(sz * 512));
1251}
1252
520e69e2
AK
1253void examine_migr_rec_imsm(struct intel_super *super)
1254{
1255 struct migr_record *migr_rec = super->migr_rec;
1256 struct imsm_super *mpb = super->anchor;
1257 int i;
1258
1259 for (i = 0; i < mpb->num_raid_devs; i++) {
1260 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1261 struct imsm_map *map;
b4ab44d8 1262 int slot = -1;
3136abe5 1263
520e69e2
AK
1264 if (is_gen_migration(dev) == 0)
1265 continue;
1266
1267 printf("\nMigration Record Information:");
3136abe5 1268
44bfe6df
AK
1269 /* first map under migration */
1270 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1271 if (map)
1272 slot = get_imsm_disk_slot(map, super->disks->index);
1273 if ((map == NULL) || (slot > 1) || (slot < 0)) {
520e69e2
AK
1274 printf(" Empty\n ");
1275 printf("Examine one of first two disks in array\n");
1276 break;
1277 }
1278 printf("\n Status : ");
1279 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1280 printf("Normal\n");
1281 else
1282 printf("Contains Data\n");
1283 printf(" Current Unit : %u\n",
1284 __le32_to_cpu(migr_rec->curr_migr_unit));
1285 printf(" Family : %u\n",
1286 __le32_to_cpu(migr_rec->family_num));
1287 printf(" Ascending : %u\n",
1288 __le32_to_cpu(migr_rec->ascending_migr));
1289 printf(" Blocks Per Unit : %u\n",
1290 __le32_to_cpu(migr_rec->blocks_per_unit));
1291 printf(" Dest. Depth Per Unit : %u\n",
1292 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1293 printf(" Checkpoint Area pba : %u\n",
1294 __le32_to_cpu(migr_rec->ckpt_area_pba));
1295 printf(" First member lba : %u\n",
1296 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1297 printf(" Total Number of Units : %u\n",
1298 __le32_to_cpu(migr_rec->num_migr_units));
1299 printf(" Size of volume : %u\n",
1300 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1301 printf(" Expansion space for LBA64 : %u\n",
1302 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1303 printf(" Record was read from : %u\n",
1304 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1305
1306 break;
1307 }
1308}
9e2d750d 1309#endif /* MDASSEMBLE */
19482bcc
AK
1310/*******************************************************************************
1311 * function: imsm_check_attributes
1312 * Description: Function checks if features represented by attributes flags
1011e834 1313 * are supported by mdadm.
19482bcc
AK
1314 * Parameters:
1315 * attributes - Attributes read from metadata
1316 * Returns:
1011e834
N
1317 * 0 - passed attributes contains unsupported features flags
1318 * 1 - all features are supported
19482bcc
AK
1319 ******************************************************************************/
1320static int imsm_check_attributes(__u32 attributes)
1321{
1322 int ret_val = 1;
418f9b36
N
1323 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1324
1325 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1326
1327 not_supported &= attributes;
1328 if (not_supported) {
e7b84f9d 1329 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1330 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1331 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1332 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1333 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1334 }
1335 if (not_supported & MPB_ATTRIB_2TB) {
1336 dprintf("\t\tMPB_ATTRIB_2TB\n");
1337 not_supported ^= MPB_ATTRIB_2TB;
1338 }
1339 if (not_supported & MPB_ATTRIB_RAID0) {
1340 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1341 not_supported ^= MPB_ATTRIB_RAID0;
1342 }
1343 if (not_supported & MPB_ATTRIB_RAID1) {
1344 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1345 not_supported ^= MPB_ATTRIB_RAID1;
1346 }
1347 if (not_supported & MPB_ATTRIB_RAID10) {
1348 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1349 not_supported ^= MPB_ATTRIB_RAID10;
1350 }
1351 if (not_supported & MPB_ATTRIB_RAID1E) {
1352 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1353 not_supported ^= MPB_ATTRIB_RAID1E;
1354 }
1355 if (not_supported & MPB_ATTRIB_RAID5) {
1356 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1357 not_supported ^= MPB_ATTRIB_RAID5;
1358 }
1359 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1360 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1361 not_supported ^= MPB_ATTRIB_RAIDCNG;
1362 }
1363 if (not_supported & MPB_ATTRIB_BBM) {
1364 dprintf("\t\tMPB_ATTRIB_BBM\n");
1365 not_supported ^= MPB_ATTRIB_BBM;
1366 }
1367 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1368 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1369 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1370 }
1371 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1372 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1373 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1374 }
1375 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1376 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1377 not_supported ^= MPB_ATTRIB_2TB_DISK;
1378 }
1379 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1380 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1381 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1382 }
1383 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1384 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1385 not_supported ^= MPB_ATTRIB_NEVER_USE;
1386 }
1387
1388 if (not_supported)
1389 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1390
1391 ret_val = 0;
1392 }
1393
1394 return ret_val;
1395}
1396
9e2d750d 1397#ifndef MDASSEMBLE
a5d85af7 1398static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1399
cdddbdbc
DW
1400static void examine_super_imsm(struct supertype *st, char *homehost)
1401{
1402 struct intel_super *super = st->sb;
949c47a0 1403 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1404 char str[MAX_SIGNATURE_LENGTH];
1405 int i;
27fd6274
DW
1406 struct mdinfo info;
1407 char nbuf[64];
cdddbdbc 1408 __u32 sum;
14e8215b 1409 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1410 struct dl *dl;
27fd6274 1411
cdddbdbc
DW
1412 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1413 printf(" Magic : %s\n", str);
1414 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1415 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1416 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1417 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1418 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1419 printf(" Attributes : ");
1420 if (imsm_check_attributes(mpb->attributes))
1421 printf("All supported\n");
1422 else
1423 printf("not supported\n");
a5d85af7 1424 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1425 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1426 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1427 sum = __le32_to_cpu(mpb->check_sum);
1428 printf(" Checksum : %08x %s\n", sum,
949c47a0 1429 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1430 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1431 printf(" Disks : %d\n", mpb->num_disks);
1432 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1433 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1434 if (super->bbm_log) {
1435 struct bbm_log *log = super->bbm_log;
1436
1437 printf("\n");
1438 printf("Bad Block Management Log:\n");
1439 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1440 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1441 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1442 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1443 printf(" First Spare : %llx\n",
1444 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1445 }
44470971
DW
1446 for (i = 0; i < mpb->num_raid_devs; i++) {
1447 struct mdinfo info;
1448 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1449
1450 super->current_vol = i;
a5d85af7 1451 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1452 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1453 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1454 }
cdddbdbc
DW
1455 for (i = 0; i < mpb->num_disks; i++) {
1456 if (i == super->disks->index)
1457 continue;
0ec1f4e8 1458 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1459 }
94827db3 1460
0ec1f4e8
DW
1461 for (dl = super->disks; dl; dl = dl->next)
1462 if (dl->index == -1)
1463 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1464
1465 examine_migr_rec_imsm(super);
cdddbdbc
DW
1466}
1467
061f2c6a 1468static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1469{
27fd6274 1470 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1471 struct mdinfo info;
1472 char nbuf[64];
1e7bc0ed 1473 struct intel_super *super = st->sb;
1e7bc0ed 1474
0d5a423f
DW
1475 if (!super->anchor->num_raid_devs) {
1476 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1477 return;
0d5a423f 1478 }
ff54de6e 1479
a5d85af7 1480 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1481 fname_from_uuid(st, &info, nbuf, ':');
1482 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1483}
1484
1485static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1486{
1487 /* We just write a generic IMSM ARRAY entry */
1488 struct mdinfo info;
1489 char nbuf[64];
1490 char nbuf1[64];
1491 struct intel_super *super = st->sb;
1492 int i;
1493
1494 if (!super->anchor->num_raid_devs)
1495 return;
1496
a5d85af7 1497 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1498 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1499 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1500 struct imsm_dev *dev = get_imsm_dev(super, i);
1501
1502 super->current_vol = i;
a5d85af7 1503 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1504 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1505 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1506 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1507 }
cdddbdbc
DW
1508}
1509
9d84c8ea
DW
1510static void export_examine_super_imsm(struct supertype *st)
1511{
1512 struct intel_super *super = st->sb;
1513 struct imsm_super *mpb = super->anchor;
1514 struct mdinfo info;
1515 char nbuf[64];
1516
a5d85af7 1517 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1518 fname_from_uuid(st, &info, nbuf, ':');
1519 printf("MD_METADATA=imsm\n");
1520 printf("MD_LEVEL=container\n");
1521 printf("MD_UUID=%s\n", nbuf+5);
1522 printf("MD_DEVICES=%u\n", mpb->num_disks);
1523}
1524
74db60b0
N
1525static int copy_metadata_imsm(struct supertype *st, int from, int to)
1526{
1527 /* The second last 512byte sector of the device contains
1528 * the "struct imsm_super" metadata.
1529 * This contains mpb_size which is the size in bytes of the
1530 * extended metadata. This is located immediately before
1531 * the imsm_super.
1532 * We want to read all that, plus the last sector which
1533 * may contain a migration record, and write it all
1534 * to the target.
1535 */
1536 void *buf;
1537 unsigned long long dsize, offset;
1538 int sectors;
1539 struct imsm_super *sb;
1540 int written = 0;
1541
1542 if (posix_memalign(&buf, 4096, 4096) != 0)
1543 return 1;
1544
1545 if (!get_dev_size(from, NULL, &dsize))
1546 goto err;
1547
1548 if (lseek64(from, dsize-1024, 0) < 0)
1549 goto err;
1550 if (read(from, buf, 512) != 512)
1551 goto err;
1552 sb = buf;
1553 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1554 goto err;
1555
1556 sectors = mpb_sectors(sb) + 2;
1557 offset = dsize - sectors * 512;
1558 if (lseek64(from, offset, 0) < 0 ||
1559 lseek64(to, offset, 0) < 0)
1560 goto err;
1561 while (written < sectors * 512) {
1562 int n = sectors*512 - written;
1563 if (n > 4096)
1564 n = 4096;
1565 if (read(from, buf, n) != n)
1566 goto err;
1567 if (write(to, buf, n) != n)
1568 goto err;
1569 written += n;
1570 }
1571 free(buf);
1572 return 0;
1573err:
1574 free(buf);
1575 return 1;
1576}
1577
cdddbdbc
DW
1578static void detail_super_imsm(struct supertype *st, char *homehost)
1579{
3ebe00a1
DW
1580 struct mdinfo info;
1581 char nbuf[64];
1582
a5d85af7 1583 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1584 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1585 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1586}
1587
1588static void brief_detail_super_imsm(struct supertype *st)
1589{
ff54de6e
N
1590 struct mdinfo info;
1591 char nbuf[64];
a5d85af7 1592 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1593 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1594 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1595}
d665cc31
DW
1596
1597static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1598static void fd2devname(int fd, char *name);
1599
120dc887 1600static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1601{
120dc887
LM
1602 /* dump an unsorted list of devices attached to AHCI Intel storage
1603 * controller, as well as non-connected ports
d665cc31
DW
1604 */
1605 int hba_len = strlen(hba_path) + 1;
1606 struct dirent *ent;
1607 DIR *dir;
1608 char *path = NULL;
1609 int err = 0;
1610 unsigned long port_mask = (1 << port_count) - 1;
1611
f21e18ca 1612 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 1613 if (verbose > 0)
e7b84f9d 1614 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
1615 return 2;
1616 }
1617
1618 /* scroll through /sys/dev/block looking for devices attached to
1619 * this hba
1620 */
1621 dir = opendir("/sys/dev/block");
1622 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1623 int fd;
1624 char model[64];
1625 char vendor[64];
1626 char buf[1024];
1627 int major, minor;
1628 char *device;
1629 char *c;
1630 int port;
1631 int type;
1632
1633 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1634 continue;
1635 path = devt_to_devpath(makedev(major, minor));
1636 if (!path)
1637 continue;
1638 if (!path_attached_to_hba(path, hba_path)) {
1639 free(path);
1640 path = NULL;
1641 continue;
1642 }
1643
1644 /* retrieve the scsi device type */
1645 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 1646 if (verbose > 0)
e7b84f9d 1647 pr_err("failed to allocate 'device'\n");
d665cc31
DW
1648 err = 2;
1649 break;
1650 }
1651 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1652 if (load_sys(device, buf) != 0) {
ba728be7 1653 if (verbose > 0)
e7b84f9d 1654 pr_err("failed to read device type for %s\n",
d665cc31
DW
1655 path);
1656 err = 2;
1657 free(device);
1658 break;
1659 }
1660 type = strtoul(buf, NULL, 10);
1661
1662 /* if it's not a disk print the vendor and model */
1663 if (!(type == 0 || type == 7 || type == 14)) {
1664 vendor[0] = '\0';
1665 model[0] = '\0';
1666 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1667 if (load_sys(device, buf) == 0) {
1668 strncpy(vendor, buf, sizeof(vendor));
1669 vendor[sizeof(vendor) - 1] = '\0';
1670 c = (char *) &vendor[sizeof(vendor) - 1];
1671 while (isspace(*c) || *c == '\0')
1672 *c-- = '\0';
1673
1674 }
1675 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1676 if (load_sys(device, buf) == 0) {
1677 strncpy(model, buf, sizeof(model));
1678 model[sizeof(model) - 1] = '\0';
1679 c = (char *) &model[sizeof(model) - 1];
1680 while (isspace(*c) || *c == '\0')
1681 *c-- = '\0';
1682 }
1683
1684 if (vendor[0] && model[0])
1685 sprintf(buf, "%.64s %.64s", vendor, model);
1686 else
1687 switch (type) { /* numbers from hald/linux/device.c */
1688 case 1: sprintf(buf, "tape"); break;
1689 case 2: sprintf(buf, "printer"); break;
1690 case 3: sprintf(buf, "processor"); break;
1691 case 4:
1692 case 5: sprintf(buf, "cdrom"); break;
1693 case 6: sprintf(buf, "scanner"); break;
1694 case 8: sprintf(buf, "media_changer"); break;
1695 case 9: sprintf(buf, "comm"); break;
1696 case 12: sprintf(buf, "raid"); break;
1697 default: sprintf(buf, "unknown");
1698 }
1699 } else
1700 buf[0] = '\0';
1701 free(device);
1702
1703 /* chop device path to 'host%d' and calculate the port number */
1704 c = strchr(&path[hba_len], '/');
4e5e717d 1705 if (!c) {
ba728be7 1706 if (verbose > 0)
e7b84f9d 1707 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
1708 err = 2;
1709 break;
1710 }
d665cc31 1711 *c = '\0';
0858eccf
AP
1712 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1713 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
1714 port -= host_base;
1715 else {
ba728be7 1716 if (verbose > 0) {
d665cc31 1717 *c = '/'; /* repair the full string */
e7b84f9d 1718 pr_err("failed to determine port number for %s\n",
d665cc31
DW
1719 path);
1720 }
1721 err = 2;
1722 break;
1723 }
1724
1725 /* mark this port as used */
1726 port_mask &= ~(1 << port);
1727
1728 /* print out the device information */
1729 if (buf[0]) {
1730 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1731 continue;
1732 }
1733
1734 fd = dev_open(ent->d_name, O_RDONLY);
1735 if (fd < 0)
1736 printf(" Port%d : - disk info unavailable -\n", port);
1737 else {
1738 fd2devname(fd, buf);
1739 printf(" Port%d : %s", port, buf);
1740 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1741 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1742 else
664d5325 1743 printf(" ()\n");
4dab422a 1744 close(fd);
d665cc31 1745 }
d665cc31
DW
1746 free(path);
1747 path = NULL;
1748 }
1749 if (path)
1750 free(path);
1751 if (dir)
1752 closedir(dir);
1753 if (err == 0) {
1754 int i;
1755
1756 for (i = 0; i < port_count; i++)
1757 if (port_mask & (1 << i))
1758 printf(" Port%d : - no device attached -\n", i);
1759 }
1760
1761 return err;
1762}
1763
120dc887
LM
1764static void print_found_intel_controllers(struct sys_dev *elem)
1765{
1766 for (; elem; elem = elem->next) {
e7b84f9d 1767 pr_err("found Intel(R) ");
120dc887
LM
1768 if (elem->type == SYS_DEV_SATA)
1769 fprintf(stderr, "SATA ");
155cbb4c
LM
1770 else if (elem->type == SYS_DEV_SAS)
1771 fprintf(stderr, "SAS ");
0858eccf
AP
1772 else if (elem->type == SYS_DEV_NVME)
1773 fprintf(stderr, "NVMe ");
120dc887
LM
1774 fprintf(stderr, "RAID controller");
1775 if (elem->pci_id)
1776 fprintf(stderr, " at %s", elem->pci_id);
1777 fprintf(stderr, ".\n");
1778 }
1779 fflush(stderr);
1780}
1781
120dc887
LM
1782static int ahci_get_port_count(const char *hba_path, int *port_count)
1783{
1784 struct dirent *ent;
1785 DIR *dir;
1786 int host_base = -1;
1787
1788 *port_count = 0;
1789 if ((dir = opendir(hba_path)) == NULL)
1790 return -1;
1791
1792 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1793 int host;
1794
0858eccf
AP
1795 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1796 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
1797 continue;
1798 if (*port_count == 0)
1799 host_base = host;
1800 else if (host < host_base)
1801 host_base = host;
1802
1803 if (host + 1 > *port_count + host_base)
1804 *port_count = host + 1 - host_base;
1805 }
1806 closedir(dir);
1807 return host_base;
1808}
1809
a891a3c2
LM
1810static void print_imsm_capability(const struct imsm_orom *orom)
1811{
0858eccf
AP
1812 printf(" Platform : Intel(R) ");
1813 if (orom->capabilities == 0 && orom->driver_features == 0)
1814 printf("Matrix Storage Manager\n");
1815 else
1816 printf("Rapid Storage Technology%s\n",
1817 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1818 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1819 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
1820 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
1821 printf(" RAID Levels :%s%s%s%s%s\n",
1822 imsm_orom_has_raid0(orom) ? " raid0" : "",
1823 imsm_orom_has_raid1(orom) ? " raid1" : "",
1824 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1825 imsm_orom_has_raid10(orom) ? " raid10" : "",
1826 imsm_orom_has_raid5(orom) ? " raid5" : "");
1827 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1828 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1829 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1830 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1831 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1832 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1833 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1834 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1835 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1836 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1837 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1838 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1839 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1840 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1841 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1842 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1843 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
1844 printf(" 2TB volumes :%s supported\n",
1845 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1846 printf(" 2TB disks :%s supported\n",
1847 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 1848 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
1849 printf(" Max Volumes : %d per array, %d per %s\n",
1850 orom->vpa, orom->vphba,
1851 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
1852 return;
1853}
1854
e50cf220
MN
1855static void print_imsm_capability_export(const struct imsm_orom *orom)
1856{
1857 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
1858 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1859 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1860 orom->hotfix_ver, orom->build);
e50cf220
MN
1861 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1862 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1863 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1864 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1865 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1866 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1867 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1868 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1869 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1870 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1871 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1872 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1873 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1874 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1875 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1876 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1877 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1878 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1879 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1880 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1881 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1882 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1883 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1884 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1885 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1886 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1887 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1888 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1889}
1890
9eafa1de 1891static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
1892{
1893 /* There are two components to imsm platform support, the ahci SATA
1894 * controller and the option-rom. To find the SATA controller we
1895 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1896 * controller with the Intel vendor id is present. This approach
1897 * allows mdadm to leverage the kernel's ahci detection logic, with the
1898 * caveat that if ahci.ko is not loaded mdadm will not be able to
1899 * detect platform raid capabilities. The option-rom resides in a
1900 * platform "Adapter ROM". We scan for its signature to retrieve the
1901 * platform capabilities. If raid support is disabled in the BIOS the
1902 * option-rom capability structure will not be available.
1903 */
d665cc31 1904 struct sys_dev *list, *hba;
d665cc31
DW
1905 int host_base = 0;
1906 int port_count = 0;
9eafa1de 1907 int result=1;
d665cc31 1908
5615172f 1909 if (enumerate_only) {
a891a3c2 1910 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1911 return 0;
a891a3c2
LM
1912 list = find_intel_devices();
1913 if (!list)
1914 return 2;
1915 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
1916 if (find_imsm_capability(hba)) {
1917 result = 0;
a891a3c2
LM
1918 break;
1919 }
9eafa1de 1920 else
6b781d33 1921 result = 2;
a891a3c2 1922 }
a891a3c2 1923 return result;
5615172f
DW
1924 }
1925
155cbb4c
LM
1926 list = find_intel_devices();
1927 if (!list) {
ba728be7 1928 if (verbose > 0)
e7b84f9d 1929 pr_err("no active Intel(R) RAID "
155cbb4c 1930 "controller found.\n");
d665cc31 1931 return 2;
ba728be7 1932 } else if (verbose > 0)
155cbb4c 1933 print_found_intel_controllers(list);
d665cc31 1934
a891a3c2 1935 for (hba = list; hba; hba = hba->next) {
0858eccf 1936 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 1937 continue;
0858eccf 1938 if (!find_imsm_capability(hba)) {
e7b84f9d 1939 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
a891a3c2 1940 hba->path, get_sys_dev_type(hba->type));
0858eccf
AP
1941 continue;
1942 }
1943 result = 0;
1944 }
1945
1946 if (controller_path && result == 1) {
1947 pr_err("no active Intel(R) RAID controller found under %s\n",
1948 controller_path);
1949 return result;
1950 }
1951
1952 const struct orom_entry *oroms = get_oroms();
1953 int i;
1954
1955 for (i = 0; i < SYS_DEV_MAX && oroms[i].devid_list; i++) {
1956 print_imsm_capability(&oroms[i].orom);
1957
1958 if (imsm_orom_is_nvme(&oroms[i].orom)) {
1959 for (hba = list; hba; hba = hba->next) {
1960 if (hba->type == SYS_DEV_NVME)
1961 printf(" NVMe Device : %s\n", hba->path);
1962 }
1963 continue;
1964 }
1965
1966 struct devid_list *devid;
1967 for (devid = oroms[i].devid_list; devid; devid = devid->next) {
1968 hba = device_by_id(devid->devid);
1969 if (!hba)
1970 continue;
1971
9eafa1de
MN
1972 printf(" I/O Controller : %s (%s)\n",
1973 hba->path, get_sys_dev_type(hba->type));
1974 if (hba->type == SYS_DEV_SATA) {
1975 host_base = ahci_get_port_count(hba->path, &port_count);
1976 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1977 if (verbose > 0)
1978 pr_err("failed to enumerate "
1979 "ports on SATA controller at %s.\n", hba->pci_id);
1980 result |= 2;
1981 }
120dc887
LM
1982 }
1983 }
0858eccf 1984 printf("\n");
d665cc31 1985 }
155cbb4c 1986
120dc887 1987 return result;
d665cc31 1988}
e50cf220 1989
9eafa1de 1990static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 1991{
e50cf220
MN
1992 struct sys_dev *list, *hba;
1993 int result=1;
1994
1995 list = find_intel_devices();
1996 if (!list) {
1997 if (verbose > 0)
1998 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
1999 result = 2;
e50cf220
MN
2000 return result;
2001 }
2002
2003 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2004 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2005 continue;
0858eccf
AP
2006 if (!find_imsm_capability(hba) && verbose > 0)
2007 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n", hba->path);
2008 else
e50cf220 2009 result = 0;
e50cf220
MN
2010 }
2011
0858eccf
AP
2012 const struct orom_entry *oroms = get_oroms();
2013 int i;
2014
2015 for (i = 0; i < SYS_DEV_MAX && oroms[i].devid_list; i++)
2016 print_imsm_capability_export(&oroms[i].orom);
2017
e50cf220
MN
2018 return result;
2019}
2020
cdddbdbc
DW
2021#endif
2022
2023static int match_home_imsm(struct supertype *st, char *homehost)
2024{
5115ca67
DW
2025 /* the imsm metadata format does not specify any host
2026 * identification information. We return -1 since we can never
2027 * confirm nor deny whether a given array is "meant" for this
148acb7b 2028 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2029 * exclude member disks that do not belong, and we rely on
2030 * mdadm.conf to specify the arrays that should be assembled.
2031 * Auto-assembly may still pick up "foreign" arrays.
2032 */
cdddbdbc 2033
9362c1c8 2034 return -1;
cdddbdbc
DW
2035}
2036
2037static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2038{
51006d85
N
2039 /* The uuid returned here is used for:
2040 * uuid to put into bitmap file (Create, Grow)
2041 * uuid for backup header when saving critical section (Grow)
2042 * comparing uuids when re-adding a device into an array
2043 * In these cases the uuid required is that of the data-array,
2044 * not the device-set.
2045 * uuid to recognise same set when adding a missing device back
2046 * to an array. This is a uuid for the device-set.
1011e834 2047 *
51006d85
N
2048 * For each of these we can make do with a truncated
2049 * or hashed uuid rather than the original, as long as
2050 * everyone agrees.
2051 * In each case the uuid required is that of the data-array,
2052 * not the device-set.
43dad3d6 2053 */
51006d85
N
2054 /* imsm does not track uuid's so we synthesis one using sha1 on
2055 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2056 * - the orig_family_num of the container
51006d85
N
2057 * - the index number of the volume
2058 * - the 'serial' number of the volume.
2059 * Hopefully these are all constant.
2060 */
2061 struct intel_super *super = st->sb;
43dad3d6 2062
51006d85
N
2063 char buf[20];
2064 struct sha1_ctx ctx;
2065 struct imsm_dev *dev = NULL;
148acb7b 2066 __u32 family_num;
51006d85 2067
148acb7b
DW
2068 /* some mdadm versions failed to set ->orig_family_num, in which
2069 * case fall back to ->family_num. orig_family_num will be
2070 * fixed up with the first metadata update.
2071 */
2072 family_num = super->anchor->orig_family_num;
2073 if (family_num == 0)
2074 family_num = super->anchor->family_num;
51006d85 2075 sha1_init_ctx(&ctx);
92bd8f8d 2076 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2077 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2078 if (super->current_vol >= 0)
2079 dev = get_imsm_dev(super, super->current_vol);
2080 if (dev) {
2081 __u32 vol = super->current_vol;
2082 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2083 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2084 }
2085 sha1_finish_ctx(&ctx, buf);
2086 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2087}
2088
0d481d37 2089#if 0
4f5bc454
DW
2090static void
2091get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2092{
cdddbdbc
DW
2093 __u8 *v = get_imsm_version(mpb);
2094 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2095 char major[] = { 0, 0, 0 };
2096 char minor[] = { 0 ,0, 0 };
2097 char patch[] = { 0, 0, 0 };
2098 char *ver_parse[] = { major, minor, patch };
2099 int i, j;
2100
2101 i = j = 0;
2102 while (*v != '\0' && v < end) {
2103 if (*v != '.' && j < 2)
2104 ver_parse[i][j++] = *v;
2105 else {
2106 i++;
2107 j = 0;
2108 }
2109 v++;
2110 }
2111
4f5bc454
DW
2112 *m = strtol(minor, NULL, 0);
2113 *p = strtol(patch, NULL, 0);
2114}
0d481d37 2115#endif
4f5bc454 2116
1e5c6983
DW
2117static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2118{
2119 /* migr_strip_size when repairing or initializing parity */
238c0a71 2120 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2121 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2122
2123 switch (get_imsm_raid_level(map)) {
2124 case 5:
2125 case 10:
2126 return chunk;
2127 default:
2128 return 128*1024 >> 9;
2129 }
2130}
2131
2132static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2133{
2134 /* migr_strip_size when rebuilding a degraded disk, no idea why
2135 * this is different than migr_strip_size_resync(), but it's good
2136 * to be compatible
2137 */
238c0a71 2138 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2139 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2140
2141 switch (get_imsm_raid_level(map)) {
2142 case 1:
2143 case 10:
2144 if (map->num_members % map->num_domains == 0)
2145 return 128*1024 >> 9;
2146 else
2147 return chunk;
2148 case 5:
2149 return max((__u32) 64*1024 >> 9, chunk);
2150 default:
2151 return 128*1024 >> 9;
2152 }
2153}
2154
2155static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2156{
238c0a71
AK
2157 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2158 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2159 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2160 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2161
2162 return max((__u32) 1, hi_chunk / lo_chunk);
2163}
2164
2165static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2166{
238c0a71 2167 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2168 int level = get_imsm_raid_level(lo);
2169
2170 if (level == 1 || level == 10) {
238c0a71 2171 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2172
2173 return hi->num_domains;
2174 } else
2175 return num_stripes_per_unit_resync(dev);
2176}
2177
98130f40 2178static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2179{
2180 /* named 'imsm_' because raid0, raid1 and raid10
2181 * counter-intuitively have the same number of data disks
2182 */
98130f40 2183 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2184
2185 switch (get_imsm_raid_level(map)) {
2186 case 0:
36fd8ccc
AK
2187 return map->num_members;
2188 break;
1e5c6983
DW
2189 case 1:
2190 case 10:
36fd8ccc 2191 return map->num_members/2;
1e5c6983
DW
2192 case 5:
2193 return map->num_members - 1;
2194 default:
2195 dprintf("%s: unsupported raid level\n", __func__);
2196 return 0;
2197 }
2198}
2199
2200static __u32 parity_segment_depth(struct imsm_dev *dev)
2201{
238c0a71 2202 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2203 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2204
2205 switch(get_imsm_raid_level(map)) {
2206 case 1:
2207 case 10:
2208 return chunk * map->num_domains;
2209 case 5:
2210 return chunk * map->num_members;
2211 default:
2212 return chunk;
2213 }
2214}
2215
2216static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2217{
238c0a71 2218 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2219 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2220 __u32 strip = block / chunk;
2221
2222 switch (get_imsm_raid_level(map)) {
2223 case 1:
2224 case 10: {
2225 __u32 vol_strip = (strip * map->num_domains) + 1;
2226 __u32 vol_stripe = vol_strip / map->num_members;
2227
2228 return vol_stripe * chunk + block % chunk;
2229 } case 5: {
2230 __u32 stripe = strip / (map->num_members - 1);
2231
2232 return stripe * chunk + block % chunk;
2233 }
2234 default:
2235 return 0;
2236 }
2237}
2238
c47b0ff6
AK
2239static __u64 blocks_per_migr_unit(struct intel_super *super,
2240 struct imsm_dev *dev)
1e5c6983
DW
2241{
2242 /* calculate the conversion factor between per member 'blocks'
2243 * (md/{resync,rebuild}_start) and imsm migration units, return
2244 * 0 for the 'not migrating' and 'unsupported migration' cases
2245 */
2246 if (!dev->vol.migr_state)
2247 return 0;
2248
2249 switch (migr_type(dev)) {
c47b0ff6
AK
2250 case MIGR_GEN_MIGR: {
2251 struct migr_record *migr_rec = super->migr_rec;
2252 return __le32_to_cpu(migr_rec->blocks_per_unit);
2253 }
1e5c6983
DW
2254 case MIGR_VERIFY:
2255 case MIGR_REPAIR:
2256 case MIGR_INIT: {
238c0a71 2257 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2258 __u32 stripes_per_unit;
2259 __u32 blocks_per_unit;
2260 __u32 parity_depth;
2261 __u32 migr_chunk;
2262 __u32 block_map;
2263 __u32 block_rel;
2264 __u32 segment;
2265 __u32 stripe;
2266 __u8 disks;
2267
2268 /* yes, this is really the translation of migr_units to
2269 * per-member blocks in the 'resync' case
2270 */
2271 stripes_per_unit = num_stripes_per_unit_resync(dev);
2272 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2273 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2274 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2275 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2276 segment = blocks_per_unit / stripe;
2277 block_rel = blocks_per_unit - segment * stripe;
2278 parity_depth = parity_segment_depth(dev);
2279 block_map = map_migr_block(dev, block_rel);
2280 return block_map + parity_depth * segment;
2281 }
2282 case MIGR_REBUILD: {
2283 __u32 stripes_per_unit;
2284 __u32 migr_chunk;
2285
2286 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2287 migr_chunk = migr_strip_blocks_rebuild(dev);
2288 return migr_chunk * stripes_per_unit;
2289 }
1e5c6983
DW
2290 case MIGR_STATE_CHANGE:
2291 default:
2292 return 0;
2293 }
2294}
2295
c2c087e6
DW
2296static int imsm_level_to_layout(int level)
2297{
2298 switch (level) {
2299 case 0:
2300 case 1:
2301 return 0;
2302 case 5:
2303 case 6:
a380c027 2304 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2305 case 10:
c92a2527 2306 return 0x102;
c2c087e6 2307 }
a18a888e 2308 return UnSet;
c2c087e6
DW
2309}
2310
8e59f3d8
AK
2311/*******************************************************************************
2312 * Function: read_imsm_migr_rec
2313 * Description: Function reads imsm migration record from last sector of disk
2314 * Parameters:
2315 * fd : disk descriptor
2316 * super : metadata info
2317 * Returns:
2318 * 0 : success,
2319 * -1 : fail
2320 ******************************************************************************/
2321static int read_imsm_migr_rec(int fd, struct intel_super *super)
2322{
2323 int ret_val = -1;
2324 unsigned long long dsize;
2325
2326 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2327 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
e7b84f9d
N
2328 pr_err("Cannot seek to anchor block: %s\n",
2329 strerror(errno));
8e59f3d8
AK
2330 goto out;
2331 }
17a4eaf9
AK
2332 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2333 MIGR_REC_BUF_SIZE) {
e7b84f9d
N
2334 pr_err("Cannot read migr record block: %s\n",
2335 strerror(errno));
8e59f3d8
AK
2336 goto out;
2337 }
2338 ret_val = 0;
2339
2340out:
2341 return ret_val;
2342}
2343
3136abe5
AK
2344static struct imsm_dev *imsm_get_device_during_migration(
2345 struct intel_super *super)
2346{
2347
2348 struct intel_dev *dv;
2349
2350 for (dv = super->devlist; dv; dv = dv->next) {
2351 if (is_gen_migration(dv->dev))
2352 return dv->dev;
2353 }
2354 return NULL;
2355}
2356
8e59f3d8
AK
2357/*******************************************************************************
2358 * Function: load_imsm_migr_rec
2359 * Description: Function reads imsm migration record (it is stored at the last
2360 * sector of disk)
2361 * Parameters:
2362 * super : imsm internal array info
2363 * info : general array info
2364 * Returns:
2365 * 0 : success
2366 * -1 : fail
4c965cc9 2367 * -2 : no migration in progress
8e59f3d8
AK
2368 ******************************************************************************/
2369static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2370{
2371 struct mdinfo *sd;
2372 struct dl *dl = NULL;
2373 char nm[30];
2374 int retval = -1;
2375 int fd = -1;
3136abe5
AK
2376 struct imsm_dev *dev;
2377 struct imsm_map *map = NULL;
b4ab44d8 2378 int slot = -1;
3136abe5
AK
2379
2380 /* find map under migration */
2381 dev = imsm_get_device_during_migration(super);
2382 /* nothing to load,no migration in progress?
2383 */
2384 if (dev == NULL)
4c965cc9 2385 return -2;
44bfe6df 2386 map = get_imsm_map(dev, MAP_0);
8e59f3d8
AK
2387
2388 if (info) {
2389 for (sd = info->devs ; sd ; sd = sd->next) {
3136abe5
AK
2390 /* skip spare and failed disks
2391 */
2392 if (sd->disk.raid_disk < 0)
2393 continue;
8e59f3d8 2394 /* read only from one of the first two slots */
3136abe5
AK
2395 if (map)
2396 slot = get_imsm_disk_slot(map,
2397 sd->disk.raid_disk);
2398 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8 2399 continue;
3136abe5 2400
8e59f3d8
AK
2401 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2402 fd = dev_open(nm, O_RDONLY);
2403 if (fd >= 0)
2404 break;
2405 }
2406 }
2407 if (fd < 0) {
2408 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2409 /* skip spare and failed disks
2410 */
2411 if (dl->index < 0)
2412 continue;
8e59f3d8 2413 /* read only from one of the first two slots */
3136abe5
AK
2414 if (map)
2415 slot = get_imsm_disk_slot(map, dl->index);
2416 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8
AK
2417 continue;
2418 sprintf(nm, "%d:%d", dl->major, dl->minor);
2419 fd = dev_open(nm, O_RDONLY);
2420 if (fd >= 0)
2421 break;
2422 }
2423 }
2424 if (fd < 0)
2425 goto out;
2426 retval = read_imsm_migr_rec(fd, super);
2427
2428out:
2429 if (fd >= 0)
2430 close(fd);
2431 return retval;
2432}
2433
9e2d750d 2434#ifndef MDASSEMBLE
c17608ea
AK
2435/*******************************************************************************
2436 * function: imsm_create_metadata_checkpoint_update
2437 * Description: It creates update for checkpoint change.
2438 * Parameters:
2439 * super : imsm internal array info
2440 * u : pointer to prepared update
2441 * Returns:
2442 * Uptate length.
