]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: allocate buffer to support maximum sector size
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
c2c087e6 91#define IMSM_RESERVED_SECTORS 4096
b81221b7 92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
cdddbdbc
DW
95
96/* Disk configuration info. */
97#define IMSM_MAX_DEVICES 255
98struct imsm_disk {
99 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 100 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 101 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
102#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
103#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
104#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 105#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 106 __u32 status; /* 0xF0 - 0xF3 */
1011e834 107 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
108 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
109#define IMSM_DISK_FILLERS 3
110 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
111};
112
3b451610
AK
113/* map selector for map managment
114 */
238c0a71
AK
115#define MAP_0 0
116#define MAP_1 1
117#define MAP_X -1
3b451610 118
cdddbdbc
DW
119/* RAID map configuration infos. */
120struct imsm_map {
5551b113
CA
121 __u32 pba_of_lba0_lo; /* start address of partition */
122 __u32 blocks_per_member_lo;/* blocks per member */
123 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
124 __u16 blocks_per_strip;
125 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
126#define IMSM_T_STATE_NORMAL 0
127#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
128#define IMSM_T_STATE_DEGRADED 2
129#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
130 __u8 raid_level;
131#define IMSM_T_RAID0 0
132#define IMSM_T_RAID1 1
133#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
134 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
135 __u8 num_domains; /* number of parity domains */
136 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 137 __u8 ddf;
5551b113
CA
138 __u32 pba_of_lba0_hi;
139 __u32 blocks_per_member_hi;
140 __u32 num_data_stripes_hi;
141 __u32 filler[4]; /* expansion area */
7eef0453 142#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 143 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
144 * top byte contains some flags
145 */
cdddbdbc
DW
146} __attribute__ ((packed));
147
148struct imsm_vol {
f8f603f1 149 __u32 curr_migr_unit;
fe7ed8cb 150 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 151 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
152#define MIGR_INIT 0
153#define MIGR_REBUILD 1
154#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
155#define MIGR_GEN_MIGR 3
156#define MIGR_STATE_CHANGE 4
1484e727 157#define MIGR_REPAIR 5
cdddbdbc 158 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
159#define RAIDVOL_CLEAN 0
160#define RAIDVOL_DIRTY 1
161#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 162 __u8 dirty;
fe7ed8cb
DW
163 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
164 __u16 verify_errors; /* number of mismatches */
165 __u16 bad_blocks; /* number of bad blocks during verify */
166 __u32 filler[4];
cdddbdbc
DW
167 struct imsm_map map[1];
168 /* here comes another one if migr_state */
169} __attribute__ ((packed));
170
171struct imsm_dev {
fe7ed8cb 172 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
173 __u32 size_low;
174 __u32 size_high;
fe7ed8cb
DW
175#define DEV_BOOTABLE __cpu_to_le32(0x01)
176#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
177#define DEV_READ_COALESCING __cpu_to_le32(0x04)
178#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
179#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
180#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
181#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
182#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
183#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
184#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
185#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
186#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
187#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
188 __u32 status; /* Persistent RaidDev status */
189 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
190 __u8 migr_priority;
191 __u8 num_sub_vols;
192 __u8 tid;
193 __u8 cng_master_disk;
194 __u16 cache_policy;
195 __u8 cng_state;
196 __u8 cng_sub_state;
2432ce9b
AP
197 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
198
199 /* NVM_EN */
200 __u8 nv_cache_mode;
201 __u8 nv_cache_flags;
202
203 /* Unique Volume Id of the NvCache Volume associated with this volume */
204 __u32 nvc_vol_orig_family_num;
205 __u16 nvc_vol_raid_dev_num;
206
207#define RWH_OFF 0
208#define RWH_DISTRIBUTED 1
209#define RWH_JOURNALING_DRIVE 2
210 __u8 rwh_policy; /* Raid Write Hole Policy */
211 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
212 __u8 filler1;
213
214#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
215 __u32 filler[IMSM_DEV_FILLERS];
216 struct imsm_vol vol;
217} __attribute__ ((packed));
218
219struct imsm_super {
220 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
221 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
222 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
223 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
224 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
225 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
226 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
227 __u8 num_disks; /* 0x38 Number of configured disks */
228 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
229 __u8 error_log_pos; /* 0x3A */
230 __u8 fill[1]; /* 0x3B */
231 __u32 cache_size; /* 0x3c - 0x40 in mb */
232 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
233 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
234 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
235 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
236 * volume IDs for raid_dev created in this array
237 * (starts at 1)
238 */
239 __u16 filler1; /* 0x4E - 0x4F */
240#define IMSM_FILLERS 34
241 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
242 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
243 /* here comes imsm_dev[num_raid_devs] */
604b746f 244 /* here comes BBM logs */
cdddbdbc
DW
245} __attribute__ ((packed));
246
604b746f 247#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
248#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
249#define BBM_LOG_SIGNATURE 0xabadb10c
250
251struct bbm_log_block_addr {
252 __u16 w1;
253 __u32 dw1;
254} __attribute__ ((__packed__));
604b746f
JD
255
256struct bbm_log_entry {
8d67477f
TM
257 __u8 marked_count; /* Number of blocks marked - 1 */
258 __u8 disk_ordinal; /* Disk entry within the imsm_super */
259 struct bbm_log_block_addr defective_block_start;
604b746f
JD
260} __attribute__ ((__packed__));
261
262struct bbm_log {
263 __u32 signature; /* 0xABADB10C */
264 __u32 entry_count;
8d67477f 265 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
604b746f
JD
266} __attribute__ ((__packed__));
267
cdddbdbc 268static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 269
b53bfba6
TM
270#define BLOCKS_PER_KB (1024/512)
271
8e59f3d8
AK
272#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
273
274#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
275
de44e46f
PB
276#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
277#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
278 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
279 */
280
8e59f3d8
AK
281#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
282 * be recovered using srcMap */
283#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
284 * already been migrated and must
285 * be recovered from checkpoint area */
2432ce9b
AP
286
287#define PPL_ENTRY_SPACE (128 * 1024) /* Size of the PPL, without the header */
288
8e59f3d8
AK
289struct migr_record {
290 __u32 rec_status; /* Status used to determine how to restart
291 * migration in case it aborts
292 * in some fashion */
293 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
294 __u32 family_num; /* Family number of MPB
295 * containing the RaidDev
296 * that is migrating */
297 __u32 ascending_migr; /* True if migrating in increasing
298 * order of lbas */
299 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
300 __u32 dest_depth_per_unit; /* Num member blocks each destMap
301 * member disk
302 * advances per unit-of-operation */
303 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
304 __u32 dest_1st_member_lba; /* First member lba on first
305 * stripe of destination */
306 __u32 num_migr_units; /* Total num migration units-of-op */
307 __u32 post_migr_vol_cap; /* Size of volume after
308 * migration completes */
309 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
310 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
311 * migration ckpt record was read from
312 * (for recovered migrations) */
313} __attribute__ ((__packed__));
314
ec50f7b6
LM
315struct md_list {
316 /* usage marker:
317 * 1: load metadata
318 * 2: metadata does not match
319 * 4: already checked
320 */
321 int used;
322 char *devname;
323 int found;
324 int container;
325 dev_t st_rdev;
326 struct md_list *next;
327};
328
e7b84f9d 329#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 330
1484e727
DW
331static __u8 migr_type(struct imsm_dev *dev)
332{
333 if (dev->vol.migr_type == MIGR_VERIFY &&
334 dev->status & DEV_VERIFY_AND_FIX)
335 return MIGR_REPAIR;
336 else
337 return dev->vol.migr_type;
338}
339
340static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
341{
342 /* for compatibility with older oroms convert MIGR_REPAIR, into
343 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
344 */
345 if (migr_type == MIGR_REPAIR) {
346 dev->vol.migr_type = MIGR_VERIFY;
347 dev->status |= DEV_VERIFY_AND_FIX;
348 } else {
349 dev->vol.migr_type = migr_type;
350 dev->status &= ~DEV_VERIFY_AND_FIX;
351 }
352}
353
f36a9ecd 354static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 355{
f36a9ecd 356 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 357}
cdddbdbc 358
f36a9ecd
PB
359static unsigned int mpb_sectors(struct imsm_super *mpb,
360 unsigned int sector_size)
87eb16df 361{
f36a9ecd 362 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
363}
364
ba2de7ba
DW
365struct intel_dev {
366 struct imsm_dev *dev;
367 struct intel_dev *next;
f21e18ca 368 unsigned index;
ba2de7ba
DW
369};
370
88654014
LM
371struct intel_hba {
372 enum sys_dev_type type;
373 char *path;
374 char *pci_id;
375 struct intel_hba *next;
376};
377
1a64be56
LM
378enum action {
379 DISK_REMOVE = 1,
380 DISK_ADD
381};
cdddbdbc
DW
382/* internal representation of IMSM metadata */
383struct intel_super {
384 union {
949c47a0
DW
385 void *buf; /* O_DIRECT buffer for reading/writing metadata */
386 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 387 };
8e59f3d8
AK
388 union {
389 void *migr_rec_buf; /* buffer for I/O operations */
390 struct migr_record *migr_rec; /* migration record */
391 };
51d83f5d
AK
392 int clean_migration_record_by_mdmon; /* when reshape is switched to next
393 array, it indicates that mdmon is allowed to clean migration
394 record */
949c47a0 395 size_t len; /* size of the 'buf' allocation */
bbab0940 396 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
397 void *next_buf; /* for realloc'ing buf from the manager */
398 size_t next_len;
c2c087e6 399 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 400 int current_vol; /* index of raid device undergoing creation */
5551b113 401 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 402 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 403 struct intel_dev *devlist;
fa7bb6f8 404 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
405 struct dl {
406 struct dl *next;
407 int index;
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409 int major, minor;
410 char *devname;
b9f594fe 411 struct imsm_disk disk;
cdddbdbc 412 int fd;
0dcecb2e
DW
413 int extent_cnt;
414 struct extent *e; /* for determining freespace @ create */
efb30e7f 415 int raiddisk; /* slot to fill in autolayout */
1a64be56 416 enum action action;
ca0748fa 417 } *disks, *current_disk;
1a64be56
LM
418 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
419 active */
47ee5a45 420 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 421 struct bbm_log *bbm_log;
88654014 422 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 423 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 424 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 425 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
426};
427
428struct intel_disk {
429 struct imsm_disk disk;
430 #define IMSM_UNKNOWN_OWNER (-1)
431 int owner;
432 struct intel_disk *next;
cdddbdbc
DW
433};
434
c2c087e6
DW
435struct extent {
436 unsigned long long start, size;
437};
438
694575e7
KW
439/* definitions of reshape process types */
440enum imsm_reshape_type {
441 CH_TAKEOVER,
b5347799 442 CH_MIGRATION,
7abc9871 443 CH_ARRAY_SIZE,
694575e7
KW
444};
445
88758e9d
DW
446/* definition of messages passed to imsm_process_update */
447enum imsm_update_type {
448 update_activate_spare,
8273f55e 449 update_create_array,
33414a01 450 update_kill_array,
aa534678 451 update_rename_array,
1a64be56 452 update_add_remove_disk,
78b10e66 453 update_reshape_container_disks,
48c5303a 454 update_reshape_migration,
2d40f3a1
AK
455 update_takeover,
456 update_general_migration_checkpoint,
f3871fdc 457 update_size_change,
bbab0940 458 update_prealloc_badblocks_mem,
e6e9dd3f 459 update_rwh_policy,
88758e9d
DW
460};
461
462struct imsm_update_activate_spare {
463 enum imsm_update_type type;
d23fe947 464 struct dl *dl;
88758e9d
DW
465 int slot;
466 int array;
467 struct imsm_update_activate_spare *next;
468};
469
78b10e66 470struct geo_params {
4dd2df09 471 char devnm[32];
78b10e66 472 char *dev_name;
d04f65f4 473 unsigned long long size;
78b10e66
N
474 int level;
475 int layout;
476 int chunksize;
477 int raid_disks;
478};
479
bb025c2f
KW
480enum takeover_direction {
481 R10_TO_R0,
482 R0_TO_R10
483};
484struct imsm_update_takeover {
485 enum imsm_update_type type;
486 int subarray;
487 enum takeover_direction direction;
488};
78b10e66
N
489
490struct imsm_update_reshape {
491 enum imsm_update_type type;
492 int old_raid_disks;
493 int new_raid_disks;
48c5303a
PC
494
495 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
496};
497
498struct imsm_update_reshape_migration {
499 enum imsm_update_type type;
500 int old_raid_disks;
501 int new_raid_disks;
502 /* fields for array migration changes
503 */
504 int subdev;
505 int new_level;
506 int new_layout;
4bba0439 507 int new_chunksize;
48c5303a 508
d195167d 509 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
510};
511
f3871fdc
AK
512struct imsm_update_size_change {
513 enum imsm_update_type type;
514 int subdev;
515 long long new_size;
516};
517
2d40f3a1
AK
518struct imsm_update_general_migration_checkpoint {
519 enum imsm_update_type type;
520 __u32 curr_migr_unit;
521};
522
54c2c1ea
DW
523struct disk_info {
524 __u8 serial[MAX_RAID_SERIAL_LEN];
525};
526
8273f55e
DW
527struct imsm_update_create_array {
528 enum imsm_update_type type;
8273f55e 529 int dev_idx;
6a3e913e 530 struct imsm_dev dev;
8273f55e
DW
531};
532
33414a01
DW
533struct imsm_update_kill_array {
534 enum imsm_update_type type;
535 int dev_idx;
536};
537
aa534678
DW
538struct imsm_update_rename_array {
539 enum imsm_update_type type;
540 __u8 name[MAX_RAID_SERIAL_LEN];
541 int dev_idx;
542};
543
1a64be56 544struct imsm_update_add_remove_disk {
43dad3d6
DW
545 enum imsm_update_type type;
546};
547
bbab0940
TM
548struct imsm_update_prealloc_bb_mem {
549 enum imsm_update_type type;
550};
551
e6e9dd3f
AP
552struct imsm_update_rwh_policy {
553 enum imsm_update_type type;
554 int new_policy;
555 int dev_idx;
556};
557
88654014
LM
558static const char *_sys_dev_type[] = {
559 [SYS_DEV_UNKNOWN] = "Unknown",
560 [SYS_DEV_SAS] = "SAS",
614902f6 561 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
562 [SYS_DEV_NVME] = "NVMe",
563 [SYS_DEV_VMD] = "VMD"
88654014
LM
564};
565
566const char *get_sys_dev_type(enum sys_dev_type type)
567{
568 if (type >= SYS_DEV_MAX)
569 type = SYS_DEV_UNKNOWN;
570
571 return _sys_dev_type[type];
572}
573
574static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
575{
503975b9
N
576 struct intel_hba *result = xmalloc(sizeof(*result));
577
578 result->type = device->type;
579 result->path = xstrdup(device->path);
580 result->next = NULL;
581 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
582 result->pci_id++;
583
88654014
LM
584 return result;
585}
586
587static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
588{
594dc1b8
JS
589 struct intel_hba *result;
590
88654014
LM
591 for (result = hba; result; result = result->next) {
592 if (result->type == device->type && strcmp(result->path, device->path) == 0)
593 break;
594 }
595 return result;
596}
597
b4cf4cba 598static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
599{
600 struct intel_hba *hba;
601
602 /* check if disk attached to Intel HBA */
603 hba = find_intel_hba(super->hba, device);
604 if (hba != NULL)
605 return 1;
606 /* Check if HBA is already attached to super */
607 if (super->hba == NULL) {
608 super->hba = alloc_intel_hba(device);
609 return 1;
6b781d33
AP
610 }
611
612 hba = super->hba;
613 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 614 * Do not support HBA types mixing
6b781d33
AP
615 */
616 if (device->type != hba->type)
88654014 617 return 2;
6b781d33
AP
618
619 /* Multiple same type HBAs can be used if they share the same OROM */
620 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
621
622 if (device_orom != super->orom)
623 return 2;
624
625 while (hba->next)
626 hba = hba->next;
627
628 hba->next = alloc_intel_hba(device);
629 return 1;
88654014
LM
630}
631
632static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
633{
9bc4ae77 634 struct sys_dev *list, *elem;
88654014
LM
635 char *disk_path;
636
637 if ((list = find_intel_devices()) == NULL)
638 return 0;
639
640 if (fd < 0)
641 disk_path = (char *) devname;
642 else
643 disk_path = diskfd_to_devpath(fd);
644
9bc4ae77 645 if (!disk_path)
88654014 646 return 0;
88654014 647
9bc4ae77
N
648 for (elem = list; elem; elem = elem->next)
649 if (path_attached_to_hba(disk_path, elem->path))
88654014 650 return elem;
9bc4ae77 651
88654014
LM
652 if (disk_path != devname)
653 free(disk_path);
88654014
LM
654
655 return NULL;
656}
657
d424212e
N
658static int find_intel_hba_capability(int fd, struct intel_super *super,
659 char *devname);
f2f5c343 660
cdddbdbc
DW
661static struct supertype *match_metadata_desc_imsm(char *arg)
662{
663 struct supertype *st;
664
665 if (strcmp(arg, "imsm") != 0 &&
666 strcmp(arg, "default") != 0
667 )
668 return NULL;
669
503975b9 670 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
671 st->ss = &super_imsm;
672 st->max_devs = IMSM_MAX_DEVICES;
673 st->minor_version = 0;
674 st->sb = NULL;
675 return st;
676}
677
cdddbdbc
DW
678static __u8 *get_imsm_version(struct imsm_super *mpb)
679{
680 return &mpb->sig[MPB_SIG_LEN];
681}
682
949c47a0
DW
683/* retrieve a disk directly from the anchor when the anchor is known to be
684 * up-to-date, currently only at load time
685 */
686static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 687{
949c47a0 688 if (index >= mpb->num_disks)
cdddbdbc
DW
689 return NULL;
690 return &mpb->disk[index];
691}
692
95d07a2c
LM
693/* retrieve the disk description based on a index of the disk
694 * in the sub-array
695 */
696static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 697{
b9f594fe
DW
698 struct dl *d;
699
700 for (d = super->disks; d; d = d->next)
701 if (d->index == index)
95d07a2c
LM
702 return d;
703
704 return NULL;
705}
706/* retrieve a disk from the parsed metadata */
707static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
708{
709 struct dl *dl;
710
711 dl = get_imsm_dl_disk(super, index);
712 if (dl)
713 return &dl->disk;
714
b9f594fe 715 return NULL;
949c47a0
DW
716}
717
718/* generate a checksum directly from the anchor when the anchor is known to be
719 * up-to-date, currently only at load or write_super after coalescing
720 */
721static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
722{
723 __u32 end = mpb->mpb_size / sizeof(end);
724 __u32 *p = (__u32 *) mpb;
725 __u32 sum = 0;
726
5d500228
N
727 while (end--) {
728 sum += __le32_to_cpu(*p);
97f734fd
N
729 p++;
730 }
cdddbdbc 731
5d500228 732 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
733}
734
a965f303
DW
735static size_t sizeof_imsm_map(struct imsm_map *map)
736{
737 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
738}
739
740struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 741{
5e7b0330
AK
742 /* A device can have 2 maps if it is in the middle of a migration.
743 * If second_map is:
238c0a71
AK
744 * MAP_0 - we return the first map
745 * MAP_1 - we return the second map if it exists, else NULL
746 * MAP_X - we return the second map if it exists, else the first
5e7b0330 747 */
a965f303 748 struct imsm_map *map = &dev->vol.map[0];
9535fc47 749 struct imsm_map *map2 = NULL;
a965f303 750
9535fc47
AK
751 if (dev->vol.migr_state)
752 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 753
9535fc47 754 switch (second_map) {
3b451610 755 case MAP_0:
9535fc47 756 break;
3b451610 757 case MAP_1:
9535fc47
AK
758 map = map2;
759 break;
238c0a71 760 case MAP_X:
9535fc47
AK
761 if (map2)
762 map = map2;
763 break;
9535fc47
AK
764 default:
765 map = NULL;
766 }
767 return map;
5e7b0330 768
a965f303 769}
cdddbdbc 770
3393c6af
DW
771/* return the size of the device.
