]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
do_add_mount(): lift lock_mount/unlock_mount into callers
[people/ms/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
f87fd4c2 76/* /sys/fs */
00d26666
GKH
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 79
99b7db7b
NP
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
48a066e7 88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 89
38129a13 90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 91{
b58fed8b
RP
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
103}
104
b105e270 105static int mnt_alloc_id(struct mount *mnt)
73cd49ec 106{
169b480e
MW
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
73cd49ec
MS
113}
114
b105e270 115static void mnt_free_id(struct mount *mnt)
73cd49ec 116{
169b480e 117 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
118}
119
719f5d7f
MS
120/*
121 * Allocate a new peer group ID
719f5d7f 122 */
4b8b21f4 123static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 124{
169b480e 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 126
169b480e
MW
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
719f5d7f
MS
131}
132
133/*
134 * Release a peer group ID
135 */
4b8b21f4 136void mnt_release_group_id(struct mount *mnt)
719f5d7f 137{
169b480e 138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 139 mnt->mnt_group_id = 0;
719f5d7f
MS
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for read
144 */
83adc753 145static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
68e8a9fe 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
149#else
150 preempt_disable();
68e8a9fe 151 mnt->mnt_count += n;
b3e19d92
NP
152 preempt_enable();
153#endif
154}
155
b3e19d92
NP
156/*
157 * vfsmount lock must be held for write
158 */
83adc753 159unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
160{
161#ifdef CONFIG_SMP
f03c6599 162 unsigned int count = 0;
b3e19d92
NP
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
68e8a9fe 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
167 }
168
169 return count;
170#else
68e8a9fe 171 return mnt->mnt_count;
b3e19d92
NP
172#endif
173}
174
b105e270 175static struct mount *alloc_vfsmnt(const char *name)
1da177e4 176{
c63181e6
AV
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
73cd49ec
MS
179 int err;
180
c63181e6 181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
fcc139ae 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 187 if (!mnt->mnt_devname)
88b38782 188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92 191#ifdef CONFIG_SMP
c63181e6
AV
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
b3e19d92
NP
194 goto out_free_devname;
195
c63181e6 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 197#else
c63181e6
AV
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
b3e19d92
NP
200#endif
201
38129a13 202 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 211 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
1da177e4 213 }
c63181e6 214 return mnt;
88b38782 215
d3ef3d73
NP
216#ifdef CONFIG_SMP
217out_free_devname:
fcc139ae 218 kfree_const(mnt->mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
c63181e6 221 mnt_free_id(mnt);
88b38782 222out_free_cache:
c63181e6 223 kmem_cache_free(mnt_cache, mnt);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
43f5e655 246bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 247{
43f5e655 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
83adc753 252static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
253{
254#ifdef CONFIG_SMP
68e8a9fe 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 256#else
68e8a9fe 257 mnt->mnt_writers++;
d3ef3d73
NP
258#endif
259}
3d733633 260
83adc753 261static inline void mnt_dec_writers(struct mount *mnt)
3d733633 262{
d3ef3d73 263#ifdef CONFIG_SMP
68e8a9fe 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 265#else
68e8a9fe 266 mnt->mnt_writers--;
d3ef3d73 267#endif
3d733633 268}
3d733633 269
83adc753 270static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 271{
d3ef3d73
NP
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
3d733633 274 int cpu;
3d733633
DH
275
276 for_each_possible_cpu(cpu) {
68e8a9fe 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 278 }
3d733633 279
d3ef3d73
NP
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
3d733633
DH
284}
285
4ed5e82f
MS
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
8366025e 295/*
eb04c282
JK
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
8366025e
DH
300 */
301/**
eb04c282 302 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 303 * @m: the mount on which to take a write
8366025e 304 *
eb04c282
JK
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
8366025e 310 */
eb04c282 311int __mnt_want_write(struct vfsmount *m)
8366025e 312{
83adc753 313 struct mount *mnt = real_mount(m);
3d733633 314 int ret = 0;
3d733633 315
d3ef3d73 316 preempt_disable();
c6653a83 317 mnt_inc_writers(mnt);
d3ef3d73 318 /*
c6653a83 319 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
6aa7de05 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
4ed5e82f 332 if (mnt_is_readonly(m)) {
c6653a83 333 mnt_dec_writers(mnt);
3d733633 334 ret = -EROFS;
3d733633 335 }
d3ef3d73 336 preempt_enable();
eb04c282
JK
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
3d733633 358 return ret;
8366025e
DH
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
96029c4e
NP
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
83adc753 380 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
eb04c282 387 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
388 * @file: the file who's mount on which to take a write
389 *
eb04c282 390 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
391 * do some optimisations if the file is open for write already
392 */
eb04c282 393int __mnt_want_write_file(struct file *file)
96029c4e 394{
83f936c7 395 if (!(file->f_mode & FMODE_WRITER))
eb04c282 396 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
eb04c282 400
7c6893e3
MS
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
7c6893e3
MS
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
a6795a58 412 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
413 ret = __mnt_want_write_file(file);
414 if (ret)
a6795a58 415 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
416 return ret;
417}
96029c4e
NP
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
8366025e 420/**
eb04c282 421 * __mnt_drop_write - give up write access to a mount
8366025e
DH
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
eb04c282 426 * __mnt_want_write() call above.
8366025e 427 */
eb04c282 428void __mnt_drop_write(struct vfsmount *mnt)
8366025e 429{
d3ef3d73 430 preempt_disable();
83adc753 431 mnt_dec_writers(real_mount(mnt));
d3ef3d73 432 preempt_enable();
8366025e 433}
eb04c282
JK
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
8366025e
DH
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
eb04c282
JK
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
7c6893e3
MS
455void mnt_drop_write_file(struct file *file)
456{
a6795a58 457 __mnt_drop_write_file(file);
7c6893e3
MS
458 sb_end_write(file_inode(file)->i_sb);
459}
2a79f17e
AV
460EXPORT_SYMBOL(mnt_drop_write_file);
461
83adc753 462static int mnt_make_readonly(struct mount *mnt)
8366025e 463{
3d733633
DH
464 int ret = 0;
465
719ea2fb 466 lock_mount_hash();
83adc753 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 468 /*
d3ef3d73
NP
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
3d733633 471 */
d3ef3d73
NP
472 smp_mb();
473
3d733633 474 /*
d3ef3d73
NP
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
3d733633 489 */
c6653a83 490 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
491 ret = -EBUSY;
492 else
83adc753 493 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
83adc753 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 500 unlock_mount_hash();
3d733633 501 return ret;
8366025e 502}
8366025e 503
43f5e655 504static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 505{
719ea2fb 506 lock_mount_hash();
83adc753 507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 508 unlock_mount_hash();
43f5e655 509 return 0;
2e4b7fcd
DH
510}
511
4ed5e82f
MS
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
8e8b8796
MS
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
719ea2fb 521 lock_mount_hash();
4ed5e82f
MS
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
8e8b8796
MS
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
4ed5e82f
MS
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
719ea2fb 543 unlock_mount_hash();
4ed5e82f
MS
544
545 return err;
546}
547
b105e270 548static void free_vfsmnt(struct mount *mnt)
1da177e4 549{
fcc139ae 550 kfree_const(mnt->mnt_devname);
d3ef3d73 551#ifdef CONFIG_SMP
68e8a9fe 552 free_percpu(mnt->mnt_pcp);
d3ef3d73 553#endif
b105e270 554 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
555}
556
8ffcb32e
DH
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
48a066e7 562/* call under rcu_read_lock */
294d71ff 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
294d71ff 567 return 1;
48a066e7 568 if (bastard == NULL)
294d71ff 569 return 0;
48a066e7
AV
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
119e1ef8 572 smp_mb(); // see mntput_no_expire()
48a066e7 573 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 574 return 0;
48a066e7
AV
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
294d71ff
AV
577 return 1;
578 }
119e1ef8
AV
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
294d71ff
AV
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
48a066e7 600 }
48a066e7
AV
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
a05964f3 619/*
f015f126
DH
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 634 */
ca71cf71 635struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 636{
c7105365 637 struct mount *child_mnt;
48a066e7
AV
638 struct vfsmount *m;
639 unsigned seq;
99b7db7b 640
48a066e7
AV
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
a05964f3
RP
649}
650
7af1364f
EB
651/*
652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653 * current mount namespace.
654 *
655 * The common case is dentries are not mountpoints at all and that
656 * test is handled inline. For the slow case when we are actually
657 * dealing with a mountpoint of some kind, walk through all of the
658 * mounts in the current mount namespace and test to see if the dentry
659 * is a mountpoint.
660 *
661 * The mount_hashtable is not usable in the context because we
662 * need to identify all mounts that may be in the current mount
663 * namespace not just a mount that happens to have some specified
664 * parent mount.
665 */
666bool __is_local_mountpoint(struct dentry *dentry)
667{
668 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 struct mount *mnt;
670 bool is_covered = false;
671
672 if (!d_mountpoint(dentry))
673 goto out;
674
675 down_read(&namespace_sem);
676 list_for_each_entry(mnt, &ns->list, mnt_list) {
677 is_covered = (mnt->mnt_mountpoint == dentry);
678 if (is_covered)
679 break;
680 }
681 up_read(&namespace_sem);
682out:
683 return is_covered;
684}
685
e2dfa935 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 687{
0818bf27 688 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
689 struct mountpoint *mp;
690
0818bf27 691 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 692 if (mp->m_dentry == dentry) {
84d17192
AV
693 mp->m_count++;
694 return mp;
695 }
696 }
e2dfa935
EB
697 return NULL;
698}
699
3895dbf8 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 701{
3895dbf8 702 struct mountpoint *mp, *new = NULL;
e2dfa935 703 int ret;
84d17192 704
3895dbf8 705 if (d_mountpoint(dentry)) {
1e9c75fb
BC
706 /* might be worth a WARN_ON() */
707 if (d_unlinked(dentry))
708 return ERR_PTR(-ENOENT);
3895dbf8
EB
709mountpoint:
710 read_seqlock_excl(&mount_lock);
711 mp = lookup_mountpoint(dentry);
712 read_sequnlock_excl(&mount_lock);
713 if (mp)
714 goto done;
715 }
716
717 if (!new)
718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 if (!new)
84d17192
AV
720 return ERR_PTR(-ENOMEM);
721
3895dbf8
EB
722
723 /* Exactly one processes may set d_mounted */
eed81007 724 ret = d_set_mounted(dentry);
eed81007 725
3895dbf8
EB
726 /* Someone else set d_mounted? */
727 if (ret == -EBUSY)
728 goto mountpoint;
729
730 /* The dentry is not available as a mountpoint? */
731 mp = ERR_PTR(ret);
732 if (ret)
733 goto done;
734
735 /* Add the new mountpoint to the hash table */
736 read_seqlock_excl(&mount_lock);
4edbe133 737 new->m_dentry = dget(dentry);
3895dbf8
EB
738 new->m_count = 1;
739 hlist_add_head(&new->m_hash, mp_hash(dentry));
740 INIT_HLIST_HEAD(&new->m_list);
741 read_sequnlock_excl(&mount_lock);
742
743 mp = new;
744 new = NULL;
745done:
746 kfree(new);
84d17192
AV
747 return mp;
748}
749
4edbe133
AV
750/*
751 * vfsmount lock must be held. Additionally, the caller is responsible
752 * for serializing calls for given disposal list.
753 */
754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 758 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
4edbe133 762 dput_to_list(dentry, list);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
4edbe133
AV
768/* called with namespace_lock and vfsmount lock */
769static void put_mountpoint(struct mountpoint *mp)
770{
771 __put_mountpoint(mp, &ex_mountpoints);
772}
773
143c8c91 774static inline int check_mnt(struct mount *mnt)
1da177e4 775{
6b3286ed 776 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
777}
778
99b7db7b
NP
779/*
780 * vfsmount lock must be held for write
781 */
6b3286ed 782static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
783{
784 if (ns) {
785 ns->event = ++event;
786 wake_up_interruptible(&ns->poll);
787 }
788}
789
99b7db7b
NP
790/*
791 * vfsmount lock must be held for write
792 */
6b3286ed 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
794{
795 if (ns && ns->event != event) {
796 ns->event = event;
797 wake_up_interruptible(&ns->poll);
798 }
799}
800
99b7db7b
NP
801/*
802 * vfsmount lock must be held for write
803 */
e4e59906 804static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 805{
e4e59906 806 struct mountpoint *mp;
0714a533 807 mnt->mnt_parent = mnt;
a73324da 808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 809 list_del_init(&mnt->mnt_child);
38129a13 810 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 811 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 812 mp = mnt->mnt_mp;
84d17192 813 mnt->mnt_mp = NULL;
e4e59906 814 return mp;
7bdb11de
EB
815}
816
6a46c573
EB
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
e4e59906 822 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
823}
824
99b7db7b
NP
825/*
826 * vfsmount lock must be held for write
827 */
84d17192
AV
828void mnt_set_mountpoint(struct mount *mnt,
829 struct mountpoint *mp,
44d964d6 830 struct mount *child_mnt)
b90fa9ae 831{
84d17192 832 mp->m_count++;
3a2393d7 833 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 834 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 835 child_mnt->mnt_parent = mnt;
84d17192 836 child_mnt->mnt_mp = mp;
0a5eb7c8 837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
838}
839
1064f874
EB
840static void __attach_mnt(struct mount *mnt, struct mount *parent)
841{
842 hlist_add_head_rcu(&mnt->mnt_hash,
843 m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845}
846
99b7db7b
NP
847/*
848 * vfsmount lock must be held for write
849 */
84d17192
AV
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
1da177e4 853{
84d17192 854 mnt_set_mountpoint(parent, mp, mnt);
1064f874 855 __attach_mnt(mnt, parent);
b90fa9ae
RP
856}
857
1064f874 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 859{
1064f874 860 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
861 struct mount *old_parent = mnt->mnt_parent;
862
863 list_del_init(&mnt->mnt_child);
864 hlist_del_init(&mnt->mnt_mp_list);
865 hlist_del_init_rcu(&mnt->mnt_hash);
866
867 attach_mnt(mnt, parent, mp);
868
869 put_mountpoint(old_mp);
1064f874 870 mnt_add_count(old_parent, -1);
12a5b529
AV
871}
872
b90fa9ae 873/*
99b7db7b 874 * vfsmount lock must be held for write
b90fa9ae 875 */
1064f874 876static void commit_tree(struct mount *mnt)
b90fa9ae 877{
0714a533 878 struct mount *parent = mnt->mnt_parent;
83adc753 879 struct mount *m;
b90fa9ae 880 LIST_HEAD(head);
143c8c91 881 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 882
0714a533 883 BUG_ON(parent == mnt);
b90fa9ae 884
1a4eeaf2 885 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 886 list_for_each_entry(m, &head, mnt_list)
143c8c91 887 m->mnt_ns = n;
f03c6599 888
b90fa9ae
RP
889 list_splice(&head, n->list.prev);
890
d2921684
EB
891 n->mounts += n->pending_mounts;
892 n->pending_mounts = 0;
893
1064f874 894 __attach_mnt(mnt, parent);
6b3286ed 895 touch_mnt_namespace(n);
1da177e4
LT
896}
897
909b0a88 898static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 899{
6b41d536
AV
900 struct list_head *next = p->mnt_mounts.next;
901 if (next == &p->mnt_mounts) {
1da177e4 902 while (1) {
909b0a88 903 if (p == root)
1da177e4 904 return NULL;
6b41d536
AV
905 next = p->mnt_child.next;
906 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 907 break;
0714a533 908 p = p->mnt_parent;
1da177e4
LT
909 }
910 }
6b41d536 911 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
912}
913
315fc83e 914static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 915{
6b41d536
AV
916 struct list_head *prev = p->mnt_mounts.prev;
917 while (prev != &p->mnt_mounts) {
918 p = list_entry(prev, struct mount, mnt_child);
919 prev = p->mnt_mounts.prev;
9676f0c6
RP
920 }
921 return p;
922}
923
8f291889
AV
924/**
925 * vfs_create_mount - Create a mount for a configured superblock
926 * @fc: The configuration context with the superblock attached
927 *
928 * Create a mount to an already configured superblock. If necessary, the
929 * caller should invoke vfs_get_tree() before calling this.