2443 * If length is equal to 0, input pointer u contains no update
2444 ******************************************************************************/
2445static int imsm_create_metadata_checkpoint_update(
2446 struct intel_super *super,
2447 struct imsm_update_general_migration_checkpoint **u)
2448{
2449
2450 int update_memory_size = 0;
2451
2452 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2453
2454 if (u == NULL)
2455 return 0;
2456 *u = NULL;
2457
2458 /* size of all update data without anchor */
2459 update_memory_size =
2460 sizeof(struct imsm_update_general_migration_checkpoint);
2461
503975b9 2462 *u = xcalloc(1, update_memory_size);
c17608ea
AK
2463 if (*u == NULL) {
2464 dprintf("error: cannot get memory for "
2465 "imsm_create_metadata_checkpoint_update update\n");
2466 return 0;
2467 }
2468 (*u)->type = update_general_migration_checkpoint;
2469 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2470 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2471 (*u)->curr_migr_unit);
2472
2473 return update_memory_size;
2474}
2475
c17608ea
AK
2476static void imsm_update_metadata_locally(struct supertype *st,
2477 void *buf, int len);
2478
687629c2
AK
2479/*******************************************************************************
2480 * Function: write_imsm_migr_rec
2481 * Description: Function writes imsm migration record
2482 * (at the last sector of disk)
2483 * Parameters:
2484 * super : imsm internal array info
2485 * Returns:
2486 * 0 : success
2487 * -1 : if fail
2488 ******************************************************************************/
2489static int write_imsm_migr_rec(struct supertype *st)
2490{
2491 struct intel_super *super = st->sb;
2492 unsigned long long dsize;
2493 char nm[30];
2494 int fd = -1;
2495 int retval = -1;
2496 struct dl *sd;
c17608ea
AK
2497 int len;
2498 struct imsm_update_general_migration_checkpoint *u;
3136abe5
AK
2499 struct imsm_dev *dev;
2500 struct imsm_map *map = NULL;
2501
2502 /* find map under migration */
2503 dev = imsm_get_device_during_migration(super);
2504 /* if no migration, write buffer anyway to clear migr_record
2505 * on disk based on first available device
2506 */
2507 if (dev == NULL)
2508 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2509 super->current_vol);
2510
44bfe6df 2511 map = get_imsm_map(dev, MAP_0);
687629c2
AK
2512
2513 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 2514 int slot = -1;
3136abe5
AK
2515
2516 /* skip failed and spare devices */
2517 if (sd->index < 0)
2518 continue;
687629c2 2519 /* write to 2 first slots only */
3136abe5
AK
2520 if (map)
2521 slot = get_imsm_disk_slot(map, sd->index);
2522 if ((map == NULL) || (slot > 1) || (slot < 0))
687629c2 2523 continue;
3136abe5 2524
687629c2
AK
2525 sprintf(nm, "%d:%d", sd->major, sd->minor);
2526 fd = dev_open(nm, O_RDWR);
2527 if (fd < 0)
2528 continue;
2529 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2530 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
e7b84f9d
N
2531 pr_err("Cannot seek to anchor block: %s\n",
2532 strerror(errno));
687629c2
AK
2533 goto out;
2534 }
17a4eaf9
AK
2535 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2536 MIGR_REC_BUF_SIZE) {
e7b84f9d
N
2537 pr_err("Cannot write migr record block: %s\n",
2538 strerror(errno));
687629c2
AK
2539 goto out;
2540 }
2541 close(fd);
2542 fd = -1;
2543 }
c17608ea
AK
2544 /* update checkpoint information in metadata */
2545 len = imsm_create_metadata_checkpoint_update(super, &u);
2546
2547 if (len <= 0) {
2548 dprintf("imsm: Cannot prepare update\n");
2549 goto out;
2550 }
2551 /* update metadata locally */
2552 imsm_update_metadata_locally(st, u, len);
2553 /* and possibly remotely */
2554 if (st->update_tail) {
2555 append_metadata_update(st, u, len);
2556 /* during reshape we do all work inside metadata handler
2557 * manage_reshape(), so metadata update has to be triggered
2558 * insida it
2559 */
2560 flush_metadata_updates(st);
2561 st->update_tail = &st->updates;
2562 } else
2563 free(u);
687629c2
AK
2564
2565 retval = 0;
2566 out:
2567 if (fd >= 0)
2568 close(fd);
2569 return retval;
2570}
9e2d750d 2571#endif /* MDASSEMBLE */
687629c2 2572
e2962bfc
AK
2573/* spare/missing disks activations are not allowe when
2574 * array/container performs reshape operation, because
2575 * all arrays in container works on the same disks set
2576 */
2577int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2578{
2579 int rv = 0;
2580 struct intel_dev *i_dev;
2581 struct imsm_dev *dev;
2582
2583 /* check whole container
2584 */
2585 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2586 dev = i_dev->dev;
3ad25638 2587 if (is_gen_migration(dev)) {
e2962bfc
AK
2588 /* No repair during any migration in container
2589 */
2590 rv = 1;
2591 break;
2592 }
2593 }
2594 return rv;
2595}
c41e00b2
AK
2596static unsigned long long imsm_component_size_aligment_check(int level,
2597 int chunk_size,
2598 unsigned long long component_size)
2599{
2600 unsigned int component_size_alligment;
2601
2602 /* check component size aligment
2603 */
2604 component_size_alligment = component_size % (chunk_size/512);
2605
2606 dprintf("imsm_component_size_aligment_check(Level: %i, "
2607 "chunk_size = %i, component_size = %llu), "
2608 "component_size_alligment = %u\n",
2609 level, chunk_size, component_size,
2610 component_size_alligment);
2611
2612 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2613 dprintf("imsm: reported component size alligned from %llu ",
2614 component_size);
2615 component_size -= component_size_alligment;
2616 dprintf("to %llu (%i).\n",
2617 component_size, component_size_alligment);
2618 }
2619
2620 return component_size;
2621}
e2962bfc 2622
a5d85af7 2623static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2624{
2625 struct intel_super *super = st->sb;
c47b0ff6 2626 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2627 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
2628 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2629 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 2630 struct imsm_map *map_to_analyse = map;
efb30e7f 2631 struct dl *dl;
a5d85af7 2632 int map_disks = info->array.raid_disks;
bf5a934a 2633
95eeceeb 2634 memset(info, 0, sizeof(*info));
b335e593
AK
2635 if (prev_map)
2636 map_to_analyse = prev_map;
2637
ca0748fa 2638 dl = super->current_disk;
9894ec0d 2639
bf5a934a 2640 info->container_member = super->current_vol;
cd0430a1 2641 info->array.raid_disks = map->num_members;
b335e593 2642 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2643 info->array.layout = imsm_level_to_layout(info->array.level);
2644 info->array.md_minor = -1;
2645 info->array.ctime = 0;
2646 info->array.utime = 0;
b335e593
AK
2647 info->array.chunk_size =
2648 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2649 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2650 info->custom_array_size = __le32_to_cpu(dev->size_high);
2651 info->custom_array_size <<= 32;
2652 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2653 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2654
3f510843 2655 if (is_gen_migration(dev)) {
3f83228a 2656 info->reshape_active = 1;
b335e593
AK
2657 info->new_level = get_imsm_raid_level(map);
2658 info->new_layout = imsm_level_to_layout(info->new_level);
2659 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2660 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2661 if (info->delta_disks) {
2662 /* this needs to be applied to every array
2663 * in the container.
2664 */
81219e70 2665 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2666 }
3f83228a
N
2667 /* We shape information that we give to md might have to be
2668 * modify to cope with md's requirement for reshaping arrays.
2669 * For example, when reshaping a RAID0, md requires it to be
2670 * presented as a degraded RAID4.
2671 * Also if a RAID0 is migrating to a RAID5 we need to specify
2672 * the array as already being RAID5, but the 'before' layout
2673 * is a RAID4-like layout.
2674 */
2675 switch (info->array.level) {
2676 case 0:
2677 switch(info->new_level) {
2678 case 0:
2679 /* conversion is happening as RAID4 */
2680 info->array.level = 4;
2681 info->array.raid_disks += 1;
2682 break;
2683 case 5:
2684 /* conversion is happening as RAID5 */
2685 info->array.level = 5;
2686 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2687 info->delta_disks -= 1;
2688 break;
2689 default:
2690 /* FIXME error message */
2691 info->array.level = UnSet;
2692 break;
2693 }
2694 break;
2695 }
b335e593
AK
2696 } else {
2697 info->new_level = UnSet;
2698 info->new_layout = UnSet;
2699 info->new_chunk = info->array.chunk_size;
3f83228a 2700 info->delta_disks = 0;
b335e593 2701 }
ca0748fa 2702
efb30e7f
DW
2703 if (dl) {
2704 info->disk.major = dl->major;
2705 info->disk.minor = dl->minor;
ca0748fa 2706 info->disk.number = dl->index;
656b6b5a
N
2707 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2708 dl->index);
efb30e7f 2709 }
bf5a934a 2710
5551b113
CA
2711 info->data_offset = pba_of_lba0(map_to_analyse);
2712 info->component_size = blocks_per_member(map_to_analyse);
139dae11 2713
c41e00b2
AK
2714 info->component_size = imsm_component_size_aligment_check(
2715 info->array.level,
2716 info->array.chunk_size,
2717 info->component_size);
139dae11 2718
301406c9 2719 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2720 info->recovery_start = MaxSector;
bf5a934a 2721
d2e6d5d6 2722 info->reshape_progress = 0;
b6796ce1 2723 info->resync_start = MaxSector;
b9172665
AK
2724 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2725 dev->vol.dirty) &&
2726 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2727 info->resync_start = 0;
b6796ce1
AK
2728 }
2729 if (dev->vol.migr_state) {
1e5c6983
DW
2730 switch (migr_type(dev)) {
2731 case MIGR_REPAIR:
2732 case MIGR_INIT: {
c47b0ff6
AK
2733 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2734 dev);
1e5c6983
DW
2735 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2736
2737 info->resync_start = blocks_per_unit * units;
2738 break;
2739 }
d2e6d5d6 2740 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2741 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2742 dev);
2743 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2744 unsigned long long array_blocks;
2745 int used_disks;
d2e6d5d6 2746
befb629b
AK
2747 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2748 (units <
2749 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2750 (super->migr_rec->rec_status ==
2751 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2752 units++;
2753
d2e6d5d6 2754 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2755
d2e6d5d6
AK
2756 dprintf("IMSM: General Migration checkpoint : %llu "
2757 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2758 (unsigned long long)units,
2759 (unsigned long long)blocks_per_unit,
2760 info->reshape_progress);
75156c46 2761
238c0a71 2762 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 2763 if (used_disks > 0) {
5551b113 2764 array_blocks = blocks_per_member(map) *
75156c46
AK
2765 used_disks;
2766 /* round array size down to closest MB
2767 */
2768 info->custom_array_size = (array_blocks
2769 >> SECT_PER_MB_SHIFT)
2770 << SECT_PER_MB_SHIFT;
2771 }
d2e6d5d6 2772 }
1e5c6983
DW
2773 case MIGR_VERIFY:
2774 /* we could emulate the checkpointing of
2775 * 'sync_action=check' migrations, but for now
2776 * we just immediately complete them
2777 */
2778 case MIGR_REBUILD:
2779 /* this is handled by container_content_imsm() */
1e5c6983
DW
2780 case MIGR_STATE_CHANGE:
2781 /* FIXME handle other migrations */
2782 default:
2783 /* we are not dirty, so... */
2784 info->resync_start = MaxSector;
2785 }
b6796ce1 2786 }
301406c9
DW
2787
2788 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2789 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2790
f35f2525
N
2791 info->array.major_version = -1;
2792 info->array.minor_version = -2;
4dd2df09 2793 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 2794 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2795 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2796
2797 if (dmap) {
2798 int i, j;
2799 for (i=0; i<map_disks; i++) {
2800 dmap[i] = 0;
2801 if (i < info->array.raid_disks) {
2802 struct imsm_disk *dsk;
238c0a71 2803 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
2804 dsk = get_imsm_disk(super, j);
2805 if (dsk && (dsk->status & CONFIGURED_DISK))
2806 dmap[i] = 1;
2807 }
2808 }
2809 }
81ac8b4d 2810}
bf5a934a 2811
3b451610
AK
2812static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2813 int failed, int look_in_map);
2814
2815static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2816 int look_in_map);
2817
b4ab44d8 2818#ifndef MDASSEMBLE
3b451610
AK
2819static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2820{
2821 if (is_gen_migration(dev)) {
2822 int failed;
2823 __u8 map_state;
2824 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2825
2826 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 2827 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
2828 if (map2->map_state != map_state) {
2829 map2->map_state = map_state;
2830 super->updates_pending++;
2831 }
2832 }
2833}
b4ab44d8 2834#endif
97b4d0e9
DW
2835
2836static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2837{
2838 struct dl *d;
2839
2840 for (d = super->missing; d; d = d->next)
2841 if (d->index == index)
2842 return &d->disk;
2843 return NULL;
2844}
2845
a5d85af7 2846static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2847{
2848 struct intel_super *super = st->sb;
4f5bc454 2849 struct imsm_disk *disk;
a5d85af7 2850 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2851 int max_enough = -1;
2852 int i;
2853 struct imsm_super *mpb;
4f5bc454 2854
bf5a934a 2855 if (super->current_vol >= 0) {
a5d85af7 2856 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2857 return;
2858 }
95eeceeb 2859 memset(info, 0, sizeof(*info));
d23fe947
DW
2860
2861 /* Set raid_disks to zero so that Assemble will always pull in valid
2862 * spares
2863 */
2864 info->array.raid_disks = 0;
cdddbdbc
DW
2865 info->array.level = LEVEL_CONTAINER;
2866 info->array.layout = 0;
2867 info->array.md_minor = -1;
1011e834 2868 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2869 info->array.utime = 0;
2870 info->array.chunk_size = 0;
2871
2872 info->disk.major = 0;
2873 info->disk.minor = 0;
cdddbdbc 2874 info->disk.raid_disk = -1;
c2c087e6 2875 info->reshape_active = 0;
f35f2525
N
2876 info->array.major_version = -1;
2877 info->array.minor_version = -2;
c2c087e6 2878 strcpy(info->text_version, "imsm");
a67dd8cc 2879 info->safe_mode_delay = 0;
c2c087e6
DW
2880 info->disk.number = -1;
2881 info->disk.state = 0;
c5afc314 2882 info->name[0] = 0;
921d9e16 2883 info->recovery_start = MaxSector;
3ad25638 2884 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2885
97b4d0e9 2886 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2887 mpb = super->anchor;
97b4d0e9 2888
ab3cb6b3
N
2889 for (i = 0; i < mpb->num_raid_devs; i++) {
2890 struct imsm_dev *dev = get_imsm_dev(super, i);
2891 int failed, enough, j, missing = 0;
2892 struct imsm_map *map;
2893 __u8 state;
97b4d0e9 2894
3b451610
AK
2895 failed = imsm_count_failed(super, dev, MAP_0);
2896 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 2897 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
2898
2899 /* any newly missing disks?
2900 * (catches single-degraded vs double-degraded)
2901 */
2902 for (j = 0; j < map->num_members; j++) {
238c0a71 2903 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
2904 __u32 idx = ord_to_idx(ord);
2905
2906 if (!(ord & IMSM_ORD_REBUILD) &&
2907 get_imsm_missing(super, idx)) {
2908 missing = 1;
2909 break;
2910 }
97b4d0e9 2911 }
ab3cb6b3
N
2912
2913 if (state == IMSM_T_STATE_FAILED)
2914 enough = -1;
2915 else if (state == IMSM_T_STATE_DEGRADED &&
2916 (state != map->map_state || missing))
2917 enough = 0;
2918 else /* we're normal, or already degraded */
2919 enough = 1;
d2bde6d3
AK
2920 if (is_gen_migration(dev) && missing) {
2921 /* during general migration we need all disks
2922 * that process is running on.
2923 * No new missing disk is allowed.
2924 */
2925 max_enough = -1;
2926 enough = -1;
2927 /* no more checks necessary
2928 */
2929 break;
2930 }
ab3cb6b3
N
2931 /* in the missing/failed disk case check to see
2932 * if at least one array is runnable
2933 */
2934 max_enough = max(max_enough, enough);
2935 }
2936 dprintf("%s: enough: %d\n", __func__, max_enough);
2937 info->container_enough = max_enough;
97b4d0e9 2938
4a04ec6c 2939 if (super->disks) {
14e8215b
DW
2940 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2941
b9f594fe 2942 disk = &super->disks->disk;
5551b113 2943 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 2944 info->component_size = reserved;
25ed7e59 2945 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2946 /* we don't change info->disk.raid_disk here because
2947 * this state will be finalized in mdmon after we have
2948 * found the 'most fresh' version of the metadata
2949 */
25ed7e59
DW
2950 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2951 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2952 }
a575e2a7
DW
2953
2954 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2955 * ->compare_super may have updated the 'num_raid_devs' field for spares
2956 */
2957 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2958 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2959 else
2960 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2961
2962 /* I don't know how to compute 'map' on imsm, so use safe default */
2963 if (map) {
2964 int i;
2965 for (i = 0; i < map_disks; i++)
2966 map[i] = 1;
2967 }
2968
cdddbdbc
DW
2969}
2970
5c4cd5da
AC
2971/* allocates memory and fills disk in mdinfo structure
2972 * for each disk in array */
2973struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2974{
2975 struct mdinfo *mddev = NULL;
2976 struct intel_super *super = st->sb;
2977 struct imsm_disk *disk;
2978 int count = 0;
2979 struct dl *dl;
2980 if (!super || !super->disks)
2981 return NULL;
2982 dl = super->disks;
503975b9 2983 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
2984 while (dl) {
2985 struct mdinfo *tmp;
2986 disk = &dl->disk;
503975b9 2987 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
2988 if (mddev->devs)
2989 tmp->next = mddev->devs;
2990 mddev->devs = tmp;
2991 tmp->disk.number = count++;
2992 tmp->disk.major = dl->major;
2993 tmp->disk.minor = dl->minor;
2994 tmp->disk.state = is_configured(disk) ?
2995 (1 << MD_DISK_ACTIVE) : 0;
2996 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2997 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2998 tmp->disk.raid_disk = -1;
2999 dl = dl->next;
3000 }
3001 return mddev;
3002}
3003
cdddbdbc
DW
3004static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3005 char *update, char *devname, int verbose,
3006 int uuid_set, char *homehost)
3007{
f352c545
DW
3008 /* For 'assemble' and 'force' we need to return non-zero if any
3009 * change was made. For others, the return value is ignored.
3010 * Update options are:
3011 * force-one : This device looks a bit old but needs to be included,
3012 * update age info appropriately.
3013 * assemble: clear any 'faulty' flag to allow this device to
3014 * be assembled.
3015 * force-array: Array is degraded but being forced, mark it clean
3016 * if that will be needed to assemble it.
3017 *
3018 * newdev: not used ????
3019 * grow: Array has gained a new device - this is currently for
3020 * linear only
3021 * resync: mark as dirty so a resync will happen.
3022 * name: update the name - preserving the homehost
6e46bf34 3023 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3024 *
3025 * Following are not relevant for this imsm:
3026 * sparc2.2 : update from old dodgey metadata
3027 * super-minor: change the preferred_minor number
3028 * summaries: update redundant counters.
f352c545
DW
3029 * homehost: update the recorded homehost
3030 * _reshape_progress: record new reshape_progress position.
3031 */
6e46bf34
DW
3032 int rv = 1;
3033 struct intel_super *super = st->sb;
3034 struct imsm_super *mpb;
f352c545 3035
6e46bf34
DW
3036 /* we can only update container info */
3037 if (!super || super->current_vol >= 0 || !super->anchor)
3038 return 1;
3039
3040 mpb = super->anchor;
3041
81a5b4f5
N
3042 if (strcmp(update, "uuid") == 0) {
3043 /* We take this to mean that the family_num should be updated.
3044 * However that is much smaller than the uuid so we cannot really
3045 * allow an explicit uuid to be given. And it is hard to reliably
3046 * know if one was.
3047 * So if !uuid_set we know the current uuid is random and just used
3048 * the first 'int' and copy it to the other 3 positions.
3049 * Otherwise we require the 4 'int's to be the same as would be the
3050 * case if we are using a random uuid. So an explicit uuid will be
3051 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3052 */
81a5b4f5
N
3053 if (!uuid_set) {
3054 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3055 rv = 0;
81a5b4f5
N
3056 } else {
3057 if (info->uuid[0] != info->uuid[1] ||
3058 info->uuid[1] != info->uuid[2] ||
3059 info->uuid[2] != info->uuid[3])
3060 rv = -1;
3061 else
3062 rv = 0;
6e46bf34 3063 }
81a5b4f5
N
3064 if (rv == 0)
3065 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3066 } else if (strcmp(update, "assemble") == 0)
3067 rv = 0;
3068 else
1e2b2765 3069 rv = -1;
f352c545 3070
6e46bf34
DW
3071 /* successful update? recompute checksum */
3072 if (rv == 0)
3073 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3074
3075 return rv;
cdddbdbc
DW
3076}
3077
c2c087e6 3078static size_t disks_to_mpb_size(int disks)
cdddbdbc 3079{
c2c087e6 3080 size_t size;
cdddbdbc 3081
c2c087e6
DW
3082 size = sizeof(struct imsm_super);
3083 size += (disks - 1) * sizeof(struct imsm_disk);
3084 size += 2 * sizeof(struct imsm_dev);
3085 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3086 size += (4 - 2) * sizeof(struct imsm_map);
3087 /* 4 possible disk_ord_tbl's */
3088 size += 4 * (disks - 1) * sizeof(__u32);
3089
3090 return size;
3091}
3092
387fcd59
N
3093static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3094 unsigned long long data_offset)
c2c087e6
DW
3095{
3096 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3097 return 0;
3098
3099 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3100}
3101
ba2de7ba
DW
3102static void free_devlist(struct intel_super *super)
3103{
3104 struct intel_dev *dv;
3105
3106 while (super->devlist) {
3107 dv = super->devlist->next;
3108 free(super->devlist->dev);
3109 free(super->devlist);
3110 super->devlist = dv;
3111 }
3112}
3113
3114static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3115{
3116 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3117}
3118
cdddbdbc
DW
3119static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3120{
3121 /*
3122 * return:
3123 * 0 same, or first was empty, and second was copied
3124 * 1 second had wrong number
3125 * 2 wrong uuid
3126 * 3 wrong other info
3127 */
3128 struct intel_super *first = st->sb;
3129 struct intel_super *sec = tst->sb;
3130
5d500228
N
3131 if (!first) {
3132 st->sb = tst->sb;
3133 tst->sb = NULL;
3134 return 0;
3135 }
8603ea6f
LM
3136 /* in platform dependent environment test if the disks
3137 * use the same Intel hba
cb8f6859 3138 * If not on Intel hba at all, allow anything.
8603ea6f 3139 */
6b781d33
AP
3140 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3141 if (first->hba->type != sec->hba->type) {
8603ea6f 3142 fprintf(stderr,
6b781d33
AP
3143 "HBAs of devices do not match %s != %s\n",
3144 get_sys_dev_type(first->hba->type),
3145 get_sys_dev_type(sec->hba->type));
3146 return 3;
3147 }
3148 if (first->orom != sec->orom) {
3149 fprintf(stderr,
3150 "HBAs of devices do not match %s != %s\n",
3151 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3152 return 3;
3153 }
3154 }
cdddbdbc 3155
d23fe947
DW
3156 /* if an anchor does not have num_raid_devs set then it is a free
3157 * floating spare
3158 */
3159 if (first->anchor->num_raid_devs > 0 &&
3160 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3161 /* Determine if these disks might ever have been
3162 * related. Further disambiguation can only take place
3163 * in load_super_imsm_all
3164 */
3165 __u32 first_family = first->anchor->orig_family_num;
3166 __u32 sec_family = sec->anchor->orig_family_num;
3167
f796af5d
DW
3168 if (memcmp(first->anchor->sig, sec->anchor->sig,
3169 MAX_SIGNATURE_LENGTH) != 0)
3170 return 3;
3171
a2b97981
DW
3172 if (first_family == 0)
3173 first_family = first->anchor->family_num;
3174 if (sec_family == 0)
3175 sec_family = sec->anchor->family_num;
3176
3177 if (first_family != sec_family)
d23fe947 3178 return 3;
f796af5d 3179
d23fe947 3180 }
cdddbdbc 3181
3e372e5a
DW
3182 /* if 'first' is a spare promote it to a populated mpb with sec's
3183 * family number
3184 */
3185 if (first->anchor->num_raid_devs == 0 &&
3186 sec->anchor->num_raid_devs > 0) {
78d30f94 3187 int i;
ba2de7ba
DW
3188 struct intel_dev *dv;
3189 struct imsm_dev *dev;
78d30f94
DW
3190
3191 /* we need to copy raid device info from sec if an allocation
3192 * fails here we don't associate the spare
3193 */
3194 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3195 dv = xmalloc(sizeof(*dv));
3196 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3197 dv->dev = dev;
3198 dv->index = i;
3199 dv->next = first->devlist;
3200 first->devlist = dv;
78d30f94 3201 }
709743c5 3202 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3203 /* allocation failure */
3204 free_devlist(first);
e12b3daa 3205 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3206 return 3;
78d30f94 3207 }
3e372e5a 3208 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3209 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3210 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3211 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3212 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3213 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3214 }
3215
cdddbdbc
DW
3216 return 0;
3217}
3218
0030e8d6
DW
3219static void fd2devname(int fd, char *name)
3220{
3221 struct stat st;
3222 char path[256];
33a6535d 3223 char dname[PATH_MAX];
0030e8d6
DW
3224 char *nm;
3225 int rv;
3226
3227 name[0] = '\0';
3228 if (fstat(fd, &st) != 0)
3229 return;
3230 sprintf(path, "/sys/dev/block/%d:%d",
3231 major(st.st_rdev), minor(st.st_rdev));
3232
9cf014ec 3233 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3234 if (rv <= 0)
3235 return;
9587c373 3236
0030e8d6
DW
3237 dname[rv] = '\0';
3238 nm = strrchr(dname, '/');
7897de29
JS
3239 if (nm) {
3240 nm++;
3241 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3242 }
0030e8d6
DW
3243}
3244
cdddbdbc
DW
3245extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3246
3247static int imsm_read_serial(int fd, char *devname,
3248 __u8 serial[MAX_RAID_SERIAL_LEN])
3249{
3250 unsigned char scsi_serial[255];
cdddbdbc
DW
3251 int rv;
3252 int rsp_len;
1f24f035 3253 int len;
316e2bf4
DW
3254 char *dest;
3255 char *src;
3256 char *rsp_buf;
3257 int i;
cdddbdbc
DW
3258
3259 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 3260
f9ba0ff1
DW
3261 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3262
40ebbb9c 3263 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3264 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3265 fd2devname(fd, (char *) serial);
0030e8d6
DW
3266 return 0;
3267 }
3268
cdddbdbc
DW
3269 if (rv != 0) {
3270 if (devname)
e7b84f9d
N
3271 pr_err("Failed to retrieve serial for %s\n",
3272 devname);
cdddbdbc
DW
3273 return rv;
3274 }
3275
3276 rsp_len = scsi_serial[3];
03cd4cc8
DW
3277 if (!rsp_len) {
3278 if (devname)
e7b84f9d
N
3279 pr_err("Failed to retrieve serial for %s\n",
3280 devname);
03cd4cc8
DW
3281 return 2;
3282 }
1f24f035 3283 rsp_buf = (char *) &scsi_serial[4];
5c3db629 3284
316e2bf4
DW
3285 /* trim all whitespace and non-printable characters and convert
3286 * ':' to ';'
3287 */
3288 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3289 src = &rsp_buf[i];
3290 if (*src > 0x20) {
3291 /* ':' is reserved for use in placeholder serial
3292 * numbers for missing disks
3293 */
3294 if (*src == ':')
3295 *dest++ = ';';
3296 else
3297 *dest++ = *src;
3298 }
3299 }
3300 len = dest - rsp_buf;
3301 dest = rsp_buf;
3302
3303 /* truncate leading characters */
3304 if (len > MAX_RAID_SERIAL_LEN) {
3305 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3306 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3307 }
5c3db629 3308
5c3db629 3309 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3310 memcpy(serial, dest, len);
cdddbdbc
DW
3311
3312 return 0;
3313}
3314
1f24f035
DW
3315static int serialcmp(__u8 *s1, __u8 *s2)
3316{
3317 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3318}
3319
3320static void serialcpy(__u8 *dest, __u8 *src)
3321{
3322 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3323}
3324
54c2c1ea
DW
3325static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3326{
3327 struct dl *dl;
3328
3329 for (dl = super->disks; dl; dl = dl->next)
3330 if (serialcmp(dl->serial, serial) == 0)
3331 break;
3332
3333 return dl;
3334}
3335
a2b97981
DW
3336static struct imsm_disk *
3337__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3338{
3339 int i;
3340
3341 for (i = 0; i < mpb->num_disks; i++) {
3342 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3343
3344 if (serialcmp(disk->serial, serial) == 0) {
3345 if (idx)
3346 *idx = i;
3347 return disk;
3348 }
3349 }
3350
3351 return NULL;
3352}
3353
cdddbdbc
DW
3354static int
3355load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3356{
a2b97981 3357 struct imsm_disk *disk;
cdddbdbc
DW
3358 struct dl *dl;
3359 struct stat stb;
cdddbdbc 3360 int rv;
a2b97981 3361 char name[40];
d23fe947
DW
3362 __u8 serial[MAX_RAID_SERIAL_LEN];
3363
3364 rv = imsm_read_serial(fd, devname, serial);
3365
3366 if (rv != 0)
3367 return 2;
3368
503975b9 3369 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3370
a2b97981
DW
3371 fstat(fd, &stb);
3372 dl->major = major(stb.st_rdev);
3373 dl->minor = minor(stb.st_rdev);
3374 dl->next = super->disks;
3375 dl->fd = keep_fd ? fd : -1;
3376 assert(super->disks == NULL);
3377 super->disks = dl;
3378 serialcpy(dl->serial, serial);
3379 dl->index = -2;
3380 dl->e = NULL;
3381 fd2devname(fd, name);
3382 if (devname)
503975b9 3383 dl->devname = xstrdup(devname);
a2b97981 3384 else
503975b9 3385 dl->devname = xstrdup(name);
cdddbdbc 3386
d23fe947 3387 /* look up this disk's index in the current anchor */
a2b97981
DW
3388 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3389 if (disk) {
3390 dl->disk = *disk;
3391 /* only set index on disks that are a member of a
3392 * populated contianer, i.e. one with raid_devs
3393 */
3394 if (is_failed(&dl->disk))
3f6efecc 3395 dl->index = -2;
a2b97981
DW
3396 else if (is_spare(&dl->disk))
3397 dl->index = -1;
3f6efecc
DW
3398 }
3399
949c47a0
DW
3400 return 0;
3401}
3402
0e600426 3403#ifndef MDASSEMBLE
0c046afd
DW
3404/* When migrating map0 contains the 'destination' state while map1
3405 * contains the current state. When not migrating map0 contains the
3406 * current state. This routine assumes that map[0].map_state is set to
3407 * the current array state before being called.
3408 *
3409 * Migration is indicated by one of the following states
3410 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3411 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3412 * map1state=unitialized)
1484e727 3413 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3414 * map1state=normal)
e3bba0e0 3415 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3416 * map1state=degraded)
8e59f3d8
AK
3417 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3418 * map1state=normal)
0c046afd 3419 */
8e59f3d8
AK
3420static void migrate(struct imsm_dev *dev, struct intel_super *super,
3421 __u8 to_state, int migr_type)
3393c6af 3422{
0c046afd 3423 struct imsm_map *dest;
238c0a71 3424 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3425
0c046afd 3426 dev->vol.migr_state = 1;
1484e727 3427 set_migr_type(dev, migr_type);
f8f603f1 3428 dev->vol.curr_migr_unit = 0;
238c0a71 3429 dest = get_imsm_map(dev, MAP_1);
0c046afd 3430
0556e1a2 3431 /* duplicate and then set the target end state in map[0] */
3393c6af 3432 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3433 if ((migr_type == MIGR_REBUILD) ||
3434 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3435 __u32 ord;
3436 int i;
3437
3438 for (i = 0; i < src->num_members; i++) {
3439 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3440 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3441 }
3442 }
3443
8e59f3d8
AK
3444 if (migr_type == MIGR_GEN_MIGR)
3445 /* Clear migration record */
3446 memset(super->migr_rec, 0, sizeof(struct migr_record));
3447
0c046afd 3448 src->map_state = to_state;
949c47a0 3449}
f8f603f1 3450
809da78e
AK
3451static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3452 __u8 map_state)
f8f603f1 3453{
238c0a71
AK
3454 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3455 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3456 MAP_0 : MAP_1);
28bce06f 3457 int i, j;
0556e1a2
DW
3458
3459 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3460 * completed in the last migration.
3461 *
28bce06f 3462 * FIXME add support for raid-level-migration
0556e1a2 3463 */
809da78e
AK
3464 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3465 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3466 /* when final map state is other than expected
3467 * merge maps (not for migration)
3468 */
3469 int failed;
3470
3471 for (i = 0; i < prev->num_members; i++)
3472 for (j = 0; j < map->num_members; j++)
3473 /* during online capacity expansion
3474 * disks position can be changed
3475 * if takeover is used
3476 */
3477 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3478 ord_to_idx(prev->disk_ord_tbl[i])) {
3479 map->disk_ord_tbl[j] |=
3480 prev->disk_ord_tbl[i];
3481 break;
3482 }
3483 failed = imsm_count_failed(super, dev, MAP_0);
3484 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3485 }
f8f603f1
DW
3486
3487 dev->vol.migr_state = 0;
ea672ee1 3488 set_migr_type(dev, 0);
f8f603f1
DW
3489 dev->vol.curr_migr_unit = 0;
3490 map->map_state = map_state;
3491}
0e600426 3492#endif
949c47a0
DW
3493
3494static int parse_raid_devices(struct intel_super *super)
3495{
3496 int i;
3497 struct imsm_dev *dev_new;
4d7b1503 3498 size_t len, len_migr;
401d313b 3499 size_t max_len = 0;
4d7b1503
DW
3500 size_t space_needed = 0;
3501 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3502
3503 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3504 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3505 struct intel_dev *dv;
949c47a0 3506
4d7b1503
DW
3507 len = sizeof_imsm_dev(dev_iter, 0);
3508 len_migr = sizeof_imsm_dev(dev_iter, 1);
3509 if (len_migr > len)
3510 space_needed += len_migr - len;
ca9de185 3511
503975b9 3512 dv = xmalloc(sizeof(*dv));
401d313b
AK
3513 if (max_len < len_migr)
3514 max_len = len_migr;
3515 if (max_len > len_migr)
3516 space_needed += max_len - len_migr;
503975b9 3517 dev_new = xmalloc(max_len);
949c47a0 3518 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3519 dv->dev = dev_new;
3520 dv->index = i;
3521 dv->next = super->devlist;
3522 super->devlist = dv;
949c47a0 3523 }
cdddbdbc 3524
4d7b1503
DW
3525 /* ensure that super->buf is large enough when all raid devices
3526 * are migrating
3527 */
3528 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3529 void *buf;
3530
3531 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3532 if (posix_memalign(&buf, 512, len) != 0)
3533 return 1;
3534
1f45a8ad
DW
3535 memcpy(buf, super->buf, super->len);
3536 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3537 free(super->buf);
3538 super->buf = buf;
3539 super->len = len;
3540 }
ca9de185 3541
cdddbdbc
DW
3542 return 0;
3543}
3544
604b746f
JD
3545/* retrieve a pointer to the bbm log which starts after all raid devices */
3546struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3547{
3548 void *ptr = NULL;
3549
3550 if (__le32_to_cpu(mpb->bbm_log_size)) {
3551 ptr = mpb;
3552 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1011e834 3553 }
604b746f
JD
3554
3555 return ptr;
3556}
3557
e2f41b2c
AK
3558/*******************************************************************************
3559 * Function: check_mpb_migr_compatibility
3560 * Description: Function checks for unsupported migration features:
3561 * - migration optimization area (pba_of_lba0)
3562 * - descending reshape (ascending_migr)
3563 * Parameters:
3564 * super : imsm metadata information
3565 * Returns:
3566 * 0 : migration is compatible
3567 * -1 : migration is not compatible
3568 ******************************************************************************/
3569int check_mpb_migr_compatibility(struct intel_super *super)
3570{
3571 struct imsm_map *map0, *map1;
3572 struct migr_record *migr_rec = super->migr_rec;
3573 int i;
3574
3575 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3576 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3577
3578 if (dev_iter &&
3579 dev_iter->vol.migr_state == 1 &&
3580 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3581 /* This device is migrating */
238c0a71
AK
3582 map0 = get_imsm_map(dev_iter, MAP_0);
3583 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 3584 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
3585 /* migration optimization area was used */
3586 return -1;
3587 if (migr_rec->ascending_migr == 0
3588 && migr_rec->dest_depth_per_unit > 0)
3589 /* descending reshape not supported yet */
3590 return -1;
3591 }
3592 }
3593 return 0;
3594}
3595
d23fe947 3596static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3597
cdddbdbc 3598/* load_imsm_mpb - read matrix metadata
f2f5c343 3599 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3600 */
3601static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3602{
3603 unsigned long long dsize;
cdddbdbc
DW
3604 unsigned long long sectors;
3605 struct stat;
6416d527 3606 struct imsm_super *anchor;
cdddbdbc
DW
3607 __u32 check_sum;
3608
cdddbdbc 3609 get_dev_size(fd, NULL, &dsize);
64436f06
N
3610 if (dsize < 1024) {
3611 if (devname)
e7b84f9d
N
3612 pr_err("%s: device to small for imsm\n",
3613 devname);
64436f06
N
3614 return 1;
3615 }
cdddbdbc
DW
3616
3617 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3618 if (devname)
e7b84f9d
N
3619 pr_err("Cannot seek to anchor block on %s: %s\n",
3620 devname, strerror(errno));
cdddbdbc
DW
3621 return 1;
3622 }
3623
949c47a0 3624 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e 3625 if (devname)
e7b84f9d
N
3626 pr_err("Failed to allocate imsm anchor buffer"
3627 " on %s\n", devname);
ad97895e
DW
3628 return 1;
3629 }
949c47a0 3630 if (read(fd, anchor, 512) != 512) {
cdddbdbc 3631 if (devname)
e7b84f9d
N
3632 pr_err("Cannot read anchor block on %s: %s\n",
3633 devname, strerror(errno));
6416d527 3634 free(anchor);
cdddbdbc
DW
3635 return 1;
3636 }
3637
6416d527 3638 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 3639 if (devname)
e7b84f9d 3640 pr_err("no IMSM anchor on %s\n", devname);
6416d527 3641 free(anchor);
cdddbdbc
DW
3642 return 2;
3643 }
3644
d23fe947 3645 __free_imsm(super, 0);
f2f5c343
LM
3646 /* reload capability and hba */
3647
3648 /* capability and hba must be updated with new super allocation */
d424212e 3649 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3650 super->len = ROUND_UP(anchor->mpb_size, 512);
3651 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc 3652 if (devname)
e7b84f9d
N
3653 pr_err("unable to allocate %zu byte mpb buffer\n",
3654 super->len);
6416d527 3655 free(anchor);
cdddbdbc
DW
3656 return 2;
3657 }
949c47a0 3658 memcpy(super->buf, anchor, 512);
cdddbdbc 3659
6416d527
NB
3660 sectors = mpb_sectors(anchor) - 1;
3661 free(anchor);
8e59f3d8 3662
17a4eaf9 3663 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
e7b84f9d 3664 pr_err("%s could not allocate migr_rec buffer\n", __func__);
8e59f3d8
AK
3665 free(super->buf);
3666 return 2;
3667 }
51d83f5d 3668 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 3669
949c47a0 3670 if (!sectors) {
ecf45690
DW
3671 check_sum = __gen_imsm_checksum(super->anchor);
3672 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3673 if (devname)
e7b84f9d
N
3674 pr_err("IMSM checksum %x != %x on %s\n",
3675 check_sum,
3676 __le32_to_cpu(super->anchor->check_sum),
3677 devname);
ecf45690
DW
3678 return 2;
3679 }
3680
a2b97981 3681 return 0;
949c47a0 3682 }
cdddbdbc
DW
3683
3684 /* read the extended mpb */
3685 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3686 if (devname)
e7b84f9d
N
3687 pr_err("Cannot seek to extended mpb on %s: %s\n",
3688 devname, strerror(errno));
cdddbdbc
DW
3689 return 1;
3690 }
3691
f21e18ca 3692 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc 3693 if (devname)
e7b84f9d
N
3694 pr_err("Cannot read extended mpb on %s: %s\n",
3695 devname, strerror(errno));
cdddbdbc
DW
3696 return 2;
3697 }
3698
949c47a0
DW
3699 check_sum = __gen_imsm_checksum(super->anchor);
3700 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 3701 if (devname)
e7b84f9d
N
3702 pr_err("IMSM checksum %x != %x on %s\n",
3703 check_sum, __le32_to_cpu(super->anchor->check_sum),
3704 devname);
db575f3b 3705 return 3;
cdddbdbc
DW
3706 }
3707
604b746f
JD
3708 /* FIXME the BBM log is disk specific so we cannot use this global
3709 * buffer for all disks. Ok for now since we only look at the global
3710 * bbm_log_size parameter to gate assembly
3711 */
3712 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3713
a2b97981
DW
3714 return 0;
3715}
3716
8e59f3d8
AK
3717static int read_imsm_migr_rec(int fd, struct intel_super *super);
3718
97f81ee2
CA
3719/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3720static void clear_hi(struct intel_super *super)
3721{
3722 struct imsm_super *mpb = super->anchor;
3723 int i, n;
3724 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3725 return;
3726 for (i = 0; i < mpb->num_disks; ++i) {
3727 struct imsm_disk *disk = &mpb->disk[i];
3728 disk->total_blocks_hi = 0;
3729 }
3730 for (i = 0; i < mpb->num_raid_devs; ++i) {
3731 struct imsm_dev *dev = get_imsm_dev(super, i);
3732 if (!dev)
3733 return;
3734 for (n = 0; n < 2; ++n) {
3735 struct imsm_map *map = get_imsm_map(dev, n);
3736 if (!map)
3737 continue;
3738 map->pba_of_lba0_hi = 0;
3739 map->blocks_per_member_hi = 0;
3740 map->num_data_stripes_hi = 0;
3741 }
3742 }
3743}
3744
a2b97981
DW
3745static int
3746load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3747{
3748 int err;
3749
3750 err = load_imsm_mpb(fd, super, devname);
3751 if (err)
3752 return err;
3753 err = load_imsm_disk(fd, super, devname, keep_fd);
3754 if (err)
3755 return err;
3756 err = parse_raid_devices(super);
97f81ee2 3757 clear_hi(super);
a2b97981 3758 return err;
cdddbdbc
DW
3759}
3760
ae6aad82
DW
3761static void __free_imsm_disk(struct dl *d)
3762{
3763 if (d->fd >= 0)
3764 close(d->fd);
3765 if (d->devname)
3766 free(d->devname);
0dcecb2e
DW
3767 if (d->e)
3768 free(d->e);
ae6aad82
DW
3769 free(d);
3770
3771}
1a64be56 3772
cdddbdbc
DW
3773static void free_imsm_disks(struct intel_super *super)
3774{
47ee5a45 3775 struct dl *d;
cdddbdbc 3776
47ee5a45
DW
3777 while (super->disks) {
3778 d = super->disks;
cdddbdbc 3779 super->disks = d->next;
ae6aad82 3780 __free_imsm_disk(d);
cdddbdbc 3781 }
cb82edca
AK
3782 while (super->disk_mgmt_list) {
3783 d = super->disk_mgmt_list;
3784 super->disk_mgmt_list = d->next;
3785 __free_imsm_disk(d);
3786 }
47ee5a45
DW
3787 while (super->missing) {
3788 d = super->missing;
3789 super->missing = d->next;
3790 __free_imsm_disk(d);
3791 }
3792
cdddbdbc
DW
3793}
3794
9ca2c81c 3795/* free all the pieces hanging off of a super pointer */
d23fe947 3796static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3797{
88654014
LM
3798 struct intel_hba *elem, *next;
3799
9ca2c81c 3800 if (super->buf) {
949c47a0 3801 free(super->buf);
9ca2c81c
DW
3802 super->buf = NULL;
3803 }
f2f5c343
LM
3804 /* unlink capability description */
3805 super->orom = NULL;
8e59f3d8
AK
3806 if (super->migr_rec_buf) {
3807 free(super->migr_rec_buf);
3808 super->migr_rec_buf = NULL;
3809 }
d23fe947
DW
3810 if (free_disks)
3811 free_imsm_disks(super);
ba2de7ba 3812 free_devlist(super);
88654014
LM
3813 elem = super->hba;
3814 while (elem) {
3815 if (elem->path)
3816 free((void *)elem->path);
3817 next = elem->next;
3818 free(elem);
3819 elem = next;
88c32bb1 3820 }
88654014 3821 super->hba = NULL;
cdddbdbc
DW
3822}
3823
9ca2c81c
DW
3824static void free_imsm(struct intel_super *super)
3825{
d23fe947 3826 __free_imsm(super, 1);
9ca2c81c
DW
3827 free(super);
3828}
cdddbdbc
DW
3829
3830static void free_super_imsm(struct supertype *st)
3831{
3832 struct intel_super *super = st->sb;
3833
3834 if (!super)
3835 return;
3836
3837 free_imsm(super);
3838 st->sb = NULL;
3839}
3840
49133e57 3841static struct intel_super *alloc_super(void)
c2c087e6 3842{
503975b9 3843 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 3844
503975b9
N
3845 super->current_vol = -1;
3846 super->create_offset = ~((unsigned long long) 0);
c2c087e6
DW
3847 return super;
3848}
3849
f0f5a016
LM
3850/*
3851 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3852 */
d424212e 3853static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3854{
3855 struct sys_dev *hba_name;
3856 int rv = 0;
3857
3858 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3859 super->orom = NULL;
f0f5a016
LM
3860 super->hba = NULL;
3861 return 0;
3862 }
3863 hba_name = find_disk_attached_hba(fd, NULL);
3864 if (!hba_name) {
d424212e 3865 if (devname)
e7b84f9d
N
3866 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3867 devname);
f0f5a016
LM
3868 return 1;
3869 }
3870 rv = attach_hba_to_super(super, hba_name);
3871 if (rv == 2) {
d424212e
N
3872 if (devname) {
3873 struct intel_hba *hba = super->hba;
f0f5a016 3874
e7b84f9d 3875 pr_err("%s is attached to Intel(R) %s RAID "
f0f5a016
LM
3876 "controller (%s),\n"
3877 " but the container is assigned to Intel(R) "
3878 "%s RAID controller (",
d424212e 3879 devname,
614902f6 3880 get_sys_dev_type(hba_name->type),
f0f5a016 3881 hba_name->pci_id ? : "Err!",
614902f6 3882 get_sys_dev_type(super->hba->type));
f0f5a016 3883
f0f5a016
LM
3884 while (hba) {
3885 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3886 if (hba->next)
3887 fprintf(stderr, ", ");
3888 hba = hba->next;
3889 }
6b781d33
AP
3890 fprintf(stderr, ").\n"
3891 " Mixing devices attached to different controllers "
3892 "is not allowed.\n");
f0f5a016 3893 }
f0f5a016
LM
3894 return 2;
3895 }
6b781d33 3896 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
3897 if (!super->orom)
3898 return 3;
614902f6 3899
f0f5a016
LM
3900 return 0;
3901}
3902
47ee5a45
DW
3903/* find_missing - helper routine for load_super_imsm_all that identifies
3904 * disks that have disappeared from the system. This routine relies on
3905 * the mpb being uptodate, which it is at load time.
