]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
* gas/config/tc-arm.c (NEON_ENC_TAB): Add entries for VSEL.
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
fa94de6b 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3 100/* The code that was here used to select a default CPU depending on compiler
fa94de6b 101 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
bca38921 198static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
7e806470 199static const arm_feature_set arm_ext_m =
b2a5fbdc 200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 201static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 202static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 203static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 204static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 205static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
206
207static const arm_feature_set arm_arch_any = ARM_ANY;
208static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 211static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 212
2d447fca
JM
213static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
215static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 227static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 228static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
229static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
231static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
234static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
bca38921
MGD
237static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
e74cfd16 243
33a392fb 244static int mfloat_abi_opt = -1;
e74cfd16
PB
245/* Record user cpu selection for object attributes. */
246static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
247/* Must be long enough to hold any of the names in arm_cpus. */
248static char selected_cpu_name[16];
8d67f500
NC
249
250/* Return if no cpu was selected on command-line. */
251static bfd_boolean
252no_cpu_selected (void)
253{
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256}
257
7cc69913 258#ifdef OBJ_ELF
deeaaff8
DJ
259# ifdef EABI_DEFAULT
260static int meabi_flags = EABI_DEFAULT;
261# else
d507cf36 262static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 263# endif
e1da3f5b 264
ee3c0378
AS
265static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
e1da3f5b 267bfd_boolean
5f4273c7 268arm_is_eabi (void)
e1da3f5b
PB
269{
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271}
7cc69913 272#endif
b99bd4ef 273
b99bd4ef 274#ifdef OBJ_ELF
c19d1205 275/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
276symbolS * GOT_symbol;
277#endif
278
b99bd4ef
NC
279/* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283static int thumb_mode = 0;
8dc2430f
NC
284/* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287#define MODE_RECORDED (1 << 4)
b99bd4ef 288
e07e6e58
NC
289/* Specifies the intrinsic IT insn behavior mode. */
290enum implicit_it_mode
291{
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296};
297static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
c19d1205
ZW
299/* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322static bfd_boolean unified_syntax = FALSE;
b99bd4ef 323
5287ad62
JB
324enum neon_el_type
325{
dcbf9037 326 NT_invtype,
5287ad62
JB
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
dcbf9037 332 NT_unsigned
5287ad62
JB
333};
334
335struct neon_type_el
336{
337 enum neon_el_type type;
338 unsigned size;
339};
340
341#define NEON_MAX_TYPE_ELS 4
342
343struct neon_type
344{
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347};
348
e07e6e58
NC
349enum it_instruction_type
350{
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359};
360
ad6cec43
MGD
361/* The maximum number of operands we need. */
362#define ARM_IT_MAX_OPERANDS 6
363
b99bd4ef
NC
364struct arm_it
365{
c19d1205 366 const char * error;
b99bd4ef 367 unsigned long instruction;
c19d1205
ZW
368 int size;
369 int size_req;
370 int cond;
037e8744
JB
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
5287ad62 375 struct neon_type vectype;
88714cb8
DG
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
0110f2b8
PB
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
b99bd4ef
NC
382 struct
383 {
384 bfd_reloc_code_real_type type;
c19d1205
ZW
385 expressionS exp;
386 int pc_rel;
b99bd4ef 387 } reloc;
b99bd4ef 388
e07e6e58
NC
389 enum it_instruction_type it_insn_type;
390
c19d1205
ZW
391 struct
392 {
393 unsigned reg;
ca3f61f7 394 signed int imm;
dcbf9037 395 struct neon_type_el vectype;
ca3f61f7
NC
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 415 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
416};
417
c19d1205 418static struct arm_it inst;
b99bd4ef
NC
419
420#define NUM_FLOAT_VALS 8
421
05d2d07e 422const char * fp_const[] =
b99bd4ef
NC
423{
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425};
426
c19d1205 427/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
428#define MAX_LITTLENUMS 6
429
430LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432#define FAIL (-1)
433#define SUCCESS (0)
434
435#define SUFF_S 1
436#define SUFF_D 2
437#define SUFF_E 3
438#define SUFF_P 4
439
c19d1205
ZW
440#define CP_T_X 0x00008000
441#define CP_T_Y 0x00400000
b99bd4ef 442
c19d1205
ZW
443#define CONDS_BIT 0x00100000
444#define LOAD_BIT 0x00100000
b99bd4ef
NC
445
446#define DOUBLE_LOAD_FLAG 0x00000001
447
448struct asm_cond
449{
d3ce72d0 450 const char * template_name;
c921be7d 451 unsigned long value;
b99bd4ef
NC
452};
453
c19d1205 454#define COND_ALWAYS 0xE
b99bd4ef 455
b99bd4ef
NC
456struct asm_psr
457{
d3ce72d0 458 const char * template_name;
c921be7d 459 unsigned long field;
b99bd4ef
NC
460};
461
62b3e311
PB
462struct asm_barrier_opt
463{
e797f7e0
MGD
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
62b3e311
PB
467};
468
2d2255b5 469/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
470#define SPSR_BIT (1 << 22)
471
c19d1205
ZW
472/* The individual PSR flag bits. */
473#define PSR_c (1 << 16)
474#define PSR_x (1 << 17)
475#define PSR_s (1 << 18)
476#define PSR_f (1 << 19)
b99bd4ef 477
c19d1205 478struct reloc_entry
bfae80f2 479{
c921be7d
NC
480 char * name;
481 bfd_reloc_code_real_type reloc;
bfae80f2
RE
482};
483
5287ad62 484enum vfp_reg_pos
bfae80f2 485{
5287ad62
JB
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
488};
489
490enum vfp_ldstm_type
491{
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493};
494
dcbf9037
JB
495/* Bits for DEFINED field in neon_typed_alias. */
496#define NTA_HASTYPE 1
497#define NTA_HASINDEX 2
498
499struct neon_typed_alias
500{
c921be7d
NC
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
dcbf9037
JB
504};
505
c19d1205
ZW
506/* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508enum arm_reg_type
bfae80f2 509{
c19d1205
ZW
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
5287ad62 516 REG_TYPE_NQ,
037e8744 517 REG_TYPE_VFSD,
5287ad62 518 REG_TYPE_NDQ,
037e8744 519 REG_TYPE_NSDQ,
c19d1205
ZW
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
90ec0d68 531 REG_TYPE_RNB
bfae80f2
RE
532};
533
dcbf9037
JB
534/* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
538struct reg_entry
539{
c921be7d 540 const char * name;
90ec0d68 541 unsigned int number;
c921be7d
NC
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
6c43fab6
RE
545};
546
c19d1205 547/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 548const char * const reg_expected_msgs[] =
c19d1205
ZW
549{
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
5287ad62
JB
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
037e8744 557 N_("VFP single or double precision register expected"),
5287ad62 558 N_("Neon double or quad precision register expected"),
037e8744 559 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
6c43fab6
RE
571};
572
c19d1205 573/* Some well known registers that we refer to directly elsewhere. */
bd340a04 574#define REG_R12 12
c19d1205
ZW
575#define REG_SP 13
576#define REG_LR 14
577#define REG_PC 15
404ff6b5 578
b99bd4ef
NC
579/* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
c19d1205 581#define INSN_SIZE 4
b99bd4ef
NC
582
583struct asm_opcode
584{
585 /* Basic string to match. */
d3ce72d0 586 const char * template_name;
c19d1205
ZW
587
588 /* Parameters to instruction. */
5be8be5d 589 unsigned int operands[8];
c19d1205
ZW
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
b99bd4ef
NC
593
594 /* Basic instruction code. */
c19d1205 595 unsigned int avalue : 28;
b99bd4ef 596
c19d1205
ZW
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
b99bd4ef 599
90e4755a 600 /* Which architecture variant provides this instruction. */
c921be7d
NC
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
c19d1205
ZW
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
b99bd4ef 606
c19d1205
ZW
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
b99bd4ef
NC
609};
610
a737bd4d
NC
611/* Defines for various bits that we will want to toggle. */
612#define INST_IMMEDIATE 0x02000000
613#define OFFSET_REG 0x02000000
c19d1205 614#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
615#define SHIFT_BY_REG 0x00000010
616#define PRE_INDEX 0x01000000
617#define INDEX_UP 0x00800000
618#define WRITE_BACK 0x00200000
619#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 620#define CPSI_MMOD 0x00020000
90e4755a 621
a737bd4d
NC
622#define LITERAL_MASK 0xf000f000
623#define OPCODE_MASK 0xfe1fffff
624#define V4_STR_BIT 0x00000020
90e4755a 625
efd81785
PB
626#define T2_SUBS_PC_LR 0xf3de8f00
627
a737bd4d 628#define DATA_OP_SHIFT 21
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_MASK 0xfe1fffff
631#define T2_DATA_OP_SHIFT 21
632
6530b175
NC
633#define A_COND_MASK 0xf0000000
634#define A_PUSH_POP_OP_MASK 0x0fff0000
635
636/* Opcodes for pushing/poping registers to/from the stack. */
637#define A1_OPCODE_PUSH 0x092d0000
638#define A2_OPCODE_PUSH 0x052d0004
639#define A2_OPCODE_POP 0x049d0004
640
a737bd4d
NC
641/* Codes to distinguish the arithmetic instructions. */
642#define OPCODE_AND 0
643#define OPCODE_EOR 1
644#define OPCODE_SUB 2
645#define OPCODE_RSB 3
646#define OPCODE_ADD 4
647#define OPCODE_ADC 5
648#define OPCODE_SBC 6
649#define OPCODE_RSC 7
650#define OPCODE_TST 8
651#define OPCODE_TEQ 9
652#define OPCODE_CMP 10
653#define OPCODE_CMN 11
654#define OPCODE_ORR 12
655#define OPCODE_MOV 13
656#define OPCODE_BIC 14
657#define OPCODE_MVN 15
90e4755a 658
ef8d22e6
PB
659#define T2_OPCODE_AND 0
660#define T2_OPCODE_BIC 1
661#define T2_OPCODE_ORR 2
662#define T2_OPCODE_ORN 3
663#define T2_OPCODE_EOR 4
664#define T2_OPCODE_ADD 8
665#define T2_OPCODE_ADC 10
666#define T2_OPCODE_SBC 11
667#define T2_OPCODE_SUB 13
668#define T2_OPCODE_RSB 14
669
a737bd4d
NC
670#define T_OPCODE_MUL 0x4340
671#define T_OPCODE_TST 0x4200
672#define T_OPCODE_CMN 0x42c0
673#define T_OPCODE_NEG 0x4240
674#define T_OPCODE_MVN 0x43c0
90e4755a 675
a737bd4d
NC
676#define T_OPCODE_ADD_R3 0x1800
677#define T_OPCODE_SUB_R3 0x1a00
678#define T_OPCODE_ADD_HI 0x4400
679#define T_OPCODE_ADD_ST 0xb000
680#define T_OPCODE_SUB_ST 0xb080
681#define T_OPCODE_ADD_SP 0xa800
682#define T_OPCODE_ADD_PC 0xa000
683#define T_OPCODE_ADD_I8 0x3000
684#define T_OPCODE_SUB_I8 0x3800
685#define T_OPCODE_ADD_I3 0x1c00
686#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 687
a737bd4d
NC
688#define T_OPCODE_ASR_R 0x4100
689#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
690#define T_OPCODE_LSR_R 0x40c0
691#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
692#define T_OPCODE_ASR_I 0x1000
693#define T_OPCODE_LSL_I 0x0000
694#define T_OPCODE_LSR_I 0x0800
b99bd4ef 695
a737bd4d
NC
696#define T_OPCODE_MOV_I8 0x2000
697#define T_OPCODE_CMP_I8 0x2800
698#define T_OPCODE_CMP_LR 0x4280
699#define T_OPCODE_MOV_HR 0x4600
700#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 701
a737bd4d
NC
702#define T_OPCODE_LDR_PC 0x4800
703#define T_OPCODE_LDR_SP 0x9800
704#define T_OPCODE_STR_SP 0x9000
705#define T_OPCODE_LDR_IW 0x6800
706#define T_OPCODE_STR_IW 0x6000
707#define T_OPCODE_LDR_IH 0x8800
708#define T_OPCODE_STR_IH 0x8000
709#define T_OPCODE_LDR_IB 0x7800
710#define T_OPCODE_STR_IB 0x7000
711#define T_OPCODE_LDR_RW 0x5800
712#define T_OPCODE_STR_RW 0x5000
713#define T_OPCODE_LDR_RH 0x5a00
714#define T_OPCODE_STR_RH 0x5200
715#define T_OPCODE_LDR_RB 0x5c00
716#define T_OPCODE_STR_RB 0x5400
c9b604bd 717
a737bd4d
NC
718#define T_OPCODE_PUSH 0xb400
719#define T_OPCODE_POP 0xbc00
b99bd4ef 720
2fc8bdac 721#define T_OPCODE_BRANCH 0xe000
b99bd4ef 722
a737bd4d 723#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 724#define THUMB_PP_PC_LR 0x0100
c19d1205 725#define THUMB_LOAD_BIT 0x0800
53365c0d 726#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
727
728#define BAD_ARGS _("bad arguments to instruction")
fdfde340 729#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
730#define BAD_PC _("r15 not allowed here")
731#define BAD_COND _("instruction cannot be conditional")
732#define BAD_OVERLAP _("registers may not be the same")
733#define BAD_HIREG _("lo register required")
734#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 735#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
736#define BAD_BRANCH _("branch must be last instruction in IT block")
737#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 738#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
739#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740#define BAD_IT_COND _("incorrect condition in IT block")
741#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 742#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
743#define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745#define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
08f10d51 747#define BAD_RANGE _("branch out of range")
c19d1205 748
c921be7d
NC
749static struct hash_control * arm_ops_hsh;
750static struct hash_control * arm_cond_hsh;
751static struct hash_control * arm_shift_hsh;
752static struct hash_control * arm_psr_hsh;
753static struct hash_control * arm_v7m_psr_hsh;
754static struct hash_control * arm_reg_hsh;
755static struct hash_control * arm_reloc_hsh;
756static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 757
b99bd4ef
NC
758/* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
5f4273c7 765 <insn> */
b99bd4ef
NC
766
767symbolS * last_label_seen;
b34976b6 768static int label_is_thumb_function_name = FALSE;
e07e6e58 769
3d0c9500
NC
770/* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
a737bd4d 772
c19d1205 773#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 774typedef struct literal_pool
b99bd4ef 775{
c921be7d
NC
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
a8040cf2
NC
782#ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784#endif
c921be7d 785 struct literal_pool * next;
3d0c9500 786} literal_pool;
b99bd4ef 787
3d0c9500
NC
788/* Pointer to a linked list of literal pools. */
789literal_pool * list_of_pools = NULL;
e27ec89e 790
e07e6e58
NC
791#ifdef OBJ_ELF
792# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793#else
794static struct current_it now_it;
795#endif
796
797static inline int
798now_it_compatible (int cond)
799{
800 return (cond & ~1) == (now_it.cc & ~1);
801}
802
803static inline int
804conditional_insn (void)
805{
806 return inst.cond != COND_ALWAYS;
807}
808
809static int in_it_block (void);
810
811static int handle_it_state (void);
812
813static void force_automatic_it_block_close (void);
814
c921be7d
NC
815static void it_fsm_post_encode (void);
816
e07e6e58
NC
817#define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
c921be7d
NC
826#define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
e07e6e58
NC
835#define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
c19d1205 845/* Pure syntax. */
b99bd4ef 846
c19d1205
ZW
847/* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849const char comment_chars[] = "@";
3d0c9500 850
c19d1205
ZW
851/* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854/* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857/* Also note that comments like this one will always work. */
858const char line_comment_chars[] = "#";
3d0c9500 859
c19d1205 860const char line_separator_chars[] = ";";
b99bd4ef 861
c19d1205
ZW
862/* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864const char EXP_CHARS[] = "eE";
3d0c9500 865
c19d1205
ZW
866/* Chars that mean this number is a floating point constant. */
867/* As in 0f12.456 */
868/* or 0d1.2345e12 */
b99bd4ef 869
c19d1205 870const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 871
c19d1205
ZW
872/* Prefix characters that indicate the start of an immediate
873 value. */
874#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 875
c19d1205
ZW
876/* Separator character handling. */
877
878#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880static inline int
881skip_past_char (char ** str, char c)
882{
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
3d0c9500 887 }
c19d1205
ZW
888 else
889 return FAIL;
890}
c921be7d 891
c19d1205 892#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 893
c19d1205
ZW
894/* Arithmetic expressions (possibly involving symbols). */
895
896/* Return TRUE if anything in the expression is a bignum. */
897
898static int
899walk_no_bignums (symbolS * sp)
900{
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 905 {
c19d1205
ZW
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
909 }
910
c19d1205 911 return 0;
3d0c9500
NC
912}
913
c19d1205
ZW
914static int in_my_get_expression = 0;
915
916/* Third argument to my_get_expression. */
917#define GE_NO_PREFIX 0
918#define GE_IMM_PREFIX 1
919#define GE_OPT_PREFIX 2
5287ad62
JB
920/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922#define GE_OPT_PREFIX_BIG 3
a737bd4d 923
b99bd4ef 924static int
c19d1205 925my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 926{
c19d1205
ZW
927 char * save_in;
928 segT seg;
b99bd4ef 929
c19d1205
ZW
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
5287ad62
JB
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
b99bd4ef 934
c19d1205 935 switch (prefix_mode)
b99bd4ef 936 {
c19d1205
ZW
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
5287ad62 947 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
b99bd4ef 953
c19d1205 954 memset (ep, 0, sizeof (expressionS));
b99bd4ef 955
c19d1205
ZW
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
f86adc07 962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 963 {
f86adc07 964 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
f86adc07
NS
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
970 return 1;
971 }
b99bd4ef 972
c19d1205
ZW
973#ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
b99bd4ef 984 }
87975d2a
AM
985#else
986 (void) seg;
c19d1205 987#endif
b99bd4ef 988
c19d1205
ZW
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
5287ad62
JB
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
b99bd4ef 1004
c19d1205
ZW
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
b99bd4ef
NC
1008}
1009
c19d1205
ZW
1010/* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
b99bd4ef 1014
c19d1205
ZW
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1021
c19d1205 1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1023
c19d1205
ZW
1024char *
1025md_atof (int type, char * litP, int * sizeP)
1026{
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
b99bd4ef 1031
c19d1205
ZW
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
b99bd4ef 1040
c19d1205
ZW
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
b99bd4ef 1047
c19d1205
ZW
1048 case 'x':
1049 case 'X':
499ac353 1050 prec = 5;
c19d1205 1051 break;
b99bd4ef 1052
c19d1205
ZW
1053 case 'p':
1054 case 'P':
499ac353 1055 prec = 5;
c19d1205 1056 break;
a737bd4d 1057
c19d1205
ZW
1058 default:
1059 *sizeP = 0;
499ac353 1060 return _("Unrecognized or unsupported floating point constant");
c19d1205 1061 }
b99bd4ef 1062
c19d1205
ZW
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
499ac353 1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1067
c19d1205
ZW
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
499ac353
NC
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
1076 else
1077 {
e74cfd16 1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1079 for (i = prec - 1; i >= 0; i--)
1080 {
499ac353
NC
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
499ac353
NC
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1094 }
1095 }
b99bd4ef 1096
499ac353 1097 return NULL;
c19d1205 1098}
b99bd4ef 1099
c19d1205
ZW
1100/* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102void
91d6fa6a 1103md_operand (expressionS * exp)
c19d1205
ZW
1104{
1105 if (in_my_get_expression)
91d6fa6a 1106 exp->X_op = O_illegal;
b99bd4ef
NC
1107}
1108
c19d1205 1109/* Immediate values. */
b99bd4ef 1110
c19d1205
ZW
1111/* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114#ifdef OBJ_ELF
1115static int
1116immediate_for_directive (int *val)
b99bd4ef 1117{
c19d1205
ZW
1118 expressionS exp;
1119 exp.X_op = O_illegal;
b99bd4ef 1120
c19d1205
ZW
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
b99bd4ef 1126
c19d1205
ZW
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
b99bd4ef 1135}
c19d1205 1136#endif
b99bd4ef 1137
c19d1205 1138/* Register parsing. */
b99bd4ef 1139
c19d1205
ZW
1140/* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145static struct reg_entry *
1146arm_reg_parse_multi (char **ccp)
b99bd4ef 1147{
c19d1205
ZW
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
b99bd4ef 1151
c19d1205
ZW
1152#ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
01cfc07f 1154 return NULL;
c19d1205
ZW
1155 start++;
1156#endif
1157#ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160#endif
b99bd4ef 1161
c19d1205
ZW
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
b99bd4ef 1165
c19d1205
ZW
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
b99bd4ef
NC
1177}
1178
1179static int
dcbf9037
JB
1180arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
b99bd4ef 1182{
c19d1205
ZW
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
79134647 1191 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1192 return reg->number;
1193 break;
69b97547 1194
c19d1205
ZW
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
6057a28f 1202
c19d1205
ZW
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
79134647 1206 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1207 return reg->number;
6057a28f 1208 break;
c19d1205 1209
6057a28f 1210 default:
c19d1205 1211 break;
6057a28f
NC
1212 }
1213
dcbf9037
JB
1214 return FAIL;
1215}
1216
1217/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220static int
1221arm_reg_parse (char **ccp, enum arm_reg_type type)
1222{
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
c19d1205
ZW
1237 *ccp = start;
1238 return FAIL;
1239}
69b97547 1240
dcbf9037
JB
1241/* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255static int
1256parse_neon_type (struct neon_type *type, char **str)
1257{
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
dcbf9037
JB
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
037e8744 1312 done:
dcbf9037
JB
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328}
1329
1330/* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335static void
1336first_error (const char *err)
1337{
1338 if (!inst.error)
1339 inst.error = err;
1340}
1341
1342/* Parse a single type, e.g. ".s32", leading period included. */
1343static int
1344parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345{
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
5f4273c7 1369
dcbf9037 1370 *ccp = str;
5f4273c7 1371
dcbf9037
JB
1372 return SUCCESS;
1373}
1374
1375/* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378#define NEON_ALL_LANES 15
1379#define NEON_INTERLEAVE_LANES 14
1380
1381/* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386static int
1387parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390{
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
037e8744
JB
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1423 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
5f4273c7 1430
dcbf9037
JB
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
5f4273c7 1441
dcbf9037
JB
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
5f4273c7 1449
dcbf9037
JB
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
5f4273c7 1478
dcbf9037
JB
1479 if (typeinfo)
1480 *typeinfo = atype;
5f4273c7 1481
dcbf9037
JB
1482 if (rtype)
1483 *rtype = type;
5f4273c7 1484
dcbf9037 1485 *ccp = str;
5f4273c7 1486
dcbf9037
JB
1487 return reg->number;
1488}
1489
1490/* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1495 This function will fault on encountering a scalar. */
dcbf9037
JB
1496
1497static int
1498arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500{
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
0855e32b
NS
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
dcbf9037
JB
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525}
1526
1527#define NEON_SCALAR_REG(X) ((X) >> 4)
1528#define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
5287ad62
JB
1530/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534static int
dcbf9037 1535parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1536{
dcbf9037 1537 int reg;
5287ad62 1538 char *str = *ccp;
dcbf9037 1539 struct neon_typed_alias atype;
5f4273c7 1540
dcbf9037 1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1542
dcbf9037 1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1544 return FAIL;
5f4273c7 1545
dcbf9037 1546 if (atype.index == NEON_ALL_LANES)
5287ad62 1547 {
dcbf9037 1548 first_error (_("scalar must have an index"));
5287ad62
JB
1549 return FAIL;
1550 }
dcbf9037 1551 else if (atype.index >= 64 / elsize)
5287ad62 1552 {
dcbf9037 1553 first_error (_("scalar index out of range"));
5287ad62
JB
1554 return FAIL;
1555 }
5f4273c7 1556
dcbf9037
JB
1557 if (type)
1558 *type = atype.eltype;
5f4273c7 1559
5287ad62 1560 *ccp = str;
5f4273c7 1561
dcbf9037 1562 return reg * 16 + atype.index;
5287ad62
JB
1563}
1564
c19d1205 1565/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1566
c19d1205
ZW
1567static long
1568parse_reg_list (char ** strp)
1569{
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
a737bd4d 1573
c19d1205
ZW
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
6057a28f 1576 {
c19d1205 1577 another_range = 0;
a737bd4d 1578
c19d1205
ZW
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
a737bd4d 1583
c19d1205
ZW
1584 str++;
1585 do
1586 {
1587 int reg;
6057a28f 1588
dcbf9037 1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1590 {
dcbf9037 1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1592 return FAIL;
1593 }
a737bd4d 1594
c19d1205
ZW
1595 if (in_range)
1596 {
1597 int i;
a737bd4d 1598
c19d1205
ZW
1599 if (reg <= cur_reg)
1600 {
dcbf9037 1601 first_error (_("bad range in register list"));
c19d1205
ZW
1602 return FAIL;
1603 }
40a18ebd 1604
c19d1205
ZW
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
a737bd4d 1616
c19d1205
ZW
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1622
c19d1205
ZW
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
a737bd4d 1629
c19d1205
ZW
1630 if (*str++ != '}')
1631 {
dcbf9037 1632 first_error (_("missing `}'"));
c19d1205
ZW
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
91d6fa6a 1638 expressionS exp;
40a18ebd 1639
91d6fa6a 1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1641 return FAIL;
40a18ebd 1642
91d6fa6a 1643 if (exp.X_op == O_constant)
c19d1205 1644 {
91d6fa6a
NC
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
a737bd4d 1651
91d6fa6a 1652 if ((range & exp.X_add_number) != 0)
c19d1205 1653 {
91d6fa6a 1654 int regno = range & exp.X_add_number;
a737bd4d 1655
c19d1205
ZW
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
a737bd4d 1662
91d6fa6a 1663 range |= exp.X_add_number;
c19d1205
ZW
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
a737bd4d 1672
91d6fa6a 1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
a737bd4d 1678
c19d1205
ZW
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
a737bd4d 1684 }
c19d1205 1685 while (another_range);
a737bd4d 1686
c19d1205
ZW
1687 *strp = str;
1688 return range;
a737bd4d
NC
1689}
1690
5287ad62
JB
1691/* Types of registers in a list. */
1692
1693enum reg_list_els
1694{
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698};
1699
c19d1205
ZW
1700/* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
dcbf9037
JB
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
6057a28f 1714
c19d1205 1715static int
037e8744 1716parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1717{
037e8744 1718 char *str = *ccp;
c19d1205
ZW
1719 int base_reg;
1720 int new_base;
21d799b5 1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1722 int max_regs = 0;
c19d1205
ZW
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
a737bd4d 1726 int i;
6057a28f 1727
037e8744 1728 if (*str != '{')
5287ad62
JB
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
6057a28f 1733
037e8744 1734 str++;
6057a28f 1735
5287ad62 1736 switch (etype)
c19d1205 1737 {
5287ad62 1738 case REGLIST_VFP_S:
c19d1205
ZW
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
5287ad62 1741 break;
5f4273c7 1742
5287ad62
JB
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
b7fc2769 1745 break;
5f4273c7 1746
b7fc2769
JB
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
b1cc4aeb
PB
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1760 fpu_vfp_ext_d32);
5287ad62
JB
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1763 fpu_vfp_ext_d32);
5287ad62
JB
1764 }
1765 else
1766 max_regs = 16;
c19d1205 1767 }
6057a28f 1768
c19d1205 1769 base_reg = max_regs;
a737bd4d 1770
c19d1205
ZW
1771 do
1772 {
5287ad62 1773 int setmask = 1, addregs = 1;
dcbf9037 1774
037e8744 1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1776
c19d1205 1777 if (new_base == FAIL)
a737bd4d 1778 {
dcbf9037 1779 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1780 return FAIL;
1781 }
5f4273c7 1782
b7fc2769
JB
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
5f4273c7 1788
5287ad62
JB
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
c19d1205
ZW
1796 if (new_base < base_reg)
1797 base_reg = new_base;
a737bd4d 1798
5287ad62 1799 if (mask & (setmask << new_base))
c19d1205 1800 {
dcbf9037 1801 first_error (_("invalid register list"));
c19d1205 1802 return FAIL;
a737bd4d 1803 }
a737bd4d 1804
c19d1205
ZW
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
0bbf2aa4 1810
5287ad62
JB
1811 mask |= setmask << new_base;
1812 count += addregs;
0bbf2aa4 1813
037e8744 1814 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1815 {
1816 int high_range;
0bbf2aa4 1817
037e8744 1818 str++;
0bbf2aa4 1819
037e8744 1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1821 == FAIL)
c19d1205
ZW
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
0bbf2aa4 1826
b7fc2769
JB
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
5287ad62
JB
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
c19d1205
ZW
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
0bbf2aa4 1841
5287ad62 1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1843 {
5287ad62 1844 if (mask & (setmask << new_base))
0bbf2aa4 1845 {
c19d1205
ZW
1846 inst.error = _("invalid register list");
1847 return FAIL;
0bbf2aa4 1848 }
c19d1205 1849
5287ad62
JB
1850 mask |= setmask << new_base;
1851 count += addregs;
0bbf2aa4 1852 }
0bbf2aa4 1853 }
0bbf2aa4 1854 }
037e8744 1855 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1856
037e8744 1857 str++;
0bbf2aa4 1858
c19d1205
ZW
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
037e8744
JB
1876 *ccp = str;
1877
c19d1205 1878 return count;
b99bd4ef
NC
1879}
1880
dcbf9037
JB
1881/* True if two alias types are the same. */
1882
c921be7d 1883static bfd_boolean
dcbf9037
JB
1884neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885{
1886 if (!a && !b)
c921be7d 1887 return TRUE;
5f4273c7 1888
dcbf9037 1889 if (!a || !b)
c921be7d 1890 return FALSE;
dcbf9037
JB
1891
1892 if (a->defined != b->defined)
c921be7d 1893 return FALSE;
5f4273c7 1894
dcbf9037
JB
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
c921be7d 1898 return FALSE;
dcbf9037
JB
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
c921be7d 1902 return FALSE;
5f4273c7 1903
c921be7d 1904 return TRUE;
dcbf9037
JB
1905}
1906
5287ad62
JB
1907/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
dcbf9037 1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1914
5287ad62 1915#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1916#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1917#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919static int
dcbf9037
JB
1920parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
5287ad62
JB
1922{
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1932 struct neon_typed_alias firsttype;
5f4273c7 1933
5287ad62
JB
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
5f4273c7 1936
5287ad62
JB
1937 do
1938 {
dcbf9037
JB
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
5287ad62
JB
1942 if (getreg == FAIL)
1943 {
dcbf9037 1944 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1945 return FAIL;
1946 }
5f4273c7 1947
5287ad62
JB
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
5287ad62 1954 }
dcbf9037 1955 firsttype = atype;
5287ad62
JB
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
dcbf9037 1962 first_error (_(incr_error));
5287ad62
JB
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
dcbf9037
JB
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
c921be7d 1972 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1973 {
1974 first_error (_(type_error));
5287ad62
JB
1975 return FAIL;
1976 }
5f4273c7 1977
5287ad62
JB
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
dcbf9037 1982 struct neon_typed_alias htype;
5287ad62
JB
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
dcbf9037 1988 first_error (_(type_error));
5287ad62
JB
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
dcbf9037 1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1996 return FAIL;
1997 }
1998 ptr++;
dcbf9037 1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
2000 if (hireg == FAIL)
2001 {
dcbf9037
JB
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
c921be7d 2005 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
2006 {
2007 first_error (_(type_error));
5287ad62
JB
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
5f4273c7 2013
5287ad62
JB
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
5f4273c7 2020
dcbf9037 2021 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2022 {
dcbf9037
JB
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
5287ad62 2026 {
dcbf9037
JB
2027 first_error (_(type_error));
2028 return FAIL;
5287ad62
JB
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
dcbf9037 2035 first_error (_(type_error));
5287ad62
JB
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2041
5287ad62
JB
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2045
5287ad62
JB
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
dcbf9037 2050 first_error (_("error parsing element/structure list"));
5287ad62
JB
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
dcbf9037 2056 first_error (_("expected }"));
5287ad62
JB
2057 return FAIL;
2058 }
5f4273c7 2059
5287ad62
JB
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
dcbf9037
JB
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
5287ad62
JB
2066 *pbase = base_reg;
2067 *str = ptr;
5f4273c7 2068
5287ad62
JB
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070}
2071
c19d1205
ZW
2072/* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2077
c19d1205
ZW
2078static int
2079parse_reloc (char **str)
b99bd4ef 2080{
c19d1205
ZW
2081 struct reloc_entry *r;
2082 char *p, *q;
b99bd4ef 2083
c19d1205
ZW
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
b99bd4ef 2086
c19d1205
ZW
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
21d799b5
NC
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
b99bd4ef
NC
2101}
2102
c19d1205
ZW
2103/* Directives: register aliases. */
2104
dcbf9037 2105static struct reg_entry *
90ec0d68 2106insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2107{
d3ce72d0 2108 struct reg_entry *new_reg;
c19d1205 2109 const char *name;
b99bd4ef 2110
d3ce72d0 2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2112 {
d3ce72d0 2113 if (new_reg->builtin)
c19d1205 2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2115
c19d1205
ZW
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
d3ce72d0 2118 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2120
d929913e 2121 return NULL;
c19d1205 2122 }
b99bd4ef 2123
c19d1205 2124 name = xstrdup (str);
d3ce72d0 2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2126
d3ce72d0
NC
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
b99bd4ef 2132
d3ce72d0 2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2134 abort ();
5f4273c7 2135
d3ce72d0 2136 return new_reg;
dcbf9037
JB
2137}
2138
2139static void
2140insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142{
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2144
dcbf9037
JB
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
5f4273c7 2150
dcbf9037
JB
2151 if (atype)
2152 {
21d799b5
NC
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2155 *reg->neon = *atype;
2156 }
c19d1205 2157}
b99bd4ef 2158
c19d1205 2159/* Look for the .req directive. This is of the form:
b99bd4ef 2160
c19d1205 2161 new_register_name .req existing_register_name
b99bd4ef 2162
c19d1205 2163 If we find one, or if it looks sufficiently like one that we want to
d929913e 2164 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2165
d929913e 2166static bfd_boolean
c19d1205
ZW
2167create_register_alias (char * newname, char *p)
2168{
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
b99bd4ef 2172
c19d1205
ZW
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2177 return FALSE;
b99bd4ef 2178
c19d1205
ZW
2179 oldname += 6;
2180 if (*oldname == '\0')
d929913e 2181 return FALSE;
b99bd4ef 2182
21d799b5 2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2184 if (!old)
b99bd4ef 2185 {
c19d1205 2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2187 return TRUE;
b99bd4ef
NC
2188 }
2189
c19d1205
ZW
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193#ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195#else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198#endif
b99bd4ef 2199
21d799b5 2200 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
b99bd4ef 2203
c19d1205
ZW
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
d929913e
NC
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
c19d1205 2211
d929913e
NC
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2221 the artificial FOO alias because it has already been created by the
d929913e
NC
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
c19d1205 2226
d929913e
NC
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
c19d1205 2229
d929913e
NC
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
c19d1205 2233
d929913e 2234 return TRUE;
b99bd4ef
NC
2235}
2236
dcbf9037
JB
2237/* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
5f4273c7 2245 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2246
c921be7d 2247static bfd_boolean
dcbf9037
JB
2248create_neon_reg_alias (char *newname, char *p)
2249{
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
12d6b0b7 2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2256 int namelen;
5f4273c7 2257
dcbf9037
JB
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
5f4273c7 2262
dcbf9037 2263 nameend = p;
5f4273c7 2264
dcbf9037
JB
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
c921be7d 2270 return FALSE;
5f4273c7 2271
dcbf9037 2272 p += 5;
5f4273c7 2273
dcbf9037 2274 if (*p == '\0')
c921be7d 2275 return FALSE;
5f4273c7 2276
dcbf9037
JB
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
c921be7d 2282 return FALSE;
dcbf9037
JB
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
c921be7d 2293 return FALSE;
dcbf9037
JB
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037
JB
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
c921be7d 2317 return FALSE;
dcbf9037
JB
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
5f4273c7 2321
dcbf9037
JB
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
5f4273c7 2326
dcbf9037
JB
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2330 return FALSE;
dcbf9037 2331 }
5f4273c7 2332
dcbf9037 2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2334
dcbf9037
JB
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
c921be7d 2338 return FALSE;
dcbf9037 2339 }
5f4273c7 2340
dcbf9037
JB
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
5f4273c7 2343
dcbf9037
JB
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
c921be7d 2347 return FALSE;
dcbf9037
JB
2348 }
2349 }
2350
15735687
NS
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354#ifdef TC_CASE_SENSITIVE
dcbf9037 2355 namelen = nameend - newname;
15735687
NS
2356#else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359#endif
2360
21d799b5 2361 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
5f4273c7 2364
dcbf9037
JB
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2367
dcbf9037
JB
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
5f4273c7 2371
dcbf9037
JB
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2375
dcbf9037
JB
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
5f4273c7 2379
dcbf9037
JB
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2383
c921be7d 2384 return TRUE;
dcbf9037
JB
2385}
2386
c19d1205
ZW
2387/* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
c921be7d 2389
b99bd4ef 2390static void
c19d1205 2391s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2392{
c19d1205
ZW
2393 as_bad (_("invalid syntax for .req directive"));
2394}
b99bd4ef 2395
dcbf9037
JB
2396static void
2397s_dn (int a ATTRIBUTE_UNUSED)
2398{
2399 as_bad (_("invalid syntax for .dn directive"));
2400}
2401
2402static void
2403s_qn (int a ATTRIBUTE_UNUSED)
2404{
2405 as_bad (_("invalid syntax for .qn directive"));
2406}
2407
c19d1205
ZW
2408/* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
b99bd4ef 2410
c19d1205
ZW
2411 my_alias .req r11
2412 .unreq my_alias */
b99bd4ef
NC
2413
2414static void
c19d1205 2415s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2416{
c19d1205
ZW
2417 char * name;
2418 char saved_char;
b99bd4ef 2419
c19d1205
ZW
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
21d799b5
NC
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
c19d1205
ZW
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
a1727c1a 2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2441 name);
2442 else
2443 {
d929913e
NC
2444 char * p;
2445 char * nbuf;
2446
db0bc284 2447 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2448 free ((char *) reg->name);
dcbf9037
JB
2449 if (reg->neon)
2450 free (reg->neon);
c19d1205 2451 free (reg);
d929913e
NC
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
5f4273c7 2456
d929913e
NC
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
21d799b5 2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2461 if (reg)
2462 {
db0bc284 2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
21d799b5 2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2473 if (reg)
2474 {
db0bc284 2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
c19d1205
ZW
2483 }
2484 }
b99bd4ef 2485
c19d1205 2486 *input_line_pointer = saved_char;
b99bd4ef
NC
2487 demand_empty_rest_of_line ();
2488}
2489
c19d1205
ZW
2490/* Directives: Instruction set selection. */
2491
2492#ifdef OBJ_ELF
2493/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
cd000bff
DJ
2498/* Create a new mapping symbol for the transition to STATE. */
2499
2500static void
2501make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2502{
a737bd4d 2503 symbolS * symbolP;
c19d1205
ZW
2504 const char * symname;
2505 int type;
b99bd4ef 2506
c19d1205 2507 switch (state)
b99bd4ef 2508 {
c19d1205
ZW
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
c19d1205
ZW
2521 default:
2522 abort ();
2523 }
2524
cd000bff 2525 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
cd000bff
DJ
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2de7820f
JZ
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2556 if (value == 0)
2557 {
2de7820f
JZ
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
cd000bff
DJ
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
cd000bff
DJ
2571 frag->tc_frag_data.last_map = symbolP;
2572}
2573
2574/* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578static void
2579insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581{
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2595 }
cd000bff
DJ
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599}
2600
2601static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603/* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606void
2607mapping_state (enum mstate state)
2608{
940b5ce0
DJ
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
cd000bff
DJ
2611#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
49c62a33
NC
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652#undef TRANSITION
2653}
2654
2655/* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658static void
2659mapping_state_2 (enum mstate state, int max_chars)
2660{
940b5ce0
DJ
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
cd000bff
DJ
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
cd000bff
DJ
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2673}
2674#else
d3106081
NS
2675#define mapping_state(x) ((void)0)
2676#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2677#endif
2678
2679/* Find the real, Thumb encoded start of a Thumb function. */
2680
4343666d 2681#ifdef OBJ_COFF
c19d1205
ZW
2682static symbolS *
2683find_real_start (symbolS * symbolP)
2684{
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690#define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
37f6032b
ZW
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2701 return symbolP;
2702
37f6032b 2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
bd3ba5d1 2708 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2709 new_target = symbolP;
2710 }
2711
c19d1205
ZW
2712 return new_target;
2713}
4343666d 2714#endif
c19d1205
ZW
2715
2716static void
2717opcode_select (int width)
2718{
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
e74cfd16 2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
c19d1205
ZW
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
e74cfd16 2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
c19d1205
ZW
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752}
2753
2754static void
2755s_arm (int ignore ATTRIBUTE_UNUSED)
2756{
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb (int ignore ATTRIBUTE_UNUSED)
2763{
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766}
2767
2768static void
2769s_code (int unused ATTRIBUTE_UNUSED)
2770{
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784}
2785
2786static void
2787s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788{
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801}
2802
2803static void
2804s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805{
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811}
2812
2813/* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816static void
2817s_thumb_set (int equiv)
2818{
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856#ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
c19d1205 2859 for this symbol. */
b99bd4ef
NC
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
21d799b5 2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872#endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875#ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878#endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
c19d1205 2894 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898#if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900#endif
2901}
2902
c19d1205 2903/* Directives: Mode selection. */
b99bd4ef 2904
c19d1205
ZW
2905/* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2908static void
c19d1205 2909s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2910{
c19d1205
ZW
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
b99bd4ef
NC
2926 demand_empty_rest_of_line ();
2927}
2928
c19d1205
ZW
2929/* Directives: sectioning and alignment. */
2930
2931/* Same as s_align_ptwo but align 0 => align 2. */
2932
b99bd4ef 2933static void
c19d1205 2934s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2935{
a737bd4d 2936 int temp;
dce323d1 2937 bfd_boolean fill_p;
c19d1205
ZW
2938 long temp_fill;
2939 long max_alignment = 15;
b99bd4ef
NC
2940
2941 temp = get_absolute_expression ();
c19d1205
ZW
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
b99bd4ef 2945 {
c19d1205
ZW
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
b99bd4ef 2949
c19d1205
ZW
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
dce323d1 2954 fill_p = TRUE;
b99bd4ef 2955 }
c19d1205 2956 else
dce323d1
PB
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
b99bd4ef 2961
c19d1205
ZW
2962 if (!temp)
2963 temp = 2;
b99bd4ef 2964
c19d1205
ZW
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
dce323d1
PB
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
c19d1205
ZW
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
b99bd4ef
NC
2976}
2977
c19d1205
ZW
2978static void
2979s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2980{
c19d1205
ZW
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
cd000bff
DJ
2985
2986#ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988#endif
c19d1205 2989}
b99bd4ef 2990
c19d1205
ZW
2991static void
2992s_even (int ignore ATTRIBUTE_UNUSED)
2993{
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
b99bd4ef 2997
c19d1205 2998 record_alignment (now_seg, 1);
b99bd4ef 2999
c19d1205 3000 demand_empty_rest_of_line ();
b99bd4ef
NC
3001}
3002
c19d1205 3003/* Directives: Literal pools. */
a737bd4d 3004
c19d1205
ZW
3005static literal_pool *
3006find_literal_pool (void)
a737bd4d 3007{
c19d1205 3008 literal_pool * pool;
a737bd4d 3009
c19d1205 3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3011 {
c19d1205
ZW
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
a737bd4d
NC
3015 }
3016
c19d1205 3017 return pool;
a737bd4d
NC
3018}
3019
c19d1205
ZW
3020static literal_pool *
3021find_or_make_literal_pool (void)
a737bd4d 3022{
c19d1205
ZW
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
a737bd4d 3026
c19d1205 3027 pool = find_literal_pool ();
a737bd4d 3028
c19d1205 3029 if (pool == NULL)
a737bd4d 3030 {
c19d1205 3031 /* Create a new pool. */
21d799b5 3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3033 if (! pool)
3034 return NULL;
a737bd4d 3035
c19d1205
ZW
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
a737bd4d 3044 }
a737bd4d 3045
c19d1205
ZW
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
a737bd4d 3048 {
c19d1205
ZW
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
a737bd4d
NC
3052 }
3053
c19d1205
ZW
3054 /* Done. */
3055 return pool;
a737bd4d
NC
3056}
3057
c19d1205 3058/* Add the literal in the global 'inst'
5f4273c7 3059 structure to the relevant literal pool. */
b99bd4ef
NC
3060
3061static int
c19d1205 3062add_to_lit_pool (void)
b99bd4ef 3063{
c19d1205
ZW
3064 literal_pool * pool;
3065 unsigned int entry;
b99bd4ef 3066
c19d1205
ZW
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3071 {
c19d1205
ZW
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
b99bd4ef
NC
3089 }
3090
c19d1205
ZW
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3101#ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108#endif
c19d1205
ZW
3109 pool->next_free_entry += 1;
3110 }
b99bd4ef 3111
c19d1205
ZW
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3115
c19d1205 3116 return SUCCESS;
b99bd4ef
NC
3117}
3118
c19d1205
ZW
3119/* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
e16bb312 3121
c19d1205
ZW
3122static void
3123symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128{
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
e16bb312 3131
c19d1205
ZW
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
21d799b5 3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3135
c19d1205
ZW
3136#ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139#endif
b99bd4ef 3140
c19d1205 3141 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3142
c19d1205
ZW
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
b99bd4ef 3146
c19d1205 3147 symbol_set_frag (symbolP, frag);
b99bd4ef 3148
c19d1205
ZW
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
b99bd4ef 3152
c19d1205
ZW
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
b99bd4ef 3156
c19d1205 3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3158
c19d1205 3159 obj_symbol_new_hook (symbolP);
b99bd4ef 3160
c19d1205
ZW
3161#ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163#endif
3164
3165#ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167#endif /* DEBUG_SYMS */
b99bd4ef
NC
3168}
3169
b99bd4ef 3170
c19d1205
ZW
3171static void
3172s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3173{
c19d1205
ZW
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
b99bd4ef 3177
c19d1205
ZW
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
b99bd4ef 3183
c19d1205 3184 mapping_state (MAP_DATA);
b99bd4ef 3185
c19d1205
ZW
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
b99bd4ef 3190
c19d1205 3191 record_alignment (now_seg, 2);
b99bd4ef 3192
c19d1205 3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3194
c19d1205
ZW
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
b99bd4ef 3198
c19d1205 3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3200
c19d1205
ZW
3201#if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203#endif
6c43fab6 3204
c19d1205 3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3206 {
3207#ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210#endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
b99bd4ef 3214
c19d1205
ZW
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
b99bd4ef
NC
3218}
3219
c19d1205
ZW
3220#ifdef OBJ_ELF
3221/* Forward declarations for functions below, in the MD interface
3222 section. */
3223static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224static valueT create_unwind_entry (int);
3225static void start_unwind_section (const segT, int);
3226static void add_unwind_opcode (valueT, int);
3227static void flush_pending_unwind (void);
b99bd4ef 3228
c19d1205 3229/* Directives: Data. */
b99bd4ef 3230
c19d1205
ZW
3231static void
3232s_arm_elf_cons (int nbytes)
3233{
3234 expressionS exp;
b99bd4ef 3235
c19d1205
ZW
3236#ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238#endif
b99bd4ef 3239
c19d1205 3240 if (is_it_end_of_statement ())
b99bd4ef 3241 {
c19d1205
ZW
3242 demand_empty_rest_of_line ();
3243 return;
b99bd4ef
NC
3244 }
3245
c19d1205
ZW
3246#ifdef md_cons_align
3247 md_cons_align (nbytes);
3248#endif
b99bd4ef 3249
c19d1205
ZW
3250 mapping_state (MAP_DATA);
3251 do
b99bd4ef 3252 {
c19d1205
ZW
3253 int reloc;
3254 char *base = input_line_pointer;
b99bd4ef 3255
c19d1205 3256 expression (& exp);
b99bd4ef 3257
c19d1205
ZW
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
21d799b5
NC
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
c19d1205 3277 int size = bfd_get_reloc_size (howto);
b99bd4ef 3278
2fc8bdac
ZW
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
c19d1205 3286 if (size > nbytes)
2fc8bdac 3287 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
21d799b5 3297 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3310 }
3311 }
3312 }
b99bd4ef 3313 }
c19d1205 3314 while (*input_line_pointer++ == ',');
b99bd4ef 3315
c19d1205
ZW
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
b99bd4ef
NC
3319}
3320
c921be7d
NC
3321/* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324static void
3325emit_thumb32_expr (expressionS * exp)
3326{
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333}
3334
3335/* Guess the instruction size based on the opcode. */
3336
3337static int
3338thumb_insn_size (int opcode)
3339{
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346}
3347
3348static bfd_boolean
3349emit_insn (expressionS *exp, int nbytes)
3350{
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391}
3392
3393/* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396static void
3397s_arm_elf_inst (int nbytes)
3398{
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441}
b99bd4ef 3442
c19d1205 3443/* Parse a .rel31 directive. */
b99bd4ef 3444
c19d1205
ZW
3445static void
3446s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447{
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
b99bd4ef 3451
c19d1205
ZW
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
b99bd4ef 3457
c19d1205
ZW
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
b99bd4ef 3462
c19d1205
ZW
3463#ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465#endif
b99bd4ef 3466
c19d1205
ZW
3467#ifdef md_cons_align
3468 md_cons_align (4);
3469#endif
b99bd4ef 3470
c19d1205 3471 mapping_state (MAP_DATA);
b99bd4ef 3472
c19d1205 3473 expression (&exp);
b99bd4ef 3474
c19d1205
ZW
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
b99bd4ef 3479
c19d1205 3480 demand_empty_rest_of_line ();
b99bd4ef
NC
3481}
3482
c19d1205 3483/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3484
c19d1205 3485/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3486
c19d1205
ZW
3487static void
3488s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489{
3490 demand_empty_rest_of_line ();
921e5f0a
PB
3491 if (unwind.proc_start)
3492 {
c921be7d 3493 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3494 return;
3495 }
3496
c19d1205
ZW
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
b99bd4ef 3499
c19d1205
ZW
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
fdfde340 3507 unwind.fp_reg = REG_SP;
c19d1205
ZW
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510}
b99bd4ef 3511
b99bd4ef 3512
c19d1205
ZW
3513/* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205 3523 if (unwind.table_entry)
6decc662 3524 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3525
c19d1205
ZW
3526 create_unwind_entry (1);
3527}
a737bd4d 3528
c19d1205 3529/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3530
c19d1205
ZW
3531static void
3532s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533{
3534 long where;
3535 char *ptr;
3536 valueT val;
940b5ce0 3537 unsigned int marked_pr_dependency;
f02232aa 3538
c19d1205 3539 demand_empty_rest_of_line ();
f02232aa 3540
921e5f0a
PB
3541 if (!unwind.proc_start)
3542 {
c921be7d 3543 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3544 return;
3545 }
3546
c19d1205
ZW
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
f02232aa 3552
c19d1205
ZW
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
b99bd4ef 3557
c19d1205 3558 ptr = frag_more (8);
5011093d 3559 memset (ptr, 0, 8);
c19d1205 3560 where = frag_now_fix () - 8;
f02232aa 3561
c19d1205
ZW
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
f02232aa 3565
c19d1205
ZW
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
940b5ce0
DJ
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
5f4273c7
NC
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
c19d1205
ZW
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3582 |= 1 << unwind.personality_index;
c19d1205 3583 }
f02232aa 3584
c19d1205
ZW
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
f02232aa 3592
c19d1205
ZW
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3595
3596 unwind.proc_start = NULL;
c19d1205 3597}
f02232aa 3598
f02232aa 3599
c19d1205 3600/* Parse an unwind_cantunwind directive. */
b99bd4ef 3601
c19d1205
ZW
3602static void
3603s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604{
3605 demand_empty_rest_of_line ();
921e5f0a 3606 if (!unwind.proc_start)
c921be7d 3607 as_bad (MISSING_FNSTART);
921e5f0a 3608
c19d1205
ZW
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3611
c19d1205
ZW
3612 unwind.personality_index = -2;
3613}
b99bd4ef 3614
b99bd4ef 3615
c19d1205 3616/* Parse a personalityindex directive. */
b99bd4ef 3617
c19d1205
ZW
3618static void
3619s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620{
3621 expressionS exp;
b99bd4ef 3622
921e5f0a 3623 if (!unwind.proc_start)
c921be7d 3624 as_bad (MISSING_FNSTART);
921e5f0a 3625
c19d1205
ZW
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3628
c19d1205 3629 expression (&exp);
b99bd4ef 3630
c19d1205
ZW
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3633 {
c19d1205
ZW
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
b99bd4ef
NC
3637 }
3638
c19d1205 3639 unwind.personality_index = exp.X_add_number;
b99bd4ef 3640
c19d1205
ZW
3641 demand_empty_rest_of_line ();
3642}
e16bb312 3643
e16bb312 3644
c19d1205 3645/* Parse a personality directive. */
e16bb312 3646
c19d1205
ZW
3647static void
3648s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649{
3650 char *name, *p, c;
a737bd4d 3651
921e5f0a 3652 if (!unwind.proc_start)
c921be7d 3653 as_bad (MISSING_FNSTART);
921e5f0a 3654
c19d1205
ZW
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
a737bd4d 3657
c19d1205
ZW
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664}
e16bb312 3665
e16bb312 3666
c19d1205 3667/* Parse a directive saving core registers. */
e16bb312 3668
c19d1205
ZW
3669static void
3670s_arm_unwind_save_core (void)
e16bb312 3671{
c19d1205
ZW
3672 valueT op;
3673 long range;
3674 int n;
e16bb312 3675
c19d1205
ZW
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
e16bb312 3678 {
c19d1205
ZW
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
e16bb312 3683
c19d1205 3684 demand_empty_rest_of_line ();
e16bb312 3685
c19d1205
ZW
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
e16bb312 3697
01ae4198
DJ
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
c19d1205 3700 {
01ae4198
DJ
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
0dd132b6 3716 else
01ae4198
DJ
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
c19d1205 3726 }
0dd132b6 3727
c19d1205
ZW
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
0dd132b6
NC
3733 }
3734
c19d1205
ZW
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
0dd132b6
NC
3741}
3742
c19d1205
ZW
3743
3744/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3745
3746static void
c19d1205 3747s_arm_unwind_save_fpa (int reg)
b99bd4ef 3748{
c19d1205
ZW
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
b99bd4ef 3752
c19d1205
ZW
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
b99bd4ef 3758
c19d1205 3759 if (exp.X_op != O_constant)
b99bd4ef 3760 {
c19d1205
ZW
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
b99bd4ef
NC
3763 return;
3764 }
3765
c19d1205
ZW
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3769 {
c19d1205
ZW
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
b99bd4ef
NC
3772 return;
3773 }
3774
c19d1205 3775 demand_empty_rest_of_line ();
b99bd4ef 3776
c19d1205
ZW
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
b99bd4ef
NC
3783 else
3784 {
c19d1205
ZW
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
b99bd4ef 3788 }
c19d1205 3789 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3790}
3791
c19d1205 3792
fa073d69
MS
3793/* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795static void
3796s_arm_unwind_save_vfp_armv6 (void)
3797{
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840}
3841
3842
3843/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3844
3845static void
c19d1205 3846s_arm_unwind_save_vfp (void)
b99bd4ef 3847{
c19d1205 3848 int count;
ca3f61f7 3849 unsigned int reg;
c19d1205 3850 valueT op;
b99bd4ef 3851
5287ad62 3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3853 if (count == FAIL)
b99bd4ef 3854 {
c19d1205
ZW
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
b99bd4ef
NC
3857 return;
3858 }
3859
c19d1205 3860 demand_empty_rest_of_line ();
b99bd4ef 3861
c19d1205 3862 if (reg == 8)
b99bd4ef 3863 {
c19d1205
ZW
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
b99bd4ef 3867 }
c19d1205 3868 else
b99bd4ef 3869 {
c19d1205
ZW
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
b99bd4ef 3873 }
c19d1205
ZW
3874 unwind.frame_size += count * 8 + 4;
3875}
b99bd4ef 3876
b99bd4ef 3877
c19d1205
ZW
3878/* Parse a directive saving iWMMXt data registers. */
3879
3880static void
3881s_arm_unwind_save_mmxwr (void)
3882{
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
b99bd4ef 3888
c19d1205
ZW
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
b99bd4ef 3891
c19d1205 3892 do
b99bd4ef 3893 {
dcbf9037 3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3895
c19d1205 3896 if (reg == FAIL)
b99bd4ef 3897 {
9b7132d3 3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3899 goto error;
b99bd4ef
NC
3900 }
3901
c19d1205
ZW
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
b99bd4ef 3905
c19d1205
ZW
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
dcbf9037 3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3910 if (hi_reg == FAIL)
3911 {
9b7132d3 3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3925
c19d1205
ZW
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
b99bd4ef 3928
c19d1205 3929 demand_empty_rest_of_line ();
b99bd4ef 3930
708587a4 3931 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3932 the list. */
3933 flush_pending_unwind ();
b99bd4ef 3934
c19d1205 3935 for (i = 0; i < 16; i++)
b99bd4ef 3936 {
c19d1205
ZW
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
b99bd4ef
NC
3939 }
3940
c19d1205
ZW
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
b99bd4ef 3945 {
c19d1205
ZW
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
b99bd4ef 3964
c19d1205
ZW
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
87a1fd79 3967 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
b99bd4ef
NC
3976 }
3977
c19d1205
ZW
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3982 {
c19d1205
ZW
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3988 preceding block. */
c19d1205
ZW
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
b99bd4ef
NC
4006 }
4007
c19d1205
ZW
4008 return;
4009error:
4010 ignore_rest_of_line ();
b99bd4ef
NC
4011}
4012
4013static void
c19d1205 4014s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4015{
c19d1205
ZW
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
b99bd4ef 4020
c19d1205
ZW
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
b99bd4ef 4023
c19d1205 4024 do
b99bd4ef 4025 {
dcbf9037 4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4027
c19d1205
ZW
4028 if (reg == FAIL)
4029 {
9b7132d3 4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4031 goto error;
4032 }
b99bd4ef 4033
c19d1205
ZW
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
b99bd4ef 4038
c19d1205
ZW
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
dcbf9037 4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4043 if (hi_reg == FAIL)
4044 {
9b7132d3 4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
b99bd4ef 4056 }
c19d1205 4057 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4058
c19d1205
ZW
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
b99bd4ef 4061
c19d1205
ZW
4062 demand_empty_rest_of_line ();
4063
708587a4 4064 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4065 the list. */
4066 flush_pending_unwind ();
b99bd4ef 4067
c19d1205 4068 for (reg = 0; reg < 16; reg++)
b99bd4ef 4069 {
c19d1205
ZW
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
b99bd4ef 4072 }
c19d1205
ZW
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076error:
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078}
4079
c19d1205 4080
fa073d69
MS
4081/* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4083
b99bd4ef 4084static void
fa073d69 4085s_arm_unwind_save (int arch_v6)
b99bd4ef 4086{
c19d1205
ZW
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
b99bd4ef 4090
921e5f0a 4091 if (!unwind.proc_start)
c921be7d 4092 as_bad (MISSING_FNSTART);
921e5f0a 4093
c19d1205
ZW
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
b99bd4ef 4096
c19d1205 4097 if (*peek == '{')
b99bd4ef 4098 {
c19d1205
ZW
4099 had_brace = TRUE;
4100 peek++;
b99bd4ef
NC
4101 }
4102
c19d1205 4103 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4104
c19d1205 4105 if (!reg)
b99bd4ef 4106 {
c19d1205
ZW
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
b99bd4ef
NC
4109 return;