930 *
931 * Note that this does not attach the mount to anything.
932 */
933struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 934{
b105e270 935 struct mount *mnt;
9d412a43 936
8f291889
AV
937 if (!fc->root)
938 return ERR_PTR(-EINVAL);
9d412a43 939
8f291889 940 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
941 if (!mnt)
942 return ERR_PTR(-ENOMEM);
943
8f291889 944 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 945 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 946
8f291889
AV
947 atomic_inc(&fc->root->d_sb->s_active);
948 mnt->mnt.mnt_sb = fc->root->d_sb;
949 mnt->mnt.mnt_root = dget(fc->root);
950 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
951 mnt->mnt_parent = mnt;
9d412a43 952
719ea2fb 953 lock_mount_hash();
8f291889 954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 955 unlock_mount_hash();
b105e270 956 return &mnt->mnt;
9d412a43 957}
8f291889
AV
958EXPORT_SYMBOL(vfs_create_mount);
959
960struct vfsmount *fc_mount(struct fs_context *fc)
961{
962 int err = vfs_get_tree(fc);
963 if (!err) {
964 up_write(&fc->root->d_sb->s_umount);
965 return vfs_create_mount(fc);
966 }
967 return ERR_PTR(err);
968}
969EXPORT_SYMBOL(fc_mount);
970
9bc61ab1
DH
971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 int flags, const char *name,
973 void *data)
9d412a43 974{
9bc61ab1 975 struct fs_context *fc;
8f291889 976 struct vfsmount *mnt;
9bc61ab1 977 int ret = 0;
9d412a43
AV
978
979 if (!type)
3e1aeb00 980 return ERR_PTR(-EINVAL);
9d412a43 981
9bc61ab1
DH
982 fc = fs_context_for_mount(type, flags);
983 if (IS_ERR(fc))
984 return ERR_CAST(fc);
985
3e1aeb00
DH
986 if (name)
987 ret = vfs_parse_fs_string(fc, "source",
988 name, strlen(name));
9bc61ab1
DH
989 if (!ret)
990 ret = parse_monolithic_mount_data(fc, data);
991 if (!ret)
8f291889
AV
992 mnt = fc_mount(fc);
993 else
994 mnt = ERR_PTR(ret);
9d412a43 995
9bc61ab1 996 put_fs_context(fc);
8f291889 997 return mnt;
9d412a43
AV
998}
999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
93faccbb
EB
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 const char *name, void *data)
1004{
1005 /* Until it is worked out how to pass the user namespace
1006 * through from the parent mount to the submount don't support
1007 * unprivileged mounts with submounts.
1008 */
1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 return ERR_PTR(-EPERM);
1011
e462ec50 1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
87129cc0 1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1017 int flag)
1da177e4 1018{
87129cc0 1019 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1020 struct mount *mnt;
1021 int err;
1da177e4 1022
be34d1a3
DH
1023 mnt = alloc_vfsmnt(old->mnt_devname);
1024 if (!mnt)
1025 return ERR_PTR(-ENOMEM);
719f5d7f 1026
7a472ef4 1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1028 mnt->mnt_group_id = 0; /* not a peer of original */
1029 else
1030 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1031
be34d1a3
DH
1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 err = mnt_alloc_group_id(mnt);
1034 if (err)
1035 goto out_free;
1da177e4 1036 }
be34d1a3 1037
16a34adb
AV
1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1040
be34d1a3
DH
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
719ea2fb 1046 lock_mount_hash();
be34d1a3 1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1048 unlock_mount_hash();
be34d1a3 1049
7a472ef4
EB
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
5235d448
AV
1061 } else {
1062 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1063 }
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1066
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 }
1073
cb338d06 1074 return mnt;
719f5d7f
MS
1075
1076 out_free:
8ffcb32e 1077 mnt_free_id(mnt);
719f5d7f 1078 free_vfsmnt(mnt);
be34d1a3 1079 return ERR_PTR(err);
1da177e4
LT
1080}
1081
9ea459e1
AV
1082static void cleanup_mnt(struct mount *mnt)
1083{
56cbb429
AV
1084 struct hlist_node *p;
1085 struct mount *m;
9ea459e1 1086 /*
56cbb429
AV
1087 * The warning here probably indicates that somebody messed
1088 * up a mnt_want/drop_write() pair. If this happens, the
1089 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
56cbb429
AV
1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 hlist_del(&m->mnt_umount);
1098 mntput(&m->mnt);
1099 }
9ea459e1
AV
1100 fsnotify_vfsmount_delete(&mnt->mnt);
1101 dput(mnt->mnt.mnt_root);
1102 deactivate_super(mnt->mnt.mnt_sb);
1103 mnt_free_id(mnt);
1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1116 struct mount *m, *t;
9ea459e1 1117
29785735
BP
1118 llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 cleanup_mnt(m);
9ea459e1
AV
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
900148dc 1123static void mntput_no_expire(struct mount *mnt)
b3e19d92 1124{
4edbe133
AV
1125 LIST_HEAD(list);
1126
48a066e7 1127 rcu_read_lock();
9ea0a46c
AV
1128 if (likely(READ_ONCE(mnt->mnt_ns))) {
1129 /*
1130 * Since we don't do lock_mount_hash() here,
1131 * ->mnt_ns can change under us. However, if it's
1132 * non-NULL, then there's a reference that won't
1133 * be dropped until after an RCU delay done after
1134 * turning ->mnt_ns NULL. So if we observe it
1135 * non-NULL under rcu_read_lock(), the reference
1136 * we are dropping is not the final one.
1137 */
1138 mnt_add_count(mnt, -1);
48a066e7 1139 rcu_read_unlock();
f03c6599 1140 return;
b3e19d92 1141 }
719ea2fb 1142 lock_mount_hash();
119e1ef8
AV
1143 /*
1144 * make sure that if __legitimize_mnt() has not seen us grab
1145 * mount_lock, we'll see their refcount increment here.
1146 */
1147 smp_mb();
9ea0a46c 1148 mnt_add_count(mnt, -1);
b3e19d92 1149 if (mnt_get_count(mnt)) {
48a066e7 1150 rcu_read_unlock();
719ea2fb 1151 unlock_mount_hash();
99b7db7b
NP
1152 return;
1153 }
48a066e7
AV
1154 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155 rcu_read_unlock();
1156 unlock_mount_hash();
1157 return;
1158 }
1159 mnt->mnt.mnt_flags |= MNT_DOOMED;
1160 rcu_read_unlock();
962830df 1161
39f7c4db 1162 list_del(&mnt->mnt_instance);
ce07d891
EB
1163
1164 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165 struct mount *p, *tmp;
1166 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1167 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1168 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1169 }
1170 }
719ea2fb 1171 unlock_mount_hash();
4edbe133 1172 shrink_dentry_list(&list);
649a795a 1173
9ea459e1
AV
1174 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175 struct task_struct *task = current;
1176 if (likely(!(task->flags & PF_KTHREAD))) {
1177 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178 if (!task_work_add(task, &mnt->mnt_rcu, true))
1179 return;
1180 }
1181 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182 schedule_delayed_work(&delayed_mntput_work, 1);
1183 return;
1184 }
1185 cleanup_mnt(mnt);
b3e19d92 1186}
b3e19d92
NP
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190 if (mnt) {
863d684f 1191 struct mount *m = real_mount(mnt);
b3e19d92 1192 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1193 if (unlikely(m->mnt_expiry_mark))
1194 m->mnt_expiry_mark = 0;
1195 mntput_no_expire(m);
b3e19d92
NP
1196 }
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202 if (mnt)
83adc753 1203 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1204 return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
c6609c0a
IK
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 * namespace.
1210 *
1211 * d_mountpoint() can only be used reliably to establish if a dentry is
1212 * not mounted in any namespace and that common case is handled inline.
1213 * d_mountpoint() isn't aware of the possibility there may be multiple
1214 * mounts using a given dentry in a different namespace. This function
1215 * checks if the passed in path is a mountpoint rather than the dentry
1216 * alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220 unsigned seq;
1221 bool res;
1222
1223 if (!d_mountpoint(path->dentry))
1224 return false;
1225
1226 rcu_read_lock();
1227 do {
1228 seq = read_seqbegin(&mount_lock);
1229 res = __path_is_mountpoint(path);
1230 } while (read_seqretry(&mount_lock, seq));
1231 rcu_read_unlock();
1232
1233 return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
ca71cf71 1237struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1238{
3064c356
AV
1239 struct mount *p;
1240 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241 if (IS_ERR(p))
1242 return ERR_CAST(p);
1243 p->mnt.mnt_flags |= MNT_INTERNAL;
1244 return &p->mnt;
7b7b1ace 1245}
1da177e4 1246
a1a2c409 1247#ifdef CONFIG_PROC_FS
0226f492 1248/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
ede1bf0d 1251 struct proc_mounts *p = m->private;
1da177e4 1252
390c6843 1253 down_read(&namespace_sem);
c7999c36
AV
1254 if (p->cached_event == p->ns->event) {
1255 void *v = p->cached_mount;
1256 if (*pos == p->cached_index)
1257 return v;
1258 if (*pos == p->cached_index + 1) {
1259 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260 return p->cached_mount = v;
1261 }
1262 }
1263
1264 p->cached_event = p->ns->event;
1265 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266 p->cached_index = *pos;
1267 return p->cached_mount;
1da177e4
LT
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
ede1bf0d 1272 struct proc_mounts *p = m->private;
b0765fb8 1273
c7999c36
AV
1274 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275 p->cached_index = *pos;
1276 return p->cached_mount;
1da177e4
LT
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
390c6843 1281 up_read(&namespace_sem);
1da177e4
LT
1282}
1283
0226f492 1284static int m_show(struct seq_file *m, void *v)
2d4d4864 1285{
ede1bf0d 1286 struct proc_mounts *p = m->private;
1a4eeaf2 1287 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1288 return p->show(m, &r->mnt);
1da177e4
LT
1289}
1290
a1a2c409 1291const struct seq_operations mounts_op = {
1da177e4
LT
1292 .start = m_start,
1293 .next = m_next,
1294 .stop = m_stop,
0226f492 1295 .show = m_show,
b4629fe2 1296};
a1a2c409 1297#endif /* CONFIG_PROC_FS */
b4629fe2 1298
1da177e4
LT
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
909b0a88 1307int may_umount_tree(struct vfsmount *m)
1da177e4 1308{
909b0a88 1309 struct mount *mnt = real_mount(m);
36341f64
RP
1310 int actual_refs = 0;
1311 int minimum_refs = 0;
315fc83e 1312 struct mount *p;
909b0a88 1313 BUG_ON(!m);
1da177e4 1314
b3e19d92 1315 /* write lock needed for mnt_get_count */
719ea2fb 1316 lock_mount_hash();
909b0a88 1317 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1318 actual_refs += mnt_get_count(p);
1da177e4 1319 minimum_refs += 2;
1da177e4 1320 }
719ea2fb 1321 unlock_mount_hash();
1da177e4
LT
1322
1323 if (actual_refs > minimum_refs)
e3474a8e 1324 return 0;
1da177e4 1325
e3474a8e 1326 return 1;
1da177e4
LT
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
e3474a8e 1346 int ret = 1;
8ad08d8a 1347 down_read(&namespace_sem);
719ea2fb 1348 lock_mount_hash();
1ab59738 1349 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1350 ret = 0;
719ea2fb 1351 unlock_mount_hash();
8ad08d8a 1352 up_read(&namespace_sem);
a05964f3 1353 return ret;
1da177e4
LT
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
97216be0 1358static void namespace_unlock(void)
70fbcdf4 1359{
a3b3c562 1360 struct hlist_head head;
56cbb429
AV
1361 struct hlist_node *p;
1362 struct mount *m;
4edbe133 1363 LIST_HEAD(list);
97216be0 1364
a3b3c562 1365 hlist_move_list(&unmounted, &head);
4edbe133 1366 list_splice_init(&ex_mountpoints, &list);
97216be0 1367
97216be0
AV
1368 up_write(&namespace_sem);
1369
4edbe133
AV
1370 shrink_dentry_list(&list);
1371
a3b3c562
EB
1372 if (likely(hlist_empty(&head)))
1373 return;
1374
22cb7405 1375 synchronize_rcu_expedited();
48a066e7 1376
56cbb429
AV
1377 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378 hlist_del(&m->mnt_umount);
1379 mntput(&m->mnt);
1380 }
70fbcdf4
RP
1381}
1382
97216be0 1383static inline void namespace_lock(void)
e3197d83 1384{
97216be0 1385 down_write(&namespace_sem);
e3197d83
AV
1386}
1387
e819f152
EB
1388enum umount_tree_flags {
1389 UMOUNT_SYNC = 1,
1390 UMOUNT_PROPAGATE = 2,
e0c9c0af 1391 UMOUNT_CONNECTED = 4,
e819f152 1392};
f2d0a123
EB
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396 /* Leaving mounts connected is only valid for lazy umounts */
1397 if (how & UMOUNT_SYNC)
1398 return true;
1399
1400 /* A mount without a parent has nothing to be connected to */
1401 if (!mnt_has_parent(mnt))
1402 return true;
1403
1404 /* Because the reference counting rules change when mounts are
1405 * unmounted and connected, umounted mounts may not be
1406 * connected to mounted mounts.