3906 */
3907static int find_missing(struct intel_super *super)
3908{
3909 int i;
3910 struct imsm_super *mpb = super->anchor;
3911 struct dl *dl;
3912 struct imsm_disk *disk;
47ee5a45
DW
3913
3914 for (i = 0; i < mpb->num_disks; i++) {
3915 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3916 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3917 if (dl)
3918 continue;
47ee5a45 3919
503975b9 3920 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
3921 dl->major = 0;
3922 dl->minor = 0;
3923 dl->fd = -1;
503975b9 3924 dl->devname = xstrdup("missing");
47ee5a45
DW
3925 dl->index = i;
3926 serialcpy(dl->serial, disk->serial);
3927 dl->disk = *disk;
689c9bf3 3928 dl->e = NULL;
47ee5a45
DW
3929 dl->next = super->missing;
3930 super->missing = dl;
3931 }
3932
3933 return 0;
3934}
3935
3960e579 3936#ifndef MDASSEMBLE
a2b97981
DW
3937static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3938{
3939 struct intel_disk *idisk = disk_list;
3940
3941 while (idisk) {
3942 if (serialcmp(idisk->disk.serial, serial) == 0)
3943 break;
3944 idisk = idisk->next;
3945 }
3946
3947 return idisk;
3948}
3949
3950static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3951 struct intel_super *super,
3952 struct intel_disk **disk_list)
3953{
3954 struct imsm_disk *d = &super->disks->disk;
3955 struct imsm_super *mpb = super->anchor;
3956 int i, j;
3957
3958 for (i = 0; i < tbl_size; i++) {
3959 struct imsm_super *tbl_mpb = table[i]->anchor;
3960 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3961
3962 if (tbl_mpb->family_num == mpb->family_num) {
3963 if (tbl_mpb->check_sum == mpb->check_sum) {
3964 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3965 __func__, super->disks->major,
3966 super->disks->minor,
3967 table[i]->disks->major,
3968 table[i]->disks->minor);
3969 break;
3970 }
3971
3972 if (((is_configured(d) && !is_configured(tbl_d)) ||
3973 is_configured(d) == is_configured(tbl_d)) &&
3974 tbl_mpb->generation_num < mpb->generation_num) {
3975 /* current version of the mpb is a
3976 * better candidate than the one in
3977 * super_table, but copy over "cross
3978 * generational" status
3979 */
3980 struct intel_disk *idisk;
3981
3982 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3983 __func__, super->disks->major,
3984 super->disks->minor,
3985 table[i]->disks->major,
3986 table[i]->disks->minor);
3987
3988 idisk = disk_list_get(tbl_d->serial, *disk_list);
3989 if (idisk && is_failed(&idisk->disk))
3990 tbl_d->status |= FAILED_DISK;
3991 break;
3992 } else {
3993 struct intel_disk *idisk;
3994 struct imsm_disk *disk;
3995
3996 /* tbl_mpb is more up to date, but copy
3997 * over cross generational status before
3998 * returning
3999 */
4000 disk = __serial_to_disk(d->serial, mpb, NULL);
4001 if (disk && is_failed(disk))
4002 d->status |= FAILED_DISK;
4003
4004 idisk = disk_list_get(d->serial, *disk_list);
4005 if (idisk) {
4006 idisk->owner = i;
4007 if (disk && is_configured(disk))
4008 idisk->disk.status |= CONFIGURED_DISK;
4009 }
4010
4011 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
4012 __func__, super->disks->major,
4013 super->disks->minor,
4014 table[i]->disks->major,
4015 table[i]->disks->minor);
4016
4017 return tbl_size;
4018 }
4019 }
4020 }
4021
4022 if (i >= tbl_size)
4023 table[tbl_size++] = super;
4024 else
4025 table[i] = super;
4026
4027 /* update/extend the merged list of imsm_disk records */
4028 for (j = 0; j < mpb->num_disks; j++) {
4029 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4030 struct intel_disk *idisk;
4031
4032 idisk = disk_list_get(disk->serial, *disk_list);
4033 if (idisk) {
4034 idisk->disk.status |= disk->status;
4035 if (is_configured(&idisk->disk) ||
4036 is_failed(&idisk->disk))
4037 idisk->disk.status &= ~(SPARE_DISK);
4038 } else {
503975b9 4039 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4040 idisk->owner = IMSM_UNKNOWN_OWNER;
4041 idisk->disk = *disk;
4042 idisk->next = *disk_list;
4043 *disk_list = idisk;
4044 }
4045
4046 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4047 idisk->owner = i;
4048 }
4049
4050 return tbl_size;
4051}
4052
4053static struct intel_super *
4054validate_members(struct intel_super *super, struct intel_disk *disk_list,
4055 const int owner)
4056{
4057 struct imsm_super *mpb = super->anchor;
4058 int ok_count = 0;
4059 int i;
4060
4061 for (i = 0; i < mpb->num_disks; i++) {
4062 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4063 struct intel_disk *idisk;
4064
4065 idisk = disk_list_get(disk->serial, disk_list);
4066 if (idisk) {
4067 if (idisk->owner == owner ||
4068 idisk->owner == IMSM_UNKNOWN_OWNER)
4069 ok_count++;
4070 else
4071 dprintf("%s: '%.16s' owner %d != %d\n",
4072 __func__, disk->serial, idisk->owner,
4073 owner);
4074 } else {
4075 dprintf("%s: unknown disk %x [%d]: %.16s\n",
4076 __func__, __le32_to_cpu(mpb->family_num), i,
4077 disk->serial);
4078 break;
4079 }
4080 }
4081
4082 if (ok_count == mpb->num_disks)
4083 return super;
4084 return NULL;
4085}
4086
4087static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4088{
4089 struct intel_super *s;
4090
4091 for (s = super_list; s; s = s->next) {
4092 if (family_num != s->anchor->family_num)
4093 continue;
e12b3daa 4094 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4095 __le32_to_cpu(family_num), s->disks->devname);
4096 }
4097}
4098
4099static struct intel_super *
4100imsm_thunderdome(struct intel_super **super_list, int len)
4101{
4102 struct intel_super *super_table[len];
4103 struct intel_disk *disk_list = NULL;
4104 struct intel_super *champion, *spare;
4105 struct intel_super *s, **del;
4106 int tbl_size = 0;
4107 int conflict;
4108 int i;
4109
4110 memset(super_table, 0, sizeof(super_table));
4111 for (s = *super_list; s; s = s->next)
4112 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4113
4114 for (i = 0; i < tbl_size; i++) {
4115 struct imsm_disk *d;
4116 struct intel_disk *idisk;
4117 struct imsm_super *mpb = super_table[i]->anchor;
4118
4119 s = super_table[i];
4120 d = &s->disks->disk;
4121
4122 /* 'd' must appear in merged disk list for its
4123 * configuration to be valid
4124 */
4125 idisk = disk_list_get(d->serial, disk_list);
4126 if (idisk && idisk->owner == i)
4127 s = validate_members(s, disk_list, i);
4128 else
4129 s = NULL;
4130
4131 if (!s)
4132 dprintf("%s: marking family: %#x from %d:%d offline\n",
4133 __func__, mpb->family_num,
4134 super_table[i]->disks->major,
4135 super_table[i]->disks->minor);
4136 super_table[i] = s;
4137 }
4138
4139 /* This is where the mdadm implementation differs from the Windows
4140 * driver which has no strict concept of a container. We can only
4141 * assemble one family from a container, so when returning a prodigal
4142 * array member to this system the code will not be able to disambiguate
4143 * the container contents that should be assembled ("foreign" versus
4144 * "local"). It requires user intervention to set the orig_family_num
4145 * to a new value to establish a new container. The Windows driver in
4146 * this situation fixes up the volume name in place and manages the
4147 * foreign array as an independent entity.
4148 */
4149 s = NULL;
4150 spare = NULL;
4151 conflict = 0;
4152 for (i = 0; i < tbl_size; i++) {
4153 struct intel_super *tbl_ent = super_table[i];
4154 int is_spare = 0;
4155
4156 if (!tbl_ent)
4157 continue;
4158
4159 if (tbl_ent->anchor->num_raid_devs == 0) {
4160 spare = tbl_ent;
4161 is_spare = 1;
4162 }
4163
4164 if (s && !is_spare) {
4165 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4166 conflict++;
4167 } else if (!s && !is_spare)
4168 s = tbl_ent;
4169 }
4170
4171 if (!s)
4172 s = spare;
4173 if (!s) {
4174 champion = NULL;
4175 goto out;
4176 }
4177 champion = s;
4178
4179 if (conflict)
e12b3daa 4180 pr_err("Chose family %#x on '%s', "
a2b97981
DW
4181 "assemble conflicts to new container with '--update=uuid'\n",
4182 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4183
4184 /* collect all dl's onto 'champion', and update them to
4185 * champion's version of the status
4186 */
4187 for (s = *super_list; s; s = s->next) {
4188 struct imsm_super *mpb = champion->anchor;
4189 struct dl *dl = s->disks;
4190
4191 if (s == champion)
4192 continue;
4193
5d7b407a
CA
4194 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4195
a2b97981
DW
4196 for (i = 0; i < mpb->num_disks; i++) {
4197 struct imsm_disk *disk;
4198
4199 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4200 if (disk) {
4201 dl->disk = *disk;
4202 /* only set index on disks that are a member of
4203 * a populated contianer, i.e. one with
4204 * raid_devs
4205 */
4206 if (is_failed(&dl->disk))
4207 dl->index = -2;
4208 else if (is_spare(&dl->disk))
4209 dl->index = -1;
4210 break;
4211 }
4212 }
4213
4214 if (i >= mpb->num_disks) {
4215 struct intel_disk *idisk;
4216
4217 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4218 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4219 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4220 dl->index = -1;
4221 else {
4222 dl->index = -2;
4223 continue;
4224 }
4225 }
4226
4227 dl->next = champion->disks;
4228 champion->disks = dl;
4229 s->disks = NULL;
4230 }
4231
4232 /* delete 'champion' from super_list */
4233 for (del = super_list; *del; ) {
4234 if (*del == champion) {
4235 *del = (*del)->next;
4236 break;
4237 } else
4238 del = &(*del)->next;
4239 }
4240 champion->next = NULL;
4241
4242 out:
4243 while (disk_list) {
4244 struct intel_disk *idisk = disk_list;
4245
4246 disk_list = disk_list->next;
4247 free(idisk);
4248 }
4249
4250 return champion;
4251}
4252
9587c373
LM
4253static int
4254get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4255static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4256 int major, int minor, int keep_fd);
ec50f7b6
LM
4257static int
4258get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4259 int *max, int keep_fd);
4260
cdddbdbc 4261static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4262 char *devname, struct md_list *devlist,
4263 int keep_fd)
cdddbdbc 4264{
a2b97981
DW
4265 struct intel_super *super_list = NULL;
4266 struct intel_super *super = NULL;
a2b97981 4267 int err = 0;
9587c373 4268 int i = 0;
dab4a513 4269
9587c373
LM
4270 if (fd >= 0)
4271 /* 'fd' is an opened container */
4272 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4273 else
ec50f7b6
LM
4274 /* get super block from devlist devices */
4275 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4276 if (err)
1602d52c 4277 goto error;
a2b97981
DW
4278 /* all mpbs enter, maybe one leaves */
4279 super = imsm_thunderdome(&super_list, i);
4280 if (!super) {
4281 err = 1;
4282 goto error;
cdddbdbc
DW
4283 }
4284
47ee5a45
DW
4285 if (find_missing(super) != 0) {
4286 free_imsm(super);
a2b97981
DW
4287 err = 2;
4288 goto error;
47ee5a45 4289 }
8e59f3d8
AK
4290
4291 /* load migration record */
4292 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4293 if (err == -1) {
4294 /* migration is in progress,
4295 * but migr_rec cannot be loaded,
4296 */
8e59f3d8
AK
4297 err = 4;
4298 goto error;
4299 }
e2f41b2c
AK
4300
4301 /* Check migration compatibility */
4c965cc9 4302 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
e7b84f9d 4303 pr_err("Unsupported migration detected");
e2f41b2c
AK
4304 if (devname)
4305 fprintf(stderr, " on %s\n", devname);
4306 else
4307 fprintf(stderr, " (IMSM).\n");
4308
4309 err = 5;
4310 goto error;
4311 }
4312
a2b97981
DW
4313 err = 0;
4314
4315 error:
4316 while (super_list) {
4317 struct intel_super *s = super_list;
4318
4319 super_list = super_list->next;
4320 free_imsm(s);
4321 }
9587c373 4322
a2b97981
DW
4323 if (err)
4324 return err;
f7e7067b 4325
cdddbdbc 4326 *sbp = super;
9587c373 4327 if (fd >= 0)
4dd2df09 4328 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4329 else
4dd2df09 4330 st->container_devnm[0] = 0;
a2b97981 4331 if (err == 0 && st->ss == NULL) {
bf5a934a 4332 st->ss = &super_imsm;
cdddbdbc
DW
4333 st->minor_version = 0;
4334 st->max_devs = IMSM_MAX_DEVICES;
4335 }
cdddbdbc
DW
4336 return 0;
4337}
2b959fbf 4338
ec50f7b6
LM
4339static int
4340get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4341 int *max, int keep_fd)
4342{
4343 struct md_list *tmpdev;
4344 int err = 0;
4345 int i = 0;
9587c373 4346
ec50f7b6
LM
4347 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4348 if (tmpdev->used != 1)
4349 continue;
4350 if (tmpdev->container == 1) {
ca9de185 4351 int lmax = 0;
ec50f7b6
LM
4352 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4353 if (fd < 0) {
e7b84f9d 4354 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4355 tmpdev->devname, strerror(errno));
4356 err = 8;
4357 goto error;
4358 }
4359 err = get_sra_super_block(fd, super_list,
4360 tmpdev->devname, &lmax,
4361 keep_fd);
4362 i += lmax;
4363 close(fd);
4364 if (err) {
4365 err = 7;
4366 goto error;
4367 }
4368 } else {
4369 int major = major(tmpdev->st_rdev);
4370 int minor = minor(tmpdev->st_rdev);
4371 err = get_super_block(super_list,
4dd2df09 4372 NULL,
ec50f7b6
LM
4373 tmpdev->devname,
4374 major, minor,
4375 keep_fd);
4376 i++;
4377 if (err) {
4378 err = 6;
4379 goto error;
4380 }
4381 }
4382 }
4383 error:
4384 *max = i;
4385 return err;
4386}
9587c373 4387
4dd2df09 4388static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4389 int major, int minor, int keep_fd)
4390{
4391 struct intel_super*s = NULL;
4392 char nm[32];
4393 int dfd = -1;
9587c373
LM
4394 int err = 0;
4395 int retry;
4396
4397 s = alloc_super();
4398 if (!s) {
4399 err = 1;
4400 goto error;
4401 }
4402
4403 sprintf(nm, "%d:%d", major, minor);
4404 dfd = dev_open(nm, O_RDWR);
4405 if (dfd < 0) {
4406 err = 2;
4407 goto error;
4408 }
4409
cb8f6859 4410 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
4411 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4412
4413 /* retry the load if we might have raced against mdmon */
4dd2df09 4414 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
4415 for (retry = 0; retry < 3; retry++) {
4416 usleep(3000);
4417 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4418 if (err != 3)
4419 break;
4420 }
4421 error:
4422 if (!err) {
4423 s->next = *super_list;
4424 *super_list = s;
4425 } else {
4426 if (s)
4427 free(s);
36614e95 4428 if (dfd >= 0)
9587c373
LM
4429 close(dfd);
4430 }
4431 if ((dfd >= 0) && (!keep_fd))
4432 close(dfd);
4433 return err;
4434
4435}
4436
4437static int
4438get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4439{
4440 struct mdinfo *sra;
4dd2df09 4441 char *devnm;
9587c373
LM
4442 struct mdinfo *sd;
4443 int err = 0;
4444 int i = 0;
4dd2df09 4445 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
4446 if (!sra)
4447 return 1;
4448
4449 if (sra->array.major_version != -1 ||
4450 sra->array.minor_version != -2 ||
4451 strcmp(sra->text_version, "imsm") != 0) {
4452 err = 1;
4453 goto error;
4454 }
4455 /* load all mpbs */
4dd2df09 4456 devnm = fd2devnm(fd);
9587c373 4457 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 4458 if (get_super_block(super_list, devnm, devname,
9587c373
LM
4459 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4460 err = 7;
4461 goto error;
4462 }
4463 }
4464 error:
4465 sysfs_free(sra);
4466 *max = i;
4467 return err;
4468}
4469
2b959fbf
N
4470static int load_container_imsm(struct supertype *st, int fd, char *devname)
4471{
ec50f7b6 4472 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 4473}
cdddbdbc
DW
4474#endif
4475
4476static int load_super_imsm(struct supertype *st, int fd, char *devname)
4477{
4478 struct intel_super *super;
4479 int rv;
8a3544f8 4480 int retry;
cdddbdbc 4481
357ac106 4482 if (test_partition(fd))
691c6ee1
N
4483 /* IMSM not allowed on partitions */
4484 return 1;
4485
37424f13
DW
4486 free_super_imsm(st);
4487
49133e57 4488 super = alloc_super();
ea2bc72b
LM
4489 /* Load hba and capabilities if they exist.
4490 * But do not preclude loading metadata in case capabilities or hba are
4491 * non-compliant and ignore_hw_compat is set.
4492 */
d424212e 4493 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4494 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4495 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343 4496 if (devname)
e7b84f9d 4497 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
4498 free_imsm(super);
4499 return 2;
4500 }
a2b97981 4501 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 4502
8a3544f8
AP
4503 /* retry the load if we might have raced against mdmon */
4504 if (rv == 3) {
4505 struct mdstat_ent *mdstat = mdstat_by_component(fd2devnm(fd));
4506
4507 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4508 for (retry = 0; retry < 3; retry++) {
4509 usleep(3000);
4510 rv = load_and_parse_mpb(fd, super, devname, 0);
4511 if (rv != 3)
4512 break;
4513 }
4514 }
4515
4516 free_mdstat(mdstat);
4517 }
4518
cdddbdbc
DW
4519 if (rv) {
4520 if (devname)
e7b84f9d
N
4521 pr_err("Failed to load all information "
4522 "sections on %s\n", devname);
cdddbdbc
DW
4523 free_imsm(super);
4524 return rv;
4525 }
4526
4527 st->sb = super;
4528 if (st->ss == NULL) {
4529 st->ss = &super_imsm;
4530 st->minor_version = 0;
4531 st->max_devs = IMSM_MAX_DEVICES;
4532 }
8e59f3d8
AK
4533
4534 /* load migration record */
2e062e82
AK
4535 if (load_imsm_migr_rec(super, NULL) == 0) {
4536 /* Check for unsupported migration features */
4537 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4538 pr_err("Unsupported migration detected");
2e062e82
AK
4539 if (devname)
4540 fprintf(stderr, " on %s\n", devname);
4541 else
4542 fprintf(stderr, " (IMSM).\n");
4543 return 3;
4544 }
e2f41b2c
AK
4545 }
4546
cdddbdbc
DW
4547 return 0;
4548}
4549
ef6ffade
DW
4550static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4551{
4552 if (info->level == 1)
4553 return 128;
4554 return info->chunk_size >> 9;
4555}
4556
5551b113
CA
4557static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4558 unsigned long long size)
fcfd9599 4559{
4025c288 4560 if (info->level == 1)
5551b113 4561 return size * 2;
4025c288 4562 else
5551b113 4563 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4564}
4565
4d1313e9
DW
4566static void imsm_update_version_info(struct intel_super *super)
4567{
4568 /* update the version and attributes */
4569 struct imsm_super *mpb = super->anchor;
4570 char *version;
4571 struct imsm_dev *dev;
4572 struct imsm_map *map;
4573 int i;
4574
4575 for (i = 0; i < mpb->num_raid_devs; i++) {
4576 dev = get_imsm_dev(super, i);
238c0a71 4577 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
4578 if (__le32_to_cpu(dev->size_high) > 0)
4579 mpb->attributes |= MPB_ATTRIB_2TB;
4580
4581 /* FIXME detect when an array spans a port multiplier */
4582 #if 0
4583 mpb->attributes |= MPB_ATTRIB_PM;
4584 #endif
4585
4586 if (mpb->num_raid_devs > 1 ||
4587 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4588 version = MPB_VERSION_ATTRIBS;
4589 switch (get_imsm_raid_level(map)) {
4590 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4591 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4592 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4593 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4594 }
4595 } else {
4596 if (map->num_members >= 5)
4597 version = MPB_VERSION_5OR6_DISK_ARRAY;
4598 else if (dev->status == DEV_CLONE_N_GO)
4599 version = MPB_VERSION_CNG;
4600 else if (get_imsm_raid_level(map) == 5)
4601 version = MPB_VERSION_RAID5;
4602 else if (map->num_members >= 3)
4603 version = MPB_VERSION_3OR4_DISK_ARRAY;
4604 else if (get_imsm_raid_level(map) == 1)
4605 version = MPB_VERSION_RAID1;
4606 else
4607 version = MPB_VERSION_RAID0;
4608 }
4609 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4610 }
4611}
4612
aa534678
DW
4613static int check_name(struct intel_super *super, char *name, int quiet)
4614{
4615 struct imsm_super *mpb = super->anchor;
4616 char *reason = NULL;
4617 int i;
4618
4619 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4620 reason = "must be 16 characters or less";
4621
4622 for (i = 0; i < mpb->num_raid_devs; i++) {
4623 struct imsm_dev *dev = get_imsm_dev(super, i);
4624
4625 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4626 reason = "already exists";
4627 break;
4628 }
4629 }
4630
4631 if (reason && !quiet)
e7b84f9d 4632 pr_err("imsm volume name %s\n", reason);
aa534678
DW
4633
4634 return !reason;
4635}
4636
8b353278
DW
4637static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4638 unsigned long long size, char *name,
83cd1e97
N
4639 char *homehost, int *uuid,
4640 long long data_offset)
cdddbdbc 4641{
c2c087e6
DW
4642 /* We are creating a volume inside a pre-existing container.
4643 * so st->sb is already set.
4644 */
4645 struct intel_super *super = st->sb;
949c47a0 4646 struct imsm_super *mpb = super->anchor;
ba2de7ba 4647 struct intel_dev *dv;
c2c087e6
DW
4648 struct imsm_dev *dev;
4649 struct imsm_vol *vol;
4650 struct imsm_map *map;
4651 int idx = mpb->num_raid_devs;
4652 int i;
4653 unsigned long long array_blocks;
2c092cad 4654 size_t size_old, size_new;
5551b113 4655 unsigned long long num_data_stripes;
cdddbdbc 4656
88c32bb1 4657 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
e7b84f9d 4658 pr_err("This imsm-container already has the "
88c32bb1 4659 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4660 return 0;
4661 }
4662
2c092cad
DW
4663 /* ensure the mpb is large enough for the new data */
4664 size_old = __le32_to_cpu(mpb->mpb_size);
4665 size_new = disks_to_mpb_size(info->nr_disks);
4666 if (size_new > size_old) {
4667 void *mpb_new;
4668 size_t size_round = ROUND_UP(size_new, 512);
4669
4670 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
e7b84f9d 4671 pr_err("could not allocate new mpb\n");
2c092cad
DW
4672 return 0;
4673 }
17a4eaf9
AK
4674 if (posix_memalign(&super->migr_rec_buf, 512,
4675 MIGR_REC_BUF_SIZE) != 0) {
e7b84f9d
N
4676 pr_err("%s could not allocate migr_rec buffer\n",
4677 __func__);
8e59f3d8
AK
4678 free(super->buf);
4679 free(super);
ea944c8f 4680 free(mpb_new);
8e59f3d8
AK
4681 return 0;
4682 }
2c092cad
DW
4683 memcpy(mpb_new, mpb, size_old);
4684 free(mpb);
4685 mpb = mpb_new;
949c47a0 4686 super->anchor = mpb_new;
2c092cad
DW
4687 mpb->mpb_size = __cpu_to_le32(size_new);
4688 memset(mpb_new + size_old, 0, size_round - size_old);
4689 }
bf5a934a 4690 super->current_vol = idx;
3960e579
DW
4691
4692 /* handle 'failed_disks' by either:
4693 * a) create dummy disk entries in the table if this the first
4694 * volume in the array. We add them here as this is the only
4695 * opportunity to add them. add_to_super_imsm_volume()
4696 * handles the non-failed disks and continues incrementing
4697 * mpb->num_disks.
4698 * b) validate that 'failed_disks' matches the current number
4699 * of missing disks if the container is populated
d23fe947 4700 */
3960e579 4701 if (super->current_vol == 0) {
d23fe947 4702 mpb->num_disks = 0;
3960e579
DW
4703 for (i = 0; i < info->failed_disks; i++) {
4704 struct imsm_disk *disk;
4705
4706 mpb->num_disks++;
4707 disk = __get_imsm_disk(mpb, i);
4708 disk->status = CONFIGURED_DISK | FAILED_DISK;
4709 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4710 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4711 "missing:%d", i);
4712 }
4713 find_missing(super);
4714 } else {
4715 int missing = 0;
4716 struct dl *d;
4717
4718 for (d = super->missing; d; d = d->next)
4719 missing++;
4720 if (info->failed_disks > missing) {
e7b84f9d 4721 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
4722 return 0;
4723 }
4724 }
5a038140 4725
aa534678
DW
4726 if (!check_name(super, name, 0))
4727 return 0;
503975b9
N
4728 dv = xmalloc(sizeof(*dv));
4729 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 4730 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 4731 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 4732 info->layout, info->chunk_size,
5551b113 4733 size * 2);
979d38be
DW
4734 /* round array size down to closest MB */
4735 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4736
c2c087e6
DW
4737 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4738 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4739 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4740 vol = &dev->vol;
4741 vol->migr_state = 0;
1484e727 4742 set_migr_type(dev, MIGR_INIT);
3960e579 4743 vol->dirty = !info->state;
f8f603f1 4744 vol->curr_migr_unit = 0;
238c0a71 4745 map = get_imsm_map(dev, MAP_0);
5551b113
CA
4746 set_pba_of_lba0(map, super->create_offset);
4747 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
ef6ffade 4748 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4749 map->failed_disk_num = ~0;
bf4442ab 4750 if (info->level > 0)
fffaf1ff
N
4751 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4752 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
4753 else
4754 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4755 IMSM_T_STATE_NORMAL;
252d23c0 4756 map->ddf = 1;
ef6ffade
DW
4757
4758 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4759 free(dev);
4760 free(dv);
e7b84f9d 4761 pr_err("imsm does not support more than 2 disks"
ef6ffade
DW
4762 "in a raid1 volume\n");
4763 return 0;
4764 }
81062a36
DW
4765
4766 map->raid_level = info->level;
4d1313e9 4767 if (info->level == 10) {
c2c087e6 4768 map->raid_level = 1;
4d1313e9 4769 map->num_domains = info->raid_disks / 2;
81062a36
DW
4770 } else if (info->level == 1)
4771 map->num_domains = info->raid_disks;
4772 else
ff596308 4773 map->num_domains = 1;
81062a36 4774
5551b113
CA
4775 /* info->size is only int so use the 'size' parameter instead */
4776 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4777 num_data_stripes /= map->num_domains;
4778 set_num_data_stripes(map, num_data_stripes);
ef6ffade 4779
c2c087e6
DW
4780 map->num_members = info->raid_disks;
4781 for (i = 0; i < map->num_members; i++) {
4782 /* initialized in add_to_super */
4eb26970 4783 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4784 }
949c47a0 4785 mpb->num_raid_devs++;
ba2de7ba
DW
4786
4787 dv->dev = dev;
4788 dv->index = super->current_vol;
4789 dv->next = super->devlist;
4790 super->devlist = dv;
c2c087e6 4791
4d1313e9
DW
4792 imsm_update_version_info(super);
4793
c2c087e6 4794 return 1;
cdddbdbc
DW
4795}
4796
bf5a934a
DW
4797static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4798 unsigned long long size, char *name,
83cd1e97
N
4799 char *homehost, int *uuid,
4800 unsigned long long data_offset)
bf5a934a
DW
4801{
4802 /* This is primarily called by Create when creating a new array.
4803 * We will then get add_to_super called for each component, and then
4804 * write_init_super called to write it out to each device.
4805 * For IMSM, Create can create on fresh devices or on a pre-existing
4806 * array.
4807 * To create on a pre-existing array a different method will be called.
4808 * This one is just for fresh drives.
4809 */
4810 struct intel_super *super;
4811 struct imsm_super *mpb;
4812 size_t mpb_size;
4d1313e9 4813 char *version;
bf5a934a 4814
83cd1e97 4815 if (data_offset != INVALID_SECTORS) {
ed503f89 4816 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
4817 return 0;
4818 }
4819
bf5a934a 4820 if (st->sb)
83cd1e97
N
4821 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4822 data_offset);
e683ca88
DW
4823
4824 if (info)
4825 mpb_size = disks_to_mpb_size(info->nr_disks);
4826 else
4827 mpb_size = 512;
bf5a934a 4828
49133e57 4829 super = alloc_super();
e683ca88 4830 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4831 free(super);
e683ca88
DW
4832 super = NULL;
4833 }
4834 if (!super) {
e7b84f9d 4835 pr_err("%s could not allocate superblock\n", __func__);
bf5a934a
DW
4836 return 0;
4837 }
17a4eaf9 4838 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
e7b84f9d 4839 pr_err("%s could not allocate migr_rec buffer\n", __func__);
8e59f3d8
AK
4840 free(super->buf);
4841 free(super);
4842 return 0;
4843 }
e683ca88 4844 memset(super->buf, 0, mpb_size);
ef649044 4845 mpb = super->buf;
e683ca88
DW
4846 mpb->mpb_size = __cpu_to_le32(mpb_size);
4847 st->sb = super;
4848
4849 if (info == NULL) {
4850 /* zeroing superblock */
4851 return 0;
4852 }
bf5a934a 4853
4d1313e9
DW
4854 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4855
4856 version = (char *) mpb->sig;
4857 strcpy(version, MPB_SIGNATURE);
4858 version += strlen(MPB_SIGNATURE);
4859 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4860
bf5a934a
DW
4861 return 1;
4862}
4863
0e600426 4864#ifndef MDASSEMBLE
f20c3968 4865static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4866 int fd, char *devname)
4867{
4868 struct intel_super *super = st->sb;
d23fe947 4869 struct imsm_super *mpb = super->anchor;
3960e579 4870 struct imsm_disk *_disk;
bf5a934a
DW
4871 struct imsm_dev *dev;
4872 struct imsm_map *map;
3960e579 4873 struct dl *dl, *df;
4eb26970 4874 int slot;
bf5a934a 4875
949c47a0 4876 dev = get_imsm_dev(super, super->current_vol);
238c0a71 4877 map = get_imsm_map(dev, MAP_0);
bf5a934a 4878
208933a7 4879 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 4880 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
4881 devname);
4882 return 1;
4883 }
4884
efb30e7f
DW
4885 if (fd == -1) {
4886 /* we're doing autolayout so grab the pre-marked (in
4887 * validate_geometry) raid_disk
4888 */
4889 for (dl = super->disks; dl; dl = dl->next)
4890 if (dl->raiddisk == dk->raid_disk)
4891 break;
4892 } else {
4893 for (dl = super->disks; dl ; dl = dl->next)
4894 if (dl->major == dk->major &&
4895 dl->minor == dk->minor)
4896 break;
4897 }
d23fe947 4898
208933a7 4899 if (!dl) {
e7b84f9d 4900 pr_err("%s is not a member of the same container\n", devname);
f20c3968 4901 return 1;
208933a7 4902 }
bf5a934a 4903
d23fe947
DW
4904 /* add a pristine spare to the metadata */
4905 if (dl->index < 0) {
4906 dl->index = super->anchor->num_disks;
4907 super->anchor->num_disks++;
4908 }
4eb26970
DW
4909 /* Check the device has not already been added */
4910 slot = get_imsm_disk_slot(map, dl->index);
4911 if (slot >= 0 &&
238c0a71 4912 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 4913 pr_err("%s has been included in this array twice\n",
4eb26970
DW
4914 devname);
4915 return 1;
4916 }
656b6b5a 4917 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4918 dl->disk.status = CONFIGURED_DISK;
d23fe947 4919
3960e579
DW
4920 /* update size of 'missing' disks to be at least as large as the
4921 * largest acitve member (we only have dummy missing disks when
4922 * creating the first volume)
4923 */
4924 if (super->current_vol == 0) {
4925 for (df = super->missing; df; df = df->next) {
5551b113
CA
4926 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4927 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
4928 _disk = __get_imsm_disk(mpb, df->index);
4929 *_disk = df->disk;
4930 }
4931 }
4932
4933 /* refresh unset/failed slots to point to valid 'missing' entries */
4934 for (df = super->missing; df; df = df->next)
4935 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 4936 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
4937
4938 if ((ord & IMSM_ORD_REBUILD) == 0)
4939 continue;
4940 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 4941 if (is_gen_migration(dev)) {
238c0a71
AK
4942 struct imsm_map *map2 = get_imsm_map(dev,
4943 MAP_1);
0a108d63
AK
4944 int slot2 = get_imsm_disk_slot(map2, df->index);
4945 if ((slot2 < map2->num_members) &&
4946 (slot2 >= 0)) {
1ace8403 4947 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
4948 slot2,
4949 MAP_1);
1ace8403
AK
4950 if ((unsigned)df->index ==
4951 ord_to_idx(ord2))
4952 set_imsm_ord_tbl_ent(map2,
0a108d63 4953 slot2,
1ace8403
AK
4954 df->index |
4955 IMSM_ORD_REBUILD);
4956 }
4957 }
3960e579
DW
4958 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4959 break;
4960 }
4961
d23fe947
DW
4962 /* if we are creating the first raid device update the family number */
4963 if (super->current_vol == 0) {
4964 __u32 sum;
4965 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4966
3960e579 4967 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 4968 if (!_dev || !_disk) {
e7b84f9d 4969 pr_err("BUG mpb setup error\n");
791b666a
AW
4970 return 1;
4971 }
d23fe947
DW
4972 *_dev = *dev;
4973 *_disk = dl->disk;
148acb7b
DW
4974 sum = random32();
4975 sum += __gen_imsm_checksum(mpb);
d23fe947 4976 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4977 mpb->orig_family_num = mpb->family_num;
d23fe947 4978 }
ca0748fa 4979 super->current_disk = dl;
f20c3968 4980 return 0;
bf5a934a
DW
4981}
4982
a8619d23
AK
4983/* mark_spare()
4984 * Function marks disk as spare and restores disk serial
4985 * in case it was previously marked as failed by takeover operation
4986 * reruns:
4987 * -1 : critical error
4988 * 0 : disk is marked as spare but serial is not set
4989 * 1 : success
4990 */
4991int mark_spare(struct dl *disk)
4992{
4993 __u8 serial[MAX_RAID_SERIAL_LEN];
4994 int ret_val = -1;
4995
4996 if (!disk)
4997 return ret_val;
4998
4999 ret_val = 0;
5000 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5001 /* Restore disk serial number, because takeover marks disk
5002 * as failed and adds to serial ':0' before it becomes
5003 * a spare disk.
