]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Remove longer map request
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
3b451610
AK
109/* map selector for map managment
110 */
111#define MAP_0 2
112#define MAP_1 4
113
cdddbdbc
DW
114/* RAID map configuration infos. */
115struct imsm_map {
116 __u32 pba_of_lba0; /* start address of partition */
117 __u32 blocks_per_member;/* blocks per member */
118 __u32 num_data_stripes; /* number of data stripes */
119 __u16 blocks_per_strip;
120 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
121#define IMSM_T_STATE_NORMAL 0
122#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
123#define IMSM_T_STATE_DEGRADED 2
124#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
125 __u8 raid_level;
126#define IMSM_T_RAID0 0
127#define IMSM_T_RAID1 1
128#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
129 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
130 __u8 num_domains; /* number of parity domains */
131 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 132 __u8 ddf;
cdddbdbc 133 __u32 filler[7]; /* expansion area */
7eef0453 134#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 135 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
136 * top byte contains some flags
137 */
cdddbdbc
DW
138} __attribute__ ((packed));
139
140struct imsm_vol {
f8f603f1 141 __u32 curr_migr_unit;
fe7ed8cb 142 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 143 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
144#define MIGR_INIT 0
145#define MIGR_REBUILD 1
146#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
147#define MIGR_GEN_MIGR 3
148#define MIGR_STATE_CHANGE 4
1484e727 149#define MIGR_REPAIR 5
cdddbdbc
DW
150 __u8 migr_type; /* Initializing, Rebuilding, ... */
151 __u8 dirty;
fe7ed8cb
DW
152 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
153 __u16 verify_errors; /* number of mismatches */
154 __u16 bad_blocks; /* number of bad blocks during verify */
155 __u32 filler[4];
cdddbdbc
DW
156 struct imsm_map map[1];
157 /* here comes another one if migr_state */
158} __attribute__ ((packed));
159
160struct imsm_dev {
fe7ed8cb 161 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
162 __u32 size_low;
163 __u32 size_high;
fe7ed8cb
DW
164#define DEV_BOOTABLE __cpu_to_le32(0x01)
165#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
166#define DEV_READ_COALESCING __cpu_to_le32(0x04)
167#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
168#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
169#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
170#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
171#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
172#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
173#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
174#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
175#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
176#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
177 __u32 status; /* Persistent RaidDev status */
178 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
179 __u8 migr_priority;
180 __u8 num_sub_vols;
181 __u8 tid;
182 __u8 cng_master_disk;
183 __u16 cache_policy;
184 __u8 cng_state;
185 __u8 cng_sub_state;
186#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
187 __u32 filler[IMSM_DEV_FILLERS];
188 struct imsm_vol vol;
189} __attribute__ ((packed));
190
191struct imsm_super {
192 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
193 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
194 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
195 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
196 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
197 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
198 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
199 __u8 num_disks; /* 0x38 Number of configured disks */
200 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
201 __u8 error_log_pos; /* 0x3A */
202 __u8 fill[1]; /* 0x3B */
203 __u32 cache_size; /* 0x3c - 0x40 in mb */
204 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
205 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
206 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
207#define IMSM_FILLERS 35
208 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
209 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
210 /* here comes imsm_dev[num_raid_devs] */
604b746f 211 /* here comes BBM logs */
cdddbdbc
DW
212} __attribute__ ((packed));
213
604b746f
JD
214#define BBM_LOG_MAX_ENTRIES 254
215
216struct bbm_log_entry {
217 __u64 defective_block_start;
218#define UNREADABLE 0xFFFFFFFF
219 __u32 spare_block_offset;
220 __u16 remapped_marked_count;
221 __u16 disk_ordinal;
222} __attribute__ ((__packed__));
223
224struct bbm_log {
225 __u32 signature; /* 0xABADB10C */
226 __u32 entry_count;
227 __u32 reserved_spare_block_count; /* 0 */
228 __u32 reserved; /* 0xFFFF */
229 __u64 first_spare_lba;
230 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
231} __attribute__ ((__packed__));
232
233
cdddbdbc
DW
234#ifndef MDASSEMBLE
235static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
236#endif
237
8e59f3d8
AK
238#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
239
240#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
241
242#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
243 * be recovered using srcMap */
244#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
245 * already been migrated and must
246 * be recovered from checkpoint area */
247struct migr_record {
248 __u32 rec_status; /* Status used to determine how to restart
249 * migration in case it aborts
250 * in some fashion */
251 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
252 __u32 family_num; /* Family number of MPB
253 * containing the RaidDev
254 * that is migrating */
255 __u32 ascending_migr; /* True if migrating in increasing
256 * order of lbas */
257 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
258 __u32 dest_depth_per_unit; /* Num member blocks each destMap
259 * member disk
260 * advances per unit-of-operation */
261 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
262 __u32 dest_1st_member_lba; /* First member lba on first
263 * stripe of destination */
264 __u32 num_migr_units; /* Total num migration units-of-op */
265 __u32 post_migr_vol_cap; /* Size of volume after
266 * migration completes */
267 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
268 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
269 * migration ckpt record was read from
270 * (for recovered migrations) */
271} __attribute__ ((__packed__));
272
1484e727
DW
273static __u8 migr_type(struct imsm_dev *dev)
274{
275 if (dev->vol.migr_type == MIGR_VERIFY &&
276 dev->status & DEV_VERIFY_AND_FIX)
277 return MIGR_REPAIR;
278 else
279 return dev->vol.migr_type;
280}
281
282static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
283{
284 /* for compatibility with older oroms convert MIGR_REPAIR, into
285 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
286 */
287 if (migr_type == MIGR_REPAIR) {
288 dev->vol.migr_type = MIGR_VERIFY;
289 dev->status |= DEV_VERIFY_AND_FIX;
290 } else {
291 dev->vol.migr_type = migr_type;
292 dev->status &= ~DEV_VERIFY_AND_FIX;
293 }
294}
295
87eb16df 296static unsigned int sector_count(__u32 bytes)
cdddbdbc 297{
87eb16df
DW
298 return ((bytes + (512-1)) & (~(512-1))) / 512;
299}
cdddbdbc 300
87eb16df
DW
301static unsigned int mpb_sectors(struct imsm_super *mpb)
302{
303 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
304}
305
ba2de7ba
DW
306struct intel_dev {
307 struct imsm_dev *dev;
308 struct intel_dev *next;
f21e18ca 309 unsigned index;
ba2de7ba
DW
310};
311
88654014
LM
312struct intel_hba {
313 enum sys_dev_type type;
314 char *path;
315 char *pci_id;
316 struct intel_hba *next;
317};
318
1a64be56
LM
319enum action {
320 DISK_REMOVE = 1,
321 DISK_ADD
322};
cdddbdbc
DW
323/* internal representation of IMSM metadata */
324struct intel_super {
325 union {
949c47a0
DW
326 void *buf; /* O_DIRECT buffer for reading/writing metadata */
327 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 328 };
8e59f3d8
AK
329 union {
330 void *migr_rec_buf; /* buffer for I/O operations */
331 struct migr_record *migr_rec; /* migration record */
332 };
949c47a0 333 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
334 void *next_buf; /* for realloc'ing buf from the manager */
335 size_t next_len;
c2c087e6 336 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 337 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 338 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 339 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 340 struct intel_dev *devlist;
cdddbdbc
DW
341 struct dl {
342 struct dl *next;
343 int index;
344 __u8 serial[MAX_RAID_SERIAL_LEN];
345 int major, minor;
346 char *devname;
b9f594fe 347 struct imsm_disk disk;
cdddbdbc 348 int fd;
0dcecb2e
DW
349 int extent_cnt;
350 struct extent *e; /* for determining freespace @ create */
efb30e7f 351 int raiddisk; /* slot to fill in autolayout */
1a64be56 352 enum action action;
ca0748fa 353 } *disks, *current_disk;
1a64be56
LM
354 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
355 active */
47ee5a45 356 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 357 struct bbm_log *bbm_log;
88654014 358 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 359 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
360 struct intel_super *next; /* (temp) list for disambiguating family_num */
361};
362
363struct intel_disk {
364 struct imsm_disk disk;
365 #define IMSM_UNKNOWN_OWNER (-1)
366 int owner;
367 struct intel_disk *next;
cdddbdbc
DW
368};
369
c2c087e6
DW
370struct extent {
371 unsigned long long start, size;
372};
373
694575e7
KW
374/* definitions of reshape process types */
375enum imsm_reshape_type {
376 CH_TAKEOVER,
b5347799 377 CH_MIGRATION,
694575e7
KW
378};
379
88758e9d
DW
380/* definition of messages passed to imsm_process_update */
381enum imsm_update_type {
382 update_activate_spare,
8273f55e 383 update_create_array,
33414a01 384 update_kill_array,
aa534678 385 update_rename_array,
1a64be56 386 update_add_remove_disk,
78b10e66 387 update_reshape_container_disks,
48c5303a 388 update_reshape_migration,
2d40f3a1
AK
389 update_takeover,
390 update_general_migration_checkpoint,
88758e9d
DW
391};
392
393struct imsm_update_activate_spare {
394 enum imsm_update_type type;
d23fe947 395 struct dl *dl;
88758e9d
DW
396 int slot;
397 int array;
398 struct imsm_update_activate_spare *next;
399};
400
78b10e66
N
401struct geo_params {
402 int dev_id;
403 char *dev_name;
404 long long size;
405 int level;
406 int layout;
407 int chunksize;
408 int raid_disks;
409};
410
bb025c2f
KW
411enum takeover_direction {
412 R10_TO_R0,
413 R0_TO_R10
414};
415struct imsm_update_takeover {
416 enum imsm_update_type type;
417 int subarray;
418 enum takeover_direction direction;
419};
78b10e66
N
420
421struct imsm_update_reshape {
422 enum imsm_update_type type;
423 int old_raid_disks;
424 int new_raid_disks;
48c5303a
PC
425
426 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
427};
428
429struct imsm_update_reshape_migration {
430 enum imsm_update_type type;
431 int old_raid_disks;
432 int new_raid_disks;
433 /* fields for array migration changes
434 */
435 int subdev;
436 int new_level;
437 int new_layout;
4bba0439 438 int new_chunksize;
48c5303a 439
d195167d 440 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
441};
442
2d40f3a1
AK
443struct imsm_update_general_migration_checkpoint {
444 enum imsm_update_type type;
445 __u32 curr_migr_unit;
446};
447
54c2c1ea
DW
448struct disk_info {
449 __u8 serial[MAX_RAID_SERIAL_LEN];
450};
451
8273f55e
DW
452struct imsm_update_create_array {
453 enum imsm_update_type type;
8273f55e 454 int dev_idx;
6a3e913e 455 struct imsm_dev dev;
8273f55e
DW
456};
457
33414a01
DW
458struct imsm_update_kill_array {
459 enum imsm_update_type type;
460 int dev_idx;
461};
462
aa534678
DW
463struct imsm_update_rename_array {
464 enum imsm_update_type type;
465 __u8 name[MAX_RAID_SERIAL_LEN];
466 int dev_idx;
467};
468
1a64be56 469struct imsm_update_add_remove_disk {
43dad3d6
DW
470 enum imsm_update_type type;
471};
472
88654014
LM
473
474static const char *_sys_dev_type[] = {
475 [SYS_DEV_UNKNOWN] = "Unknown",
476 [SYS_DEV_SAS] = "SAS",
477 [SYS_DEV_SATA] = "SATA"
478};
479
480const char *get_sys_dev_type(enum sys_dev_type type)
481{
482 if (type >= SYS_DEV_MAX)
483 type = SYS_DEV_UNKNOWN;
484
485 return _sys_dev_type[type];
486}
487
488static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
489{
490 struct intel_hba *result = malloc(sizeof(*result));
491 if (result) {
492 result->type = device->type;
493 result->path = strdup(device->path);
494 result->next = NULL;
495 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
496 result->pci_id++;
497 }
498 return result;
499}
500
501static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
502{
503 struct intel_hba *result=NULL;
504 for (result = hba; result; result = result->next) {
505 if (result->type == device->type && strcmp(result->path, device->path) == 0)
506 break;
507 }
508 return result;
509}
510
b4cf4cba 511static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
512{
513 struct intel_hba *hba;
514
515 /* check if disk attached to Intel HBA */
516 hba = find_intel_hba(super->hba, device);
517 if (hba != NULL)
518 return 1;
519 /* Check if HBA is already attached to super */
520 if (super->hba == NULL) {
521 super->hba = alloc_intel_hba(device);
522 return 1;
523 }
524
525 hba = super->hba;
526 /* Intel metadata allows for all disks attached to the same type HBA.
527 * Do not sypport odf HBA types mixing
528 */
529 if (device->type != hba->type)
530 return 2;
531
532 while (hba->next)
533 hba = hba->next;
534
535 hba->next = alloc_intel_hba(device);
536 return 1;
537}
538
539static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
540{
541 struct sys_dev *list, *elem, *prev;
542 char *disk_path;
543
544 if ((list = find_intel_devices()) == NULL)
545 return 0;
546
547 if (fd < 0)
548 disk_path = (char *) devname;
549 else
550 disk_path = diskfd_to_devpath(fd);
551
552 if (!disk_path) {
553 free_sys_dev(&list);
554 return 0;
555 }
556
557 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
558 if (path_attached_to_hba(disk_path, elem->path)) {
559 if (prev == NULL)
560 list = list->next;
561 else
562 prev->next = elem->next;
563 elem->next = NULL;
564 if (disk_path != devname)
565 free(disk_path);
566 free_sys_dev(&list);
567 return elem;
568 }
569 }
570 if (disk_path != devname)
571 free(disk_path);
572 free_sys_dev(&list);
573
574 return NULL;
575}
576
577
d424212e
N
578static int find_intel_hba_capability(int fd, struct intel_super *super,
579 char *devname);
f2f5c343 580
cdddbdbc
DW
581static struct supertype *match_metadata_desc_imsm(char *arg)
582{
583 struct supertype *st;
584
585 if (strcmp(arg, "imsm") != 0 &&
586 strcmp(arg, "default") != 0
587 )
588 return NULL;
589
590 st = malloc(sizeof(*st));
4e9d2186
AW
591 if (!st)
592 return NULL;
ef609477 593 memset(st, 0, sizeof(*st));
d1d599ea 594 st->container_dev = NoMdDev;
cdddbdbc
DW
595 st->ss = &super_imsm;
596 st->max_devs = IMSM_MAX_DEVICES;
597 st->minor_version = 0;
598 st->sb = NULL;
599 return st;
600}
601
0e600426 602#ifndef MDASSEMBLE
cdddbdbc
DW
603static __u8 *get_imsm_version(struct imsm_super *mpb)
604{
605 return &mpb->sig[MPB_SIG_LEN];
606}
9e2d750d 607#endif
cdddbdbc 608
949c47a0
DW
609/* retrieve a disk directly from the anchor when the anchor is known to be
610 * up-to-date, currently only at load time
611 */
612static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 613{
949c47a0 614 if (index >= mpb->num_disks)
cdddbdbc
DW
615 return NULL;
616 return &mpb->disk[index];
617}
618
95d07a2c
LM
619/* retrieve the disk description based on a index of the disk
620 * in the sub-array
621 */
622static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 623{
b9f594fe
DW
624 struct dl *d;
625
626 for (d = super->disks; d; d = d->next)
627 if (d->index == index)
95d07a2c
LM
628 return d;
629
630 return NULL;
631}
632/* retrieve a disk from the parsed metadata */
633static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
634{
635 struct dl *dl;
636
637 dl = get_imsm_dl_disk(super, index);
638 if (dl)
639 return &dl->disk;
640
b9f594fe 641 return NULL;
949c47a0
DW
642}
643
644/* generate a checksum directly from the anchor when the anchor is known to be
645 * up-to-date, currently only at load or write_super after coalescing
646 */
647static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
648{
649 __u32 end = mpb->mpb_size / sizeof(end);
650 __u32 *p = (__u32 *) mpb;
651 __u32 sum = 0;
652
97f734fd
N
653 while (end--) {
654 sum += __le32_to_cpu(*p);
655 p++;
656 }
cdddbdbc
DW
657
658 return sum - __le32_to_cpu(mpb->check_sum);
659}
660
a965f303
DW
661static size_t sizeof_imsm_map(struct imsm_map *map)
662{
663 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
664}
665
666struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 667{
5e7b0330
AK
668 /* A device can have 2 maps if it is in the middle of a migration.
669 * If second_map is:
04ed49b3
AK
670 * MAP_0 or 0 - we return the first map
671 * MAP_1 or 1 - we return the second map if it exists, else NULL
5e7b0330
AK
672 * -1 - we return the second map if it exists, else the first
673 */
a965f303 674 struct imsm_map *map = &dev->vol.map[0];
9535fc47 675 struct imsm_map *map2 = NULL;
a965f303 676
9535fc47
AK
677 if (dev->vol.migr_state)
678 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 679
9535fc47 680 switch (second_map) {
3b451610 681 case MAP_0:
9535fc47
AK
682 case 0:
683 break;
3b451610 684 case MAP_1:
9535fc47
AK
685 case 1:
686 map = map2;
687 break;
688 case -1:
689 if (map2)
690 map = map2;
691 break;
9535fc47
AK
692 default:
693 map = NULL;
694 }
695 return map;
5e7b0330 696
a965f303 697}
cdddbdbc 698
3393c6af
DW
699/* return the size of the device.
700 * migr_state increases the returned size if map[0] were to be duplicated
701 */
702static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
703{
704 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
705 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
706
707 /* migrating means an additional map */
a965f303
DW
708 if (dev->vol.migr_state)
709 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
710 else if (migr_state)
711 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
712
713 return size;
714}
715
54c2c1ea
DW
716#ifndef MDASSEMBLE
717/* retrieve disk serial number list from a metadata update */
718static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
719{
720 void *u = update;
721 struct disk_info *inf;
722
723 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
724 sizeof_imsm_dev(&update->dev, 0);
725
726 return inf;
727}
728#endif
729
949c47a0 730static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
731{
732 int offset;
733 int i;
734 void *_mpb = mpb;
735
949c47a0 736 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
737 return NULL;
738
739 /* devices start after all disks */
740 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
741
742 for (i = 0; i <= index; i++)
743 if (i == index)
744 return _mpb + offset;
745 else
3393c6af 746 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
747
748 return NULL;
749}
750
949c47a0
DW
751static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
752{
ba2de7ba
DW
753 struct intel_dev *dv;
754
949c47a0
DW
755 if (index >= super->anchor->num_raid_devs)
756 return NULL;
ba2de7ba
DW
757 for (dv = super->devlist; dv; dv = dv->next)
758 if (dv->index == index)
759 return dv->dev;
760 return NULL;
949c47a0
DW
761}
762
98130f40
AK
763/*
764 * for second_map:
765 * == 0 get first map
766 * == 1 get second map
767 * == -1 than get map according to the current migr_state
768 */
769static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
770 int slot,
771 int second_map)
7eef0453
DW
772{
773 struct imsm_map *map;
774
5e7b0330 775 map = get_imsm_map(dev, second_map);
7eef0453 776
ff077194
DW
777 /* top byte identifies disk under rebuild */
778 return __le32_to_cpu(map->disk_ord_tbl[slot]);
779}
780
781#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 782static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 783{
98130f40 784 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
785
786 return ord_to_idx(ord);
7eef0453
DW
787}
788
be73972f
DW
789static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
790{
791 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
792}
793
f21e18ca 794static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
795{
796 int slot;
797 __u32 ord;
798
799 for (slot = 0; slot < map->num_members; slot++) {
800 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
801 if (ord_to_idx(ord) == idx)
802 return slot;
803 }
804
805 return -1;
806}
807
cdddbdbc
DW
808static int get_imsm_raid_level(struct imsm_map *map)
809{
810 if (map->raid_level == 1) {
811 if (map->num_members == 2)
812 return 1;
813 else
814 return 10;
815 }
816
817 return map->raid_level;
818}
819
c2c087e6
DW
820static int cmp_extent(const void *av, const void *bv)
821{
822 const struct extent *a = av;
823 const struct extent *b = bv;
824 if (a->start < b->start)
825 return -1;
826 if (a->start > b->start)
827 return 1;
828 return 0;
829}
830
0dcecb2e 831static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 832{
c2c087e6 833 int memberships = 0;
620b1713 834 int i;
c2c087e6 835
949c47a0
DW
836 for (i = 0; i < super->anchor->num_raid_devs; i++) {
837 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 838 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 839
620b1713
DW
840 if (get_imsm_disk_slot(map, dl->index) >= 0)
841 memberships++;
c2c087e6 842 }
0dcecb2e
DW
843
844 return memberships;
845}
846
b81221b7
CA
847static __u32 imsm_min_reserved_sectors(struct intel_super *super);
848
0dcecb2e
DW
849static struct extent *get_extents(struct intel_super *super, struct dl *dl)
850{
851 /* find a list of used extents on the given physical device */
852 struct extent *rv, *e;
620b1713 853 int i;
0dcecb2e 854 int memberships = count_memberships(dl, super);
b276dd33
DW
855 __u32 reservation;
856
857 /* trim the reserved area for spares, so they can join any array
858 * regardless of whether the OROM has assigned sectors from the
859 * IMSM_RESERVED_SECTORS region
860 */
861 if (dl->index == -1)
b81221b7 862 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
863 else
864 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 865
c2c087e6
DW
866 rv = malloc(sizeof(struct extent) * (memberships + 1));
867 if (!rv)
868 return NULL;
869 e = rv;
870
949c47a0
DW
871 for (i = 0; i < super->anchor->num_raid_devs; i++) {
872 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 873 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 874
620b1713
DW
875 if (get_imsm_disk_slot(map, dl->index) >= 0) {
876 e->start = __le32_to_cpu(map->pba_of_lba0);
877 e->size = __le32_to_cpu(map->blocks_per_member);
878 e++;
c2c087e6
DW
879 }
880 }
881 qsort(rv, memberships, sizeof(*rv), cmp_extent);
882
14e8215b
DW
883 /* determine the start of the metadata
884 * when no raid devices are defined use the default
885 * ...otherwise allow the metadata to truncate the value
886 * as is the case with older versions of imsm
887 */
888 if (memberships) {
889 struct extent *last = &rv[memberships - 1];
890 __u32 remainder;
891
892 remainder = __le32_to_cpu(dl->disk.total_blocks) -
893 (last->start + last->size);
dda5855f
DW
894 /* round down to 1k block to satisfy precision of the kernel
895 * 'size' interface
896 */
897 remainder &= ~1UL;
898 /* make sure remainder is still sane */
f21e18ca 899 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 900 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
901 if (reservation > remainder)
902 reservation = remainder;
903 }
904 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
905 e->size = 0;
906 return rv;
907}
908
14e8215b
DW
909/* try to determine how much space is reserved for metadata from
910 * the last get_extents() entry, otherwise fallback to the
911 * default
912 */
913static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
914{
915 struct extent *e;
916 int i;
917 __u32 rv;
918
919 /* for spares just return a minimal reservation which will grow
920 * once the spare is picked up by an array
921 */
922 if (dl->index == -1)
923 return MPB_SECTOR_CNT;
924
925 e = get_extents(super, dl);
926 if (!e)
927 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
928
929 /* scroll to last entry */
930 for (i = 0; e[i].size; i++)
931 continue;
932
933 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
934
935 free(e);
936
937 return rv;
938}
939
25ed7e59
DW
940static int is_spare(struct imsm_disk *disk)
941{
942 return (disk->status & SPARE_DISK) == SPARE_DISK;
943}
944
945static int is_configured(struct imsm_disk *disk)
946{
947 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
948}
949
950static int is_failed(struct imsm_disk *disk)
951{
952 return (disk->status & FAILED_DISK) == FAILED_DISK;
953}
954
b81221b7
CA
955/* try to determine how much space is reserved for metadata from
956 * the last get_extents() entry on the smallest active disk,
957 * otherwise fallback to the default
958 */
959static __u32 imsm_min_reserved_sectors(struct intel_super *super)
960{
961 struct extent *e;
962 int i;
963 __u32 min_active, remainder;
964 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
965 struct dl *dl, *dl_min = NULL;
966
967 if (!super)
968 return rv;
969
970 min_active = 0;
971 for (dl = super->disks; dl; dl = dl->next) {
972 if (dl->index < 0)
973 continue;
974 if (dl->disk.total_blocks < min_active || min_active == 0) {
975 dl_min = dl;
976 min_active = dl->disk.total_blocks;
977 }
978 }
979 if (!dl_min)
980 return rv;
981
982 /* find last lba used by subarrays on the smallest active disk */
983 e = get_extents(super, dl_min);
984 if (!e)
985 return rv;
986 for (i = 0; e[i].size; i++)
987 continue;
988
989 remainder = min_active - e[i].start;
990 free(e);
991
992 /* to give priority to recovery we should not require full
993 IMSM_RESERVED_SECTORS from the spare */
994 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
995
996 /* if real reservation is smaller use that value */
997 return (remainder < rv) ? remainder : rv;
998}
999
80e7f8c3
AC
1000/* Return minimum size of a spare that can be used in this array*/
1001static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1002{
1003 struct intel_super *super = st->sb;
1004 struct dl *dl;
1005 struct extent *e;
1006 int i;
1007 unsigned long long rv = 0;
1008
1009 if (!super)
1010 return rv;
1011 /* find first active disk in array */
1012 dl = super->disks;
1013 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1014 dl = dl->next;
1015 if (!dl)
1016 return rv;
1017 /* find last lba used by subarrays */
1018 e = get_extents(super, dl);
1019 if (!e)
1020 return rv;
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023 if (i > 0)
1024 rv = e[i-1].start + e[i-1].size;
1025 free(e);
b81221b7 1026
80e7f8c3 1027 /* add the amount of space needed for metadata */
b81221b7
CA
1028 rv = rv + imsm_min_reserved_sectors(super);
1029
80e7f8c3
AC
1030 return rv * 512;
1031}
1032
d1e02575
AK
1033static int is_gen_migration(struct imsm_dev *dev);
1034
1799c9e8 1035#ifndef MDASSEMBLE
c47b0ff6
AK
1036static __u64 blocks_per_migr_unit(struct intel_super *super,
1037 struct imsm_dev *dev);
1e5c6983 1038
c47b0ff6
AK
1039static void print_imsm_dev(struct intel_super *super,
1040 struct imsm_dev *dev,
1041 char *uuid,
1042 int disk_idx)
cdddbdbc
DW
1043{
1044 __u64 sz;
0d80bb2f 1045 int slot, i;
a965f303 1046 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1047 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1048 __u32 ord;
cdddbdbc
DW
1049
1050 printf("\n");
1e7bc0ed 1051 printf("[%.16s]:\n", dev->volume);
44470971 1052 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1053 printf(" RAID Level : %d", get_imsm_raid_level(map));
1054 if (map2)
1055 printf(" <-- %d", get_imsm_raid_level(map2));
1056 printf("\n");
1057 printf(" Members : %d", map->num_members);
1058 if (map2)
1059 printf(" <-- %d", map2->num_members);
1060 printf("\n");
0d80bb2f
DW
1061 printf(" Slots : [");
1062 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1063 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1064 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1065 }
dd8bcb3b
AK
1066 printf("]");
1067 if (map2) {
1068 printf(" <-- [");
1069 for (i = 0; i < map2->num_members; i++) {
1070 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1071 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1072 }
1073 printf("]");
1074 }
1075 printf("\n");
7095bccb
AK
1076 printf(" Failed disk : ");
1077 if (map->failed_disk_num == 0xff)
1078 printf("none");
1079 else
1080 printf("%i", map->failed_disk_num);
1081 printf("\n");
620b1713
DW
1082 slot = get_imsm_disk_slot(map, disk_idx);
1083 if (slot >= 0) {
98130f40 1084 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1085 printf(" This Slot : %d%s\n", slot,
1086 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1087 } else
cdddbdbc
DW
1088 printf(" This Slot : ?\n");
1089 sz = __le32_to_cpu(dev->size_high);
1090 sz <<= 32;
1091 sz += __le32_to_cpu(dev->size_low);
1092 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1093 human_size(sz * 512));
1094 sz = __le32_to_cpu(map->blocks_per_member);
1095 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1096 human_size(sz * 512));
1097 printf(" Sector Offset : %u\n",
1098 __le32_to_cpu(map->pba_of_lba0));
1099 printf(" Num Stripes : %u\n",
1100 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1101 printf(" Chunk Size : %u KiB",
cdddbdbc 1102 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1103 if (map2)
1104 printf(" <-- %u KiB",
1105 __le16_to_cpu(map2->blocks_per_strip) / 2);
1106 printf("\n");
cdddbdbc 1107 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1108 printf(" Migrate State : ");
1484e727
DW
1109 if (dev->vol.migr_state) {
1110 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1111 printf("initialize\n");
1484e727 1112 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1113 printf("rebuild\n");
1484e727 1114 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1115 printf("check\n");
1484e727 1116 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1117 printf("general migration\n");
1484e727 1118 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1119 printf("state change\n");
1484e727 1120 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1121 printf("repair\n");
1484e727 1122 else
8655a7b1
DW
1123 printf("<unknown:%d>\n", migr_type(dev));
1124 } else
1125 printf("idle\n");
3393c6af
DW
1126 printf(" Map State : %s", map_state_str[map->map_state]);
1127 if (dev->vol.migr_state) {
1128 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1129
b10b37b8 1130 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1131 printf("\n Checkpoint : %u ",
1132 __le32_to_cpu(dev->vol.curr_migr_unit));
1133 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1134 printf("(N/A)");
1135 else
1136 printf("(%llu)", (unsigned long long)
1137 blocks_per_migr_unit(super, dev));
3393c6af
DW
1138 }
1139 printf("\n");
cdddbdbc 1140 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1141}
1142
0ec1f4e8 1143static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1144{
1f24f035 1145 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1146 __u64 sz;
1147
0ec1f4e8 1148 if (index < -1 || !disk)
e9d82038
DW
1149 return;
1150
cdddbdbc 1151 printf("\n");
1f24f035 1152 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1153 if (index >= 0)
1154 printf(" Disk%02d Serial : %s\n", index, str);
1155 else
1156 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1157 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1158 is_configured(disk) ? " active" : "",
1159 is_failed(disk) ? " failed" : "");
cdddbdbc 1160 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1161 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1162 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1163 human_size(sz * 512));
1164}
1165
520e69e2
AK
1166void examine_migr_rec_imsm(struct intel_super *super)
1167{
1168 struct migr_record *migr_rec = super->migr_rec;
1169 struct imsm_super *mpb = super->anchor;
1170 int i;
1171
1172 for (i = 0; i < mpb->num_raid_devs; i++) {
1173 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1174 if (is_gen_migration(dev) == 0)
1175 continue;
1176
1177 printf("\nMigration Record Information:");
1178 if (super->disks->index > 1) {
1179 printf(" Empty\n ");
1180 printf("Examine one of first two disks in array\n");
1181 break;
1182 }
1183 printf("\n Status : ");
1184 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1185 printf("Normal\n");
1186 else
1187 printf("Contains Data\n");
1188 printf(" Current Unit : %u\n",
1189 __le32_to_cpu(migr_rec->curr_migr_unit));
1190 printf(" Family : %u\n",
1191 __le32_to_cpu(migr_rec->family_num));
1192 printf(" Ascending : %u\n",
1193 __le32_to_cpu(migr_rec->ascending_migr));
1194 printf(" Blocks Per Unit : %u\n",
1195 __le32_to_cpu(migr_rec->blocks_per_unit));
1196 printf(" Dest. Depth Per Unit : %u\n",
1197 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1198 printf(" Checkpoint Area pba : %u\n",
1199 __le32_to_cpu(migr_rec->ckpt_area_pba));
1200 printf(" First member lba : %u\n",
1201 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1202 printf(" Total Number of Units : %u\n",
1203 __le32_to_cpu(migr_rec->num_migr_units));
1204 printf(" Size of volume : %u\n",
1205 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1206 printf(" Expansion space for LBA64 : %u\n",
1207 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1208 printf(" Record was read from : %u\n",
1209 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1210
1211 break;
1212 }
1213}
9e2d750d 1214#endif /* MDASSEMBLE */
19482bcc
AK
1215/*******************************************************************************
1216 * function: imsm_check_attributes
1217 * Description: Function checks if features represented by attributes flags
1218 * are supported by mdadm.