772 * migr_state increases the returned size if map[0] were to be duplicated
773 */
774static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
775{
776 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 777 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
778
779 /* migrating means an additional map */
a965f303 780 if (dev->vol.migr_state)
238c0a71 781 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 782 else if (migr_state)
238c0a71 783 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
784
785 return size;
786}
787
54c2c1ea
DW
788/* retrieve disk serial number list from a metadata update */
789static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
790{
791 void *u = update;
792 struct disk_info *inf;
793
794 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
795 sizeof_imsm_dev(&update->dev, 0);
796
797 return inf;
798}
54c2c1ea 799
949c47a0 800static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
801{
802 int offset;
803 int i;
804 void *_mpb = mpb;
805
949c47a0 806 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
807 return NULL;
808
809 /* devices start after all disks */
810 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
811
812 for (i = 0; i <= index; i++)
813 if (i == index)
814 return _mpb + offset;
815 else
3393c6af 816 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
817
818 return NULL;
819}
820
949c47a0
DW
821static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
822{
ba2de7ba
DW
823 struct intel_dev *dv;
824
949c47a0
DW
825 if (index >= super->anchor->num_raid_devs)
826 return NULL;
ba2de7ba
DW
827 for (dv = super->devlist; dv; dv = dv->next)
828 if (dv->index == index)
829 return dv->dev;
830 return NULL;
949c47a0
DW
831}
832
8d67477f
TM
833static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
834 *addr)
835{
836 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
837 __le16_to_cpu(addr->w1));
838}
839
840static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
841{
842 struct bbm_log_block_addr addr;
843
844 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
845 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
846 return addr;
847}
848
8d67477f
TM
849/* get size of the bbm log */
850static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
851{
852 if (!log || log->entry_count == 0)
853 return 0;
854
855 return sizeof(log->signature) +
856 sizeof(log->entry_count) +
857 log->entry_count * sizeof(struct bbm_log_entry);
858}
6f50473f
TM
859
860/* check if bad block is not partially stored in bbm log */
861static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
862 long long sector, const int length, __u32 *pos)
863{
864 __u32 i;
865
866 for (i = *pos; i < log->entry_count; i++) {
867 struct bbm_log_entry *entry = &log->marked_block_entries[i];
868 unsigned long long bb_start;
869 unsigned long long bb_end;
870
871 bb_start = __le48_to_cpu(&entry->defective_block_start);
872 bb_end = bb_start + (entry->marked_count + 1);
873
874 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
875 (bb_end <= sector + length)) {
876 *pos = i;
877 return 1;
878 }
879 }
880 return 0;
881}
882
883/* record new bad block in bbm log */
884static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
885 long long sector, int length)
886{
887 int new_bb = 0;
888 __u32 pos = 0;
889 struct bbm_log_entry *entry = NULL;
890
891 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
892 struct bbm_log_entry *e = &log->marked_block_entries[pos];
893
894 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
895 (__le48_to_cpu(&e->defective_block_start) == sector)) {
896 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
897 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
898 pos = pos + 1;
899 continue;
900 }
901 entry = e;
902 break;
903 }
904
905 if (entry) {
906 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
907 BBM_LOG_MAX_LBA_ENTRY_VAL;
908 entry->defective_block_start = __cpu_to_le48(sector);
909 entry->marked_count = cnt - 1;
910 if (cnt == length)
911 return 1;
912 sector += cnt;
913 length -= cnt;
914 }
915
916 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
917 BBM_LOG_MAX_LBA_ENTRY_VAL;
918 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
919 return 0;
920
921 while (length > 0) {
922 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 struct bbm_log_entry *entry =
925 &log->marked_block_entries[log->entry_count];
926
927 entry->defective_block_start = __cpu_to_le48(sector);
928 entry->marked_count = cnt - 1;
929 entry->disk_ordinal = idx;
930
931 sector += cnt;
932 length -= cnt;
933
934 log->entry_count++;
935 }
936
937 return new_bb;
938}
c07a5a4f 939
4c9e8c1e
TM
940/* clear all bad blocks for given disk */
941static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
942{
943 __u32 i = 0;
944
945 while (i < log->entry_count) {
946 struct bbm_log_entry *entries = log->marked_block_entries;
947
948 if (entries[i].disk_ordinal == idx) {
949 if (i < log->entry_count - 1)
950 entries[i] = entries[log->entry_count - 1];
951 log->entry_count--;
952 } else {
953 i++;
954 }
955 }
956}
957
c07a5a4f
TM
958/* clear given bad block */
959static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
960 long long sector, const int length) {
961 __u32 i = 0;
962
963 while (i < log->entry_count) {
964 struct bbm_log_entry *entries = log->marked_block_entries;
965
966 if ((entries[i].disk_ordinal == idx) &&
967 (__le48_to_cpu(&entries[i].defective_block_start) ==
968 sector) && (entries[i].marked_count + 1 == length)) {
969 if (i < log->entry_count - 1)
970 entries[i] = entries[log->entry_count - 1];
971 log->entry_count--;
972 break;
973 }
974 i++;
975 }
976
977 return 1;
978}
8d67477f
TM
979
980/* allocate and load BBM log from metadata */
981static int load_bbm_log(struct intel_super *super)
982{
983 struct imsm_super *mpb = super->anchor;
984 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
985
986 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
987 if (!super->bbm_log)
988 return 1;
989
990 if (bbm_log_size) {
991 struct bbm_log *log = (void *)mpb +
992 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
993
994 __u32 entry_count;
995
996 if (bbm_log_size < sizeof(log->signature) +
997 sizeof(log->entry_count))
998 return 2;
999
1000 entry_count = __le32_to_cpu(log->entry_count);
1001 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1002 (entry_count > BBM_LOG_MAX_ENTRIES))
1003 return 3;
1004
1005 if (bbm_log_size !=
1006 sizeof(log->signature) + sizeof(log->entry_count) +
1007 entry_count * sizeof(struct bbm_log_entry))
1008 return 4;
1009
1010 memcpy(super->bbm_log, log, bbm_log_size);
1011 } else {
1012 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1013 super->bbm_log->entry_count = 0;
1014 }
1015
1016 return 0;
1017}
1018
b12796be
TM
1019/* checks if bad block is within volume boundaries */
1020static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1021 const unsigned long long start_sector,
1022 const unsigned long long size)
1023{
1024 unsigned long long bb_start;
1025 unsigned long long bb_end;
1026
1027 bb_start = __le48_to_cpu(&entry->defective_block_start);
1028 bb_end = bb_start + (entry->marked_count + 1);
1029
1030 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1031 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1032 return 1;
1033
1034 return 0;
1035}
1036
1037/* get list of bad blocks on a drive for a volume */
1038static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1039 const unsigned long long start_sector,
1040 const unsigned long long size,
1041 struct md_bb *bbs)
1042{
1043 __u32 count = 0;
1044 __u32 i;
1045
1046 for (i = 0; i < log->entry_count; i++) {
1047 const struct bbm_log_entry *ent =
1048 &log->marked_block_entries[i];
1049 struct md_bb_entry *bb;
1050
1051 if ((ent->disk_ordinal == idx) &&
1052 is_bad_block_in_volume(ent, start_sector, size)) {
1053
1054 if (!bbs->entries) {
1055 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1056 sizeof(*bb));
1057 if (!bbs->entries)
1058 break;
1059 }
1060
1061 bb = &bbs->entries[count++];
1062 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1063 bb->length = ent->marked_count + 1;
1064 }
1065 }
1066 bbs->count = count;
1067}
1068
98130f40
AK
1069/*
1070 * for second_map:
238c0a71
AK
1071 * == MAP_0 get first map
1072 * == MAP_1 get second map
1073 * == MAP_X than get map according to the current migr_state
98130f40
AK
1074 */
1075static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1076 int slot,
1077 int second_map)
7eef0453
DW
1078{
1079 struct imsm_map *map;
1080
5e7b0330 1081 map = get_imsm_map(dev, second_map);
7eef0453 1082
ff077194
DW
1083 /* top byte identifies disk under rebuild */
1084 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1085}
1086
1087#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1088static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1089{
98130f40 1090 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1091
1092 return ord_to_idx(ord);
7eef0453
DW
1093}
1094
be73972f
DW
1095static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1096{
1097 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1098}
1099
f21e18ca 1100static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1101{
1102 int slot;
1103 __u32 ord;
1104
1105 for (slot = 0; slot < map->num_members; slot++) {
1106 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1107 if (ord_to_idx(ord) == idx)
1108 return slot;
1109 }
1110
1111 return -1;
1112}
1113
cdddbdbc
DW
1114static int get_imsm_raid_level(struct imsm_map *map)
1115{
1116 if (map->raid_level == 1) {
1117 if (map->num_members == 2)
1118 return 1;
1119 else
1120 return 10;
1121 }
1122
1123 return map->raid_level;
1124}
1125
c2c087e6
DW
1126static int cmp_extent(const void *av, const void *bv)
1127{
1128 const struct extent *a = av;
1129 const struct extent *b = bv;
1130 if (a->start < b->start)
1131 return -1;
1132 if (a->start > b->start)
1133 return 1;
1134 return 0;
1135}
1136
0dcecb2e 1137static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1138{
c2c087e6 1139 int memberships = 0;
620b1713 1140 int i;
c2c087e6 1141
949c47a0
DW
1142 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1143 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1144 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1145
620b1713
DW
1146 if (get_imsm_disk_slot(map, dl->index) >= 0)
1147 memberships++;
c2c087e6 1148 }
0dcecb2e
DW
1149
1150 return memberships;
1151}
1152
b81221b7
CA
1153static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1154
5551b113
CA
1155static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1156{
1157 if (lo == 0 || hi == 0)
1158 return 1;
1159 *lo = __le32_to_cpu((unsigned)n);
1160 *hi = __le32_to_cpu((unsigned)(n >> 32));
1161 return 0;
1162}
1163
1164static unsigned long long join_u32(__u32 lo, __u32 hi)
1165{
1166 return (unsigned long long)__le32_to_cpu(lo) |
1167 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1168}
1169
1170static unsigned long long total_blocks(struct imsm_disk *disk)
1171{
1172 if (disk == NULL)
1173 return 0;
1174 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1175}
1176
1177static unsigned long long pba_of_lba0(struct imsm_map *map)
1178{
1179 if (map == NULL)
1180 return 0;
1181 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1182}
1183
1184static unsigned long long blocks_per_member(struct imsm_map *map)
1185{
1186 if (map == NULL)
1187 return 0;
1188 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1189}
1190
1191static unsigned long long num_data_stripes(struct imsm_map *map)
1192{
1193 if (map == NULL)
1194 return 0;
1195 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1196}
1197
1198static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1199{
1200 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1201}
1202
1203static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1204{
1205 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1206}
1207
1208static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1209{
1210 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1211}
1212
1213static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1214{
1215 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1216}
1217
0dcecb2e
DW
1218static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1219{
1220 /* find a list of used extents on the given physical device */
1221 struct extent *rv, *e;
620b1713 1222 int i;
0dcecb2e 1223 int memberships = count_memberships(dl, super);
b276dd33
DW
1224 __u32 reservation;
1225
1226 /* trim the reserved area for spares, so they can join any array
1227 * regardless of whether the OROM has assigned sectors from the
1228 * IMSM_RESERVED_SECTORS region
1229 */
1230 if (dl->index == -1)
b81221b7 1231 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1232 else
1233 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1234
503975b9 1235 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1236 e = rv;
1237
949c47a0
DW
1238 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1239 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1240 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1241
620b1713 1242 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
1243 e->start = pba_of_lba0(map);
1244 e->size = blocks_per_member(map);
620b1713 1245 e++;
c2c087e6
DW
1246 }
1247 }
1248 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1249
1011e834 1250 /* determine the start of the metadata
14e8215b
DW
1251 * when no raid devices are defined use the default
1252 * ...otherwise allow the metadata to truncate the value
1253 * as is the case with older versions of imsm
1254 */
1255 if (memberships) {
1256 struct extent *last = &rv[memberships - 1];
5551b113 1257 unsigned long long remainder;
14e8215b 1258
5551b113 1259 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1260 /* round down to 1k block to satisfy precision of the kernel
1261 * 'size' interface
1262 */
1263 remainder &= ~1UL;
1264 /* make sure remainder is still sane */
f21e18ca 1265 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1266 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1267 if (reservation > remainder)
1268 reservation = remainder;
1269 }
5551b113 1270 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1271 e->size = 0;
1272 return rv;
1273}
1274
14e8215b
DW
1275/* try to determine how much space is reserved for metadata from
1276 * the last get_extents() entry, otherwise fallback to the
1277 * default
1278 */
1279static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1280{
1281 struct extent *e;
1282 int i;
1283 __u32 rv;
1284
1285 /* for spares just return a minimal reservation which will grow
1286 * once the spare is picked up by an array
1287 */
1288 if (dl->index == -1)
1289 return MPB_SECTOR_CNT;
1290
1291 e = get_extents(super, dl);
1292 if (!e)
1293 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1294
1295 /* scroll to last entry */
1296 for (i = 0; e[i].size; i++)
1297 continue;
1298
5551b113 1299 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1300
1301 free(e);
1302
1303 return rv;
1304}
1305
25ed7e59
DW
1306static int is_spare(struct imsm_disk *disk)
1307{
1308 return (disk->status & SPARE_DISK) == SPARE_DISK;
1309}
1310
1311static int is_configured(struct imsm_disk *disk)
1312{
1313 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1314}
1315
1316static int is_failed(struct imsm_disk *disk)
1317{
1318 return (disk->status & FAILED_DISK) == FAILED_DISK;
1319}
1320
2432ce9b
AP
1321static int is_journal(struct imsm_disk *disk)
1322{
1323 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1324}
1325
b53bfba6
TM
1326/* round array size down to closest MB and ensure it splits evenly
1327 * between members
1328 */
1329static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1330 disk_count)
1331{
1332 size /= disk_count;
1333 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1334 size *= disk_count;
1335
1336 return size;
1337}
1338
b81221b7
CA
1339/* try to determine how much space is reserved for metadata from
1340 * the last get_extents() entry on the smallest active disk,
1341 * otherwise fallback to the default
1342 */
1343static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1344{
1345 struct extent *e;
1346 int i;
5551b113
CA
1347 unsigned long long min_active;
1348 __u32 remainder;
b81221b7
CA
1349 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1350 struct dl *dl, *dl_min = NULL;
1351
1352 if (!super)
1353 return rv;
1354
1355 min_active = 0;
1356 for (dl = super->disks; dl; dl = dl->next) {
1357 if (dl->index < 0)
1358 continue;
5551b113
CA
1359 unsigned long long blocks = total_blocks(&dl->disk);
1360 if (blocks < min_active || min_active == 0) {
b81221b7 1361 dl_min = dl;
5551b113 1362 min_active = blocks;
b81221b7
CA
1363 }
1364 }
1365 if (!dl_min)
1366 return rv;
1367
1368 /* find last lba used by subarrays on the smallest active disk */
1369 e = get_extents(super, dl_min);
1370 if (!e)
1371 return rv;
1372 for (i = 0; e[i].size; i++)
1373 continue;
1374
1375 remainder = min_active - e[i].start;
1376 free(e);
1377
1378 /* to give priority to recovery we should not require full
1379 IMSM_RESERVED_SECTORS from the spare */
1380 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1381
1382 /* if real reservation is smaller use that value */
1383 return (remainder < rv) ? remainder : rv;
1384}
1385
80e7f8c3
AC
1386/* Return minimum size of a spare that can be used in this array*/
1387static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1388{
1389 struct intel_super *super = st->sb;
1390 struct dl *dl;
1391 struct extent *e;
1392 int i;
1393 unsigned long long rv = 0;
1394
1395 if (!super)
1396 return rv;
1397 /* find first active disk in array */
1398 dl = super->disks;
1399 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1400 dl = dl->next;
1401 if (!dl)
1402 return rv;
1403 /* find last lba used by subarrays */
1404 e = get_extents(super, dl);
1405 if (!e)
1406 return rv;
1407 for (i = 0; e[i].size; i++)
1408 continue;
1409 if (i > 0)
1410 rv = e[i-1].start + e[i-1].size;
1411 free(e);
b81221b7 1412
80e7f8c3 1413 /* add the amount of space needed for metadata */
b81221b7
CA
1414 rv = rv + imsm_min_reserved_sectors(super);
1415
80e7f8c3
AC
1416 return rv * 512;
1417}
1418
d1e02575
AK
1419static int is_gen_migration(struct imsm_dev *dev);
1420
f36a9ecd
PB
1421#define IMSM_4K_DIV 8
1422
c47b0ff6
AK
1423static __u64 blocks_per_migr_unit(struct intel_super *super,
1424 struct imsm_dev *dev);
1e5c6983 1425
c47b0ff6
AK
1426static void print_imsm_dev(struct intel_super *super,
1427 struct imsm_dev *dev,
1428 char *uuid,
1429 int disk_idx)
cdddbdbc
DW
1430{
1431 __u64 sz;
0d80bb2f 1432 int slot, i;
238c0a71
AK
1433 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1434 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1435 __u32 ord;
cdddbdbc
DW
1436
1437 printf("\n");
1e7bc0ed 1438 printf("[%.16s]:\n", dev->volume);
44470971 1439 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1440 printf(" RAID Level : %d", get_imsm_raid_level(map));
1441 if (map2)
1442 printf(" <-- %d", get_imsm_raid_level(map2));
1443 printf("\n");
1444 printf(" Members : %d", map->num_members);
1445 if (map2)
1446 printf(" <-- %d", map2->num_members);
1447 printf("\n");
0d80bb2f
DW
1448 printf(" Slots : [");
1449 for (i = 0; i < map->num_members; i++) {
238c0a71 1450 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1451 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1452 }
dd8bcb3b
AK
1453 printf("]");
1454 if (map2) {
1455 printf(" <-- [");
1456 for (i = 0; i < map2->num_members; i++) {
238c0a71 1457 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1458 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1459 }
1460 printf("]");
1461 }
1462 printf("\n");
7095bccb
AK
1463 printf(" Failed disk : ");
1464 if (map->failed_disk_num == 0xff)
1465 printf("none");
1466 else
1467 printf("%i", map->failed_disk_num);
1468 printf("\n");
620b1713
DW
1469 slot = get_imsm_disk_slot(map, disk_idx);
1470 if (slot >= 0) {
238c0a71 1471 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1472 printf(" This Slot : %d%s\n", slot,
1473 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1474 } else
cdddbdbc
DW
1475 printf(" This Slot : ?\n");
1476 sz = __le32_to_cpu(dev->size_high);
1477 sz <<= 32;
1478 sz += __le32_to_cpu(dev->size_low);
1479 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1480 human_size(sz * 512));
5551b113 1481 sz = blocks_per_member(map);
cdddbdbc
DW
1482 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1483 human_size(sz * 512));
5551b113
CA
1484 printf(" Sector Offset : %llu\n",
1485 pba_of_lba0(map));
1486 printf(" Num Stripes : %llu\n",
1487 num_data_stripes(map));
dd8bcb3b 1488 printf(" Chunk Size : %u KiB",
cdddbdbc 1489 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1490 if (map2)
1491 printf(" <-- %u KiB",
1492 __le16_to_cpu(map2->blocks_per_strip) / 2);
1493 printf("\n");
cdddbdbc 1494 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1495 printf(" Migrate State : ");
1484e727
DW
1496 if (dev->vol.migr_state) {
1497 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1498 printf("initialize\n");
1484e727 1499 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1500 printf("rebuild\n");
1484e727 1501 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1502 printf("check\n");
1484e727 1503 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1504 printf("general migration\n");
1484e727 1505 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1506 printf("state change\n");
1484e727 1507 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1508 printf("repair\n");
1484e727 1509 else
8655a7b1
DW
1510 printf("<unknown:%d>\n", migr_type(dev));
1511 } else
1512 printf("idle\n");
3393c6af
DW
1513 printf(" Map State : %s", map_state_str[map->map_state]);
1514 if (dev->vol.migr_state) {
238c0a71 1515 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1516
b10b37b8 1517 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1518 printf("\n Checkpoint : %u ",
1519 __le32_to_cpu(dev->vol.curr_migr_unit));
089f9d79 1520 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1521 printf("(N/A)");
1522 else
1523 printf("(%llu)", (unsigned long long)
1524 blocks_per_migr_unit(super, dev));
3393c6af
DW
1525 }
1526 printf("\n");
2432ce9b
AP
1527 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1528 "dirty" : "clean");
1529 printf(" RWH Policy : ");
1530 if (dev->rwh_policy == RWH_OFF)
1531 printf("off\n");
1532 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1533 printf("PPL distributed\n");
1534 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1535 printf("PPL journaling drive\n");
1536 else
1537 printf("<unknown:%d>\n", dev->rwh_policy);
cdddbdbc
DW
1538}
1539
ef5c214e
MK
1540static void print_imsm_disk(struct imsm_disk *disk,
1541 int index,
1542 __u32 reserved,
1543 unsigned int sector_size) {
1f24f035 1544 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1545 __u64 sz;
1546
0ec1f4e8 1547 if (index < -1 || !disk)
e9d82038
DW
1548 return;
1549
cdddbdbc 1550 printf("\n");
1f24f035 1551 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1552 if (index >= 0)
1553 printf(" Disk%02d Serial : %s\n", index, str);
1554 else
1555 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1556 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1557 is_configured(disk) ? " active" : "",
1558 is_failed(disk) ? " failed" : "",
1559 is_journal(disk) ? " journal" : "");
cdddbdbc 1560 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1561 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1562 printf(" Usable Size : %llu%s\n",
1563 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1564 human_size(sz * 512));
1565}
1566
de44e46f
PB
1567void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1568{
1569 struct migr_record *migr_rec = super->migr_rec;
1570
1571 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1572 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1573 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1574 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1575 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1576 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1577 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1578}
1579
f36a9ecd
PB
1580void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1581{
1582 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1583}
1584
1585void convert_to_4k(struct intel_super *super)
1586{
1587 struct imsm_super *mpb = super->anchor;
1588 struct imsm_disk *disk;
1589 int i;
e4467bc7 1590 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1591
1592 for (i = 0; i < mpb->num_disks ; i++) {
1593 disk = __get_imsm_disk(mpb, i);
1594 /* disk */
1595 convert_to_4k_imsm_disk(disk);
1596 }
1597 for (i = 0; i < mpb->num_raid_devs; i++) {
1598 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1599 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1600 /* dev */
1601 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1602 &dev->size_low, &dev->size_high);
1603 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1604
1605 /* map0 */
1606 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1607 map->blocks_per_strip /= IMSM_4K_DIV;
1608 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1609
1610 if (dev->vol.migr_state) {
1611 /* map1 */
1612 map = get_imsm_map(dev, MAP_1);
1613 set_blocks_per_member(map,
1614 blocks_per_member(map)/IMSM_4K_DIV);
1615 map->blocks_per_strip /= IMSM_4K_DIV;
1616 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1617 }
1618 }
e4467bc7
TM
1619 if (bbm_log_size) {
1620 struct bbm_log *log = (void *)mpb +
1621 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1622 __u32 i;
1623
1624 for (i = 0; i < log->entry_count; i++) {
1625 struct bbm_log_entry *entry =
1626 &log->marked_block_entries[i];
1627
1628 __u8 count = entry->marked_count + 1;
1629 unsigned long long sector =
1630 __le48_to_cpu(&entry->defective_block_start);
1631
1632 entry->defective_block_start =
1633 __cpu_to_le48(sector/IMSM_4K_DIV);
1634 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1635 }
1636 }
f36a9ecd
PB
1637
1638 mpb->check_sum = __gen_imsm_checksum(mpb);
1639}
1640
520e69e2
AK
1641void examine_migr_rec_imsm(struct intel_super *super)
1642{
1643 struct migr_record *migr_rec = super->migr_rec;
1644 struct imsm_super *mpb = super->anchor;
1645 int i;
1646
1647 for (i = 0; i < mpb->num_raid_devs; i++) {
1648 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1649 struct imsm_map *map;
b4ab44d8 1650 int slot = -1;
3136abe5 1651
520e69e2
AK
1652 if (is_gen_migration(dev) == 0)
1653 continue;
1654
1655 printf("\nMigration Record Information:");
3136abe5 1656
44bfe6df
AK
1657 /* first map under migration */
1658 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1659 if (map)
1660 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1661 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1662 printf(" Empty\n ");
1663 printf("Examine one of first two disks in array\n");
1664 break;
1665 }
1666 printf("\n Status : ");
1667 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1668 printf("Normal\n");
1669 else
1670 printf("Contains Data\n");
1671 printf(" Current Unit : %u\n",
1672 __le32_to_cpu(migr_rec->curr_migr_unit));
1673 printf(" Family : %u\n",
1674 __le32_to_cpu(migr_rec->family_num));
1675 printf(" Ascending : %u\n",
1676 __le32_to_cpu(migr_rec->ascending_migr));
1677 printf(" Blocks Per Unit : %u\n",
1678 __le32_to_cpu(migr_rec->blocks_per_unit));
1679 printf(" Dest. Depth Per Unit : %u\n",
1680 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1681 printf(" Checkpoint Area pba : %u\n",
1682 __le32_to_cpu(migr_rec->ckpt_area_pba));
1683 printf(" First member lba : %u\n",
1684 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1685 printf(" Total Number of Units : %u\n",
1686 __le32_to_cpu(migr_rec->num_migr_units));
1687 printf(" Size of volume : %u\n",
1688 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1689 printf(" Expansion space for LBA64 : %u\n",
1690 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1691 printf(" Record was read from : %u\n",
1692 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1693
1694 break;
1695 }
1696}
f36a9ecd 1697
de44e46f
PB
1698void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1699{
1700 struct migr_record *migr_rec = super->migr_rec;
1701
1702 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1703 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1704 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1705 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1706 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1707 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1708 &migr_rec->post_migr_vol_cap,
1709 &migr_rec->post_migr_vol_cap_hi);
1710}
1711
f36a9ecd
PB
1712void convert_from_4k(struct intel_super *super)
1713{
1714 struct imsm_super *mpb = super->anchor;
1715 struct imsm_disk *disk;
1716 int i;
e4467bc7 1717 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1718
1719 for (i = 0; i < mpb->num_disks ; i++) {
1720 disk = __get_imsm_disk(mpb, i);
1721 /* disk */
1722 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1723 }
1724
1725 for (i = 0; i < mpb->num_raid_devs; i++) {
1726 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1727 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1728 /* dev */
1729 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1730 &dev->size_low, &dev->size_high);
1731 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1732
1733 /* map0 */
1734 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1735 map->blocks_per_strip *= IMSM_4K_DIV;
1736 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1737
1738 if (dev->vol.migr_state) {
1739 /* map1 */
1740 map = get_imsm_map(dev, MAP_1);
1741 set_blocks_per_member(map,
1742 blocks_per_member(map)*IMSM_4K_DIV);
1743 map->blocks_per_strip *= IMSM_4K_DIV;
1744 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1745 }
1746 }
e4467bc7
TM
1747 if (bbm_log_size) {
1748 struct bbm_log *log = (void *)mpb +
1749 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1750 __u32 i;
1751
1752 for (i = 0; i < log->entry_count; i++) {
1753 struct bbm_log_entry *entry =
1754 &log->marked_block_entries[i];
1755
1756 __u8 count = entry->marked_count + 1;
1757 unsigned long long sector =
1758 __le48_to_cpu(&entry->defective_block_start);
1759
1760 entry->defective_block_start =
1761 __cpu_to_le48(sector*IMSM_4K_DIV);
1762 entry->marked_count = count*IMSM_4K_DIV - 1;
1763 }
1764 }
f36a9ecd
PB
1765
1766 mpb->check_sum = __gen_imsm_checksum(mpb);
1767}
1768
19482bcc
AK
1769/*******************************************************************************
1770 * function: imsm_check_attributes
1771 * Description: Function checks if features represented by attributes flags
1011e834 1772 * are supported by mdadm.
19482bcc
AK
1773 * Parameters:
1774 * attributes - Attributes read from metadata
1775 * Returns:
1011e834
N
1776 * 0 - passed attributes contains unsupported features flags
1777 * 1 - all features are supported
19482bcc
AK
1778 ******************************************************************************/
1779static int imsm_check_attributes(__u32 attributes)
1780{
1781 int ret_val = 1;
418f9b36
N
1782 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1783
1784 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1785
1786 not_supported &= attributes;
1787 if (not_supported) {
e7b84f9d 1788 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1789 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1790 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1791 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1792 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1793 }
1794 if (not_supported & MPB_ATTRIB_2TB) {
1795 dprintf("\t\tMPB_ATTRIB_2TB\n");
1796 not_supported ^= MPB_ATTRIB_2TB;
1797 }
1798 if (not_supported & MPB_ATTRIB_RAID0) {
1799 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1800 not_supported ^= MPB_ATTRIB_RAID0;
1801 }
1802 if (not_supported & MPB_ATTRIB_RAID1) {
1803 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1804 not_supported ^= MPB_ATTRIB_RAID1;
1805 }
1806 if (not_supported & MPB_ATTRIB_RAID10) {
1807 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1808 not_supported ^= MPB_ATTRIB_RAID10;
1809 }
1810 if (not_supported & MPB_ATTRIB_RAID1E) {
1811 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1812 not_supported ^= MPB_ATTRIB_RAID1E;
1813 }
1814 if (not_supported & MPB_ATTRIB_RAID5) {
1815 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1816 not_supported ^= MPB_ATTRIB_RAID5;
1817 }
1818 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1819 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1820 not_supported ^= MPB_ATTRIB_RAIDCNG;
1821 }
1822 if (not_supported & MPB_ATTRIB_BBM) {
1823 dprintf("\t\tMPB_ATTRIB_BBM\n");
1824 not_supported ^= MPB_ATTRIB_BBM;
1825 }
1826 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1827 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1828 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1829 }
1830 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1831 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1832 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1833 }
1834 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1835 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1836 not_supported ^= MPB_ATTRIB_2TB_DISK;
1837 }
1838 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1839 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1840 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1841 }
1842 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1843 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1844 not_supported ^= MPB_ATTRIB_NEVER_USE;
1845 }
1846
1847 if (not_supported)
1ade5cc1 1848 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1849
1850 ret_val = 0;
1851 }
1852
1853 return ret_val;
1854}
1855
a5d85af7 1856static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1857
cdddbdbc
DW
1858static void examine_super_imsm(struct supertype *st, char *homehost)
1859{
1860 struct intel_super *super = st->sb;
949c47a0 1861 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1862 char str[MAX_SIGNATURE_LENGTH];
1863 int i;
27fd6274
DW
1864 struct mdinfo info;
1865 char nbuf[64];
cdddbdbc 1866 __u32 sum;
14e8215b 1867 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1868 struct dl *dl;
27fd6274 1869
618f4e6d
XN
1870 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1871 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc
DW
1872 printf(" Magic : %s\n", str);
1873 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1874 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1875 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1876 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1877 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1878 printf(" Attributes : ");
1879 if (imsm_check_attributes(mpb->attributes))
1880 printf("All supported\n");
1881 else
1882 printf("not supported\n");
a5d85af7 1883 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1884 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1885 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1886 sum = __le32_to_cpu(mpb->check_sum);
1887 printf(" Checksum : %08x %s\n", sum,
949c47a0 1888 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 1889 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
1890 printf(" Disks : %d\n", mpb->num_disks);
1891 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
1892 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1893 super->disks->index, reserved, super->sector_size);
8d67477f 1894 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
1895 struct bbm_log *log = super->bbm_log;
1896
1897 printf("\n");
1898 printf("Bad Block Management Log:\n");
1899 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1900 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1901 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 1902 }
44470971
DW
1903 for (i = 0; i < mpb->num_raid_devs; i++) {
1904 struct mdinfo info;
1905 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1906
1907 super->current_vol = i;
a5d85af7 1908 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1909 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1910 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1911 }
cdddbdbc
DW
1912 for (i = 0; i < mpb->num_disks; i++) {
1913 if (i == super->disks->index)
1914 continue;
ef5c214e
MK
1915 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1916 super->sector_size);
cdddbdbc 1917 }
94827db3 1918
0ec1f4e8
DW
1919 for (dl = super->disks; dl; dl = dl->next)
1920 if (dl->index == -1)
ef5c214e
MK
1921 print_imsm_disk(&dl->disk, -1, reserved,
1922 super->sector_size);
520e69e2
AK
1923
1924 examine_migr_rec_imsm(super);
cdddbdbc
DW
1925}
1926
061f2c6a 1927static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1928{
27fd6274 1929 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1930 struct mdinfo info;
1931 char nbuf[64];
1e7bc0ed 1932 struct intel_super *super = st->sb;
1e7bc0ed 1933
0d5a423f
DW
1934 if (!super->anchor->num_raid_devs) {
1935 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1936 return;
0d5a423f 1937 }
ff54de6e 1938
a5d85af7 1939 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1940 fname_from_uuid(st, &info, nbuf, ':');
1941 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1942}
1943
1944static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1945{
1946 /* We just write a generic IMSM ARRAY entry */
1947 struct mdinfo info;
1948 char nbuf[64];
1949 char nbuf1[64];
1950 struct intel_super *super = st->sb;
1951 int i;
1952
1953 if (!super->anchor->num_raid_devs)
1954 return;
1955
a5d85af7 1956 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1957 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1958 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1959 struct imsm_dev *dev = get_imsm_dev(super, i);
1960
1961 super->current_vol = i;
a5d85af7 1962 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1963 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1964 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1965 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1966 }
cdddbdbc
DW
1967}
1968
9d84c8ea
DW
1969static void export_examine_super_imsm(struct supertype *st)
1970{
1971 struct intel_super *super = st->sb;
1972 struct imsm_super *mpb = super->anchor;
1973 struct mdinfo info;
1974 char nbuf[64];
1975
a5d85af7 1976 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1977 fname_from_uuid(st, &info, nbuf, ':');
1978 printf("MD_METADATA=imsm\n");
1979 printf("MD_LEVEL=container\n");
1980 printf("MD_UUID=%s\n", nbuf+5);
1981 printf("MD_DEVICES=%u\n", mpb->num_disks);
1982}
1983
74db60b0
N
1984static int copy_metadata_imsm(struct supertype *st, int from, int to)
1985{
f36a9ecd 1986 /* The second last sector of the device contains
74db60b0
N
1987 * the "struct imsm_super" metadata.
1988 * This contains mpb_size which is the size in bytes of the
1989 * extended metadata. This is located immediately before
1990 * the imsm_super.
1991 * We want to read all that, plus the last sector which
1992 * may contain a migration record, and write it all
1993 * to the target.