5004 */
5005 serialcpy(disk->serial, serial);
5006 serialcpy(disk->disk.serial, serial);
5007 ret_val = 1;
5008 }
5009 disk->disk.status = SPARE_DISK;
5010 disk->index = -1;
5011
5012 return ret_val;
5013}
88654014 5014
f20c3968 5015static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5016 int fd, char *devname,
5017 unsigned long long data_offset)
cdddbdbc 5018{
c2c087e6 5019 struct intel_super *super = st->sb;
c2c087e6
DW
5020 struct dl *dd;
5021 unsigned long long size;
f2f27e63 5022 __u32 id;
c2c087e6
DW
5023 int rv;
5024 struct stat stb;
5025
88654014
LM
5026 /* If we are on an RAID enabled platform check that the disk is
5027 * attached to the raid controller.
5028 * We do not need to test disks attachment for container based additions,
5029 * they shall be already tested when container was created/assembled.
88c32bb1 5030 */
d424212e 5031 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5032 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5033 if (rv != 0) {
5034 dprintf("capability: %p fd: %d ret: %d\n",
5035 super->orom, fd, rv);
5036 return 1;
88c32bb1
DW
5037 }
5038
f20c3968
DW
5039 if (super->current_vol >= 0)
5040 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5041
c2c087e6 5042 fstat(fd, &stb);
503975b9 5043 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5044 dd->major = major(stb.st_rdev);
5045 dd->minor = minor(stb.st_rdev);
503975b9 5046 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5047 dd->fd = fd;
689c9bf3 5048 dd->e = NULL;
1a64be56 5049 dd->action = DISK_ADD;
c2c087e6 5050 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5051 if (rv) {
e7b84f9d 5052 pr_err("failed to retrieve scsi serial, aborting\n");
949c47a0 5053 free(dd);
0030e8d6 5054 abort();
c2c087e6
DW
5055 }
5056
c2c087e6
DW
5057 get_dev_size(fd, NULL, &size);
5058 size /= 512;
1f24f035 5059 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5060 set_total_blocks(&dd->disk, size);
5061 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5062 struct imsm_super *mpb = super->anchor;
5063 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5064 }
a8619d23 5065 mark_spare(dd);
c2c087e6 5066 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5067 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5068 else
b9f594fe 5069 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5070
5071 if (st->update_tail) {
1a64be56
LM
5072 dd->next = super->disk_mgmt_list;
5073 super->disk_mgmt_list = dd;
43dad3d6
DW
5074 } else {
5075 dd->next = super->disks;
5076 super->disks = dd;
ceaf0ee1 5077 super->updates_pending++;
43dad3d6 5078 }
f20c3968
DW
5079
5080 return 0;
cdddbdbc
DW
5081}
5082
1a64be56
LM
5083static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5084{
5085 struct intel_super *super = st->sb;
5086 struct dl *dd;
5087
5088 /* remove from super works only in mdmon - for communication
5089 * manager - monitor. Check if communication memory buffer
5090 * is prepared.
5091 */
5092 if (!st->update_tail) {
e7b84f9d
N
5093 pr_err("%s shall be used in mdmon context only"
5094 "(line %d).\n", __func__, __LINE__);
1a64be56
LM
5095 return 1;
5096 }
503975b9 5097 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5098 dd->major = dk->major;
5099 dd->minor = dk->minor;
1a64be56 5100 dd->fd = -1;
a8619d23 5101 mark_spare(dd);
1a64be56
LM
5102 dd->action = DISK_REMOVE;
5103
5104 dd->next = super->disk_mgmt_list;
5105 super->disk_mgmt_list = dd;
5106
1a64be56
LM
5107 return 0;
5108}
5109
f796af5d
DW
5110static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5111
5112static union {
5113 char buf[512];
5114 struct imsm_super anchor;
5115} spare_record __attribute__ ((aligned(512)));
c2c087e6 5116
d23fe947
DW
5117/* spare records have their own family number and do not have any defined raid
5118 * devices
5119 */
5120static int write_super_imsm_spares(struct intel_super *super, int doclose)
5121{
d23fe947 5122 struct imsm_super *mpb = super->anchor;
f796af5d 5123 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5124 __u32 sum;
5125 struct dl *d;
5126
f796af5d
DW
5127 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5128 spare->generation_num = __cpu_to_le32(1UL),
5129 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5130 spare->num_disks = 1,
5131 spare->num_raid_devs = 0,
5132 spare->cache_size = mpb->cache_size,
5133 spare->pwr_cycle_count = __cpu_to_le32(1),
5134
5135 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5136 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5137
5138 for (d = super->disks; d; d = d->next) {
8796fdc4 5139 if (d->index != -1)
d23fe947
DW
5140 continue;
5141
f796af5d 5142 spare->disk[0] = d->disk;
027c374f
CA
5143 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5144 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5145
f796af5d
DW
5146 sum = __gen_imsm_checksum(spare);
5147 spare->family_num = __cpu_to_le32(sum);
5148 spare->orig_family_num = 0;
5149 sum = __gen_imsm_checksum(spare);
5150 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5151
f796af5d 5152 if (store_imsm_mpb(d->fd, spare)) {
e12b3daa 5153 pr_err("%s: failed for device %d:%d %s\n",
d23fe947 5154 __func__, d->major, d->minor, strerror(errno));
e74255d9 5155 return 1;
d23fe947
DW
5156 }
5157 if (doclose) {
5158 close(d->fd);
5159 d->fd = -1;
5160 }
5161 }
5162
e74255d9 5163 return 0;
d23fe947
DW
5164}
5165
36988a3d 5166static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5167{
36988a3d 5168 struct intel_super *super = st->sb;
949c47a0 5169 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5170 struct dl *d;
5171 __u32 generation;
5172 __u32 sum;
d23fe947 5173 int spares = 0;
949c47a0 5174 int i;
a48ac0a8 5175 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5176 int num_disks = 0;
146c6260 5177 int clear_migration_record = 1;
cdddbdbc 5178
c2c087e6
DW
5179 /* 'generation' is incremented everytime the metadata is written */
5180 generation = __le32_to_cpu(mpb->generation_num);
5181 generation++;
5182 mpb->generation_num = __cpu_to_le32(generation);
5183
148acb7b
DW
5184 /* fix up cases where previous mdadm releases failed to set
5185 * orig_family_num
5186 */
5187 if (mpb->orig_family_num == 0)
5188 mpb->orig_family_num = mpb->family_num;
5189
d23fe947 5190 for (d = super->disks; d; d = d->next) {
8796fdc4 5191 if (d->index == -1)
d23fe947 5192 spares++;
36988a3d 5193 else {
d23fe947 5194 mpb->disk[d->index] = d->disk;
36988a3d
AK
5195 num_disks++;
5196 }
d23fe947 5197 }
36988a3d 5198 for (d = super->missing; d; d = d->next) {
47ee5a45 5199 mpb->disk[d->index] = d->disk;
36988a3d
AK
5200 num_disks++;
5201 }
5202 mpb->num_disks = num_disks;
5203 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5204
949c47a0
DW
5205 for (i = 0; i < mpb->num_raid_devs; i++) {
5206 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5207 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5208 if (dev && dev2) {
5209 imsm_copy_dev(dev, dev2);
5210 mpb_size += sizeof_imsm_dev(dev, 0);
5211 }
146c6260
AK
5212 if (is_gen_migration(dev2))
5213 clear_migration_record = 0;
949c47a0 5214 }
a48ac0a8
DW
5215 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5216 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5217
c2c087e6 5218 /* recalculate checksum */
949c47a0 5219 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5220 mpb->check_sum = __cpu_to_le32(sum);
5221
51d83f5d
AK
5222 if (super->clean_migration_record_by_mdmon) {
5223 clear_migration_record = 1;
5224 super->clean_migration_record_by_mdmon = 0;
5225 }
146c6260 5226 if (clear_migration_record)
17a4eaf9 5227 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
146c6260 5228
d23fe947 5229 /* write the mpb for disks that compose raid devices */
c2c087e6 5230 for (d = super->disks; d ; d = d->next) {
86c54047 5231 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5232 continue;
30602f53 5233
146c6260
AK
5234 if (clear_migration_record) {
5235 unsigned long long dsize;
5236
5237 get_dev_size(d->fd, NULL, &dsize);
5238 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
17a4eaf9
AK
5239 if (write(d->fd, super->migr_rec_buf,
5240 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
9e2d750d 5241 perror("Write migr_rec failed");
146c6260
AK
5242 }
5243 }
51d83f5d
AK
5244
5245 if (store_imsm_mpb(d->fd, mpb))
5246 fprintf(stderr,
5247 "%s: failed for device %d:%d (fd: %d)%s\n",
5248 __func__, d->major, d->minor,
5249 d->fd, strerror(errno));
5250
c2c087e6
DW
5251 if (doclose) {
5252 close(d->fd);
5253 d->fd = -1;
5254 }
5255 }
5256
d23fe947
DW
5257 if (spares)
5258 return write_super_imsm_spares(super, doclose);
5259
e74255d9 5260 return 0;
c2c087e6
DW
5261}
5262
9b1fb677 5263static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5264{
5265 size_t len;
5266 struct imsm_update_create_array *u;
5267 struct intel_super *super = st->sb;
9b1fb677 5268 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5269 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5270 struct disk_info *inf;
5271 struct imsm_disk *disk;
5272 int i;
43dad3d6 5273
54c2c1ea
DW
5274 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5275 sizeof(*inf) * map->num_members;
503975b9 5276 u = xmalloc(len);
43dad3d6 5277 u->type = update_create_array;
9b1fb677 5278 u->dev_idx = dev_idx;
43dad3d6 5279 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
5280 inf = get_disk_info(u);
5281 for (i = 0; i < map->num_members; i++) {
238c0a71 5282 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 5283
54c2c1ea 5284 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
5285 if (!disk)
5286 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
5287 serialcpy(inf[i].serial, disk->serial);
5288 }
43dad3d6
DW
5289 append_metadata_update(st, u, len);
5290
5291 return 0;
5292}
5293
1a64be56 5294static int mgmt_disk(struct supertype *st)
43dad3d6
DW
5295{
5296 struct intel_super *super = st->sb;
5297 size_t len;
1a64be56 5298 struct imsm_update_add_remove_disk *u;
43dad3d6 5299
1a64be56 5300 if (!super->disk_mgmt_list)
43dad3d6
DW
5301 return 0;
5302
5303 len = sizeof(*u);
503975b9 5304 u = xmalloc(len);
1a64be56 5305 u->type = update_add_remove_disk;
43dad3d6
DW
5306 append_metadata_update(st, u, len);
5307
5308 return 0;
5309}
5310
c2c087e6
DW
5311static int write_init_super_imsm(struct supertype *st)
5312{
9b1fb677
DW
5313 struct intel_super *super = st->sb;
5314 int current_vol = super->current_vol;
5315
5316 /* we are done with current_vol reset it to point st at the container */
5317 super->current_vol = -1;
5318
8273f55e 5319 if (st->update_tail) {
43dad3d6
DW
5320 /* queue the recently created array / added disk
5321 * as a metadata update */
43dad3d6 5322 int rv;
8273f55e 5323
43dad3d6 5324 /* determine if we are creating a volume or adding a disk */
9b1fb677 5325 if (current_vol < 0) {
1a64be56
LM
5326 /* in the mgmt (add/remove) disk case we are running
5327 * in mdmon context, so don't close fd's
43dad3d6 5328 */
1a64be56 5329 return mgmt_disk(st);
43dad3d6 5330 } else
9b1fb677 5331 rv = create_array(st, current_vol);
8273f55e 5332
43dad3d6 5333 return rv;
d682f344
N
5334 } else {
5335 struct dl *d;
5336 for (d = super->disks; d; d = d->next)
ba728be7 5337 Kill(d->devname, NULL, 0, -1, 1);
36988a3d 5338 return write_super_imsm(st, 1);
d682f344 5339 }
cdddbdbc 5340}
0e600426 5341#endif
cdddbdbc 5342
e683ca88 5343static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 5344{
e683ca88
DW
5345 struct intel_super *super = st->sb;
5346 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 5347
e683ca88 5348 if (!mpb)
ad97895e
DW
5349 return 1;
5350
1799c9e8 5351#ifndef MDASSEMBLE
e683ca88 5352 return store_imsm_mpb(fd, mpb);
1799c9e8
N
5353#else
5354 return 1;
5355#endif
cdddbdbc
DW
5356}
5357
0e600426
N
5358static int imsm_bbm_log_size(struct imsm_super *mpb)
5359{
5360 return __le32_to_cpu(mpb->bbm_log_size);
5361}
5362
5363#ifndef MDASSEMBLE
cdddbdbc
DW
5364static int validate_geometry_imsm_container(struct supertype *st, int level,
5365 int layout, int raiddisks, int chunk,
af4348dd
N
5366 unsigned long long size,
5367 unsigned long long data_offset,
5368 char *dev,
2c514b71
NB
5369 unsigned long long *freesize,
5370 int verbose)
cdddbdbc 5371{
c2c087e6
DW
5372 int fd;
5373 unsigned long long ldsize;
f2f5c343
LM
5374 struct intel_super *super=NULL;
5375 int rv = 0;
cdddbdbc 5376
c2c087e6
DW
5377 if (level != LEVEL_CONTAINER)
5378 return 0;
5379 if (!dev)
5380 return 1;
5381
5382 fd = open(dev, O_RDONLY|O_EXCL, 0);
5383 if (fd < 0) {
ba728be7 5384 if (verbose > 0)
e7b84f9d 5385 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 5386 dev, strerror(errno));
c2c087e6
DW
5387 return 0;
5388 }
5389 if (!get_dev_size(fd, dev, &ldsize)) {
5390 close(fd);
5391 return 0;
5392 }
f2f5c343
LM
5393
5394 /* capabilities retrieve could be possible
5395 * note that there is no fd for the disks in array.
5396 */
5397 super = alloc_super();
ba728be7 5398 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
5399 if (rv != 0) {
5400#if DEBUG
5401 char str[256];
5402 fd2devname(fd, str);
5403 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5404 fd, str, super->orom, rv, raiddisks);
5405#endif
5406 /* no orom/efi or non-intel hba of the disk */
5407 close(fd);
5408 free_imsm(super);
5409 return 0;
5410 }
c2c087e6 5411 close(fd);
9126b9a8
CA
5412 if (super->orom) {
5413 if (raiddisks > super->orom->tds) {
5414 if (verbose)
e7b84f9d 5415 pr_err("%d exceeds maximum number of"
9126b9a8
CA
5416 " platform supported disks: %d\n",
5417 raiddisks, super->orom->tds);
5418 free_imsm(super);
5419 return 0;
5420 }
5421 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5422 (ldsize >> 9) >> 32 > 0) {
5423 if (verbose)
e7b84f9d 5424 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
5425 free_imsm(super);
5426 return 0;
5427 }
f2f5c343 5428 }
c2c087e6 5429
af4348dd 5430 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 5431 free_imsm(super);
c2c087e6
DW
5432
5433 return 1;
cdddbdbc
DW
5434}
5435
0dcecb2e
DW
5436static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5437{
5438 const unsigned long long base_start = e[*idx].start;
5439 unsigned long long end = base_start + e[*idx].size;
5440 int i;
5441
5442 if (base_start == end)
5443 return 0;
5444
5445 *idx = *idx + 1;
5446 for (i = *idx; i < num_extents; i++) {
5447 /* extend overlapping extents */
5448 if (e[i].start >= base_start &&
5449 e[i].start <= end) {
5450 if (e[i].size == 0)
5451 return 0;
5452 if (e[i].start + e[i].size > end)
5453 end = e[i].start + e[i].size;
5454 } else if (e[i].start > end) {
5455 *idx = i;
5456 break;
5457 }
5458 }
5459
5460 return end - base_start;
5461}
5462
5463static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5464{
5465 /* build a composite disk with all known extents and generate a new
5466 * 'maxsize' given the "all disks in an array must share a common start
5467 * offset" constraint
5468 */
503975b9 5469 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
5470 struct dl *dl;
5471 int i, j;
5472 int start_extent;
5473 unsigned long long pos;
b9d77223 5474 unsigned long long start = 0;
0dcecb2e
DW
5475 unsigned long long maxsize;
5476 unsigned long reserve;
5477
0dcecb2e
DW
5478 /* coalesce and sort all extents. also, check to see if we need to
5479 * reserve space between member arrays
5480 */
5481 j = 0;
5482 for (dl = super->disks; dl; dl = dl->next) {
5483 if (!dl->e)
5484 continue;
5485 for (i = 0; i < dl->extent_cnt; i++)
5486 e[j++] = dl->e[i];
5487 }
5488 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5489
5490 /* merge extents */
5491 i = 0;
5492 j = 0;
5493 while (i < sum_extents) {
5494 e[j].start = e[i].start;
5495 e[j].size = find_size(e, &i, sum_extents);
5496 j++;
5497 if (e[j-1].size == 0)
5498 break;
5499 }
5500
5501 pos = 0;
5502 maxsize = 0;
5503 start_extent = 0;
5504 i = 0;
5505 do {
5506 unsigned long long esize;
5507
5508 esize = e[i].start - pos;
5509 if (esize >= maxsize) {
5510 maxsize = esize;
5511 start = pos;
5512 start_extent = i;
5513 }
5514 pos = e[i].start + e[i].size;
5515 i++;
5516 } while (e[i-1].size);
5517 free(e);
5518
a7dd165b
DW
5519 if (maxsize == 0)
5520 return 0;
5521
5522 /* FIXME assumes volume at offset 0 is the first volume in a
5523 * container
5524 */
0dcecb2e
DW
5525 if (start_extent > 0)
5526 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5527 else
5528 reserve = 0;
5529
5530 if (maxsize < reserve)
a7dd165b 5531 return 0;
0dcecb2e 5532
5551b113 5533 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 5534 if (start + reserve > super->create_offset)
a7dd165b 5535 return 0; /* start overflows create_offset */
0dcecb2e
DW
5536 super->create_offset = start + reserve;
5537
5538 return maxsize - reserve;
5539}
5540
88c32bb1
DW
5541static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5542{
5543 if (level < 0 || level == 6 || level == 4)
5544 return 0;
5545
5546 /* if we have an orom prevent invalid raid levels */
5547 if (orom)
5548 switch (level) {
5549 case 0: return imsm_orom_has_raid0(orom);
5550 case 1:
5551 if (raiddisks > 2)
5552 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5553 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5554 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5555 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5556 }
5557 else
5558 return 1; /* not on an Intel RAID platform so anything goes */
5559
5560 return 0;
5561}
5562
ca9de185
LM
5563static int
5564active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5565 int dpa, int verbose)
5566{
5567 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5568 struct mdstat_ent *memb = NULL;
5569 int count = 0;
5570 int num = 0;
5571 struct md_list *dv = NULL;
5572 int found;
5573
5574 for (memb = mdstat ; memb ; memb = memb->next) {
5575 if (memb->metadata_version &&
5576 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5577 (strcmp(&memb->metadata_version[9], name) == 0) &&
5578 !is_subarray(memb->metadata_version+9) &&
5579 memb->members) {
5580 struct dev_member *dev = memb->members;
5581 int fd = -1;
5582 while(dev && (fd < 0)) {
503975b9
N
5583 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5584 num = sprintf(path, "%s%s", "/dev/", dev->name);
5585 if (num > 0)
5586 fd = open(path, O_RDONLY, 0);
5587 if ((num <= 0) || (fd < 0)) {
5588 pr_vrb(": Cannot open %s: %s\n",
5589 dev->name, strerror(errno));
ca9de185 5590 }
503975b9 5591 free(path);
ca9de185
LM
5592 dev = dev->next;
5593 }
5594 found = 0;
5595 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5596 struct mdstat_ent *vol;
5597 for (vol = mdstat ; vol ; vol = vol->next) {
5598 if ((vol->active > 0) &&
5599 vol->metadata_version &&
5600 is_container_member(vol, memb->dev)) {
5601 found++;
5602 count++;
5603 }
5604 }
5605 if (*devlist && (found < dpa)) {
503975b9
N
5606 dv = xcalloc(1, sizeof(*dv));
5607 dv->devname = xmalloc(strlen(memb->dev) + strlen("/dev/") + 1);
5608 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5609 dv->found = found;
5610 dv->used = 0;
5611 dv->next = *devlist;
5612 *devlist = dv;
ca9de185
LM
5613 }
5614 }
5615 if (fd >= 0)
5616 close(fd);
5617 }
5618 }
5619 free_mdstat(mdstat);
5620 return count;
5621}
5622
5623#ifdef DEBUG_LOOP
5624static struct md_list*
5625get_loop_devices(void)
5626{
5627 int i;
5628 struct md_list *devlist = NULL;
5629 struct md_list *dv = NULL;
5630
5631 for(i = 0; i < 12; i++) {
503975b9
N
5632 dv = xcalloc(1, sizeof(*dv));
5633 dv->devname = xmalloc(40);
ca9de185
LM
5634 sprintf(dv->devname, "/dev/loop%d", i);
5635 dv->next = devlist;
5636 devlist = dv;
5637 }
5638 return devlist;
5639}
5640#endif
5641
5642static struct md_list*
5643get_devices(const char *hba_path)
5644{
5645 struct md_list *devlist = NULL;
5646 struct md_list *dv = NULL;
5647 struct dirent *ent;
5648 DIR *dir;
5649 int err = 0;
5650
5651#if DEBUG_LOOP
5652 devlist = get_loop_devices();
5653 return devlist;
5654#endif
5655 /* scroll through /sys/dev/block looking for devices attached to
5656 * this hba
5657 */
5658 dir = opendir("/sys/dev/block");
5659 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5660 int fd;
5661 char buf[1024];
5662 int major, minor;
5663 char *path = NULL;
5664 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5665 continue;
5666 path = devt_to_devpath(makedev(major, minor));
5667 if (!path)
5668 continue;
5669 if (!path_attached_to_hba(path, hba_path)) {
5670 free(path);
5671 path = NULL;
5672 continue;
5673 }
5674 free(path);
5675 path = NULL;
5676 fd = dev_open(ent->d_name, O_RDONLY);
5677 if (fd >= 0) {
5678 fd2devname(fd, buf);
5679 close(fd);
5680 } else {
e7b84f9d 5681 pr_err("cannot open device: %s\n",
ca9de185
LM
5682 ent->d_name);
5683 continue;
5684 }
5685
503975b9
N
5686 dv = xcalloc(1, sizeof(*dv));
5687 dv->devname = xstrdup(buf);
ca9de185
LM
5688 dv->next = devlist;
5689 devlist = dv;
5690 }
5691 if (err) {
5692 while(devlist) {
5693 dv = devlist;
5694 devlist = devlist->next;
5695 free(dv->devname);
5696 free(dv);
5697 }
5698 }
562aa102 5699 closedir(dir);
ca9de185
LM
5700 return devlist;
5701}
5702
5703static int
5704count_volumes_list(struct md_list *devlist, char *homehost,
5705 int verbose, int *found)
5706{
5707 struct md_list *tmpdev;
5708 int count = 0;
5709 struct supertype *st = NULL;
5710
5711 /* first walk the list of devices to find a consistent set
5712 * that match the criterea, if that is possible.
5713 * We flag the ones we like with 'used'.
5714 */
5715 *found = 0;
5716 st = match_metadata_desc_imsm("imsm");
5717 if (st == NULL) {
5718 pr_vrb(": cannot allocate memory for imsm supertype\n");
5719 return 0;
5720 }
5721
5722 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5723 char *devname = tmpdev->devname;
5724 struct stat stb;
5725 struct supertype *tst;
5726 int dfd;
5727 if (tmpdev->used > 1)
5728 continue;
5729 tst = dup_super(st);
5730 if (tst == NULL) {
5731 pr_vrb(": cannot allocate memory for imsm supertype\n");
5732 goto err_1;
5733 }
5734 tmpdev->container = 0;
5735 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5736 if (dfd < 0) {
5737 dprintf(": cannot open device %s: %s\n",
5738 devname, strerror(errno));
5739 tmpdev->used = 2;
5740 } else if (fstat(dfd, &stb)< 0) {
5741 /* Impossible! */
5742 dprintf(": fstat failed for %s: %s\n",
5743 devname, strerror(errno));
5744 tmpdev->used = 2;
5745 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5746 dprintf(": %s is not a block device.\n",
5747 devname);
5748 tmpdev->used = 2;
5749 } else if (must_be_container(dfd)) {
5750 struct supertype *cst;
5751 cst = super_by_fd(dfd, NULL);
5752 if (cst == NULL) {
5753 dprintf(": cannot recognize container type %s\n",
5754 devname);
5755 tmpdev->used = 2;
5756 } else if (tst->ss != st->ss) {
5757 dprintf(": non-imsm container - ignore it: %s\n",
5758 devname);
5759 tmpdev->used = 2;
5760 } else if (!tst->ss->load_container ||
5761 tst->ss->load_container(tst, dfd, NULL))
5762 tmpdev->used = 2;
5763 else {
5764 tmpdev->container = 1;
5765 }
5766 if (cst)
5767 cst->ss->free_super(cst);
5768 } else {
5769 tmpdev->st_rdev = stb.st_rdev;
5770 if (tst->ss->load_super(tst,dfd, NULL)) {
5771 dprintf(": no RAID superblock on %s\n",
5772 devname);
5773 tmpdev->used = 2;
5774 } else if (tst->ss->compare_super == NULL) {
5775 dprintf(": Cannot assemble %s metadata on %s\n",
5776 tst->ss->name, devname);
5777 tmpdev->used = 2;
5778 }
5779 }
5780 if (dfd >= 0)
5781 close(dfd);
5782 if (tmpdev->used == 2 || tmpdev->used == 4) {
5783 /* Ignore unrecognised devices during auto-assembly */
5784 goto loop;
5785 }
5786 else {
5787 struct mdinfo info;
5788 tst->ss->getinfo_super(tst, &info, NULL);
5789
5790 if (st->minor_version == -1)
5791 st->minor_version = tst->minor_version;
5792
5793 if (memcmp(info.uuid, uuid_zero,
5794 sizeof(int[4])) == 0) {
5795 /* this is a floating spare. It cannot define
5796 * an array unless there are no more arrays of
5797 * this type to be found. It can be included
5798 * in an array of this type though.
5799 */
5800 tmpdev->used = 3;
5801 goto loop;
5802 }
5803
5804 if (st->ss != tst->ss ||
5805 st->minor_version != tst->minor_version ||
5806 st->ss->compare_super(st, tst) != 0) {
5807 /* Some mismatch. If exactly one array matches this host,
5808 * we can resolve on that one.
5809 * Or, if we are auto assembling, we just ignore the second
5810 * for now.
5811 */
5812 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5813 devname);
5814 goto loop;
5815 }
5816 tmpdev->used = 1;
5817 *found = 1;
5818 dprintf("found: devname: %s\n", devname);
5819 }
5820 loop:
5821 if (tst)
5822 tst->ss->free_super(tst);
5823 }
5824 if (*found != 0) {
5825 int err;
5826 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5827 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5828 for (iter = head; iter; iter = iter->next) {
5829 dprintf("content->text_version: %s vol\n",
5830 iter->text_version);
5831 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5832 /* do not assemble arrays with unsupported
5833 configurations */
5834 dprintf(": Cannot activate member %s.\n",
5835 iter->text_version);
5836 } else
5837 count++;
5838 }
5839 sysfs_free(head);
5840
5841 } else {
5842 dprintf(" no valid super block on device list: err: %d %p\n",
5843 err, st->sb);
5844 }
5845 } else {
5846 dprintf(" no more devices to examin\n");
5847 }
5848
5849 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5850 if ((tmpdev->used == 1) && (tmpdev->found)) {
5851 if (count) {
5852 if (count < tmpdev->found)
5853 count = 0;
5854 else
5855 count -= tmpdev->found;
5856 }
5857 }
5858 if (tmpdev->used == 1)
5859 tmpdev->used = 4;
5860 }
5861 err_1:
5862 if (st)
5863 st->ss->free_super(st);
5864 return count;
5865}
5866
ca9de185
LM
5867static int
5868count_volumes(char *hba, int dpa, int verbose)
5869{
5870 struct md_list *devlist = NULL;
5871 int count = 0;
5872 int found = 0;;
5873
5874 devlist = get_devices(hba);
5875 /* if no intel devices return zero volumes */
5876 if (devlist == NULL)
5877 return 0;
5878
5879 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5880 dprintf(" path: %s active arrays: %d\n", hba, count);
5881 if (devlist == NULL)
5882 return 0;
5883 do {
5884 found = 0;
5885 count += count_volumes_list(devlist,
5886 NULL,
5887 verbose,
5888 &found);
5889 dprintf("found %d count: %d\n", found, count);
5890 } while (found);
5891
5892 dprintf("path: %s total number of volumes: %d\n", hba, count);
5893
5894 while(devlist) {
5895 struct md_list *dv = devlist;
5896 devlist = devlist->next;
5897 free(dv->devname);
5898 free(dv);
5899 }
5900 return count;
5901}
5902
cd9d1ac7
DW
5903static int imsm_default_chunk(const struct imsm_orom *orom)
5904{
5905 /* up to 512 if the plaform supports it, otherwise the platform max.
5906 * 128 if no platform detected
5907 */
5908 int fs = max(7, orom ? fls(orom->sss) : 0);
5909
5910 return min(512, (1 << fs));
5911}
73408129 5912
6592ce37
DW
5913static int
5914validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 5915 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 5916{
660260d0
DW
5917 /* check/set platform and metadata limits/defaults */
5918 if (super->orom && raiddisks > super->orom->dpa) {
5919 pr_vrb(": platform supports a maximum of %d disks per array\n",
5920 super->orom->dpa);
73408129
LM
5921 return 0;
5922 }
5923
5d500228 5924 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5925 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5926 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5927 level, raiddisks, raiddisks > 1 ? "s" : "");
5928 return 0;
5929 }
cd9d1ac7 5930
7ccc4cc4 5931 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
5932 *chunk = imsm_default_chunk(super->orom);
5933
7ccc4cc4 5934 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
cd9d1ac7
DW
5935 pr_vrb(": platform does not support a chunk size of: "
5936 "%d\n", *chunk);
5937 return 0;
6592ce37 5938 }
cd9d1ac7 5939
6592ce37
DW
5940 if (layout != imsm_level_to_layout(level)) {
5941 if (level == 5)
5942 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5943 else if (level == 10)
5944 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5945 else
5946 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5947 layout, level);
5948 return 0;
5949 }
2cc699af 5950
7ccc4cc4 5951 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af
CA
5952 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5953 pr_vrb(": platform does not support a volume size over 2TB\n");
5954 return 0;
5955 }
614902f6 5956
6592ce37
DW
5957 return 1;
5958}
5959
1011e834 5960/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
5961 * FIX ME add ahci details
5962 */
8b353278 5963static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5964 int layout, int raiddisks, int *chunk,
af4348dd
N
5965 unsigned long long size,
5966 unsigned long long data_offset,
5967 char *dev,
2c514b71
NB
5968 unsigned long long *freesize,
5969 int verbose)
cdddbdbc 5970{
c2c087e6
DW
5971 struct stat stb;
5972 struct intel_super *super = st->sb;
b2916f25 5973 struct imsm_super *mpb;
c2c087e6
DW
5974 struct dl *dl;
5975 unsigned long long pos = 0;
5976 unsigned long long maxsize;
5977 struct extent *e;
5978 int i;
cdddbdbc 5979
88c32bb1
DW
5980 /* We must have the container info already read in. */
5981 if (!super)
c2c087e6
DW
5982 return 0;
5983
b2916f25
JS
5984 mpb = super->anchor;
5985
2cc699af 5986 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
e7b84f9d 5987 pr_err("RAID gemetry validation failed. "
d54559f0 5988 "Cannot proceed with the action(s).\n");
c2c087e6 5989 return 0;
d54559f0 5990 }
c2c087e6
DW
5991 if (!dev) {
5992 /* General test: make sure there is space for
2da8544a
DW
5993 * 'raiddisks' device extents of size 'size' at a given
5994 * offset
c2c087e6 5995 */
e46273eb 5996 unsigned long long minsize = size;
b7528a20 5997 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5998 int dcnt = 0;
5999 if (minsize == 0)
6000 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6001 for (dl = super->disks; dl ; dl = dl->next) {
6002 int found = 0;
6003
bf5a934a 6004 pos = 0;
c2c087e6
DW
6005 i = 0;
6006 e = get_extents(super, dl);
6007 if (!e) continue;
6008 do {
6009 unsigned long long esize;
6010 esize = e[i].start - pos;
6011 if (esize >= minsize)
6012 found = 1;
b7528a20 6013 if (found && start_offset == MaxSector) {
2da8544a
DW
6014 start_offset = pos;
6015 break;
6016 } else if (found && pos != start_offset) {
6017 found = 0;
6018 break;
6019 }
c2c087e6
DW
6020 pos = e[i].start + e[i].size;
6021 i++;
6022 } while (e[i-1].size);
6023 if (found)
6024 dcnt++;
6025 free(e);
6026 }
6027 if (dcnt < raiddisks) {
2c514b71 6028 if (verbose)
e7b84f9d 6029 pr_err("imsm: Not enough "
2c514b71
NB
6030 "devices with space for this array "
6031 "(%d < %d)\n",
6032 dcnt, raiddisks);
c2c087e6
DW
6033 return 0;
6034 }
6035 return 1;
6036 }
0dcecb2e 6037
c2c087e6
DW
6038 /* This device must be a member of the set */
6039 if (stat(dev, &stb) < 0)
6040 return 0;
6041 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6042 return 0;
6043 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
6044 if (dl->major == (int)major(stb.st_rdev) &&
6045 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
6046 break;
6047 }
6048 if (!dl) {
2c514b71 6049 if (verbose)
e7b84f9d 6050 pr_err("%s is not in the "
2c514b71 6051 "same imsm set\n", dev);
c2c087e6 6052 return 0;
a20d2ba5
DW
6053 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6054 /* If a volume is present then the current creation attempt
6055 * cannot incorporate new spares because the orom may not
6056 * understand this configuration (all member disks must be
6057 * members of each array in the container).