1219 * Parameters:
1220 * attributes - Attributes read from metadata
1221 * Returns:
1222 * 0 - passed attributes contains unsupported features flags
1223 * 1 - all features are supported
1224 ******************************************************************************/
1225static int imsm_check_attributes(__u32 attributes)
1226{
1227 int ret_val = 1;
418f9b36
N
1228 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1229
1230 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1231
1232 not_supported &= attributes;
1233 if (not_supported) {
418f9b36
N
1234 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1235 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1236 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1237 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1238 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1239 }
1240 if (not_supported & MPB_ATTRIB_2TB) {
1241 dprintf("\t\tMPB_ATTRIB_2TB\n");
1242 not_supported ^= MPB_ATTRIB_2TB;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAID0) {
1245 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1246 not_supported ^= MPB_ATTRIB_RAID0;
1247 }
1248 if (not_supported & MPB_ATTRIB_RAID1) {
1249 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1250 not_supported ^= MPB_ATTRIB_RAID1;
1251 }
1252 if (not_supported & MPB_ATTRIB_RAID10) {
1253 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1254 not_supported ^= MPB_ATTRIB_RAID10;
1255 }
1256 if (not_supported & MPB_ATTRIB_RAID1E) {
1257 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1258 not_supported ^= MPB_ATTRIB_RAID1E;
1259 }
1260 if (not_supported & MPB_ATTRIB_RAID5) {
1261 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1262 not_supported ^= MPB_ATTRIB_RAID5;
1263 }
1264 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1265 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1266 not_supported ^= MPB_ATTRIB_RAIDCNG;
1267 }
1268 if (not_supported & MPB_ATTRIB_BBM) {
1269 dprintf("\t\tMPB_ATTRIB_BBM\n");
1270 not_supported ^= MPB_ATTRIB_BBM;
1271 }
1272 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1273 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1274 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1275 }
1276 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1277 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1278 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1279 }
1280 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1281 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1282 not_supported ^= MPB_ATTRIB_2TB_DISK;
1283 }
1284 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1285 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1286 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1287 }
1288 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1289 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1290 not_supported ^= MPB_ATTRIB_NEVER_USE;
1291 }
1292
1293 if (not_supported)
1294 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1295
1296 ret_val = 0;
1297 }
1298
1299 return ret_val;
1300}
1301
9e2d750d 1302#ifndef MDASSEMBLE
a5d85af7 1303static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1304
cdddbdbc
DW
1305static void examine_super_imsm(struct supertype *st, char *homehost)
1306{
1307 struct intel_super *super = st->sb;
949c47a0 1308 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1309 char str[MAX_SIGNATURE_LENGTH];
1310 int i;
27fd6274
DW
1311 struct mdinfo info;
1312 char nbuf[64];
cdddbdbc 1313 __u32 sum;
14e8215b 1314 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1315 struct dl *dl;
27fd6274 1316
cdddbdbc
DW
1317 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1318 printf(" Magic : %s\n", str);
1319 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1320 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1321 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1322 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1323 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1324 printf(" Attributes : ");
1325 if (imsm_check_attributes(mpb->attributes))
1326 printf("All supported\n");
1327 else
1328 printf("not supported\n");
a5d85af7 1329 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1330 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1331 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1332 sum = __le32_to_cpu(mpb->check_sum);
1333 printf(" Checksum : %08x %s\n", sum,
949c47a0 1334 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1335 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1336 printf(" Disks : %d\n", mpb->num_disks);
1337 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1338 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1339 if (super->bbm_log) {
1340 struct bbm_log *log = super->bbm_log;
1341
1342 printf("\n");
1343 printf("Bad Block Management Log:\n");
1344 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1345 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1346 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1347 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1348 printf(" First Spare : %llx\n",
1349 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1350 }
44470971
DW
1351 for (i = 0; i < mpb->num_raid_devs; i++) {
1352 struct mdinfo info;
1353 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1354
1355 super->current_vol = i;
a5d85af7 1356 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1357 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1358 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1359 }
cdddbdbc
DW
1360 for (i = 0; i < mpb->num_disks; i++) {
1361 if (i == super->disks->index)
1362 continue;
0ec1f4e8 1363 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1364 }
94827db3 1365
0ec1f4e8
DW
1366 for (dl = super->disks; dl; dl = dl->next)
1367 if (dl->index == -1)
1368 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1369
1370 examine_migr_rec_imsm(super);
cdddbdbc
DW
1371}
1372
061f2c6a 1373static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1374{
27fd6274 1375 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1376 struct mdinfo info;
1377 char nbuf[64];
1e7bc0ed 1378 struct intel_super *super = st->sb;
1e7bc0ed 1379
0d5a423f
DW
1380 if (!super->anchor->num_raid_devs) {
1381 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1382 return;
0d5a423f 1383 }
ff54de6e 1384
a5d85af7 1385 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1386 fname_from_uuid(st, &info, nbuf, ':');
1387 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1388}
1389
1390static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1391{
1392 /* We just write a generic IMSM ARRAY entry */
1393 struct mdinfo info;
1394 char nbuf[64];
1395 char nbuf1[64];
1396 struct intel_super *super = st->sb;
1397 int i;
1398
1399 if (!super->anchor->num_raid_devs)
1400 return;
1401
a5d85af7 1402 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1403 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1405 struct imsm_dev *dev = get_imsm_dev(super, i);
1406
1407 super->current_vol = i;
a5d85af7 1408 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1409 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1410 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1411 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1412 }
cdddbdbc
DW
1413}
1414
9d84c8ea
DW
1415static void export_examine_super_imsm(struct supertype *st)
1416{
1417 struct intel_super *super = st->sb;
1418 struct imsm_super *mpb = super->anchor;
1419 struct mdinfo info;
1420 char nbuf[64];
1421
a5d85af7 1422 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1423 fname_from_uuid(st, &info, nbuf, ':');
1424 printf("MD_METADATA=imsm\n");
1425 printf("MD_LEVEL=container\n");
1426 printf("MD_UUID=%s\n", nbuf+5);
1427 printf("MD_DEVICES=%u\n", mpb->num_disks);
1428}
1429
cdddbdbc
DW
1430static void detail_super_imsm(struct supertype *st, char *homehost)
1431{
3ebe00a1
DW
1432 struct mdinfo info;
1433 char nbuf[64];
1434
a5d85af7 1435 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1436 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1437 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1438}
1439
1440static void brief_detail_super_imsm(struct supertype *st)
1441{
ff54de6e
N
1442 struct mdinfo info;
1443 char nbuf[64];
a5d85af7 1444 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1445 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1446 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1447}
d665cc31
DW
1448
1449static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1450static void fd2devname(int fd, char *name);
1451
120dc887 1452static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1453{
120dc887
LM
1454 /* dump an unsorted list of devices attached to AHCI Intel storage
1455 * controller, as well as non-connected ports
d665cc31
DW
1456 */
1457 int hba_len = strlen(hba_path) + 1;
1458 struct dirent *ent;
1459 DIR *dir;
1460 char *path = NULL;
1461 int err = 0;
1462 unsigned long port_mask = (1 << port_count) - 1;
1463
f21e18ca 1464 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1465 if (verbose)
1466 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1467 return 2;
1468 }
1469
1470 /* scroll through /sys/dev/block looking for devices attached to
1471 * this hba
1472 */
1473 dir = opendir("/sys/dev/block");
1474 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1475 int fd;
1476 char model[64];
1477 char vendor[64];
1478 char buf[1024];
1479 int major, minor;
1480 char *device;
1481 char *c;
1482 int port;
1483 int type;
1484
1485 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1486 continue;
1487 path = devt_to_devpath(makedev(major, minor));
1488 if (!path)
1489 continue;
1490 if (!path_attached_to_hba(path, hba_path)) {
1491 free(path);
1492 path = NULL;
1493 continue;
1494 }
1495
1496 /* retrieve the scsi device type */
1497 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1498 if (verbose)
1499 fprintf(stderr, Name ": failed to allocate 'device'\n");
1500 err = 2;
1501 break;
1502 }
1503 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1504 if (load_sys(device, buf) != 0) {
1505 if (verbose)
1506 fprintf(stderr, Name ": failed to read device type for %s\n",
1507 path);
1508 err = 2;
1509 free(device);
1510 break;
1511 }
1512 type = strtoul(buf, NULL, 10);
1513
1514 /* if it's not a disk print the vendor and model */
1515 if (!(type == 0 || type == 7 || type == 14)) {
1516 vendor[0] = '\0';
1517 model[0] = '\0';
1518 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1519 if (load_sys(device, buf) == 0) {
1520 strncpy(vendor, buf, sizeof(vendor));
1521 vendor[sizeof(vendor) - 1] = '\0';
1522 c = (char *) &vendor[sizeof(vendor) - 1];
1523 while (isspace(*c) || *c == '\0')
1524 *c-- = '\0';
1525
1526 }
1527 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1528 if (load_sys(device, buf) == 0) {
1529 strncpy(model, buf, sizeof(model));
1530 model[sizeof(model) - 1] = '\0';
1531 c = (char *) &model[sizeof(model) - 1];
1532 while (isspace(*c) || *c == '\0')
1533 *c-- = '\0';
1534 }
1535
1536 if (vendor[0] && model[0])
1537 sprintf(buf, "%.64s %.64s", vendor, model);
1538 else
1539 switch (type) { /* numbers from hald/linux/device.c */
1540 case 1: sprintf(buf, "tape"); break;
1541 case 2: sprintf(buf, "printer"); break;
1542 case 3: sprintf(buf, "processor"); break;
1543 case 4:
1544 case 5: sprintf(buf, "cdrom"); break;
1545 case 6: sprintf(buf, "scanner"); break;
1546 case 8: sprintf(buf, "media_changer"); break;
1547 case 9: sprintf(buf, "comm"); break;
1548 case 12: sprintf(buf, "raid"); break;
1549 default: sprintf(buf, "unknown");
1550 }
1551 } else
1552 buf[0] = '\0';
1553 free(device);
1554
1555 /* chop device path to 'host%d' and calculate the port number */
1556 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1557 if (!c) {
1558 if (verbose)
1559 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1560 err = 2;
1561 break;
1562 }
d665cc31
DW
1563 *c = '\0';
1564 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1565 port -= host_base;
1566 else {
1567 if (verbose) {
1568 *c = '/'; /* repair the full string */
1569 fprintf(stderr, Name ": failed to determine port number for %s\n",
1570 path);
1571 }
1572 err = 2;
1573 break;
1574 }
1575
1576 /* mark this port as used */
1577 port_mask &= ~(1 << port);
1578
1579 /* print out the device information */
1580 if (buf[0]) {
1581 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1582 continue;
1583 }
1584
1585 fd = dev_open(ent->d_name, O_RDONLY);
1586 if (fd < 0)
1587 printf(" Port%d : - disk info unavailable -\n", port);
1588 else {
1589 fd2devname(fd, buf);
1590 printf(" Port%d : %s", port, buf);
1591 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1592 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1593 else
664d5325 1594 printf(" ()\n");
4dab422a 1595 close(fd);
d665cc31 1596 }
d665cc31
DW
1597 free(path);
1598 path = NULL;
1599 }
1600 if (path)
1601 free(path);
1602 if (dir)
1603 closedir(dir);
1604 if (err == 0) {
1605 int i;
1606
1607 for (i = 0; i < port_count; i++)
1608 if (port_mask & (1 << i))
1609 printf(" Port%d : - no device attached -\n", i);
1610 }
1611
1612 return err;
1613}
1614
120dc887
LM
1615static void print_found_intel_controllers(struct sys_dev *elem)
1616{
1617 for (; elem; elem = elem->next) {
1618 fprintf(stderr, Name ": found Intel(R) ");
1619 if (elem->type == SYS_DEV_SATA)
1620 fprintf(stderr, "SATA ");
155cbb4c
LM
1621 else if (elem->type == SYS_DEV_SAS)
1622 fprintf(stderr, "SAS ");
120dc887
LM
1623 fprintf(stderr, "RAID controller");
1624 if (elem->pci_id)
1625 fprintf(stderr, " at %s", elem->pci_id);
1626 fprintf(stderr, ".\n");
1627 }
1628 fflush(stderr);
1629}
1630
120dc887
LM
1631static int ahci_get_port_count(const char *hba_path, int *port_count)
1632{
1633 struct dirent *ent;
1634 DIR *dir;
1635 int host_base = -1;
1636
1637 *port_count = 0;
1638 if ((dir = opendir(hba_path)) == NULL)
1639 return -1;
1640
1641 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1642 int host;
1643
1644 if (sscanf(ent->d_name, "host%d", &host) != 1)
1645 continue;
1646 if (*port_count == 0)
1647 host_base = host;
1648 else if (host < host_base)
1649 host_base = host;
1650
1651 if (host + 1 > *port_count + host_base)
1652 *port_count = host + 1 - host_base;
1653 }
1654 closedir(dir);
1655 return host_base;
1656}
1657
a891a3c2
LM
1658static void print_imsm_capability(const struct imsm_orom *orom)
1659{
1660 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1661 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1662 orom->hotfix_ver, orom->build);
1663 printf(" RAID Levels :%s%s%s%s%s\n",
1664 imsm_orom_has_raid0(orom) ? " raid0" : "",
1665 imsm_orom_has_raid1(orom) ? " raid1" : "",
1666 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1667 imsm_orom_has_raid10(orom) ? " raid10" : "",
1668 imsm_orom_has_raid5(orom) ? " raid5" : "");
1669 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1670 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1671 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1672 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1673 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1674 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1675 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1676 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1677 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1678 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1679 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1680 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1681 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1682 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1683 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1684 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1685 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1686 printf(" Max Disks : %d\n", orom->tds);
1687 printf(" Max Volumes : %d\n", orom->vpa);
1688 return;
1689}
1690
5615172f 1691static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1692{
1693 /* There are two components to imsm platform support, the ahci SATA
1694 * controller and the option-rom. To find the SATA controller we
1695 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1696 * controller with the Intel vendor id is present. This approach
1697 * allows mdadm to leverage the kernel's ahci detection logic, with the
1698 * caveat that if ahci.ko is not loaded mdadm will not be able to
1699 * detect platform raid capabilities. The option-rom resides in a
1700 * platform "Adapter ROM". We scan for its signature to retrieve the
1701 * platform capabilities. If raid support is disabled in the BIOS the
1702 * option-rom capability structure will not be available.
1703 */
1704 const struct imsm_orom *orom;
1705 struct sys_dev *list, *hba;
d665cc31
DW
1706 int host_base = 0;
1707 int port_count = 0;
120dc887 1708 int result=0;
d665cc31 1709
5615172f 1710 if (enumerate_only) {
a891a3c2 1711 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1712 return 0;
a891a3c2
LM
1713 list = find_intel_devices();
1714 if (!list)
1715 return 2;
1716 for (hba = list; hba; hba = hba->next) {
1717 orom = find_imsm_capability(hba->type);
1718 if (!orom) {
1719 result = 2;
1720 break;
1721 }
1722 }
1723 free_sys_dev(&list);
1724 return result;
5615172f
DW
1725 }
1726
155cbb4c
LM
1727 list = find_intel_devices();
1728 if (!list) {
d665cc31 1729 if (verbose)
155cbb4c
LM
1730 fprintf(stderr, Name ": no active Intel(R) RAID "
1731 "controller found.\n");
d665cc31
DW
1732 free_sys_dev(&list);
1733 return 2;
1734 } else if (verbose)
155cbb4c 1735 print_found_intel_controllers(list);
d665cc31 1736
a891a3c2
LM
1737 for (hba = list; hba; hba = hba->next) {
1738 orom = find_imsm_capability(hba->type);
1739 if (!orom)
1740 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1741 hba->path, get_sys_dev_type(hba->type));
1742 else
1743 print_imsm_capability(orom);
d665cc31
DW
1744 }
1745
120dc887
LM
1746 for (hba = list; hba; hba = hba->next) {
1747 printf(" I/O Controller : %s (%s)\n",
1748 hba->path, get_sys_dev_type(hba->type));
d665cc31 1749
120dc887
LM
1750 if (hba->type == SYS_DEV_SATA) {
1751 host_base = ahci_get_port_count(hba->path, &port_count);
1752 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1753 if (verbose)
1754 fprintf(stderr, Name ": failed to enumerate "
1755 "ports on SATA controller at %s.", hba->pci_id);
1756 result |= 2;
1757 }
1758 }
d665cc31 1759 }
155cbb4c 1760
120dc887
LM
1761 free_sys_dev(&list);
1762 return result;
d665cc31 1763}
cdddbdbc
DW
1764#endif
1765
1766static int match_home_imsm(struct supertype *st, char *homehost)
1767{
5115ca67
DW
1768 /* the imsm metadata format does not specify any host
1769 * identification information. We return -1 since we can never
1770 * confirm nor deny whether a given array is "meant" for this
148acb7b 1771 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1772 * exclude member disks that do not belong, and we rely on
1773 * mdadm.conf to specify the arrays that should be assembled.
1774 * Auto-assembly may still pick up "foreign" arrays.
1775 */
cdddbdbc 1776
9362c1c8 1777 return -1;
cdddbdbc
DW
1778}
1779
1780static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1781{
51006d85
N
1782 /* The uuid returned here is used for:
1783 * uuid to put into bitmap file (Create, Grow)
1784 * uuid for backup header when saving critical section (Grow)
1785 * comparing uuids when re-adding a device into an array
1786 * In these cases the uuid required is that of the data-array,
1787 * not the device-set.
1788 * uuid to recognise same set when adding a missing device back
1789 * to an array. This is a uuid for the device-set.
1790 *
1791 * For each of these we can make do with a truncated
1792 * or hashed uuid rather than the original, as long as
1793 * everyone agrees.
1794 * In each case the uuid required is that of the data-array,
1795 * not the device-set.
43dad3d6 1796 */
51006d85
N
1797 /* imsm does not track uuid's so we synthesis one using sha1 on
1798 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1799 * - the orig_family_num of the container
51006d85
N
1800 * - the index number of the volume
1801 * - the 'serial' number of the volume.
1802 * Hopefully these are all constant.
1803 */
1804 struct intel_super *super = st->sb;
43dad3d6 1805
51006d85
N
1806 char buf[20];
1807 struct sha1_ctx ctx;
1808 struct imsm_dev *dev = NULL;
148acb7b 1809 __u32 family_num;
51006d85 1810
148acb7b
DW
1811 /* some mdadm versions failed to set ->orig_family_num, in which
1812 * case fall back to ->family_num. orig_family_num will be
1813 * fixed up with the first metadata update.
1814 */
1815 family_num = super->anchor->orig_family_num;
1816 if (family_num == 0)
1817 family_num = super->anchor->family_num;
51006d85 1818 sha1_init_ctx(&ctx);
92bd8f8d 1819 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1820 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1821 if (super->current_vol >= 0)
1822 dev = get_imsm_dev(super, super->current_vol);
1823 if (dev) {
1824 __u32 vol = super->current_vol;
1825 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1826 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1827 }
1828 sha1_finish_ctx(&ctx, buf);
1829 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1830}
1831
0d481d37 1832#if 0
4f5bc454
DW
1833static void
1834get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1835{
cdddbdbc
DW
1836 __u8 *v = get_imsm_version(mpb);
1837 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1838 char major[] = { 0, 0, 0 };
1839 char minor[] = { 0 ,0, 0 };
1840 char patch[] = { 0, 0, 0 };
1841 char *ver_parse[] = { major, minor, patch };
1842 int i, j;
1843
1844 i = j = 0;
1845 while (*v != '\0' && v < end) {
1846 if (*v != '.' && j < 2)
1847 ver_parse[i][j++] = *v;
1848 else {
1849 i++;
1850 j = 0;
1851 }
1852 v++;
1853 }
1854
4f5bc454
DW
1855 *m = strtol(minor, NULL, 0);
1856 *p = strtol(patch, NULL, 0);
1857}
0d481d37 1858#endif
4f5bc454 1859
1e5c6983
DW
1860static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1861{
1862 /* migr_strip_size when repairing or initializing parity */
1863 struct imsm_map *map = get_imsm_map(dev, 0);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 5:
1868 case 10:
1869 return chunk;
1870 default:
1871 return 128*1024 >> 9;
1872 }
1873}
1874
1875static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1876{
1877 /* migr_strip_size when rebuilding a degraded disk, no idea why
1878 * this is different than migr_strip_size_resync(), but it's good
1879 * to be compatible
1880 */
1881 struct imsm_map *map = get_imsm_map(dev, 1);
1882 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1883
1884 switch (get_imsm_raid_level(map)) {
1885 case 1:
1886 case 10:
1887 if (map->num_members % map->num_domains == 0)
1888 return 128*1024 >> 9;
1889 else
1890 return chunk;
1891 case 5:
1892 return max((__u32) 64*1024 >> 9, chunk);
1893 default:
1894 return 128*1024 >> 9;
1895 }
1896}
1897
1898static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1899{
1900 struct imsm_map *lo = get_imsm_map(dev, 0);
1901 struct imsm_map *hi = get_imsm_map(dev, 1);
1902 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1903 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1904
1905 return max((__u32) 1, hi_chunk / lo_chunk);
1906}
1907
1908static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1909{
1910 struct imsm_map *lo = get_imsm_map(dev, 0);
1911 int level = get_imsm_raid_level(lo);
1912
1913 if (level == 1 || level == 10) {
1914 struct imsm_map *hi = get_imsm_map(dev, 1);
1915
1916 return hi->num_domains;
1917 } else
1918 return num_stripes_per_unit_resync(dev);
1919}
1920
98130f40 1921static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1922{
1923 /* named 'imsm_' because raid0, raid1 and raid10
1924 * counter-intuitively have the same number of data disks
1925 */
98130f40 1926 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1927
1928 switch (get_imsm_raid_level(map)) {
1929 case 0:
1930 case 1:
1931 case 10:
1932 return map->num_members;
1933 case 5:
1934 return map->num_members - 1;
1935 default:
1936 dprintf("%s: unsupported raid level\n", __func__);
1937 return 0;
1938 }
1939}
1940
1941static __u32 parity_segment_depth(struct imsm_dev *dev)
1942{
1943 struct imsm_map *map = get_imsm_map(dev, 0);
1944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1945
1946 switch(get_imsm_raid_level(map)) {
1947 case 1:
1948 case 10:
1949 return chunk * map->num_domains;
1950 case 5:
1951 return chunk * map->num_members;
1952 default:
1953 return chunk;
1954 }
1955}
1956
1957static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1958{
1959 struct imsm_map *map = get_imsm_map(dev, 1);
1960 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1961 __u32 strip = block / chunk;
1962
1963 switch (get_imsm_raid_level(map)) {
1964 case 1:
1965 case 10: {
1966 __u32 vol_strip = (strip * map->num_domains) + 1;
1967 __u32 vol_stripe = vol_strip / map->num_members;
1968
1969 return vol_stripe * chunk + block % chunk;
1970 } case 5: {
1971 __u32 stripe = strip / (map->num_members - 1);
1972
1973 return stripe * chunk + block % chunk;
1974 }
1975 default:
1976 return 0;
1977 }
1978}
1979
c47b0ff6
AK
1980static __u64 blocks_per_migr_unit(struct intel_super *super,
1981 struct imsm_dev *dev)
1e5c6983
DW
1982{
1983 /* calculate the conversion factor between per member 'blocks'
1984 * (md/{resync,rebuild}_start) and imsm migration units, return
1985 * 0 for the 'not migrating' and 'unsupported migration' cases
1986 */
1987 if (!dev->vol.migr_state)
1988 return 0;
1989
1990 switch (migr_type(dev)) {
c47b0ff6
AK
1991 case MIGR_GEN_MIGR: {
1992 struct migr_record *migr_rec = super->migr_rec;
1993 return __le32_to_cpu(migr_rec->blocks_per_unit);
1994 }
1e5c6983
DW
1995 case MIGR_VERIFY:
1996 case MIGR_REPAIR:
1997 case MIGR_INIT: {
1998 struct imsm_map *map = get_imsm_map(dev, 0);
1999 __u32 stripes_per_unit;
2000 __u32 blocks_per_unit;
2001 __u32 parity_depth;
2002 __u32 migr_chunk;
2003 __u32 block_map;
2004 __u32 block_rel;
2005 __u32 segment;
2006 __u32 stripe;
2007 __u8 disks;
2008
2009 /* yes, this is really the translation of migr_units to
2010 * per-member blocks in the 'resync' case
2011 */
2012 stripes_per_unit = num_stripes_per_unit_resync(dev);
2013 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 2014 disks = imsm_num_data_members(dev, 0);
1e5c6983 2015 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2016 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2017 segment = blocks_per_unit / stripe;
2018 block_rel = blocks_per_unit - segment * stripe;
2019 parity_depth = parity_segment_depth(dev);
2020 block_map = map_migr_block(dev, block_rel);
2021 return block_map + parity_depth * segment;
2022 }
2023 case MIGR_REBUILD: {
2024 __u32 stripes_per_unit;
2025 __u32 migr_chunk;
2026
2027 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2028 migr_chunk = migr_strip_blocks_rebuild(dev);
2029 return migr_chunk * stripes_per_unit;
2030 }
1e5c6983
DW
2031 case MIGR_STATE_CHANGE:
2032 default:
2033 return 0;
2034 }
2035}
2036
c2c087e6
DW
2037static int imsm_level_to_layout(int level)
2038{
2039 switch (level) {
2040 case 0:
2041 case 1:
2042 return 0;
2043 case 5:
2044 case 6:
a380c027 2045 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2046 case 10:
c92a2527 2047 return 0x102;
c2c087e6 2048 }
a18a888e 2049 return UnSet;
c2c087e6
DW
2050}
2051
8e59f3d8
AK
2052/*******************************************************************************
2053 * Function: read_imsm_migr_rec
2054 * Description: Function reads imsm migration record from last sector of disk
2055 * Parameters:
2056 * fd : disk descriptor
2057 * super : metadata info
2058 * Returns:
2059 * 0 : success,
2060 * -1 : fail
2061 ******************************************************************************/
2062static int read_imsm_migr_rec(int fd, struct intel_super *super)
2063{
2064 int ret_val = -1;
2065 unsigned long long dsize;
2066
2067 get_dev_size(fd, NULL, &dsize);
2068 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2069 fprintf(stderr,
2070 Name ": Cannot seek to anchor block: %s\n",
2071 strerror(errno));
2072 goto out;
2073 }
2074 if (read(fd, super->migr_rec_buf, 512) != 512) {
2075 fprintf(stderr,
2076 Name ": Cannot read migr record block: %s\n",
2077 strerror(errno));
2078 goto out;
2079 }
2080 ret_val = 0;
2081
2082out:
2083 return ret_val;
2084}
2085
2086/*******************************************************************************
2087 * Function: load_imsm_migr_rec
2088 * Description: Function reads imsm migration record (it is stored at the last
2089 * sector of disk)
2090 * Parameters:
2091 * super : imsm internal array info
2092 * info : general array info
2093 * Returns:
2094 * 0 : success
2095 * -1 : fail
2096 ******************************************************************************/
2097static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2098{
2099 struct mdinfo *sd;
2100 struct dl *dl = NULL;
2101 char nm[30];
2102 int retval = -1;
2103 int fd = -1;
2104
2105 if (info) {
2106 for (sd = info->devs ; sd ; sd = sd->next) {
2107 /* read only from one of the first two slots */
2108 if ((sd->disk.raid_disk > 1) ||
2109 (sd->disk.raid_disk < 0))
2110 continue;
2111 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2112 fd = dev_open(nm, O_RDONLY);
2113 if (fd >= 0)
2114 break;
2115 }
2116 }
2117 if (fd < 0) {
2118 for (dl = super->disks; dl; dl = dl->next) {
2119 /* read only from one of the first two slots */
2120 if (dl->index > 1)
2121 continue;
2122 sprintf(nm, "%d:%d", dl->major, dl->minor);
2123 fd = dev_open(nm, O_RDONLY);
2124 if (fd >= 0)
2125 break;
2126 }
2127 }
2128 if (fd < 0)
2129 goto out;
2130 retval = read_imsm_migr_rec(fd, super);
2131
2132out:
2133 if (fd >= 0)
2134 close(fd);
2135 return retval;
2136}
2137
9e2d750d 2138#ifndef MDASSEMBLE
c17608ea
AK
2139/*******************************************************************************
2140 * function: imsm_create_metadata_checkpoint_update
2141 * Description: It creates update for checkpoint change.
2142 * Parameters:
2143 * super : imsm internal array info
2144 * u : pointer to prepared update
2145 * Returns:
2146 * Uptate length.
2147 * If length is equal to 0, input pointer u contains no update
2148 ******************************************************************************/
2149static int imsm_create_metadata_checkpoint_update(
2150 struct intel_super *super,
2151 struct imsm_update_general_migration_checkpoint **u)
2152{
2153
2154 int update_memory_size = 0;
2155
2156 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2157
2158 if (u == NULL)
2159 return 0;
2160 *u = NULL;
2161
2162 /* size of all update data without anchor */
2163 update_memory_size =
2164 sizeof(struct imsm_update_general_migration_checkpoint);
2165
2166 *u = calloc(1, update_memory_size);
2167 if (*u == NULL) {
2168 dprintf("error: cannot get memory for "
2169 "imsm_create_metadata_checkpoint_update update\n");
2170 return 0;
2171 }
2172 (*u)->type = update_general_migration_checkpoint;
2173 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2174 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2175 (*u)->curr_migr_unit);
2176
2177 return update_memory_size;
2178}
2179
2180
2181static void imsm_update_metadata_locally(struct supertype *st,
2182 void *buf, int len);
2183
687629c2
AK
2184/*******************************************************************************
2185 * Function: write_imsm_migr_rec
2186 * Description: Function writes imsm migration record
2187 * (at the last sector of disk)
2188 * Parameters:
2189 * super : imsm internal array info
2190 * Returns:
2191 * 0 : success
2192 * -1 : if fail
2193 ******************************************************************************/
2194static int write_imsm_migr_rec(struct supertype *st)
2195{
2196 struct intel_super *super = st->sb;
2197 unsigned long long dsize;
2198 char nm[30];
2199 int fd = -1;
2200 int retval = -1;
2201 struct dl *sd;
c17608ea
AK
2202 int len;
2203 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2204
2205 for (sd = super->disks ; sd ; sd = sd->next) {
2206 /* write to 2 first slots only */
2207 if ((sd->index < 0) || (sd->index > 1))
2208 continue;
2209 sprintf(nm, "%d:%d", sd->major, sd->minor);
2210 fd = dev_open(nm, O_RDWR);
2211 if (fd < 0)
2212 continue;
2213 get_dev_size(fd, NULL, &dsize);
2214 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2215 fprintf(stderr,
2216 Name ": Cannot seek to anchor block: %s\n",
2217 strerror(errno));
2218 goto out;
2219 }
2220 if (write(fd, super->migr_rec_buf, 512) != 512) {
2221 fprintf(stderr,
2222 Name ": Cannot write migr record block: %s\n",
2223 strerror(errno));
2224 goto out;
2225 }
2226 close(fd);
2227 fd = -1;
2228 }
c17608ea
AK
2229 /* update checkpoint information in metadata */
2230 len = imsm_create_metadata_checkpoint_update(super, &u);
2231
2232 if (len <= 0) {
2233 dprintf("imsm: Cannot prepare update\n");
2234 goto out;
2235 }
2236 /* update metadata locally */
2237 imsm_update_metadata_locally(st, u, len);
2238 /* and possibly remotely */
2239 if (st->update_tail) {
2240 append_metadata_update(st, u, len);
2241 /* during reshape we do all work inside metadata handler
2242 * manage_reshape(), so metadata update has to be triggered
2243 * insida it
2244 */
2245 flush_metadata_updates(st);
2246 st->update_tail = &st->updates;
2247 } else
2248 free(u);
687629c2
AK
2249
2250 retval = 0;
2251 out:
2252 if (fd >= 0)
2253 close(fd);
2254 return retval;
2255}
9e2d750d 2256#endif /* MDASSEMBLE */
687629c2 2257
e2962bfc
AK
2258/* spare/missing disks activations are not allowe when
2259 * array/container performs reshape operation, because
2260 * all arrays in container works on the same disks set
2261 */
2262int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2263{
2264 int rv = 0;
2265 struct intel_dev *i_dev;
2266 struct imsm_dev *dev;
2267
2268 /* check whole container
2269 */
2270 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2271 dev = i_dev->dev;
3ad25638 2272 if (is_gen_migration(dev)) {
e2962bfc
AK
2273 /* No repair during any migration in container
2274 */
2275 rv = 1;
2276 break;
2277 }
2278 }
2279 return rv;
2280}
2281
a5d85af7 2282static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2283{
2284 struct intel_super *super = st->sb;
c47b0ff6 2285 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2286 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2287 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2288 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2289 struct imsm_map *map_to_analyse = map;
efb30e7f 2290 struct dl *dl;
e207da2f 2291 char *devname;
139dae11 2292 unsigned int component_size_alligment;
a5d85af7 2293 int map_disks = info->array.raid_disks;
bf5a934a 2294
95eeceeb 2295 memset(info, 0, sizeof(*info));
b335e593
AK
2296 if (prev_map)
2297 map_to_analyse = prev_map;
2298
ca0748fa 2299 dl = super->current_disk;
9894ec0d 2300
bf5a934a 2301 info->container_member = super->current_vol;
cd0430a1 2302 info->array.raid_disks = map->num_members;
b335e593 2303 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2304 info->array.layout = imsm_level_to_layout(info->array.level);
2305 info->array.md_minor = -1;
2306 info->array.ctime = 0;
2307 info->array.utime = 0;
b335e593
AK
2308 info->array.chunk_size =
2309 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2310 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2311 info->custom_array_size = __le32_to_cpu(dev->size_high);
2312 info->custom_array_size <<= 32;
2313 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2314 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2315
3f510843 2316 if (is_gen_migration(dev)) {
3f83228a 2317 info->reshape_active = 1;
b335e593
AK
2318 info->new_level = get_imsm_raid_level(map);
2319 info->new_layout = imsm_level_to_layout(info->new_level);
2320 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2321 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2322 if (info->delta_disks) {
2323 /* this needs to be applied to every array
2324 * in the container.
2325 */
81219e70 2326 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2327 }
3f83228a
N
2328 /* We shape information that we give to md might have to be
2329 * modify to cope with md's requirement for reshaping arrays.
2330 * For example, when reshaping a RAID0, md requires it to be
2331 * presented as a degraded RAID4.
2332 * Also if a RAID0 is migrating to a RAID5 we need to specify
2333 * the array as already being RAID5, but the 'before' layout
2334 * is a RAID4-like layout.
2335 */
2336 switch (info->array.level) {
2337 case 0:
2338 switch(info->new_level) {
2339 case 0:
2340 /* conversion is happening as RAID4 */
2341 info->array.level = 4;
2342 info->array.raid_disks += 1;
2343 break;
2344 case 5:
2345 /* conversion is happening as RAID5 */
2346 info->array.level = 5;
2347 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2348 info->delta_disks -= 1;
2349 break;
2350 default:
2351 /* FIXME error message */
2352 info->array.level = UnSet;
2353 break;
2354 }
2355 break;
2356 }
b335e593
AK
2357 } else {
2358 info->new_level = UnSet;
2359 info->new_layout = UnSet;
2360 info->new_chunk = info->array.chunk_size;
3f83228a 2361 info->delta_disks = 0;
b335e593 2362 }
ca0748fa 2363
efb30e7f
DW
2364 if (dl) {
2365 info->disk.major = dl->major;
2366 info->disk.minor = dl->minor;
ca0748fa 2367 info->disk.number = dl->index;
656b6b5a
N
2368 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2369 dl->index);
efb30e7f 2370 }
bf5a934a 2371
b335e593
AK
2372 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2373 info->component_size =
2374 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2375
2376 /* check component size aligment
2377 */
2378 component_size_alligment =
2379 info->component_size % (info->array.chunk_size/512);
2380
2381 if (component_size_alligment &&
2382 (info->array.level != 1) && (info->array.level != UnSet)) {
2383 dprintf("imsm: reported component size alligned from %llu ",
2384 info->component_size);
2385 info->component_size -= component_size_alligment;
2386 dprintf("to %llu (%i).\n",
2387 info->component_size, component_size_alligment);
2388 }
2389
301406c9 2390 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2391 info->recovery_start = MaxSector;
bf5a934a 2392
d2e6d5d6 2393 info->reshape_progress = 0;
b6796ce1 2394 info->resync_start = MaxSector;
b9172665
AK
2395 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2396 dev->vol.dirty) &&
2397 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2398 info->resync_start = 0;
b6796ce1
AK
2399 }
2400 if (dev->vol.migr_state) {
1e5c6983
DW
2401 switch (migr_type(dev)) {
2402 case MIGR_REPAIR:
2403 case MIGR_INIT: {
c47b0ff6
AK
2404 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2405 dev);
1e5c6983
DW
2406 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2407
2408 info->resync_start = blocks_per_unit * units;
2409 break;
2410 }
d2e6d5d6 2411 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2412 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2413 dev);
2414 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2415 unsigned long long array_blocks;
2416 int used_disks;
d2e6d5d6 2417
befb629b
AK
2418 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2419 (units <
2420 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2421 (super->migr_rec->rec_status ==
2422 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2423 units++;
2424
d2e6d5d6 2425 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2426
d2e6d5d6
AK
2427 dprintf("IMSM: General Migration checkpoint : %llu "
2428 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2429 (unsigned long long)units,
2430 (unsigned long long)blocks_per_unit,
2431 info->reshape_progress);
75156c46
AK
2432
2433 used_disks = imsm_num_data_members(dev, 1);
2434 if (used_disks > 0) {
2435 array_blocks = map->blocks_per_member *
2436 used_disks;
2437 /* round array size down to closest MB
2438 */
2439 info->custom_array_size = (array_blocks
2440 >> SECT_PER_MB_SHIFT)
2441 << SECT_PER_MB_SHIFT;
2442 }
d2e6d5d6 2443 }
1e5c6983
DW
2444 case MIGR_VERIFY:
2445 /* we could emulate the checkpointing of
2446 * 'sync_action=check' migrations, but for now
2447 * we just immediately complete them
2448 */
2449 case MIGR_REBUILD:
2450 /* this is handled by container_content_imsm() */
1e5c6983
DW
2451 case MIGR_STATE_CHANGE:
2452 /* FIXME handle other migrations */
2453 default:
2454 /* we are not dirty, so... */
2455 info->resync_start = MaxSector;
2456 }
b6796ce1 2457 }
301406c9
DW
2458
2459 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2460 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2461
f35f2525
N
2462 info->array.major_version = -1;
2463 info->array.minor_version = -2;
e207da2f
AW
2464 devname = devnum2devname(st->container_dev);
2465 *info->text_version = '\0';
2466 if (devname)
2467 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2468 free(devname);
a67dd8cc 2469 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2470 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2471
2472 if (dmap) {
2473 int i, j;
2474 for (i=0; i<map_disks; i++) {
2475 dmap[i] = 0;
2476 if (i < info->array.raid_disks) {
2477 struct imsm_disk *dsk;
98130f40 2478 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2479 dsk = get_imsm_disk(super, j);
2480 if (dsk && (dsk->status & CONFIGURED_DISK))
2481 dmap[i] = 1;
2482 }
2483 }
2484 }
81ac8b4d 2485}
bf5a934a 2486
3b451610
AK
2487static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2488 int failed, int look_in_map);
2489
2490static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2491 int look_in_map);
2492
2493static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2494{
2495 if (is_gen_migration(dev)) {
2496 int failed;
2497 __u8 map_state;
2498 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2499
2500 failed = imsm_count_failed(super, dev, MAP_1);
2501 map_state = imsm_check_degraded(super, dev, failed,
2502 MAP_1);
2503 if (map2->map_state != map_state) {
2504 map2->map_state = map_state;
2505 super->updates_pending++;
2506 }
2507 }
2508}
97b4d0e9
DW
2509
2510static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2511{
2512 struct dl *d;
2513
2514 for (d = super->missing; d; d = d->next)
2515 if (d->index == index)
2516 return &d->disk;
2517 return NULL;
2518}
2519
a5d85af7 2520static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2521{
2522 struct intel_super *super = st->sb;
4f5bc454 2523 struct imsm_disk *disk;
a5d85af7 2524 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2525 int max_enough = -1;
2526 int i;
2527 struct imsm_super *mpb;
4f5bc454 2528
bf5a934a 2529 if (super->current_vol >= 0) {
a5d85af7 2530 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2531 return;
2532 }
95eeceeb 2533 memset(info, 0, sizeof(*info));
d23fe947
DW
2534
2535 /* Set raid_disks to zero so that Assemble will always pull in valid
2536 * spares
2537 */
2538 info->array.raid_disks = 0;
cdddbdbc
DW
2539 info->array.level = LEVEL_CONTAINER;
2540 info->array.layout = 0;
2541 info->array.md_minor = -1;
c2c087e6 2542 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2543 info->array.utime = 0;
2544 info->array.chunk_size = 0;
2545
2546 info->disk.major = 0;
2547 info->disk.minor = 0;
cdddbdbc 2548 info->disk.raid_disk = -1;
c2c087e6 2549 info->reshape_active = 0;
f35f2525
N
2550 info->array.major_version = -1;
2551 info->array.minor_version = -2;
c2c087e6 2552 strcpy(info->text_version, "imsm");
a67dd8cc 2553 info->safe_mode_delay = 0;
c2c087e6
DW
2554 info->disk.number = -1;
2555 info->disk.state = 0;
c5afc314 2556 info->name[0] = 0;
921d9e16 2557 info->recovery_start = MaxSector;
3ad25638 2558 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2559
97b4d0e9 2560 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2561 mpb = super->anchor;
97b4d0e9 2562
ab3cb6b3
N
2563 for (i = 0; i < mpb->num_raid_devs; i++) {
2564 struct imsm_dev *dev = get_imsm_dev(super, i);
2565 int failed, enough, j, missing = 0;
2566 struct imsm_map *map;
2567 __u8 state;
97b4d0e9 2568
3b451610
AK
2569 failed = imsm_count_failed(super, dev, MAP_0);
2570 state = imsm_check_degraded(super, dev, failed, MAP_0);
a510b1c7 2571 map = get_imsm_map(dev, 0);
ab3cb6b3
N
2572
2573 /* any newly missing disks?