1407 */
1408 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409 return true;
1410
1411 /* Has it been requested that the mount remain connected? */
1412 if (how & UMOUNT_CONNECTED)
1413 return false;
1414
1415 /* Is the mount locked such that it needs to remain connected? */
1416 if (IS_MNT_LOCKED(mnt))
1417 return false;
1418
1419 /* By default disconnect the mount */
1420 return true;
1421}
1422
99b7db7b 1423/*
48a066e7 1424 * mount_lock must be held
99b7db7b
NP
1425 * namespace_sem must be held for write
1426 */
e819f152 1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1428{
c003b26f 1429 LIST_HEAD(tmp_list);
315fc83e 1430 struct mount *p;
1da177e4 1431
5d88457e
EB
1432 if (how & UMOUNT_PROPAGATE)
1433 propagate_mount_unlock(mnt);
1434
c003b26f 1435 /* Gather the mounts to umount */
590ce4bc
EB
1436 for (p = mnt; p; p = next_mnt(p, mnt)) {
1437 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1438 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1439 }
1da177e4 1440
411a938b 1441 /* Hide the mounts from mnt_mounts */
c003b26f 1442 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1443 list_del_init(&p->mnt_child);
c003b26f 1444 }
88b368f2 1445
c003b26f 1446 /* Add propogated mounts to the tmp_list */
e819f152 1447 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1448 propagate_umount(&tmp_list);
a05964f3 1449
c003b26f 1450 while (!list_empty(&tmp_list)) {
d2921684 1451 struct mnt_namespace *ns;
ce07d891 1452 bool disconnect;
c003b26f 1453 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1454 list_del_init(&p->mnt_expire);
1a4eeaf2 1455 list_del_init(&p->mnt_list);
d2921684
EB
1456 ns = p->mnt_ns;
1457 if (ns) {
1458 ns->mounts--;
1459 __touch_mnt_namespace(ns);
1460 }
143c8c91 1461 p->mnt_ns = NULL;
e819f152 1462 if (how & UMOUNT_SYNC)
48a066e7 1463 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1464
f2d0a123 1465 disconnect = disconnect_mount(p, how);
676da58d 1466 if (mnt_has_parent(p)) {
81b6b061 1467 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1468 if (!disconnect) {
1469 /* Don't forget about p */
1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471 } else {
1472 umount_mnt(p);
1473 }
7c4b93d8 1474 }
0f0afb1d 1475 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1476 if (disconnect)
1477 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1478 }
1479}
1480
b54b9be7 1481static void shrink_submounts(struct mount *mnt);
c35038be 1482
8d0347f6
DH
1483static int do_umount_root(struct super_block *sb)
1484{
1485 int ret = 0;
1486
1487 down_write(&sb->s_umount);
1488 if (!sb_rdonly(sb)) {
1489 struct fs_context *fc;
1490
1491 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492 SB_RDONLY);
1493 if (IS_ERR(fc)) {
1494 ret = PTR_ERR(fc);
1495 } else {
1496 ret = parse_monolithic_mount_data(fc, NULL);
1497 if (!ret)
1498 ret = reconfigure_super(fc);
1499 put_fs_context(fc);
1500 }
1501 }
1502 up_write(&sb->s_umount);
1503 return ret;
1504}
1505
1ab59738 1506static int do_umount(struct mount *mnt, int flags)
1da177e4 1507{
1ab59738 1508 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1509 int retval;
1510
1ab59738 1511 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1512 if (retval)
1513 return retval;
1514
1515 /*
1516 * Allow userspace to request a mountpoint be expired rather than
1517 * unmounting unconditionally. Unmount only happens if:
1518 * (1) the mark is already set (the mark is cleared by mntput())
1519 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520 */
1521 if (flags & MNT_EXPIRE) {
1ab59738 1522 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1523 flags & (MNT_FORCE | MNT_DETACH))
1524 return -EINVAL;
1525
b3e19d92
NP
1526 /*
1527 * probably don't strictly need the lock here if we examined
1528 * all race cases, but it's a slowpath.
1529 */
719ea2fb 1530 lock_mount_hash();
83adc753 1531 if (mnt_get_count(mnt) != 2) {
719ea2fb 1532 unlock_mount_hash();
1da177e4 1533 return -EBUSY;
b3e19d92 1534 }
719ea2fb 1535 unlock_mount_hash();
1da177e4 1536
863d684f 1537 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1538 return -EAGAIN;
1539 }
1540
1541 /*
1542 * If we may have to abort operations to get out of this
1543 * mount, and they will themselves hold resources we must
1544 * allow the fs to do things. In the Unix tradition of
1545 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546 * might fail to complete on the first run through as other tasks
1547 * must return, and the like. Thats for the mount program to worry
1548 * about for the moment.
1549 */
1550
42faad99 1551 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1552 sb->s_op->umount_begin(sb);
42faad99 1553 }
1da177e4
LT
1554
1555 /*
1556 * No sense to grab the lock for this test, but test itself looks
1557 * somewhat bogus. Suggestions for better replacement?
1558 * Ho-hum... In principle, we might treat that as umount + switch
1559 * to rootfs. GC would eventually take care of the old vfsmount.
1560 * Actually it makes sense, especially if rootfs would contain a
1561 * /reboot - static binary that would close all descriptors and
1562 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563 */
1ab59738 1564 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1565 /*
1566 * Special case for "unmounting" root ...
1567 * we just try to remount it readonly.
1568 */
bc6155d1 1569 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1570 return -EPERM;
8d0347f6 1571 return do_umount_root(sb);
1da177e4
LT
1572 }
1573
97216be0 1574 namespace_lock();
719ea2fb 1575 lock_mount_hash();
1da177e4 1576
25d202ed
EB
1577 /* Recheck MNT_LOCKED with the locks held */
1578 retval = -EINVAL;
1579 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580 goto out;
1581
1582 event++;
48a066e7 1583 if (flags & MNT_DETACH) {
1a4eeaf2 1584 if (!list_empty(&mnt->mnt_list))
e819f152 1585 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1586 retval = 0;
48a066e7
AV
1587 } else {
1588 shrink_submounts(mnt);
1589 retval = -EBUSY;
1590 if (!propagate_mount_busy(mnt, 2)) {
1591 if (!list_empty(&mnt->mnt_list))
e819f152 1592 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1593 retval = 0;
1594 }
1da177e4 1595 }
25d202ed 1596out:
719ea2fb 1597 unlock_mount_hash();
e3197d83 1598 namespace_unlock();
1da177e4
LT
1599 return retval;
1600}
1601
80b5dce8
EB
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614 struct mountpoint *mp;
1615 struct mount *mnt;
1616
1617 namespace_lock();
3895dbf8 1618 lock_mount_hash();
80b5dce8 1619 mp = lookup_mountpoint(dentry);
adc9b5c0 1620 if (!mp)
80b5dce8
EB
1621 goto out_unlock;
1622
e06b933e 1623 event++;
80b5dce8
EB
1624 while (!hlist_empty(&mp->m_list)) {
1625 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1626 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1627 umount_mnt(mnt);
56cbb429 1628 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1629 }
e0c9c0af 1630 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1631 }
80b5dce8
EB
1632 put_mountpoint(mp);
1633out_unlock:
3895dbf8 1634 unlock_mount_hash();
80b5dce8
EB
1635 namespace_unlock();
1636}
1637
dd111b31 1638/*
9b40bc90
AV
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
df2474a2 1646#ifdef CONFIG_MANDATORY_FILE_LOCKING
9e8925b6
JL
1647static inline bool may_mandlock(void)
1648{
95ace754 1649 return capable(CAP_SYS_ADMIN);
9e8925b6 1650}
df2474a2
JL
1651#else
1652static inline bool may_mandlock(void)
1653{
1654 pr_warn("VFS: \"mand\" mount option not supported");
1655 return false;
1656}
1657#endif
9e8925b6 1658
1da177e4
LT
1659/*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
3a18ef5c 1667int ksys_umount(char __user *name, int flags)
1da177e4 1668{
2d8f3038 1669 struct path path;
900148dc 1670 struct mount *mnt;
1da177e4 1671 int retval;
db1f05bb 1672 int lookup_flags = 0;
1da177e4 1673
db1f05bb
MS
1674 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675 return -EINVAL;
1676
9b40bc90
AV
1677 if (!may_mount())
1678 return -EPERM;
1679
db1f05bb
MS
1680 if (!(flags & UMOUNT_NOFOLLOW))
1681 lookup_flags |= LOOKUP_FOLLOW;
1682
197df04c 1683 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1684 if (retval)
1685 goto out;
900148dc 1686 mnt = real_mount(path.mnt);
1da177e4 1687 retval = -EINVAL;
2d8f3038 1688 if (path.dentry != path.mnt->mnt_root)
1da177e4 1689 goto dput_and_out;
143c8c91 1690 if (!check_mnt(mnt))
1da177e4 1691 goto dput_and_out;
25d202ed 1692 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1693 goto dput_and_out;
b2f5d4dc
EB
1694 retval = -EPERM;
1695 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696 goto dput_and_out;
1da177e4 1697
900148dc 1698 retval = do_umount(mnt, flags);
1da177e4 1699dput_and_out:
429731b1 1700 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1701 dput(path.dentry);
900148dc 1702 mntput_no_expire(mnt);
1da177e4
LT
1703out:
1704 return retval;
1705}
1706
3a18ef5c
DB
1707SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708{
1709 return ksys_umount(name, flags);
1710}
1711
1da177e4
LT
1712#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713
1714/*
b58fed8b 1715 * The 2.0 compatible umount. No flags.
1da177e4 1716 */
bdc480e3 1717SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1718{
3a18ef5c 1719 return ksys_umount(name, 0);
1da177e4
LT
1720}
1721
1722#endif
1723
4ce5d2b1 1724static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1725{
4ce5d2b1 1726 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1727 return dentry->d_op == &ns_dentry_operations &&
1728 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1729}
1730
213921f9 1731static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1732{
1733 return container_of(ns, struct mnt_namespace, ns);
1734}
1735
4ce5d2b1
EB
1736static bool mnt_ns_loop(struct dentry *dentry)
1737{
1738 /* Could bind mounting the mount namespace inode cause a
1739 * mount namespace loop?
1740 */
1741 struct mnt_namespace *mnt_ns;
1742 if (!is_mnt_ns_file(dentry))
1743 return false;
1744
f77c8014 1745 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1746 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1747}
1748
87129cc0 1749struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1750 int flag)
1da177e4 1751{
84d17192 1752 struct mount *res, *p, *q, *r, *parent;
1da177e4 1753
4ce5d2b1
EB
1754 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1755 return ERR_PTR(-EINVAL);
1756
1757 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1758 return ERR_PTR(-EINVAL);
9676f0c6 1759
36341f64 1760 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1761 if (IS_ERR(q))
1762 return q;
1763
a73324da 1764 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1765
1766 p = mnt;
6b41d536 1767 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1768 struct mount *s;
7ec02ef1 1769 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1770 continue;
1771
909b0a88 1772 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1773 if (!(flag & CL_COPY_UNBINDABLE) &&
1774 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1775 if (s->mnt.mnt_flags & MNT_LOCKED) {
1776 /* Both unbindable and locked. */
1777 q = ERR_PTR(-EPERM);
1778 goto out;
1779 } else {
1780 s = skip_mnt_tree(s);
1781 continue;
1782 }
4ce5d2b1
EB
1783 }
1784 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1785 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1786 s = skip_mnt_tree(s);
1787 continue;
1788 }
0714a533
AV
1789 while (p != s->mnt_parent) {
1790 p = p->mnt_parent;
1791 q = q->mnt_parent;
1da177e4 1792 }
87129cc0 1793 p = s;
84d17192 1794 parent = q;
87129cc0 1795 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1796 if (IS_ERR(q))
1797 goto out;
719ea2fb 1798 lock_mount_hash();
1a4eeaf2 1799 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1800 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1801 unlock_mount_hash();
1da177e4
LT
1802 }
1803 }
1804 return res;
be34d1a3 1805out:
1da177e4 1806 if (res) {
719ea2fb 1807 lock_mount_hash();
e819f152 1808 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1809 unlock_mount_hash();
1da177e4 1810 }
be34d1a3 1811 return q;
1da177e4
LT
1812}
1813
be34d1a3
DH
1814/* Caller should check returned pointer for errors */
1815
ca71cf71 1816struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1817{
cb338d06 1818 struct mount *tree;
97216be0 1819 namespace_lock();
cd4a4017
EB
1820 if (!check_mnt(real_mount(path->mnt)))
1821 tree = ERR_PTR(-EINVAL);
1822 else
1823 tree = copy_tree(real_mount(path->mnt), path->dentry,
1824 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1825 namespace_unlock();
be34d1a3 1826 if (IS_ERR(tree))
52e220d3 1827 return ERR_CAST(tree);
be34d1a3 1828 return &tree->mnt;
8aec0809
AV
1829}
1830
a07b2000
AV
1831static void free_mnt_ns(struct mnt_namespace *);
1832static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1833
1834void dissolve_on_fput(struct vfsmount *mnt)
1835{
1836 struct mnt_namespace *ns;
1837 namespace_lock();
1838 lock_mount_hash();
1839 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1840 if (ns) {
1841 if (is_anon_ns(ns))
1842 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1843 else
1844 ns = NULL;
1845 }
a07b2000
AV
1846 unlock_mount_hash();
1847 namespace_unlock();
44dfd84a
DH
1848 if (ns)
1849 free_mnt_ns(ns);
a07b2000
AV
1850}
1851
8aec0809
AV
1852void drop_collected_mounts(struct vfsmount *mnt)
1853{
97216be0 1854 namespace_lock();
719ea2fb 1855 lock_mount_hash();
9c8e0a1b 1856 umount_tree(real_mount(mnt), 0);
719ea2fb 1857 unlock_mount_hash();
3ab6abee 1858 namespace_unlock();
8aec0809
AV
1859}
1860
c771d683
MS
1861/**
1862 * clone_private_mount - create a private clone of a path
1863 *
1864 * This creates a new vfsmount, which will be the clone of @path. The new will
1865 * not be attached anywhere in the namespace and will be private (i.e. changes
1866 * to the originating mount won't be propagated into this).