1994 */
1995 void *buf;
1996 unsigned long long dsize, offset;
1997 int sectors;
1998 struct imsm_super *sb;
f36a9ecd
PB
1999 struct intel_super *super = st->sb;
2000 unsigned int sector_size = super->sector_size;
2001 unsigned int written = 0;
74db60b0 2002
de44e46f 2003 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
74db60b0
N
2004 return 1;
2005
2006 if (!get_dev_size(from, NULL, &dsize))
2007 goto err;
2008
f36a9ecd 2009 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
74db60b0 2010 goto err;
466070ad 2011 if ((unsigned int)read(from, buf, sector_size) != sector_size)
74db60b0
N
2012 goto err;
2013 sb = buf;
2014 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2015 goto err;
2016
f36a9ecd
PB
2017 sectors = mpb_sectors(sb, sector_size) + 2;
2018 offset = dsize - sectors * sector_size;
74db60b0
N
2019 if (lseek64(from, offset, 0) < 0 ||
2020 lseek64(to, offset, 0) < 0)
2021 goto err;
f36a9ecd
PB
2022 while (written < sectors * sector_size) {
2023 int n = sectors*sector_size - written;
74db60b0
N
2024 if (n > 4096)
2025 n = 4096;
2026 if (read(from, buf, n) != n)
2027 goto err;
2028 if (write(to, buf, n) != n)
2029 goto err;
2030 written += n;
2031 }
2032 free(buf);
2033 return 0;
2034err:
2035 free(buf);
2036 return 1;
2037}
2038
cdddbdbc
DW
2039static void detail_super_imsm(struct supertype *st, char *homehost)
2040{
3ebe00a1
DW
2041 struct mdinfo info;
2042 char nbuf[64];
2043
a5d85af7 2044 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2045 fname_from_uuid(st, &info, nbuf, ':');
65884368 2046 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2047}
2048
2049static void brief_detail_super_imsm(struct supertype *st)
2050{
ff54de6e
N
2051 struct mdinfo info;
2052 char nbuf[64];
a5d85af7 2053 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2054 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2055 printf(" UUID=%s", nbuf + 5);
cdddbdbc 2056}
d665cc31
DW
2057
2058static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2059static void fd2devname(int fd, char *name);
2060
120dc887 2061static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2062{
120dc887
LM
2063 /* dump an unsorted list of devices attached to AHCI Intel storage
2064 * controller, as well as non-connected ports
d665cc31
DW
2065 */
2066 int hba_len = strlen(hba_path) + 1;
2067 struct dirent *ent;
2068 DIR *dir;
2069 char *path = NULL;
2070 int err = 0;
2071 unsigned long port_mask = (1 << port_count) - 1;
2072
f21e18ca 2073 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2074 if (verbose > 0)
e7b84f9d 2075 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2076 return 2;
2077 }
2078
2079 /* scroll through /sys/dev/block looking for devices attached to
2080 * this hba
2081 */
2082 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2083 if (!dir)
2084 return 1;
2085
2086 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2087 int fd;
2088 char model[64];
2089 char vendor[64];
2090 char buf[1024];
2091 int major, minor;
2092 char *device;
2093 char *c;
2094 int port;
2095 int type;
2096
2097 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2098 continue;
2099 path = devt_to_devpath(makedev(major, minor));
2100 if (!path)
2101 continue;
2102 if (!path_attached_to_hba(path, hba_path)) {
2103 free(path);
2104 path = NULL;
2105 continue;
2106 }
2107
2108 /* retrieve the scsi device type */
2109 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 2110 if (verbose > 0)
e7b84f9d 2111 pr_err("failed to allocate 'device'\n");
d665cc31
DW
2112 err = 2;
2113 break;
2114 }
2115 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 2116 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 2117 if (verbose > 0)
e7b84f9d 2118 pr_err("failed to read device type for %s\n",
d665cc31
DW
2119 path);
2120 err = 2;
2121 free(device);
2122 break;
2123 }
2124 type = strtoul(buf, NULL, 10);
2125
2126 /* if it's not a disk print the vendor and model */
2127 if (!(type == 0 || type == 7 || type == 14)) {
2128 vendor[0] = '\0';
2129 model[0] = '\0';
2130 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 2131 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2132 strncpy(vendor, buf, sizeof(vendor));
2133 vendor[sizeof(vendor) - 1] = '\0';
2134 c = (char *) &vendor[sizeof(vendor) - 1];
2135 while (isspace(*c) || *c == '\0')
2136 *c-- = '\0';
2137
2138 }
2139 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 2140 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2141 strncpy(model, buf, sizeof(model));
2142 model[sizeof(model) - 1] = '\0';
2143 c = (char *) &model[sizeof(model) - 1];
2144 while (isspace(*c) || *c == '\0')
2145 *c-- = '\0';
2146 }
2147
2148 if (vendor[0] && model[0])
2149 sprintf(buf, "%.64s %.64s", vendor, model);
2150 else
2151 switch (type) { /* numbers from hald/linux/device.c */
2152 case 1: sprintf(buf, "tape"); break;
2153 case 2: sprintf(buf, "printer"); break;
2154 case 3: sprintf(buf, "processor"); break;
2155 case 4:
2156 case 5: sprintf(buf, "cdrom"); break;
2157 case 6: sprintf(buf, "scanner"); break;
2158 case 8: sprintf(buf, "media_changer"); break;
2159 case 9: sprintf(buf, "comm"); break;
2160 case 12: sprintf(buf, "raid"); break;
2161 default: sprintf(buf, "unknown");
2162 }
2163 } else
2164 buf[0] = '\0';
2165 free(device);
2166
2167 /* chop device path to 'host%d' and calculate the port number */
2168 c = strchr(&path[hba_len], '/');
4e5e717d 2169 if (!c) {
ba728be7 2170 if (verbose > 0)
e7b84f9d 2171 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2172 err = 2;
2173 break;
2174 }
d665cc31 2175 *c = '\0';
0858eccf
AP
2176 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2177 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2178 port -= host_base;
2179 else {
ba728be7 2180 if (verbose > 0) {
d665cc31 2181 *c = '/'; /* repair the full string */
e7b84f9d 2182 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2183 path);
2184 }
2185 err = 2;
2186 break;
2187 }
2188
2189 /* mark this port as used */
2190 port_mask &= ~(1 << port);
2191
2192 /* print out the device information */
2193 if (buf[0]) {
2194 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2195 continue;
2196 }
2197
2198 fd = dev_open(ent->d_name, O_RDONLY);
2199 if (fd < 0)
2200 printf(" Port%d : - disk info unavailable -\n", port);
2201 else {
2202 fd2devname(fd, buf);
2203 printf(" Port%d : %s", port, buf);
2204 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 2205 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 2206 else
664d5325 2207 printf(" ()\n");
4dab422a 2208 close(fd);
d665cc31 2209 }
d665cc31
DW
2210 free(path);
2211 path = NULL;
2212 }
2213 if (path)
2214 free(path);
2215 if (dir)
2216 closedir(dir);
2217 if (err == 0) {
2218 int i;
2219
2220 for (i = 0; i < port_count; i++)
2221 if (port_mask & (1 << i))
2222 printf(" Port%d : - no device attached -\n", i);
2223 }
2224
2225 return err;
2226}
2227
b5eece69 2228static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
2229{
2230 struct dirent *ent;
2231 DIR *dir;
2232 char path[292];
2233 char link[256];
2234 char *c, *rp;
2235
2236 if (hba->type != SYS_DEV_VMD)
b5eece69 2237 return 1;
60f0f54d
PB
2238
2239 /* scroll through /sys/dev/block looking for devices attached to
2240 * this hba
2241 */
2242 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 2243 if (!dir)
b5eece69 2244 return 1;
b9135011
JS
2245
2246 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
2247 int n;
2248
2249 /* is 'ent' a device? check that the 'subsystem' link exists and
2250 * that its target matches 'bus'
2251 */
2252 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2253 ent->d_name);
2254 n = readlink(path, link, sizeof(link));
2255 if (n < 0 || n >= (int)sizeof(link))
2256 continue;
2257 link[n] = '\0';
2258 c = strrchr(link, '/');
2259 if (!c)
2260 continue;
2261 if (strncmp("pci", c+1, strlen("pci")) != 0)
2262 continue;
2263
2264 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
60f0f54d
PB
2265
2266 rp = realpath(path, NULL);
2267 if (!rp)
2268 continue;
2269
2270 if (path_attached_to_hba(rp, hba->path)) {
2271 printf(" NVMe under VMD : %s\n", rp);
2272 }
2273 free(rp);
2274 }
2275
b9135011 2276 closedir(dir);
b5eece69 2277 return 0;
60f0f54d
PB
2278}
2279
120dc887
LM
2280static void print_found_intel_controllers(struct sys_dev *elem)
2281{
2282 for (; elem; elem = elem->next) {
e7b84f9d 2283 pr_err("found Intel(R) ");
120dc887
LM
2284 if (elem->type == SYS_DEV_SATA)
2285 fprintf(stderr, "SATA ");
155cbb4c
LM
2286 else if (elem->type == SYS_DEV_SAS)
2287 fprintf(stderr, "SAS ");
0858eccf
AP
2288 else if (elem->type == SYS_DEV_NVME)
2289 fprintf(stderr, "NVMe ");
60f0f54d
PB
2290
2291 if (elem->type == SYS_DEV_VMD)
2292 fprintf(stderr, "VMD domain");
2293 else
2294 fprintf(stderr, "RAID controller");
2295
120dc887
LM
2296 if (elem->pci_id)
2297 fprintf(stderr, " at %s", elem->pci_id);
2298 fprintf(stderr, ".\n");
2299 }
2300 fflush(stderr);
2301}
2302
120dc887
LM
2303static int ahci_get_port_count(const char *hba_path, int *port_count)
2304{
2305 struct dirent *ent;
2306 DIR *dir;
2307 int host_base = -1;
2308
2309 *port_count = 0;
2310 if ((dir = opendir(hba_path)) == NULL)
2311 return -1;
2312
2313 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2314 int host;
2315
0858eccf
AP
2316 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2317 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2318 continue;
2319 if (*port_count == 0)
2320 host_base = host;
2321 else if (host < host_base)
2322 host_base = host;
2323
2324 if (host + 1 > *port_count + host_base)
2325 *port_count = host + 1 - host_base;
2326 }
2327 closedir(dir);
2328 return host_base;
2329}
2330
a891a3c2
LM
2331static void print_imsm_capability(const struct imsm_orom *orom)
2332{
0858eccf
AP
2333 printf(" Platform : Intel(R) ");
2334 if (orom->capabilities == 0 && orom->driver_features == 0)
2335 printf("Matrix Storage Manager\n");
2336 else
2337 printf("Rapid Storage Technology%s\n",
2338 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2339 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2340 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2341 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2342 printf(" RAID Levels :%s%s%s%s%s\n",
2343 imsm_orom_has_raid0(orom) ? " raid0" : "",
2344 imsm_orom_has_raid1(orom) ? " raid1" : "",
2345 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2346 imsm_orom_has_raid10(orom) ? " raid10" : "",
2347 imsm_orom_has_raid5(orom) ? " raid5" : "");
2348 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2349 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2350 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2351 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2352 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2353 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2354 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2355 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2356 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2357 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2358 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2359 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2360 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2361 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2362 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2363 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2364 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2365 printf(" 2TB volumes :%s supported\n",
2366 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2367 printf(" 2TB disks :%s supported\n",
2368 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2369 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2370 printf(" Max Volumes : %d per array, %d per %s\n",
2371 orom->vpa, orom->vphba,
2372 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2373 return;
2374}
2375
e50cf220
MN
2376static void print_imsm_capability_export(const struct imsm_orom *orom)
2377{
2378 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2379 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2380 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2381 orom->hotfix_ver, orom->build);
e50cf220
MN
2382 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2383 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2384 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2385 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2386 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2387 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2388 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2389 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2390 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2391 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2392 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2393 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2394 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2395 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2396 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2397 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2398 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2399 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2400 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2401 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2402 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2403 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2404 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2405 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2406 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2407 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2408 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2409 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2410}
2411
9eafa1de 2412static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2413{
2414 /* There are two components to imsm platform support, the ahci SATA
2415 * controller and the option-rom. To find the SATA controller we
2416 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2417 * controller with the Intel vendor id is present. This approach
2418 * allows mdadm to leverage the kernel's ahci detection logic, with the
2419 * caveat that if ahci.ko is not loaded mdadm will not be able to
2420 * detect platform raid capabilities. The option-rom resides in a
2421 * platform "Adapter ROM". We scan for its signature to retrieve the
2422 * platform capabilities. If raid support is disabled in the BIOS the
2423 * option-rom capability structure will not be available.
2424 */
d665cc31 2425 struct sys_dev *list, *hba;
d665cc31
DW
2426 int host_base = 0;
2427 int port_count = 0;
9eafa1de 2428 int result=1;
d665cc31 2429
5615172f 2430 if (enumerate_only) {
a891a3c2 2431 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2432 return 0;
a891a3c2
LM
2433 list = find_intel_devices();
2434 if (!list)
2435 return 2;
2436 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2437 if (find_imsm_capability(hba)) {
2438 result = 0;
a891a3c2
LM
2439 break;
2440 }
9eafa1de 2441 else
6b781d33 2442 result = 2;
a891a3c2 2443 }
a891a3c2 2444 return result;
5615172f
DW
2445 }
2446
155cbb4c
LM
2447 list = find_intel_devices();
2448 if (!list) {
ba728be7 2449 if (verbose > 0)
7a862a02 2450 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2451 return 2;
ba728be7 2452 } else if (verbose > 0)
155cbb4c 2453 print_found_intel_controllers(list);
d665cc31 2454
a891a3c2 2455 for (hba = list; hba; hba = hba->next) {
0858eccf 2456 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2457 continue;
0858eccf 2458 if (!find_imsm_capability(hba)) {
60f0f54d 2459 char buf[PATH_MAX];
e7b84f9d 2460 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2461 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2462 get_sys_dev_type(hba->type));
0858eccf
AP
2463 continue;
2464 }
2465 result = 0;
2466 }
2467
2468 if (controller_path && result == 1) {
2469 pr_err("no active Intel(R) RAID controller found under %s\n",
2470 controller_path);
2471 return result;
2472 }
2473
5e1d6128 2474 const struct orom_entry *entry;
0858eccf 2475
5e1d6128 2476 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2477 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2478 print_imsm_capability(&entry->orom);
32716c51
PB
2479 printf(" 3rd party NVMe :%s supported\n",
2480 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2481 for (hba = list; hba; hba = hba->next) {
2482 if (hba->type == SYS_DEV_VMD) {
2483 char buf[PATH_MAX];
60f0f54d
PB
2484 printf(" I/O Controller : %s (%s)\n",
2485 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2486 if (print_vmd_attached_devs(hba)) {
2487 if (verbose > 0)
2488 pr_err("failed to get devices attached to VMD domain.\n");
2489 result |= 2;
2490 }
60f0f54d
PB
2491 }
2492 }
07cb1e57 2493 printf("\n");
60f0f54d
PB
2494 continue;
2495 }
0858eccf 2496
60f0f54d
PB
2497 print_imsm_capability(&entry->orom);
2498 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2499 for (hba = list; hba; hba = hba->next) {
2500 if (hba->type == SYS_DEV_NVME)
2501 printf(" NVMe Device : %s\n", hba->path);
2502 }
60f0f54d 2503 printf("\n");
0858eccf
AP
2504 continue;
2505 }
2506
2507 struct devid_list *devid;
5e1d6128 2508 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2509 hba = device_by_id(devid->devid);
2510 if (!hba)
2511 continue;
2512
9eafa1de
MN
2513 printf(" I/O Controller : %s (%s)\n",
2514 hba->path, get_sys_dev_type(hba->type));
2515 if (hba->type == SYS_DEV_SATA) {
2516 host_base = ahci_get_port_count(hba->path, &port_count);
2517 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2518 if (verbose > 0)
7a862a02 2519 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2520 result |= 2;
2521 }
120dc887
LM
2522 }
2523 }
0858eccf 2524 printf("\n");
d665cc31 2525 }
155cbb4c 2526
120dc887 2527 return result;
d665cc31 2528}
e50cf220 2529
9eafa1de 2530static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2531{
e50cf220
MN
2532 struct sys_dev *list, *hba;
2533 int result=1;
2534
2535 list = find_intel_devices();
2536 if (!list) {
2537 if (verbose > 0)
2538 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2539 result = 2;
e50cf220
MN
2540 return result;
2541 }
2542
2543 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2544 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2545 continue;
60f0f54d
PB
2546 if (!find_imsm_capability(hba) && verbose > 0) {
2547 char buf[PATH_MAX];
2548 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2549 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2550 }
0858eccf 2551 else
e50cf220 2552 result = 0;
e50cf220
MN
2553 }
2554
5e1d6128 2555 const struct orom_entry *entry;
0858eccf 2556
60f0f54d
PB
2557 for (entry = orom_entries; entry; entry = entry->next) {
2558 if (entry->type == SYS_DEV_VMD) {
2559 for (hba = list; hba; hba = hba->next)
2560 print_imsm_capability_export(&entry->orom);
2561 continue;
2562 }
5e1d6128 2563 print_imsm_capability_export(&entry->orom);
60f0f54d 2564 }
0858eccf 2565
e50cf220
MN
2566 return result;
2567}
2568
cdddbdbc
DW
2569static int match_home_imsm(struct supertype *st, char *homehost)
2570{
5115ca67
DW
2571 /* the imsm metadata format does not specify any host
2572 * identification information. We return -1 since we can never
2573 * confirm nor deny whether a given array is "meant" for this
148acb7b 2574 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2575 * exclude member disks that do not belong, and we rely on
2576 * mdadm.conf to specify the arrays that should be assembled.
2577 * Auto-assembly may still pick up "foreign" arrays.
2578 */
cdddbdbc 2579
9362c1c8 2580 return -1;
cdddbdbc
DW
2581}
2582
2583static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2584{
51006d85
N
2585 /* The uuid returned here is used for:
2586 * uuid to put into bitmap file (Create, Grow)
2587 * uuid for backup header when saving critical section (Grow)
2588 * comparing uuids when re-adding a device into an array
2589 * In these cases the uuid required is that of the data-array,
2590 * not the device-set.
2591 * uuid to recognise same set when adding a missing device back
2592 * to an array. This is a uuid for the device-set.
1011e834 2593 *
51006d85
N
2594 * For each of these we can make do with a truncated
2595 * or hashed uuid rather than the original, as long as
2596 * everyone agrees.
2597 * In each case the uuid required is that of the data-array,
2598 * not the device-set.
43dad3d6 2599 */
51006d85
N
2600 /* imsm does not track uuid's so we synthesis one using sha1 on
2601 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2602 * - the orig_family_num of the container
51006d85
N
2603 * - the index number of the volume
2604 * - the 'serial' number of the volume.
2605 * Hopefully these are all constant.
2606 */
2607 struct intel_super *super = st->sb;
43dad3d6 2608
51006d85
N
2609 char buf[20];
2610 struct sha1_ctx ctx;
2611 struct imsm_dev *dev = NULL;
148acb7b 2612 __u32 family_num;
51006d85 2613
148acb7b
DW
2614 /* some mdadm versions failed to set ->orig_family_num, in which
2615 * case fall back to ->family_num. orig_family_num will be
2616 * fixed up with the first metadata update.
2617 */
2618 family_num = super->anchor->orig_family_num;
2619 if (family_num == 0)
2620 family_num = super->anchor->family_num;
51006d85 2621 sha1_init_ctx(&ctx);
92bd8f8d 2622 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2623 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2624 if (super->current_vol >= 0)
2625 dev = get_imsm_dev(super, super->current_vol);
2626 if (dev) {
2627 __u32 vol = super->current_vol;
2628 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2629 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2630 }
2631 sha1_finish_ctx(&ctx, buf);
2632 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2633}
2634
0d481d37 2635#if 0
4f5bc454
DW
2636static void
2637get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2638{
cdddbdbc
DW
2639 __u8 *v = get_imsm_version(mpb);
2640 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2641 char major[] = { 0, 0, 0 };
2642 char minor[] = { 0 ,0, 0 };
2643 char patch[] = { 0, 0, 0 };
2644 char *ver_parse[] = { major, minor, patch };
2645 int i, j;
2646
2647 i = j = 0;
2648 while (*v != '\0' && v < end) {
2649 if (*v != '.' && j < 2)
2650 ver_parse[i][j++] = *v;
2651 else {
2652 i++;
2653 j = 0;
2654 }
2655 v++;
2656 }
2657
4f5bc454
DW
2658 *m = strtol(minor, NULL, 0);
2659 *p = strtol(patch, NULL, 0);
2660}
0d481d37 2661#endif
4f5bc454 2662
1e5c6983
DW
2663static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2664{
2665 /* migr_strip_size when repairing or initializing parity */
238c0a71 2666 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2667 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2668
2669 switch (get_imsm_raid_level(map)) {
2670 case 5:
2671 case 10:
2672 return chunk;
2673 default:
2674 return 128*1024 >> 9;
2675 }
2676}
2677
2678static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2679{
2680 /* migr_strip_size when rebuilding a degraded disk, no idea why
2681 * this is different than migr_strip_size_resync(), but it's good
2682 * to be compatible
2683 */
238c0a71 2684 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2685 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2686
2687 switch (get_imsm_raid_level(map)) {
2688 case 1:
2689 case 10:
2690 if (map->num_members % map->num_domains == 0)
2691 return 128*1024 >> 9;
2692 else
2693 return chunk;
2694 case 5:
2695 return max((__u32) 64*1024 >> 9, chunk);
2696 default:
2697 return 128*1024 >> 9;
2698 }
2699}
2700
2701static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2702{
238c0a71
AK
2703 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2704 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2705 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2706 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2707
2708 return max((__u32) 1, hi_chunk / lo_chunk);
2709}
2710
2711static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2712{
238c0a71 2713 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2714 int level = get_imsm_raid_level(lo);
2715
2716 if (level == 1 || level == 10) {
238c0a71 2717 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2718
2719 return hi->num_domains;
2720 } else
2721 return num_stripes_per_unit_resync(dev);
2722}
2723
98130f40 2724static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2725{
2726 /* named 'imsm_' because raid0, raid1 and raid10
2727 * counter-intuitively have the same number of data disks
2728 */
98130f40 2729 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2730
2731 switch (get_imsm_raid_level(map)) {
2732 case 0:
36fd8ccc
AK
2733 return map->num_members;
2734 break;
1e5c6983
DW
2735 case 1:
2736 case 10:
36fd8ccc 2737 return map->num_members/2;
1e5c6983
DW
2738 case 5:
2739 return map->num_members - 1;
2740 default:
1ade5cc1 2741 dprintf("unsupported raid level\n");
1e5c6983
DW
2742 return 0;
2743 }
2744}
2745
2746static __u32 parity_segment_depth(struct imsm_dev *dev)
2747{
238c0a71 2748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2749 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2750
2751 switch(get_imsm_raid_level(map)) {
2752 case 1:
2753 case 10:
2754 return chunk * map->num_domains;
2755 case 5:
2756 return chunk * map->num_members;
2757 default:
2758 return chunk;
2759 }
2760}
2761
2762static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2763{
238c0a71 2764 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2765 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2766 __u32 strip = block / chunk;
2767
2768 switch (get_imsm_raid_level(map)) {
2769 case 1:
2770 case 10: {
2771 __u32 vol_strip = (strip * map->num_domains) + 1;
2772 __u32 vol_stripe = vol_strip / map->num_members;
2773
2774 return vol_stripe * chunk + block % chunk;
2775 } case 5: {
2776 __u32 stripe = strip / (map->num_members - 1);
2777
2778 return stripe * chunk + block % chunk;
2779 }
2780 default:
2781 return 0;
2782 }
2783}
2784
c47b0ff6
AK
2785static __u64 blocks_per_migr_unit(struct intel_super *super,
2786 struct imsm_dev *dev)
1e5c6983
DW
2787{
2788 /* calculate the conversion factor between per member 'blocks'
2789 * (md/{resync,rebuild}_start) and imsm migration units, return
2790 * 0 for the 'not migrating' and 'unsupported migration' cases
2791 */
2792 if (!dev->vol.migr_state)
2793 return 0;
2794
2795 switch (migr_type(dev)) {
c47b0ff6
AK
2796 case MIGR_GEN_MIGR: {
2797 struct migr_record *migr_rec = super->migr_rec;
2798 return __le32_to_cpu(migr_rec->blocks_per_unit);
2799 }
1e5c6983
DW
2800 case MIGR_VERIFY:
2801 case MIGR_REPAIR:
2802 case MIGR_INIT: {
238c0a71 2803 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2804 __u32 stripes_per_unit;
2805 __u32 blocks_per_unit;
2806 __u32 parity_depth;
2807 __u32 migr_chunk;
2808 __u32 block_map;
2809 __u32 block_rel;
2810 __u32 segment;
2811 __u32 stripe;
2812 __u8 disks;
2813
2814 /* yes, this is really the translation of migr_units to
2815 * per-member blocks in the 'resync' case
2816 */
2817 stripes_per_unit = num_stripes_per_unit_resync(dev);
2818 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2819 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2820 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2821 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2822 segment = blocks_per_unit / stripe;
2823 block_rel = blocks_per_unit - segment * stripe;
2824 parity_depth = parity_segment_depth(dev);
2825 block_map = map_migr_block(dev, block_rel);
2826 return block_map + parity_depth * segment;
2827 }
2828 case MIGR_REBUILD: {
2829 __u32 stripes_per_unit;
2830 __u32 migr_chunk;
2831
2832 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2833 migr_chunk = migr_strip_blocks_rebuild(dev);
2834 return migr_chunk * stripes_per_unit;
2835 }
1e5c6983
DW
2836 case MIGR_STATE_CHANGE:
2837 default:
2838 return 0;
2839 }
2840}
2841
c2c087e6
DW
2842static int imsm_level_to_layout(int level)
2843{
2844 switch (level) {
2845 case 0:
2846 case 1:
2847 return 0;
2848 case 5:
2849 case 6:
a380c027 2850 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2851 case 10:
c92a2527 2852 return 0x102;
c2c087e6 2853 }
a18a888e 2854 return UnSet;
c2c087e6
DW
2855}
2856
8e59f3d8
AK
2857/*******************************************************************************
2858 * Function: read_imsm_migr_rec
2859 * Description: Function reads imsm migration record from last sector of disk
2860 * Parameters:
2861 * fd : disk descriptor
2862 * super : metadata info
2863 * Returns:
2864 * 0 : success,
2865 * -1 : fail
2866 ******************************************************************************/
2867static int read_imsm_migr_rec(int fd, struct intel_super *super)
2868{
2869 int ret_val = -1;
de44e46f 2870 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
2871 unsigned long long dsize;
2872
2873 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2874 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2875 SEEK_SET) < 0) {
e7b84f9d
N
2876 pr_err("Cannot seek to anchor block: %s\n",
2877 strerror(errno));
8e59f3d8
AK
2878 goto out;
2879 }
466070ad 2880 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
2881 MIGR_REC_BUF_SECTORS*sector_size) !=
2882 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2883 pr_err("Cannot read migr record block: %s\n",
2884 strerror(errno));
8e59f3d8
AK
2885 goto out;
2886 }
2887 ret_val = 0;
de44e46f
PB
2888 if (sector_size == 4096)
2889 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
2890
2891out:
2892 return ret_val;
2893}
2894
3136abe5
AK
2895static struct imsm_dev *imsm_get_device_during_migration(
2896 struct intel_super *super)
2897{
2898
2899 struct intel_dev *dv;
2900
2901 for (dv = super->devlist; dv; dv = dv->next) {
2902 if (is_gen_migration(dv->dev))
2903 return dv->dev;
2904 }
2905 return NULL;
2906}
2907
8e59f3d8
AK
2908/*******************************************************************************
2909 * Function: load_imsm_migr_rec
2910 * Description: Function reads imsm migration record (it is stored at the last
2911 * sector of disk)
2912 * Parameters:
2913 * super : imsm internal array info
2914 * info : general array info
2915 * Returns:
2916 * 0 : success
2917 * -1 : fail
4c965cc9 2918 * -2 : no migration in progress
8e59f3d8
AK
2919 ******************************************************************************/
2920static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2921{
2922 struct mdinfo *sd;
594dc1b8 2923 struct dl *dl;
8e59f3d8
AK
2924 char nm[30];
2925 int retval = -1;
2926 int fd = -1;
3136abe5 2927 struct imsm_dev *dev;
594dc1b8 2928 struct imsm_map *map;
b4ab44d8 2929 int slot = -1;
3136abe5
AK
2930
2931 /* find map under migration */
2932 dev = imsm_get_device_during_migration(super);
2933 /* nothing to load,no migration in progress?