4110 }
4111
c19d1205 4112 switch (reg->type)
b99bd4ef 4113 {
c19d1205
ZW
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
93ac2687 4121 input_line_pointer = peek;
c19d1205 4122 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4123 return;
c19d1205
ZW
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
c19d1205
ZW
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
b99bd4ef 4138 }
c19d1205 4139}
b99bd4ef 4140
b99bd4ef 4141
c19d1205
ZW
4142/* Parse an unwind_movsp directive. */
4143
4144static void
4145s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146{
4147 int reg;
4148 valueT op;
4fa3602b 4149 int offset;
c19d1205 4150
921e5f0a 4151 if (!unwind.proc_start)
c921be7d 4152 as_bad (MISSING_FNSTART);
921e5f0a 4153
dcbf9037 4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4155 if (reg == FAIL)
b99bd4ef 4156 {
9b7132d3 4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4158 ignore_rest_of_line ();
b99bd4ef
NC
4159 return;
4160 }
4fa3602b
PB
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
c19d1205 4171 demand_empty_rest_of_line ();
b99bd4ef 4172
c19d1205 4173 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4174 {
c19d1205 4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4176 return;
4177 }
4178
c19d1205
ZW
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4181
c19d1205
ZW
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4fa3602b 4188 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4189 unwind.sp_restored = 1;
b05fe5cf
ZW
4190}
4191
c19d1205
ZW
4192/* Parse an unwind_pad directive. */
4193
b05fe5cf 4194static void
c19d1205 4195s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4196{
c19d1205 4197 int offset;
b05fe5cf 4198
921e5f0a 4199 if (!unwind.proc_start)
c921be7d 4200 as_bad (MISSING_FNSTART);
921e5f0a 4201
c19d1205
ZW
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
b99bd4ef 4204
c19d1205
ZW
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
b99bd4ef 4211
c19d1205
ZW
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217}
4218
4219/* Parse an unwind_setfp directive. */
4220
4221static void
4222s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4223{
c19d1205
ZW
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
921e5f0a 4228 if (!unwind.proc_start)
c921be7d 4229 as_bad (MISSING_FNSTART);
921e5f0a 4230
dcbf9037 4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
dcbf9037 4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4236
c19d1205
ZW
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
b99bd4ef 4243
c19d1205
ZW
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
a737bd4d 4252
c19d1205 4253 demand_empty_rest_of_line ();
a737bd4d 4254
fdfde340 4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4256 {
c19d1205
ZW
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
a737bd4d
NC
4260 }
4261
c19d1205
ZW
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
fdfde340 4265 if (sp_reg == REG_SP)
c19d1205
ZW
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
a737bd4d
NC
4269}
4270
c19d1205
ZW
4271/* Parse an unwind_raw directive. */
4272
4273static void
4274s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4275{
c19d1205 4276 expressionS exp;
708587a4 4277 /* This is an arbitrary limit. */
c19d1205
ZW
4278 unsigned char op[16];
4279 int count;
a737bd4d 4280
921e5f0a 4281 if (!unwind.proc_start)
c921be7d 4282 as_bad (MISSING_FNSTART);
921e5f0a 4283
c19d1205
ZW
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4287 {
c19d1205
ZW
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
a737bd4d 4293
c19d1205
ZW
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
a737bd4d 4300
c19d1205 4301 count = 0;
a737bd4d 4302
c19d1205
ZW
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
a737bd4d 4310 }
c19d1205 4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4312 {
c19d1205
ZW
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
a737bd4d 4316 }
c19d1205 4317 op[count++] = exp.X_add_number;
a737bd4d 4318
c19d1205
ZW
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
a737bd4d 4322
c19d1205
ZW
4323 expression (&exp);
4324 }
b99bd4ef 4325
c19d1205
ZW
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
b99bd4ef 4329
c19d1205 4330 demand_empty_rest_of_line ();
b99bd4ef 4331}
ee065d83
PB
4332
4333
4334/* Parse a .eabi_attribute directive. */
4335
4336static void
4337s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338{
ee3c0378
AS
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4343}
4344
0855e32b
NS
4345/* Emit a tls fix for the symbol. */
4346
4347static void
4348s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349{
4350 char *p;
4351 expressionS exp;
4352#ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354#endif
4355
4356#ifdef md_cons_align
4357 md_cons_align (4);
4358#endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367}
cdf9ccec 4368#endif /* OBJ_ELF */
0855e32b 4369
ee065d83 4370static void s_arm_arch (int);
7a1d4c38 4371static void s_arm_object_arch (int);
ee065d83
PB
4372static void s_arm_cpu (int);
4373static void s_arm_fpu (int);
69133863 4374static void s_arm_arch_extension (int);
b99bd4ef 4375
f0927246
NC
4376#ifdef TE_PE
4377
4378static void
5f4273c7 4379pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4380{
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395}
4396#endif /* TE_PE */
4397
c19d1205
ZW
4398/* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
b99bd4ef 4403
c19d1205 4404const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4405{
c19d1205
ZW
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
dcbf9037
JB
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
c19d1205
ZW
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
8463be01
PB
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
7a1d4c38 4426 { "object_arch", s_arm_object_arch, 0 },
8463be01 4427 { "fpu", s_arm_fpu, 0 },
69133863 4428 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4429#ifdef OBJ_ELF
c921be7d
NC
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
fa073d69 4443 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4450#else
4451 { "word", cons, 4},
f0927246
NC
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4461#endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
f0927246
NC
4465#ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467#endif
c19d1205
ZW
4468 { 0, 0, 0 }
4469};
4470\f
4471/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4472
c19d1205
ZW
4473/* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
b99bd4ef 4478
c19d1205
ZW
4479static int
4480parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482{
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
b99bd4ef 4486 {
c19d1205
ZW
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
b99bd4ef 4490
c19d1205
ZW
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
b99bd4ef 4496
c19d1205
ZW
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499}
b99bd4ef 4500
5287ad62 4501/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505static int
4506parse_big_immediate (char **str, int i)
4507{
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
036dc3f7
PB
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
58ad575f 4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
5287ad62 4526 else if (exp.X_op == O_big
95b75c01 4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4530
5287ad62
JB
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4534 gas_assert (parts != 0);
95b75c01
NC
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
5287ad62
JB
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
5f4273c7 4565
5287ad62
JB
4566 *str = ptr;
4567
4568 return SUCCESS;
4569}
4570
c19d1205
ZW
4571/* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
b99bd4ef 4573
c19d1205
ZW
4574static int
4575parse_fpa_immediate (char ** str)
4576{
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
b99bd4ef 4582
c19d1205
ZW
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
b99bd4ef 4585
c19d1205
ZW
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4589 {
c19d1205 4590 char *start = *str;
b99bd4ef 4591
c19d1205
ZW
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
b99bd4ef 4598
c19d1205
ZW
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
b99bd4ef 4603
c19d1205 4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4605
c19d1205
ZW
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4613 {
c19d1205
ZW
4614 if (words[j] != fp_values[i][j])
4615 break;
b99bd4ef
NC
4616 }
4617
c19d1205 4618 if (j == MAX_LITTLENUMS)
b99bd4ef 4619 {
c19d1205
ZW
4620 *str = save_in;
4621 return i + 8;
b99bd4ef
NC
4622 }
4623 }
4624 }
b99bd4ef 4625
c19d1205
ZW
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
b99bd4ef 4645
c19d1205
ZW
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
b99bd4ef
NC
4654 }
4655
c19d1205
ZW
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
b99bd4ef
NC
4660}
4661
136da414
JB
4662/* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665static int
4666is_quarter_float (unsigned imm)
4667{
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670}
4671
4672/* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
136da414
JB
4677
4678static unsigned
4679parse_qfloat_immediate (char **ccp, int *immed)
4680{
4681 char *str = *ccp;
c96612cc 4682 char *fpnum;
136da414 4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4684 int found_fpchar = 0;
5f4273c7 4685
136da414 4686 skip_past_char (&str, '#');
5f4273c7 4687
c96612cc
JB
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
5f4273c7 4710
136da414
JB
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
5f4273c7 4715
136da414
JB
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
5f4273c7 4722
c96612cc 4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
5f4273c7 4729
136da414
JB
4730 return SUCCESS;
4731 }
5f4273c7 4732
136da414
JB
4733 return FAIL;
4734}
4735
c19d1205
ZW
4736/* Shift operands. */
4737enum shift_kind
b99bd4ef 4738{
c19d1205
ZW
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740};
b99bd4ef 4741
c19d1205
ZW
4742struct asm_shift_name
4743{
4744 const char *name;
4745 enum shift_kind kind;
4746};
b99bd4ef 4747
c19d1205
ZW
4748/* Third argument to parse_shift. */
4749enum parse_shift_mode
4750{
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756};
b99bd4ef 4757
c19d1205
ZW
4758/* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
b99bd4ef 4760
c19d1205
ZW
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
b99bd4ef 4764
c19d1205
ZW
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4767
c19d1205
ZW
4768static int
4769parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4770{
c19d1205
ZW
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
b99bd4ef 4776
c19d1205
ZW
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
b99bd4ef 4779
c19d1205 4780 if (p == *str)
b99bd4ef 4781 {
c19d1205
ZW
4782 inst.error = _("shift expression expected");
4783 return FAIL;
b99bd4ef
NC
4784 }
4785
21d799b5
NC
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
c19d1205
ZW
4788
4789 if (shift_name == NULL)
b99bd4ef 4790 {
c19d1205
ZW
4791 inst.error = _("shift expression expected");
4792 return FAIL;
b99bd4ef
NC
4793 }
4794
c19d1205 4795 shift = shift_name->kind;
b99bd4ef 4796
c19d1205
ZW
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
b99bd4ef 4801
c19d1205
ZW
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
b99bd4ef 4809
c19d1205
ZW
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
b99bd4ef 4817
c19d1205
ZW
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
b99bd4ef 4825
c19d1205
ZW
4826 default: abort ();
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
b99bd4ef 4833
c19d1205 4834 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
b99bd4ef
NC
4847}
4848
c19d1205 4849/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4850
c19d1205
ZW
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
b99bd4ef 4855
c19d1205
ZW
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4858 is deferred to md_apply_fix. */
b99bd4ef 4859
c19d1205
ZW
4860static int
4861parse_shifter_operand (char **str, int i)
4862{
4863 int value;
91d6fa6a 4864 expressionS exp;
b99bd4ef 4865
dcbf9037 4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
b99bd4ef 4870
c19d1205
ZW
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4874
c19d1205
ZW
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
b99bd4ef 4877
c19d1205
ZW
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4880 }
4881
c19d1205
ZW
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
b99bd4ef 4884
c19d1205 4885 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4886 {
c19d1205 4887 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4889 return FAIL;
b99bd4ef 4890
91d6fa6a 4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
b99bd4ef 4896
91d6fa6a 4897 value = exp.X_add_number;
c19d1205
ZW
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
09d92015 4908
a415b1cd
JB
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
09d92015
MM
4912 }
4913
c19d1205
ZW
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
09d92015
MM
4917}
4918
4962c51a
MS
4919/* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926struct group_reloc_table_entry
4927{
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933};
4934
4935typedef enum
4936{
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942} group_reloc_type;
4943
4944static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998/* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005static int
5006find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007{
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5f4273c7
NC
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
4962c51a
MS
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023}
5024
5025/* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039static parse_operand_result
5040parse_shifter_operand_group_reloc (char **str, int i)
5041{
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
21d799b5 5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5070 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079}
5080
8e560766
MGD
5081/* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5083
8e560766
MGD
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085static parse_operand_result
5086parse_neon_alignment (char **str, int i)
5087{
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106}
5107
c19d1205
ZW
5108/* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
09d92015 5110
c19d1205 5111 Preindexed addressing (.preind=1):
09d92015 5112
c19d1205
ZW
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5117
c19d1205 5118 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5119
c19d1205 5120 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5121
c19d1205
ZW
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5126
c19d1205 5127 Unindexed addressing (.preind=0, .postind=0):
09d92015 5128
c19d1205 5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5130
c19d1205 5131 Other:
09d92015 5132
c19d1205
ZW
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5136
c19d1205
ZW
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
4962c51a
MS
5140static parse_operand_result
5141parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
09d92015 5143{
c19d1205
ZW
5144 char *p = *str;
5145 int reg;
09d92015 5146
c19d1205 5147 if (skip_past_char (&p, '[') == FAIL)
09d92015 5148 {
c19d1205
ZW
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
974da60d 5151 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
974da60d 5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5158
c19d1205 5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5160 return PARSE_OPERAND_FAIL;
09d92015 5161
c19d1205 5162 *str = p;
4962c51a 5163 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5164 }
5165
dcbf9037 5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5167 {
c19d1205 5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5169 return PARSE_OPERAND_FAIL;
09d92015 5170 }
c19d1205
ZW
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
09d92015 5173
c19d1205 5174 if (skip_past_comma (&p) == SUCCESS)
09d92015 5175 {
c19d1205 5176 inst.operands[i].preind = 1;
09d92015 5177
c19d1205
ZW
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
dcbf9037 5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5182 {
c19d1205
ZW
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5188 return PARSE_OPERAND_FAIL;
c19d1205 5189 }
5287ad62 5190 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5196
8e560766
MGD
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
c19d1205
ZW
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
4962c51a 5207
5f4273c7
NC
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
21d799b5 5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5238 break;
5239
5240 case GROUP_LDRS:
21d799b5 5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5242 break;
5243
5244 case GROUP_LDC:
21d799b5 5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5246 break;
5247
5248 default:
9c2799c2 5249 gas_assert (0);
4962c51a
MS
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
26d97720
NS
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
09d92015
MM
5277 }
5278 }
8e560766
MGD
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5284
8e560766
MGD
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
09d92015 5288
c19d1205 5289 if (skip_past_char (&p, ']') == FAIL)
09d92015 5290 {
c19d1205 5291 inst.error = _("']' expected");
4962c51a 5292 return PARSE_OPERAND_FAIL;
09d92015
MM
5293 }
5294
c19d1205
ZW
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
09d92015 5297
c19d1205 5298 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5299 {
c19d1205
ZW
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5304 0, 255, TRUE) == FAIL)
4962c51a 5305 return PARSE_OPERAND_FAIL;
09d92015 5306
c19d1205
ZW
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5310 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
4962c51a 5315 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5316 }
5317 *str = p;
4962c51a 5318 return PARSE_OPERAND_SUCCESS;
09d92015 5319 }
c19d1205
ZW
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
09d92015 5324
c19d1205
ZW
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5328 return PARSE_OPERAND_FAIL;
c19d1205 5329 }
09d92015 5330
c19d1205
ZW
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5333
dcbf9037 5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5335 {
5287ad62
JB
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
c19d1205 5342 inst.operands[i].immisreg = 1;
a737bd4d 5343
c19d1205
ZW
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5346 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5347 }
5348 else
5349 {
26d97720 5350 char *q = p;
c19d1205
ZW
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5357 return PARSE_OPERAND_FAIL;
26d97720
NS
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
c19d1205
ZW
5371 }
5372 }
a737bd4d
NC
5373 }
5374
c19d1205
ZW
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
4962c51a
MS
5384 return PARSE_OPERAND_SUCCESS;
5385}
5386
5387static int
5388parse_address (char **str, int i)
5389{
21d799b5 5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5391 ? SUCCESS : FAIL;
5392}
5393
5394static parse_operand_result
5395parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396{
5397 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5398}
5399
b6895b4f
PB
5400/* Parse an operand for a MOVW or MOVT instruction. */
5401static int
5402parse_half (char **str)
5403{
5404 char * p;
5f4273c7 5405
b6895b4f
PB
5406 p = *str;
5407 skip_past_char (&p, '#');
5f4273c7 5408 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5f4273c7 5416 skip_whitespace (p);
b6895b4f
PB
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438}
5439
c19d1205 5440/* Miscellaneous. */
a737bd4d 5441
c19d1205
ZW
5442/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444static int
d2cd1205 5445parse_psr (char **str, bfd_boolean lhs)
09d92015 5446{
c19d1205
ZW
5447 char *p;
5448 unsigned long psr_field;
62b3e311
PB
5449 const struct asm_psr *psr;
5450 char *start;
d2cd1205 5451 bfd_boolean is_apsr = FALSE;
ac7f631b 5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5453
a4482bb6
NC
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
c19d1205
ZW
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
62b3e311 5463 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
fa94de6b 5467
d2cd1205
JB
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
62b3e311
PB
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
d2cd1205
JB
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
21d799b5
NC
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
d2cd1205 5499
62b3e311
PB
5500 if (!psr)
5501 return FAIL;
09d92015 5502
d2cd1205
JB
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
62b3e311 5512 *str = p;
d2cd1205
JB
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5518 }
d2cd1205
JB
5519 else
5520 goto unsupported_psr;
09d92015 5521
62b3e311 5522 p += 4;
d2cd1205 5523check_suffix:
c19d1205
ZW
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
c19d1205
ZW
5527 p++;
5528 start = p;
a737bd4d 5529
c19d1205
ZW
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
a737bd4d 5533
d2cd1205
JB
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
fa94de6b 5540
d2cd1205
JB
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
fa94de6b 5560
d2cd1205
JB
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
fa94de6b 5564
d2cd1205
JB
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
fa94de6b 5568
d2cd1205
JB
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
fa94de6b 5574
d2cd1205
JB
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
fa94de6b 5577
d2cd1205
JB
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
fa94de6b 5589
d2cd1205
JB
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
a737bd4d 5604
d2cd1205
JB
5605 psr_field |= psr->field;
5606 }
a737bd4d 5607 }
c19d1205 5608 else
a737bd4d 5609 {
c19d1205
ZW
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
d2cd1205
JB
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
a737bd4d 5625 }
c19d1205
ZW
5626 *str = p;
5627 return psr_field;
a737bd4d 5628
d2cd1205
JB
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
c19d1205
ZW
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
a737bd4d
NC
5637}
5638
c19d1205
ZW
5639/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5641
c19d1205
ZW
5642static int
5643parse_cps_flags (char **str)
a737bd4d 5644{
c19d1205
ZW
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
a737bd4d 5648
c19d1205
ZW
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
a737bd4d 5654
c19d1205
ZW
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5658
c19d1205
ZW
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
a737bd4d 5663
c19d1205
ZW
5664 done:
5665 if (saw_a_flag == 0)
a737bd4d 5666 {
c19d1205
ZW
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
a737bd4d 5669 }
a737bd4d 5670
c19d1205
ZW
5671 *str = s - 1;
5672 return val;
a737bd4d
NC
5673}
5674
c19d1205
ZW
5675/* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5677
5678static int
c19d1205 5679parse_endian_specifier (char **str)
a737bd4d 5680{
c19d1205
ZW
5681 int little_endian;
5682 char *s = *str;
a737bd4d 5683
c19d1205
ZW
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
a737bd4d 5689 {
c19d1205 5690 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5691 return FAIL;
5692 }
5693
c19d1205 5694 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5695 {
c19d1205 5696 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5697 return FAIL;
5698 }
5699
c19d1205
ZW
5700 *str = s + 2;
5701 return little_endian;
5702}
a737bd4d 5703
c19d1205
ZW
5704/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708static int
5709parse_ror (char **str)
5710{
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
a737bd4d 5717 {
c19d1205 5718 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5719 return FAIL;
5720 }
c19d1205
ZW
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
a737bd4d 5726 {
c19d1205
ZW
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5734 return FAIL;
5735 }
c19d1205 5736}
a737bd4d 5737
c19d1205
ZW
5738/* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740static int
5741parse_cond (char **str)
5742{
c462b453 5743 char *q;
c19d1205 5744 const struct asm_cond *c;
c462b453
PB
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
a737bd4d 5749
c462b453
PB
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
e07e6e58 5754 cond[n] = TOLOWER (*q);
c462b453
PB
5755 q++;
5756 n++;
5757 }
a737bd4d 5758
21d799b5 5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5760 if (!c)
a737bd4d 5761 {
c19d1205 5762 inst.error = _("condition required");
a737bd4d
NC
5763 return FAIL;
5764 }
5765
c19d1205
ZW
5766 *str = q;
5767 return c->value;
5768}
5769
e797f7e0
MGD
5770/* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772static bfd_boolean
5773mark_feature_used (const arm_feature_set *feature)
5774{
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787}
5788
62b3e311
PB
5789/* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791static int
5792parse_barrier (char **str)
5793{
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
21d799b5
NC
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
62b3e311
PB
5803 if (!o)
5804 return FAIL;
5805
e797f7e0
MGD
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
62b3e311
PB
5809 *str = q;
5810 return o->value;
5811}
5812
92e90b6e
PB
5813/* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815static int
5816parse_tb (char **str)
5817{
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
92e90b6e 5826
dcbf9037 5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5f4273c7 5839
dcbf9037 5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866}
5867
5287ad62
JB
5868/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
037e8744
JB
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5287ad62
JB
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875static int
5876parse_neon_mov (char **str, int *which_operand)
5877{
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
dcbf9037 5881 struct neon_type_el optype;
5f4273c7 5882
dcbf9037 5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
dcbf9037 5888 inst.operands[i].vectype = optype;
5287ad62
JB
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
dcbf9037 5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5895 goto wanted_arm;
5f4273c7 5896
5287ad62
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
037e8744 5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5902 != FAIL)
5287ad62
JB
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5f4273c7 5907
5287ad62
JB
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
dcbf9037 5913 inst.operands[i].vectype = optype;
5287ad62
JB
5914 inst.operands[i++].present = 1;
5915
dcbf9037 5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5917 {
037e8744
JB
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
037e8744 5922 inst.operands[i].present = 1;
5287ad62
JB
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
dcbf9037 5926 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5927 return FAIL;
5928 }
037e8744
JB
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5287ad62 5940 }
037e8744
JB
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5287ad62
JB
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
dcbf9037 5954 inst.operands[i].vectype = optype;
5287ad62 5955 inst.operands[i].present = 1;
5f4273c7 5956
037e8744
JB
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5f4273c7 5968
037e8744
JB
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5f4273c7 5971
037e8744
JB
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5f4273c7 5974
037e8744
JB
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
1b11b49f 5977 inst.operands[i].present = 1;
037e8744 5978 }
5287ad62 5979 }
4641781c
PB
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5287ad62
JB
5990 else
5991 {
dcbf9037 5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5993 return FAIL;
5994 }
5995 }
dcbf9037 5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
5f4273c7 6002
5287ad62
JB
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
5f4273c7 6005
dcbf9037 6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
dcbf9037 6012 inst.operands[i].vectype = optype;
5287ad62 6013 }
dcbf9037 6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
5f4273c7 6020
5287ad62
JB
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
5f4273c7 6023
037e8744 6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 6025 == FAIL)
5287ad62 6026 {
037e8744 6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
037e8744
JB
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 6035 inst.operands[i].vectype = optype;
5287ad62 6036 inst.operands[i].present = 1;
5f4273c7 6037
037e8744
JB
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
1b11b49f 6067 inst.operands[i].present = 1;
5287ad62
JB
6068 }
6069 }
6070 else
6071 {
dcbf9037 6072 first_error (_("parse error"));
5287ad62
JB
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
5f4273c7 6081 wanted_comma:
dcbf9037 6082 first_error (_("expected comma"));
5287ad62 6083 return FAIL;
5f4273c7
NC
6084
6085 wanted_arm:
dcbf9037 6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6087 return FAIL;
5287ad62
JB
6088}
6089
5be8be5d
DG
6090/* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
c19d1205
ZW
6095/* Matcher codes for parse_operands. */
6096enum operand_parse_code
6097{
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6105 optional trailing ! */
c19d1205
ZW
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
5287ad62
JB
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
037e8744 6114 OP_RVSD, /* VFP single or double precision register */
5287ad62 6115 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6116 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6117 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
037e8744 6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
5287ad62 6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6147
6148 OP_I0, /* immediate zero */
c19d1205
ZW
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
5287ad62 6152 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
5287ad62
JB
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
c19d1205 6158 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
c19d1205 6161 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
4962c51a 6169 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6170 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6183 OP_COND, /* conditional code */
92e90b6e 6184 OP_TB, /* Table branch. */
c19d1205 6185
037e8744
JB
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
c19d1205
ZW
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
5287ad62 6198 OP_oI32b, /* 1 .. 32 */
5f1af56b 6199 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6216
5be8be5d
DG
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
c19d1205
ZW
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223};
a737bd4d 6224
c19d1205
ZW
6225/* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229static int
5be8be5d 6230parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6231{
5be8be5d 6232 unsigned const int *upat = pattern;
c19d1205
ZW
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
99aad254 6235 int i, val = 0, backtrack_index = 0;
5287ad62 6236 enum arm_reg_type rtype;
4962c51a 6237 parse_operand_result result;
5be8be5d 6238 unsigned int op_parse_code;
c19d1205 6239
e07e6e58
NC
6240#define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
c19d1205 6247
e07e6e58
NC
6248#define po_reg_or_fail(regtype) \
6249 do \
dcbf9037 6250 { \
e07e6e58
NC
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
dcbf9037 6265 } \
e07e6e58
NC
6266 while (0)
6267
6268#define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
dcbf9037 6275 \
e07e6e58
NC
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286#define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295#define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306#define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314#define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
4962c51a 6324
52e7f43d
RE
6325#define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
c19d1205
ZW
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
5be8be5d
DG
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6359 {
6360 /* Remember where we are in case we need to backtrack. */
9c2799c2 6361 gas_assert (!backtrack_pos);
c19d1205
ZW
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
b6702015 6367 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6368 po_char_or_fail (',');
6369
5be8be5d 6370 switch (op_parse_code)
c19d1205
ZW
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
5be8be5d 6374 case OP_oRRnpcsp:
c19d1205 6375 case OP_RRnpc:
5be8be5d 6376 case OP_RRnpcsp:
c19d1205
ZW
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
c19d1205
ZW
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
5287ad62
JB
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
037e8744
JB
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
5287ad62
JB
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
037e8744
JB
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
5287ad62
JB
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
4316f0d2 6470 case OP_RNDQ_Ibig:
5287ad62 6471 {
4316f0d2 6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6473 break;
4316f0d2 6474 try_immbig:
5287ad62
JB
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
c19d1205
ZW
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
a737bd4d 6499
55881a11 6500 case OP_RRnpctw:
c19d1205 6501 case OP_RRw:
b6702015 6502 case OP_oRRw:
c19d1205
ZW
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6572 {
c19d1205
ZW
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
a737bd4d 6584 }
c19d1205 6585 break;
a737bd4d 6586
b6895b4f
PB
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
e07e6e58 6592 /* Register or expression. */
c19d1205
ZW
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6595
e07e6e58 6596 /* Register or immediate. */
c19d1205
ZW
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6599
c19d1205
ZW
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
09d92015 6613
2d447fca
JM
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
e07e6e58 6617 /* Two kinds of register. */
c19d1205
ZW
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
09d92015 6633
41adaa5c
JM
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
c19d1205
ZW
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6653 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
c19d1205 6660
fa94de6b 6661 case OP_wPSR:
d2cd1205 6662 case OP_rPSR:
90ec0d68
MGD
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
d2cd1205
JB
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
037e8744
JB
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
f7c21dc7
NC
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
037e8744
JB
6699 }
6700 else
6701 goto failure;
6702 break;
6703
92e90b6e
PB
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
e07e6e58 6708 /* Register lists. */
c19d1205
ZW
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
09d92015 6717
c19d1205 6718 case OP_VRSLST:
5287ad62 6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6720 break;
09d92015 6721
c19d1205 6722 case OP_VRDLST:
5287ad62 6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6724 break;
a737bd4d 6725
037e8744
JB
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
5287ad62
JB
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
dcbf9037
JB
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
5287ad62
JB
6747 break;
6748
c19d1205
ZW
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
09d92015 6753
4962c51a
MS
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
c19d1205
ZW
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
09d92015 6772
4962c51a
MS
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
c19d1205
ZW
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
09d92015 6781
c19d1205
ZW
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
09d92015 6785
c19d1205
ZW
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
09d92015 6789
c19d1205 6790 default:
5be8be5d 6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6792 }
09d92015 6793
c19d1205
ZW
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
5be8be5d 6797 switch (op_parse_code)
c19d1205
ZW
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
b6702015 6803 case OP_oRRw:
c19d1205
ZW
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
09d92015 6808
5be8be5d
DG
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
55881a11 6820 case OP_RRnpctw:
fa94de6b
RM
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
55881a11
MGD
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
c19d1205
ZW
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
d2cd1205
JB
6830 case OP_wPSR:
6831 case OP_rPSR:
c19d1205 6832 case OP_COND:
52e7f43d 6833 case OP_oBARRIER_I15:
c19d1205
ZW
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
037e8744 6837 case OP_VRSDLST:
5287ad62
JB
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
c19d1205
ZW
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
a737bd4d 6844
c19d1205
ZW
6845 default:
6846 break;
6847 }
09d92015 6848
c19d1205
ZW
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
09d92015 6852
c19d1205 6853 bad_args:
09d92015 6854 inst.error = BAD_ARGS;
c19d1205
ZW
6855
6856 failure:
6857 if (!backtrack_pos)
d252fdde
PB
6858 {
6859 /* The parse routine should already have set inst.error, but set a
5f4273c7 6860 default here just in case. */
d252fdde
PB
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
c19d1205
ZW
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
d252fdde
PB
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
c19d1205
ZW
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
09d92015 6884 }
09d92015 6885
c19d1205
ZW
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
09d92015 6889
c19d1205 6890 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6891}
6892
c19d1205
ZW
6893#undef po_char_or_fail
6894#undef po_reg_or_fail
6895#undef po_reg_or_goto
6896#undef po_imm_or_fail
5287ad62 6897#undef po_scalar_or_fail
52e7f43d 6898#undef po_barrier_or_imm
e07e6e58 6899
c19d1205 6900/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6901#define constraint(expr, err) \
6902 do \
c19d1205 6903 { \
e07e6e58
NC
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
c19d1205 6909 } \
e07e6e58 6910 while (0)
c19d1205 6911
fdfde340
JM
6912/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915#define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
94206790
MM
6924/* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926#define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
c19d1205
ZW
6932/* Functions for operand encoding. ARM, then Thumb. */
6933
6934#define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936/* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939static unsigned int
6940encode_arm_immediate (unsigned int val)
09d92015 6941{
c19d1205
ZW
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
09d92015
MM
6949}
6950
c19d1205
ZW
6951/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953static unsigned int
6954encode_thumb32_immediate (unsigned int val)
09d92015 6955{
c19d1205 6956 unsigned int a, i;
09d92015 6957
9c3c69f2 6958 if (val <= 0xff)
c19d1205 6959 return val;
a737bd4d 6960
9c3c69f2 6961 for (i = 1; i <= 24; i++)
09d92015 6962 {
9c3c69f2
PB
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6966 }
a737bd4d 6967
c19d1205
ZW
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
09d92015 6973
c19d1205
ZW
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
a737bd4d 6977
c19d1205 6978 return FAIL;
09d92015 6979}
5287ad62 6980/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6981
6982static void
5287ad62
JB
6983encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984{
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
b1cc4aeb 6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6992 fpu_vfp_ext_d32);
5287ad62
JB
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6995 fpu_vfp_ext_d32);
5287ad62
JB
6996 }
6997 else
6998 {
dcbf9037 6999 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
7000 return;
7001 }
7002 }
7003
c19d1205 7004 switch (pos)
09d92015 7005 {
c19d1205
ZW
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
5287ad62
JB
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
5f4273c7 7021
5287ad62
JB
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
5f4273c7 7025
5287ad62
JB
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
c19d1205
ZW
7030 default:
7031 abort ();
09d92015 7032 }
09d92015
MM
7033}
7034
c19d1205 7035/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7036 if any, is handled by md_apply_fix. */
09d92015 7037static void
c19d1205 7038encode_arm_shift (int i)
09d92015 7039{
c19d1205
ZW
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
09d92015 7043 {
c19d1205
ZW
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7052 }
c19d1205 7053}
09d92015 7054
c19d1205
ZW
7055static void
7056encode_arm_shifter_operand (int i)
7057{
7058 if (inst.operands[i].isreg)
09d92015 7059 {
c19d1205
ZW
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
09d92015 7062 }
c19d1205 7063 else
a415b1cd
JB
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
09d92015
MM
7069}
7070
c19d1205 7071/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7072static void
c19d1205 7073encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7074{
2b2f5df9
NC
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
c19d1205 7080 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7081
c19d1205 7082 if (inst.operands[i].preind)
09d92015 7083 {
c19d1205
ZW
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
09d92015 7092
c19d1205
ZW
7093 }
7094 else if (inst.operands[i].postind)
7095 {
9c2799c2 7096 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
09d92015 7101 {
c19d1205 7102 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7103 return;
7104 }
7105
c19d1205
ZW
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
09d92015
MM
7112}
7113
c19d1205
ZW
7114/* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
a737bd4d 7118static void
c19d1205 7119encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7120{
5be8be5d
DG
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
c19d1205 7123 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7124
c19d1205 7125 if (inst.operands[i].immisreg)
09d92015 7126 {
5be8be5d
DG
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
c19d1205
ZW
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
09d92015 7144 }
c19d1205 7145 else /* immediate offset in inst.reloc */
09d92015 7146 {
5be8be5d
DG
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7155 BAD_PC_ADDRESSING);
23a10334 7156
dc5ec521 7157 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7162 }
7163
c19d1205 7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
09d92015 7171 }
09d92015
MM
7172}
7173
c19d1205
ZW
7174/* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179static void
7180encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7181{
c19d1205 7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7183 {
c19d1205
ZW
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
09d92015 7186 }
a737bd4d 7187
c19d1205 7188 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7189
c19d1205
ZW
7190 if (inst.operands[i].immisreg)
7191 {
5be8be5d
DG
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
c19d1205
ZW
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
5be8be5d
DG
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
c19d1205
ZW
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
c19d1205 7213 }
a737bd4d
NC
7214}
7215
c19d1205
ZW
7216/* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
09d92015 7223
c19d1205
ZW
7224static int
7225encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7226{
c19d1205 7227 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7228
9c2799c2 7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7230
c19d1205 7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7232 {
9c2799c2 7233 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
09d92015 7242 }
a737bd4d 7243
c19d1205
ZW
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
a737bd4d 7246
c19d1205 7247 if (inst.operands[i].writeback)
09d92015 7248 {
c19d1205
ZW
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
09d92015 7260 }
a737bd4d 7261
c19d1205 7262 if (reloc_override)
21d799b5 7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
26d97720
NS
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
c19d1205
ZW
7278 return SUCCESS;
7279}
a737bd4d 7280
c19d1205
ZW
7281/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
a737bd4d 7287
c19d1205
ZW
7288 inst.operands[i] describes the destination register. */
7289
c921be7d 7290static bfd_boolean
c19d1205
ZW
7291move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292{
53365c0d
PB
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
09d92015 7301 {
c19d1205 7302 inst.error = _("invalid pseudo operation");
c921be7d 7303 return TRUE;
09d92015 7304 }
c19d1205 7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7306 {
7307 inst.error = _("constant expression expected");
c921be7d 7308 return TRUE;
09d92015 7309 }
c19d1205 7310 if (inst.reloc.exp.X_op == O_constant)
09d92015 7311 {
c19d1205
ZW
7312 if (thumb_p)
7313 {
53365c0d 7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7319 return TRUE;
c19d1205
ZW
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
c921be7d 7331 return TRUE;
c19d1205 7332 }
09d92015 7333
c19d1205
ZW
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
c921be7d 7341 return TRUE;
c19d1205
ZW
7342 }
7343 }
09d92015
MM
7344 }
7345
c19d1205
ZW
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
c921be7d 7349 return TRUE;
c19d1205
ZW
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
c921be7d 7360 return FALSE;
09d92015
MM
7361}
7362
5f4273c7 7363/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
09d92015 7366
a737bd4d 7367static void
c19d1205 7368do_noargs (void)
09d92015 7369{
c19d1205 7370}
a737bd4d 7371
c19d1205
ZW
7372static void
7373do_rd (void)
7374{
7375 inst.instruction |= inst.operands[0].reg << 12;
7376}
a737bd4d 7377
c19d1205
ZW
7378static void
7379do_rd_rm (void)
7380{
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383}
09d92015 7384
9eb6c0f1
MGD
7385static void
7386do_rm_rn (void)
7387{
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390}
7391
c19d1205
ZW
7392static void
7393do_rd_rn (void)
7394{
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397}
a737bd4d 7398
c19d1205
ZW
7399static void
7400do_rn_rd (void)
7401{
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404}
09d92015 7405
59d09be6
MGD
7406static bfd_boolean
7407check_obsolete (const arm_feature_set *feature, const char *msg)
7408{
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421}
7422
c19d1205
ZW
7423static void
7424do_rd_rm_rn (void)
7425{
9a64e435 7426 unsigned Rn = inst.operands[2].reg;
708587a4 7427 /* Enforce restrictions on SWP instruction. */
9a64e435 7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
59d09be6
MGD
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 7440 }
59d09be6 7441
c19d1205
ZW
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
9a64e435 7444 inst.instruction |= Rn << 16;
c19d1205 7445}
09d92015 7446
c19d1205
ZW
7447static void
7448do_rd_rn_rm (void)
7449{
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453}
a737bd4d 7454
c19d1205
ZW
7455static void
7456do_rm_rd_rn (void)
7457{
5be8be5d
DG
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
c19d1205
ZW
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466}
09d92015 7467
c19d1205
ZW
7468static void
7469do_imm0 (void)
7470{
7471 inst.instruction |= inst.operands[0].imm;
7472}
09d92015 7473
c19d1205
ZW
7474static void
7475do_rd_cpaddr (void)
7476{
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7479}
a737bd4d 7480
c19d1205
ZW
7481/* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
09d92015 7484
c19d1205
ZW
7485/* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7487
7488static void
c19d1205 7489do_adr (void)
09d92015 7490{
c19d1205 7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7492
c19d1205
ZW
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7496 inst.reloc.pc_rel = 1;
2fc8bdac 7497 inst.reloc.exp.X_add_number -= 8;
c19d1205 7498}
b99bd4ef 7499
c19d1205
ZW
7500/* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
b99bd4ef 7504
c19d1205
ZW
7505static void
7506do_adrl (void)
7507{
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7509
c19d1205
ZW
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
2fc8bdac 7515 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7516}
7517
b99bd4ef 7518static void
c19d1205 7519do_arit (void)
b99bd4ef 7520{
c19d1205
ZW
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526}
b99bd4ef 7527
62b3e311
PB
7528static void
7529do_barrier (void)
7530{
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
bd3ba5d1 7536 _("bad barrier type"));
62b3e311
PB
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541}
7542
c19d1205
ZW
7543static void
7544do_bfc (void)
7545{
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553}
b99bd4ef 7554
c19d1205
ZW
7555static void
7556do_bfi (void)
7557{
7558 unsigned int msb;
b99bd4ef 7559
c19d1205
ZW
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
b99bd4ef 7564
c19d1205
ZW
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7573}
7574
b99bd4ef 7575static void
c19d1205 7576do_bfx (void)
b99bd4ef 7577{
c19d1205
ZW
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584}
09d92015 7585
c19d1205
ZW
7586/* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
b99bd4ef 7591
c19d1205
ZW
7592static void
7593do_bkpt (void)
7594{
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7597
c19d1205
ZW
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600}
09d92015 7601
c19d1205
ZW
7602static void
7603encode_branch (int default_reloc)
7604{
7605 if (inst.operands[0].hasreloc)
7606 {
0855e32b
NS
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7613 }
b99bd4ef 7614 else
9ae92b05 7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7616 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7617}
7618
b99bd4ef 7619static void
c19d1205 7620do_branch (void)
b99bd4ef 7621{
39b41c9c
PB
7622#ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626#endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628}
7629
7630static void
7631do_bl (void)
7632{
7633#ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642#endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7644}
b99bd4ef 7645
c19d1205
ZW
7646/* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7653
c19d1205
ZW
7654static void
7655do_blx (void)
7656{
7657 if (inst.operands[0].isreg)
b99bd4ef 7658 {
c19d1205
ZW
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7663
c19d1205
ZW
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
b99bd4ef 7667 {
c19d1205 7668 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7673 inst.instruction = 0xfa000000;
267bf995 7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7675 }
c19d1205
ZW
7676}
7677
7678static void
7679do_bx (void)
7680{
845b51d6
PB
7681 bfd_boolean want_reloc;
7682
c19d1205
ZW
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7685
c19d1205 7686 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
5ad34203 7693#ifdef OBJ_ELF
845b51d6 7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7695#endif
584206db 7696 want_reloc = FALSE;
845b51d6
PB
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7700}
7701
c19d1205
ZW
7702
7703/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7704
7705static void
c19d1205 7706do_bxj (void)
a737bd4d 7707{
c19d1205
ZW
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7712}
7713
c19d1205
ZW
7714/* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717static void
7718do_cdp (void)
7719{
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726}
a737bd4d
NC
7727
7728static void
c19d1205 7729do_cmp (void)
a737bd4d 7730{
c19d1205
ZW
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
a737bd4d
NC
7733}
7734
c19d1205
ZW
7735/* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
09d92015 7742
dcbd0d71
MGD
7743struct deprecated_coproc_regs_s
7744{
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754};
7755
7756#define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759/* Table of all deprecated coprocessor registers. */
7760static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761{
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777};
7778
7779#undef DEPR_ACCESS_V8
7780
7781static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
09d92015 7784static void
c19d1205 7785do_co_reg (void)
09d92015 7786{
fdfde340 7787 unsigned Rd;
dcbd0d71 7788 size_t i;
fdfde340
JM
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
dcbd0d71
MGD
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
fdfde340 7825
c19d1205
ZW
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7828 inst.instruction |= Rd << 12;
c19d1205
ZW
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832}
09d92015 7833
c19d1205
ZW
7834/* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
b99bd4ef 7839
c19d1205 7840 Two XScale instructions are special cases of these:
09d92015 7841
c19d1205
ZW
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7844
5f4273c7 7845 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7846
c19d1205
ZW
7847static void
7848do_co_reg2c (void)
7849{
fdfde340
JM
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
c19d1205
ZW
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
c19d1205 7870 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7871}
7872
c19d1205
ZW
7873static void
7874do_cpsi (void)
7875{
7876 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
c19d1205 7882}
b99bd4ef 7883
62b3e311
PB
7884static void
7885do_dbg (void)
7886{
7887 inst.instruction |= inst.operands[0].imm;
7888}
7889
eea54501
MGD
7890static void
7891do_div (void)
7892{
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907}
7908
b99bd4ef 7909static void
c19d1205 7910do_it (void)
b99bd4ef 7911{
c19d1205 7912 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
c19d1205 7917 inst.size = 0;
e07e6e58
NC
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
09d92015 7924}
b99bd4ef 7925
6530b175
NC
7926/* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928static int
7929only_one_reg_in_list (int range)
7930{
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933}
7934
09d92015 7935static void
6530b175 7936encode_ldmstm(int from_push_pop_mnem)
ea6ef066 7937{
c19d1205
ZW
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
6530b175 7940 int one_reg;
ea6ef066 7941
c19d1205
ZW
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
ea6ef066 7944
c19d1205
ZW
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7947
c19d1205 7948 if (inst.operands[0].writeback)
ea6ef066 7949 {
c19d1205
ZW
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
09d92015 7953 {
c19d1205
ZW
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7971 }
ea6ef066 7972 }
6530b175
NC
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984}
7985
7986static void
7987do_ldmstm (void)
7988{
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
7990}
7991
c19d1205
ZW
7992/* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
a737bd4d 7998static void
c19d1205 7999do_ldrd (void)
a737bd4d 8000{
c19d1205 8001 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8002 _("first transfer register must be even"));
c19d1205
ZW
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8005 _("can only transfer two consecutive registers"));
c19d1205
ZW
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8008
c19d1205
ZW
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8011
c56791bb
RE
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
ea6ef066 8015
c56791bb
RE
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
b05fe5cf 8020
c56791bb
RE
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
c19d1205 8023 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8029 }
c19d1205
ZW
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8032}
8033
8034static void
c19d1205 8035do_ldrex (void)
b05fe5cf 8036{
c19d1205
ZW
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
b05fe5cf 8054
c19d1205
ZW
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
b05fe5cf 8058
5be8be5d
DG
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
c19d1205
ZW
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
8064}
8065
8066static void
c19d1205 8067do_ldrexd (void)
b05fe5cf 8068{
c19d1205
ZW
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 8077
c19d1205
ZW
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
8080}
8081
1be5fd2e
NC
8082/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084static void
8085check_ldr_r15_aligned (void)
8086{
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092}
8093
b05fe5cf 8094static void
c19d1205 8095do_ldst (void)
b05fe5cf 8096{
c19d1205
ZW
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 8100 return;
c19d1205 8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 8102 check_ldr_r15_aligned ();
b05fe5cf
ZW
8103}
8104
8105static void
c19d1205 8106do_ldstt (void)
b05fe5cf 8107{
c19d1205
ZW
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
b05fe5cf 8111 {
bd3ba5d1
NC
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
c19d1205 8114 _("this instruction requires a post-indexed address"));
b05fe5cf 8115
c19d1205
ZW
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
b05fe5cf 8119 }
c19d1205
ZW
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122}
b05fe5cf 8123
c19d1205 8124/* Halfword and signed-byte load/store operations. */
b05fe5cf 8125
c19d1205
ZW
8126static void
8127do_ldstv4 (void)
8128{
ff4a8d2b 8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 8133 return;
c19d1205 8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
8135}
8136
8137static void
c19d1205 8138do_ldsttv4 (void)
b05fe5cf 8139{
c19d1205
ZW
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
b05fe5cf 8143 {
bd3ba5d1
NC
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
c19d1205 8146 _("this instruction requires a post-indexed address"));
b05fe5cf 8147
c19d1205
ZW
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
b05fe5cf 8151 }
c19d1205
ZW
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154}
b05fe5cf 8155
c19d1205
ZW
8156/* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158static void
8159do_lstc (void)
8160{
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8164}
8165
b05fe5cf 8166static void
c19d1205 8167do_mlas (void)
b05fe5cf 8168{
8fb9d7b9 8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8170 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8172 && !(inst.instruction & 0x00400000))
8fb9d7b9 8173 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8174
c19d1205
ZW
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8179}
b05fe5cf 8180
c19d1205
ZW
8181static void
8182do_mov (void)
8183{
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186}
b05fe5cf 8187
c19d1205
ZW
8188/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189static void
8190do_mov16 (void)
8191{
b6895b4f
PB
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
c19d1205 8200 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
b05fe5cf 8208}
b99bd4ef 8209
037e8744
JB
8210static void do_vfp_nsyn_opcode (const char *);
8211
8212static int
8213do_vfp_nsyn_mrs (void)
8214{
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
5f4273c7 8227
037e8744
JB
8228 return SUCCESS;
8229}
8230
8231static int
8232do_vfp_nsyn_msr (void)
8233{
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240}
8241
f7c21dc7
NC
8242static void
8243do_vmrs (void)
8244{
8245 unsigned Rt = inst.operands[0].reg;
fa94de6b 8246
f7c21dc7
NC
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
7465e07a
NC
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
f7c21dc7
NC
8272
8273 inst.instruction |= (Rt << 12);
8274}
8275
8276static void
8277do_vmsr (void)
8278{
8279 unsigned Rt = inst.operands[1].reg;
fa94de6b 8280
f7c21dc7
NC
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
7465e07a
NC
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
f7c21dc7
NC
8299
8300 inst.instruction |= (Rt << 12);
8301}
8302
b99bd4ef 8303static void
c19d1205 8304do_mrs (void)
b99bd4ef 8305{
90ec0d68
MGD
8306 unsigned br;
8307
037e8744
JB
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
ff4a8d2b 8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8312 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
d2cd1205 8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
c19d1205 8330}
b99bd4ef 8331
c19d1205
ZW
8332/* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
b99bd4ef 8335
c19d1205
ZW
8336static void
8337do_msr (void)
8338{
037e8744
JB
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
c19d1205
ZW
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
b99bd4ef 8346 {
c19d1205
ZW
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
b99bd4ef 8350 }
b99bd4ef
NC
8351}
8352
c19d1205
ZW
8353static void
8354do_mul (void)
a737bd4d 8355{
ff4a8d2b
NC
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
c19d1205
ZW
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8363
8fb9d7b9
MS
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8367}
8368
c19d1205
ZW
8369/* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8374
8375static void
c19d1205 8376do_mull (void)
b99bd4ef 8377{
c19d1205
ZW
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8382
682b27ad
PB
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8389 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392}
b99bd4ef 8393
c19d1205
ZW
8394static void
8395do_nop (void)
8396{
e7495e45
NS
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
e7495e45
NS
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
c19d1205 8405 }
b99bd4ef
NC
8406}
8407
c19d1205
ZW
8408/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8412
8413static void
c19d1205 8414do_pkhbt (void)
b99bd4ef 8415{
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421}
b99bd4ef 8422
c19d1205 8423/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8424
c19d1205
ZW
8425static void
8426do_pkhtb (void)
8427{
8428 if (!inst.operands[3].present)
b99bd4ef 8429 {
c19d1205
ZW
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8436 }
8437 else
8438 {
c19d1205
ZW
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
b99bd4ef
NC
8443 }
8444}
8445
c19d1205 8446/* ARMv5TE: Preload-Cache
60e5ef9f 8447 MP Extensions: Preload for write
c19d1205 8448
60e5ef9f 8449 PLD(W) <addr_mode>
c19d1205
ZW
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8452
8453static void
c19d1205 8454do_pld (void)
b99bd4ef 8455{
c19d1205
ZW
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465}
b99bd4ef 8466
62b3e311
PB
8467/* ARMv7: PLI <addr_mode> */
8468static void
8469do_pli (void)
8470{
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481}
8482
c19d1205
ZW
8483static void
8484do_push_pop (void)
8485{
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
6530b175 8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 8492}
b99bd4ef 8493
c19d1205
ZW
8494/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
b99bd4ef 8499
c19d1205
ZW
8500static void
8501do_rfe (void)
8502{
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506}
b99bd4ef 8507
c19d1205 8508/* ARM V6 ssat (argument parse). */
b99bd4ef 8509
c19d1205
ZW
8510static void
8511do_ssat (void)
8512{
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8516
c19d1205
ZW
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
b99bd4ef
NC
8519}
8520
c19d1205 8521/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8522
8523static void
c19d1205 8524do_usat (void)
b99bd4ef 8525{
c19d1205
ZW
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8529
c19d1205
ZW
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
b99bd4ef
NC
8532}
8533
c19d1205 8534/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8535
8536static void
c19d1205 8537do_ssat16 (void)
09d92015 8538{
c19d1205
ZW
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8542}
8543
c19d1205
ZW
8544static void
8545do_usat16 (void)
a737bd4d 8546{
c19d1205
ZW
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550}
a737bd4d 8551
c19d1205
ZW
8552/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
a737bd4d 8554
c19d1205
ZW
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
a737bd4d 8557
c19d1205
ZW
8558static void
8559do_setend (void)
8560{
12e37cbc
MGD
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
c19d1205
ZW
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
a737bd4d
NC
8567}
8568
8569static void
c19d1205 8570do_shift (void)
a737bd4d 8571{
c19d1205
ZW
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
a737bd4d 8575
c19d1205
ZW
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8579 {
c19d1205
ZW
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8585 }
8586 else
c19d1205 8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8588}
8589
09d92015 8590static void
3eb17e6b 8591do_smc (void)
09d92015 8592{
3eb17e6b 8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8594 inst.reloc.pc_rel = 0;
09d92015
MM
8595}
8596
90ec0d68
MGD
8597static void
8598do_hvc (void)
8599{
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602}
8603
09d92015 8604static void
c19d1205 8605do_swi (void)
09d92015 8606{
c19d1205
ZW
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
09d92015
MM
8609}
8610
c19d1205
ZW
8611/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
e16bb312 8615
c19d1205
ZW
8616static void
8617do_smla (void)
e16bb312 8618{
c19d1205
ZW
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623}
a737bd4d 8624
c19d1205
ZW
8625/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
a737bd4d 8629
c19d1205
ZW
8630static void
8631do_smlal (void)
8632{
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8637
c19d1205
ZW
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640}
a737bd4d 8641
c19d1205
ZW
8642/* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
a737bd4d 8645
c19d1205
ZW
8646static void
8647do_smul (void)
8648{
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652}
a737bd4d 8653
b6702015
PB
8654/* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
a737bd4d 8656
c19d1205
ZW
8657static void
8658do_srs (void)
8659{
b6702015
PB
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
fdfde340 8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8666 }
8667 else
fdfde340 8668 reg = REG_SP;
b6702015
PB
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8673 inst.instruction |= WRITE_BACK;
8674}
a737bd4d 8675
c19d1205 8676/* ARM V6 strex (argument parse). */
a737bd4d 8677
c19d1205
ZW
8678static void
8679do_strex (void)
8680{
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
a737bd4d 8688
c19d1205
ZW
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8691
c19d1205
ZW
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
a737bd4d 8695
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8700}
8701
877807f8
NC
8702static void
8703do_t_strexbh (void)
8704{
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715}
8716
e16bb312 8717static void
c19d1205 8718do_strexd (void)
e16bb312 8719{
c19d1205
ZW
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8728
c19d1205
ZW
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
e16bb312 8733
c19d1205
ZW
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8737}
8738
9eb6c0f1
MGD
8739/* ARM V8 STRL. */
8740static void
8741do_strlex (void)
8742{
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747}
8748
8749static void
8750do_t_strlex (void)
8751{
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756}
8757
c19d1205
ZW
8758/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
e16bb312 8766static void
c19d1205 8767do_sxtah (void)
e16bb312 8768{
c19d1205
ZW
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773}
e16bb312 8774
c19d1205 8775/* ARM V6 SXTH.