6058 */
e7b84f9d 6059 pr_err("%s is a spare and a volume"
a20d2ba5 6060 " is already defined for this container\n", dev);
e7b84f9d 6061 pr_err("The option-rom requires all member"
a20d2ba5
DW
6062 " disks to be a member of all volumes\n");
6063 return 0;
5fe62b94
WD
6064 } else if (super->orom && mpb->num_raid_devs > 0 &&
6065 mpb->num_disks != raiddisks) {
e7b84f9d 6066 pr_err("The option-rom requires all member"
5fe62b94
WD
6067 " disks to be a member of all volumes\n");
6068 return 0;
c2c087e6 6069 }
0dcecb2e
DW
6070
6071 /* retrieve the largest free space block */
c2c087e6
DW
6072 e = get_extents(super, dl);
6073 maxsize = 0;
6074 i = 0;
0dcecb2e
DW
6075 if (e) {
6076 do {
6077 unsigned long long esize;
6078
6079 esize = e[i].start - pos;
6080 if (esize >= maxsize)
6081 maxsize = esize;
6082 pos = e[i].start + e[i].size;
6083 i++;
6084 } while (e[i-1].size);
6085 dl->e = e;
6086 dl->extent_cnt = i;
6087 } else {
6088 if (verbose)
e7b84f9d 6089 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6090 dev);
6091 return 0;
6092 }
6093 if (maxsize < size) {
6094 if (verbose)
e7b84f9d 6095 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6096 dev, maxsize, size);
6097 return 0;
6098 }
6099
6100 /* count total number of extents for merge */
6101 i = 0;
6102 for (dl = super->disks; dl; dl = dl->next)
6103 if (dl->e)
6104 i += dl->extent_cnt;
6105
6106 maxsize = merge_extents(super, i);
3baa56ab
LO
6107
6108 if (!check_env("IMSM_NO_PLATFORM") &&
6109 mpb->num_raid_devs > 0 && size && size != maxsize) {
e7b84f9d 6110 pr_err("attempting to create a second "
3baa56ab
LO
6111 "volume with size less then remaining space. "
6112 "Aborting...\n");
6113 return 0;
6114 }
6115
a7dd165b 6116 if (maxsize < size || maxsize == 0) {
b3071342
LD
6117 if (verbose) {
6118 if (maxsize == 0)
e7b84f9d 6119 pr_err("no free space"
b3071342
LD
6120 " left on device. Aborting...\n");
6121 else
e7b84f9d 6122 pr_err("not enough space"
b3071342
LD
6123 " to create volume of given size"
6124 " (%llu < %llu). Aborting...\n",
6125 maxsize, size);
6126 }
0dcecb2e 6127 return 0;
0dcecb2e
DW
6128 }
6129
c2c087e6
DW
6130 *freesize = maxsize;
6131
ca9de185
LM
6132 if (super->orom) {
6133 int count = count_volumes(super->hba->path,
6134 super->orom->dpa, verbose);
6135 if (super->orom->vphba <= count) {
40110b90 6136 pr_vrb(": platform does not support more than %d raid volumes.\n",
ca9de185
LM
6137 super->orom->vphba);
6138 return 0;
6139 }
6140 }
c2c087e6 6141 return 1;
cdddbdbc
DW
6142}
6143
13bcac90 6144static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
6145 unsigned long long size, int chunk,
6146 unsigned long long *freesize)
6147{
6148 struct intel_super *super = st->sb;
6149 struct imsm_super *mpb = super->anchor;
6150 struct dl *dl;
6151 int i;
6152 int extent_cnt;
6153 struct extent *e;
6154 unsigned long long maxsize;
6155 unsigned long long minsize;
6156 int cnt;
6157 int used;
6158
6159 /* find the largest common start free region of the possible disks */
6160 used = 0;
6161 extent_cnt = 0;
6162 cnt = 0;
6163 for (dl = super->disks; dl; dl = dl->next) {
6164 dl->raiddisk = -1;
6165
6166 if (dl->index >= 0)
6167 used++;
6168
6169 /* don't activate new spares if we are orom constrained
6170 * and there is already a volume active in the container
6171 */
6172 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6173 continue;
6174
6175 e = get_extents(super, dl);
6176 if (!e)
6177 continue;
6178 for (i = 1; e[i-1].size; i++)
6179 ;
6180 dl->e = e;
6181 dl->extent_cnt = i;
6182 extent_cnt += i;
6183 cnt++;
6184 }
6185
6186 maxsize = merge_extents(super, extent_cnt);
6187 minsize = size;
6188 if (size == 0)
612e59d8
CA
6189 /* chunk is in K */
6190 minsize = chunk * 2;
efb30e7f
DW
6191
6192 if (cnt < raiddisks ||
6193 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
6194 maxsize < minsize ||
6195 maxsize == 0) {
e7b84f9d 6196 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
6197 return 0; /* No enough free spaces large enough */
6198 }
6199
6200 if (size == 0) {
6201 size = maxsize;
6202 if (chunk) {
612e59d8
CA
6203 size /= 2 * chunk;
6204 size *= 2 * chunk;
efb30e7f 6205 }
f878b242
LM
6206 maxsize = size;
6207 }
6208 if (!check_env("IMSM_NO_PLATFORM") &&
6209 mpb->num_raid_devs > 0 && size && size != maxsize) {
e7b84f9d 6210 pr_err("attempting to create a second "
f878b242
LM
6211 "volume with size less then remaining space. "
6212 "Aborting...\n");
6213 return 0;
efb30e7f 6214 }
efb30e7f
DW
6215 cnt = 0;
6216 for (dl = super->disks; dl; dl = dl->next)
6217 if (dl->e)
6218 dl->raiddisk = cnt++;
6219
6220 *freesize = size;
6221
13bcac90
AK
6222 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6223
efb30e7f
DW
6224 return 1;
6225}
6226
13bcac90
AK
6227static int reserve_space(struct supertype *st, int raiddisks,
6228 unsigned long long size, int chunk,
6229 unsigned long long *freesize)
6230{
6231 struct intel_super *super = st->sb;
6232 struct dl *dl;
6233 int cnt;
6234 int rv = 0;
6235
6236 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6237 if (rv) {
6238 cnt = 0;
6239 for (dl = super->disks; dl; dl = dl->next)
6240 if (dl->e)
6241 dl->raiddisk = cnt++;
6242 rv = 1;
6243 }
6244
6245 return rv;
6246}
6247
bf5a934a 6248static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 6249 int raiddisks, int *chunk, unsigned long long size,
af4348dd 6250 unsigned long long data_offset,
bf5a934a
DW
6251 char *dev, unsigned long long *freesize,
6252 int verbose)
6253{
6254 int fd, cfd;
6255 struct mdinfo *sra;
20cbe8d2 6256 int is_member = 0;
bf5a934a 6257
d54559f0
LM
6258 /* load capability
6259 * if given unused devices create a container
bf5a934a
DW
6260 * if given given devices in a container create a member volume
6261 */
6262 if (level == LEVEL_CONTAINER) {
6263 /* Must be a fresh device to add to a container */
6264 return validate_geometry_imsm_container(st, level, layout,
c21e737b 6265 raiddisks,
7ccc4cc4 6266 *chunk,
af4348dd 6267 size, data_offset,
bf5a934a
DW
6268 dev, freesize,
6269 verbose);
6270 }
9587c373 6271
8592f29d 6272 if (!dev) {
e91a3bad 6273 if (st->sb) {
ca9de185 6274 struct intel_super *super = st->sb;
e91a3bad 6275 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 6276 raiddisks, chunk, size,
e91a3bad
LM
6277 verbose))
6278 return 0;
efb30e7f
DW
6279 /* we are being asked to automatically layout a
6280 * new volume based on the current contents of
6281 * the container. If the the parameters can be
6282 * satisfied reserve_space will record the disks,
6283 * start offset, and size of the volume to be
6284 * created. add_to_super and getinfo_super
6285 * detect when autolayout is in progress.
6286 */
ca9de185
LM
6287 /* assuming that freesize is always given when array is
6288 created */
6289 if (super->orom && freesize) {
6290 int count;
6291 count = count_volumes(super->hba->path,
6292 super->orom->dpa, verbose);
6293 if (super->orom->vphba <= count) {
6294 pr_vrb(": platform does not support more"
40110b90 6295 " than %d raid volumes.\n",
ca9de185
LM
6296 super->orom->vphba);
6297 return 0;
6298 }
6299 }
e91a3bad
LM
6300 if (freesize)
6301 return reserve_space(st, raiddisks, size,
7ccc4cc4 6302 *chunk, freesize);
8592f29d
N
6303 }
6304 return 1;
6305 }
bf5a934a
DW
6306 if (st->sb) {
6307 /* creating in a given container */
6308 return validate_geometry_imsm_volume(st, level, layout,
6309 raiddisks, chunk, size,
af4348dd 6310 data_offset,
bf5a934a
DW
6311 dev, freesize, verbose);
6312 }
6313
bf5a934a
DW
6314 /* This device needs to be a device in an 'imsm' container */
6315 fd = open(dev, O_RDONLY|O_EXCL, 0);
6316 if (fd >= 0) {
6317 if (verbose)
e7b84f9d
N
6318 pr_err("Cannot create this array on device %s\n",
6319 dev);
bf5a934a
DW
6320 close(fd);
6321 return 0;
6322 }
6323 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6324 if (verbose)
e7b84f9d 6325 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
6326 dev, strerror(errno));
6327 return 0;
6328 }
6329 /* Well, it is in use by someone, maybe an 'imsm' container. */
6330 cfd = open_container(fd);
20cbe8d2 6331 close(fd);
bf5a934a 6332 if (cfd < 0) {
bf5a934a 6333 if (verbose)
e7b84f9d 6334 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
6335 dev);
6336 return 0;
6337 }
4dd2df09 6338 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 6339 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
6340 strcmp(sra->text_version, "imsm") == 0)
6341 is_member = 1;
6342 sysfs_free(sra);
6343 if (is_member) {
bf5a934a
DW
6344 /* This is a member of a imsm container. Load the container
6345 * and try to create a volume
6346 */
6347 struct intel_super *super;
6348
ec50f7b6 6349 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 6350 st->sb = super;
4dd2df09 6351 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
6352 close(cfd);
6353 return validate_geometry_imsm_volume(st, level, layout,
6354 raiddisks, chunk,
af4348dd 6355 size, data_offset, dev,
ecbd9e81
N
6356 freesize, 1)
6357 ? 1 : -1;
bf5a934a 6358 }
20cbe8d2 6359 }
bf5a934a 6360
20cbe8d2 6361 if (verbose)
e7b84f9d 6362 pr_err("failed container membership check\n");
20cbe8d2
AW
6363
6364 close(cfd);
6365 return 0;
bf5a934a 6366}
0bd16cf2 6367
30f58b22 6368static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
6369{
6370 struct intel_super *super = st->sb;
6371
30f58b22
DW
6372 if (level && *level == UnSet)
6373 *level = LEVEL_CONTAINER;
6374
6375 if (level && layout && *layout == UnSet)
6376 *layout = imsm_level_to_layout(*level);
0bd16cf2 6377
cd9d1ac7
DW
6378 if (chunk && (*chunk == UnSet || *chunk == 0))
6379 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
6380}
6381
33414a01
DW
6382static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6383
6384static int kill_subarray_imsm(struct supertype *st)
6385{
6386 /* remove the subarray currently referenced by ->current_vol */
6387 __u8 i;
6388 struct intel_dev **dp;
6389 struct intel_super *super = st->sb;
6390 __u8 current_vol = super->current_vol;
6391 struct imsm_super *mpb = super->anchor;
6392
6393 if (super->current_vol < 0)
6394 return 2;
6395 super->current_vol = -1; /* invalidate subarray cursor */
6396
6397 /* block deletions that would change the uuid of active subarrays
6398 *
6399 * FIXME when immutable ids are available, but note that we'll
6400 * also need to fixup the invalidated/active subarray indexes in
6401 * mdstat
6402 */
6403 for (i = 0; i < mpb->num_raid_devs; i++) {
6404 char subarray[4];
6405
6406 if (i < current_vol)
6407 continue;
6408 sprintf(subarray, "%u", i);
4dd2df09 6409 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
6410 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6411 current_vol, i);
33414a01
DW
6412
6413 return 2;
6414 }
6415 }
6416
6417 if (st->update_tail) {
503975b9 6418 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 6419
33414a01
DW
6420 u->type = update_kill_array;
6421 u->dev_idx = current_vol;
6422 append_metadata_update(st, u, sizeof(*u));
6423
6424 return 0;
6425 }
6426
6427 for (dp = &super->devlist; *dp;)
6428 if ((*dp)->index == current_vol) {
6429 *dp = (*dp)->next;
6430 } else {
6431 handle_missing(super, (*dp)->dev);
6432 if ((*dp)->index > current_vol)
6433 (*dp)->index--;
6434 dp = &(*dp)->next;
6435 }
6436
6437 /* no more raid devices, all active components are now spares,
6438 * but of course failed are still failed
6439 */
6440 if (--mpb->num_raid_devs == 0) {
6441 struct dl *d;
6442
6443 for (d = super->disks; d; d = d->next)
a8619d23
AK
6444 if (d->index > -2)
6445 mark_spare(d);
33414a01
DW
6446 }
6447
6448 super->updates_pending++;
6449
6450 return 0;
6451}
aa534678 6452
a951a4f7 6453static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 6454 char *update, struct mddev_ident *ident)
aa534678
DW
6455{
6456 /* update the subarray currently referenced by ->current_vol */
6457 struct intel_super *super = st->sb;
6458 struct imsm_super *mpb = super->anchor;
6459
aa534678
DW
6460 if (strcmp(update, "name") == 0) {
6461 char *name = ident->name;
a951a4f7
N
6462 char *ep;
6463 int vol;
aa534678 6464
4dd2df09 6465 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 6466 pr_err("Unable to update name of active subarray\n");
aa534678
DW
6467 return 2;
6468 }
6469
6470 if (!check_name(super, name, 0))
6471 return 2;
6472
a951a4f7
N
6473 vol = strtoul(subarray, &ep, 10);
6474 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6475 return 2;
6476
aa534678 6477 if (st->update_tail) {
503975b9 6478 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 6479
aa534678 6480 u->type = update_rename_array;
a951a4f7 6481 u->dev_idx = vol;
aa534678
DW
6482 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6483 append_metadata_update(st, u, sizeof(*u));
6484 } else {
6485 struct imsm_dev *dev;
6486 int i;
6487
a951a4f7 6488 dev = get_imsm_dev(super, vol);
aa534678
DW
6489 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6490 for (i = 0; i < mpb->num_raid_devs; i++) {
6491 dev = get_imsm_dev(super, i);
6492 handle_missing(super, dev);
6493 }
6494 super->updates_pending++;
6495 }
6496 } else
6497 return 2;
6498
6499 return 0;
6500}
d1e02575 6501#endif /* MDASSEMBLE */
bf5a934a 6502
28bce06f
AK
6503static int is_gen_migration(struct imsm_dev *dev)
6504{
7534230b
AK
6505 if (dev == NULL)
6506 return 0;
6507
28bce06f
AK
6508 if (!dev->vol.migr_state)
6509 return 0;
6510
6511 if (migr_type(dev) == MIGR_GEN_MIGR)
6512 return 1;
6513
6514 return 0;
6515}
6516
1e5c6983
DW
6517static int is_rebuilding(struct imsm_dev *dev)
6518{
6519 struct imsm_map *migr_map;
6520
6521 if (!dev->vol.migr_state)
6522 return 0;
6523
6524 if (migr_type(dev) != MIGR_REBUILD)
6525 return 0;
6526
238c0a71 6527 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
6528
6529 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6530 return 1;
6531 else
6532 return 0;
6533}
6534
b4ab44d8 6535#ifndef MDASSEMBLE
6ce1fbf1
AK
6536static int is_initializing(struct imsm_dev *dev)
6537{
6538 struct imsm_map *migr_map;
6539
6540 if (!dev->vol.migr_state)
6541 return 0;
6542
6543 if (migr_type(dev) != MIGR_INIT)
6544 return 0;
6545
238c0a71 6546 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
6547
6548 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6549 return 1;
6550
6551 return 0;
6ce1fbf1 6552}
b4ab44d8 6553#endif
6ce1fbf1 6554
c47b0ff6
AK
6555static void update_recovery_start(struct intel_super *super,
6556 struct imsm_dev *dev,
6557 struct mdinfo *array)
1e5c6983
DW
6558{
6559 struct mdinfo *rebuild = NULL;
6560 struct mdinfo *d;
6561 __u32 units;
6562
6563 if (!is_rebuilding(dev))
6564 return;
6565
6566 /* Find the rebuild target, but punt on the dual rebuild case */
6567 for (d = array->devs; d; d = d->next)
6568 if (d->recovery_start == 0) {
6569 if (rebuild)
6570 return;
6571 rebuild = d;
6572 }
6573
4363fd80
DW
6574 if (!rebuild) {
6575 /* (?) none of the disks are marked with
6576 * IMSM_ORD_REBUILD, so assume they are missing and the
6577 * disk_ord_tbl was not correctly updated
6578 */
6579 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6580 return;
6581 }
6582
1e5c6983 6583 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 6584 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
6585}
6586
9e2d750d 6587#ifndef MDASSEMBLE
276d77db 6588static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 6589#endif
1e5c6983 6590
00bbdbda 6591static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 6592{
4f5bc454
DW
6593 /* Given a container loaded by load_super_imsm_all,
6594 * extract information about all the arrays into
6595 * an mdinfo tree.
00bbdbda 6596 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
6597 *
6598 * For each imsm_dev create an mdinfo, fill it in,
6599 * then look for matching devices in super->disks
6600 * and create appropriate device mdinfo.
6601 */
6602 struct intel_super *super = st->sb;
949c47a0 6603 struct imsm_super *mpb = super->anchor;
4f5bc454 6604 struct mdinfo *rest = NULL;
00bbdbda 6605 unsigned int i;
81219e70 6606 int sb_errors = 0;
abef11a3
AK
6607 struct dl *d;
6608 int spare_disks = 0;
cdddbdbc 6609
19482bcc
AK
6610 /* do not assemble arrays when not all attributes are supported */
6611 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 6612 sb_errors = 1;
e7b84f9d 6613 pr_err("Unsupported attributes in IMSM metadata."
81219e70 6614 "Arrays activation is blocked.\n");
19482bcc
AK
6615 }
6616
a06d022d 6617 /* check for bad blocks */
81219e70 6618 if (imsm_bbm_log_size(super->anchor)) {
e7b84f9d
N
6619 pr_err("BBM log found in IMSM metadata."
6620 "Arrays activation is blocked.\n");
81219e70
LM
6621 sb_errors = 1;
6622 }
6623
abef11a3
AK
6624 /* count spare devices, not used in maps
6625 */
6626 for (d = super->disks; d; d = d->next)
6627 if (d->index == -1)
6628 spare_disks++;
6629
4f5bc454 6630 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
6631 struct imsm_dev *dev;
6632 struct imsm_map *map;
86e3692b 6633 struct imsm_map *map2;
4f5bc454 6634 struct mdinfo *this;
a6482415
N
6635 int slot;
6636#ifndef MDASSEMBLE
6637 int chunk;
6638#endif
00bbdbda
N
6639 char *ep;
6640
6641 if (subarray &&
6642 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6643 continue;
6644
6645 dev = get_imsm_dev(super, i);
238c0a71
AK
6646 map = get_imsm_map(dev, MAP_0);
6647 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 6648
1ce0101c
DW
6649 /* do not publish arrays that are in the middle of an
6650 * unsupported migration
6651 */
6652 if (dev->vol.migr_state &&
28bce06f 6653 (migr_type(dev) == MIGR_STATE_CHANGE)) {
e7b84f9d 6654 pr_err("cannot assemble volume '%.16s':"
1ce0101c
DW
6655 " unsupported migration in progress\n",
6656 dev->volume);
6657 continue;
6658 }
2db86302
LM
6659 /* do not publish arrays that are not support by controller's
6660 * OROM/EFI
6661 */
1ce0101c 6662
503975b9 6663 this = xmalloc(sizeof(*this));
4f5bc454 6664
301406c9 6665 super->current_vol = i;
a5d85af7 6666 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 6667 this->next = rest;
81219e70 6668#ifndef MDASSEMBLE
a6482415 6669 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
6670 /* mdadm does not support all metadata features- set the bit in all arrays state */
6671 if (!validate_geometry_imsm_orom(super,
6672 get_imsm_raid_level(map), /* RAID level */
6673 imsm_level_to_layout(get_imsm_raid_level(map)),
6674 map->num_members, /* raid disks */
2cc699af 6675 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 6676 1 /* verbose */)) {
e7b84f9d 6677 pr_err("IMSM RAID geometry validation"
446894ea 6678 " failed. Array %s activation is blocked.\n",
81219e70
LM
6679 dev->volume);
6680 this->array.state |=
6681 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6682 (1<<MD_SB_BLOCK_VOLUME);
6683 }
6684#endif
6685
6686 /* if array has bad blocks, set suitable bit in all arrays state */
6687 if (sb_errors)
6688 this->array.state |=
6689 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6690 (1<<MD_SB_BLOCK_VOLUME);
6691
4f5bc454 6692 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 6693 unsigned long long recovery_start;
4f5bc454
DW
6694 struct mdinfo *info_d;
6695 struct dl *d;
6696 int idx;
9a1608e5 6697 int skip;
7eef0453 6698 __u32 ord;
4f5bc454 6699
9a1608e5 6700 skip = 0;
238c0a71
AK
6701 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6702 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
6703 for (d = super->disks; d ; d = d->next)
6704 if (d->index == idx)
0fbd635c 6705 break;
4f5bc454 6706
1e5c6983 6707 recovery_start = MaxSector;
4f5bc454 6708 if (d == NULL)
9a1608e5 6709 skip = 1;
25ed7e59 6710 if (d && is_failed(&d->disk))
9a1608e5 6711 skip = 1;
7eef0453 6712 if (ord & IMSM_ORD_REBUILD)
1e5c6983 6713 recovery_start = 0;
9a1608e5 6714
1011e834 6715 /*
9a1608e5 6716 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
6717 * reset resync start to avoid a dirty-degraded
6718 * situation when performing the intial sync
9a1608e5
DW
6719 *
6720 * FIXME handle dirty degraded
6721 */
1e5c6983 6722 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 6723 this->resync_start = MaxSector;
9a1608e5
DW
6724 if (skip)
6725 continue;
4f5bc454 6726
503975b9 6727 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
6728 info_d->next = this->devs;
6729 this->devs = info_d;
6730
4f5bc454
DW
6731 info_d->disk.number = d->index;
6732 info_d->disk.major = d->major;
6733 info_d->disk.minor = d->minor;
6734 info_d->disk.raid_disk = slot;
1e5c6983 6735 info_d->recovery_start = recovery_start;
86e3692b
AK
6736 if (map2) {
6737 if (slot < map2->num_members)
6738 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6739 else
6740 this->array.spare_disks++;
86e3692b
AK
6741 } else {
6742 if (slot < map->num_members)
6743 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6744 else
6745 this->array.spare_disks++;
86e3692b 6746 }
1e5c6983
DW
6747 if (info_d->recovery_start == MaxSector)
6748 this->array.working_disks++;
4f5bc454
DW
6749
6750 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113
CA
6751 info_d->data_offset = pba_of_lba0(map);
6752 info_d->component_size = blocks_per_member(map);
4f5bc454 6753 }
1e5c6983 6754 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 6755 update_recovery_start(super, dev, this);
abef11a3 6756 this->array.spare_disks += spare_disks;
276d77db 6757
9e2d750d 6758#ifndef MDASSEMBLE
276d77db
AK
6759 /* check for reshape */
6760 if (this->reshape_active == 1)
6761 recover_backup_imsm(st, this);
9e2d750d 6762#endif
9a1608e5 6763 rest = this;
4f5bc454
DW
6764 }
6765
6766 return rest;
cdddbdbc
DW
6767}
6768
3b451610
AK
6769static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6770 int failed, int look_in_map)
c2a1e7da 6771{
3b451610
AK
6772 struct imsm_map *map;
6773
6774 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
6775
6776 if (!failed)
1011e834 6777 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 6778 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
6779
6780 switch (get_imsm_raid_level(map)) {
6781 case 0:
6782 return IMSM_T_STATE_FAILED;
6783 break;
6784 case 1:
6785 if (failed < map->num_members)
6786 return IMSM_T_STATE_DEGRADED;
6787 else
6788 return IMSM_T_STATE_FAILED;
6789 break;
6790 case 10:
6791 {
6792 /**
c92a2527
DW
6793 * check to see if any mirrors have failed, otherwise we
6794 * are degraded. Even numbered slots are mirrored on
6795 * slot+1
c2a1e7da 6796 */
c2a1e7da 6797 int i;
d9b420a5
N
6798 /* gcc -Os complains that this is unused */
6799 int insync = insync;
c2a1e7da
DW
6800
6801 for (i = 0; i < map->num_members; i++) {
238c0a71 6802 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
6803 int idx = ord_to_idx(ord);
6804 struct imsm_disk *disk;
c2a1e7da 6805
c92a2527 6806 /* reset the potential in-sync count on even-numbered
1011e834 6807 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
6808 */
6809 if ((i & 1) == 0)
6810 insync = 2;
c2a1e7da 6811
c92a2527 6812 disk = get_imsm_disk(super, idx);
25ed7e59 6813 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 6814 insync--;
c2a1e7da 6815
c92a2527
DW
6816 /* no in-sync disks left in this mirror the
6817 * array has failed
6818 */
6819 if (insync == 0)
6820 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
6821 }
6822
6823 return IMSM_T_STATE_DEGRADED;
6824 }
6825 case 5:
6826 if (failed < 2)
6827 return IMSM_T_STATE_DEGRADED;
6828 else
6829 return IMSM_T_STATE_FAILED;
6830 break;
6831 default:
6832 break;
6833 }
6834
6835 return map->map_state;
6836}
6837
3b451610
AK
6838static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6839 int look_in_map)
c2a1e7da
DW
6840{
6841 int i;
6842 int failed = 0;
6843 struct imsm_disk *disk;
d5985138
AK
6844 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6845 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 6846 struct imsm_map *map_for_loop;
0556e1a2
DW
6847 __u32 ord;
6848 int idx;
d5985138 6849 int idx_1;
c2a1e7da 6850
0556e1a2
DW
6851 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6852 * disks that are being rebuilt. New failures are recorded to
6853 * map[0]. So we look through all the disks we started with and
6854 * see if any failures are still present, or if any new ones
6855 * have arrived
0556e1a2 6856 */
d5985138
AK
6857 map_for_loop = map;
6858 if (prev && (map->num_members < prev->num_members))
6859 map_for_loop = prev;
68fe4598
LD
6860
6861 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 6862 idx_1 = -255;
238c0a71
AK
6863 /* when MAP_X is passed both maps failures are counted
6864 */
d5985138 6865 if (prev &&
238c0a71
AK
6866 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6867 (i < prev->num_members)) {
d5985138
AK
6868 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6869 idx_1 = ord_to_idx(ord);
c2a1e7da 6870
d5985138
AK
6871 disk = get_imsm_disk(super, idx_1);
6872 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6873 failed++;
6874 }
238c0a71
AK
6875 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6876 (i < map->num_members)) {
d5985138
AK
6877 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6878 idx = ord_to_idx(ord);
6879
6880 if (idx != idx_1) {
6881 disk = get_imsm_disk(super, idx);
6882 if (!disk || is_failed(disk) ||
6883 ord & IMSM_ORD_REBUILD)
6884 failed++;
6885 }
6886 }
c2a1e7da
DW
6887 }
6888
6889 return failed;
845dea95
NB
6890}
6891
97b4d0e9
DW
6892#ifndef MDASSEMBLE
6893static int imsm_open_new(struct supertype *c, struct active_array *a,
6894 char *inst)
6895{
6896 struct intel_super *super = c->sb;
6897 struct imsm_super *mpb = super->anchor;
9587c373 6898
97b4d0e9 6899 if (atoi(inst) >= mpb->num_raid_devs) {
e12b3daa 6900 pr_err("%s: subarry index %d, out of range\n",
97b4d0e9
DW
6901 __func__, atoi(inst));
6902 return -ENODEV;
6903 }
6904
6905 dprintf("imsm: open_new %s\n", inst);
6906 a->info.container_member = atoi(inst);
6907 return 0;
6908}
6909
0c046afd
DW
6910static int is_resyncing(struct imsm_dev *dev)
6911{
6912 struct imsm_map *migr_map;
6913
6914 if (!dev->vol.migr_state)
6915 return 0;
6916
1484e727
DW
6917 if (migr_type(dev) == MIGR_INIT ||
6918 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6919 return 1;
6920
4c9bc37b
AK
6921 if (migr_type(dev) == MIGR_GEN_MIGR)
6922 return 0;
6923
238c0a71 6924 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 6925
4c9bc37b
AK
6926 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6927 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6928 return 1;
6929 else
6930 return 0;
6931}
6932
0556e1a2
DW
6933/* return true if we recorded new information */
6934static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6935{
0556e1a2
DW
6936 __u32 ord;
6937 int slot;
6938 struct imsm_map *map;
86c54047
DW
6939 char buf[MAX_RAID_SERIAL_LEN+3];
6940 unsigned int len, shift = 0;
0556e1a2
DW
6941
6942 /* new failures are always set in map[0] */
238c0a71 6943 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
6944
6945 slot = get_imsm_disk_slot(map, idx);
6946 if (slot < 0)
6947 return 0;
6948
6949 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6950 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6951 return 0;
6952
7d0c5e24
LD
6953 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6954 buf[MAX_RAID_SERIAL_LEN] = '\000';
6955 strcat(buf, ":0");
86c54047
DW
6956 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6957 shift = len - MAX_RAID_SERIAL_LEN + 1;
6958 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6959
f2f27e63 6960 disk->status |= FAILED_DISK;
0556e1a2 6961 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
6962 /* mark failures in second map if second map exists and this disk
6963 * in this slot.
6964 * This is valid for migration, initialization and rebuild
6965 */
6966 if (dev->vol.migr_state) {
238c0a71 6967 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
6968 int slot2 = get_imsm_disk_slot(map2, idx);
6969
6970 if ((slot2 < map2->num_members) &&
6971 (slot2 >= 0))
6972 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
6973 idx | IMSM_ORD_REBUILD);
6974 }
f21e18ca 6975 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6976 map->failed_disk_num = slot;
6977 return 1;
6978}
6979
6980static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6981{
6982 mark_failure(dev, disk, idx);
6983
6984 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6985 return;
6986
47ee5a45
DW
6987 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6988 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6989}
6990
33414a01
DW
6991static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6992{
33414a01 6993 struct dl *dl;
33414a01
DW
6994
6995 if (!super->missing)
6996 return;
33414a01 6997
79b68f1b
PC
6998 /* When orom adds replacement for missing disk it does
6999 * not remove entry of missing disk, but just updates map with
7000 * new added disk. So it is not enough just to test if there is
7001 * any missing disk, we have to look if there are any failed disks
7002 * in map to stop migration */
7003
33414a01 7004 dprintf("imsm: mark missing\n");
3d59f0c0
AK
7005 /* end process for initialization and rebuild only
7006 */
7007 if (is_gen_migration(dev) == 0) {
7008 __u8 map_state;
7009 int failed;
7010
7011 failed = imsm_count_failed(super, dev, MAP_0);
7012 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7013
79b68f1b
PC
7014 if (failed)
7015 end_migration(dev, super, map_state);
3d59f0c0 7016 }
33414a01
DW
7017 for (dl = super->missing; dl; dl = dl->next)
7018 mark_missing(dev, &dl->disk, dl->index);
7019 super->updates_pending++;
7020}
7021
f3871fdc
AK
7022static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7023 long long new_size)
70bdf0dc 7024{
238c0a71 7025 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
7026 unsigned long long array_blocks;
7027 struct imsm_map *map;
7028
7029 if (used_disks == 0) {
7030 /* when problems occures
7031 * return current array_blocks value
7032 */
7033 array_blocks = __le32_to_cpu(dev->size_high);
7034 array_blocks = array_blocks << 32;
7035 array_blocks += __le32_to_cpu(dev->size_low);
7036
7037 return array_blocks;
7038 }
7039
7040 /* set array size in metadata
7041 */
f3871fdc
AK
7042 if (new_size <= 0) {
7043 /* OLCE size change is caused by added disks
7044 */
7045 map = get_imsm_map(dev, MAP_0);
7046 array_blocks = blocks_per_member(map) * used_disks;
7047 } else {
7048 /* Online Volume Size Change
7049 * Using available free space
7050 */
7051 array_blocks = new_size;
7052 }
70bdf0dc
AK
7053
7054 /* round array size down to closest MB
7055 */
7056 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7057 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7058 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7059
7060 return array_blocks;
7061}
7062
28bce06f
AK
7063static void imsm_set_disk(struct active_array *a, int n, int state);
7064
0e2d1a4e
AK
7065static void imsm_progress_container_reshape(struct intel_super *super)
7066{
7067 /* if no device has a migr_state, but some device has a
7068 * different number of members than the previous device, start
7069 * changing the number of devices in this device to match
7070 * previous.
7071 */
7072 struct imsm_super *mpb = super->anchor;
7073 int prev_disks = -1;
7074 int i;
1dfaa380 7075 int copy_map_size;
0e2d1a4e
AK
7076
7077 for (i = 0; i < mpb->num_raid_devs; i++) {
7078 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7079 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7080 struct imsm_map *map2;
7081 int prev_num_members;
0e2d1a4e
AK
7082
7083 if (dev->vol.migr_state)
7084 return;
7085
7086 if (prev_disks == -1)
7087 prev_disks = map->num_members;
7088 if (prev_disks == map->num_members)
7089 continue;
7090
7091 /* OK, this array needs to enter reshape mode.
7092 * i.e it needs a migr_state
7093 */
7094
1dfaa380 7095 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
7096 prev_num_members = map->num_members;
7097 map->num_members = prev_disks;
7098 dev->vol.migr_state = 1;
7099 dev->vol.curr_migr_unit = 0;
ea672ee1 7100 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
7101 for (i = prev_num_members;
7102 i < map->num_members; i++)
7103 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 7104 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 7105 /* Copy the current map */
1dfaa380 7106 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
7107 map2->num_members = prev_num_members;
7108
f3871fdc 7109 imsm_set_array_size(dev, -1);
51d83f5d 7110 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
7111 super->updates_pending++;
7112 }
7113}
7114
aad6f216 7115/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
7116 * states are handled in imsm_set_disk() with one exception, when a
7117 * resync is stopped due to a new failure this routine will set the
7118 * 'degraded' state for the array.
7119 */
01f157d7 7120static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
7121{
7122 int inst = a->info.container_member;
7123 struct intel_super *super = a->container->sb;
949c47a0 7124 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7125 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
7126 int failed = imsm_count_failed(super, dev, MAP_0);
7127 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 7128 __u32 blocks_per_unit;
a862209d 7129
1af97990
AK
7130 if (dev->vol.migr_state &&
7131 dev->vol.migr_type == MIGR_GEN_MIGR) {
7132 /* array state change is blocked due to reshape action
aad6f216
N
7133 * We might need to
7134 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7135 * - finish the reshape (if last_checkpoint is big and action != reshape)
7136 * - update curr_migr_unit
1af97990 7137 */
aad6f216
N
7138 if (a->curr_action == reshape) {
7139 /* still reshaping, maybe update curr_migr_unit */
633b5610 7140 goto mark_checkpoint;
aad6f216
N
7141 } else {
7142 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7143 /* for some reason we aborted the reshape.