1867 *
1868 * Release with mntput().
1869 */
ca71cf71 1870struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1871{
1872 struct mount *old_mnt = real_mount(path->mnt);
1873 struct mount *new_mnt;
1874
1875 if (IS_MNT_UNBINDABLE(old_mnt))
1876 return ERR_PTR(-EINVAL);
1877
c771d683 1878 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1879 if (IS_ERR(new_mnt))
1880 return ERR_CAST(new_mnt);
1881
1882 return &new_mnt->mnt;
1883}
1884EXPORT_SYMBOL_GPL(clone_private_mount);
1885
1f707137
AV
1886int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1887 struct vfsmount *root)
1888{
1a4eeaf2 1889 struct mount *mnt;
1f707137
AV
1890 int res = f(root, arg);
1891 if (res)
1892 return res;
1a4eeaf2
AV
1893 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1894 res = f(&mnt->mnt, arg);
1f707137
AV
1895 if (res)
1896 return res;
1897 }
1898 return 0;
1899}
1900
3bd045cc
AV
1901static void lock_mnt_tree(struct mount *mnt)
1902{
1903 struct mount *p;
1904
1905 for (p = mnt; p; p = next_mnt(p, mnt)) {
1906 int flags = p->mnt.mnt_flags;
1907 /* Don't allow unprivileged users to change mount flags */
1908 flags |= MNT_LOCK_ATIME;
1909
1910 if (flags & MNT_READONLY)
1911 flags |= MNT_LOCK_READONLY;
1912
1913 if (flags & MNT_NODEV)
1914 flags |= MNT_LOCK_NODEV;
1915
1916 if (flags & MNT_NOSUID)
1917 flags |= MNT_LOCK_NOSUID;
1918
1919 if (flags & MNT_NOEXEC)
1920 flags |= MNT_LOCK_NOEXEC;
1921 /* Don't allow unprivileged users to reveal what is under a mount */
1922 if (list_empty(&p->mnt_expire))
1923 flags |= MNT_LOCKED;
1924 p->mnt.mnt_flags = flags;
1925 }
1926}
1927
4b8b21f4 1928static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1929{
315fc83e 1930 struct mount *p;
719f5d7f 1931
909b0a88 1932 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1933 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1934 mnt_release_group_id(p);
719f5d7f
MS
1935 }
1936}
1937
4b8b21f4 1938static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1939{
315fc83e 1940 struct mount *p;
719f5d7f 1941
909b0a88 1942 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1943 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1944 int err = mnt_alloc_group_id(p);
719f5d7f 1945 if (err) {
4b8b21f4 1946 cleanup_group_ids(mnt, p);
719f5d7f
MS
1947 return err;
1948 }
1949 }
1950 }
1951
1952 return 0;
1953}
1954
d2921684
EB
1955int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1956{
1957 unsigned int max = READ_ONCE(sysctl_mount_max);
1958 unsigned int mounts = 0, old, pending, sum;
1959 struct mount *p;
1960
1961 for (p = mnt; p; p = next_mnt(p, mnt))
1962 mounts++;
1963
1964 old = ns->mounts;
1965 pending = ns->pending_mounts;
1966 sum = old + pending;
1967 if ((old > sum) ||
1968 (pending > sum) ||
1969 (max < sum) ||
1970 (mounts > (max - sum)))
1971 return -ENOSPC;
1972
1973 ns->pending_mounts = pending + mounts;
1974 return 0;
1975}
1976
b90fa9ae
RP
1977/*
1978 * @source_mnt : mount tree to be attached
21444403
RP
1979 * @nd : place the mount tree @source_mnt is attached
1980 * @parent_nd : if non-null, detach the source_mnt from its parent and
1981 * store the parent mount and mountpoint dentry.
1982 * (done when source_mnt is moved)
b90fa9ae
RP
1983 *
1984 * NOTE: in the table below explains the semantics when a source mount
1985 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1986 * ---------------------------------------------------------------------------
1987 * | BIND MOUNT OPERATION |
1988 * |**************************************************************************
1989 * | source-->| shared | private | slave | unbindable |
1990 * | dest | | | | |
1991 * | | | | | | |
1992 * | v | | | | |
1993 * |**************************************************************************
1994 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1995 * | | | | | |
1996 * |non-shared| shared (+) | private | slave (*) | invalid |
1997 * ***************************************************************************
b90fa9ae
RP
1998 * A bind operation clones the source mount and mounts the clone on the
1999 * destination mount.
2000 *
2001 * (++) the cloned mount is propagated to all the mounts in the propagation
2002 * tree of the destination mount and the cloned mount is added to
2003 * the peer group of the source mount.
2004 * (+) the cloned mount is created under the destination mount and is marked
2005 * as shared. The cloned mount is added to the peer group of the source
2006 * mount.
5afe0022
RP
2007 * (+++) the mount is propagated to all the mounts in the propagation tree
2008 * of the destination mount and the cloned mount is made slave
2009 * of the same master as that of the source mount. The cloned mount
2010 * is marked as 'shared and slave'.
2011 * (*) the cloned mount is made a slave of the same master as that of the
2012 * source mount.
2013 *
9676f0c6
RP
2014 * ---------------------------------------------------------------------------
2015 * | MOVE MOUNT OPERATION |
2016 * |**************************************************************************
2017 * | source-->| shared | private | slave | unbindable |
2018 * | dest | | | | |
2019 * | | | | | | |
2020 * | v | | | | |
2021 * |**************************************************************************
2022 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2023 * | | | | | |
2024 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2025 * ***************************************************************************
5afe0022
RP
2026 *
2027 * (+) the mount is moved to the destination. And is then propagated to
2028 * all the mounts in the propagation tree of the destination mount.
21444403 2029 * (+*) the mount is moved to the destination.
5afe0022
RP
2030 * (+++) the mount is moved to the destination and is then propagated to
2031 * all the mounts belonging to the destination mount's propagation tree.
2032 * the mount is marked as 'shared and slave'.
2033 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2034 *
2035 * if the source mount is a tree, the operations explained above is
2036 * applied to each mount in the tree.
2037 * Must be called without spinlocks held, since this function can sleep
2038 * in allocations.
2039 */
0fb54e50 2040static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2041 struct mount *dest_mnt,
2042 struct mountpoint *dest_mp,
2763d119 2043 bool moving)
b90fa9ae 2044{
3bd045cc 2045 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2046 HLIST_HEAD(tree_list);
d2921684 2047 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2048 struct mountpoint *smp;
315fc83e 2049 struct mount *child, *p;
38129a13 2050 struct hlist_node *n;
719f5d7f 2051 int err;
b90fa9ae 2052
1064f874
EB
2053 /* Preallocate a mountpoint in case the new mounts need
2054 * to be tucked under other mounts.
2055 */
2056 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2057 if (IS_ERR(smp))
2058 return PTR_ERR(smp);
2059
d2921684 2060 /* Is there space to add these mounts to the mount namespace? */
2763d119 2061 if (!moving) {
d2921684
EB
2062 err = count_mounts(ns, source_mnt);
2063 if (err)
2064 goto out;
2065 }
2066
fc7be130 2067 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2068 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2069 if (err)
2070 goto out;
0b1b901b 2071 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2072 lock_mount_hash();
0b1b901b
AV
2073 if (err)
2074 goto out_cleanup_ids;
909b0a88 2075 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2076 set_mnt_shared(p);
0b1b901b
AV
2077 } else {
2078 lock_mount_hash();
b90fa9ae 2079 }
2763d119
AV
2080 if (moving) {
2081 unhash_mnt(source_mnt);
84d17192 2082 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2083 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2084 } else {
44dfd84a
DH
2085 if (source_mnt->mnt_ns) {
2086 /* move from anon - the caller will destroy */
2087 list_del_init(&source_mnt->mnt_ns->list);
2088 }
84d17192 2089 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2090 commit_tree(source_mnt);
21444403 2091 }
b90fa9ae 2092
38129a13 2093 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2094 struct mount *q;
38129a13 2095 hlist_del_init(&child->mnt_hash);
1064f874
EB
2096 q = __lookup_mnt(&child->mnt_parent->mnt,
2097 child->mnt_mountpoint);
2098 if (q)
2099 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2100 /* Notice when we are propagating across user namespaces */
2101 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2102 lock_mnt_tree(child);
d728cf79 2103 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2104 commit_tree(child);
b90fa9ae 2105 }
1064f874 2106 put_mountpoint(smp);
719ea2fb 2107 unlock_mount_hash();
99b7db7b 2108
b90fa9ae 2109 return 0;
719f5d7f
MS
2110
2111 out_cleanup_ids:
f2ebb3a9
AV
2112 while (!hlist_empty(&tree_list)) {
2113 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2114 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2115 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2116 }
2117 unlock_mount_hash();
0b1b901b 2118 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2119 out:
d2921684 2120 ns->pending_mounts = 0;
1064f874
EB
2121
2122 read_seqlock_excl(&mount_lock);
2123 put_mountpoint(smp);
2124 read_sequnlock_excl(&mount_lock);
2125
719f5d7f 2126 return err;
b90fa9ae
RP
2127}
2128
84d17192 2129static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2130{
2131 struct vfsmount *mnt;
84d17192 2132 struct dentry *dentry = path->dentry;
b12cea91 2133retry:
5955102c 2134 inode_lock(dentry->d_inode);
84d17192 2135 if (unlikely(cant_mount(dentry))) {
5955102c 2136 inode_unlock(dentry->d_inode);
84d17192 2137 return ERR_PTR(-ENOENT);
b12cea91 2138 }
97216be0 2139 namespace_lock();
b12cea91 2140 mnt = lookup_mnt(path);
84d17192 2141 if (likely(!mnt)) {
3895dbf8 2142 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2143 if (IS_ERR(mp)) {
97216be0 2144 namespace_unlock();
5955102c 2145 inode_unlock(dentry->d_inode);
84d17192
AV
2146 return mp;
2147 }
2148 return mp;
2149 }
97216be0 2150 namespace_unlock();
5955102c 2151 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2152 path_put(path);
2153 path->mnt = mnt;
84d17192 2154 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2155 goto retry;
2156}
2157
84d17192 2158static void unlock_mount(struct mountpoint *where)
b12cea91 2159{
84d17192 2160 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2161
2162 read_seqlock_excl(&mount_lock);
84d17192 2163 put_mountpoint(where);
3895dbf8
EB
2164 read_sequnlock_excl(&mount_lock);
2165
328e6d90 2166 namespace_unlock();
5955102c 2167 inode_unlock(dentry->d_inode);
b12cea91
AV
2168}
2169
84d17192 2170static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2171{
e462ec50 2172 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2173 return -EINVAL;
2174
e36cb0b8
DH
2175 if (d_is_dir(mp->m_dentry) !=
2176 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2177 return -ENOTDIR;
2178
2763d119 2179 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2180}
2181
7a2e8a8f
VA
2182/*
2183 * Sanity check the flags to change_mnt_propagation.
2184 */
2185
e462ec50 2186static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2187{
e462ec50 2188 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2189
2190 /* Fail if any non-propagation flags are set */
2191 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2192 return 0;
2193 /* Only one propagation flag should be set */
2194 if (!is_power_of_2(type))
2195 return 0;
2196 return type;
2197}
2198
07b20889
RP
2199/*
2200 * recursively change the type of the mountpoint.
2201 */
e462ec50 2202static int do_change_type(struct path *path, int ms_flags)
07b20889 2203{
315fc83e 2204 struct mount *m;
4b8b21f4 2205 struct mount *mnt = real_mount(path->mnt);
e462ec50 2206 int recurse = ms_flags & MS_REC;
7a2e8a8f 2207 int type;
719f5d7f 2208 int err = 0;
07b20889 2209
2d92ab3c 2210 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2211 return -EINVAL;
2212
e462ec50 2213 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2214 if (!type)
2215 return -EINVAL;
2216
97216be0 2217 namespace_lock();
719f5d7f
MS
2218 if (type == MS_SHARED) {
2219 err = invent_group_ids(mnt, recurse);
2220 if (err)
2221 goto out_unlock;
2222 }
2223
719ea2fb 2224 lock_mount_hash();
909b0a88 2225 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2226 change_mnt_propagation(m, type);
719ea2fb 2227 unlock_mount_hash();
719f5d7f
MS
2228
2229 out_unlock:
97216be0 2230 namespace_unlock();
719f5d7f 2231 return err;
07b20889
RP
2232}
2233
5ff9d8a6
EB
2234static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235{
2236 struct mount *child;
2237 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2238 if (!is_subdir(child->mnt_mountpoint, dentry))
2239 continue;
2240
2241 if (child->mnt.mnt_flags & MNT_LOCKED)
2242 return true;
2243 }
2244 return false;
2245}
2246
a07b2000
AV
2247static struct mount *__do_loopback(struct path *old_path, int recurse)
2248{
2249 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2250
2251 if (IS_MNT_UNBINDABLE(old))
2252 return mnt;
2253
2254 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2255 return mnt;
2256
2257 if (!recurse && has_locked_children(old, old_path->dentry))
2258 return mnt;
2259
2260 if (recurse)
2261 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2262 else
2263 mnt = clone_mnt(old, old_path->dentry, 0);
2264
2265 if (!IS_ERR(mnt))
2266 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267
2268 return mnt;
2269}
2270
1da177e4
LT
2271/*
2272 * do loopback mount.