e16bb312 8776
c19d1205
ZW
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
e16bb312
NC
8780
8781static void
c19d1205 8782do_sxth (void)
e16bb312 8783{
c19d1205
ZW
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8787}
c19d1205
ZW
8788\f
8789/* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8791
8792static void
c19d1205 8793do_vfp_sp_monadic (void)
e16bb312 8794{
5287ad62
JB
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8797}
8798
8799static void
c19d1205 8800do_vfp_sp_dyadic (void)
e16bb312 8801{
5287ad62
JB
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8805}
8806
8807static void
c19d1205 8808do_vfp_sp_compare_z (void)
e16bb312 8809{
5287ad62 8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8811}
8812
8813static void
c19d1205 8814do_vfp_dp_sp_cvt (void)
e16bb312 8815{
5287ad62
JB
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8818}
8819
8820static void
c19d1205 8821do_vfp_sp_dp_cvt (void)
e16bb312 8822{
5287ad62
JB
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8825}
8826
8827static void
c19d1205 8828do_vfp_reg_from_sp (void)
e16bb312 8829{
c19d1205 8830 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8832}
8833
8834static void
c19d1205 8835do_vfp_reg2_from_sp2 (void)
e16bb312 8836{
c19d1205
ZW
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8842}
8843
8844static void
c19d1205 8845do_vfp_sp_from_reg (void)
e16bb312 8846{
5287ad62 8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8848 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8849}
8850
8851static void
c19d1205 8852do_vfp_sp2_from_reg2 (void)
e16bb312 8853{
c19d1205
ZW
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8859}
8860
8861static void
c19d1205 8862do_vfp_sp_ldst (void)
e16bb312 8863{
5287ad62 8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8866}
8867
8868static void
c19d1205 8869do_vfp_dp_ldst (void)
e16bb312 8870{
5287ad62 8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8873}
8874
c19d1205 8875
e16bb312 8876static void
c19d1205 8877vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8878{
c19d1205
ZW
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8886 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8887}
8888
8889static void
c19d1205 8890vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8891{
c19d1205 8892 int count;
e16bb312 8893
c19d1205
ZW
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
e16bb312 8899
c19d1205 8900 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8902
c19d1205
ZW
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
e16bb312 8906
c19d1205 8907 inst.instruction |= count;
e16bb312
NC
8908}
8909
8910static void
c19d1205 8911do_vfp_sp_ldstmia (void)
e16bb312 8912{
c19d1205 8913 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8914}
8915
8916static void
c19d1205 8917do_vfp_sp_ldstmdb (void)
e16bb312 8918{
c19d1205 8919 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8920}
8921
8922static void
c19d1205 8923do_vfp_dp_ldstmia (void)
e16bb312 8924{
c19d1205 8925 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8926}
8927
8928static void
c19d1205 8929do_vfp_dp_ldstmdb (void)
e16bb312 8930{
c19d1205 8931 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8932}
8933
8934static void
c19d1205 8935do_vfp_xp_ldstmia (void)
e16bb312 8936{
c19d1205
ZW
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938}
e16bb312 8939
c19d1205
ZW
8940static void
8941do_vfp_xp_ldstmdb (void)
8942{
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8944}
5287ad62
JB
8945
8946static void
8947do_vfp_dp_rd_rm (void)
8948{
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951}
8952
8953static void
8954do_vfp_dp_rn_rd (void)
8955{
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958}
8959
8960static void
8961do_vfp_dp_rd_rn (void)
8962{
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965}
8966
8967static void
8968do_vfp_dp_rd_rn_rm (void)
8969{
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973}
8974
8975static void
8976do_vfp_dp_rd (void)
8977{
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979}
8980
8981static void
8982do_vfp_dp_rm_rd_rn (void)
8983{
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987}
8988
8989/* VFPv3 instructions. */
8990static void
8991do_vfp_sp_const (void)
8992{
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8996}
8997
8998static void
8999do_vfp_dp_const (void)
9000{
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9004}
9005
9006static void
9007vfp_conv (int srcsize)
9008{
5f1af56b
MGD
9009 int immbits = srcsize - inst.operands[1].imm;
9010
fa94de6b
RM
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
5f1af56b
MGD
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
fa94de6b 9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
5287ad62
JB
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028}
9029
9030static void
9031do_vfp_sp_conv_16 (void)
9032{
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035}
9036
9037static void
9038do_vfp_dp_conv_16 (void)
9039{
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042}
9043
9044static void
9045do_vfp_sp_conv_32 (void)
9046{
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049}
9050
9051static void
9052do_vfp_dp_conv_32 (void)
9053{
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056}
c19d1205
ZW
9057\f
9058/* FPA instructions. Also in a logical order. */
e16bb312 9059
c19d1205
ZW
9060static void
9061do_fpa_cmp (void)
9062{
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065}
b99bd4ef
NC
9066
9067static void
c19d1205 9068do_fpa_ldmstm (void)
b99bd4ef 9069{
c19d1205
ZW
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
b99bd4ef 9079
c19d1205
ZW
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
b99bd4ef 9089
c19d1205
ZW
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 9092
c19d1205
ZW
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 9095
c19d1205
ZW
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
b99bd4ef 9102
c19d1205 9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 9104}
c19d1205
ZW
9105\f
9106/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 9107
c19d1205
ZW
9108static void
9109do_iwmmxt_tandorc (void)
9110{
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112}
b99bd4ef 9113
c19d1205
ZW
9114static void
9115do_iwmmxt_textrc (void)
9116{
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119}
b99bd4ef
NC
9120
9121static void
c19d1205 9122do_iwmmxt_textrm (void)
b99bd4ef 9123{
c19d1205
ZW
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127}
b99bd4ef 9128
c19d1205
ZW
9129static void
9130do_iwmmxt_tinsr (void)
9131{
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135}
b99bd4ef 9136
c19d1205
ZW
9137static void
9138do_iwmmxt_tmia (void)
9139{
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143}
b99bd4ef 9144
c19d1205
ZW
9145static void
9146do_iwmmxt_waligni (void)
9147{
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152}
b99bd4ef 9153
2d447fca
JM
9154static void
9155do_iwmmxt_wmerge (void)
9156{
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161}
9162
c19d1205
ZW
9163static void
9164do_iwmmxt_wmov (void)
9165{
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170}
b99bd4ef 9171
c19d1205
ZW
9172static void
9173do_iwmmxt_wldstbh (void)
9174{
8f06b2d8 9175 int reloc;
c19d1205 9176 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
9182}
9183
c19d1205
ZW
9184static void
9185do_iwmmxt_wldstw (void)
9186{
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
b99bd4ef 9193
c19d1205
ZW
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196}
b99bd4ef
NC
9197
9198static void
c19d1205 9199do_iwmmxt_wldstd (void)
b99bd4ef 9200{
c19d1205 9201 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9219}
b99bd4ef 9220
c19d1205
ZW
9221static void
9222do_iwmmxt_wshufh (void)
9223{
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228}
b99bd4ef 9229
c19d1205
ZW
9230static void
9231do_iwmmxt_wzero (void)
9232{
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237}
2d447fca
JM
9238
9239static void
9240do_iwmmxt_wrwrwr_or_imm5 (void)
9241{
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
5f4273c7 9255 case 7:
2d447fca
JM
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287}
c19d1205
ZW
9288\f
9289/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
b99bd4ef 9291
c19d1205 9292/* Insns like "foo X,Y,Z". */
b99bd4ef 9293
c19d1205
ZW
9294static void
9295do_mav_triple (void)
9296{
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300}
b99bd4ef 9301
c19d1205
ZW
9302/* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9304
c19d1205
ZW
9305static void
9306do_mav_quad (void)
9307{
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9312}
9313
c19d1205
ZW
9314/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315static void
9316do_mav_dspsc (void)
a737bd4d 9317{
c19d1205
ZW
9318 inst.instruction |= inst.operands[1].reg << 12;
9319}
a737bd4d 9320
c19d1205
ZW
9321/* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9324
c19d1205
ZW
9325static void
9326do_mav_shift (void)
9327{
9328 int imm = inst.operands[2].imm;
a737bd4d 9329
c19d1205
ZW
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9332
c19d1205
ZW
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9337
c19d1205
ZW
9338 inst.instruction |= imm;
9339}
9340\f
9341/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9342
c19d1205
ZW
9343/* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
a737bd4d 9347
c19d1205
ZW
9348static void
9349do_xsc_mia (void)
9350{
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353}
a737bd4d 9354
c19d1205 9355/* Xscale move-accumulator-register (argument parse)
a737bd4d 9356
c19d1205 9357 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9358
c19d1205
ZW
9359static void
9360do_xsc_mar (void)
9361{
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9364}
9365
c19d1205 9366/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9367
c19d1205 9368 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9369
9370static void
c19d1205 9371do_xsc_mra (void)
b99bd4ef 9372{
c19d1205
ZW
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376}
9377\f
9378/* Encoding functions relevant only to Thumb. */
b99bd4ef 9379
c19d1205
ZW
9380/* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383static void
9384encode_thumb32_shifted_operand (int i)
9385{
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9388
9c3c69f2
PB
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
b99bd4ef 9395 {
c19d1205
ZW
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9412 }
c19d1205 9413}
b99bd4ef 9414
b99bd4ef 9415
c19d1205
ZW
9416/* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
b99bd4ef 9422
c19d1205
ZW
9423static void
9424encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425{
5be8be5d 9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9427
9428 constraint (!inst.operands[i].isreg,
53365c0d 9429 _("Instruction does not support =N addresses"));
b99bd4ef 9430
c19d1205
ZW
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
b99bd4ef 9433 {
5be8be5d 9434 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9444
f40d1643 9445 inst.instruction |= inst.operands[i].imm;
c19d1205 9446 if (inst.operands[i].shifted)
b99bd4ef 9447 {
c19d1205
ZW
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9c3c69f2
PB
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
c19d1205 9452 _("shift out of range"));
9c3c69f2 9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
5be8be5d 9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9460 constraint (is_t && inst.operands[i].writeback,
c19d1205 9461 _("cannot use writeback with this instruction"));
5be8be5d
DG
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
b99bd4ef 9470 }
c19d1205 9471 else
b99bd4ef 9472 {
c19d1205
ZW
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
b99bd4ef 9476 }
c19d1205 9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9478 }
c19d1205 9479 else if (inst.operands[i].postind)
b99bd4ef 9480 {
9c2799c2 9481 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493}
9494
9495/* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9501#define T16_32_TAB \
21d799b5
NC
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
53c4b28b
MGD
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
c19d1205
ZW
9580
9581/* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
21d799b5 9584#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9585enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586#undef X
9587
9588#define X(a,b,c) 0x##b
9589static const unsigned short thumb_op16[] = { T16_32_TAB };
9590#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591#undef X
9592
9593#define X(a,b,c) 0x##c
9594static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9595#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9597#undef X
9598#undef T16_32_TAB
9599
9600/* Thumb instruction encoders, in alphabetical order. */
9601
92e90b6e 9602/* ADDW or SUBW. */
c921be7d 9603
92e90b6e
PB
9604static void
9605do_t_add_sub_w (void)
9606{
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
539d4391
NC
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
fdfde340 9618
92e90b6e
PB
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621}
9622
c19d1205
ZW
9623/* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626static void
9627do_t_add_sub (void)
9628{
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
e07e6e58
NC
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
c19d1205
ZW
9639 if (unified_syntax)
9640 {
0110f2b8
PB
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
e07e6e58 9648 narrow = !in_it_block ();
0110f2b8 9649 else
e07e6e58 9650 narrow = in_it_block ();
c19d1205 9651 if (!inst.operands[2].isreg)
b99bd4ef 9652 {
16805f35
PB
9653 int add;
9654
fdfde340
JM
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
16805f35
PB
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
0110f2b8
PB
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
efd81785
PB
9691 if (Rd == REG_PC)
9692 {
fdfde340 9693 constraint (add, BAD_PC);
efd81785
PB
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
16805f35
PB
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
dc4503c6
PB
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
0110f2b8 9724 }
b99bd4ef 9725 }
c19d1205
ZW
9726 else
9727 {
5f4cb198
NC
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
c19d1205
ZW
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
e27ec89e
PB
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
c19d1205 9739 {
e27ec89e
PB
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
b99bd4ef 9747
7e806470 9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9749 {
7e806470
PB
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9755 {
7e806470
PB
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
c19d1205
ZW
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
c19d1205
ZW
9767 }
9768 }
c921be7d 9769
fdfde340
JM
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
c19d1205
ZW
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
5f4cb198
NC
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
b99bd4ef 9793
c19d1205 9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9795 {
c19d1205
ZW
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9804 return;
9805 }
9806
c19d1205
ZW
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9809
c19d1205
ZW
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9812 {
c19d1205
ZW
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9830 }
b99bd4ef 9831 }
b99bd4ef
NC
9832}
9833
c19d1205
ZW
9834static void
9835do_t_adr (void)
9836{
fdfde340
JM
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9847 inst.instruction |= Rd << 4;
0110f2b8
PB
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
e9f89963 9850 {
0110f2b8 9851 /* Generate a 32-bit opcode. */
e9f89963 9852 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9853 inst.instruction |= Rd << 8;
e9f89963
PB
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
0110f2b8 9859 /* Generate a 16-bit opcode. */
e9f89963
PB
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
b99bd4ef 9864
fdfde340 9865 inst.instruction |= Rd << 4;
e9f89963 9866 }
c19d1205 9867}
b99bd4ef 9868
c19d1205
ZW
9869/* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9875static void
c19d1205 9876do_t_arit3 (void)
b99bd4ef 9877{
c19d1205 9878 int Rd, Rs, Rn;
b99bd4ef 9879
c19d1205
ZW
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
b99bd4ef 9885
fdfde340
JM
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
c19d1205 9891 if (unified_syntax)
b99bd4ef 9892 {
c19d1205
ZW
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
e27ec89e
PB
9905 bfd_boolean narrow;
9906
c19d1205 9907 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9908 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9909 narrow = !in_it_block ();
e27ec89e 9910 else
e07e6e58 9911 narrow = in_it_block ();
e27ec89e
PB
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
c19d1205
ZW
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
b99bd4ef 9928
c19d1205
ZW
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
a737bd4d 9938 }
c19d1205 9939 else
b99bd4ef 9940 {
c19d1205
ZW
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9945
c19d1205
ZW
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
a737bd4d 9951
c19d1205
ZW
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
b99bd4ef 9955 }
a737bd4d 9956}
b99bd4ef 9957
c19d1205
ZW
9958/* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963static void
9964do_t_arit3c (void)
a737bd4d 9965{
c19d1205 9966 int Rd, Rs, Rn;
b99bd4ef 9967
c19d1205
ZW
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
c921be7d 9973
fdfde340
JM
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
a737bd4d 9978
c19d1205 9979 if (unified_syntax)
a737bd4d 9980 {
c19d1205 9981 if (!inst.operands[2].isreg)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9990 }
c19d1205 9991 else
a737bd4d 9992 {
e27ec89e
PB
9993 bfd_boolean narrow;
9994
c19d1205 9995 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9996 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9997 narrow = !in_it_block ();
e27ec89e 9998 else
e07e6e58 9999 narrow = in_it_block ();
e27ec89e
PB
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
a737bd4d 10009 {
c19d1205 10010 if (Rd == Rs)
a737bd4d 10011 {
c19d1205
ZW
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
a737bd4d 10016 }
c19d1205 10017 if (Rd == Rn)
a737bd4d 10018 {
c19d1205
ZW
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
a737bd4d
NC
10023 }
10024 }
c19d1205
ZW
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
a737bd4d 10034 }
b99bd4ef 10035 }
c19d1205
ZW
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10042
c19d1205
ZW
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
a737bd4d
NC
10057}
10058
62b3e311
PB
10059static void
10060do_t_barrier (void)
10061{
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
bd3ba5d1 10067 _("bad barrier type"));
62b3e311
PB
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072}
10073
c19d1205
ZW
10074static void
10075do_t_bfc (void)
a737bd4d 10076{
fdfde340 10077 unsigned Rd;
c19d1205
ZW
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
fdfde340
JM
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
c19d1205
ZW
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
b99bd4ef
NC
10088}
10089
c19d1205
ZW
10090static void
10091do_t_bfi (void)
b99bd4ef 10092{
fdfde340 10093 int Rd, Rn;
c19d1205 10094 unsigned int msb;
b99bd4ef 10095
fdfde340
JM
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
c19d1205
ZW
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
fdfde340
JM
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
b99bd4ef 10108
c19d1205
ZW
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
fdfde340
JM
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
c19d1205
ZW
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
b99bd4ef
NC
10118}
10119
c19d1205
ZW
10120static void
10121do_t_bfx (void)
b99bd4ef 10122{
fdfde340
JM
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
c19d1205
ZW
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
fdfde340
JM
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
c19d1205
ZW
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138}
b99bd4ef 10139
c19d1205
ZW
10140/* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
b99bd4ef 10146
c19d1205
ZW
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
b99bd4ef 10149
c19d1205
ZW
10150static void
10151do_t_blx (void)
10152{
e07e6e58
NC
10153 set_it_insn_type_last ();
10154
c19d1205 10155 if (inst.operands[0].isreg)
fdfde340
JM
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
b99bd4ef
NC
10161 else
10162 {
c19d1205 10163 /* No register. This must be BLX(1). */
2fc8bdac 10164 inst.instruction = 0xf000e800;
0855e32b 10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
10166 }
10167}
10168
c19d1205
ZW
10169static void
10170do_t_branch (void)
b99bd4ef 10171{
0110f2b8 10172 int opcode;
dfa9f0d5 10173 int cond;
9ae92b05 10174 int reloc;
dfa9f0d5 10175
e07e6e58
NC
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
dfa9f0d5
PB
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
dfa9f0d5
PB
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
0110f2b8
PB
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
12d6b0b7
RS
10193 if (unified_syntax
10194 && (inst.size_req == 4
10960bfb
PB
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
c19d1205 10198 {
0110f2b8 10199 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 10200 if (cond == COND_ALWAYS)
9ae92b05 10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10202 else
10203 {
9c2799c2 10204 gas_assert (cond != 0xF);
dfa9f0d5 10205 inst.instruction |= cond << 22;
9ae92b05 10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10207 }
10208 }
b99bd4ef
NC
10209 else
10210 {
0110f2b8 10211 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10212 if (cond == COND_ALWAYS)
9ae92b05 10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10214 else
b99bd4ef 10215 {
dfa9f0d5 10216 inst.instruction |= cond << 8;
9ae92b05 10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10218 }
0110f2b8
PB
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
b99bd4ef 10222 }
9ae92b05 10223 inst.reloc.type = reloc;
c19d1205 10224 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10225}
10226
8884b720
MGD
10227/* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
b99bd4ef 10230static void
8884b720 10231do_t_bkpt_hlt1 (int range)
b99bd4ef 10232{
dfa9f0d5
PB
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
c19d1205 10235 if (inst.operands[0].present)
b99bd4ef 10236 {
8884b720 10237 constraint (inst.operands[0].imm > range,
c19d1205
ZW
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
b99bd4ef 10240 }
8884b720
MGD
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243}
10244
10245static void
10246do_t_hlt (void)
10247{
10248 do_t_bkpt_hlt1 (63);
10249}
10250
10251static void
10252do_t_bkpt (void)
10253{
10254 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
10255}
10256
10257static void
c19d1205 10258do_t_branch23 (void)
b99bd4ef 10259{
e07e6e58 10260 set_it_insn_type_last ();
0855e32b 10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 10262
0855e32b
NS
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10270
4343666d 10271#if defined(OBJ_COFF)
c19d1205
ZW
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10282#endif
90e4755a
RE
10283}
10284
10285static void
c19d1205 10286do_t_bx (void)
90e4755a 10287{
e07e6e58 10288 set_it_insn_type_last ();
c19d1205
ZW
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293}
90e4755a 10294
c19d1205
ZW
10295static void
10296do_t_bxj (void)
10297{
fdfde340 10298 int Rm;
90e4755a 10299
e07e6e58 10300 set_it_insn_type_last ();
fdfde340
JM
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
90e4755a
RE
10304}
10305
10306static void
c19d1205 10307do_t_clz (void)
90e4755a 10308{
fdfde340
JM
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
c19d1205 10321}
90e4755a 10322
dfa9f0d5
PB
10323static void
10324do_t_cps (void)
10325{
e07e6e58 10326 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10327 inst.instruction |= inst.operands[0].imm;
10328}
10329
c19d1205
ZW
10330static void
10331do_t_cpsi (void)
10332{
e07e6e58 10333 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10334 if (unified_syntax
62b3e311
PB
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10337 {
c19d1205
ZW
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10344 }
c19d1205 10345 else
90e4755a 10346 {
62b3e311
PB
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
90e4755a 10355 }
90e4755a
RE
10356}
10357
c19d1205
ZW
10358/* THUMB CPY instruction (argument parse). */
10359
90e4755a 10360static void
c19d1205 10361do_t_cpy (void)
90e4755a 10362{
c19d1205 10363 if (inst.size_req == 4)
90e4755a 10364 {
c19d1205
ZW
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
90e4755a 10368 }
c19d1205 10369 else
90e4755a 10370 {
c19d1205
ZW
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10374 }
90e4755a
RE
10375}
10376
90e4755a 10377static void
25fe350b 10378do_t_cbz (void)
90e4755a 10379{
e07e6e58 10380 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385}
90e4755a 10386
62b3e311
PB
10387static void
10388do_t_dbg (void)
10389{
10390 inst.instruction |= inst.operands[0].imm;
10391}
10392
10393static void
10394do_t_div (void)
10395{
fdfde340
JM
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
62b3e311
PB
10410}
10411
c19d1205
ZW
10412static void
10413do_t_hint (void)
10414{
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419}
90e4755a 10420
c19d1205
ZW
10421static void
10422do_t_it (void)
10423{
10424 unsigned int cond = inst.operands[0].imm;
e27ec89e 10425
e07e6e58
NC
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
5a01bb1d 10429 now_it.warn_deprecated = FALSE;
e27ec89e
PB
10430
10431 /* If the condition is a negative condition, invert the mask. */
c19d1205 10432 if ((cond & 0x1) == 0x0)
90e4755a 10433 {
c19d1205 10434 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10435
c19d1205 10436 if ((mask & 0x7) == 0)
5a01bb1d
MGD
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
c19d1205 10441 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
e27ec89e 10446 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
c19d1205 10451 else
5a01bb1d
MGD
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
90e4755a 10456
e27ec89e
PB
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
c19d1205 10459 }
90e4755a 10460
c19d1205
ZW
10461 inst.instruction |= cond << 4;
10462}
90e4755a 10463
3c707909
PB
10464/* Helper function used for both push/pop and ldm/stm. */
10465static void
10466encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467{
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
3c707909
PB
10480 if (load)
10481 {
e07e6e58
NC
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
3c707909
PB
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
3c707909
PB
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
5f4273c7 10518 mask = ffs (mask) - 1;
3c707909
PB
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526}
10527
c19d1205
ZW
10528static void
10529do_t_ldmstm (void)
10530{
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10536
c19d1205
ZW
10537 if (unified_syntax)
10538 {
3c707909
PB
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
c19d1205
ZW
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
3c707909 10546 && !(inst.operands[1].imm & ~0xff))
90e4755a 10547 {
3c707909 10548 mask = 1 << inst.operands[0].reg;
90e4755a 10549
eab4f823 10550 if (inst.operands[0].reg <= 7)
90e4755a 10551 {
3c707909 10552 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
3c707909 10562
eab4f823
MGD
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
fa94de6b 10582 inst.error =
eab4f823
MGD
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
fa94de6b
RM
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
90e4755a 10593 }
eab4f823 10594 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10595 {
eab4f823
MGD
10596 if (inst.operands[0].writeback)
10597 {
fa94de6b 10598 inst.instruction =
eab4f823
MGD
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
fa94de6b 10606 inst.instruction =
eab4f823
MGD
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
90e4755a 10612 }
3c707909
PB
10613 }
10614
10615 if (!narrow)
10616 {
c19d1205
ZW
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10619
5f4273c7
NC
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
90e4755a
RE
10622 }
10623 }
c19d1205 10624 else
90e4755a 10625 {
c19d1205
ZW
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10631 if (inst.instruction == T_MNEM_stmia)
f03698e6 10632 {
c19d1205
ZW
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10637 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10638 inst.operands[0].reg);
f03698e6 10639 }
c19d1205 10640 else
90e4755a 10641 {
c19d1205
ZW
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10648 }
10649
c19d1205
ZW
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654}
e28cd48c 10655
c19d1205
ZW
10656static void
10657do_t_ldrex (void)
10658{
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
01cfc07f 10663 BAD_ADDR_MODE);
e28cd48c 10664
5be8be5d
DG
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670}
e28cd48c 10671
c19d1205
ZW
10672static void
10673do_t_ldrexd (void)
10674{
10675 if (!inst.operands[1].present)
1cac9012 10676 {
c19d1205
ZW
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10681 }
c19d1205
ZW
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
b99bd4ef 10684
c19d1205
ZW
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10688}
10689
10690static void
c19d1205 10691do_t_ldst (void)
b99bd4ef 10692{
0110f2b8
PB
10693 unsigned long opcode;
10694 int Rn;
10695
e07e6e58
NC
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
0110f2b8 10701 opcode = inst.instruction;
c19d1205 10702 if (unified_syntax)
b99bd4ef 10703 {
53365c0d
PB
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
0110f2b8
PB
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
c19d1205
ZW
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
c19d1205 10717 {
0110f2b8
PB
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10723 /* [Rn, Rik] */
0110f2b8
PB
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
5be8be5d
DG
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
c19d1205 10765 }
0110f2b8 10766 /* Definitely a 32-bit variant. */
5be8be5d 10767
8d67f500
NC
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
5be8be5d 10783 /* Do some validations regarding addressing modes. */
1be5fd2e 10784 if (inst.operands[1].immisreg)
5be8be5d
DG
10785 reject_bad_reg (inst.operands[1].imm);
10786
1be5fd2e
NC
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
0110f2b8 10791 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10794 check_ldr_r15_aligned ();
b99bd4ef
NC
10795 return;
10796 }
10797
c19d1205
ZW
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10801 {
c19d1205
ZW
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
b99bd4ef 10810 }
5f4273c7 10811
c19d1205
ZW
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
b99bd4ef 10816
c19d1205
ZW
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10822 {
c19d1205
ZW
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
b99bd4ef 10830
c19d1205
ZW
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10837
c19d1205
ZW
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
90e4755a 10842
c19d1205
ZW
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
90e4755a 10852
c19d1205
ZW
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
90e4755a 10857
c19d1205
ZW
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
90e4755a 10871
c19d1205
ZW
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875}
90e4755a 10876
c19d1205
ZW
10877static void
10878do_t_ldstd (void)
10879{
10880 if (!inst.operands[1].present)
b99bd4ef 10881 {
c19d1205
ZW
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
bd340a04
MGD
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
b99bd4ef 10887 }
bd340a04
MGD
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
c19d1205
ZW
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10898}
10899
c19d1205
ZW
10900static void
10901do_t_ldstt (void)
10902{
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905}
a737bd4d 10906
b99bd4ef 10907static void
c19d1205 10908do_t_mla (void)
b99bd4ef 10909{
fdfde340 10910 unsigned Rd, Rn, Rm, Ra;
c921be7d 10911
fdfde340
JM
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
c19d1205 10926}
b99bd4ef 10927
c19d1205
ZW
10928static void
10929do_t_mlal (void)
10930{
fdfde340
JM
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
c19d1205 10947}
b99bd4ef 10948
c19d1205
ZW
10949static void
10950do_t_mov_cmp (void)
10951{
fdfde340
JM
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
e07e6e58
NC
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
c19d1205 10960 if (unified_syntax)
b99bd4ef 10961 {
c19d1205
ZW
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10964 unsigned long opcode;
3d388997
PB
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
fdfde340 10968 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10969 opcode = inst.instruction;
e07e6e58 10970 if (in_it_block ())
0110f2b8 10971 narrow = opcode != T_MNEM_movs;
3d388997 10972 else
0110f2b8 10973 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
efd81785
PB
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
fdfde340
JM
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
efd81785
PB
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
fdfde340
JM
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
fdfde340
JM
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
76fa04a4
MGD
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
fdfde340
JM
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
c19d1205
ZW
11037 if (!inst.operands[1].isreg)
11038 {
0110f2b8 11039 /* Immediate operand. */
e07e6e58 11040 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
fdfde340 11045 inst.instruction |= Rn << 8;
0110f2b8
PB
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11055 inst.instruction |= Rn << r0off;
0110f2b8
PB
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
c19d1205 11058 }
728ca7c9
PB
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
e07e6e58 11066 if (in_it_block ())
728ca7c9
PB
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
fdfde340 11077 if (Rn != Rm)
728ca7c9
PB
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
5f4273c7 11095 abort ();
728ca7c9
PB
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
fdfde340 11101 inst.instruction |= Rn;
728ca7c9
PB
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
fdfde340
JM
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
728ca7c9
PB
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
3d388997 11114 else if (!narrow)
c19d1205 11115 {
728ca7c9
PB
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
e07e6e58 11122 if (in_it_block ())
728ca7c9
PB
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
fdfde340
JM
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
728ca7c9
PB
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11148 inst.instruction |= Rn << r0off;
728ca7c9
PB
11149 encode_thumb32_shifted_operand (1);
11150 }
c19d1205
ZW
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
837b3435 11156 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
fa94de6b 11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
11164 arm_ext_v6);
11165 }
11166
c19d1205 11167 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
c19d1205 11171 break;
b99bd4ef 11172
c19d1205
ZW
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
941a8a52
MGD
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
c19d1205
ZW
11179 break;
11180
11181 case T_MNEM_cmp:
3d388997 11182 if (low_regs)
c19d1205
ZW
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
c19d1205
ZW
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
c19d1205
ZW
11194 }
11195 break;
11196 }
b99bd4ef
NC
11197 return;
11198 }
11199
c19d1205 11200 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
c19d1205 11206 if (inst.operands[1].isreg)
b99bd4ef 11207 {
fdfde340 11208 if (Rn < 8 && Rm < 8)
b99bd4ef 11209 {
c19d1205
ZW
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 11214 else
c19d1205 11215 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 11216
fdfde340
JM
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
b99bd4ef
NC
11219 }
11220 else
11221 {
c19d1205
ZW
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
b99bd4ef
NC
11227 }
11228 }
c19d1205 11229 else
b99bd4ef 11230 {
fdfde340 11231 constraint (Rn > 7,
c19d1205 11232 _("only lo regs allowed with immediate"));
fdfde340 11233 inst.instruction |= Rn << 8;
c19d1205
ZW
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236}
b99bd4ef 11237
c19d1205
ZW
11238static void
11239do_t_mov16 (void)
11240{
fdfde340 11241 unsigned Rd;
b6895b4f
PB
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
fdfde340
JM
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
b6895b4f
PB
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
c19d1205 11269}
b99bd4ef 11270
c19d1205
ZW
11271static void
11272do_t_mvn_tst (void)
11273{
fdfde340 11274 unsigned Rn, Rm;
c921be7d 11275
fdfde340
JM
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
c19d1205
ZW
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
fdfde340 11295 || Rn > 7 || Rm > 7)
3d388997
PB
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11300 narrow = !in_it_block ();
3d388997 11301 else
e07e6e58 11302 narrow = in_it_block ();
3d388997 11303
c19d1205 11304 if (!inst.operands[1].isreg)
b99bd4ef 11305 {
c19d1205
ZW
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11311 inst.instruction |= Rn << r0off;
c19d1205 11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11313 }
c19d1205 11314 else
b99bd4ef 11315 {
c19d1205 11316 /* See if we can do this with a 16-bit instruction. */
3d388997 11317 if (narrow)
b99bd4ef 11318 {
c19d1205 11319 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
b99bd4ef 11322 }
c19d1205 11323 else
b99bd4ef 11324 {
c19d1205
ZW
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11330 inst.instruction |= Rn << r0off;
c19d1205 11331 encode_thumb32_shifted_operand (1);
b99bd4ef 11332 }
b99bd4ef
NC
11333 }
11334 }
11335 else
11336 {
c19d1205
ZW
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
fdfde340 11341 constraint (Rn > 7 || Rm > 7,
c19d1205 11342 BAD_HIREG);
b99bd4ef 11343
c19d1205 11344 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
b99bd4ef 11347 }
b99bd4ef
NC
11348}
11349
b05fe5cf 11350static void
c19d1205 11351do_t_mrs (void)
b05fe5cf 11352{
fdfde340 11353 unsigned Rd;
037e8744
JB
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
90ec0d68
MGD
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
62b3e311 11363 {
90ec0d68
MGD
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11371 }
11372 else
11373 {
90ec0d68 11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11375
d2cd1205 11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
90ec0d68 11385 else
d2cd1205
JB
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11390
90ec0d68
MGD
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
c19d1205 11395}
b05fe5cf 11396
c19d1205
ZW
11397static void
11398do_t_msr (void)
11399{
62b3e311 11400 int flags;
fdfde340 11401 unsigned Rn;
62b3e311 11402
037e8744
JB
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
c19d1205
ZW
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
d2cd1205 11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11415 {
d2cd1205
JB
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
1a43faaf
NC
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
62b3e311
PB
11428 }
11429 else
d2cd1205
JB
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
c921be7d 11432
fdfde340
JM
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
62b3e311 11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11439 inst.instruction |= (flags & 0xff);
fdfde340 11440 inst.instruction |= Rn << 16;
c19d1205 11441}
b05fe5cf 11442
c19d1205
ZW
11443static void
11444do_t_mul (void)
11445{
17828f45 11446 bfd_boolean narrow;
fdfde340 11447 unsigned Rd, Rn, Rm;
17828f45 11448
c19d1205
ZW
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11451
fdfde340
JM
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
17828f45 11456 if (unified_syntax)
b05fe5cf 11457 {
17828f45 11458 if (inst.size_req == 4
fdfde340
JM
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
17828f45
JM
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11465 narrow = !in_it_block ();
17828f45 11466 else
e07e6e58 11467 narrow = in_it_block ();
b05fe5cf 11468 }
c19d1205 11469 else
b05fe5cf 11470 {
17828f45 11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11472 constraint (Rn > 7 || Rm > 7,
c19d1205 11473 BAD_HIREG);
17828f45
JM
11474 narrow = TRUE;
11475 }
b05fe5cf 11476
17828f45
JM
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
c19d1205 11480 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11481 inst.instruction |= Rd;
b05fe5cf 11482
fdfde340
JM
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
c19d1205
ZW
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
17828f45
JM
11490 else
11491 {
e07e6e58
NC
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
17828f45 11503 }
c19d1205 11504}
b05fe5cf 11505
c19d1205
ZW
11506static void
11507do_t_mull (void)
11508{
fdfde340 11509 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11510
fdfde340
JM
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
c19d1205
ZW
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528}
b05fe5cf 11529
c19d1205
ZW
11530static void
11531do_t_nop (void)
11532{
e07e6e58
NC
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
c19d1205
ZW
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11538 {
c19d1205
ZW
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
bc2d1808
NC
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
afa62d5e 11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
c19d1205
ZW
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561}
b05fe5cf 11562
c19d1205
ZW
11563static void
11564do_t_neg (void)
11565{
11566 if (unified_syntax)
11567 {
3d388997
PB
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11571 narrow = !in_it_block ();
3d388997 11572 else
e07e6e58 11573 narrow = in_it_block ();
3d388997
PB
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
c19d1205
ZW
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11584 }
11585 else
11586 {
c19d1205
ZW
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11590 }
11591 }
11592 else
11593 {
c19d1205
ZW
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602}
11603
1c444d06
JM
11604static void
11605do_t_orn (void)
11606{
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
fdfde340
JM
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
1c444d06
JM
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
fdfde340 11629 reject_bad_reg (Rm);
1c444d06
JM
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636}
11637
c19d1205
ZW
11638static void
11639do_t_pkhbt (void)
11640{
fdfde340
JM
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
c19d1205
ZW
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11661 }
c19d1205 11662}
b05fe5cf 11663
c19d1205
ZW
11664static void
11665do_t_pkhtb (void)
11666{
11667 if (!inst.operands[3].present)
1ef52f49
NC
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
c19d1205 11678 do_t_pkhbt ();
b05fe5cf
ZW
11679}
11680
c19d1205
ZW
11681static void
11682do_t_pld (void)
11683{
fdfde340
JM
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
c19d1205
ZW
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688}
b05fe5cf 11689
c19d1205
ZW
11690static void
11691do_t_push_pop (void)
b99bd4ef 11692{
e9f89963 11693 unsigned mask;
5f4273c7 11694
c19d1205
ZW
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
b99bd4ef 11699
e9f89963
PB
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
3c707909 11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11703 else if ((inst.instruction == T_MNEM_push
e9f89963 11704 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11705 || (inst.instruction == T_MNEM_pop
e9f89963 11706 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11707 {
c19d1205
ZW
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11710 inst.instruction |= mask & 0xff;
c19d1205
ZW
11711 }
11712 else if (unified_syntax)
11713 {
3c707909 11714 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11715 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
c19d1205 11722}
b99bd4ef 11723
c19d1205
ZW
11724static void
11725do_t_rbit (void)
11726{
fdfde340
JM
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
c19d1205 11738}
b99bd4ef 11739
c19d1205
ZW
11740static void
11741do_t_rev (void)
11742{
fdfde340
JM
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
c19d1205
ZW
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
c19d1205
ZW
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767}
b99bd4ef 11768
1c444d06
JM
11769static void
11770do_t_rrx (void)
11771{
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
fdfde340
JM
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
c921be7d 11779
1c444d06
JM
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782}
11783
c19d1205
ZW
11784static void
11785do_t_rsb (void)
11786{
fdfde340 11787 unsigned Rd, Rs;
b99bd4ef 11788
c19d1205
ZW
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11793
fdfde340
JM
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
c19d1205
ZW
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
026d3abb
PB
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11806 narrow = !in_it_block ();
026d3abb 11807 else
e07e6e58 11808 narrow = in_it_block ();
026d3abb
PB
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
c19d1205
ZW
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837}
b99bd4ef 11838
c19d1205
ZW
11839static void
11840do_t_setend (void)
11841{
12e37cbc
MGD
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
e07e6e58 11846 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849}
b99bd4ef 11850
c19d1205
ZW
11851static void
11852do_t_shift (void)
11853{
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
3d388997
PB
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11876 narrow = !in_it_block ();
3d388997 11877 else
e07e6e58 11878 narrow = in_it_block ();
3d388997
PB
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
fdfde340
JM
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
c921be7d 11892
3d388997 11893 if (!narrow)
c19d1205
ZW
11894 {
11895 if (inst.operands[2].isreg)
b99bd4ef 11896 {
fdfde340 11897 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
3d388997 11910 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11917 }
11918 }
11919 else
11920 {
c19d1205 11921 if (inst.operands[2].isreg)
b99bd4ef 11922 {
3d388997 11923 switch (shift_kind)
b99bd4ef 11924 {
3d388997
PB
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11929 default: abort ();
b99bd4ef 11930 }
5f4273c7 11931
c19d1205
ZW
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11938 }
11939 else
11940 {
3d388997 11941 switch (shift_kind)
b99bd4ef 11942 {
3d388997
PB
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11946 default: abort ();
b99bd4ef 11947 }
c19d1205
ZW
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11951 }
11952 }
c19d1205
ZW
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11959
c19d1205
ZW
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
b99bd4ef 11965
c19d1205
ZW
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
5f4273c7 11974
c19d1205
ZW
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11981 }
11982 else
b99bd4ef 11983 {
c19d1205
ZW
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11995 }
11996 }
b99bd4ef
NC
11997}
11998
11999static void
c19d1205 12000do_t_simd (void)
b99bd4ef 12001{
fdfde340
JM
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
c19d1205 12015}
b99bd4ef 12016
03ee1b7f
NC
12017static void
12018do_t_simd2 (void)
12019{
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033}
12034
c19d1205 12035static void
3eb17e6b 12036do_t_smc (void)
c19d1205
ZW
12037{
12038 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
c19d1205
ZW
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047}
b99bd4ef 12048
90ec0d68
MGD
12049static void
12050do_t_hvc (void)
12051{
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057}
12058
c19d1205 12059static void
3a21c15a 12060do_t_ssat_usat (int bias)
c19d1205 12061{
fdfde340
JM
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
3a21c15a 12071 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 12072 inst.instruction |= Rn << 16;
b99bd4ef 12073
c19d1205 12074 if (inst.operands[3].present)
b99bd4ef 12075 {
3a21c15a
NC
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
c19d1205
ZW
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
b99bd4ef 12082
3a21c15a 12083 if (shift_amount != 0)
6189168b 12084 {
3a21c15a
NC
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
c19d1205 12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
12093 }
12094 }
b99bd4ef 12095}
c921be7d 12096
3a21c15a
NC
12097static void
12098do_t_ssat (void)
12099{
12100 do_t_ssat_usat (1);
12101}
b99bd4ef 12102
0dd132b6 12103static void
c19d1205 12104do_t_ssat16 (void)
0dd132b6 12105{
fdfde340
JM
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
c19d1205 12115 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 12116 inst.instruction |= Rn << 16;
c19d1205 12117}
0dd132b6 12118
c19d1205
ZW
12119static void
12120do_t_strex (void)
12121{
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
01cfc07f 12126 BAD_ADDR_MODE);
0dd132b6 12127
5be8be5d
DG
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
c19d1205
ZW
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
12134}
12135
b99bd4ef 12136static void
c19d1205 12137do_t_strexd (void)
b99bd4ef 12138{
c19d1205
ZW
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 12141
c19d1205
ZW
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 12144 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 12145 BAD_OVERLAP);
b99bd4ef 12146
c19d1205
ZW
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
12151}
12152
12153static void
c19d1205 12154do_t_sxtah (void)
b99bd4ef 12155{
fdfde340
JM
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
c19d1205
ZW
12169 inst.instruction |= inst.operands[3].imm << 4;
12170}
b99bd4ef 12171
c19d1205
ZW
12172static void
12173do_t_sxth (void)
12174{
fdfde340
JM
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
c921be7d
NC
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
fdfde340 12185 && Rd <= 7 && Rm <= 7
c19d1205 12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 12187 {
c19d1205 12188 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
b99bd4ef 12191 }
c19d1205 12192 else if (unified_syntax)
b99bd4ef 12193 {
c19d1205
ZW
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
c19d1205 12198 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 12199 }
c19d1205 12200 else
b99bd4ef 12201 {
c19d1205
ZW
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
b99bd4ef 12205 }
c19d1205 12206}
b99bd4ef 12207
c19d1205
ZW
12208static void
12209do_t_swi (void)
12210{
b2a5fbdc
MGD
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
ac7f631b
NC
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
c19d1205
ZW
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223}
b99bd4ef 12224
92e90b6e
PB
12225static void
12226do_t_tb (void)
12227{
fdfde340 12228 unsigned Rn, Rm;
92e90b6e
PB
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
e07e6e58 12232 set_it_insn_type_last ();
dfa9f0d5
PB
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
fdfde340
JM
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
c921be7d 12238
fdfde340
JM
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
92e90b6e
PB
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
fdfde340 12244 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
12245}
12246
c19d1205
ZW
12247static void
12248do_t_usat (void)
12249{
3a21c15a 12250 do_t_ssat_usat (0);
b99bd4ef
NC
12251}
12252
12253static void
c19d1205 12254do_t_usat16 (void)
b99bd4ef 12255{
fdfde340
JM
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
c19d1205 12265 inst.instruction |= inst.operands[1].imm;
fdfde340 12266 inst.instruction |= Rn << 16;
b99bd4ef 12267}
c19d1205 12268
5287ad62 12269/* Neon instruction encoder helpers. */
5f4273c7 12270
5287ad62 12271/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12272
5287ad62
JB
12273/* An "invalid" code for the following tables. */
12274#define N_INV -1u
12275
12276struct neon_tab_entry
b99bd4ef 12277{
5287ad62
JB
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281};
5f4273c7 12282
5287ad62
JB
12283/* Map overloaded Neon opcodes to their respective encodings. */
12284#define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
e07e6e58 12297 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
12348 X(vselgt, 0xe300a00, N_INV, N_INV)
5287ad62
JB
12349
12350enum neon_opc
12351{
12352#define X(OPC,I,F,S) N_MNEM_##OPC
12353NEON_ENC_TAB
12354#undef X
12355};
b99bd4ef 12356
5287ad62
JB
12357static const struct neon_tab_entry neon_enc_tab[] =
12358{
12359#define X(OPC,I,F,S) { (I), (F), (S) }
12360NEON_ENC_TAB
12361#undef X
12362};
b99bd4ef 12363
88714cb8
DG
12364/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12365#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12366#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12367#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12368#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12369#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12370#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12371#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12372#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12373#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12374#define NEON_ENC_SINGLE_(X) \
037e8744 12375 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12376#define NEON_ENC_DOUBLE_(X) \
037e8744 12377 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
12378#define NEON_ENC_FPV8_(X) \
12379 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 12380
88714cb8
DG
12381#define NEON_ENCODE(type, inst) \
12382 do \
12383 { \
12384 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12385 inst.is_neon = 1; \
12386 } \
12387 while (0)
12388
12389#define check_neon_suffixes \
12390 do \
12391 { \
12392 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12393 { \
12394 as_bad (_("invalid neon suffix for non neon instruction")); \
12395 return; \
12396 } \
12397 } \
12398 while (0)
12399
037e8744
JB
12400/* Define shapes for instruction operands. The following mnemonic characters
12401 are used in this table:
5287ad62 12402
037e8744 12403 F - VFP S<n> register
5287ad62
JB
12404 D - Neon D<n> register
12405 Q - Neon Q<n> register
12406 I - Immediate
12407 S - Scalar
12408 R - ARM register
12409 L - D<n> register list
5f4273c7 12410
037e8744
JB
12411 This table is used to generate various data:
12412 - enumerations of the form NS_DDR to be used as arguments to
12413 neon_select_shape.
12414 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12415 - a table used to drive neon_select_shape. */
b99bd4ef 12416
037e8744
JB
12417#define NEON_SHAPE_DEF \
12418 X(3, (D, D, D), DOUBLE), \
12419 X(3, (Q, Q, Q), QUAD), \
12420 X(3, (D, D, I), DOUBLE), \
12421 X(3, (Q, Q, I), QUAD), \
12422 X(3, (D, D, S), DOUBLE), \
12423 X(3, (Q, Q, S), QUAD), \
12424 X(2, (D, D), DOUBLE), \
12425 X(2, (Q, Q), QUAD), \
12426 X(2, (D, S), DOUBLE), \
12427 X(2, (Q, S), QUAD), \
12428 X(2, (D, R), DOUBLE), \
12429 X(2, (Q, R), QUAD), \
12430 X(2, (D, I), DOUBLE), \
12431 X(2, (Q, I), QUAD), \
12432 X(3, (D, L, D), DOUBLE), \
12433 X(2, (D, Q), MIXED), \
12434 X(2, (Q, D), MIXED), \
12435 X(3, (D, Q, I), MIXED), \
12436 X(3, (Q, D, I), MIXED), \
12437 X(3, (Q, D, D), MIXED), \
12438 X(3, (D, Q, Q), MIXED), \
12439 X(3, (Q, Q, D), MIXED), \
12440 X(3, (Q, D, S), MIXED), \
12441 X(3, (D, Q, S), MIXED), \
12442 X(4, (D, D, D, I), DOUBLE), \
12443 X(4, (Q, Q, Q, I), QUAD), \
12444 X(2, (F, F), SINGLE), \
12445 X(3, (F, F, F), SINGLE), \
12446 X(2, (F, I), SINGLE), \
12447 X(2, (F, D), MIXED), \
12448 X(2, (D, F), MIXED), \
12449 X(3, (F, F, I), MIXED), \
12450 X(4, (R, R, F, F), SINGLE), \
12451 X(4, (F, F, R, R), SINGLE), \
12452 X(3, (D, R, R), DOUBLE), \
12453 X(3, (R, R, D), DOUBLE), \
12454 X(2, (S, R), SINGLE), \
12455 X(2, (R, S), SINGLE), \
12456 X(2, (F, R), SINGLE), \
12457 X(2, (R, F), SINGLE)
12458
12459#define S2(A,B) NS_##A##B
12460#define S3(A,B,C) NS_##A##B##C
12461#define S4(A,B,C,D) NS_##A##B##C##D
12462
12463#define X(N, L, C) S##N L
12464
5287ad62
JB
12465enum neon_shape
12466{
037e8744
JB
12467 NEON_SHAPE_DEF,
12468 NS_NULL
5287ad62 12469};
b99bd4ef 12470
037e8744
JB
12471#undef X
12472#undef S2
12473#undef S3
12474#undef S4
12475
12476enum neon_shape_class
12477{
12478 SC_SINGLE,
12479 SC_DOUBLE,
12480 SC_QUAD,
12481 SC_MIXED
12482};
12483
12484#define X(N, L, C) SC_##C
12485
12486static enum neon_shape_class neon_shape_class[] =
12487{
12488 NEON_SHAPE_DEF
12489};
12490
12491#undef X
12492
12493enum neon_shape_el
12494{
12495 SE_F,
12496 SE_D,
12497 SE_Q,
12498 SE_I,
12499 SE_S,
12500 SE_R,
12501 SE_L
12502};
12503
12504/* Register widths of above. */
12505static unsigned neon_shape_el_size[] =
12506{
12507 32,
12508 64,
12509 128,
12510 0,
12511 32,
12512 32,
12513 0
12514};
12515
12516struct neon_shape_info
12517{
12518 unsigned els;
12519 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12520};
12521
12522#define S2(A,B) { SE_##A, SE_##B }
12523#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12524#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12525
12526#define X(N, L, C) { N, S##N L }
12527
12528static struct neon_shape_info neon_shape_tab[] =
12529{
12530 NEON_SHAPE_DEF
12531};
12532
12533#undef X
12534#undef S2
12535#undef S3
12536#undef S4
12537
5287ad62
JB
12538/* Bit masks used in type checking given instructions.
12539 'N_EQK' means the type must be the same as (or based on in some way) the key
12540 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12541 set, various other bits can be set as well in order to modify the meaning of
12542 the type constraint. */
12543
12544enum neon_type_mask
12545{
8e79c3df
CM
12546 N_S8 = 0x0000001,
12547 N_S16 = 0x0000002,
12548 N_S32 = 0x0000004,
12549 N_S64 = 0x0000008,
12550 N_U8 = 0x0000010,
12551 N_U16 = 0x0000020,
12552 N_U32 = 0x0000040,
12553 N_U64 = 0x0000080,
12554 N_I8 = 0x0000100,
12555 N_I16 = 0x0000200,
12556 N_I32 = 0x0000400,
12557 N_I64 = 0x0000800,
12558 N_8 = 0x0001000,
12559 N_16 = 0x0002000,
12560 N_32 = 0x0004000,
12561 N_64 = 0x0008000,
12562 N_P8 = 0x0010000,
12563 N_P16 = 0x0020000,
12564 N_F16 = 0x0040000,
12565 N_F32 = 0x0080000,
12566 N_F64 = 0x0100000,
c921be7d
NC
12567 N_KEY = 0x1000000, /* Key element (main type specifier). */
12568 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12569 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12570 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12571 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12572 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12573 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12574 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12575 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12576 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12577 N_UTYP = 0,
037e8744 12578 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12579};
12580
dcbf9037
JB
12581#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12582
5287ad62
JB
12583#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12584#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12585#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12586#define N_SUF_32 (N_SU_32 | N_F32)
12587#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12588#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12589
12590/* Pass this as the first type argument to neon_check_type to ignore types
12591 altogether. */
12592#define N_IGNORE_TYPE (N_KEY | N_EQK)
12593
037e8744
JB
12594/* Select a "shape" for the current instruction (describing register types or
12595 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12596 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12597 function of operand parsing, so this function doesn't need to be called.
12598 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12599
12600static enum neon_shape
037e8744 12601neon_select_shape (enum neon_shape shape, ...)
5287ad62 12602{
037e8744
JB
12603 va_list ap;
12604 enum neon_shape first_shape = shape;
5287ad62
JB
12605
12606 /* Fix missing optional operands. FIXME: we don't know at this point how
12607 many arguments we should have, so this makes the assumption that we have
12608 > 1. This is true of all current Neon opcodes, I think, but may not be
12609 true in the future. */
12610 if (!inst.operands[1].present)
12611 inst.operands[1] = inst.operands[0];
12612
037e8744 12613 va_start (ap, shape);
5f4273c7 12614
21d799b5 12615 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12616 {
12617 unsigned j;
12618 int matches = 1;
12619
12620 for (j = 0; j < neon_shape_tab[shape].els; j++)
12621 {
12622 if (!inst.operands[j].present)
12623 {
12624 matches = 0;
12625 break;
12626 }
12627
12628 switch (neon_shape_tab[shape].el[j])
12629 {
12630 case SE_F:
12631 if (!(inst.operands[j].isreg
12632 && inst.operands[j].isvec
12633 && inst.operands[j].issingle
12634 && !inst.operands[j].isquad))
12635 matches = 0;
12636 break;
12637
12638 case SE_D:
12639 if (!(inst.operands[j].isreg
12640 && inst.operands[j].isvec
12641 && !inst.operands[j].isquad
12642 && !inst.operands[j].issingle))
12643 matches = 0;
12644 break;
12645
12646 case SE_R:
12647 if (!(inst.operands[j].isreg
12648 && !inst.operands[j].isvec))
12649 matches = 0;
12650 break;
12651
12652 case SE_Q:
12653 if (!(inst.operands[j].isreg
12654 && inst.operands[j].isvec
12655 && inst.operands[j].isquad
12656 && !inst.operands[j].issingle))
12657 matches = 0;
12658 break;
12659
12660 case SE_I:
12661 if (!(!inst.operands[j].isreg
12662 && !inst.operands[j].isscalar))
12663 matches = 0;
12664 break;
12665
12666 case SE_S:
12667 if (!(!inst.operands[j].isreg
12668 && inst.operands[j].isscalar))
12669 matches = 0;
12670 break;
12671
12672 case SE_L:
12673 break;
12674 }
3fde54a2
JZ
12675 if (!matches)
12676 break;
037e8744 12677 }
ad6cec43
MGD
12678 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12679 /* We've matched all the entries in the shape table, and we don't
12680 have any left over operands which have not been matched. */
5287ad62 12681 break;
037e8744 12682 }
5f4273c7 12683
037e8744 12684 va_end (ap);
5287ad62 12685
037e8744
JB
12686 if (shape == NS_NULL && first_shape != NS_NULL)
12687 first_error (_("invalid instruction shape"));
5287ad62 12688
037e8744
JB
12689 return shape;
12690}
5287ad62 12691
037e8744
JB
12692/* True if SHAPE is predominantly a quadword operation (most of the time, this
12693 means the Q bit should be set). */
12694
12695static int
12696neon_quad (enum neon_shape shape)
12697{
12698 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12699}
037e8744 12700
5287ad62
JB
12701static void
12702neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12703 unsigned *g_size)
12704{
12705 /* Allow modification to be made to types which are constrained to be
12706 based on the key element, based on bits set alongside N_EQK. */
12707 if ((typebits & N_EQK) != 0)
12708 {
12709 if ((typebits & N_HLF) != 0)
12710 *g_size /= 2;
12711 else if ((typebits & N_DBL) != 0)
12712 *g_size *= 2;
12713 if ((typebits & N_SGN) != 0)
12714 *g_type = NT_signed;
12715 else if ((typebits & N_UNS) != 0)
12716 *g_type = NT_unsigned;
12717 else if ((typebits & N_INT) != 0)
12718 *g_type = NT_integer;
12719 else if ((typebits & N_FLT) != 0)
12720 *g_type = NT_float;
dcbf9037
JB
12721 else if ((typebits & N_SIZ) != 0)
12722 *g_type = NT_untyped;
5287ad62
JB
12723 }
12724}
5f4273c7 12725
5287ad62
JB
12726/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12727 operand type, i.e. the single type specified in a Neon instruction when it
12728 is the only one given. */
12729
12730static struct neon_type_el
12731neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12732{
12733 struct neon_type_el dest = *key;
5f4273c7 12734
9c2799c2 12735 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12736
5287ad62
JB
12737 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12738
12739 return dest;
12740}
12741
12742/* Convert Neon type and size into compact bitmask representation. */
12743
12744static enum neon_type_mask
12745type_chk_of_el_type (enum neon_el_type type, unsigned size)
12746{
12747 switch (type)
12748 {
12749 case NT_untyped:
12750 switch (size)
12751 {
12752 case 8: return N_8;
12753 case 16: return N_16;
12754 case 32: return N_32;
12755 case 64: return N_64;
12756 default: ;
12757 }
12758 break;
12759
12760 case NT_integer:
12761 switch (size)
12762 {
12763 case 8: return N_I8;
12764 case 16: return N_I16;
12765 case 32: return N_I32;
12766 case 64: return N_I64;
12767 default: ;
12768 }
12769 break;
12770
12771 case NT_float:
037e8744
JB
12772 switch (size)
12773 {
8e79c3df 12774 case 16: return N_F16;
037e8744
JB
12775 case 32: return N_F32;
12776 case 64: return N_F64;
12777 default: ;
12778 }
5287ad62
JB
12779 break;
12780
12781 case NT_poly:
12782 switch (size)
12783 {
12784 case 8: return N_P8;
12785 case 16: return N_P16;
12786 default: ;
12787 }
12788 break;
12789
12790 case NT_signed:
12791 switch (size)
12792 {
12793 case 8: return N_S8;
12794 case 16: return N_S16;
12795 case 32: return N_S32;
12796 case 64: return N_S64;
12797 default: ;
12798 }
12799 break;
12800
12801 case NT_unsigned:
12802 switch (size)
12803 {
12804 case 8: return N_U8;
12805 case 16: return N_U16;
12806 case 32: return N_U32;
12807 case 64: return N_U64;
12808 default: ;
12809 }
12810 break;
12811
12812 default: ;
12813 }
5f4273c7 12814
5287ad62
JB
12815 return N_UTYP;
12816}
12817
12818/* Convert compact Neon bitmask type representation to a type and size. Only
12819 handles the case where a single bit is set in the mask. */
12820
dcbf9037 12821static int
5287ad62
JB
12822el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12823 enum neon_type_mask mask)
12824{
dcbf9037
JB
12825 if ((mask & N_EQK) != 0)
12826 return FAIL;
12827
5287ad62
JB
12828 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12829 *size = 8;
dcbf9037 12830 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12831 *size = 16;
dcbf9037 12832 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12833 *size = 32;
037e8744 12834 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12835 *size = 64;
dcbf9037
JB
12836 else
12837 return FAIL;
12838
5287ad62
JB
12839 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12840 *type = NT_signed;
dcbf9037 12841 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12842 *type = NT_unsigned;
dcbf9037 12843 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12844 *type = NT_integer;
dcbf9037 12845 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12846 *type = NT_untyped;
dcbf9037 12847 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12848 *type = NT_poly;
037e8744 12849 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12850 *type = NT_float;
dcbf9037
JB
12851 else
12852 return FAIL;
5f4273c7 12853
dcbf9037 12854 return SUCCESS;
5287ad62
JB
12855}
12856
12857/* Modify a bitmask of allowed types. This is only needed for type
12858 relaxation. */
12859
12860static unsigned
12861modify_types_allowed (unsigned allowed, unsigned mods)
12862{
12863 unsigned size;
12864 enum neon_el_type type;
12865 unsigned destmask;
12866 int i;
5f4273c7 12867
5287ad62 12868 destmask = 0;
5f4273c7 12869
5287ad62
JB
12870 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12871 {
21d799b5
NC
12872 if (el_type_of_type_chk (&type, &size,
12873 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12874 {
12875 neon_modify_type_size (mods, &type, &size);
12876 destmask |= type_chk_of_el_type (type, size);
12877 }
5287ad62 12878 }
5f4273c7 12879
5287ad62
JB
12880 return destmask;
12881}
12882
12883/* Check type and return type classification.
12884 The manual states (paraphrase): If one datatype is given, it indicates the
12885 type given in:
12886 - the second operand, if there is one
12887 - the operand, if there is no second operand
12888 - the result, if there are no operands.
12889 This isn't quite good enough though, so we use a concept of a "key" datatype
12890 which is set on a per-instruction basis, which is the one which matters when
12891 only one data type is written.
12892 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12893 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12894
12895static struct neon_type_el
12896neon_check_type (unsigned els, enum neon_shape ns, ...)
12897{
12898 va_list ap;
12899 unsigned i, pass, key_el = 0;
12900 unsigned types[NEON_MAX_TYPE_ELS];
12901 enum neon_el_type k_type = NT_invtype;
12902 unsigned k_size = -1u;
12903 struct neon_type_el badtype = {NT_invtype, -1};
12904 unsigned key_allowed = 0;
12905
12906 /* Optional registers in Neon instructions are always (not) in operand 1.
12907 Fill in the missing operand here, if it was omitted. */
12908 if (els > 1 && !inst.operands[1].present)
12909 inst.operands[1] = inst.operands[0];
12910
12911 /* Suck up all the varargs. */
12912 va_start (ap, ns);
12913 for (i = 0; i < els; i++)
12914 {
12915 unsigned thisarg = va_arg (ap, unsigned);
12916 if (thisarg == N_IGNORE_TYPE)
12917 {
12918 va_end (ap);
12919 return badtype;
12920 }
12921 types[i] = thisarg;
12922 if ((thisarg & N_KEY) != 0)
12923 key_el = i;
12924 }
12925 va_end (ap);
12926
dcbf9037
JB
12927 if (inst.vectype.elems > 0)
12928 for (i = 0; i < els; i++)
12929 if (inst.operands[i].vectype.type != NT_invtype)
12930 {
12931 first_error (_("types specified in both the mnemonic and operands"));
12932 return badtype;
12933 }
12934
5287ad62
JB
12935 /* Duplicate inst.vectype elements here as necessary.
12936 FIXME: No idea if this is exactly the same as the ARM assembler,
12937 particularly when an insn takes one register and one non-register
12938 operand. */
12939 if (inst.vectype.elems == 1 && els > 1)
12940 {
12941 unsigned j;
12942 inst.vectype.elems = els;
12943 inst.vectype.el[key_el] = inst.vectype.el[0];
12944 for (j = 0; j < els; j++)
dcbf9037
JB
12945 if (j != key_el)
12946 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12947 types[j]);
12948 }
12949 else if (inst.vectype.elems == 0 && els > 0)
12950 {
12951 unsigned j;
12952 /* No types were given after the mnemonic, so look for types specified
12953 after each operand. We allow some flexibility here; as long as the
12954 "key" operand has a type, we can infer the others. */
12955 for (j = 0; j < els; j++)
12956 if (inst.operands[j].vectype.type != NT_invtype)
12957 inst.vectype.el[j] = inst.operands[j].vectype;
12958
12959 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12960 {
dcbf9037
JB
12961 for (j = 0; j < els; j++)
12962 if (inst.operands[j].vectype.type == NT_invtype)
12963 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12964 types[j]);
12965 }
12966 else
12967 {
12968 first_error (_("operand types can't be inferred"));
12969 return badtype;
5287ad62
JB
12970 }
12971 }
12972 else if (inst.vectype.elems != els)
12973 {
dcbf9037 12974 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12975 return badtype;
12976 }
12977
12978 for (pass = 0; pass < 2; pass++)
12979 {
12980 for (i = 0; i < els; i++)
12981 {
12982 unsigned thisarg = types[i];
12983 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12984 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12985 enum neon_el_type g_type = inst.vectype.el[i].type;
12986 unsigned g_size = inst.vectype.el[i].size;
12987
12988 /* Decay more-specific signed & unsigned types to sign-insensitive
12989 integer types if sign-specific variants are unavailable. */
12990 if ((g_type == NT_signed || g_type == NT_unsigned)
12991 && (types_allowed & N_SU_ALL) == 0)
12992 g_type = NT_integer;
12993
12994 /* If only untyped args are allowed, decay any more specific types to
12995 them. Some instructions only care about signs for some element
12996 sizes, so handle that properly. */
12997 if ((g_size == 8 && (types_allowed & N_8) != 0)
12998 || (g_size == 16 && (types_allowed & N_16) != 0)
12999 || (g_size == 32 && (types_allowed & N_32) != 0)
13000 || (g_size == 64 && (types_allowed & N_64) != 0))
13001 g_type = NT_untyped;
13002
13003 if (pass == 0)
13004 {
13005 if ((thisarg & N_KEY) != 0)
13006 {
13007 k_type = g_type;
13008 k_size = g_size;
13009 key_allowed = thisarg & ~N_KEY;
13010 }
13011 }
13012 else
13013 {
037e8744
JB
13014 if ((thisarg & N_VFP) != 0)
13015 {
99b253c5
NC
13016 enum neon_shape_el regshape;
13017 unsigned regwidth, match;
13018
13019 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13020 if (ns == NS_NULL)
13021 {
13022 first_error (_("invalid instruction shape"));
13023 return badtype;
13024 }
13025 regshape = neon_shape_tab[ns].el[i];
13026 regwidth = neon_shape_el_size[regshape];
037e8744
JB
13027
13028 /* In VFP mode, operands must match register widths. If we
13029 have a key operand, use its width, else use the width of
13030 the current operand. */
13031 if (k_size != -1u)
13032 match = k_size;
13033 else
13034 match = g_size;
13035
13036 if (regwidth != match)
13037 {
13038 first_error (_("operand size must match register width"));
13039 return badtype;
13040 }
13041 }
5f4273c7 13042
5287ad62
JB
13043 if ((thisarg & N_EQK) == 0)
13044 {
13045 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13046
13047 if ((given_type & types_allowed) == 0)
13048 {
dcbf9037 13049 first_error (_("bad type in Neon instruction"));
5287ad62
JB
13050 return badtype;
13051 }
13052 }
13053 else
13054 {
13055 enum neon_el_type mod_k_type = k_type;
13056 unsigned mod_k_size = k_size;
13057 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13058 if (g_type != mod_k_type || g_size != mod_k_size)
13059 {
dcbf9037 13060 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
13061 return badtype;
13062 }
13063 }
13064 }
13065 }
13066 }
13067
13068 return inst.vectype.el[key_el];
13069}
13070
037e8744 13071/* Neon-style VFP instruction forwarding. */
5287ad62 13072
037e8744
JB
13073/* Thumb VFP instructions have 0xE in the condition field. */
13074
13075static void
13076do_vfp_cond_or_thumb (void)
5287ad62 13077{
88714cb8
DG
13078 inst.is_neon = 1;
13079
5287ad62 13080 if (thumb_mode)
037e8744 13081 inst.instruction |= 0xe0000000;
5287ad62 13082 else
037e8744 13083 inst.instruction |= inst.cond << 28;
5287ad62
JB
13084}
13085
037e8744
JB
13086/* Look up and encode a simple mnemonic, for use as a helper function for the
13087 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13088 etc. It is assumed that operand parsing has already been done, and that the
13089 operands are in the form expected by the given opcode (this isn't necessarily
13090 the same as the form in which they were parsed, hence some massaging must
13091 take place before this function is called).
13092 Checks current arch version against that in the looked-up opcode. */
5287ad62 13093
037e8744
JB
13094static void
13095do_vfp_nsyn_opcode (const char *opname)
5287ad62 13096{
037e8744 13097 const struct asm_opcode *opcode;
5f4273c7 13098
21d799b5 13099 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 13100
037e8744
JB
13101 if (!opcode)
13102 abort ();
5287ad62 13103
037e8744
JB
13104 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13105 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13106 _(BAD_FPU));
5287ad62 13107
88714cb8
DG
13108 inst.is_neon = 1;
13109
037e8744
JB
13110 if (thumb_mode)
13111 {
13112 inst.instruction = opcode->tvalue;
13113 opcode->tencode ();
13114 }
13115 else
13116 {
13117 inst.instruction = (inst.cond << 28) | opcode->avalue;
13118 opcode->aencode ();
13119 }
13120}
5287ad62
JB
13121
13122static void
037e8744 13123do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 13124{
037e8744
JB
13125 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13126
13127 if (rs == NS_FFF)
13128 {
13129 if (is_add)
13130 do_vfp_nsyn_opcode ("fadds");
13131 else
13132 do_vfp_nsyn_opcode ("fsubs");
13133 }
13134 else
13135 {
13136 if (is_add)
13137 do_vfp_nsyn_opcode ("faddd");
13138 else
13139 do_vfp_nsyn_opcode ("fsubd");
13140 }
13141}
13142
13143/* Check operand types to see if this is a VFP instruction, and if so call
13144 PFN (). */
13145
13146static int
13147try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13148{
13149 enum neon_shape rs;
13150 struct neon_type_el et;
13151
13152 switch (args)
13153 {
13154 case 2:
13155 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13156 et = neon_check_type (2, rs,
13157 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13158 break;
5f4273c7 13159
037e8744
JB
13160 case 3:
13161 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13162 et = neon_check_type (3, rs,
13163 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13164 break;
13165
13166 default:
13167 abort ();
13168 }
13169
13170 if (et.type != NT_invtype)
13171 {
13172 pfn (rs);
13173 return SUCCESS;
13174 }
037e8744 13175
99b253c5 13176 inst.error = NULL;
037e8744
JB
13177 return FAIL;
13178}
13179
13180static void
13181do_vfp_nsyn_mla_mls (enum neon_shape rs)
13182{
13183 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 13184
037e8744
JB
13185 if (rs == NS_FFF)
13186 {
13187 if (is_mla)
13188 do_vfp_nsyn_opcode ("fmacs");
13189 else
1ee69515 13190 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
13191 }
13192 else
13193 {
13194 if (is_mla)
13195 do_vfp_nsyn_opcode ("fmacd");
13196 else
1ee69515 13197 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
13198 }
13199}
13200
62f3b8c8
PB
13201static void
13202do_vfp_nsyn_fma_fms (enum neon_shape rs)
13203{
13204 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13205
13206 if (rs == NS_FFF)
13207 {
13208 if (is_fma)
13209 do_vfp_nsyn_opcode ("ffmas");
13210 else
13211 do_vfp_nsyn_opcode ("ffnmas");
13212 }
13213 else
13214 {
13215 if (is_fma)
13216 do_vfp_nsyn_opcode ("ffmad");
13217 else
13218 do_vfp_nsyn_opcode ("ffnmad");
13219 }
13220}
13221
037e8744
JB
13222static void
13223do_vfp_nsyn_mul (enum neon_shape rs)
13224{
13225 if (rs == NS_FFF)
13226 do_vfp_nsyn_opcode ("fmuls");
13227 else
13228 do_vfp_nsyn_opcode ("fmuld");
13229}
13230
13231static void
13232do_vfp_nsyn_abs_neg (enum neon_shape rs)
13233{
13234 int is_neg = (inst.instruction & 0x80) != 0;
13235 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13236
13237 if (rs == NS_FF)
13238 {
13239 if (is_neg)
13240 do_vfp_nsyn_opcode ("fnegs");
13241 else
13242 do_vfp_nsyn_opcode ("fabss");
13243 }
13244 else
13245 {
13246 if (is_neg)
13247 do_vfp_nsyn_opcode ("fnegd");
13248 else
13249 do_vfp_nsyn_opcode ("fabsd");
13250 }
13251}
13252
13253/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13254 insns belong to Neon, and are handled elsewhere. */
13255
13256static void
13257do_vfp_nsyn_ldm_stm (int is_dbmode)
13258{
13259 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13260 if (is_ldm)
13261 {
13262 if (is_dbmode)
13263 do_vfp_nsyn_opcode ("fldmdbs");
13264 else
13265 do_vfp_nsyn_opcode ("fldmias");
13266 }
13267 else
13268 {
13269 if (is_dbmode)
13270 do_vfp_nsyn_opcode ("fstmdbs");
13271 else
13272 do_vfp_nsyn_opcode ("fstmias");
13273 }
13274}
13275
037e8744
JB
13276static void
13277do_vfp_nsyn_sqrt (void)
13278{
13279 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13280 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13281
037e8744
JB
13282 if (rs == NS_FF)
13283 do_vfp_nsyn_opcode ("fsqrts");
13284 else
13285 do_vfp_nsyn_opcode ("fsqrtd");
13286}
13287
13288static void
13289do_vfp_nsyn_div (void)
13290{
13291 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13292 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13293 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13294
037e8744
JB
13295 if (rs == NS_FFF)
13296 do_vfp_nsyn_opcode ("fdivs");
13297 else
13298 do_vfp_nsyn_opcode ("fdivd");
13299}
13300
13301static void
13302do_vfp_nsyn_nmul (void)
13303{
13304 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13305 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13306 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13307
037e8744
JB
13308 if (rs == NS_FFF)
13309 {
88714cb8 13310 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13311 do_vfp_sp_dyadic ();
13312 }
13313 else
13314 {
88714cb8 13315 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13316 do_vfp_dp_rd_rn_rm ();
13317 }
13318 do_vfp_cond_or_thumb ();
13319}
13320
13321static void
13322do_vfp_nsyn_cmp (void)
13323{
13324 if (inst.operands[1].isreg)
13325 {
13326 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13327 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13328
037e8744
JB
13329 if (rs == NS_FF)
13330 {
88714cb8 13331 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13332 do_vfp_sp_monadic ();
13333 }
13334 else
13335 {
88714cb8 13336 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13337 do_vfp_dp_rd_rm ();
13338 }
13339 }
13340 else
13341 {
13342 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13343 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13344
13345 switch (inst.instruction & 0x0fffffff)
13346 {
13347 case N_MNEM_vcmp:
13348 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13349 break;
13350 case N_MNEM_vcmpe:
13351 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13352 break;
13353 default:
13354 abort ();
13355 }
5f4273c7 13356
037e8744
JB
13357 if (rs == NS_FI)
13358 {
88714cb8 13359 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13360 do_vfp_sp_compare_z ();
13361 }
13362 else
13363 {
88714cb8 13364 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13365 do_vfp_dp_rd ();
13366 }
13367 }
13368 do_vfp_cond_or_thumb ();
13369}
13370
13371static void
13372nsyn_insert_sp (void)
13373{
13374 inst.operands[1] = inst.operands[0];
13375 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13376 inst.operands[0].reg = REG_SP;
037e8744
JB
13377 inst.operands[0].isreg = 1;
13378 inst.operands[0].writeback = 1;
13379 inst.operands[0].present = 1;
13380}
13381
13382static void
13383do_vfp_nsyn_push (void)
13384{
13385 nsyn_insert_sp ();
13386 if (inst.operands[1].issingle)
13387 do_vfp_nsyn_opcode ("fstmdbs");
13388 else
13389 do_vfp_nsyn_opcode ("fstmdbd");
13390}
13391
13392static void
13393do_vfp_nsyn_pop (void)
13394{
13395 nsyn_insert_sp ();
13396 if (inst.operands[1].issingle)
22b5b651 13397 do_vfp_nsyn_opcode ("fldmias");
037e8744 13398 else
22b5b651 13399 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13400}
13401
13402/* Fix up Neon data-processing instructions, ORing in the correct bits for
13403 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13404
88714cb8
DG
13405static void
13406neon_dp_fixup (struct arm_it* insn)
037e8744 13407{
88714cb8
DG
13408 unsigned int i = insn->instruction;
13409 insn->is_neon = 1;
13410
037e8744
JB
13411 if (thumb_mode)
13412 {
13413 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13414 if (i & (1 << 24))
13415 i |= 1 << 28;
5f4273c7 13416
037e8744 13417 i &= ~(1 << 24);
5f4273c7 13418
037e8744
JB
13419 i |= 0xef000000;
13420 }
13421 else
13422 i |= 0xf2000000;
5f4273c7 13423
88714cb8 13424 insn->instruction = i;
037e8744
JB
13425}
13426
13427/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13428 (0, 1, 2, 3). */
13429
13430static unsigned
13431neon_logbits (unsigned x)
13432{
13433 return ffs (x) - 4;
13434}
13435
13436#define LOW4(R) ((R) & 0xf)
13437#define HI1(R) (((R) >> 4) & 1)
13438
13439/* Encode insns with bit pattern:
13440
13441 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13442 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13443
037e8744
JB
13444 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13445 different meaning for some instruction. */
13446
13447static void
13448neon_three_same (int isquad, int ubit, int size)
13449{
13450 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13451 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13452 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13453 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13454 inst.instruction |= LOW4 (inst.operands[2].reg);
13455 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13456 inst.instruction |= (isquad != 0) << 6;
13457 inst.instruction |= (ubit != 0) << 24;
13458 if (size != -1)
13459 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13460
88714cb8 13461 neon_dp_fixup (&inst);
037e8744
JB
13462}
13463
13464/* Encode instructions of the form:
13465
13466 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13467 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13468
13469 Don't write size if SIZE == -1. */
13470
13471static void
13472neon_two_same (int qbit, int ubit, int size)
13473{
13474 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13476 inst.instruction |= LOW4 (inst.operands[1].reg);
13477 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13478 inst.instruction |= (qbit != 0) << 6;
13479 inst.instruction |= (ubit != 0) << 24;
13480
13481 if (size != -1)
13482 inst.instruction |= neon_logbits (size) << 18;
13483
88714cb8 13484 neon_dp_fixup (&inst);
5287ad62
JB
13485}
13486
13487/* Neon instruction encoders, in approximate order of appearance. */
13488
13489static void
13490do_neon_dyadic_i_su (void)
13491{
037e8744 13492 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13493 struct neon_type_el et = neon_check_type (3, rs,
13494 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13495 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13496}
13497
13498static void
13499do_neon_dyadic_i64_su (void)
13500{
037e8744 13501 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13502 struct neon_type_el et = neon_check_type (3, rs,
13503 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13504 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13505}
13506
13507static void
13508neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13509 unsigned immbits)
13510{
13511 unsigned size = et.size >> 3;
13512 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13513 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13514 inst.instruction |= LOW4 (inst.operands[1].reg);
13515 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13516 inst.instruction |= (isquad != 0) << 6;
13517 inst.instruction |= immbits << 16;
13518 inst.instruction |= (size >> 3) << 7;
13519 inst.instruction |= (size & 0x7) << 19;
13520 if (write_ubit)
13521 inst.instruction |= (uval != 0) << 24;
13522
88714cb8 13523 neon_dp_fixup (&inst);
5287ad62
JB
13524}
13525
13526static void
13527do_neon_shl_imm (void)
13528{
13529 if (!inst.operands[2].isreg)
13530 {
037e8744 13531 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13532 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13533 NEON_ENCODE (IMMED, inst);
037e8744 13534 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13535 }
13536 else
13537 {
037e8744 13538 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13539 struct neon_type_el et = neon_check_type (3, rs,
13540 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13541 unsigned int tmp;
13542
13543 /* VSHL/VQSHL 3-register variants have syntax such as:
13544 vshl.xx Dd, Dm, Dn
13545 whereas other 3-register operations encoded by neon_three_same have
13546 syntax like:
13547 vadd.xx Dd, Dn, Dm
13548 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13549 here. */
13550 tmp = inst.operands[2].reg;
13551 inst.operands[2].reg = inst.operands[1].reg;
13552 inst.operands[1].reg = tmp;
88714cb8 13553 NEON_ENCODE (INTEGER, inst);
037e8744 13554 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13555 }
13556}
13557
13558static void
13559do_neon_qshl_imm (void)
13560{
13561 if (!inst.operands[2].isreg)
13562 {
037e8744 13563 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13564 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13565
88714cb8 13566 NEON_ENCODE (IMMED, inst);
037e8744 13567 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13568 inst.operands[2].imm);
13569 }
13570 else
13571 {
037e8744 13572 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13573 struct neon_type_el et = neon_check_type (3, rs,
13574 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13575 unsigned int tmp;
13576
13577 /* See note in do_neon_shl_imm. */
13578 tmp = inst.operands[2].reg;
13579 inst.operands[2].reg = inst.operands[1].reg;
13580 inst.operands[1].reg = tmp;
88714cb8 13581 NEON_ENCODE (INTEGER, inst);
037e8744 13582 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13583 }
13584}
13585
627907b7
JB
13586static void
13587do_neon_rshl (void)
13588{
13589 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13590 struct neon_type_el et = neon_check_type (3, rs,
13591 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13592 unsigned int tmp;
13593
13594 tmp = inst.operands[2].reg;
13595 inst.operands[2].reg = inst.operands[1].reg;
13596 inst.operands[1].reg = tmp;
13597 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13598}
13599
5287ad62
JB
13600static int
13601neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13602{
036dc3f7
PB
13603 /* Handle .I8 pseudo-instructions. */
13604 if (size == 8)
5287ad62 13605 {
5287ad62
JB
13606 /* Unfortunately, this will make everything apart from zero out-of-range.