2574 * (catches single-degraded vs double-degraded)
2575 */
2576 for (j = 0; j < map->num_members; j++) {
9645010f 2577 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
ab3cb6b3
N
2578 __u32 idx = ord_to_idx(ord);
2579
2580 if (!(ord & IMSM_ORD_REBUILD) &&
2581 get_imsm_missing(super, idx)) {
2582 missing = 1;
2583 break;
2584 }
97b4d0e9 2585 }
ab3cb6b3
N
2586
2587 if (state == IMSM_T_STATE_FAILED)
2588 enough = -1;
2589 else if (state == IMSM_T_STATE_DEGRADED &&
2590 (state != map->map_state || missing))
2591 enough = 0;
2592 else /* we're normal, or already degraded */
2593 enough = 1;
2594
2595 /* in the missing/failed disk case check to see
2596 * if at least one array is runnable
2597 */
2598 max_enough = max(max_enough, enough);
2599 }
2600 dprintf("%s: enough: %d\n", __func__, max_enough);
2601 info->container_enough = max_enough;
97b4d0e9 2602
4a04ec6c 2603 if (super->disks) {
14e8215b
DW
2604 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2605
b9f594fe 2606 disk = &super->disks->disk;
14e8215b
DW
2607 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2608 info->component_size = reserved;
25ed7e59 2609 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2610 /* we don't change info->disk.raid_disk here because
2611 * this state will be finalized in mdmon after we have
2612 * found the 'most fresh' version of the metadata
2613 */
25ed7e59
DW
2614 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2615 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2616 }
a575e2a7
DW
2617
2618 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2619 * ->compare_super may have updated the 'num_raid_devs' field for spares
2620 */
2621 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2622 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2623 else
2624 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2625
2626 /* I don't know how to compute 'map' on imsm, so use safe default */
2627 if (map) {
2628 int i;
2629 for (i = 0; i < map_disks; i++)
2630 map[i] = 1;
2631 }
2632
cdddbdbc
DW
2633}
2634
5c4cd5da
AC
2635/* allocates memory and fills disk in mdinfo structure
2636 * for each disk in array */
2637struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2638{
2639 struct mdinfo *mddev = NULL;
2640 struct intel_super *super = st->sb;
2641 struct imsm_disk *disk;
2642 int count = 0;
2643 struct dl *dl;
2644 if (!super || !super->disks)
2645 return NULL;
2646 dl = super->disks;
2647 mddev = malloc(sizeof(*mddev));
2648 if (!mddev) {
2649 fprintf(stderr, Name ": Failed to allocate memory.\n");
2650 return NULL;
2651 }
2652 memset(mddev, 0, sizeof(*mddev));
2653 while (dl) {
2654 struct mdinfo *tmp;
2655 disk = &dl->disk;
2656 tmp = malloc(sizeof(*tmp));
2657 if (!tmp) {
2658 fprintf(stderr, Name ": Failed to allocate memory.\n");
2659 if (mddev)
2660 sysfs_free(mddev);
2661 return NULL;
2662 }
2663 memset(tmp, 0, sizeof(*tmp));
2664 if (mddev->devs)
2665 tmp->next = mddev->devs;
2666 mddev->devs = tmp;
2667 tmp->disk.number = count++;
2668 tmp->disk.major = dl->major;
2669 tmp->disk.minor = dl->minor;
2670 tmp->disk.state = is_configured(disk) ?
2671 (1 << MD_DISK_ACTIVE) : 0;
2672 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2673 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2674 tmp->disk.raid_disk = -1;
2675 dl = dl->next;
2676 }
2677 return mddev;
2678}
2679
cdddbdbc
DW
2680static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2681 char *update, char *devname, int verbose,
2682 int uuid_set, char *homehost)
2683{
f352c545
DW
2684 /* For 'assemble' and 'force' we need to return non-zero if any
2685 * change was made. For others, the return value is ignored.
2686 * Update options are:
2687 * force-one : This device looks a bit old but needs to be included,
2688 * update age info appropriately.
2689 * assemble: clear any 'faulty' flag to allow this device to
2690 * be assembled.
2691 * force-array: Array is degraded but being forced, mark it clean
2692 * if that will be needed to assemble it.
2693 *
2694 * newdev: not used ????
2695 * grow: Array has gained a new device - this is currently for
2696 * linear only
2697 * resync: mark as dirty so a resync will happen.
2698 * name: update the name - preserving the homehost
6e46bf34 2699 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2700 *
2701 * Following are not relevant for this imsm:
2702 * sparc2.2 : update from old dodgey metadata
2703 * super-minor: change the preferred_minor number
2704 * summaries: update redundant counters.
f352c545
DW
2705 * homehost: update the recorded homehost
2706 * _reshape_progress: record new reshape_progress position.
2707 */
6e46bf34
DW
2708 int rv = 1;
2709 struct intel_super *super = st->sb;
2710 struct imsm_super *mpb;
f352c545 2711
6e46bf34
DW
2712 /* we can only update container info */
2713 if (!super || super->current_vol >= 0 || !super->anchor)
2714 return 1;
2715
2716 mpb = super->anchor;
2717
2718 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2719 rv = -1;
6e46bf34
DW
2720 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2721 mpb->orig_family_num = *((__u32 *) info->update_private);
2722 rv = 0;
2723 } else if (strcmp(update, "uuid") == 0) {
2724 __u32 *new_family = malloc(sizeof(*new_family));
2725
2726 /* update orig_family_number with the incoming random
2727 * data, report the new effective uuid, and store the
2728 * new orig_family_num for future updates.
2729 */
2730 if (new_family) {
2731 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2732 uuid_from_super_imsm(st, info->uuid);
2733 *new_family = mpb->orig_family_num;
2734 info->update_private = new_family;
2735 rv = 0;
2736 }
2737 } else if (strcmp(update, "assemble") == 0)
2738 rv = 0;
2739 else
1e2b2765 2740 rv = -1;
f352c545 2741
6e46bf34
DW
2742 /* successful update? recompute checksum */
2743 if (rv == 0)
2744 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2745
2746 return rv;
cdddbdbc
DW
2747}
2748
c2c087e6 2749static size_t disks_to_mpb_size(int disks)
cdddbdbc 2750{
c2c087e6 2751 size_t size;
cdddbdbc 2752
c2c087e6
DW
2753 size = sizeof(struct imsm_super);
2754 size += (disks - 1) * sizeof(struct imsm_disk);
2755 size += 2 * sizeof(struct imsm_dev);
2756 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2757 size += (4 - 2) * sizeof(struct imsm_map);
2758 /* 4 possible disk_ord_tbl's */
2759 size += 4 * (disks - 1) * sizeof(__u32);
2760
2761 return size;
2762}
2763
2764static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2765{
2766 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2767 return 0;
2768
2769 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2770}
2771
ba2de7ba
DW
2772static void free_devlist(struct intel_super *super)
2773{
2774 struct intel_dev *dv;
2775
2776 while (super->devlist) {
2777 dv = super->devlist->next;
2778 free(super->devlist->dev);
2779 free(super->devlist);
2780 super->devlist = dv;
2781 }
2782}
2783
2784static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2785{
2786 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2787}
2788
cdddbdbc
DW
2789static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2790{
2791 /*
2792 * return:
2793 * 0 same, or first was empty, and second was copied
2794 * 1 second had wrong number
2795 * 2 wrong uuid
2796 * 3 wrong other info
2797 */
2798 struct intel_super *first = st->sb;
2799 struct intel_super *sec = tst->sb;
2800
2801 if (!first) {
2802 st->sb = tst->sb;
2803 tst->sb = NULL;
2804 return 0;
2805 }
8603ea6f
LM
2806 /* in platform dependent environment test if the disks
2807 * use the same Intel hba
2808 */
2809 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2810 if (!first->hba || !sec->hba ||
2811 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2812 fprintf(stderr,
2813 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2814 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2815 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2816 return 3;
2817 }
2818 }
cdddbdbc 2819
d23fe947
DW
2820 /* if an anchor does not have num_raid_devs set then it is a free
2821 * floating spare
2822 */
2823 if (first->anchor->num_raid_devs > 0 &&
2824 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2825 /* Determine if these disks might ever have been
2826 * related. Further disambiguation can only take place
2827 * in load_super_imsm_all
2828 */
2829 __u32 first_family = first->anchor->orig_family_num;
2830 __u32 sec_family = sec->anchor->orig_family_num;
2831
f796af5d
DW
2832 if (memcmp(first->anchor->sig, sec->anchor->sig,
2833 MAX_SIGNATURE_LENGTH) != 0)
2834 return 3;
2835
a2b97981
DW
2836 if (first_family == 0)
2837 first_family = first->anchor->family_num;
2838 if (sec_family == 0)
2839 sec_family = sec->anchor->family_num;
2840
2841 if (first_family != sec_family)
d23fe947 2842 return 3;
f796af5d 2843
d23fe947 2844 }
cdddbdbc 2845
f796af5d 2846
3e372e5a
DW
2847 /* if 'first' is a spare promote it to a populated mpb with sec's
2848 * family number
2849 */
2850 if (first->anchor->num_raid_devs == 0 &&
2851 sec->anchor->num_raid_devs > 0) {
78d30f94 2852 int i;
ba2de7ba
DW
2853 struct intel_dev *dv;
2854 struct imsm_dev *dev;
78d30f94
DW
2855
2856 /* we need to copy raid device info from sec if an allocation
2857 * fails here we don't associate the spare
2858 */
2859 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2860 dv = malloc(sizeof(*dv));
2861 if (!dv)
2862 break;
2863 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2864 if (!dev) {
2865 free(dv);
2866 break;
78d30f94 2867 }
ba2de7ba
DW
2868 dv->dev = dev;
2869 dv->index = i;
2870 dv->next = first->devlist;
2871 first->devlist = dv;
78d30f94 2872 }
709743c5 2873 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2874 /* allocation failure */
2875 free_devlist(first);
2876 fprintf(stderr, "imsm: failed to associate spare\n");
2877 return 3;
78d30f94 2878 }
3e372e5a 2879 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2880 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2881 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2882 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2883 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2884 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2885 }
2886
cdddbdbc
DW
2887 return 0;
2888}
2889
0030e8d6
DW
2890static void fd2devname(int fd, char *name)
2891{
2892 struct stat st;
2893 char path[256];
33a6535d 2894 char dname[PATH_MAX];
0030e8d6
DW
2895 char *nm;
2896 int rv;
2897
2898 name[0] = '\0';
2899 if (fstat(fd, &st) != 0)
2900 return;
2901 sprintf(path, "/sys/dev/block/%d:%d",
2902 major(st.st_rdev), minor(st.st_rdev));
2903
9cf014ec 2904 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2905 if (rv <= 0)
2906 return;
2907
2908 dname[rv] = '\0';
2909 nm = strrchr(dname, '/');
7897de29
JS
2910 if (nm) {
2911 nm++;
2912 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2913 }
0030e8d6
DW
2914}
2915
cdddbdbc
DW
2916extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2917
2918static int imsm_read_serial(int fd, char *devname,
2919 __u8 serial[MAX_RAID_SERIAL_LEN])
2920{
2921 unsigned char scsi_serial[255];
cdddbdbc
DW
2922 int rv;
2923 int rsp_len;
1f24f035 2924 int len;
316e2bf4
DW
2925 char *dest;
2926 char *src;
2927 char *rsp_buf;
2928 int i;
cdddbdbc
DW
2929
2930 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2931
f9ba0ff1
DW
2932 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2933
40ebbb9c 2934 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2935 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2936 fd2devname(fd, (char *) serial);
0030e8d6
DW
2937 return 0;
2938 }
2939
cdddbdbc
DW
2940 if (rv != 0) {
2941 if (devname)
2942 fprintf(stderr,
2943 Name ": Failed to retrieve serial for %s\n",
2944 devname);
2945 return rv;
2946 }
2947
2948 rsp_len = scsi_serial[3];
03cd4cc8
DW
2949 if (!rsp_len) {
2950 if (devname)
2951 fprintf(stderr,
2952 Name ": Failed to retrieve serial for %s\n",
2953 devname);
2954 return 2;
2955 }
1f24f035 2956 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2957
316e2bf4
DW
2958 /* trim all whitespace and non-printable characters and convert
2959 * ':' to ';'
2960 */
2961 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2962 src = &rsp_buf[i];
2963 if (*src > 0x20) {
2964 /* ':' is reserved for use in placeholder serial
2965 * numbers for missing disks
2966 */
2967 if (*src == ':')
2968 *dest++ = ';';
2969 else
2970 *dest++ = *src;
2971 }
2972 }
2973 len = dest - rsp_buf;
2974 dest = rsp_buf;
2975
2976 /* truncate leading characters */
2977 if (len > MAX_RAID_SERIAL_LEN) {
2978 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2979 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2980 }
5c3db629 2981
5c3db629 2982 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2983 memcpy(serial, dest, len);
cdddbdbc
DW
2984
2985 return 0;
2986}
2987
1f24f035
DW
2988static int serialcmp(__u8 *s1, __u8 *s2)
2989{
2990 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2991}
2992
2993static void serialcpy(__u8 *dest, __u8 *src)
2994{
2995 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2996}
2997
54c2c1ea
DW
2998static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2999{
3000 struct dl *dl;
3001
3002 for (dl = super->disks; dl; dl = dl->next)
3003 if (serialcmp(dl->serial, serial) == 0)
3004 break;
3005
3006 return dl;
3007}
3008
a2b97981
DW
3009static struct imsm_disk *
3010__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3011{
3012 int i;
3013
3014 for (i = 0; i < mpb->num_disks; i++) {
3015 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3016
3017 if (serialcmp(disk->serial, serial) == 0) {
3018 if (idx)
3019 *idx = i;
3020 return disk;
3021 }
3022 }
3023
3024 return NULL;
3025}
3026
cdddbdbc
DW
3027static int
3028load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3029{
a2b97981 3030 struct imsm_disk *disk;
cdddbdbc
DW
3031 struct dl *dl;
3032 struct stat stb;
cdddbdbc 3033 int rv;
a2b97981 3034 char name[40];
d23fe947
DW
3035 __u8 serial[MAX_RAID_SERIAL_LEN];
3036
3037 rv = imsm_read_serial(fd, devname, serial);
3038
3039 if (rv != 0)
3040 return 2;
3041
a2b97981 3042 dl = calloc(1, sizeof(*dl));
b9f594fe 3043 if (!dl) {
cdddbdbc
DW
3044 if (devname)
3045 fprintf(stderr,
3046 Name ": failed to allocate disk buffer for %s\n",
3047 devname);
3048 return 2;
3049 }
cdddbdbc 3050
a2b97981
DW
3051 fstat(fd, &stb);
3052 dl->major = major(stb.st_rdev);
3053 dl->minor = minor(stb.st_rdev);
3054 dl->next = super->disks;
3055 dl->fd = keep_fd ? fd : -1;
3056 assert(super->disks == NULL);
3057 super->disks = dl;
3058 serialcpy(dl->serial, serial);
3059 dl->index = -2;
3060 dl->e = NULL;
3061 fd2devname(fd, name);
3062 if (devname)
3063 dl->devname = strdup(devname);
3064 else
3065 dl->devname = strdup(name);
cdddbdbc 3066
d23fe947 3067 /* look up this disk's index in the current anchor */
a2b97981
DW
3068 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3069 if (disk) {
3070 dl->disk = *disk;
3071 /* only set index on disks that are a member of a
3072 * populated contianer, i.e. one with raid_devs
3073 */
3074 if (is_failed(&dl->disk))
3f6efecc 3075 dl->index = -2;
a2b97981
DW
3076 else if (is_spare(&dl->disk))
3077 dl->index = -1;
3f6efecc
DW
3078 }
3079
949c47a0
DW
3080 return 0;
3081}
3082
0e600426 3083#ifndef MDASSEMBLE
0c046afd
DW
3084/* When migrating map0 contains the 'destination' state while map1
3085 * contains the current state. When not migrating map0 contains the
3086 * current state. This routine assumes that map[0].map_state is set to
3087 * the current array state before being called.
3088 *
3089 * Migration is indicated by one of the following states
3090 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3091 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3092 * map1state=unitialized)
1484e727 3093 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3094 * map1state=normal)
e3bba0e0 3095 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3096 * map1state=degraded)
8e59f3d8
AK
3097 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3098 * map1state=normal)
0c046afd 3099 */
8e59f3d8
AK
3100static void migrate(struct imsm_dev *dev, struct intel_super *super,
3101 __u8 to_state, int migr_type)
3393c6af 3102{
0c046afd 3103 struct imsm_map *dest;
3393c6af
DW
3104 struct imsm_map *src = get_imsm_map(dev, 0);
3105
0c046afd 3106 dev->vol.migr_state = 1;
1484e727 3107 set_migr_type(dev, migr_type);
f8f603f1 3108 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3109 dest = get_imsm_map(dev, 1);
3110
0556e1a2 3111 /* duplicate and then set the target end state in map[0] */
3393c6af 3112 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3113 if ((migr_type == MIGR_REBUILD) ||
3114 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3115 __u32 ord;
3116 int i;
3117
3118 for (i = 0; i < src->num_members; i++) {
3119 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3120 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3121 }
3122 }
3123
8e59f3d8
AK
3124 if (migr_type == MIGR_GEN_MIGR)
3125 /* Clear migration record */
3126 memset(super->migr_rec, 0, sizeof(struct migr_record));
3127
0c046afd 3128 src->map_state = to_state;
949c47a0 3129}
f8f603f1
DW
3130
3131static void end_migration(struct imsm_dev *dev, __u8 map_state)
3132{
3133 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3134 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3135 int i, j;
0556e1a2
DW
3136
3137 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3138 * completed in the last migration.
3139 *
28bce06f 3140 * FIXME add support for raid-level-migration
0556e1a2
DW
3141 */
3142 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3143 for (j = 0; j < map->num_members; j++)
3144 /* during online capacity expansion
3145 * disks position can be changed if takeover is used
3146 */
3147 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3148 ord_to_idx(prev->disk_ord_tbl[i])) {
3149 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3150 break;
3151 }
f8f603f1
DW
3152
3153 dev->vol.migr_state = 0;
ea672ee1 3154 set_migr_type(dev, 0);
f8f603f1
DW
3155 dev->vol.curr_migr_unit = 0;
3156 map->map_state = map_state;
3157}
0e600426 3158#endif
949c47a0
DW
3159
3160static int parse_raid_devices(struct intel_super *super)
3161{
3162 int i;
3163 struct imsm_dev *dev_new;
4d7b1503 3164 size_t len, len_migr;
401d313b 3165 size_t max_len = 0;
4d7b1503
DW
3166 size_t space_needed = 0;
3167 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3168
3169 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3170 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3171 struct intel_dev *dv;
949c47a0 3172
4d7b1503
DW
3173 len = sizeof_imsm_dev(dev_iter, 0);
3174 len_migr = sizeof_imsm_dev(dev_iter, 1);
3175 if (len_migr > len)
3176 space_needed += len_migr - len;
3177
ba2de7ba
DW
3178 dv = malloc(sizeof(*dv));
3179 if (!dv)
3180 return 1;
401d313b
AK
3181 if (max_len < len_migr)
3182 max_len = len_migr;
3183 if (max_len > len_migr)
3184 space_needed += max_len - len_migr;
3185 dev_new = malloc(max_len);
ba2de7ba
DW
3186 if (!dev_new) {
3187 free(dv);
949c47a0 3188 return 1;
ba2de7ba 3189 }
949c47a0 3190 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3191 dv->dev = dev_new;
3192 dv->index = i;
3193 dv->next = super->devlist;
3194 super->devlist = dv;
949c47a0 3195 }
cdddbdbc 3196
4d7b1503
DW
3197 /* ensure that super->buf is large enough when all raid devices
3198 * are migrating
3199 */
3200 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3201 void *buf;
3202
3203 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3204 if (posix_memalign(&buf, 512, len) != 0)
3205 return 1;
3206
1f45a8ad
DW
3207 memcpy(buf, super->buf, super->len);
3208 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3209 free(super->buf);
3210 super->buf = buf;
3211 super->len = len;
3212 }
3213
cdddbdbc
DW
3214 return 0;
3215}
3216
604b746f
JD
3217/* retrieve a pointer to the bbm log which starts after all raid devices */
3218struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3219{
3220 void *ptr = NULL;
3221
3222 if (__le32_to_cpu(mpb->bbm_log_size)) {
3223 ptr = mpb;
3224 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3225 }
3226
3227 return ptr;
3228}
3229
e2f41b2c
AK
3230/*******************************************************************************
3231 * Function: check_mpb_migr_compatibility
3232 * Description: Function checks for unsupported migration features:
3233 * - migration optimization area (pba_of_lba0)
3234 * - descending reshape (ascending_migr)
3235 * Parameters:
3236 * super : imsm metadata information
3237 * Returns:
3238 * 0 : migration is compatible
3239 * -1 : migration is not compatible
3240 ******************************************************************************/
3241int check_mpb_migr_compatibility(struct intel_super *super)
3242{
3243 struct imsm_map *map0, *map1;
3244 struct migr_record *migr_rec = super->migr_rec;
3245 int i;
3246
3247 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3248 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3249
3250 if (dev_iter &&
3251 dev_iter->vol.migr_state == 1 &&
3252 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3253 /* This device is migrating */
3254 map0 = get_imsm_map(dev_iter, 0);
3255 map1 = get_imsm_map(dev_iter, 1);
3256 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3257 /* migration optimization area was used */
3258 return -1;
3259 if (migr_rec->ascending_migr == 0
3260 && migr_rec->dest_depth_per_unit > 0)
3261 /* descending reshape not supported yet */
3262 return -1;
3263 }
3264 }
3265 return 0;
3266}
3267
d23fe947 3268static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3269
cdddbdbc 3270/* load_imsm_mpb - read matrix metadata
f2f5c343 3271 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3272 */
3273static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3274{
3275 unsigned long long dsize;
cdddbdbc
DW
3276 unsigned long long sectors;
3277 struct stat;
6416d527 3278 struct imsm_super *anchor;
cdddbdbc
DW
3279 __u32 check_sum;
3280
cdddbdbc 3281 get_dev_size(fd, NULL, &dsize);
64436f06
N
3282 if (dsize < 1024) {
3283 if (devname)
3284 fprintf(stderr,
3285 Name ": %s: device to small for imsm\n",
3286 devname);
3287 return 1;
3288 }
cdddbdbc
DW
3289
3290 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3291 if (devname)
2e062e82
AK
3292 fprintf(stderr, Name
3293 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3294 devname, strerror(errno));
3295 return 1;
3296 }
3297
949c47a0 3298 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3299 if (devname)
3300 fprintf(stderr,
3301 Name ": Failed to allocate imsm anchor buffer"
3302 " on %s\n", devname);
3303 return 1;
3304 }
949c47a0 3305 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3306 if (devname)
3307 fprintf(stderr,
3308 Name ": Cannot read anchor block on %s: %s\n",
3309 devname, strerror(errno));
6416d527 3310 free(anchor);
cdddbdbc
DW
3311 return 1;
3312 }
3313
6416d527 3314 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3315 if (devname)
3316 fprintf(stderr,
3317 Name ": no IMSM anchor on %s\n", devname);
6416d527 3318 free(anchor);
cdddbdbc
DW
3319 return 2;
3320 }
3321
d23fe947 3322 __free_imsm(super, 0);
f2f5c343
LM
3323 /* reload capability and hba */
3324
3325 /* capability and hba must be updated with new super allocation */
d424212e 3326 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3327 super->len = ROUND_UP(anchor->mpb_size, 512);
3328 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3329 if (devname)
3330 fprintf(stderr,
3331 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3332 super->len);
6416d527 3333 free(anchor);
cdddbdbc
DW
3334 return 2;
3335 }
949c47a0 3336 memcpy(super->buf, anchor, 512);
cdddbdbc 3337
6416d527
NB
3338 sectors = mpb_sectors(anchor) - 1;
3339 free(anchor);
8e59f3d8
AK
3340
3341 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3342 fprintf(stderr, Name
3343 ": %s could not allocate migr_rec buffer\n", __func__);
3344 free(super->buf);
3345 return 2;
3346 }
3347
949c47a0 3348 if (!sectors) {
ecf45690
DW
3349 check_sum = __gen_imsm_checksum(super->anchor);
3350 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3351 if (devname)
3352 fprintf(stderr,
3353 Name ": IMSM checksum %x != %x on %s\n",
3354 check_sum,
3355 __le32_to_cpu(super->anchor->check_sum),
3356 devname);
3357 return 2;
3358 }
3359
a2b97981 3360 return 0;
949c47a0 3361 }
cdddbdbc
DW
3362
3363 /* read the extended mpb */
3364 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3365 if (devname)
3366 fprintf(stderr,
3367 Name ": Cannot seek to extended mpb on %s: %s\n",
3368 devname, strerror(errno));
3369 return 1;
3370 }
3371
f21e18ca 3372 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3373 if (devname)
3374 fprintf(stderr,
3375 Name ": Cannot read extended mpb on %s: %s\n",
3376 devname, strerror(errno));
3377 return 2;
3378 }
3379
949c47a0
DW
3380 check_sum = __gen_imsm_checksum(super->anchor);
3381 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3382 if (devname)
3383 fprintf(stderr,
3384 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3385 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3386 devname);
db575f3b 3387 return 3;
cdddbdbc
DW
3388 }
3389
604b746f
JD
3390 /* FIXME the BBM log is disk specific so we cannot use this global
3391 * buffer for all disks. Ok for now since we only look at the global
3392 * bbm_log_size parameter to gate assembly
3393 */
3394 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3395
a2b97981
DW
3396 return 0;
3397}
3398
8e59f3d8
AK
3399static int read_imsm_migr_rec(int fd, struct intel_super *super);
3400
a2b97981
DW
3401static int
3402load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3403{
3404 int err;
3405
3406 err = load_imsm_mpb(fd, super, devname);
3407 if (err)
3408 return err;
3409 err = load_imsm_disk(fd, super, devname, keep_fd);
3410 if (err)
3411 return err;
3412 err = parse_raid_devices(super);
4d7b1503 3413
a2b97981 3414 return err;
cdddbdbc
DW
3415}
3416
ae6aad82
DW
3417static void __free_imsm_disk(struct dl *d)
3418{
3419 if (d->fd >= 0)
3420 close(d->fd);
3421 if (d->devname)
3422 free(d->devname);
0dcecb2e
DW
3423 if (d->e)
3424 free(d->e);
ae6aad82
DW
3425 free(d);
3426
3427}
1a64be56 3428
cdddbdbc
DW
3429static void free_imsm_disks(struct intel_super *super)
3430{
47ee5a45 3431 struct dl *d;
cdddbdbc 3432
47ee5a45
DW
3433 while (super->disks) {
3434 d = super->disks;
cdddbdbc 3435 super->disks = d->next;
ae6aad82 3436 __free_imsm_disk(d);
cdddbdbc 3437 }
cb82edca
AK
3438 while (super->disk_mgmt_list) {
3439 d = super->disk_mgmt_list;
3440 super->disk_mgmt_list = d->next;
3441 __free_imsm_disk(d);
3442 }
47ee5a45
DW
3443 while (super->missing) {
3444 d = super->missing;
3445 super->missing = d->next;
3446 __free_imsm_disk(d);
3447 }
3448
cdddbdbc
DW
3449}
3450
9ca2c81c 3451/* free all the pieces hanging off of a super pointer */
d23fe947 3452static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3453{
88654014
LM
3454 struct intel_hba *elem, *next;
3455
9ca2c81c 3456 if (super->buf) {
949c47a0 3457 free(super->buf);
9ca2c81c
DW
3458 super->buf = NULL;
3459 }
f2f5c343
LM
3460 /* unlink capability description */
3461 super->orom = NULL;
8e59f3d8
AK
3462 if (super->migr_rec_buf) {
3463 free(super->migr_rec_buf);
3464 super->migr_rec_buf = NULL;
3465 }
d23fe947
DW
3466 if (free_disks)
3467 free_imsm_disks(super);
ba2de7ba 3468 free_devlist(super);
88654014
LM
3469 elem = super->hba;
3470 while (elem) {
3471 if (elem->path)
3472 free((void *)elem->path);
3473 next = elem->next;
3474 free(elem);
3475 elem = next;
88c32bb1 3476 }
88654014 3477 super->hba = NULL;
cdddbdbc
DW
3478}
3479
9ca2c81c
DW
3480static void free_imsm(struct intel_super *super)
3481{
d23fe947 3482 __free_imsm(super, 1);
9ca2c81c
DW
3483 free(super);
3484}
cdddbdbc
DW
3485
3486static void free_super_imsm(struct supertype *st)
3487{
3488 struct intel_super *super = st->sb;
3489
3490 if (!super)
3491 return;
3492
3493 free_imsm(super);
3494 st->sb = NULL;
3495}
3496
49133e57 3497static struct intel_super *alloc_super(void)
c2c087e6
DW
3498{
3499 struct intel_super *super = malloc(sizeof(*super));
3500
3501 if (super) {
3502 memset(super, 0, sizeof(*super));
bf5a934a 3503 super->current_vol = -1;
0dcecb2e 3504 super->create_offset = ~((__u32 ) 0);
c2c087e6 3505 }
c2c087e6
DW
3506 return super;
3507}
3508
f0f5a016
LM
3509/*
3510 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3511 */
d424212e 3512static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3513{
3514 struct sys_dev *hba_name;
3515 int rv = 0;
3516
3517 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3518 super->orom = NULL;
f0f5a016
LM
3519 super->hba = NULL;
3520 return 0;
3521 }
3522 hba_name = find_disk_attached_hba(fd, NULL);
3523 if (!hba_name) {
d424212e 3524 if (devname)
f0f5a016
LM
3525 fprintf(stderr,
3526 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3527 devname);
f0f5a016
LM
3528 return 1;
3529 }
3530 rv = attach_hba_to_super(super, hba_name);
3531 if (rv == 2) {
d424212e
N
3532 if (devname) {
3533 struct intel_hba *hba = super->hba;
f0f5a016 3534
f0f5a016
LM
3535 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3536 "controller (%s),\n"
3537 " but the container is assigned to Intel(R) "
3538 "%s RAID controller (",
d424212e 3539 devname,
f0f5a016
LM
3540 hba_name->path,
3541 hba_name->pci_id ? : "Err!",
3542 get_sys_dev_type(hba_name->type));
3543
f0f5a016
LM
3544 while (hba) {
3545 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3546 if (hba->next)
3547 fprintf(stderr, ", ");
3548 hba = hba->next;
3549 }
3550
3551 fprintf(stderr, ").\n"
3552 " Mixing devices attached to different controllers "
3553 "is not allowed.\n");
3554 }
3555 free_sys_dev(&hba_name);
3556 return 2;
3557 }
f2f5c343 3558 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3559 free_sys_dev(&hba_name);
f2f5c343
LM
3560 if (!super->orom)
3561 return 3;
f0f5a016
LM
3562 return 0;
3563}
3564
47ee5a45
DW
3565/* find_missing - helper routine for load_super_imsm_all that identifies
3566 * disks that have disappeared from the system. This routine relies on
3567 * the mpb being uptodate, which it is at load time.
3568 */
3569static int find_missing(struct intel_super *super)
3570{
3571 int i;
3572 struct imsm_super *mpb = super->anchor;
3573 struct dl *dl;
3574 struct imsm_disk *disk;
47ee5a45
DW
3575
3576 for (i = 0; i < mpb->num_disks; i++) {
3577 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3578 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3579 if (dl)
3580 continue;
47ee5a45
DW
3581
3582 dl = malloc(sizeof(*dl));
3583 if (!dl)
3584 return 1;
3585 dl->major = 0;
3586 dl->minor = 0;
3587 dl->fd = -1;
3588 dl->devname = strdup("missing");
3589 dl->index = i;
3590 serialcpy(dl->serial, disk->serial);
3591 dl->disk = *disk;
689c9bf3 3592 dl->e = NULL;
47ee5a45
DW
3593 dl->next = super->missing;
3594 super->missing = dl;
3595 }
3596
3597 return 0;
3598}
3599
3960e579 3600#ifndef MDASSEMBLE
a2b97981
DW
3601static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3602{
3603 struct intel_disk *idisk = disk_list;
3604
3605 while (idisk) {
3606 if (serialcmp(idisk->disk.serial, serial) == 0)
3607 break;
3608 idisk = idisk->next;
3609 }
3610
3611 return idisk;
3612}
3613
3614static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3615 struct intel_super *super,
3616 struct intel_disk **disk_list)
3617{
3618 struct imsm_disk *d = &super->disks->disk;
3619 struct imsm_super *mpb = super->anchor;
3620 int i, j;
3621
3622 for (i = 0; i < tbl_size; i++) {
3623 struct imsm_super *tbl_mpb = table[i]->anchor;
3624 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3625
3626 if (tbl_mpb->family_num == mpb->family_num) {
3627 if (tbl_mpb->check_sum == mpb->check_sum) {
3628 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3629 __func__, super->disks->major,
3630 super->disks->minor,
3631 table[i]->disks->major,
3632 table[i]->disks->minor);
3633 break;
3634 }
3635
3636 if (((is_configured(d) && !is_configured(tbl_d)) ||
3637 is_configured(d) == is_configured(tbl_d)) &&
3638 tbl_mpb->generation_num < mpb->generation_num) {
3639 /* current version of the mpb is a
3640 * better candidate than the one in
3641 * super_table, but copy over "cross
3642 * generational" status
3643 */
3644 struct intel_disk *idisk;
3645
3646 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3647 __func__, super->disks->major,
3648 super->disks->minor,
3649 table[i]->disks->major,
3650 table[i]->disks->minor);
3651
3652 idisk = disk_list_get(tbl_d->serial, *disk_list);
3653 if (idisk && is_failed(&idisk->disk))
3654 tbl_d->status |= FAILED_DISK;
3655 break;
3656 } else {
3657 struct intel_disk *idisk;
3658 struct imsm_disk *disk;
3659
3660 /* tbl_mpb is more up to date, but copy
3661 * over cross generational status before
3662 * returning
3663 */
3664 disk = __serial_to_disk(d->serial, mpb, NULL);
3665 if (disk && is_failed(disk))
3666 d->status |= FAILED_DISK;
3667
3668 idisk = disk_list_get(d->serial, *disk_list);
3669 if (idisk) {
3670 idisk->owner = i;
3671 if (disk && is_configured(disk))
3672 idisk->disk.status |= CONFIGURED_DISK;
3673 }
3674
3675 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3676 __func__, super->disks->major,
3677 super->disks->minor,
3678 table[i]->disks->major,
3679 table[i]->disks->minor);
3680
3681 return tbl_size;
3682 }
3683 }
3684 }
3685
3686 if (i >= tbl_size)
3687 table[tbl_size++] = super;
3688 else
3689 table[i] = super;
3690
3691 /* update/extend the merged list of imsm_disk records */
3692 for (j = 0; j < mpb->num_disks; j++) {
3693 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3694 struct intel_disk *idisk;
3695
3696 idisk = disk_list_get(disk->serial, *disk_list);
3697 if (idisk) {
3698 idisk->disk.status |= disk->status;
3699 if (is_configured(&idisk->disk) ||
3700 is_failed(&idisk->disk))
3701 idisk->disk.status &= ~(SPARE_DISK);
3702 } else {
3703 idisk = calloc(1, sizeof(*idisk));
3704 if (!idisk)
3705 return -1;
3706 idisk->owner = IMSM_UNKNOWN_OWNER;
3707 idisk->disk = *disk;
3708 idisk->next = *disk_list;
3709 *disk_list = idisk;
3710 }
3711
3712 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3713 idisk->owner = i;
3714 }
3715
3716 return tbl_size;
3717}
3718
3719static struct intel_super *
3720validate_members(struct intel_super *super, struct intel_disk *disk_list,
3721 const int owner)
3722{
3723 struct imsm_super *mpb = super->anchor;
3724 int ok_count = 0;
3725 int i;
3726
3727 for (i = 0; i < mpb->num_disks; i++) {
3728 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3729 struct intel_disk *idisk;
3730
3731 idisk = disk_list_get(disk->serial, disk_list);
3732 if (idisk) {
3733 if (idisk->owner == owner ||
3734 idisk->owner == IMSM_UNKNOWN_OWNER)
3735 ok_count++;
3736 else
3737 dprintf("%s: '%.16s' owner %d != %d\n",
3738 __func__, disk->serial, idisk->owner,
3739 owner);
3740 } else {
3741 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3742 __func__, __le32_to_cpu(mpb->family_num), i,
3743 disk->serial);
3744 break;
3745 }
3746 }
3747
3748 if (ok_count == mpb->num_disks)
3749 return super;
3750 return NULL;
3751}
3752
3753static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3754{
3755 struct intel_super *s;
3756
3757 for (s = super_list; s; s = s->next) {
3758 if (family_num != s->anchor->family_num)
3759 continue;
3760 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3761 __le32_to_cpu(family_num), s->disks->devname);
3762 }
3763}
3764
3765static struct intel_super *
3766imsm_thunderdome(struct intel_super **super_list, int len)
3767{
3768 struct intel_super *super_table[len];
3769 struct intel_disk *disk_list = NULL;
3770 struct intel_super *champion, *spare;
3771 struct intel_super *s, **del;
3772 int tbl_size = 0;
3773 int conflict;
3774 int i;
3775
3776 memset(super_table, 0, sizeof(super_table));
3777 for (s = *super_list; s; s = s->next)
3778 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3779
3780 for (i = 0; i < tbl_size; i++) {
3781 struct imsm_disk *d;
3782 struct intel_disk *idisk;
3783 struct imsm_super *mpb = super_table[i]->anchor;
3784
3785 s = super_table[i];
3786 d = &s->disks->disk;
3787
3788 /* 'd' must appear in merged disk list for its
3789 * configuration to be valid
3790 */
3791 idisk = disk_list_get(d->serial, disk_list);
3792 if (idisk && idisk->owner == i)
3793 s = validate_members(s, disk_list, i);
3794 else
3795 s = NULL;
3796
3797 if (!s)
3798 dprintf("%s: marking family: %#x from %d:%d offline\n",
3799 __func__, mpb->family_num,
3800 super_table[i]->disks->major,
3801 super_table[i]->disks->minor);
3802 super_table[i] = s;
3803 }
3804
3805 /* This is where the mdadm implementation differs from the Windows
3806 * driver which has no strict concept of a container. We can only
3807 * assemble one family from a container, so when returning a prodigal
3808 * array member to this system the code will not be able to disambiguate
3809 * the container contents that should be assembled ("foreign" versus
3810 * "local"). It requires user intervention to set the orig_family_num
3811 * to a new value to establish a new container. The Windows driver in
3812 * this situation fixes up the volume name in place and manages the
3813 * foreign array as an independent entity.