2273 */
808d4e3c 2274static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2275 int recurse)
1da177e4 2276{
2d92ab3c 2277 struct path old_path;
a07b2000 2278 struct mount *mnt = NULL, *parent;
84d17192 2279 struct mountpoint *mp;
57eccb83 2280 int err;
1da177e4
LT
2281 if (!old_name || !*old_name)
2282 return -EINVAL;
815d405c 2283 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2284 if (err)
2285 return err;
2286
8823c079 2287 err = -EINVAL;
4ce5d2b1 2288 if (mnt_ns_loop(old_path.dentry))
dd111b31 2289 goto out;
8823c079 2290
84d17192 2291 mp = lock_mount(path);
a07b2000
AV
2292 if (IS_ERR(mp)) {
2293 err = PTR_ERR(mp);
b12cea91 2294 goto out;
a07b2000 2295 }
b12cea91 2296
84d17192 2297 parent = real_mount(path->mnt);
e149ed2b
AV
2298 if (!check_mnt(parent))
2299 goto out2;
2300
a07b2000 2301 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2302 if (IS_ERR(mnt)) {
2303 err = PTR_ERR(mnt);
e9c5d8a5 2304 goto out2;
be34d1a3 2305 }
ccd48bc7 2306
84d17192 2307 err = graft_tree(mnt, parent, mp);
ccd48bc7 2308 if (err) {
719ea2fb 2309 lock_mount_hash();
e819f152 2310 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2311 unlock_mount_hash();
5b83d2c5 2312 }
b12cea91 2313out2:
84d17192 2314 unlock_mount(mp);
ccd48bc7 2315out:
2d92ab3c 2316 path_put(&old_path);
1da177e4
LT
2317 return err;
2318}
2319
a07b2000
AV
2320static struct file *open_detached_copy(struct path *path, bool recursive)
2321{
2322 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2323 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2324 struct mount *mnt, *p;
2325 struct file *file;
2326
2327 if (IS_ERR(ns))
2328 return ERR_CAST(ns);
2329
2330 namespace_lock();
2331 mnt = __do_loopback(path, recursive);
2332 if (IS_ERR(mnt)) {
2333 namespace_unlock();
2334 free_mnt_ns(ns);
2335 return ERR_CAST(mnt);
2336 }
2337
2338 lock_mount_hash();
2339 for (p = mnt; p; p = next_mnt(p, mnt)) {
2340 p->mnt_ns = ns;
2341 ns->mounts++;
2342 }
2343 ns->root = mnt;
2344 list_add_tail(&ns->list, &mnt->mnt_list);
2345 mntget(&mnt->mnt);
2346 unlock_mount_hash();
2347 namespace_unlock();
2348
2349 mntput(path->mnt);
2350 path->mnt = &mnt->mnt;
2351 file = dentry_open(path, O_PATH, current_cred());
2352 if (IS_ERR(file))
2353 dissolve_on_fput(path->mnt);
2354 else
2355 file->f_mode |= FMODE_NEED_UNMOUNT;
2356 return file;
2357}
2358
2658ce09 2359SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2360{
2361 struct file *file;
2362 struct path path;
2363 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2364 bool detached = flags & OPEN_TREE_CLONE;
2365 int error;
2366 int fd;
2367
2368 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2369
2370 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2371 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2372 OPEN_TREE_CLOEXEC))
2373 return -EINVAL;
2374
2375 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2376 return -EINVAL;
2377
2378 if (flags & AT_NO_AUTOMOUNT)
2379 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2380 if (flags & AT_SYMLINK_NOFOLLOW)
2381 lookup_flags &= ~LOOKUP_FOLLOW;
2382 if (flags & AT_EMPTY_PATH)
2383 lookup_flags |= LOOKUP_EMPTY;
2384
2385 if (detached && !may_mount())
2386 return -EPERM;
2387
2388 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2389 if (fd < 0)
2390 return fd;
2391
2392 error = user_path_at(dfd, filename, lookup_flags, &path);
2393 if (unlikely(error)) {
2394 file = ERR_PTR(error);
2395 } else {
2396 if (detached)
2397 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2398 else
2399 file = dentry_open(&path, O_PATH, current_cred());
2400 path_put(&path);
2401 }
2402 if (IS_ERR(file)) {
2403 put_unused_fd(fd);
2404 return PTR_ERR(file);
2405 }
2406 fd_install(fd, file);
2407 return fd;
2408}
2409
43f5e655
DH
2410/*
2411 * Don't allow locked mount flags to be cleared.
2412 *
2413 * No locks need to be held here while testing the various MNT_LOCK
2414 * flags because those flags can never be cleared once they are set.
2415 */
2416static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2417{
43f5e655
DH
2418 unsigned int fl = mnt->mnt.mnt_flags;
2419
2420 if ((fl & MNT_LOCK_READONLY) &&
2421 !(mnt_flags & MNT_READONLY))
2422 return false;
2423
2424 if ((fl & MNT_LOCK_NODEV) &&
2425 !(mnt_flags & MNT_NODEV))
2426 return false;
2427
2428 if ((fl & MNT_LOCK_NOSUID) &&
2429 !(mnt_flags & MNT_NOSUID))
2430 return false;
2431
2432 if ((fl & MNT_LOCK_NOEXEC) &&
2433 !(mnt_flags & MNT_NOEXEC))
2434 return false;
2435
2436 if ((fl & MNT_LOCK_ATIME) &&
2437 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2438 return false;
2e4b7fcd 2439
43f5e655
DH
2440 return true;
2441}
2442
2443static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2444{
43f5e655 2445 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2446
43f5e655 2447 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2448 return 0;
2449
2450 if (readonly_request)
43f5e655
DH
2451 return mnt_make_readonly(mnt);
2452
2453 return __mnt_unmake_readonly(mnt);
2454}
2455
2456/*
2457 * Update the user-settable attributes on a mount. The caller must hold
2458 * sb->s_umount for writing.
2459 */
2460static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2461{
2462 lock_mount_hash();
2463 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2464 mnt->mnt.mnt_flags = mnt_flags;
2465 touch_mnt_namespace(mnt->mnt_ns);
2466 unlock_mount_hash();
2467}
2468
f8b92ba6
DD
2469static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2470{
2471 struct super_block *sb = mnt->mnt_sb;
2472
2473 if (!__mnt_is_readonly(mnt) &&
2474 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2475 char *buf = (char *)__get_free_page(GFP_KERNEL);
2476 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2477 struct tm tm;
2478
2479 time64_to_tm(sb->s_time_max, 0, &tm);
2480
0ecee669
EB
2481 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2482 sb->s_type->name,
2483 is_mounted(mnt) ? "remounted" : "mounted",
2484 mntpath,
f8b92ba6
DD
2485 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2486
2487 free_page((unsigned long)buf);
2488 }
2489}
2490
43f5e655
DH
2491/*
2492 * Handle reconfiguration of the mountpoint only without alteration of the
2493 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2494 * to mount(2).
2495 */
2496static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2497{
2498 struct super_block *sb = path->mnt->mnt_sb;
2499 struct mount *mnt = real_mount(path->mnt);
2500 int ret;
2501
2502 if (!check_mnt(mnt))
2503 return -EINVAL;
2504
2505 if (path->dentry != mnt->mnt.mnt_root)
2506 return -EINVAL;
2507
2508 if (!can_change_locked_flags(mnt, mnt_flags))
2509 return -EPERM;
2510
2511 down_write(&sb->s_umount);
2512 ret = change_mount_ro_state(mnt, mnt_flags);
2513 if (ret == 0)
2514 set_mount_attributes(mnt, mnt_flags);
2515 up_write(&sb->s_umount);
f8b92ba6
DD
2516
2517 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2518
43f5e655 2519 return ret;
2e4b7fcd
DH
2520}
2521
1da177e4
LT
2522/*
2523 * change filesystem flags. dir should be a physical root of filesystem.
2524 * If you've mounted a non-root directory somewhere and want to do remount
2525 * on it - tough luck.
2526 */
e462ec50
DH
2527static int do_remount(struct path *path, int ms_flags, int sb_flags,
2528 int mnt_flags, void *data)
1da177e4
LT
2529{
2530 int err;
2d92ab3c 2531 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2532 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2533 struct fs_context *fc;
1da177e4 2534
143c8c91 2535 if (!check_mnt(mnt))
1da177e4
LT
2536 return -EINVAL;
2537
2d92ab3c 2538 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2539 return -EINVAL;
2540
43f5e655 2541 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2542 return -EPERM;
9566d674 2543
8d0347f6
DH
2544 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2545 if (IS_ERR(fc))
2546 return PTR_ERR(fc);
ff36fe2c 2547
8d0347f6
DH
2548 err = parse_monolithic_mount_data(fc, data);
2549 if (!err) {
2550 down_write(&sb->s_umount);
2551 err = -EPERM;
2552 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2553 err = reconfigure_super(fc);
2554 if (!err)
2555 set_mount_attributes(mnt, mnt_flags);
2556 }
2557 up_write(&sb->s_umount);
0e55a7cc 2558 }
f8b92ba6
DD
2559
2560 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2561
8d0347f6 2562 put_fs_context(fc);
1da177e4
LT
2563 return err;
2564}
2565
cbbe362c 2566static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2567{
315fc83e 2568 struct mount *p;
909b0a88 2569 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2570 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2571 return 1;
2572 }
2573 return 0;
2574}
2575
44dfd84a
DH
2576/*
2577 * Check that there aren't references to earlier/same mount namespaces in the
2578 * specified subtree. Such references can act as pins for mount namespaces
2579 * that aren't checked by the mount-cycle checking code, thereby allowing
2580 * cycles to be made.
2581 */
2582static bool check_for_nsfs_mounts(struct mount *subtree)
2583{
2584 struct mount *p;
2585 bool ret = false;
2586
2587 lock_mount_hash();
2588 for (p = subtree; p; p = next_mnt(p, subtree))
2589 if (mnt_ns_loop(p->mnt.mnt_root))
2590 goto out;
2591
2592 ret = true;
2593out:
2594 unlock_mount_hash();
2595 return ret;
2596}
2597
2db154b3 2598static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2599{
44dfd84a 2600 struct mnt_namespace *ns;
676da58d 2601 struct mount *p;
0fb54e50 2602 struct mount *old;
2763d119
AV
2603 struct mount *parent;
2604 struct mountpoint *mp, *old_mp;
57eccb83 2605 int err;
44dfd84a 2606 bool attached;
1da177e4 2607
2db154b3 2608 mp = lock_mount(new_path);
84d17192 2609 if (IS_ERR(mp))
2db154b3 2610 return PTR_ERR(mp);
cc53ce53 2611
2db154b3
DH
2612 old = real_mount(old_path->mnt);
2613 p = real_mount(new_path->mnt);
2763d119 2614 parent = old->mnt_parent;
44dfd84a 2615 attached = mnt_has_parent(old);
2763d119 2616 old_mp = old->mnt_mp;
44dfd84a 2617 ns = old->mnt_ns;
143c8c91 2618
1da177e4 2619 err = -EINVAL;
44dfd84a
DH
2620 /* The mountpoint must be in our namespace. */
2621 if (!check_mnt(p))
2db154b3 2622 goto out;
1da177e4 2623
570d7a98
EB
2624 /* The thing moved must be mounted... */
2625 if (!is_mounted(&old->mnt))
44dfd84a
DH
2626 goto out;
2627
570d7a98
EB
2628 /* ... and either ours or the root of anon namespace */
2629 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2630 goto out;
5ff9d8a6 2631
2db154b3
DH
2632 if (old->mnt.mnt_flags & MNT_LOCKED)
2633 goto out;
1da177e4 2634
2db154b3
DH
2635 if (old_path->dentry != old_path->mnt->mnt_root)
2636 goto out;
1da177e4 2637
2db154b3
DH
2638 if (d_is_dir(new_path->dentry) !=
2639 d_is_dir(old_path->dentry))
2640 goto out;
21444403
RP
2641 /*
2642 * Don't move a mount residing in a shared parent.
2643 */
2763d119 2644 if (attached && IS_MNT_SHARED(parent))
2db154b3 2645 goto out;
9676f0c6
RP
2646 /*
2647 * Don't move a mount tree containing unbindable mounts to a destination
2648 * mount which is shared.
2649 */
fc7be130 2650 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2651 goto out;
1da177e4 2652 err = -ELOOP;
44dfd84a
DH
2653 if (!check_for_nsfs_mounts(old))
2654 goto out;
fc7be130 2655 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2656 if (p == old)
2db154b3 2657 goto out;
1da177e4 2658
2db154b3 2659 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2660 attached);
4ac91378 2661 if (err)
2db154b3 2662 goto out;
1da177e4
LT
2663
2664 /* if the mount is moved, it should no longer be expire
2665 * automatically */
6776db3d 2666 list_del_init(&old->mnt_expire);
2763d119
AV
2667 if (attached)
2668 put_mountpoint(old_mp);
1da177e4 2669out:
2db154b3 2670 unlock_mount(mp);
44dfd84a 2671 if (!err) {
2763d119
AV
2672 if (attached)
2673 mntput_no_expire(parent);
2674 else
44dfd84a
DH
2675 free_mnt_ns(ns);
2676 }
2db154b3
DH
2677 return err;
2678}
2679
2680static int do_move_mount_old(struct path *path, const char *old_name)
2681{
2682 struct path old_path;
2683 int err;
2684
2685 if (!old_name || !*old_name)
2686 return -EINVAL;
2687
2688 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2689 if (err)
2690 return err;
2691
2692 err = do_move_mount(&old_path, path);
2d92ab3c 2693 path_put(&old_path);
1da177e4
LT
2694 return err;
2695}
2696
9d412a43
AV
2697/*
2698 * add a mount into a namespace's mount tree
2699 */
8f11538e
AV
2700static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2701 struct path *path, int mnt_flags)
9d412a43 2702{
8f11538e 2703 struct mount *parent = real_mount(path->mnt);
9d412a43 2704
f2ebb3a9 2705 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2706
84d17192 2707 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2708 /* that's acceptable only for automounts done in private ns */
2709 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2710 return -EINVAL;
156cacb1 2711 /* ... and for those we'd better have mountpoint still alive */
84d17192 2712 if (!parent->mnt_ns)
8f11538e 2713 return -EINVAL;
156cacb1 2714 }
9d412a43
AV
2715
2716 /* Refuse the same filesystem on the same mount point */
95bc5f25 2717 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2718 path->mnt->mnt_root == path->dentry)
8f11538e 2719 return -EBUSY;
9d412a43 2720
e36cb0b8 2721 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2722 return -EINVAL;
9d412a43 2723
95bc5f25 2724 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2725 return graft_tree(newmnt, parent, mp);
9d412a43 2726}
b1e75df4 2727
132e4608
DH
2728static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2729
2730/*
2731 * Create a new mount using a superblock configuration and request it
2732 * be added to the namespace tree.