13607 FIXME is this the intended semantics? There doesn't seem much point in
13608 accepting .I8 if so. */
13609 immediate |= immediate << 8;
13610 size = 16;
036dc3f7
PB
13611 }
13612
13613 if (size >= 32)
13614 {
13615 if (immediate == (immediate & 0x000000ff))
13616 {
13617 *immbits = immediate;
13618 return 0x1;
13619 }
13620 else if (immediate == (immediate & 0x0000ff00))
13621 {
13622 *immbits = immediate >> 8;
13623 return 0x3;
13624 }
13625 else if (immediate == (immediate & 0x00ff0000))
13626 {
13627 *immbits = immediate >> 16;
13628 return 0x5;
13629 }
13630 else if (immediate == (immediate & 0xff000000))
13631 {
13632 *immbits = immediate >> 24;
13633 return 0x7;
13634 }
13635 if ((immediate & 0xffff) != (immediate >> 16))
13636 goto bad_immediate;
13637 immediate &= 0xffff;
5287ad62
JB
13638 }
13639
13640 if (immediate == (immediate & 0x000000ff))
13641 {
13642 *immbits = immediate;
036dc3f7 13643 return 0x9;
5287ad62
JB
13644 }
13645 else if (immediate == (immediate & 0x0000ff00))
13646 {
13647 *immbits = immediate >> 8;
036dc3f7 13648 return 0xb;
5287ad62
JB
13649 }
13650
13651 bad_immediate:
dcbf9037 13652 first_error (_("immediate value out of range"));
5287ad62
JB
13653 return FAIL;
13654}
13655
13656/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13657 A, B, C, D. */
13658
13659static int
13660neon_bits_same_in_bytes (unsigned imm)
13661{
13662 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13663 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13664 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13665 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13666}
13667
13668/* For immediate of above form, return 0bABCD. */
13669
13670static unsigned
13671neon_squash_bits (unsigned imm)
13672{
13673 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13674 | ((imm & 0x01000000) >> 21);
13675}
13676
136da414 13677/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13678
13679static unsigned
13680neon_qfloat_bits (unsigned imm)
13681{
136da414 13682 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13683}
13684
13685/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13686 the instruction. *OP is passed as the initial value of the op field, and
13687 may be set to a different value depending on the constant (i.e.
13688 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13689 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13690 try smaller element sizes. */
5287ad62
JB
13691
13692static int
c96612cc
JB
13693neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13694 unsigned *immbits, int *op, int size,
13695 enum neon_el_type type)
5287ad62 13696{
c96612cc
JB
13697 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13698 float. */
13699 if (type == NT_float && !float_p)
13700 return FAIL;
13701
136da414
JB
13702 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13703 {
13704 if (size != 32 || *op == 1)
13705 return FAIL;
13706 *immbits = neon_qfloat_bits (immlo);
13707 return 0xf;
13708 }
036dc3f7
PB
13709
13710 if (size == 64)
5287ad62 13711 {
036dc3f7
PB
13712 if (neon_bits_same_in_bytes (immhi)
13713 && neon_bits_same_in_bytes (immlo))
13714 {
13715 if (*op == 1)
13716 return FAIL;
13717 *immbits = (neon_squash_bits (immhi) << 4)
13718 | neon_squash_bits (immlo);
13719 *op = 1;
13720 return 0xe;
13721 }
13722
13723 if (immhi != immlo)
13724 return FAIL;
5287ad62 13725 }
036dc3f7
PB
13726
13727 if (size >= 32)
5287ad62 13728 {
036dc3f7
PB
13729 if (immlo == (immlo & 0x000000ff))
13730 {
13731 *immbits = immlo;
13732 return 0x0;
13733 }
13734 else if (immlo == (immlo & 0x0000ff00))
13735 {
13736 *immbits = immlo >> 8;
13737 return 0x2;
13738 }
13739 else if (immlo == (immlo & 0x00ff0000))
13740 {
13741 *immbits = immlo >> 16;
13742 return 0x4;
13743 }
13744 else if (immlo == (immlo & 0xff000000))
13745 {
13746 *immbits = immlo >> 24;
13747 return 0x6;
13748 }
13749 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13750 {
13751 *immbits = (immlo >> 8) & 0xff;
13752 return 0xc;
13753 }
13754 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13755 {
13756 *immbits = (immlo >> 16) & 0xff;
13757 return 0xd;
13758 }
13759
13760 if ((immlo & 0xffff) != (immlo >> 16))
13761 return FAIL;
13762 immlo &= 0xffff;
5287ad62 13763 }
036dc3f7
PB
13764
13765 if (size >= 16)
5287ad62 13766 {
036dc3f7
PB
13767 if (immlo == (immlo & 0x000000ff))
13768 {
13769 *immbits = immlo;
13770 return 0x8;
13771 }
13772 else if (immlo == (immlo & 0x0000ff00))
13773 {
13774 *immbits = immlo >> 8;
13775 return 0xa;
13776 }
13777
13778 if ((immlo & 0xff) != (immlo >> 8))
13779 return FAIL;
13780 immlo &= 0xff;
5287ad62 13781 }
036dc3f7
PB
13782
13783 if (immlo == (immlo & 0x000000ff))
5287ad62 13784 {
036dc3f7
PB
13785 /* Don't allow MVN with 8-bit immediate. */
13786 if (*op == 1)
13787 return FAIL;
13788 *immbits = immlo;
13789 return 0xe;
5287ad62 13790 }
5287ad62
JB
13791
13792 return FAIL;
13793}
13794
13795/* Write immediate bits [7:0] to the following locations:
13796
13797 |28/24|23 19|18 16|15 4|3 0|
13798 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13799
13800 This function is used by VMOV/VMVN/VORR/VBIC. */
13801
13802static void
13803neon_write_immbits (unsigned immbits)
13804{
13805 inst.instruction |= immbits & 0xf;
13806 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13807 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13808}
13809
13810/* Invert low-order SIZE bits of XHI:XLO. */
13811
13812static void
13813neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13814{
13815 unsigned immlo = xlo ? *xlo : 0;
13816 unsigned immhi = xhi ? *xhi : 0;
13817
13818 switch (size)
13819 {
13820 case 8:
13821 immlo = (~immlo) & 0xff;
13822 break;
13823
13824 case 16:
13825 immlo = (~immlo) & 0xffff;
13826 break;
13827
13828 case 64:
13829 immhi = (~immhi) & 0xffffffff;
13830 /* fall through. */
13831
13832 case 32:
13833 immlo = (~immlo) & 0xffffffff;
13834 break;
13835
13836 default:
13837 abort ();
13838 }
13839
13840 if (xlo)
13841 *xlo = immlo;
13842
13843 if (xhi)
13844 *xhi = immhi;
13845}
13846
13847static void
13848do_neon_logic (void)
13849{
13850 if (inst.operands[2].present && inst.operands[2].isreg)
13851 {
037e8744 13852 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13853 neon_check_type (3, rs, N_IGNORE_TYPE);
13854 /* U bit and size field were set as part of the bitmask. */
88714cb8 13855 NEON_ENCODE (INTEGER, inst);
037e8744 13856 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13857 }
13858 else
13859 {
4316f0d2
DG
13860 const int three_ops_form = (inst.operands[2].present
13861 && !inst.operands[2].isreg);
13862 const int immoperand = (three_ops_form ? 2 : 1);
13863 enum neon_shape rs = (three_ops_form
13864 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13865 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13866 struct neon_type_el et = neon_check_type (2, rs,
13867 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13868 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13869 unsigned immbits;
13870 int cmode;
5f4273c7 13871
5287ad62
JB
13872 if (et.type == NT_invtype)
13873 return;
5f4273c7 13874
4316f0d2
DG
13875 if (three_ops_form)
13876 constraint (inst.operands[0].reg != inst.operands[1].reg,
13877 _("first and second operands shall be the same register"));
13878
88714cb8 13879 NEON_ENCODE (IMMED, inst);
5287ad62 13880
4316f0d2 13881 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13882 if (et.size == 64)
13883 {
13884 /* .i64 is a pseudo-op, so the immediate must be a repeating
13885 pattern. */
4316f0d2
DG
13886 if (immbits != (inst.operands[immoperand].regisimm ?
13887 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13888 {
13889 /* Set immbits to an invalid constant. */
13890 immbits = 0xdeadbeef;
13891 }
13892 }
13893
5287ad62
JB
13894 switch (opcode)
13895 {
13896 case N_MNEM_vbic:
036dc3f7 13897 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13898 break;
5f4273c7 13899
5287ad62 13900 case N_MNEM_vorr:
036dc3f7 13901 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13902 break;
5f4273c7 13903
5287ad62
JB
13904 case N_MNEM_vand:
13905 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13906 neon_invert_size (&immbits, 0, et.size);
13907 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13908 break;
5f4273c7 13909
5287ad62
JB
13910 case N_MNEM_vorn:
13911 /* Pseudo-instruction for VORR. */
5287ad62
JB
13912 neon_invert_size (&immbits, 0, et.size);
13913 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13914 break;
5f4273c7 13915
5287ad62
JB
13916 default:
13917 abort ();
13918 }
13919
13920 if (cmode == FAIL)
13921 return;
13922
037e8744 13923 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13924 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13925 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13926 inst.instruction |= cmode << 8;
13927 neon_write_immbits (immbits);
5f4273c7 13928
88714cb8 13929 neon_dp_fixup (&inst);
5287ad62
JB
13930 }
13931}
13932
13933static void
13934do_neon_bitfield (void)
13935{
037e8744 13936 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13937 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13938 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13939}
13940
13941static void
dcbf9037
JB
13942neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13943 unsigned destbits)
5287ad62 13944{
037e8744 13945 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13946 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13947 types | N_KEY);
5287ad62
JB
13948 if (et.type == NT_float)
13949 {
88714cb8 13950 NEON_ENCODE (FLOAT, inst);
037e8744 13951 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13952 }
13953 else
13954 {
88714cb8 13955 NEON_ENCODE (INTEGER, inst);
037e8744 13956 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13957 }
13958}
13959
13960static void
13961do_neon_dyadic_if_su (void)
13962{
dcbf9037 13963 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13964}
13965
13966static void
13967do_neon_dyadic_if_su_d (void)
13968{
13969 /* This version only allow D registers, but that constraint is enforced during
13970 operand parsing so we don't need to do anything extra here. */
dcbf9037 13971 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13972}
13973
5287ad62
JB
13974static void
13975do_neon_dyadic_if_i_d (void)
13976{
428e3f1f
PB
13977 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13978 affected if we specify unsigned args. */
13979 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13980}
13981
037e8744
JB
13982enum vfp_or_neon_is_neon_bits
13983{
13984 NEON_CHECK_CC = 1,
13985 NEON_CHECK_ARCH = 2
13986};
13987
13988/* Call this function if an instruction which may have belonged to the VFP or
13989 Neon instruction sets, but turned out to be a Neon instruction (due to the
13990 operand types involved, etc.). We have to check and/or fix-up a couple of
13991 things:
13992
13993 - Make sure the user hasn't attempted to make a Neon instruction
13994 conditional.
13995 - Alter the value in the condition code field if necessary.
13996 - Make sure that the arch supports Neon instructions.
13997
13998 Which of these operations take place depends on bits from enum
13999 vfp_or_neon_is_neon_bits.
14000
14001 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14002 current instruction's condition is COND_ALWAYS, the condition field is
14003 changed to inst.uncond_value. This is necessary because instructions shared
14004 between VFP and Neon may be conditional for the VFP variants only, and the
14005 unconditional Neon version must have, e.g., 0xF in the condition field. */
14006
14007static int
14008vfp_or_neon_is_neon (unsigned check)
14009{
14010 /* Conditions are always legal in Thumb mode (IT blocks). */
14011 if (!thumb_mode && (check & NEON_CHECK_CC))
14012 {
14013 if (inst.cond != COND_ALWAYS)
14014 {
14015 first_error (_(BAD_COND));
14016 return FAIL;
14017 }
14018 if (inst.uncond_value != -1)
14019 inst.instruction |= inst.uncond_value << 28;
14020 }
5f4273c7 14021
037e8744
JB
14022 if ((check & NEON_CHECK_ARCH)
14023 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
14024 {
14025 first_error (_(BAD_FPU));
14026 return FAIL;
14027 }
5f4273c7 14028
037e8744
JB
14029 return SUCCESS;
14030}
14031
5287ad62
JB
14032static void
14033do_neon_addsub_if_i (void)
14034{
037e8744
JB
14035 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14036 return;
14037
14038 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14039 return;
14040
5287ad62
JB
14041 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14042 affected if we specify unsigned args. */
dcbf9037 14043 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
14044}
14045
14046/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14047 result to be:
14048 V<op> A,B (A is operand 0, B is operand 2)
14049 to mean:
14050 V<op> A,B,A
14051 not:
14052 V<op> A,B,B
14053 so handle that case specially. */
14054
14055static void
14056neon_exchange_operands (void)
14057{
14058 void *scratch = alloca (sizeof (inst.operands[0]));
14059 if (inst.operands[1].present)
14060 {
14061 /* Swap operands[1] and operands[2]. */
14062 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14063 inst.operands[1] = inst.operands[2];
14064 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14065 }
14066 else
14067 {
14068 inst.operands[1] = inst.operands[2];
14069 inst.operands[2] = inst.operands[0];
14070 }
14071}
14072
14073static void
14074neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14075{
14076 if (inst.operands[2].isreg)
14077 {
14078 if (invert)
14079 neon_exchange_operands ();
dcbf9037 14080 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
14081 }
14082 else
14083 {
037e8744 14084 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
14085 struct neon_type_el et = neon_check_type (2, rs,
14086 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 14087
88714cb8 14088 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14089 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14090 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14091 inst.instruction |= LOW4 (inst.operands[1].reg);
14092 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14093 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14094 inst.instruction |= (et.type == NT_float) << 10;
14095 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14096
88714cb8 14097 neon_dp_fixup (&inst);
5287ad62
JB
14098 }
14099}
14100
14101static void
14102do_neon_cmp (void)
14103{
14104 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14105}
14106
14107static void
14108do_neon_cmp_inv (void)
14109{
14110 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14111}
14112
14113static void
14114do_neon_ceq (void)
14115{
14116 neon_compare (N_IF_32, N_IF_32, FALSE);
14117}
14118
14119/* For multiply instructions, we have the possibility of 16-bit or 32-bit
14120 scalars, which are encoded in 5 bits, M : Rm.
14121 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14122 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14123 index in M. */
14124
14125static unsigned
14126neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14127{
dcbf9037
JB
14128 unsigned regno = NEON_SCALAR_REG (scalar);
14129 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
14130
14131 switch (elsize)
14132 {
14133 case 16:
14134 if (regno > 7 || elno > 3)
14135 goto bad_scalar;
14136 return regno | (elno << 3);
5f4273c7 14137
5287ad62
JB
14138 case 32:
14139 if (regno > 15 || elno > 1)
14140 goto bad_scalar;
14141 return regno | (elno << 4);
14142
14143 default:
14144 bad_scalar:
dcbf9037 14145 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
14146 }
14147
14148 return 0;
14149}
14150
14151/* Encode multiply / multiply-accumulate scalar instructions. */
14152
14153static void
14154neon_mul_mac (struct neon_type_el et, int ubit)
14155{
dcbf9037
JB
14156 unsigned scalar;
14157
14158 /* Give a more helpful error message if we have an invalid type. */
14159 if (et.type == NT_invtype)
14160 return;
5f4273c7 14161
dcbf9037 14162 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
14163 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14164 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14165 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14166 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14167 inst.instruction |= LOW4 (scalar);
14168 inst.instruction |= HI1 (scalar) << 5;
14169 inst.instruction |= (et.type == NT_float) << 8;
14170 inst.instruction |= neon_logbits (et.size) << 20;
14171 inst.instruction |= (ubit != 0) << 24;
14172
88714cb8 14173 neon_dp_fixup (&inst);
5287ad62
JB
14174}
14175
14176static void
14177do_neon_mac_maybe_scalar (void)
14178{
037e8744
JB
14179 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14180 return;
14181
14182 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14183 return;
14184
5287ad62
JB
14185 if (inst.operands[2].isscalar)
14186 {
037e8744 14187 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14188 struct neon_type_el et = neon_check_type (3, rs,
14189 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 14190 NEON_ENCODE (SCALAR, inst);
037e8744 14191 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14192 }
14193 else
428e3f1f
PB
14194 {
14195 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14196 affected if we specify unsigned args. */
14197 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14198 }
5287ad62
JB
14199}
14200
62f3b8c8
PB
14201static void
14202do_neon_fmac (void)
14203{
14204 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14205 return;
14206
14207 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14208 return;
14209
14210 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14211}
14212
5287ad62
JB
14213static void
14214do_neon_tst (void)
14215{
037e8744 14216 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14217 struct neon_type_el et = neon_check_type (3, rs,
14218 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 14219 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14220}
14221
14222/* VMUL with 3 registers allows the P8 type. The scalar version supports the
14223 same types as the MAC equivalents. The polynomial type for this instruction
14224 is encoded the same as the integer type. */
14225
14226static void
14227do_neon_mul (void)
14228{
037e8744
JB
14229 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14230 return;
14231
14232 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14233 return;
14234
5287ad62
JB
14235 if (inst.operands[2].isscalar)
14236 do_neon_mac_maybe_scalar ();
14237 else
dcbf9037 14238 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
14239}
14240
14241static void
14242do_neon_qdmulh (void)
14243{
14244 if (inst.operands[2].isscalar)
14245 {
037e8744 14246 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14247 struct neon_type_el et = neon_check_type (3, rs,
14248 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14249 NEON_ENCODE (SCALAR, inst);
037e8744 14250 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14251 }
14252 else
14253 {
037e8744 14254 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14255 struct neon_type_el et = neon_check_type (3, rs,
14256 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14257 NEON_ENCODE (INTEGER, inst);
5287ad62 14258 /* The U bit (rounding) comes from bit mask. */
037e8744 14259 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14260 }
14261}
14262
14263static void
14264do_neon_fcmp_absolute (void)
14265{
037e8744 14266 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14267 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14268 /* Size field comes from bit mask. */
037e8744 14269 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14270}
14271
14272static void
14273do_neon_fcmp_absolute_inv (void)
14274{
14275 neon_exchange_operands ();
14276 do_neon_fcmp_absolute ();
14277}
14278
14279static void
14280do_neon_step (void)
14281{
037e8744 14282 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14283 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14284 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14285}
14286
14287static void
14288do_neon_abs_neg (void)
14289{
037e8744
JB
14290 enum neon_shape rs;
14291 struct neon_type_el et;
5f4273c7 14292
037e8744
JB
14293 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14294 return;
14295
14296 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14297 return;
14298
14299 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14300 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14301
5287ad62
JB
14302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14304 inst.instruction |= LOW4 (inst.operands[1].reg);
14305 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14306 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14307 inst.instruction |= (et.type == NT_float) << 10;
14308 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14309
88714cb8 14310 neon_dp_fixup (&inst);
5287ad62
JB
14311}
14312
14313static void
14314do_neon_sli (void)
14315{
037e8744 14316 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14317 struct neon_type_el et = neon_check_type (2, rs,
14318 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14319 int imm = inst.operands[2].imm;
14320 constraint (imm < 0 || (unsigned)imm >= et.size,
14321 _("immediate out of range for insert"));
037e8744 14322 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14323}
14324
14325static void
14326do_neon_sri (void)
14327{
037e8744 14328 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14329 struct neon_type_el et = neon_check_type (2, rs,
14330 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14331 int imm = inst.operands[2].imm;
14332 constraint (imm < 1 || (unsigned)imm > et.size,
14333 _("immediate out of range for insert"));
037e8744 14334 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14335}
14336
14337static void
14338do_neon_qshlu_imm (void)
14339{
037e8744 14340 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14341 struct neon_type_el et = neon_check_type (2, rs,
14342 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14343 int imm = inst.operands[2].imm;
14344 constraint (imm < 0 || (unsigned)imm >= et.size,
14345 _("immediate out of range for shift"));
14346 /* Only encodes the 'U present' variant of the instruction.
14347 In this case, signed types have OP (bit 8) set to 0.
14348 Unsigned types have OP set to 1. */
14349 inst.instruction |= (et.type == NT_unsigned) << 8;
14350 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14351 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14352}
14353
14354static void
14355do_neon_qmovn (void)
14356{
14357 struct neon_type_el et = neon_check_type (2, NS_DQ,
14358 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14359 /* Saturating move where operands can be signed or unsigned, and the
14360 destination has the same signedness. */
88714cb8 14361 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14362 if (et.type == NT_unsigned)
14363 inst.instruction |= 0xc0;
14364 else
14365 inst.instruction |= 0x80;
14366 neon_two_same (0, 1, et.size / 2);
14367}
14368
14369static void
14370do_neon_qmovun (void)
14371{
14372 struct neon_type_el et = neon_check_type (2, NS_DQ,
14373 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14374 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14375 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14376 neon_two_same (0, 1, et.size / 2);
14377}
14378
14379static void
14380do_neon_rshift_sat_narrow (void)
14381{
14382 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14383 or unsigned. If operands are unsigned, results must also be unsigned. */
14384 struct neon_type_el et = neon_check_type (2, NS_DQI,
14385 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14386 int imm = inst.operands[2].imm;
14387 /* This gets the bounds check, size encoding and immediate bits calculation
14388 right. */
14389 et.size /= 2;
5f4273c7 14390
5287ad62
JB
14391 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14392 VQMOVN.I<size> <Dd>, <Qm>. */
14393 if (imm == 0)
14394 {
14395 inst.operands[2].present = 0;
14396 inst.instruction = N_MNEM_vqmovn;
14397 do_neon_qmovn ();
14398 return;
14399 }
5f4273c7 14400
5287ad62
JB
14401 constraint (imm < 1 || (unsigned)imm > et.size,
14402 _("immediate out of range"));
14403 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14404}
14405
14406static void
14407do_neon_rshift_sat_narrow_u (void)
14408{
14409 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14410 or unsigned. If operands are unsigned, results must also be unsigned. */
14411 struct neon_type_el et = neon_check_type (2, NS_DQI,
14412 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14413 int imm = inst.operands[2].imm;
14414 /* This gets the bounds check, size encoding and immediate bits calculation
14415 right. */
14416 et.size /= 2;
14417
14418 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14419 VQMOVUN.I<size> <Dd>, <Qm>. */
14420 if (imm == 0)
14421 {
14422 inst.operands[2].present = 0;
14423 inst.instruction = N_MNEM_vqmovun;
14424 do_neon_qmovun ();
14425 return;
14426 }
14427
14428 constraint (imm < 1 || (unsigned)imm > et.size,
14429 _("immediate out of range"));
14430 /* FIXME: The manual is kind of unclear about what value U should have in
14431 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14432 must be 1. */
14433 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14434}
14435
14436static void
14437do_neon_movn (void)
14438{
14439 struct neon_type_el et = neon_check_type (2, NS_DQ,
14440 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14441 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14442 neon_two_same (0, 1, et.size / 2);
14443}
14444
14445static void
14446do_neon_rshift_narrow (void)
14447{
14448 struct neon_type_el et = neon_check_type (2, NS_DQI,
14449 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14450 int imm = inst.operands[2].imm;
14451 /* This gets the bounds check, size encoding and immediate bits calculation
14452 right. */
14453 et.size /= 2;
5f4273c7 14454
5287ad62
JB
14455 /* If immediate is zero then we are a pseudo-instruction for
14456 VMOVN.I<size> <Dd>, <Qm> */
14457 if (imm == 0)
14458 {
14459 inst.operands[2].present = 0;
14460 inst.instruction = N_MNEM_vmovn;
14461 do_neon_movn ();
14462 return;
14463 }
5f4273c7 14464
5287ad62
JB
14465 constraint (imm < 1 || (unsigned)imm > et.size,
14466 _("immediate out of range for narrowing operation"));
14467 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14468}
14469
14470static void
14471do_neon_shll (void)
14472{
14473 /* FIXME: Type checking when lengthening. */
14474 struct neon_type_el et = neon_check_type (2, NS_QDI,
14475 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14476 unsigned imm = inst.operands[2].imm;
14477
14478 if (imm == et.size)
14479 {
14480 /* Maximum shift variant. */
88714cb8 14481 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14482 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14483 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14484 inst.instruction |= LOW4 (inst.operands[1].reg);
14485 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14486 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14487
88714cb8 14488 neon_dp_fixup (&inst);
5287ad62
JB
14489 }
14490 else
14491 {
14492 /* A more-specific type check for non-max versions. */
14493 et = neon_check_type (2, NS_QDI,
14494 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14495 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14496 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14497 }
14498}
14499
037e8744 14500/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14501 the current instruction is. */
14502
14503static int
14504neon_cvt_flavour (enum neon_shape rs)
14505{
037e8744
JB
14506#define CVT_VAR(C,X,Y) \
14507 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14508 if (et.type != NT_invtype) \
14509 { \
14510 inst.error = NULL; \
14511 return (C); \
5287ad62
JB
14512 }
14513 struct neon_type_el et;
037e8744
JB
14514 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14515 || rs == NS_FF) ? N_VFP : 0;
14516 /* The instruction versions which take an immediate take one register
14517 argument, which is extended to the width of the full register. Thus the
14518 "source" and "destination" registers must have the same width. Hack that
14519 here by making the size equal to the key (wider, in this case) operand. */
14520 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14521
5287ad62
JB
14522 CVT_VAR (0, N_S32, N_F32);
14523 CVT_VAR (1, N_U32, N_F32);
14524 CVT_VAR (2, N_F32, N_S32);
14525 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14526 /* Half-precision conversions. */
14527 CVT_VAR (4, N_F32, N_F16);
14528 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14529
037e8744 14530 whole_reg = N_VFP;
5f4273c7 14531
037e8744 14532 /* VFP instructions. */
8e79c3df
CM
14533 CVT_VAR (6, N_F32, N_F64);
14534 CVT_VAR (7, N_F64, N_F32);
14535 CVT_VAR (8, N_S32, N_F64 | key);
14536 CVT_VAR (9, N_U32, N_F64 | key);
14537 CVT_VAR (10, N_F64 | key, N_S32);
14538 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14539 /* VFP instructions with bitshift. */
8e79c3df
CM
14540 CVT_VAR (12, N_F32 | key, N_S16);
14541 CVT_VAR (13, N_F32 | key, N_U16);
14542 CVT_VAR (14, N_F64 | key, N_S16);
14543 CVT_VAR (15, N_F64 | key, N_U16);
14544 CVT_VAR (16, N_S16, N_F32 | key);
14545 CVT_VAR (17, N_U16, N_F32 | key);
14546 CVT_VAR (18, N_S16, N_F64 | key);
14547 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14548
5287ad62
JB
14549 return -1;
14550#undef CVT_VAR
14551}
14552
037e8744
JB
14553/* Neon-syntax VFP conversions. */
14554
5287ad62 14555static void
037e8744 14556do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14557{
037e8744 14558 const char *opname = 0;
5f4273c7 14559
037e8744 14560 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14561 {
037e8744
JB
14562 /* Conversions with immediate bitshift. */
14563 const char *enc[] =
14564 {
14565 "ftosls",
14566 "ftouls",
14567 "fsltos",
14568 "fultos",
14569 NULL,
14570 NULL,
8e79c3df
CM
14571 NULL,
14572 NULL,
037e8744
JB
14573 "ftosld",
14574 "ftould",
14575 "fsltod",
14576 "fultod",
14577 "fshtos",
14578 "fuhtos",
14579 "fshtod",
14580 "fuhtod",
14581 "ftoshs",
14582 "ftouhs",
14583 "ftoshd",
14584 "ftouhd"
14585 };
14586
14587 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14588 {
14589 opname = enc[flavour];
14590 constraint (inst.operands[0].reg != inst.operands[1].reg,
14591 _("operands 0 and 1 must be the same register"));
14592 inst.operands[1] = inst.operands[2];
14593 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14594 }
5287ad62
JB
14595 }
14596 else
14597 {
037e8744
JB
14598 /* Conversions without bitshift. */
14599 const char *enc[] =
14600 {
14601 "ftosis",
14602 "ftouis",
14603 "fsitos",
14604 "fuitos",
8e79c3df
CM
14605 "NULL",
14606 "NULL",
037e8744
JB
14607 "fcvtsd",
14608 "fcvtds",
14609 "ftosid",
14610 "ftouid",
14611 "fsitod",
14612 "fuitod"
14613 };
14614
14615 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14616 opname = enc[flavour];
14617 }
14618
14619 if (opname)
14620 do_vfp_nsyn_opcode (opname);
14621}
14622
14623static void
14624do_vfp_nsyn_cvtz (void)
14625{
14626 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14627 int flavour = neon_cvt_flavour (rs);
14628 const char *enc[] =
14629 {
14630 "ftosizs",
14631 "ftouizs",
14632 NULL,
14633 NULL,
14634 NULL,
14635 NULL,
8e79c3df
CM
14636 NULL,
14637 NULL,
037e8744
JB
14638 "ftosizd",
14639 "ftouizd"
14640 };
14641
14642 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14643 do_vfp_nsyn_opcode (enc[flavour]);
14644}
f31fef98 14645
037e8744 14646static void
e3e535bc 14647do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14648{
14649 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14650 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14651 int flavour = neon_cvt_flavour (rs);
14652
e3e535bc
NC
14653 /* PR11109: Handle round-to-zero for VCVT conversions. */
14654 if (round_to_zero
14655 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14656 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14657 && (rs == NS_FD || rs == NS_FF))
14658 {
14659 do_vfp_nsyn_cvtz ();
14660 return;
14661 }
14662
037e8744 14663 /* VFP rather than Neon conversions. */
8e79c3df 14664 if (flavour >= 6)
037e8744
JB
14665 {
14666 do_vfp_nsyn_cvt (rs, flavour);
14667 return;
14668 }
14669
14670 switch (rs)
14671 {
14672 case NS_DDI:
14673 case NS_QQI:
14674 {
35997600
NC
14675 unsigned immbits;
14676 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14677
037e8744
JB
14678 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14679 return;
14680
14681 /* Fixed-point conversion with #0 immediate is encoded as an
14682 integer conversion. */
14683 if (inst.operands[2].present && inst.operands[2].imm == 0)
14684 goto int_encode;
35997600 14685 immbits = 32 - inst.operands[2].imm;
88714cb8 14686 NEON_ENCODE (IMMED, inst);
037e8744
JB
14687 if (flavour != -1)
14688 inst.instruction |= enctab[flavour];
14689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14690 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14691 inst.instruction |= LOW4 (inst.operands[1].reg);
14692 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14693 inst.instruction |= neon_quad (rs) << 6;
14694 inst.instruction |= 1 << 21;
14695 inst.instruction |= immbits << 16;
14696
88714cb8 14697 neon_dp_fixup (&inst);
037e8744
JB
14698 }
14699 break;
14700
14701 case NS_DD:
14702 case NS_QQ:
14703 int_encode:
14704 {
14705 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14706
88714cb8 14707 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14708
14709 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14710 return;
14711
14712 if (flavour != -1)
14713 inst.instruction |= enctab[flavour];
14714
14715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14717 inst.instruction |= LOW4 (inst.operands[1].reg);
14718 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14719 inst.instruction |= neon_quad (rs) << 6;
14720 inst.instruction |= 2 << 18;
14721
88714cb8 14722 neon_dp_fixup (&inst);
037e8744
JB
14723 }
14724 break;
14725
8e79c3df
CM
14726 /* Half-precision conversions for Advanced SIMD -- neon. */
14727 case NS_QD:
14728 case NS_DQ:
14729
14730 if ((rs == NS_DQ)
14731 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14732 {
14733 as_bad (_("operand size must match register width"));
14734 break;
14735 }
14736
14737 if ((rs == NS_QD)
14738 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14739 {
14740 as_bad (_("operand size must match register width"));
14741 break;
14742 }
14743
14744 if (rs == NS_DQ)
14745 inst.instruction = 0x3b60600;
14746 else
14747 inst.instruction = 0x3b60700;
14748
14749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14751 inst.instruction |= LOW4 (inst.operands[1].reg);
14752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14753 neon_dp_fixup (&inst);
8e79c3df
CM
14754 break;
14755
037e8744
JB
14756 default:
14757 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14758 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14759 }
5287ad62
JB
14760}
14761
e3e535bc
NC
14762static void
14763do_neon_cvtr (void)
14764{
14765 do_neon_cvt_1 (FALSE);
14766}
14767
14768static void
14769do_neon_cvt (void)
14770{
14771 do_neon_cvt_1 (TRUE);
14772}
14773
8e79c3df
CM
14774static void
14775do_neon_cvtb (void)
14776{
14777 inst.instruction = 0xeb20a40;
14778
14779 /* The sizes are attached to the mnemonic. */
14780 if (inst.vectype.el[0].type != NT_invtype
14781 && inst.vectype.el[0].size == 16)
14782 inst.instruction |= 0x00010000;
14783
14784 /* Programmer's syntax: the sizes are attached to the operands. */
14785 else if (inst.operands[0].vectype.type != NT_invtype
14786 && inst.operands[0].vectype.size == 16)
14787 inst.instruction |= 0x00010000;
14788
14789 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14790 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14791 do_vfp_cond_or_thumb ();
14792}
14793
14794
14795static void
14796do_neon_cvtt (void)
14797{
14798 do_neon_cvtb ();
14799 inst.instruction |= 0x80;
14800}
14801
5287ad62
JB
14802static void
14803neon_move_immediate (void)
14804{
037e8744
JB
14805 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14806 struct neon_type_el et = neon_check_type (2, rs,
14807 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14808 unsigned immlo, immhi = 0, immbits;
c96612cc 14809 int op, cmode, float_p;
5287ad62 14810
037e8744
JB
14811 constraint (et.type == NT_invtype,
14812 _("operand size must be specified for immediate VMOV"));
14813
5287ad62
JB
14814 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14815 op = (inst.instruction & (1 << 5)) != 0;
14816
14817 immlo = inst.operands[1].imm;
14818 if (inst.operands[1].regisimm)
14819 immhi = inst.operands[1].reg;
14820
14821 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14822 _("immediate has bits set outside the operand size"));
14823
c96612cc
JB
14824 float_p = inst.operands[1].immisfloat;
14825
14826 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14827 et.size, et.type)) == FAIL)
5287ad62
JB
14828 {
14829 /* Invert relevant bits only. */
14830 neon_invert_size (&immlo, &immhi, et.size);
14831 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14832 with one or the other; those cases are caught by
14833 neon_cmode_for_move_imm. */
14834 op = !op;
c96612cc
JB
14835 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14836 &op, et.size, et.type)) == FAIL)
5287ad62 14837 {
dcbf9037 14838 first_error (_("immediate out of range"));
5287ad62
JB
14839 return;
14840 }
14841 }
14842
14843 inst.instruction &= ~(1 << 5);
14844 inst.instruction |= op << 5;
14845
14846 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14848 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14849 inst.instruction |= cmode << 8;
14850
14851 neon_write_immbits (immbits);
14852}
14853
14854static void
14855do_neon_mvn (void)
14856{
14857 if (inst.operands[1].isreg)
14858 {
037e8744 14859 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14860
88714cb8 14861 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14864 inst.instruction |= LOW4 (inst.operands[1].reg);
14865 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14866 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14867 }
14868 else
14869 {
88714cb8 14870 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14871 neon_move_immediate ();
14872 }
14873
88714cb8 14874 neon_dp_fixup (&inst);
5287ad62
JB
14875}
14876
14877/* Encode instructions of form:
14878
14879 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14880 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14881
14882static void
14883neon_mixed_length (struct neon_type_el et, unsigned size)
14884{
14885 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14886 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14887 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14888 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14889 inst.instruction |= LOW4 (inst.operands[2].reg);
14890 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14891 inst.instruction |= (et.type == NT_unsigned) << 24;
14892 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14893
88714cb8 14894 neon_dp_fixup (&inst);
5287ad62
JB
14895}
14896
14897static void
14898do_neon_dyadic_long (void)
14899{
14900 /* FIXME: Type checking for lengthening op. */
14901 struct neon_type_el et = neon_check_type (3, NS_QDD,
14902 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14903 neon_mixed_length (et, et.size);
14904}
14905
14906static void
14907do_neon_abal (void)
14908{
14909 struct neon_type_el et = neon_check_type (3, NS_QDD,
14910 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14911 neon_mixed_length (et, et.size);
14912}
14913
14914static void
14915neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14916{
14917 if (inst.operands[2].isscalar)
14918 {
dcbf9037
JB
14919 struct neon_type_el et = neon_check_type (3, NS_QDS,
14920 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14921 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14922 neon_mul_mac (et, et.type == NT_unsigned);
14923 }
14924 else
14925 {
14926 struct neon_type_el et = neon_check_type (3, NS_QDD,
14927 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14928 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14929 neon_mixed_length (et, et.size);
14930 }
14931}
14932
14933static void
14934do_neon_mac_maybe_scalar_long (void)
14935{
14936 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14937}
14938
14939static void
14940do_neon_dyadic_wide (void)
14941{
14942 struct neon_type_el et = neon_check_type (3, NS_QQD,
14943 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14944 neon_mixed_length (et, et.size);
14945}
14946
14947static void
14948do_neon_dyadic_narrow (void)
14949{
14950 struct neon_type_el et = neon_check_type (3, NS_QDD,
14951 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14952 /* Operand sign is unimportant, and the U bit is part of the opcode,
14953 so force the operand type to integer. */
14954 et.type = NT_integer;
5287ad62
JB
14955 neon_mixed_length (et, et.size / 2);
14956}
14957
14958static void
14959do_neon_mul_sat_scalar_long (void)
14960{
14961 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14962}
14963
14964static void
14965do_neon_vmull (void)
14966{
14967 if (inst.operands[2].isscalar)
14968 do_neon_mac_maybe_scalar_long ();
14969 else
14970 {
14971 struct neon_type_el et = neon_check_type (3, NS_QDD,
14972 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14973 if (et.type == NT_poly)
88714cb8 14974 NEON_ENCODE (POLY, inst);
5287ad62 14975 else
88714cb8 14976 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14977 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14978 zero. Should be OK as-is. */
14979 neon_mixed_length (et, et.size);
14980 }
14981}
14982
14983static void
14984do_neon_ext (void)
14985{
037e8744 14986 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14987 struct neon_type_el et = neon_check_type (3, rs,
14988 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14989 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14990
14991 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14992 _("shift out of range"));
5287ad62
JB
14993 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14994 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14995 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14996 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14997 inst.instruction |= LOW4 (inst.operands[2].reg);
14998 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14999 inst.instruction |= neon_quad (rs) << 6;
5287ad62 15000 inst.instruction |= imm << 8;
5f4273c7 15001
88714cb8 15002 neon_dp_fixup (&inst);
5287ad62
JB
15003}
15004
15005static void
15006do_neon_rev (void)
15007{
037e8744 15008 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15009 struct neon_type_el et = neon_check_type (2, rs,
15010 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15011 unsigned op = (inst.instruction >> 7) & 3;
15012 /* N (width of reversed regions) is encoded as part of the bitmask. We
15013 extract it here to check the elements to be reversed are smaller.
15014 Otherwise we'd get a reserved instruction. */
15015 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 15016 gas_assert (elsize != 0);
5287ad62
JB
15017 constraint (et.size >= elsize,
15018 _("elements must be smaller than reversal region"));
037e8744 15019 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15020}
15021
15022static void
15023do_neon_dup (void)
15024{
15025 if (inst.operands[1].isscalar)
15026 {
037e8744 15027 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
15028 struct neon_type_el et = neon_check_type (2, rs,
15029 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 15030 unsigned sizebits = et.size >> 3;
dcbf9037 15031 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 15032 int logsize = neon_logbits (et.size);
dcbf9037 15033 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
15034
15035 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15036 return;
15037
88714cb8 15038 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15039 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15040 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15041 inst.instruction |= LOW4 (dm);
15042 inst.instruction |= HI1 (dm) << 5;
037e8744 15043 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15044 inst.instruction |= x << 17;
15045 inst.instruction |= sizebits << 16;
5f4273c7 15046
88714cb8 15047 neon_dp_fixup (&inst);
5287ad62
JB
15048 }
15049 else
15050 {
037e8744
JB
15051 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15052 struct neon_type_el et = neon_check_type (2, rs,
15053 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 15054 /* Duplicate ARM register to lanes of vector. */
88714cb8 15055 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
15056 switch (et.size)
15057 {
15058 case 8: inst.instruction |= 0x400000; break;
15059 case 16: inst.instruction |= 0x000020; break;
15060 case 32: inst.instruction |= 0x000000; break;
15061 default: break;
15062 }
15063 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15064 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15065 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 15066 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
15067 /* The encoding for this instruction is identical for the ARM and Thumb
15068 variants, except for the condition field. */
037e8744 15069 do_vfp_cond_or_thumb ();
5287ad62
JB
15070 }
15071}
15072
15073/* VMOV has particularly many variations. It can be one of:
15074 0. VMOV<c><q> <Qd>, <Qm>
15075 1. VMOV<c><q> <Dd>, <Dm>
15076 (Register operations, which are VORR with Rm = Rn.)
15077 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15078 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15079 (Immediate loads.)
15080 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15081 (ARM register to scalar.)
15082 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15083 (Two ARM registers to vector.)
15084 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15085 (Scalar to ARM register.)
15086 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15087 (Vector to two ARM registers.)
037e8744
JB
15088 8. VMOV.F32 <Sd>, <Sm>
15089 9. VMOV.F64 <Dd>, <Dm>
15090 (VFP register moves.)
15091 10. VMOV.F32 <Sd>, #imm
15092 11. VMOV.F64 <Dd>, #imm
15093 (VFP float immediate load.)
15094 12. VMOV <Rd>, <Sm>
15095 (VFP single to ARM reg.)
15096 13. VMOV <Sd>, <Rm>
15097 (ARM reg to VFP single.)
15098 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15099 (Two ARM regs to two VFP singles.)
15100 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15101 (Two VFP singles to two ARM regs.)
5f4273c7 15102
037e8744
JB
15103 These cases can be disambiguated using neon_select_shape, except cases 1/9
15104 and 3/11 which depend on the operand type too.
5f4273c7 15105
5287ad62 15106 All the encoded bits are hardcoded by this function.
5f4273c7 15107
b7fc2769
JB
15108 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15109 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 15110
5287ad62 15111 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 15112 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
15113
15114static void
15115do_neon_mov (void)
15116{
037e8744
JB
15117 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15118 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15119 NS_NULL);
15120 struct neon_type_el et;
15121 const char *ldconst = 0;
5287ad62 15122
037e8744 15123 switch (rs)
5287ad62 15124 {
037e8744
JB
15125 case NS_DD: /* case 1/9. */
15126 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15127 /* It is not an error here if no type is given. */
15128 inst.error = NULL;
15129 if (et.type == NT_float && et.size == 64)
5287ad62 15130 {
037e8744
JB
15131 do_vfp_nsyn_opcode ("fcpyd");
15132 break;
5287ad62 15133 }
037e8744 15134 /* fall through. */
5287ad62 15135
037e8744
JB
15136 case NS_QQ: /* case 0/1. */
15137 {
15138 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15139 return;
15140 /* The architecture manual I have doesn't explicitly state which
15141 value the U bit should have for register->register moves, but
15142 the equivalent VORR instruction has U = 0, so do that. */
15143 inst.instruction = 0x0200110;
15144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15145 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15146 inst.instruction |= LOW4 (inst.operands[1].reg);
15147 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15148 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15149 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15150 inst.instruction |= neon_quad (rs) << 6;
15151
88714cb8 15152 neon_dp_fixup (&inst);
037e8744
JB
15153 }
15154 break;
5f4273c7 15155
037e8744
JB
15156 case NS_DI: /* case 3/11. */
15157 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15158 inst.error = NULL;
15159 if (et.type == NT_float && et.size == 64)
5287ad62 15160 {
037e8744
JB
15161 /* case 11 (fconstd). */
15162 ldconst = "fconstd";
15163 goto encode_fconstd;
5287ad62 15164 }
037e8744
JB
15165 /* fall through. */
15166
15167 case NS_QI: /* case 2/3. */
15168 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15169 return;
15170 inst.instruction = 0x0800010;
15171 neon_move_immediate ();
88714cb8 15172 neon_dp_fixup (&inst);
5287ad62 15173 break;
5f4273c7 15174
037e8744
JB
15175 case NS_SR: /* case 4. */
15176 {
15177 unsigned bcdebits = 0;
91d6fa6a 15178 int logsize;
037e8744
JB
15179 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15180 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15181
91d6fa6a
NC
15182 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15183 logsize = neon_logbits (et.size);
15184
037e8744
JB
15185 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15186 _(BAD_FPU));
15187 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15188 && et.size != 32, _(BAD_FPU));
15189 constraint (et.type == NT_invtype, _("bad type for scalar"));
15190 constraint (x >= 64 / et.size, _("scalar index out of range"));
15191
15192 switch (et.size)
15193 {
15194 case 8: bcdebits = 0x8; break;
15195 case 16: bcdebits = 0x1; break;
15196 case 32: bcdebits = 0x0; break;
15197 default: ;
15198 }
15199
15200 bcdebits |= x << logsize;
15201
15202 inst.instruction = 0xe000b10;
15203 do_vfp_cond_or_thumb ();
15204 inst.instruction |= LOW4 (dn) << 16;
15205 inst.instruction |= HI1 (dn) << 7;
15206 inst.instruction |= inst.operands[1].reg << 12;
15207 inst.instruction |= (bcdebits & 3) << 5;
15208 inst.instruction |= (bcdebits >> 2) << 21;
15209 }
15210 break;
5f4273c7 15211
037e8744 15212 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 15213 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 15214 _(BAD_FPU));
b7fc2769 15215
037e8744
JB
15216 inst.instruction = 0xc400b10;
15217 do_vfp_cond_or_thumb ();
15218 inst.instruction |= LOW4 (inst.operands[0].reg);
15219 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15220 inst.instruction |= inst.operands[1].reg << 12;
15221 inst.instruction |= inst.operands[2].reg << 16;
15222 break;
5f4273c7 15223
037e8744
JB
15224 case NS_RS: /* case 6. */
15225 {
91d6fa6a 15226 unsigned logsize;
037e8744
JB
15227 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15228 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15229 unsigned abcdebits = 0;
15230
91d6fa6a
NC
15231 et = neon_check_type (2, NS_NULL,
15232 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15233 logsize = neon_logbits (et.size);
15234
037e8744
JB
15235 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15236 _(BAD_FPU));
15237 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15238 && et.size != 32, _(BAD_FPU));
15239 constraint (et.type == NT_invtype, _("bad type for scalar"));
15240 constraint (x >= 64 / et.size, _("scalar index out of range"));
15241
15242 switch (et.size)
15243 {
15244 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15245 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15246 case 32: abcdebits = 0x00; break;
15247 default: ;
15248 }
15249
15250 abcdebits |= x << logsize;
15251 inst.instruction = 0xe100b10;
15252 do_vfp_cond_or_thumb ();
15253 inst.instruction |= LOW4 (dn) << 16;
15254 inst.instruction |= HI1 (dn) << 7;
15255 inst.instruction |= inst.operands[0].reg << 12;
15256 inst.instruction |= (abcdebits & 3) << 5;
15257 inst.instruction |= (abcdebits >> 2) << 21;
15258 }
15259 break;
5f4273c7 15260
037e8744
JB
15261 case NS_RRD: /* case 7 (fmrrd). */
15262 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15263 _(BAD_FPU));
15264
15265 inst.instruction = 0xc500b10;
15266 do_vfp_cond_or_thumb ();
15267 inst.instruction |= inst.operands[0].reg << 12;
15268 inst.instruction |= inst.operands[1].reg << 16;
15269 inst.instruction |= LOW4 (inst.operands[2].reg);
15270 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15271 break;
5f4273c7 15272
037e8744
JB
15273 case NS_FF: /* case 8 (fcpys). */
15274 do_vfp_nsyn_opcode ("fcpys");
15275 break;
5f4273c7 15276
037e8744
JB
15277 case NS_FI: /* case 10 (fconsts). */
15278 ldconst = "fconsts";
15279 encode_fconstd:
15280 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15281 {
037e8744
JB
15282 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15283 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15284 }
15285 else
037e8744
JB
15286 first_error (_("immediate out of range"));
15287 break;
5f4273c7 15288
037e8744
JB
15289 case NS_RF: /* case 12 (fmrs). */
15290 do_vfp_nsyn_opcode ("fmrs");
15291 break;
5f4273c7 15292
037e8744
JB
15293 case NS_FR: /* case 13 (fmsr). */
15294 do_vfp_nsyn_opcode ("fmsr");
15295 break;
5f4273c7 15296
037e8744
JB
15297 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15298 (one of which is a list), but we have parsed four. Do some fiddling to
15299 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15300 expect. */
15301 case NS_RRFF: /* case 14 (fmrrs). */
15302 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15303 _("VFP registers must be adjacent"));
15304 inst.operands[2].imm = 2;
15305 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15306 do_vfp_nsyn_opcode ("fmrrs");
15307 break;
5f4273c7 15308
037e8744
JB
15309 case NS_FFRR: /* case 15 (fmsrr). */
15310 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15311 _("VFP registers must be adjacent"));
15312 inst.operands[1] = inst.operands[2];
15313 inst.operands[2] = inst.operands[3];
15314 inst.operands[0].imm = 2;
15315 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15316 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15317 break;
5f4273c7 15318
5287ad62
JB
15319 default:
15320 abort ();
15321 }
15322}
15323
15324static void
15325do_neon_rshift_round_imm (void)
15326{
037e8744 15327 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15328 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15329 int imm = inst.operands[2].imm;
15330
15331 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15332 if (imm == 0)
15333 {
15334 inst.operands[2].present = 0;
15335 do_neon_mov ();
15336 return;
15337 }
15338
15339 constraint (imm < 1 || (unsigned)imm > et.size,
15340 _("immediate out of range for shift"));
037e8744 15341 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15342 et.size - imm);
15343}
15344
15345static void
15346do_neon_movl (void)
15347{
15348 struct neon_type_el et = neon_check_type (2, NS_QD,
15349 N_EQK | N_DBL, N_SU_32 | N_KEY);
15350 unsigned sizebits = et.size >> 3;
15351 inst.instruction |= sizebits << 19;
15352 neon_two_same (0, et.type == NT_unsigned, -1);
15353}
15354
15355static void
15356do_neon_trn (void)
15357{
037e8744 15358 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15359 struct neon_type_el et = neon_check_type (2, rs,
15360 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15361 NEON_ENCODE (INTEGER, inst);
037e8744 15362 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15363}
15364
15365static void
15366do_neon_zip_uzp (void)
15367{
037e8744 15368 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15369 struct neon_type_el et = neon_check_type (2, rs,
15370 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15371 if (rs == NS_DD && et.size == 32)
15372 {
15373 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15374 inst.instruction = N_MNEM_vtrn;
15375 do_neon_trn ();
15376 return;
15377 }
037e8744 15378 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15379}
15380
15381static void
15382do_neon_sat_abs_neg (void)
15383{
037e8744 15384 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15385 struct neon_type_el et = neon_check_type (2, rs,
15386 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15387 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15388}
15389
15390static void
15391do_neon_pair_long (void)
15392{
037e8744 15393 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15394 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15395 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15396 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15397 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15398}
15399
15400static void
15401do_neon_recip_est (void)
15402{
037e8744 15403 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15404 struct neon_type_el et = neon_check_type (2, rs,
15405 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15406 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15407 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15408}
15409
15410static void
15411do_neon_cls (void)
15412{
037e8744 15413 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15414 struct neon_type_el et = neon_check_type (2, rs,
15415 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15416 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15417}
15418
15419static void
15420do_neon_clz (void)
15421{
037e8744 15422 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15423 struct neon_type_el et = neon_check_type (2, rs,
15424 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15425 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15426}
15427
15428static void
15429do_neon_cnt (void)
15430{
037e8744 15431 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15432 struct neon_type_el et = neon_check_type (2, rs,
15433 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15434 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15435}
15436
15437static void
15438do_neon_swp (void)
15439{
037e8744
JB
15440 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15441 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15442}
15443
15444static void
15445do_neon_tbl_tbx (void)
15446{
15447 unsigned listlenbits;
dcbf9037 15448 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15449
5287ad62
JB
15450 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15451 {
dcbf9037 15452 first_error (_("bad list length for table lookup"));
5287ad62
JB
15453 return;
15454 }
5f4273c7 15455
5287ad62
JB
15456 listlenbits = inst.operands[1].imm - 1;
15457 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15458 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15459 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15460 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15461 inst.instruction |= LOW4 (inst.operands[2].reg);
15462 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15463 inst.instruction |= listlenbits << 8;
5f4273c7 15464
88714cb8 15465 neon_dp_fixup (&inst);
5287ad62
JB
15466}
15467
15468static void
15469do_neon_ldm_stm (void)
15470{
15471 /* P, U and L bits are part of bitmask. */
15472 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15473 unsigned offsetbits = inst.operands[1].imm * 2;
15474
037e8744
JB
15475 if (inst.operands[1].issingle)
15476 {
15477 do_vfp_nsyn_ldm_stm (is_dbmode);
15478 return;
15479 }
15480
5287ad62
JB
15481 constraint (is_dbmode && !inst.operands[0].writeback,
15482 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15483
15484 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15485 _("register list must contain at least 1 and at most 16 "
15486 "registers"));
15487
15488 inst.instruction |= inst.operands[0].reg << 16;
15489 inst.instruction |= inst.operands[0].writeback << 21;
15490 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15491 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15492
15493 inst.instruction |= offsetbits;
5f4273c7 15494
037e8744 15495 do_vfp_cond_or_thumb ();
5287ad62
JB
15496}
15497
15498static void
15499do_neon_ldr_str (void)
15500{
5287ad62 15501 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15502
6844b2c2
MGD
15503 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15504 And is UNPREDICTABLE in thumb mode. */
fa94de6b 15505 if (!is_ldr
6844b2c2
MGD
15506 && inst.operands[1].reg == REG_PC
15507 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15508 {
15509 if (!thumb_mode && warn_on_deprecated)
15510 as_warn (_("Use of PC here is deprecated"));
15511 else
15512 inst.error = _("Use of PC here is UNPREDICTABLE");
15513 }
15514
037e8744
JB
15515 if (inst.operands[0].issingle)
15516 {
cd2f129f
JB
15517 if (is_ldr)
15518 do_vfp_nsyn_opcode ("flds");
15519 else
15520 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15521 }
15522 else
5287ad62 15523 {
cd2f129f
JB
15524 if (is_ldr)
15525 do_vfp_nsyn_opcode ("fldd");
5287ad62 15526 else
cd2f129f 15527 do_vfp_nsyn_opcode ("fstd");
5287ad62 15528 }
5287ad62
JB
15529}
15530
15531/* "interleave" version also handles non-interleaving register VLD1/VST1
15532 instructions. */
15533
15534static void
15535do_neon_ld_st_interleave (void)
15536{
037e8744 15537 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15538 N_8 | N_16 | N_32 | N_64);
15539 unsigned alignbits = 0;
15540 unsigned idx;
15541 /* The bits in this table go:
15542 0: register stride of one (0) or two (1)
15543 1,2: register list length, minus one (1, 2, 3, 4).
15544 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15545 We use -1 for invalid entries. */
15546 const int typetable[] =
15547 {
15548 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15549 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15550 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15551 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15552 };
15553 int typebits;
15554
dcbf9037
JB
15555 if (et.type == NT_invtype)
15556 return;
15557
5287ad62
JB
15558 if (inst.operands[1].immisalign)
15559 switch (inst.operands[1].imm >> 8)
15560 {
15561 case 64: alignbits = 1; break;
15562 case 128:
e23c0ad8
JZ
15563 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15564 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15565 goto bad_alignment;
15566 alignbits = 2;
15567 break;
15568 case 256:
e23c0ad8 15569 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15570 goto bad_alignment;
15571 alignbits = 3;
15572 break;
15573 default:
15574 bad_alignment:
dcbf9037 15575 first_error (_("bad alignment"));
5287ad62
JB
15576 return;
15577 }
15578
15579 inst.instruction |= alignbits << 4;
15580 inst.instruction |= neon_logbits (et.size) << 6;
15581
15582 /* Bits [4:6] of the immediate in a list specifier encode register stride
15583 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15584 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15585 up the right value for "type" in a table based on this value and the given
15586 list style, then stick it back. */
15587 idx = ((inst.operands[0].imm >> 4) & 7)
15588 | (((inst.instruction >> 8) & 3) << 3);
15589
15590 typebits = typetable[idx];
5f4273c7 15591
5287ad62
JB
15592 constraint (typebits == -1, _("bad list type for instruction"));
15593
15594 inst.instruction &= ~0xf00;
15595 inst.instruction |= typebits << 8;
15596}
15597
15598/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15599 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15600 otherwise. The variable arguments are a list of pairs of legal (size, align)
15601 values, terminated with -1. */
15602
15603static int
15604neon_alignment_bit (int size, int align, int *do_align, ...)