3814 */
3815 s = NULL;
3816 spare = NULL;
3817 conflict = 0;
3818 for (i = 0; i < tbl_size; i++) {
3819 struct intel_super *tbl_ent = super_table[i];
3820 int is_spare = 0;
3821
3822 if (!tbl_ent)
3823 continue;
3824
3825 if (tbl_ent->anchor->num_raid_devs == 0) {
3826 spare = tbl_ent;
3827 is_spare = 1;
3828 }
3829
3830 if (s && !is_spare) {
3831 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3832 conflict++;
3833 } else if (!s && !is_spare)
3834 s = tbl_ent;
3835 }
3836
3837 if (!s)
3838 s = spare;
3839 if (!s) {
3840 champion = NULL;
3841 goto out;
3842 }
3843 champion = s;
3844
3845 if (conflict)
3846 fprintf(stderr, "Chose family %#x on '%s', "
3847 "assemble conflicts to new container with '--update=uuid'\n",
3848 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3849
3850 /* collect all dl's onto 'champion', and update them to
3851 * champion's version of the status
3852 */
3853 for (s = *super_list; s; s = s->next) {
3854 struct imsm_super *mpb = champion->anchor;
3855 struct dl *dl = s->disks;
3856
3857 if (s == champion)
3858 continue;
3859
3860 for (i = 0; i < mpb->num_disks; i++) {
3861 struct imsm_disk *disk;
3862
3863 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3864 if (disk) {
3865 dl->disk = *disk;
3866 /* only set index on disks that are a member of
3867 * a populated contianer, i.e. one with
3868 * raid_devs
3869 */
3870 if (is_failed(&dl->disk))
3871 dl->index = -2;
3872 else if (is_spare(&dl->disk))
3873 dl->index = -1;
3874 break;
3875 }
3876 }
3877
3878 if (i >= mpb->num_disks) {
3879 struct intel_disk *idisk;
3880
3881 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3882 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3883 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3884 dl->index = -1;
3885 else {
3886 dl->index = -2;
3887 continue;
3888 }
3889 }
3890
3891 dl->next = champion->disks;
3892 champion->disks = dl;
3893 s->disks = NULL;
3894 }
3895
3896 /* delete 'champion' from super_list */
3897 for (del = super_list; *del; ) {
3898 if (*del == champion) {
3899 *del = (*del)->next;
3900 break;
3901 } else
3902 del = &(*del)->next;
3903 }
3904 champion->next = NULL;
3905
3906 out:
3907 while (disk_list) {
3908 struct intel_disk *idisk = disk_list;
3909
3910 disk_list = disk_list->next;
3911 free(idisk);
3912 }
3913
3914 return champion;
3915}
3916
cdddbdbc 3917static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3918 char *devname)
cdddbdbc
DW
3919{
3920 struct mdinfo *sra;
a2b97981
DW
3921 struct intel_super *super_list = NULL;
3922 struct intel_super *super = NULL;
db575f3b 3923 int devnum = fd2devnum(fd);
a2b97981 3924 struct mdinfo *sd;
db575f3b 3925 int retry;
a2b97981
DW
3926 int err = 0;
3927 int i;
dab4a513
DW
3928
3929 /* check if 'fd' an opened container */
b526e52d 3930 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3931 if (!sra)
3932 return 1;
3933
3934 if (sra->array.major_version != -1 ||
3935 sra->array.minor_version != -2 ||
1602d52c
AW
3936 strcmp(sra->text_version, "imsm") != 0) {
3937 err = 1;
3938 goto error;
3939 }
a2b97981
DW
3940 /* load all mpbs */
3941 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3942 struct intel_super *s = alloc_super();
7a6ecd55 3943 char nm[32];
a2b97981 3944 int dfd;
f2f5c343 3945 int rv;
a2b97981
DW
3946
3947 err = 1;
3948 if (!s)
3949 goto error;
3950 s->next = super_list;
3951 super_list = s;
cdddbdbc 3952
a2b97981 3953 err = 2;
cdddbdbc 3954 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3955 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3956 if (dfd < 0)
3957 goto error;
3958
d424212e 3959 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3960 /* no orom/efi or non-intel hba of the disk */
3961 if (rv != 0)
3962 goto error;
3963
e1902a7b 3964 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3965
3966 /* retry the load if we might have raced against mdmon */
a2b97981 3967 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3968 for (retry = 0; retry < 3; retry++) {
3969 usleep(3000);
e1902a7b 3970 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3971 if (err != 3)
db575f3b
DW
3972 break;
3973 }
a2b97981
DW
3974 if (err)
3975 goto error;
cdddbdbc
DW
3976 }
3977
a2b97981
DW
3978 /* all mpbs enter, maybe one leaves */
3979 super = imsm_thunderdome(&super_list, i);
3980 if (!super) {
3981 err = 1;
3982 goto error;
cdddbdbc
DW
3983 }
3984
47ee5a45
DW
3985 if (find_missing(super) != 0) {
3986 free_imsm(super);
a2b97981
DW
3987 err = 2;
3988 goto error;
47ee5a45 3989 }
8e59f3d8
AK
3990
3991 /* load migration record */
3992 err = load_imsm_migr_rec(super, NULL);
3993 if (err) {
3994 err = 4;
3995 goto error;
3996 }
e2f41b2c
AK
3997
3998 /* Check migration compatibility */
3999 if (check_mpb_migr_compatibility(super) != 0) {
4000 fprintf(stderr, Name ": Unsupported migration detected");
4001 if (devname)
4002 fprintf(stderr, " on %s\n", devname);
4003 else
4004 fprintf(stderr, " (IMSM).\n");
4005
4006 err = 5;
4007 goto error;
4008 }
4009
a2b97981
DW
4010 err = 0;
4011
4012 error:
4013 while (super_list) {
4014 struct intel_super *s = super_list;
4015
4016 super_list = super_list->next;
4017 free_imsm(s);
4018 }
1602d52c 4019 sysfs_free(sra);
a2b97981
DW
4020
4021 if (err)
4022 return err;
f7e7067b 4023
cdddbdbc 4024 *sbp = super;
db575f3b 4025 st->container_dev = devnum;
a2b97981 4026 if (err == 0 && st->ss == NULL) {
bf5a934a 4027 st->ss = &super_imsm;
cdddbdbc
DW
4028 st->minor_version = 0;
4029 st->max_devs = IMSM_MAX_DEVICES;
4030 }
cdddbdbc
DW
4031 return 0;
4032}
2b959fbf
N
4033
4034static int load_container_imsm(struct supertype *st, int fd, char *devname)
4035{
4036 return load_super_imsm_all(st, fd, &st->sb, devname);
4037}
cdddbdbc
DW
4038#endif
4039
4040static int load_super_imsm(struct supertype *st, int fd, char *devname)
4041{
4042 struct intel_super *super;
4043 int rv;
4044
691c6ee1
N
4045 if (test_partition(fd))
4046 /* IMSM not allowed on partitions */
4047 return 1;
4048
37424f13
DW
4049 free_super_imsm(st);
4050
49133e57 4051 super = alloc_super();
cdddbdbc
DW
4052 if (!super) {
4053 fprintf(stderr,
4054 Name ": malloc of %zu failed.\n",
4055 sizeof(*super));
4056 return 1;
4057 }
ea2bc72b
LM
4058 /* Load hba and capabilities if they exist.
4059 * But do not preclude loading metadata in case capabilities or hba are
4060 * non-compliant and ignore_hw_compat is set.
4061 */
d424212e 4062 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4063 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4064 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4065 if (devname)
4066 fprintf(stderr,
4067 Name ": No OROM/EFI properties for %s\n", devname);
4068 free_imsm(super);
4069 return 2;
4070 }
a2b97981 4071 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4072
4073 if (rv) {
4074 if (devname)
4075 fprintf(stderr,
4076 Name ": Failed to load all information "
4077 "sections on %s\n", devname);
4078 free_imsm(super);
4079 return rv;
4080 }
4081
4082 st->sb = super;
4083 if (st->ss == NULL) {
4084 st->ss = &super_imsm;
4085 st->minor_version = 0;
4086 st->max_devs = IMSM_MAX_DEVICES;
4087 }
8e59f3d8
AK
4088
4089 /* load migration record */
2e062e82
AK
4090 if (load_imsm_migr_rec(super, NULL) == 0) {
4091 /* Check for unsupported migration features */
4092 if (check_mpb_migr_compatibility(super) != 0) {
4093 fprintf(stderr,
4094 Name ": Unsupported migration detected");
4095 if (devname)
4096 fprintf(stderr, " on %s\n", devname);
4097 else
4098 fprintf(stderr, " (IMSM).\n");
4099 return 3;
4100 }
e2f41b2c
AK
4101 }
4102
cdddbdbc
DW
4103 return 0;
4104}
4105
ef6ffade
DW
4106static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4107{
4108 if (info->level == 1)
4109 return 128;
4110 return info->chunk_size >> 9;
4111}
4112
ff596308 4113static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4114{
4115 __u32 num_stripes;
4116
4117 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4118 num_stripes /= num_domains;
ef6ffade
DW
4119
4120 return num_stripes;
4121}
4122
fcfd9599
DW
4123static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4124{
4025c288
DW
4125 if (info->level == 1)
4126 return info->size * 2;
4127 else
4128 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4129}
4130
4d1313e9
DW
4131static void imsm_update_version_info(struct intel_super *super)
4132{
4133 /* update the version and attributes */
4134 struct imsm_super *mpb = super->anchor;
4135 char *version;
4136 struct imsm_dev *dev;
4137 struct imsm_map *map;
4138 int i;
4139
4140 for (i = 0; i < mpb->num_raid_devs; i++) {
4141 dev = get_imsm_dev(super, i);
4142 map = get_imsm_map(dev, 0);
4143 if (__le32_to_cpu(dev->size_high) > 0)
4144 mpb->attributes |= MPB_ATTRIB_2TB;
4145
4146 /* FIXME detect when an array spans a port multiplier */
4147 #if 0
4148 mpb->attributes |= MPB_ATTRIB_PM;
4149 #endif
4150
4151 if (mpb->num_raid_devs > 1 ||
4152 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4153 version = MPB_VERSION_ATTRIBS;
4154 switch (get_imsm_raid_level(map)) {
4155 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4156 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4157 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4158 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4159 }
4160 } else {
4161 if (map->num_members >= 5)
4162 version = MPB_VERSION_5OR6_DISK_ARRAY;
4163 else if (dev->status == DEV_CLONE_N_GO)
4164 version = MPB_VERSION_CNG;
4165 else if (get_imsm_raid_level(map) == 5)
4166 version = MPB_VERSION_RAID5;
4167 else if (map->num_members >= 3)
4168 version = MPB_VERSION_3OR4_DISK_ARRAY;
4169 else if (get_imsm_raid_level(map) == 1)
4170 version = MPB_VERSION_RAID1;
4171 else
4172 version = MPB_VERSION_RAID0;
4173 }
4174 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4175 }
4176}
4177
aa534678
DW
4178static int check_name(struct intel_super *super, char *name, int quiet)
4179{
4180 struct imsm_super *mpb = super->anchor;
4181 char *reason = NULL;
4182 int i;
4183
4184 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4185 reason = "must be 16 characters or less";
4186
4187 for (i = 0; i < mpb->num_raid_devs; i++) {
4188 struct imsm_dev *dev = get_imsm_dev(super, i);
4189
4190 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4191 reason = "already exists";
4192 break;
4193 }
4194 }
4195
4196 if (reason && !quiet)
4197 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4198
4199 return !reason;
4200}
4201
8b353278
DW
4202static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4203 unsigned long long size, char *name,
4204 char *homehost, int *uuid)
cdddbdbc 4205{
c2c087e6
DW
4206 /* We are creating a volume inside a pre-existing container.
4207 * so st->sb is already set.
4208 */
4209 struct intel_super *super = st->sb;
949c47a0 4210 struct imsm_super *mpb = super->anchor;
ba2de7ba 4211 struct intel_dev *dv;
c2c087e6
DW
4212 struct imsm_dev *dev;
4213 struct imsm_vol *vol;
4214 struct imsm_map *map;
4215 int idx = mpb->num_raid_devs;
4216 int i;
4217 unsigned long long array_blocks;
2c092cad 4218 size_t size_old, size_new;
ff596308 4219 __u32 num_data_stripes;
cdddbdbc 4220
88c32bb1 4221 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4222 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4223 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4224 return 0;
4225 }
4226
2c092cad
DW
4227 /* ensure the mpb is large enough for the new data */
4228 size_old = __le32_to_cpu(mpb->mpb_size);
4229 size_new = disks_to_mpb_size(info->nr_disks);
4230 if (size_new > size_old) {
4231 void *mpb_new;
4232 size_t size_round = ROUND_UP(size_new, 512);
4233
4234 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4235 fprintf(stderr, Name": could not allocate new mpb\n");
4236 return 0;
4237 }
8e59f3d8
AK
4238 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4239 fprintf(stderr, Name
4240 ": %s could not allocate migr_rec buffer\n",
4241 __func__);
4242 free(super->buf);
4243 free(super);
ea944c8f 4244 free(mpb_new);
8e59f3d8
AK
4245 return 0;
4246 }
2c092cad
DW
4247 memcpy(mpb_new, mpb, size_old);
4248 free(mpb);
4249 mpb = mpb_new;
949c47a0 4250 super->anchor = mpb_new;
2c092cad
DW
4251 mpb->mpb_size = __cpu_to_le32(size_new);
4252 memset(mpb_new + size_old, 0, size_round - size_old);
4253 }
bf5a934a 4254 super->current_vol = idx;
3960e579
DW
4255
4256 /* handle 'failed_disks' by either:
4257 * a) create dummy disk entries in the table if this the first
4258 * volume in the array. We add them here as this is the only
4259 * opportunity to add them. add_to_super_imsm_volume()
4260 * handles the non-failed disks and continues incrementing
4261 * mpb->num_disks.
4262 * b) validate that 'failed_disks' matches the current number
4263 * of missing disks if the container is populated
d23fe947 4264 */
3960e579 4265 if (super->current_vol == 0) {
d23fe947 4266 mpb->num_disks = 0;
3960e579
DW
4267 for (i = 0; i < info->failed_disks; i++) {
4268 struct imsm_disk *disk;
4269
4270 mpb->num_disks++;
4271 disk = __get_imsm_disk(mpb, i);
4272 disk->status = CONFIGURED_DISK | FAILED_DISK;
4273 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4274 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4275 "missing:%d", i);
4276 }
4277 find_missing(super);
4278 } else {
4279 int missing = 0;
4280 struct dl *d;
4281
4282 for (d = super->missing; d; d = d->next)
4283 missing++;
4284 if (info->failed_disks > missing) {
4285 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4286 return 0;
4287 }
4288 }
5a038140 4289
aa534678
DW
4290 if (!check_name(super, name, 0))
4291 return 0;
ba2de7ba
DW
4292 dv = malloc(sizeof(*dv));
4293 if (!dv) {
4294 fprintf(stderr, Name ": failed to allocate device list entry\n");
4295 return 0;
4296 }
1a2487c2 4297 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4298 if (!dev) {
ba2de7ba 4299 free(dv);
949c47a0
DW
4300 fprintf(stderr, Name": could not allocate raid device\n");
4301 return 0;
4302 }
1a2487c2 4303
c2c087e6 4304 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4305 if (info->level == 1)
4306 array_blocks = info_to_blocks_per_member(info);
4307 else
4308 array_blocks = calc_array_size(info->level, info->raid_disks,
4309 info->layout, info->chunk_size,
4310 info->size*2);
979d38be
DW
4311 /* round array size down to closest MB */
4312 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4313
c2c087e6
DW
4314 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4315 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4316 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4317 vol = &dev->vol;
4318 vol->migr_state = 0;
1484e727 4319 set_migr_type(dev, MIGR_INIT);
3960e579 4320 vol->dirty = !info->state;
f8f603f1 4321 vol->curr_migr_unit = 0;
a965f303 4322 map = get_imsm_map(dev, 0);
0dcecb2e 4323 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4324 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4325 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4326 map->failed_disk_num = ~0;
bf4442ab
AK
4327 if (info->level > 0)
4328 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4329 else
4330 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4331 IMSM_T_STATE_NORMAL;
252d23c0 4332 map->ddf = 1;
ef6ffade
DW
4333
4334 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4335 free(dev);
4336 free(dv);
ef6ffade
DW
4337 fprintf(stderr, Name": imsm does not support more than 2 disks"
4338 "in a raid1 volume\n");
4339 return 0;
4340 }
81062a36
DW
4341
4342 map->raid_level = info->level;
4d1313e9 4343 if (info->level == 10) {
c2c087e6 4344 map->raid_level = 1;
4d1313e9 4345 map->num_domains = info->raid_disks / 2;
81062a36
DW
4346 } else if (info->level == 1)
4347 map->num_domains = info->raid_disks;
4348 else
ff596308 4349 map->num_domains = 1;
81062a36 4350
ff596308
DW
4351 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4352 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4353
c2c087e6
DW
4354 map->num_members = info->raid_disks;
4355 for (i = 0; i < map->num_members; i++) {
4356 /* initialized in add_to_super */
4eb26970 4357 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4358 }
949c47a0 4359 mpb->num_raid_devs++;
ba2de7ba
DW
4360
4361 dv->dev = dev;
4362 dv->index = super->current_vol;
4363 dv->next = super->devlist;
4364 super->devlist = dv;
c2c087e6 4365
4d1313e9
DW
4366 imsm_update_version_info(super);
4367
c2c087e6 4368 return 1;
cdddbdbc
DW
4369}
4370
bf5a934a
DW
4371static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4372 unsigned long long size, char *name,
4373 char *homehost, int *uuid)
4374{
4375 /* This is primarily called by Create when creating a new array.
4376 * We will then get add_to_super called for each component, and then
4377 * write_init_super called to write it out to each device.
4378 * For IMSM, Create can create on fresh devices or on a pre-existing
4379 * array.
4380 * To create on a pre-existing array a different method will be called.
4381 * This one is just for fresh drives.
4382 */
4383 struct intel_super *super;
4384 struct imsm_super *mpb;
4385 size_t mpb_size;
4d1313e9 4386 char *version;
bf5a934a 4387
bf5a934a 4388 if (st->sb)
e683ca88
DW
4389 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4390
4391 if (info)
4392 mpb_size = disks_to_mpb_size(info->nr_disks);
4393 else
4394 mpb_size = 512;
bf5a934a 4395
49133e57 4396 super = alloc_super();
e683ca88 4397 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4398 free(super);
e683ca88
DW
4399 super = NULL;
4400 }
4401 if (!super) {
4402 fprintf(stderr, Name
4403 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4404 return 0;
4405 }
8e59f3d8
AK
4406 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4407 fprintf(stderr, Name
4408 ": %s could not allocate migr_rec buffer\n", __func__);
4409 free(super->buf);
4410 free(super);
4411 return 0;
4412 }
e683ca88 4413 memset(super->buf, 0, mpb_size);
ef649044 4414 mpb = super->buf;
e683ca88
DW
4415 mpb->mpb_size = __cpu_to_le32(mpb_size);
4416 st->sb = super;
4417
4418 if (info == NULL) {
4419 /* zeroing superblock */
4420 return 0;
4421 }
bf5a934a 4422
4d1313e9
DW
4423 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4424
4425 version = (char *) mpb->sig;
4426 strcpy(version, MPB_SIGNATURE);
4427 version += strlen(MPB_SIGNATURE);
4428 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4429
bf5a934a
DW
4430 return 1;
4431}
4432
0e600426 4433#ifndef MDASSEMBLE
f20c3968 4434static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4435 int fd, char *devname)
4436{
4437 struct intel_super *super = st->sb;
d23fe947 4438 struct imsm_super *mpb = super->anchor;
3960e579 4439 struct imsm_disk *_disk;
bf5a934a
DW
4440 struct imsm_dev *dev;
4441 struct imsm_map *map;
3960e579 4442 struct dl *dl, *df;
4eb26970 4443 int slot;
bf5a934a 4444
949c47a0 4445 dev = get_imsm_dev(super, super->current_vol);
a965f303 4446 map = get_imsm_map(dev, 0);
bf5a934a 4447
208933a7
N
4448 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4449 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4450 devname);
4451 return 1;
4452 }
4453
efb30e7f
DW
4454 if (fd == -1) {
4455 /* we're doing autolayout so grab the pre-marked (in
4456 * validate_geometry) raid_disk
4457 */
4458 for (dl = super->disks; dl; dl = dl->next)
4459 if (dl->raiddisk == dk->raid_disk)
4460 break;
4461 } else {
4462 for (dl = super->disks; dl ; dl = dl->next)
4463 if (dl->major == dk->major &&
4464 dl->minor == dk->minor)
4465 break;
4466 }
d23fe947 4467
208933a7
N
4468 if (!dl) {
4469 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4470 return 1;
208933a7 4471 }
bf5a934a 4472
d23fe947
DW
4473 /* add a pristine spare to the metadata */
4474 if (dl->index < 0) {
4475 dl->index = super->anchor->num_disks;
4476 super->anchor->num_disks++;
4477 }
4eb26970
DW
4478 /* Check the device has not already been added */
4479 slot = get_imsm_disk_slot(map, dl->index);
4480 if (slot >= 0 &&
98130f40 4481 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4482 fprintf(stderr, Name ": %s has been included in this array twice\n",
4483 devname);
4484 return 1;
4485 }
656b6b5a 4486 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4487 dl->disk.status = CONFIGURED_DISK;
d23fe947 4488
3960e579
DW
4489 /* update size of 'missing' disks to be at least as large as the
4490 * largest acitve member (we only have dummy missing disks when
4491 * creating the first volume)
4492 */
4493 if (super->current_vol == 0) {
4494 for (df = super->missing; df; df = df->next) {
4495 if (dl->disk.total_blocks > df->disk.total_blocks)
4496 df->disk.total_blocks = dl->disk.total_blocks;
4497 _disk = __get_imsm_disk(mpb, df->index);
4498 *_disk = df->disk;
4499 }
4500 }
4501
4502 /* refresh unset/failed slots to point to valid 'missing' entries */
4503 for (df = super->missing; df; df = df->next)
4504 for (slot = 0; slot < mpb->num_disks; slot++) {
4505 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4506
4507 if ((ord & IMSM_ORD_REBUILD) == 0)
4508 continue;
4509 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403
AK
4510 if (is_gen_migration(dev)) {
4511 struct imsm_map *map2 = get_imsm_map(dev, 1);
4512 if (slot < map2->num_members) {
4513 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4514 slot,
4515 1);
4516 if ((unsigned)df->index ==
4517 ord_to_idx(ord2))
4518 set_imsm_ord_tbl_ent(map2,
4519 slot,
4520 df->index |
4521 IMSM_ORD_REBUILD);
4522 }
4523 }
3960e579
DW
4524 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4525 break;
4526 }
4527
d23fe947
DW
4528 /* if we are creating the first raid device update the family number */
4529 if (super->current_vol == 0) {
4530 __u32 sum;
4531 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4532
3960e579 4533 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4534 if (!_dev || !_disk) {
4535 fprintf(stderr, Name ": BUG mpb setup error\n");
4536 return 1;
4537 }
d23fe947
DW
4538 *_dev = *dev;
4539 *_disk = dl->disk;
148acb7b
DW
4540 sum = random32();
4541 sum += __gen_imsm_checksum(mpb);
d23fe947 4542 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4543 mpb->orig_family_num = mpb->family_num;
d23fe947 4544 }
ca0748fa 4545 super->current_disk = dl;
f20c3968 4546 return 0;
bf5a934a
DW
4547}
4548
a8619d23
AK
4549/* mark_spare()
4550 * Function marks disk as spare and restores disk serial
4551 * in case it was previously marked as failed by takeover operation
4552 * reruns:
4553 * -1 : critical error
4554 * 0 : disk is marked as spare but serial is not set
4555 * 1 : success
4556 */
4557int mark_spare(struct dl *disk)
4558{
4559 __u8 serial[MAX_RAID_SERIAL_LEN];
4560 int ret_val = -1;
4561
4562 if (!disk)
4563 return ret_val;
4564
4565 ret_val = 0;
4566 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4567 /* Restore disk serial number, because takeover marks disk
4568 * as failed and adds to serial ':0' before it becomes
4569 * a spare disk.
4570 */
4571 serialcpy(disk->serial, serial);
4572 serialcpy(disk->disk.serial, serial);
4573 ret_val = 1;
4574 }
4575 disk->disk.status = SPARE_DISK;
4576 disk->index = -1;
4577
4578 return ret_val;
4579}
88654014 4580
f20c3968 4581static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4582 int fd, char *devname)
cdddbdbc 4583{
c2c087e6 4584 struct intel_super *super = st->sb;
c2c087e6
DW
4585 struct dl *dd;
4586 unsigned long long size;
f2f27e63 4587 __u32 id;
c2c087e6
DW
4588 int rv;
4589 struct stat stb;
4590
88654014
LM
4591 /* If we are on an RAID enabled platform check that the disk is
4592 * attached to the raid controller.
4593 * We do not need to test disks attachment for container based additions,
4594 * they shall be already tested when container was created/assembled.
88c32bb1 4595 */
d424212e 4596 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4597 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4598 if (rv != 0) {
4599 dprintf("capability: %p fd: %d ret: %d\n",
4600 super->orom, fd, rv);
4601 return 1;
88c32bb1
DW
4602 }
4603
f20c3968
DW
4604 if (super->current_vol >= 0)
4605 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4606
c2c087e6
DW
4607 fstat(fd, &stb);
4608 dd = malloc(sizeof(*dd));
b9f594fe 4609 if (!dd) {
c2c087e6
DW
4610 fprintf(stderr,
4611 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4612 return 1;
c2c087e6
DW
4613 }
4614 memset(dd, 0, sizeof(*dd));
4615 dd->major = major(stb.st_rdev);
4616 dd->minor = minor(stb.st_rdev);
c2c087e6 4617 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4618 dd->fd = fd;
689c9bf3 4619 dd->e = NULL;
1a64be56 4620 dd->action = DISK_ADD;
c2c087e6 4621 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4622 if (rv) {
c2c087e6 4623 fprintf(stderr,
0030e8d6 4624 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4625 free(dd);
0030e8d6 4626 abort();
c2c087e6
DW
4627 }
4628
c2c087e6
DW
4629 get_dev_size(fd, NULL, &size);
4630 size /= 512;
1f24f035 4631 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4632 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4633 mark_spare(dd);
c2c087e6 4634 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4635 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4636 else
b9f594fe 4637 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4638
4639 if (st->update_tail) {
1a64be56
LM
4640 dd->next = super->disk_mgmt_list;
4641 super->disk_mgmt_list = dd;
43dad3d6
DW
4642 } else {
4643 dd->next = super->disks;
4644 super->disks = dd;
ceaf0ee1 4645 super->updates_pending++;
43dad3d6 4646 }
f20c3968
DW
4647
4648 return 0;
cdddbdbc
DW
4649}
4650
1a64be56
LM
4651
4652static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4653{
4654 struct intel_super *super = st->sb;
4655 struct dl *dd;
4656
4657 /* remove from super works only in mdmon - for communication
4658 * manager - monitor. Check if communication memory buffer
4659 * is prepared.
4660 */
4661 if (!st->update_tail) {
4662 fprintf(stderr,
4663 Name ": %s shall be used in mdmon context only"
4664 "(line %d).\n", __func__, __LINE__);
4665 return 1;
4666 }
4667 dd = malloc(sizeof(*dd));
4668 if (!dd) {
4669 fprintf(stderr,
4670 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4671 return 1;
4672 }
4673 memset(dd, 0, sizeof(*dd));
4674 dd->major = dk->major;
4675 dd->minor = dk->minor;
1a64be56 4676 dd->fd = -1;
a8619d23 4677 mark_spare(dd);
1a64be56
LM
4678 dd->action = DISK_REMOVE;
4679
4680 dd->next = super->disk_mgmt_list;
4681 super->disk_mgmt_list = dd;
4682
4683
4684 return 0;
4685}
4686
f796af5d
DW
4687static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4688
4689static union {
4690 char buf[512];
4691 struct imsm_super anchor;
4692} spare_record __attribute__ ((aligned(512)));
c2c087e6 4693
d23fe947
DW
4694/* spare records have their own family number and do not have any defined raid
4695 * devices
4696 */
4697static int write_super_imsm_spares(struct intel_super *super, int doclose)
4698{
d23fe947 4699 struct imsm_super *mpb = super->anchor;
f796af5d 4700 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4701 __u32 sum;
4702 struct dl *d;
4703
f796af5d
DW
4704 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4705 spare->generation_num = __cpu_to_le32(1UL),
4706 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4707 spare->num_disks = 1,
4708 spare->num_raid_devs = 0,
4709 spare->cache_size = mpb->cache_size,
4710 spare->pwr_cycle_count = __cpu_to_le32(1),
4711
4712 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4713 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4714
4715 for (d = super->disks; d; d = d->next) {
8796fdc4 4716 if (d->index != -1)
d23fe947
DW
4717 continue;
4718
f796af5d
DW
4719 spare->disk[0] = d->disk;
4720 sum = __gen_imsm_checksum(spare);
4721 spare->family_num = __cpu_to_le32(sum);
4722 spare->orig_family_num = 0;
4723 sum = __gen_imsm_checksum(spare);
4724 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4725
f796af5d 4726 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4727 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4728 __func__, d->major, d->minor, strerror(errno));
e74255d9 4729 return 1;
d23fe947
DW
4730 }
4731 if (doclose) {
4732 close(d->fd);
4733 d->fd = -1;
4734 }
4735 }
4736
e74255d9 4737 return 0;
d23fe947
DW
4738}
4739
36988a3d 4740static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4741{
36988a3d 4742 struct intel_super *super = st->sb;
949c47a0 4743 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4744 struct dl *d;
4745 __u32 generation;
4746 __u32 sum;
d23fe947 4747 int spares = 0;
949c47a0 4748 int i;
a48ac0a8 4749 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4750 int num_disks = 0;
146c6260 4751 int clear_migration_record = 1;
cdddbdbc 4752
c2c087e6
DW
4753 /* 'generation' is incremented everytime the metadata is written */
4754 generation = __le32_to_cpu(mpb->generation_num);
4755 generation++;
4756 mpb->generation_num = __cpu_to_le32(generation);
4757
148acb7b
DW
4758 /* fix up cases where previous mdadm releases failed to set
4759 * orig_family_num
4760 */
4761 if (mpb->orig_family_num == 0)
4762 mpb->orig_family_num = mpb->family_num;
4763
d23fe947 4764 for (d = super->disks; d; d = d->next) {
8796fdc4 4765 if (d->index == -1)
d23fe947 4766 spares++;
36988a3d 4767 else {
d23fe947 4768 mpb->disk[d->index] = d->disk;
36988a3d
AK
4769 num_disks++;
4770 }
d23fe947 4771 }
36988a3d 4772 for (d = super->missing; d; d = d->next) {
47ee5a45 4773 mpb->disk[d->index] = d->disk;
36988a3d
AK
4774 num_disks++;
4775 }
4776 mpb->num_disks = num_disks;
4777 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4778
949c47a0
DW
4779 for (i = 0; i < mpb->num_raid_devs; i++) {
4780 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4781 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4782 if (dev && dev2) {
4783 imsm_copy_dev(dev, dev2);
4784 mpb_size += sizeof_imsm_dev(dev, 0);
4785 }
146c6260
AK
4786 if (is_gen_migration(dev2))
4787 clear_migration_record = 0;
949c47a0 4788 }
a48ac0a8
DW
4789 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4790 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4791
c2c087e6 4792 /* recalculate checksum */
949c47a0 4793 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4794 mpb->check_sum = __cpu_to_le32(sum);
4795
146c6260
AK
4796 if (clear_migration_record)
4797 memset(super->migr_rec_buf, 0, 512);
4798
d23fe947 4799 /* write the mpb for disks that compose raid devices */
c2c087e6 4800 for (d = super->disks; d ; d = d->next) {
86c54047 4801 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4802 continue;
f796af5d 4803 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4804 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4805 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4806 if (clear_migration_record) {
4807 unsigned long long dsize;
4808
4809 get_dev_size(d->fd, NULL, &dsize);
4810 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4811 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4812 perror("Write migr_rec failed");
146c6260
AK
4813 }
4814 }
c2c087e6
DW
4815 if (doclose) {
4816 close(d->fd);
4817 d->fd = -1;
4818 }
4819 }
4820
d23fe947
DW
4821 if (spares)
4822 return write_super_imsm_spares(super, doclose);
4823
e74255d9 4824 return 0;
c2c087e6
DW
4825}
4826
0e600426 4827
9b1fb677 4828static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4829{
4830 size_t len;
4831 struct imsm_update_create_array *u;
4832 struct intel_super *super = st->sb;
9b1fb677 4833 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4834 struct imsm_map *map = get_imsm_map(dev, 0);
4835 struct disk_info *inf;
4836 struct imsm_disk *disk;
4837 int i;
43dad3d6 4838
54c2c1ea
DW
4839 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4840 sizeof(*inf) * map->num_members;
43dad3d6
DW
4841 u = malloc(len);
4842 if (!u) {
4843 fprintf(stderr, "%s: failed to allocate update buffer\n",
4844 __func__);
4845 return 1;
4846 }
4847
4848 u->type = update_create_array;
9b1fb677 4849 u->dev_idx = dev_idx;
43dad3d6 4850 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4851 inf = get_disk_info(u);
4852 for (i = 0; i < map->num_members; i++) {
98130f40 4853 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4854
54c2c1ea
DW
4855 disk = get_imsm_disk(super, idx);
4856 serialcpy(inf[i].serial, disk->serial);
4857 }
43dad3d6
DW
4858 append_metadata_update(st, u, len);
4859
4860 return 0;
4861}
4862
1a64be56 4863static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4864{
4865 struct intel_super *super = st->sb;
4866 size_t len;
1a64be56 4867 struct imsm_update_add_remove_disk *u;
43dad3d6 4868
1a64be56 4869 if (!super->disk_mgmt_list)
43dad3d6
DW
4870 return 0;
4871
4872 len = sizeof(*u);
4873 u = malloc(len);
4874 if (!u) {
4875 fprintf(stderr, "%s: failed to allocate update buffer\n",
4876 __func__);
4877 return 1;
4878 }
4879
1a64be56 4880 u->type = update_add_remove_disk;
43dad3d6
DW
4881 append_metadata_update(st, u, len);
4882
4883 return 0;
4884}
4885
c2c087e6
DW
4886static int write_init_super_imsm(struct supertype *st)
4887{
9b1fb677
DW
4888 struct intel_super *super = st->sb;
4889 int current_vol = super->current_vol;
4890
4891 /* we are done with current_vol reset it to point st at the container */
4892 super->current_vol = -1;
4893
8273f55e 4894 if (st->update_tail) {
43dad3d6
DW
4895 /* queue the recently created array / added disk
4896 * as a metadata update */
43dad3d6 4897 int rv;
8273f55e 4898
43dad3d6 4899 /* determine if we are creating a volume or adding a disk */
9b1fb677 4900 if (current_vol < 0) {
1a64be56
LM
4901 /* in the mgmt (add/remove) disk case we are running
4902 * in mdmon context, so don't close fd's
43dad3d6 4903 */
1a64be56 4904 return mgmt_disk(st);
43dad3d6 4905 } else
9b1fb677 4906 rv = create_array(st, current_vol);
8273f55e 4907
43dad3d6 4908 return rv;
d682f344
N
4909 } else {
4910 struct dl *d;
4911 for (d = super->disks; d; d = d->next)
4912 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4913 return write_super_imsm(st, 1);
d682f344 4914 }
cdddbdbc 4915}
0e600426 4916#endif
cdddbdbc 4917
e683ca88 4918static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4919{
e683ca88
DW
4920 struct intel_super *super = st->sb;
4921 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4922
e683ca88 4923 if (!mpb)
ad97895e
DW
4924 return 1;
4925
1799c9e8 4926#ifndef MDASSEMBLE
e683ca88 4927 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4928#else
4929 return 1;
4930#endif
cdddbdbc
DW
4931}
4932
0e600426
N
4933static int imsm_bbm_log_size(struct imsm_super *mpb)
4934{
4935 return __le32_to_cpu(mpb->bbm_log_size);
4936}
4937
4938#ifndef MDASSEMBLE
cdddbdbc
DW
4939static int validate_geometry_imsm_container(struct supertype *st, int level,
4940 int layout, int raiddisks, int chunk,
c2c087e6 4941 unsigned long long size, char *dev,
2c514b71
NB
4942 unsigned long long *freesize,
4943 int verbose)
cdddbdbc 4944{
c2c087e6
DW
4945 int fd;
4946 unsigned long long ldsize;
f2f5c343
LM
4947 struct intel_super *super=NULL;
4948 int rv = 0;
cdddbdbc 4949
c2c087e6
DW
4950 if (level != LEVEL_CONTAINER)
4951 return 0;
4952 if (!dev)
4953 return 1;
4954
4955 fd = open(dev, O_RDONLY|O_EXCL, 0);
4956 if (fd < 0) {
2c514b71
NB
4957 if (verbose)
4958 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4959 dev, strerror(errno));
c2c087e6
DW
4960 return 0;
4961 }
4962 if (!get_dev_size(fd, dev, &ldsize)) {
4963 close(fd);
4964 return 0;
4965 }
f2f5c343
LM
4966
4967 /* capabilities retrieve could be possible
4968 * note that there is no fd for the disks in array.