2733 */
2734static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2735 unsigned int mnt_flags)
2736{
2737 struct vfsmount *mnt;
8f11538e 2738 struct mountpoint *mp;
132e4608
DH
2739 struct super_block *sb = fc->root->d_sb;
2740 int error;
2741
c9ce29ed
AV
2742 error = security_sb_kern_mount(sb);
2743 if (!error && mount_too_revealing(sb, &mnt_flags))
2744 error = -EPERM;
2745
2746 if (unlikely(error)) {
2747 fc_drop_locked(fc);
2748 return error;
132e4608
DH
2749 }
2750
2751 up_write(&sb->s_umount);
2752
2753 mnt = vfs_create_mount(fc);
2754 if (IS_ERR(mnt))
2755 return PTR_ERR(mnt);
2756
f8b92ba6
DD
2757 mnt_warn_timestamp_expiry(mountpoint, mnt);
2758
8f11538e
AV
2759 mp = lock_mount(mountpoint);
2760 if (IS_ERR(mp)) {
2761 mntput(mnt);
2762 return PTR_ERR(mp);
2763 }
2764 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2765 unlock_mount(mp);
0ecee669
EB
2766 if (error < 0)
2767 mntput(mnt);
132e4608
DH
2768 return error;
2769}
1b852bce 2770
1da177e4
LT
2771/*
2772 * create a new mount for userspace and request it to be added into the
2773 * namespace's tree
2774 */
e462ec50 2775static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2776 int mnt_flags, const char *name, void *data)
1da177e4 2777{
0c55cfc4 2778 struct file_system_type *type;
a0c9a8b8
AV
2779 struct fs_context *fc;
2780 const char *subtype = NULL;
2781 int err = 0;
1da177e4 2782
0c55cfc4 2783 if (!fstype)
1da177e4
LT
2784 return -EINVAL;
2785
0c55cfc4
EB
2786 type = get_fs_type(fstype);
2787 if (!type)
2788 return -ENODEV;
2789
a0c9a8b8
AV
2790 if (type->fs_flags & FS_HAS_SUBTYPE) {
2791 subtype = strchr(fstype, '.');
2792 if (subtype) {
2793 subtype++;
2794 if (!*subtype) {
2795 put_filesystem(type);
2796 return -EINVAL;
2797 }
a0c9a8b8
AV
2798 }
2799 }
0c55cfc4 2800
a0c9a8b8 2801 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2802 put_filesystem(type);
a0c9a8b8
AV
2803 if (IS_ERR(fc))
2804 return PTR_ERR(fc);
2805
3e1aeb00
DH
2806 if (subtype)
2807 err = vfs_parse_fs_string(fc, "subtype",
2808 subtype, strlen(subtype));
2809 if (!err && name)
2810 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2811 if (!err)
2812 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2813 if (!err && !mount_capable(fc))
2814 err = -EPERM;
a0c9a8b8
AV
2815 if (!err)
2816 err = vfs_get_tree(fc);
132e4608
DH
2817 if (!err)
2818 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2819
a0c9a8b8 2820 put_fs_context(fc);
15f9a3f3 2821 return err;
1da177e4
LT
2822}
2823
19a167af
AV
2824int finish_automount(struct vfsmount *m, struct path *path)
2825{
6776db3d 2826 struct mount *mnt = real_mount(m);
8f11538e 2827 struct mountpoint *mp;
19a167af
AV
2828 int err;
2829 /* The new mount record should have at least 2 refs to prevent it being
2830 * expired before we get a chance to add it
2831 */
6776db3d 2832 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2833
2834 if (m->mnt_sb == path->mnt->mnt_sb &&
2835 m->mnt_root == path->dentry) {
b1e75df4
AV
2836 err = -ELOOP;
2837 goto fail;
19a167af
AV
2838 }
2839
8f11538e
AV
2840 mp = lock_mount(path);
2841 if (IS_ERR(mp)) {
2842 err = PTR_ERR(mp);
2843 goto fail;
2844 }
2845 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2846 unlock_mount(mp);
b1e75df4
AV
2847 if (!err)
2848 return 0;
2849fail:
2850 /* remove m from any expiration list it may be on */
6776db3d 2851 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2852 namespace_lock();
6776db3d 2853 list_del_init(&mnt->mnt_expire);
97216be0 2854 namespace_unlock();
19a167af 2855 }
b1e75df4
AV
2856 mntput(m);
2857 mntput(m);
19a167af
AV
2858 return err;
2859}
2860
ea5b778a
DH
2861/**
2862 * mnt_set_expiry - Put a mount on an expiration list
2863 * @mnt: The mount to list.
2864 * @expiry_list: The list to add the mount to.
2865 */
2866void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2867{
97216be0 2868 namespace_lock();
ea5b778a 2869
6776db3d 2870 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2871
97216be0 2872 namespace_unlock();
ea5b778a
DH
2873}
2874EXPORT_SYMBOL(mnt_set_expiry);
2875
1da177e4
LT
2876/*
2877 * process a list of expirable mountpoints with the intent of discarding any
2878 * mountpoints that aren't in use and haven't been touched since last we came
2879 * here
2880 */
2881void mark_mounts_for_expiry(struct list_head *mounts)
2882{
761d5c38 2883 struct mount *mnt, *next;
1da177e4
LT
2884 LIST_HEAD(graveyard);
2885
2886 if (list_empty(mounts))
2887 return;
2888
97216be0 2889 namespace_lock();
719ea2fb 2890 lock_mount_hash();
1da177e4
LT
2891
2892 /* extract from the expiration list every vfsmount that matches the
2893 * following criteria:
2894 * - only referenced by its parent vfsmount
2895 * - still marked for expiry (marked on the last call here; marks are
2896 * cleared by mntput())
2897 */
6776db3d 2898 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2899 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2900 propagate_mount_busy(mnt, 1))
1da177e4 2901 continue;
6776db3d 2902 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2903 }
bcc5c7d2 2904 while (!list_empty(&graveyard)) {
6776db3d 2905 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2906 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2907 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2908 }
719ea2fb 2909 unlock_mount_hash();
3ab6abee 2910 namespace_unlock();
5528f911
TM
2911}
2912
2913EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2914
2915/*
2916 * Ripoff of 'select_parent()'
2917 *
2918 * search the list of submounts for a given mountpoint, and move any
2919 * shrinkable submounts to the 'graveyard' list.
2920 */
692afc31 2921static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2922{
692afc31 2923 struct mount *this_parent = parent;
5528f911
TM
2924 struct list_head *next;
2925 int found = 0;
2926
2927repeat:
6b41d536 2928 next = this_parent->mnt_mounts.next;
5528f911 2929resume:
6b41d536 2930 while (next != &this_parent->mnt_mounts) {
5528f911 2931 struct list_head *tmp = next;
6b41d536 2932 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2933
2934 next = tmp->next;
692afc31 2935 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2936 continue;
5528f911
TM
2937 /*
2938 * Descend a level if the d_mounts list is non-empty.
2939 */
6b41d536 2940 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2941 this_parent = mnt;
2942 goto repeat;
2943 }
1da177e4 2944
1ab59738 2945 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2946 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2947 found++;
2948 }
1da177e4 2949 }
5528f911
TM
2950 /*
2951 * All done at this level ... ascend and resume the search
2952 */
2953 if (this_parent != parent) {
6b41d536 2954 next = this_parent->mnt_child.next;
0714a533 2955 this_parent = this_parent->mnt_parent;
5528f911
TM
2956 goto resume;
2957 }
2958 return found;
2959}
2960
2961/*
2962 * process a list of expirable mountpoints with the intent of discarding any
2963 * submounts of a specific parent mountpoint
99b7db7b 2964 *
48a066e7 2965 * mount_lock must be held for write
5528f911 2966 */
b54b9be7 2967static void shrink_submounts(struct mount *mnt)
5528f911
TM
2968{
2969 LIST_HEAD(graveyard);
761d5c38 2970 struct mount *m;
5528f911 2971
5528f911 2972 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2973 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2974 while (!list_empty(&graveyard)) {
761d5c38 2975 m = list_first_entry(&graveyard, struct mount,
6776db3d 2976 mnt_expire);
143c8c91 2977 touch_mnt_namespace(m->mnt_ns);
e819f152 2978 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2979 }
2980 }
1da177e4
LT
2981}
2982
b40ef869 2983void *copy_mount_options(const void __user * data)
1da177e4 2984{
b40ef869 2985 char *copy;
12efec56 2986 unsigned size;
b58fed8b 2987
1da177e4 2988 if (!data)
b40ef869 2989 return NULL;
1da177e4 2990
b40ef869
AV
2991 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2992 if (!copy)
2993 return ERR_PTR(-ENOMEM);
1da177e4 2994
12efec56 2995 size = PAGE_SIZE - offset_in_page(data);
1da177e4 2996
12efec56 2997 if (copy_from_user(copy, data, size)) {
b40ef869
AV
2998 kfree(copy);
2999 return ERR_PTR(-EFAULT);
1da177e4 3000 }
12efec56
AV
3001 if (size != PAGE_SIZE) {
3002 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3003 memset(copy + size, 0, PAGE_SIZE - size);
3004 }
b40ef869 3005 return copy;
1da177e4
LT
3006}
3007
b8850d1f 3008char *copy_mount_string(const void __user *data)
eca6f534 3009{
fbdb4401 3010 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3011}
3012
1da177e4
LT
3013/*
3014 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3015 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3016 *
3017 * data is a (void *) that can point to any structure up to
3018 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3019 * information (or be NULL).
3020 *
3021 * Pre-0.97 versions of mount() didn't have a flags word.
3022 * When the flags word was introduced its top half was required
3023 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3024 * Therefore, if this magic number is present, it carries no information
3025 * and must be discarded.
3026 */
5e6123f3 3027long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3028 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3029{
2d92ab3c 3030 struct path path;
e462ec50 3031 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3032 int retval = 0;
1da177e4
LT
3033
3034 /* Discard magic */
3035 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3036 flags &= ~MS_MGC_MSK;
3037
3038 /* Basic sanity checks */
1da177e4
LT
3039 if (data_page)
3040 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3041
e462ec50
DH
3042 if (flags & MS_NOUSER)
3043 return -EINVAL;
3044
a27ab9f2 3045 /* ... and get the mountpoint */
ce6595a2 3046 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
a27ab9f2
TH
3047 if (retval)
3048 return retval;
3049
3050 retval = security_sb_mount(dev_name, &path,
3051 type_page, flags, data_page);
0d5cadb8
AV
3052 if (!retval && !may_mount())
3053 retval = -EPERM;
e462ec50 3054 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3055 retval = -EPERM;
a27ab9f2
TH
3056 if (retval)
3057 goto dput_out;
3058
613cbe3d
AK
3059 /* Default to relatime unless overriden */
3060 if (!(flags & MS_NOATIME))
3061 mnt_flags |= MNT_RELATIME;
0a1c01c9 3062
1da177e4
LT
3063 /* Separate the per-mountpoint flags */
3064 if (flags & MS_NOSUID)
3065 mnt_flags |= MNT_NOSUID;
3066 if (flags & MS_NODEV)
3067 mnt_flags |= MNT_NODEV;
3068 if (flags & MS_NOEXEC)
3069 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3070 if (flags & MS_NOATIME)
3071 mnt_flags |= MNT_NOATIME;
3072 if (flags & MS_NODIRATIME)
3073 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3074 if (flags & MS_STRICTATIME)
3075 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3076 if (flags & MS_RDONLY)
2e4b7fcd 3077 mnt_flags |= MNT_READONLY;
fc33a7bb 3078
ffbc6f0e
EB
3079 /* The default atime for remount is preservation */
3080 if ((flags & MS_REMOUNT) &&
3081 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3082 MS_STRICTATIME)) == 0)) {
3083 mnt_flags &= ~MNT_ATIME_MASK;
3084 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3085 }
3086
e462ec50
DH
3087 sb_flags = flags & (SB_RDONLY |
3088 SB_SYNCHRONOUS |
3089 SB_MANDLOCK |
3090 SB_DIRSYNC |
3091 SB_SILENT |
917086ff 3092 SB_POSIXACL |
d7ee9469 3093 SB_LAZYTIME |
917086ff 3094 SB_I_VERSION);
1da177e4 3095
43f5e655
DH
3096 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3097 retval = do_reconfigure_mnt(&path, mnt_flags);
3098 else if (flags & MS_REMOUNT)
e462ec50 3099 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3100 data_page);
3101 else if (flags & MS_BIND)
2d92ab3c 3102 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3103 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3104 retval = do_change_type(&path, flags);
1da177e4 3105 else if (flags & MS_MOVE)
2db154b3 3106 retval = do_move_mount_old(&path, dev_name);
1da177e4 3107 else
e462ec50 3108 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3109 dev_name, data_page);
3110dput_out:
2d92ab3c 3111 path_put(&path);
1da177e4
LT
3112 return retval;
3113}
3114
537f7ccb
EB
3115static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3116{
3117 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3118}
3119
3120static void dec_mnt_namespaces(struct ucounts *ucounts)
3121{
3122 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3123}
3124
771b1371
EB
3125static void free_mnt_ns(struct mnt_namespace *ns)
3126{
74e83122
AV
3127 if (!is_anon_ns(ns))
3128 ns_free_inum(&ns->ns);
537f7ccb 3129 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3130 put_user_ns(ns->user_ns);
3131 kfree(ns);
3132}
3133
8823c079
EB
3134/*
3135 * Assign a sequence number so we can detect when we attempt to bind
3136 * mount a reference to an older mount namespace into the current
3137 * mount namespace, preventing reference counting loops. A 64bit
3138 * number incrementing at 10Ghz will take 12,427 years to wrap which
3139 * is effectively never, so we can ignore the possibility.