2934 */
2935 if (dev == NULL)
4c965cc9 2936 return -2;
8e59f3d8
AK
2937
2938 if (info) {
2939 for (sd = info->devs ; sd ; sd = sd->next) {
2940 /* read only from one of the first two slots */
12fe93e9
TM
2941 if ((sd->disk.raid_disk < 0) ||
2942 (sd->disk.raid_disk > 1))
8e59f3d8 2943 continue;
3136abe5 2944
8e59f3d8
AK
2945 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2946 fd = dev_open(nm, O_RDONLY);
2947 if (fd >= 0)
2948 break;
2949 }
2950 }
2951 if (fd < 0) {
12fe93e9 2952 map = get_imsm_map(dev, MAP_0);
8e59f3d8 2953 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2954 /* skip spare and failed disks
2955 */
2956 if (dl->index < 0)
2957 continue;
8e59f3d8 2958 /* read only from one of the first two slots */
3136abe5
AK
2959 if (map)
2960 slot = get_imsm_disk_slot(map, dl->index);
089f9d79 2961 if (map == NULL || slot > 1 || slot < 0)
8e59f3d8
AK
2962 continue;
2963 sprintf(nm, "%d:%d", dl->major, dl->minor);
2964 fd = dev_open(nm, O_RDONLY);
2965 if (fd >= 0)
2966 break;
2967 }
2968 }
2969 if (fd < 0)
2970 goto out;
2971 retval = read_imsm_migr_rec(fd, super);
2972
2973out:
2974 if (fd >= 0)
2975 close(fd);
2976 return retval;
2977}
2978
c17608ea
AK
2979/*******************************************************************************
2980 * function: imsm_create_metadata_checkpoint_update
2981 * Description: It creates update for checkpoint change.
2982 * Parameters:
2983 * super : imsm internal array info
2984 * u : pointer to prepared update
2985 * Returns:
2986 * Uptate length.
2987 * If length is equal to 0, input pointer u contains no update
2988 ******************************************************************************/
2989static int imsm_create_metadata_checkpoint_update(
2990 struct intel_super *super,
2991 struct imsm_update_general_migration_checkpoint **u)
2992{
2993
2994 int update_memory_size = 0;
2995
1ade5cc1 2996 dprintf("(enter)\n");
c17608ea
AK
2997
2998 if (u == NULL)
2999 return 0;
3000 *u = NULL;
3001
3002 /* size of all update data without anchor */
3003 update_memory_size =
3004 sizeof(struct imsm_update_general_migration_checkpoint);
3005
503975b9 3006 *u = xcalloc(1, update_memory_size);
c17608ea 3007 if (*u == NULL) {
1ade5cc1 3008 dprintf("error: cannot get memory\n");
c17608ea
AK
3009 return 0;
3010 }
3011 (*u)->type = update_general_migration_checkpoint;
3012 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 3013 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
3014
3015 return update_memory_size;
3016}
3017
c17608ea
AK
3018static void imsm_update_metadata_locally(struct supertype *st,
3019 void *buf, int len);
3020
687629c2
AK
3021/*******************************************************************************
3022 * Function: write_imsm_migr_rec
3023 * Description: Function writes imsm migration record
3024 * (at the last sector of disk)
3025 * Parameters:
3026 * super : imsm internal array info
3027 * Returns:
3028 * 0 : success
3029 * -1 : if fail
3030 ******************************************************************************/
3031static int write_imsm_migr_rec(struct supertype *st)
3032{
3033 struct intel_super *super = st->sb;
de44e46f 3034 unsigned int sector_size = super->sector_size;
687629c2
AK
3035 unsigned long long dsize;
3036 char nm[30];
3037 int fd = -1;
3038 int retval = -1;
3039 struct dl *sd;
c17608ea
AK
3040 int len;
3041 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3042 struct imsm_dev *dev;
594dc1b8 3043 struct imsm_map *map;
3136abe5
AK
3044
3045 /* find map under migration */
3046 dev = imsm_get_device_during_migration(super);
3047 /* if no migration, write buffer anyway to clear migr_record
3048 * on disk based on first available device
3049 */
3050 if (dev == NULL)
3051 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3052 super->current_vol);
3053
44bfe6df 3054 map = get_imsm_map(dev, MAP_0);
687629c2 3055
de44e46f
PB
3056 if (sector_size == 4096)
3057 convert_to_4k_imsm_migr_rec(super);
687629c2 3058 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3059 int slot = -1;
3136abe5
AK
3060
3061 /* skip failed and spare devices */
3062 if (sd->index < 0)
3063 continue;
687629c2 3064 /* write to 2 first slots only */
3136abe5
AK
3065 if (map)
3066 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3067 if (map == NULL || slot > 1 || slot < 0)
687629c2 3068 continue;
3136abe5 3069
687629c2
AK
3070 sprintf(nm, "%d:%d", sd->major, sd->minor);
3071 fd = dev_open(nm, O_RDWR);
3072 if (fd < 0)
3073 continue;
3074 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3075 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3076 SEEK_SET) < 0) {
e7b84f9d
N
3077 pr_err("Cannot seek to anchor block: %s\n",
3078 strerror(errno));
687629c2
AK
3079 goto out;
3080 }
466070ad 3081 if ((unsigned int)write(fd, super->migr_rec_buf,
de44e46f
PB
3082 MIGR_REC_BUF_SECTORS*sector_size) !=
3083 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3084 pr_err("Cannot write migr record block: %s\n",
3085 strerror(errno));
687629c2
AK
3086 goto out;
3087 }
3088 close(fd);
3089 fd = -1;
3090 }
de44e46f
PB
3091 if (sector_size == 4096)
3092 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3093 /* update checkpoint information in metadata */
3094 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3095 if (len <= 0) {
3096 dprintf("imsm: Cannot prepare update\n");
3097 goto out;
3098 }
3099 /* update metadata locally */
3100 imsm_update_metadata_locally(st, u, len);
3101 /* and possibly remotely */
3102 if (st->update_tail) {
3103 append_metadata_update(st, u, len);
3104 /* during reshape we do all work inside metadata handler
3105 * manage_reshape(), so metadata update has to be triggered
3106 * insida it
3107 */
3108 flush_metadata_updates(st);
3109 st->update_tail = &st->updates;
3110 } else
3111 free(u);
687629c2
AK
3112
3113 retval = 0;
3114 out:
3115 if (fd >= 0)
3116 close(fd);
3117 return retval;
3118}
3119
e2962bfc
AK
3120/* spare/missing disks activations are not allowe when
3121 * array/container performs reshape operation, because
3122 * all arrays in container works on the same disks set
3123 */
3124int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3125{
3126 int rv = 0;
3127 struct intel_dev *i_dev;
3128 struct imsm_dev *dev;
3129
3130 /* check whole container
3131 */
3132 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3133 dev = i_dev->dev;
3ad25638 3134 if (is_gen_migration(dev)) {
e2962bfc
AK
3135 /* No repair during any migration in container
3136 */
3137 rv = 1;
3138 break;
3139 }
3140 }
3141 return rv;
3142}
c41e00b2
AK
3143static unsigned long long imsm_component_size_aligment_check(int level,
3144 int chunk_size,
f36a9ecd 3145 unsigned int sector_size,
c41e00b2
AK
3146 unsigned long long component_size)
3147{
3148 unsigned int component_size_alligment;
3149
3150 /* check component size aligment
3151 */
f36a9ecd 3152 component_size_alligment = component_size % (chunk_size/sector_size);
c41e00b2 3153
1ade5cc1 3154 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
3155 level, chunk_size, component_size,
3156 component_size_alligment);
3157
3158 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3159 dprintf("imsm: reported component size alligned from %llu ",
3160 component_size);
3161 component_size -= component_size_alligment;
1ade5cc1 3162 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
3163 component_size, component_size_alligment);
3164 }
3165
3166 return component_size;
3167}
e2962bfc 3168
2432ce9b
AP
3169static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3170{
3171 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3172 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3173
3174 return pba_of_lba0(map) +
3175 (num_data_stripes(map) * map->blocks_per_strip);
3176}
3177
a5d85af7 3178static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3179{
3180 struct intel_super *super = st->sb;
c47b0ff6 3181 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3182 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3183 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3184 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3185 struct imsm_map *map_to_analyse = map;
efb30e7f 3186 struct dl *dl;
a5d85af7 3187 int map_disks = info->array.raid_disks;
bf5a934a 3188
95eeceeb 3189 memset(info, 0, sizeof(*info));
b335e593
AK
3190 if (prev_map)
3191 map_to_analyse = prev_map;
3192
ca0748fa 3193 dl = super->current_disk;
9894ec0d 3194
bf5a934a 3195 info->container_member = super->current_vol;
cd0430a1 3196 info->array.raid_disks = map->num_members;
b335e593 3197 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3198 info->array.layout = imsm_level_to_layout(info->array.level);
3199 info->array.md_minor = -1;
3200 info->array.ctime = 0;
3201 info->array.utime = 0;
b335e593
AK
3202 info->array.chunk_size =
3203 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3204 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
da9b4a62
DW
3205 info->custom_array_size = __le32_to_cpu(dev->size_high);
3206 info->custom_array_size <<= 32;
3207 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
3208 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3209
3f510843 3210 if (is_gen_migration(dev)) {
3f83228a 3211 info->reshape_active = 1;
b335e593
AK
3212 info->new_level = get_imsm_raid_level(map);
3213 info->new_layout = imsm_level_to_layout(info->new_level);
3214 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3215 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3216 if (info->delta_disks) {
3217 /* this needs to be applied to every array
3218 * in the container.
3219 */
81219e70 3220 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3221 }
3f83228a
N
3222 /* We shape information that we give to md might have to be
3223 * modify to cope with md's requirement for reshaping arrays.
3224 * For example, when reshaping a RAID0, md requires it to be
3225 * presented as a degraded RAID4.
3226 * Also if a RAID0 is migrating to a RAID5 we need to specify
3227 * the array as already being RAID5, but the 'before' layout
3228 * is a RAID4-like layout.
3229 */
3230 switch (info->array.level) {
3231 case 0:
3232 switch(info->new_level) {
3233 case 0:
3234 /* conversion is happening as RAID4 */
3235 info->array.level = 4;
3236 info->array.raid_disks += 1;
3237 break;
3238 case 5:
3239 /* conversion is happening as RAID5 */
3240 info->array.level = 5;
3241 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3242 info->delta_disks -= 1;
3243 break;
3244 default:
3245 /* FIXME error message */
3246 info->array.level = UnSet;
3247 break;
3248 }
3249 break;
3250 }
b335e593
AK
3251 } else {
3252 info->new_level = UnSet;
3253 info->new_layout = UnSet;
3254 info->new_chunk = info->array.chunk_size;
3f83228a 3255 info->delta_disks = 0;
b335e593 3256 }
ca0748fa 3257
efb30e7f
DW
3258 if (dl) {
3259 info->disk.major = dl->major;
3260 info->disk.minor = dl->minor;
ca0748fa 3261 info->disk.number = dl->index;
656b6b5a
N
3262 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3263 dl->index);
efb30e7f 3264 }
bf5a934a 3265
5551b113 3266 info->data_offset = pba_of_lba0(map_to_analyse);
06fb291a
PB
3267
3268 if (info->array.level == 5) {
3269 info->component_size = num_data_stripes(map_to_analyse) *
3270 map_to_analyse->blocks_per_strip;
3271 } else {
3272 info->component_size = blocks_per_member(map_to_analyse);
3273 }
139dae11 3274
c41e00b2
AK
3275 info->component_size = imsm_component_size_aligment_check(
3276 info->array.level,
3277 info->array.chunk_size,
f36a9ecd 3278 super->sector_size,
c41e00b2 3279 info->component_size);
5e46202e 3280 info->bb.supported = 1;
139dae11 3281
301406c9 3282 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3283 info->recovery_start = MaxSector;
bf5a934a 3284
2432ce9b
AP
3285 if (info->array.level == 5 && dev->rwh_policy == RWH_DISTRIBUTED) {
3286 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3287 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3288 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
3289 } else if (info->array.level <= 0) {
3290 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3291 } else {
3292 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3293 }
3294
d2e6d5d6 3295 info->reshape_progress = 0;
b6796ce1 3296 info->resync_start = MaxSector;
b9172665 3297 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3298 !(info->array.state & 1)) &&
b9172665 3299 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3300 info->resync_start = 0;
b6796ce1
AK
3301 }
3302 if (dev->vol.migr_state) {
1e5c6983
DW
3303 switch (migr_type(dev)) {
3304 case MIGR_REPAIR:
3305 case MIGR_INIT: {
c47b0ff6
AK
3306 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3307 dev);
1e5c6983
DW
3308 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3309
3310 info->resync_start = blocks_per_unit * units;
3311 break;
3312 }
d2e6d5d6 3313 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3314 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3315 dev);
3316 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
3317 unsigned long long array_blocks;
3318 int used_disks;
d2e6d5d6 3319
befb629b
AK
3320 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3321 (units <
3322 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3323 (super->migr_rec->rec_status ==
3324 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3325 units++;
3326
d2e6d5d6 3327 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3328
7a862a02 3329 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3330 (unsigned long long)units,
3331 (unsigned long long)blocks_per_unit,
3332 info->reshape_progress);
75156c46 3333
238c0a71 3334 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 3335 if (used_disks > 0) {
5551b113 3336 array_blocks = blocks_per_member(map) *
75156c46 3337 used_disks;
b53bfba6
TM
3338 info->custom_array_size =
3339 round_size_to_mb(array_blocks,
3340 used_disks);
3341
75156c46 3342 }
d2e6d5d6 3343 }
1e5c6983
DW
3344 case MIGR_VERIFY:
3345 /* we could emulate the checkpointing of
3346 * 'sync_action=check' migrations, but for now
3347 * we just immediately complete them
3348 */
3349 case MIGR_REBUILD:
3350 /* this is handled by container_content_imsm() */
1e5c6983
DW
3351 case MIGR_STATE_CHANGE:
3352 /* FIXME handle other migrations */
3353 default:
3354 /* we are not dirty, so... */
3355 info->resync_start = MaxSector;
3356 }
b6796ce1 3357 }
301406c9
DW
3358
3359 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3360 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3361
f35f2525
N
3362 info->array.major_version = -1;
3363 info->array.minor_version = -2;
4dd2df09 3364 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3365 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3366 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3367
3368 if (dmap) {
3369 int i, j;
3370 for (i=0; i<map_disks; i++) {
3371 dmap[i] = 0;
3372 if (i < info->array.raid_disks) {
3373 struct imsm_disk *dsk;
238c0a71 3374 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3375 dsk = get_imsm_disk(super, j);
3376 if (dsk && (dsk->status & CONFIGURED_DISK))
3377 dmap[i] = 1;
3378 }
3379 }
3380 }
81ac8b4d 3381}
bf5a934a 3382
3b451610
AK
3383static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3384 int failed, int look_in_map);
3385
3386static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3387 int look_in_map);
3388
3389static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3390{
3391 if (is_gen_migration(dev)) {
3392 int failed;
3393 __u8 map_state;
3394 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3395
3396 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3397 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3398 if (map2->map_state != map_state) {
3399 map2->map_state = map_state;
3400 super->updates_pending++;
3401 }
3402 }
3403}
97b4d0e9
DW
3404
3405static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3406{
3407 struct dl *d;
3408
3409 for (d = super->missing; d; d = d->next)
3410 if (d->index == index)
3411 return &d->disk;
3412 return NULL;
3413}
3414
a5d85af7 3415static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3416{
3417 struct intel_super *super = st->sb;
4f5bc454 3418 struct imsm_disk *disk;
a5d85af7 3419 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3420 int max_enough = -1;
3421 int i;
3422 struct imsm_super *mpb;
4f5bc454 3423
bf5a934a 3424 if (super->current_vol >= 0) {
a5d85af7 3425 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3426 return;
3427 }
95eeceeb 3428 memset(info, 0, sizeof(*info));
d23fe947
DW
3429
3430 /* Set raid_disks to zero so that Assemble will always pull in valid
3431 * spares
3432 */
3433 info->array.raid_disks = 0;
cdddbdbc
DW
3434 info->array.level = LEVEL_CONTAINER;
3435 info->array.layout = 0;
3436 info->array.md_minor = -1;
1011e834 3437 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3438 info->array.utime = 0;
3439 info->array.chunk_size = 0;
3440
3441 info->disk.major = 0;
3442 info->disk.minor = 0;
cdddbdbc 3443 info->disk.raid_disk = -1;
c2c087e6 3444 info->reshape_active = 0;
f35f2525
N
3445 info->array.major_version = -1;
3446 info->array.minor_version = -2;
c2c087e6 3447 strcpy(info->text_version, "imsm");
a67dd8cc 3448 info->safe_mode_delay = 0;
c2c087e6
DW
3449 info->disk.number = -1;
3450 info->disk.state = 0;
c5afc314 3451 info->name[0] = 0;
921d9e16 3452 info->recovery_start = MaxSector;
3ad25638 3453 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3454 info->bb.supported = 1;
c2c087e6 3455
97b4d0e9 3456 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3457 mpb = super->anchor;
b7d81a38 3458 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3459
ab3cb6b3
N
3460 for (i = 0; i < mpb->num_raid_devs; i++) {
3461 struct imsm_dev *dev = get_imsm_dev(super, i);
3462 int failed, enough, j, missing = 0;
3463 struct imsm_map *map;
3464 __u8 state;
97b4d0e9 3465
3b451610
AK
3466 failed = imsm_count_failed(super, dev, MAP_0);
3467 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3468 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3469
3470 /* any newly missing disks?
3471 * (catches single-degraded vs double-degraded)
3472 */
3473 for (j = 0; j < map->num_members; j++) {
238c0a71 3474 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3475 __u32 idx = ord_to_idx(ord);
3476
3477 if (!(ord & IMSM_ORD_REBUILD) &&
3478 get_imsm_missing(super, idx)) {
3479 missing = 1;
3480 break;
3481 }
97b4d0e9 3482 }
ab3cb6b3
N
3483
3484 if (state == IMSM_T_STATE_FAILED)
3485 enough = -1;
3486 else if (state == IMSM_T_STATE_DEGRADED &&
3487 (state != map->map_state || missing))
3488 enough = 0;
3489 else /* we're normal, or already degraded */
3490 enough = 1;
d2bde6d3
AK
3491 if (is_gen_migration(dev) && missing) {
3492 /* during general migration we need all disks
3493 * that process is running on.
3494 * No new missing disk is allowed.
3495 */
3496 max_enough = -1;
3497 enough = -1;
3498 /* no more checks necessary
3499 */
3500 break;
3501 }
ab3cb6b3
N
3502 /* in the missing/failed disk case check to see
3503 * if at least one array is runnable
3504 */
3505 max_enough = max(max_enough, enough);
3506 }
1ade5cc1 3507 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3508 info->container_enough = max_enough;
97b4d0e9 3509
4a04ec6c 3510 if (super->disks) {
14e8215b
DW
3511 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3512
b9f594fe 3513 disk = &super->disks->disk;
5551b113 3514 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3515 info->component_size = reserved;
25ed7e59 3516 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3517 /* we don't change info->disk.raid_disk here because
3518 * this state will be finalized in mdmon after we have
3519 * found the 'most fresh' version of the metadata
3520 */
25ed7e59 3521 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3522 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3523 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3524 }
a575e2a7
DW
3525
3526 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3527 * ->compare_super may have updated the 'num_raid_devs' field for spares
3528 */
3529 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3530 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3531 else
3532 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3533
3534 /* I don't know how to compute 'map' on imsm, so use safe default */
3535 if (map) {
3536 int i;
3537 for (i = 0; i < map_disks; i++)
3538 map[i] = 1;
3539 }
3540
cdddbdbc
DW
3541}
3542
5c4cd5da
AC
3543/* allocates memory and fills disk in mdinfo structure
3544 * for each disk in array */
3545struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3546{
594dc1b8 3547 struct mdinfo *mddev;
5c4cd5da
AC
3548 struct intel_super *super = st->sb;
3549 struct imsm_disk *disk;
3550 int count = 0;
3551 struct dl *dl;
3552 if (!super || !super->disks)
3553 return NULL;
3554 dl = super->disks;
503975b9 3555 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3556 while (dl) {
3557 struct mdinfo *tmp;
3558 disk = &dl->disk;
503975b9 3559 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3560 if (mddev->devs)
3561 tmp->next = mddev->devs;
3562 mddev->devs = tmp;
3563 tmp->disk.number = count++;
3564 tmp->disk.major = dl->major;
3565 tmp->disk.minor = dl->minor;
3566 tmp->disk.state = is_configured(disk) ?
3567 (1 << MD_DISK_ACTIVE) : 0;
3568 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3569 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3570 tmp->disk.raid_disk = -1;
3571 dl = dl->next;
3572 }
3573 return mddev;
3574}
3575
cdddbdbc
DW
3576static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3577 char *update, char *devname, int verbose,
3578 int uuid_set, char *homehost)
3579{
f352c545
DW
3580 /* For 'assemble' and 'force' we need to return non-zero if any
3581 * change was made. For others, the return value is ignored.
3582 * Update options are:
3583 * force-one : This device looks a bit old but needs to be included,
3584 * update age info appropriately.
3585 * assemble: clear any 'faulty' flag to allow this device to
3586 * be assembled.
3587 * force-array: Array is degraded but being forced, mark it clean
3588 * if that will be needed to assemble it.
3589 *
3590 * newdev: not used ????
3591 * grow: Array has gained a new device - this is currently for
3592 * linear only
3593 * resync: mark as dirty so a resync will happen.
3594 * name: update the name - preserving the homehost
6e46bf34 3595 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3596 *
3597 * Following are not relevant for this imsm:
3598 * sparc2.2 : update from old dodgey metadata
3599 * super-minor: change the preferred_minor number
3600 * summaries: update redundant counters.
f352c545
DW
3601 * homehost: update the recorded homehost
3602 * _reshape_progress: record new reshape_progress position.
3603 */
6e46bf34
DW
3604 int rv = 1;
3605 struct intel_super *super = st->sb;
3606 struct imsm_super *mpb;
f352c545 3607
6e46bf34
DW
3608 /* we can only update container info */
3609 if (!super || super->current_vol >= 0 || !super->anchor)
3610 return 1;
3611
3612 mpb = super->anchor;
3613
81a5b4f5
N
3614 if (strcmp(update, "uuid") == 0) {
3615 /* We take this to mean that the family_num should be updated.
3616 * However that is much smaller than the uuid so we cannot really
3617 * allow an explicit uuid to be given. And it is hard to reliably
3618 * know if one was.
3619 * So if !uuid_set we know the current uuid is random and just used
3620 * the first 'int' and copy it to the other 3 positions.
3621 * Otherwise we require the 4 'int's to be the same as would be the
3622 * case if we are using a random uuid. So an explicit uuid will be
3623 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3624 */
81a5b4f5
N
3625 if (!uuid_set) {
3626 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3627 rv = 0;
81a5b4f5
N
3628 } else {
3629 if (info->uuid[0] != info->uuid[1] ||
3630 info->uuid[1] != info->uuid[2] ||
3631 info->uuid[2] != info->uuid[3])
3632 rv = -1;
3633 else
3634 rv = 0;
6e46bf34 3635 }
81a5b4f5
N
3636 if (rv == 0)
3637 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3638 } else if (strcmp(update, "assemble") == 0)
3639 rv = 0;
3640 else
1e2b2765 3641 rv = -1;
f352c545 3642
6e46bf34
DW
3643 /* successful update? recompute checksum */
3644 if (rv == 0)
3645 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3646
3647 return rv;
cdddbdbc
DW
3648}
3649
c2c087e6 3650static size_t disks_to_mpb_size(int disks)
cdddbdbc 3651{
c2c087e6 3652 size_t size;
cdddbdbc 3653
c2c087e6
DW
3654 size = sizeof(struct imsm_super);
3655 size += (disks - 1) * sizeof(struct imsm_disk);
3656 size += 2 * sizeof(struct imsm_dev);
3657 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3658 size += (4 - 2) * sizeof(struct imsm_map);
3659 /* 4 possible disk_ord_tbl's */
3660 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3661 /* maximum bbm log */
3662 size += sizeof(struct bbm_log);
c2c087e6
DW
3663
3664 return size;
3665}
3666
387fcd59
N
3667static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3668 unsigned long long data_offset)
c2c087e6
DW
3669{
3670 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3671 return 0;
3672
3673 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3674}
3675
ba2de7ba
DW
3676static void free_devlist(struct intel_super *super)
3677{
3678 struct intel_dev *dv;
3679
3680 while (super->devlist) {
3681 dv = super->devlist->next;
3682 free(super->devlist->dev);
3683 free(super->devlist);
3684 super->devlist = dv;
3685 }
3686}
3687
3688static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3689{
3690 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3691}
3692
cdddbdbc
DW
3693static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3694{
3695 /*
3696 * return:
3697 * 0 same, or first was empty, and second was copied
3698 * 1 second had wrong number
3699 * 2 wrong uuid
3700 * 3 wrong other info
3701 */
3702 struct intel_super *first = st->sb;
3703 struct intel_super *sec = tst->sb;
3704
5d500228
N
3705 if (!first) {
3706 st->sb = tst->sb;
3707 tst->sb = NULL;
3708 return 0;
3709 }
8603ea6f
LM
3710 /* in platform dependent environment test if the disks
3711 * use the same Intel hba
cb8f6859 3712 * If not on Intel hba at all, allow anything.