4969 */
4970 super = alloc_super();
4971 if (!super) {
4972 fprintf(stderr,
4973 Name ": malloc of %zu failed.\n",
4974 sizeof(*super));
4975 close(fd);
4976 return 0;
4977 }
4978
d424212e 4979 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4980 if (rv != 0) {
4981#if DEBUG
4982 char str[256];
4983 fd2devname(fd, str);
4984 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4985 fd, str, super->orom, rv, raiddisks);
4986#endif
4987 /* no orom/efi or non-intel hba of the disk */
4988 close(fd);
4989 free_imsm(super);
4990 return 0;
4991 }
c2c087e6 4992 close(fd);
f2f5c343
LM
4993 if (super->orom && raiddisks > super->orom->tds) {
4994 if (verbose)
4995 fprintf(stderr, Name ": %d exceeds maximum number of"
4996 " platform supported disks: %d\n",
4997 raiddisks, super->orom->tds);
4998
4999 free_imsm(super);
5000 return 0;
5001 }
c2c087e6
DW
5002
5003 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 5004 free_imsm(super);
c2c087e6
DW
5005
5006 return 1;
cdddbdbc
DW
5007}
5008
0dcecb2e
DW
5009static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5010{
5011 const unsigned long long base_start = e[*idx].start;
5012 unsigned long long end = base_start + e[*idx].size;
5013 int i;
5014
5015 if (base_start == end)
5016 return 0;
5017
5018 *idx = *idx + 1;
5019 for (i = *idx; i < num_extents; i++) {
5020 /* extend overlapping extents */
5021 if (e[i].start >= base_start &&
5022 e[i].start <= end) {
5023 if (e[i].size == 0)
5024 return 0;
5025 if (e[i].start + e[i].size > end)
5026 end = e[i].start + e[i].size;
5027 } else if (e[i].start > end) {
5028 *idx = i;
5029 break;
5030 }
5031 }
5032
5033 return end - base_start;
5034}
5035
5036static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5037{
5038 /* build a composite disk with all known extents and generate a new
5039 * 'maxsize' given the "all disks in an array must share a common start
5040 * offset" constraint
5041 */
5042 struct extent *e = calloc(sum_extents, sizeof(*e));
5043 struct dl *dl;
5044 int i, j;
5045 int start_extent;
5046 unsigned long long pos;
b9d77223 5047 unsigned long long start = 0;
0dcecb2e
DW
5048 unsigned long long maxsize;
5049 unsigned long reserve;
5050
5051 if (!e)
a7dd165b 5052 return 0;
0dcecb2e
DW
5053
5054 /* coalesce and sort all extents. also, check to see if we need to
5055 * reserve space between member arrays
5056 */
5057 j = 0;
5058 for (dl = super->disks; dl; dl = dl->next) {
5059 if (!dl->e)
5060 continue;
5061 for (i = 0; i < dl->extent_cnt; i++)
5062 e[j++] = dl->e[i];
5063 }
5064 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5065
5066 /* merge extents */
5067 i = 0;
5068 j = 0;
5069 while (i < sum_extents) {
5070 e[j].start = e[i].start;
5071 e[j].size = find_size(e, &i, sum_extents);
5072 j++;
5073 if (e[j-1].size == 0)
5074 break;
5075 }
5076
5077 pos = 0;
5078 maxsize = 0;
5079 start_extent = 0;
5080 i = 0;
5081 do {
5082 unsigned long long esize;
5083
5084 esize = e[i].start - pos;
5085 if (esize >= maxsize) {
5086 maxsize = esize;
5087 start = pos;
5088 start_extent = i;
5089 }
5090 pos = e[i].start + e[i].size;
5091 i++;
5092 } while (e[i-1].size);
5093 free(e);
5094
a7dd165b
DW
5095 if (maxsize == 0)
5096 return 0;
5097
5098 /* FIXME assumes volume at offset 0 is the first volume in a
5099 * container
5100 */
0dcecb2e
DW
5101 if (start_extent > 0)
5102 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5103 else
5104 reserve = 0;
5105
5106 if (maxsize < reserve)
a7dd165b 5107 return 0;
0dcecb2e
DW
5108
5109 super->create_offset = ~((__u32) 0);
5110 if (start + reserve > super->create_offset)
a7dd165b 5111 return 0; /* start overflows create_offset */
0dcecb2e
DW
5112 super->create_offset = start + reserve;
5113
5114 return maxsize - reserve;
5115}
5116
88c32bb1
DW
5117static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5118{
5119 if (level < 0 || level == 6 || level == 4)
5120 return 0;
5121
5122 /* if we have an orom prevent invalid raid levels */
5123 if (orom)
5124 switch (level) {
5125 case 0: return imsm_orom_has_raid0(orom);
5126 case 1:
5127 if (raiddisks > 2)
5128 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5129 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5130 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5131 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5132 }
5133 else
5134 return 1; /* not on an Intel RAID platform so anything goes */
5135
5136 return 0;
5137}
5138
cd9d1ac7
DW
5139static int imsm_default_chunk(const struct imsm_orom *orom)
5140{
5141 /* up to 512 if the plaform supports it, otherwise the platform max.
5142 * 128 if no platform detected
5143 */
5144 int fs = max(7, orom ? fls(orom->sss) : 0);
5145
5146 return min(512, (1 << fs));
5147}
73408129 5148
35f81cbb 5149#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5150static int
5151validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5152 int raiddisks, int *chunk, int verbose)
6592ce37 5153{
660260d0
DW
5154 /* check/set platform and metadata limits/defaults */
5155 if (super->orom && raiddisks > super->orom->dpa) {
5156 pr_vrb(": platform supports a maximum of %d disks per array\n",
5157 super->orom->dpa);
73408129
LM
5158 return 0;
5159 }
5160
5161 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5162 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5163 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5164 level, raiddisks, raiddisks > 1 ? "s" : "");
5165 return 0;
5166 }
cd9d1ac7
DW
5167
5168 if (chunk && (*chunk == 0 || *chunk == UnSet))
5169 *chunk = imsm_default_chunk(super->orom);
5170
5171 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5172 pr_vrb(": platform does not support a chunk size of: "
5173 "%d\n", *chunk);
5174 return 0;
6592ce37 5175 }
cd9d1ac7 5176
6592ce37
DW
5177 if (layout != imsm_level_to_layout(level)) {
5178 if (level == 5)
5179 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5180 else if (level == 10)
5181 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5182 else
5183 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5184 layout, level);
5185 return 0;
5186 }
6592ce37
DW
5187 return 1;
5188}
5189
c2c087e6
DW
5190/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5191 * FIX ME add ahci details
5192 */
8b353278 5193static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5194 int layout, int raiddisks, int *chunk,
c2c087e6 5195 unsigned long long size, char *dev,
2c514b71
NB
5196 unsigned long long *freesize,
5197 int verbose)
cdddbdbc 5198{
c2c087e6
DW
5199 struct stat stb;
5200 struct intel_super *super = st->sb;
b2916f25 5201 struct imsm_super *mpb;
c2c087e6
DW
5202 struct dl *dl;
5203 unsigned long long pos = 0;
5204 unsigned long long maxsize;
5205 struct extent *e;
5206 int i;
cdddbdbc 5207
88c32bb1
DW
5208 /* We must have the container info already read in. */
5209 if (!super)
c2c087e6
DW
5210 return 0;
5211
b2916f25
JS
5212 mpb = super->anchor;
5213
e7cb06c8
LO
5214 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5215 fprintf(stderr, Name ": the option-rom requires all "
5216 "member disks to be a member of all volumes.\n");
5217 return 0;
5218 }
5219
d54559f0
LM
5220 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5221 fprintf(stderr, Name ": RAID gemetry validation failed. "
5222 "Cannot proceed with the action(s).\n");
c2c087e6 5223 return 0;
d54559f0 5224 }
c2c087e6
DW
5225 if (!dev) {
5226 /* General test: make sure there is space for
2da8544a
DW
5227 * 'raiddisks' device extents of size 'size' at a given
5228 * offset
c2c087e6 5229 */
e46273eb 5230 unsigned long long minsize = size;
b7528a20 5231 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5232 int dcnt = 0;
5233 if (minsize == 0)
5234 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5235 for (dl = super->disks; dl ; dl = dl->next) {
5236 int found = 0;
5237
bf5a934a 5238 pos = 0;
c2c087e6
DW
5239 i = 0;
5240 e = get_extents(super, dl);
5241 if (!e) continue;
5242 do {
5243 unsigned long long esize;
5244 esize = e[i].start - pos;
5245 if (esize >= minsize)
5246 found = 1;
b7528a20 5247 if (found && start_offset == MaxSector) {
2da8544a
DW
5248 start_offset = pos;
5249 break;
5250 } else if (found && pos != start_offset) {
5251 found = 0;
5252 break;
5253 }
c2c087e6
DW
5254 pos = e[i].start + e[i].size;
5255 i++;
5256 } while (e[i-1].size);
5257 if (found)
5258 dcnt++;
5259 free(e);
5260 }
5261 if (dcnt < raiddisks) {
2c514b71
NB
5262 if (verbose)
5263 fprintf(stderr, Name ": imsm: Not enough "
5264 "devices with space for this array "
5265 "(%d < %d)\n",
5266 dcnt, raiddisks);
c2c087e6
DW
5267 return 0;
5268 }
5269 return 1;
5270 }
0dcecb2e 5271
c2c087e6
DW
5272 /* This device must be a member of the set */
5273 if (stat(dev, &stb) < 0)
5274 return 0;
5275 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5276 return 0;
5277 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5278 if (dl->major == (int)major(stb.st_rdev) &&
5279 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5280 break;
5281 }
5282 if (!dl) {
2c514b71
NB
5283 if (verbose)
5284 fprintf(stderr, Name ": %s is not in the "
5285 "same imsm set\n", dev);
c2c087e6 5286 return 0;
a20d2ba5
DW
5287 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5288 /* If a volume is present then the current creation attempt
5289 * cannot incorporate new spares because the orom may not
5290 * understand this configuration (all member disks must be
5291 * members of each array in the container).
5292 */
5293 fprintf(stderr, Name ": %s is a spare and a volume"
5294 " is already defined for this container\n", dev);
5295 fprintf(stderr, Name ": The option-rom requires all member"
5296 " disks to be a member of all volumes\n");
5297 return 0;
c2c087e6 5298 }
0dcecb2e
DW
5299
5300 /* retrieve the largest free space block */
c2c087e6
DW
5301 e = get_extents(super, dl);
5302 maxsize = 0;
5303 i = 0;
0dcecb2e
DW
5304 if (e) {
5305 do {
5306 unsigned long long esize;
5307
5308 esize = e[i].start - pos;
5309 if (esize >= maxsize)
5310 maxsize = esize;
5311 pos = e[i].start + e[i].size;
5312 i++;
5313 } while (e[i-1].size);
5314 dl->e = e;
5315 dl->extent_cnt = i;
5316 } else {
5317 if (verbose)
5318 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5319 dev);
5320 return 0;
5321 }
5322 if (maxsize < size) {
5323 if (verbose)
5324 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5325 dev, maxsize, size);
5326 return 0;
5327 }
5328
5329 /* count total number of extents for merge */
5330 i = 0;
5331 for (dl = super->disks; dl; dl = dl->next)
5332 if (dl->e)
5333 i += dl->extent_cnt;
5334
5335 maxsize = merge_extents(super, i);
3baa56ab
LO
5336
5337 if (!check_env("IMSM_NO_PLATFORM") &&
5338 mpb->num_raid_devs > 0 && size && size != maxsize) {
5339 fprintf(stderr, Name ": attempting to create a second "
5340 "volume with size less then remaining space. "
5341 "Aborting...\n");
5342 return 0;
5343 }
5344
a7dd165b 5345 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5346 if (verbose)
5347 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5348 maxsize, size);
5349 return 0;
0dcecb2e
DW
5350 }
5351
c2c087e6
DW
5352 *freesize = maxsize;
5353
5354 return 1;
cdddbdbc
DW
5355}
5356
efb30e7f
DW
5357static int reserve_space(struct supertype *st, int raiddisks,
5358 unsigned long long size, int chunk,
5359 unsigned long long *freesize)
5360{
5361 struct intel_super *super = st->sb;
5362 struct imsm_super *mpb = super->anchor;
5363 struct dl *dl;
5364 int i;
5365 int extent_cnt;
5366 struct extent *e;
5367 unsigned long long maxsize;
5368 unsigned long long minsize;
5369 int cnt;
5370 int used;
5371
5372 /* find the largest common start free region of the possible disks */
5373 used = 0;
5374 extent_cnt = 0;
5375 cnt = 0;
5376 for (dl = super->disks; dl; dl = dl->next) {
5377 dl->raiddisk = -1;
5378
5379 if (dl->index >= 0)
5380 used++;
5381
5382 /* don't activate new spares if we are orom constrained
5383 * and there is already a volume active in the container
5384 */
5385 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5386 continue;
5387
5388 e = get_extents(super, dl);
5389 if (!e)
5390 continue;
5391 for (i = 1; e[i-1].size; i++)
5392 ;
5393 dl->e = e;
5394 dl->extent_cnt = i;
5395 extent_cnt += i;
5396 cnt++;
5397 }
5398
5399 maxsize = merge_extents(super, extent_cnt);
5400 minsize = size;
5401 if (size == 0)
612e59d8
CA
5402 /* chunk is in K */
5403 minsize = chunk * 2;
efb30e7f
DW
5404
5405 if (cnt < raiddisks ||
5406 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5407 maxsize < minsize ||
5408 maxsize == 0) {
efb30e7f
DW
5409 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5410 return 0; /* No enough free spaces large enough */
5411 }
5412
5413 if (size == 0) {
5414 size = maxsize;
5415 if (chunk) {
612e59d8
CA
5416 size /= 2 * chunk;
5417 size *= 2 * chunk;
efb30e7f
DW
5418 }
5419 }
5420
5421 cnt = 0;
5422 for (dl = super->disks; dl; dl = dl->next)
5423 if (dl->e)
5424 dl->raiddisk = cnt++;
5425
5426 *freesize = size;
5427
5428 return 1;
5429}
5430
bf5a934a 5431static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5432 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5433 char *dev, unsigned long long *freesize,
5434 int verbose)
5435{
5436 int fd, cfd;
5437 struct mdinfo *sra;
20cbe8d2 5438 int is_member = 0;
bf5a934a 5439
d54559f0
LM
5440 /* load capability
5441 * if given unused devices create a container
bf5a934a
DW
5442 * if given given devices in a container create a member volume
5443 */
5444 if (level == LEVEL_CONTAINER) {
5445 /* Must be a fresh device to add to a container */
5446 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5447 raiddisks,
5448 chunk?*chunk:0, size,
bf5a934a
DW
5449 dev, freesize,
5450 verbose);
5451 }
5452
8592f29d 5453 if (!dev) {
e91a3bad
LM
5454 if (st->sb) {
5455 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5456 raiddisks, chunk,
5457 verbose))
5458 return 0;
efb30e7f
DW
5459 /* we are being asked to automatically layout a
5460 * new volume based on the current contents of
5461 * the container. If the the parameters can be
5462 * satisfied reserve_space will record the disks,
5463 * start offset, and size of the volume to be
5464 * created. add_to_super and getinfo_super
5465 * detect when autolayout is in progress.
5466 */
e91a3bad
LM
5467 if (freesize)
5468 return reserve_space(st, raiddisks, size,
5469 chunk?*chunk:0, freesize);
8592f29d
N
5470 }
5471 return 1;
5472 }
bf5a934a
DW
5473 if (st->sb) {
5474 /* creating in a given container */
5475 return validate_geometry_imsm_volume(st, level, layout,
5476 raiddisks, chunk, size,
5477 dev, freesize, verbose);
5478 }
5479
bf5a934a
DW
5480 /* This device needs to be a device in an 'imsm' container */
5481 fd = open(dev, O_RDONLY|O_EXCL, 0);
5482 if (fd >= 0) {
5483 if (verbose)
5484 fprintf(stderr,
5485 Name ": Cannot create this array on device %s\n",
5486 dev);
5487 close(fd);
5488 return 0;
5489 }
5490 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5491 if (verbose)
5492 fprintf(stderr, Name ": Cannot open %s: %s\n",
5493 dev, strerror(errno));
5494 return 0;
5495 }
5496 /* Well, it is in use by someone, maybe an 'imsm' container. */
5497 cfd = open_container(fd);
20cbe8d2 5498 close(fd);
bf5a934a 5499 if (cfd < 0) {
bf5a934a
DW
5500 if (verbose)
5501 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5502 dev);
5503 return 0;
5504 }
5505 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5506 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5507 strcmp(sra->text_version, "imsm") == 0)
5508 is_member = 1;
5509 sysfs_free(sra);
5510 if (is_member) {
bf5a934a
DW
5511 /* This is a member of a imsm container. Load the container
5512 * and try to create a volume
5513 */
5514 struct intel_super *super;
5515
e1902a7b 5516 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5517 st->sb = super;
5518 st->container_dev = fd2devnum(cfd);
5519 close(cfd);
5520 return validate_geometry_imsm_volume(st, level, layout,
5521 raiddisks, chunk,
5522 size, dev,
ecbd9e81
N
5523 freesize, 1)
5524 ? 1 : -1;
bf5a934a 5525 }
20cbe8d2 5526 }
bf5a934a 5527
20cbe8d2
AW
5528 if (verbose)
5529 fprintf(stderr, Name ": failed container membership check\n");
5530
5531 close(cfd);
5532 return 0;
bf5a934a 5533}
0bd16cf2 5534
30f58b22 5535static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5536{
5537 struct intel_super *super = st->sb;
5538
30f58b22
DW
5539 if (level && *level == UnSet)
5540 *level = LEVEL_CONTAINER;
5541
5542 if (level && layout && *layout == UnSet)
5543 *layout = imsm_level_to_layout(*level);
0bd16cf2 5544
cd9d1ac7
DW
5545 if (chunk && (*chunk == UnSet || *chunk == 0))
5546 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5547}
5548
33414a01
DW
5549static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5550
5551static int kill_subarray_imsm(struct supertype *st)
5552{
5553 /* remove the subarray currently referenced by ->current_vol */
5554 __u8 i;
5555 struct intel_dev **dp;
5556 struct intel_super *super = st->sb;
5557 __u8 current_vol = super->current_vol;
5558 struct imsm_super *mpb = super->anchor;
5559
5560 if (super->current_vol < 0)
5561 return 2;
5562 super->current_vol = -1; /* invalidate subarray cursor */
5563
5564 /* block deletions that would change the uuid of active subarrays
5565 *
5566 * FIXME when immutable ids are available, but note that we'll
5567 * also need to fixup the invalidated/active subarray indexes in
5568 * mdstat
5569 */
5570 for (i = 0; i < mpb->num_raid_devs; i++) {
5571 char subarray[4];
5572
5573 if (i < current_vol)
5574 continue;
5575 sprintf(subarray, "%u", i);
5576 if (is_subarray_active(subarray, st->devname)) {
5577 fprintf(stderr,
5578 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5579 current_vol, i);
5580
5581 return 2;
5582 }
5583 }
5584
5585 if (st->update_tail) {
5586 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5587
5588 if (!u)
5589 return 2;
5590 u->type = update_kill_array;
5591 u->dev_idx = current_vol;
5592 append_metadata_update(st, u, sizeof(*u));
5593
5594 return 0;
5595 }
5596
5597 for (dp = &super->devlist; *dp;)
5598 if ((*dp)->index == current_vol) {
5599 *dp = (*dp)->next;
5600 } else {
5601 handle_missing(super, (*dp)->dev);
5602 if ((*dp)->index > current_vol)
5603 (*dp)->index--;
5604 dp = &(*dp)->next;
5605 }
5606
5607 /* no more raid devices, all active components are now spares,
5608 * but of course failed are still failed
5609 */
5610 if (--mpb->num_raid_devs == 0) {
5611 struct dl *d;
5612
5613 for (d = super->disks; d; d = d->next)
a8619d23
AK
5614 if (d->index > -2)
5615 mark_spare(d);
33414a01
DW
5616 }
5617
5618 super->updates_pending++;
5619
5620 return 0;
5621}
aa534678 5622
a951a4f7 5623static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5624 char *update, struct mddev_ident *ident)
aa534678
DW
5625{
5626 /* update the subarray currently referenced by ->current_vol */
5627 struct intel_super *super = st->sb;
5628 struct imsm_super *mpb = super->anchor;
5629
aa534678
DW
5630 if (strcmp(update, "name") == 0) {
5631 char *name = ident->name;
a951a4f7
N
5632 char *ep;
5633 int vol;
aa534678 5634
a951a4f7 5635 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5636 fprintf(stderr,
5637 Name ": Unable to update name of active subarray\n");
5638 return 2;
5639 }
5640
5641 if (!check_name(super, name, 0))
5642 return 2;
5643
a951a4f7
N
5644 vol = strtoul(subarray, &ep, 10);
5645 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5646 return 2;
5647
aa534678
DW
5648 if (st->update_tail) {
5649 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5650
5651 if (!u)
5652 return 2;
5653 u->type = update_rename_array;
a951a4f7 5654 u->dev_idx = vol;
aa534678
DW
5655 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5656 append_metadata_update(st, u, sizeof(*u));
5657 } else {
5658 struct imsm_dev *dev;
5659 int i;
5660
a951a4f7 5661 dev = get_imsm_dev(super, vol);
aa534678
DW
5662 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5663 for (i = 0; i < mpb->num_raid_devs; i++) {
5664 dev = get_imsm_dev(super, i);
5665 handle_missing(super, dev);
5666 }
5667 super->updates_pending++;
5668 }
5669 } else
5670 return 2;
5671
5672 return 0;
5673}
d1e02575 5674#endif /* MDASSEMBLE */
bf5a934a 5675
28bce06f
AK
5676static int is_gen_migration(struct imsm_dev *dev)
5677{
7534230b
AK
5678 if (dev == NULL)
5679 return 0;
5680
28bce06f
AK
5681 if (!dev->vol.migr_state)
5682 return 0;
5683
5684 if (migr_type(dev) == MIGR_GEN_MIGR)
5685 return 1;
5686
5687 return 0;
5688}
5689
1e5c6983
DW
5690static int is_rebuilding(struct imsm_dev *dev)
5691{
5692 struct imsm_map *migr_map;
5693
5694 if (!dev->vol.migr_state)
5695 return 0;
5696
5697 if (migr_type(dev) != MIGR_REBUILD)
5698 return 0;
5699
5700 migr_map = get_imsm_map(dev, 1);
5701
5702 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5703 return 1;
5704 else
5705 return 0;
5706}
5707
c47b0ff6
AK
5708static void update_recovery_start(struct intel_super *super,
5709 struct imsm_dev *dev,
5710 struct mdinfo *array)
1e5c6983
DW
5711{
5712 struct mdinfo *rebuild = NULL;
5713 struct mdinfo *d;
5714 __u32 units;
5715
5716 if (!is_rebuilding(dev))
5717 return;
5718
5719 /* Find the rebuild target, but punt on the dual rebuild case */
5720 for (d = array->devs; d; d = d->next)
5721 if (d->recovery_start == 0) {
5722 if (rebuild)
5723 return;
5724 rebuild = d;
5725 }
5726
4363fd80
DW
5727 if (!rebuild) {
5728 /* (?) none of the disks are marked with
5729 * IMSM_ORD_REBUILD, so assume they are missing and the
5730 * disk_ord_tbl was not correctly updated
5731 */
5732 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5733 return;
5734 }
5735
1e5c6983 5736 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5737 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5738}
5739
9e2d750d 5740#ifndef MDASSEMBLE
276d77db 5741static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5742#endif
1e5c6983 5743
00bbdbda 5744static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5745{
4f5bc454
DW
5746 /* Given a container loaded by load_super_imsm_all,
5747 * extract information about all the arrays into
5748 * an mdinfo tree.
00bbdbda 5749 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5750 *
5751 * For each imsm_dev create an mdinfo, fill it in,
5752 * then look for matching devices in super->disks
5753 * and create appropriate device mdinfo.
5754 */
5755 struct intel_super *super = st->sb;
949c47a0 5756 struct imsm_super *mpb = super->anchor;
4f5bc454 5757 struct mdinfo *rest = NULL;
00bbdbda 5758 unsigned int i;
81219e70 5759 int sb_errors = 0;
abef11a3
AK
5760 struct dl *d;
5761 int spare_disks = 0;
cdddbdbc 5762
19482bcc
AK
5763 /* do not assemble arrays when not all attributes are supported */
5764 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5765 sb_errors = 1;
5766 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5767 "Arrays activation is blocked.\n");
19482bcc
AK
5768 }
5769
a06d022d 5770 /* check for bad blocks */
81219e70
LM
5771 if (imsm_bbm_log_size(super->anchor)) {
5772 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5773 "Arrays activation is blocked.\n");
5774 sb_errors = 1;
5775 }
5776
604b746f 5777
abef11a3
AK
5778 /* count spare devices, not used in maps
5779 */
5780 for (d = super->disks; d; d = d->next)
5781 if (d->index == -1)
5782 spare_disks++;
5783
4f5bc454 5784 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5785 struct imsm_dev *dev;
5786 struct imsm_map *map;
86e3692b 5787 struct imsm_map *map2;
4f5bc454 5788 struct mdinfo *this;
2db86302 5789 int slot, chunk;
00bbdbda
N
5790 char *ep;
5791
5792 if (subarray &&
5793 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5794 continue;
5795
5796 dev = get_imsm_dev(super, i);
5797 map = get_imsm_map(dev, 0);
86e3692b 5798 map2 = get_imsm_map(dev, 1);
4f5bc454 5799
1ce0101c
DW
5800 /* do not publish arrays that are in the middle of an
5801 * unsupported migration
5802 */
5803 if (dev->vol.migr_state &&
28bce06f 5804 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5805 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5806 " unsupported migration in progress\n",
5807 dev->volume);
5808 continue;
5809 }
2db86302
LM
5810 /* do not publish arrays that are not support by controller's
5811 * OROM/EFI
5812 */
1ce0101c 5813
2db86302 5814 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5815 this = malloc(sizeof(*this));
0fbd635c 5816 if (!this) {
cf1be220 5817 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5818 sizeof(*this));
5819 break;
5820 }
4f5bc454 5821
301406c9 5822 super->current_vol = i;
a5d85af7 5823 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5824 this->next = rest;
81219e70
LM
5825#ifndef MDASSEMBLE
5826 /* mdadm does not support all metadata features- set the bit in all arrays state */
5827 if (!validate_geometry_imsm_orom(super,
5828 get_imsm_raid_level(map), /* RAID level */
5829 imsm_level_to_layout(get_imsm_raid_level(map)),
5830 map->num_members, /* raid disks */
5831 &chunk,
5832 1 /* verbose */)) {
446894ea
N
5833 fprintf(stderr, Name ": IMSM RAID geometry validation"
5834 " failed. Array %s activation is blocked.\n",
81219e70
LM
5835 dev->volume);
5836 this->array.state |=
5837 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5838 (1<<MD_SB_BLOCK_VOLUME);
5839 }
5840#endif
5841
5842 /* if array has bad blocks, set suitable bit in all arrays state */
5843 if (sb_errors)
5844 this->array.state |=
5845 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5846 (1<<MD_SB_BLOCK_VOLUME);
5847
4f5bc454 5848 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5849 unsigned long long recovery_start;
4f5bc454
DW
5850 struct mdinfo *info_d;
5851 struct dl *d;
5852 int idx;
9a1608e5 5853 int skip;
7eef0453 5854 __u32 ord;
4f5bc454 5855
9a1608e5 5856 skip = 0;
98130f40 5857 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5858 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5859 for (d = super->disks; d ; d = d->next)
5860 if (d->index == idx)
0fbd635c 5861 break;
4f5bc454 5862
1e5c6983 5863 recovery_start = MaxSector;
4f5bc454 5864 if (d == NULL)
9a1608e5 5865 skip = 1;
25ed7e59 5866 if (d && is_failed(&d->disk))
9a1608e5 5867 skip = 1;
7eef0453 5868 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5869 recovery_start = 0;
9a1608e5
DW
5870
5871 /*
5872 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5873 * reset resync start to avoid a dirty-degraded
5874 * situation when performing the intial sync
9a1608e5
DW
5875 *
5876 * FIXME handle dirty degraded
5877 */
1e5c6983 5878 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5879 this->resync_start = MaxSector;
9a1608e5
DW
5880 if (skip)
5881 continue;
4f5bc454 5882
1e5c6983 5883 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5884 if (!info_d) {
5885 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5886 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5887 info_d = this->devs;
5888 while (info_d) {
5889 struct mdinfo *d = info_d->next;
5890
5891 free(info_d);
5892 info_d = d;
5893 }
9a1608e5
DW
5894 free(this);
5895 this = rest;
5896 break;
5897 }
4f5bc454
DW
5898 info_d->next = this->devs;
5899 this->devs = info_d;
5900
4f5bc454
DW
5901 info_d->disk.number = d->index;
5902 info_d->disk.major = d->major;
5903 info_d->disk.minor = d->minor;
5904 info_d->disk.raid_disk = slot;
1e5c6983 5905 info_d->recovery_start = recovery_start;
86e3692b
AK
5906 if (map2) {
5907 if (slot < map2->num_members)
5908 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5909 else
5910 this->array.spare_disks++;
86e3692b
AK
5911 } else {
5912 if (slot < map->num_members)
5913 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5914 else
5915 this->array.spare_disks++;
86e3692b 5916 }
1e5c6983
DW
5917 if (info_d->recovery_start == MaxSector)
5918 this->array.working_disks++;
4f5bc454
DW
5919
5920 info_d->events = __le32_to_cpu(mpb->generation_num);
5921 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5922 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5923 }
1e5c6983 5924 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5925 update_recovery_start(super, dev, this);
abef11a3 5926 this->array.spare_disks += spare_disks;
276d77db 5927
9e2d750d 5928#ifndef MDASSEMBLE
276d77db
AK
5929 /* check for reshape */
5930 if (this->reshape_active == 1)
5931 recover_backup_imsm(st, this);
9e2d750d 5932#endif
9a1608e5 5933 rest = this;
4f5bc454
DW
5934 }
5935
5936 return rest;
cdddbdbc
DW
5937}
5938
845dea95 5939
3b451610
AK
5940static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
5941 int failed, int look_in_map)
c2a1e7da 5942{
3b451610
AK
5943 struct imsm_map *map;
5944
5945 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
5946
5947 if (!failed)
3393c6af
DW
5948 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5949 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5950
5951 switch (get_imsm_raid_level(map)) {
5952 case 0:
5953 return IMSM_T_STATE_FAILED;
5954 break;
5955 case 1:
5956 if (failed < map->num_members)
5957 return IMSM_T_STATE_DEGRADED;
5958 else
5959 return IMSM_T_STATE_FAILED;
5960 break;
5961 case 10:
5962 {
5963 /**
c92a2527
DW
5964 * check to see if any mirrors have failed, otherwise we
5965 * are degraded. Even numbered slots are mirrored on
5966 * slot+1
c2a1e7da 5967 */
c2a1e7da 5968 int i;
d9b420a5
N
5969 /* gcc -Os complains that this is unused */
5970 int insync = insync;
c2a1e7da
DW
5971
5972 for (i = 0; i < map->num_members; i++) {
98130f40 5973 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5974 int idx = ord_to_idx(ord);
5975 struct imsm_disk *disk;
c2a1e7da 5976
c92a2527
DW
5977 /* reset the potential in-sync count on even-numbered
5978 * slots. num_copies is always 2 for imsm raid10
5979 */
5980 if ((i & 1) == 0)
5981 insync = 2;
c2a1e7da 5982
c92a2527 5983 disk = get_imsm_disk(super, idx);
25ed7e59 5984 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5985 insync--;
c2a1e7da 5986
c92a2527
DW
5987 /* no in-sync disks left in this mirror the
5988 * array has failed
5989 */
5990 if (insync == 0)
5991 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5992 }
5993
5994 return IMSM_T_STATE_DEGRADED;
5995 }
5996 case 5:
5997 if (failed < 2)
5998 return IMSM_T_STATE_DEGRADED;
5999 else
6000 return IMSM_T_STATE_FAILED;
6001 break;
6002 default:
6003 break;
6004 }
6005
6006 return map->map_state;
6007}
6008
3b451610
AK
6009static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6010 int look_in_map)
c2a1e7da
DW
6011{
6012 int i;
6013 int failed = 0;
6014 struct imsm_disk *disk;
d5985138
AK
6015 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6016 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 6017 struct imsm_map *map_for_loop;
0556e1a2
DW
6018 __u32 ord;
6019 int idx;
d5985138 6020 int idx_1;
c2a1e7da 6021
0556e1a2
DW
6022 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6023 * disks that are being rebuilt. New failures are recorded to
6024 * map[0]. So we look through all the disks we started with and
6025 * see if any failures are still present, or if any new ones
6026 * have arrived
0556e1a2 6027 */
d5985138
AK
6028 map_for_loop = map;
6029 if (prev && (map->num_members < prev->num_members))
6030 map_for_loop = prev;
68fe4598
LD
6031
6032 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138
AK
6033 idx_1 = -255;
6034 if (prev &&
6035 (look_in_map & MAP_1) && (i < prev->num_members)) {
6036 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6037 idx_1 = ord_to_idx(ord);
c2a1e7da 6038
d5985138
AK
6039 disk = get_imsm_disk(super, idx_1);
6040 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6041 failed++;
6042 }
6043 if ((look_in_map & MAP_0) && (i < map->num_members)) {
6044 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6045 idx = ord_to_idx(ord);
6046
6047 if (idx != idx_1) {
6048 disk = get_imsm_disk(super, idx);
6049 if (!disk || is_failed(disk) ||
6050 ord & IMSM_ORD_REBUILD)
6051 failed++;
6052 }
6053 }
c2a1e7da
DW
6054 }
6055
6056 return failed;
845dea95
NB
6057}
6058
97b4d0e9
DW
6059#ifndef MDASSEMBLE
6060static int imsm_open_new(struct supertype *c, struct active_array *a,
6061 char *inst)
6062{
6063 struct intel_super *super = c->sb;
6064 struct imsm_super *mpb = super->anchor;
6065
6066 if (atoi(inst) >= mpb->num_raid_devs) {
6067 fprintf(stderr, "%s: subarry index %d, out of range\n",
6068 __func__, atoi(inst));
6069 return -ENODEV;
6070 }
6071
6072 dprintf("imsm: open_new %s\n", inst);
6073 a->info.container_member = atoi(inst);
6074 return 0;
6075}
6076
0c046afd
DW
6077static int is_resyncing(struct imsm_dev *dev)
6078{
6079 struct imsm_map *migr_map;
6080
6081 if (!dev->vol.migr_state)
6082 return 0;
6083
1484e727
DW
6084 if (migr_type(dev) == MIGR_INIT ||
6085 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6086 return 1;
6087
4c9bc37b
AK
6088 if (migr_type(dev) == MIGR_GEN_MIGR)
6089 return 0;
6090
0c046afd
DW
6091 migr_map = get_imsm_map(dev, 1);
6092
4c9bc37b
AK
6093 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6094 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6095 return 1;
6096 else
6097 return 0;
6098}
6099
0556e1a2
DW
6100/* return true if we recorded new information */
6101static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6102{
0556e1a2
DW
6103 __u32 ord;
6104 int slot;
6105 struct imsm_map *map;
86c54047
DW
6106 char buf[MAX_RAID_SERIAL_LEN+3];
6107 unsigned int len, shift = 0;
0556e1a2
DW
6108
6109 /* new failures are always set in map[0] */
6110 map = get_imsm_map(dev, 0);
6111
6112 slot = get_imsm_disk_slot(map, idx);
6113 if (slot < 0)
6114 return 0;
6115
6116 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6117 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6118 return 0;
6119
7d0c5e24
LD
6120 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6121 buf[MAX_RAID_SERIAL_LEN] = '\000';
6122 strcat(buf, ":0");
86c54047
DW
6123 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6124 shift = len - MAX_RAID_SERIAL_LEN + 1;
6125 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6126
f2f27e63 6127 disk->status |= FAILED_DISK;
0556e1a2 6128 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
1ace8403
AK
6129 if (is_gen_migration(dev)) {
6130 struct imsm_map *map2 = get_imsm_map(dev, 1);
6131 if (slot < map2->num_members)
6132 set_imsm_ord_tbl_ent(map2, slot,
6133 idx | IMSM_ORD_REBUILD);
6134 }
f21e18ca 6135 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6136 map->failed_disk_num = slot;
6137 return 1;
6138}
6139
6140static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6141{
6142 mark_failure(dev, disk, idx);
6143
6144 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6145 return;
6146
47ee5a45
DW
6147 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6148 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6149}
6150
33414a01
DW
6151static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6152{
33414a01 6153 struct dl *dl;
33414a01
DW
6154
6155 if (!super->missing)
6156 return;
33414a01
DW
6157
6158 dprintf("imsm: mark missing\n");
33414a01
DW
6159 for (dl = super->missing; dl; dl = dl->next)
6160 mark_missing(dev, &dl->disk, dl->index);
6161 super->updates_pending++;
6162}
6163
70bdf0dc
AK
6164static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6165{
6166 int used_disks = imsm_num_data_members(dev, 0);
6167 unsigned long long array_blocks;
6168 struct imsm_map *map;
6169
6170 if (used_disks == 0) {
6171 /* when problems occures
6172 * return current array_blocks value
6173 */
6174 array_blocks = __le32_to_cpu(dev->size_high);
6175 array_blocks = array_blocks << 32;
6176 array_blocks += __le32_to_cpu(dev->size_low);
6177
6178 return array_blocks;
6179 }
6180
6181 /* set array size in metadata
6182 */
6183 map = get_imsm_map(dev, 0);
6184 array_blocks = map->blocks_per_member * used_disks;
6185
6186 /* round array size down to closest MB
6187 */
6188 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6189 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6190 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6191
6192 return array_blocks;
6193}
6194
28bce06f
AK
6195static void imsm_set_disk(struct active_array *a, int n, int state);
6196
0e2d1a4e
AK
6197static void imsm_progress_container_reshape(struct intel_super *super)
6198{
6199 /* if no device has a migr_state, but some device has a
6200 * different number of members than the previous device, start
6201 * changing the number of devices in this device to match
6202 * previous.