3140 */
3141static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3142
74e83122 3143static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3144{
3145 struct mnt_namespace *new_ns;
537f7ccb 3146 struct ucounts *ucounts;
98f842e6 3147 int ret;
cf8d2c11 3148
537f7ccb
EB
3149 ucounts = inc_mnt_namespaces(user_ns);
3150 if (!ucounts)
df75e774 3151 return ERR_PTR(-ENOSPC);
537f7ccb 3152
74e83122 3153 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3154 if (!new_ns) {
3155 dec_mnt_namespaces(ucounts);
cf8d2c11 3156 return ERR_PTR(-ENOMEM);
537f7ccb 3157 }
74e83122
AV
3158 if (!anon) {
3159 ret = ns_alloc_inum(&new_ns->ns);
3160 if (ret) {
3161 kfree(new_ns);
3162 dec_mnt_namespaces(ucounts);
3163 return ERR_PTR(ret);
3164 }
98f842e6 3165 }
33c42940 3166 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3167 if (!anon)
3168 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3169 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3170 INIT_LIST_HEAD(&new_ns->list);
3171 init_waitqueue_head(&new_ns->poll);
771b1371 3172 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3173 new_ns->ucounts = ucounts;
cf8d2c11
TM
3174 return new_ns;
3175}
3176
0766f788 3177__latent_entropy
9559f689
AV
3178struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3179 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3180{
6b3286ed 3181 struct mnt_namespace *new_ns;
7f2da1e7 3182 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3183 struct mount *p, *q;
9559f689 3184 struct mount *old;
cb338d06 3185 struct mount *new;
7a472ef4 3186 int copy_flags;
1da177e4 3187
9559f689
AV
3188 BUG_ON(!ns);
3189
3190 if (likely(!(flags & CLONE_NEWNS))) {
3191 get_mnt_ns(ns);
3192 return ns;
3193 }
3194
3195 old = ns->root;
3196
74e83122 3197 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3198 if (IS_ERR(new_ns))
3199 return new_ns;
1da177e4 3200
97216be0 3201 namespace_lock();
1da177e4 3202 /* First pass: copy the tree topology */
4ce5d2b1 3203 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3204 if (user_ns != ns->user_ns)
3bd045cc 3205 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3206 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3207 if (IS_ERR(new)) {
328e6d90 3208 namespace_unlock();
771b1371 3209 free_mnt_ns(new_ns);
be34d1a3 3210 return ERR_CAST(new);
1da177e4 3211 }
3bd045cc
AV
3212 if (user_ns != ns->user_ns) {
3213 lock_mount_hash();
3214 lock_mnt_tree(new);
3215 unlock_mount_hash();
3216 }
be08d6d2 3217 new_ns->root = new;
1a4eeaf2 3218 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3219
3220 /*
3221 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3222 * as belonging to new namespace. We have already acquired a private
3223 * fs_struct, so tsk->fs->lock is not needed.
3224 */
909b0a88 3225 p = old;
cb338d06 3226 q = new;
1da177e4 3227 while (p) {
143c8c91 3228 q->mnt_ns = new_ns;
d2921684 3229 new_ns->mounts++;
9559f689
AV
3230 if (new_fs) {
3231 if (&p->mnt == new_fs->root.mnt) {
3232 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3233 rootmnt = &p->mnt;
1da177e4 3234 }
9559f689
AV
3235 if (&p->mnt == new_fs->pwd.mnt) {
3236 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3237 pwdmnt = &p->mnt;
1da177e4 3238 }
1da177e4 3239 }
909b0a88
AV
3240 p = next_mnt(p, old);
3241 q = next_mnt(q, new);
4ce5d2b1
EB
3242 if (!q)
3243 break;
3244 while (p->mnt.mnt_root != q->mnt.mnt_root)
3245 p = next_mnt(p, old);
1da177e4 3246 }
328e6d90 3247 namespace_unlock();
1da177e4 3248
1da177e4 3249 if (rootmnt)
f03c6599 3250 mntput(rootmnt);
1da177e4 3251 if (pwdmnt)
f03c6599 3252 mntput(pwdmnt);
1da177e4 3253
741a2951 3254 return new_ns;
1da177e4
LT
3255}
3256
74e83122 3257struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3258{
74e83122 3259 struct mount *mnt = real_mount(m);
ea441d11 3260 struct mnt_namespace *ns;
d31da0f0 3261 struct super_block *s;
ea441d11
AV
3262 struct path path;
3263 int err;
3264
74e83122
AV
3265 ns = alloc_mnt_ns(&init_user_ns, true);
3266 if (IS_ERR(ns)) {
3267 mntput(m);
ea441d11 3268 return ERR_CAST(ns);
74e83122
AV
3269 }
3270 mnt->mnt_ns = ns;
3271 ns->root = mnt;
3272 ns->mounts++;
3273 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3274
74e83122 3275 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3276 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3277
3278 put_mnt_ns(ns);
3279
3280 if (err)
3281 return ERR_PTR(err);
3282
3283 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3284 s = path.mnt->mnt_sb;
3285 atomic_inc(&s->s_active);
ea441d11
AV
3286 mntput(path.mnt);
3287 /* lock the sucker */
d31da0f0 3288 down_write(&s->s_umount);
ea441d11
AV
3289 /* ... and return the root of (sub)tree on it */
3290 return path.dentry;
3291}
3292EXPORT_SYMBOL(mount_subtree);
3293
cccaa5e3
DB
3294SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3295 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3296{
eca6f534
VN
3297 int ret;
3298 char *kernel_type;
eca6f534 3299 char *kernel_dev;
b40ef869 3300 void *options;
1da177e4 3301
b8850d1f
TG
3302 kernel_type = copy_mount_string(type);
3303 ret = PTR_ERR(kernel_type);
3304 if (IS_ERR(kernel_type))
eca6f534 3305 goto out_type;
1da177e4 3306
b8850d1f
TG
3307 kernel_dev = copy_mount_string(dev_name);
3308 ret = PTR_ERR(kernel_dev);
3309 if (IS_ERR(kernel_dev))
eca6f534 3310 goto out_dev;
1da177e4 3311
b40ef869
AV
3312 options = copy_mount_options(data);
3313 ret = PTR_ERR(options);
3314 if (IS_ERR(options))
eca6f534 3315 goto out_data;
1da177e4 3316
b40ef869 3317 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3318
b40ef869 3319 kfree(options);
eca6f534
VN
3320out_data:
3321 kfree(kernel_dev);
3322out_dev:
eca6f534
VN
3323 kfree(kernel_type);
3324out_type:
3325 return ret;
1da177e4
LT
3326}
3327
2db154b3 3328/*
93766fbd
DH
3329 * Create a kernel mount representation for a new, prepared superblock
3330 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3331 */
3332SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3333 unsigned int, attr_flags)
3334{
3335 struct mnt_namespace *ns;
3336 struct fs_context *fc;
3337 struct file *file;
3338 struct path newmount;
3339 struct mount *mnt;
3340 struct fd f;
3341 unsigned int mnt_flags = 0;
3342 long ret;
3343
3344 if (!may_mount())
3345 return -EPERM;
3346
3347 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3348 return -EINVAL;
3349
3350 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3351 MOUNT_ATTR_NOSUID |
3352 MOUNT_ATTR_NODEV |
3353 MOUNT_ATTR_NOEXEC |
3354 MOUNT_ATTR__ATIME |
3355 MOUNT_ATTR_NODIRATIME))
3356 return -EINVAL;
3357
3358 if (attr_flags & MOUNT_ATTR_RDONLY)
3359 mnt_flags |= MNT_READONLY;
3360 if (attr_flags & MOUNT_ATTR_NOSUID)
3361 mnt_flags |= MNT_NOSUID;
3362 if (attr_flags & MOUNT_ATTR_NODEV)
3363 mnt_flags |= MNT_NODEV;
3364 if (attr_flags & MOUNT_ATTR_NOEXEC)
3365 mnt_flags |= MNT_NOEXEC;
3366 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3367 mnt_flags |= MNT_NODIRATIME;
3368
3369 switch (attr_flags & MOUNT_ATTR__ATIME) {
3370 case MOUNT_ATTR_STRICTATIME:
3371 break;
3372 case MOUNT_ATTR_NOATIME:
3373 mnt_flags |= MNT_NOATIME;
3374 break;
3375 case MOUNT_ATTR_RELATIME:
3376 mnt_flags |= MNT_RELATIME;
3377 break;
3378 default:
3379 return -EINVAL;
3380 }
3381
3382 f = fdget(fs_fd);
3383 if (!f.file)
3384 return -EBADF;
3385
3386 ret = -EINVAL;
3387 if (f.file->f_op != &fscontext_fops)
3388 goto err_fsfd;
3389
3390 fc = f.file->private_data;
3391
3392 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3393 if (ret < 0)
3394 goto err_fsfd;
3395
3396 /* There must be a valid superblock or we can't mount it */
3397 ret = -EINVAL;
3398 if (!fc->root)
3399 goto err_unlock;
3400
3401 ret = -EPERM;
3402 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3403 pr_warn("VFS: Mount too revealing\n");
3404 goto err_unlock;
3405 }
3406
3407 ret = -EBUSY;
3408 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3409 goto err_unlock;
3410
3411 ret = -EPERM;
3412 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3413 goto err_unlock;
3414
3415 newmount.mnt = vfs_create_mount(fc);
3416 if (IS_ERR(newmount.mnt)) {
3417 ret = PTR_ERR(newmount.mnt);
3418 goto err_unlock;
3419 }
3420 newmount.dentry = dget(fc->root);
3421 newmount.mnt->mnt_flags = mnt_flags;
3422
3423 /* We've done the mount bit - now move the file context into more or
3424 * less the same state as if we'd done an fspick(). We don't want to
3425 * do any memory allocation or anything like that at this point as we
3426 * don't want to have to handle any errors incurred.
3427 */
3428 vfs_clean_context(fc);
3429
3430 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3431 if (IS_ERR(ns)) {
3432 ret = PTR_ERR(ns);
3433 goto err_path;
3434 }
3435 mnt = real_mount(newmount.mnt);
3436 mnt->mnt_ns = ns;
3437 ns->root = mnt;
3438 ns->mounts = 1;
3439 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3440 mntget(newmount.mnt);
93766fbd
DH
3441
3442 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3443 * it, not just simply put it.
3444 */
3445 file = dentry_open(&newmount, O_PATH, fc->cred);
3446 if (IS_ERR(file)) {
3447 dissolve_on_fput(newmount.mnt);
3448 ret = PTR_ERR(file);
3449 goto err_path;
3450 }
3451 file->f_mode |= FMODE_NEED_UNMOUNT;
3452
3453 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3454 if (ret >= 0)
3455 fd_install(ret, file);
3456 else
3457 fput(file);
3458
3459err_path:
3460 path_put(&newmount);
3461err_unlock:
3462 mutex_unlock(&fc->uapi_mutex);
3463err_fsfd:
3464 fdput(f);
3465 return ret;
3466}
3467
3468/*
3469 * Move a mount from one place to another. In combination with
3470 * fsopen()/fsmount() this is used to install a new mount and in combination
3471 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3472 * a mount subtree.
2db154b3
DH
3473 *
3474 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3475 */
3476SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3477 int, from_dfd, const char __user *, from_pathname,
3478 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3479 unsigned int, flags)
3480{
3481 struct path from_path, to_path;
3482 unsigned int lflags;
3483 int ret = 0;
3484
3485 if (!may_mount())
3486 return -EPERM;
3487
3488 if (flags & ~MOVE_MOUNT__MASK)
3489 return -EINVAL;
3490
3491 /* If someone gives a pathname, they aren't permitted to move
3492 * from an fd that requires unmount as we can't get at the flag
3493 * to clear it afterwards.
3494 */
3495 lflags = 0;
3496 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3497 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3498 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3499
3500 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3501 if (ret < 0)
3502 return ret;
3503
3504 lflags = 0;
3505 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3506 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3507 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3508
3509 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3510 if (ret < 0)
3511 goto out_from;
3512
3513 ret = security_move_mount(&from_path, &to_path);
3514 if (ret < 0)
3515 goto out_to;
3516
3517 ret = do_move_mount(&from_path, &to_path);
3518
3519out_to:
3520 path_put(&to_path);
3521out_from:
3522 path_put(&from_path);
3523 return ret;
3524}
3525
afac7cba
AV
3526/*
3527 * Return true if path is reachable from root
3528 *
48a066e7 3529 * namespace_sem or mount_lock is held
afac7cba 3530 */
643822b4 3531bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3532 const struct path *root)
3533{
643822b4 3534 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3535 dentry = mnt->mnt_mountpoint;
0714a533 3536 mnt = mnt->mnt_parent;
afac7cba 3537 }
643822b4 3538 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3539}
3540
640eb7e7 3541bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3542{
25ab4c9b 3543 bool res;
48a066e7 3544 read_seqlock_excl(&mount_lock);
643822b4 3545 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3546 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3547 return res;
3548}
3549EXPORT_SYMBOL(path_is_under);
3550
1da177e4
LT
3551/*
3552 * pivot_root Semantics:
3553 * Moves the root file system of the current process to the directory put_old,
3554 * makes new_root as the new root file system of the current process, and sets
3555 * root/cwd of all processes which had them on the current root to new_root.