b66e591b
AK
7144 *
7145 * disable automatic metadata rollback
7146 * user action is required to recover process
aad6f216 7147 */
b66e591b 7148 if (0) {
238c0a71
AK
7149 struct imsm_map *map2 =
7150 get_imsm_map(dev, MAP_1);
7151 dev->vol.migr_state = 0;
7152 set_migr_type(dev, 0);
7153 dev->vol.curr_migr_unit = 0;
7154 memcpy(map, map2,
7155 sizeof_imsm_map(map2));
7156 super->updates_pending++;
b66e591b 7157 }
aad6f216
N
7158 }
7159 if (a->last_checkpoint >= a->info.component_size) {
7160 unsigned long long array_blocks;
7161 int used_disks;
e154ced3 7162 struct mdinfo *mdi;
aad6f216 7163
238c0a71 7164 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
7165 if (used_disks > 0) {
7166 array_blocks =
5551b113 7167 blocks_per_member(map) *
d55adef9
AK
7168 used_disks;
7169 /* round array size down to closest MB
7170 */
7171 array_blocks = (array_blocks
7172 >> SECT_PER_MB_SHIFT)
7173 << SECT_PER_MB_SHIFT;
d55adef9
AK
7174 a->info.custom_array_size = array_blocks;
7175 /* encourage manager to update array
7176 * size
7177 */
e154ced3 7178
d55adef9 7179 a->check_reshape = 1;
633b5610 7180 }
e154ced3
AK
7181 /* finalize online capacity expansion/reshape */
7182 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7183 imsm_set_disk(a,
7184 mdi->disk.raid_disk,
7185 mdi->curr_state);
7186
0e2d1a4e 7187 imsm_progress_container_reshape(super);
e154ced3 7188 }
aad6f216 7189 }
1af97990
AK
7190 }
7191
47ee5a45 7192 /* before we activate this array handle any missing disks */
33414a01
DW
7193 if (consistent == 2)
7194 handle_missing(super, dev);
1e5c6983 7195
0c046afd 7196 if (consistent == 2 &&
b7941fd6 7197 (!is_resync_complete(&a->info) ||
0c046afd
DW
7198 map_state != IMSM_T_STATE_NORMAL ||
7199 dev->vol.migr_state))
01f157d7 7200 consistent = 0;
272906ef 7201
b7941fd6 7202 if (is_resync_complete(&a->info)) {
0c046afd 7203 /* complete intialization / resync,
0556e1a2
DW
7204 * recovery and interrupted recovery is completed in
7205 * ->set_disk
0c046afd
DW
7206 */
7207 if (is_resyncing(dev)) {
7208 dprintf("imsm: mark resync done\n");
809da78e 7209 end_migration(dev, super, map_state);
115c3803 7210 super->updates_pending++;
484240d8 7211 a->last_checkpoint = 0;
115c3803 7212 }
b9172665
AK
7213 } else if ((!is_resyncing(dev) && !failed) &&
7214 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 7215 /* mark the start of the init process if nothing is failed */
b7941fd6 7216 dprintf("imsm: mark resync start\n");
1484e727 7217 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 7218 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 7219 else
8e59f3d8 7220 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 7221 super->updates_pending++;
115c3803 7222 }
a862209d 7223
633b5610 7224mark_checkpoint:
5b83bacf
AK
7225 /* skip checkpointing for general migration,
7226 * it is controlled in mdadm
7227 */
7228 if (is_gen_migration(dev))
7229 goto skip_mark_checkpoint;
7230
1e5c6983 7231 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 7232 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 7233 if (blocks_per_unit) {
1e5c6983
DW
7234 __u32 units32;
7235 __u64 units;
7236
4f0a7acc 7237 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
7238 units32 = units;
7239
7240 /* check that we did not overflow 32-bits, and that
7241 * curr_migr_unit needs updating
7242 */
7243 if (units32 == units &&
bfd80a56 7244 units32 != 0 &&
1e5c6983
DW
7245 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7246 dprintf("imsm: mark checkpoint (%u)\n", units32);
7247 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7248 super->updates_pending++;
7249 }
7250 }
f8f603f1 7251
5b83bacf 7252skip_mark_checkpoint:
3393c6af 7253 /* mark dirty / clean */
0c046afd 7254 if (dev->vol.dirty != !consistent) {
b7941fd6 7255 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
7256 if (consistent)
7257 dev->vol.dirty = 0;
7258 else
7259 dev->vol.dirty = 1;
a862209d
DW
7260 super->updates_pending++;
7261 }
28bce06f 7262
01f157d7 7263 return consistent;
a862209d
DW
7264}
7265
8d45d196 7266static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 7267{
8d45d196
DW
7268 int inst = a->info.container_member;
7269 struct intel_super *super = a->container->sb;
949c47a0 7270 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7271 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 7272 struct imsm_disk *disk;
7ce05701
LD
7273 struct mdinfo *mdi;
7274 int recovery_not_finished = 0;
0c046afd 7275 int failed;
b10b37b8 7276 __u32 ord;
0c046afd 7277 __u8 map_state;
8d45d196
DW
7278
7279 if (n > map->num_members)
e12b3daa 7280 pr_err("imsm: set_disk %d out of range 0..%d\n",
8d45d196
DW
7281 n, map->num_members - 1);
7282
7283 if (n < 0)
7284 return;
7285
4e6e574a 7286 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 7287
238c0a71 7288 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
b10b37b8 7289 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 7290
5802a811 7291 /* check for new failures */
0556e1a2
DW
7292 if (state & DS_FAULTY) {
7293 if (mark_failure(dev, disk, ord_to_idx(ord)))
7294 super->updates_pending++;
8d45d196 7295 }
47ee5a45 7296
19859edc 7297 /* check if in_sync */
0556e1a2 7298 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 7299 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
7300
7301 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
7302 super->updates_pending++;
7303 }
8d45d196 7304
3b451610
AK
7305 failed = imsm_count_failed(super, dev, MAP_0);
7306 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 7307
0c046afd 7308 /* check if recovery complete, newly degraded, or failed */
94002678
AK
7309 dprintf("imsm: Detected transition to state ");
7310 switch (map_state) {
7311 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7312 dprintf("normal: ");
7313 if (is_rebuilding(dev)) {
7314 dprintf("while rebuilding");
7ce05701
LD
7315 /* check if recovery is really finished */
7316 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7317 if (mdi->recovery_start != MaxSector) {
7318 recovery_not_finished = 1;
7319 break;
7320 }
7321 if (recovery_not_finished) {
7322 dprintf("\nimsm: Rebuild has not finished yet, "
7323 "state not changed");
7324 if (a->last_checkpoint < mdi->recovery_start) {
7325 a->last_checkpoint = mdi->recovery_start;
7326 super->updates_pending++;
7327 }
7328 break;
7329 }
94002678 7330 end_migration(dev, super, map_state);
238c0a71 7331 map = get_imsm_map(dev, MAP_0);
94002678
AK
7332 map->failed_disk_num = ~0;
7333 super->updates_pending++;
7334 a->last_checkpoint = 0;
7335 break;
7336 }
7337 if (is_gen_migration(dev)) {
7338 dprintf("while general migration");
bf2f0071 7339 if (a->last_checkpoint >= a->info.component_size)
809da78e 7340 end_migration(dev, super, map_state);
94002678
AK
7341 else
7342 map->map_state = map_state;
238c0a71 7343 map = get_imsm_map(dev, MAP_0);
28bce06f 7344 map->failed_disk_num = ~0;
94002678 7345 super->updates_pending++;
bf2f0071 7346 break;
94002678
AK
7347 }
7348 break;
7349 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7350 dprintf("degraded: ");
7351 if ((map->map_state != map_state) &&
7352 !dev->vol.migr_state) {
7353 dprintf("mark degraded");
7354 map->map_state = map_state;
7355 super->updates_pending++;
7356 a->last_checkpoint = 0;
7357 break;
7358 }
7359 if (is_rebuilding(dev)) {
7360 dprintf("while rebuilding.");
7361 if (map->map_state != map_state) {
7362 dprintf(" Map state change");
7363 end_migration(dev, super, map_state);
7364 super->updates_pending++;
7365 }
7366 break;
7367 }
7368 if (is_gen_migration(dev)) {
7369 dprintf("while general migration");
bf2f0071 7370 if (a->last_checkpoint >= a->info.component_size)
809da78e 7371 end_migration(dev, super, map_state);
94002678
AK
7372 else {
7373 map->map_state = map_state;
3b451610 7374 manage_second_map(super, dev);
94002678
AK
7375 }
7376 super->updates_pending++;
bf2f0071 7377 break;
28bce06f 7378 }
6ce1fbf1
AK
7379 if (is_initializing(dev)) {
7380 dprintf("while initialization.");
7381 map->map_state = map_state;
7382 super->updates_pending++;
7383 break;
7384 }
94002678
AK
7385 break;
7386 case IMSM_T_STATE_FAILED: /* transition to failed state */
7387 dprintf("failed: ");
7388 if (is_gen_migration(dev)) {
7389 dprintf("while general migration");
7390 map->map_state = map_state;
7391 super->updates_pending++;
7392 break;
7393 }
7394 if (map->map_state != map_state) {
7395 dprintf("mark failed");
7396 end_migration(dev, super, map_state);
7397 super->updates_pending++;
7398 a->last_checkpoint = 0;
7399 break;
7400 }
7401 break;
7402 default:
7403 dprintf("state %i\n", map_state);
5802a811 7404 }
94002678
AK
7405 dprintf("\n");
7406
845dea95
NB
7407}
7408
f796af5d 7409static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 7410{
f796af5d 7411 void *buf = mpb;
c2a1e7da
DW
7412 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7413 unsigned long long dsize;
7414 unsigned long long sectors;
7415
7416 get_dev_size(fd, NULL, &dsize);
7417
272f648f
DW
7418 if (mpb_size > 512) {
7419 /* -1 to account for anchor */
7420 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 7421
272f648f
DW
7422 /* write the extended mpb to the sectors preceeding the anchor */
7423 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7424 return 1;
c2a1e7da 7425
f21e18ca
N
7426 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7427 != 512 * sectors)
272f648f
DW
7428 return 1;
7429 }
c2a1e7da 7430
272f648f
DW
7431 /* first block is stored on second to last sector of the disk */
7432 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
7433 return 1;
7434
f796af5d 7435 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
7436 return 1;
7437
c2a1e7da
DW
7438 return 0;
7439}
7440
2e735d19 7441static void imsm_sync_metadata(struct supertype *container)
845dea95 7442{
2e735d19 7443 struct intel_super *super = container->sb;
c2a1e7da 7444
1a64be56 7445 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
7446 if (!super->updates_pending)
7447 return;
7448
36988a3d 7449 write_super_imsm(container, 0);
c2a1e7da
DW
7450
7451 super->updates_pending = 0;
845dea95
NB
7452}
7453
272906ef
DW
7454static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7455{
7456 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7457 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
7458 struct dl *dl;
7459
7460 for (dl = super->disks; dl; dl = dl->next)
7461 if (dl->index == i)
7462 break;
7463
25ed7e59 7464 if (dl && is_failed(&dl->disk))
272906ef
DW
7465 dl = NULL;
7466
7467 if (dl)
7468 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7469
7470 return dl;
7471}
7472
a20d2ba5 7473static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
7474 struct active_array *a, int activate_new,
7475 struct mdinfo *additional_test_list)
272906ef
DW
7476{
7477 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7478 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
7479 struct imsm_super *mpb = super->anchor;
7480 struct imsm_map *map;
272906ef
DW
7481 unsigned long long pos;
7482 struct mdinfo *d;
7483 struct extent *ex;
a20d2ba5 7484 int i, j;
272906ef 7485 int found;
569cc43f
DW
7486 __u32 array_start = 0;
7487 __u32 array_end = 0;
272906ef 7488 struct dl *dl;
6c932028 7489 struct mdinfo *test_list;
272906ef
DW
7490
7491 for (dl = super->disks; dl; dl = dl->next) {
7492 /* If in this array, skip */
7493 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
7494 if (d->state_fd >= 0 &&
7495 d->disk.major == dl->major &&
272906ef 7496 d->disk.minor == dl->minor) {
8ba77d32
AK
7497 dprintf("%x:%x already in array\n",
7498 dl->major, dl->minor);
272906ef
DW
7499 break;
7500 }
7501 if (d)
7502 continue;
6c932028
AK
7503 test_list = additional_test_list;
7504 while (test_list) {
7505 if (test_list->disk.major == dl->major &&
7506 test_list->disk.minor == dl->minor) {
8ba77d32
AK
7507 dprintf("%x:%x already in additional test list\n",
7508 dl->major, dl->minor);
7509 break;
7510 }
6c932028 7511 test_list = test_list->next;
8ba77d32 7512 }
6c932028 7513 if (test_list)
8ba77d32 7514 continue;
272906ef 7515
e553d2a4 7516 /* skip in use or failed drives */
25ed7e59 7517 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
7518 dl->index == -2) {
7519 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 7520 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
7521 continue;
7522 }
7523
a20d2ba5
DW
7524 /* skip pure spares when we are looking for partially
7525 * assimilated drives
7526 */
7527 if (dl->index == -1 && !activate_new)
7528 continue;
7529
272906ef 7530 /* Does this unused device have the requisite free space?
a20d2ba5 7531 * It needs to be able to cover all member volumes
272906ef
DW
7532 */
7533 ex = get_extents(super, dl);
7534 if (!ex) {
7535 dprintf("cannot get extents\n");
7536 continue;
7537 }
a20d2ba5
DW
7538 for (i = 0; i < mpb->num_raid_devs; i++) {
7539 dev = get_imsm_dev(super, i);
238c0a71 7540 map = get_imsm_map(dev, MAP_0);
272906ef 7541
a20d2ba5
DW
7542 /* check if this disk is already a member of
7543 * this array
272906ef 7544 */
620b1713 7545 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
7546 continue;
7547
7548 found = 0;
7549 j = 0;
7550 pos = 0;
5551b113 7551 array_start = pba_of_lba0(map);
329c8278 7552 array_end = array_start +
5551b113 7553 blocks_per_member(map) - 1;
a20d2ba5
DW
7554
7555 do {
7556 /* check that we can start at pba_of_lba0 with
7557 * blocks_per_member of space
7558 */
329c8278 7559 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
7560 found = 1;
7561 break;
7562 }
7563 pos = ex[j].start + ex[j].size;
7564 j++;
7565 } while (ex[j-1].size);
7566
7567 if (!found)
272906ef 7568 break;
a20d2ba5 7569 }
272906ef
DW
7570
7571 free(ex);
a20d2ba5 7572 if (i < mpb->num_raid_devs) {
329c8278
DW
7573 dprintf("%x:%x does not have %u to %u available\n",
7574 dl->major, dl->minor, array_start, array_end);
272906ef
DW
7575 /* No room */
7576 continue;
a20d2ba5
DW
7577 }
7578 return dl;
272906ef
DW
7579 }
7580
7581 return dl;
7582}
7583
95d07a2c
LM
7584static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7585{
7586 struct imsm_dev *dev2;
7587 struct imsm_map *map;
7588 struct dl *idisk;
7589 int slot;
7590 int idx;
7591 __u8 state;
7592
7593 dev2 = get_imsm_dev(cont->sb, dev_idx);
7594 if (dev2) {
238c0a71 7595 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 7596 if (state == IMSM_T_STATE_FAILED) {
238c0a71 7597 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
7598 if (!map)
7599 return 1;
7600 for (slot = 0; slot < map->num_members; slot++) {
7601 /*
7602 * Check if failed disks are deleted from intel
7603 * disk list or are marked to be deleted
7604 */
238c0a71 7605 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
7606 idisk = get_imsm_dl_disk(cont->sb, idx);
7607 /*
7608 * Do not rebuild the array if failed disks
7609 * from failed sub-array are not removed from
7610 * container.
7611 */
7612 if (idisk &&
7613 is_failed(&idisk->disk) &&
7614 (idisk->action != DISK_REMOVE))
7615 return 0;
7616 }
7617 }
7618 }
7619 return 1;
7620}
7621
88758e9d
DW
7622static struct mdinfo *imsm_activate_spare(struct active_array *a,
7623 struct metadata_update **updates)
7624{
7625 /**
d23fe947
DW
7626 * Find a device with unused free space and use it to replace a
7627 * failed/vacant region in an array. We replace failed regions one a
7628 * array at a time. The result is that a new spare disk will be added
7629 * to the first failed array and after the monitor has finished
7630 * propagating failures the remainder will be consumed.
88758e9d 7631 *
d23fe947
DW
7632 * FIXME add a capability for mdmon to request spares from another
7633 * container.
88758e9d
DW
7634 */
7635
7636 struct intel_super *super = a->container->sb;
88758e9d 7637 int inst = a->info.container_member;
949c47a0 7638 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7639 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
7640 int failed = a->info.array.raid_disks;
7641 struct mdinfo *rv = NULL;
7642 struct mdinfo *d;
7643 struct mdinfo *di;
7644 struct metadata_update *mu;
7645 struct dl *dl;
7646 struct imsm_update_activate_spare *u;
7647 int num_spares = 0;
7648 int i;
95d07a2c 7649 int allowed;
88758e9d
DW
7650
7651 for (d = a->info.devs ; d ; d = d->next) {
7652 if ((d->curr_state & DS_FAULTY) &&
7653 d->state_fd >= 0)
7654 /* wait for Removal to happen */
7655 return NULL;
7656 if (d->state_fd >= 0)
7657 failed--;
7658 }
7659
7660 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7661 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 7662
e2962bfc
AK
7663 if (imsm_reshape_blocks_arrays_changes(super))
7664 return NULL;
1af97990 7665
fc8ca064
AK
7666 /* Cannot activate another spare if rebuild is in progress already
7667 */
7668 if (is_rebuilding(dev)) {
7669 dprintf("imsm: No spare activation allowed. "
7670 "Rebuild in progress already.\n");
7671 return NULL;
7672 }
7673
89c67882
AK
7674 if (a->info.array.level == 4)
7675 /* No repair for takeovered array
7676 * imsm doesn't support raid4
7677 */
7678 return NULL;
7679
3b451610
AK
7680 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7681 IMSM_T_STATE_DEGRADED)
88758e9d
DW
7682 return NULL;
7683
95d07a2c
LM
7684 /*
7685 * If there are any failed disks check state of the other volume.
7686 * Block rebuild if the another one is failed until failed disks
7687 * are removed from container.
7688 */
7689 if (failed) {
c4acd1e5 7690 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 7691 "failed sub-array.\n",
c4acd1e5 7692 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
7693 /* check if states of the other volumes allow for rebuild */
7694 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7695 if (i != inst) {
7696 allowed = imsm_rebuild_allowed(a->container,
7697 i, failed);
7698 if (!allowed)
7699 return NULL;
7700 }
7701 }
7702 }
7703
88758e9d 7704 /* For each slot, if it is not working, find a spare */
88758e9d
DW
7705 for (i = 0; i < a->info.array.raid_disks; i++) {
7706 for (d = a->info.devs ; d ; d = d->next)
7707 if (d->disk.raid_disk == i)
7708 break;
7709 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7710 if (d && (d->state_fd >= 0))
7711 continue;
7712
272906ef 7713 /*
a20d2ba5
DW
7714 * OK, this device needs recovery. Try to re-add the
7715 * previous occupant of this slot, if this fails see if
7716 * we can continue the assimilation of a spare that was
7717 * partially assimilated, finally try to activate a new
7718 * spare.
272906ef
DW
7719 */
7720 dl = imsm_readd(super, i, a);
7721 if (!dl)
b303fe21 7722 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 7723 if (!dl)
b303fe21 7724 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
7725 if (!dl)
7726 continue;
1011e834 7727
272906ef 7728 /* found a usable disk with enough space */
503975b9 7729 di = xcalloc(1, sizeof(*di));
272906ef
DW
7730
7731 /* dl->index will be -1 in the case we are activating a
7732 * pristine spare. imsm_process_update() will create a
7733 * new index in this case. Once a disk is found to be
7734 * failed in all member arrays it is kicked from the
7735 * metadata
7736 */
7737 di->disk.number = dl->index;
d23fe947 7738
272906ef
DW
7739 /* (ab)use di->devs to store a pointer to the device
7740 * we chose
7741 */
7742 di->devs = (struct mdinfo *) dl;
7743
7744 di->disk.raid_disk = i;
7745 di->disk.major = dl->major;
7746 di->disk.minor = dl->minor;
7747 di->disk.state = 0;
d23534e4 7748 di->recovery_start = 0;
5551b113 7749 di->data_offset = pba_of_lba0(map);
272906ef
DW
7750 di->component_size = a->info.component_size;
7751 di->container_member = inst;
148acb7b 7752 super->random = random32();
272906ef
DW
7753 di->next = rv;
7754 rv = di;
7755 num_spares++;
7756 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7757 i, di->data_offset);
88758e9d
DW
7758 }
7759
7760 if (!rv)
7761 /* No spares found */
7762 return rv;
7763 /* Now 'rv' has a list of devices to return.
7764 * Create a metadata_update record to update the
7765 * disk_ord_tbl for the array
7766 */
503975b9 7767 mu = xmalloc(sizeof(*mu));
1011e834 7768 mu->buf = xcalloc(num_spares,
503975b9 7769 sizeof(struct imsm_update_activate_spare));
88758e9d 7770 mu->space = NULL;
cb23f1f4 7771 mu->space_list = NULL;
88758e9d
DW
7772 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7773 mu->next = *updates;
7774 u = (struct imsm_update_activate_spare *) mu->buf;
7775
7776 for (di = rv ; di ; di = di->next) {
7777 u->type = update_activate_spare;
d23fe947
DW
7778 u->dl = (struct dl *) di->devs;
7779 di->devs = NULL;
88758e9d
DW
7780 u->slot = di->disk.raid_disk;
7781 u->array = inst;
7782 u->next = u + 1;
7783 u++;
7784 }
7785 (u-1)->next = NULL;
7786 *updates = mu;
7787
7788 return rv;
7789}
7790
54c2c1ea 7791static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 7792{
54c2c1ea 7793 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
7794 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7795 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
7796 struct disk_info *inf = get_disk_info(u);
7797 struct imsm_disk *disk;
8273f55e
DW
7798 int i;
7799 int j;
8273f55e 7800
54c2c1ea 7801 for (i = 0; i < map->num_members; i++) {
238c0a71 7802 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
7803 for (j = 0; j < new_map->num_members; j++)
7804 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
7805 return 1;
7806 }
7807
7808 return 0;
7809}
7810
1a64be56
LM
7811static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7812{
7813 struct dl *dl = NULL;
7814 for (dl = super->disks; dl; dl = dl->next)
7815 if ((dl->major == major) && (dl->minor == minor))
7816 return dl;
7817 return NULL;
7818}
7819
7820static int remove_disk_super(struct intel_super *super, int major, int minor)
7821{
7822 struct dl *prev = NULL;
7823 struct dl *dl;
7824
7825 prev = NULL;
7826 for (dl = super->disks; dl; dl = dl->next) {
7827 if ((dl->major == major) && (dl->minor == minor)) {
7828 /* remove */
7829 if (prev)
7830 prev->next = dl->next;
7831 else
7832 super->disks = dl->next;
7833 dl->next = NULL;
7834 __free_imsm_disk(dl);
7835 dprintf("%s: removed %x:%x\n",
7836 __func__, major, minor);
7837 break;
7838 }
7839 prev = dl;
7840 }
7841 return 0;
7842}
7843
f21e18ca 7844static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 7845
1a64be56
LM
7846static int add_remove_disk_update(struct intel_super *super)
7847{
7848 int check_degraded = 0;
7849 struct dl *disk = NULL;
7850 /* add/remove some spares to/from the metadata/contrainer */
7851 while (super->disk_mgmt_list) {
7852 struct dl *disk_cfg;
7853
7854 disk_cfg = super->disk_mgmt_list;
7855 super->disk_mgmt_list = disk_cfg->next;
7856 disk_cfg->next = NULL;
7857
7858 if (disk_cfg->action == DISK_ADD) {
7859 disk_cfg->next = super->disks;
7860 super->disks = disk_cfg;
7861 check_degraded = 1;
7862 dprintf("%s: added %x:%x\n",
7863 __func__, disk_cfg->major,
7864 disk_cfg->minor);
7865 } else if (disk_cfg->action == DISK_REMOVE) {
7866 dprintf("Disk remove action processed: %x.%x\n",
7867 disk_cfg->major, disk_cfg->minor);
7868 disk = get_disk_super(super,
7869 disk_cfg->major,
7870 disk_cfg->minor);
7871 if (disk) {
7872 /* store action status */
7873 disk->action = DISK_REMOVE;
7874 /* remove spare disks only */
7875 if (disk->index == -1) {
7876 remove_disk_super(super,
7877 disk_cfg->major,
7878 disk_cfg->minor);
7879 }
7880 }
7881 /* release allocate disk structure */
7882 __free_imsm_disk(disk_cfg);
7883 }
7884 }
7885 return check_degraded;
7886}
7887
a29911da
PC
7888static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7889 struct intel_super *super,
7890 void ***space_list)
7891{
7892 struct intel_dev *id;
7893 void **tofree = NULL;
7894 int ret_val = 0;
7895
7896 dprintf("apply_reshape_migration_update()\n");
7897 if ((u->subdev < 0) ||
7898 (u->subdev > 1)) {
7899 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7900 return ret_val;
7901 }
7902 if ((space_list == NULL) || (*space_list == NULL)) {
7903 dprintf("imsm: Error: Memory is not allocated\n");
7904 return ret_val;
7905 }
7906
7907 for (id = super->devlist ; id; id = id->next) {
7908 if (id->index == (unsigned)u->subdev) {
7909 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7910 struct imsm_map *map;
7911 struct imsm_dev *new_dev =
7912 (struct imsm_dev *)*space_list;
238c0a71 7913 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
7914 int to_state;
7915 struct dl *new_disk;
7916
7917 if (new_dev == NULL)
7918 return ret_val;
7919 *space_list = **space_list;
7920 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 7921 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
7922 if (migr_map) {
7923 dprintf("imsm: Error: migration in progress");
7924 return ret_val;
7925 }
7926
7927 to_state = map->map_state;
7928 if ((u->new_level == 5) && (map->raid_level == 0)) {
7929 map->num_members++;
7930 /* this should not happen */
7931 if (u->new_disks[0] < 0) {
7932 map->failed_disk_num =
7933 map->num_members - 1;
7934 to_state = IMSM_T_STATE_DEGRADED;
7935 } else
7936 to_state = IMSM_T_STATE_NORMAL;
7937 }
8e59f3d8 7938 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
7939 if (u->new_level > -1)
7940 map->raid_level = u->new_level;
238c0a71 7941 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
7942 if ((u->new_level == 5) &&
7943 (migr_map->raid_level == 0)) {
7944 int ord = map->num_members - 1;
7945 migr_map->num_members--;
7946 if (u->new_disks[0] < 0)
7947 ord |= IMSM_ORD_REBUILD;
7948 set_imsm_ord_tbl_ent(map,
7949 map->num_members - 1,
7950 ord);
7951 }
7952 id->dev = new_dev;
7953 tofree = (void **)dev;
7954
4bba0439
PC
7955 /* update chunk size
7956 */
7957 if (u->new_chunksize > 0)
7958 map->blocks_per_strip =
7959 __cpu_to_le16(u->new_chunksize * 2);
7960
a29911da
PC
7961 /* add disk
7962 */
7963 if ((u->new_level != 5) ||
7964 (migr_map->raid_level != 0) ||
7965 (migr_map->raid_level == map->raid_level))
7966 goto skip_disk_add;
7967
7968 if (u->new_disks[0] >= 0) {
7969 /* use passes spare
7970 */
7971 new_disk = get_disk_super(super,
7972 major(u->new_disks[0]),
7973 minor(u->new_disks[0]));
7974 dprintf("imsm: new disk for reshape is: %i:%i "
7975 "(%p, index = %i)\n",
7976 major(u->new_disks[0]),
7977 minor(u->new_disks[0]),
7978 new_disk, new_disk->index);
7979 if (new_disk == NULL)
7980 goto error_disk_add;
7981
7982 new_disk->index = map->num_members - 1;
7983 /* slot to fill in autolayout
7984 */
7985 new_disk->raiddisk = new_disk->index;
7986 new_disk->disk.status |= CONFIGURED_DISK;
7987 new_disk->disk.status &= ~SPARE_DISK;
7988 } else
7989 goto error_disk_add;
7990
7991skip_disk_add:
7992 *tofree = *space_list;
7993 /* calculate new size
7994 */
f3871fdc 7995 imsm_set_array_size(new_dev, -1);
a29911da
PC
7996
7997 ret_val = 1;
7998 }
7999 }
8000
8001 if (tofree)
8002 *space_list = tofree;
8003 return ret_val;
8004
8005error_disk_add:
8006 dprintf("Error: imsm: Cannot find disk.\n");
8007 return ret_val;
8008}
8009
f3871fdc
AK
8010static int apply_size_change_update(struct imsm_update_size_change *u,
8011 struct intel_super *super)
8012{
8013 struct intel_dev *id;
8014 int ret_val = 0;
8015
8016 dprintf("apply_size_change_update()\n");
8017 if ((u->subdev < 0) ||
8018 (u->subdev > 1)) {
8019 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8020 return ret_val;
8021 }
8022
8023 for (id = super->devlist ; id; id = id->next) {
8024 if (id->index == (unsigned)u->subdev) {
8025 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8026 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8027 int used_disks = imsm_num_data_members(dev, MAP_0);
8028 unsigned long long blocks_per_member;
8029
8030 /* calculate new size
8031 */
8032 blocks_per_member = u->new_size / used_disks;
8033 dprintf("imsm: apply_size_change_update(size: %llu, "
8034 "blocks per member: %llu)\n",
8035 u->new_size, blocks_per_member);
8036 set_blocks_per_member(map, blocks_per_member);
8037 imsm_set_array_size(dev, u->new_size);
8038
8039 ret_val = 1;
8040 break;
8041 }
8042 }
8043
8044 return ret_val;
8045}
8046
061d7da3 8047static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 8048 struct intel_super *super,
061d7da3
LO
8049 struct active_array *active_array)
8050{
8051 struct imsm_super *mpb = super->anchor;
8052 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 8053 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
8054 struct imsm_map *migr_map;
8055 struct active_array *a;
8056 struct imsm_disk *disk;
8057 __u8 to_state;
8058 struct dl *dl;
8059 unsigned int found;
8060 int failed;
5961eeec 8061 int victim;
061d7da3 8062 int i;
5961eeec 8063 int second_map_created = 0;
061d7da3 8064
5961eeec 8065 for (; u; u = u->next) {
238c0a71 8066 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 8067
5961eeec 8068 if (victim < 0)
8069 return 0;
061d7da3 8070
5961eeec 8071 for (dl = super->disks; dl; dl = dl->next)
8072 if (dl == u->dl)
8073 break;
061d7da3 8074
5961eeec 8075 if (!dl) {
e12b3daa 8076 pr_err("error: imsm_activate_spare passed "
5961eeec 8077 "an unknown disk (index: %d)\n",
8078 u->dl->index);
8079 return 0;
8080 }
061d7da3 8081
5961eeec 8082 /* count failures (excluding rebuilds and the victim)
8083 * to determine map[0] state
8084 */
8085 failed = 0;
8086 for (i = 0; i < map->num_members; i++) {
8087 if (i == u->slot)
8088 continue;
8089 disk = get_imsm_disk(super,
238c0a71 8090 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 8091 if (!disk || is_failed(disk))
8092 failed++;
8093 }
061d7da3 8094
5961eeec 8095 /* adding a pristine spare, assign a new index */
8096 if (dl->index < 0) {
8097 dl->index = super->anchor->num_disks;
8098 super->anchor->num_disks++;
8099 }
8100 disk = &dl->disk;
8101 disk->status |= CONFIGURED_DISK;
8102 disk->status &= ~SPARE_DISK;
8103
8104 /* mark rebuild */
238c0a71 8105 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 8106 if (!second_map_created) {
8107 second_map_created = 1;
8108 map->map_state = IMSM_T_STATE_DEGRADED;
8109 migrate(dev, super, to_state, MIGR_REBUILD);
8110 } else
8111 map->map_state = to_state;
238c0a71 8112 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 8113 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8114 set_imsm_ord_tbl_ent(migr_map, u->slot,
8115 dl->index | IMSM_ORD_REBUILD);
8116
8117 /* update the family_num to mark a new container
8118 * generation, being careful to record the existing
8119 * family_num in orig_family_num to clean up after
8120 * earlier mdadm versions that neglected to set it.
8121 */
8122 if (mpb->orig_family_num == 0)
8123 mpb->orig_family_num = mpb->family_num;
8124 mpb->family_num += super->random;
8125
8126 /* count arrays using the victim in the metadata */
8127 found = 0;
8128 for (a = active_array; a ; a = a->next) {
8129 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8130 map = get_imsm_map(dev, MAP_0);
061d7da3 8131
5961eeec 8132 if (get_imsm_disk_slot(map, victim) >= 0)
8133 found++;
8134 }
061d7da3 8135
5961eeec 8136 /* delete the victim if it is no longer being
8137 * utilized anywhere
061d7da3 8138 */
5961eeec 8139 if (!found) {
8140 struct dl **dlp;
061d7da3 8141
5961eeec 8142 /* We know that 'manager' isn't touching anything,
8143 * so it is safe to delete
8144 */
8145 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
8146 if ((*dlp)->index == victim)
8147 break;
5961eeec 8148
8149 /* victim may be on the missing list */
8150 if (!*dlp)
8151 for (dlp = &super->missing; *dlp;
8152 dlp = &(*dlp)->next)
8153 if ((*dlp)->index == victim)
8154 break;
8155 imsm_delete(super, dlp, victim);
8156 }
061d7da3
LO
8157 }
8158
8159 return 1;
8160}
a29911da 8161
2e5dc010
N
8162static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8163 struct intel_super *super,
8164 void ***space_list)
8165{
8166 struct dl *new_disk;
8167 struct intel_dev *id;
8168 int i;
8169 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 8170 int disk_count = u->old_raid_disks;
2e5dc010
N
8171 void **tofree = NULL;
8172 int devices_to_reshape = 1;
8173 struct imsm_super *mpb = super->anchor;
8174 int ret_val = 0;
d098291a 8175 unsigned int dev_id;
2e5dc010 8176
ed7333bd 8177 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
8178
8179 /* enable spares to use in array */
8180 for (i = 0; i < delta_disks; i++) {
8181 new_disk = get_disk_super(super,
8182 major(u->new_disks[i]),
8183 minor(u->new_disks[i]));
ed7333bd
AK
8184 dprintf("imsm: new disk for reshape is: %i:%i "
8185 "(%p, index = %i)\n",
2e5dc010
N
8186 major(u->new_disks[i]), minor(u->new_disks[i]),
8187 new_disk, new_disk->index);
8188 if ((new_disk == NULL) ||
8189 ((new_disk->index >= 0) &&
8190 (new_disk->index < u->old_raid_disks)))
8191 goto update_reshape_exit;
ee4beede 8192 new_disk->index = disk_count++;
2e5dc010
N
8193 /* slot to fill in autolayout
8194 */
8195 new_disk->raiddisk = new_disk->index;
8196 new_disk->disk.status |=
8197 CONFIGURED_DISK;
8198 new_disk->disk.status &= ~SPARE_DISK;
8199 }
8200
ed7333bd
AK
8201 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8202 mpb->num_raid_devs);
2e5dc010
N
8203 /* manage changes in volume
8204 */
d098291a 8205 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
8206 void **sp = *space_list;
8207 struct imsm_dev *newdev;
8208 struct imsm_map *newmap, *oldmap;
8209
d098291a
AK
8210 for (id = super->devlist ; id; id = id->next) {
8211 if (id->index == dev_id)
8212 break;
8213 }
8214 if (id == NULL)
8215 break;
2e5dc010
N
8216 if (!sp)
8217 continue;
8218 *space_list = *sp;
8219 newdev = (void*)sp;
8220 /* Copy the dev, but not (all of) the map */
8221 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
8222 oldmap = get_imsm_map(id->dev, MAP_0);
8223 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
8224 /* Copy the current map */
8225 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8226 /* update one device only
8227 */
8228 if (devices_to_reshape) {
ed7333bd
AK
8229 dprintf("imsm: modifying subdev: %i\n",
8230 id->index);
2e5dc010
N
8231 devices_to_reshape--;
8232 newdev->vol.migr_state = 1;
8233 newdev->vol.curr_migr_unit = 0;
ea672ee1 8234 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
8235 newmap->num_members = u->new_raid_disks;
8236 for (i = 0; i < delta_disks; i++) {
8237 set_imsm_ord_tbl_ent(newmap,
8238 u->old_raid_disks + i,
8239 u->old_raid_disks + i);
8240 }
8241 /* New map is correct, now need to save old map
8242 */
238c0a71 8243 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
8244 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8245
f3871fdc 8246 imsm_set_array_size(newdev, -1);
2e5dc010
N
8247 }
8248
8249 sp = (void **)id->dev;
8250 id->dev = newdev;
8251 *sp = tofree;
8252 tofree = sp;
8e59f3d8
AK
8253
8254 /* Clear migration record */
8255 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 8256 }
819bc634
AK
8257 if (tofree)
8258 *space_list = tofree;
2e5dc010
N
8259 ret_val = 1;
8260
8261update_reshape_exit:
8262
8263 return ret_val;
8264}
8265
bb025c2f 8266static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
8267 struct intel_super *super,
8268 void ***space_list)
bb025c2f
KW
8269{
8270 struct imsm_dev *dev = NULL;
8ca6df95
KW
8271 struct intel_dev *dv;
8272 struct imsm_dev *dev_new;
bb025c2f
KW
8273 struct imsm_map *map;
8274 struct dl *dm, *du;
8ca6df95 8275 int i;
bb025c2f
KW
8276
8277 for (dv = super->devlist; dv; dv = dv->next)
8278 if (dv->index == (unsigned int)u->subarray) {
8279 dev = dv->dev;
8280 break;
8281 }
8282
8283 if (dev == NULL)
8284 return 0;
8285
238c0a71 8286 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
8287
8288 if (u->direction == R10_TO_R0) {
43d5ec18 8289 /* Number of failed disks must be half of initial disk number */
3b451610
AK
8290 if (imsm_count_failed(super, dev, MAP_0) !=
8291 (map->num_members / 2))
43d5ec18
KW
8292 return 0;
8293
bb025c2f
KW
8294 /* iterate through devices to mark removed disks as spare */
8295 for (dm = super->disks; dm; dm = dm->next) {
8296 if (dm->disk.status & FAILED_DISK) {
8297 int idx = dm->index;
8298 /* update indexes on the disk list */
8299/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8300 the index values will end up being correct.... NB */
8301 for (du = super->disks; du; du = du->next)
8302 if (du->index > idx)
8303 du->index--;
8304 /* mark as spare disk */
a8619d23 8305 mark_spare(dm);
bb025c2f
KW
8306 }
8307 }
bb025c2f
KW
8308 /* update map */
8309 map->num_members = map->num_members / 2;
8310 map->map_state = IMSM_T_STATE_NORMAL;
8311 map->num_domains = 1;
8312 map->raid_level = 0;
8313 map->failed_disk_num = -1;
8314 }
8315
8ca6df95
KW
8316 if (u->direction == R0_TO_R10) {
8317 void **space;
8318 /* update slots in current disk list */
8319 for (dm = super->disks; dm; dm = dm->next) {
8320 if (dm->index >= 0)
8321 dm->index *= 2;
8322 }
8323 /* create new *missing* disks */
8324 for (i = 0; i < map->num_members; i++) {
8325 space = *space_list;
8326 if (!space)
8327 continue;
8328 *space_list = *space;
8329 du = (void *)space;
8330 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
8331 du->fd = -1;
8332 du->minor = 0;
8333 du->major = 0;
8334 du->index = (i * 2) + 1;
8335 sprintf((char *)du->disk.serial,
8336 " MISSING_%d", du->index);
8337 sprintf((char *)du->serial,
8338 "MISSING_%d", du->index);
8339 du->next = super->missing;
8340 super->missing = du;
8341 }
8342 /* create new dev and map */
8343 space = *space_list;
8344 if (!space)
8345 return 0;
8346 *space_list = *space;
8347 dev_new = (void *)space;
8348 memcpy(dev_new, dev, sizeof(*dev));
8349 /* update new map */
238c0a71 8350 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 8351 map->num_members = map->num_members * 2;
1a2487c2 8352 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
8353 map->num_domains = 2;
8354 map->raid_level = 1;
8355 /* replace dev<->dev_new */
8356 dv->dev = dev_new;
8357 }
bb025c2f
KW
8358 /* update disk order table */
8359 for (du = super->disks; du; du = du->next)
8360 if (du->index >= 0)
8361 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 8362 for (du = super->missing; du; du = du->next)
1a2487c2
KW
8363 if (du->index >= 0) {
8364 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 8365 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 8366 }
bb025c2f
KW
8367
8368 return 1;
8369}
8370
e8319a19
DW
8371static void imsm_process_update(struct supertype *st,
8372 struct metadata_update *update)
8373{
8374 /**
8375 * crack open the metadata_update envelope to find the update record
8376 * update can be one of:
d195167d
AK
8377 * update_reshape_container_disks - all the arrays in the container
8378 * are being reshaped to have more devices. We need to mark
8379 * the arrays for general migration and convert selected spares
8380 * into active devices.
8381 * update_activate_spare - a spare device has replaced a failed
1011e834
N
8382 * device in an array, update the disk_ord_tbl. If this disk is
8383 * present in all member arrays then also clear the SPARE_DISK
8384 * flag
d195167d
AK
8385 * update_create_array
8386 * update_kill_array
8387 * update_rename_array
8388 * update_add_remove_disk
e8319a19
DW
8389 */
8390 struct intel_super *super = st->sb;
4d7b1503 8391 struct imsm_super *mpb;
e8319a19
DW
8392 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8393
4d7b1503
DW
8394 /* update requires a larger buf but the allocation failed */
8395 if (super->next_len && !super->next_buf) {
8396 super->next_len = 0;
8397 return;
8398 }
8399
8400 if (super->next_buf) {
8401 memcpy(super->next_buf, super->buf, super->len);
8402 free(super->buf);
8403 super->len = super->next_len;
8404 super->buf = super->next_buf;
8405
8406 super->next_len = 0;
8407 super->next_buf = NULL;
8408 }
8409
8410 mpb = super->anchor;
8411
e8319a19 8412 switch (type) {
0ec5d470
AK
8413 case update_general_migration_checkpoint: {
8414 struct intel_dev *id;
8415 struct imsm_update_general_migration_checkpoint *u =
8416 (void *)update->buf;
8417
8418 dprintf("imsm: process_update() "
8419 "for update_general_migration_checkpoint called\n");
8420
8421 /* find device under general migration */
8422 for (id = super->devlist ; id; id = id->next) {
8423 if (is_gen_migration(id->dev)) {
8424 id->dev->vol.curr_migr_unit =
8425 __cpu_to_le32(u->curr_migr_unit);
8426 super->updates_pending++;
8427 }
8428 }
8429 break;
8430 }
bb025c2f
KW
8431 case update_takeover: {
8432 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
8433 if (apply_takeover_update(u, super, &update->space_list)) {
8434 imsm_update_version_info(super);
bb025c2f 8435 super->updates_pending++;
1a2487c2 8436 }
bb025c2f
KW
8437 break;
8438 }
8439
78b10e66 8440 case update_reshape_container_disks: {
d195167d 8441 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
8442 if (apply_reshape_container_disks_update(
8443 u, super, &update->space_list))
8444 super->updates_pending++;
78b10e66
N
8445 break;
8446 }
48c5303a 8447 case update_reshape_migration: {
a29911da
PC
8448 struct imsm_update_reshape_migration *u = (void *)update->buf;
8449 if (apply_reshape_migration_update(
8450 u, super, &update->space_list))
8451 super->updates_pending++;
48c5303a
PC
8452 break;
8453 }
f3871fdc
AK
8454 case update_size_change: {
8455 struct imsm_update_size_change *u = (void *)update->buf;
8456 if (apply_size_change_update(u, super))
8457 super->updates_pending++;
8458 break;
8459 }
e8319a19 8460 case update_activate_spare: {
1011e834 8461 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
8462 if (apply_update_activate_spare(u, super, st->arrays))
8463 super->updates_pending++;
8273f55e
DW
8464 break;
8465 }
8466 case update_create_array: {
8467 /* someone wants to create a new array, we need to be aware of
8468 * a few races/collisions:
8469 * 1/ 'Create' called by two separate instances of mdadm
8470 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8471 * devices that have since been assimilated via
8472 * activate_spare.