6203 */
6204 struct imsm_super *mpb = super->anchor;
6205 int prev_disks = -1;
6206 int i;
1dfaa380 6207 int copy_map_size;
0e2d1a4e
AK
6208
6209 for (i = 0; i < mpb->num_raid_devs; i++) {
6210 struct imsm_dev *dev = get_imsm_dev(super, i);
6211 struct imsm_map *map = get_imsm_map(dev, 0);
6212 struct imsm_map *map2;
6213 int prev_num_members;
0e2d1a4e
AK
6214
6215 if (dev->vol.migr_state)
6216 return;
6217
6218 if (prev_disks == -1)
6219 prev_disks = map->num_members;
6220 if (prev_disks == map->num_members)
6221 continue;
6222
6223 /* OK, this array needs to enter reshape mode.
6224 * i.e it needs a migr_state
6225 */
6226
1dfaa380 6227 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6228 prev_num_members = map->num_members;
6229 map->num_members = prev_disks;
6230 dev->vol.migr_state = 1;
6231 dev->vol.curr_migr_unit = 0;
ea672ee1 6232 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6233 for (i = prev_num_members;
6234 i < map->num_members; i++)
6235 set_imsm_ord_tbl_ent(map, i, i);
6236 map2 = get_imsm_map(dev, 1);
6237 /* Copy the current map */
1dfaa380 6238 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6239 map2->num_members = prev_num_members;
6240
70bdf0dc 6241 imsm_set_array_size(dev);
0e2d1a4e
AK
6242 super->updates_pending++;
6243 }
6244}
6245
aad6f216 6246/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6247 * states are handled in imsm_set_disk() with one exception, when a
6248 * resync is stopped due to a new failure this routine will set the
6249 * 'degraded' state for the array.
6250 */
01f157d7 6251static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6252{
6253 int inst = a->info.container_member;
6254 struct intel_super *super = a->container->sb;
949c47a0 6255 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6256 struct imsm_map *map = get_imsm_map(dev, 0);
3b451610
AK
6257 int failed = imsm_count_failed(super, dev, MAP_0);
6258 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 6259 __u32 blocks_per_unit;
a862209d 6260
1af97990
AK
6261 if (dev->vol.migr_state &&
6262 dev->vol.migr_type == MIGR_GEN_MIGR) {
6263 /* array state change is blocked due to reshape action
aad6f216
N
6264 * We might need to
6265 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6266 * - finish the reshape (if last_checkpoint is big and action != reshape)
6267 * - update curr_migr_unit
1af97990 6268 */
aad6f216
N
6269 if (a->curr_action == reshape) {
6270 /* still reshaping, maybe update curr_migr_unit */
633b5610 6271 goto mark_checkpoint;
aad6f216
N
6272 } else {
6273 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6274 /* for some reason we aborted the reshape.
b66e591b
AK
6275 *
6276 * disable automatic metadata rollback
6277 * user action is required to recover process
aad6f216 6278 */
b66e591b 6279 if (0) {
aad6f216
N
6280 struct imsm_map *map2 = get_imsm_map(dev, 1);
6281 dev->vol.migr_state = 0;
ea672ee1 6282 set_migr_type(dev, 0);
aad6f216
N
6283 dev->vol.curr_migr_unit = 0;
6284 memcpy(map, map2, sizeof_imsm_map(map2));
6285 super->updates_pending++;
b66e591b 6286 }
aad6f216
N
6287 }
6288 if (a->last_checkpoint >= a->info.component_size) {
6289 unsigned long long array_blocks;
6290 int used_disks;
e154ced3 6291 struct mdinfo *mdi;
aad6f216 6292
9653001d 6293 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6294 if (used_disks > 0) {
6295 array_blocks =
6296 map->blocks_per_member *
6297 used_disks;
6298 /* round array size down to closest MB
6299 */
6300 array_blocks = (array_blocks
6301 >> SECT_PER_MB_SHIFT)
6302 << SECT_PER_MB_SHIFT;
d55adef9
AK
6303 a->info.custom_array_size = array_blocks;
6304 /* encourage manager to update array
6305 * size
6306 */
e154ced3 6307
d55adef9 6308 a->check_reshape = 1;
633b5610 6309 }
e154ced3
AK
6310 /* finalize online capacity expansion/reshape */
6311 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6312 imsm_set_disk(a,
6313 mdi->disk.raid_disk,
6314 mdi->curr_state);
6315
0e2d1a4e 6316 imsm_progress_container_reshape(super);
e154ced3 6317 }
aad6f216 6318 }
1af97990
AK
6319 }
6320
47ee5a45 6321 /* before we activate this array handle any missing disks */
33414a01
DW
6322 if (consistent == 2)
6323 handle_missing(super, dev);
1e5c6983 6324
0c046afd 6325 if (consistent == 2 &&
b7941fd6 6326 (!is_resync_complete(&a->info) ||
0c046afd
DW
6327 map_state != IMSM_T_STATE_NORMAL ||
6328 dev->vol.migr_state))
01f157d7 6329 consistent = 0;
272906ef 6330
b7941fd6 6331 if (is_resync_complete(&a->info)) {
0c046afd 6332 /* complete intialization / resync,
0556e1a2
DW
6333 * recovery and interrupted recovery is completed in
6334 * ->set_disk
0c046afd
DW
6335 */
6336 if (is_resyncing(dev)) {
6337 dprintf("imsm: mark resync done\n");
f8f603f1 6338 end_migration(dev, map_state);
115c3803 6339 super->updates_pending++;
484240d8 6340 a->last_checkpoint = 0;
115c3803 6341 }
b9172665
AK
6342 } else if ((!is_resyncing(dev) && !failed) &&
6343 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6344 /* mark the start of the init process if nothing is failed */
b7941fd6 6345 dprintf("imsm: mark resync start\n");
1484e727 6346 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6347 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6348 else
8e59f3d8 6349 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6350 super->updates_pending++;
115c3803 6351 }
a862209d 6352
633b5610 6353mark_checkpoint:
5b83bacf
AK
6354 /* skip checkpointing for general migration,
6355 * it is controlled in mdadm
6356 */
6357 if (is_gen_migration(dev))
6358 goto skip_mark_checkpoint;
6359
1e5c6983 6360 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6361 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6362 if (blocks_per_unit) {
1e5c6983
DW
6363 __u32 units32;
6364 __u64 units;
6365
4f0a7acc 6366 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6367 units32 = units;
6368
6369 /* check that we did not overflow 32-bits, and that
6370 * curr_migr_unit needs updating
6371 */
6372 if (units32 == units &&
bfd80a56 6373 units32 != 0 &&
1e5c6983
DW
6374 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6375 dprintf("imsm: mark checkpoint (%u)\n", units32);
6376 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6377 super->updates_pending++;
6378 }
6379 }
f8f603f1 6380
5b83bacf 6381skip_mark_checkpoint:
3393c6af 6382 /* mark dirty / clean */
0c046afd 6383 if (dev->vol.dirty != !consistent) {
b7941fd6 6384 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6385 if (consistent)
6386 dev->vol.dirty = 0;
6387 else
6388 dev->vol.dirty = 1;
a862209d
DW
6389 super->updates_pending++;
6390 }
28bce06f 6391
01f157d7 6392 return consistent;
a862209d
DW
6393}
6394
8d45d196 6395static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6396{
8d45d196
DW
6397 int inst = a->info.container_member;
6398 struct intel_super *super = a->container->sb;
949c47a0 6399 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6400 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6401 struct imsm_disk *disk;
0c046afd 6402 int failed;
b10b37b8 6403 __u32 ord;
0c046afd 6404 __u8 map_state;
8d45d196
DW
6405
6406 if (n > map->num_members)
6407 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6408 n, map->num_members - 1);
6409
6410 if (n < 0)
6411 return;
6412
4e6e574a 6413 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6414
04ed49b3 6415 ord = get_imsm_ord_tbl_ent(dev, n, 0);
b10b37b8 6416 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6417
5802a811 6418 /* check for new failures */
0556e1a2
DW
6419 if (state & DS_FAULTY) {
6420 if (mark_failure(dev, disk, ord_to_idx(ord)))
6421 super->updates_pending++;
8d45d196 6422 }
47ee5a45 6423
19859edc 6424 /* check if in_sync */
0556e1a2 6425 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6426 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6427
6428 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6429 super->updates_pending++;
6430 }
8d45d196 6431
3b451610
AK
6432 failed = imsm_count_failed(super, dev, MAP_0);
6433 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 6434
0c046afd
DW
6435 /* check if recovery complete, newly degraded, or failed */
6436 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6437 end_migration(dev, map_state);
0556e1a2
DW
6438 map = get_imsm_map(dev, 0);
6439 map->failed_disk_num = ~0;
0c046afd 6440 super->updates_pending++;
484240d8 6441 a->last_checkpoint = 0;
0c046afd
DW
6442 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6443 map->map_state != map_state &&
6444 !dev->vol.migr_state) {
6445 dprintf("imsm: mark degraded\n");
6446 map->map_state = map_state;
6447 super->updates_pending++;
484240d8 6448 a->last_checkpoint = 0;
0c046afd
DW
6449 } else if (map_state == IMSM_T_STATE_FAILED &&
6450 map->map_state != map_state) {
6451 dprintf("imsm: mark failed\n");
f8f603f1 6452 end_migration(dev, map_state);
0c046afd 6453 super->updates_pending++;
484240d8 6454 a->last_checkpoint = 0;
28bce06f
AK
6455 } else if (is_gen_migration(dev)) {
6456 dprintf("imsm: Detected General Migration in state: ");
bf2f0071
AK
6457
6458 switch (map_state) {
6459 case IMSM_T_STATE_NORMAL:
6460 dprintf("normal\n");
6461 if (a->last_checkpoint >= a->info.component_size)
6462 end_migration(dev, map_state);
28bce06f
AK
6463 map = get_imsm_map(dev, 0);
6464 map->failed_disk_num = ~0;
bf2f0071
AK
6465 break;
6466 case IMSM_T_STATE_DEGRADED:
6467 dprintf("degraded\n");
6468 if (a->last_checkpoint >= a->info.component_size)
28bce06f 6469 end_migration(dev, map_state);
3b451610
AK
6470 else
6471 manage_second_map(super, dev);
bf2f0071
AK
6472 break;
6473 default:
6474 dprintf("failed\n");
28bce06f 6475 }
bf2f0071 6476 map->map_state = map_state;
28bce06f 6477 super->updates_pending++;
5802a811 6478 }
845dea95
NB
6479}
6480
f796af5d 6481static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6482{
f796af5d 6483 void *buf = mpb;
c2a1e7da
DW
6484 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6485 unsigned long long dsize;
6486 unsigned long long sectors;
6487
6488 get_dev_size(fd, NULL, &dsize);
6489
272f648f
DW
6490 if (mpb_size > 512) {
6491 /* -1 to account for anchor */
6492 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6493
272f648f
DW
6494 /* write the extended mpb to the sectors preceeding the anchor */
6495 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6496 return 1;
c2a1e7da 6497
f21e18ca
N
6498 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6499 != 512 * sectors)
272f648f
DW
6500 return 1;
6501 }
c2a1e7da 6502
272f648f
DW
6503 /* first block is stored on second to last sector of the disk */
6504 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6505 return 1;
6506
f796af5d 6507 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6508 return 1;
6509
c2a1e7da
DW
6510 return 0;
6511}
6512
2e735d19 6513static void imsm_sync_metadata(struct supertype *container)
845dea95 6514{
2e735d19 6515 struct intel_super *super = container->sb;
c2a1e7da 6516
1a64be56 6517 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6518 if (!super->updates_pending)
6519 return;
6520
36988a3d 6521 write_super_imsm(container, 0);
c2a1e7da
DW
6522
6523 super->updates_pending = 0;
845dea95
NB
6524}
6525
272906ef
DW
6526static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6527{
6528 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6529 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6530 struct dl *dl;
6531
6532 for (dl = super->disks; dl; dl = dl->next)
6533 if (dl->index == i)
6534 break;
6535
25ed7e59 6536 if (dl && is_failed(&dl->disk))
272906ef
DW
6537 dl = NULL;
6538
6539 if (dl)
6540 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6541
6542 return dl;
6543}
6544
a20d2ba5 6545static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6546 struct active_array *a, int activate_new,
6547 struct mdinfo *additional_test_list)
272906ef
DW
6548{
6549 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6550 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6551 struct imsm_super *mpb = super->anchor;
6552 struct imsm_map *map;
272906ef
DW
6553 unsigned long long pos;
6554 struct mdinfo *d;
6555 struct extent *ex;
a20d2ba5 6556 int i, j;
272906ef 6557 int found;
569cc43f
DW
6558 __u32 array_start = 0;
6559 __u32 array_end = 0;
272906ef 6560 struct dl *dl;
6c932028 6561 struct mdinfo *test_list;
272906ef
DW
6562
6563 for (dl = super->disks; dl; dl = dl->next) {
6564 /* If in this array, skip */
6565 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6566 if (d->state_fd >= 0 &&
6567 d->disk.major == dl->major &&
272906ef 6568 d->disk.minor == dl->minor) {
8ba77d32
AK
6569 dprintf("%x:%x already in array\n",
6570 dl->major, dl->minor);
272906ef
DW
6571 break;
6572 }
6573 if (d)
6574 continue;
6c932028
AK
6575 test_list = additional_test_list;
6576 while (test_list) {
6577 if (test_list->disk.major == dl->major &&
6578 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6579 dprintf("%x:%x already in additional test list\n",
6580 dl->major, dl->minor);
6581 break;
6582 }
6c932028 6583 test_list = test_list->next;
8ba77d32 6584 }
6c932028 6585 if (test_list)
8ba77d32 6586 continue;
272906ef 6587
e553d2a4 6588 /* skip in use or failed drives */
25ed7e59 6589 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6590 dl->index == -2) {
6591 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6592 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6593 continue;
6594 }
6595
a20d2ba5
DW
6596 /* skip pure spares when we are looking for partially
6597 * assimilated drives
6598 */
6599 if (dl->index == -1 && !activate_new)
6600 continue;
6601
272906ef 6602 /* Does this unused device have the requisite free space?
a20d2ba5 6603 * It needs to be able to cover all member volumes
272906ef
DW
6604 */
6605 ex = get_extents(super, dl);
6606 if (!ex) {
6607 dprintf("cannot get extents\n");
6608 continue;
6609 }
a20d2ba5
DW
6610 for (i = 0; i < mpb->num_raid_devs; i++) {
6611 dev = get_imsm_dev(super, i);
6612 map = get_imsm_map(dev, 0);
272906ef 6613
a20d2ba5
DW
6614 /* check if this disk is already a member of
6615 * this array
272906ef 6616 */
620b1713 6617 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6618 continue;
6619
6620 found = 0;
6621 j = 0;
6622 pos = 0;
6623 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6624 array_end = array_start +
6625 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6626
6627 do {
6628 /* check that we can start at pba_of_lba0 with
6629 * blocks_per_member of space
6630 */
329c8278 6631 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6632 found = 1;
6633 break;
6634 }
6635 pos = ex[j].start + ex[j].size;
6636 j++;
6637 } while (ex[j-1].size);
6638
6639 if (!found)
272906ef 6640 break;
a20d2ba5 6641 }
272906ef
DW
6642
6643 free(ex);
a20d2ba5 6644 if (i < mpb->num_raid_devs) {
329c8278
DW
6645 dprintf("%x:%x does not have %u to %u available\n",
6646 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6647 /* No room */
6648 continue;
a20d2ba5
DW
6649 }
6650 return dl;
272906ef
DW
6651 }
6652
6653 return dl;
6654}
6655
95d07a2c
LM
6656
6657static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6658{
6659 struct imsm_dev *dev2;
6660 struct imsm_map *map;
6661 struct dl *idisk;
6662 int slot;
6663 int idx;
6664 __u8 state;
6665
6666 dev2 = get_imsm_dev(cont->sb, dev_idx);
6667 if (dev2) {
3b451610
AK
6668 state = imsm_check_degraded(cont->sb, dev2, failed,
6669 MAP_0);
95d07a2c
LM
6670 if (state == IMSM_T_STATE_FAILED) {
6671 map = get_imsm_map(dev2, 0);
6672 if (!map)
6673 return 1;
6674 for (slot = 0; slot < map->num_members; slot++) {
6675 /*
6676 * Check if failed disks are deleted from intel
6677 * disk list or are marked to be deleted
6678 */
98130f40 6679 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6680 idisk = get_imsm_dl_disk(cont->sb, idx);
6681 /*
6682 * Do not rebuild the array if failed disks
6683 * from failed sub-array are not removed from
6684 * container.
6685 */
6686 if (idisk &&
6687 is_failed(&idisk->disk) &&
6688 (idisk->action != DISK_REMOVE))
6689 return 0;
6690 }
6691 }
6692 }
6693 return 1;
6694}
6695
88758e9d
DW
6696static struct mdinfo *imsm_activate_spare(struct active_array *a,
6697 struct metadata_update **updates)
6698{
6699 /**
d23fe947
DW
6700 * Find a device with unused free space and use it to replace a
6701 * failed/vacant region in an array. We replace failed regions one a
6702 * array at a time. The result is that a new spare disk will be added
6703 * to the first failed array and after the monitor has finished
6704 * propagating failures the remainder will be consumed.
88758e9d 6705 *
d23fe947
DW
6706 * FIXME add a capability for mdmon to request spares from another
6707 * container.
88758e9d
DW
6708 */
6709
6710 struct intel_super *super = a->container->sb;
88758e9d 6711 int inst = a->info.container_member;
949c47a0 6712 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6713 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6714 int failed = a->info.array.raid_disks;
6715 struct mdinfo *rv = NULL;
6716 struct mdinfo *d;
6717 struct mdinfo *di;
6718 struct metadata_update *mu;
6719 struct dl *dl;
6720 struct imsm_update_activate_spare *u;
6721 int num_spares = 0;
6722 int i;
95d07a2c 6723 int allowed;
88758e9d
DW
6724
6725 for (d = a->info.devs ; d ; d = d->next) {
6726 if ((d->curr_state & DS_FAULTY) &&
6727 d->state_fd >= 0)
6728 /* wait for Removal to happen */
6729 return NULL;
6730 if (d->state_fd >= 0)
6731 failed--;
6732 }
6733
6734 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6735 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6736
e2962bfc
AK
6737 if (imsm_reshape_blocks_arrays_changes(super))
6738 return NULL;
1af97990 6739
89c67882
AK
6740 if (a->info.array.level == 4)
6741 /* No repair for takeovered array
6742 * imsm doesn't support raid4
6743 */
6744 return NULL;
6745
3b451610
AK
6746 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6747 IMSM_T_STATE_DEGRADED)
88758e9d
DW
6748 return NULL;
6749
95d07a2c
LM
6750 /*
6751 * If there are any failed disks check state of the other volume.
6752 * Block rebuild if the another one is failed until failed disks
6753 * are removed from container.
6754 */
6755 if (failed) {
c4acd1e5 6756 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6757 "failed sub-array.\n",
c4acd1e5 6758 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6759 /* check if states of the other volumes allow for rebuild */
6760 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6761 if (i != inst) {
6762 allowed = imsm_rebuild_allowed(a->container,
6763 i, failed);
6764 if (!allowed)
6765 return NULL;
6766 }
6767 }
6768 }
6769
88758e9d 6770 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6771 for (i = 0; i < a->info.array.raid_disks; i++) {
6772 for (d = a->info.devs ; d ; d = d->next)
6773 if (d->disk.raid_disk == i)
6774 break;
6775 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6776 if (d && (d->state_fd >= 0))
6777 continue;
6778
272906ef 6779 /*
a20d2ba5
DW
6780 * OK, this device needs recovery. Try to re-add the
6781 * previous occupant of this slot, if this fails see if
6782 * we can continue the assimilation of a spare that was
6783 * partially assimilated, finally try to activate a new
6784 * spare.
272906ef
DW
6785 */
6786 dl = imsm_readd(super, i, a);
6787 if (!dl)
b303fe21 6788 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6789 if (!dl)
b303fe21 6790 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6791 if (!dl)
6792 continue;
6793
6794 /* found a usable disk with enough space */
6795 di = malloc(sizeof(*di));
79244939
DW
6796 if (!di)
6797 continue;
272906ef
DW
6798 memset(di, 0, sizeof(*di));
6799
6800 /* dl->index will be -1 in the case we are activating a
6801 * pristine spare. imsm_process_update() will create a
6802 * new index in this case. Once a disk is found to be
6803 * failed in all member arrays it is kicked from the
6804 * metadata
6805 */
6806 di->disk.number = dl->index;
d23fe947 6807
272906ef
DW
6808 /* (ab)use di->devs to store a pointer to the device
6809 * we chose
6810 */
6811 di->devs = (struct mdinfo *) dl;
6812
6813 di->disk.raid_disk = i;
6814 di->disk.major = dl->major;
6815 di->disk.minor = dl->minor;
6816 di->disk.state = 0;
d23534e4 6817 di->recovery_start = 0;
272906ef
DW
6818 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6819 di->component_size = a->info.component_size;
6820 di->container_member = inst;
148acb7b 6821 super->random = random32();
272906ef
DW
6822 di->next = rv;
6823 rv = di;
6824 num_spares++;
6825 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6826 i, di->data_offset);
88758e9d
DW
6827 }
6828
6829 if (!rv)
6830 /* No spares found */
6831 return rv;
6832 /* Now 'rv' has a list of devices to return.
6833 * Create a metadata_update record to update the
6834 * disk_ord_tbl for the array
6835 */
6836 mu = malloc(sizeof(*mu));
79244939
DW
6837 if (mu) {
6838 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6839 if (mu->buf == NULL) {
6840 free(mu);
6841 mu = NULL;
6842 }
6843 }
6844 if (!mu) {
6845 while (rv) {
6846 struct mdinfo *n = rv->next;
6847
6848 free(rv);
6849 rv = n;
6850 }
6851 return NULL;
6852 }
6853
88758e9d 6854 mu->space = NULL;
cb23f1f4 6855 mu->space_list = NULL;
88758e9d
DW
6856 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6857 mu->next = *updates;
6858 u = (struct imsm_update_activate_spare *) mu->buf;
6859
6860 for (di = rv ; di ; di = di->next) {
6861 u->type = update_activate_spare;
d23fe947
DW
6862 u->dl = (struct dl *) di->devs;
6863 di->devs = NULL;
88758e9d
DW
6864 u->slot = di->disk.raid_disk;
6865 u->array = inst;
6866 u->next = u + 1;
6867 u++;
6868 }
6869 (u-1)->next = NULL;
6870 *updates = mu;
6871
6872 return rv;
6873}
6874
54c2c1ea 6875static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6876{
54c2c1ea
DW
6877 struct imsm_dev *dev = get_imsm_dev(super, idx);
6878 struct imsm_map *map = get_imsm_map(dev, 0);
6879 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6880 struct disk_info *inf = get_disk_info(u);
6881 struct imsm_disk *disk;
8273f55e
DW
6882 int i;
6883 int j;
8273f55e 6884
54c2c1ea 6885 for (i = 0; i < map->num_members; i++) {
98130f40 6886 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6887 for (j = 0; j < new_map->num_members; j++)
6888 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6889 return 1;
6890 }
6891
6892 return 0;
6893}
6894
1a64be56
LM
6895
6896static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6897{
6898 struct dl *dl = NULL;
6899 for (dl = super->disks; dl; dl = dl->next)
6900 if ((dl->major == major) && (dl->minor == minor))
6901 return dl;
6902 return NULL;
6903}
6904
6905static int remove_disk_super(struct intel_super *super, int major, int minor)
6906{
6907 struct dl *prev = NULL;
6908 struct dl *dl;
6909
6910 prev = NULL;
6911 for (dl = super->disks; dl; dl = dl->next) {
6912 if ((dl->major == major) && (dl->minor == minor)) {
6913 /* remove */
6914 if (prev)
6915 prev->next = dl->next;
6916 else
6917 super->disks = dl->next;
6918 dl->next = NULL;
6919 __free_imsm_disk(dl);
6920 dprintf("%s: removed %x:%x\n",
6921 __func__, major, minor);
6922 break;
6923 }
6924 prev = dl;
6925 }
6926 return 0;
6927}
6928
f21e18ca 6929static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6930
1a64be56
LM
6931static int add_remove_disk_update(struct intel_super *super)
6932{
6933 int check_degraded = 0;
6934 struct dl *disk = NULL;
6935 /* add/remove some spares to/from the metadata/contrainer */
6936 while (super->disk_mgmt_list) {
6937 struct dl *disk_cfg;
6938
6939 disk_cfg = super->disk_mgmt_list;
6940 super->disk_mgmt_list = disk_cfg->next;
6941 disk_cfg->next = NULL;
6942
6943 if (disk_cfg->action == DISK_ADD) {
6944 disk_cfg->next = super->disks;
6945 super->disks = disk_cfg;
6946 check_degraded = 1;
6947 dprintf("%s: added %x:%x\n",
6948 __func__, disk_cfg->major,
6949 disk_cfg->minor);
6950 } else if (disk_cfg->action == DISK_REMOVE) {
6951 dprintf("Disk remove action processed: %x.%x\n",
6952 disk_cfg->major, disk_cfg->minor);
6953 disk = get_disk_super(super,
6954 disk_cfg->major,
6955 disk_cfg->minor);
6956 if (disk) {
6957 /* store action status */
6958 disk->action = DISK_REMOVE;
6959 /* remove spare disks only */
6960 if (disk->index == -1) {
6961 remove_disk_super(super,
6962 disk_cfg->major,
6963 disk_cfg->minor);
6964 }
6965 }
6966 /* release allocate disk structure */
6967 __free_imsm_disk(disk_cfg);
6968 }
6969 }
6970 return check_degraded;
6971}
6972
a29911da
PC
6973
6974static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6975 struct intel_super *super,
6976 void ***space_list)
6977{
6978 struct intel_dev *id;
6979 void **tofree = NULL;
6980 int ret_val = 0;
6981
6982 dprintf("apply_reshape_migration_update()\n");
6983 if ((u->subdev < 0) ||
6984 (u->subdev > 1)) {
6985 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6986 return ret_val;
6987 }
6988 if ((space_list == NULL) || (*space_list == NULL)) {
6989 dprintf("imsm: Error: Memory is not allocated\n");
6990 return ret_val;
6991 }
6992
6993 for (id = super->devlist ; id; id = id->next) {
6994 if (id->index == (unsigned)u->subdev) {
6995 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6996 struct imsm_map *map;
6997 struct imsm_dev *new_dev =
6998 (struct imsm_dev *)*space_list;
6999 struct imsm_map *migr_map = get_imsm_map(dev, 1);
7000 int to_state;
7001 struct dl *new_disk;
7002
7003 if (new_dev == NULL)
7004 return ret_val;
7005 *space_list = **space_list;
7006 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7007 map = get_imsm_map(new_dev, 0);
7008 if (migr_map) {
7009 dprintf("imsm: Error: migration in progress");
7010 return ret_val;
7011 }
7012
7013 to_state = map->map_state;
7014 if ((u->new_level == 5) && (map->raid_level == 0)) {
7015 map->num_members++;
7016 /* this should not happen */
7017 if (u->new_disks[0] < 0) {
7018 map->failed_disk_num =
7019 map->num_members - 1;
7020 to_state = IMSM_T_STATE_DEGRADED;
7021 } else
7022 to_state = IMSM_T_STATE_NORMAL;
7023 }
8e59f3d8 7024 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
7025 if (u->new_level > -1)
7026 map->raid_level = u->new_level;
7027 migr_map = get_imsm_map(new_dev, 1);
7028 if ((u->new_level == 5) &&
7029 (migr_map->raid_level == 0)) {
7030 int ord = map->num_members - 1;
7031 migr_map->num_members--;
7032 if (u->new_disks[0] < 0)
7033 ord |= IMSM_ORD_REBUILD;
7034 set_imsm_ord_tbl_ent(map,
7035 map->num_members - 1,
7036 ord);
7037 }
7038 id->dev = new_dev;
7039 tofree = (void **)dev;
7040
4bba0439
PC
7041 /* update chunk size
7042 */
7043 if (u->new_chunksize > 0)
7044 map->blocks_per_strip =
7045 __cpu_to_le16(u->new_chunksize * 2);
7046
a29911da
PC
7047 /* add disk
7048 */
7049 if ((u->new_level != 5) ||
7050 (migr_map->raid_level != 0) ||
7051 (migr_map->raid_level == map->raid_level))
7052 goto skip_disk_add;
7053
7054 if (u->new_disks[0] >= 0) {
7055 /* use passes spare
7056 */
7057 new_disk = get_disk_super(super,
7058 major(u->new_disks[0]),
7059 minor(u->new_disks[0]));
7060 dprintf("imsm: new disk for reshape is: %i:%i "
7061 "(%p, index = %i)\n",
7062 major(u->new_disks[0]),
7063 minor(u->new_disks[0]),
7064 new_disk, new_disk->index);
7065 if (new_disk == NULL)
7066 goto error_disk_add;
7067
7068 new_disk->index = map->num_members - 1;
7069 /* slot to fill in autolayout
7070 */
7071 new_disk->raiddisk = new_disk->index;
7072 new_disk->disk.status |= CONFIGURED_DISK;
7073 new_disk->disk.status &= ~SPARE_DISK;
7074 } else
7075 goto error_disk_add;
7076
7077skip_disk_add:
7078 *tofree = *space_list;
7079 /* calculate new size
7080 */
7081 imsm_set_array_size(new_dev);
7082
7083 ret_val = 1;
7084 }
7085 }
7086
7087 if (tofree)
7088 *space_list = tofree;
7089 return ret_val;
7090
7091error_disk_add:
7092 dprintf("Error: imsm: Cannot find disk.\n");
7093 return ret_val;
7094}
7095
061d7da3
LO
7096static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7097 struct intel_super *super,
7098 struct active_array *active_array)
7099{
7100 struct imsm_super *mpb = super->anchor;
7101 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7102 struct imsm_map *map = get_imsm_map(dev, 0);
7103 struct imsm_map *migr_map;
7104 struct active_array *a;
7105 struct imsm_disk *disk;
7106 __u8 to_state;
7107 struct dl *dl;
7108 unsigned int found;
7109 int failed;
5961eeec 7110 int victim;
061d7da3 7111 int i;
5961eeec 7112 int second_map_created = 0;
061d7da3 7113
5961eeec 7114 for (; u; u = u->next) {
7115 victim = get_imsm_disk_idx(dev, u->slot, -1);
061d7da3 7116
5961eeec 7117 if (victim < 0)
7118 return 0;
061d7da3 7119
5961eeec 7120 for (dl = super->disks; dl; dl = dl->next)
7121 if (dl == u->dl)
7122 break;
061d7da3 7123
5961eeec 7124 if (!dl) {
7125 fprintf(stderr, "error: imsm_activate_spare passed "
7126 "an unknown disk (index: %d)\n",
7127 u->dl->index);
7128 return 0;
7129 }
061d7da3 7130
5961eeec 7131 /* count failures (excluding rebuilds and the victim)
7132 * to determine map[0] state
7133 */
7134 failed = 0;
7135 for (i = 0; i < map->num_members; i++) {
7136 if (i == u->slot)
7137 continue;
7138 disk = get_imsm_disk(super,
7139 get_imsm_disk_idx(dev, i, -1));
7140 if (!disk || is_failed(disk))
7141 failed++;
7142 }
061d7da3 7143
5961eeec 7144 /* adding a pristine spare, assign a new index */
7145 if (dl->index < 0) {
7146 dl->index = super->anchor->num_disks;
7147 super->anchor->num_disks++;
7148 }
7149 disk = &dl->disk;
7150 disk->status |= CONFIGURED_DISK;
7151 disk->status &= ~SPARE_DISK;
7152
7153 /* mark rebuild */
3b451610
AK
7154 to_state = imsm_check_degraded(super, dev, failed,
7155 MAP_0);
5961eeec 7156 if (!second_map_created) {
7157 second_map_created = 1;
7158 map->map_state = IMSM_T_STATE_DEGRADED;
7159 migrate(dev, super, to_state, MIGR_REBUILD);
7160 } else
7161 map->map_state = to_state;
7162 migr_map = get_imsm_map(dev, 1);
7163 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7164 set_imsm_ord_tbl_ent(migr_map, u->slot,
7165 dl->index | IMSM_ORD_REBUILD);
7166
7167 /* update the family_num to mark a new container
7168 * generation, being careful to record the existing
7169 * family_num in orig_family_num to clean up after
7170 * earlier mdadm versions that neglected to set it.