8603ea6f 3713 */
6b781d33
AP
3714 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3715 if (first->hba->type != sec->hba->type) {
8603ea6f 3716 fprintf(stderr,
6b781d33
AP
3717 "HBAs of devices do not match %s != %s\n",
3718 get_sys_dev_type(first->hba->type),
3719 get_sys_dev_type(sec->hba->type));
3720 return 3;
3721 }
3722 if (first->orom != sec->orom) {
3723 fprintf(stderr,
3724 "HBAs of devices do not match %s != %s\n",
3725 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3726 return 3;
3727 }
3728 }
cdddbdbc 3729
d23fe947
DW
3730 /* if an anchor does not have num_raid_devs set then it is a free
3731 * floating spare
3732 */
3733 if (first->anchor->num_raid_devs > 0 &&
3734 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3735 /* Determine if these disks might ever have been
3736 * related. Further disambiguation can only take place
3737 * in load_super_imsm_all
3738 */
3739 __u32 first_family = first->anchor->orig_family_num;
3740 __u32 sec_family = sec->anchor->orig_family_num;
3741
f796af5d
DW
3742 if (memcmp(first->anchor->sig, sec->anchor->sig,
3743 MAX_SIGNATURE_LENGTH) != 0)
3744 return 3;
3745
a2b97981
DW
3746 if (first_family == 0)
3747 first_family = first->anchor->family_num;
3748 if (sec_family == 0)
3749 sec_family = sec->anchor->family_num;
3750
3751 if (first_family != sec_family)
d23fe947 3752 return 3;
f796af5d 3753
d23fe947 3754 }
cdddbdbc 3755
3e372e5a
DW
3756 /* if 'first' is a spare promote it to a populated mpb with sec's
3757 * family number
3758 */
3759 if (first->anchor->num_raid_devs == 0 &&
3760 sec->anchor->num_raid_devs > 0) {
78d30f94 3761 int i;
ba2de7ba
DW
3762 struct intel_dev *dv;
3763 struct imsm_dev *dev;
78d30f94
DW
3764
3765 /* we need to copy raid device info from sec if an allocation
3766 * fails here we don't associate the spare
3767 */
3768 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3769 dv = xmalloc(sizeof(*dv));
3770 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3771 dv->dev = dev;
3772 dv->index = i;
3773 dv->next = first->devlist;
3774 first->devlist = dv;
78d30f94 3775 }
709743c5 3776 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3777 /* allocation failure */
3778 free_devlist(first);
e12b3daa 3779 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3780 return 3;
78d30f94 3781 }
3e372e5a 3782 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3783 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3784 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3785 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3786 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3787 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3788 }
3789
cdddbdbc
DW
3790 return 0;
3791}
3792
0030e8d6
DW
3793static void fd2devname(int fd, char *name)
3794{
3795 struct stat st;
3796 char path[256];
33a6535d 3797 char dname[PATH_MAX];
0030e8d6
DW
3798 char *nm;
3799 int rv;
3800
3801 name[0] = '\0';
3802 if (fstat(fd, &st) != 0)
3803 return;
3804 sprintf(path, "/sys/dev/block/%d:%d",
3805 major(st.st_rdev), minor(st.st_rdev));
3806
9cf014ec 3807 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3808 if (rv <= 0)
3809 return;
9587c373 3810
0030e8d6
DW
3811 dname[rv] = '\0';
3812 nm = strrchr(dname, '/');
7897de29
JS
3813 if (nm) {
3814 nm++;
3815 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3816 }
0030e8d6
DW
3817}
3818
21e9380b
AP
3819static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3820{
3821 char path[60];
3822 char *name = fd2kname(fd);
3823
3824 if (!name)
3825 return 1;
3826
3827 if (strncmp(name, "nvme", 4) != 0)
3828 return 1;
3829
3830 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3831
3832 return load_sys(path, buf, buf_len);
3833}
3834
cdddbdbc
DW
3835extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3836
3837static int imsm_read_serial(int fd, char *devname,
3838 __u8 serial[MAX_RAID_SERIAL_LEN])
3839{
21e9380b 3840 char buf[50];
cdddbdbc 3841 int rv;
1f24f035 3842 int len;
316e2bf4
DW
3843 char *dest;
3844 char *src;
21e9380b
AP
3845 unsigned int i;
3846
3847 memset(buf, 0, sizeof(buf));
cdddbdbc 3848
21e9380b 3849 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 3850
21e9380b
AP
3851 if (rv)
3852 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 3853
40ebbb9c 3854 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3855 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3856 fd2devname(fd, (char *) serial);
0030e8d6
DW
3857 return 0;
3858 }
3859
cdddbdbc
DW
3860 if (rv != 0) {
3861 if (devname)
e7b84f9d
N
3862 pr_err("Failed to retrieve serial for %s\n",
3863 devname);
cdddbdbc
DW
3864 return rv;
3865 }
3866
316e2bf4
DW
3867 /* trim all whitespace and non-printable characters and convert
3868 * ':' to ';'
3869 */
21e9380b
AP
3870 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3871 src = &buf[i];
316e2bf4
DW
3872 if (*src > 0x20) {
3873 /* ':' is reserved for use in placeholder serial
3874 * numbers for missing disks
3875 */
3876 if (*src == ':')
3877 *dest++ = ';';
3878 else
3879 *dest++ = *src;
3880 }
3881 }
21e9380b
AP
3882 len = dest - buf;
3883 dest = buf;
316e2bf4
DW
3884
3885 /* truncate leading characters */
3886 if (len > MAX_RAID_SERIAL_LEN) {
3887 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3888 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3889 }
5c3db629 3890
5c3db629 3891 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3892 memcpy(serial, dest, len);
cdddbdbc
DW
3893
3894 return 0;
3895}
3896
1f24f035
DW
3897static int serialcmp(__u8 *s1, __u8 *s2)
3898{
3899 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3900}
3901
3902static void serialcpy(__u8 *dest, __u8 *src)
3903{
3904 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3905}
3906
54c2c1ea
DW
3907static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3908{
3909 struct dl *dl;
3910
3911 for (dl = super->disks; dl; dl = dl->next)
3912 if (serialcmp(dl->serial, serial) == 0)
3913 break;
3914
3915 return dl;
3916}
3917
a2b97981
DW
3918static struct imsm_disk *
3919__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3920{
3921 int i;
3922
3923 for (i = 0; i < mpb->num_disks; i++) {
3924 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3925
3926 if (serialcmp(disk->serial, serial) == 0) {
3927 if (idx)
3928 *idx = i;
3929 return disk;
3930 }
3931 }
3932
3933 return NULL;
3934}
3935
cdddbdbc
DW
3936static int
3937load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3938{
a2b97981 3939 struct imsm_disk *disk;
cdddbdbc
DW
3940 struct dl *dl;
3941 struct stat stb;
cdddbdbc 3942 int rv;
a2b97981 3943 char name[40];
d23fe947
DW
3944 __u8 serial[MAX_RAID_SERIAL_LEN];
3945
3946 rv = imsm_read_serial(fd, devname, serial);
3947
3948 if (rv != 0)
3949 return 2;
3950
503975b9 3951 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3952
a2b97981
DW
3953 fstat(fd, &stb);
3954 dl->major = major(stb.st_rdev);
3955 dl->minor = minor(stb.st_rdev);
3956 dl->next = super->disks;
3957 dl->fd = keep_fd ? fd : -1;
3958 assert(super->disks == NULL);
3959 super->disks = dl;
3960 serialcpy(dl->serial, serial);
3961 dl->index = -2;
3962 dl->e = NULL;
3963 fd2devname(fd, name);
3964 if (devname)
503975b9 3965 dl->devname = xstrdup(devname);
a2b97981 3966 else
503975b9 3967 dl->devname = xstrdup(name);
cdddbdbc 3968
d23fe947 3969 /* look up this disk's index in the current anchor */
a2b97981
DW
3970 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3971 if (disk) {
3972 dl->disk = *disk;
3973 /* only set index on disks that are a member of a
3974 * populated contianer, i.e. one with raid_devs
3975 */
3976 if (is_failed(&dl->disk))
3f6efecc 3977 dl->index = -2;
2432ce9b 3978 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 3979 dl->index = -1;
3f6efecc
DW
3980 }
3981
949c47a0
DW
3982 return 0;
3983}
3984
0c046afd
DW
3985/* When migrating map0 contains the 'destination' state while map1
3986 * contains the current state. When not migrating map0 contains the
3987 * current state. This routine assumes that map[0].map_state is set to
3988 * the current array state before being called.
3989 *
3990 * Migration is indicated by one of the following states
3991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3993 * map1state=unitialized)
1484e727 3994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3995 * map1state=normal)
e3bba0e0 3996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3997 * map1state=degraded)
8e59f3d8
AK
3998 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3999 * map1state=normal)
0c046afd 4000 */
8e59f3d8
AK
4001static void migrate(struct imsm_dev *dev, struct intel_super *super,
4002 __u8 to_state, int migr_type)
3393c6af 4003{
0c046afd 4004 struct imsm_map *dest;
238c0a71 4005 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4006
0c046afd 4007 dev->vol.migr_state = 1;
1484e727 4008 set_migr_type(dev, migr_type);
f8f603f1 4009 dev->vol.curr_migr_unit = 0;
238c0a71 4010 dest = get_imsm_map(dev, MAP_1);
0c046afd 4011
0556e1a2 4012 /* duplicate and then set the target end state in map[0] */
3393c6af 4013 memcpy(dest, src, sizeof_imsm_map(src));
089f9d79 4014 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4015 __u32 ord;
4016 int i;
4017
4018 for (i = 0; i < src->num_members; i++) {
4019 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4020 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4021 }
4022 }
4023
8e59f3d8
AK
4024 if (migr_type == MIGR_GEN_MIGR)
4025 /* Clear migration record */
4026 memset(super->migr_rec, 0, sizeof(struct migr_record));
4027
0c046afd 4028 src->map_state = to_state;
949c47a0 4029}
f8f603f1 4030
809da78e
AK
4031static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4032 __u8 map_state)
f8f603f1 4033{
238c0a71
AK
4034 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4035 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4036 MAP_0 : MAP_1);
28bce06f 4037 int i, j;
0556e1a2
DW
4038
4039 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4040 * completed in the last migration.
4041 *
28bce06f 4042 * FIXME add support for raid-level-migration
0556e1a2 4043 */
089f9d79
JS
4044 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4045 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4046 /* when final map state is other than expected
4047 * merge maps (not for migration)
4048 */
4049 int failed;
4050
4051 for (i = 0; i < prev->num_members; i++)
4052 for (j = 0; j < map->num_members; j++)
4053 /* during online capacity expansion
4054 * disks position can be changed
4055 * if takeover is used
4056 */
4057 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4058 ord_to_idx(prev->disk_ord_tbl[i])) {
4059 map->disk_ord_tbl[j] |=
4060 prev->disk_ord_tbl[i];
4061 break;
4062 }
4063 failed = imsm_count_failed(super, dev, MAP_0);
4064 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4065 }
f8f603f1
DW
4066
4067 dev->vol.migr_state = 0;
ea672ee1 4068 set_migr_type(dev, 0);
f8f603f1
DW
4069 dev->vol.curr_migr_unit = 0;
4070 map->map_state = map_state;
4071}
949c47a0
DW
4072
4073static int parse_raid_devices(struct intel_super *super)
4074{
4075 int i;
4076 struct imsm_dev *dev_new;
4d7b1503 4077 size_t len, len_migr;
401d313b 4078 size_t max_len = 0;
4d7b1503
DW
4079 size_t space_needed = 0;
4080 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4081
4082 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4083 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4084 struct intel_dev *dv;
949c47a0 4085
4d7b1503
DW
4086 len = sizeof_imsm_dev(dev_iter, 0);
4087 len_migr = sizeof_imsm_dev(dev_iter, 1);
4088 if (len_migr > len)
4089 space_needed += len_migr - len;
ca9de185 4090
503975b9 4091 dv = xmalloc(sizeof(*dv));
401d313b
AK
4092 if (max_len < len_migr)
4093 max_len = len_migr;
4094 if (max_len > len_migr)
4095 space_needed += max_len - len_migr;
503975b9 4096 dev_new = xmalloc(max_len);
949c47a0 4097 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4098 dv->dev = dev_new;
4099 dv->index = i;
4100 dv->next = super->devlist;
4101 super->devlist = dv;
949c47a0 4102 }
cdddbdbc 4103
4d7b1503
DW
4104 /* ensure that super->buf is large enough when all raid devices
4105 * are migrating
4106 */
4107 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4108 void *buf;
4109
f36a9ecd
PB
4110 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4111 super->sector_size);
4112 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4113 return 1;
4114
1f45a8ad
DW
4115 memcpy(buf, super->buf, super->len);
4116 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4117 free(super->buf);
4118 super->buf = buf;
4119 super->len = len;
4120 }
ca9de185 4121
bbab0940
TM
4122 super->extra_space += space_needed;
4123
cdddbdbc
DW
4124 return 0;
4125}
4126
e2f41b2c
AK
4127/*******************************************************************************
4128 * Function: check_mpb_migr_compatibility
4129 * Description: Function checks for unsupported migration features:
4130 * - migration optimization area (pba_of_lba0)
4131 * - descending reshape (ascending_migr)
4132 * Parameters:
4133 * super : imsm metadata information
4134 * Returns:
4135 * 0 : migration is compatible
4136 * -1 : migration is not compatible
4137 ******************************************************************************/
4138int check_mpb_migr_compatibility(struct intel_super *super)
4139{
4140 struct imsm_map *map0, *map1;
4141 struct migr_record *migr_rec = super->migr_rec;
4142 int i;
4143
4144 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4145 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4146
4147 if (dev_iter &&
4148 dev_iter->vol.migr_state == 1 &&
4149 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4150 /* This device is migrating */
238c0a71
AK
4151 map0 = get_imsm_map(dev_iter, MAP_0);
4152 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4153 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4154 /* migration optimization area was used */
4155 return -1;
4156 if (migr_rec->ascending_migr == 0
4157 && migr_rec->dest_depth_per_unit > 0)
4158 /* descending reshape not supported yet */
4159 return -1;
4160 }
4161 }
4162 return 0;
4163}
4164
d23fe947 4165static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4166
cdddbdbc 4167/* load_imsm_mpb - read matrix metadata
f2f5c343 4168 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4169 */
4170static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4171{
4172 unsigned long long dsize;
cdddbdbc 4173 unsigned long long sectors;
f36a9ecd 4174 unsigned int sector_size = super->sector_size;
cdddbdbc 4175 struct stat;
6416d527 4176 struct imsm_super *anchor;
cdddbdbc
DW
4177 __u32 check_sum;
4178
cdddbdbc 4179 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4180 if (dsize < 2*sector_size) {
64436f06 4181 if (devname)
e7b84f9d
N
4182 pr_err("%s: device to small for imsm\n",
4183 devname);
64436f06
N
4184 return 1;
4185 }
cdddbdbc 4186
f36a9ecd 4187 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4188 if (devname)
e7b84f9d
N
4189 pr_err("Cannot seek to anchor block on %s: %s\n",
4190 devname, strerror(errno));
cdddbdbc
DW
4191 return 1;
4192 }
4193
f36a9ecd 4194 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4195 if (devname)
7a862a02 4196 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4197 return 1;
4198 }
466070ad 4199 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4200 if (devname)
e7b84f9d
N
4201 pr_err("Cannot read anchor block on %s: %s\n",
4202 devname, strerror(errno));
6416d527 4203 free(anchor);
cdddbdbc
DW
4204 return 1;
4205 }
4206
6416d527 4207 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4208 if (devname)
e7b84f9d 4209 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4210 free(anchor);
cdddbdbc
DW
4211 return 2;
4212 }
4213
d23fe947 4214 __free_imsm(super, 0);
f2f5c343
LM
4215 /* reload capability and hba */
4216
4217 /* capability and hba must be updated with new super allocation */
d424212e 4218 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4219 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4220 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4221 if (devname)
e7b84f9d
N
4222 pr_err("unable to allocate %zu byte mpb buffer\n",
4223 super->len);
6416d527 4224 free(anchor);
cdddbdbc
DW
4225 return 2;
4226 }
f36a9ecd 4227 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4228
f36a9ecd 4229 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4230 free(anchor);
8e59f3d8 4231
85337573
AO
4232 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4233 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4234 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4235 free(super->buf);
4236 return 2;
4237 }
51d83f5d 4238 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4239
949c47a0 4240 if (!sectors) {
ecf45690
DW
4241 check_sum = __gen_imsm_checksum(super->anchor);
4242 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4243 if (devname)
e7b84f9d
N
4244 pr_err("IMSM checksum %x != %x on %s\n",
4245 check_sum,
4246 __le32_to_cpu(super->anchor->check_sum),
4247 devname);
ecf45690
DW
4248 return 2;
4249 }
4250
a2b97981 4251 return 0;
949c47a0 4252 }
cdddbdbc
DW
4253
4254 /* read the extended mpb */
f36a9ecd 4255 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4256 if (devname)
e7b84f9d
N
4257 pr_err("Cannot seek to extended mpb on %s: %s\n",
4258 devname, strerror(errno));
cdddbdbc
DW
4259 return 1;
4260 }
4261
f36a9ecd
PB
4262 if ((unsigned int)read(fd, super->buf + sector_size,
4263 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4264 if (devname)
e7b84f9d
N
4265 pr_err("Cannot read extended mpb on %s: %s\n",
4266 devname, strerror(errno));
cdddbdbc
DW
4267 return 2;
4268 }
4269
949c47a0
DW
4270 check_sum = __gen_imsm_checksum(super->anchor);
4271 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4272 if (devname)
e7b84f9d
N
4273 pr_err("IMSM checksum %x != %x on %s\n",
4274 check_sum, __le32_to_cpu(super->anchor->check_sum),
4275 devname);
db575f3b 4276 return 3;
cdddbdbc
DW
4277 }
4278
a2b97981
DW
4279 return 0;
4280}
4281
8e59f3d8
AK
4282static int read_imsm_migr_rec(int fd, struct intel_super *super);
4283
97f81ee2
CA
4284/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4285static void clear_hi(struct intel_super *super)
4286{
4287 struct imsm_super *mpb = super->anchor;
4288 int i, n;
4289 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4290 return;
4291 for (i = 0; i < mpb->num_disks; ++i) {
4292 struct imsm_disk *disk = &mpb->disk[i];
4293 disk->total_blocks_hi = 0;
4294 }
4295 for (i = 0; i < mpb->num_raid_devs; ++i) {
4296 struct imsm_dev *dev = get_imsm_dev(super, i);
4297 if (!dev)
4298 return;
4299 for (n = 0; n < 2; ++n) {
4300 struct imsm_map *map = get_imsm_map(dev, n);
4301 if (!map)
4302 continue;
4303 map->pba_of_lba0_hi = 0;
4304 map->blocks_per_member_hi = 0;
4305 map->num_data_stripes_hi = 0;
4306 }
4307 }
4308}
4309
a2b97981
DW
4310static int
4311load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4312{
4313 int err;
4314
4315 err = load_imsm_mpb(fd, super, devname);
4316 if (err)
4317 return err;
f36a9ecd
PB
4318 if (super->sector_size == 4096)
4319 convert_from_4k(super);
a2b97981
DW
4320 err = load_imsm_disk(fd, super, devname, keep_fd);
4321 if (err)
4322 return err;
4323 err = parse_raid_devices(super);
8d67477f
TM
4324 if (err)
4325 return err;
4326 err = load_bbm_log(super);
97f81ee2 4327 clear_hi(super);
a2b97981 4328 return err;
cdddbdbc
DW
4329}
4330
ae6aad82
DW
4331static void __free_imsm_disk(struct dl *d)
4332{
4333 if (d->fd >= 0)
4334 close(d->fd);
4335 if (d->devname)
4336 free(d->devname);
0dcecb2e
DW
4337 if (d->e)
4338 free(d->e);
ae6aad82
DW
4339 free(d);
4340
4341}
1a64be56 4342
cdddbdbc
DW
4343static void free_imsm_disks(struct intel_super *super)
4344{
47ee5a45 4345 struct dl *d;
cdddbdbc 4346
47ee5a45
DW
4347 while (super->disks) {
4348 d = super->disks;
cdddbdbc 4349 super->disks = d->next;
ae6aad82 4350 __free_imsm_disk(d);
cdddbdbc 4351 }
cb82edca
AK
4352 while (super->disk_mgmt_list) {
4353 d = super->disk_mgmt_list;
4354 super->disk_mgmt_list = d->next;
4355 __free_imsm_disk(d);
4356 }
47ee5a45
DW
4357 while (super->missing) {
4358 d = super->missing;
4359 super->missing = d->next;
4360 __free_imsm_disk(d);
4361 }
4362
cdddbdbc
DW
4363}
4364
9ca2c81c 4365/* free all the pieces hanging off of a super pointer */
d23fe947 4366static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4367{
88654014
LM
4368 struct intel_hba *elem, *next;
4369
9ca2c81c 4370 if (super->buf) {
949c47a0 4371 free(super->buf);
9ca2c81c
DW
4372 super->buf = NULL;
4373 }
f2f5c343
LM
4374 /* unlink capability description */
4375 super->orom = NULL;
8e59f3d8
AK
4376 if (super->migr_rec_buf) {
4377 free(super->migr_rec_buf);
4378 super->migr_rec_buf = NULL;
4379 }
d23fe947
DW
4380 if (free_disks)
4381 free_imsm_disks(super);
ba2de7ba 4382 free_devlist(super);
88654014
LM
4383 elem = super->hba;
4384 while (elem) {
4385 if (elem->path)
4386 free((void *)elem->path);
4387 next = elem->next;
4388 free(elem);
4389 elem = next;
88c32bb1 4390 }
8d67477f
TM
4391 if (super->bbm_log)
4392 free(super->bbm_log);
88654014 4393 super->hba = NULL;
cdddbdbc
DW
4394}
4395
9ca2c81c
DW
4396static void free_imsm(struct intel_super *super)
4397{
d23fe947 4398 __free_imsm(super, 1);
928f1424 4399 free(super->bb.entries);
9ca2c81c
DW
4400 free(super);
4401}
cdddbdbc
DW
4402
4403static void free_super_imsm(struct supertype *st)
4404{
4405 struct intel_super *super = st->sb;
4406
4407 if (!super)
4408 return;
4409
4410 free_imsm(super);
4411 st->sb = NULL;
4412}
4413
49133e57 4414static struct intel_super *alloc_super(void)
c2c087e6 4415{
503975b9 4416 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4417
503975b9
N
4418 super->current_vol = -1;
4419 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4420
4421 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4422 sizeof(struct md_bb_entry));
4423 if (!super->bb.entries) {
4424 free(super);
4425 return NULL;
4426 }
4427
c2c087e6
DW
4428 return super;
4429}
4430
f0f5a016
LM
4431/*
4432 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4433 */
d424212e 4434static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4435{
4436 struct sys_dev *hba_name;
4437 int rv = 0;
4438
089f9d79 4439 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4440 super->orom = NULL;
f0f5a016
LM
4441 super->hba = NULL;
4442 return 0;
4443 }
4444 hba_name = find_disk_attached_hba(fd, NULL);
4445 if (!hba_name) {
d424212e 4446 if (devname)
e7b84f9d
N
4447 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4448 devname);
f0f5a016
LM
4449 return 1;
4450 }
4451 rv = attach_hba_to_super(super, hba_name);
4452 if (rv == 2) {
d424212e
N
4453 if (devname) {
4454 struct intel_hba *hba = super->hba;
f0f5a016 4455
60f0f54d
PB
4456 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4457 " but the container is assigned to Intel(R) %s %s (",
d424212e 4458 devname,
614902f6 4459 get_sys_dev_type(hba_name->type),
60f0f54d 4460 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4461 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4462 get_sys_dev_type(super->hba->type),
4463 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4464
f0f5a016
LM
4465 while (hba) {
4466 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4467 if (hba->next)
4468 fprintf(stderr, ", ");
4469 hba = hba->next;
4470 }
6b781d33 4471 fprintf(stderr, ").\n"
60f0f54d
PB
4472 " Mixing devices attached to different %s is not allowed.\n",
4473 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
f0f5a016 4474 }
f0f5a016
LM
4475 return 2;
4476 }
6b781d33 4477 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4478 if (!super->orom)
4479 return 3;
614902f6 4480
f0f5a016
LM
4481 return 0;
4482}
4483
47ee5a45
DW
4484/* find_missing - helper routine for load_super_imsm_all that identifies
4485 * disks that have disappeared from the system. This routine relies on
4486 * the mpb being uptodate, which it is at load time.
4487 */
4488static int find_missing(struct intel_super *super)
4489{
4490 int i;
4491 struct imsm_super *mpb = super->anchor;
4492 struct dl *dl;
4493 struct imsm_disk *disk;
47ee5a45
DW
4494
4495 for (i = 0; i < mpb->num_disks; i++) {
4496 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4497 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4498 if (dl)
4499 continue;
47ee5a45 4500
503975b9 4501 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4502 dl->major = 0;
4503 dl->minor = 0;
4504 dl->fd = -1;
503975b9 4505 dl->devname = xstrdup("missing");
47ee5a45
DW
4506 dl->index = i;
4507 serialcpy(dl->serial, disk->serial);
4508 dl->disk = *disk;
689c9bf3 4509 dl->e = NULL;
47ee5a45
DW
4510 dl->next = super->missing;
4511 super->missing = dl;
4512 }
4513
4514 return 0;
4515}
4516
a2b97981
DW
4517static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4518{
4519 struct intel_disk *idisk = disk_list;
4520
4521 while (idisk) {
4522 if (serialcmp(idisk->disk.serial, serial) == 0)
4523 break;
4524 idisk = idisk->next;
4525 }
4526
4527 return idisk;
4528}
4529
4530static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4531 struct intel_super *super,
4532 struct intel_disk **disk_list)
4533{
4534 struct imsm_disk *d = &super->disks->disk;
4535 struct imsm_super *mpb = super->anchor;
4536 int i, j;
4537
4538 for (i = 0; i < tbl_size; i++) {
4539 struct imsm_super *tbl_mpb = table[i]->anchor;
4540 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4541
4542 if (tbl_mpb->family_num == mpb->family_num) {
4543 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4544 dprintf("mpb from %d:%d matches %d:%d\n",
4545 super->disks->major,
a2b97981
DW
4546 super->disks->minor,
4547 table[i]->disks->major,
4548 table[i]->disks->minor);
4549 break;
4550 }
4551
4552 if (((is_configured(d) && !is_configured(tbl_d)) ||
4553 is_configured(d) == is_configured(tbl_d)) &&
4554 tbl_mpb->generation_num < mpb->generation_num) {
4555 /* current version of the mpb is a
4556 * better candidate than the one in
4557 * super_table, but copy over "cross
4558 * generational" status
4559 */
4560 struct intel_disk *idisk;
4561
1ade5cc1
N
4562 dprintf("mpb from %d:%d replaces %d:%d\n",
4563 super->disks->major,
a2b97981
DW
4564 super->disks->minor,
4565 table[i]->disks->major,
4566 table[i]->disks->minor);
4567
4568 idisk = disk_list_get(tbl_d->serial, *disk_list);
4569 if (idisk && is_failed(&idisk->disk))
4570 tbl_d->status |= FAILED_DISK;
4571 break;
4572 } else {
4573 struct intel_disk *idisk;
4574 struct imsm_disk *disk;
4575
4576 /* tbl_mpb is more up to date, but copy
4577 * over cross generational status before
4578 * returning
4579 */
4580 disk = __serial_to_disk(d->serial, mpb, NULL);
4581 if (disk && is_failed(disk))
4582 d->status |= FAILED_DISK;
4583
4584 idisk = disk_list_get(d->serial, *disk_list);
4585 if (idisk) {
4586 idisk->owner = i;
4587 if (disk && is_configured(disk))
4588 idisk->disk.status |= CONFIGURED_DISK;
4589 }
4590
1ade5cc1
N
4591 dprintf("mpb from %d:%d prefer %d:%d\n",
4592 super->disks->major,
a2b97981
DW
4593 super->disks->minor,
4594 table[i]->disks->major,
4595 table[i]->disks->minor);
4596
4597 return tbl_size;
4598 }
4599 }
4600 }
4601
4602 if (i >= tbl_size)
4603 table[tbl_size++] = super;
4604 else
4605 table[i] = super;
4606
4607 /* update/extend the merged list of imsm_disk records */
4608 for (j = 0; j < mpb->num_disks; j++) {
4609 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4610 struct intel_disk *idisk;
4611
4612 idisk = disk_list_get(disk->serial, *disk_list);
4613 if (idisk) {
4614 idisk->disk.status |= disk->status;
4615 if (is_configured(&idisk->disk) ||
4616 is_failed(&idisk->disk))
4617 idisk->disk.status &= ~(SPARE_DISK);
4618 } else {
503975b9 4619 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4620 idisk->owner = IMSM_UNKNOWN_OWNER;
4621 idisk->disk = *disk;
4622 idisk->next = *disk_list;
4623 *disk_list = idisk;
4624 }
4625
4626 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4627 idisk->owner = i;
4628 }
4629
4630 return tbl_size;
4631}
4632
4633static struct intel_super *
4634validate_members(struct intel_super *super, struct intel_disk *disk_list,
4635 const int owner)
4636{
4637 struct imsm_super *mpb = super->anchor;
4638 int ok_count = 0;
4639 int i;
4640
4641 for (i = 0; i < mpb->num_disks; i++) {
4642 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4643 struct intel_disk *idisk;
4644
4645 idisk = disk_list_get(disk->serial, disk_list);
4646 if (idisk) {
4647 if (idisk->owner == owner ||
4648 idisk->owner == IMSM_UNKNOWN_OWNER)
4649 ok_count++;
4650 else
1ade5cc1
N
4651 dprintf("'%.16s' owner %d != %d\n",
4652 disk->serial, idisk->owner,
a2b97981
DW
4653 owner);
4654 } else {
1ade5cc1
N
4655 dprintf("unknown disk %x [%d]: %.16s\n",
4656 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4657 disk->serial);
4658 break;
4659 }
4660 }
4661
4662 if (ok_count == mpb->num_disks)
4663 return super;
4664 return NULL;
4665}
4666
4667static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4668{
4669 struct intel_super *s;
4670
4671 for (s = super_list; s; s = s->next) {
4672 if (family_num != s->anchor->family_num)
4673 continue;
e12b3daa 4674 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4675 __le32_to_cpu(family_num), s->disks->devname);
4676 }
4677}
4678
4679static struct intel_super *
4680imsm_thunderdome(struct intel_super **super_list, int len)
4681{
4682 struct intel_super *super_table[len];
4683 struct intel_disk *disk_list = NULL;
4684 struct intel_super *champion, *spare;
4685 struct intel_super *s, **del;
4686 int tbl_size = 0;
4687 int conflict;
4688 int i;
4689
4690 memset(super_table, 0, sizeof(super_table));
4691 for (s = *super_list; s; s = s->next)
4692 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4693
4694 for (i = 0; i < tbl_size; i++) {
4695 struct imsm_disk *d;
4696 struct intel_disk *idisk;
4697 struct imsm_super *mpb = super_table[i]->anchor;
4698
4699 s = super_table[i];
4700 d = &s->disks->disk;
4701
4702 /* 'd' must appear in merged disk list for its
4703 * configuration to be valid
4704 */
4705 idisk = disk_list_get(d->serial, disk_list);
4706 if (idisk && idisk->owner == i)
4707 s = validate_members(s, disk_list, i);
4708 else
4709 s = NULL;
4710
4711 if (!s)
1ade5cc1
N
4712 dprintf("marking family: %#x from %d:%d offline\n",
4713 mpb->family_num,
a2b97981
DW
4714 super_table[i]->disks->major,
4715 super_table[i]->disks->minor);
4716 super_table[i] = s;
4717 }
4718
4719 /* This is where the mdadm implementation differs from the Windows
4720 * driver which has no strict concept of a container. We can only
4721 * assemble one family from a container, so when returning a prodigal
4722 * array member to this system the code will not be able to disambiguate
4723 * the container contents that should be assembled ("foreign" versus
4724 * "local"). It requires user intervention to set the orig_family_num
4725 * to a new value to establish a new container. The Windows driver in
4726 * this situation fixes up the volume name in place and manages the
4727 * foreign array as an independent entity.