8473 * In the event this update can not be carried out mdadm will
8474 * (FIX ME) notice that its update did not take hold.
8475 */
8476 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8477 struct intel_dev *dv;
8273f55e
DW
8478 struct imsm_dev *dev;
8479 struct imsm_map *map, *new_map;
8480 unsigned long long start, end;
8481 unsigned long long new_start, new_end;
8482 int i;
54c2c1ea
DW
8483 struct disk_info *inf;
8484 struct dl *dl;
8273f55e
DW
8485
8486 /* handle racing creates: first come first serve */
8487 if (u->dev_idx < mpb->num_raid_devs) {
8488 dprintf("%s: subarray %d already defined\n",
8489 __func__, u->dev_idx);
ba2de7ba 8490 goto create_error;
8273f55e
DW
8491 }
8492
8493 /* check update is next in sequence */
8494 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
8495 dprintf("%s: can not create array %d expected index %d\n",
8496 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 8497 goto create_error;
8273f55e
DW
8498 }
8499
238c0a71 8500 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
8501 new_start = pba_of_lba0(new_map);
8502 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 8503 inf = get_disk_info(u);
8273f55e
DW
8504
8505 /* handle activate_spare versus create race:
8506 * check to make sure that overlapping arrays do not include
8507 * overalpping disks
8508 */
8509 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 8510 dev = get_imsm_dev(super, i);
238c0a71 8511 map = get_imsm_map(dev, MAP_0);
5551b113
CA
8512 start = pba_of_lba0(map);
8513 end = start + blocks_per_member(map);
8273f55e
DW
8514 if ((new_start >= start && new_start <= end) ||
8515 (start >= new_start && start <= new_end))
54c2c1ea
DW
8516 /* overlap */;
8517 else
8518 continue;
8519
8520 if (disks_overlap(super, i, u)) {
8273f55e 8521 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 8522 goto create_error;
8273f55e
DW
8523 }
8524 }
8273f55e 8525
949c47a0
DW
8526 /* check that prepare update was successful */
8527 if (!update->space) {
8528 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 8529 goto create_error;
949c47a0
DW
8530 }
8531
54c2c1ea
DW
8532 /* check that all disks are still active before committing
8533 * changes. FIXME: could we instead handle this by creating a
8534 * degraded array? That's probably not what the user expects,
8535 * so better to drop this update on the floor.
8536 */
8537 for (i = 0; i < new_map->num_members; i++) {
8538 dl = serial_to_dl(inf[i].serial, super);
8539 if (!dl) {
8540 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 8541 goto create_error;
54c2c1ea 8542 }
949c47a0
DW
8543 }
8544
8273f55e 8545 super->updates_pending++;
54c2c1ea
DW
8546
8547 /* convert spares to members and fixup ord_tbl */
8548 for (i = 0; i < new_map->num_members; i++) {
8549 dl = serial_to_dl(inf[i].serial, super);
8550 if (dl->index == -1) {
8551 dl->index = mpb->num_disks;
8552 mpb->num_disks++;
8553 dl->disk.status |= CONFIGURED_DISK;
8554 dl->disk.status &= ~SPARE_DISK;
8555 }
8556 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8557 }
8558
ba2de7ba
DW
8559 dv = update->space;
8560 dev = dv->dev;
949c47a0
DW
8561 update->space = NULL;
8562 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
8563 dv->index = u->dev_idx;
8564 dv->next = super->devlist;
8565 super->devlist = dv;
8273f55e 8566 mpb->num_raid_devs++;
8273f55e 8567
4d1313e9 8568 imsm_update_version_info(super);
8273f55e 8569 break;
ba2de7ba
DW
8570 create_error:
8571 /* mdmon knows how to release update->space, but not
8572 * ((struct intel_dev *) update->space)->dev
8573 */
8574 if (update->space) {
8575 dv = update->space;
8576 free(dv->dev);
8577 }
8273f55e 8578 break;
e8319a19 8579 }
33414a01
DW
8580 case update_kill_array: {
8581 struct imsm_update_kill_array *u = (void *) update->buf;
8582 int victim = u->dev_idx;
8583 struct active_array *a;
8584 struct intel_dev **dp;
8585 struct imsm_dev *dev;
8586
8587 /* sanity check that we are not affecting the uuid of
8588 * active arrays, or deleting an active array
8589 *
8590 * FIXME when immutable ids are available, but note that
8591 * we'll also need to fixup the invalidated/active
8592 * subarray indexes in mdstat
8593 */
8594 for (a = st->arrays; a; a = a->next)
8595 if (a->info.container_member >= victim)
8596 break;
8597 /* by definition if mdmon is running at least one array
8598 * is active in the container, so checking
8599 * mpb->num_raid_devs is just extra paranoia
8600 */
8601 dev = get_imsm_dev(super, victim);
8602 if (a || !dev || mpb->num_raid_devs == 1) {
8603 dprintf("failed to delete subarray-%d\n", victim);
8604 break;
8605 }
8606
8607 for (dp = &super->devlist; *dp;)
f21e18ca 8608 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
8609 *dp = (*dp)->next;
8610 } else {
f21e18ca 8611 if ((*dp)->index > (unsigned)victim)
33414a01
DW
8612 (*dp)->index--;
8613 dp = &(*dp)->next;
8614 }
8615 mpb->num_raid_devs--;
8616 super->updates_pending++;
8617 break;
8618 }
aa534678
DW
8619 case update_rename_array: {
8620 struct imsm_update_rename_array *u = (void *) update->buf;
8621 char name[MAX_RAID_SERIAL_LEN+1];
8622 int target = u->dev_idx;
8623 struct active_array *a;
8624 struct imsm_dev *dev;
8625
8626 /* sanity check that we are not affecting the uuid of
8627 * an active array
8628 */
8629 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8630 name[MAX_RAID_SERIAL_LEN] = '\0';
8631 for (a = st->arrays; a; a = a->next)
8632 if (a->info.container_member == target)
8633 break;
8634 dev = get_imsm_dev(super, u->dev_idx);
8635 if (a || !dev || !check_name(super, name, 1)) {
8636 dprintf("failed to rename subarray-%d\n", target);
8637 break;
8638 }
8639
cdbe98cd 8640 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
8641 super->updates_pending++;
8642 break;
8643 }
1a64be56 8644 case update_add_remove_disk: {
43dad3d6 8645 /* we may be able to repair some arrays if disks are
095b8088 8646 * being added, check the status of add_remove_disk
1a64be56
LM
8647 * if discs has been added.
8648 */
8649 if (add_remove_disk_update(super)) {
43dad3d6 8650 struct active_array *a;
072b727f
DW
8651
8652 super->updates_pending++;
1a64be56 8653 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
8654 a->check_degraded = 1;
8655 }
43dad3d6 8656 break;
e8319a19 8657 }
1a64be56 8658 default:
e12b3daa 8659 pr_err("error: unsuported process update type:"
1a64be56
LM
8660 "(type: %d)\n", type);
8661 }
e8319a19 8662}
88758e9d 8663
bc0b9d34
PC
8664static struct mdinfo *get_spares_for_grow(struct supertype *st);
8665
5fe6f031
N
8666static int imsm_prepare_update(struct supertype *st,
8667 struct metadata_update *update)
8273f55e 8668{
949c47a0 8669 /**
4d7b1503
DW
8670 * Allocate space to hold new disk entries, raid-device entries or a new
8671 * mpb if necessary. The manager synchronously waits for updates to
8672 * complete in the monitor, so new mpb buffers allocated here can be
8673 * integrated by the monitor thread without worrying about live pointers
8674 * in the manager thread.
8273f55e 8675 */
095b8088 8676 enum imsm_update_type type;
4d7b1503
DW
8677 struct intel_super *super = st->sb;
8678 struct imsm_super *mpb = super->anchor;
8679 size_t buf_len;
8680 size_t len = 0;
949c47a0 8681
095b8088
N
8682 if (update->len < (int)sizeof(type))
8683 return 0;
8684
8685 type = *(enum imsm_update_type *) update->buf;
8686
949c47a0 8687 switch (type) {
0ec5d470 8688 case update_general_migration_checkpoint:
095b8088
N
8689 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8690 return 0;
0ec5d470
AK
8691 dprintf("imsm: prepare_update() "
8692 "for update_general_migration_checkpoint called\n");
8693 break;
abedf5fc
KW
8694 case update_takeover: {
8695 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
8696 if (update->len < (int)sizeof(*u))
8697 return 0;
abedf5fc
KW
8698 if (u->direction == R0_TO_R10) {
8699 void **tail = (void **)&update->space_list;
8700 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 8701 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
8702 int num_members = map->num_members;
8703 void *space;
8704 int size, i;
abedf5fc
KW
8705 /* allocate memory for added disks */
8706 for (i = 0; i < num_members; i++) {
8707 size = sizeof(struct dl);
503975b9 8708 space = xmalloc(size);
abedf5fc
KW
8709 *tail = space;
8710 tail = space;
8711 *tail = NULL;
8712 }
8713 /* allocate memory for new device */
8714 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8715 (num_members * sizeof(__u32));
503975b9
N
8716 space = xmalloc(size);
8717 *tail = space;
8718 tail = space;
8719 *tail = NULL;
8720 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
8721 }
8722
8723 break;
8724 }
78b10e66 8725 case update_reshape_container_disks: {
d195167d
AK
8726 /* Every raid device in the container is about to
8727 * gain some more devices, and we will enter a
8728 * reconfiguration.
8729 * So each 'imsm_map' will be bigger, and the imsm_vol
8730 * will now hold 2 of them.
8731 * Thus we need new 'struct imsm_dev' allocations sized
8732 * as sizeof_imsm_dev but with more devices in both maps.
8733 */
8734 struct imsm_update_reshape *u = (void *)update->buf;
8735 struct intel_dev *dl;
8736 void **space_tail = (void**)&update->space_list;
8737
095b8088
N
8738 if (update->len < (int)sizeof(*u))
8739 return 0;
8740
d195167d
AK
8741 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8742
8743 for (dl = super->devlist; dl; dl = dl->next) {
8744 int size = sizeof_imsm_dev(dl->dev, 1);
8745 void *s;
d677e0b8
AK
8746 if (u->new_raid_disks > u->old_raid_disks)
8747 size += sizeof(__u32)*2*
8748 (u->new_raid_disks - u->old_raid_disks);
503975b9 8749 s = xmalloc(size);
d195167d
AK
8750 *space_tail = s;
8751 space_tail = s;
8752 *space_tail = NULL;
8753 }
8754
8755 len = disks_to_mpb_size(u->new_raid_disks);
8756 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
8757 break;
8758 }
48c5303a 8759 case update_reshape_migration: {
bc0b9d34
PC
8760 /* for migration level 0->5 we need to add disks
8761 * so the same as for container operation we will copy
8762 * device to the bigger location.
8763 * in memory prepared device and new disk area are prepared
8764 * for usage in process update
8765 */
8766 struct imsm_update_reshape_migration *u = (void *)update->buf;
8767 struct intel_dev *id;
8768 void **space_tail = (void **)&update->space_list;
8769 int size;
8770 void *s;
8771 int current_level = -1;
8772
095b8088
N
8773 if (update->len < (int)sizeof(*u))
8774 return 0;
8775
bc0b9d34
PC
8776 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8777
8778 /* add space for bigger array in update
8779 */
8780 for (id = super->devlist; id; id = id->next) {
8781 if (id->index == (unsigned)u->subdev) {
8782 size = sizeof_imsm_dev(id->dev, 1);
8783 if (u->new_raid_disks > u->old_raid_disks)
8784 size += sizeof(__u32)*2*
8785 (u->new_raid_disks - u->old_raid_disks);
503975b9 8786 s = xmalloc(size);
bc0b9d34
PC
8787 *space_tail = s;
8788 space_tail = s;
8789 *space_tail = NULL;
8790 break;
8791 }
8792 }
8793 if (update->space_list == NULL)
8794 break;
8795
8796 /* add space for disk in update
8797 */
8798 size = sizeof(struct dl);
503975b9 8799 s = xmalloc(size);
bc0b9d34
PC
8800 *space_tail = s;
8801 space_tail = s;
8802 *space_tail = NULL;
8803
8804 /* add spare device to update
8805 */
8806 for (id = super->devlist ; id; id = id->next)
8807 if (id->index == (unsigned)u->subdev) {
8808 struct imsm_dev *dev;
8809 struct imsm_map *map;
8810
8811 dev = get_imsm_dev(super, u->subdev);
238c0a71 8812 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
8813 current_level = map->raid_level;
8814 break;
8815 }
8816 if ((u->new_level == 5) && (u->new_level != current_level)) {
8817 struct mdinfo *spares;
8818
8819 spares = get_spares_for_grow(st);
8820 if (spares) {
8821 struct dl *dl;
8822 struct mdinfo *dev;
8823
8824 dev = spares->devs;
8825 if (dev) {
8826 u->new_disks[0] =
8827 makedev(dev->disk.major,
8828 dev->disk.minor);
8829 dl = get_disk_super(super,
8830 dev->disk.major,
8831 dev->disk.minor);
8832 dl->index = u->old_raid_disks;
8833 dev = dev->next;
8834 }
8835 sysfs_free(spares);
8836 }
8837 }
8838 len = disks_to_mpb_size(u->new_raid_disks);
8839 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
8840 break;
8841 }
f3871fdc 8842 case update_size_change: {
095b8088
N
8843 if (update->len < (int)sizeof(struct imsm_update_size_change))
8844 return 0;
8845 break;
8846 }
8847 case update_activate_spare: {
8848 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8849 return 0;
f3871fdc
AK
8850 break;
8851 }
949c47a0
DW
8852 case update_create_array: {
8853 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8854 struct intel_dev *dv;
54c2c1ea 8855 struct imsm_dev *dev = &u->dev;
238c0a71 8856 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
8857 struct dl *dl;
8858 struct disk_info *inf;
8859 int i;
8860 int activate = 0;
949c47a0 8861
095b8088
N
8862 if (update->len < (int)sizeof(*u))
8863 return 0;
8864
54c2c1ea
DW
8865 inf = get_disk_info(u);
8866 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 8867 /* allocate a new super->devlist entry */
503975b9
N
8868 dv = xmalloc(sizeof(*dv));
8869 dv->dev = xmalloc(len);
8870 update->space = dv;
949c47a0 8871
54c2c1ea
DW
8872 /* count how many spares will be converted to members */
8873 for (i = 0; i < map->num_members; i++) {
8874 dl = serial_to_dl(inf[i].serial, super);
8875 if (!dl) {
8876 /* hmm maybe it failed?, nothing we can do about
8877 * it here
8878 */
8879 continue;
8880 }
8881 if (count_memberships(dl, super) == 0)
8882 activate++;
8883 }
8884 len += activate * sizeof(struct imsm_disk);
949c47a0 8885 break;
095b8088
N
8886 }
8887 case update_kill_array: {
8888 if (update->len < (int)sizeof(struct imsm_update_kill_array))
8889 return 0;
949c47a0
DW
8890 break;
8891 }
095b8088
N
8892 case update_rename_array: {
8893 if (update->len < (int)sizeof(struct imsm_update_rename_array))
8894 return 0;
8895 break;
8896 }
8897 case update_add_remove_disk:
8898 /* no update->len needed */
8899 break;
8900 default:
8901 return 0;
949c47a0 8902 }
8273f55e 8903
4d7b1503
DW
8904 /* check if we need a larger metadata buffer */
8905 if (super->next_buf)
8906 buf_len = super->next_len;
8907 else
8908 buf_len = super->len;
8909
8910 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8911 /* ok we need a larger buf than what is currently allocated
8912 * if this allocation fails process_update will notice that
8913 * ->next_len is set and ->next_buf is NULL
8914 */
8915 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8916 if (super->next_buf)
8917 free(super->next_buf);
8918
8919 super->next_len = buf_len;
1f45a8ad
DW
8920 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8921 memset(super->next_buf, 0, buf_len);
8922 else
4d7b1503
DW
8923 super->next_buf = NULL;
8924 }
5fe6f031 8925 return 1;
8273f55e
DW
8926}
8927
ae6aad82 8928/* must be called while manager is quiesced */
f21e18ca 8929static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
8930{
8931 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
8932 struct dl *iter;
8933 struct imsm_dev *dev;
8934 struct imsm_map *map;
24565c9a
DW
8935 int i, j, num_members;
8936 __u32 ord;
ae6aad82 8937
24565c9a
DW
8938 dprintf("%s: deleting device[%d] from imsm_super\n",
8939 __func__, index);
ae6aad82
DW
8940
8941 /* shift all indexes down one */
8942 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 8943 if (iter->index > (int)index)
ae6aad82 8944 iter->index--;
47ee5a45 8945 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 8946 if (iter->index > (int)index)
47ee5a45 8947 iter->index--;
ae6aad82
DW
8948
8949 for (i = 0; i < mpb->num_raid_devs; i++) {
8950 dev = get_imsm_dev(super, i);
238c0a71 8951 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
8952 num_members = map->num_members;
8953 for (j = 0; j < num_members; j++) {
8954 /* update ord entries being careful not to propagate
8955 * ord-flags to the first map
8956 */
238c0a71 8957 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 8958
24565c9a
DW
8959 if (ord_to_idx(ord) <= index)
8960 continue;
ae6aad82 8961
238c0a71 8962 map = get_imsm_map(dev, MAP_0);
24565c9a 8963 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 8964 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
8965 if (map)
8966 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
8967 }
8968 }
8969
8970 mpb->num_disks--;
8971 super->updates_pending++;
24565c9a
DW
8972 if (*dlp) {
8973 struct dl *dl = *dlp;
8974
8975 *dlp = (*dlp)->next;
8976 __free_imsm_disk(dl);
8977 }
ae6aad82 8978}
9e2d750d 8979#endif /* MDASSEMBLE */
9a717282
AK
8980
8981static void close_targets(int *targets, int new_disks)
8982{
8983 int i;
8984
8985 if (!targets)
8986 return;
8987
8988 for (i = 0; i < new_disks; i++) {
8989 if (targets[i] >= 0) {
8990 close(targets[i]);
8991 targets[i] = -1;
8992 }
8993 }
8994}
8995
8996static int imsm_get_allowed_degradation(int level, int raid_disks,
8997 struct intel_super *super,
8998 struct imsm_dev *dev)
8999{
9000 switch (level) {
bf5cf7c7 9001 case 1:
9a717282
AK
9002 case 10:{
9003 int ret_val = 0;
9004 struct imsm_map *map;
9005 int i;
9006
9007 ret_val = raid_disks/2;
9008 /* check map if all disks pairs not failed
9009 * in both maps
9010 */
238c0a71 9011 map = get_imsm_map(dev, MAP_0);
9a717282
AK
9012 for (i = 0; i < ret_val; i++) {
9013 int degradation = 0;
9014 if (get_imsm_disk(super, i) == NULL)
9015 degradation++;
9016 if (get_imsm_disk(super, i + 1) == NULL)
9017 degradation++;
9018 if (degradation == 2)
9019 return 0;
9020 }
238c0a71 9021 map = get_imsm_map(dev, MAP_1);
9a717282
AK
9022 /* if there is no second map
9023 * result can be returned
9024 */
9025 if (map == NULL)
9026 return ret_val;
9027 /* check degradation in second map
9028 */
9029 for (i = 0; i < ret_val; i++) {
9030 int degradation = 0;
9031 if (get_imsm_disk(super, i) == NULL)
9032 degradation++;
9033 if (get_imsm_disk(super, i + 1) == NULL)
9034 degradation++;
9035 if (degradation == 2)
9036 return 0;
9037 }
9038 return ret_val;
9039 }
9040 case 5:
9041 return 1;
9042 case 6:
9043 return 2;
9044 default:
9045 return 0;
9046 }
9047}
9048
687629c2
AK
9049/*******************************************************************************
9050 * Function: open_backup_targets
9051 * Description: Function opens file descriptors for all devices given in
9052 * info->devs
9053 * Parameters:
9054 * info : general array info
9055 * raid_disks : number of disks
9056 * raid_fds : table of device's file descriptors
9a717282
AK
9057 * super : intel super for raid10 degradation check
9058 * dev : intel device for raid10 degradation check
687629c2
AK
9059 * Returns:
9060 * 0 : success
9061 * -1 : fail
9062 ******************************************************************************/
9a717282
AK
9063int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9064 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
9065{
9066 struct mdinfo *sd;
f627f5ad 9067 int i;
9a717282 9068 int opened = 0;
f627f5ad
AK
9069
9070 for (i = 0; i < raid_disks; i++)
9071 raid_fds[i] = -1;
687629c2
AK
9072
9073 for (sd = info->devs ; sd ; sd = sd->next) {
9074 char *dn;
9075
9076 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9077 dprintf("disk is faulty!!\n");
9078 continue;
9079 }
9080
9081 if ((sd->disk.raid_disk >= raid_disks) ||
9082 (sd->disk.raid_disk < 0))
9083 continue;
9084
9085 dn = map_dev(sd->disk.major,
9086 sd->disk.minor, 1);
9087 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9088 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 9089 pr_err("cannot open component\n");
9a717282 9090 continue;
687629c2 9091 }
9a717282
AK
9092 opened++;
9093 }
9094 /* check if maximum array degradation level is not exceeded
9095 */
9096 if ((raid_disks - opened) >
9097 imsm_get_allowed_degradation(info->new_level,
9098 raid_disks,
9099 super, dev)) {
e12b3daa 9100 pr_err("Not enough disks can be opened.\n");
9a717282
AK
9101 close_targets(raid_fds, raid_disks);
9102 return -2;
687629c2
AK
9103 }
9104 return 0;
9105}
9106
d31ad643
PB
9107/*******************************************************************************
9108 * Function: validate_container_imsm
9109 * Description: This routine validates container after assemble,
9110 * eg. if devices in container are under the same controller.
9111 *
9112 * Parameters:
9113 * info : linked list with info about devices used in array
9114 * Returns:
9115 * 1 : HBA mismatch
9116 * 0 : Success
9117 ******************************************************************************/
9118int validate_container_imsm(struct mdinfo *info)
9119{
6b781d33
AP
9120 if (check_env("IMSM_NO_PLATFORM"))
9121 return 0;
d31ad643 9122
6b781d33
AP
9123 struct sys_dev *idev;
9124 struct sys_dev *hba = NULL;
9125 struct sys_dev *intel_devices = find_intel_devices();
9126 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9127 info->disk.minor));
9128
9129 for (idev = intel_devices; idev; idev = idev->next) {
9130 if (dev_path && strstr(dev_path, idev->path)) {
9131 hba = idev;
9132 break;
d31ad643 9133 }
6b781d33
AP
9134 }
9135 if (dev_path)
d31ad643
PB
9136 free(dev_path);
9137
6b781d33
AP
9138 if (!hba) {
9139 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9140 devid2kname(makedev(info->disk.major, info->disk.minor)));
9141 return 1;
9142 }
9143
9144 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9145 struct mdinfo *dev;
9146
9147 for (dev = info->next; dev; dev = dev->next) {
9148 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9149
9150 struct sys_dev *hba2 = NULL;
9151 for (idev = intel_devices; idev; idev = idev->next) {
9152 if (dev_path && strstr(dev_path, idev->path)) {
9153 hba2 = idev;
9154 break;
d31ad643
PB
9155 }
9156 }
6b781d33
AP
9157 if (dev_path)
9158 free(dev_path);
9159
9160 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9161 get_orom_by_device_id(hba2->dev_id);
9162
9163 if (hba2 && hba->type != hba2->type) {
9164 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9165 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9166 return 1;
9167 }
9168
9169 if (orom != orom2) {
9170 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9171 " This operation is not supported and can lead to data loss.\n");
9172 return 1;
9173 }
9174
9175 if (!orom) {
9176 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9177 " This operation is not supported and can lead to data loss.\n");
9178 return 1;
9179 }
d31ad643 9180 }
6b781d33 9181
d31ad643
PB
9182 return 0;
9183}
9e2d750d 9184#ifndef MDASSEMBLE
687629c2
AK
9185/*******************************************************************************
9186 * Function: init_migr_record_imsm
9187 * Description: Function inits imsm migration record
9188 * Parameters:
9189 * super : imsm internal array info
9190 * dev : device under migration
9191 * info : general array info to find the smallest device
9192 * Returns:
9193 * none
9194 ******************************************************************************/
9195void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9196 struct mdinfo *info)
9197{
9198 struct intel_super *super = st->sb;
9199 struct migr_record *migr_rec = super->migr_rec;
9200 int new_data_disks;
9201 unsigned long long dsize, dev_sectors;
9202 long long unsigned min_dev_sectors = -1LLU;
9203 struct mdinfo *sd;
9204 char nm[30];
9205 int fd;
238c0a71
AK
9206 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9207 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 9208 unsigned long long num_migr_units;
3ef4403c 9209 unsigned long long array_blocks;
687629c2
AK
9210
9211 memset(migr_rec, 0, sizeof(struct migr_record));
9212 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9213
9214 /* only ascending reshape supported now */
9215 migr_rec->ascending_migr = __cpu_to_le32(1);
9216
9217 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9218 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
9219 migr_rec->dest_depth_per_unit *=
9220 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 9221 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
9222 migr_rec->blocks_per_unit =
9223 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9224 migr_rec->dest_depth_per_unit =
9225 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 9226 array_blocks = info->component_size * new_data_disks;
687629c2
AK
9227 num_migr_units =
9228 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9229
9230 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9231 num_migr_units++;
9232 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9233
9234 migr_rec->post_migr_vol_cap = dev->size_low;
9235 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9236
687629c2
AK
9237 /* Find the smallest dev */
9238 for (sd = info->devs ; sd ; sd = sd->next) {
9239 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9240 fd = dev_open(nm, O_RDONLY);
9241 if (fd < 0)
9242 continue;
9243 get_dev_size(fd, NULL, &dsize);
9244 dev_sectors = dsize / 512;
9245 if (dev_sectors < min_dev_sectors)
9246 min_dev_sectors = dev_sectors;
9247 close(fd);
9248 }
9249 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9250 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9251
9252 write_imsm_migr_rec(st);
9253
9254 return;
9255}
9256
9257/*******************************************************************************
9258 * Function: save_backup_imsm
9259 * Description: Function saves critical data stripes to Migration Copy Area
9260 * and updates the current migration unit status.
9261 * Use restore_stripes() to form a destination stripe,
9262 * and to write it to the Copy Area.
9263 * Parameters:
9264 * st : supertype information
aea93171 9265 * dev : imsm device that backup is saved for
687629c2
AK
9266 * info : general array info
9267 * buf : input buffer
687629c2
AK
9268 * length : length of data to backup (blocks_per_unit)
9269 * Returns:
9270 * 0 : success
9271 *, -1 : fail
9272 ******************************************************************************/
9273int save_backup_imsm(struct supertype *st,
9274 struct imsm_dev *dev,
9275 struct mdinfo *info,
9276 void *buf,
687629c2
AK
9277 int length)
9278{
9279 int rv = -1;
9280 struct intel_super *super = st->sb;
9281 unsigned long long *target_offsets = NULL;
9282 int *targets = NULL;
9283 int i;
238c0a71 9284 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 9285 int new_disks = map_dest->num_members;
ab724b98
AK
9286 int dest_layout = 0;
9287 int dest_chunk;
d1877f69 9288 unsigned long long start;
238c0a71 9289 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 9290
503975b9 9291 targets = xmalloc(new_disks * sizeof(int));
687629c2 9292
7e45b550
AK
9293 for (i = 0; i < new_disks; i++)
9294 targets[i] = -1;
9295
503975b9 9296 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 9297
d1877f69 9298 start = info->reshape_progress * 512;
687629c2 9299 for (i = 0; i < new_disks; i++) {
687629c2
AK
9300 target_offsets[i] = (unsigned long long)
9301 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
9302 /* move back copy area adderss, it will be moved forward
9303 * in restore_stripes() using start input variable
9304 */
9305 target_offsets[i] -= start/data_disks;
687629c2
AK
9306 }
9307
9a717282
AK
9308 if (open_backup_targets(info, new_disks, targets,
9309 super, dev))
687629c2
AK
9310 goto abort;
9311
68eb8bc6 9312 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
9313 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9314
687629c2
AK
9315 if (restore_stripes(targets, /* list of dest devices */
9316 target_offsets, /* migration record offsets */
9317 new_disks,
ab724b98
AK
9318 dest_chunk,
9319 map_dest->raid_level,
9320 dest_layout,
9321 -1, /* source backup file descriptor */
9322 0, /* input buf offset
9323 * always 0 buf is already offseted */
d1877f69 9324 start,
687629c2
AK
9325 length,
9326 buf) != 0) {
e7b84f9d 9327 pr_err("Error restoring stripes\n");
687629c2
AK
9328 goto abort;
9329 }
9330
9331 rv = 0;
9332
9333abort:
9334 if (targets) {
9a717282 9335 close_targets(targets, new_disks);
687629c2
AK
9336 free(targets);
9337 }
9338 free(target_offsets);
9339
9340 return rv;
9341}
9342
9343/*******************************************************************************
9344 * Function: save_checkpoint_imsm
9345 * Description: Function called for current unit status update
9346 * in the migration record. It writes it to disk.
9347 * Parameters:
9348 * super : imsm internal array info
9349 * info : general array info
9350 * Returns:
9351 * 0: success
9352 * 1: failure
0228d92c
AK
9353 * 2: failure, means no valid migration record
9354 * / no general migration in progress /
687629c2
AK
9355 ******************************************************************************/
9356int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9357{
9358 struct intel_super *super = st->sb;
f8b72ef5
AK
9359 unsigned long long blocks_per_unit;
9360 unsigned long long curr_migr_unit;
9361
2e062e82
AK
9362 if (load_imsm_migr_rec(super, info) != 0) {
9363 dprintf("imsm: ERROR: Cannot read migration record "
9364 "for checkpoint save.\n");
9365 return 1;
9366 }
9367
f8b72ef5
AK
9368 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9369 if (blocks_per_unit == 0) {
0228d92c
AK
9370 dprintf("imsm: no migration in progress.\n");
9371 return 2;
687629c2 9372 }
f8b72ef5
AK
9373 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9374 /* check if array is alligned to copy area
9375 * if it is not alligned, add one to current migration unit value
9376 * this can happend on array reshape finish only
9377 */
9378 if (info->reshape_progress % blocks_per_unit)
9379 curr_migr_unit++;
687629c2
AK
9380
9381 super->migr_rec->curr_migr_unit =
f8b72ef5 9382 __cpu_to_le32(curr_migr_unit);
687629c2
AK
9383 super->migr_rec->rec_status = __cpu_to_le32(state);
9384 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
9385 __cpu_to_le32(curr_migr_unit *
9386 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
9387 if (write_imsm_migr_rec(st) < 0) {
9388 dprintf("imsm: Cannot write migration record "
9389 "outside backup area\n");
9390 return 1;
9391 }
9392
9393 return 0;
9394}
9395
276d77db
AK
9396/*******************************************************************************
9397 * Function: recover_backup_imsm
9398 * Description: Function recovers critical data from the Migration Copy Area
9399 * while assembling an array.
9400 * Parameters:
9401 * super : imsm internal array info
9402 * info : general array info
9403 * Returns:
9404 * 0 : success (or there is no data to recover)
9405 * 1 : fail
9406 ******************************************************************************/
9407int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9408{
9409 struct intel_super *super = st->sb;
9410 struct migr_record *migr_rec = super->migr_rec;
9411 struct imsm_map *map_dest = NULL;
9412 struct intel_dev *id = NULL;
9413 unsigned long long read_offset;
9414 unsigned long long write_offset;
9415 unsigned unit_len;
9416 int *targets = NULL;
9417 int new_disks, i, err;
9418 char *buf = NULL;
9419 int retval = 1;
9420 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9421 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 9422 char buffer[20];
6c3560c0 9423 int skipped_disks = 0;
276d77db
AK
9424
9425 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9426 if (err < 1)
9427 return 1;
9428
9429 /* recover data only during assemblation */
9430 if (strncmp(buffer, "inactive", 8) != 0)
9431 return 0;
9432 /* no data to recover */
9433 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9434 return 0;
9435 if (curr_migr_unit >= num_migr_units)
9436 return 1;
9437
9438 /* find device during reshape */
9439 for (id = super->devlist; id; id = id->next)
9440 if (is_gen_migration(id->dev))
9441 break;
9442 if (id == NULL)
9443 return 1;
9444
238c0a71 9445 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
9446 new_disks = map_dest->num_members;
9447
9448 read_offset = (unsigned long long)
9449 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9450
9451 write_offset = ((unsigned long long)
9452 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 9453 pba_of_lba0(map_dest)) * 512;
276d77db
AK
9454
9455 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9456 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9457 goto abort;
503975b9 9458 targets = xcalloc(new_disks, sizeof(int));
276d77db 9459
9a717282 9460 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 9461 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
9462 goto abort;
9463 }
276d77db
AK
9464
9465 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
9466 if (targets[i] < 0) {
9467 skipped_disks++;
9468 continue;
9469 }
276d77db 9470 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
9471 pr_err("Cannot seek to block: %s\n",
9472 strerror(errno));
137debce
AK
9473 skipped_disks++;
9474 continue;
276d77db 9475 }
9ec11d1a 9476 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
9477 pr_err("Cannot read copy area block: %s\n",
9478 strerror(errno));
137debce
AK
9479 skipped_disks++;
9480 continue;
276d77db
AK
9481 }
9482 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
9483 pr_err("Cannot seek to block: %s\n",
9484 strerror(errno));
137debce
AK
9485 skipped_disks++;
9486 continue;
276d77db 9487 }
9ec11d1a 9488 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
9489 pr_err("Cannot restore block: %s\n",
9490 strerror(errno));
137debce
AK
9491 skipped_disks++;
9492 continue;
276d77db
AK
9493 }
9494 }
9495
137debce
AK
9496 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9497 new_disks,
9498 super,
9499 id->dev)) {
e7b84f9d
N
9500 pr_err("Cannot restore data from backup."
9501 " Too many failed disks\n");
6c3560c0
AK
9502 goto abort;
9503 }
9504
befb629b
AK
9505 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9506 /* ignore error == 2, this can mean end of reshape here
9507 */
9508 dprintf("imsm: Cannot write checkpoint to "
9509 "migration record (UNIT_SRC_NORMAL) during restart\n");
9510 } else
276d77db 9511 retval = 0;
276d77db
AK
9512
9513abort:
9514 if (targets) {
9515 for (i = 0; i < new_disks; i++)
9516 if (targets[i])
9517 close(targets[i]);
9518 free(targets);
9519 }
9520 free(buf);
9521 return retval;
9522}
9523
2cda7640
ML
9524static char disk_by_path[] = "/dev/disk/by-path/";
9525
9526static const char *imsm_get_disk_controller_domain(const char *path)
9527{
2cda7640 9528 char disk_path[PATH_MAX];
96234762
LM
9529 char *drv=NULL;
9530 struct stat st;
2cda7640 9531
6d8d290a 9532 strcpy(disk_path, disk_by_path);
96234762
LM
9533 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9534 if (stat(disk_path, &st) == 0) {
9535 struct sys_dev* hba;
9536 char *path=NULL;
9537
9538 path = devt_to_devpath(st.st_rdev);
9539 if (path == NULL)
9540 return "unknown";
9541 hba = find_disk_attached_hba(-1, path);
9542 if (hba && hba->type == SYS_DEV_SAS)
9543 drv = "isci";
9544 else if (hba && hba->type == SYS_DEV_SATA)
9545 drv = "ahci";
1011e834 9546 else
96234762
LM
9547 drv = "unknown";
9548 dprintf("path: %s hba: %s attached: %s\n",
9549 path, (hba) ? hba->path : "NULL", drv);
9550 free(path);
2cda7640 9551 }
96234762 9552 return drv;
2cda7640
ML
9553}
9554
4dd2df09 9555static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 9556{
4dd2df09 9557 static char devnm[32];
78b10e66
N
9558 char subdev_name[20];
9559 struct mdstat_ent *mdstat;
9560
9561 sprintf(subdev_name, "%d", subdev);
9562 mdstat = mdstat_by_subdev(subdev_name, container);
9563 if (!mdstat)
4dd2df09 9564 return NULL;
78b10e66 9565
4dd2df09 9566 strcpy(devnm, mdstat->devnm);
78b10e66 9567 free_mdstat(mdstat);
4dd2df09 9568 return devnm;
78b10e66
N
9569}
9570
9571static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9572 struct geo_params *geo,
fbf3d202
AK
9573 int *old_raid_disks,
9574 int direction)
78b10e66 9575{
694575e7
KW
9576 /* currently we only support increasing the number of devices
9577 * for a container. This increases the number of device for each
9578 * member array. They must all be RAID0 or RAID5.
9579 */
78b10e66
N
9580 int ret_val = 0;
9581 struct mdinfo *info, *member;
9582 int devices_that_can_grow = 0;
9583
9584 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
4dd2df09 9585 "st->devnm = (%s)\n", st->devnm);
78b10e66 9586
d04f65f4 9587 if (geo->size > 0 ||
78b10e66
N
9588 geo->level != UnSet ||
9589 geo->layout != UnSet ||
9590 geo->chunksize != 0 ||
9591 geo->raid_disks == UnSet) {
9592 dprintf("imsm: Container operation is allowed for "
9593 "raid disks number change only.\n");
9594 return ret_val;
9595 }
9596
fbf3d202
AK
9597 if (direction == ROLLBACK_METADATA_CHANGES) {
9598 dprintf("imsm: Metadata changes rollback is not supported for "
9599 "container operation.\n");
9600 return ret_val;
9601 }
9602
78b10e66
N
9603 info = container_content_imsm(st, NULL);
9604 for (member = info; member; member = member->next) {
4dd2df09 9605 char *result;
78b10e66
N
9606
9607 dprintf("imsm: checking device_num: %i\n",
9608 member->container_member);
9609
d7d205bd 9610 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
9611 /* we work on container for Online Capacity Expansion
9612 * only so raid_disks has to grow
9613 */
9614 dprintf("imsm: for container operation raid disks "
9615 "increase is required\n");
9616 break;
9617 }
9618
9619 if ((info->array.level != 0) &&
9620 (info->array.level != 5)) {
9621 /* we cannot use this container with other raid level
9622 */
690aae1a 9623 dprintf("imsm: for container operation wrong"
78b10e66
N
9624 " raid level (%i) detected\n",
9625 info->array.level);
9626 break;
9627 } else {
9628 /* check for platform support
9629 * for this raid level configuration
9630 */
9631 struct intel_super *super = st->sb;
9632 if (!is_raid_level_supported(super->orom,
9633 member->array.level,
9634 geo->raid_disks)) {
690aae1a 9635 dprintf("platform does not support raid%d with"
78b10e66
N
9636 " %d disk%s\n",
9637 info->array.level,
9638 geo->raid_disks,
9639 geo->raid_disks > 1 ? "s" : "");
9640 break;
9641 }
2a4a08e7
AK
9642 /* check if component size is aligned to chunk size
9643 */
9644 if (info->component_size %
9645 (info->array.chunk_size/512)) {
9646 dprintf("Component size is not aligned to "
9647 "chunk size\n");
9648 break;
9649 }
78b10e66
N
9650 }
9651
9652 if (*old_raid_disks &&
9653 info->array.raid_disks != *old_raid_disks)
9654 break;
9655 *old_raid_disks = info->array.raid_disks;
9656
9657 /* All raid5 and raid0 volumes in container
9658 * have to be ready for Online Capacity Expansion
9659 * so they need to be assembled. We have already
9660 * checked that no recovery etc is happening.