7171 */
7172 if (mpb->orig_family_num == 0)
7173 mpb->orig_family_num = mpb->family_num;
7174 mpb->family_num += super->random;
7175
7176 /* count arrays using the victim in the metadata */
7177 found = 0;
7178 for (a = active_array; a ; a = a->next) {
7179 dev = get_imsm_dev(super, a->info.container_member);
7180 map = get_imsm_map(dev, 0);
061d7da3 7181
5961eeec 7182 if (get_imsm_disk_slot(map, victim) >= 0)
7183 found++;
7184 }
061d7da3 7185
5961eeec 7186 /* delete the victim if it is no longer being
7187 * utilized anywhere
061d7da3 7188 */
5961eeec 7189 if (!found) {
7190 struct dl **dlp;
061d7da3 7191
5961eeec 7192 /* We know that 'manager' isn't touching anything,
7193 * so it is safe to delete
7194 */
7195 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7196 if ((*dlp)->index == victim)
7197 break;
5961eeec 7198
7199 /* victim may be on the missing list */
7200 if (!*dlp)
7201 for (dlp = &super->missing; *dlp;
7202 dlp = &(*dlp)->next)
7203 if ((*dlp)->index == victim)
7204 break;
7205 imsm_delete(super, dlp, victim);
7206 }
061d7da3
LO
7207 }
7208
7209 return 1;
7210}
a29911da 7211
2e5dc010
N
7212static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7213 struct intel_super *super,
7214 void ***space_list)
7215{
7216 struct dl *new_disk;
7217 struct intel_dev *id;
7218 int i;
7219 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7220 int disk_count = u->old_raid_disks;
2e5dc010
N
7221 void **tofree = NULL;
7222 int devices_to_reshape = 1;
7223 struct imsm_super *mpb = super->anchor;
7224 int ret_val = 0;
d098291a 7225 unsigned int dev_id;
2e5dc010 7226
ed7333bd 7227 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7228
7229 /* enable spares to use in array */
7230 for (i = 0; i < delta_disks; i++) {
7231 new_disk = get_disk_super(super,
7232 major(u->new_disks[i]),
7233 minor(u->new_disks[i]));
ed7333bd
AK
7234 dprintf("imsm: new disk for reshape is: %i:%i "
7235 "(%p, index = %i)\n",
2e5dc010
N
7236 major(u->new_disks[i]), minor(u->new_disks[i]),
7237 new_disk, new_disk->index);
7238 if ((new_disk == NULL) ||
7239 ((new_disk->index >= 0) &&
7240 (new_disk->index < u->old_raid_disks)))
7241 goto update_reshape_exit;
ee4beede 7242 new_disk->index = disk_count++;
2e5dc010
N
7243 /* slot to fill in autolayout
7244 */
7245 new_disk->raiddisk = new_disk->index;
7246 new_disk->disk.status |=
7247 CONFIGURED_DISK;
7248 new_disk->disk.status &= ~SPARE_DISK;
7249 }
7250
ed7333bd
AK
7251 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7252 mpb->num_raid_devs);
2e5dc010
N
7253 /* manage changes in volume
7254 */
d098291a 7255 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7256 void **sp = *space_list;
7257 struct imsm_dev *newdev;
7258 struct imsm_map *newmap, *oldmap;
7259
d098291a
AK
7260 for (id = super->devlist ; id; id = id->next) {
7261 if (id->index == dev_id)
7262 break;
7263 }
7264 if (id == NULL)
7265 break;
2e5dc010
N
7266 if (!sp)
7267 continue;
7268 *space_list = *sp;
7269 newdev = (void*)sp;
7270 /* Copy the dev, but not (all of) the map */
7271 memcpy(newdev, id->dev, sizeof(*newdev));
7272 oldmap = get_imsm_map(id->dev, 0);
7273 newmap = get_imsm_map(newdev, 0);
7274 /* Copy the current map */
7275 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7276 /* update one device only
7277 */
7278 if (devices_to_reshape) {
ed7333bd
AK
7279 dprintf("imsm: modifying subdev: %i\n",
7280 id->index);
2e5dc010
N
7281 devices_to_reshape--;
7282 newdev->vol.migr_state = 1;
7283 newdev->vol.curr_migr_unit = 0;
ea672ee1 7284 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7285 newmap->num_members = u->new_raid_disks;
7286 for (i = 0; i < delta_disks; i++) {
7287 set_imsm_ord_tbl_ent(newmap,
7288 u->old_raid_disks + i,
7289 u->old_raid_disks + i);
7290 }
7291 /* New map is correct, now need to save old map
7292 */
7293 newmap = get_imsm_map(newdev, 1);
7294 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7295
70bdf0dc 7296 imsm_set_array_size(newdev);
2e5dc010
N
7297 }
7298
7299 sp = (void **)id->dev;
7300 id->dev = newdev;
7301 *sp = tofree;
7302 tofree = sp;
8e59f3d8
AK
7303
7304 /* Clear migration record */
7305 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7306 }
819bc634
AK
7307 if (tofree)
7308 *space_list = tofree;
2e5dc010
N
7309 ret_val = 1;
7310
7311update_reshape_exit:
7312
7313 return ret_val;
7314}
7315
bb025c2f 7316static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7317 struct intel_super *super,
7318 void ***space_list)
bb025c2f
KW
7319{
7320 struct imsm_dev *dev = NULL;
8ca6df95
KW
7321 struct intel_dev *dv;
7322 struct imsm_dev *dev_new;
bb025c2f
KW
7323 struct imsm_map *map;
7324 struct dl *dm, *du;
8ca6df95 7325 int i;
bb025c2f
KW
7326
7327 for (dv = super->devlist; dv; dv = dv->next)
7328 if (dv->index == (unsigned int)u->subarray) {
7329 dev = dv->dev;
7330 break;
7331 }
7332
7333 if (dev == NULL)
7334 return 0;
7335
7336 map = get_imsm_map(dev, 0);
7337
7338 if (u->direction == R10_TO_R0) {
43d5ec18 7339 /* Number of failed disks must be half of initial disk number */
3b451610
AK
7340 if (imsm_count_failed(super, dev, MAP_0) !=
7341 (map->num_members / 2))
43d5ec18
KW
7342 return 0;
7343
bb025c2f
KW
7344 /* iterate through devices to mark removed disks as spare */
7345 for (dm = super->disks; dm; dm = dm->next) {
7346 if (dm->disk.status & FAILED_DISK) {
7347 int idx = dm->index;
7348 /* update indexes on the disk list */
7349/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7350 the index values will end up being correct.... NB */
7351 for (du = super->disks; du; du = du->next)
7352 if (du->index > idx)
7353 du->index--;
7354 /* mark as spare disk */
a8619d23 7355 mark_spare(dm);
bb025c2f
KW
7356 }
7357 }
bb025c2f
KW
7358 /* update map */
7359 map->num_members = map->num_members / 2;
7360 map->map_state = IMSM_T_STATE_NORMAL;
7361 map->num_domains = 1;
7362 map->raid_level = 0;
7363 map->failed_disk_num = -1;
7364 }
7365
8ca6df95
KW
7366 if (u->direction == R0_TO_R10) {
7367 void **space;
7368 /* update slots in current disk list */
7369 for (dm = super->disks; dm; dm = dm->next) {
7370 if (dm->index >= 0)
7371 dm->index *= 2;
7372 }
7373 /* create new *missing* disks */
7374 for (i = 0; i < map->num_members; i++) {
7375 space = *space_list;
7376 if (!space)
7377 continue;
7378 *space_list = *space;
7379 du = (void *)space;
7380 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7381 du->fd = -1;
7382 du->minor = 0;
7383 du->major = 0;
7384 du->index = (i * 2) + 1;
7385 sprintf((char *)du->disk.serial,
7386 " MISSING_%d", du->index);
7387 sprintf((char *)du->serial,
7388 "MISSING_%d", du->index);
7389 du->next = super->missing;
7390 super->missing = du;
7391 }
7392 /* create new dev and map */
7393 space = *space_list;
7394 if (!space)
7395 return 0;
7396 *space_list = *space;
7397 dev_new = (void *)space;
7398 memcpy(dev_new, dev, sizeof(*dev));
7399 /* update new map */
7400 map = get_imsm_map(dev_new, 0);
8ca6df95 7401 map->num_members = map->num_members * 2;
1a2487c2 7402 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7403 map->num_domains = 2;
7404 map->raid_level = 1;
7405 /* replace dev<->dev_new */
7406 dv->dev = dev_new;
7407 }
bb025c2f
KW
7408 /* update disk order table */
7409 for (du = super->disks; du; du = du->next)
7410 if (du->index >= 0)
7411 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7412 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7413 if (du->index >= 0) {
7414 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7415 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7416 }
bb025c2f
KW
7417
7418 return 1;
7419}
7420
e8319a19
DW
7421static void imsm_process_update(struct supertype *st,
7422 struct metadata_update *update)
7423{
7424 /**
7425 * crack open the metadata_update envelope to find the update record
7426 * update can be one of:
d195167d
AK
7427 * update_reshape_container_disks - all the arrays in the container
7428 * are being reshaped to have more devices. We need to mark
7429 * the arrays for general migration and convert selected spares
7430 * into active devices.
7431 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7432 * device in an array, update the disk_ord_tbl. If this disk is
7433 * present in all member arrays then also clear the SPARE_DISK
7434 * flag
d195167d
AK
7435 * update_create_array
7436 * update_kill_array
7437 * update_rename_array
7438 * update_add_remove_disk
e8319a19
DW
7439 */
7440 struct intel_super *super = st->sb;
4d7b1503 7441 struct imsm_super *mpb;
e8319a19
DW
7442 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7443
4d7b1503
DW
7444 /* update requires a larger buf but the allocation failed */
7445 if (super->next_len && !super->next_buf) {
7446 super->next_len = 0;
7447 return;
7448 }
7449
7450 if (super->next_buf) {
7451 memcpy(super->next_buf, super->buf, super->len);
7452 free(super->buf);
7453 super->len = super->next_len;
7454 super->buf = super->next_buf;
7455
7456 super->next_len = 0;
7457 super->next_buf = NULL;
7458 }
7459
7460 mpb = super->anchor;
7461
e8319a19 7462 switch (type) {
0ec5d470
AK
7463 case update_general_migration_checkpoint: {
7464 struct intel_dev *id;
7465 struct imsm_update_general_migration_checkpoint *u =
7466 (void *)update->buf;
7467
7468 dprintf("imsm: process_update() "
7469 "for update_general_migration_checkpoint called\n");
7470
7471 /* find device under general migration */
7472 for (id = super->devlist ; id; id = id->next) {
7473 if (is_gen_migration(id->dev)) {
7474 id->dev->vol.curr_migr_unit =
7475 __cpu_to_le32(u->curr_migr_unit);
7476 super->updates_pending++;
7477 }
7478 }
7479 break;
7480 }
bb025c2f
KW
7481 case update_takeover: {
7482 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7483 if (apply_takeover_update(u, super, &update->space_list)) {
7484 imsm_update_version_info(super);
bb025c2f 7485 super->updates_pending++;
1a2487c2 7486 }
bb025c2f
KW
7487 break;
7488 }
7489
78b10e66 7490 case update_reshape_container_disks: {
d195167d 7491 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7492 if (apply_reshape_container_disks_update(
7493 u, super, &update->space_list))
7494 super->updates_pending++;
78b10e66
N
7495 break;
7496 }
48c5303a 7497 case update_reshape_migration: {
a29911da
PC
7498 struct imsm_update_reshape_migration *u = (void *)update->buf;
7499 if (apply_reshape_migration_update(
7500 u, super, &update->space_list))
7501 super->updates_pending++;
48c5303a
PC
7502 break;
7503 }
e8319a19
DW
7504 case update_activate_spare: {
7505 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7506 if (apply_update_activate_spare(u, super, st->arrays))
7507 super->updates_pending++;
8273f55e
DW
7508 break;
7509 }
7510 case update_create_array: {
7511 /* someone wants to create a new array, we need to be aware of
7512 * a few races/collisions:
7513 * 1/ 'Create' called by two separate instances of mdadm
7514 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7515 * devices that have since been assimilated via
7516 * activate_spare.
7517 * In the event this update can not be carried out mdadm will
7518 * (FIX ME) notice that its update did not take hold.
7519 */
7520 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7521 struct intel_dev *dv;
8273f55e
DW
7522 struct imsm_dev *dev;
7523 struct imsm_map *map, *new_map;
7524 unsigned long long start, end;
7525 unsigned long long new_start, new_end;
7526 int i;
54c2c1ea
DW
7527 struct disk_info *inf;
7528 struct dl *dl;
8273f55e
DW
7529
7530 /* handle racing creates: first come first serve */
7531 if (u->dev_idx < mpb->num_raid_devs) {
7532 dprintf("%s: subarray %d already defined\n",
7533 __func__, u->dev_idx);
ba2de7ba 7534 goto create_error;
8273f55e
DW
7535 }
7536
7537 /* check update is next in sequence */
7538 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7539 dprintf("%s: can not create array %d expected index %d\n",
7540 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7541 goto create_error;
8273f55e
DW
7542 }
7543
a965f303 7544 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7545 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7546 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7547 inf = get_disk_info(u);
8273f55e
DW
7548
7549 /* handle activate_spare versus create race:
7550 * check to make sure that overlapping arrays do not include
7551 * overalpping disks
7552 */
7553 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7554 dev = get_imsm_dev(super, i);
a965f303 7555 map = get_imsm_map(dev, 0);
8273f55e
DW
7556 start = __le32_to_cpu(map->pba_of_lba0);
7557 end = start + __le32_to_cpu(map->blocks_per_member);
7558 if ((new_start >= start && new_start <= end) ||
7559 (start >= new_start && start <= new_end))
54c2c1ea
DW
7560 /* overlap */;
7561 else
7562 continue;
7563
7564 if (disks_overlap(super, i, u)) {
8273f55e 7565 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7566 goto create_error;
8273f55e
DW
7567 }
7568 }
8273f55e 7569
949c47a0
DW
7570 /* check that prepare update was successful */
7571 if (!update->space) {
7572 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7573 goto create_error;
949c47a0
DW
7574 }
7575
54c2c1ea
DW
7576 /* check that all disks are still active before committing
7577 * changes. FIXME: could we instead handle this by creating a
7578 * degraded array? That's probably not what the user expects,
7579 * so better to drop this update on the floor.
7580 */
7581 for (i = 0; i < new_map->num_members; i++) {
7582 dl = serial_to_dl(inf[i].serial, super);
7583 if (!dl) {
7584 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7585 goto create_error;
54c2c1ea 7586 }
949c47a0
DW
7587 }
7588
8273f55e 7589 super->updates_pending++;
54c2c1ea
DW
7590
7591 /* convert spares to members and fixup ord_tbl */
7592 for (i = 0; i < new_map->num_members; i++) {
7593 dl = serial_to_dl(inf[i].serial, super);
7594 if (dl->index == -1) {
7595 dl->index = mpb->num_disks;
7596 mpb->num_disks++;
7597 dl->disk.status |= CONFIGURED_DISK;
7598 dl->disk.status &= ~SPARE_DISK;
7599 }
7600 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7601 }
7602
ba2de7ba
DW
7603 dv = update->space;
7604 dev = dv->dev;
949c47a0
DW
7605 update->space = NULL;
7606 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7607 dv->index = u->dev_idx;
7608 dv->next = super->devlist;
7609 super->devlist = dv;
8273f55e 7610 mpb->num_raid_devs++;
8273f55e 7611
4d1313e9 7612 imsm_update_version_info(super);
8273f55e 7613 break;
ba2de7ba
DW
7614 create_error:
7615 /* mdmon knows how to release update->space, but not
7616 * ((struct intel_dev *) update->space)->dev
7617 */
7618 if (update->space) {
7619 dv = update->space;
7620 free(dv->dev);
7621 }
8273f55e 7622 break;
e8319a19 7623 }
33414a01
DW
7624 case update_kill_array: {
7625 struct imsm_update_kill_array *u = (void *) update->buf;
7626 int victim = u->dev_idx;
7627 struct active_array *a;
7628 struct intel_dev **dp;
7629 struct imsm_dev *dev;
7630
7631 /* sanity check that we are not affecting the uuid of
7632 * active arrays, or deleting an active array
7633 *
7634 * FIXME when immutable ids are available, but note that
7635 * we'll also need to fixup the invalidated/active
7636 * subarray indexes in mdstat
7637 */
7638 for (a = st->arrays; a; a = a->next)
7639 if (a->info.container_member >= victim)
7640 break;
7641 /* by definition if mdmon is running at least one array
7642 * is active in the container, so checking
7643 * mpb->num_raid_devs is just extra paranoia
7644 */
7645 dev = get_imsm_dev(super, victim);
7646 if (a || !dev || mpb->num_raid_devs == 1) {
7647 dprintf("failed to delete subarray-%d\n", victim);
7648 break;
7649 }
7650
7651 for (dp = &super->devlist; *dp;)
f21e18ca 7652 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7653 *dp = (*dp)->next;
7654 } else {
f21e18ca 7655 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7656 (*dp)->index--;
7657 dp = &(*dp)->next;
7658 }
7659 mpb->num_raid_devs--;
7660 super->updates_pending++;
7661 break;
7662 }
aa534678
DW
7663 case update_rename_array: {
7664 struct imsm_update_rename_array *u = (void *) update->buf;
7665 char name[MAX_RAID_SERIAL_LEN+1];
7666 int target = u->dev_idx;
7667 struct active_array *a;
7668 struct imsm_dev *dev;
7669
7670 /* sanity check that we are not affecting the uuid of
7671 * an active array
7672 */
7673 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7674 name[MAX_RAID_SERIAL_LEN] = '\0';
7675 for (a = st->arrays; a; a = a->next)
7676 if (a->info.container_member == target)
7677 break;
7678 dev = get_imsm_dev(super, u->dev_idx);
7679 if (a || !dev || !check_name(super, name, 1)) {
7680 dprintf("failed to rename subarray-%d\n", target);
7681 break;
7682 }
7683
cdbe98cd 7684 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7685 super->updates_pending++;
7686 break;
7687 }
1a64be56 7688 case update_add_remove_disk: {
43dad3d6 7689 /* we may be able to repair some arrays if disks are
1a64be56
LM
7690 * being added, check teh status of add_remove_disk
7691 * if discs has been added.
7692 */
7693 if (add_remove_disk_update(super)) {
43dad3d6 7694 struct active_array *a;
072b727f
DW
7695
7696 super->updates_pending++;
1a64be56 7697 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7698 a->check_degraded = 1;
7699 }
43dad3d6 7700 break;
e8319a19 7701 }
1a64be56
LM
7702 default:
7703 fprintf(stderr, "error: unsuported process update type:"
7704 "(type: %d)\n", type);
7705 }
e8319a19 7706}
88758e9d 7707
bc0b9d34
PC
7708static struct mdinfo *get_spares_for_grow(struct supertype *st);
7709
8273f55e
DW
7710static void imsm_prepare_update(struct supertype *st,
7711 struct metadata_update *update)
7712{
949c47a0 7713 /**
4d7b1503
DW
7714 * Allocate space to hold new disk entries, raid-device entries or a new
7715 * mpb if necessary. The manager synchronously waits for updates to
7716 * complete in the monitor, so new mpb buffers allocated here can be
7717 * integrated by the monitor thread without worrying about live pointers
7718 * in the manager thread.
8273f55e 7719 */
949c47a0 7720 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7721 struct intel_super *super = st->sb;
7722 struct imsm_super *mpb = super->anchor;
7723 size_t buf_len;
7724 size_t len = 0;
949c47a0
DW
7725
7726 switch (type) {
0ec5d470
AK
7727 case update_general_migration_checkpoint:
7728 dprintf("imsm: prepare_update() "
7729 "for update_general_migration_checkpoint called\n");
7730 break;
abedf5fc
KW
7731 case update_takeover: {
7732 struct imsm_update_takeover *u = (void *)update->buf;
7733 if (u->direction == R0_TO_R10) {
7734 void **tail = (void **)&update->space_list;
7735 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7736 struct imsm_map *map = get_imsm_map(dev, 0);
7737 int num_members = map->num_members;
7738 void *space;
7739 int size, i;
7740 int err = 0;
7741 /* allocate memory for added disks */
7742 for (i = 0; i < num_members; i++) {
7743 size = sizeof(struct dl);
7744 space = malloc(size);
7745 if (!space) {
7746 err++;
7747 break;
7748 }
7749 *tail = space;
7750 tail = space;
7751 *tail = NULL;
7752 }
7753 /* allocate memory for new device */
7754 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7755 (num_members * sizeof(__u32));
7756 space = malloc(size);
7757 if (!space)
7758 err++;
7759 else {
7760 *tail = space;
7761 tail = space;
7762 *tail = NULL;
7763 }
7764 if (!err) {
7765 len = disks_to_mpb_size(num_members * 2);
7766 } else {
7767 /* if allocation didn't success, free buffer */
7768 while (update->space_list) {
7769 void **sp = update->space_list;
7770 update->space_list = *sp;
7771 free(sp);
7772 }
7773 }
7774 }
7775
7776 break;
7777 }
78b10e66 7778 case update_reshape_container_disks: {
d195167d
AK
7779 /* Every raid device in the container is about to
7780 * gain some more devices, and we will enter a
7781 * reconfiguration.
7782 * So each 'imsm_map' will be bigger, and the imsm_vol
7783 * will now hold 2 of them.
7784 * Thus we need new 'struct imsm_dev' allocations sized
7785 * as sizeof_imsm_dev but with more devices in both maps.
7786 */
7787 struct imsm_update_reshape *u = (void *)update->buf;
7788 struct intel_dev *dl;
7789 void **space_tail = (void**)&update->space_list;
7790
7791 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7792
7793 for (dl = super->devlist; dl; dl = dl->next) {
7794 int size = sizeof_imsm_dev(dl->dev, 1);
7795 void *s;
d677e0b8
AK
7796 if (u->new_raid_disks > u->old_raid_disks)
7797 size += sizeof(__u32)*2*
7798 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7799 s = malloc(size);
7800 if (!s)
7801 break;
7802 *space_tail = s;
7803 space_tail = s;
7804 *space_tail = NULL;
7805 }
7806
7807 len = disks_to_mpb_size(u->new_raid_disks);
7808 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7809 break;
7810 }
48c5303a 7811 case update_reshape_migration: {
bc0b9d34
PC
7812 /* for migration level 0->5 we need to add disks
7813 * so the same as for container operation we will copy
7814 * device to the bigger location.
7815 * in memory prepared device and new disk area are prepared
7816 * for usage in process update
7817 */
7818 struct imsm_update_reshape_migration *u = (void *)update->buf;
7819 struct intel_dev *id;
7820 void **space_tail = (void **)&update->space_list;
7821 int size;
7822 void *s;
7823 int current_level = -1;
7824
7825 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7826
7827 /* add space for bigger array in update
7828 */
7829 for (id = super->devlist; id; id = id->next) {
7830 if (id->index == (unsigned)u->subdev) {
7831 size = sizeof_imsm_dev(id->dev, 1);
7832 if (u->new_raid_disks > u->old_raid_disks)
7833 size += sizeof(__u32)*2*
7834 (u->new_raid_disks - u->old_raid_disks);
7835 s = malloc(size);
7836 if (!s)
7837 break;
7838 *space_tail = s;
7839 space_tail = s;
7840 *space_tail = NULL;
7841 break;
7842 }
7843 }
7844 if (update->space_list == NULL)
7845 break;
7846
7847 /* add space for disk in update
7848 */
7849 size = sizeof(struct dl);
7850 s = malloc(size);
7851 if (!s) {
7852 free(update->space_list);
7853 update->space_list = NULL;
7854 break;
7855 }
7856 *space_tail = s;
7857 space_tail = s;
7858 *space_tail = NULL;
7859
7860 /* add spare device to update
7861 */
7862 for (id = super->devlist ; id; id = id->next)
7863 if (id->index == (unsigned)u->subdev) {
7864 struct imsm_dev *dev;
7865 struct imsm_map *map;
7866
7867 dev = get_imsm_dev(super, u->subdev);
7868 map = get_imsm_map(dev, 0);
7869 current_level = map->raid_level;
7870 break;
7871 }
7872 if ((u->new_level == 5) && (u->new_level != current_level)) {
7873 struct mdinfo *spares;
7874
7875 spares = get_spares_for_grow(st);
7876 if (spares) {
7877 struct dl *dl;
7878 struct mdinfo *dev;
7879
7880 dev = spares->devs;
7881 if (dev) {
7882 u->new_disks[0] =
7883 makedev(dev->disk.major,
7884 dev->disk.minor);
7885 dl = get_disk_super(super,
7886 dev->disk.major,
7887 dev->disk.minor);
7888 dl->index = u->old_raid_disks;
7889 dev = dev->next;
7890 }
7891 sysfs_free(spares);
7892 }
7893 }
7894 len = disks_to_mpb_size(u->new_raid_disks);
7895 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7896 break;
7897 }
949c47a0
DW
7898 case update_create_array: {
7899 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7900 struct intel_dev *dv;
54c2c1ea
DW
7901 struct imsm_dev *dev = &u->dev;
7902 struct imsm_map *map = get_imsm_map(dev, 0);
7903 struct dl *dl;
7904 struct disk_info *inf;
7905 int i;
7906 int activate = 0;
949c47a0 7907
54c2c1ea
DW
7908 inf = get_disk_info(u);
7909 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7910 /* allocate a new super->devlist entry */
7911 dv = malloc(sizeof(*dv));
7912 if (dv) {
7913 dv->dev = malloc(len);
7914 if (dv->dev)
7915 update->space = dv;
7916 else {
7917 free(dv);
7918 update->space = NULL;
7919 }
7920 }
949c47a0 7921
54c2c1ea
DW
7922 /* count how many spares will be converted to members */
7923 for (i = 0; i < map->num_members; i++) {
7924 dl = serial_to_dl(inf[i].serial, super);
7925 if (!dl) {
7926 /* hmm maybe it failed?, nothing we can do about
7927 * it here
7928 */
7929 continue;
7930 }
7931 if (count_memberships(dl, super) == 0)
7932 activate++;
7933 }
7934 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7935 break;
7936 default:
7937 break;
7938 }
7939 }
8273f55e 7940
4d7b1503
DW
7941 /* check if we need a larger metadata buffer */
7942 if (super->next_buf)
7943 buf_len = super->next_len;
7944 else
7945 buf_len = super->len;
7946
7947 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7948 /* ok we need a larger buf than what is currently allocated
7949 * if this allocation fails process_update will notice that
7950 * ->next_len is set and ->next_buf is NULL
7951 */
7952 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7953 if (super->next_buf)
7954 free(super->next_buf);
7955
7956 super->next_len = buf_len;
1f45a8ad
DW
7957 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7958 memset(super->next_buf, 0, buf_len);
7959 else
4d7b1503
DW
7960 super->next_buf = NULL;
7961 }
8273f55e
DW
7962}
7963
ae6aad82 7964/* must be called while manager is quiesced */
f21e18ca 7965static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7966{
7967 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7968 struct dl *iter;
7969 struct imsm_dev *dev;
7970 struct imsm_map *map;
24565c9a
DW
7971 int i, j, num_members;
7972 __u32 ord;
ae6aad82 7973
24565c9a
DW
7974 dprintf("%s: deleting device[%d] from imsm_super\n",
7975 __func__, index);
ae6aad82
DW
7976
7977 /* shift all indexes down one */
7978 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7979 if (iter->index > (int)index)
ae6aad82 7980 iter->index--;
47ee5a45 7981 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7982 if (iter->index > (int)index)
47ee5a45 7983 iter->index--;
ae6aad82
DW
7984
7985 for (i = 0; i < mpb->num_raid_devs; i++) {
7986 dev = get_imsm_dev(super, i);
7987 map = get_imsm_map(dev, 0);
24565c9a
DW
7988 num_members = map->num_members;
7989 for (j = 0; j < num_members; j++) {
7990 /* update ord entries being careful not to propagate
7991 * ord-flags to the first map
7992 */
98130f40 7993 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7994
24565c9a
DW
7995 if (ord_to_idx(ord) <= index)
7996 continue;
ae6aad82 7997
24565c9a
DW
7998 map = get_imsm_map(dev, 0);
7999 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8000 map = get_imsm_map(dev, 1);
8001 if (map)
8002 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
8003 }
8004 }
8005
8006 mpb->num_disks--;
8007 super->updates_pending++;
24565c9a
DW
8008 if (*dlp) {
8009 struct dl *dl = *dlp;
8010
8011 *dlp = (*dlp)->next;
8012 __free_imsm_disk(dl);
8013 }
ae6aad82 8014}
9e2d750d 8015#endif /* MDASSEMBLE */
9a717282
AK
8016
8017static void close_targets(int *targets, int new_disks)
8018{
8019 int i;
8020
8021 if (!targets)
8022 return;
8023
8024 for (i = 0; i < new_disks; i++) {
8025 if (targets[i] >= 0) {
8026 close(targets[i]);
8027 targets[i] = -1;
8028 }
8029 }
8030}
8031
8032static int imsm_get_allowed_degradation(int level, int raid_disks,
8033 struct intel_super *super,
8034 struct imsm_dev *dev)
8035{
8036 switch (level) {
8037 case 10:{
8038 int ret_val = 0;
8039 struct imsm_map *map;
8040 int i;
8041
8042 ret_val = raid_disks/2;
8043 /* check map if all disks pairs not failed
8044 * in both maps
8045 */
8046 map = get_imsm_map(dev, 0);
8047 for (i = 0; i < ret_val; i++) {
8048 int degradation = 0;
8049 if (get_imsm_disk(super, i) == NULL)
8050 degradation++;
8051 if (get_imsm_disk(super, i + 1) == NULL)
8052 degradation++;
8053 if (degradation == 2)
8054 return 0;
8055 }
8056 map = get_imsm_map(dev, 1);
8057 /* if there is no second map
8058 * result can be returned
8059 */
8060 if (map == NULL)
8061 return ret_val;
8062 /* check degradation in second map
8063 */
8064 for (i = 0; i < ret_val; i++) {
8065 int degradation = 0;
8066 if (get_imsm_disk(super, i) == NULL)
8067 degradation++;
8068 if (get_imsm_disk(super, i + 1) == NULL)
8069 degradation++;
8070 if (degradation == 2)
8071 return 0;
8072 }
8073 return ret_val;
8074 }
8075 case 5:
8076 return 1;
8077 case 6:
8078 return 2;
8079 default:
8080 return 0;
8081 }
8082}
8083
8084
687629c2
AK
8085/*******************************************************************************
8086 * Function: open_backup_targets
8087 * Description: Function opens file descriptors for all devices given in
8088 * info->devs
8089 * Parameters:
8090 * info : general array info
8091 * raid_disks : number of disks
8092 * raid_fds : table of device's file descriptors
9a717282
AK
8093 * super : intel super for raid10 degradation check
8094 * dev : intel device for raid10 degradation check
687629c2
AK
8095 * Returns:
8096 * 0 : success
8097 * -1 : fail
8098 ******************************************************************************/
9a717282
AK
8099int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8100 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
8101{
8102 struct mdinfo *sd;
f627f5ad 8103 int i;
9a717282 8104 int opened = 0;
f627f5ad
AK
8105
8106 for (i = 0; i < raid_disks; i++)
8107 raid_fds[i] = -1;
687629c2
AK
8108
8109 for (sd = info->devs ; sd ; sd = sd->next) {
8110 char *dn;
8111
8112 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8113 dprintf("disk is faulty!!\n");
8114 continue;
8115 }
8116
8117 if ((sd->disk.raid_disk >= raid_disks) ||
8118 (sd->disk.raid_disk < 0))
8119 continue;
8120
8121 dn = map_dev(sd->disk.major,
8122 sd->disk.minor, 1);
8123 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8124 if (raid_fds[sd->disk.raid_disk] < 0) {
8125 fprintf(stderr, "cannot open component\n");
9a717282 8126 continue;
687629c2 8127 }
9a717282
AK
8128 opened++;
8129 }
8130 /* check if maximum array degradation level is not exceeded
8131 */
8132 if ((raid_disks - opened) >
8133 imsm_get_allowed_degradation(info->new_level,
8134 raid_disks,
8135 super, dev)) {
8136 fprintf(stderr, "Not enough disks can be opened.\n");
8137 close_targets(raid_fds, raid_disks);
8138 return -2;
687629c2
AK
8139 }
8140 return 0;
8141}
8142
9e2d750d 8143#ifndef MDASSEMBLE
687629c2
AK
8144/*******************************************************************************
8145 * Function: init_migr_record_imsm
8146 * Description: Function inits imsm migration record
8147 * Parameters:
8148 * super : imsm internal array info
8149 * dev : device under migration
8150 * info : general array info to find the smallest device
8151 * Returns:
8152 * none
8153 ******************************************************************************/
8154void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8155 struct mdinfo *info)
8156{
8157 struct intel_super *super = st->sb;
8158 struct migr_record *migr_rec = super->migr_rec;
8159 int new_data_disks;
8160 unsigned long long dsize, dev_sectors;
8161 long long unsigned min_dev_sectors = -1LLU;
8162 struct mdinfo *sd;
8163 char nm[30];
8164 int fd;
8165 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8166 struct imsm_map *map_src = get_imsm_map(dev, 1);
8167 unsigned long long num_migr_units;
3ef4403c 8168 unsigned long long array_blocks;
687629c2
AK
8169
8170 memset(migr_rec, 0, sizeof(struct migr_record));
8171 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8172
8173 /* only ascending reshape supported now */
8174 migr_rec->ascending_migr = __cpu_to_le32(1);
8175
8176 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8177 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8178 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8179 new_data_disks = imsm_num_data_members(dev, 0);
8180 migr_rec->blocks_per_unit =
8181 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8182 migr_rec->dest_depth_per_unit =
8183 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8184 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8185 num_migr_units =
8186 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8187
8188 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8189 num_migr_units++;
8190 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8191
8192 migr_rec->post_migr_vol_cap = dev->size_low;
8193 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8194
8195
8196 /* Find the smallest dev */
8197 for (sd = info->devs ; sd ; sd = sd->next) {
8198 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8199 fd = dev_open(nm, O_RDONLY);
8200 if (fd < 0)
8201 continue;
8202 get_dev_size(fd, NULL, &dsize);
8203 dev_sectors = dsize / 512;
8204 if (dev_sectors < min_dev_sectors)
8205 min_dev_sectors = dev_sectors;
8206 close(fd);
8207 }
8208 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8209 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8210
8211 write_imsm_migr_rec(st);
8212
8213 return;
8214}
8215
8216/*******************************************************************************
8217 * Function: save_backup_imsm
8218 * Description: Function saves critical data stripes to Migration Copy Area
8219 * and updates the current migration unit status.
8220 * Use restore_stripes() to form a destination stripe,
8221 * and to write it to the Copy Area.
8222 * Parameters:
8223 * st : supertype information
aea93171 8224 * dev : imsm device that backup is saved for
687629c2
AK
8225 * info : general array info
8226 * buf : input buffer
687629c2
AK
8227 * length : length of data to backup (blocks_per_unit)
8228 * Returns:
8229 * 0 : success
8230 *, -1 : fail
8231 ******************************************************************************/
8232int save_backup_imsm(struct supertype *st,
8233 struct imsm_dev *dev,
8234 struct mdinfo *info,
8235 void *buf,
687629c2
AK
8236 int length)
8237{
8238 int rv = -1;
8239 struct intel_super *super = st->sb;
8240 unsigned long long *target_offsets = NULL;
8241 int *targets = NULL;
8242 int i;
8243 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8244 int new_disks = map_dest->num_members;
ab724b98
AK
8245 int dest_layout = 0;
8246 int dest_chunk;
d1877f69
AK
8247 unsigned long long start;
8248 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8249
8250 targets = malloc(new_disks * sizeof(int));
8251 if (!targets)
8252 goto abort;
8253
7e45b550
AK
8254 for (i = 0; i < new_disks; i++)
8255 targets[i] = -1;
8256
687629c2
AK
8257 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8258 if (!target_offsets)
8259 goto abort;
8260
d1877f69 8261 start = info->reshape_progress * 512;
687629c2 8262 for (i = 0; i < new_disks; i++) {
687629c2
AK
8263 target_offsets[i] = (unsigned long long)
8264 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8265 /* move back copy area adderss, it will be moved forward
8266 * in restore_stripes() using start input variable
8267 */
8268 target_offsets[i] -= start/data_disks;
687629c2
AK
8269 }
8270
9a717282
AK
8271 if (open_backup_targets(info, new_disks, targets,
8272 super, dev))
687629c2
AK
8273 goto abort;
8274
68eb8bc6 8275 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8276 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8277
687629c2
AK
8278 if (restore_stripes(targets, /* list of dest devices */
8279 target_offsets, /* migration record offsets */
8280 new_disks,
ab724b98
AK
8281 dest_chunk,
8282 map_dest->raid_level,
8283 dest_layout,
8284 -1, /* source backup file descriptor */
8285 0, /* input buf offset
8286 * always 0 buf is already offseted */
d1877f69 8287 start,
687629c2
AK
8288 length,
8289 buf) != 0) {
8290 fprintf(stderr, Name ": Error restoring stripes\n");
8291 goto abort;
8292 }
8293
8294 rv = 0;
8295
8296abort:
8297 if (targets) {
9a717282 8298 close_targets(targets, new_disks);
687629c2
AK
8299 free(targets);
8300 }
8301 free(target_offsets);
8302
8303 return rv;
8304}
8305
8306/*******************************************************************************
8307 * Function: save_checkpoint_imsm
8308 * Description: Function called for current unit status update
8309 * in the migration record. It writes it to disk.
8310 * Parameters:
8311 * super : imsm internal array info
8312 * info : general array info
8313 * Returns:
8314 * 0: success
8315 * 1: failure
0228d92c
AK
8316 * 2: failure, means no valid migration record
8317 * / no general migration in progress /
687629c2
AK
8318 ******************************************************************************/
8319int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8320{
8321 struct intel_super *super = st->sb;
f8b72ef5
AK
8322 unsigned long long blocks_per_unit;
8323 unsigned long long curr_migr_unit;
8324
2e062e82
AK
8325 if (load_imsm_migr_rec(super, info) != 0) {
8326 dprintf("imsm: ERROR: Cannot read migration record "
8327 "for checkpoint save.\n");
8328 return 1;
8329 }
8330
f8b72ef5
AK
8331 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8332 if (blocks_per_unit == 0) {
0228d92c
AK
8333 dprintf("imsm: no migration in progress.\n");
8334 return 2;
687629c2 8335 }
f8b72ef5
AK
8336 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8337 /* check if array is alligned to copy area
8338 * if it is not alligned, add one to current migration unit value
8339 * this can happend on array reshape finish only
8340 */
8341 if (info->reshape_progress % blocks_per_unit)
8342 curr_migr_unit++;
687629c2
AK
8343
8344 super->migr_rec->curr_migr_unit =
f8b72ef5 8345 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8346 super->migr_rec->rec_status = __cpu_to_le32(state);
8347 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8348 __cpu_to_le32(curr_migr_unit *
8349 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8350 if (write_imsm_migr_rec(st) < 0) {
8351 dprintf("imsm: Cannot write migration record "
8352 "outside backup area\n");
8353 return 1;
8354 }
8355
8356 return 0;
8357}
8358
276d77db
AK
8359/*******************************************************************************
8360 * Function: recover_backup_imsm
8361 * Description: Function recovers critical data from the Migration Copy Area
8362 * while assembling an array.