4728 */
4729 s = NULL;
4730 spare = NULL;
4731 conflict = 0;
4732 for (i = 0; i < tbl_size; i++) {
4733 struct intel_super *tbl_ent = super_table[i];
4734 int is_spare = 0;
4735
4736 if (!tbl_ent)
4737 continue;
4738
4739 if (tbl_ent->anchor->num_raid_devs == 0) {
4740 spare = tbl_ent;
4741 is_spare = 1;
4742 }
4743
4744 if (s && !is_spare) {
4745 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4746 conflict++;
4747 } else if (!s && !is_spare)
4748 s = tbl_ent;
4749 }
4750
4751 if (!s)
4752 s = spare;
4753 if (!s) {
4754 champion = NULL;
4755 goto out;
4756 }
4757 champion = s;
4758
4759 if (conflict)
7a862a02 4760 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4761 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4762
4763 /* collect all dl's onto 'champion', and update them to
4764 * champion's version of the status
4765 */
4766 for (s = *super_list; s; s = s->next) {
4767 struct imsm_super *mpb = champion->anchor;
4768 struct dl *dl = s->disks;
4769
4770 if (s == champion)
4771 continue;
4772
5d7b407a
CA
4773 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4774
a2b97981
DW
4775 for (i = 0; i < mpb->num_disks; i++) {
4776 struct imsm_disk *disk;
4777
4778 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4779 if (disk) {
4780 dl->disk = *disk;
4781 /* only set index on disks that are a member of
4782 * a populated contianer, i.e. one with
4783 * raid_devs
4784 */
4785 if (is_failed(&dl->disk))
4786 dl->index = -2;
4787 else if (is_spare(&dl->disk))
4788 dl->index = -1;
4789 break;
4790 }
4791 }
4792
4793 if (i >= mpb->num_disks) {
4794 struct intel_disk *idisk;
4795
4796 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4797 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4798 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4799 dl->index = -1;
4800 else {
4801 dl->index = -2;
4802 continue;
4803 }
4804 }
4805
4806 dl->next = champion->disks;
4807 champion->disks = dl;
4808 s->disks = NULL;
4809 }
4810
4811 /* delete 'champion' from super_list */
4812 for (del = super_list; *del; ) {
4813 if (*del == champion) {
4814 *del = (*del)->next;
4815 break;
4816 } else
4817 del = &(*del)->next;
4818 }
4819 champion->next = NULL;
4820
4821 out:
4822 while (disk_list) {
4823 struct intel_disk *idisk = disk_list;
4824
4825 disk_list = disk_list->next;
4826 free(idisk);
4827 }
4828
4829 return champion;
4830}
4831
9587c373
LM
4832static int
4833get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4834static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4835 int major, int minor, int keep_fd);
ec50f7b6
LM
4836static int
4837get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4838 int *max, int keep_fd);
4839
cdddbdbc 4840static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4841 char *devname, struct md_list *devlist,
4842 int keep_fd)
cdddbdbc 4843{
a2b97981
DW
4844 struct intel_super *super_list = NULL;
4845 struct intel_super *super = NULL;
a2b97981 4846 int err = 0;
9587c373 4847 int i = 0;
dab4a513 4848
9587c373
LM
4849 if (fd >= 0)
4850 /* 'fd' is an opened container */
4851 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4852 else
ec50f7b6
LM
4853 /* get super block from devlist devices */
4854 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4855 if (err)
1602d52c 4856 goto error;
a2b97981
DW
4857 /* all mpbs enter, maybe one leaves */
4858 super = imsm_thunderdome(&super_list, i);
4859 if (!super) {
4860 err = 1;
4861 goto error;
cdddbdbc
DW
4862 }
4863
47ee5a45
DW
4864 if (find_missing(super) != 0) {
4865 free_imsm(super);
a2b97981
DW
4866 err = 2;
4867 goto error;
47ee5a45 4868 }
8e59f3d8
AK
4869
4870 /* load migration record */
4871 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4872 if (err == -1) {
4873 /* migration is in progress,
4874 * but migr_rec cannot be loaded,
4875 */
8e59f3d8
AK
4876 err = 4;
4877 goto error;
4878 }
e2f41b2c
AK
4879
4880 /* Check migration compatibility */
089f9d79 4881 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4882 pr_err("Unsupported migration detected");
e2f41b2c
AK
4883 if (devname)
4884 fprintf(stderr, " on %s\n", devname);
4885 else
4886 fprintf(stderr, " (IMSM).\n");
4887
4888 err = 5;
4889 goto error;
4890 }
4891
a2b97981
DW
4892 err = 0;
4893
4894 error:
4895 while (super_list) {
4896 struct intel_super *s = super_list;
4897
4898 super_list = super_list->next;
4899 free_imsm(s);
4900 }
9587c373 4901
a2b97981
DW
4902 if (err)
4903 return err;
f7e7067b 4904
cdddbdbc 4905 *sbp = super;
9587c373 4906 if (fd >= 0)
4dd2df09 4907 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4908 else
4dd2df09 4909 st->container_devnm[0] = 0;
a2b97981 4910 if (err == 0 && st->ss == NULL) {
bf5a934a 4911 st->ss = &super_imsm;
cdddbdbc
DW
4912 st->minor_version = 0;
4913 st->max_devs = IMSM_MAX_DEVICES;
4914 }
cdddbdbc
DW
4915 return 0;
4916}
2b959fbf 4917
ec50f7b6
LM
4918static int
4919get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4920 int *max, int keep_fd)
4921{
4922 struct md_list *tmpdev;
4923 int err = 0;
4924 int i = 0;
9587c373 4925
ec50f7b6
LM
4926 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4927 if (tmpdev->used != 1)
4928 continue;
4929 if (tmpdev->container == 1) {
ca9de185 4930 int lmax = 0;
ec50f7b6
LM
4931 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4932 if (fd < 0) {
e7b84f9d 4933 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4934 tmpdev->devname, strerror(errno));
4935 err = 8;
4936 goto error;
4937 }
4938 err = get_sra_super_block(fd, super_list,
4939 tmpdev->devname, &lmax,
4940 keep_fd);
4941 i += lmax;
4942 close(fd);
4943 if (err) {
4944 err = 7;
4945 goto error;
4946 }
4947 } else {
4948 int major = major(tmpdev->st_rdev);
4949 int minor = minor(tmpdev->st_rdev);
4950 err = get_super_block(super_list,
4dd2df09 4951 NULL,
ec50f7b6
LM
4952 tmpdev->devname,
4953 major, minor,
4954 keep_fd);
4955 i++;
4956 if (err) {
4957 err = 6;
4958 goto error;
4959 }
4960 }
4961 }
4962 error:
4963 *max = i;
4964 return err;
4965}
9587c373 4966
4dd2df09 4967static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4968 int major, int minor, int keep_fd)
4969{
594dc1b8 4970 struct intel_super *s;
9587c373
LM
4971 char nm[32];
4972 int dfd = -1;
9587c373
LM
4973 int err = 0;
4974 int retry;
4975
4976 s = alloc_super();
4977 if (!s) {
4978 err = 1;
4979 goto error;
4980 }
4981
4982 sprintf(nm, "%d:%d", major, minor);
4983 dfd = dev_open(nm, O_RDWR);
4984 if (dfd < 0) {
4985 err = 2;
4986 goto error;
4987 }
4988
fa7bb6f8 4989 get_dev_sector_size(dfd, NULL, &s->sector_size);
cb8f6859 4990 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
4991 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4992
4993 /* retry the load if we might have raced against mdmon */
4dd2df09 4994 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
4995 for (retry = 0; retry < 3; retry++) {
4996 usleep(3000);
4997 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4998 if (err != 3)
4999 break;
5000 }
5001 error:
5002 if (!err) {
5003 s->next = *super_list;
5004 *super_list = s;
5005 } else {
5006 if (s)
8d67477f 5007 free_imsm(s);
36614e95 5008 if (dfd >= 0)
9587c373
LM
5009 close(dfd);
5010 }
089f9d79 5011 if (dfd >= 0 && !keep_fd)
9587c373
LM
5012 close(dfd);
5013 return err;
5014
5015}
5016
5017static int
5018get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5019{
5020 struct mdinfo *sra;
4dd2df09 5021 char *devnm;
9587c373
LM
5022 struct mdinfo *sd;
5023 int err = 0;
5024 int i = 0;
4dd2df09 5025 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5026 if (!sra)
5027 return 1;
5028
5029 if (sra->array.major_version != -1 ||
5030 sra->array.minor_version != -2 ||
5031 strcmp(sra->text_version, "imsm") != 0) {
5032 err = 1;
5033 goto error;
5034 }
5035 /* load all mpbs */
4dd2df09 5036 devnm = fd2devnm(fd);
9587c373 5037 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5038 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5039 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5040 err = 7;
5041 goto error;
5042 }
5043 }
5044 error:
5045 sysfs_free(sra);
5046 *max = i;
5047 return err;
5048}
5049
2b959fbf
N
5050static int load_container_imsm(struct supertype *st, int fd, char *devname)
5051{
ec50f7b6 5052 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5053}
cdddbdbc
DW
5054
5055static int load_super_imsm(struct supertype *st, int fd, char *devname)
5056{
5057 struct intel_super *super;
5058 int rv;
8a3544f8 5059 int retry;
cdddbdbc 5060
357ac106 5061 if (test_partition(fd))
691c6ee1
N
5062 /* IMSM not allowed on partitions */
5063 return 1;
5064
37424f13
DW
5065 free_super_imsm(st);
5066
49133e57 5067 super = alloc_super();
fa7bb6f8 5068 get_dev_sector_size(fd, NULL, &super->sector_size);
8d67477f
TM
5069 if (!super)
5070 return 1;
ea2bc72b
LM
5071 /* Load hba and capabilities if they exist.
5072 * But do not preclude loading metadata in case capabilities or hba are
5073 * non-compliant and ignore_hw_compat is set.
5074 */
d424212e 5075 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5076 /* no orom/efi or non-intel hba of the disk */
089f9d79 5077 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5078 if (devname)
e7b84f9d 5079 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5080 free_imsm(super);
5081 return 2;
5082 }
a2b97981 5083 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5084
8a3544f8
AP
5085 /* retry the load if we might have raced against mdmon */
5086 if (rv == 3) {
f96b1302
AP
5087 struct mdstat_ent *mdstat = NULL;
5088 char *name = fd2kname(fd);
5089
5090 if (name)
5091 mdstat = mdstat_by_component(name);
8a3544f8
AP
5092
5093 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5094 for (retry = 0; retry < 3; retry++) {
5095 usleep(3000);
5096 rv = load_and_parse_mpb(fd, super, devname, 0);
5097 if (rv != 3)
5098 break;
5099 }
5100 }
5101
5102 free_mdstat(mdstat);
5103 }
5104
cdddbdbc
DW
5105 if (rv) {
5106 if (devname)
7a862a02 5107 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5108 free_imsm(super);
5109 return rv;
5110 }
5111
5112 st->sb = super;
5113 if (st->ss == NULL) {
5114 st->ss = &super_imsm;
5115 st->minor_version = 0;
5116 st->max_devs = IMSM_MAX_DEVICES;
5117 }
8e59f3d8
AK
5118
5119 /* load migration record */
2e062e82
AK
5120 if (load_imsm_migr_rec(super, NULL) == 0) {
5121 /* Check for unsupported migration features */
5122 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5123 pr_err("Unsupported migration detected");
2e062e82
AK
5124 if (devname)
5125 fprintf(stderr, " on %s\n", devname);
5126 else
5127 fprintf(stderr, " (IMSM).\n");
5128 return 3;
5129 }
e2f41b2c
AK
5130 }
5131
cdddbdbc
DW
5132 return 0;
5133}
5134
ef6ffade
DW
5135static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5136{
5137 if (info->level == 1)
5138 return 128;
5139 return info->chunk_size >> 9;
5140}
5141
5551b113
CA
5142static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5143 unsigned long long size)
fcfd9599 5144{
4025c288 5145 if (info->level == 1)
5551b113 5146 return size * 2;
4025c288 5147 else
5551b113 5148 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5149}
5150
4d1313e9
DW
5151static void imsm_update_version_info(struct intel_super *super)
5152{
5153 /* update the version and attributes */
5154 struct imsm_super *mpb = super->anchor;
5155 char *version;
5156 struct imsm_dev *dev;
5157 struct imsm_map *map;
5158 int i;
5159
5160 for (i = 0; i < mpb->num_raid_devs; i++) {
5161 dev = get_imsm_dev(super, i);
238c0a71 5162 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5163 if (__le32_to_cpu(dev->size_high) > 0)
5164 mpb->attributes |= MPB_ATTRIB_2TB;
5165
5166 /* FIXME detect when an array spans a port multiplier */
5167 #if 0
5168 mpb->attributes |= MPB_ATTRIB_PM;
5169 #endif
5170
5171 if (mpb->num_raid_devs > 1 ||
5172 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5173 version = MPB_VERSION_ATTRIBS;
5174 switch (get_imsm_raid_level(map)) {
5175 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5176 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5177 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5178 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5179 }
5180 } else {
5181 if (map->num_members >= 5)
5182 version = MPB_VERSION_5OR6_DISK_ARRAY;
5183 else if (dev->status == DEV_CLONE_N_GO)
5184 version = MPB_VERSION_CNG;
5185 else if (get_imsm_raid_level(map) == 5)
5186 version = MPB_VERSION_RAID5;
5187 else if (map->num_members >= 3)
5188 version = MPB_VERSION_3OR4_DISK_ARRAY;
5189 else if (get_imsm_raid_level(map) == 1)
5190 version = MPB_VERSION_RAID1;
5191 else
5192 version = MPB_VERSION_RAID0;
5193 }
5194 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5195 }
5196}
5197
aa534678
DW
5198static int check_name(struct intel_super *super, char *name, int quiet)
5199{
5200 struct imsm_super *mpb = super->anchor;
5201 char *reason = NULL;
5202 int i;
5203
5204 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5205 reason = "must be 16 characters or less";
5206
5207 for (i = 0; i < mpb->num_raid_devs; i++) {
5208 struct imsm_dev *dev = get_imsm_dev(super, i);
5209
5210 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5211 reason = "already exists";
5212 break;
5213 }
5214 }
5215
5216 if (reason && !quiet)
e7b84f9d 5217 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5218
5219 return !reason;
5220}
5221
8b353278 5222static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5223 struct shape *s, char *name,
83cd1e97
N
5224 char *homehost, int *uuid,
5225 long long data_offset)
cdddbdbc 5226{
c2c087e6
DW
5227 /* We are creating a volume inside a pre-existing container.
5228 * so st->sb is already set.
5229 */
5230 struct intel_super *super = st->sb;
f36a9ecd 5231 unsigned int sector_size = super->sector_size;
949c47a0 5232 struct imsm_super *mpb = super->anchor;
ba2de7ba 5233 struct intel_dev *dv;
c2c087e6
DW
5234 struct imsm_dev *dev;
5235 struct imsm_vol *vol;
5236 struct imsm_map *map;
5237 int idx = mpb->num_raid_devs;
5238 int i;
5239 unsigned long long array_blocks;
2c092cad 5240 size_t size_old, size_new;
5551b113 5241 unsigned long long num_data_stripes;
b53bfba6
TM
5242 unsigned int data_disks;
5243 unsigned long long size_per_member;
cdddbdbc 5244
88c32bb1 5245 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5246 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5247 return 0;
5248 }
5249
2c092cad
DW
5250 /* ensure the mpb is large enough for the new data */
5251 size_old = __le32_to_cpu(mpb->mpb_size);
5252 size_new = disks_to_mpb_size(info->nr_disks);
5253 if (size_new > size_old) {
5254 void *mpb_new;
f36a9ecd 5255 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5256
f36a9ecd 5257 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5258 pr_err("could not allocate new mpb\n");
2c092cad
DW
5259 return 0;
5260 }
85337573
AO
5261 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5262 MIGR_REC_BUF_SECTORS*
5263 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5264 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5265 free(super->buf);
5266 free(super);
ea944c8f 5267 free(mpb_new);
8e59f3d8
AK
5268 return 0;
5269 }
2c092cad
DW
5270 memcpy(mpb_new, mpb, size_old);
5271 free(mpb);
5272 mpb = mpb_new;
949c47a0 5273 super->anchor = mpb_new;
2c092cad
DW
5274 mpb->mpb_size = __cpu_to_le32(size_new);
5275 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5276 super->len = size_round;
2c092cad 5277 }
bf5a934a 5278 super->current_vol = idx;
3960e579
DW
5279
5280 /* handle 'failed_disks' by either:
5281 * a) create dummy disk entries in the table if this the first
5282 * volume in the array. We add them here as this is the only
5283 * opportunity to add them. add_to_super_imsm_volume()
5284 * handles the non-failed disks and continues incrementing
5285 * mpb->num_disks.
5286 * b) validate that 'failed_disks' matches the current number
5287 * of missing disks if the container is populated
d23fe947 5288 */
3960e579 5289 if (super->current_vol == 0) {
d23fe947 5290 mpb->num_disks = 0;
3960e579
DW
5291 for (i = 0; i < info->failed_disks; i++) {
5292 struct imsm_disk *disk;
5293
5294 mpb->num_disks++;
5295 disk = __get_imsm_disk(mpb, i);
5296 disk->status = CONFIGURED_DISK | FAILED_DISK;
5297 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5298 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5299 "missing:%d", (__u8)i);
3960e579
DW
5300 }
5301 find_missing(super);
5302 } else {
5303 int missing = 0;
5304 struct dl *d;
5305
5306 for (d = super->missing; d; d = d->next)
5307 missing++;
5308 if (info->failed_disks > missing) {
e7b84f9d 5309 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5310 return 0;
5311 }
5312 }
5a038140 5313
aa534678
DW
5314 if (!check_name(super, name, 0))
5315 return 0;
503975b9
N
5316 dv = xmalloc(sizeof(*dv));
5317 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 5318 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 5319 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5320 info->layout, info->chunk_size,
b53bfba6
TM
5321 s->size * BLOCKS_PER_KB);
5322 data_disks = get_data_disks(info->level, info->layout,
5323 info->raid_disks);
5324 array_blocks = round_size_to_mb(array_blocks, data_disks);
5325 size_per_member = array_blocks / data_disks;
979d38be 5326
c2c087e6
DW
5327 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5328 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 5329 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5330 vol = &dev->vol;
5331 vol->migr_state = 0;
1484e727 5332 set_migr_type(dev, MIGR_INIT);
3960e579 5333 vol->dirty = !info->state;
f8f603f1 5334 vol->curr_migr_unit = 0;
238c0a71 5335 map = get_imsm_map(dev, MAP_0);
5551b113 5336 set_pba_of_lba0(map, super->create_offset);
b53bfba6
TM
5337 set_blocks_per_member(map, info_to_blocks_per_member(info,
5338 size_per_member /
5339 BLOCKS_PER_KB));
ef6ffade 5340 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5341 map->failed_disk_num = ~0;
bf4442ab 5342 if (info->level > 0)
fffaf1ff
N
5343 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5344 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5345 else
5346 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5347 IMSM_T_STATE_NORMAL;
252d23c0 5348 map->ddf = 1;
ef6ffade
DW
5349
5350 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5351 free(dev);
5352 free(dv);
7a862a02 5353 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5354 return 0;
5355 }
81062a36
DW
5356
5357 map->raid_level = info->level;
4d1313e9 5358 if (info->level == 10) {
c2c087e6 5359 map->raid_level = 1;
4d1313e9 5360 map->num_domains = info->raid_disks / 2;
81062a36
DW
5361 } else if (info->level == 1)
5362 map->num_domains = info->raid_disks;
5363 else
ff596308 5364 map->num_domains = 1;
81062a36 5365
5551b113 5366 /* info->size is only int so use the 'size' parameter instead */
b53bfba6 5367 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5551b113
CA
5368 num_data_stripes /= map->num_domains;
5369 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5370
c2c087e6
DW
5371 map->num_members = info->raid_disks;
5372 for (i = 0; i < map->num_members; i++) {
5373 /* initialized in add_to_super */
4eb26970 5374 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5375 }
949c47a0 5376 mpb->num_raid_devs++;
2a24dc1b
PB
5377 mpb->num_raid_devs_created++;
5378 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5379
b7580566 5380 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
2432ce9b
AP
5381 dev->rwh_policy = RWH_OFF;
5382 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5383 dev->rwh_policy = RWH_DISTRIBUTED;
5384 } else {
5385 free(dev);
5386 free(dv);
5387 pr_err("imsm does not support consistency policy %s\n",
5388 map_num(consistency_policies, s->consistency_policy));
5389 return 0;
5390 }
5391
ba2de7ba
DW
5392 dv->dev = dev;
5393 dv->index = super->current_vol;
5394 dv->next = super->devlist;
5395 super->devlist = dv;
c2c087e6 5396
4d1313e9
DW
5397 imsm_update_version_info(super);
5398
c2c087e6 5399 return 1;
cdddbdbc
DW
5400}
5401
bf5a934a 5402static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5403 struct shape *s, char *name,
83cd1e97
N
5404 char *homehost, int *uuid,
5405 unsigned long long data_offset)
bf5a934a
DW
5406{
5407 /* This is primarily called by Create when creating a new array.
5408 * We will then get add_to_super called for each component, and then
5409 * write_init_super called to write it out to each device.
5410 * For IMSM, Create can create on fresh devices or on a pre-existing
5411 * array.
5412 * To create on a pre-existing array a different method will be called.
5413 * This one is just for fresh drives.
5414 */
5415 struct intel_super *super;
5416 struct imsm_super *mpb;
5417 size_t mpb_size;
4d1313e9 5418 char *version;
bf5a934a 5419
83cd1e97 5420 if (data_offset != INVALID_SECTORS) {
ed503f89 5421 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5422 return 0;
5423 }
5424
bf5a934a 5425 if (st->sb)
5308f117 5426 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5427 data_offset);
e683ca88
DW
5428
5429 if (info)
5430 mpb_size = disks_to_mpb_size(info->nr_disks);
5431 else
f36a9ecd 5432 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5433
49133e57 5434 super = alloc_super();
f36a9ecd
PB
5435 if (super &&
5436 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5437 free_imsm(super);
e683ca88
DW
5438 super = NULL;
5439 }
5440 if (!super) {
1ade5cc1 5441 pr_err("could not allocate superblock\n");
bf5a934a
DW
5442 return 0;
5443 }
de44e46f
PB
5444 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5445 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5446 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5447 free(super->buf);
8d67477f 5448 free_imsm(super);
8e59f3d8
AK
5449 return 0;
5450 }
e683ca88 5451 memset(super->buf, 0, mpb_size);
ef649044 5452 mpb = super->buf;
e683ca88
DW
5453 mpb->mpb_size = __cpu_to_le32(mpb_size);
5454 st->sb = super;
5455
5456 if (info == NULL) {
5457 /* zeroing superblock */
5458 return 0;
5459 }
bf5a934a 5460
4d1313e9
DW
5461 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5462
5463 version = (char *) mpb->sig;
5464 strcpy(version, MPB_SIGNATURE);
5465 version += strlen(MPB_SIGNATURE);
5466 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5467
bf5a934a
DW
5468 return 1;
5469}
5470
f20c3968 5471static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5472 int fd, char *devname)
5473{
5474 struct intel_super *super = st->sb;
d23fe947 5475 struct imsm_super *mpb = super->anchor;
3960e579 5476 struct imsm_disk *_disk;
bf5a934a
DW
5477 struct imsm_dev *dev;
5478 struct imsm_map *map;
3960e579 5479 struct dl *dl, *df;
4eb26970 5480 int slot;
bf5a934a 5481
949c47a0 5482 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5483 map = get_imsm_map(dev, MAP_0);
bf5a934a 5484
208933a7 5485 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5486 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5487 devname);
5488 return 1;
5489 }
5490
efb30e7f
DW
5491 if (fd == -1) {
5492 /* we're doing autolayout so grab the pre-marked (in
5493 * validate_geometry) raid_disk
5494 */
5495 for (dl = super->disks; dl; dl = dl->next)
5496 if (dl->raiddisk == dk->raid_disk)
5497 break;
5498 } else {
5499 for (dl = super->disks; dl ; dl = dl->next)
5500 if (dl->major == dk->major &&
5501 dl->minor == dk->minor)
5502 break;
5503 }
d23fe947 5504
208933a7 5505 if (!dl) {
e7b84f9d 5506 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5507 return 1;
208933a7 5508 }
bf5a934a 5509
d23fe947
DW
5510 /* add a pristine spare to the metadata */
5511 if (dl->index < 0) {
5512 dl->index = super->anchor->num_disks;
5513 super->anchor->num_disks++;
5514 }
4eb26970
DW
5515 /* Check the device has not already been added */
5516 slot = get_imsm_disk_slot(map, dl->index);
5517 if (slot >= 0 &&
238c0a71 5518 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5519 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5520 devname);
5521 return 1;
5522 }
656b6b5a 5523 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5524 dl->disk.status = CONFIGURED_DISK;
d23fe947 5525
3960e579
DW
5526 /* update size of 'missing' disks to be at least as large as the
5527 * largest acitve member (we only have dummy missing disks when
5528 * creating the first volume)
5529 */
5530 if (super->current_vol == 0) {
5531 for (df = super->missing; df; df = df->next) {
5551b113
CA
5532 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5533 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5534 _disk = __get_imsm_disk(mpb, df->index);
5535 *_disk = df->disk;
5536 }
5537 }
5538
5539 /* refresh unset/failed slots to point to valid 'missing' entries */
5540 for (df = super->missing; df; df = df->next)
5541 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5542 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5543
5544 if ((ord & IMSM_ORD_REBUILD) == 0)
5545 continue;
5546 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5547 if (is_gen_migration(dev)) {
238c0a71
AK
5548 struct imsm_map *map2 = get_imsm_map(dev,
5549 MAP_1);
0a108d63 5550 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5551 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5552 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5553 slot2,
5554 MAP_1);
1ace8403
AK
5555 if ((unsigned)df->index ==
5556 ord_to_idx(ord2))
5557 set_imsm_ord_tbl_ent(map2,
0a108d63 5558 slot2,
1ace8403
AK
5559 df->index |
5560 IMSM_ORD_REBUILD);
5561 }
5562 }
3960e579
DW
5563 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5564 break;
5565 }
5566
d23fe947
DW
5567 /* if we are creating the first raid device update the family number */
5568 if (super->current_vol == 0) {
5569 __u32 sum;
5570 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5571
3960e579 5572 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5573 if (!_dev || !_disk) {
e7b84f9d 5574 pr_err("BUG mpb setup error\n");
791b666a
AW
5575 return 1;
5576 }
d23fe947
DW
5577 *_dev = *dev;
5578 *_disk = dl->disk;
148acb7b
DW
5579 sum = random32();
5580 sum += __gen_imsm_checksum(mpb);
d23fe947 5581 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5582 mpb->orig_family_num = mpb->family_num;
d23fe947 5583 }
ca0748fa 5584 super->current_disk = dl;
f20c3968 5585 return 0;
bf5a934a
DW
5586}
5587
a8619d23
AK
5588/* mark_spare()
5589 * Function marks disk as spare and restores disk serial
5590 * in case it was previously marked as failed by takeover operation
5591 * reruns:
5592 * -1 : critical error
5593 * 0 : disk is marked as spare but serial is not set
5594 * 1 : success
5595 */
5596int mark_spare(struct dl *disk)
5597{
5598 __u8 serial[MAX_RAID_SERIAL_LEN];
5599 int ret_val = -1;
5600
5601 if (!disk)
5602 return ret_val;
5603
5604 ret_val = 0;
5605 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5606 /* Restore disk serial number, because takeover marks disk
5607 * as failed and adds to serial ':0' before it becomes
5608 * a spare disk.