15605{
15606 va_list ap;
15607 int result = FAIL, thissize, thisalign;
5f4273c7 15608
5287ad62
JB
15609 if (!inst.operands[1].immisalign)
15610 {
15611 *do_align = 0;
15612 return SUCCESS;
15613 }
5f4273c7 15614
5287ad62
JB
15615 va_start (ap, do_align);
15616
15617 do
15618 {
15619 thissize = va_arg (ap, int);
15620 if (thissize == -1)
15621 break;
15622 thisalign = va_arg (ap, int);
15623
15624 if (size == thissize && align == thisalign)
15625 result = SUCCESS;
15626 }
15627 while (result != SUCCESS);
15628
15629 va_end (ap);
15630
15631 if (result == SUCCESS)
15632 *do_align = 1;
15633 else
dcbf9037 15634 first_error (_("unsupported alignment for instruction"));
5f4273c7 15635
5287ad62
JB
15636 return result;
15637}
15638
15639static void
15640do_neon_ld_st_lane (void)
15641{
037e8744 15642 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15643 int align_good, do_align = 0;
15644 int logsize = neon_logbits (et.size);
15645 int align = inst.operands[1].imm >> 8;
15646 int n = (inst.instruction >> 8) & 3;
15647 int max_el = 64 / et.size;
5f4273c7 15648
dcbf9037
JB
15649 if (et.type == NT_invtype)
15650 return;
5f4273c7 15651
5287ad62
JB
15652 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15653 _("bad list length"));
15654 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15655 _("scalar index out of range"));
15656 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15657 && et.size == 8,
15658 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15659
5287ad62
JB
15660 switch (n)
15661 {
15662 case 0: /* VLD1 / VST1. */
15663 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15664 32, 32, -1);
15665 if (align_good == FAIL)
15666 return;
15667 if (do_align)
15668 {
15669 unsigned alignbits = 0;
15670 switch (et.size)
15671 {
15672 case 16: alignbits = 0x1; break;
15673 case 32: alignbits = 0x3; break;
15674 default: ;
15675 }
15676 inst.instruction |= alignbits << 4;
15677 }
15678 break;
15679
15680 case 1: /* VLD2 / VST2. */
15681 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15682 32, 64, -1);
15683 if (align_good == FAIL)
15684 return;
15685 if (do_align)
15686 inst.instruction |= 1 << 4;
15687 break;
15688
15689 case 2: /* VLD3 / VST3. */
15690 constraint (inst.operands[1].immisalign,
15691 _("can't use alignment with this instruction"));
15692 break;
15693
15694 case 3: /* VLD4 / VST4. */
15695 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15696 16, 64, 32, 64, 32, 128, -1);
15697 if (align_good == FAIL)
15698 return;
15699 if (do_align)
15700 {
15701 unsigned alignbits = 0;
15702 switch (et.size)
15703 {
15704 case 8: alignbits = 0x1; break;
15705 case 16: alignbits = 0x1; break;
15706 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15707 default: ;
15708 }
15709 inst.instruction |= alignbits << 4;
15710 }
15711 break;
15712
15713 default: ;
15714 }
15715
15716 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15717 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15718 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15719
5287ad62
JB
15720 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15721 inst.instruction |= logsize << 10;
15722}
15723
15724/* Encode single n-element structure to all lanes VLD<n> instructions. */
15725
15726static void
15727do_neon_ld_dup (void)
15728{
037e8744 15729 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15730 int align_good, do_align = 0;
15731
dcbf9037
JB
15732 if (et.type == NT_invtype)
15733 return;
15734
5287ad62
JB
15735 switch ((inst.instruction >> 8) & 3)
15736 {
15737 case 0: /* VLD1. */
9c2799c2 15738 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15739 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15740 &do_align, 16, 16, 32, 32, -1);
15741 if (align_good == FAIL)
15742 return;
15743 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15744 {
15745 case 1: break;
15746 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15747 default: first_error (_("bad list length")); return;
5287ad62
JB
15748 }
15749 inst.instruction |= neon_logbits (et.size) << 6;
15750 break;
15751
15752 case 1: /* VLD2. */
15753 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15754 &do_align, 8, 16, 16, 32, 32, 64, -1);
15755 if (align_good == FAIL)
15756 return;
15757 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15758 _("bad list length"));
15759 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15760 inst.instruction |= 1 << 5;
15761 inst.instruction |= neon_logbits (et.size) << 6;
15762 break;
15763
15764 case 2: /* VLD3. */
15765 constraint (inst.operands[1].immisalign,
15766 _("can't use alignment with this instruction"));
15767 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15768 _("bad list length"));
15769 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15770 inst.instruction |= 1 << 5;
15771 inst.instruction |= neon_logbits (et.size) << 6;
15772 break;
15773
15774 case 3: /* VLD4. */
15775 {
15776 int align = inst.operands[1].imm >> 8;
15777 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15778 16, 64, 32, 64, 32, 128, -1);
15779 if (align_good == FAIL)
15780 return;
15781 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15782 _("bad list length"));
15783 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15784 inst.instruction |= 1 << 5;
15785 if (et.size == 32 && align == 128)
15786 inst.instruction |= 0x3 << 6;
15787 else
15788 inst.instruction |= neon_logbits (et.size) << 6;
15789 }
15790 break;
15791
15792 default: ;
15793 }
15794
15795 inst.instruction |= do_align << 4;
15796}
15797
15798/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15799 apart from bits [11:4]. */
15800
15801static void
15802do_neon_ldx_stx (void)
15803{
b1a769ed
DG
15804 if (inst.operands[1].isreg)
15805 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15806
5287ad62
JB
15807 switch (NEON_LANE (inst.operands[0].imm))
15808 {
15809 case NEON_INTERLEAVE_LANES:
88714cb8 15810 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15811 do_neon_ld_st_interleave ();
15812 break;
5f4273c7 15813
5287ad62 15814 case NEON_ALL_LANES:
88714cb8 15815 NEON_ENCODE (DUP, inst);
5287ad62
JB
15816 do_neon_ld_dup ();
15817 break;
5f4273c7 15818
5287ad62 15819 default:
88714cb8 15820 NEON_ENCODE (LANE, inst);
5287ad62
JB
15821 do_neon_ld_st_lane ();
15822 }
15823
15824 /* L bit comes from bit mask. */
15825 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15826 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15827 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15828
5287ad62
JB
15829 if (inst.operands[1].postind)
15830 {
15831 int postreg = inst.operands[1].imm & 0xf;
15832 constraint (!inst.operands[1].immisreg,
15833 _("post-index must be a register"));
15834 constraint (postreg == 0xd || postreg == 0xf,
15835 _("bad register for post-index"));
15836 inst.instruction |= postreg;
15837 }
15838 else if (inst.operands[1].writeback)
15839 {
15840 inst.instruction |= 0xd;
15841 }
15842 else
5f4273c7
NC
15843 inst.instruction |= 0xf;
15844
5287ad62
JB
15845 if (thumb_mode)
15846 inst.instruction |= 0xf9000000;
15847 else
15848 inst.instruction |= 0xf4000000;
15849}
33399f07
MGD
15850
15851/* FP v8. */
15852static void
15853do_vfp_nsyn_fpv8 (enum neon_shape rs)
15854{
15855 NEON_ENCODE (FPV8, inst);
15856
15857 if (rs == NS_FFF)
15858 do_vfp_sp_dyadic ();
15859 else
15860 do_vfp_dp_rd_rn_rm ();
15861
15862 if (rs == NS_DDD)
15863 inst.instruction |= 0x100;
15864
15865 inst.instruction |= 0xf0000000;
15866}
15867
15868static void
15869do_vsel (void)
15870{
15871 set_it_insn_type (OUTSIDE_IT_INSN);
15872
15873 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
15874 first_error (_("invalid instruction shape"));
15875}
15876
5287ad62
JB
15877\f
15878/* Overall per-instruction processing. */
15879
15880/* We need to be able to fix up arbitrary expressions in some statements.
15881 This is so that we can handle symbols that are an arbitrary distance from
15882 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15883 which returns part of an address in a form which will be valid for
15884 a data instruction. We do this by pushing the expression into a symbol
15885 in the expr_section, and creating a fix for that. */
15886
15887static void
15888fix_new_arm (fragS * frag,
15889 int where,
15890 short int size,
15891 expressionS * exp,
15892 int pc_rel,
15893 int reloc)
15894{
15895 fixS * new_fix;
15896
15897 switch (exp->X_op)
15898 {
15899 case O_constant:
6e7ce2cd
PB
15900 if (pc_rel)
15901 {
15902 /* Create an absolute valued symbol, so we have something to
15903 refer to in the object file. Unfortunately for us, gas's
15904 generic expression parsing will already have folded out
15905 any use of .set foo/.type foo %function that may have
15906 been used to set type information of the target location,
15907 that's being specified symbolically. We have to presume
15908 the user knows what they are doing. */
15909 char name[16 + 8];
15910 symbolS *symbol;
15911
15912 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15913
15914 symbol = symbol_find_or_make (name);
15915 S_SET_SEGMENT (symbol, absolute_section);
15916 symbol_set_frag (symbol, &zero_address_frag);
15917 S_SET_VALUE (symbol, exp->X_add_number);
15918 exp->X_op = O_symbol;
15919 exp->X_add_symbol = symbol;
15920 exp->X_add_number = 0;
15921 }
15922 /* FALLTHROUGH */
5287ad62
JB
15923 case O_symbol:
15924 case O_add:
15925 case O_subtract:
21d799b5
NC
15926 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15927 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15928 break;
15929
15930 default:
21d799b5
NC
15931 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15932 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15933 break;
15934 }
15935
15936 /* Mark whether the fix is to a THUMB instruction, or an ARM
15937 instruction. */
15938 new_fix->tc_fix_data = thumb_mode;
15939}
15940
15941/* Create a frg for an instruction requiring relaxation. */
15942static void
15943output_relax_insn (void)
15944{
15945 char * to;
15946 symbolS *sym;
0110f2b8
PB
15947 int offset;
15948
6e1cb1a6
PB
15949 /* The size of the instruction is unknown, so tie the debug info to the
15950 start of the instruction. */
15951 dwarf2_emit_insn (0);
6e1cb1a6 15952
0110f2b8
PB
15953 switch (inst.reloc.exp.X_op)
15954 {
15955 case O_symbol:
15956 sym = inst.reloc.exp.X_add_symbol;
15957 offset = inst.reloc.exp.X_add_number;
15958 break;
15959 case O_constant:
15960 sym = NULL;
15961 offset = inst.reloc.exp.X_add_number;
15962 break;
15963 default:
15964 sym = make_expr_symbol (&inst.reloc.exp);
15965 offset = 0;
15966 break;
15967 }
15968 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15969 inst.relax, sym, offset, NULL/*offset, opcode*/);
15970 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15971}
15972
15973/* Write a 32-bit thumb instruction to buf. */
15974static void
15975put_thumb32_insn (char * buf, unsigned long insn)
15976{
15977 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15978 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15979}
15980
b99bd4ef 15981static void
c19d1205 15982output_inst (const char * str)
b99bd4ef 15983{
c19d1205 15984 char * to = NULL;
b99bd4ef 15985
c19d1205 15986 if (inst.error)
b99bd4ef 15987 {
c19d1205 15988 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15989 return;
15990 }
5f4273c7
NC
15991 if (inst.relax)
15992 {
15993 output_relax_insn ();
0110f2b8 15994 return;
5f4273c7 15995 }
c19d1205
ZW
15996 if (inst.size == 0)
15997 return;
b99bd4ef 15998
c19d1205 15999 to = frag_more (inst.size);
8dc2430f
NC
16000 /* PR 9814: Record the thumb mode into the current frag so that we know
16001 what type of NOP padding to use, if necessary. We override any previous
16002 setting so that if the mode has changed then the NOPS that we use will
16003 match the encoding of the last instruction in the frag. */
cd000bff 16004 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
16005
16006 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 16007 {
9c2799c2 16008 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 16009 put_thumb32_insn (to, inst.instruction);
b99bd4ef 16010 }
c19d1205 16011 else if (inst.size > INSN_SIZE)
b99bd4ef 16012 {
9c2799c2 16013 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
16014 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16015 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 16016 }
c19d1205
ZW
16017 else
16018 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 16019
c19d1205
ZW
16020 if (inst.reloc.type != BFD_RELOC_UNUSED)
16021 fix_new_arm (frag_now, to - frag_now->fr_literal,
16022 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16023 inst.reloc.type);
b99bd4ef 16024
c19d1205 16025 dwarf2_emit_insn (inst.size);
c19d1205 16026}
b99bd4ef 16027
e07e6e58
NC
16028static char *
16029output_it_inst (int cond, int mask, char * to)
16030{
16031 unsigned long instruction = 0xbf00;
16032
16033 mask &= 0xf;
16034 instruction |= mask;
16035 instruction |= cond << 4;
16036
16037 if (to == NULL)
16038 {
16039 to = frag_more (2);
16040#ifdef OBJ_ELF
16041 dwarf2_emit_insn (2);
16042#endif
16043 }
16044
16045 md_number_to_chars (to, instruction, 2);
16046
16047 return to;
16048}
16049
c19d1205
ZW
16050/* Tag values used in struct asm_opcode's tag field. */
16051enum opcode_tag
16052{
16053 OT_unconditional, /* Instruction cannot be conditionalized.
16054 The ARM condition field is still 0xE. */
16055 OT_unconditionalF, /* Instruction cannot be conditionalized
16056 and carries 0xF in its ARM condition field. */
16057 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
16058 OT_csuffixF, /* Some forms of the instruction take a conditional
16059 suffix, others place 0xF where the condition field
16060 would be. */
c19d1205
ZW
16061 OT_cinfix3, /* Instruction takes a conditional infix,
16062 beginning at character index 3. (In
16063 unified mode, it becomes a suffix.) */
088fa78e
KH
16064 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16065 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
16066 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16067 character index 3, even in unified mode. Used for
16068 legacy instructions where suffix and infix forms
16069 may be ambiguous. */
c19d1205 16070 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 16071 suffix or an infix at character index 3. */
c19d1205
ZW
16072 OT_odd_infix_unc, /* This is the unconditional variant of an
16073 instruction that takes a conditional infix
16074 at an unusual position. In unified mode,
16075 this variant will accept a suffix. */
16076 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16077 are the conditional variants of instructions that
16078 take conditional infixes in unusual positions.
16079 The infix appears at character index
16080 (tag - OT_odd_infix_0). These are not accepted
16081 in unified mode. */
16082};
b99bd4ef 16083
c19d1205
ZW
16084/* Subroutine of md_assemble, responsible for looking up the primary
16085 opcode from the mnemonic the user wrote. STR points to the
16086 beginning of the mnemonic.
16087
16088 This is not simply a hash table lookup, because of conditional
16089 variants. Most instructions have conditional variants, which are
16090 expressed with a _conditional affix_ to the mnemonic. If we were
16091 to encode each conditional variant as a literal string in the opcode
16092 table, it would have approximately 20,000 entries.
16093
16094 Most mnemonics take this affix as a suffix, and in unified syntax,
16095 'most' is upgraded to 'all'. However, in the divided syntax, some
16096 instructions take the affix as an infix, notably the s-variants of
16097 the arithmetic instructions. Of those instructions, all but six
16098 have the infix appear after the third character of the mnemonic.
16099
16100 Accordingly, the algorithm for looking up primary opcodes given
16101 an identifier is:
16102
16103 1. Look up the identifier in the opcode table.
16104 If we find a match, go to step U.
16105
16106 2. Look up the last two characters of the identifier in the
16107 conditions table. If we find a match, look up the first N-2
16108 characters of the identifier in the opcode table. If we
16109 find a match, go to step CE.
16110
16111 3. Look up the fourth and fifth characters of the identifier in
16112 the conditions table. If we find a match, extract those
16113 characters from the identifier, and look up the remaining
16114 characters in the opcode table. If we find a match, go
16115 to step CM.
16116
16117 4. Fail.
16118
16119 U. Examine the tag field of the opcode structure, in case this is
16120 one of the six instructions with its conditional infix in an
16121 unusual place. If it is, the tag tells us where to find the
16122 infix; look it up in the conditions table and set inst.cond
16123 accordingly. Otherwise, this is an unconditional instruction.
16124 Again set inst.cond accordingly. Return the opcode structure.
16125
16126 CE. Examine the tag field to make sure this is an instruction that
16127 should receive a conditional suffix. If it is not, fail.
16128 Otherwise, set inst.cond from the suffix we already looked up,
16129 and return the opcode structure.
16130
16131 CM. Examine the tag field to make sure this is an instruction that
16132 should receive a conditional infix after the third character.
16133 If it is not, fail. Otherwise, undo the edits to the current
16134 line of input and proceed as for case CE. */
16135
16136static const struct asm_opcode *
16137opcode_lookup (char **str)
16138{
16139 char *end, *base;
16140 char *affix;
16141 const struct asm_opcode *opcode;
16142 const struct asm_cond *cond;
e3cb604e 16143 char save[2];
c19d1205
ZW
16144
16145 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 16146 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 16147 for (base = end = *str; *end != '\0'; end++)
721a8186 16148 if (*end == ' ' || *end == '.')
c19d1205 16149 break;
b99bd4ef 16150
c19d1205 16151 if (end == base)
c921be7d 16152 return NULL;
b99bd4ef 16153
5287ad62 16154 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 16155 if (end[0] == '.')
b99bd4ef 16156 {
5287ad62 16157 int offset = 2;
5f4273c7 16158
267d2029
JB
16159 /* The .w and .n suffixes are only valid if the unified syntax is in
16160 use. */
16161 if (unified_syntax && end[1] == 'w')
c19d1205 16162 inst.size_req = 4;
267d2029 16163 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
16164 inst.size_req = 2;
16165 else
5287ad62
JB
16166 offset = 0;
16167
16168 inst.vectype.elems = 0;
16169
16170 *str = end + offset;
b99bd4ef 16171
5f4273c7 16172 if (end[offset] == '.')
5287ad62 16173 {
267d2029
JB
16174 /* See if we have a Neon type suffix (possible in either unified or
16175 non-unified ARM syntax mode). */
dcbf9037 16176 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 16177 return NULL;
5287ad62
JB
16178 }
16179 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 16180 return NULL;
b99bd4ef 16181 }
c19d1205
ZW
16182 else
16183 *str = end;
b99bd4ef 16184
c19d1205 16185 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
16186 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16187 end - base);
c19d1205 16188 if (opcode)
b99bd4ef 16189 {
c19d1205
ZW
16190 /* step U */
16191 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 16192 {
c19d1205
ZW
16193 inst.cond = COND_ALWAYS;
16194 return opcode;
b99bd4ef 16195 }
b99bd4ef 16196
278df34e 16197 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
16198 as_warn (_("conditional infixes are deprecated in unified syntax"));
16199 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 16200 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 16201 gas_assert (cond);
b99bd4ef 16202
c19d1205
ZW
16203 inst.cond = cond->value;
16204 return opcode;
16205 }
b99bd4ef 16206
c19d1205
ZW
16207 /* Cannot have a conditional suffix on a mnemonic of less than two
16208 characters. */
16209 if (end - base < 3)
c921be7d 16210 return NULL;
b99bd4ef 16211
c19d1205
ZW
16212 /* Look for suffixed mnemonic. */
16213 affix = end - 2;
21d799b5
NC
16214 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16215 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16216 affix - base);
c19d1205
ZW
16217 if (opcode && cond)
16218 {
16219 /* step CE */
16220 switch (opcode->tag)
16221 {
e3cb604e
PB
16222 case OT_cinfix3_legacy:
16223 /* Ignore conditional suffixes matched on infix only mnemonics. */
16224 break;
16225
c19d1205 16226 case OT_cinfix3:
088fa78e 16227 case OT_cinfix3_deprecated:
c19d1205
ZW
16228 case OT_odd_infix_unc:
16229 if (!unified_syntax)
e3cb604e 16230 return 0;
c19d1205
ZW
16231 /* else fall through */
16232
16233 case OT_csuffix:
037e8744 16234 case OT_csuffixF:
c19d1205
ZW
16235 case OT_csuf_or_in3:
16236 inst.cond = cond->value;
16237 return opcode;
16238
16239 case OT_unconditional:
16240 case OT_unconditionalF:
dfa9f0d5 16241 if (thumb_mode)
c921be7d 16242 inst.cond = cond->value;
dfa9f0d5
PB
16243 else
16244 {
c921be7d 16245 /* Delayed diagnostic. */
dfa9f0d5
PB
16246 inst.error = BAD_COND;
16247 inst.cond = COND_ALWAYS;
16248 }
c19d1205 16249 return opcode;
b99bd4ef 16250
c19d1205 16251 default:
c921be7d 16252 return NULL;
c19d1205
ZW
16253 }
16254 }
b99bd4ef 16255
c19d1205
ZW
16256 /* Cannot have a usual-position infix on a mnemonic of less than
16257 six characters (five would be a suffix). */
16258 if (end - base < 6)
c921be7d 16259 return NULL;
b99bd4ef 16260
c19d1205
ZW
16261 /* Look for infixed mnemonic in the usual position. */
16262 affix = base + 3;
21d799b5 16263 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 16264 if (!cond)
c921be7d 16265 return NULL;
e3cb604e
PB
16266
16267 memcpy (save, affix, 2);
16268 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
16269 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16270 (end - base) - 2);
e3cb604e
PB
16271 memmove (affix + 2, affix, (end - affix) - 2);
16272 memcpy (affix, save, 2);
16273
088fa78e
KH
16274 if (opcode
16275 && (opcode->tag == OT_cinfix3
16276 || opcode->tag == OT_cinfix3_deprecated
16277 || opcode->tag == OT_csuf_or_in3
16278 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 16279 {
c921be7d 16280 /* Step CM. */
278df34e 16281 if (warn_on_deprecated && unified_syntax
088fa78e
KH
16282 && (opcode->tag == OT_cinfix3
16283 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
16284 as_warn (_("conditional infixes are deprecated in unified syntax"));
16285
16286 inst.cond = cond->value;
16287 return opcode;
b99bd4ef
NC
16288 }
16289
c921be7d 16290 return NULL;
b99bd4ef
NC
16291}
16292
e07e6e58
NC
16293/* This function generates an initial IT instruction, leaving its block
16294 virtually open for the new instructions. Eventually,
16295 the mask will be updated by now_it_add_mask () each time
16296 a new instruction needs to be included in the IT block.
16297 Finally, the block is closed with close_automatic_it_block ().
16298 The block closure can be requested either from md_assemble (),
16299 a tencode (), or due to a label hook. */
16300
16301static void
16302new_automatic_it_block (int cond)
16303{
16304 now_it.state = AUTOMATIC_IT_BLOCK;
16305 now_it.mask = 0x18;
16306 now_it.cc = cond;
16307 now_it.block_length = 1;
cd000bff 16308 mapping_state (MAP_THUMB);
e07e6e58 16309 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
16310 now_it.warn_deprecated = FALSE;
16311 now_it.insn_cond = TRUE;
e07e6e58
NC
16312}
16313
16314/* Close an automatic IT block.
16315 See comments in new_automatic_it_block (). */
16316
16317static void
16318close_automatic_it_block (void)
16319{
16320 now_it.mask = 0x10;
16321 now_it.block_length = 0;
16322}
16323
16324/* Update the mask of the current automatically-generated IT
16325 instruction. See comments in new_automatic_it_block (). */
16326
16327static void
16328now_it_add_mask (int cond)
16329{
16330#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16331#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16332 | ((bitvalue) << (nbit)))
e07e6e58 16333 const int resulting_bit = (cond & 1);
c921be7d 16334
e07e6e58
NC
16335 now_it.mask &= 0xf;
16336 now_it.mask = SET_BIT_VALUE (now_it.mask,
16337 resulting_bit,
16338 (5 - now_it.block_length));
16339 now_it.mask = SET_BIT_VALUE (now_it.mask,
16340 1,
16341 ((5 - now_it.block_length) - 1) );
16342 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16343
16344#undef CLEAR_BIT
16345#undef SET_BIT_VALUE
e07e6e58
NC
16346}
16347
16348/* The IT blocks handling machinery is accessed through the these functions:
16349 it_fsm_pre_encode () from md_assemble ()
16350 set_it_insn_type () optional, from the tencode functions
16351 set_it_insn_type_last () ditto
16352 in_it_block () ditto
16353 it_fsm_post_encode () from md_assemble ()
16354 force_automatic_it_block_close () from label habdling functions
16355
16356 Rationale:
16357 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16358 initializing the IT insn type with a generic initial value depending
16359 on the inst.condition.
16360 2) During the tencode function, two things may happen:
16361 a) The tencode function overrides the IT insn type by
16362 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16363 b) The tencode function queries the IT block state by
16364 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16365
16366 Both set_it_insn_type and in_it_block run the internal FSM state
16367 handling function (handle_it_state), because: a) setting the IT insn
16368 type may incur in an invalid state (exiting the function),
16369 and b) querying the state requires the FSM to be updated.
16370 Specifically we want to avoid creating an IT block for conditional
16371 branches, so it_fsm_pre_encode is actually a guess and we can't
16372 determine whether an IT block is required until the tencode () routine
16373 has decided what type of instruction this actually it.
16374 Because of this, if set_it_insn_type and in_it_block have to be used,
16375 set_it_insn_type has to be called first.
16376
16377 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16378 determines the insn IT type depending on the inst.cond code.
16379 When a tencode () routine encodes an instruction that can be
16380 either outside an IT block, or, in the case of being inside, has to be
16381 the last one, set_it_insn_type_last () will determine the proper
16382 IT instruction type based on the inst.cond code. Otherwise,
16383 set_it_insn_type can be called for overriding that logic or
16384 for covering other cases.
16385
16386 Calling handle_it_state () may not transition the IT block state to
16387 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16388 still queried. Instead, if the FSM determines that the state should
16389 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16390 after the tencode () function: that's what it_fsm_post_encode () does.
16391
16392 Since in_it_block () calls the state handling function to get an
16393 updated state, an error may occur (due to invalid insns combination).
16394 In that case, inst.error is set.
16395 Therefore, inst.error has to be checked after the execution of
16396 the tencode () routine.
16397
16398 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16399 any pending state change (if any) that didn't take place in
16400 handle_it_state () as explained above. */
16401
16402static void
16403it_fsm_pre_encode (void)
16404{
16405 if (inst.cond != COND_ALWAYS)
16406 inst.it_insn_type = INSIDE_IT_INSN;
16407 else
16408 inst.it_insn_type = OUTSIDE_IT_INSN;
16409
16410 now_it.state_handled = 0;
16411}
16412
16413/* IT state FSM handling function. */
16414
16415static int
16416handle_it_state (void)
16417{
16418 now_it.state_handled = 1;
5a01bb1d 16419 now_it.insn_cond = FALSE;
e07e6e58
NC
16420
16421 switch (now_it.state)
16422 {
16423 case OUTSIDE_IT_BLOCK:
16424 switch (inst.it_insn_type)
16425 {
16426 case OUTSIDE_IT_INSN:
16427 break;
16428
16429 case INSIDE_IT_INSN:
16430 case INSIDE_IT_LAST_INSN:
16431 if (thumb_mode == 0)
16432 {
c921be7d 16433 if (unified_syntax
e07e6e58
NC
16434 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16435 as_tsktsk (_("Warning: conditional outside an IT block"\
16436 " for Thumb."));
16437 }
16438 else
16439 {
16440 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16441 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16442 {
16443 /* Automatically generate the IT instruction. */
16444 new_automatic_it_block (inst.cond);
16445 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16446 close_automatic_it_block ();
16447 }
16448 else
16449 {
16450 inst.error = BAD_OUT_IT;
16451 return FAIL;
16452 }
16453 }
16454 break;
16455
16456 case IF_INSIDE_IT_LAST_INSN:
16457 case NEUTRAL_IT_INSN:
16458 break;
16459
16460 case IT_INSN:
16461 now_it.state = MANUAL_IT_BLOCK;
16462 now_it.block_length = 0;
16463 break;
16464 }
16465 break;
16466
16467 case AUTOMATIC_IT_BLOCK:
16468 /* Three things may happen now:
16469 a) We should increment current it block size;
16470 b) We should close current it block (closing insn or 4 insns);
16471 c) We should close current it block and start a new one (due
16472 to incompatible conditions or
16473 4 insns-length block reached). */
16474
16475 switch (inst.it_insn_type)
16476 {
16477 case OUTSIDE_IT_INSN:
16478 /* The closure of the block shall happen immediatelly,
16479 so any in_it_block () call reports the block as closed. */
16480 force_automatic_it_block_close ();
16481 break;
16482
16483 case INSIDE_IT_INSN:
16484 case INSIDE_IT_LAST_INSN:
16485 case IF_INSIDE_IT_LAST_INSN:
16486 now_it.block_length++;
16487
16488 if (now_it.block_length > 4
16489 || !now_it_compatible (inst.cond))
16490 {
16491 force_automatic_it_block_close ();
16492 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16493 new_automatic_it_block (inst.cond);
16494 }
16495 else
16496 {
5a01bb1d 16497 now_it.insn_cond = TRUE;
e07e6e58
NC
16498 now_it_add_mask (inst.cond);
16499 }
16500
16501 if (now_it.state == AUTOMATIC_IT_BLOCK
16502 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16503 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16504 close_automatic_it_block ();
16505 break;
16506
16507 case NEUTRAL_IT_INSN:
16508 now_it.block_length++;
5a01bb1d 16509 now_it.insn_cond = TRUE;
e07e6e58
NC
16510
16511 if (now_it.block_length > 4)
16512 force_automatic_it_block_close ();
16513 else
16514 now_it_add_mask (now_it.cc & 1);
16515 break;
16516
16517 case IT_INSN:
16518 close_automatic_it_block ();
16519 now_it.state = MANUAL_IT_BLOCK;
16520 break;
16521 }
16522 break;
16523
16524 case MANUAL_IT_BLOCK:
16525 {
16526 /* Check conditional suffixes. */
16527 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16528 int is_last;
16529 now_it.mask <<= 1;
16530 now_it.mask &= 0x1f;
16531 is_last = (now_it.mask == 0x10);
5a01bb1d 16532 now_it.insn_cond = TRUE;
e07e6e58
NC
16533
16534 switch (inst.it_insn_type)
16535 {
16536 case OUTSIDE_IT_INSN:
16537 inst.error = BAD_NOT_IT;
16538 return FAIL;
16539
16540 case INSIDE_IT_INSN:
16541 if (cond != inst.cond)
16542 {
16543 inst.error = BAD_IT_COND;
16544 return FAIL;
16545 }
16546 break;
16547
16548 case INSIDE_IT_LAST_INSN:
16549 case IF_INSIDE_IT_LAST_INSN:
16550 if (cond != inst.cond)
16551 {
16552 inst.error = BAD_IT_COND;
16553 return FAIL;
16554 }
16555 if (!is_last)
16556 {
16557 inst.error = BAD_BRANCH;
16558 return FAIL;
16559 }
16560 break;
16561
16562 case NEUTRAL_IT_INSN:
16563 /* The BKPT instruction is unconditional even in an IT block. */
16564 break;
16565
16566 case IT_INSN:
16567 inst.error = BAD_IT_IT;
16568 return FAIL;
16569 }
16570 }
16571 break;
16572 }
16573
16574 return SUCCESS;
16575}
16576
5a01bb1d
MGD
16577struct depr_insn_mask
16578{
16579 unsigned long pattern;
16580 unsigned long mask;
16581 const char* description;
16582};
16583
16584/* List of 16-bit instruction patterns deprecated in an IT block in
16585 ARMv8. */
16586static const struct depr_insn_mask depr_it_insns[] = {
16587 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16588 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16589 { 0xa000, 0xb800, N_("ADR") },
16590 { 0x4800, 0xf800, N_("Literal loads") },
16591 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16592 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16593 { 0, 0, NULL }
16594};
16595
e07e6e58
NC
16596static void
16597it_fsm_post_encode (void)
16598{
16599 int is_last;
16600
16601 if (!now_it.state_handled)
16602 handle_it_state ();
16603
5a01bb1d
MGD
16604 if (now_it.insn_cond
16605 && !now_it.warn_deprecated
16606 && warn_on_deprecated
16607 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16608 {
16609 if (inst.instruction >= 0x10000)
16610 {
16611 as_warn (_("it blocks containing wide Thumb instructions are "
16612 "deprecated in ARMv8"));
16613 now_it.warn_deprecated = TRUE;
16614 }
16615 else
16616 {
16617 const struct depr_insn_mask *p = depr_it_insns;
16618
16619 while (p->mask != 0)
16620 {
16621 if ((inst.instruction & p->mask) == p->pattern)
16622 {
16623 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16624 "of the following class are deprecated in ARMv8: "
16625 "%s"), p->description);
16626 now_it.warn_deprecated = TRUE;
16627 break;
16628 }
16629
16630 ++p;
16631 }
16632 }
16633
16634 if (now_it.block_length > 1)
16635 {
16636 as_warn (_("it blocks of more than one conditional instruction are "
16637 "deprecated in ARMv8"));
16638 now_it.warn_deprecated = TRUE;
16639 }
16640 }
16641
e07e6e58
NC
16642 is_last = (now_it.mask == 0x10);
16643 if (is_last)
16644 {
16645 now_it.state = OUTSIDE_IT_BLOCK;
16646 now_it.mask = 0;
16647 }
16648}
16649
16650static void
16651force_automatic_it_block_close (void)
16652{
16653 if (now_it.state == AUTOMATIC_IT_BLOCK)
16654 {
16655 close_automatic_it_block ();
16656 now_it.state = OUTSIDE_IT_BLOCK;
16657 now_it.mask = 0;
16658 }
16659}
16660
16661static int
16662in_it_block (void)
16663{
16664 if (!now_it.state_handled)
16665 handle_it_state ();
16666
16667 return now_it.state != OUTSIDE_IT_BLOCK;
16668}
16669
c19d1205
ZW
16670void
16671md_assemble (char *str)
b99bd4ef 16672{
c19d1205
ZW
16673 char *p = str;
16674 const struct asm_opcode * opcode;
b99bd4ef 16675
c19d1205
ZW
16676 /* Align the previous label if needed. */
16677 if (last_label_seen != NULL)
b99bd4ef 16678 {
c19d1205
ZW
16679 symbol_set_frag (last_label_seen, frag_now);
16680 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16681 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16682 }
16683
c19d1205
ZW
16684 memset (&inst, '\0', sizeof (inst));
16685 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16686
c19d1205
ZW
16687 opcode = opcode_lookup (&p);
16688 if (!opcode)
b99bd4ef 16689 {
c19d1205 16690 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16691 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16692 if (! create_register_alias (str, p)
16693 && ! create_neon_reg_alias (str, p))
c19d1205 16694 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16695
b99bd4ef
NC
16696 return;
16697 }
16698
278df34e 16699 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16700 as_warn (_("s suffix on comparison instruction is deprecated"));
16701
037e8744
JB
16702 /* The value which unconditional instructions should have in place of the
16703 condition field. */
16704 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16705
c19d1205 16706 if (thumb_mode)
b99bd4ef 16707 {
e74cfd16 16708 arm_feature_set variant;
8f06b2d8
PB
16709
16710 variant = cpu_variant;
16711 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16712 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16713 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16714 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16715 if (!opcode->tvariant
16716 || (thumb_mode == 1
16717 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16718 {
bf3eeda7 16719 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16720 return;
16721 }
c19d1205
ZW
16722 if (inst.cond != COND_ALWAYS && !unified_syntax
16723 && opcode->tencode != do_t_branch)
b99bd4ef 16724 {
c19d1205 16725 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16726 return;
16727 }
16728
752d5da4 16729 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16730 {
7e806470 16731 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16732 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16733 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16734 {
16735 /* Two things are addressed here.
16736 1) Implicit require narrow instructions on Thumb-1.
16737 This avoids relaxation accidentally introducing Thumb-2
16738 instructions.
16739 2) Reject wide instructions in non Thumb-2 cores. */
16740 if (inst.size_req == 0)
16741 inst.size_req = 2;
16742 else if (inst.size_req == 4)
16743 {
bf3eeda7 16744 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16745 return;
16746 }
16747 }
076d447c
PB
16748 }
16749
c19d1205
ZW
16750 inst.instruction = opcode->tvalue;
16751
5be8be5d 16752 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16753 {
16754 /* Prepare the it_insn_type for those encodings that don't set
16755 it. */
16756 it_fsm_pre_encode ();
c19d1205 16757
e07e6e58
NC
16758 opcode->tencode ();
16759
16760 it_fsm_post_encode ();
16761 }
e27ec89e 16762
0110f2b8 16763 if (!(inst.error || inst.relax))
b99bd4ef 16764 {
9c2799c2 16765 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16766 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16767 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16768 {
c19d1205 16769 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16770 return;
16771 }
16772 }
076d447c
PB
16773
16774 /* Something has gone badly wrong if we try to relax a fixed size
16775 instruction. */
9c2799c2 16776 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16777
e74cfd16
PB
16778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16779 *opcode->tvariant);
ee065d83 16780 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16781 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16782 anything other than bl/blx and v6-M instructions.
ee065d83 16783 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16784 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16785 || inst.relax)
e07e6e58
NC
16786 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16787 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16788 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16789 arm_ext_v6t2);
cd000bff 16790
88714cb8
DG
16791 check_neon_suffixes;
16792
cd000bff 16793 if (!inst.error)
c877a2f2
NC
16794 {
16795 mapping_state (MAP_THUMB);
16796 }
c19d1205 16797 }
3e9e4fcf 16798 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16799 {
845b51d6
PB
16800 bfd_boolean is_bx;
16801
16802 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16803 is_bx = (opcode->aencode == do_bx);
16804
c19d1205 16805 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16806 if (!(is_bx && fix_v4bx)
16807 && !(opcode->avariant &&
16808 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16809 {
bf3eeda7 16810 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16811 return;
b99bd4ef 16812 }
c19d1205 16813 if (inst.size_req)
b99bd4ef 16814 {
c19d1205
ZW
16815 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16816 return;
b99bd4ef
NC
16817 }
16818
c19d1205
ZW
16819 inst.instruction = opcode->avalue;
16820 if (opcode->tag == OT_unconditionalF)
16821 inst.instruction |= 0xF << 28;
16822 else
16823 inst.instruction |= inst.cond << 28;
16824 inst.size = INSN_SIZE;
5be8be5d 16825 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16826 {
16827 it_fsm_pre_encode ();
16828 opcode->aencode ();
16829 it_fsm_post_encode ();
16830 }
ee065d83
PB
16831 /* Arm mode bx is marked as both v4T and v5 because it's still required
16832 on a hypothetical non-thumb v5 core. */
845b51d6 16833 if (is_bx)
e74cfd16 16834 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16835 else
e74cfd16
PB
16836 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16837 *opcode->avariant);
88714cb8
DG
16838
16839 check_neon_suffixes;
16840
cd000bff 16841 if (!inst.error)
c877a2f2
NC
16842 {
16843 mapping_state (MAP_ARM);
16844 }
b99bd4ef 16845 }
3e9e4fcf
JB
16846 else
16847 {
16848 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16849 "-- `%s'"), str);
16850 return;
16851 }
c19d1205
ZW
16852 output_inst (str);
16853}
b99bd4ef 16854
e07e6e58
NC
16855static void
16856check_it_blocks_finished (void)
16857{
16858#ifdef OBJ_ELF
16859 asection *sect;
16860
16861 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16862 if (seg_info (sect)->tc_segment_info_data.current_it.state
16863 == MANUAL_IT_BLOCK)
16864 {
16865 as_warn (_("section '%s' finished with an open IT block."),
16866 sect->name);
16867 }
16868#else
16869 if (now_it.state == MANUAL_IT_BLOCK)
16870 as_warn (_("file finished with an open IT block."));
16871#endif
16872}
16873
c19d1205
ZW
16874/* Various frobbings of labels and their addresses. */
16875
16876void
16877arm_start_line_hook (void)
16878{
16879 last_label_seen = NULL;
b99bd4ef
NC
16880}
16881
c19d1205
ZW
16882void
16883arm_frob_label (symbolS * sym)
b99bd4ef 16884{
c19d1205 16885 last_label_seen = sym;
b99bd4ef 16886
c19d1205 16887 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16888
c19d1205
ZW
16889#if defined OBJ_COFF || defined OBJ_ELF
16890 ARM_SET_INTERWORK (sym, support_interwork);
16891#endif
b99bd4ef 16892
e07e6e58
NC
16893 force_automatic_it_block_close ();
16894
5f4273c7 16895 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16896 as Thumb functions. This is because these labels, whilst
16897 they exist inside Thumb code, are not the entry points for
16898 possible ARM->Thumb calls. Also, these labels can be used
16899 as part of a computed goto or switch statement. eg gcc
16900 can generate code that looks like this:
b99bd4ef 16901
c19d1205
ZW
16902 ldr r2, [pc, .Laaa]
16903 lsl r3, r3, #2
16904 ldr r2, [r3, r2]
16905 mov pc, r2
b99bd4ef 16906
c19d1205
ZW
16907 .Lbbb: .word .Lxxx
16908 .Lccc: .word .Lyyy
16909 ..etc...
16910 .Laaa: .word Lbbb
b99bd4ef 16911
c19d1205
ZW
16912 The first instruction loads the address of the jump table.
16913 The second instruction converts a table index into a byte offset.
16914 The third instruction gets the jump address out of the table.
16915 The fourth instruction performs the jump.
b99bd4ef 16916
c19d1205
ZW
16917 If the address stored at .Laaa is that of a symbol which has the
16918 Thumb_Func bit set, then the linker will arrange for this address
16919 to have the bottom bit set, which in turn would mean that the
16920 address computation performed by the third instruction would end
16921 up with the bottom bit set. Since the ARM is capable of unaligned
16922 word loads, the instruction would then load the incorrect address
16923 out of the jump table, and chaos would ensue. */
16924 if (label_is_thumb_function_name
16925 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16926 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16927 {
c19d1205
ZW
16928 /* When the address of a Thumb function is taken the bottom
16929 bit of that address should be set. This will allow
16930 interworking between Arm and Thumb functions to work
16931 correctly. */
b99bd4ef 16932
c19d1205 16933 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16934
c19d1205 16935 label_is_thumb_function_name = FALSE;
b99bd4ef 16936 }
07a53e5c 16937
07a53e5c 16938 dwarf2_emit_label (sym);
b99bd4ef
NC
16939}
16940
c921be7d 16941bfd_boolean
c19d1205 16942arm_data_in_code (void)
b99bd4ef 16943{
c19d1205 16944 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16945 {
c19d1205
ZW
16946 *input_line_pointer = '/';
16947 input_line_pointer += 5;
16948 *input_line_pointer = 0;
c921be7d 16949 return TRUE;
b99bd4ef
NC
16950 }
16951
c921be7d 16952 return FALSE;
b99bd4ef
NC
16953}
16954
c19d1205
ZW
16955char *
16956arm_canonicalize_symbol_name (char * name)
b99bd4ef 16957{
c19d1205 16958 int len;
b99bd4ef 16959
c19d1205
ZW
16960 if (thumb_mode && (len = strlen (name)) > 5
16961 && streq (name + len - 5, "/data"))
16962 *(name + len - 5) = 0;
b99bd4ef 16963
c19d1205 16964 return name;
b99bd4ef 16965}
c19d1205
ZW
16966\f
16967/* Table of all register names defined by default. The user can
16968 define additional names with .req. Note that all register names
16969 should appear in both upper and lowercase variants. Some registers
16970 also have mixed-case names. */
b99bd4ef 16971
dcbf9037 16972#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16973#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16974#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16975#define REGSET(p,t) \
16976 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16977 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16978 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16979 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16980#define REGSETH(p,t) \
16981 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16982 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16983 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16984 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16985#define REGSET2(p,t) \
16986 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16987 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16988 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16989 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16990#define SPLRBANK(base,bank,t) \
16991 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16992 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16993 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16994 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16995 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16996 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16997
c19d1205 16998static const struct reg_entry reg_names[] =
7ed4c4c5 16999{
c19d1205
ZW
17000 /* ARM integer registers. */
17001 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 17002
c19d1205
ZW
17003 /* ATPCS synonyms. */
17004 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17005 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17006 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 17007
c19d1205
ZW
17008 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17009 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17010 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 17011
c19d1205
ZW
17012 /* Well-known aliases. */
17013 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17014 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17015
17016 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17017 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17018
17019 /* Coprocessor numbers. */
17020 REGSET(p, CP), REGSET(P, CP),
17021
17022 /* Coprocessor register numbers. The "cr" variants are for backward
17023 compatibility. */
17024 REGSET(c, CN), REGSET(C, CN),
17025 REGSET(cr, CN), REGSET(CR, CN),
17026
90ec0d68
MGD
17027 /* ARM banked registers. */
17028 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17029 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17030 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17031 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17032 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17033 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17034 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17035
17036 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17037 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17038 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17039 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17040 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17041 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17042 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17043 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17044
17045 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17046 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17047 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17048 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17049 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17050 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17051 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 17052 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
17053 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17054
c19d1205
ZW
17055 /* FPA registers. */
17056 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17057 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17058
17059 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17060 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17061
17062 /* VFP SP registers. */
5287ad62
JB
17063 REGSET(s,VFS), REGSET(S,VFS),
17064 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
17065
17066 /* VFP DP Registers. */
5287ad62
JB
17067 REGSET(d,VFD), REGSET(D,VFD),
17068 /* Extra Neon DP registers. */
17069 REGSETH(d,VFD), REGSETH(D,VFD),
17070
17071 /* Neon QP registers. */
17072 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
17073
17074 /* VFP control registers. */
17075 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17076 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
17077 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17078 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17079 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17080 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
17081
17082 /* Maverick DSP coprocessor registers. */
17083 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17084 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17085
17086 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17087 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17088 REGDEF(dspsc,0,DSPSC),
17089
17090 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17091 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17092 REGDEF(DSPSC,0,DSPSC),
17093
17094 /* iWMMXt data registers - p0, c0-15. */
17095 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17096
17097 /* iWMMXt control registers - p1, c0-3. */
17098 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17099 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17100 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17101 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17102
17103 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17104 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17105 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17106 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17107 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17108
17109 /* XScale accumulator registers. */
17110 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17111};
17112#undef REGDEF
17113#undef REGNUM
17114#undef REGSET
7ed4c4c5 17115
c19d1205
ZW
17116/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17117 within psr_required_here. */
17118static const struct asm_psr psrs[] =
17119{
17120 /* Backward compatibility notation. Note that "all" is no longer
17121 truly all possible PSR bits. */
17122 {"all", PSR_c | PSR_f},
17123 {"flg", PSR_f},
17124 {"ctl", PSR_c},
17125
17126 /* Individual flags. */
17127 {"f", PSR_f},
17128 {"c", PSR_c},
17129 {"x", PSR_x},
17130 {"s", PSR_s},
59b42a0d 17131
c19d1205
ZW
17132 /* Combinations of flags. */
17133 {"fs", PSR_f | PSR_s},
17134 {"fx", PSR_f | PSR_x},
17135 {"fc", PSR_f | PSR_c},
17136 {"sf", PSR_s | PSR_f},
17137 {"sx", PSR_s | PSR_x},
17138 {"sc", PSR_s | PSR_c},
17139 {"xf", PSR_x | PSR_f},
17140 {"xs", PSR_x | PSR_s},
17141 {"xc", PSR_x | PSR_c},
17142 {"cf", PSR_c | PSR_f},
17143 {"cs", PSR_c | PSR_s},
17144 {"cx", PSR_c | PSR_x},
17145 {"fsx", PSR_f | PSR_s | PSR_x},
17146 {"fsc", PSR_f | PSR_s | PSR_c},
17147 {"fxs", PSR_f | PSR_x | PSR_s},
17148 {"fxc", PSR_f | PSR_x | PSR_c},
17149 {"fcs", PSR_f | PSR_c | PSR_s},
17150 {"fcx", PSR_f | PSR_c | PSR_x},
17151 {"sfx", PSR_s | PSR_f | PSR_x},
17152 {"sfc", PSR_s | PSR_f | PSR_c},
17153 {"sxf", PSR_s | PSR_x | PSR_f},
17154 {"sxc", PSR_s | PSR_x | PSR_c},
17155 {"scf", PSR_s | PSR_c | PSR_f},
17156 {"scx", PSR_s | PSR_c | PSR_x},
17157 {"xfs", PSR_x | PSR_f | PSR_s},
17158 {"xfc", PSR_x | PSR_f | PSR_c},
17159 {"xsf", PSR_x | PSR_s | PSR_f},
17160 {"xsc", PSR_x | PSR_s | PSR_c},
17161 {"xcf", PSR_x | PSR_c | PSR_f},
17162 {"xcs", PSR_x | PSR_c | PSR_s},
17163 {"cfs", PSR_c | PSR_f | PSR_s},
17164 {"cfx", PSR_c | PSR_f | PSR_x},
17165 {"csf", PSR_c | PSR_s | PSR_f},
17166 {"csx", PSR_c | PSR_s | PSR_x},
17167 {"cxf", PSR_c | PSR_x | PSR_f},
17168 {"cxs", PSR_c | PSR_x | PSR_s},
17169 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17170 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17171 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17172 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17173 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17174 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17175 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17176 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17177 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17178 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17179 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17180 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17181 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17182 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17183 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17184 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17185 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17186 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17187 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17188 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17189 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17190 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17191 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17192 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17193};
17194
62b3e311
PB
17195/* Table of V7M psr names. */
17196static const struct asm_psr v7m_psrs[] =
17197{
2b744c99
PB
17198 {"apsr", 0 }, {"APSR", 0 },
17199 {"iapsr", 1 }, {"IAPSR", 1 },
17200 {"eapsr", 2 }, {"EAPSR", 2 },
17201 {"psr", 3 }, {"PSR", 3 },
17202 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17203 {"ipsr", 5 }, {"IPSR", 5 },
17204 {"epsr", 6 }, {"EPSR", 6 },
17205 {"iepsr", 7 }, {"IEPSR", 7 },
17206 {"msp", 8 }, {"MSP", 8 },
17207 {"psp", 9 }, {"PSP", 9 },
17208 {"primask", 16}, {"PRIMASK", 16},
17209 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
17210 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17211 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
17212 {"faultmask", 19}, {"FAULTMASK", 19},
17213 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
17214};
17215
c19d1205
ZW
17216/* Table of all shift-in-operand names. */
17217static const struct asm_shift_name shift_names [] =
b99bd4ef 17218{
c19d1205
ZW
17219 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17220 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17221 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17222 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17223 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17224 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17225};
b99bd4ef 17226
c19d1205
ZW
17227/* Table of all explicit relocation names. */
17228#ifdef OBJ_ELF
17229static struct reloc_entry reloc_names[] =
17230{
17231 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17232 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17233 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17234 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17235 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17236 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17237 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17238 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17239 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17240 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 17241 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
17242 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17243 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17244 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17245 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17246 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17247 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17248 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
17249};
17250#endif
b99bd4ef 17251
c19d1205
ZW
17252/* Table of all conditional affixes. 0xF is not defined as a condition code. */
17253static const struct asm_cond conds[] =
17254{
17255 {"eq", 0x0},
17256 {"ne", 0x1},
17257 {"cs", 0x2}, {"hs", 0x2},
17258 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17259 {"mi", 0x4},
17260 {"pl", 0x5},
17261 {"vs", 0x6},
17262 {"vc", 0x7},
17263 {"hi", 0x8},
17264 {"ls", 0x9},
17265 {"ge", 0xa},
17266 {"lt", 0xb},
17267 {"gt", 0xc},
17268 {"le", 0xd},
17269 {"al", 0xe}
17270};
bfae80f2 17271
e797f7e0
MGD
17272#define UL_BARRIER(L,U,CODE,FEAT) \
17273 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17274 { U, CODE, ARM_FEATURE (FEAT, 0) }
17275
62b3e311
PB
17276static struct asm_barrier_opt barrier_opt_names[] =
17277{
e797f7e0
MGD
17278 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17279 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17280 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17281 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17282 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17283 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17284 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17285 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17286 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17287 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17288 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17289 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17290 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17291 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17292 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17293 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
17294};
17295
e797f7e0
MGD
17296#undef UL_BARRIER
17297
c19d1205
ZW
17298/* Table of ARM-format instructions. */
17299
17300/* Macros for gluing together operand strings. N.B. In all cases
17301 other than OPS0, the trailing OP_stop comes from default
17302 zero-initialization of the unspecified elements of the array. */
17303#define OPS0() { OP_stop, }
17304#define OPS1(a) { OP_##a, }
17305#define OPS2(a,b) { OP_##a,OP_##b, }
17306#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17307#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17308#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17309#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17310
5be8be5d
DG
17311/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17312 This is useful when mixing operands for ARM and THUMB, i.e. using the
17313 MIX_ARM_THUMB_OPERANDS macro.
17314 In order to use these macros, prefix the number of operands with _
17315 e.g. _3. */
17316#define OPS_1(a) { a, }
17317#define OPS_2(a,b) { a,b, }
17318#define OPS_3(a,b,c) { a,b,c, }
17319#define OPS_4(a,b,c,d) { a,b,c,d, }
17320#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17321#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17322
c19d1205
ZW
17323/* These macros abstract out the exact format of the mnemonic table and
17324 save some repeated characters. */
17325
17326/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17327#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17328 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 17329 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17330
17331/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17332 a T_MNEM_xyz enumerator. */
17333#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17334 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17335#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17336 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17337
17338/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17339 infix after the third character. */
17340#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 17341 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 17342 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 17343#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 17344 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 17345 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 17346#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17347 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 17348#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17349 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17350#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17351 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 17352#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17353 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17354
17355/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17356 appear in the condition table. */
17357#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 17358 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 17359 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17360
17361#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
17362 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17363 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17364 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17365 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17366 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17367 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17368 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17369 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17370 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17371 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17372 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17373 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17374 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17375 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17376 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17377 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17378 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17379 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17380 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17381
17382#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17383 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17384#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17385 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17386
17387/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17388 field is still 0xE. Many of the Thumb variants can be executed
17389 conditionally, so this is checked separately. */
c19d1205 17390#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17391 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17392 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17393
17394/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17395 condition code field. */
17396#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17397 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17398 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17399
17400/* ARM-only variants of all the above. */
6a86118a 17401#define CE(mnem, op, nops, ops, ae) \
21d799b5 17402 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17403
17404#define C3(mnem, op, nops, ops, ae) \
17405 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17406
e3cb604e
PB
17407/* Legacy mnemonics that always have conditional infix after the third
17408 character. */
17409#define CL(mnem, op, nops, ops, ae) \
21d799b5 17410 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17411 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17412
8f06b2d8
PB
17413/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17414#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17415 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17416
e3cb604e
PB
17417/* Legacy coprocessor instructions where conditional infix and conditional
17418 suffix are ambiguous. For consistency this includes all FPA instructions,
17419 not just the potentially ambiguous ones. */
17420#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17421 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17422 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17423
17424/* Coprocessor, takes either a suffix or a position-3 infix
17425 (for an FPA corner case). */
17426#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17427 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17428 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17429
6a86118a 17430#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17431 { m1 #m2 m3, OPS##nops ops, \
17432 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17433 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17434
17435#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17436 xCM_ (m1, , m2, op, nops, ops, ae), \
17437 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17438 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17439 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17440 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17441 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17442 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17443 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17444 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17445 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17446 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17447 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17448 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17449 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17450 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17451 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17452 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17453 xCM_ (m1, le, m2, op, nops, ops, ae), \
17454 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17455
17456#define UE(mnem, op, nops, ops, ae) \
17457 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17458
17459#define UF(mnem, op, nops, ops, ae) \
17460 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17461
5287ad62
JB
17462/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17463 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17464 use the same encoding function for each. */
17465#define NUF(mnem, op, nops, ops, enc) \
17466 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17467 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17468
17469/* Neon data processing, version which indirects through neon_enc_tab for
17470 the various overloaded versions of opcodes. */
17471#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17472 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17473 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17474
17475/* Neon insn with conditional suffix for the ARM version, non-overloaded
17476 version. */
037e8744
JB
17477#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17478 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17479 THUMB_VARIANT, do_##enc, do_##enc }
17480
037e8744 17481#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17482 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17483
17484#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17485 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17486
5287ad62 17487/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17488#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17489 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17490 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17491
037e8744 17492#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17493 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17494
17495#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17496 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17497
c19d1205
ZW
17498#define do_0 0
17499
c19d1205 17500static const struct asm_opcode insns[] =
bfae80f2 17501{
e74cfd16
PB
17502#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17503#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17504 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17505 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17506 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17507 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17508 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17509 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17510 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17511 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17512 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17513 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17514 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17515 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17516 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17517 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17518 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17519 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17520
17521 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17522 for setting PSR flag bits. They are obsolete in V6 and do not
17523 have Thumb equivalents. */
21d799b5
NC
17524 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17525 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17526 CL("tstp", 110f000, 2, (RR, SH), cmp),
17527 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17528 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17529 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17530 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17531 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17532 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17533
17534 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17535 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17536 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17537 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17538
17539 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17540 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17541 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17542 OP_RRnpc),
17543 OP_ADDRGLDR),ldst, t_ldst),
17544 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17545
17546 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17547 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17548 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17549 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17550 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17551 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17552
17553 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17554 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17555 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17556 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17557
c19d1205 17558 /* Pseudo ops. */
21d799b5 17559 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17560 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17561 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17562
17563 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17564 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17565 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17566 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17567 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17568 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17569 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17570 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17571 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17572 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17573 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17574 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17575 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17576
16a4cf17 17577 /* These may simplify to neg. */
21d799b5
NC
17578 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17579 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17580
c921be7d
NC
17581#undef THUMB_VARIANT
17582#define THUMB_VARIANT & arm_ext_v6
17583
21d799b5 17584 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17585
17586 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17587#undef THUMB_VARIANT
17588#define THUMB_VARIANT & arm_ext_v6t2
17589
21d799b5
NC
17590 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17591 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17592 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17593
5be8be5d
DG
17594 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17595 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17596 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17597 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17598
21d799b5
NC
17599 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17600 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17601
21d799b5
NC
17602 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17603 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17604
17605 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17606 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17607 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17608
17609 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17610 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17611 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17612 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17613 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17614 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17615 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17616 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17617
c921be7d
NC
17618#undef ARM_VARIANT
17619#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17620#undef THUMB_VARIANT
17621#define THUMB_VARIANT & arm_ext_v4t
17622
21d799b5
NC
17623 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17624 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17625
c921be7d
NC
17626#undef THUMB_VARIANT
17627#define THUMB_VARIANT & arm_ext_v6t2
17628
21d799b5 17629 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17630 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17631
17632 /* Generic coprocessor instructions. */
21d799b5
NC
17633 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17634 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17635 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17636 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17637 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17638 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17639 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17640
c921be7d
NC
17641#undef ARM_VARIANT
17642#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17643
21d799b5 17644 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17645 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17646
c921be7d
NC
17647#undef ARM_VARIANT
17648#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17649#undef THUMB_VARIANT
17650#define THUMB_VARIANT & arm_ext_msr
17651
d2cd1205
JB
17652 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17653 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17654
c921be7d
NC
17655#undef ARM_VARIANT
17656#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17657#undef THUMB_VARIANT
17658#define THUMB_VARIANT & arm_ext_v6t2
17659
21d799b5
NC
17660 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17661 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17662 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17663 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17664 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17665 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17666 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17667 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17668
c921be7d
NC
17669#undef ARM_VARIANT
17670#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17671#undef THUMB_VARIANT
17672#define THUMB_VARIANT & arm_ext_v4t
17673
5be8be5d
DG
17674 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17675 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17676 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17677 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17678 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17679 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17680
c921be7d
NC
17681#undef ARM_VARIANT
17682#define ARM_VARIANT & arm_ext_v4t_5
17683
c19d1205
ZW
17684 /* ARM Architecture 4T. */
17685 /* Note: bx (and blx) are required on V5, even if the processor does
17686 not support Thumb. */
21d799b5 17687 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17688
c921be7d
NC
17689#undef ARM_VARIANT
17690#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17691#undef THUMB_VARIANT
17692#define THUMB_VARIANT & arm_ext_v5t
17693
c19d1205
ZW
17694 /* Note: blx has 2 variants; the .value coded here is for
17695 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17696 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17697 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17698
c921be7d
NC
17699#undef THUMB_VARIANT
17700#define THUMB_VARIANT & arm_ext_v6t2
17701
21d799b5
NC
17702 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17703 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17704 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17705 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17706 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17707 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17708 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17709 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17710
c921be7d
NC
17711#undef ARM_VARIANT
17712#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17713#undef THUMB_VARIANT
17714#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17715
21d799b5
NC
17716 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17717 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17718 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17719 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17720
21d799b5
NC
17721 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17722 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17723
21d799b5
NC
17724 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17725 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17726 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17727 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17728
21d799b5
NC
17729 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17730 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17731 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17732 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17733
21d799b5
NC
17734 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17735 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17736
03ee1b7f
NC
17737 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17738 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17739 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17740 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17741
c921be7d
NC
17742#undef ARM_VARIANT
17743#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17744#undef THUMB_VARIANT
17745#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17746
21d799b5 17747 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17748 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17749 ldrd, t_ldstd),
17750 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17751 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17752
21d799b5
NC
17753 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17754 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17755
c921be7d
NC
17756#undef ARM_VARIANT
17757#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17758
21d799b5 17759 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17760
c921be7d
NC
17761#undef ARM_VARIANT
17762#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17763#undef THUMB_VARIANT
17764#define THUMB_VARIANT & arm_ext_v6
17765
21d799b5
NC
17766 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17767 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17768 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17769 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17770 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17771 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17772 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17773 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17774 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17775 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17776
c921be7d
NC
17777#undef THUMB_VARIANT
17778#define THUMB_VARIANT & arm_ext_v6t2
17779
5be8be5d
DG
17780 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17781 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17782 strex, t_strex),
21d799b5
NC
17783 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17784 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17785
21d799b5
NC
17786 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17787 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17788
9e3c6df6 17789/* ARM V6 not included in V7M. */
c921be7d
NC
17790#undef THUMB_VARIANT
17791#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17792 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17793 UF(rfeib, 9900a00, 1, (RRw), rfe),
17794 UF(rfeda, 8100a00, 1, (RRw), rfe),
17795 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17796 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17797 UF(rfefa, 9900a00, 1, (RRw), rfe),
17798 UF(rfeea, 8100a00, 1, (RRw), rfe),
17799 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17800 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17801 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17802 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17803 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17804
9e3c6df6
PB
17805/* ARM V6 not included in V7M (eg. integer SIMD). */
17806#undef THUMB_VARIANT
17807#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17808 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17809 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17810 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17811 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17812 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17813 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17814 /* Old name for QASX. */
21d799b5
NC
17815 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17816 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17817 /* Old name for QSAX. */
21d799b5
NC
17818 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17819 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17820 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17821 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17822 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17823 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17824 /* Old name for SASX. */
21d799b5
NC
17825 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17826 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17827 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17828 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17829 /* Old name for SHASX. */
21d799b5
NC
17830 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17831 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17832 /* Old name for SHSAX. */
21d799b5
NC
17833 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17834 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17835 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17836 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17837 /* Old name for SSAX. */
21d799b5
NC
17838 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17839 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17840 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17841 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17842 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17843 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17844 /* Old name for UASX. */
21d799b5
NC
17845 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17846 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17847 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17848 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17849 /* Old name for UHASX. */
21d799b5
NC
17850 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17851 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17852 /* Old name for UHSAX. */
21d799b5
NC
17853 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17854 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17855 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17856 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17857 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17858 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17859 /* Old name for UQASX. */
21d799b5
NC
17860 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17861 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17862 /* Old name for UQSAX. */
21d799b5
NC
17863 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17864 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17865 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17866 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17867 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17868 /* Old name for USAX. */
21d799b5
NC
17869 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17870 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17871 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17872 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17873 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17874 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17875 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17876 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17877 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17878 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17879 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17880 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17881 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17882 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17883 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17884 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17885 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17886 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17887 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17888 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17889 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17890 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17891 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17892 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17893 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17894 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17895 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17896 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17897 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17898 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17899 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17900 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17901 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17902 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17903
c921be7d
NC
17904#undef ARM_VARIANT
17905#define ARM_VARIANT & arm_ext_v6k
17906#undef THUMB_VARIANT
17907#define THUMB_VARIANT & arm_ext_v6k
17908
21d799b5
NC
17909 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17910 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17911 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17912 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17913
c921be7d
NC
17914#undef THUMB_VARIANT
17915#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17916 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17917 ldrexd, t_ldrexd),
17918 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17919 RRnpcb), strexd, t_strexd),
ebdca51a 17920
c921be7d
NC
17921#undef THUMB_VARIANT
17922#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17923 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17924 rd_rn, rd_rn),
17925 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17926 rd_rn, rd_rn),
17927 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17928 strex, t_strexbh),
5be8be5d 17929 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17930 strex, t_strexbh),
21d799b5 17931 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17932
c921be7d 17933#undef ARM_VARIANT
f4c65163
MGD
17934#define ARM_VARIANT & arm_ext_sec
17935#undef THUMB_VARIANT
17936#define THUMB_VARIANT & arm_ext_sec
c921be7d 17937
21d799b5 17938 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17939
90ec0d68
MGD
17940#undef ARM_VARIANT
17941#define ARM_VARIANT & arm_ext_virt
17942#undef THUMB_VARIANT
17943#define THUMB_VARIANT & arm_ext_virt
17944
17945 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17946 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17947
c921be7d
NC
17948#undef ARM_VARIANT
17949#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17950#undef THUMB_VARIANT
17951#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17952
21d799b5
NC
17953 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17954 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17955 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17956 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17957
21d799b5
NC
17958 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17959 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17960 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17961 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17962
5be8be5d
DG
17963 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17964 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17965 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17966 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17967
bf3eeda7
NS
17968 /* Thumb-only instructions. */
17969#undef ARM_VARIANT
17970#define ARM_VARIANT NULL
17971 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17972 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17973
17974 /* ARM does not really have an IT instruction, so always allow it.