8363 * Parameters:
8364 * super : imsm internal array info
8365 * info : general array info
8366 * Returns:
8367 * 0 : success (or there is no data to recover)
8368 * 1 : fail
8369 ******************************************************************************/
8370int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8371{
8372 struct intel_super *super = st->sb;
8373 struct migr_record *migr_rec = super->migr_rec;
8374 struct imsm_map *map_dest = NULL;
8375 struct intel_dev *id = NULL;
8376 unsigned long long read_offset;
8377 unsigned long long write_offset;
8378 unsigned unit_len;
8379 int *targets = NULL;
8380 int new_disks, i, err;
8381 char *buf = NULL;
8382 int retval = 1;
8383 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8384 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8385 char buffer[20];
6c3560c0 8386 int skipped_disks = 0;
276d77db
AK
8387
8388 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8389 if (err < 1)
8390 return 1;
8391
8392 /* recover data only during assemblation */
8393 if (strncmp(buffer, "inactive", 8) != 0)
8394 return 0;
8395 /* no data to recover */
8396 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8397 return 0;
8398 if (curr_migr_unit >= num_migr_units)
8399 return 1;
8400
8401 /* find device during reshape */
8402 for (id = super->devlist; id; id = id->next)
8403 if (is_gen_migration(id->dev))
8404 break;
8405 if (id == NULL)
8406 return 1;
8407
8408 map_dest = get_imsm_map(id->dev, 0);
8409 new_disks = map_dest->num_members;
8410
8411 read_offset = (unsigned long long)
8412 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8413
8414 write_offset = ((unsigned long long)
8415 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8416 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8417
8418 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8419 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8420 goto abort;
8421 targets = malloc(new_disks * sizeof(int));
8422 if (!targets)
8423 goto abort;
8424
9a717282 8425 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
f627f5ad
AK
8426 fprintf(stderr,
8427 Name ": Cannot open some devices belonging to array.\n");
8428 goto abort;
8429 }
276d77db
AK
8430
8431 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8432 if (targets[i] < 0) {
8433 skipped_disks++;
8434 continue;
8435 }
276d77db
AK
8436 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8437 fprintf(stderr,
8438 Name ": Cannot seek to block: %s\n",
8439 strerror(errno));
137debce
AK
8440 skipped_disks++;
8441 continue;
276d77db 8442 }
9ec11d1a 8443 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8444 fprintf(stderr,
8445 Name ": Cannot read copy area block: %s\n",
8446 strerror(errno));
137debce
AK
8447 skipped_disks++;
8448 continue;
276d77db
AK
8449 }
8450 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8451 fprintf(stderr,
8452 Name ": Cannot seek to block: %s\n",
8453 strerror(errno));
137debce
AK
8454 skipped_disks++;
8455 continue;
276d77db 8456 }
9ec11d1a 8457 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8458 fprintf(stderr,
8459 Name ": Cannot restore block: %s\n",
8460 strerror(errno));
137debce
AK
8461 skipped_disks++;
8462 continue;
276d77db
AK
8463 }
8464 }
8465
137debce
AK
8466 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8467 new_disks,
8468 super,
8469 id->dev)) {
6c3560c0
AK
8470 fprintf(stderr,
8471 Name ": Cannot restore data from backup."
8472 " Too many failed disks\n");
8473 goto abort;
8474 }
8475
befb629b
AK
8476 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8477 /* ignore error == 2, this can mean end of reshape here
8478 */
8479 dprintf("imsm: Cannot write checkpoint to "
8480 "migration record (UNIT_SRC_NORMAL) during restart\n");
8481 } else
276d77db 8482 retval = 0;
276d77db
AK
8483
8484abort:
8485 if (targets) {
8486 for (i = 0; i < new_disks; i++)
8487 if (targets[i])
8488 close(targets[i]);
8489 free(targets);
8490 }
8491 free(buf);
8492 return retval;
8493}
8494
2cda7640
ML
8495static char disk_by_path[] = "/dev/disk/by-path/";
8496
8497static const char *imsm_get_disk_controller_domain(const char *path)
8498{
2cda7640 8499 char disk_path[PATH_MAX];
96234762
LM
8500 char *drv=NULL;
8501 struct stat st;
2cda7640 8502
96234762
LM
8503 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8504 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8505 if (stat(disk_path, &st) == 0) {
8506 struct sys_dev* hba;
8507 char *path=NULL;
8508
8509 path = devt_to_devpath(st.st_rdev);
8510 if (path == NULL)
8511 return "unknown";
8512 hba = find_disk_attached_hba(-1, path);
8513 if (hba && hba->type == SYS_DEV_SAS)
8514 drv = "isci";
8515 else if (hba && hba->type == SYS_DEV_SATA)
8516 drv = "ahci";
8517 else
8518 drv = "unknown";
8519 dprintf("path: %s hba: %s attached: %s\n",
8520 path, (hba) ? hba->path : "NULL", drv);
8521 free(path);
8522 if (hba)
8523 free_sys_dev(&hba);
2cda7640 8524 }
96234762 8525 return drv;
2cda7640
ML
8526}
8527
78b10e66
N
8528static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8529{
8530 char subdev_name[20];
8531 struct mdstat_ent *mdstat;
8532
8533 sprintf(subdev_name, "%d", subdev);
8534 mdstat = mdstat_by_subdev(subdev_name, container);
8535 if (!mdstat)
8536 return -1;
8537
8538 *minor = mdstat->devnum;
8539 free_mdstat(mdstat);
8540 return 0;
8541}
8542
8543static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8544 struct geo_params *geo,
8545 int *old_raid_disks)
8546{
694575e7
KW
8547 /* currently we only support increasing the number of devices
8548 * for a container. This increases the number of device for each
8549 * member array. They must all be RAID0 or RAID5.
8550 */
78b10e66
N
8551 int ret_val = 0;
8552 struct mdinfo *info, *member;
8553 int devices_that_can_grow = 0;
8554
8555 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8556 "st->devnum = (%i)\n",
8557 st->devnum);
8558
8559 if (geo->size != -1 ||
8560 geo->level != UnSet ||
8561 geo->layout != UnSet ||
8562 geo->chunksize != 0 ||
8563 geo->raid_disks == UnSet) {
8564 dprintf("imsm: Container operation is allowed for "
8565 "raid disks number change only.\n");
8566 return ret_val;
8567 }
8568
8569 info = container_content_imsm(st, NULL);
8570 for (member = info; member; member = member->next) {
8571 int result;
8572 int minor;
8573
8574 dprintf("imsm: checking device_num: %i\n",
8575 member->container_member);
8576
d7d205bd 8577 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8578 /* we work on container for Online Capacity Expansion
8579 * only so raid_disks has to grow
8580 */
8581 dprintf("imsm: for container operation raid disks "
8582 "increase is required\n");
8583 break;
8584 }
8585
8586 if ((info->array.level != 0) &&
8587 (info->array.level != 5)) {
8588 /* we cannot use this container with other raid level
8589 */
690aae1a 8590 dprintf("imsm: for container operation wrong"
78b10e66
N
8591 " raid level (%i) detected\n",
8592 info->array.level);
8593 break;
8594 } else {
8595 /* check for platform support
8596 * for this raid level configuration
8597 */
8598 struct intel_super *super = st->sb;
8599 if (!is_raid_level_supported(super->orom,
8600 member->array.level,
8601 geo->raid_disks)) {
690aae1a 8602 dprintf("platform does not support raid%d with"
78b10e66
N
8603 " %d disk%s\n",
8604 info->array.level,
8605 geo->raid_disks,
8606 geo->raid_disks > 1 ? "s" : "");
8607 break;
8608 }
2a4a08e7
AK
8609 /* check if component size is aligned to chunk size
8610 */
8611 if (info->component_size %
8612 (info->array.chunk_size/512)) {
8613 dprintf("Component size is not aligned to "
8614 "chunk size\n");
8615 break;
8616 }
78b10e66
N
8617 }
8618
8619 if (*old_raid_disks &&
8620 info->array.raid_disks != *old_raid_disks)
8621 break;
8622 *old_raid_disks = info->array.raid_disks;
8623
8624 /* All raid5 and raid0 volumes in container
8625 * have to be ready for Online Capacity Expansion
8626 * so they need to be assembled. We have already
8627 * checked that no recovery etc is happening.
8628 */
8629 result = imsm_find_array_minor_by_subdev(member->container_member,
8630 st->container_dev,
8631 &minor);
8632 if (result < 0) {
8633 dprintf("imsm: cannot find array\n");
8634 break;
8635 }
8636 devices_that_can_grow++;
8637 }
8638 sysfs_free(info);
8639 if (!member && devices_that_can_grow)
8640 ret_val = 1;
8641
8642 if (ret_val)
8643 dprintf("\tContainer operation allowed\n");
8644 else
8645 dprintf("\tError: %i\n", ret_val);
8646
8647 return ret_val;
8648}
8649
8650/* Function: get_spares_for_grow
8651 * Description: Allocates memory and creates list of spare devices
8652 * avaliable in container. Checks if spare drive size is acceptable.
8653 * Parameters: Pointer to the supertype structure
8654 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8655 * NULL if fail
8656 */
8657static struct mdinfo *get_spares_for_grow(struct supertype *st)
8658{
78b10e66 8659 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8660 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8661}
8662
8663/******************************************************************************
8664 * function: imsm_create_metadata_update_for_reshape
8665 * Function creates update for whole IMSM container.
8666 *
8667 ******************************************************************************/
8668static int imsm_create_metadata_update_for_reshape(
8669 struct supertype *st,
8670 struct geo_params *geo,
8671 int old_raid_disks,
8672 struct imsm_update_reshape **updatep)
8673{
8674 struct intel_super *super = st->sb;
8675 struct imsm_super *mpb = super->anchor;
8676 int update_memory_size = 0;
8677 struct imsm_update_reshape *u = NULL;
8678 struct mdinfo *spares = NULL;
8679 int i;
8680 int delta_disks = 0;
bbd24d86 8681 struct mdinfo *dev;
78b10e66
N
8682
8683 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8684 geo->raid_disks);
8685
8686 delta_disks = geo->raid_disks - old_raid_disks;
8687
8688 /* size of all update data without anchor */
8689 update_memory_size = sizeof(struct imsm_update_reshape);
8690
8691 /* now add space for spare disks that we need to add. */
8692 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8693
8694 u = calloc(1, update_memory_size);
8695 if (u == NULL) {
8696 dprintf("error: "
8697 "cannot get memory for imsm_update_reshape update\n");
8698 return 0;
8699 }
8700 u->type = update_reshape_container_disks;
8701 u->old_raid_disks = old_raid_disks;
8702 u->new_raid_disks = geo->raid_disks;
8703
8704 /* now get spare disks list
8705 */
8706 spares = get_spares_for_grow(st);
8707
8708 if (spares == NULL
8709 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8710 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8711 "for %s.\n", geo->dev_name);
e4c72d1d 8712 i = -1;
78b10e66
N
8713 goto abort;
8714 }
8715
8716 /* we have got spares
8717 * update disk list in imsm_disk list table in anchor
8718 */
8719 dprintf("imsm: %i spares are available.\n\n",
8720 spares->array.spare_disks);
8721
bbd24d86 8722 dev = spares->devs;
78b10e66 8723 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8724 struct dl *dl;
8725
bbd24d86
AK
8726 if (dev == NULL)
8727 break;
78b10e66
N
8728 u->new_disks[i] = makedev(dev->disk.major,
8729 dev->disk.minor);
8730 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8731 dl->index = mpb->num_disks;
8732 mpb->num_disks++;
bbd24d86 8733 dev = dev->next;
78b10e66 8734 }
78b10e66
N
8735
8736abort:
8737 /* free spares
8738 */
8739 sysfs_free(spares);
8740
d677e0b8 8741 dprintf("imsm: reshape update preparation :");
78b10e66 8742 if (i == delta_disks) {
d677e0b8 8743 dprintf(" OK\n");
78b10e66
N
8744 *updatep = u;
8745 return update_memory_size;
8746 }
8747 free(u);
d677e0b8 8748 dprintf(" Error\n");
78b10e66
N
8749
8750 return 0;
8751}
8752
48c5303a
PC
8753/******************************************************************************
8754 * function: imsm_create_metadata_update_for_migration()
8755 * Creates update for IMSM array.
8756 *
8757 ******************************************************************************/
8758static int imsm_create_metadata_update_for_migration(
8759 struct supertype *st,
8760 struct geo_params *geo,
8761 struct imsm_update_reshape_migration **updatep)
8762{
8763 struct intel_super *super = st->sb;
8764 int update_memory_size = 0;
8765 struct imsm_update_reshape_migration *u = NULL;
8766 struct imsm_dev *dev;
8767 int previous_level = -1;
8768
8769 dprintf("imsm_create_metadata_update_for_migration(enter)"
8770 " New Level = %i\n", geo->level);
8771
8772 /* size of all update data without anchor */
8773 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8774
8775 u = calloc(1, update_memory_size);
8776 if (u == NULL) {
8777 dprintf("error: cannot get memory for "
8778 "imsm_create_metadata_update_for_migration\n");
8779 return 0;
8780 }
8781 u->type = update_reshape_migration;
8782 u->subdev = super->current_vol;
8783 u->new_level = geo->level;
8784 u->new_layout = geo->layout;
8785 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8786 u->new_disks[0] = -1;
4bba0439 8787 u->new_chunksize = -1;
48c5303a
PC
8788
8789 dev = get_imsm_dev(super, u->subdev);
8790 if (dev) {
8791 struct imsm_map *map;
8792
8793 map = get_imsm_map(dev, 0);
4bba0439
PC
8794 if (map) {
8795 int current_chunk_size =
8796 __le16_to_cpu(map->blocks_per_strip) / 2;
8797
8798 if (geo->chunksize != current_chunk_size) {
8799 u->new_chunksize = geo->chunksize / 1024;
8800 dprintf("imsm: "
8801 "chunk size change from %i to %i\n",
8802 current_chunk_size, u->new_chunksize);
8803 }
48c5303a 8804 previous_level = map->raid_level;
4bba0439 8805 }
48c5303a
PC
8806 }
8807 if ((geo->level == 5) && (previous_level == 0)) {
8808 struct mdinfo *spares = NULL;
8809
8810 u->new_raid_disks++;
8811 spares = get_spares_for_grow(st);
8812 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8813 free(u);
8814 sysfs_free(spares);
8815 update_memory_size = 0;
8816 dprintf("error: cannot get spare device "
8817 "for requested migration");
8818 return 0;
8819 }
8820 sysfs_free(spares);
8821 }
8822 dprintf("imsm: reshape update preparation : OK\n");
8823 *updatep = u;
8824
8825 return update_memory_size;
8826}
8827
8dd70bce
AK
8828static void imsm_update_metadata_locally(struct supertype *st,
8829 void *buf, int len)
8830{
8831 struct metadata_update mu;
8832
8833 mu.buf = buf;
8834 mu.len = len;
8835 mu.space = NULL;
8836 mu.space_list = NULL;
8837 mu.next = NULL;
8838 imsm_prepare_update(st, &mu);
8839 imsm_process_update(st, &mu);
8840
8841 while (mu.space_list) {
8842 void **space = mu.space_list;
8843 mu.space_list = *space;
8844 free(space);
8845 }
8846}
78b10e66 8847
471bceb6 8848/***************************************************************************
694575e7 8849* Function: imsm_analyze_change
471bceb6
KW
8850* Description: Function analyze change for single volume
8851* and validate if transition is supported
694575e7
KW
8852* Parameters: Geometry parameters, supertype structure
8853* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8854****************************************************************************/
8855enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8856 struct geo_params *geo)
694575e7 8857{
471bceb6
KW
8858 struct mdinfo info;
8859 int change = -1;
8860 int check_devs = 0;
c21e737b 8861 int chunk;
e91a3bad
LM
8862 int devNumChange=0;
8863 int layout = -1;
471bceb6
KW
8864
8865 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8866 if ((geo->level != info.array.level) &&
8867 (geo->level >= 0) &&
8868 (geo->level != UnSet)) {
8869 switch (info.array.level) {
8870 case 0:
8871 if (geo->level == 5) {
b5347799 8872 change = CH_MIGRATION;
e13ce846
AK
8873 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8874 fprintf(stderr,
8875 Name " Error. Requested Layout "
8876 "not supported (left-asymmetric layout "
8877 "is supported only)!\n");
8878 change = -1;
8879 goto analyse_change_exit;
8880 }
e91a3bad 8881 layout = geo->layout;
471bceb6 8882 check_devs = 1;
e91a3bad
LM
8883 devNumChange = 1; /* parity disk added */
8884 } else if (geo->level == 10) {
471bceb6
KW
8885 change = CH_TAKEOVER;
8886 check_devs = 1;
e91a3bad
LM
8887 devNumChange = 2; /* two mirrors added */
8888 layout = 0x102; /* imsm supported layout */
471bceb6 8889 }
dfe77a9e
KW
8890 break;
8891 case 1:
471bceb6
KW
8892 case 10:
8893 if (geo->level == 0) {
8894 change = CH_TAKEOVER;
8895 check_devs = 1;
e91a3bad
LM
8896 devNumChange = -(geo->raid_disks/2);
8897 layout = 0; /* imsm raid0 layout */
471bceb6
KW
8898 }
8899 break;
8900 }
8901 if (change == -1) {
8902 fprintf(stderr,
8903 Name " Error. Level Migration from %d to %d "
8904 "not supported!\n",
8905 info.array.level, geo->level);
8906 goto analyse_change_exit;
8907 }
8908 } else
8909 geo->level = info.array.level;
8910
8911 if ((geo->layout != info.array.layout)
8912 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8913 change = CH_MIGRATION;
471bceb6
KW
8914 if ((info.array.layout == 0)
8915 && (info.array.level == 5)
8916 && (geo->layout == 5)) {
8917 /* reshape 5 -> 4 */
8918 } else if ((info.array.layout == 5)
8919 && (info.array.level == 5)
8920 && (geo->layout == 0)) {
8921 /* reshape 4 -> 5 */
8922 geo->layout = 0;
8923 geo->level = 5;
8924 } else {
8925 fprintf(stderr,
8926 Name " Error. Layout Migration from %d to %d "
8927 "not supported!\n",
8928 info.array.layout, geo->layout);
8929 change = -1;
8930 goto analyse_change_exit;
8931 }
8932 } else
8933 geo->layout = info.array.layout;
8934
8935 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8936 && (geo->chunksize != info.array.chunk_size))
b5347799 8937 change = CH_MIGRATION;
471bceb6
KW
8938 else
8939 geo->chunksize = info.array.chunk_size;
8940
c21e737b 8941 chunk = geo->chunksize / 1024;
471bceb6
KW
8942 if (!validate_geometry_imsm(st,
8943 geo->level,
e91a3bad
LM
8944 layout,
8945 geo->raid_disks + devNumChange,
c21e737b 8946 &chunk,
471bceb6
KW
8947 geo->size,
8948 0, 0, 1))
8949 change = -1;
8950
8951 if (check_devs) {
8952 struct intel_super *super = st->sb;
8953 struct imsm_super *mpb = super->anchor;
8954
8955 if (mpb->num_raid_devs > 1) {
8956 fprintf(stderr,
8957 Name " Error. Cannot perform operation on %s"
8958 "- for this operation it MUST be single "
8959 "array in container\n",
8960 geo->dev_name);
8961 change = -1;
8962 }
8963 }
8964
8965analyse_change_exit:
8966
8967 return change;
694575e7
KW
8968}
8969
bb025c2f
KW
8970int imsm_takeover(struct supertype *st, struct geo_params *geo)
8971{
8972 struct intel_super *super = st->sb;
8973 struct imsm_update_takeover *u;
8974
8975 u = malloc(sizeof(struct imsm_update_takeover));
8976 if (u == NULL)
8977 return 1;
8978
8979 u->type = update_takeover;
8980 u->subarray = super->current_vol;
8981
8982 /* 10->0 transition */
8983 if (geo->level == 0)
8984 u->direction = R10_TO_R0;
8985
0529c688
KW
8986 /* 0->10 transition */
8987 if (geo->level == 10)
8988 u->direction = R0_TO_R10;
8989
bb025c2f
KW
8990 /* update metadata locally */
8991 imsm_update_metadata_locally(st, u,
8992 sizeof(struct imsm_update_takeover));
8993 /* and possibly remotely */
8994 if (st->update_tail)
8995 append_metadata_update(st, u,
8996 sizeof(struct imsm_update_takeover));
8997 else
8998 free(u);
8999
9000 return 0;
9001}
9002
78b10e66
N
9003static int imsm_reshape_super(struct supertype *st, long long size, int level,
9004 int layout, int chunksize, int raid_disks,
41784c88
AK
9005 int delta_disks, char *backup, char *dev,
9006 int verbose)
78b10e66 9007{
78b10e66
N
9008 int ret_val = 1;
9009 struct geo_params geo;
9010
9011 dprintf("imsm: reshape_super called.\n");
9012
71204a50 9013 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
9014
9015 geo.dev_name = dev;
694575e7 9016 geo.dev_id = st->devnum;
78b10e66
N
9017 geo.size = size;
9018 geo.level = level;
9019 geo.layout = layout;
9020 geo.chunksize = chunksize;
9021 geo.raid_disks = raid_disks;
41784c88
AK
9022 if (delta_disks != UnSet)
9023 geo.raid_disks += delta_disks;
78b10e66
N
9024
9025 dprintf("\tfor level : %i\n", geo.level);
9026 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9027
9028 if (experimental() == 0)
9029 return ret_val;
9030
78b10e66 9031 if (st->container_dev == st->devnum) {
694575e7
KW
9032 /* On container level we can only increase number of devices. */
9033 dprintf("imsm: info: Container operation\n");
78b10e66 9034 int old_raid_disks = 0;
6dc0be30 9035
78b10e66
N
9036 if (imsm_reshape_is_allowed_on_container(
9037 st, &geo, &old_raid_disks)) {
9038 struct imsm_update_reshape *u = NULL;
9039 int len;
9040
9041 len = imsm_create_metadata_update_for_reshape(
9042 st, &geo, old_raid_disks, &u);
9043
ed08d51c
AK
9044 if (len <= 0) {
9045 dprintf("imsm: Cannot prepare update\n");
9046 goto exit_imsm_reshape_super;
9047 }
9048
8dd70bce
AK
9049 ret_val = 0;
9050 /* update metadata locally */
9051 imsm_update_metadata_locally(st, u, len);
9052 /* and possibly remotely */
9053 if (st->update_tail)
9054 append_metadata_update(st, u, len);
9055 else
ed08d51c 9056 free(u);
8dd70bce 9057
694575e7 9058 } else {
e7ff7e40
AK
9059 fprintf(stderr, Name ": (imsm) Operation "
9060 "is not allowed on this container\n");
694575e7
KW
9061 }
9062 } else {
9063 /* On volume level we support following operations
471bceb6
KW
9064 * - takeover: raid10 -> raid0; raid0 -> raid10
9065 * - chunk size migration
9066 * - migration: raid5 -> raid0; raid0 -> raid5
9067 */
9068 struct intel_super *super = st->sb;
9069 struct intel_dev *dev = super->devlist;
9070 int change, devnum;
694575e7 9071 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
9072 /* find requested device */
9073 while (dev) {
19986c72
MB
9074 if (imsm_find_array_minor_by_subdev(
9075 dev->index, st->container_dev, &devnum) == 0
9076 && devnum == geo.dev_id)
471bceb6
KW
9077 break;
9078 dev = dev->next;
9079 }
9080 if (dev == NULL) {
9081 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9082 geo.dev_name, geo.dev_id);
9083 goto exit_imsm_reshape_super;
9084 }
9085 super->current_vol = dev->index;
694575e7
KW
9086 change = imsm_analyze_change(st, &geo);
9087 switch (change) {
471bceb6 9088 case CH_TAKEOVER:
bb025c2f 9089 ret_val = imsm_takeover(st, &geo);
694575e7 9090 break;
48c5303a
PC
9091 case CH_MIGRATION: {
9092 struct imsm_update_reshape_migration *u = NULL;
9093 int len =
9094 imsm_create_metadata_update_for_migration(
9095 st, &geo, &u);
9096 if (len < 1) {
9097 dprintf("imsm: "
9098 "Cannot prepare update\n");
9099 break;
9100 }
471bceb6 9101 ret_val = 0;
48c5303a
PC
9102 /* update metadata locally */
9103 imsm_update_metadata_locally(st, u, len);
9104 /* and possibly remotely */
9105 if (st->update_tail)
9106 append_metadata_update(st, u, len);
9107 else
9108 free(u);
9109 }
9110 break;
471bceb6
KW
9111 default:
9112 ret_val = 1;
694575e7 9113 }
694575e7 9114 }
78b10e66 9115
ed08d51c 9116exit_imsm_reshape_super:
78b10e66
N
9117 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9118 return ret_val;
9119}
2cda7640 9120
eee67a47
AK
9121/*******************************************************************************
9122 * Function: wait_for_reshape_imsm
9123 * Description: Function writes new sync_max value and waits until
9124 * reshape process reach new position
9125 * Parameters:
9126 * sra : general array info
eee67a47
AK
9127 * ndata : number of disks in new array's layout
9128 * Returns:
9129 * 0 : success,
9130 * 1 : there is no reshape in progress,
9131 * -1 : fail
9132 ******************************************************************************/
ae9f01f8 9133int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
9134{
9135 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9136 unsigned long long completed;
ae9f01f8
AK
9137 /* to_complete : new sync_max position */
9138 unsigned long long to_complete = sra->reshape_progress;
9139 unsigned long long position_to_set = to_complete / ndata;
eee67a47 9140
ae9f01f8
AK
9141 if (fd < 0) {
9142 dprintf("imsm: wait_for_reshape_imsm() "
9143 "cannot open reshape_position\n");
eee67a47 9144 return 1;
ae9f01f8 9145 }
eee67a47 9146
ae9f01f8
AK
9147 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9148 dprintf("imsm: wait_for_reshape_imsm() "
9149 "cannot read reshape_position (no reshape in progres)\n");
9150 close(fd);
9151 return 0;
9152 }
eee67a47 9153
ae9f01f8
AK
9154 if (completed > to_complete) {
9155 dprintf("imsm: wait_for_reshape_imsm() "
9156 "wrong next position to set %llu (%llu)\n",
9157 to_complete, completed);
9158 close(fd);
9159 return -1;
9160 }
9161 dprintf("Position set: %llu\n", position_to_set);
9162 if (sysfs_set_num(sra, NULL, "sync_max",
9163 position_to_set) != 0) {
9164 dprintf("imsm: wait_for_reshape_imsm() "
9165 "cannot set reshape position to %llu\n",
9166 position_to_set);
9167 close(fd);
9168 return -1;
eee67a47
AK
9169 }
9170
eee67a47
AK
9171 do {
9172 char action[20];
9173 fd_set rfds;
9174 FD_ZERO(&rfds);
9175 FD_SET(fd, &rfds);
a47e44fb
AK
9176 select(fd+1, &rfds, NULL, NULL, NULL);
9177 if (sysfs_get_str(sra, NULL, "sync_action",
9178 action, 20) > 0 &&
9179 strncmp(action, "reshape", 7) != 0)
9180 break;
eee67a47 9181 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9182 dprintf("imsm: wait_for_reshape_imsm() "
9183 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9184 close(fd);
9185 return 1;
9186 }
eee67a47
AK
9187 } while (completed < to_complete);
9188 close(fd);
9189 return 0;
9190
9191}
9192
b915c95f
AK
9193/*******************************************************************************
9194 * Function: check_degradation_change
9195 * Description: Check that array hasn't become failed.
9196 * Parameters:
9197 * info : for sysfs access
9198 * sources : source disks descriptors
9199 * degraded: previous degradation level
9200 * Returns:
9201 * degradation level
9202 ******************************************************************************/
9203int check_degradation_change(struct mdinfo *info,
9204 int *sources,
9205 int degraded)
9206{
9207 unsigned long long new_degraded;
9208 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9209 if (new_degraded != (unsigned long long)degraded) {
9210 /* check each device to ensure it is still working */
9211 struct mdinfo *sd;
9212 new_degraded = 0;
9213 for (sd = info->devs ; sd ; sd = sd->next) {
9214 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9215 continue;
9216 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9217 char sbuf[20];
9218 if (sysfs_get_str(info,
9219 sd, "state", sbuf, 20) < 0 ||
9220 strstr(sbuf, "faulty") ||
9221 strstr(sbuf, "in_sync") == NULL) {
9222 /* this device is dead */
9223 sd->disk.state = (1<<MD_DISK_FAULTY);
9224 if (sd->disk.raid_disk >= 0 &&
9225 sources[sd->disk.raid_disk] >= 0) {
9226 close(sources[
9227 sd->disk.raid_disk]);
9228 sources[sd->disk.raid_disk] =
9229 -1;
9230 }
9231 new_degraded++;
9232 }
9233 }
9234 }
9235 }
9236
9237 return new_degraded;
9238}
9239
10f22854
AK
9240/*******************************************************************************
9241 * Function: imsm_manage_reshape
9242 * Description: Function finds array under reshape and it manages reshape
9243 * process. It creates stripes backups (if required) and sets
9244 * checheckpoits.
9245 * Parameters:
9246 * afd : Backup handle (nattive) - not used
9247 * sra : general array info
9248 * reshape : reshape parameters - not used
9249 * st : supertype structure
9250 * blocks : size of critical section [blocks]
9251 * fds : table of source device descriptor
9252 * offsets : start of array (offest per devices)
9253 * dests : not used
9254 * destfd : table of destination device descriptor
9255 * destoffsets : table of destination offsets (per device)
9256 * Returns:
9257 * 1 : success, reshape is done
9258 * 0 : fail
9259 ******************************************************************************/
999b4972
N
9260static int imsm_manage_reshape(
9261 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9262 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9263 int *fds, unsigned long long *offsets,
9264 int dests, int *destfd, unsigned long long *destoffsets)
9265{
10f22854
AK
9266 int ret_val = 0;
9267 struct intel_super *super = st->sb;
9268 struct intel_dev *dv = NULL;
9269 struct imsm_dev *dev = NULL;
a6b6d984 9270 struct imsm_map *map_src;
10f22854
AK
9271 int migr_vol_qan = 0;
9272 int ndata, odata; /* [bytes] */
9273 int chunk; /* [bytes] */
9274 struct migr_record *migr_rec;
9275 char *buf = NULL;
9276 unsigned int buf_size; /* [bytes] */
9277 unsigned long long max_position; /* array size [bytes] */
9278 unsigned long long next_step; /* [blocks]/[bytes] */
9279 unsigned long long old_data_stripe_length;
10f22854
AK
9280 unsigned long long start_src; /* [bytes] */
9281 unsigned long long start; /* [bytes] */
9282 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9283 int degraded = 0;
ab724b98 9284 int source_layout = 0;
10f22854 9285
1ab242d8 9286 if (!fds || !offsets || !sra)
10f22854
AK
9287 goto abort;
9288
9289 /* Find volume during the reshape */
9290 for (dv = super->devlist; dv; dv = dv->next) {
9291 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9292 && dv->dev->vol.migr_state == 1) {
9293 dev = dv->dev;
9294 migr_vol_qan++;
9295 }
9296 }
9297 /* Only one volume can migrate at the same time */
9298 if (migr_vol_qan != 1) {
9299 fprintf(stderr, Name " : %s", migr_vol_qan ?
9300 "Number of migrating volumes greater than 1\n" :
9301 "There is no volume during migrationg\n");
9302 goto abort;
9303 }
9304
9305 map_src = get_imsm_map(dev, 1);
9306 if (map_src == NULL)
9307 goto abort;
10f22854
AK
9308
9309 ndata = imsm_num_data_members(dev, 0);
9310 odata = imsm_num_data_members(dev, 1);
9311
7b1ab482 9312 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9313 old_data_stripe_length = odata * chunk;
9314
9315 migr_rec = super->migr_rec;
9316
10f22854
AK
9317 /* initialize migration record for start condition */
9318 if (sra->reshape_progress == 0)
9319 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9320 else {
9321 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9322 dprintf("imsm: cannot restart migration when data "
9323 "are present in copy area.\n");
9324 goto abort;
9325 }
9326 }
10f22854
AK
9327
9328 /* size for data */
9329 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9330 /* extend buffer size for parity disk */
9331 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9332 /* add space for stripe aligment */
9333 buf_size += old_data_stripe_length;
9334 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9335 dprintf("imsm: Cannot allocate checpoint buffer\n");
9336 goto abort;
9337 }
9338
3ef4403c 9339 max_position = sra->component_size * ndata;
68eb8bc6 9340 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9341
9342 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9343 __le32_to_cpu(migr_rec->num_migr_units)) {
9344 /* current reshape position [blocks] */
9345 unsigned long long current_position =
9346 __le32_to_cpu(migr_rec->blocks_per_unit)
9347 * __le32_to_cpu(migr_rec->curr_migr_unit);
9348 unsigned long long border;
9349
b915c95f
AK
9350 /* Check that array hasn't become failed.
9351 */
9352 degraded = check_degradation_change(sra, fds, degraded);
9353 if (degraded > 1) {
9354 dprintf("imsm: Abort reshape due to degradation"
9355 " level (%i)\n", degraded);
9356 goto abort;
9357 }
9358
10f22854
AK
9359 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9360
9361 if ((current_position + next_step) > max_position)
9362 next_step = max_position - current_position;
9363
92144abf 9364 start = current_position * 512;
10f22854
AK
9365
9366 /* allign reading start to old geometry */
9367 start_buf_shift = start % old_data_stripe_length;
9368 start_src = start - start_buf_shift;
9369
9370 border = (start_src / odata) - (start / ndata);
9371 border /= 512;
9372 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9373 /* save critical stripes to buf
9374 * start - start address of current unit
9375 * to backup [bytes]
9376 * start_src - start address of current unit
9377 * to backup alligned to source array
9378 * [bytes]
9379 */
9380 unsigned long long next_step_filler = 0;
9381 unsigned long long copy_length = next_step * 512;
9382
9383 /* allign copy area length to stripe in old geometry */
9384 next_step_filler = ((copy_length + start_buf_shift)
9385 % old_data_stripe_length);
9386 if (next_step_filler)
9387 next_step_filler = (old_data_stripe_length
9388 - next_step_filler);
9389 dprintf("save_stripes() parameters: start = %llu,"
9390 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9391 "\tstart_in_buf_shift = %llu,"
9392 "\tnext_step_filler = %llu\n",
9393 start, start_src, copy_length,
9394 start_buf_shift, next_step_filler);
9395
9396 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9397 chunk, map_src->raid_level,
9398 source_layout, 0, NULL, start_src,
10f22854
AK
9399 copy_length +
9400 next_step_filler + start_buf_shift,
9401 buf)) {
9402 dprintf("imsm: Cannot save stripes"
9403 " to buffer\n");
9404 goto abort;
9405 }
9406 /* Convert data to destination format and store it
9407 * in backup general migration area
9408 */
9409 if (save_backup_imsm(st, dev, sra,
aea93171 9410 buf + start_buf_shift, copy_length)) {
10f22854
AK
9411 dprintf("imsm: Cannot save stripes to "
9412 "target devices\n");
9413 goto abort;
9414 }
9415 if (save_checkpoint_imsm(st, sra,
9416 UNIT_SRC_IN_CP_AREA)) {
9417 dprintf("imsm: Cannot write checkpoint to "
9418 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9419 goto abort;
9420 }
8016a6d4
AK
9421 } else {
9422 /* set next step to use whole border area */
9423 border /= next_step;
9424 if (border > 1)
9425 next_step *= border;
10f22854
AK
9426 }
9427 /* When data backed up, checkpoint stored,
9428 * kick the kernel to reshape unit of data
9429 */
9430 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9431 /* limit next step to array max position */
9432 if (next_step > max_position)
9433 next_step = max_position;
10f22854
AK
9434 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9435 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9436 sra->reshape_progress = next_step;
10f22854
AK
9437
9438 /* wait until reshape finish */
ae9f01f8 9439 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9440 dprintf("wait_for_reshape_imsm returned error!\n");
9441 goto abort;
9442 }
10f22854 9443
0228d92c
AK
9444 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9445 /* ignore error == 2, this can mean end of reshape here
9446 */
10f22854
AK
9447 dprintf("imsm: Cannot write checkpoint to "
9448 "migration record (UNIT_SRC_NORMAL)\n");
9449 goto abort;
9450 }
9451
9452 }
9453
9454 /* return '1' if done */
9455 ret_val = 1;
9456abort:
9457 free(buf);
9458 abort_reshape(sra);
9459
9460 return ret_val;
999b4972 9461}
71204a50 9462#endif /* MDASSEMBLE */
999b4972 9463
cdddbdbc
DW
9464struct superswitch super_imsm = {
9465#ifndef MDASSEMBLE
9466 .examine_super = examine_super_imsm,
9467 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9468 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9469 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9470 .detail_super = detail_super_imsm,
9471 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9472 .write_init_super = write_init_super_imsm,
0e600426
N
9473 .validate_geometry = validate_geometry_imsm,
9474 .add_to_super = add_to_super_imsm,
1a64be56 9475 .remove_from_super = remove_from_super_imsm,
d665cc31 9476 .detail_platform = detail_platform_imsm,
33414a01 9477 .kill_subarray = kill_subarray_imsm,
aa534678 9478 .update_subarray = update_subarray_imsm,
2b959fbf 9479 .load_container = load_container_imsm,
71204a50
N
9480 .default_geometry = default_geometry_imsm,
9481 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9482 .reshape_super = imsm_reshape_super,
9483 .manage_reshape = imsm_manage_reshape,
9e2d750d 9484 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9485#endif
9486 .match_home = match_home_imsm,
9487 .uuid_from_super= uuid_from_super_imsm,
9488 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9489 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9490 .update_super = update_super_imsm,
9491
9492 .avail_size = avail_size_imsm,
80e7f8c3 9493 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9494
9495 .compare_super = compare_super_imsm,
9496
9497 .load_super = load_super_imsm,
bf5a934a 9498 .init_super = init_super_imsm,
e683ca88 9499 .store_super = store_super_imsm,
cdddbdbc
DW
9500 .free_super = free_super_imsm,
9501 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9502 .container_content = container_content_imsm,
cdddbdbc 9503
276d77db 9504
cdddbdbc 9505 .external = 1,
4cce4069 9506 .name = "imsm",
845dea95 9507
0e600426 9508#ifndef MDASSEMBLE
845dea95
NB
9509/* for mdmon */
9510 .open_new = imsm_open_new,
ed9d66aa 9511 .set_array_state= imsm_set_array_state,
845dea95
NB
9512 .set_disk = imsm_set_disk,
9513 .sync_metadata = imsm_sync_metadata,
88758e9d 9514 .activate_spare = imsm_activate_spare,
e8319a19 9515 .process_update = imsm_process_update,
8273f55e 9516 .prepare_update = imsm_prepare_update,
0e600426 9517#endif /* MDASSEMBLE */
cdddbdbc 9518};