5609 */
5610 serialcpy(disk->serial, serial);
5611 serialcpy(disk->disk.serial, serial);
5612 ret_val = 1;
5613 }
5614 disk->disk.status = SPARE_DISK;
5615 disk->index = -1;
5616
5617 return ret_val;
5618}
88654014 5619
f20c3968 5620static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5621 int fd, char *devname,
5622 unsigned long long data_offset)
cdddbdbc 5623{
c2c087e6 5624 struct intel_super *super = st->sb;
c2c087e6
DW
5625 struct dl *dd;
5626 unsigned long long size;
fa7bb6f8 5627 unsigned int member_sector_size;
f2f27e63 5628 __u32 id;
c2c087e6
DW
5629 int rv;
5630 struct stat stb;
5631
88654014
LM
5632 /* If we are on an RAID enabled platform check that the disk is
5633 * attached to the raid controller.
5634 * We do not need to test disks attachment for container based additions,
5635 * they shall be already tested when container was created/assembled.
88c32bb1 5636 */
d424212e 5637 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5638 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5639 if (rv != 0) {
5640 dprintf("capability: %p fd: %d ret: %d\n",
5641 super->orom, fd, rv);
5642 return 1;
88c32bb1
DW
5643 }
5644
f20c3968
DW
5645 if (super->current_vol >= 0)
5646 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5647
c2c087e6 5648 fstat(fd, &stb);
503975b9 5649 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5650 dd->major = major(stb.st_rdev);
5651 dd->minor = minor(stb.st_rdev);
503975b9 5652 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5653 dd->fd = fd;
689c9bf3 5654 dd->e = NULL;
1a64be56 5655 dd->action = DISK_ADD;
c2c087e6 5656 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5657 if (rv) {
e7b84f9d 5658 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5659 if (dd->devname)
5660 free(dd->devname);
949c47a0 5661 free(dd);
0030e8d6 5662 abort();
c2c087e6 5663 }
20bee0f8
PB
5664 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5665 (super->hba->type == SYS_DEV_VMD))) {
5666 int i;
5667 char *devpath = diskfd_to_devpath(fd);
5668 char controller_path[PATH_MAX];
5669
5670 if (!devpath) {
5671 pr_err("failed to get devpath, aborting\n");
5672 if (dd->devname)
5673 free(dd->devname);
5674 free(dd);
5675 return 1;
5676 }
5677
5678 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5679 free(devpath);
5680
5681 if (devpath_to_vendor(controller_path) == 0x8086) {
5682 /*
5683 * If Intel's NVMe drive has serial ended with
5684 * "-A","-B","-1" or "-2" it means that this is "x8"
5685 * device (double drive on single PCIe card).
5686 * User should be warned about potential data loss.
5687 */
5688 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5689 /* Skip empty character at the end */
5690 if (dd->serial[i] == 0)
5691 continue;
5692
5693 if (((dd->serial[i] == 'A') ||
5694 (dd->serial[i] == 'B') ||
5695 (dd->serial[i] == '1') ||
5696 (dd->serial[i] == '2')) &&
5697 (dd->serial[i-1] == '-'))
5698 pr_err("\tThe action you are about to take may put your data at risk.\n"
5699 "\tPlease note that x8 devices may consist of two separate x4 devices "
5700 "located on a single PCIe port.\n"
5701 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5702 break;
5703 }
32716c51
PB
5704 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5705 !imsm_orom_has_tpv_support(super->orom)) {
5706 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5707 "\tPlease refer to Intel(R) RSTe user guide.\n");
5708 free(dd->devname);
5709 free(dd);
5710 return 1;
20bee0f8
PB
5711 }
5712 }
c2c087e6 5713
c2c087e6 5714 get_dev_size(fd, NULL, &size);
fa7bb6f8
PB
5715 get_dev_sector_size(fd, NULL, &member_sector_size);
5716
5717 if (super->sector_size == 0) {
5718 /* this a first device, so sector_size is not set yet */
5719 super->sector_size = member_sector_size;
fa7bb6f8
PB
5720 }
5721
71e5411e 5722 /* clear migr_rec when adding disk to container */
85337573
AO
5723 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5724 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 5725 SEEK_SET) >= 0) {
466070ad 5726 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
5727 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5728 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
5729 perror("Write migr_rec failed");
5730 }
5731
c2c087e6 5732 size /= 512;
1f24f035 5733 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5734 set_total_blocks(&dd->disk, size);
5735 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5736 struct imsm_super *mpb = super->anchor;
5737 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5738 }
a8619d23 5739 mark_spare(dd);
c2c087e6 5740 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5741 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5742 else
b9f594fe 5743 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5744
5745 if (st->update_tail) {
1a64be56
LM
5746 dd->next = super->disk_mgmt_list;
5747 super->disk_mgmt_list = dd;
43dad3d6
DW
5748 } else {
5749 dd->next = super->disks;
5750 super->disks = dd;
ceaf0ee1 5751 super->updates_pending++;
43dad3d6 5752 }
f20c3968
DW
5753
5754 return 0;
cdddbdbc
DW
5755}
5756
1a64be56
LM
5757static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5758{
5759 struct intel_super *super = st->sb;
5760 struct dl *dd;
5761
5762 /* remove from super works only in mdmon - for communication
5763 * manager - monitor. Check if communication memory buffer
5764 * is prepared.
5765 */
5766 if (!st->update_tail) {
1ade5cc1 5767 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5768 return 1;
5769 }
503975b9 5770 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5771 dd->major = dk->major;
5772 dd->minor = dk->minor;
1a64be56 5773 dd->fd = -1;
a8619d23 5774 mark_spare(dd);
1a64be56
LM
5775 dd->action = DISK_REMOVE;
5776
5777 dd->next = super->disk_mgmt_list;
5778 super->disk_mgmt_list = dd;
5779
1a64be56
LM
5780 return 0;
5781}
5782
f796af5d
DW
5783static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5784
5785static union {
f36a9ecd 5786 char buf[MAX_SECTOR_SIZE];
f796af5d 5787 struct imsm_super anchor;
f36a9ecd 5788} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 5789
d23fe947
DW
5790/* spare records have their own family number and do not have any defined raid
5791 * devices
5792 */
5793static int write_super_imsm_spares(struct intel_super *super, int doclose)
5794{
d23fe947 5795 struct imsm_super *mpb = super->anchor;
f796af5d 5796 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5797 __u32 sum;
5798 struct dl *d;
5799
68641cdb
JS
5800 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5801 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5802 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5803 spare->num_disks = 1;
5804 spare->num_raid_devs = 0;
5805 spare->cache_size = mpb->cache_size;
5806 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5807
5808 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5809 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5810
5811 for (d = super->disks; d; d = d->next) {
8796fdc4 5812 if (d->index != -1)
d23fe947
DW
5813 continue;
5814
f796af5d 5815 spare->disk[0] = d->disk;
027c374f
CA
5816 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5817 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5818
f36a9ecd
PB
5819 if (super->sector_size == 4096)
5820 convert_to_4k_imsm_disk(&spare->disk[0]);
5821
f796af5d
DW
5822 sum = __gen_imsm_checksum(spare);
5823 spare->family_num = __cpu_to_le32(sum);
5824 spare->orig_family_num = 0;
5825 sum = __gen_imsm_checksum(spare);
5826 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5827
f796af5d 5828 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5829 pr_err("failed for device %d:%d %s\n",
5830 d->major, d->minor, strerror(errno));
e74255d9 5831 return 1;
d23fe947
DW
5832 }
5833 if (doclose) {
5834 close(d->fd);
5835 d->fd = -1;
5836 }
5837 }
5838
e74255d9 5839 return 0;
d23fe947
DW
5840}
5841
36988a3d 5842static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5843{
36988a3d 5844 struct intel_super *super = st->sb;
f36a9ecd 5845 unsigned int sector_size = super->sector_size;
949c47a0 5846 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5847 struct dl *d;
5848 __u32 generation;
5849 __u32 sum;
d23fe947 5850 int spares = 0;
949c47a0 5851 int i;
a48ac0a8 5852 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5853 int num_disks = 0;
146c6260 5854 int clear_migration_record = 1;
bbab0940 5855 __u32 bbm_log_size;
cdddbdbc 5856
c2c087e6
DW
5857 /* 'generation' is incremented everytime the metadata is written */
5858 generation = __le32_to_cpu(mpb->generation_num);
5859 generation++;
5860 mpb->generation_num = __cpu_to_le32(generation);
5861
148acb7b
DW
5862 /* fix up cases where previous mdadm releases failed to set
5863 * orig_family_num
5864 */
5865 if (mpb->orig_family_num == 0)
5866 mpb->orig_family_num = mpb->family_num;
5867
d23fe947 5868 for (d = super->disks; d; d = d->next) {
8796fdc4 5869 if (d->index == -1)
d23fe947 5870 spares++;
36988a3d 5871 else {
d23fe947 5872 mpb->disk[d->index] = d->disk;
36988a3d
AK
5873 num_disks++;
5874 }
d23fe947 5875 }
36988a3d 5876 for (d = super->missing; d; d = d->next) {
47ee5a45 5877 mpb->disk[d->index] = d->disk;
36988a3d
AK
5878 num_disks++;
5879 }
5880 mpb->num_disks = num_disks;
5881 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5882
949c47a0
DW
5883 for (i = 0; i < mpb->num_raid_devs; i++) {
5884 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5885 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5886 if (dev && dev2) {
5887 imsm_copy_dev(dev, dev2);
5888 mpb_size += sizeof_imsm_dev(dev, 0);
5889 }
146c6260
AK
5890 if (is_gen_migration(dev2))
5891 clear_migration_record = 0;
949c47a0 5892 }
bbab0940
TM
5893
5894 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5895
5896 if (bbm_log_size) {
5897 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5898 mpb->attributes |= MPB_ATTRIB_BBM;
5899 } else
5900 mpb->attributes &= ~MPB_ATTRIB_BBM;
5901
5902 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5903 mpb_size += bbm_log_size;
a48ac0a8 5904 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5905
bbab0940
TM
5906#ifdef DEBUG
5907 assert(super->len == 0 || mpb_size <= super->len);
5908#endif
5909
c2c087e6 5910 /* recalculate checksum */
949c47a0 5911 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5912 mpb->check_sum = __cpu_to_le32(sum);
5913
51d83f5d
AK
5914 if (super->clean_migration_record_by_mdmon) {
5915 clear_migration_record = 1;
5916 super->clean_migration_record_by_mdmon = 0;
5917 }
146c6260 5918 if (clear_migration_record)
de44e46f 5919 memset(super->migr_rec_buf, 0,
85337573 5920 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 5921
f36a9ecd
PB
5922 if (sector_size == 4096)
5923 convert_to_4k(super);
5924
d23fe947 5925 /* write the mpb for disks that compose raid devices */
c2c087e6 5926 for (d = super->disks; d ; d = d->next) {
86c54047 5927 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5928 continue;
30602f53 5929
146c6260
AK
5930 if (clear_migration_record) {
5931 unsigned long long dsize;
5932
5933 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
5934 if (lseek64(d->fd, dsize - sector_size,
5935 SEEK_SET) >= 0) {
466070ad
PB
5936 if ((unsigned int)write(d->fd,
5937 super->migr_rec_buf,
de44e46f
PB
5938 MIGR_REC_BUF_SECTORS*sector_size) !=
5939 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 5940 perror("Write migr_rec failed");
146c6260
AK
5941 }
5942 }
51d83f5d
AK
5943
5944 if (store_imsm_mpb(d->fd, mpb))
5945 fprintf(stderr,
1ade5cc1
N
5946 "failed for device %d:%d (fd: %d)%s\n",
5947 d->major, d->minor,
51d83f5d
AK
5948 d->fd, strerror(errno));
5949
c2c087e6
DW
5950 if (doclose) {
5951 close(d->fd);
5952 d->fd = -1;
5953 }
5954 }
5955
d23fe947
DW
5956 if (spares)
5957 return write_super_imsm_spares(super, doclose);
5958
e74255d9 5959 return 0;
c2c087e6
DW
5960}
5961
9b1fb677 5962static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5963{
5964 size_t len;
5965 struct imsm_update_create_array *u;
5966 struct intel_super *super = st->sb;
9b1fb677 5967 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5968 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5969 struct disk_info *inf;
5970 struct imsm_disk *disk;
5971 int i;
43dad3d6 5972
54c2c1ea
DW
5973 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5974 sizeof(*inf) * map->num_members;
503975b9 5975 u = xmalloc(len);
43dad3d6 5976 u->type = update_create_array;
9b1fb677 5977 u->dev_idx = dev_idx;
43dad3d6 5978 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
5979 inf = get_disk_info(u);
5980 for (i = 0; i < map->num_members; i++) {
238c0a71 5981 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 5982
54c2c1ea 5983 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
5984 if (!disk)
5985 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
5986 serialcpy(inf[i].serial, disk->serial);
5987 }
43dad3d6
DW
5988 append_metadata_update(st, u, len);
5989
5990 return 0;
5991}
5992
1a64be56 5993static int mgmt_disk(struct supertype *st)
43dad3d6
DW
5994{
5995 struct intel_super *super = st->sb;
5996 size_t len;
1a64be56 5997 struct imsm_update_add_remove_disk *u;
43dad3d6 5998
1a64be56 5999 if (!super->disk_mgmt_list)
43dad3d6
DW
6000 return 0;
6001
6002 len = sizeof(*u);
503975b9 6003 u = xmalloc(len);
1a64be56 6004 u->type = update_add_remove_disk;
43dad3d6
DW
6005 append_metadata_update(st, u, len);
6006
6007 return 0;
6008}
2432ce9b
AP
6009
6010__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6011
6012static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6013{
6014 struct intel_super *super = st->sb;
6015 void *buf;
6016 struct ppl_header *ppl_hdr;
6017 int ret;
6018
6019 ret = posix_memalign(&buf, 4096, PPL_HEADER_SIZE);
6020 if (ret) {
6021 pr_err("Failed to allocate PPL header buffer\n");
6022 return ret;
6023 }
6024
6025 memset(buf, 0, PPL_HEADER_SIZE);
6026 ppl_hdr = buf;
6027 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6028 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6029 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6030
6031 if (lseek64(fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6032 ret = errno;
6033 perror("Failed to seek to PPL header location");
6034 }
6035
6036 if (!ret && write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6037 ret = errno;
6038 perror("Write PPL header failed");
6039 }
6040
6041 if (!ret)
6042 fsync(fd);
6043
6044 free(buf);
6045 return ret;
6046}
6047
6048static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6049 struct mdinfo *disk)
6050{
6051 struct intel_super *super = st->sb;
6052 struct dl *d;
6053 void *buf;
6054 int ret = 0;
6055 struct ppl_header *ppl_hdr;
6056 __u32 crc;
6057 struct imsm_dev *dev;
6058 struct imsm_map *map;
6059 __u32 idx;
6060
6061 if (disk->disk.raid_disk < 0)
6062 return 0;
6063
6064 if (posix_memalign(&buf, 4096, PPL_HEADER_SIZE)) {
6065 pr_err("Failed to allocate PPL header buffer\n");
6066 return -1;
6067 }
6068
6069 dev = get_imsm_dev(super, info->container_member);
6070 map = get_imsm_map(dev, MAP_X);
6071 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_X);
6072 d = get_imsm_dl_disk(super, idx);
6073
6074 if (!d || d->index < 0 || is_failed(&d->disk))
6075 goto out;
6076
6077 if (lseek64(d->fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6078 perror("Failed to seek to PPL header location");
6079 ret = -1;
6080 goto out;
6081 }
6082
6083 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6084 perror("Read PPL header failed");
6085 ret = -1;
6086 goto out;
6087 }
6088
6089 ppl_hdr = buf;
6090
6091 crc = __le32_to_cpu(ppl_hdr->checksum);
6092 ppl_hdr->checksum = 0;
6093
6094 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6095 dprintf("Wrong PPL header checksum on %s\n",
6096 d->devname);
6097 ret = 1;
6098 }
6099
6100 if (!ret && (__le32_to_cpu(ppl_hdr->signature) !=
6101 super->anchor->orig_family_num)) {
6102 dprintf("Wrong PPL header signature on %s\n",
6103 d->devname);
6104 ret = 1;
6105 }
6106
6107out:
6108 free(buf);
6109
6110 if (ret == 1 && map->map_state == IMSM_T_STATE_UNINITIALIZED)
6111 return st->ss->write_init_ppl(st, info, d->fd);
6112
6113 return ret;
6114}
6115
2432ce9b
AP
6116static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6117{
6118 struct intel_super *super = st->sb;
6119 struct dl *d;
6120 int ret = 0;
6121
6122 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6123 info->array.level != 5)
6124 return 0;
6125
6126 for (d = super->disks; d ; d = d->next) {
6127 if (d->index < 0 || is_failed(&d->disk))
6128 continue;
6129
6130 ret = st->ss->write_init_ppl(st, info, d->fd);
6131 if (ret)
6132 break;
6133 }
6134
6135 return ret;
6136}
43dad3d6 6137
c2c087e6
DW
6138static int write_init_super_imsm(struct supertype *st)
6139{
9b1fb677
DW
6140 struct intel_super *super = st->sb;
6141 int current_vol = super->current_vol;
2432ce9b
AP
6142 int rv = 0;
6143 struct mdinfo info;
6144
6145 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6146
6147 /* we are done with current_vol reset it to point st at the container */
6148 super->current_vol = -1;
6149
8273f55e 6150 if (st->update_tail) {
43dad3d6
DW
6151 /* queue the recently created array / added disk
6152 * as a metadata update */
8273f55e 6153
43dad3d6 6154 /* determine if we are creating a volume or adding a disk */
9b1fb677 6155 if (current_vol < 0) {
1a64be56
LM
6156 /* in the mgmt (add/remove) disk case we are running
6157 * in mdmon context, so don't close fd's
43dad3d6 6158 */
2432ce9b
AP
6159 rv = mgmt_disk(st);
6160 } else {
6161 rv = write_init_ppl_imsm_all(st, &info);
6162 if (!rv)
6163 rv = create_array(st, current_vol);
6164 }
d682f344
N
6165 } else {
6166 struct dl *d;
6167 for (d = super->disks; d; d = d->next)
ba728be7 6168 Kill(d->devname, NULL, 0, -1, 1);
2432ce9b
AP
6169 if (current_vol >= 0)
6170 rv = write_init_ppl_imsm_all(st, &info);
6171 if (!rv)
6172 rv = write_super_imsm(st, 1);
d682f344 6173 }
2432ce9b
AP
6174
6175 return rv;
cdddbdbc
DW
6176}
6177
e683ca88 6178static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6179{
e683ca88
DW
6180 struct intel_super *super = st->sb;
6181 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6182
e683ca88 6183 if (!mpb)
ad97895e
DW
6184 return 1;
6185
f36a9ecd
PB
6186 if (super->sector_size == 4096)
6187 convert_to_4k(super);
e683ca88 6188 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6189}
6190
cdddbdbc
DW
6191static int validate_geometry_imsm_container(struct supertype *st, int level,
6192 int layout, int raiddisks, int chunk,
af4348dd
N
6193 unsigned long long size,
6194 unsigned long long data_offset,
6195 char *dev,
2c514b71
NB
6196 unsigned long long *freesize,
6197 int verbose)
cdddbdbc 6198{
c2c087e6
DW
6199 int fd;
6200 unsigned long long ldsize;
594dc1b8 6201 struct intel_super *super;
f2f5c343 6202 int rv = 0;
cdddbdbc 6203
c2c087e6
DW
6204 if (level != LEVEL_CONTAINER)
6205 return 0;
6206 if (!dev)
6207 return 1;
6208
6209 fd = open(dev, O_RDONLY|O_EXCL, 0);
6210 if (fd < 0) {
ba728be7 6211 if (verbose > 0)
e7b84f9d 6212 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6213 dev, strerror(errno));
c2c087e6
DW
6214 return 0;
6215 }
6216 if (!get_dev_size(fd, dev, &ldsize)) {
6217 close(fd);
6218 return 0;
6219 }
f2f5c343
LM
6220
6221 /* capabilities retrieve could be possible
6222 * note that there is no fd for the disks in array.