3556 *
3557 * Restrictions:
3558 * The new_root and put_old must be directories, and must not be on the
3559 * same file system as the current process root. The put_old must be
3560 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3561 * pointed to by put_old must yield the same directory as new_root. No other
3562 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3563 *
4a0d11fa
NB
3564 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3565 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3566 * in this situation.
3567 *
1da177e4
LT
3568 * Notes:
3569 * - we don't move root/cwd if they are not at the root (reason: if something
3570 * cared enough to change them, it's probably wrong to force them elsewhere)
3571 * - it's okay to pick a root that isn't the root of a file system, e.g.
3572 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3573 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3574 * first.
3575 */
3480b257
HC
3576SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3577 const char __user *, put_old)
1da177e4 3578{
2763d119
AV
3579 struct path new, old, root;
3580 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3581 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3582 int error;
3583
9b40bc90 3584 if (!may_mount())
1da177e4
LT
3585 return -EPERM;
3586
ce6595a2
AV
3587 error = user_path_at(AT_FDCWD, new_root,
3588 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3589 if (error)
3590 goto out0;
1da177e4 3591
ce6595a2
AV
3592 error = user_path_at(AT_FDCWD, put_old,
3593 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3594 if (error)
3595 goto out1;
3596
2d8f3038 3597 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3598 if (error)
3599 goto out2;
1da177e4 3600
f7ad3c6b 3601 get_fs_root(current->fs, &root);
84d17192
AV
3602 old_mp = lock_mount(&old);
3603 error = PTR_ERR(old_mp);
3604 if (IS_ERR(old_mp))
b12cea91
AV
3605 goto out3;
3606
1da177e4 3607 error = -EINVAL;
419148da
AV
3608 new_mnt = real_mount(new.mnt);
3609 root_mnt = real_mount(root.mnt);
84d17192 3610 old_mnt = real_mount(old.mnt);
2763d119
AV
3611 ex_parent = new_mnt->mnt_parent;
3612 root_parent = root_mnt->mnt_parent;
84d17192 3613 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3614 IS_MNT_SHARED(ex_parent) ||
3615 IS_MNT_SHARED(root_parent))
b12cea91 3616 goto out4;
143c8c91 3617 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3618 goto out4;
5ff9d8a6
EB
3619 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3620 goto out4;
1da177e4 3621 error = -ENOENT;
f3da392e 3622 if (d_unlinked(new.dentry))
b12cea91 3623 goto out4;
1da177e4 3624 error = -EBUSY;
84d17192 3625 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3626 goto out4; /* loop, on the same file system */
1da177e4 3627 error = -EINVAL;
8c3ee42e 3628 if (root.mnt->mnt_root != root.dentry)
b12cea91 3629 goto out4; /* not a mountpoint */
676da58d 3630 if (!mnt_has_parent(root_mnt))
b12cea91 3631 goto out4; /* not attached */
2d8f3038 3632 if (new.mnt->mnt_root != new.dentry)
b12cea91 3633 goto out4; /* not a mountpoint */
676da58d 3634 if (!mnt_has_parent(new_mnt))
b12cea91 3635 goto out4; /* not attached */
4ac91378 3636 /* make sure we can reach put_old from new_root */
84d17192 3637 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3638 goto out4;
0d082601
EB
3639 /* make certain new is below the root */
3640 if (!is_path_reachable(new_mnt, new.dentry, &root))
3641 goto out4;
719ea2fb 3642 lock_mount_hash();
2763d119
AV
3643 umount_mnt(new_mnt);
3644 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3645 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3646 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3647 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3648 }
4ac91378 3649 /* mount old root on put_old */
84d17192 3650 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3651 /* mount new_root on / */
2763d119
AV
3652 attach_mnt(new_mnt, root_parent, root_mp);
3653 mnt_add_count(root_parent, -1);
6b3286ed 3654 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3655 /* A moved mount should not expire automatically */
3656 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3657 put_mountpoint(root_mp);
719ea2fb 3658 unlock_mount_hash();
2d8f3038 3659 chroot_fs_refs(&root, &new);
1da177e4 3660 error = 0;
b12cea91 3661out4:
84d17192 3662 unlock_mount(old_mp);
2763d119
AV
3663 if (!error)
3664 mntput_no_expire(ex_parent);
b12cea91 3665out3:
8c3ee42e 3666 path_put(&root);
b12cea91 3667out2:
2d8f3038 3668 path_put(&old);
1da177e4 3669out1:
2d8f3038 3670 path_put(&new);
1da177e4 3671out0:
1da177e4 3672 return error;
1da177e4
LT
3673}
3674
3675static void __init init_mount_tree(void)
3676{
3677 struct vfsmount *mnt;
74e83122 3678 struct mount *m;
6b3286ed 3679 struct mnt_namespace *ns;
ac748a09 3680 struct path root;
1da177e4 3681
fd3e007f 3682 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
3683 if (IS_ERR(mnt))
3684 panic("Can't create rootfs");
b3e19d92 3685
74e83122 3686 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3687 if (IS_ERR(ns))
1da177e4 3688 panic("Can't allocate initial namespace");
74e83122
AV
3689 m = real_mount(mnt);
3690 m->mnt_ns = ns;
3691 ns->root = m;
3692 ns->mounts = 1;
3693 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3694 init_task.nsproxy->mnt_ns = ns;
3695 get_mnt_ns(ns);
3696
be08d6d2
AV
3697 root.mnt = mnt;
3698 root.dentry = mnt->mnt_root;
da362b09 3699 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3700
3701 set_fs_pwd(current->fs, &root);
3702 set_fs_root(current->fs, &root);
1da177e4
LT
3703}
3704
74bf17cf 3705void __init mnt_init(void)
1da177e4 3706{
15a67dd8 3707 int err;
1da177e4 3708
7d6fec45 3709 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3710 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3711
0818bf27 3712 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3713 sizeof(struct hlist_head),
0818bf27 3714 mhash_entries, 19,
3d375d78 3715 HASH_ZERO,
0818bf27
AV
3716 &m_hash_shift, &m_hash_mask, 0, 0);
3717 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3718 sizeof(struct hlist_head),
3719 mphash_entries, 19,
3d375d78 3720 HASH_ZERO,
0818bf27 3721 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3722
84d17192 3723 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3724 panic("Failed to allocate mount hash table\n");
3725
4b93dc9b
TH
3726 kernfs_init();
3727
15a67dd8
RD
3728 err = sysfs_init();
3729 if (err)
3730 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3731 __func__, err);
00d26666
GKH
3732 fs_kobj = kobject_create_and_add("fs", NULL);
3733 if (!fs_kobj)
8e24eea7 3734 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 3735 shmem_init();
1da177e4
LT
3736 init_rootfs();
3737 init_mount_tree();
3738}
3739
616511d0 3740void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3741{
d498b25a 3742 if (!atomic_dec_and_test(&ns->count))
616511d0 3743 return;
7b00ed6f 3744 drop_collected_mounts(&ns->root->mnt);
771b1371 3745 free_mnt_ns(ns);
1da177e4 3746}
9d412a43 3747
d911b458 3748struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3749{
423e0ab0 3750 struct vfsmount *mnt;
d911b458 3751 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3752 if (!IS_ERR(mnt)) {
3753 /*
3754 * it is a longterm mount, don't release mnt until
3755 * we unmount before file sys is unregistered
3756 */
f7a99c5b 3757 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3758 }
3759 return mnt;
9d412a43 3760}
d911b458 3761EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3762
3763void kern_unmount(struct vfsmount *mnt)
3764{
3765 /* release long term mount so mount point can be released */
3766 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3767 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3768 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3769 mntput(mnt);
3770 }
3771}
3772EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3773
3774bool our_mnt(struct vfsmount *mnt)
3775{
143c8c91 3776 return check_mnt(real_mount(mnt));
02125a82 3777}
8823c079 3778
3151527e
EB
3779bool current_chrooted(void)
3780{
3781 /* Does the current process have a non-standard root */
3782 struct path ns_root;
3783 struct path fs_root;
3784 bool chrooted;
3785
3786 /* Find the namespace root */
3787 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3788 ns_root.dentry = ns_root.mnt->mnt_root;
3789 path_get(&ns_root);
3790 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3791 ;
3792
3793 get_fs_root(current->fs, &fs_root);
3794
3795 chrooted = !path_equal(&fs_root, &ns_root);
3796
3797 path_put(&fs_root);
3798 path_put(&ns_root);
3799
3800 return chrooted;
3801}
3802
132e4608
DH
3803static bool mnt_already_visible(struct mnt_namespace *ns,
3804 const struct super_block *sb,
8654df4e 3805 int *new_mnt_flags)
87a8ebd6 3806{
8c6cf9cc 3807 int new_flags = *new_mnt_flags;
87a8ebd6 3808 struct mount *mnt;
e51db735 3809 bool visible = false;
87a8ebd6 3810
44bb4385 3811 down_read(&namespace_sem);
87a8ebd6 3812 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3813 struct mount *child;
77b1a97d
EB
3814 int mnt_flags;
3815
132e4608 3816 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3817 continue;
3818
7e96c1b0
EB
3819 /* This mount is not fully visible if it's root directory
3820 * is not the root directory of the filesystem.
3821 */
3822 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3823 continue;
3824
a1935c17 3825 /* A local view of the mount flags */
77b1a97d 3826 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3827
695e9df0 3828 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3829 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3830 mnt_flags |= MNT_LOCK_READONLY;
3831
8c6cf9cc
EB
3832 /* Verify the mount flags are equal to or more permissive
3833 * than the proposed new mount.
3834 */
77b1a97d 3835 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3836 !(new_flags & MNT_READONLY))
3837 continue;
77b1a97d
EB
3838 if ((mnt_flags & MNT_LOCK_ATIME) &&
3839 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3840 continue;
3841
ceeb0e5d
EB
3842 /* This mount is not fully visible if there are any
3843 * locked child mounts that cover anything except for
3844 * empty directories.
e51db735
EB
3845 */
3846 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3847 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3848 /* Only worry about locked mounts */
d71ed6c9 3849 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3850 continue;
7236c85e
EB
3851 /* Is the directory permanetly empty? */
3852 if (!is_empty_dir_inode(inode))
e51db735 3853 goto next;
87a8ebd6 3854 }
8c6cf9cc 3855 /* Preserve the locked attributes */
77b1a97d 3856 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3857 MNT_LOCK_ATIME);
e51db735
EB
3858 visible = true;
3859 goto found;
3860 next: ;
87a8ebd6 3861 }
e51db735 3862found:
44bb4385 3863 up_read(&namespace_sem);
e51db735 3864 return visible;
87a8ebd6
EB
3865}
3866
132e4608 3867static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3868{
a1935c17 3869 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3870 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3871 unsigned long s_iflags;
3872
3873 if (ns->user_ns == &init_user_ns)
3874 return false;
3875
3876 /* Can this filesystem be too revealing? */
132e4608 3877 s_iflags = sb->s_iflags;
8654df4e
EB
3878 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3879 return false;
3880
a1935c17
EB
3881 if ((s_iflags & required_iflags) != required_iflags) {
3882 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3883 required_iflags);
3884 return true;
3885 }
3886
132e4608 3887 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3888}
3889
380cf5ba
AL
3890bool mnt_may_suid(struct vfsmount *mnt)
3891{
3892 /*
3893 * Foreign mounts (accessed via fchdir or through /proc
3894 * symlinks) are always treated as if they are nosuid. This
3895 * prevents namespaces from trusting potentially unsafe
3896 * suid/sgid bits, file caps, or security labels that originate
3897 * in other namespaces.
3898 */
3899 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3900 current_in_userns(mnt->mnt_sb->s_user_ns);
3901}
3902
64964528 3903static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3904{
58be2825 3905 struct ns_common *ns = NULL;
8823c079
EB
3906 struct nsproxy *nsproxy;
3907
728dba3a
EB
3908 task_lock(task);
3909 nsproxy = task->nsproxy;
8823c079 3910 if (nsproxy) {
58be2825
AV
3911 ns = &nsproxy->mnt_ns->ns;
3912 get_mnt_ns(to_mnt_ns(ns));
8823c079 3913 }
728dba3a 3914 task_unlock(task);
8823c079
EB
3915
3916 return ns;
3917}
3918
64964528 3919static void mntns_put(struct ns_common *ns)
8823c079 3920{
58be2825 3921 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3922}
3923
64964528 3924static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3925{
3926 struct fs_struct *fs = current->fs;
4f757f3c 3927 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3928 struct path root;
4f757f3c 3929 int err;
8823c079 3930
0c55cfc4 3931 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3932 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3933 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3934 return -EPERM;
8823c079 3935
74e83122
AV
3936 if (is_anon_ns(mnt_ns))
3937 return -EINVAL;
3938
8823c079
EB
3939 if (fs->users != 1)
3940 return -EINVAL;
3941
3942 get_mnt_ns(mnt_ns);
4f757f3c 3943 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3944 nsproxy->mnt_ns = mnt_ns;
3945
3946 /* Find the root */
4f757f3c
AV
3947 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3948 "/", LOOKUP_DOWN, &root);
3949 if (err) {
3950 /* revert to old namespace */
3951 nsproxy->mnt_ns = old_mnt_ns;
3952 put_mnt_ns(mnt_ns);
3953 return err;
3954 }
8823c079 3955
4068367c
AV
3956 put_mnt_ns(old_mnt_ns);
3957
8823c079
EB
3958 /* Update the pwd and root */
3959 set_fs_pwd(fs, &root);
3960 set_fs_root(fs, &root);
3961
3962 path_put(&root);
3963 return 0;
3964}
3965
bcac25a5
AV
3966static struct user_namespace *mntns_owner(struct ns_common *ns)
3967{
3968 return to_mnt_ns(ns)->user_ns;
3969}
3970
8823c079
EB
3971const struct proc_ns_operations mntns_operations = {
3972 .name = "mnt",
3973 .type = CLONE_NEWNS,
3974 .get = mntns_get,
3975 .put = mntns_put,
3976 .install = mntns_install,
bcac25a5 3977 .owner = mntns_owner,
8823c079 3978};