17975 The opcode is copied from Thumb in order to allow warnings in
17976 -mimplicit-it=[never | arm] modes. */
17977#undef ARM_VARIANT
17978#define ARM_VARIANT & arm_ext_v1
17979
21d799b5
NC
17980 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17981 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17982 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17983 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17984 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17985 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17986 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17987 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17988 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17989 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17990 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17991 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17992 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17993 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17994 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17995 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17996 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17997 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17998
92e90b6e 17999 /* Thumb2 only instructions. */
c921be7d
NC
18000#undef ARM_VARIANT
18001#define ARM_VARIANT NULL
92e90b6e 18002
21d799b5
NC
18003 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18004 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18005 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18006 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18007 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18008 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 18009
eea54501
MGD
18010 /* Hardware division instructions. */
18011#undef ARM_VARIANT
18012#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
18013#undef THUMB_VARIANT
18014#define THUMB_VARIANT & arm_ext_div
18015
eea54501
MGD
18016 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18017 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 18018
7e806470 18019 /* ARM V6M/V7 instructions. */
c921be7d
NC
18020#undef ARM_VARIANT
18021#define ARM_VARIANT & arm_ext_barrier
18022#undef THUMB_VARIANT
18023#define THUMB_VARIANT & arm_ext_barrier
18024
52e7f43d
RE
18025 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18026 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18027 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 18028
62b3e311 18029 /* ARM V7 instructions. */
c921be7d
NC
18030#undef ARM_VARIANT
18031#define ARM_VARIANT & arm_ext_v7
18032#undef THUMB_VARIANT
18033#define THUMB_VARIANT & arm_ext_v7
18034
21d799b5
NC
18035 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18036 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 18037
60e5ef9f
MGD
18038#undef ARM_VARIANT
18039#define ARM_VARIANT & arm_ext_mp
18040#undef THUMB_VARIANT
18041#define THUMB_VARIANT & arm_ext_mp
18042
18043 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18044
53c4b28b
MGD
18045 /* AArchv8 instructions. */
18046#undef ARM_VARIANT
18047#define ARM_VARIANT & arm_ext_v8
18048#undef THUMB_VARIANT
18049#define THUMB_VARIANT & arm_ext_v8
18050
18051 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
8884b720 18052 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
9eb6c0f1
MGD
18053 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18054 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18055 ldrexd, t_ldrexd),
18056 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18057 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18058 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18059 strlex, t_strlex),
18060 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18061 strexd, t_strexd),
18062 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18063 strlex, t_strlex),
18064 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18065 strlex, t_strlex),
18066 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18067 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18068 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18069 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18070 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18071 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
53c4b28b 18072
8884b720 18073 /* ARMv8 T32 only. */
b79f7053
MGD
18074#undef ARM_VARIANT
18075#define ARM_VARIANT NULL
18076 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18077 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18078 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18079
33399f07
MGD
18080 /* FP for ARMv8. */
18081#undef ARM_VARIANT
18082#define ARM_VARIANT & fpu_vfp_ext_armv8
18083#undef THUMB_VARIANT
18084#define THUMB_VARIANT & fpu_vfp_ext_armv8
18085
18086 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18087 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18088 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18089 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18090
c921be7d
NC
18091#undef ARM_VARIANT
18092#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
18093#undef THUMB_VARIANT
18094#define THUMB_VARIANT NULL
c921be7d 18095
21d799b5
NC
18096 cCE("wfs", e200110, 1, (RR), rd),
18097 cCE("rfs", e300110, 1, (RR), rd),
18098 cCE("wfc", e400110, 1, (RR), rd),
18099 cCE("rfc", e500110, 1, (RR), rd),
18100
18101 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18102 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18103 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18104 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18105
18106 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18107 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18108 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18109 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18110
18111 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18112 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18113 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18114 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18115 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18116 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18117 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18118 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18119 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18120 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18121 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18122 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18123
18124 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18125 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18126 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18127 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18128 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18129 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18130 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18131 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18132 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18133 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18134 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18135 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18136
18137 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18138 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18139 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18140 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18141 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18142 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18143 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18144 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18145 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18146 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18147 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18148 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18149
18150 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18151 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18152 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18153 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18154 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18155 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18156 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18157 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18158 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18159 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18160 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18161 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18162
18163 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18164 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18165 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18166 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18167 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18168 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18169 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18170 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18171 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18172 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18173 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18174 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18175
18176 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18177 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18178 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18179 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18180 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18181 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18182 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18183 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18184 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18185 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18186 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18187 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18188
18189 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18190 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18191 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18192 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18193 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18194 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18195 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18196 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18197 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18198 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18199 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18200 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18201
18202 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18203 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18204 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18205 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18206 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18207 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18208 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18209 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18210 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18211 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18212 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18213 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18214
18215 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18216 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18217 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18218 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18219 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18220 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18221 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18222 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18223 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18224 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18225 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18226 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18227
18228 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18229 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18230 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18231 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18232 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18233 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18234 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18235 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18236 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18237 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18238 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18239 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18240
18241 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18242 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18243 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18244 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18245 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18246 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18247 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18248 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18249 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18250 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18251 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18252 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18253
18254 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18255 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18256 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18257 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18258 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18259 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18260 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18261 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18262 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18263 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18264 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18265 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18266
18267 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18268 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18269 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18270 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18271 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18272 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18273 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18274 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18275 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18276 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18277 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18278 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18279
18280 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18281 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18282 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18283 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18284 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18285 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18286 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18287 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18288 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18289 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18290 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18291 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18292
18293 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18294 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18295 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18296 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18297 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18298 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18299 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18300 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18301 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18302 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18303 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18304 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18305
18306 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18307 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18308 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18309 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18310 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18311 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18312 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18313 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18314 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18315 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18316 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18317 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18318
18319 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18320 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18321 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18322 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18323 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18324 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18325 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18326 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18327 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18331
18332 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18333 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18334 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18344
18345 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18346 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18347 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18357
18358 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18359 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18360 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18365 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18366 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18370
18371 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18372 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18373 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18374 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18375 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18376 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18377 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18378 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18379 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18380 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18381 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18382 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18383
18384 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18385 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18386 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18387 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18388 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18389 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18390 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18391 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18392 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18393 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18394 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18395 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18396
18397 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18398 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18399 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18400 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18401 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18402 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18403 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18404 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18405 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18406 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18407 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18408 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18409
18410 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18411 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18412 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18413 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18414 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18415 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18416 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18417 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18418 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18419 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18420 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18421 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18422
18423 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18424 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18425 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18426 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18427 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18428 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18429 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18430 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18431 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18432 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18433 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18434 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18435
18436 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18437 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18438 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18439 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18440 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18441 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18442 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18443 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18444 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18445 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18446 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18447 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18448
18449 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18450 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18451 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18452 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18453 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18454 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18455 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18456 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18457 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18458 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18459 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18460 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18461
18462 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18463 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18464 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18465 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18466 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18467 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18468 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18469 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18470 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18471 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18472 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18473 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18474
18475 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18476 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18477 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18478 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18479 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18480 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18481 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18482 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18483 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18484 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18485 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18486 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18487
18488 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18489 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18490 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18491 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18492
18493 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18494 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18495 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18496 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18497 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18498 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18499 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18500 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18501 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18502 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18503 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18504 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18505
c19d1205
ZW
18506 /* The implementation of the FIX instruction is broken on some
18507 assemblers, in that it accepts a precision specifier as well as a
18508 rounding specifier, despite the fact that this is meaningless.
18509 To be more compatible, we accept it as well, though of course it
18510 does not set any bits. */
21d799b5
NC
18511 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18512 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18513 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18514 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18515 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18516 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18517 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18518 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18519 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18520 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18521 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18522 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18523 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18524
c19d1205 18525 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18526#undef ARM_VARIANT
18527#define ARM_VARIANT & fpu_fpa_ext_v2
18528
21d799b5
NC
18529 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18530 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18531 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18532 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18533 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18534 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18535
c921be7d
NC
18536#undef ARM_VARIANT
18537#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18538
c19d1205 18539 /* Moves and type conversions. */
21d799b5
NC
18540 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18541 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18542 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18543 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
18544 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18545 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18546 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18547 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18548 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18549 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18550 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18551 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18552 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18553 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18554
18555 /* Memory operations. */
21d799b5
NC
18556 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18557 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18558 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18559 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18560 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18561 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18562 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18563 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18564 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18565 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18566 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18567 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18568 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18569 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18570 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18571 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18572 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18573 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18574
c19d1205 18575 /* Monadic operations. */
21d799b5
NC
18576 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18577 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18578 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18579
18580 /* Dyadic operations. */
21d799b5
NC
18581 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18582 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18583 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18584 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18585 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18586 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18587 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18588 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18589 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18590
c19d1205 18591 /* Comparisons. */
21d799b5
NC
18592 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18593 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18594 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18595 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18596
62f3b8c8
PB
18597 /* Double precision load/store are still present on single precision
18598 implementations. */
18599 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18600 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18601 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18602 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18603 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18604 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18605 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18606 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18607 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18608 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18609
c921be7d
NC
18610#undef ARM_VARIANT
18611#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18612
c19d1205 18613 /* Moves and type conversions. */
21d799b5
NC
18614 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18615 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18616 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18617 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18618 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18619 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18620 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18621 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18622 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18623 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18624 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18625 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18626 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18627
c19d1205 18628 /* Monadic operations. */
21d799b5
NC
18629 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18630 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18631 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18632
18633 /* Dyadic operations. */
21d799b5
NC
18634 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18635 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18636 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18637 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18638 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18639 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18640 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18641 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18642 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18643
c19d1205 18644 /* Comparisons. */
21d799b5
NC
18645 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18646 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18647 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18648 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18649
c921be7d
NC
18650#undef ARM_VARIANT
18651#define ARM_VARIANT & fpu_vfp_ext_v2
18652
21d799b5
NC
18653 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18654 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18655 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18656 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18657
037e8744
JB
18658/* Instructions which may belong to either the Neon or VFP instruction sets.
18659 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18660#undef ARM_VARIANT
18661#define ARM_VARIANT & fpu_vfp_ext_v1xd
18662#undef THUMB_VARIANT
18663#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18664
037e8744
JB
18665 /* These mnemonics are unique to VFP. */
18666 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18667 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18668 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18669 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18670 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18671 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18672 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18673 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18674 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18675 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18676
18677 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18678 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18679 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18680 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18681
21d799b5
NC
18682 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18683 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18684
18685 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18686 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18687
55881a11
MGD
18688 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18689 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18690 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18691 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18692 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18693 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18694 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18695 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18696
5f1af56b 18697 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 18698 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18699 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18700 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18701
037e8744
JB
18702
18703 /* NOTE: All VMOV encoding is special-cased! */
18704 NCE(vmov, 0, 1, (VMOV), neon_mov),
18705 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18706
c921be7d
NC
18707#undef THUMB_VARIANT
18708#define THUMB_VARIANT & fpu_neon_ext_v1
18709#undef ARM_VARIANT
18710#define ARM_VARIANT & fpu_neon_ext_v1
18711
5287ad62
JB
18712 /* Data processing with three registers of the same length. */
18713 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18714 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18715 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18716 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18717 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18718 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18719 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18720 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18721 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18722 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18723 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18724 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18725 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18726 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18727 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18728 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18729 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18730 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18731 /* If not immediate, fall back to neon_dyadic_i64_su.
18732 shl_imm should accept I8 I16 I32 I64,
18733 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18734 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18735 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18736 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18737 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18738 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18739 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18740 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18741 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18742 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18743 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18744 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18745 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18746 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18747 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18748 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18749 /* Bitfield ops, untyped. */
18750 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18751 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18752 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18753 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18754 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18755 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18756 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18757 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18758 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18759 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18760 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18761 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18762 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18763 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18764 back to neon_dyadic_if_su. */
21d799b5
NC
18765 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18766 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18767 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18768 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18769 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18770 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18771 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18772 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18773 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18774 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18775 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18776 /* As above, D registers only. */
21d799b5
NC
18777 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18778 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18779 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18780 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18781 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18782 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18783 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18784 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18785 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18786 /* vtst takes sizes 8, 16, 32. */
18787 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18788 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18789 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18790 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18791 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18792 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18793 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18794 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18795 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18796 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18797 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18798 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18799 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18800 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18801 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18802 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18803 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18804 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18805 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18806 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18807 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18808
18809 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18810 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18811 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18812
18813 /* Data processing with two registers and a shift amount. */
18814 /* Right shifts, and variants with rounding.
18815 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18816 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18817 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18818 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18819 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18820 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18821 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18822 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18823 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18824 /* Shift and insert. Sizes accepted 8 16 32 64. */
18825 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18826 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18827 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18828 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18829 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18830 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18831 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18832 /* Right shift immediate, saturating & narrowing, with rounding variants.
18833 Types accepted S16 S32 S64 U16 U32 U64. */
18834 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18835 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18836 /* As above, unsigned. Types accepted S16 S32 S64. */
18837 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18838 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18839 /* Right shift narrowing. Types accepted I16 I32 I64. */
18840 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18841 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18842 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18843 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18844 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18845 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18846
4316f0d2
DG
18847 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18848 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18849
18850 /* Data processing, three registers of different lengths. */
18851 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18852 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18853 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18854 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18855 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18856 /* If not scalar, fall back to neon_dyadic_long.
18857 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18858 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18859 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18860 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18861 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18862 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18863 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18864 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18865 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18866 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18867 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18868 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18869 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18870 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18871 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18872 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18873 S16 S32 U16 U32. */
21d799b5 18874 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18875
18876 /* Extract. Size 8. */
3b8d421e
PB
18877 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18878 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18879
18880 /* Two registers, miscellaneous. */
18881 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18882 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18883 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18884 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18885 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18886 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18887 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18888 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18889 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18890 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18891 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18892 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18893 /* VMOVN. Types I16 I32 I64. */
21d799b5 18894 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18895 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18896 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18897 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18898 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18899 /* VZIP / VUZP. Sizes 8 16 32. */
18900 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18901 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18902 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18903 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18904 /* VQABS / VQNEG. Types S8 S16 S32. */
18905 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18906 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18907 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18908 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18909 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18910 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18911 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18912 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18913 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18914 /* Reciprocal estimates. Types U32 F32. */
18915 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18916 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18917 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18918 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18919 /* VCLS. Types S8 S16 S32. */
18920 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18921 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18922 /* VCLZ. Types I8 I16 I32. */
18923 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18924 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18925 /* VCNT. Size 8. */
18926 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18927 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18928 /* Two address, untyped. */
18929 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18930 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18931 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18932 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18933 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18934
18935 /* Table lookup. Size 8. */
18936 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18937 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18938
c921be7d
NC
18939#undef THUMB_VARIANT
18940#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18941#undef ARM_VARIANT
18942#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18943
5287ad62 18944 /* Neon element/structure load/store. */
21d799b5
NC
18945 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18946 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18947 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18948 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18949 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18950 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18951 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18952 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18953
c921be7d 18954#undef THUMB_VARIANT
62f3b8c8
PB
18955#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18956#undef ARM_VARIANT
18957#define ARM_VARIANT &fpu_vfp_ext_v3xd
18958 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18959 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18960 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18961 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18962 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18963 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18964 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18965 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18966 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18967
18968#undef THUMB_VARIANT
c921be7d
NC
18969#define THUMB_VARIANT & fpu_vfp_ext_v3
18970#undef ARM_VARIANT
18971#define ARM_VARIANT & fpu_vfp_ext_v3
18972
21d799b5 18973 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18974 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18975 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18976 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18977 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18978 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18979 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18980 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18981 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18982
62f3b8c8
PB
18983#undef ARM_VARIANT
18984#define ARM_VARIANT &fpu_vfp_ext_fma
18985#undef THUMB_VARIANT
18986#define THUMB_VARIANT &fpu_vfp_ext_fma
18987 /* Mnemonics shared by Neon and VFP. These are included in the
18988 VFP FMA variant; NEON and VFP FMA always includes the NEON
18989 FMA instructions. */
18990 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18991 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18992 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18993 the v form should always be used. */
18994 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18995 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18996 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18997 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18998 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18999 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19000
5287ad62 19001#undef THUMB_VARIANT
c921be7d
NC
19002#undef ARM_VARIANT
19003#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19004
21d799b5
NC
19005 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19006 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19007 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19008 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19009 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19010 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19011 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19012 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 19013
c921be7d
NC
19014#undef ARM_VARIANT
19015#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19016
21d799b5
NC
19017 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19018 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19019 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19020 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19021 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19022 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19023 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19024 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19025 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19026 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19027 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19028 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19029 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19030 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19031 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19032 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19033 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19034 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19035 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19036 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19037 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19038 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19039 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19040 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19041 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19042 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19043 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19044 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19045 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19046 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19047 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19048 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19049 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19050 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19051 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19052 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19053 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19054 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19055 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19056 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19057 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19058 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19059 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19060 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19061 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19062 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19064 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19071 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19072 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19073 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19074 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19075 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19076 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19077 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19080 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19081 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19082 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19083 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19084 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19085 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19086 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19087 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19090 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19091 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19092 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19093 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19094 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19095 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19096 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19097 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19098 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19099 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19100 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19106 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19115 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19117 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19118 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19119 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19120 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19121 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19122 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19123 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19125 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19126 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19127 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19128 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19129 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19130 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19131 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19132 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19133 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19134 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19135 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19136 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19137 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19138 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19139 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19140 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19141 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19142 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19143 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19144 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19145 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19146 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19147 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19148 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19149 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19150 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19151 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19152 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19153 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19154 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19155 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19156 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19157 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19158 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19159 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19160 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19161 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19162 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19163 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19164 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19165 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19166 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19167 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19168 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19169 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19170 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19171 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19172 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19173 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19174 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19175 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19176 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19177 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19178 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 19179
c921be7d
NC
19180#undef ARM_VARIANT
19181#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19182
21d799b5
NC
19183 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19184 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19185 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19186 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19187 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19188 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19189 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19190 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19191 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19192 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19193 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19194 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19195 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19196 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19197 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19198 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19199 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19200 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19201 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19202 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19203 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19204 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19205 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19206 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19207 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19208 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19209 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19210 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19211 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19212 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19213 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19214 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19215 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19216 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19217 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19218 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19219 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19220 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19221 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19222 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19223 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19224 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19225 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19226 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19227 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19228 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19229 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19230 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19231 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19232 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19233 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19234 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19235 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19236 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19237 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19238 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19239 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 19240
c921be7d
NC
19241#undef ARM_VARIANT
19242#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19243
21d799b5
NC
19244 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19245 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19246 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19247 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19248 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19249 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19250 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19251 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19252 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19253 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19254 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19255 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19256 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19257 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19258 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19259 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19260 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19261 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19262 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19263 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19264 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19265 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19266 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19267 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19268 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19269 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19270 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19271 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19272 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19273 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19274 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19275 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19276 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19277 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19278 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19279 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19280 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19281 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19282 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19283 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19284 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19285 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19286 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19287 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19288 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19289 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19290 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19291 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19292 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19293 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19294 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19295 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19296 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19297 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19298 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19299 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19300 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19301 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19302 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19303 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19304 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19305 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19306 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19307 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19308 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19309 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19310 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19311 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19312 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19313 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19314 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19315 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19316 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19317 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19318 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19319 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
19320};
19321#undef ARM_VARIANT
19322#undef THUMB_VARIANT
19323#undef TCE
19324#undef TCM
19325#undef TUE
19326#undef TUF
19327#undef TCC
8f06b2d8 19328#undef cCE
e3cb604e
PB
19329#undef cCL
19330#undef C3E
c19d1205
ZW
19331#undef CE
19332#undef CM
19333#undef UE
19334#undef UF
19335#undef UT
5287ad62
JB
19336#undef NUF
19337#undef nUF
19338#undef NCE
19339#undef nCE
c19d1205
ZW
19340#undef OPS0
19341#undef OPS1
19342#undef OPS2
19343#undef OPS3
19344#undef OPS4
19345#undef OPS5
19346#undef OPS6
19347#undef do_0
19348\f
19349/* MD interface: bits in the object file. */
bfae80f2 19350
c19d1205
ZW
19351/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19352 for use in the a.out file, and stores them in the array pointed to by buf.
19353 This knows about the endian-ness of the target machine and does
19354 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19355 2 (short) and 4 (long) Floating numbers are put out as a series of
19356 LITTLENUMS (shorts, here at least). */
b99bd4ef 19357
c19d1205
ZW
19358void
19359md_number_to_chars (char * buf, valueT val, int n)
19360{
19361 if (target_big_endian)
19362 number_to_chars_bigendian (buf, val, n);
19363 else
19364 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
19365}
19366
c19d1205
ZW
19367static valueT
19368md_chars_to_number (char * buf, int n)
bfae80f2 19369{
c19d1205
ZW
19370 valueT result = 0;
19371 unsigned char * where = (unsigned char *) buf;
bfae80f2 19372
c19d1205 19373 if (target_big_endian)
b99bd4ef 19374 {
c19d1205
ZW
19375 while (n--)
19376 {
19377 result <<= 8;
19378 result |= (*where++ & 255);
19379 }
b99bd4ef 19380 }
c19d1205 19381 else
b99bd4ef 19382 {
c19d1205
ZW
19383 while (n--)
19384 {
19385 result <<= 8;
19386 result |= (where[n] & 255);
19387 }
bfae80f2 19388 }
b99bd4ef 19389
c19d1205 19390 return result;
bfae80f2 19391}
b99bd4ef 19392
c19d1205 19393/* MD interface: Sections. */
b99bd4ef 19394
fa94de6b
RM
19395/* Calculate the maximum variable size (i.e., excluding fr_fix)
19396 that an rs_machine_dependent frag may reach. */
19397
19398unsigned int
19399arm_frag_max_var (fragS *fragp)
19400{
19401 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19402 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19403
19404 Note that we generate relaxable instructions even for cases that don't
19405 really need it, like an immediate that's a trivial constant. So we're
19406 overestimating the instruction size for some of those cases. Rather
19407 than putting more intelligence here, it would probably be better to
19408 avoid generating a relaxation frag in the first place when it can be
19409 determined up front that a short instruction will suffice. */
19410
19411 gas_assert (fragp->fr_type == rs_machine_dependent);
19412 return INSN_SIZE;
19413}
19414
0110f2b8
PB
19415/* Estimate the size of a frag before relaxing. Assume everything fits in
19416 2 bytes. */
19417
c19d1205 19418int
0110f2b8 19419md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
19420 segT segtype ATTRIBUTE_UNUSED)
19421{
0110f2b8
PB
19422 fragp->fr_var = 2;
19423 return 2;
19424}
19425
19426/* Convert a machine dependent frag. */
19427
19428void
19429md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19430{
19431 unsigned long insn;
19432 unsigned long old_op;
19433 char *buf;
19434 expressionS exp;
19435 fixS *fixp;
19436 int reloc_type;
19437 int pc_rel;
19438 int opcode;
19439
19440 buf = fragp->fr_literal + fragp->fr_fix;
19441
19442 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19443 if (fragp->fr_symbol)
19444 {
0110f2b8
PB
19445 exp.X_op = O_symbol;
19446 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19447 }
19448 else
19449 {
0110f2b8 19450 exp.X_op = O_constant;
5f4273c7 19451 }
0110f2b8
PB
19452 exp.X_add_number = fragp->fr_offset;
19453 opcode = fragp->fr_subtype;
19454 switch (opcode)
19455 {
19456 case T_MNEM_ldr_pc:
19457 case T_MNEM_ldr_pc2:
19458 case T_MNEM_ldr_sp:
19459 case T_MNEM_str_sp:
19460 case T_MNEM_ldr:
19461 case T_MNEM_ldrb:
19462 case T_MNEM_ldrh:
19463 case T_MNEM_str:
19464 case T_MNEM_strb:
19465 case T_MNEM_strh:
19466 if (fragp->fr_var == 4)
19467 {
5f4273c7 19468 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19469 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19470 {
19471 insn |= (old_op & 0x700) << 4;
19472 }
19473 else
19474 {
19475 insn |= (old_op & 7) << 12;
19476 insn |= (old_op & 0x38) << 13;
19477 }
19478 insn |= 0x00000c00;
19479 put_thumb32_insn (buf, insn);
19480 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19481 }
19482 else
19483 {
19484 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19485 }
19486 pc_rel = (opcode == T_MNEM_ldr_pc2);
19487 break;
19488 case T_MNEM_adr:
19489 if (fragp->fr_var == 4)
19490 {
19491 insn = THUMB_OP32 (opcode);
19492 insn |= (old_op & 0xf0) << 4;
19493 put_thumb32_insn (buf, insn);
19494 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19495 }
19496 else
19497 {
19498 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19499 exp.X_add_number -= 4;
19500 }
19501 pc_rel = 1;
19502 break;
19503 case T_MNEM_mov:
19504 case T_MNEM_movs:
19505 case T_MNEM_cmp:
19506 case T_MNEM_cmn:
19507 if (fragp->fr_var == 4)
19508 {
19509 int r0off = (opcode == T_MNEM_mov
19510 || opcode == T_MNEM_movs) ? 0 : 8;
19511 insn = THUMB_OP32 (opcode);
19512 insn = (insn & 0xe1ffffff) | 0x10000000;
19513 insn |= (old_op & 0x700) << r0off;
19514 put_thumb32_insn (buf, insn);
19515 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19516 }
19517 else
19518 {
19519 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19520 }
19521 pc_rel = 0;
19522 break;
19523 case T_MNEM_b:
19524 if (fragp->fr_var == 4)
19525 {
19526 insn = THUMB_OP32(opcode);
19527 put_thumb32_insn (buf, insn);
19528 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19529 }
19530 else
19531 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19532 pc_rel = 1;
19533 break;
19534 case T_MNEM_bcond:
19535 if (fragp->fr_var == 4)
19536 {
19537 insn = THUMB_OP32(opcode);
19538 insn |= (old_op & 0xf00) << 14;
19539 put_thumb32_insn (buf, insn);
19540 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19541 }
19542 else
19543 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19544 pc_rel = 1;
19545 break;
19546 case T_MNEM_add_sp:
19547 case T_MNEM_add_pc:
19548 case T_MNEM_inc_sp:
19549 case T_MNEM_dec_sp:
19550 if (fragp->fr_var == 4)
19551 {
19552 /* ??? Choose between add and addw. */
19553 insn = THUMB_OP32 (opcode);
19554 insn |= (old_op & 0xf0) << 4;
19555 put_thumb32_insn (buf, insn);
16805f35
PB
19556 if (opcode == T_MNEM_add_pc)
19557 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19558 else
19559 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19560 }
19561 else
19562 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19563 pc_rel = 0;
19564 break;
19565
19566 case T_MNEM_addi:
19567 case T_MNEM_addis:
19568 case T_MNEM_subi:
19569 case T_MNEM_subis:
19570 if (fragp->fr_var == 4)
19571 {
19572 insn = THUMB_OP32 (opcode);
19573 insn |= (old_op & 0xf0) << 4;
19574 insn |= (old_op & 0xf) << 16;
19575 put_thumb32_insn (buf, insn);
16805f35
PB
19576 if (insn & (1 << 20))
19577 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19578 else
19579 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19580 }
19581 else
19582 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19583 pc_rel = 0;
19584 break;
19585 default:
5f4273c7 19586 abort ();
0110f2b8
PB
19587 }
19588 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19589 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19590 fixp->fx_file = fragp->fr_file;
19591 fixp->fx_line = fragp->fr_line;
19592 fragp->fr_fix += fragp->fr_var;
19593}
19594
19595/* Return the size of a relaxable immediate operand instruction.
19596 SHIFT and SIZE specify the form of the allowable immediate. */
19597static int
19598relax_immediate (fragS *fragp, int size, int shift)
19599{
19600 offsetT offset;
19601 offsetT mask;
19602 offsetT low;
19603
19604 /* ??? Should be able to do better than this. */
19605 if (fragp->fr_symbol)
19606 return 4;
19607
19608 low = (1 << shift) - 1;
19609 mask = (1 << (shift + size)) - (1 << shift);
19610 offset = fragp->fr_offset;
19611 /* Force misaligned offsets to 32-bit variant. */
19612 if (offset & low)
5e77afaa 19613 return 4;
0110f2b8
PB
19614 if (offset & ~mask)
19615 return 4;
19616 return 2;
19617}
19618
5e77afaa
PB
19619/* Get the address of a symbol during relaxation. */
19620static addressT
5f4273c7 19621relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19622{
19623 fragS *sym_frag;
19624 addressT addr;
19625 symbolS *sym;
19626
19627 sym = fragp->fr_symbol;
19628 sym_frag = symbol_get_frag (sym);
19629 know (S_GET_SEGMENT (sym) != absolute_section
19630 || sym_frag == &zero_address_frag);
19631 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19632
19633 /* If frag has yet to be reached on this pass, assume it will
19634 move by STRETCH just as we did. If this is not so, it will
19635 be because some frag between grows, and that will force
19636 another pass. */
19637
19638 if (stretch != 0
19639 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19640 {
19641 fragS *f;
19642
19643 /* Adjust stretch for any alignment frag. Note that if have
19644 been expanding the earlier code, the symbol may be
19645 defined in what appears to be an earlier frag. FIXME:
19646 This doesn't handle the fr_subtype field, which specifies
19647 a maximum number of bytes to skip when doing an
19648 alignment. */
19649 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19650 {
19651 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19652 {
19653 if (stretch < 0)
19654 stretch = - ((- stretch)
19655 & ~ ((1 << (int) f->fr_offset) - 1));
19656 else
19657 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19658 if (stretch == 0)
19659 break;
19660 }
19661 }
19662 if (f != NULL)
19663 addr += stretch;
19664 }
5e77afaa
PB
19665
19666 return addr;
19667}
19668
0110f2b8
PB
19669/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19670 load. */
19671static int
5e77afaa 19672relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19673{
19674 addressT addr;
19675 offsetT val;
19676
19677 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19678 if (fragp->fr_symbol == NULL
19679 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19680 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19681 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19682 return 4;
19683
5f4273c7 19684 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19685 addr = fragp->fr_address + fragp->fr_fix;
19686 addr = (addr + 4) & ~3;
5e77afaa 19687 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19688 if (val & 3)
5e77afaa 19689 return 4;
0110f2b8
PB
19690 val -= addr;
19691 if (val < 0 || val > 1020)
19692 return 4;
19693 return 2;
19694}
19695
19696/* Return the size of a relaxable add/sub immediate instruction. */
19697static int
19698relax_addsub (fragS *fragp, asection *sec)
19699{
19700 char *buf;
19701 int op;
19702
19703 buf = fragp->fr_literal + fragp->fr_fix;
19704 op = bfd_get_16(sec->owner, buf);
19705 if ((op & 0xf) == ((op >> 4) & 0xf))
19706 return relax_immediate (fragp, 8, 0);
19707 else
19708 return relax_immediate (fragp, 3, 0);
19709}
19710
19711
19712/* Return the size of a relaxable branch instruction. BITS is the
19713 size of the offset field in the narrow instruction. */
19714
19715static int
5e77afaa 19716relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19717{
19718 addressT addr;
19719 offsetT val;
19720 offsetT limit;
19721
19722 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19723 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19724 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19725 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19726 return 4;
19727
267bf995
RR
19728#ifdef OBJ_ELF
19729 if (S_IS_DEFINED (fragp->fr_symbol)
19730 && ARM_IS_FUNC (fragp->fr_symbol))
19731 return 4;
0d9b4b55
NC
19732
19733 /* PR 12532. Global symbols with default visibility might
19734 be preempted, so do not relax relocations to them. */
19735 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19736 && (! S_IS_LOCAL (fragp->fr_symbol)))
19737 return 4;
267bf995
RR
19738#endif
19739
5f4273c7 19740 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19741 addr = fragp->fr_address + fragp->fr_fix + 4;
19742 val -= addr;
19743
19744 /* Offset is a signed value *2 */
19745 limit = 1 << bits;
19746 if (val >= limit || val < -limit)
19747 return 4;
19748 return 2;
19749}
19750
19751
19752/* Relax a machine dependent frag. This returns the amount by which
19753 the current size of the frag should change. */
19754
19755int
5e77afaa 19756arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19757{
19758 int oldsize;
19759 int newsize;
19760
19761 oldsize = fragp->fr_var;
19762 switch (fragp->fr_subtype)
19763 {
19764 case T_MNEM_ldr_pc2:
5f4273c7 19765 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19766 break;
19767 case T_MNEM_ldr_pc:
19768 case T_MNEM_ldr_sp:
19769 case T_MNEM_str_sp:
5f4273c7 19770 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19771 break;
19772 case T_MNEM_ldr:
19773 case T_MNEM_str:
5f4273c7 19774 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19775 break;
19776 case T_MNEM_ldrh:
19777 case T_MNEM_strh:
5f4273c7 19778 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19779 break;
19780 case T_MNEM_ldrb:
19781 case T_MNEM_strb:
5f4273c7 19782 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19783 break;
19784 case T_MNEM_adr:
5f4273c7 19785 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19786 break;
19787 case T_MNEM_mov:
19788 case T_MNEM_movs:
19789 case T_MNEM_cmp:
19790 case T_MNEM_cmn:
5f4273c7 19791 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19792 break;
19793 case T_MNEM_b:
5f4273c7 19794 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19795 break;
19796 case T_MNEM_bcond:
5f4273c7 19797 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19798 break;
19799 case T_MNEM_add_sp:
19800 case T_MNEM_add_pc:
19801 newsize = relax_immediate (fragp, 8, 2);
19802 break;
19803 case T_MNEM_inc_sp:
19804 case T_MNEM_dec_sp:
19805 newsize = relax_immediate (fragp, 7, 2);
19806 break;
19807 case T_MNEM_addi:
19808 case T_MNEM_addis:
19809 case T_MNEM_subi:
19810 case T_MNEM_subis:
19811 newsize = relax_addsub (fragp, sec);
19812 break;
19813 default:
5f4273c7 19814 abort ();
0110f2b8 19815 }
5e77afaa
PB
19816
19817 fragp->fr_var = newsize;
19818 /* Freeze wide instructions that are at or before the same location as
19819 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19820 Don't freeze them unconditionally because targets may be artificially
19821 misaligned by the expansion of preceding frags. */
5e77afaa 19822 if (stretch <= 0 && newsize > 2)
0110f2b8 19823 {
0110f2b8 19824 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19825 frag_wane (fragp);
0110f2b8 19826 }
5e77afaa 19827
0110f2b8 19828 return newsize - oldsize;
c19d1205 19829}
b99bd4ef 19830
c19d1205 19831/* Round up a section size to the appropriate boundary. */
b99bd4ef 19832
c19d1205
ZW
19833valueT
19834md_section_align (segT segment ATTRIBUTE_UNUSED,
19835 valueT size)
19836{
f0927246
NC
19837#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19838 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19839 {
19840 /* For a.out, force the section size to be aligned. If we don't do
19841 this, BFD will align it for us, but it will not write out the
19842 final bytes of the section. This may be a bug in BFD, but it is
19843 easier to fix it here since that is how the other a.out targets
19844 work. */
19845 int align;
19846
19847 align = bfd_get_section_alignment (stdoutput, segment);
19848 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19849 }
c19d1205 19850#endif
f0927246
NC
19851
19852 return size;
bfae80f2 19853}
b99bd4ef 19854
c19d1205
ZW
19855/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19856 of an rs_align_code fragment. */
19857
19858void
19859arm_handle_align (fragS * fragP)
bfae80f2 19860{
e7495e45
NS
19861 static char const arm_noop[2][2][4] =
19862 {
19863 { /* ARMv1 */
19864 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19865 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19866 },
19867 { /* ARMv6k */
19868 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19869 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19870 },
19871 };
19872 static char const thumb_noop[2][2][2] =
19873 {
19874 { /* Thumb-1 */
19875 {0xc0, 0x46}, /* LE */
19876 {0x46, 0xc0}, /* BE */
19877 },
19878 { /* Thumb-2 */
19879 {0x00, 0xbf}, /* LE */
19880 {0xbf, 0x00} /* BE */
19881 }
19882 };
19883 static char const wide_thumb_noop[2][4] =
19884 { /* Wide Thumb-2 */
19885 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19886 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19887 };
c921be7d 19888
e7495e45 19889 unsigned bytes, fix, noop_size;
c19d1205
ZW
19890 char * p;
19891 const char * noop;
e7495e45 19892 const char *narrow_noop = NULL;
cd000bff
DJ
19893#ifdef OBJ_ELF
19894 enum mstate state;
19895#endif
bfae80f2 19896
c19d1205 19897 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19898 return;
19899
c19d1205
ZW
19900 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19901 p = fragP->fr_literal + fragP->fr_fix;
19902 fix = 0;
bfae80f2 19903
c19d1205
ZW
19904 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19905 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19906
cd000bff 19907 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19908
cd000bff 19909 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19910 {
e7495e45
NS
19911 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19912 {
19913 narrow_noop = thumb_noop[1][target_big_endian];
19914 noop = wide_thumb_noop[target_big_endian];
19915 }
c19d1205 19916 else
e7495e45
NS
19917 noop = thumb_noop[0][target_big_endian];
19918 noop_size = 2;
cd000bff
DJ
19919#ifdef OBJ_ELF
19920 state = MAP_THUMB;
19921#endif
7ed4c4c5
NC
19922 }
19923 else
19924 {
e7495e45
NS
19925 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19926 [target_big_endian];
19927 noop_size = 4;
cd000bff
DJ
19928#ifdef OBJ_ELF
19929 state = MAP_ARM;
19930#endif
7ed4c4c5 19931 }
c921be7d 19932
e7495e45 19933 fragP->fr_var = noop_size;
c921be7d 19934
c19d1205 19935 if (bytes & (noop_size - 1))
7ed4c4c5 19936 {
c19d1205 19937 fix = bytes & (noop_size - 1);
cd000bff
DJ
19938#ifdef OBJ_ELF
19939 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19940#endif
c19d1205
ZW
19941 memset (p, 0, fix);
19942 p += fix;
19943 bytes -= fix;
a737bd4d 19944 }
a737bd4d 19945
e7495e45
NS
19946 if (narrow_noop)
19947 {
19948 if (bytes & noop_size)
19949 {
19950 /* Insert a narrow noop. */
19951 memcpy (p, narrow_noop, noop_size);
19952 p += noop_size;
19953 bytes -= noop_size;
19954 fix += noop_size;
19955 }
19956
19957 /* Use wide noops for the remainder */
19958 noop_size = 4;
19959 }
19960
c19d1205 19961 while (bytes >= noop_size)
a737bd4d 19962 {
c19d1205
ZW
19963 memcpy (p, noop, noop_size);
19964 p += noop_size;
19965 bytes -= noop_size;
19966 fix += noop_size;
a737bd4d
NC
19967 }
19968
c19d1205 19969 fragP->fr_fix += fix;
a737bd4d
NC
19970}
19971
c19d1205
ZW
19972/* Called from md_do_align. Used to create an alignment
19973 frag in a code section. */
19974
19975void
19976arm_frag_align_code (int n, int max)
bfae80f2 19977{
c19d1205 19978 char * p;
7ed4c4c5 19979
c19d1205 19980 /* We assume that there will never be a requirement
6ec8e702 19981 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19982 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19983 {
19984 char err_msg[128];
19985
fa94de6b 19986 sprintf (err_msg,
6ec8e702
NC
19987 _("alignments greater than %d bytes not supported in .text sections."),
19988 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19989 as_fatal ("%s", err_msg);
6ec8e702 19990 }
bfae80f2 19991
c19d1205
ZW
19992 p = frag_var (rs_align_code,
19993 MAX_MEM_FOR_RS_ALIGN_CODE,
19994 1,
19995 (relax_substateT) max,
19996 (symbolS *) NULL,
19997 (offsetT) n,
19998 (char *) NULL);
19999 *p = 0;
20000}
bfae80f2 20001
8dc2430f
NC
20002/* Perform target specific initialisation of a frag.
20003 Note - despite the name this initialisation is not done when the frag
20004 is created, but only when its type is assigned. A frag can be created
20005 and used a long time before its type is set, so beware of assuming that
20006 this initialisationis performed first. */
bfae80f2 20007
cd000bff
DJ
20008#ifndef OBJ_ELF
20009void
20010arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20011{
20012 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 20013 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
20014}
20015
20016#else /* OBJ_ELF is defined. */
c19d1205 20017void
cd000bff 20018arm_init_frag (fragS * fragP, int max_chars)
c19d1205 20019{
8dc2430f
NC
20020 /* If the current ARM vs THUMB mode has not already
20021 been recorded into this frag then do so now. */
cd000bff
DJ
20022 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20023 {
20024 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20025
20026 /* Record a mapping symbol for alignment frags. We will delete this
20027 later if the alignment ends up empty. */
20028 switch (fragP->fr_type)
20029 {
20030 case rs_align:
20031 case rs_align_test:
20032 case rs_fill:
20033 mapping_state_2 (MAP_DATA, max_chars);
20034 break;
20035 case rs_align_code:
20036 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20037 break;
20038 default:
20039 break;
20040 }
20041 }
bfae80f2
RE
20042}
20043
c19d1205
ZW
20044/* When we change sections we need to issue a new mapping symbol. */
20045
20046void
20047arm_elf_change_section (void)
bfae80f2 20048{
c19d1205
ZW
20049 /* Link an unlinked unwind index table section to the .text section. */
20050 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20051 && elf_linked_to_section (now_seg) == NULL)
20052 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
20053}
20054
c19d1205
ZW
20055int
20056arm_elf_section_type (const char * str, size_t len)
e45d0630 20057{
c19d1205
ZW
20058 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20059 return SHT_ARM_EXIDX;
e45d0630 20060
c19d1205
ZW
20061 return -1;
20062}
20063\f
20064/* Code to deal with unwinding tables. */
e45d0630 20065
c19d1205 20066static void add_unwind_adjustsp (offsetT);
e45d0630 20067
5f4273c7 20068/* Generate any deferred unwind frame offset. */
e45d0630 20069
bfae80f2 20070static void
c19d1205 20071flush_pending_unwind (void)
bfae80f2 20072{
c19d1205 20073 offsetT offset;
bfae80f2 20074
c19d1205
ZW
20075 offset = unwind.pending_offset;
20076 unwind.pending_offset = 0;
20077 if (offset != 0)
20078 add_unwind_adjustsp (offset);
bfae80f2
RE
20079}
20080
c19d1205
ZW
20081/* Add an opcode to this list for this function. Two-byte opcodes should
20082 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20083 order. */
20084
bfae80f2 20085static void
c19d1205 20086add_unwind_opcode (valueT op, int length)
bfae80f2 20087{
c19d1205
ZW
20088 /* Add any deferred stack adjustment. */
20089 if (unwind.pending_offset)
20090 flush_pending_unwind ();
bfae80f2 20091
c19d1205 20092 unwind.sp_restored = 0;
bfae80f2 20093
c19d1205 20094 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 20095 {
c19d1205
ZW
20096 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20097 if (unwind.opcodes)
21d799b5
NC
20098 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20099 unwind.opcode_alloc);
c19d1205 20100 else
21d799b5 20101 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 20102 }
c19d1205 20103 while (length > 0)
bfae80f2 20104 {
c19d1205
ZW
20105 length--;
20106 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20107 op >>= 8;
20108 unwind.opcode_count++;
bfae80f2 20109 }
bfae80f2
RE
20110}
20111
c19d1205
ZW
20112/* Add unwind opcodes to adjust the stack pointer. */
20113
bfae80f2 20114static void
c19d1205 20115add_unwind_adjustsp (offsetT offset)
bfae80f2 20116{
c19d1205 20117 valueT op;
bfae80f2 20118
c19d1205 20119 if (offset > 0x200)
bfae80f2 20120 {
c19d1205
ZW
20121 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20122 char bytes[5];
20123 int n;
20124 valueT o;
bfae80f2 20125
c19d1205
ZW
20126 /* Long form: 0xb2, uleb128. */
20127 /* This might not fit in a word so add the individual bytes,
20128 remembering the list is built in reverse order. */
20129 o = (valueT) ((offset - 0x204) >> 2);
20130 if (o == 0)
20131 add_unwind_opcode (0, 1);
bfae80f2 20132
c19d1205
ZW
20133 /* Calculate the uleb128 encoding of the offset. */
20134 n = 0;
20135 while (o)
20136 {
20137 bytes[n] = o & 0x7f;
20138 o >>= 7;
20139 if (o)
20140 bytes[n] |= 0x80;
20141 n++;
20142 }
20143 /* Add the insn. */
20144 for (; n; n--)
20145 add_unwind_opcode (bytes[n - 1], 1);
20146 add_unwind_opcode (0xb2, 1);
20147 }
20148 else if (offset > 0x100)
bfae80f2 20149 {
c19d1205
ZW
20150 /* Two short opcodes. */
20151 add_unwind_opcode (0x3f, 1);
20152 op = (offset - 0x104) >> 2;
20153 add_unwind_opcode (op, 1);
bfae80f2 20154 }
c19d1205
ZW
20155 else if (offset > 0)
20156 {
20157 /* Short opcode. */
20158 op = (offset - 4) >> 2;
20159 add_unwind_opcode (op, 1);
20160 }
20161 else if (offset < 0)
bfae80f2 20162 {
c19d1205
ZW
20163 offset = -offset;
20164 while (offset > 0x100)
bfae80f2 20165 {
c19d1205
ZW
20166 add_unwind_opcode (0x7f, 1);
20167 offset -= 0x100;
bfae80f2 20168 }
c19d1205
ZW
20169 op = ((offset - 4) >> 2) | 0x40;
20170 add_unwind_opcode (op, 1);
bfae80f2 20171 }
bfae80f2
RE
20172}
20173
c19d1205
ZW
20174/* Finish the list of unwind opcodes for this function. */
20175static void
20176finish_unwind_opcodes (void)
bfae80f2 20177{
c19d1205 20178 valueT op;
bfae80f2 20179
c19d1205 20180 if (unwind.fp_used)
bfae80f2 20181 {
708587a4 20182 /* Adjust sp as necessary. */
c19d1205
ZW
20183 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20184 flush_pending_unwind ();
bfae80f2 20185
c19d1205
ZW
20186 /* After restoring sp from the frame pointer. */
20187 op = 0x90 | unwind.fp_reg;
20188 add_unwind_opcode (op, 1);
20189 }
20190 else
20191 flush_pending_unwind ();
bfae80f2
RE
20192}
20193
bfae80f2 20194
c19d1205
ZW
20195/* Start an exception table entry. If idx is nonzero this is an index table
20196 entry. */
bfae80f2
RE
20197
20198static void
c19d1205 20199start_unwind_section (const segT text_seg, int idx)
bfae80f2 20200{
c19d1205
ZW
20201 const char * text_name;
20202 const char * prefix;
20203 const char * prefix_once;
20204 const char * group_name;
20205 size_t prefix_len;
20206 size_t text_len;
20207 char * sec_name;
20208 size_t sec_name_len;
20209 int type;
20210 int flags;
20211 int linkonce;
bfae80f2 20212
c19d1205 20213 if (idx)
bfae80f2 20214 {
c19d1205
ZW
20215 prefix = ELF_STRING_ARM_unwind;
20216 prefix_once = ELF_STRING_ARM_unwind_once;
20217 type = SHT_ARM_EXIDX;
bfae80f2 20218 }
c19d1205 20219 else
bfae80f2 20220 {
c19d1205
ZW
20221 prefix = ELF_STRING_ARM_unwind_info;
20222 prefix_once = ELF_STRING_ARM_unwind_info_once;
20223 type = SHT_PROGBITS;
bfae80f2
RE
20224 }
20225
c19d1205
ZW
20226 text_name = segment_name (text_seg);
20227 if (streq (text_name, ".text"))
20228 text_name = "";
20229
20230 if (strncmp (text_name, ".gnu.linkonce.t.",
20231 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 20232 {
c19d1205
ZW
20233 prefix = prefix_once;
20234 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
20235 }
20236
c19d1205
ZW
20237 prefix_len = strlen (prefix);
20238 text_len = strlen (text_name);
20239 sec_name_len = prefix_len + text_len;
21d799b5 20240 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
20241 memcpy (sec_name, prefix, prefix_len);
20242 memcpy (sec_name + prefix_len, text_name, text_len);
20243 sec_name[prefix_len + text_len] = '\0';
bfae80f2 20244
c19d1205
ZW
20245 flags = SHF_ALLOC;
20246 linkonce = 0;
20247 group_name = 0;
bfae80f2 20248
c19d1205
ZW
20249 /* Handle COMDAT group. */
20250 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 20251 {
c19d1205
ZW
20252 group_name = elf_group_name (text_seg);
20253 if (group_name == NULL)
20254 {
bd3ba5d1 20255 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
20256 segment_name (text_seg));
20257 ignore_rest_of_line ();
20258 return;
20259 }
20260 flags |= SHF_GROUP;
20261 linkonce = 1;
bfae80f2
RE
20262 }
20263
c19d1205 20264 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 20265
5f4273c7 20266 /* Set the section link for index tables. */
c19d1205
ZW
20267 if (idx)
20268 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
20269}
20270
bfae80f2 20271
c19d1205
ZW
20272/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20273 personality routine data. Returns zero, or the index table value for
20274 and inline entry. */
20275
20276static valueT
20277create_unwind_entry (int have_data)
bfae80f2 20278{
c19d1205
ZW
20279 int size;
20280 addressT where;
20281 char *ptr;
20282 /* The current word of data. */
20283 valueT data;
20284 /* The number of bytes left in this word. */
20285 int n;
bfae80f2 20286
c19d1205 20287 finish_unwind_opcodes ();
bfae80f2 20288
c19d1205
ZW
20289 /* Remember the current text section. */
20290 unwind.saved_seg = now_seg;
20291 unwind.saved_subseg = now_subseg;
bfae80f2 20292
c19d1205 20293 start_unwind_section (now_seg, 0);
bfae80f2 20294
c19d1205 20295 if (unwind.personality_routine == NULL)
bfae80f2 20296 {
c19d1205
ZW
20297 if (unwind.personality_index == -2)
20298 {
20299 if (have_data)
5f4273c7 20300 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
20301 return 1; /* EXIDX_CANTUNWIND. */
20302 }
bfae80f2 20303
c19d1205
ZW
20304 /* Use a default personality routine if none is specified. */
20305 if (unwind.personality_index == -1)
20306 {
20307 if (unwind.opcode_count > 3)
20308 unwind.personality_index = 1;
20309 else
20310 unwind.personality_index = 0;
20311 }
bfae80f2 20312
c19d1205
ZW
20313 /* Space for the personality routine entry. */
20314 if (unwind.personality_index == 0)
20315 {
20316 if (unwind.opcode_count > 3)
20317 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 20318
c19d1205
ZW
20319 if (!have_data)
20320 {
20321 /* All the data is inline in the index table. */
20322 data = 0x80;
20323 n = 3;
20324 while (unwind.opcode_count > 0)
20325 {
20326 unwind.opcode_count--;
20327 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20328 n--;
20329 }
bfae80f2 20330
c19d1205
ZW
20331 /* Pad with "finish" opcodes. */
20332 while (n--)
20333 data = (data << 8) | 0xb0;
bfae80f2 20334
c19d1205
ZW
20335 return data;
20336 }
20337 size = 0;
20338 }
20339 else
20340 /* We get two opcodes "free" in the first word. */
20341 size = unwind.opcode_count - 2;
20342 }
20343 else
5011093d
NC
20344 {
20345 gas_assert (unwind.personality_index == -1);
20346
20347 /* An extra byte is required for the opcode count. */
20348 size = unwind.opcode_count + 1;
20349 }
bfae80f2 20350
c19d1205
ZW
20351 size = (size + 3) >> 2;
20352 if (size > 0xff)
20353 as_bad (_("too many unwind opcodes"));
bfae80f2 20354
c19d1205
ZW
20355 frag_align (2, 0, 0);
20356 record_alignment (now_seg, 2);
20357 unwind.table_entry = expr_build_dot ();
20358
20359 /* Allocate the table entry. */
20360 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
20361 /* PR 13449: Zero the table entries in case some of them are not used. */
20362 memset (ptr, 0, (size << 2) + 4);
c19d1205 20363 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 20364
c19d1205 20365 switch (unwind.personality_index)
bfae80f2 20366 {
c19d1205
ZW
20367 case -1:
20368 /* ??? Should this be a PLT generating relocation? */
20369 /* Custom personality routine. */
20370 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20371 BFD_RELOC_ARM_PREL31);
bfae80f2 20372
c19d1205
ZW
20373 where += 4;
20374 ptr += 4;
bfae80f2 20375
c19d1205 20376 /* Set the first byte to the number of additional words. */
5011093d 20377 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
20378 n = 3;
20379 break;
bfae80f2 20380
c19d1205
ZW
20381 /* ABI defined personality routines. */
20382 case 0:
20383 /* Three opcodes bytes are packed into the first word. */
20384 data = 0x80;
20385 n = 3;
20386 break;
bfae80f2 20387
c19d1205
ZW
20388 case 1:
20389 case 2:
20390 /* The size and first two opcode bytes go in the first word. */
20391 data = ((0x80 + unwind.personality_index) << 8) | size;
20392 n = 2;
20393 break;
bfae80f2 20394
c19d1205
ZW
20395 default:
20396 /* Should never happen. */
20397 abort ();
20398 }
bfae80f2 20399
c19d1205
ZW
20400 /* Pack the opcodes into words (MSB first), reversing the list at the same
20401 time. */
20402 while (unwind.opcode_count > 0)
20403 {
20404 if (n == 0)
20405 {
20406 md_number_to_chars (ptr, data, 4);
20407 ptr += 4;
20408 n = 4;
20409 data = 0;
20410 }
20411 unwind.opcode_count--;
20412 n--;
20413 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20414 }
20415
20416 /* Finish off the last word. */
20417 if (n < 4)
20418 {
20419 /* Pad with "finish" opcodes. */
20420 while (n--)
20421 data = (data << 8) | 0xb0;
20422
20423 md_number_to_chars (ptr, data, 4);
20424 }
20425
20426 if (!have_data)
20427 {
20428 /* Add an empty descriptor if there is no user-specified data. */
20429 ptr = frag_more (4);
20430 md_number_to_chars (ptr, 0, 4);
20431 }
20432
20433 return 0;
bfae80f2
RE
20434}
20435
f0927246
NC
20436
20437/* Initialize the DWARF-2 unwind information for this procedure. */
20438
20439void
20440tc_arm_frame_initial_instructions (void)
20441{
20442 cfi_add_CFA_def_cfa (REG_SP, 0);
20443}
20444#endif /* OBJ_ELF */
20445
c19d1205
ZW
20446/* Convert REGNAME to a DWARF-2 register number. */
20447
20448int
1df69f4f 20449tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20450{
1df69f4f 20451 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20452
20453 if (reg == FAIL)
20454 return -1;
20455
20456 return reg;
bfae80f2
RE
20457}
20458
f0927246 20459#ifdef TE_PE
c19d1205 20460void
f0927246 20461tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20462{
91d6fa6a 20463 expressionS exp;
bfae80f2 20464
91d6fa6a
NC
20465 exp.X_op = O_secrel;
20466 exp.X_add_symbol = symbol;
20467 exp.X_add_number = 0;
20468 emit_expr (&exp, size);
f0927246
NC
20469}
20470#endif
bfae80f2 20471
c19d1205 20472/* MD interface: Symbol and relocation handling. */
bfae80f2 20473
2fc8bdac
ZW
20474/* Return the address within the segment that a PC-relative fixup is
20475 relative to. For ARM, PC-relative fixups applied to instructions
20476 are generally relative to the location of the fixup plus 8 bytes.
20477 Thumb branches are offset by 4, and Thumb loads relative to PC
20478 require special handling. */
bfae80f2 20479
c19d1205 20480long
2fc8bdac 20481md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20482{
2fc8bdac
ZW
20483 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20484
20485 /* If this is pc-relative and we are going to emit a relocation
20486 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20487 will need. Otherwise we want to use the calculated base.
20488 For WinCE we skip the bias for externals as well, since this
20489 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20490 if (fixP->fx_pcrel
2fc8bdac 20491 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20492 || (arm_force_relocation (fixP)
20493#ifdef TE_WINCE
20494 && !S_IS_EXTERNAL (fixP->fx_addsy)
20495#endif
20496 )))
2fc8bdac 20497 base = 0;
bfae80f2 20498
267bf995 20499
c19d1205 20500 switch (fixP->fx_r_type)
bfae80f2 20501 {
2fc8bdac
ZW
20502 /* PC relative addressing on the Thumb is slightly odd as the
20503 bottom two bits of the PC are forced to zero for the
20504 calculation. This happens *after* application of the
20505 pipeline offset. However, Thumb adrl already adjusts for
20506 this, so we need not do it again. */
c19d1205 20507 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20508 return base & ~3;
c19d1205
ZW
20509
20510 case BFD_RELOC_ARM_THUMB_OFFSET:
20511 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20512 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20513 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20514 return (base + 4) & ~3;
c19d1205 20515
2fc8bdac
ZW
20516 /* Thumb branches are simply offset by +4. */
20517 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20518 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20519 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20520 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20521 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20522 return base + 4;
bfae80f2 20523
267bf995 20524 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20525 if (fixP->fx_addsy
20526 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20527 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20528 && ARM_IS_FUNC (fixP->fx_addsy)
20529 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20530 base = fixP->fx_where + fixP->fx_frag->fr_address;
20531 return base + 4;
20532
00adf2d4
JB
20533 /* BLX is like branches above, but forces the low two bits of PC to
20534 zero. */
486499d0
CL
20535 case BFD_RELOC_THUMB_PCREL_BLX:
20536 if (fixP->fx_addsy
20537 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20538 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20539 && THUMB_IS_FUNC (fixP->fx_addsy)
20540 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20541 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
20542 return (base + 4) & ~3;
20543
2fc8bdac
ZW
20544 /* ARM mode branches are offset by +8. However, the Windows CE
20545 loader expects the relocation not to take this into account. */
267bf995 20546 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20547 if (fixP->fx_addsy
20548 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20549 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20550 && ARM_IS_FUNC (fixP->fx_addsy)
20551 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20552 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20553 return base + 8;
267bf995 20554
486499d0
CL
20555 case BFD_RELOC_ARM_PCREL_CALL:
20556 if (fixP->fx_addsy
20557 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20559 && THUMB_IS_FUNC (fixP->fx_addsy)
20560 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20561 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20562 return base + 8;
267bf995 20563
2fc8bdac 20564 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20565 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20566 case BFD_RELOC_ARM_PLT32:
c19d1205 20567#ifdef TE_WINCE
5f4273c7 20568 /* When handling fixups immediately, because we have already
53baae48
NC
20569 discovered the value of a symbol, or the address of the frag involved
20570 we must account for the offset by +8, as the OS loader will never see the reloc.
20571 see fixup_segment() in write.c
20572 The S_IS_EXTERNAL test handles the case of global symbols.
20573 Those need the calculated base, not just the pipe compensation the linker will need. */
20574 if (fixP->fx_pcrel
20575 && fixP->fx_addsy != NULL
20576 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20577 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20578 return base + 8;
2fc8bdac 20579 return base;
c19d1205 20580#else
2fc8bdac 20581 return base + 8;
c19d1205 20582#endif
2fc8bdac 20583
267bf995 20584
2fc8bdac
ZW
20585 /* ARM mode loads relative to PC are also offset by +8. Unlike
20586 branches, the Windows CE loader *does* expect the relocation
20587 to take this into account. */
20588 case BFD_RELOC_ARM_OFFSET_IMM:
20589 case BFD_RELOC_ARM_OFFSET_IMM8:
20590 case BFD_RELOC_ARM_HWLITERAL:
20591 case BFD_RELOC_ARM_LITERAL:
20592 case BFD_RELOC_ARM_CP_OFF_IMM:
20593 return base + 8;
20594
20595
20596 /* Other PC-relative relocations are un-offset. */
20597 default:
20598 return base;
20599 }
bfae80f2
RE
20600}
20601
c19d1205
ZW
20602/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20603 Otherwise we have no need to default values of symbols. */
20604
20605symbolS *
20606md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20607{
c19d1205
ZW
20608#ifdef OBJ_ELF
20609 if (name[0] == '_' && name[1] == 'G'
20610 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20611 {
20612 if (!GOT_symbol)
20613 {
20614 if (symbol_find (name))
bd3ba5d1 20615 as_bad (_("GOT already in the symbol table"));
bfae80f2 20616
c19d1205
ZW
20617 GOT_symbol = symbol_new (name, undefined_section,
20618 (valueT) 0, & zero_address_frag);
20619 }
bfae80f2 20620
c19d1205 20621 return GOT_symbol;
bfae80f2 20622 }
c19d1205 20623#endif
bfae80f2 20624
c921be7d 20625 return NULL;
bfae80f2
RE
20626}
20627
55cf6793 20628/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20629 computed as two separate immediate values, added together. We
20630 already know that this value cannot be computed by just one ARM
20631 instruction. */
20632
20633static unsigned int
20634validate_immediate_twopart (unsigned int val,
20635 unsigned int * highpart)
bfae80f2 20636{
c19d1205
ZW
20637 unsigned int a;
20638 unsigned int i;
bfae80f2 20639
c19d1205
ZW
20640 for (i = 0; i < 32; i += 2)
20641 if (((a = rotate_left (val, i)) & 0xff) != 0)
20642 {
20643 if (a & 0xff00)
20644 {
20645 if (a & ~ 0xffff)
20646 continue;
20647 * highpart = (a >> 8) | ((i + 24) << 7);
20648 }
20649 else if (a & 0xff0000)
20650 {
20651 if (a & 0xff000000)
20652 continue;
20653 * highpart = (a >> 16) | ((i + 16) << 7);
20654 }
20655 else
20656 {
9c2799c2 20657 gas_assert (a & 0xff000000);
c19d1205
ZW
20658 * highpart = (a >> 24) | ((i + 8) << 7);
20659 }
bfae80f2 20660
c19d1205
ZW
20661 return (a & 0xff) | (i << 7);
20662 }
bfae80f2 20663
c19d1205 20664 return FAIL;
bfae80f2
RE
20665}
20666
c19d1205
ZW
20667static int
20668validate_offset_imm (unsigned int val, int hwse)
20669{
20670 if ((hwse && val > 255) || val > 4095)
20671 return FAIL;
20672 return val;
20673}
bfae80f2 20674
55cf6793 20675/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20676 negative immediate constant by altering the instruction. A bit of
20677 a hack really.