9661 */
4dd2df09
N
9662 result = imsm_find_array_devnm_by_subdev(member->container_member,
9663 st->container_devnm);
9664 if (result == NULL) {
78b10e66
N
9665 dprintf("imsm: cannot find array\n");
9666 break;
9667 }
9668 devices_that_can_grow++;
9669 }
9670 sysfs_free(info);
9671 if (!member && devices_that_can_grow)
9672 ret_val = 1;
9673
9674 if (ret_val)
9675 dprintf("\tContainer operation allowed\n");
9676 else
9677 dprintf("\tError: %i\n", ret_val);
9678
9679 return ret_val;
9680}
9681
9682/* Function: get_spares_for_grow
9683 * Description: Allocates memory and creates list of spare devices
1011e834 9684 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
9685 * Parameters: Pointer to the supertype structure
9686 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 9687 * NULL if fail
78b10e66
N
9688 */
9689static struct mdinfo *get_spares_for_grow(struct supertype *st)
9690{
78b10e66 9691 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 9692 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
9693}
9694
9695/******************************************************************************
9696 * function: imsm_create_metadata_update_for_reshape
9697 * Function creates update for whole IMSM container.
9698 *
9699 ******************************************************************************/
9700static int imsm_create_metadata_update_for_reshape(
9701 struct supertype *st,
9702 struct geo_params *geo,
9703 int old_raid_disks,
9704 struct imsm_update_reshape **updatep)
9705{
9706 struct intel_super *super = st->sb;
9707 struct imsm_super *mpb = super->anchor;
9708 int update_memory_size = 0;
9709 struct imsm_update_reshape *u = NULL;
9710 struct mdinfo *spares = NULL;
9711 int i;
9712 int delta_disks = 0;
bbd24d86 9713 struct mdinfo *dev;
78b10e66
N
9714
9715 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9716 geo->raid_disks);
9717
9718 delta_disks = geo->raid_disks - old_raid_disks;
9719
9720 /* size of all update data without anchor */
9721 update_memory_size = sizeof(struct imsm_update_reshape);
9722
9723 /* now add space for spare disks that we need to add. */
9724 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9725
503975b9 9726 u = xcalloc(1, update_memory_size);
78b10e66
N
9727 u->type = update_reshape_container_disks;
9728 u->old_raid_disks = old_raid_disks;
9729 u->new_raid_disks = geo->raid_disks;
9730
9731 /* now get spare disks list
9732 */
9733 spares = get_spares_for_grow(st);
9734
9735 if (spares == NULL
9736 || delta_disks > spares->array.spare_disks) {
e7b84f9d 9737 pr_err("imsm: ERROR: Cannot get spare devices "
e14e5960 9738 "for %s.\n", geo->dev_name);
e4c72d1d 9739 i = -1;
78b10e66
N
9740 goto abort;
9741 }
9742
9743 /* we have got spares
9744 * update disk list in imsm_disk list table in anchor
9745 */
9746 dprintf("imsm: %i spares are available.\n\n",
9747 spares->array.spare_disks);
9748
bbd24d86 9749 dev = spares->devs;
78b10e66 9750 for (i = 0; i < delta_disks; i++) {
78b10e66
N
9751 struct dl *dl;
9752
bbd24d86
AK
9753 if (dev == NULL)
9754 break;
78b10e66
N
9755 u->new_disks[i] = makedev(dev->disk.major,
9756 dev->disk.minor);
9757 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
9758 dl->index = mpb->num_disks;
9759 mpb->num_disks++;
bbd24d86 9760 dev = dev->next;
78b10e66 9761 }
78b10e66
N
9762
9763abort:
9764 /* free spares
9765 */
9766 sysfs_free(spares);
9767
d677e0b8 9768 dprintf("imsm: reshape update preparation :");
78b10e66 9769 if (i == delta_disks) {
d677e0b8 9770 dprintf(" OK\n");
78b10e66
N
9771 *updatep = u;
9772 return update_memory_size;
9773 }
9774 free(u);
d677e0b8 9775 dprintf(" Error\n");
78b10e66
N
9776
9777 return 0;
9778}
9779
f3871fdc
AK
9780/******************************************************************************
9781 * function: imsm_create_metadata_update_for_size_change()
9782 * Creates update for IMSM array for array size change.
9783 *
9784 ******************************************************************************/
9785static int imsm_create_metadata_update_for_size_change(
9786 struct supertype *st,
9787 struct geo_params *geo,
9788 struct imsm_update_size_change **updatep)
9789{
9790 struct intel_super *super = st->sb;
9791 int update_memory_size = 0;
9792 struct imsm_update_size_change *u = NULL;
9793
9794 dprintf("imsm_create_metadata_update_for_size_change(enter)"
9795 " New size = %llu\n", geo->size);
9796
9797 /* size of all update data without anchor */
9798 update_memory_size = sizeof(struct imsm_update_size_change);
9799
503975b9 9800 u = xcalloc(1, update_memory_size);
f3871fdc
AK
9801 u->type = update_size_change;
9802 u->subdev = super->current_vol;
9803 u->new_size = geo->size;
9804
9805 dprintf("imsm: reshape update preparation : OK\n");
9806 *updatep = u;
9807
9808 return update_memory_size;
9809}
9810
48c5303a
PC
9811/******************************************************************************
9812 * function: imsm_create_metadata_update_for_migration()
9813 * Creates update for IMSM array.
9814 *
9815 ******************************************************************************/
9816static int imsm_create_metadata_update_for_migration(
9817 struct supertype *st,
9818 struct geo_params *geo,
9819 struct imsm_update_reshape_migration **updatep)
9820{
9821 struct intel_super *super = st->sb;
9822 int update_memory_size = 0;
9823 struct imsm_update_reshape_migration *u = NULL;
9824 struct imsm_dev *dev;
9825 int previous_level = -1;
9826
9827 dprintf("imsm_create_metadata_update_for_migration(enter)"
9828 " New Level = %i\n", geo->level);
9829
9830 /* size of all update data without anchor */
9831 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9832
503975b9 9833 u = xcalloc(1, update_memory_size);
48c5303a
PC
9834 u->type = update_reshape_migration;
9835 u->subdev = super->current_vol;
9836 u->new_level = geo->level;
9837 u->new_layout = geo->layout;
9838 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9839 u->new_disks[0] = -1;
4bba0439 9840 u->new_chunksize = -1;
48c5303a
PC
9841
9842 dev = get_imsm_dev(super, u->subdev);
9843 if (dev) {
9844 struct imsm_map *map;
9845
238c0a71 9846 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
9847 if (map) {
9848 int current_chunk_size =
9849 __le16_to_cpu(map->blocks_per_strip) / 2;
9850
9851 if (geo->chunksize != current_chunk_size) {
9852 u->new_chunksize = geo->chunksize / 1024;
9853 dprintf("imsm: "
9854 "chunk size change from %i to %i\n",
9855 current_chunk_size, u->new_chunksize);
9856 }
48c5303a 9857 previous_level = map->raid_level;
4bba0439 9858 }
48c5303a
PC
9859 }
9860 if ((geo->level == 5) && (previous_level == 0)) {
9861 struct mdinfo *spares = NULL;
9862
9863 u->new_raid_disks++;
9864 spares = get_spares_for_grow(st);
9865 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9866 free(u);
9867 sysfs_free(spares);
9868 update_memory_size = 0;
9869 dprintf("error: cannot get spare device "
9870 "for requested migration");
9871 return 0;
9872 }
9873 sysfs_free(spares);
9874 }
9875 dprintf("imsm: reshape update preparation : OK\n");
9876 *updatep = u;
9877
9878 return update_memory_size;
9879}
9880
8dd70bce
AK
9881static void imsm_update_metadata_locally(struct supertype *st,
9882 void *buf, int len)
9883{
9884 struct metadata_update mu;
9885
9886 mu.buf = buf;
9887 mu.len = len;
9888 mu.space = NULL;
9889 mu.space_list = NULL;
9890 mu.next = NULL;
5fe6f031
N
9891 if (imsm_prepare_update(st, &mu))
9892 imsm_process_update(st, &mu);
8dd70bce
AK
9893
9894 while (mu.space_list) {
9895 void **space = mu.space_list;
9896 mu.space_list = *space;
9897 free(space);
9898 }
9899}
78b10e66 9900
471bceb6 9901/***************************************************************************
694575e7 9902* Function: imsm_analyze_change
471bceb6 9903* Description: Function analyze change for single volume
1011e834 9904* and validate if transition is supported
fbf3d202
AK
9905* Parameters: Geometry parameters, supertype structure,
9906* metadata change direction (apply/rollback)
694575e7 9907* Returns: Operation type code on success, -1 if fail
471bceb6
KW
9908****************************************************************************/
9909enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
9910 struct geo_params *geo,
9911 int direction)
694575e7 9912{
471bceb6
KW
9913 struct mdinfo info;
9914 int change = -1;
9915 int check_devs = 0;
c21e737b 9916 int chunk;
67a2db32
AK
9917 /* number of added/removed disks in operation result */
9918 int devNumChange = 0;
9919 /* imsm compatible layout value for array geometry verification */
9920 int imsm_layout = -1;
7abc9871
AK
9921 int data_disks;
9922 struct imsm_dev *dev;
9923 struct intel_super *super;
d04f65f4 9924 unsigned long long current_size;
65d38cca 9925 unsigned long long free_size;
d04f65f4 9926 unsigned long long max_size;
65d38cca 9927 int rv;
471bceb6
KW
9928
9929 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
9930 if ((geo->level != info.array.level) &&
9931 (geo->level >= 0) &&
9932 (geo->level != UnSet)) {
9933 switch (info.array.level) {
9934 case 0:
9935 if (geo->level == 5) {
b5347799 9936 change = CH_MIGRATION;
e13ce846 9937 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
e7b84f9d
N
9938 pr_err("Error. Requested Layout "
9939 "not supported (left-asymmetric layout "
9940 "is supported only)!\n");
e13ce846
AK
9941 change = -1;
9942 goto analyse_change_exit;
9943 }
67a2db32 9944 imsm_layout = geo->layout;
471bceb6 9945 check_devs = 1;
e91a3bad
LM
9946 devNumChange = 1; /* parity disk added */
9947 } else if (geo->level == 10) {
471bceb6
KW
9948 change = CH_TAKEOVER;
9949 check_devs = 1;
e91a3bad 9950 devNumChange = 2; /* two mirrors added */
67a2db32 9951 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 9952 }
dfe77a9e
KW
9953 break;
9954 case 1:
471bceb6
KW
9955 case 10:
9956 if (geo->level == 0) {
9957 change = CH_TAKEOVER;
9958 check_devs = 1;
e91a3bad 9959 devNumChange = -(geo->raid_disks/2);
67a2db32 9960 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
9961 }
9962 break;
9963 }
9964 if (change == -1) {
e7b84f9d
N
9965 pr_err("Error. Level Migration from %d to %d "
9966 "not supported!\n",
9967 info.array.level, geo->level);
471bceb6
KW
9968 goto analyse_change_exit;
9969 }
9970 } else
9971 geo->level = info.array.level;
9972
9973 if ((geo->layout != info.array.layout)
9974 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 9975 change = CH_MIGRATION;
471bceb6
KW
9976 if ((info.array.layout == 0)
9977 && (info.array.level == 5)
9978 && (geo->layout == 5)) {
9979 /* reshape 5 -> 4 */
9980 } else if ((info.array.layout == 5)
9981 && (info.array.level == 5)
9982 && (geo->layout == 0)) {
9983 /* reshape 4 -> 5 */
9984 geo->layout = 0;
9985 geo->level = 5;
9986 } else {
e7b84f9d
N
9987 pr_err("Error. Layout Migration from %d to %d "
9988 "not supported!\n",
9989 info.array.layout, geo->layout);
471bceb6
KW
9990 change = -1;
9991 goto analyse_change_exit;
9992 }
67a2db32 9993 } else {
471bceb6 9994 geo->layout = info.array.layout;
67a2db32
AK
9995 if (imsm_layout == -1)
9996 imsm_layout = info.array.layout;
9997 }
471bceb6
KW
9998
9999 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
10000 && (geo->chunksize != info.array.chunk_size))
b5347799 10001 change = CH_MIGRATION;
471bceb6
KW
10002 else
10003 geo->chunksize = info.array.chunk_size;
10004
c21e737b 10005 chunk = geo->chunksize / 1024;
7abc9871
AK
10006
10007 super = st->sb;
10008 dev = get_imsm_dev(super, super->current_vol);
10009 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 10010 /* compute current size per disk member
7abc9871 10011 */
c41e00b2
AK
10012 current_size = info.custom_array_size / data_disks;
10013
d5d2c614 10014 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
c41e00b2
AK
10015 /* align component size
10016 */
10017 geo->size = imsm_component_size_aligment_check(
10018 get_imsm_raid_level(dev->vol.map),
10019 chunk * 1024,
10020 geo->size * 2);
65d0b4ce
LD
10021 if (geo->size == 0) {
10022 pr_err("Error. Size expansion is " \
10023 "supported only (current size is %llu, " \
10024 "requested size /rounded/ is 0).\n",
10025 current_size);
10026 goto analyse_change_exit;
10027 }
c41e00b2 10028 }
7abc9871 10029
d04f65f4 10030 if ((current_size != geo->size) && (geo->size > 0)) {
7abc9871 10031 if (change != -1) {
e7b84f9d 10032 pr_err("Error. Size change should be the only "
7abc9871
AK
10033 "one at a time.\n");
10034 change = -1;
10035 goto analyse_change_exit;
10036 }
10037 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
e7b84f9d 10038 pr_err("Error. The last volume in container "
4dd2df09
N
10039 "can be expanded only (%i/%s).\n",
10040 super->current_vol, st->devnm);
7abc9871
AK
10041 goto analyse_change_exit;
10042 }
65d38cca
LD
10043 /* check the maximum available size
10044 */
10045 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10046 0, chunk, &free_size);
10047 if (rv == 0)
10048 /* Cannot find maximum available space
10049 */
10050 max_size = 0;
10051 else {
10052 max_size = free_size + current_size;
10053 /* align component size
10054 */
10055 max_size = imsm_component_size_aligment_check(
10056 get_imsm_raid_level(dev->vol.map),
10057 chunk * 1024,
10058 max_size);
10059 }
d04f65f4 10060 if (geo->size == MAX_SIZE) {
b130333f
AK
10061 /* requested size change to the maximum available size
10062 */
65d38cca 10063 if (max_size == 0) {
e7b84f9d 10064 pr_err("Error. Cannot find "
b130333f
AK
10065 "maximum available space.\n");
10066 change = -1;
10067 goto analyse_change_exit;
65d38cca
LD
10068 } else
10069 geo->size = max_size;
c41e00b2 10070 }
b130333f 10071
fbf3d202
AK
10072 if ((direction == ROLLBACK_METADATA_CHANGES)) {
10073 /* accept size for rollback only
10074 */
10075 } else {
10076 /* round size due to metadata compatibility
10077 */
10078 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10079 << SECT_PER_MB_SHIFT;
10080 dprintf("Prepare update for size change to %llu\n",
10081 geo->size );
10082 if (current_size >= geo->size) {
e7b84f9d
N
10083 pr_err("Error. Size expansion is "
10084 "supported only (current size is %llu, "
10085 "requested size /rounded/ is %llu).\n",
10086 current_size, geo->size);
fbf3d202
AK
10087 goto analyse_change_exit;
10088 }
65d38cca 10089 if (max_size && geo->size > max_size) {
e7b84f9d
N
10090 pr_err("Error. Requested size is larger "
10091 "than maximum available size (maximum "
10092 "available size is %llu, "
10093 "requested size /rounded/ is %llu).\n",
10094 max_size, geo->size);
65d38cca
LD
10095 goto analyse_change_exit;
10096 }
7abc9871
AK
10097 }
10098 geo->size *= data_disks;
10099 geo->raid_disks = dev->vol.map->num_members;
10100 change = CH_ARRAY_SIZE;
10101 }
471bceb6
KW
10102 if (!validate_geometry_imsm(st,
10103 geo->level,
67a2db32 10104 imsm_layout,
e91a3bad 10105 geo->raid_disks + devNumChange,
c21e737b 10106 &chunk,
af4348dd 10107 geo->size, INVALID_SECTORS,
471bceb6
KW
10108 0, 0, 1))
10109 change = -1;
10110
10111 if (check_devs) {
10112 struct intel_super *super = st->sb;
10113 struct imsm_super *mpb = super->anchor;
10114
10115 if (mpb->num_raid_devs > 1) {
e7b84f9d
N
10116 pr_err("Error. Cannot perform operation on %s"
10117 "- for this operation it MUST be single "
10118 "array in container\n",
10119 geo->dev_name);
471bceb6
KW
10120 change = -1;
10121 }
10122 }
10123
10124analyse_change_exit:
fbf3d202
AK
10125 if ((direction == ROLLBACK_METADATA_CHANGES) &&
10126 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
10127 dprintf("imsm: Metadata changes rollback is not supported for "
10128 "migration and takeover operations.\n");
10129 change = -1;
10130 }
471bceb6 10131 return change;
694575e7
KW
10132}
10133
bb025c2f
KW
10134int imsm_takeover(struct supertype *st, struct geo_params *geo)
10135{
10136 struct intel_super *super = st->sb;
10137 struct imsm_update_takeover *u;
10138
503975b9 10139 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
10140
10141 u->type = update_takeover;
10142 u->subarray = super->current_vol;
10143
10144 /* 10->0 transition */
10145 if (geo->level == 0)
10146 u->direction = R10_TO_R0;
10147
0529c688
KW
10148 /* 0->10 transition */
10149 if (geo->level == 10)
10150 u->direction = R0_TO_R10;
10151
bb025c2f
KW
10152 /* update metadata locally */
10153 imsm_update_metadata_locally(st, u,
10154 sizeof(struct imsm_update_takeover));
10155 /* and possibly remotely */
10156 if (st->update_tail)
10157 append_metadata_update(st, u,
10158 sizeof(struct imsm_update_takeover));
10159 else
10160 free(u);
10161
10162 return 0;
10163}
10164
d04f65f4
N
10165static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10166 int level,
78b10e66 10167 int layout, int chunksize, int raid_disks,
41784c88 10168 int delta_disks, char *backup, char *dev,
016e00f5 10169 int direction, int verbose)
78b10e66 10170{
78b10e66
N
10171 int ret_val = 1;
10172 struct geo_params geo;
10173
10174 dprintf("imsm: reshape_super called.\n");
10175
71204a50 10176 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
10177
10178 geo.dev_name = dev;
4dd2df09 10179 strcpy(geo.devnm, st->devnm);
78b10e66
N
10180 geo.size = size;
10181 geo.level = level;
10182 geo.layout = layout;
10183 geo.chunksize = chunksize;
10184 geo.raid_disks = raid_disks;
41784c88
AK
10185 if (delta_disks != UnSet)
10186 geo.raid_disks += delta_disks;
78b10e66
N
10187
10188 dprintf("\tfor level : %i\n", geo.level);
10189 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
10190
10191 if (experimental() == 0)
10192 return ret_val;
10193
4dd2df09 10194 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
10195 /* On container level we can only increase number of devices. */
10196 dprintf("imsm: info: Container operation\n");
78b10e66 10197 int old_raid_disks = 0;
6dc0be30 10198
78b10e66 10199 if (imsm_reshape_is_allowed_on_container(
fbf3d202 10200 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
10201 struct imsm_update_reshape *u = NULL;
10202 int len;
10203
10204 len = imsm_create_metadata_update_for_reshape(
10205 st, &geo, old_raid_disks, &u);
10206
ed08d51c
AK
10207 if (len <= 0) {
10208 dprintf("imsm: Cannot prepare update\n");
10209 goto exit_imsm_reshape_super;
10210 }
10211
8dd70bce
AK
10212 ret_val = 0;
10213 /* update metadata locally */
10214 imsm_update_metadata_locally(st, u, len);
10215 /* and possibly remotely */
10216 if (st->update_tail)
10217 append_metadata_update(st, u, len);
10218 else
ed08d51c 10219 free(u);
8dd70bce 10220
694575e7 10221 } else {
e7b84f9d 10222 pr_err("(imsm) Operation "
e7ff7e40 10223 "is not allowed on this container\n");
694575e7
KW
10224 }
10225 } else {
10226 /* On volume level we support following operations
471bceb6
KW
10227 * - takeover: raid10 -> raid0; raid0 -> raid10
10228 * - chunk size migration
10229 * - migration: raid5 -> raid0; raid0 -> raid5
10230 */
10231 struct intel_super *super = st->sb;
10232 struct intel_dev *dev = super->devlist;
4dd2df09 10233 int change;
694575e7 10234 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
10235 /* find requested device */
10236 while (dev) {
1011e834 10237 char *devnm =
4dd2df09
N
10238 imsm_find_array_devnm_by_subdev(
10239 dev->index, st->container_devnm);
10240 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
10241 break;
10242 dev = dev->next;
10243 }
10244 if (dev == NULL) {
4dd2df09
N
10245 pr_err("Cannot find %s (%s) subarray\n",
10246 geo.dev_name, geo.devnm);
471bceb6
KW
10247 goto exit_imsm_reshape_super;
10248 }
10249 super->current_vol = dev->index;
fbf3d202 10250 change = imsm_analyze_change(st, &geo, direction);
694575e7 10251 switch (change) {
471bceb6 10252 case CH_TAKEOVER:
bb025c2f 10253 ret_val = imsm_takeover(st, &geo);
694575e7 10254 break;
48c5303a
PC
10255 case CH_MIGRATION: {
10256 struct imsm_update_reshape_migration *u = NULL;
10257 int len =
10258 imsm_create_metadata_update_for_migration(
10259 st, &geo, &u);
10260 if (len < 1) {
10261 dprintf("imsm: "
10262 "Cannot prepare update\n");
10263 break;
10264 }
471bceb6 10265 ret_val = 0;
48c5303a
PC
10266 /* update metadata locally */
10267 imsm_update_metadata_locally(st, u, len);
10268 /* and possibly remotely */
10269 if (st->update_tail)
10270 append_metadata_update(st, u, len);
10271 else
10272 free(u);
10273 }
10274 break;
7abc9871 10275 case CH_ARRAY_SIZE: {
f3871fdc
AK
10276 struct imsm_update_size_change *u = NULL;
10277 int len =
10278 imsm_create_metadata_update_for_size_change(
10279 st, &geo, &u);
10280 if (len < 1) {
10281 dprintf("imsm: "
10282 "Cannot prepare update\n");
10283 break;
10284 }
10285 ret_val = 0;
10286 /* update metadata locally */
10287 imsm_update_metadata_locally(st, u, len);
10288 /* and possibly remotely */
10289 if (st->update_tail)
10290 append_metadata_update(st, u, len);
10291 else
10292 free(u);
7abc9871
AK
10293 }
10294 break;
471bceb6
KW
10295 default:
10296 ret_val = 1;
694575e7 10297 }
694575e7 10298 }
78b10e66 10299
ed08d51c 10300exit_imsm_reshape_super:
78b10e66
N
10301 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10302 return ret_val;
10303}
2cda7640 10304
eee67a47
AK
10305/*******************************************************************************
10306 * Function: wait_for_reshape_imsm
10307 * Description: Function writes new sync_max value and waits until
10308 * reshape process reach new position
10309 * Parameters:
10310 * sra : general array info
eee67a47
AK
10311 * ndata : number of disks in new array's layout
10312 * Returns:
10313 * 0 : success,
10314 * 1 : there is no reshape in progress,
10315 * -1 : fail
10316 ******************************************************************************/
ae9f01f8 10317int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 10318{
85ca499c 10319 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
eee67a47 10320 unsigned long long completed;
ae9f01f8
AK
10321 /* to_complete : new sync_max position */
10322 unsigned long long to_complete = sra->reshape_progress;
10323 unsigned long long position_to_set = to_complete / ndata;
eee67a47 10324
ae9f01f8
AK
10325 if (fd < 0) {
10326 dprintf("imsm: wait_for_reshape_imsm() "
10327 "cannot open reshape_position\n");
eee67a47 10328 return 1;
ae9f01f8 10329 }
eee67a47 10330
ae9f01f8
AK
10331 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10332 dprintf("imsm: wait_for_reshape_imsm() "
10333 "cannot read reshape_position (no reshape in progres)\n");
10334 close(fd);
10335 return 0;
10336 }
eee67a47 10337
85ca499c 10338 if (completed > position_to_set) {
ae9f01f8
AK
10339 dprintf("imsm: wait_for_reshape_imsm() "
10340 "wrong next position to set %llu (%llu)\n",
85ca499c 10341 to_complete, position_to_set);
ae9f01f8
AK
10342 close(fd);
10343 return -1;
10344 }
10345 dprintf("Position set: %llu\n", position_to_set);
10346 if (sysfs_set_num(sra, NULL, "sync_max",
10347 position_to_set) != 0) {
10348 dprintf("imsm: wait_for_reshape_imsm() "
10349 "cannot set reshape position to %llu\n",
10350 position_to_set);
10351 close(fd);
10352 return -1;
eee67a47
AK
10353 }
10354
eee67a47
AK
10355 do {
10356 char action[20];
efc67e8e 10357 sysfs_wait(fd, NULL);
a47e44fb
AK
10358 if (sysfs_get_str(sra, NULL, "sync_action",
10359 action, 20) > 0 &&
10360 strncmp(action, "reshape", 7) != 0)
10361 break;
eee67a47 10362 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
10363 dprintf("imsm: wait_for_reshape_imsm() "
10364 "cannot read reshape_position (in loop)\n");
eee67a47
AK
10365 close(fd);
10366 return 1;
10367 }
85ca499c 10368 } while (completed < position_to_set);
eee67a47
AK
10369 close(fd);
10370 return 0;
10371
10372}
10373
b915c95f
AK
10374/*******************************************************************************
10375 * Function: check_degradation_change
10376 * Description: Check that array hasn't become failed.
10377 * Parameters:
10378 * info : for sysfs access
10379 * sources : source disks descriptors
10380 * degraded: previous degradation level
10381 * Returns:
10382 * degradation level
10383 ******************************************************************************/
10384int check_degradation_change(struct mdinfo *info,
10385 int *sources,
10386 int degraded)
10387{
10388 unsigned long long new_degraded;
e1993023
LD
10389 int rv;
10390
10391 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10392 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
10393 /* check each device to ensure it is still working */
10394 struct mdinfo *sd;
10395 new_degraded = 0;
10396 for (sd = info->devs ; sd ; sd = sd->next) {
10397 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10398 continue;
10399 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10400 char sbuf[20];
10401 if (sysfs_get_str(info,
10402 sd, "state", sbuf, 20) < 0 ||
10403 strstr(sbuf, "faulty") ||
10404 strstr(sbuf, "in_sync") == NULL) {
10405 /* this device is dead */
10406 sd->disk.state = (1<<MD_DISK_FAULTY);
10407 if (sd->disk.raid_disk >= 0 &&
10408 sources[sd->disk.raid_disk] >= 0) {
10409 close(sources[
10410 sd->disk.raid_disk]);
10411 sources[sd->disk.raid_disk] =
10412 -1;
10413 }
10414 new_degraded++;
10415 }
10416 }
10417 }
10418 }
10419
10420 return new_degraded;
10421}
10422
10f22854
AK
10423/*******************************************************************************
10424 * Function: imsm_manage_reshape
10425 * Description: Function finds array under reshape and it manages reshape
10426 * process. It creates stripes backups (if required) and sets
10427 * checheckpoits.
10428 * Parameters:
10429 * afd : Backup handle (nattive) - not used
10430 * sra : general array info
10431 * reshape : reshape parameters - not used
10432 * st : supertype structure
10433 * blocks : size of critical section [blocks]
10434 * fds : table of source device descriptor
10435 * offsets : start of array (offest per devices)
10436 * dests : not used
10437 * destfd : table of destination device descriptor
10438 * destoffsets : table of destination offsets (per device)
10439 * Returns:
10440 * 1 : success, reshape is done
10441 * 0 : fail
10442 ******************************************************************************/
999b4972
N
10443static int imsm_manage_reshape(
10444 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 10445 struct supertype *st, unsigned long backup_blocks,
999b4972
N
10446 int *fds, unsigned long long *offsets,
10447 int dests, int *destfd, unsigned long long *destoffsets)
10448{
10f22854
AK
10449 int ret_val = 0;
10450 struct intel_super *super = st->sb;
10451 struct intel_dev *dv = NULL;
10452 struct imsm_dev *dev = NULL;
a6b6d984 10453 struct imsm_map *map_src;
10f22854
AK
10454 int migr_vol_qan = 0;
10455 int ndata, odata; /* [bytes] */
10456 int chunk; /* [bytes] */
10457 struct migr_record *migr_rec;
10458 char *buf = NULL;
10459 unsigned int buf_size; /* [bytes] */
10460 unsigned long long max_position; /* array size [bytes] */
10461 unsigned long long next_step; /* [blocks]/[bytes] */
10462 unsigned long long old_data_stripe_length;
10f22854
AK
10463 unsigned long long start_src; /* [bytes] */
10464 unsigned long long start; /* [bytes] */
10465 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 10466 int degraded = 0;
ab724b98 10467 int source_layout = 0;
10f22854 10468
1ab242d8 10469 if (!fds || !offsets || !sra)
10f22854
AK
10470 goto abort;
10471
10472 /* Find volume during the reshape */
10473 for (dv = super->devlist; dv; dv = dv->next) {
10474 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10475 && dv->dev->vol.migr_state == 1) {
10476 dev = dv->dev;
10477 migr_vol_qan++;
10478 }
10479 }
10480 /* Only one volume can migrate at the same time */
10481 if (migr_vol_qan != 1) {
e7b84f9d 10482 pr_err(": %s", migr_vol_qan ?
10f22854
AK
10483 "Number of migrating volumes greater than 1\n" :
10484 "There is no volume during migrationg\n");
10485 goto abort;
10486 }
10487
238c0a71 10488 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
10489 if (map_src == NULL)
10490 goto abort;
10f22854 10491
238c0a71
AK
10492 ndata = imsm_num_data_members(dev, MAP_0);
10493 odata = imsm_num_data_members(dev, MAP_1);
10f22854 10494
7b1ab482 10495 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
10496 old_data_stripe_length = odata * chunk;
10497
10498 migr_rec = super->migr_rec;
10499
10f22854
AK
10500 /* initialize migration record for start condition */
10501 if (sra->reshape_progress == 0)
10502 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
10503 else {
10504 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10505 dprintf("imsm: cannot restart migration when data "
10506 "are present in copy area.\n");
10507 goto abort;
10508 }
6a75c8ca
AK
10509 /* Save checkpoint to update migration record for current
10510 * reshape position (in md). It can be farther than current
10511 * reshape position in metadata.
10512 */
10513 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10514 /* ignore error == 2, this can mean end of reshape here
10515 */
10516 dprintf("imsm: Cannot write checkpoint to "
10517 "migration record (UNIT_SRC_NORMAL, "
10518 "initial save)\n");
10519 goto abort;
10520 }
b2c59438 10521 }
10f22854
AK
10522
10523 /* size for data */
10524 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10525 /* extend buffer size for parity disk */
10526 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10527 /* add space for stripe aligment */
10528 buf_size += old_data_stripe_length;
10529 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10530 dprintf("imsm: Cannot allocate checpoint buffer\n");
10531 goto abort;
10532 }
10533
3ef4403c 10534 max_position = sra->component_size * ndata;
68eb8bc6 10535 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
10536
10537 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10538 __le32_to_cpu(migr_rec->num_migr_units)) {
10539 /* current reshape position [blocks] */
10540 unsigned long long current_position =
10541 __le32_to_cpu(migr_rec->blocks_per_unit)
10542 * __le32_to_cpu(migr_rec->curr_migr_unit);
10543 unsigned long long border;
10544
b915c95f
AK
10545 /* Check that array hasn't become failed.
10546 */
10547 degraded = check_degradation_change(sra, fds, degraded);
10548 if (degraded > 1) {
10549 dprintf("imsm: Abort reshape due to degradation"
10550 " level (%i)\n", degraded);
10551 goto abort;
10552 }
10553
10f22854
AK
10554 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10555
10556 if ((current_position + next_step) > max_position)
10557 next_step = max_position - current_position;
10558
92144abf 10559 start = current_position * 512;
10f22854
AK
10560
10561 /* allign reading start to old geometry */
10562 start_buf_shift = start % old_data_stripe_length;
10563 start_src = start - start_buf_shift;
10564
10565 border = (start_src / odata) - (start / ndata);
10566 border /= 512;
10567 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10568 /* save critical stripes to buf
10569 * start - start address of current unit
10570 * to backup [bytes]
10571 * start_src - start address of current unit
10572 * to backup alligned to source array
10573 * [bytes]
10574 */
10575 unsigned long long next_step_filler = 0;
10576 unsigned long long copy_length = next_step * 512;
10577
10578 /* allign copy area length to stripe in old geometry */
10579 next_step_filler = ((copy_length + start_buf_shift)
10580 % old_data_stripe_length);
10581 if (next_step_filler)
10582 next_step_filler = (old_data_stripe_length
10583 - next_step_filler);
10584 dprintf("save_stripes() parameters: start = %llu,"
10585 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10586 "\tstart_in_buf_shift = %llu,"
10587 "\tnext_step_filler = %llu\n",
10588 start, start_src, copy_length,
10589 start_buf_shift, next_step_filler);
10590
10591 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
10592 chunk, map_src->raid_level,
10593 source_layout, 0, NULL, start_src,
10f22854
AK
10594 copy_length +
10595 next_step_filler + start_buf_shift,
10596 buf)) {
10597 dprintf("imsm: Cannot save stripes"
10598 " to buffer\n");
10599 goto abort;
10600 }
10601 /* Convert data to destination format and store it
10602 * in backup general migration area
10603 */
10604 if (save_backup_imsm(st, dev, sra,
aea93171 10605 buf + start_buf_shift, copy_length)) {
10f22854
AK
10606 dprintf("imsm: Cannot save stripes to "
10607 "target devices\n");
10608 goto abort;
10609 }
10610 if (save_checkpoint_imsm(st, sra,
10611 UNIT_SRC_IN_CP_AREA)) {
10612 dprintf("imsm: Cannot write checkpoint to "
10613 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10614 goto abort;
10615 }
8016a6d4
AK
10616 } else {
10617 /* set next step to use whole border area */
10618 border /= next_step;
10619 if (border > 1)
10620 next_step *= border;
10f22854
AK
10621 }
10622 /* When data backed up, checkpoint stored,
10623 * kick the kernel to reshape unit of data
10624 */
10625 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
10626 /* limit next step to array max position */
10627 if (next_step > max_position)
10628 next_step = max_position;
10f22854
AK
10629 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10630 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 10631 sra->reshape_progress = next_step;
10f22854
AK
10632
10633 /* wait until reshape finish */
ae9f01f8 10634 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
10635 dprintf("wait_for_reshape_imsm returned error!\n");
10636 goto abort;
10637 }
84d11e6c
N
10638 if (sigterm)
10639 goto abort;
10f22854 10640
0228d92c
AK
10641 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10642 /* ignore error == 2, this can mean end of reshape here
10643 */
10f22854
AK
10644 dprintf("imsm: Cannot write checkpoint to "
10645 "migration record (UNIT_SRC_NORMAL)\n");
10646 goto abort;
10647 }
10648
10649 }
10650
10651 /* return '1' if done */
10652 ret_val = 1;
10653abort:
10654 free(buf);
10655 abort_reshape(sra);
10656
10657 return ret_val;
999b4972 10658}
0c21b485 10659
71204a50 10660#endif /* MDASSEMBLE */
999b4972 10661
cdddbdbc
DW
10662struct superswitch super_imsm = {
10663#ifndef MDASSEMBLE
10664 .examine_super = examine_super_imsm,
10665 .brief_examine_super = brief_examine_super_imsm,
4737ae25 10666 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 10667 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
10668 .detail_super = detail_super_imsm,
10669 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 10670 .write_init_super = write_init_super_imsm,
0e600426
N
10671 .validate_geometry = validate_geometry_imsm,
10672 .add_to_super = add_to_super_imsm,
1a64be56 10673 .remove_from_super = remove_from_super_imsm,
d665cc31 10674 .detail_platform = detail_platform_imsm,
e50cf220 10675 .export_detail_platform = export_detail_platform_imsm,
33414a01 10676 .kill_subarray = kill_subarray_imsm,
aa534678 10677 .update_subarray = update_subarray_imsm,
2b959fbf 10678 .load_container = load_container_imsm,
71204a50
N
10679 .default_geometry = default_geometry_imsm,
10680 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10681 .reshape_super = imsm_reshape_super,
10682 .manage_reshape = imsm_manage_reshape,
9e2d750d 10683 .recover_backup = recover_backup_imsm,
74db60b0 10684 .copy_metadata = copy_metadata_imsm,
cdddbdbc
DW
10685#endif
10686 .match_home = match_home_imsm,
10687 .uuid_from_super= uuid_from_super_imsm,
10688 .getinfo_super = getinfo_super_imsm,
5c4cd5da 10689 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
10690 .update_super = update_super_imsm,
10691
10692 .avail_size = avail_size_imsm,
80e7f8c3 10693 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
10694
10695 .compare_super = compare_super_imsm,
10696
10697 .load_super = load_super_imsm,
bf5a934a 10698 .init_super = init_super_imsm,
e683ca88 10699 .store_super = store_super_imsm,
cdddbdbc
DW
10700 .free_super = free_super_imsm,
10701 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 10702 .container_content = container_content_imsm,
0c21b485 10703 .validate_container = validate_container_imsm,
cdddbdbc 10704
cdddbdbc 10705 .external = 1,
4cce4069 10706 .name = "imsm",
845dea95 10707
0e600426 10708#ifndef MDASSEMBLE
845dea95
NB
10709/* for mdmon */
10710 .open_new = imsm_open_new,
ed9d66aa 10711 .set_array_state= imsm_set_array_state,
845dea95
NB
10712 .set_disk = imsm_set_disk,
10713 .sync_metadata = imsm_sync_metadata,
88758e9d 10714 .activate_spare = imsm_activate_spare,
e8319a19 10715 .process_update = imsm_process_update,
8273f55e 10716 .prepare_update = imsm_prepare_update,
0e600426 10717#endif /* MDASSEMBLE */
cdddbdbc 10718};