20678 MOV <-> MVN
20679 AND <-> BIC
20680 ADC <-> SBC
20681 by inverting the second operand, and
20682 ADD <-> SUB
20683 CMP <-> CMN
20684 by negating the second operand. */
bfae80f2 20685
c19d1205
ZW
20686static int
20687negate_data_op (unsigned long * instruction,
20688 unsigned long value)
bfae80f2 20689{
c19d1205
ZW
20690 int op, new_inst;
20691 unsigned long negated, inverted;
bfae80f2 20692
c19d1205
ZW
20693 negated = encode_arm_immediate (-value);
20694 inverted = encode_arm_immediate (~value);
bfae80f2 20695
c19d1205
ZW
20696 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20697 switch (op)
bfae80f2 20698 {
c19d1205
ZW
20699 /* First negates. */
20700 case OPCODE_SUB: /* ADD <-> SUB */
20701 new_inst = OPCODE_ADD;
20702 value = negated;
20703 break;
bfae80f2 20704
c19d1205
ZW
20705 case OPCODE_ADD:
20706 new_inst = OPCODE_SUB;
20707 value = negated;
20708 break;
bfae80f2 20709
c19d1205
ZW
20710 case OPCODE_CMP: /* CMP <-> CMN */
20711 new_inst = OPCODE_CMN;
20712 value = negated;
20713 break;
bfae80f2 20714
c19d1205
ZW
20715 case OPCODE_CMN:
20716 new_inst = OPCODE_CMP;
20717 value = negated;
20718 break;
bfae80f2 20719
c19d1205
ZW
20720 /* Now Inverted ops. */
20721 case OPCODE_MOV: /* MOV <-> MVN */
20722 new_inst = OPCODE_MVN;
20723 value = inverted;
20724 break;
bfae80f2 20725
c19d1205
ZW
20726 case OPCODE_MVN:
20727 new_inst = OPCODE_MOV;
20728 value = inverted;
20729 break;
bfae80f2 20730
c19d1205
ZW
20731 case OPCODE_AND: /* AND <-> BIC */
20732 new_inst = OPCODE_BIC;
20733 value = inverted;
20734 break;
bfae80f2 20735
c19d1205
ZW
20736 case OPCODE_BIC:
20737 new_inst = OPCODE_AND;
20738 value = inverted;
20739 break;
bfae80f2 20740
c19d1205
ZW
20741 case OPCODE_ADC: /* ADC <-> SBC */
20742 new_inst = OPCODE_SBC;
20743 value = inverted;
20744 break;
bfae80f2 20745
c19d1205
ZW
20746 case OPCODE_SBC:
20747 new_inst = OPCODE_ADC;
20748 value = inverted;
20749 break;
bfae80f2 20750
c19d1205
ZW
20751 /* We cannot do anything. */
20752 default:
20753 return FAIL;
b99bd4ef
NC
20754 }
20755
c19d1205
ZW
20756 if (value == (unsigned) FAIL)
20757 return FAIL;
20758
20759 *instruction &= OPCODE_MASK;
20760 *instruction |= new_inst << DATA_OP_SHIFT;
20761 return value;
b99bd4ef
NC
20762}
20763
ef8d22e6
PB
20764/* Like negate_data_op, but for Thumb-2. */
20765
20766static unsigned int
16dd5e42 20767thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20768{
20769 int op, new_inst;
20770 int rd;
16dd5e42 20771 unsigned int negated, inverted;
ef8d22e6
PB
20772
20773 negated = encode_thumb32_immediate (-value);
20774 inverted = encode_thumb32_immediate (~value);
20775
20776 rd = (*instruction >> 8) & 0xf;
20777 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20778 switch (op)
20779 {
20780 /* ADD <-> SUB. Includes CMP <-> CMN. */
20781 case T2_OPCODE_SUB:
20782 new_inst = T2_OPCODE_ADD;
20783 value = negated;
20784 break;
20785
20786 case T2_OPCODE_ADD:
20787 new_inst = T2_OPCODE_SUB;
20788 value = negated;
20789 break;
20790
20791 /* ORR <-> ORN. Includes MOV <-> MVN. */
20792 case T2_OPCODE_ORR:
20793 new_inst = T2_OPCODE_ORN;
20794 value = inverted;
20795 break;
20796
20797 case T2_OPCODE_ORN:
20798 new_inst = T2_OPCODE_ORR;
20799 value = inverted;
20800 break;
20801
20802 /* AND <-> BIC. TST has no inverted equivalent. */
20803 case T2_OPCODE_AND:
20804 new_inst = T2_OPCODE_BIC;
20805 if (rd == 15)
20806 value = FAIL;
20807 else
20808 value = inverted;
20809 break;
20810
20811 case T2_OPCODE_BIC:
20812 new_inst = T2_OPCODE_AND;
20813 value = inverted;
20814 break;
20815
20816 /* ADC <-> SBC */
20817 case T2_OPCODE_ADC:
20818 new_inst = T2_OPCODE_SBC;
20819 value = inverted;
20820 break;
20821
20822 case T2_OPCODE_SBC:
20823 new_inst = T2_OPCODE_ADC;
20824 value = inverted;
20825 break;
20826
20827 /* We cannot do anything. */
20828 default:
20829 return FAIL;
20830 }
20831
16dd5e42 20832 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20833 return FAIL;
20834
20835 *instruction &= T2_OPCODE_MASK;
20836 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20837 return value;
20838}
20839
8f06b2d8
PB
20840/* Read a 32-bit thumb instruction from buf. */
20841static unsigned long
20842get_thumb32_insn (char * buf)
20843{
20844 unsigned long insn;
20845 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20846 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20847
20848 return insn;
20849}
20850
a8bc6c78
PB
20851
20852/* We usually want to set the low bit on the address of thumb function
20853 symbols. In particular .word foo - . should have the low bit set.
20854 Generic code tries to fold the difference of two symbols to
20855 a constant. Prevent this and force a relocation when the first symbols
20856 is a thumb function. */
c921be7d
NC
20857
20858bfd_boolean
a8bc6c78
PB
20859arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20860{
20861 if (op == O_subtract
20862 && l->X_op == O_symbol
20863 && r->X_op == O_symbol
20864 && THUMB_IS_FUNC (l->X_add_symbol))
20865 {
20866 l->X_op = O_subtract;
20867 l->X_op_symbol = r->X_add_symbol;
20868 l->X_add_number -= r->X_add_number;
c921be7d 20869 return TRUE;
a8bc6c78 20870 }
c921be7d 20871
a8bc6c78 20872 /* Process as normal. */
c921be7d 20873 return FALSE;
a8bc6c78
PB
20874}
20875
4a42ebbc
RR
20876/* Encode Thumb2 unconditional branches and calls. The encoding
20877 for the 2 are identical for the immediate values. */
20878
20879static void
20880encode_thumb2_b_bl_offset (char * buf, offsetT value)
20881{
20882#define T2I1I2MASK ((1 << 13) | (1 << 11))
20883 offsetT newval;
20884 offsetT newval2;
20885 addressT S, I1, I2, lo, hi;
20886
20887 S = (value >> 24) & 0x01;
20888 I1 = (value >> 23) & 0x01;
20889 I2 = (value >> 22) & 0x01;
20890 hi = (value >> 12) & 0x3ff;
fa94de6b 20891 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
20892 newval = md_chars_to_number (buf, THUMB_SIZE);
20893 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20894 newval |= (S << 10) | hi;
20895 newval2 &= ~T2I1I2MASK;
20896 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20897 md_number_to_chars (buf, newval, THUMB_SIZE);
20898 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20899}
20900
c19d1205 20901void
55cf6793 20902md_apply_fix (fixS * fixP,
c19d1205
ZW
20903 valueT * valP,
20904 segT seg)
20905{
20906 offsetT value = * valP;
20907 offsetT newval;
20908 unsigned int newimm;
20909 unsigned long temp;
20910 int sign;
20911 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20912
9c2799c2 20913 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20914
c19d1205 20915 /* Note whether this will delete the relocation. */
4962c51a 20916
c19d1205
ZW
20917 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20918 fixP->fx_done = 1;
b99bd4ef 20919
adbaf948 20920 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20921 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20922 for emit_reloc. */
20923 value &= 0xffffffff;
20924 value ^= 0x80000000;
5f4273c7 20925 value -= 0x80000000;
adbaf948
ZW
20926
20927 *valP = value;
c19d1205 20928 fixP->fx_addnumber = value;
b99bd4ef 20929
adbaf948
ZW
20930 /* Same treatment for fixP->fx_offset. */
20931 fixP->fx_offset &= 0xffffffff;
20932 fixP->fx_offset ^= 0x80000000;
20933 fixP->fx_offset -= 0x80000000;
20934
c19d1205 20935 switch (fixP->fx_r_type)
b99bd4ef 20936 {
c19d1205
ZW
20937 case BFD_RELOC_NONE:
20938 /* This will need to go in the object file. */
20939 fixP->fx_done = 0;
20940 break;
b99bd4ef 20941
c19d1205
ZW
20942 case BFD_RELOC_ARM_IMMEDIATE:
20943 /* We claim that this fixup has been processed here,
20944 even if in fact we generate an error because we do
20945 not have a reloc for it, so tc_gen_reloc will reject it. */
20946 fixP->fx_done = 1;
b99bd4ef 20947
77db8e2e 20948 if (fixP->fx_addsy)
b99bd4ef 20949 {
77db8e2e 20950 const char *msg = 0;
b99bd4ef 20951
77db8e2e
NC
20952 if (! S_IS_DEFINED (fixP->fx_addsy))
20953 msg = _("undefined symbol %s used as an immediate value");
20954 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20955 msg = _("symbol %s is in a different section");
20956 else if (S_IS_WEAK (fixP->fx_addsy))
20957 msg = _("symbol %s is weak and may be overridden later");
20958
20959 if (msg)
20960 {
20961 as_bad_where (fixP->fx_file, fixP->fx_line,
20962 msg, S_GET_NAME (fixP->fx_addsy));
20963 break;
20964 }
42e5fcbf
AS
20965 }
20966
c19d1205
ZW
20967 temp = md_chars_to_number (buf, INSN_SIZE);
20968
5e73442d
SL
20969 /* If the offset is negative, we should use encoding A2 for ADR. */
20970 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20971 newimm = negate_data_op (&temp, value);
20972 else
20973 {
20974 newimm = encode_arm_immediate (value);
20975
20976 /* If the instruction will fail, see if we can fix things up by
20977 changing the opcode. */
20978 if (newimm == (unsigned int) FAIL)
20979 newimm = negate_data_op (&temp, value);
20980 }
20981
20982 if (newimm == (unsigned int) FAIL)
b99bd4ef 20983 {
c19d1205
ZW
20984 as_bad_where (fixP->fx_file, fixP->fx_line,
20985 _("invalid constant (%lx) after fixup"),
20986 (unsigned long) value);
20987 break;
b99bd4ef 20988 }
b99bd4ef 20989
c19d1205
ZW
20990 newimm |= (temp & 0xfffff000);
20991 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20992 break;
b99bd4ef 20993
c19d1205
ZW
20994 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20995 {
20996 unsigned int highpart = 0;
20997 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20998
77db8e2e 20999 if (fixP->fx_addsy)
42e5fcbf 21000 {
77db8e2e 21001 const char *msg = 0;
42e5fcbf 21002
77db8e2e
NC
21003 if (! S_IS_DEFINED (fixP->fx_addsy))
21004 msg = _("undefined symbol %s used as an immediate value");
21005 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21006 msg = _("symbol %s is in a different section");
21007 else if (S_IS_WEAK (fixP->fx_addsy))
21008 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 21009
77db8e2e
NC
21010 if (msg)
21011 {
21012 as_bad_where (fixP->fx_file, fixP->fx_line,
21013 msg, S_GET_NAME (fixP->fx_addsy));
21014 break;
21015 }
21016 }
fa94de6b 21017
c19d1205
ZW
21018 newimm = encode_arm_immediate (value);
21019 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 21020
c19d1205
ZW
21021 /* If the instruction will fail, see if we can fix things up by
21022 changing the opcode. */
21023 if (newimm == (unsigned int) FAIL
21024 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21025 {
21026 /* No ? OK - try using two ADD instructions to generate
21027 the value. */
21028 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 21029
c19d1205
ZW
21030 /* Yes - then make sure that the second instruction is
21031 also an add. */
21032 if (newimm != (unsigned int) FAIL)
21033 newinsn = temp;
21034 /* Still No ? Try using a negated value. */
21035 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21036 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21037 /* Otherwise - give up. */
21038 else
21039 {
21040 as_bad_where (fixP->fx_file, fixP->fx_line,
21041 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21042 (long) value);
21043 break;
21044 }
b99bd4ef 21045
c19d1205
ZW
21046 /* Replace the first operand in the 2nd instruction (which
21047 is the PC) with the destination register. We have
21048 already added in the PC in the first instruction and we
21049 do not want to do it again. */
21050 newinsn &= ~ 0xf0000;
21051 newinsn |= ((newinsn & 0x0f000) << 4);
21052 }
b99bd4ef 21053
c19d1205
ZW
21054 newimm |= (temp & 0xfffff000);
21055 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 21056
c19d1205
ZW
21057 highpart |= (newinsn & 0xfffff000);
21058 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21059 }
21060 break;
b99bd4ef 21061
c19d1205 21062 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21063 if (!fixP->fx_done && seg->use_rela_p)
21064 value = 0;
21065
c19d1205 21066 case BFD_RELOC_ARM_LITERAL:
26d97720 21067 sign = value > 0;
b99bd4ef 21068
c19d1205
ZW
21069 if (value < 0)
21070 value = - value;
b99bd4ef 21071
c19d1205 21072 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 21073 {
c19d1205
ZW
21074 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21075 as_bad_where (fixP->fx_file, fixP->fx_line,
21076 _("invalid literal constant: pool needs to be closer"));
21077 else
21078 as_bad_where (fixP->fx_file, fixP->fx_line,
21079 _("bad immediate value for offset (%ld)"),
21080 (long) value);
21081 break;
f03698e6
RE
21082 }
21083
c19d1205 21084 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21085 if (value == 0)
21086 newval &= 0xfffff000;
21087 else
21088 {
21089 newval &= 0xff7ff000;
21090 newval |= value | (sign ? INDEX_UP : 0);
21091 }
c19d1205
ZW
21092 md_number_to_chars (buf, newval, INSN_SIZE);
21093 break;
b99bd4ef 21094
c19d1205
ZW
21095 case BFD_RELOC_ARM_OFFSET_IMM8:
21096 case BFD_RELOC_ARM_HWLITERAL:
26d97720 21097 sign = value > 0;
b99bd4ef 21098
c19d1205
ZW
21099 if (value < 0)
21100 value = - value;
b99bd4ef 21101
c19d1205 21102 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 21103 {
c19d1205
ZW
21104 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21105 as_bad_where (fixP->fx_file, fixP->fx_line,
21106 _("invalid literal constant: pool needs to be closer"));
21107 else
f9d4405b 21108 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
21109 (long) value);
21110 break;
b99bd4ef
NC
21111 }
21112
c19d1205 21113 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21114 if (value == 0)
21115 newval &= 0xfffff0f0;
21116 else
21117 {
21118 newval &= 0xff7ff0f0;
21119 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21120 }
c19d1205
ZW
21121 md_number_to_chars (buf, newval, INSN_SIZE);
21122 break;
b99bd4ef 21123
c19d1205
ZW
21124 case BFD_RELOC_ARM_T32_OFFSET_U8:
21125 if (value < 0 || value > 1020 || value % 4 != 0)
21126 as_bad_where (fixP->fx_file, fixP->fx_line,
21127 _("bad immediate value for offset (%ld)"), (long) value);
21128 value /= 4;
b99bd4ef 21129
c19d1205 21130 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
21131 newval |= value;
21132 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21133 break;
b99bd4ef 21134
c19d1205
ZW
21135 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21136 /* This is a complicated relocation used for all varieties of Thumb32
21137 load/store instruction with immediate offset:
21138
21139 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21140 *4, optional writeback(W)
21141 (doubleword load/store)
21142
21143 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21144 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21145 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21146 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21147 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21148
21149 Uppercase letters indicate bits that are already encoded at
21150 this point. Lowercase letters are our problem. For the
21151 second block of instructions, the secondary opcode nybble
21152 (bits 8..11) is present, and bit 23 is zero, even if this is
21153 a PC-relative operation. */
21154 newval = md_chars_to_number (buf, THUMB_SIZE);
21155 newval <<= 16;
21156 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 21157
c19d1205 21158 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 21159 {
c19d1205
ZW
21160 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21161 if (value >= 0)
21162 newval |= (1 << 23);
21163 else
21164 value = -value;
21165 if (value % 4 != 0)
21166 {
21167 as_bad_where (fixP->fx_file, fixP->fx_line,
21168 _("offset not a multiple of 4"));
21169 break;
21170 }
21171 value /= 4;
216d22bc 21172 if (value > 0xff)
c19d1205
ZW
21173 {
21174 as_bad_where (fixP->fx_file, fixP->fx_line,
21175 _("offset out of range"));
21176 break;
21177 }
21178 newval &= ~0xff;
b99bd4ef 21179 }
c19d1205 21180 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 21181 {
c19d1205
ZW
21182 /* PC-relative, 12-bit offset. */
21183 if (value >= 0)
21184 newval |= (1 << 23);
21185 else
21186 value = -value;
216d22bc 21187 if (value > 0xfff)
c19d1205
ZW
21188 {
21189 as_bad_where (fixP->fx_file, fixP->fx_line,
21190 _("offset out of range"));
21191 break;
21192 }
21193 newval &= ~0xfff;
b99bd4ef 21194 }
c19d1205 21195 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 21196 {
c19d1205
ZW
21197 /* Writeback: 8-bit, +/- offset. */
21198 if (value >= 0)
21199 newval |= (1 << 9);
21200 else
21201 value = -value;
216d22bc 21202 if (value > 0xff)
c19d1205
ZW
21203 {
21204 as_bad_where (fixP->fx_file, fixP->fx_line,
21205 _("offset out of range"));
21206 break;
21207 }
21208 newval &= ~0xff;
b99bd4ef 21209 }
c19d1205 21210 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 21211 {
c19d1205 21212 /* T-instruction: positive 8-bit offset. */
216d22bc 21213 if (value < 0 || value > 0xff)
b99bd4ef 21214 {
c19d1205
ZW
21215 as_bad_where (fixP->fx_file, fixP->fx_line,
21216 _("offset out of range"));
21217 break;
b99bd4ef 21218 }
c19d1205
ZW
21219 newval &= ~0xff;
21220 newval |= value;
b99bd4ef
NC
21221 }
21222 else
b99bd4ef 21223 {
c19d1205
ZW
21224 /* Positive 12-bit or negative 8-bit offset. */
21225 int limit;
21226 if (value >= 0)
b99bd4ef 21227 {
c19d1205
ZW
21228 newval |= (1 << 23);
21229 limit = 0xfff;
21230 }
21231 else
21232 {
21233 value = -value;
21234 limit = 0xff;
21235 }
21236 if (value > limit)
21237 {
21238 as_bad_where (fixP->fx_file, fixP->fx_line,
21239 _("offset out of range"));
21240 break;
b99bd4ef 21241 }
c19d1205 21242 newval &= ~limit;
b99bd4ef 21243 }
b99bd4ef 21244
c19d1205
ZW
21245 newval |= value;
21246 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21247 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21248 break;
404ff6b5 21249
c19d1205
ZW
21250 case BFD_RELOC_ARM_SHIFT_IMM:
21251 newval = md_chars_to_number (buf, INSN_SIZE);
21252 if (((unsigned long) value) > 32
21253 || (value == 32
21254 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21255 {
21256 as_bad_where (fixP->fx_file, fixP->fx_line,
21257 _("shift expression is too large"));
21258 break;
21259 }
404ff6b5 21260
c19d1205
ZW
21261 if (value == 0)
21262 /* Shifts of zero must be done as lsl. */
21263 newval &= ~0x60;
21264 else if (value == 32)
21265 value = 0;
21266 newval &= 0xfffff07f;
21267 newval |= (value & 0x1f) << 7;
21268 md_number_to_chars (buf, newval, INSN_SIZE);
21269 break;
404ff6b5 21270
c19d1205 21271 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 21272 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 21273 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 21274 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
21275 /* We claim that this fixup has been processed here,
21276 even if in fact we generate an error because we do
21277 not have a reloc for it, so tc_gen_reloc will reject it. */
21278 fixP->fx_done = 1;
404ff6b5 21279
c19d1205
ZW
21280 if (fixP->fx_addsy
21281 && ! S_IS_DEFINED (fixP->fx_addsy))
21282 {
21283 as_bad_where (fixP->fx_file, fixP->fx_line,
21284 _("undefined symbol %s used as an immediate value"),
21285 S_GET_NAME (fixP->fx_addsy));
21286 break;
21287 }
404ff6b5 21288
c19d1205
ZW
21289 newval = md_chars_to_number (buf, THUMB_SIZE);
21290 newval <<= 16;
21291 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 21292
16805f35
PB
21293 newimm = FAIL;
21294 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21295 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
21296 {
21297 newimm = encode_thumb32_immediate (value);
21298 if (newimm == (unsigned int) FAIL)
21299 newimm = thumb32_negate_data_op (&newval, value);
21300 }
16805f35
PB
21301 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21302 && newimm == (unsigned int) FAIL)
92e90b6e 21303 {
16805f35
PB
21304 /* Turn add/sum into addw/subw. */
21305 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21306 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
21307 /* No flat 12-bit imm encoding for addsw/subsw. */
21308 if ((newval & 0x00100000) == 0)
e9f89963 21309 {
40f246e3
NC
21310 /* 12 bit immediate for addw/subw. */
21311 if (value < 0)
21312 {
21313 value = -value;
21314 newval ^= 0x00a00000;
21315 }
21316 if (value > 0xfff)
21317 newimm = (unsigned int) FAIL;
21318 else
21319 newimm = value;
e9f89963 21320 }
92e90b6e 21321 }
cc8a6dd0 21322
c19d1205 21323 if (newimm == (unsigned int)FAIL)
3631a3c8 21324 {
c19d1205
ZW
21325 as_bad_where (fixP->fx_file, fixP->fx_line,
21326 _("invalid constant (%lx) after fixup"),
21327 (unsigned long) value);
21328 break;
3631a3c8
NC
21329 }
21330
c19d1205
ZW
21331 newval |= (newimm & 0x800) << 15;
21332 newval |= (newimm & 0x700) << 4;
21333 newval |= (newimm & 0x0ff);
cc8a6dd0 21334
c19d1205
ZW
21335 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21336 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21337 break;
a737bd4d 21338
3eb17e6b 21339 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
21340 if (((unsigned long) value) > 0xffff)
21341 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 21342 _("invalid smc expression"));
2fc8bdac 21343 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21344 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21345 md_number_to_chars (buf, newval, INSN_SIZE);
21346 break;
a737bd4d 21347
90ec0d68
MGD
21348 case BFD_RELOC_ARM_HVC:
21349 if (((unsigned long) value) > 0xffff)
21350 as_bad_where (fixP->fx_file, fixP->fx_line,
21351 _("invalid hvc expression"));
21352 newval = md_chars_to_number (buf, INSN_SIZE);
21353 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21354 md_number_to_chars (buf, newval, INSN_SIZE);
21355 break;
21356
c19d1205 21357 case BFD_RELOC_ARM_SWI:
adbaf948 21358 if (fixP->tc_fix_data != 0)
c19d1205
ZW
21359 {
21360 if (((unsigned long) value) > 0xff)
21361 as_bad_where (fixP->fx_file, fixP->fx_line,
21362 _("invalid swi expression"));
2fc8bdac 21363 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
21364 newval |= value;
21365 md_number_to_chars (buf, newval, THUMB_SIZE);
21366 }
21367 else
21368 {
21369 if (((unsigned long) value) > 0x00ffffff)
21370 as_bad_where (fixP->fx_file, fixP->fx_line,
21371 _("invalid swi expression"));
2fc8bdac 21372 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21373 newval |= value;
21374 md_number_to_chars (buf, newval, INSN_SIZE);
21375 }
21376 break;
a737bd4d 21377
c19d1205
ZW
21378 case BFD_RELOC_ARM_MULTI:
21379 if (((unsigned long) value) > 0xffff)
21380 as_bad_where (fixP->fx_file, fixP->fx_line,
21381 _("invalid expression in load/store multiple"));
21382 newval = value | md_chars_to_number (buf, INSN_SIZE);
21383 md_number_to_chars (buf, newval, INSN_SIZE);
21384 break;
a737bd4d 21385
c19d1205 21386#ifdef OBJ_ELF
39b41c9c 21387 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
21388
21389 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21390 && fixP->fx_addsy
34e77a92 21391 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21392 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21393 && THUMB_IS_FUNC (fixP->fx_addsy))
21394 /* Flip the bl to blx. This is a simple flip
21395 bit here because we generate PCREL_CALL for
21396 unconditional bls. */
21397 {
21398 newval = md_chars_to_number (buf, INSN_SIZE);
21399 newval = newval | 0x10000000;
21400 md_number_to_chars (buf, newval, INSN_SIZE);
21401 temp = 1;
21402 fixP->fx_done = 1;
21403 }
39b41c9c
PB
21404 else
21405 temp = 3;
21406 goto arm_branch_common;
21407
21408 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
21409 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21410 && fixP->fx_addsy
34e77a92 21411 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21412 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21413 && THUMB_IS_FUNC (fixP->fx_addsy))
21414 {
21415 /* This would map to a bl<cond>, b<cond>,
21416 b<always> to a Thumb function. We
21417 need to force a relocation for this particular
21418 case. */
21419 newval = md_chars_to_number (buf, INSN_SIZE);
21420 fixP->fx_done = 0;
21421 }
21422
2fc8bdac 21423 case BFD_RELOC_ARM_PLT32:
c19d1205 21424#endif
39b41c9c
PB
21425 case BFD_RELOC_ARM_PCREL_BRANCH:
21426 temp = 3;
21427 goto arm_branch_common;
a737bd4d 21428
39b41c9c 21429 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 21430
39b41c9c 21431 temp = 1;
267bf995
RR
21432 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21433 && fixP->fx_addsy
34e77a92 21434 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21435 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21436 && ARM_IS_FUNC (fixP->fx_addsy))
21437 {
21438 /* Flip the blx to a bl and warn. */
21439 const char *name = S_GET_NAME (fixP->fx_addsy);
21440 newval = 0xeb000000;
21441 as_warn_where (fixP->fx_file, fixP->fx_line,
21442 _("blx to '%s' an ARM ISA state function changed to bl"),
21443 name);
21444 md_number_to_chars (buf, newval, INSN_SIZE);
21445 temp = 3;
21446 fixP->fx_done = 1;
21447 }
21448
21449#ifdef OBJ_ELF
21450 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21451 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21452#endif
21453
39b41c9c 21454 arm_branch_common:
c19d1205 21455 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21456 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21457 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21458 also be be clear. */
21459 if (value & temp)
c19d1205 21460 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21461 _("misaligned branch destination"));
21462 if ((value & (offsetT)0xfe000000) != (offsetT)0
21463 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21464 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21465
2fc8bdac 21466 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21467 {
2fc8bdac
ZW
21468 newval = md_chars_to_number (buf, INSN_SIZE);
21469 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21470 /* Set the H bit on BLX instructions. */
21471 if (temp == 1)
21472 {
21473 if (value & 2)
21474 newval |= 0x01000000;
21475 else
21476 newval &= ~0x01000000;
21477 }
2fc8bdac 21478 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21479 }
c19d1205 21480 break;
a737bd4d 21481
25fe350b
MS
21482 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21483 /* CBZ can only branch forward. */
a737bd4d 21484
738755b0
MS
21485 /* Attempts to use CBZ to branch to the next instruction
21486 (which, strictly speaking, are prohibited) will be turned into
21487 no-ops.
21488
21489 FIXME: It may be better to remove the instruction completely and
21490 perform relaxation. */
21491 if (value == -2)
2fc8bdac
ZW
21492 {
21493 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21494 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21495 md_number_to_chars (buf, newval, THUMB_SIZE);
21496 }
738755b0
MS
21497 else
21498 {
21499 if (value & ~0x7e)
08f10d51 21500 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21501
21502 if (fixP->fx_done || !seg->use_rela_p)
21503 {
21504 newval = md_chars_to_number (buf, THUMB_SIZE);
21505 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21506 md_number_to_chars (buf, newval, THUMB_SIZE);
21507 }
21508 }
c19d1205 21509 break;
a737bd4d 21510
c19d1205 21511 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21512 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21513 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21514
2fc8bdac
ZW
21515 if (fixP->fx_done || !seg->use_rela_p)
21516 {
21517 newval = md_chars_to_number (buf, THUMB_SIZE);
21518 newval |= (value & 0x1ff) >> 1;
21519 md_number_to_chars (buf, newval, THUMB_SIZE);
21520 }
c19d1205 21521 break;
a737bd4d 21522
c19d1205 21523 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21524 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21525 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21526
2fc8bdac
ZW
21527 if (fixP->fx_done || !seg->use_rela_p)
21528 {
21529 newval = md_chars_to_number (buf, THUMB_SIZE);
21530 newval |= (value & 0xfff) >> 1;
21531 md_number_to_chars (buf, newval, THUMB_SIZE);
21532 }
c19d1205 21533 break;
a737bd4d 21534
c19d1205 21535 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21536 if (fixP->fx_addsy
21537 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21538 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21539 && ARM_IS_FUNC (fixP->fx_addsy)
21540 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21541 {
21542 /* Force a relocation for a branch 20 bits wide. */
21543 fixP->fx_done = 0;
21544 }
08f10d51 21545 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
21546 as_bad_where (fixP->fx_file, fixP->fx_line,
21547 _("conditional branch out of range"));
404ff6b5 21548
2fc8bdac
ZW
21549 if (fixP->fx_done || !seg->use_rela_p)
21550 {
21551 offsetT newval2;
21552 addressT S, J1, J2, lo, hi;
404ff6b5 21553
2fc8bdac
ZW
21554 S = (value & 0x00100000) >> 20;
21555 J2 = (value & 0x00080000) >> 19;
21556 J1 = (value & 0x00040000) >> 18;
21557 hi = (value & 0x0003f000) >> 12;
21558 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21559
2fc8bdac
ZW
21560 newval = md_chars_to_number (buf, THUMB_SIZE);
21561 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21562 newval |= (S << 10) | hi;
21563 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21564 md_number_to_chars (buf, newval, THUMB_SIZE);
21565 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21566 }
c19d1205 21567 break;
6c43fab6 21568
c19d1205 21569 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21570 /* If there is a blx from a thumb state function to
21571 another thumb function flip this to a bl and warn
21572 about it. */
21573
21574 if (fixP->fx_addsy
34e77a92 21575 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21576 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21577 && THUMB_IS_FUNC (fixP->fx_addsy))
21578 {
21579 const char *name = S_GET_NAME (fixP->fx_addsy);
21580 as_warn_where (fixP->fx_file, fixP->fx_line,
21581 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21582 name);
21583 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21584 newval = newval | 0x1000;
21585 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21586 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21587 fixP->fx_done = 1;
21588 }
21589
21590
21591 goto thumb_bl_common;
21592
c19d1205 21593 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21594 /* A bl from Thumb state ISA to an internal ARM state function
21595 is converted to a blx. */
21596 if (fixP->fx_addsy
21597 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21598 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21599 && ARM_IS_FUNC (fixP->fx_addsy)
21600 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21601 {
21602 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21603 newval = newval & ~0x1000;
21604 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21605 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21606 fixP->fx_done = 1;
21607 }
21608
21609 thumb_bl_common:
21610
21611#ifdef OBJ_ELF
2b2f5df9
NC
21612 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21613 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
267bf995
RR
21614 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21615#endif
21616
2fc8bdac
ZW
21617 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21618 /* For a BLX instruction, make sure that the relocation is rounded up
21619 to a word boundary. This follows the semantics of the instruction
21620 which specifies that bit 1 of the target address will come from bit
21621 1 of the base address. */
21622 value = (value + 1) & ~ 1;
404ff6b5 21623
2b2f5df9
NC
21624 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21625 {
21626 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21627 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21628 else if ((value & ~0x1ffffff)
21629 && ((value & ~0x1ffffff) != ~0x1ffffff))
21630 as_bad_where (fixP->fx_file, fixP->fx_line,
21631 _("Thumb2 branch out of range"));
21632 }
4a42ebbc
RR
21633
21634 if (fixP->fx_done || !seg->use_rela_p)
21635 encode_thumb2_b_bl_offset (buf, value);
21636
c19d1205 21637 break;
404ff6b5 21638
c19d1205 21639 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
21640 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21641 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 21642
2fc8bdac 21643 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21644 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21645
2fc8bdac 21646 break;
a737bd4d 21647
2fc8bdac
ZW
21648 case BFD_RELOC_8:
21649 if (fixP->fx_done || !seg->use_rela_p)
21650 md_number_to_chars (buf, value, 1);
c19d1205 21651 break;
a737bd4d 21652
c19d1205 21653 case BFD_RELOC_16:
2fc8bdac 21654 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21655 md_number_to_chars (buf, value, 2);
c19d1205 21656 break;
a737bd4d 21657
c19d1205 21658#ifdef OBJ_ELF
0855e32b
NS
21659 case BFD_RELOC_ARM_TLS_CALL:
21660 case BFD_RELOC_ARM_THM_TLS_CALL:
21661 case BFD_RELOC_ARM_TLS_DESCSEQ:
21662 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21663 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21664 break;
21665
21666 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21667 case BFD_RELOC_ARM_TLS_GD32:
21668 case BFD_RELOC_ARM_TLS_LE32:
21669 case BFD_RELOC_ARM_TLS_IE32:
21670 case BFD_RELOC_ARM_TLS_LDM32:
21671 case BFD_RELOC_ARM_TLS_LDO32:
21672 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21673 /* fall through */
6c43fab6 21674
c19d1205
ZW
21675 case BFD_RELOC_ARM_GOT32:
21676 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21677 if (fixP->fx_done || !seg->use_rela_p)
21678 md_number_to_chars (buf, 0, 4);
c19d1205 21679 break;
b43420e6
NC
21680
21681 case BFD_RELOC_ARM_GOT_PREL:
21682 if (fixP->fx_done || !seg->use_rela_p)
21683 md_number_to_chars (buf, value, 4);
21684 break;
21685
9a6f4e97
NS
21686 case BFD_RELOC_ARM_TARGET2:
21687 /* TARGET2 is not partial-inplace, so we need to write the
21688 addend here for REL targets, because it won't be written out
21689 during reloc processing later. */
21690 if (fixP->fx_done || !seg->use_rela_p)
21691 md_number_to_chars (buf, fixP->fx_offset, 4);
21692 break;
c19d1205 21693#endif
6c43fab6 21694
c19d1205
ZW
21695 case BFD_RELOC_RVA:
21696 case BFD_RELOC_32:
21697 case BFD_RELOC_ARM_TARGET1:
21698 case BFD_RELOC_ARM_ROSEGREL32:
21699 case BFD_RELOC_ARM_SBREL32:
21700 case BFD_RELOC_32_PCREL:
f0927246
NC
21701#ifdef TE_PE
21702 case BFD_RELOC_32_SECREL:
21703#endif
2fc8bdac 21704 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21705#ifdef TE_WINCE
21706 /* For WinCE we only do this for pcrel fixups. */
21707 if (fixP->fx_done || fixP->fx_pcrel)
21708#endif
21709 md_number_to_chars (buf, value, 4);
c19d1205 21710 break;
6c43fab6 21711
c19d1205
ZW
21712#ifdef OBJ_ELF
21713 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21714 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21715 {
21716 newval = md_chars_to_number (buf, 4) & 0x80000000;
21717 if ((value ^ (value >> 1)) & 0x40000000)
21718 {
21719 as_bad_where (fixP->fx_file, fixP->fx_line,
21720 _("rel31 relocation overflow"));
21721 }
21722 newval |= value & 0x7fffffff;
21723 md_number_to_chars (buf, newval, 4);
21724 }
21725 break;
c19d1205 21726#endif
a737bd4d 21727
c19d1205 21728 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21729 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21730 if (value < -1023 || value > 1023 || (value & 3))
21731 as_bad_where (fixP->fx_file, fixP->fx_line,
21732 _("co-processor offset out of range"));
21733 cp_off_common:
26d97720 21734 sign = value > 0;
c19d1205
ZW
21735 if (value < 0)
21736 value = -value;
8f06b2d8
PB
21737 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21738 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21739 newval = md_chars_to_number (buf, INSN_SIZE);
21740 else
21741 newval = get_thumb32_insn (buf);
26d97720
NS
21742 if (value == 0)
21743 newval &= 0xffffff00;
21744 else
21745 {
21746 newval &= 0xff7fff00;
21747 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21748 }
8f06b2d8
PB
21749 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21750 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21751 md_number_to_chars (buf, newval, INSN_SIZE);
21752 else
21753 put_thumb32_insn (buf, newval);
c19d1205 21754 break;
a737bd4d 21755
c19d1205 21756 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21757 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21758 if (value < -255 || value > 255)
21759 as_bad_where (fixP->fx_file, fixP->fx_line,
21760 _("co-processor offset out of range"));
df7849c5 21761 value *= 4;
c19d1205 21762 goto cp_off_common;
6c43fab6 21763
c19d1205
ZW
21764 case BFD_RELOC_ARM_THUMB_OFFSET:
21765 newval = md_chars_to_number (buf, THUMB_SIZE);
21766 /* Exactly what ranges, and where the offset is inserted depends
21767 on the type of instruction, we can establish this from the
21768 top 4 bits. */
21769 switch (newval >> 12)
21770 {
21771 case 4: /* PC load. */
21772 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21773 forced to zero for these loads; md_pcrel_from has already
21774 compensated for this. */
21775 if (value & 3)
21776 as_bad_where (fixP->fx_file, fixP->fx_line,
21777 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21778 (((unsigned long) fixP->fx_frag->fr_address
21779 + (unsigned long) fixP->fx_where) & ~3)
21780 + (unsigned long) value);
a737bd4d 21781
c19d1205
ZW
21782 if (value & ~0x3fc)
21783 as_bad_where (fixP->fx_file, fixP->fx_line,
21784 _("invalid offset, value too big (0x%08lX)"),
21785 (long) value);
a737bd4d 21786
c19d1205
ZW
21787 newval |= value >> 2;
21788 break;
a737bd4d 21789
c19d1205
ZW
21790 case 9: /* SP load/store. */
21791 if (value & ~0x3fc)
21792 as_bad_where (fixP->fx_file, fixP->fx_line,
21793 _("invalid offset, value too big (0x%08lX)"),
21794 (long) value);
21795 newval |= value >> 2;
21796 break;
6c43fab6 21797
c19d1205
ZW
21798 case 6: /* Word load/store. */
21799 if (value & ~0x7c)
21800 as_bad_where (fixP->fx_file, fixP->fx_line,
21801 _("invalid offset, value too big (0x%08lX)"),
21802 (long) value);
21803 newval |= value << 4; /* 6 - 2. */
21804 break;
a737bd4d 21805
c19d1205
ZW
21806 case 7: /* Byte load/store. */
21807 if (value & ~0x1f)
21808 as_bad_where (fixP->fx_file, fixP->fx_line,
21809 _("invalid offset, value too big (0x%08lX)"),
21810 (long) value);
21811 newval |= value << 6;
21812 break;
a737bd4d 21813
c19d1205
ZW
21814 case 8: /* Halfword load/store. */
21815 if (value & ~0x3e)
21816 as_bad_where (fixP->fx_file, fixP->fx_line,
21817 _("invalid offset, value too big (0x%08lX)"),
21818 (long) value);
21819 newval |= value << 5; /* 6 - 1. */
21820 break;
a737bd4d 21821
c19d1205
ZW
21822 default:
21823 as_bad_where (fixP->fx_file, fixP->fx_line,
21824 "Unable to process relocation for thumb opcode: %lx",
21825 (unsigned long) newval);
21826 break;
21827 }
21828 md_number_to_chars (buf, newval, THUMB_SIZE);
21829 break;
a737bd4d 21830
c19d1205
ZW
21831 case BFD_RELOC_ARM_THUMB_ADD:
21832 /* This is a complicated relocation, since we use it for all of
21833 the following immediate relocations:
a737bd4d 21834
c19d1205
ZW
21835 3bit ADD/SUB
21836 8bit ADD/SUB
21837 9bit ADD/SUB SP word-aligned
21838 10bit ADD PC/SP word-aligned
a737bd4d 21839
c19d1205
ZW
21840 The type of instruction being processed is encoded in the
21841 instruction field:
a737bd4d 21842
c19d1205
ZW
21843 0x8000 SUB
21844 0x00F0 Rd
21845 0x000F Rs
21846 */
21847 newval = md_chars_to_number (buf, THUMB_SIZE);
21848 {
21849 int rd = (newval >> 4) & 0xf;
21850 int rs = newval & 0xf;
21851 int subtract = !!(newval & 0x8000);
a737bd4d 21852
c19d1205
ZW
21853 /* Check for HI regs, only very restricted cases allowed:
21854 Adjusting SP, and using PC or SP to get an address. */
21855 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21856 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21857 as_bad_where (fixP->fx_file, fixP->fx_line,
21858 _("invalid Hi register with immediate"));
a737bd4d 21859
c19d1205
ZW
21860 /* If value is negative, choose the opposite instruction. */
21861 if (value < 0)
21862 {
21863 value = -value;
21864 subtract = !subtract;
21865 if (value < 0)
21866 as_bad_where (fixP->fx_file, fixP->fx_line,
21867 _("immediate value out of range"));
21868 }
a737bd4d 21869
c19d1205
ZW
21870 if (rd == REG_SP)
21871 {
21872 if (value & ~0x1fc)
21873 as_bad_where (fixP->fx_file, fixP->fx_line,
21874 _("invalid immediate for stack address calculation"));
21875 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21876 newval |= value >> 2;
21877 }
21878 else if (rs == REG_PC || rs == REG_SP)
21879 {
21880 if (subtract || value & ~0x3fc)
21881 as_bad_where (fixP->fx_file, fixP->fx_line,
21882 _("invalid immediate for address calculation (value = 0x%08lX)"),
21883 (unsigned long) value);
21884 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21885 newval |= rd << 8;
21886 newval |= value >> 2;
21887 }
21888 else if (rs == rd)
21889 {
21890 if (value & ~0xff)
21891 as_bad_where (fixP->fx_file, fixP->fx_line,
21892 _("immediate value out of range"));
21893 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21894 newval |= (rd << 8) | value;
21895 }
21896 else
21897 {
21898 if (value & ~0x7)
21899 as_bad_where (fixP->fx_file, fixP->fx_line,
21900 _("immediate value out of range"));
21901 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21902 newval |= rd | (rs << 3) | (value << 6);
21903 }
21904 }
21905 md_number_to_chars (buf, newval, THUMB_SIZE);
21906 break;
a737bd4d 21907
c19d1205
ZW
21908 case BFD_RELOC_ARM_THUMB_IMM:
21909 newval = md_chars_to_number (buf, THUMB_SIZE);
21910 if (value < 0 || value > 255)
21911 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21912 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21913 (long) value);
21914 newval |= value;
21915 md_number_to_chars (buf, newval, THUMB_SIZE);
21916 break;
a737bd4d 21917
c19d1205
ZW
21918 case BFD_RELOC_ARM_THUMB_SHIFT:
21919 /* 5bit shift value (0..32). LSL cannot take 32. */
21920 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21921 temp = newval & 0xf800;
21922 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21923 as_bad_where (fixP->fx_file, fixP->fx_line,
21924 _("invalid shift value: %ld"), (long) value);
21925 /* Shifts of zero must be encoded as LSL. */
21926 if (value == 0)
21927 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21928 /* Shifts of 32 are encoded as zero. */
21929 else if (value == 32)
21930 value = 0;
21931 newval |= value << 6;
21932 md_number_to_chars (buf, newval, THUMB_SIZE);
21933 break;
a737bd4d 21934
c19d1205
ZW
21935 case BFD_RELOC_VTABLE_INHERIT:
21936 case BFD_RELOC_VTABLE_ENTRY:
21937 fixP->fx_done = 0;
21938 return;
6c43fab6 21939
b6895b4f
PB
21940 case BFD_RELOC_ARM_MOVW:
21941 case BFD_RELOC_ARM_MOVT:
21942 case BFD_RELOC_ARM_THUMB_MOVW:
21943 case BFD_RELOC_ARM_THUMB_MOVT:
21944 if (fixP->fx_done || !seg->use_rela_p)
21945 {
21946 /* REL format relocations are limited to a 16-bit addend. */
21947 if (!fixP->fx_done)
21948 {
39623e12 21949 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21950 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21951 _("offset out of range"));
b6895b4f
PB
21952 }
21953 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21954 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21955 {
21956 value >>= 16;
21957 }
21958
21959 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21960 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21961 {
21962 newval = get_thumb32_insn (buf);
21963 newval &= 0xfbf08f00;
21964 newval |= (value & 0xf000) << 4;
21965 newval |= (value & 0x0800) << 15;
21966 newval |= (value & 0x0700) << 4;
21967 newval |= (value & 0x00ff);
21968 put_thumb32_insn (buf, newval);
21969 }
21970 else
21971 {
21972 newval = md_chars_to_number (buf, 4);
21973 newval &= 0xfff0f000;
21974 newval |= value & 0x0fff;
21975 newval |= (value & 0xf000) << 4;
21976 md_number_to_chars (buf, newval, 4);
21977 }
21978 }
21979 return;
21980
4962c51a
MS
21981 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21982 case BFD_RELOC_ARM_ALU_PC_G0:
21983 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21984 case BFD_RELOC_ARM_ALU_PC_G1:
21985 case BFD_RELOC_ARM_ALU_PC_G2:
21986 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21987 case BFD_RELOC_ARM_ALU_SB_G0:
21988 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21989 case BFD_RELOC_ARM_ALU_SB_G1:
21990 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21991 gas_assert (!fixP->fx_done);
4962c51a
MS
21992 if (!seg->use_rela_p)
21993 {
21994 bfd_vma insn;
21995 bfd_vma encoded_addend;
21996 bfd_vma addend_abs = abs (value);
21997
21998 /* Check that the absolute value of the addend can be
21999 expressed as an 8-bit constant plus a rotation. */
22000 encoded_addend = encode_arm_immediate (addend_abs);
22001 if (encoded_addend == (unsigned int) FAIL)
22002 as_bad_where (fixP->fx_file, fixP->fx_line,
22003 _("the offset 0x%08lX is not representable"),
495bde8e 22004 (unsigned long) addend_abs);
4962c51a
MS
22005
22006 /* Extract the instruction. */
22007 insn = md_chars_to_number (buf, INSN_SIZE);
22008
22009 /* If the addend is positive, use an ADD instruction.
22010 Otherwise use a SUB. Take care not to destroy the S bit. */
22011 insn &= 0xff1fffff;
22012 if (value < 0)
22013 insn |= 1 << 22;
22014 else
22015 insn |= 1 << 23;
22016
22017 /* Place the encoded addend into the first 12 bits of the
22018 instruction. */
22019 insn &= 0xfffff000;
22020 insn |= encoded_addend;
5f4273c7
NC
22021
22022 /* Update the instruction. */
4962c51a
MS
22023 md_number_to_chars (buf, insn, INSN_SIZE);
22024 }
22025 break;
22026
22027 case BFD_RELOC_ARM_LDR_PC_G0:
22028 case BFD_RELOC_ARM_LDR_PC_G1:
22029 case BFD_RELOC_ARM_LDR_PC_G2:
22030 case BFD_RELOC_ARM_LDR_SB_G0:
22031 case BFD_RELOC_ARM_LDR_SB_G1:
22032 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 22033 gas_assert (!fixP->fx_done);
4962c51a
MS
22034 if (!seg->use_rela_p)
22035 {
22036 bfd_vma insn;
22037 bfd_vma addend_abs = abs (value);
22038
22039 /* Check that the absolute value of the addend can be
22040 encoded in 12 bits. */
22041 if (addend_abs >= 0x1000)
22042 as_bad_where (fixP->fx_file, fixP->fx_line,
22043 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 22044 (unsigned long) addend_abs);
4962c51a
MS
22045
22046 /* Extract the instruction. */
22047 insn = md_chars_to_number (buf, INSN_SIZE);
22048
22049 /* If the addend is negative, clear bit 23 of the instruction.
22050 Otherwise set it. */
22051 if (value < 0)
22052 insn &= ~(1 << 23);
22053 else
22054 insn |= 1 << 23;
22055
22056 /* Place the absolute value of the addend into the first 12 bits
22057 of the instruction. */
22058 insn &= 0xfffff000;
22059 insn |= addend_abs;
5f4273c7
NC
22060
22061 /* Update the instruction. */
4962c51a
MS
22062 md_number_to_chars (buf, insn, INSN_SIZE);
22063 }
22064 break;
22065
22066 case BFD_RELOC_ARM_LDRS_PC_G0:
22067 case BFD_RELOC_ARM_LDRS_PC_G1:
22068 case BFD_RELOC_ARM_LDRS_PC_G2:
22069 case BFD_RELOC_ARM_LDRS_SB_G0:
22070 case BFD_RELOC_ARM_LDRS_SB_G1:
22071 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 22072 gas_assert (!fixP->fx_done);
4962c51a
MS
22073 if (!seg->use_rela_p)
22074 {
22075 bfd_vma insn;
22076 bfd_vma addend_abs = abs (value);
22077
22078 /* Check that the absolute value of the addend can be
22079 encoded in 8 bits. */
22080 if (addend_abs >= 0x100)
22081 as_bad_where (fixP->fx_file, fixP->fx_line,
22082 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 22083 (unsigned long) addend_abs);
4962c51a
MS
22084
22085 /* Extract the instruction. */
22086 insn = md_chars_to_number (buf, INSN_SIZE);
22087
22088 /* If the addend is negative, clear bit 23 of the instruction.
22089 Otherwise set it. */
22090 if (value < 0)
22091 insn &= ~(1 << 23);
22092 else
22093 insn |= 1 << 23;
22094
22095 /* Place the first four bits of the absolute value of the addend
22096 into the first 4 bits of the instruction, and the remaining
22097 four into bits 8 .. 11. */
22098 insn &= 0xfffff0f0;
22099 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
22100
22101 /* Update the instruction. */
4962c51a
MS
22102 md_number_to_chars (buf, insn, INSN_SIZE);
22103 }
22104 break;
22105
22106 case BFD_RELOC_ARM_LDC_PC_G0:
22107 case BFD_RELOC_ARM_LDC_PC_G1:
22108 case BFD_RELOC_ARM_LDC_PC_G2:
22109 case BFD_RELOC_ARM_LDC_SB_G0:
22110 case BFD_RELOC_ARM_LDC_SB_G1:
22111 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 22112 gas_assert (!fixP->fx_done);
4962c51a
MS
22113 if (!seg->use_rela_p)
22114 {
22115 bfd_vma insn;
22116 bfd_vma addend_abs = abs (value);
22117
22118 /* Check that the absolute value of the addend is a multiple of
22119 four and, when divided by four, fits in 8 bits. */
22120 if (addend_abs & 0x3)
22121 as_bad_where (fixP->fx_file, fixP->fx_line,
22122 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 22123 (unsigned long) addend_abs);
4962c51a
MS
22124
22125 if ((addend_abs >> 2) > 0xff)
22126 as_bad_where (fixP->fx_file, fixP->fx_line,
22127 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 22128 (unsigned long) addend_abs);
4962c51a
MS
22129
22130 /* Extract the instruction. */
22131 insn = md_chars_to_number (buf, INSN_SIZE);
22132
22133 /* If the addend is negative, clear bit 23 of the instruction.
22134 Otherwise set it. */
22135 if (value < 0)
22136 insn &= ~(1 << 23);
22137 else
22138 insn |= 1 << 23;
22139
22140 /* Place the addend (divided by four) into the first eight
22141 bits of the instruction. */
22142 insn &= 0xfffffff0;
22143 insn |= addend_abs >> 2;
5f4273c7
NC
22144
22145 /* Update the instruction. */
4962c51a
MS
22146 md_number_to_chars (buf, insn, INSN_SIZE);
22147 }
22148 break;
22149
845b51d6
PB
22150 case BFD_RELOC_ARM_V4BX:
22151 /* This will need to go in the object file. */
22152 fixP->fx_done = 0;
22153 break;
22154
c19d1205
ZW
22155 case BFD_RELOC_UNUSED:
22156 default:
22157 as_bad_where (fixP->fx_file, fixP->fx_line,
22158 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22159 }
6c43fab6
RE
22160}
22161
c19d1205
ZW
22162/* Translate internal representation of relocation info to BFD target
22163 format. */
a737bd4d 22164
c19d1205 22165arelent *
00a97672 22166tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 22167{
c19d1205
ZW
22168 arelent * reloc;
22169 bfd_reloc_code_real_type code;
a737bd4d 22170
21d799b5 22171 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 22172
21d799b5 22173 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
22174 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22175 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 22176
2fc8bdac 22177 if (fixp->fx_pcrel)
00a97672
RS
22178 {
22179 if (section->use_rela_p)
22180 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22181 else
22182 fixp->fx_offset = reloc->address;
22183 }
c19d1205 22184 reloc->addend = fixp->fx_offset;
a737bd4d 22185
c19d1205 22186 switch (fixp->fx_r_type)
a737bd4d 22187 {
c19d1205
ZW
22188 case BFD_RELOC_8:
22189 if (fixp->fx_pcrel)
22190 {
22191 code = BFD_RELOC_8_PCREL;
22192 break;
22193 }
a737bd4d 22194
c19d1205
ZW
22195 case BFD_RELOC_16:
22196 if (fixp->fx_pcrel)
22197 {
22198 code = BFD_RELOC_16_PCREL;
22199 break;
22200 }
6c43fab6 22201
c19d1205
ZW
22202 case BFD_RELOC_32:
22203 if (fixp->fx_pcrel)
22204 {
22205 code = BFD_RELOC_32_PCREL;
22206 break;
22207 }
a737bd4d 22208
b6895b4f
PB
22209 case BFD_RELOC_ARM_MOVW:
22210 if (fixp->fx_pcrel)
22211 {
22212 code = BFD_RELOC_ARM_MOVW_PCREL;
22213 break;
22214 }
22215
22216 case BFD_RELOC_ARM_MOVT:
22217 if (fixp->fx_pcrel)
22218 {
22219 code = BFD_RELOC_ARM_MOVT_PCREL;
22220 break;
22221 }
22222
22223 case BFD_RELOC_ARM_THUMB_MOVW:
22224 if (fixp->fx_pcrel)
22225 {
22226 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22227 break;
22228 }
22229
22230 case BFD_RELOC_ARM_THUMB_MOVT:
22231 if (fixp->fx_pcrel)
22232 {
22233 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22234 break;
22235 }
22236
c19d1205
ZW
22237 case BFD_RELOC_NONE:
22238 case BFD_RELOC_ARM_PCREL_BRANCH:
22239 case BFD_RELOC_ARM_PCREL_BLX:
22240 case BFD_RELOC_RVA:
22241 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22242 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22243 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22244 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22245 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22246 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
22247 case BFD_RELOC_VTABLE_ENTRY:
22248 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
22249#ifdef TE_PE
22250 case BFD_RELOC_32_SECREL:
22251#endif
c19d1205
ZW
22252 code = fixp->fx_r_type;
22253 break;
a737bd4d 22254
00adf2d4
JB
22255 case BFD_RELOC_THUMB_PCREL_BLX:
22256#ifdef OBJ_ELF
22257 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22258 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22259 else
22260#endif
22261 code = BFD_RELOC_THUMB_PCREL_BLX;
22262 break;
22263
c19d1205
ZW
22264 case BFD_RELOC_ARM_LITERAL:
22265 case BFD_RELOC_ARM_HWLITERAL:
22266 /* If this is called then the a literal has
22267 been referenced across a section boundary. */
22268 as_bad_where (fixp->fx_file, fixp->fx_line,
22269 _("literal referenced across section boundary"));
22270 return NULL;
a737bd4d 22271
c19d1205 22272#ifdef OBJ_ELF
0855e32b
NS
22273 case BFD_RELOC_ARM_TLS_CALL:
22274 case BFD_RELOC_ARM_THM_TLS_CALL:
22275 case BFD_RELOC_ARM_TLS_DESCSEQ:
22276 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
22277 case BFD_RELOC_ARM_GOT32:
22278 case BFD_RELOC_ARM_GOTOFF:
b43420e6 22279 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
22280 case BFD_RELOC_ARM_PLT32:
22281 case BFD_RELOC_ARM_TARGET1:
22282 case BFD_RELOC_ARM_ROSEGREL32:
22283 case BFD_RELOC_ARM_SBREL32:
22284 case BFD_RELOC_ARM_PREL31:
22285 case BFD_RELOC_ARM_TARGET2:
22286 case BFD_RELOC_ARM_TLS_LE32:
22287 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
22288 case BFD_RELOC_ARM_PCREL_CALL:
22289 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
22290 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22291 case BFD_RELOC_ARM_ALU_PC_G0:
22292 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22293 case BFD_RELOC_ARM_ALU_PC_G1:
22294 case BFD_RELOC_ARM_ALU_PC_G2:
22295 case BFD_RELOC_ARM_LDR_PC_G0:
22296 case BFD_RELOC_ARM_LDR_PC_G1:
22297 case BFD_RELOC_ARM_LDR_PC_G2:
22298 case BFD_RELOC_ARM_LDRS_PC_G0:
22299 case BFD_RELOC_ARM_LDRS_PC_G1:
22300 case BFD_RELOC_ARM_LDRS_PC_G2:
22301 case BFD_RELOC_ARM_LDC_PC_G0:
22302 case BFD_RELOC_ARM_LDC_PC_G1:
22303 case BFD_RELOC_ARM_LDC_PC_G2:
22304 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22305 case BFD_RELOC_ARM_ALU_SB_G0:
22306 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22307 case BFD_RELOC_ARM_ALU_SB_G1:
22308 case BFD_RELOC_ARM_ALU_SB_G2:
22309 case BFD_RELOC_ARM_LDR_SB_G0:
22310 case BFD_RELOC_ARM_LDR_SB_G1:
22311 case BFD_RELOC_ARM_LDR_SB_G2:
22312 case BFD_RELOC_ARM_LDRS_SB_G0:
22313 case BFD_RELOC_ARM_LDRS_SB_G1:
22314 case BFD_RELOC_ARM_LDRS_SB_G2:
22315 case BFD_RELOC_ARM_LDC_SB_G0:
22316 case BFD_RELOC_ARM_LDC_SB_G1:
22317 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 22318 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
22319 code = fixp->fx_r_type;
22320 break;
a737bd4d 22321
0855e32b 22322 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22323 case BFD_RELOC_ARM_TLS_GD32:
22324 case BFD_RELOC_ARM_TLS_IE32:
22325 case BFD_RELOC_ARM_TLS_LDM32:
22326 /* BFD will include the symbol's address in the addend.
22327 But we don't want that, so subtract it out again here. */
22328 if (!S_IS_COMMON (fixp->fx_addsy))
22329 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22330 code = fixp->fx_r_type;
22331 break;
22332#endif
a737bd4d 22333
c19d1205
ZW
22334 case BFD_RELOC_ARM_IMMEDIATE:
22335 as_bad_where (fixp->fx_file, fixp->fx_line,
22336 _("internal relocation (type: IMMEDIATE) not fixed up"));
22337 return NULL;
a737bd4d 22338
c19d1205
ZW
22339 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22340 as_bad_where (fixp->fx_file, fixp->fx_line,
22341 _("ADRL used for a symbol not defined in the same file"));
22342 return NULL;
a737bd4d 22343
c19d1205 22344 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
22345 if (section->use_rela_p)
22346 {
22347 code = fixp->fx_r_type;
22348 break;
22349 }
22350
c19d1205
ZW
22351 if (fixp->fx_addsy != NULL
22352 && !S_IS_DEFINED (fixp->fx_addsy)
22353 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 22354 {
c19d1205
ZW
22355 as_bad_where (fixp->fx_file, fixp->fx_line,
22356 _("undefined local label `%s'"),
22357 S_GET_NAME (fixp->fx_addsy));
22358 return NULL;
a737bd4d
NC
22359 }
22360
c19d1205
ZW
22361 as_bad_where (fixp->fx_file, fixp->fx_line,
22362 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22363 return NULL;
a737bd4d 22364
c19d1205
ZW
22365 default:
22366 {
22367 char * type;
6c43fab6 22368
c19d1205
ZW
22369 switch (fixp->fx_r_type)
22370 {
22371 case BFD_RELOC_NONE: type = "NONE"; break;
22372 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22373 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 22374 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
22375 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22376 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22377 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 22378 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 22379 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
22380 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22381 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22382 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22383 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22384 default: type = _("<unknown>"); break;
22385 }
22386 as_bad_where (fixp->fx_file, fixp->fx_line,
22387 _("cannot represent %s relocation in this object file format"),
22388 type);
22389 return NULL;
22390 }
a737bd4d 22391 }
6c43fab6 22392
c19d1205
ZW
22393#ifdef OBJ_ELF
22394 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22395 && GOT_symbol
22396 && fixp->fx_addsy == GOT_symbol)
22397 {
22398 code = BFD_RELOC_ARM_GOTPC;
22399 reloc->addend = fixp->fx_offset = reloc->address;
22400 }
22401#endif
6c43fab6 22402
c19d1205 22403 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 22404
c19d1205
ZW
22405 if (reloc->howto == NULL)
22406 {
22407 as_bad_where (fixp->fx_file, fixp->fx_line,
22408 _("cannot represent %s relocation in this object file format"),
22409 bfd_get_reloc_code_name (code));
22410 return NULL;
22411 }
6c43fab6 22412
c19d1205
ZW
22413 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22414 vtable entry to be used in the relocation's section offset. */
22415 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22416 reloc->address = fixp->fx_offset;
6c43fab6 22417
c19d1205 22418 return reloc;
6c43fab6
RE
22419}
22420
c19d1205 22421/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 22422
c19d1205
ZW
22423void
22424cons_fix_new_arm (fragS * frag,
22425 int where,
22426 int size,
22427 expressionS * exp)
6c43fab6 22428{
c19d1205
ZW
22429 bfd_reloc_code_real_type type;
22430 int pcrel = 0;
6c43fab6 22431
c19d1205
ZW
22432 /* Pick a reloc.
22433 FIXME: @@ Should look at CPU word size. */
22434 switch (size)
22435 {
22436 case 1:
22437 type = BFD_RELOC_8;
22438 break;
22439 case 2:
22440 type = BFD_RELOC_16;
22441 break;
22442 case 4:
22443 default:
22444 type = BFD_RELOC_32;
22445 break;
22446 case 8:
22447 type = BFD_RELOC_64;
22448 break;
22449 }
6c43fab6 22450
f0927246
NC
22451#ifdef TE_PE
22452 if (exp->X_op == O_secrel)
22453 {
22454 exp->X_op = O_symbol;
22455 type = BFD_RELOC_32_SECREL;
22456 }
22457#endif
22458
c19d1205
ZW
22459 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22460}
6c43fab6 22461
4343666d 22462#if defined (OBJ_COFF)
c19d1205
ZW
22463void
22464arm_validate_fix (fixS * fixP)
6c43fab6 22465{
c19d1205
ZW
22466 /* If the destination of the branch is a defined symbol which does not have
22467 the THUMB_FUNC attribute, then we must be calling a function which has
22468 the (interfacearm) attribute. We look for the Thumb entry point to that
22469 function and change the branch to refer to that function instead. */
22470 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22471 && fixP->fx_addsy != NULL
22472 && S_IS_DEFINED (fixP->fx_addsy)
22473 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22474 {
c19d1205 22475 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22476 }
c19d1205
ZW
22477}
22478#endif
6c43fab6 22479
267bf995 22480
c19d1205
ZW
22481int
22482arm_force_relocation (struct fix * fixp)
22483{
22484#if defined (OBJ_COFF) && defined (TE_PE)
22485 if (fixp->fx_r_type == BFD_RELOC_RVA)
22486 return 1;
22487#endif
6c43fab6 22488
267bf995
RR
22489 /* In case we have a call or a branch to a function in ARM ISA mode from
22490 a thumb function or vice-versa force the relocation. These relocations
22491 are cleared off for some cores that might have blx and simple transformations
22492 are possible. */
22493
22494#ifdef OBJ_ELF
22495 switch (fixp->fx_r_type)
22496 {
22497 case BFD_RELOC_ARM_PCREL_JUMP:
22498 case BFD_RELOC_ARM_PCREL_CALL:
22499 case BFD_RELOC_THUMB_PCREL_BLX:
22500 if (THUMB_IS_FUNC (fixp->fx_addsy))
22501 return 1;
22502 break;
22503
22504 case BFD_RELOC_ARM_PCREL_BLX:
22505 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22506 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22507 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22508 if (ARM_IS_FUNC (fixp->fx_addsy))
22509 return 1;
22510 break;
22511
22512 default:
22513 break;
22514 }
22515#endif
22516
b5884301
PB
22517 /* Resolve these relocations even if the symbol is extern or weak.
22518 Technically this is probably wrong due to symbol preemption.
22519 In practice these relocations do not have enough range to be useful
22520 at dynamic link time, and some code (e.g. in the Linux kernel)
22521 expects these references to be resolved. */
c19d1205
ZW
22522 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22523 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22524 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22525 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22526 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22527 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22528 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22529 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22530 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22531 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22532 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22533 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22534 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22535 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22536 return 0;
a737bd4d 22537
4962c51a
MS
22538 /* Always leave these relocations for the linker. */
22539 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22540 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22541 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22542 return 1;
22543
f0291e4c
PB
22544 /* Always generate relocations against function symbols. */
22545 if (fixp->fx_r_type == BFD_RELOC_32
22546 && fixp->fx_addsy
22547 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22548 return 1;
22549
c19d1205 22550 return generic_force_reloc (fixp);
404ff6b5
AH
22551}
22552
0ffdc86c 22553#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22554/* Relocations against function names must be left unadjusted,
22555 so that the linker can use this information to generate interworking
22556 stubs. The MIPS version of this function
c19d1205
ZW
22557 also prevents relocations that are mips-16 specific, but I do not
22558 know why it does this.
404ff6b5 22559
c19d1205
ZW
22560 FIXME:
22561 There is one other problem that ought to be addressed here, but
22562 which currently is not: Taking the address of a label (rather
22563 than a function) and then later jumping to that address. Such
22564 addresses also ought to have their bottom bit set (assuming that
22565 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22566
c19d1205
ZW
22567bfd_boolean
22568arm_fix_adjustable (fixS * fixP)
404ff6b5 22569{
c19d1205
ZW
22570 if (fixP->fx_addsy == NULL)
22571 return 1;
404ff6b5 22572
e28387c3
PB
22573 /* Preserve relocations against symbols with function type. */
22574 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22575 return FALSE;
e28387c3 22576
c19d1205
ZW
22577 if (THUMB_IS_FUNC (fixP->fx_addsy)
22578 && fixP->fx_subsy == NULL)
c921be7d 22579 return FALSE;
a737bd4d 22580
c19d1205
ZW
22581 /* We need the symbol name for the VTABLE entries. */
22582 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22583 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22584 return FALSE;
404ff6b5 22585
c19d1205
ZW
22586 /* Don't allow symbols to be discarded on GOT related relocs. */
22587 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22588 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22589 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22590 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22591 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22592 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22593 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22594 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22595 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22596 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22597 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22598 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22599 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22600 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22601 return FALSE;
a737bd4d 22602
4962c51a
MS
22603 /* Similarly for group relocations. */
22604 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22605 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22606 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22607 return FALSE;
4962c51a 22608
79947c54
CD
22609 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22610 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22611 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22612 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22613 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22614 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22615 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22616 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22617 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22618 return FALSE;
79947c54 22619
c921be7d 22620 return TRUE;
a737bd4d 22621}
0ffdc86c
NC
22622#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22623
22624#ifdef OBJ_ELF
404ff6b5 22625
c19d1205
ZW
22626const char *
22627elf32_arm_target_format (void)
404ff6b5 22628{
c19d1205
ZW
22629#ifdef TE_SYMBIAN
22630 return (target_big_endian
22631 ? "elf32-bigarm-symbian"
22632 : "elf32-littlearm-symbian");
22633#elif defined (TE_VXWORKS)
22634 return (target_big_endian
22635 ? "elf32-bigarm-vxworks"
22636 : "elf32-littlearm-vxworks");
b38cadfb
NC
22637#elif defined (TE_NACL)
22638 return (target_big_endian
22639 ? "elf32-bigarm-nacl"
22640 : "elf32-littlearm-nacl");
c19d1205
ZW
22641#else
22642 if (target_big_endian)
22643 return "elf32-bigarm";
22644 else
22645 return "elf32-littlearm";
22646#endif
404ff6b5
AH
22647}
22648
c19d1205
ZW
22649void
22650armelf_frob_symbol (symbolS * symp,
22651 int * puntp)
404ff6b5 22652{
c19d1205
ZW
22653 elf_frob_symbol (symp, puntp);
22654}
22655#endif
404ff6b5 22656
c19d1205 22657/* MD interface: Finalization. */
a737bd4d 22658
c19d1205
ZW
22659void
22660arm_cleanup (void)
22661{
22662 literal_pool * pool;
a737bd4d 22663
e07e6e58
NC
22664 /* Ensure that all the IT blocks are properly closed. */
22665 check_it_blocks_finished ();
22666
c19d1205
ZW
22667 for (pool = list_of_pools; pool; pool = pool->next)
22668 {
5f4273c7 22669 /* Put it at the end of the relevant section. */
c19d1205
ZW
22670 subseg_set (pool->section, pool->sub_section);
22671#ifdef OBJ_ELF
22672 arm_elf_change_section ();
22673#endif
22674 s_ltorg (0);
22675 }
404ff6b5
AH
22676}
22677
cd000bff
DJ
22678#ifdef OBJ_ELF
22679/* Remove any excess mapping symbols generated for alignment frags in
22680 SEC. We may have created a mapping symbol before a zero byte
22681 alignment; remove it if there's a mapping symbol after the
22682 alignment. */
22683static void
22684check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22685 void *dummy ATTRIBUTE_UNUSED)
22686{
22687 segment_info_type *seginfo = seg_info (sec);
22688 fragS *fragp;
22689
22690 if (seginfo == NULL || seginfo->frchainP == NULL)
22691 return;
22692
22693 for (fragp = seginfo->frchainP->frch_root;
22694 fragp != NULL;
22695 fragp = fragp->fr_next)
22696 {
22697 symbolS *sym = fragp->tc_frag_data.last_map;
22698 fragS *next = fragp->fr_next;
22699
22700 /* Variable-sized frags have been converted to fixed size by
22701 this point. But if this was variable-sized to start with,
22702 there will be a fixed-size frag after it. So don't handle
22703 next == NULL. */
22704 if (sym == NULL || next == NULL)
22705 continue;
22706
22707 if (S_GET_VALUE (sym) < next->fr_address)
22708 /* Not at the end of this frag. */
22709 continue;
22710 know (S_GET_VALUE (sym) == next->fr_address);
22711
22712 do
22713 {
22714 if (next->tc_frag_data.first_map != NULL)
22715 {
22716 /* Next frag starts with a mapping symbol. Discard this
22717 one. */
22718 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22719 break;
22720 }
22721
22722 if (next->fr_next == NULL)
22723 {
22724 /* This mapping symbol is at the end of the section. Discard
22725 it. */
22726 know (next->fr_fix == 0 && next->fr_var == 0);
22727 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22728 break;
22729 }
22730
22731 /* As long as we have empty frags without any mapping symbols,
22732 keep looking. */
22733 /* If the next frag is non-empty and does not start with a
22734 mapping symbol, then this mapping symbol is required. */
22735 if (next->fr_address != next->fr_next->fr_address)
22736 break;
22737
22738 next = next->fr_next;
22739 }
22740 while (next != NULL);
22741 }
22742}
22743#endif
22744
c19d1205
ZW
22745/* Adjust the symbol table. This marks Thumb symbols as distinct from
22746 ARM ones. */
404ff6b5 22747
c19d1205
ZW
22748void
22749arm_adjust_symtab (void)
404ff6b5 22750{
c19d1205
ZW
22751#ifdef OBJ_COFF
22752 symbolS * sym;
404ff6b5 22753
c19d1205
ZW
22754 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22755 {
22756 if (ARM_IS_THUMB (sym))
22757 {
22758 if (THUMB_IS_FUNC (sym))
22759 {
22760 /* Mark the symbol as a Thumb function. */
22761 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22762 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22763 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22764
c19d1205
ZW
22765 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22766 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22767 else
22768 as_bad (_("%s: unexpected function type: %d"),
22769 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22770 }
22771 else switch (S_GET_STORAGE_CLASS (sym))
22772 {
22773 case C_EXT:
22774 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22775 break;
22776 case C_STAT:
22777 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22778 break;
22779 case C_LABEL:
22780 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22781 break;
22782 default:
22783 /* Do nothing. */
22784 break;
22785 }
22786 }
a737bd4d 22787
c19d1205
ZW
22788 if (ARM_IS_INTERWORK (sym))
22789 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22790 }
c19d1205
ZW
22791#endif
22792#ifdef OBJ_ELF
22793 symbolS * sym;
22794 char bind;
404ff6b5 22795
c19d1205 22796 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22797 {
c19d1205
ZW
22798 if (ARM_IS_THUMB (sym))
22799 {
22800 elf_symbol_type * elf_sym;
404ff6b5 22801
c19d1205
ZW
22802 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22803 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22804
b0796911
PB
22805 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22806 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22807 {
22808 /* If it's a .thumb_func, declare it as so,
22809 otherwise tag label as .code 16. */
22810 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22811 elf_sym->internal_elf_sym.st_target_internal
22812 = ST_BRANCH_TO_THUMB;
3ba67470 22813 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22814 elf_sym->internal_elf_sym.st_info =
22815 ELF_ST_INFO (bind, STT_ARM_16BIT);
22816 }
22817 }
22818 }
cd000bff
DJ
22819
22820 /* Remove any overlapping mapping symbols generated by alignment frags. */
22821 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22822 /* Now do generic ELF adjustments. */
22823 elf_adjust_symtab ();
c19d1205 22824#endif
404ff6b5
AH
22825}
22826
c19d1205 22827/* MD interface: Initialization. */
404ff6b5 22828
a737bd4d 22829static void
c19d1205 22830set_constant_flonums (void)
a737bd4d 22831{
c19d1205 22832 int i;
404ff6b5 22833
c19d1205
ZW
22834 for (i = 0; i < NUM_FLOAT_VALS; i++)
22835 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22836 abort ();
a737bd4d 22837}
404ff6b5 22838
3e9e4fcf
JB
22839/* Auto-select Thumb mode if it's the only available instruction set for the
22840 given architecture. */
22841
22842static void
22843autoselect_thumb_from_cpu_variant (void)
22844{
22845 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22846 opcode_select (16);
22847}
22848
c19d1205
ZW
22849void
22850md_begin (void)
a737bd4d 22851{
c19d1205
ZW
22852 unsigned mach;
22853 unsigned int i;
404ff6b5 22854
c19d1205
ZW
22855 if ( (arm_ops_hsh = hash_new ()) == NULL
22856 || (arm_cond_hsh = hash_new ()) == NULL
22857 || (arm_shift_hsh = hash_new ()) == NULL
22858 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22859 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22860 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22861 || (arm_reloc_hsh = hash_new ()) == NULL
22862 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22863 as_fatal (_("virtual memory exhausted"));
22864
22865 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22866 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22867 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22868 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22869 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22870 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22871 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22872 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22873 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22874 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22875 (void *) (v7m_psrs + i));
c19d1205 22876 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22877 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22878 for (i = 0;
22879 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22880 i++)
d3ce72d0 22881 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22882 (void *) (barrier_opt_names + i));
c19d1205 22883#ifdef OBJ_ELF
3da1d841
NC
22884 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22885 {
22886 struct reloc_entry * entry = reloc_names + i;
22887
22888 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22889 /* This makes encode_branch() use the EABI versions of this relocation. */
22890 entry->reloc = BFD_RELOC_UNUSED;
22891
22892 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22893 }
c19d1205
ZW
22894#endif
22895
22896 set_constant_flonums ();
404ff6b5 22897
c19d1205
ZW
22898 /* Set the cpu variant based on the command-line options. We prefer
22899 -mcpu= over -march= if both are set (as for GCC); and we prefer
22900 -mfpu= over any other way of setting the floating point unit.
22901 Use of legacy options with new options are faulted. */
e74cfd16 22902 if (legacy_cpu)
404ff6b5 22903 {
e74cfd16 22904 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22905 as_bad (_("use of old and new-style options to set CPU type"));
22906
22907 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22908 }
e74cfd16 22909 else if (!mcpu_cpu_opt)
c19d1205 22910 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22911
e74cfd16 22912 if (legacy_fpu)
c19d1205 22913 {
e74cfd16 22914 if (mfpu_opt)
c19d1205 22915 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22916
22917 mfpu_opt = legacy_fpu;
22918 }
e74cfd16 22919 else if (!mfpu_opt)
03b1477f 22920 {
45eb4c1b
NS
22921#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22922 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22923 /* Some environments specify a default FPU. If they don't, infer it
22924 from the processor. */
e74cfd16 22925 if (mcpu_fpu_opt)
03b1477f
RE
22926 mfpu_opt = mcpu_fpu_opt;
22927 else
22928 mfpu_opt = march_fpu_opt;
39c2da32 22929#else
e74cfd16 22930 mfpu_opt = &fpu_default;
39c2da32 22931#endif
03b1477f
RE
22932 }
22933
e74cfd16 22934 if (!mfpu_opt)
03b1477f 22935 {
493cb6ef 22936 if (mcpu_cpu_opt != NULL)
e74cfd16 22937 mfpu_opt = &fpu_default;
493cb6ef 22938 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22939 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22940 else
e74cfd16 22941 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22942 }
22943
ee065d83 22944#ifdef CPU_DEFAULT
e74cfd16 22945 if (!mcpu_cpu_opt)
ee065d83 22946 {
e74cfd16
PB
22947 mcpu_cpu_opt = &cpu_default;
22948 selected_cpu = cpu_default;
ee065d83 22949 }
e74cfd16
PB
22950#else
22951 if (mcpu_cpu_opt)
22952 selected_cpu = *mcpu_cpu_opt;
ee065d83 22953 else
e74cfd16 22954 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22955#endif
03b1477f 22956
e74cfd16 22957 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22958
3e9e4fcf
JB
22959 autoselect_thumb_from_cpu_variant ();
22960
e74cfd16 22961 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22962
f17c130b 22963#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22964 {
7cc69913
NC
22965 unsigned int flags = 0;
22966
22967#if defined OBJ_ELF
22968 flags = meabi_flags;
d507cf36
PB
22969
22970 switch (meabi_flags)
33a392fb 22971 {
d507cf36 22972 case EF_ARM_EABI_UNKNOWN:
7cc69913 22973#endif
d507cf36
PB
22974 /* Set the flags in the private structure. */
22975 if (uses_apcs_26) flags |= F_APCS26;
22976 if (support_interwork) flags |= F_INTERWORK;
22977 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22978 if (pic_code) flags |= F_PIC;
e74cfd16 22979 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22980 flags |= F_SOFT_FLOAT;
22981
d507cf36
PB
22982 switch (mfloat_abi_opt)
22983 {
22984 case ARM_FLOAT_ABI_SOFT:
22985 case ARM_FLOAT_ABI_SOFTFP:
22986 flags |= F_SOFT_FLOAT;
22987 break;
33a392fb 22988
d507cf36
PB
22989 case ARM_FLOAT_ABI_HARD:
22990 if (flags & F_SOFT_FLOAT)
22991 as_bad (_("hard-float conflicts with specified fpu"));
22992 break;
22993 }
03b1477f 22994
e74cfd16
PB
22995 /* Using pure-endian doubles (even if soft-float). */
22996 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22997 flags |= F_VFP_FLOAT;
f17c130b 22998
fde78edd 22999#if defined OBJ_ELF
e74cfd16 23000 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 23001 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
23002 break;
23003
8cb51566 23004 case EF_ARM_EABI_VER4:
3a4a14e9 23005 case EF_ARM_EABI_VER5:
c19d1205 23006 /* No additional flags to set. */
d507cf36
PB
23007 break;
23008
23009 default:
23010 abort ();
23011 }
7cc69913 23012#endif
b99bd4ef
NC
23013 bfd_set_private_flags (stdoutput, flags);
23014
23015 /* We have run out flags in the COFF header to encode the
23016 status of ATPCS support, so instead we create a dummy,
c19d1205 23017 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
23018 if (atpcs)
23019 {
23020 asection * sec;
23021
23022 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23023
23024 if (sec != NULL)
23025 {
23026 bfd_set_section_flags
23027 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23028 bfd_set_section_size (stdoutput, sec, 0);
23029 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23030 }
23031 }
7cc69913 23032 }
f17c130b 23033#endif
b99bd4ef
NC
23034
23035 /* Record the CPU type as well. */
2d447fca
JM
23036 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23037 mach = bfd_mach_arm_iWMMXt2;
23038 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 23039 mach = bfd_mach_arm_iWMMXt;
e74cfd16 23040 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 23041 mach = bfd_mach_arm_XScale;
e74cfd16 23042 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 23043 mach = bfd_mach_arm_ep9312;
e74cfd16 23044 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 23045 mach = bfd_mach_arm_5TE;
e74cfd16 23046 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 23047 {
e74cfd16 23048 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23049 mach = bfd_mach_arm_5T;
23050 else
23051 mach = bfd_mach_arm_5;
23052 }
e74cfd16 23053 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 23054 {
e74cfd16 23055 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23056 mach = bfd_mach_arm_4T;
23057 else
23058 mach = bfd_mach_arm_4;
23059 }
e74cfd16 23060 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 23061 mach = bfd_mach_arm_3M;
e74cfd16
PB
23062 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23063 mach = bfd_mach_arm_3;
23064 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23065 mach = bfd_mach_arm_2a;
23066 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23067 mach = bfd_mach_arm_2;
23068 else
23069 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
23070
23071 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23072}
23073
c19d1205 23074/* Command line processing. */
b99bd4ef 23075
c19d1205
ZW
23076/* md_parse_option
23077 Invocation line includes a switch not recognized by the base assembler.
23078 See if it's a processor-specific option.
b99bd4ef 23079
c19d1205
ZW
23080 This routine is somewhat complicated by the need for backwards
23081 compatibility (since older releases of gcc can't be changed).
23082 The new options try to make the interface as compatible as
23083 possible with GCC.
b99bd4ef 23084
c19d1205 23085 New options (supported) are:
b99bd4ef 23086
c19d1205
ZW
23087 -mcpu=<cpu name> Assemble for selected processor
23088 -march=<architecture name> Assemble for selected architecture
23089 -mfpu=<fpu architecture> Assemble for selected FPU.
23090 -EB/-mbig-endian Big-endian
23091 -EL/-mlittle-endian Little-endian
23092 -k Generate PIC code
23093 -mthumb Start in Thumb mode
23094 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 23095
278df34e 23096 -m[no-]warn-deprecated Warn about deprecated features
267bf995 23097
c19d1205 23098 For now we will also provide support for:
b99bd4ef 23099
c19d1205
ZW
23100 -mapcs-32 32-bit Program counter
23101 -mapcs-26 26-bit Program counter
23102 -macps-float Floats passed in FP registers
23103 -mapcs-reentrant Reentrant code
23104 -matpcs
23105 (sometime these will probably be replaced with -mapcs=<list of options>
23106 and -matpcs=<list of options>)
b99bd4ef 23107
c19d1205
ZW
23108 The remaining options are only supported for back-wards compatibility.
23109 Cpu variants, the arm part is optional:
23110 -m[arm]1 Currently not supported.
23111 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23112 -m[arm]3 Arm 3 processor
23113 -m[arm]6[xx], Arm 6 processors
23114 -m[arm]7[xx][t][[d]m] Arm 7 processors
23115 -m[arm]8[10] Arm 8 processors
23116 -m[arm]9[20][tdmi] Arm 9 processors
23117 -mstrongarm[110[0]] StrongARM processors
23118 -mxscale XScale processors
23119 -m[arm]v[2345[t[e]]] Arm architectures
23120 -mall All (except the ARM1)
23121 FP variants:
23122 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23123 -mfpe-old (No float load/store multiples)
23124 -mvfpxd VFP Single precision
23125 -mvfp All VFP
23126 -mno-fpu Disable all floating point instructions
b99bd4ef 23127
c19d1205
ZW
23128 The following CPU names are recognized:
23129 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23130 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23131 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23132 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23133 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23134 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23135 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 23136
c19d1205 23137 */
b99bd4ef 23138
c19d1205 23139const char * md_shortopts = "m:k";
b99bd4ef 23140
c19d1205
ZW
23141#ifdef ARM_BI_ENDIAN
23142#define OPTION_EB (OPTION_MD_BASE + 0)
23143#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 23144#else
c19d1205
ZW
23145#if TARGET_BYTES_BIG_ENDIAN
23146#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 23147#else
c19d1205
ZW
23148#define OPTION_EL (OPTION_MD_BASE + 1)
23149#endif
b99bd4ef 23150#endif
845b51d6 23151#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 23152
c19d1205 23153struct option md_longopts[] =
b99bd4ef 23154{
c19d1205
ZW
23155#ifdef OPTION_EB
23156 {"EB", no_argument, NULL, OPTION_EB},
23157#endif
23158#ifdef OPTION_EL
23159 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 23160#endif
845b51d6 23161 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
23162 {NULL, no_argument, NULL, 0}
23163};
b99bd4ef 23164
c19d1205 23165size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 23166
c19d1205 23167struct arm_option_table
b99bd4ef 23168{
c19d1205
ZW
23169 char *option; /* Option name to match. */
23170 char *help; /* Help information. */
23171 int *var; /* Variable to change. */
23172 int value; /* What to change it to. */
23173 char *deprecated; /* If non-null, print this message. */
23174};
b99bd4ef 23175
c19d1205
ZW
23176struct arm_option_table arm_opts[] =
23177{
23178 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23179 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23180 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23181 &support_interwork, 1, NULL},
23182 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23183 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23184 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23185 1, NULL},
23186 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23187 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23188 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23189 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23190 NULL},
b99bd4ef 23191
c19d1205
ZW
23192 /* These are recognized by the assembler, but have no affect on code. */
23193 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23194 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
23195
23196 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23197 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23198 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
23199 {NULL, NULL, NULL, 0, NULL}
23200};
23201
23202struct arm_legacy_option_table
23203{
23204 char *option; /* Option name to match. */
23205 const arm_feature_set **var; /* Variable to change. */
23206 const arm_feature_set value; /* What to change it to. */
23207 char *deprecated; /* If non-null, print this message. */
23208};
b99bd4ef 23209
e74cfd16
PB
23210const struct arm_legacy_option_table arm_legacy_opts[] =
23211{
c19d1205
ZW
23212 /* DON'T add any new processors to this list -- we want the whole list
23213 to go away... Add them to the processors table instead. */
e74cfd16
PB
23214 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23215 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23216 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23217 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23218 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23219 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23220 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23221 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23222 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23223 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23224 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23225 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23226 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23227 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23228 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23229 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23230 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23231 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23232 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23233 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23234 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23235 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23236 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23237 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23238 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23239 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23240 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23241 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23242 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23243 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23244 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23245 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23246 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23247 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23248 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23249 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23250 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23251 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23252 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23253 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23254 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23255 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23256 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23257 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23258 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23259 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23260 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23261 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23262 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23263 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23264 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23265 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23266 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23267 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23268 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23269 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23270 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23271 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23272 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23273 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23274 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23275 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23276 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23277 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23278 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23279 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23280 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23281 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23282 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23283 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23284 N_("use -mcpu=strongarm110")},
e74cfd16 23285 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23286 N_("use -mcpu=strongarm1100")},
e74cfd16 23287 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23288 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
23289 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23290 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23291 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 23292
c19d1205 23293 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
23294 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23295 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23296 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23297 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23298 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23299 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23300 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23301 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23302 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23303 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23304 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23305 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23306 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23307 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23308 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23309 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23310 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23311 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 23312
c19d1205 23313 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
23314 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23315 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23316 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23317 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 23318 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 23319
e74cfd16 23320 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 23321};
7ed4c4c5 23322
c19d1205 23323struct arm_cpu_option_table
7ed4c4c5 23324{
c19d1205 23325 char *name;
f3bad469 23326 size_t name_len;
e74cfd16 23327 const arm_feature_set value;
c19d1205
ZW
23328 /* For some CPUs we assume an FPU unless the user explicitly sets
23329 -mfpu=... */
e74cfd16 23330 const arm_feature_set default_fpu;
ee065d83
PB
23331 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23332 case. */
23333 const char *canonical_name;
c19d1205 23334};
7ed4c4c5 23335
c19d1205
ZW
23336/* This list should, at a minimum, contain all the cpu names
23337 recognized by GCC. */
f3bad469 23338#define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
e74cfd16 23339static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 23340{
f3bad469
MGD
23341 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23342 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23343 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23344 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23345 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23346 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23347 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23348 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23349 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23350 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23351 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23352 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23353 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23354 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23355 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23356 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23357 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23358 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23359 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23360 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23361 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23362 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23363 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23364 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23365 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23366 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23367 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23368 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23369 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23370 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23371 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23372 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23373 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23374 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23375 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23376 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23377 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23378 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23379 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23380 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23381 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23382 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23383 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23384 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23385 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23386 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
c19d1205
ZW
23387 /* For V5 or later processors we default to using VFP; but the user
23388 should really set the FPU type explicitly. */
f3bad469
MGD
23389 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23390 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23391 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23392 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23393 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23394 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23395 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23396 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23397 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23398 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23399 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23400 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23401 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23402 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23403 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23404 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23405 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23406 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23407 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23408 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23409 "ARM1026EJ-S"),
23410 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23411 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23412 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23413 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23414 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23415 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23416 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23417 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23418 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23419 "ARM1136JF-S"),
23420 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23421 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23422 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23423 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23424 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23425 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23426 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23427 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23428 FPU_NONE, "Cortex-A5"),
23429 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23430 FPU_ARCH_NEON_VFP_V4,
23431 "Cortex-A7"),
23432 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23433 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 23434 | FPU_NEON_EXT_V1),
f3bad469
MGD
23435 "Cortex-A8"),
23436 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23437 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 23438 | FPU_NEON_EXT_V1),
f3bad469
MGD
23439 "Cortex-A9"),
23440 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23441 FPU_ARCH_NEON_VFP_V4,
23442 "Cortex-A15"),
23443 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23444 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23445 "Cortex-R4F"),
23446 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23447 FPU_NONE, "Cortex-R5"),
23448 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23449 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23450 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23451 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
ce32bd10 23452 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
c19d1205 23453 /* ??? XSCALE is really an architecture. */
f3bad469 23454 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23455 /* ??? iwmmxt is not a processor. */
f3bad469
MGD
23456 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23457 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23458 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23459 /* Maverick */
f3bad469
MGD
23460 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23461 FPU_ARCH_MAVERICK,
23462 "ARM920T"),
23463 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 23464};
f3bad469 23465#undef ARM_CPU_OPT
7ed4c4c5 23466
c19d1205 23467struct arm_arch_option_table
7ed4c4c5 23468{
c19d1205 23469 char *name;
f3bad469 23470 size_t name_len;
e74cfd16
PB
23471 const arm_feature_set value;
23472 const arm_feature_set default_fpu;
c19d1205 23473};
7ed4c4c5 23474
c19d1205
ZW
23475/* This list should, at a minimum, contain all the architecture names
23476 recognized by GCC. */
f3bad469 23477#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 23478static const struct arm_arch_option_table arm_archs[] =
c19d1205 23479{
f3bad469
MGD
23480 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23481 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23482 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23483 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23484 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23485 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23486 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23487 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23488 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23489 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23490 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23491 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23492 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23493 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23494 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23495 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23496 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23497 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23498 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23499 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23500 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23501 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23502 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23503 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23504 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23505 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23506 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23507 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23508 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
23509 /* The official spelling of the ARMv7 profile variants is the dashed form.
23510 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469
MGD
23511 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23512 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23513 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23514 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23515 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23516 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23517 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
bca38921 23518 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
f3bad469
MGD
23519 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23520 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23521 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23522 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 23523};
f3bad469 23524#undef ARM_ARCH_OPT
7ed4c4c5 23525
69133863
MGD
23526/* ISA extensions in the co-processor and main instruction set space. */
23527struct arm_option_extension_value_table
c19d1205
ZW
23528{
23529 char *name;
f3bad469 23530 size_t name_len;
e74cfd16 23531 const arm_feature_set value;
69133863 23532 const arm_feature_set allowed_archs;
c19d1205 23533};
7ed4c4c5 23534
69133863
MGD
23535/* The following table must be in alphabetical order with a NULL last entry.
23536 */
f3bad469 23537#define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
69133863 23538static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23539{
bca38921
MGD
23540 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23541 ARM_FEATURE (ARM_EXT_V8, 0)),
23542 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23543 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23544 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23545 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23546 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23547 ARM_EXT_OPT ("iwmmxt2",
23548 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23549 ARM_EXT_OPT ("maverick",
23550 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23551 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23552 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
bca38921
MGD
23553 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23554 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23555 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23556 ARM_FEATURE (ARM_EXT_V6M, 0)),
23557 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23558 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23559 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23560 | ARM_EXT_DIV, 0),
23561 ARM_FEATURE (ARM_EXT_V7A, 0)),
23562 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23563 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
69133863 23564};
f3bad469 23565#undef ARM_EXT_OPT
69133863
MGD
23566
23567/* ISA floating-point and Advanced SIMD extensions. */
23568struct arm_option_fpu_value_table
23569{
23570 char *name;
23571 const arm_feature_set value;
c19d1205 23572};
7ed4c4c5 23573
c19d1205
ZW
23574/* This list should, at a minimum, contain all the fpu names
23575 recognized by GCC. */
69133863 23576static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
23577{
23578 {"softfpa", FPU_NONE},
23579 {"fpe", FPU_ARCH_FPE},
23580 {"fpe2", FPU_ARCH_FPE},
23581 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23582 {"fpa", FPU_ARCH_FPA},
23583 {"fpa10", FPU_ARCH_FPA},
23584 {"fpa11", FPU_ARCH_FPA},
23585 {"arm7500fe", FPU_ARCH_FPA},
23586 {"softvfp", FPU_ARCH_VFP},
23587 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23588 {"vfp", FPU_ARCH_VFP_V2},
23589 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23590 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23591 {"vfp10", FPU_ARCH_VFP_V2},
23592 {"vfp10-r0", FPU_ARCH_VFP_V1},
23593 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23594 {"vfpv2", FPU_ARCH_VFP_V2},
23595 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23596 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23597 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23598 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23599 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23600 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23601 {"arm1020t", FPU_ARCH_VFP_V1},
23602 {"arm1020e", FPU_ARCH_VFP_V2},
23603 {"arm1136jfs", FPU_ARCH_VFP_V2},
23604 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23605 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23606 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23607 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23608 {"vfpv4", FPU_ARCH_VFP_V4},
23609 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23610 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23611 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
23612 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23613 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23614 {"crypto-neon-fp-armv8",
23615 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
e74cfd16
PB
23616 {NULL, ARM_ARCH_NONE}
23617};
23618
23619struct arm_option_value_table
23620{
23621 char *name;
23622 long value;
c19d1205 23623};
7ed4c4c5 23624
e74cfd16 23625static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23626{
23627 {"hard", ARM_FLOAT_ABI_HARD},
23628 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23629 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23630 {NULL, 0}
c19d1205 23631};
7ed4c4c5 23632
c19d1205 23633#ifdef OBJ_ELF
3a4a14e9 23634/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23635static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23636{
23637 {"gnu", EF_ARM_EABI_UNKNOWN},
23638 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23639 {"5", EF_ARM_EABI_VER5},
e74cfd16 23640 {NULL, 0}
c19d1205
ZW
23641};
23642#endif
7ed4c4c5 23643
c19d1205
ZW
23644struct arm_long_option_table
23645{
23646 char * option; /* Substring to match. */
23647 char * help; /* Help information. */
23648 int (* func) (char * subopt); /* Function to decode sub-option. */
23649 char * deprecated; /* If non-null, print this message. */
23650};
7ed4c4c5 23651
c921be7d 23652static bfd_boolean
f3bad469 23653arm_parse_extension (char *str, const arm_feature_set **opt_p)
7ed4c4c5 23654{
21d799b5
NC
23655 arm_feature_set *ext_set = (arm_feature_set *)
23656 xmalloc (sizeof (arm_feature_set));
e74cfd16 23657
69133863 23658 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
23659 extensions being added before being removed. We achieve this by having
23660 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 23661 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 23662 or removing it (0) and only allowing it to change in the order
69133863
MGD
23663 -1 -> 1 -> 0. */
23664 const struct arm_option_extension_value_table * opt = NULL;
23665 int adding_value = -1;
23666
e74cfd16
PB
23667 /* Copy the feature set, so that we can modify it. */
23668 *ext_set = **opt_p;
23669 *opt_p = ext_set;
23670
c19d1205 23671 while (str != NULL && *str != 0)
7ed4c4c5 23672 {
f3bad469
MGD
23673 char *ext;
23674 size_t len;
7ed4c4c5 23675
c19d1205
ZW
23676 if (*str != '+')
23677 {
23678 as_bad (_("invalid architectural extension"));
c921be7d 23679 return FALSE;
c19d1205 23680 }
7ed4c4c5 23681
c19d1205
ZW
23682 str++;
23683 ext = strchr (str, '+');
7ed4c4c5 23684
c19d1205 23685 if (ext != NULL)
f3bad469 23686 len = ext - str;
c19d1205 23687 else
f3bad469 23688 len = strlen (str);
7ed4c4c5 23689
f3bad469 23690 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
23691 {
23692 if (adding_value != 0)
23693 {
23694 adding_value = 0;
23695 opt = arm_extensions;
23696 }
23697
f3bad469 23698 len -= 2;
69133863
MGD
23699 str += 2;
23700 }
f3bad469 23701 else if (len > 0)
69133863
MGD
23702 {
23703 if (adding_value == -1)
23704 {
23705 adding_value = 1;
23706 opt = arm_extensions;
23707 }
23708 else if (adding_value != 1)
23709 {
23710 as_bad (_("must specify extensions to add before specifying "
23711 "those to remove"));
23712 return FALSE;
23713 }
23714 }
23715
f3bad469 23716 if (len == 0)
c19d1205
ZW
23717 {
23718 as_bad (_("missing architectural extension"));
c921be7d 23719 return FALSE;
c19d1205 23720 }
7ed4c4c5 23721
69133863
MGD
23722 gas_assert (adding_value != -1);
23723 gas_assert (opt != NULL);
23724
23725 /* Scan over the options table trying to find an exact match. */
23726 for (; opt->name != NULL; opt++)
f3bad469 23727 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23728 {
69133863
MGD
23729 /* Check we can apply the extension to this architecture. */
23730 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23731 {
23732 as_bad (_("extension does not apply to the base architecture"));
23733 return FALSE;
23734 }
23735
23736 /* Add or remove the extension. */
23737 if (adding_value)
23738 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23739 else
23740 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23741
c19d1205
ZW
23742 break;
23743 }
7ed4c4c5 23744
c19d1205
ZW
23745 if (opt->name == NULL)
23746 {
69133863
MGD
23747 /* Did we fail to find an extension because it wasn't specified in
23748 alphabetical order, or because it does not exist? */
23749
23750 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 23751 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
23752 break;
23753
23754 if (opt->name == NULL)
23755 as_bad (_("unknown architectural extension `%s'"), str);
23756 else
23757 as_bad (_("architectural extensions must be specified in "
23758 "alphabetical order"));
23759
c921be7d 23760 return FALSE;
c19d1205 23761 }
69133863
MGD
23762 else
23763 {
23764 /* We should skip the extension we've just matched the next time
23765 round. */
23766 opt++;
23767 }
7ed4c4c5 23768
c19d1205
ZW
23769 str = ext;
23770 };
7ed4c4c5 23771
c921be7d 23772 return TRUE;
c19d1205 23773}
7ed4c4c5 23774
c921be7d 23775static bfd_boolean
f3bad469 23776arm_parse_cpu (char *str)
7ed4c4c5 23777{
f3bad469
MGD
23778 const struct arm_cpu_option_table *opt;
23779 char *ext = strchr (str, '+');
23780 size_t len;
7ed4c4c5 23781
c19d1205 23782 if (ext != NULL)
f3bad469 23783 len = ext - str;
7ed4c4c5 23784 else
f3bad469 23785 len = strlen (str);
7ed4c4c5 23786
f3bad469 23787 if (len == 0)
7ed4c4c5 23788 {
c19d1205 23789 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23790 return FALSE;
7ed4c4c5
NC
23791 }
23792
c19d1205 23793 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 23794 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23795 {
e74cfd16
PB
23796 mcpu_cpu_opt = &opt->value;
23797 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23798 if (opt->canonical_name)
5f4273c7 23799 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23800 else
23801 {
f3bad469 23802 size_t i;
c921be7d 23803
f3bad469 23804 for (i = 0; i < len; i++)
ee065d83
PB
23805 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23806 selected_cpu_name[i] = 0;
23807 }
7ed4c4c5 23808
c19d1205
ZW
23809 if (ext != NULL)
23810 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23811
c921be7d 23812 return TRUE;
c19d1205 23813 }
7ed4c4c5 23814
c19d1205 23815 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23816 return FALSE;
7ed4c4c5
NC
23817}
23818
c921be7d 23819static bfd_boolean
f3bad469 23820arm_parse_arch (char *str)
7ed4c4c5 23821{
e74cfd16 23822 const struct arm_arch_option_table *opt;
c19d1205 23823 char *ext = strchr (str, '+');
f3bad469 23824 size_t len;
7ed4c4c5 23825
c19d1205 23826 if (ext != NULL)
f3bad469 23827 len = ext - str;
7ed4c4c5 23828 else
f3bad469 23829 len = strlen (str);
7ed4c4c5 23830
f3bad469 23831 if (len == 0)
7ed4c4c5 23832 {
c19d1205 23833 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23834 return FALSE;
7ed4c4c5
NC
23835 }
23836
c19d1205 23837 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 23838 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23839 {
e74cfd16
PB
23840 march_cpu_opt = &opt->value;
23841 march_fpu_opt = &opt->default_fpu;
5f4273c7 23842 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23843
c19d1205
ZW
23844 if (ext != NULL)
23845 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23846
c921be7d 23847 return TRUE;
c19d1205
ZW
23848 }
23849
23850 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23851 return FALSE;
7ed4c4c5 23852}
eb043451 23853
c921be7d 23854static bfd_boolean
c19d1205
ZW
23855arm_parse_fpu (char * str)
23856{
69133863 23857 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23858
c19d1205
ZW
23859 for (opt = arm_fpus; opt->name != NULL; opt++)
23860 if (streq (opt->name, str))
23861 {
e74cfd16 23862 mfpu_opt = &opt->value;
c921be7d 23863 return TRUE;
c19d1205 23864 }
b99bd4ef 23865
c19d1205 23866 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23867 return FALSE;
c19d1205
ZW
23868}
23869
c921be7d 23870static bfd_boolean
c19d1205 23871arm_parse_float_abi (char * str)
b99bd4ef 23872{
e74cfd16 23873 const struct arm_option_value_table * opt;
b99bd4ef 23874
c19d1205
ZW
23875 for (opt = arm_float_abis; opt->name != NULL; opt++)
23876 if (streq (opt->name, str))
23877 {
23878 mfloat_abi_opt = opt->value;
c921be7d 23879 return TRUE;
c19d1205 23880 }
cc8a6dd0 23881
c19d1205 23882 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23883 return FALSE;
c19d1205 23884}
b99bd4ef 23885
c19d1205 23886#ifdef OBJ_ELF
c921be7d 23887static bfd_boolean
c19d1205
ZW
23888arm_parse_eabi (char * str)
23889{
e74cfd16 23890 const struct arm_option_value_table *opt;
cc8a6dd0 23891
c19d1205
ZW
23892 for (opt = arm_eabis; opt->name != NULL; opt++)
23893 if (streq (opt->name, str))
23894 {
23895 meabi_flags = opt->value;
c921be7d 23896 return TRUE;
c19d1205
ZW
23897 }
23898 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23899 return FALSE;
c19d1205
ZW
23900}
23901#endif
cc8a6dd0 23902
c921be7d 23903static bfd_boolean
e07e6e58
NC
23904arm_parse_it_mode (char * str)
23905{
c921be7d 23906 bfd_boolean ret = TRUE;
e07e6e58
NC
23907
23908 if (streq ("arm", str))
23909 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23910 else if (streq ("thumb", str))
23911 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23912 else if (streq ("always", str))
23913 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23914 else if (streq ("never", str))
23915 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23916 else
23917 {
23918 as_bad (_("unknown implicit IT mode `%s', should be "\
23919 "arm, thumb, always, or never."), str);
c921be7d 23920 ret = FALSE;
e07e6e58
NC
23921 }
23922
23923 return ret;
23924}
23925
c19d1205
ZW
23926struct arm_long_option_table arm_long_opts[] =
23927{
23928 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23929 arm_parse_cpu, NULL},
23930 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23931 arm_parse_arch, NULL},
23932 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23933 arm_parse_fpu, NULL},
23934 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23935 arm_parse_float_abi, NULL},
23936#ifdef OBJ_ELF
7fac0536 23937 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23938 arm_parse_eabi, NULL},
23939#endif
e07e6e58
NC
23940 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23941 arm_parse_it_mode, NULL},
c19d1205
ZW
23942 {NULL, NULL, 0, NULL}
23943};
cc8a6dd0 23944
c19d1205
ZW
23945int
23946md_parse_option (int c, char * arg)
23947{
23948 struct arm_option_table *opt;
e74cfd16 23949 const struct arm_legacy_option_table *fopt;
c19d1205 23950 struct arm_long_option_table *lopt;
b99bd4ef 23951
c19d1205 23952 switch (c)
b99bd4ef 23953 {
c19d1205
ZW
23954#ifdef OPTION_EB
23955 case OPTION_EB:
23956 target_big_endian = 1;
23957 break;
23958#endif
cc8a6dd0 23959
c19d1205
ZW
23960#ifdef OPTION_EL
23961 case OPTION_EL:
23962 target_big_endian = 0;
23963 break;
23964#endif
b99bd4ef 23965
845b51d6
PB
23966 case OPTION_FIX_V4BX:
23967 fix_v4bx = TRUE;
23968 break;
23969
c19d1205
ZW
23970 case 'a':
23971 /* Listing option. Just ignore these, we don't support additional
23972 ones. */
23973 return 0;
b99bd4ef 23974
c19d1205
ZW
23975 default:
23976 for (opt = arm_opts; opt->option != NULL; opt++)
23977 {
23978 if (c == opt->option[0]
23979 && ((arg == NULL && opt->option[1] == 0)
23980 || streq (arg, opt->option + 1)))
23981 {
c19d1205 23982 /* If the option is deprecated, tell the user. */
278df34e 23983 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23984 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23985 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23986
c19d1205
ZW
23987 if (opt->var != NULL)
23988 *opt->var = opt->value;
cc8a6dd0 23989
c19d1205
ZW
23990 return 1;
23991 }
23992 }
b99bd4ef 23993
e74cfd16
PB
23994 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23995 {
23996 if (c == fopt->option[0]
23997 && ((arg == NULL && fopt->option[1] == 0)
23998 || streq (arg, fopt->option + 1)))
23999 {
e74cfd16 24000 /* If the option is deprecated, tell the user. */
278df34e 24001 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
24002 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24003 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
24004
24005 if (fopt->var != NULL)
24006 *fopt->var = &fopt->value;
24007
24008 return 1;
24009 }
24010 }
24011
c19d1205
ZW
24012 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24013 {
24014 /* These options are expected to have an argument. */
24015 if (c == lopt->option[0]
24016 && arg != NULL
24017 && strncmp (arg, lopt->option + 1,
24018 strlen (lopt->option + 1)) == 0)
24019 {
c19d1205 24020 /* If the option is deprecated, tell the user. */
278df34e 24021 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
24022 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24023 _(lopt->deprecated));
b99bd4ef 24024
c19d1205
ZW
24025 /* Call the sup-option parser. */
24026 return lopt->func (arg + strlen (lopt->option) - 1);
24027 }
24028 }
a737bd4d 24029
c19d1205
ZW
24030 return 0;
24031 }
a394c00f 24032
c19d1205
ZW
24033 return 1;
24034}
a394c00f 24035
c19d1205
ZW
24036void
24037md_show_usage (FILE * fp)
a394c00f 24038{
c19d1205
ZW
24039 struct arm_option_table *opt;
24040 struct arm_long_option_table *lopt;
a394c00f 24041
c19d1205 24042 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 24043
c19d1205
ZW
24044 for (opt = arm_opts; opt->option != NULL; opt++)
24045 if (opt->help != NULL)
24046 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 24047
c19d1205
ZW
24048 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24049 if (lopt->help != NULL)
24050 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 24051
c19d1205
ZW
24052#ifdef OPTION_EB
24053 fprintf (fp, _("\
24054 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
24055#endif
24056
c19d1205
ZW
24057#ifdef OPTION_EL
24058 fprintf (fp, _("\
24059 -EL assemble code for a little-endian cpu\n"));
a737bd4d 24060#endif
845b51d6
PB
24061
24062 fprintf (fp, _("\
24063 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 24064}
ee065d83
PB
24065
24066
24067#ifdef OBJ_ELF
62b3e311
PB
24068typedef struct
24069{
24070 int val;
24071 arm_feature_set flags;
24072} cpu_arch_ver_table;
24073
24074/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24075 least features first. */
24076static const cpu_arch_ver_table cpu_arch_ver[] =
24077{
24078 {1, ARM_ARCH_V4},
24079 {2, ARM_ARCH_V4T},
24080 {3, ARM_ARCH_V5},
ee3c0378 24081 {3, ARM_ARCH_V5T},
62b3e311
PB
24082 {4, ARM_ARCH_V5TE},
24083 {5, ARM_ARCH_V5TEJ},
24084 {6, ARM_ARCH_V6},
7e806470 24085 {9, ARM_ARCH_V6K},
f4c65163 24086 {7, ARM_ARCH_V6Z},
91e22acd 24087 {11, ARM_ARCH_V6M},
b2a5fbdc 24088 {12, ARM_ARCH_V6SM},
7e806470 24089 {8, ARM_ARCH_V6T2},
bca38921 24090 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
62b3e311
PB
24091 {10, ARM_ARCH_V7R},
24092 {10, ARM_ARCH_V7M},
bca38921 24093 {14, ARM_ARCH_V8A},
62b3e311
PB
24094 {0, ARM_ARCH_NONE}
24095};
24096
ee3c0378
AS
24097/* Set an attribute if it has not already been set by the user. */
24098static void
24099aeabi_set_attribute_int (int tag, int value)
24100{
24101 if (tag < 1
24102 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24103 || !attributes_set_explicitly[tag])
24104 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24105}
24106
24107static void
24108aeabi_set_attribute_string (int tag, const char *value)
24109{
24110 if (tag < 1
24111 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24112 || !attributes_set_explicitly[tag])
24113 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24114}
24115
ee065d83
PB
24116/* Set the public EABI object attributes. */
24117static void
24118aeabi_set_public_attributes (void)
24119{
24120 int arch;
69239280 24121 char profile;
90ec0d68 24122 int virt_sec = 0;
bca38921 24123 int fp16_optional = 0;
e74cfd16 24124 arm_feature_set flags;
62b3e311
PB
24125 arm_feature_set tmp;
24126 const cpu_arch_ver_table *p;
ee065d83
PB
24127
24128 /* Choose the architecture based on the capabilities of the requested cpu
24129 (if any) and/or the instructions actually used. */
e74cfd16
PB
24130 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24131 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24132 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
ddd7f988
RE
24133
24134 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24135 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24136
24137 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24138 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24139
24140 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
24141 if (object_arch)
24142 {
24143 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24144 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24145 }
24146
251665fc
MGD
24147 /* We need to make sure that the attributes do not identify us as v6S-M
24148 when the only v6S-M feature in use is the Operating System Extensions. */
24149 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24150 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24151 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24152
62b3e311
PB
24153 tmp = flags;
24154 arch = 0;
24155 for (p = cpu_arch_ver; p->val; p++)
24156 {
24157 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24158 {
24159 arch = p->val;
24160 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24161 }
24162 }
ee065d83 24163
9e3c6df6
PB
24164 /* The table lookup above finds the last architecture to contribute
24165 a new feature. Unfortunately, Tag13 is a subset of the union of
24166 v6T2 and v7-M, so it is never seen as contributing a new feature.
24167 We can not search for the last entry which is entirely used,
24168 because if no CPU is specified we build up only those flags
24169 actually used. Perhaps we should separate out the specified
24170 and implicit cases. Avoid taking this path for -march=all by
24171 checking for contradictory v7-A / v7-M features. */
24172 if (arch == 10
24173 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24174 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24175 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24176 arch = 13;
24177
ee065d83
PB
24178 /* Tag_CPU_name. */
24179 if (selected_cpu_name[0])
24180 {
91d6fa6a 24181 char *q;
ee065d83 24182
91d6fa6a
NC
24183 q = selected_cpu_name;
24184 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
24185 {
24186 int i;
5f4273c7 24187
91d6fa6a
NC
24188 q += 4;
24189 for (i = 0; q[i]; i++)
24190 q[i] = TOUPPER (q[i]);
ee065d83 24191 }
91d6fa6a 24192 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 24193 }
62f3b8c8 24194
ee065d83 24195 /* Tag_CPU_arch. */
ee3c0378 24196 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 24197
62b3e311
PB
24198 /* Tag_CPU_arch_profile. */
24199 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
69239280 24200 profile = 'A';
62b3e311 24201 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
69239280 24202 profile = 'R';
7e806470 24203 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
69239280
MGD
24204 profile = 'M';
24205 else
24206 profile = '\0';
24207
24208 if (profile != '\0')
24209 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 24210
ee065d83 24211 /* Tag_ARM_ISA_use. */
ee3c0378
AS
24212 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24213 || arch == 0)
24214 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 24215
ee065d83 24216 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
24217 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24218 || arch == 0)
24219 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24220 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 24221
ee065d83 24222 /* Tag_VFP_arch. */
bca38921
MGD
24223 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24224 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24225 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
24226 aeabi_set_attribute_int (Tag_VFP_arch,
24227 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24228 ? 5 : 6);
24229 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
24230 {
24231 fp16_optional = 1;
24232 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24233 }
ada65aa3 24234 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
24235 {
24236 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24237 fp16_optional = 1;
24238 }
ee3c0378
AS
24239 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24240 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24241 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24242 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24243 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 24244
4547cb56
NC
24245 /* Tag_ABI_HardFP_use. */
24246 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24247 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24248 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24249
ee065d83 24250 /* Tag_WMMX_arch. */
ee3c0378
AS
24251 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24252 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24253 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24254 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 24255
ee3c0378 24256 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
bca38921
MGD
24257 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24258 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24259 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24260 {
24261 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24262 {
24263 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24264 }
24265 else
24266 {
24267 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24268 fp16_optional = 1;
24269 }
24270 }
fa94de6b 24271
ee3c0378 24272 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 24273 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 24274 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 24275
69239280
MGD
24276 /* Tag_DIV_use.
24277
24278 We set Tag_DIV_use to two when integer divide instructions have been used
24279 in ARM state, or when Thumb integer divide instructions have been used,
24280 but we have no architecture profile set, nor have we any ARM instructions.
24281
bca38921
MGD
24282 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24283 architecture.
24284
69239280 24285 For new architectures we will have to check these tests. */
bca38921
MGD
24286 gas_assert (arch <= TAG_CPU_ARCH_V8);
24287 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24288 aeabi_set_attribute_int (Tag_DIV_use, 0);
24289 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24290 || (profile == '\0'
24291 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24292 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 24293 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
24294
24295 /* Tag_MP_extension_use. */
24296 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24297 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
24298
24299 /* Tag Virtualization_use. */
24300 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
24301 virt_sec |= 1;
24302 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24303 virt_sec |= 2;
24304 if (virt_sec != 0)
24305 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
24306}
24307
104d59d1 24308/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
24309void
24310arm_md_end (void)
24311{
ee065d83
PB
24312 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24313 return;
24314
24315 aeabi_set_public_attributes ();
ee065d83 24316}
8463be01 24317#endif /* OBJ_ELF */
ee065d83
PB
24318
24319
24320/* Parse a .cpu directive. */
24321
24322static void
24323s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24324{
e74cfd16 24325 const struct arm_cpu_option_table *opt;
ee065d83
PB
24326 char *name;
24327 char saved_char;
24328
24329 name = input_line_pointer;
5f4273c7 24330 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24331 input_line_pointer++;
24332 saved_char = *input_line_pointer;
24333 *input_line_pointer = 0;
24334
24335 /* Skip the first "all" entry. */
24336 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24337 if (streq (opt->name, name))
24338 {
e74cfd16
PB
24339 mcpu_cpu_opt = &opt->value;
24340 selected_cpu = opt->value;
ee065d83 24341 if (opt->canonical_name)
5f4273c7 24342 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24343 else
24344 {
24345 int i;
24346 for (i = 0; opt->name[i]; i++)
24347 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 24348
ee065d83
PB
24349 selected_cpu_name[i] = 0;
24350 }
e74cfd16 24351 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24352 *input_line_pointer = saved_char;
24353 demand_empty_rest_of_line ();
24354 return;
24355 }
24356 as_bad (_("unknown cpu `%s'"), name);
24357 *input_line_pointer = saved_char;
24358 ignore_rest_of_line ();
24359}
24360
24361
24362/* Parse a .arch directive. */
24363
24364static void
24365s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24366{
e74cfd16 24367 const struct arm_arch_option_table *opt;
ee065d83
PB
24368 char saved_char;
24369 char *name;
24370
24371 name = input_line_pointer;
5f4273c7 24372 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24373 input_line_pointer++;
24374 saved_char = *input_line_pointer;
24375 *input_line_pointer = 0;
24376
24377 /* Skip the first "all" entry. */
24378 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24379 if (streq (opt->name, name))
24380 {
e74cfd16
PB
24381 mcpu_cpu_opt = &opt->value;
24382 selected_cpu = opt->value;
5f4273c7 24383 strcpy (selected_cpu_name, opt->name);
e74cfd16 24384 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24385 *input_line_pointer = saved_char;
24386 demand_empty_rest_of_line ();
24387 return;
24388 }
24389
24390 as_bad (_("unknown architecture `%s'\n"), name);
24391 *input_line_pointer = saved_char;
24392 ignore_rest_of_line ();
24393}
24394
24395
7a1d4c38
PB
24396/* Parse a .object_arch directive. */
24397
24398static void
24399s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24400{
24401 const struct arm_arch_option_table *opt;
24402 char saved_char;
24403 char *name;
24404
24405 name = input_line_pointer;
5f4273c7 24406 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
24407 input_line_pointer++;
24408 saved_char = *input_line_pointer;
24409 *input_line_pointer = 0;
24410
24411 /* Skip the first "all" entry. */
24412 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24413 if (streq (opt->name, name))
24414 {
24415 object_arch = &opt->value;
24416 *input_line_pointer = saved_char;
24417 demand_empty_rest_of_line ();
24418 return;
24419 }
24420
24421 as_bad (_("unknown architecture `%s'\n"), name);
24422 *input_line_pointer = saved_char;
24423 ignore_rest_of_line ();
24424}
24425
69133863
MGD
24426/* Parse a .arch_extension directive. */
24427
24428static void
24429s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24430{
24431 const struct arm_option_extension_value_table *opt;
24432 char saved_char;
24433 char *name;
24434 int adding_value = 1;
24435
24436 name = input_line_pointer;
24437 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24438 input_line_pointer++;
24439 saved_char = *input_line_pointer;
24440 *input_line_pointer = 0;
24441
24442 if (strlen (name) >= 2
24443 && strncmp (name, "no", 2) == 0)
24444 {
24445 adding_value = 0;
24446 name += 2;
24447 }
24448
24449 for (opt = arm_extensions; opt->name != NULL; opt++)
24450 if (streq (opt->name, name))
24451 {
24452 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24453 {
24454 as_bad (_("architectural extension `%s' is not allowed for the "
24455 "current base architecture"), name);
24456 break;
24457 }
24458
24459 if (adding_value)
24460 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24461 else
24462 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24463
24464 mcpu_cpu_opt = &selected_cpu;
24465 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24466 *input_line_pointer = saved_char;
24467 demand_empty_rest_of_line ();
24468 return;
24469 }
24470
24471 if (opt->name == NULL)
24472 as_bad (_("unknown architecture `%s'\n"), name);
24473
24474 *input_line_pointer = saved_char;
24475 ignore_rest_of_line ();
24476}
24477
ee065d83
PB
24478/* Parse a .fpu directive. */
24479
24480static void
24481s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24482{
69133863 24483 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
24484 char saved_char;
24485 char *name;
24486
24487 name = input_line_pointer;
5f4273c7 24488 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24489 input_line_pointer++;
24490 saved_char = *input_line_pointer;
24491 *input_line_pointer = 0;
5f4273c7 24492
ee065d83
PB
24493 for (opt = arm_fpus; opt->name != NULL; opt++)
24494 if (streq (opt->name, name))
24495 {
e74cfd16
PB
24496 mfpu_opt = &opt->value;
24497 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24498 *input_line_pointer = saved_char;
24499 demand_empty_rest_of_line ();
24500 return;
24501 }
24502
24503 as_bad (_("unknown floating point format `%s'\n"), name);
24504 *input_line_pointer = saved_char;
24505 ignore_rest_of_line ();
24506}
ee065d83 24507
794ba86a 24508/* Copy symbol information. */
f31fef98 24509
794ba86a
DJ
24510void
24511arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24512{
24513 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24514}
e04befd0 24515
f31fef98 24516#ifdef OBJ_ELF
e04befd0
AS
24517/* Given a symbolic attribute NAME, return the proper integer value.
24518 Returns -1 if the attribute is not known. */
f31fef98 24519
e04befd0
AS
24520int
24521arm_convert_symbolic_attribute (const char *name)
24522{
f31fef98
NC
24523 static const struct
24524 {
24525 const char * name;
24526 const int tag;
24527 }
24528 attribute_table[] =
24529 {
24530 /* When you modify this table you should
24531 also modify the list in doc/c-arm.texi. */
e04befd0 24532#define T(tag) {#tag, tag}
f31fef98
NC
24533 T (Tag_CPU_raw_name),
24534 T (Tag_CPU_name),
24535 T (Tag_CPU_arch),
24536 T (Tag_CPU_arch_profile),
24537 T (Tag_ARM_ISA_use),
24538 T (Tag_THUMB_ISA_use),
75375b3e 24539 T (Tag_FP_arch),
f31fef98
NC
24540 T (Tag_VFP_arch),
24541 T (Tag_WMMX_arch),
24542 T (Tag_Advanced_SIMD_arch),
24543 T (Tag_PCS_config),
24544 T (Tag_ABI_PCS_R9_use),
24545 T (Tag_ABI_PCS_RW_data),
24546 T (Tag_ABI_PCS_RO_data),
24547 T (Tag_ABI_PCS_GOT_use),
24548 T (Tag_ABI_PCS_wchar_t),
24549 T (Tag_ABI_FP_rounding),
24550 T (Tag_ABI_FP_denormal),
24551 T (Tag_ABI_FP_exceptions),
24552 T (Tag_ABI_FP_user_exceptions),
24553 T (Tag_ABI_FP_number_model),
75375b3e 24554 T (Tag_ABI_align_needed),
f31fef98 24555 T (Tag_ABI_align8_needed),
75375b3e 24556 T (Tag_ABI_align_preserved),
f31fef98
NC
24557 T (Tag_ABI_align8_preserved),
24558 T (Tag_ABI_enum_size),
24559 T (Tag_ABI_HardFP_use),
24560 T (Tag_ABI_VFP_args),
24561 T (Tag_ABI_WMMX_args),
24562 T (Tag_ABI_optimization_goals),
24563 T (Tag_ABI_FP_optimization_goals),
24564 T (Tag_compatibility),
24565 T (Tag_CPU_unaligned_access),
75375b3e 24566 T (Tag_FP_HP_extension),
f31fef98
NC
24567 T (Tag_VFP_HP_extension),
24568 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
24569 T (Tag_MPextension_use),
24570 T (Tag_DIV_use),
f31fef98
NC
24571 T (Tag_nodefaults),
24572 T (Tag_also_compatible_with),
24573 T (Tag_conformance),
24574 T (Tag_T2EE_use),
24575 T (Tag_Virtualization_use),
cd21e546 24576 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 24577#undef T
f31fef98 24578 };
e04befd0
AS
24579 unsigned int i;
24580
24581 if (name == NULL)
24582 return -1;
24583
f31fef98 24584 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 24585 if (streq (name, attribute_table[i].name))
e04befd0
AS
24586 return attribute_table[i].tag;
24587
24588 return -1;
24589}
267bf995
RR
24590
24591
24592/* Apply sym value for relocations only in the case that
24593 they are for local symbols and you have the respective
24594 architectural feature for blx and simple switches. */
24595int
24596arm_apply_sym_value (struct fix * fixP)
24597{
24598 if (fixP->fx_addsy
24599 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 24600 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
24601 {
24602 switch (fixP->fx_r_type)
24603 {
24604 case BFD_RELOC_ARM_PCREL_BLX:
24605 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24606 if (ARM_IS_FUNC (fixP->fx_addsy))
24607 return 1;
24608 break;
24609
24610 case BFD_RELOC_ARM_PCREL_CALL:
24611 case BFD_RELOC_THUMB_PCREL_BLX:
24612 if (THUMB_IS_FUNC (fixP->fx_addsy))
24613 return 1;
24614 break;
24615
24616 default:
24617 break;
24618 }
24619
24620 }
24621 return 0;
24622}
f31fef98 24623#endif /* OBJ_ELF */