6223 */
6224 super = alloc_super();
8d67477f
TM
6225 if (!super) {
6226 close(fd);
6227 return 0;
6228 }
fa7bb6f8
PB
6229 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6230 close(fd);
6231 free_imsm(super);
6232 return 0;
6233 }
6234
ba728be7 6235 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6236 if (rv != 0) {
6237#if DEBUG
6238 char str[256];
6239 fd2devname(fd, str);
1ade5cc1 6240 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6241 fd, str, super->orom, rv, raiddisks);
6242#endif
6243 /* no orom/efi or non-intel hba of the disk */
6244 close(fd);
6245 free_imsm(super);
6246 return 0;
6247 }
c2c087e6 6248 close(fd);
9126b9a8
CA
6249 if (super->orom) {
6250 if (raiddisks > super->orom->tds) {
6251 if (verbose)
7a862a02 6252 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
6253 raiddisks, super->orom->tds);
6254 free_imsm(super);
6255 return 0;
6256 }
6257 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6258 (ldsize >> 9) >> 32 > 0) {
6259 if (verbose)
e7b84f9d 6260 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
6261 free_imsm(super);
6262 return 0;
6263 }
f2f5c343 6264 }
c2c087e6 6265
af4348dd 6266 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 6267 free_imsm(super);
c2c087e6
DW
6268
6269 return 1;
cdddbdbc
DW
6270}
6271
0dcecb2e
DW
6272static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6273{
6274 const unsigned long long base_start = e[*idx].start;
6275 unsigned long long end = base_start + e[*idx].size;
6276 int i;
6277
6278 if (base_start == end)
6279 return 0;
6280
6281 *idx = *idx + 1;
6282 for (i = *idx; i < num_extents; i++) {
6283 /* extend overlapping extents */
6284 if (e[i].start >= base_start &&
6285 e[i].start <= end) {
6286 if (e[i].size == 0)
6287 return 0;
6288 if (e[i].start + e[i].size > end)
6289 end = e[i].start + e[i].size;
6290 } else if (e[i].start > end) {
6291 *idx = i;
6292 break;
6293 }
6294 }
6295
6296 return end - base_start;
6297}
6298
6299static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6300{
6301 /* build a composite disk with all known extents and generate a new
6302 * 'maxsize' given the "all disks in an array must share a common start
6303 * offset" constraint
6304 */
503975b9 6305 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6306 struct dl *dl;
6307 int i, j;
6308 int start_extent;
6309 unsigned long long pos;
b9d77223 6310 unsigned long long start = 0;
0dcecb2e
DW
6311 unsigned long long maxsize;
6312 unsigned long reserve;
6313
0dcecb2e
DW
6314 /* coalesce and sort all extents. also, check to see if we need to
6315 * reserve space between member arrays
6316 */
6317 j = 0;
6318 for (dl = super->disks; dl; dl = dl->next) {
6319 if (!dl->e)
6320 continue;
6321 for (i = 0; i < dl->extent_cnt; i++)
6322 e[j++] = dl->e[i];
6323 }
6324 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6325
6326 /* merge extents */
6327 i = 0;
6328 j = 0;
6329 while (i < sum_extents) {
6330 e[j].start = e[i].start;
6331 e[j].size = find_size(e, &i, sum_extents);
6332 j++;
6333 if (e[j-1].size == 0)
6334 break;
6335 }
6336
6337 pos = 0;
6338 maxsize = 0;
6339 start_extent = 0;
6340 i = 0;
6341 do {
6342 unsigned long long esize;
6343
6344 esize = e[i].start - pos;
6345 if (esize >= maxsize) {
6346 maxsize = esize;
6347 start = pos;
6348 start_extent = i;
6349 }
6350 pos = e[i].start + e[i].size;
6351 i++;
6352 } while (e[i-1].size);
6353 free(e);
6354
a7dd165b
DW
6355 if (maxsize == 0)
6356 return 0;
6357
6358 /* FIXME assumes volume at offset 0 is the first volume in a
6359 * container
6360 */
0dcecb2e
DW
6361 if (start_extent > 0)
6362 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6363 else
6364 reserve = 0;
6365
6366 if (maxsize < reserve)
a7dd165b 6367 return 0;
0dcecb2e 6368
5551b113 6369 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6370 if (start + reserve > super->create_offset)
a7dd165b 6371 return 0; /* start overflows create_offset */
0dcecb2e
DW
6372 super->create_offset = start + reserve;
6373
6374 return maxsize - reserve;
6375}
6376
88c32bb1
DW
6377static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6378{
6379 if (level < 0 || level == 6 || level == 4)
6380 return 0;
6381
6382 /* if we have an orom prevent invalid raid levels */
6383 if (orom)
6384 switch (level) {
6385 case 0: return imsm_orom_has_raid0(orom);
6386 case 1:
6387 if (raiddisks > 2)
6388 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6389 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6390 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6391 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6392 }
6393 else
6394 return 1; /* not on an Intel RAID platform so anything goes */
6395
6396 return 0;
6397}
6398
ca9de185
LM
6399static int
6400active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6401 int dpa, int verbose)
6402{
6403 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6404 struct mdstat_ent *memb;
ca9de185
LM
6405 int count = 0;
6406 int num = 0;
594dc1b8 6407 struct md_list *dv;
ca9de185
LM
6408 int found;
6409
6410 for (memb = mdstat ; memb ; memb = memb->next) {
6411 if (memb->metadata_version &&
6412 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6413 (strcmp(&memb->metadata_version[9], name) == 0) &&
6414 !is_subarray(memb->metadata_version+9) &&
6415 memb->members) {
6416 struct dev_member *dev = memb->members;
6417 int fd = -1;
6418 while(dev && (fd < 0)) {
503975b9
N
6419 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6420 num = sprintf(path, "%s%s", "/dev/", dev->name);
6421 if (num > 0)
6422 fd = open(path, O_RDONLY, 0);
089f9d79 6423 if (num <= 0 || fd < 0) {
676e87a8 6424 pr_vrb("Cannot open %s: %s\n",
503975b9 6425 dev->name, strerror(errno));
ca9de185 6426 }
503975b9 6427 free(path);
ca9de185
LM
6428 dev = dev->next;
6429 }
6430 found = 0;
089f9d79 6431 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6432 struct mdstat_ent *vol;
6433 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6434 if (vol->active > 0 &&
ca9de185 6435 vol->metadata_version &&
9581efb1 6436 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6437 found++;
6438 count++;
6439 }
6440 }
6441 if (*devlist && (found < dpa)) {
503975b9 6442 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6443 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6444 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6445 dv->found = found;
6446 dv->used = 0;
6447 dv->next = *devlist;
6448 *devlist = dv;
ca9de185
LM
6449 }
6450 }
6451 if (fd >= 0)
6452 close(fd);
6453 }
6454 }
6455 free_mdstat(mdstat);
6456 return count;
6457}
6458
6459#ifdef DEBUG_LOOP
6460static struct md_list*
6461get_loop_devices(void)
6462{
6463 int i;
6464 struct md_list *devlist = NULL;
594dc1b8 6465 struct md_list *dv;
ca9de185
LM
6466
6467 for(i = 0; i < 12; i++) {
503975b9
N
6468 dv = xcalloc(1, sizeof(*dv));
6469 dv->devname = xmalloc(40);
ca9de185
LM
6470 sprintf(dv->devname, "/dev/loop%d", i);
6471 dv->next = devlist;
6472 devlist = dv;
6473 }
6474 return devlist;
6475}
6476#endif
6477
6478static struct md_list*
6479get_devices(const char *hba_path)
6480{
6481 struct md_list *devlist = NULL;
594dc1b8 6482 struct md_list *dv;
ca9de185
LM
6483 struct dirent *ent;
6484 DIR *dir;
6485 int err = 0;
6486
6487#if DEBUG_LOOP
6488 devlist = get_loop_devices();
6489 return devlist;
6490#endif
6491 /* scroll through /sys/dev/block looking for devices attached to
6492 * this hba
6493 */
6494 dir = opendir("/sys/dev/block");
6495 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6496 int fd;
6497 char buf[1024];
6498 int major, minor;
6499 char *path = NULL;
6500 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6501 continue;
6502 path = devt_to_devpath(makedev(major, minor));
6503 if (!path)
6504 continue;
6505 if (!path_attached_to_hba(path, hba_path)) {
6506 free(path);
6507 path = NULL;
6508 continue;
6509 }
6510 free(path);
6511 path = NULL;
6512 fd = dev_open(ent->d_name, O_RDONLY);
6513 if (fd >= 0) {
6514 fd2devname(fd, buf);
6515 close(fd);
6516 } else {
e7b84f9d 6517 pr_err("cannot open device: %s\n",
ca9de185
LM
6518 ent->d_name);
6519 continue;
6520 }
6521
503975b9
N
6522 dv = xcalloc(1, sizeof(*dv));
6523 dv->devname = xstrdup(buf);
ca9de185
LM
6524 dv->next = devlist;
6525 devlist = dv;
6526 }
6527 if (err) {
6528 while(devlist) {
6529 dv = devlist;
6530 devlist = devlist->next;
6531 free(dv->devname);
6532 free(dv);
6533 }
6534 }
562aa102 6535 closedir(dir);
ca9de185
LM
6536 return devlist;
6537}
6538
6539static int
6540count_volumes_list(struct md_list *devlist, char *homehost,
6541 int verbose, int *found)
6542{
6543 struct md_list *tmpdev;
6544 int count = 0;
594dc1b8 6545 struct supertype *st;
ca9de185
LM
6546
6547 /* first walk the list of devices to find a consistent set
6548 * that match the criterea, if that is possible.
6549 * We flag the ones we like with 'used'.
6550 */
6551 *found = 0;
6552 st = match_metadata_desc_imsm("imsm");
6553 if (st == NULL) {
676e87a8 6554 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6555 return 0;
6556 }
6557
6558 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6559 char *devname = tmpdev->devname;
0a6bff09 6560 dev_t rdev;
ca9de185
LM
6561 struct supertype *tst;
6562 int dfd;
6563 if (tmpdev->used > 1)
6564 continue;
6565 tst = dup_super(st);
6566 if (tst == NULL) {
676e87a8 6567 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6568 goto err_1;
6569 }
6570 tmpdev->container = 0;
6571 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6572 if (dfd < 0) {
1ade5cc1 6573 dprintf("cannot open device %s: %s\n",
ca9de185
LM
6574 devname, strerror(errno));
6575 tmpdev->used = 2;
0a6bff09 6576 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
6577 tmpdev->used = 2;
6578 } else if (must_be_container(dfd)) {
6579 struct supertype *cst;
6580 cst = super_by_fd(dfd, NULL);
6581 if (cst == NULL) {
1ade5cc1 6582 dprintf("cannot recognize container type %s\n",
ca9de185
LM
6583 devname);
6584 tmpdev->used = 2;
6585 } else if (tst->ss != st->ss) {
1ade5cc1 6586 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
6587 devname);
6588 tmpdev->used = 2;
6589 } else if (!tst->ss->load_container ||
6590 tst->ss->load_container(tst, dfd, NULL))
6591 tmpdev->used = 2;
6592 else {
6593 tmpdev->container = 1;
6594 }
6595 if (cst)
6596 cst->ss->free_super(cst);
6597 } else {
0a6bff09 6598 tmpdev->st_rdev = rdev;
ca9de185 6599 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 6600 dprintf("no RAID superblock on %s\n",
ca9de185
LM
6601 devname);
6602 tmpdev->used = 2;
6603 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 6604 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
6605 tst->ss->name, devname);
6606 tmpdev->used = 2;
6607 }
6608 }
6609 if (dfd >= 0)
6610 close(dfd);
6611 if (tmpdev->used == 2 || tmpdev->used == 4) {
6612 /* Ignore unrecognised devices during auto-assembly */
6613 goto loop;
6614 }
6615 else {
6616 struct mdinfo info;
6617 tst->ss->getinfo_super(tst, &info, NULL);
6618
6619 if (st->minor_version == -1)
6620 st->minor_version = tst->minor_version;
6621
6622 if (memcmp(info.uuid, uuid_zero,
6623 sizeof(int[4])) == 0) {
6624 /* this is a floating spare. It cannot define
6625 * an array unless there are no more arrays of
6626 * this type to be found. It can be included
6627 * in an array of this type though.
6628 */
6629 tmpdev->used = 3;
6630 goto loop;
6631 }
6632
6633 if (st->ss != tst->ss ||
6634 st->minor_version != tst->minor_version ||
6635 st->ss->compare_super(st, tst) != 0) {
6636 /* Some mismatch. If exactly one array matches this host,
6637 * we can resolve on that one.
6638 * Or, if we are auto assembling, we just ignore the second
6639 * for now.
6640 */
1ade5cc1 6641 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
6642 devname);
6643 goto loop;
6644 }
6645 tmpdev->used = 1;
6646 *found = 1;
6647 dprintf("found: devname: %s\n", devname);
6648 }
6649 loop:
6650 if (tst)
6651 tst->ss->free_super(tst);
6652 }
6653 if (*found != 0) {
6654 int err;
6655 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6656 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6657 for (iter = head; iter; iter = iter->next) {
6658 dprintf("content->text_version: %s vol\n",
6659 iter->text_version);
6660 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6661 /* do not assemble arrays with unsupported
6662 configurations */
1ade5cc1 6663 dprintf("Cannot activate member %s.\n",
ca9de185
LM
6664 iter->text_version);
6665 } else
6666 count++;
6667 }
6668 sysfs_free(head);
6669
6670 } else {
1ade5cc1 6671 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
6672 err, st->sb);
6673 }
6674 } else {
1ade5cc1 6675 dprintf("no more devices to examine\n");
ca9de185
LM
6676 }
6677
6678 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 6679 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
6680 if (count) {
6681 if (count < tmpdev->found)
6682 count = 0;
6683 else
6684 count -= tmpdev->found;
6685 }
6686 }
6687 if (tmpdev->used == 1)
6688 tmpdev->used = 4;
6689 }
6690 err_1:
6691 if (st)
6692 st->ss->free_super(st);
6693 return count;
6694}
6695
d3c11416
AO
6696static int __count_volumes(char *hba_path, int dpa, int verbose,
6697 int cmp_hba_path)
ca9de185 6698{
72a45777 6699 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 6700 int count = 0;
72a45777
PB
6701 const struct orom_entry *entry;
6702 struct devid_list *dv, *devid_list;
ca9de185 6703
d3c11416 6704 if (!hba_path)
ca9de185
LM
6705 return 0;
6706
72a45777 6707 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
6708 if (strstr(idev->path, hba_path))
6709 break;
72a45777
PB
6710 }
6711
6712 if (!idev || !idev->dev_id)
ca9de185 6713 return 0;
72a45777
PB
6714
6715 entry = get_orom_entry_by_device_id(idev->dev_id);
6716
6717 if (!entry || !entry->devid_list)
6718 return 0;
6719
6720 devid_list = entry->devid_list;
6721 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 6722 struct md_list *devlist;
d3c11416
AO
6723 struct sys_dev *device = NULL;
6724 char *hpath;
72a45777
PB
6725 int found = 0;
6726
d3c11416
AO
6727 if (cmp_hba_path)
6728 device = device_by_id_and_path(dv->devid, hba_path);
6729 else
6730 device = device_by_id(dv->devid);
6731
72a45777 6732 if (device)
d3c11416 6733 hpath = device->path;
72a45777
PB
6734 else
6735 return 0;
6736
d3c11416 6737 devlist = get_devices(hpath);
72a45777
PB
6738 /* if no intel devices return zero volumes */
6739 if (devlist == NULL)
6740 return 0;
6741
d3c11416
AO
6742 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6743 verbose);
6744 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
6745 if (devlist == NULL)
6746 return 0;
6747 do {
6748 found = 0;
6749 count += count_volumes_list(devlist,
6750 NULL,
6751 verbose,
6752 &found);
6753 dprintf("found %d count: %d\n", found, count);
6754 } while (found);
6755
d3c11416 6756 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
6757
6758 while (devlist) {
6759 struct md_list *dv = devlist;
6760 devlist = devlist->next;
6761 free(dv->devname);
6762 free(dv);
6763 }
ca9de185
LM
6764 }
6765 return count;
6766}
6767
d3c11416
AO
6768static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6769{
6770 if (!hba)
6771 return 0;
6772 if (hba->type == SYS_DEV_VMD) {
6773 struct sys_dev *dev;
6774 int count = 0;
6775
6776 for (dev = find_intel_devices(); dev; dev = dev->next) {
6777 if (dev->type == SYS_DEV_VMD)
6778 count += __count_volumes(dev->path, dpa,
6779 verbose, 1);
6780 }
6781 return count;
6782 }
6783 return __count_volumes(hba->path, dpa, verbose, 0);
6784}
6785
cd9d1ac7
DW
6786static int imsm_default_chunk(const struct imsm_orom *orom)
6787{
6788 /* up to 512 if the plaform supports it, otherwise the platform max.
6789 * 128 if no platform detected
6790 */
6791 int fs = max(7, orom ? fls(orom->sss) : 0);
6792
6793 return min(512, (1 << fs));
6794}
73408129 6795
6592ce37
DW
6796static int
6797validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6798 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6799{
660260d0
DW
6800 /* check/set platform and metadata limits/defaults */
6801 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 6802 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 6803 super->orom->dpa);
73408129
LM
6804 return 0;
6805 }
6806
5d500228 6807 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6808 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 6809 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
6810 level, raiddisks, raiddisks > 1 ? "s" : "");
6811 return 0;
6812 }
cd9d1ac7 6813
7ccc4cc4 6814 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
6815 *chunk = imsm_default_chunk(super->orom);
6816
7ccc4cc4 6817 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 6818 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 6819 return 0;
6592ce37 6820 }
cd9d1ac7 6821
6592ce37
DW
6822 if (layout != imsm_level_to_layout(level)) {
6823 if (level == 5)
676e87a8 6824 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 6825 else if (level == 10)
676e87a8 6826 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 6827 else
676e87a8 6828 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
6829 layout, level);
6830 return 0;
6831 }
2cc699af 6832
7ccc4cc4 6833 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 6834 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 6835 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
6836 return 0;
6837 }
614902f6 6838
6592ce37
DW
6839 return 1;
6840}
6841
1011e834 6842/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
6843 * FIX ME add ahci details
6844 */
8b353278 6845static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 6846 int layout, int raiddisks, int *chunk,
af4348dd
N
6847 unsigned long long size,
6848 unsigned long long data_offset,
6849 char *dev,
2c514b71
NB
6850 unsigned long long *freesize,
6851 int verbose)
cdddbdbc 6852{
9e04ac1c 6853 dev_t rdev;
c2c087e6 6854 struct intel_super *super = st->sb;
b2916f25 6855 struct imsm_super *mpb;
c2c087e6
DW
6856 struct dl *dl;
6857 unsigned long long pos = 0;
6858 unsigned long long maxsize;
6859 struct extent *e;
6860 int i;
cdddbdbc 6861
88c32bb1
DW
6862 /* We must have the container info already read in. */
6863 if (!super)
c2c087e6
DW
6864 return 0;
6865
b2916f25
JS
6866 mpb = super->anchor;
6867
2cc699af 6868 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 6869 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 6870 return 0;
d54559f0 6871 }
c2c087e6
DW
6872 if (!dev) {
6873 /* General test: make sure there is space for
2da8544a
DW
6874 * 'raiddisks' device extents of size 'size' at a given
6875 * offset
c2c087e6 6876 */
e46273eb 6877 unsigned long long minsize = size;
b7528a20 6878 unsigned long long start_offset = MaxSector;
c2c087e6
DW
6879 int dcnt = 0;
6880 if (minsize == 0)
6881 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6882 for (dl = super->disks; dl ; dl = dl->next) {
6883 int found = 0;
6884
bf5a934a 6885 pos = 0;
c2c087e6
DW
6886 i = 0;
6887 e = get_extents(super, dl);
6888 if (!e) continue;
6889 do {
6890 unsigned long long esize;
6891 esize = e[i].start - pos;
6892 if (esize >= minsize)
6893 found = 1;
b7528a20 6894 if (found && start_offset == MaxSector) {
2da8544a
DW
6895 start_offset = pos;
6896 break;
6897 } else if (found && pos != start_offset) {
6898 found = 0;
6899 break;
6900 }
c2c087e6
DW
6901 pos = e[i].start + e[i].size;
6902 i++;
6903 } while (e[i-1].size);
6904 if (found)
6905 dcnt++;
6906 free(e);
6907 }
6908 if (dcnt < raiddisks) {
2c514b71 6909 if (verbose)
7a862a02 6910 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 6911 dcnt, raiddisks);
c2c087e6
DW
6912 return 0;
6913 }
6914 return 1;
6915 }
0dcecb2e 6916
c2c087e6 6917 /* This device must be a member of the set */
9e04ac1c 6918 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
6919 return 0;
6920 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
6921 if (dl->major == (int)major(rdev) &&
6922 dl->minor == (int)minor(rdev))
c2c087e6
DW
6923 break;
6924 }
6925 if (!dl) {
2c514b71 6926 if (verbose)
7a862a02 6927 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 6928 return 0;
a20d2ba5
DW
6929 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6930 /* If a volume is present then the current creation attempt
6931 * cannot incorporate new spares because the orom may not
6932 * understand this configuration (all member disks must be
6933 * members of each array in the container).
6934 */
7a862a02
N
6935 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6936 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 6937 return 0;
5fe62b94
WD
6938 } else if (super->orom && mpb->num_raid_devs > 0 &&
6939 mpb->num_disks != raiddisks) {
7a862a02 6940 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 6941 return 0;
c2c087e6 6942 }
0dcecb2e
DW
6943
6944 /* retrieve the largest free space block */
c2c087e6
DW
6945 e = get_extents(super, dl);
6946 maxsize = 0;
6947 i = 0;
0dcecb2e
DW
6948 if (e) {
6949 do {
6950 unsigned long long esize;
6951
6952 esize = e[i].start - pos;
6953 if (esize >= maxsize)
6954 maxsize = esize;
6955 pos = e[i].start + e[i].size;
6956 i++;
6957 } while (e[i-1].size);
6958 dl->e = e;
6959 dl->extent_cnt = i;
6960 } else {
6961 if (verbose)
e7b84f9d 6962 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6963 dev);
6964 return 0;
6965 }
6966 if (maxsize < size) {
6967 if (verbose)
e7b84f9d 6968 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6969 dev, maxsize, size);
6970 return 0;
6971 }
6972
6973 /* count total number of extents for merge */
6974 i = 0;
6975 for (dl = super->disks; dl; dl = dl->next)
6976 if (dl->e)
6977 i += dl->extent_cnt;
6978
6979 maxsize = merge_extents(super, i);
3baa56ab
LO
6980
6981 if (!check_env("IMSM_NO_PLATFORM") &&
6982 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6983 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
6984 return 0;
6985 }
6986
a7dd165b 6987 if (maxsize < size || maxsize == 0) {
b3071342
LD
6988 if (verbose) {
6989 if (maxsize == 0)
7a862a02 6990 pr_err("no free space left on device. Aborting...\n");
b3071342 6991 else
7a862a02 6992 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
6993 maxsize, size);
6994 }
0dcecb2e 6995 return 0;
0dcecb2e
DW
6996 }
6997
c2c087e6
DW
6998 *freesize = maxsize;
6999
ca9de185 7000 if (super->orom) {
72a45777 7001 int count = count_volumes(super->hba,
ca9de185
LM
7002 super->orom->dpa, verbose);
7003 if (super->orom->vphba <= count) {
676e87a8 7004 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7005 super->orom->vphba);
7006 return 0;
7007 }
7008 }
c2c087e6 7009 return 1;
cdddbdbc
DW
7010}
7011
13bcac90 7012static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
7013 unsigned long long size, int chunk,
7014 unsigned long long *freesize)
7015{
7016 struct intel_super *super = st->sb;
7017 struct imsm_super *mpb = super->anchor;
7018 struct dl *dl;
7019 int i;
7020 int extent_cnt;
7021 struct extent *e;
7022 unsigned long long maxsize;
7023 unsigned long long minsize;
7024 int cnt;
7025 int used;
7026
7027 /* find the largest common start free region of the possible disks */
7028 used = 0;
7029 extent_cnt = 0;
7030 cnt = 0;
7031 for (dl = super->disks; dl; dl = dl->next) {
7032 dl->raiddisk = -1;
7033
7034 if (dl->index >= 0)
7035 used++;
7036
7037 /* don't activate new spares if we are orom constrained
7038 * and there is already a volume active in the container
7039 */
7040 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7041 continue;
7042
7043 e = get_extents(super, dl);
7044 if (!e)
7045 continue;
7046 for (i = 1; e[i-1].size; i++)
7047 ;
7048 dl->e = e;
7049 dl->extent_cnt = i;
7050 extent_cnt += i;
7051 cnt++;
7052 }
7053
7054 maxsize = merge_extents(super, extent_cnt);
7055 minsize = size;
7056 if (size == 0)
612e59d8
CA
7057 /* chunk is in K */
7058 minsize = chunk * 2;
efb30e7f
DW
7059
7060 if (cnt < raiddisks ||
7061 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
7062 maxsize < minsize ||
7063 maxsize == 0) {
e7b84f9d 7064 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
7065 return 0; /* No enough free spaces large enough */
7066 }
7067
7068 if (size == 0) {
7069 size = maxsize;
7070 if (chunk) {
612e59d8
CA
7071 size /= 2 * chunk;
7072 size *= 2 * chunk;
efb30e7f 7073 }
f878b242
LM
7074 maxsize = size;
7075 }
7076 if (!check_env("IMSM_NO_PLATFORM") &&
7077 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7078 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 7079 return 0;
efb30e7f 7080 }
efb30e7f
DW
7081 cnt = 0;
7082 for (dl = super->disks; dl; dl = dl->next)
7083 if (dl->e)
7084 dl->raiddisk = cnt++;
7085
7086 *freesize = size;
7087
13bcac90
AK
7088 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7089
efb30e7f
DW
7090 return 1;
7091}
7092
13bcac90
AK
7093static int reserve_space(struct supertype *st, int raiddisks,
7094 unsigned long long size, int chunk,
7095 unsigned long long *freesize)
7096{
7097 struct intel_super *super = st->sb;
7098 struct dl *dl;
7099 int cnt;
7100 int rv = 0;
7101
7102 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7103 if (rv) {
7104 cnt = 0;
7105 for (dl = super->disks; dl; dl = dl->next)
7106 if (dl->e)
7107 dl->raiddisk = cnt++;
7108 rv = 1;
7109 }
7110
7111 return rv;
7112}
7113
bf5a934a 7114static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7115 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7116 unsigned long long data_offset,
bf5a934a 7117 char *dev, unsigned long long *freesize,
5308f117 7118 int consistency_policy, int verbose)
bf5a934a
DW
7119{
7120 int fd, cfd;
7121 struct mdinfo *sra;
20cbe8d2 7122 int is_member = 0;
bf5a934a 7123
d54559f0
LM
7124 /* load capability
7125 * if given unused devices create a container
bf5a934a
DW
7126 * if given given devices in a container create a member volume
7127 */
7128 if (level == LEVEL_CONTAINER) {
7129 /* Must be a fresh device to add to a container */
7130 return validate_geometry_imsm_container(st, level, layout,
c21e737b 7131 raiddisks,
7ccc4cc4 7132 *chunk,
af4348dd 7133 size, data_offset,
bf5a934a
DW
7134 dev, freesize,
7135 verbose);
7136 }
9587c373 7137
8592f29d 7138 if (!dev) {
e91a3bad 7139 if (st->sb) {
ca9de185 7140 struct intel_super *super = st->sb;
e91a3bad 7141 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 7142 raiddisks, chunk, size,
e91a3bad
LM
7143 verbose))
7144 return 0;
efb30e7f
DW
7145 /* we are being asked to automatically layout a
7146 * new volume based on the current contents of
7147 * the container. If the the parameters can be
7148 * satisfied reserve_space will record the disks,
7149 * start offset, and size of the volume to be
7150 * created. add_to_super and getinfo_super
7151 * detect when autolayout is in progress.
7152 */
ca9de185
LM
7153 /* assuming that freesize is always given when array is
7154 created */
7155 if (super->orom && freesize) {
7156 int count;
72a45777 7157 count = count_volumes(super->hba,
ca9de185
LM
7158 super->orom->dpa, verbose);
7159 if (super->orom->vphba <= count) {
676e87a8 7160 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7161 super->orom->vphba);
7162 return 0;
7163 }
7164 }
e91a3bad
LM
7165 if (freesize)
7166 return reserve_space(st, raiddisks, size,
7ccc4cc4 7167 *chunk, freesize);
8592f29d
N
7168 }
7169 return 1;
7170 }
bf5a934a
DW
7171 if (st->sb) {
7172 /* creating in a given container */
7173 return validate_geometry_imsm_volume(st, level, layout,
7174 raiddisks, chunk, size,
af4348dd 7175 data_offset,
bf5a934a
DW
7176 dev, freesize, verbose);
7177 }
7178
bf5a934a
DW
7179 /* This device needs to be a device in an 'imsm' container */
7180 fd = open(dev, O_RDONLY|O_EXCL, 0);
7181 if (fd >= 0) {
7182 if (verbose)
e7b84f9d
N
7183 pr_err("Cannot create this array on device %s\n",
7184 dev);
bf5a934a
DW
7185 close(fd);
7186 return 0;
7187 }
7188 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7189 if (verbose)
e7b84f9d 7190 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
7191 dev, strerror(errno));
7192 return 0;
7193 }
7194 /* Well, it is in use by someone, maybe an 'imsm' container. */
7195 cfd = open_container(fd);
20cbe8d2 7196 close(fd);
bf5a934a 7197 if (cfd < 0) {
bf5a934a 7198 if (verbose)
e7b84f9d 7199 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
7200 dev);
7201 return 0;
7202 }
4dd2df09 7203 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7204 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7205 strcmp(sra->text_version, "imsm") == 0)
7206 is_member = 1;
7207 sysfs_free(sra);
7208 if (is_member) {
bf5a934a
DW
7209 /* This is a member of a imsm container. Load the container
7210 * and try to create a volume
7211 */
7212 struct intel_super *super;
7213
ec50f7b6 7214 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7215 st->sb = super;
4dd2df09 7216 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7217 close(cfd);
7218 return validate_geometry_imsm_volume(st, level, layout,
7219 raiddisks, chunk,
af4348dd 7220 size, data_offset, dev,
ecbd9e81
N
7221 freesize, 1)
7222 ? 1 : -1;
bf5a934a 7223 }
20cbe8d2 7224 }
bf5a934a 7225
20cbe8d2 7226 if (verbose)
e7b84f9d 7227 pr_err("failed container membership check\n");
20cbe8d2
AW
7228
7229 close(cfd);
7230 return 0;
bf5a934a 7231}
0bd16cf2 7232
30f58b22 7233static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7234{
7235 struct intel_super *super = st->sb;
7236
30f58b22
DW
7237 if (level && *level == UnSet)
7238 *level = LEVEL_CONTAINER;
7239
7240 if (level && layout && *layout == UnSet)
7241 *layout = imsm_level_to_layout(*level);
0bd16cf2 7242
cd9d1ac7
DW
7243 if (chunk && (*chunk == UnSet || *chunk == 0))
7244 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7245}
7246
33414a01
DW
7247static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7248
7249static int kill_subarray_imsm(struct supertype *st)
7250{
7251 /* remove the subarray currently referenced by ->current_vol */
7252 __u8 i;
7253 struct intel_dev **dp;
7254 struct intel_super *super = st->sb;
7255 __u8 current_vol = super->current_vol;
7256 struct imsm_super *mpb = super->anchor;
7257
7258 if (super->current_vol < 0)
7259 return 2;
7260 super->current_vol = -1; /* invalidate subarray cursor */
7261
7262 /* block deletions that would change the uuid of active subarrays
7263 *
7264 * FIXME when immutable ids are available, but note that we'll
7265 * also need to fixup the invalidated/active subarray indexes in
7266 * mdstat
7267 */
7268 for (i = 0; i < mpb->num_raid_devs; i++) {
7269 char subarray[4];
7270
7271 if (i < current_vol)
7272 continue;
7273 sprintf(subarray, "%u", i);
4dd2df09 7274 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7275 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7276 current_vol, i);
33414a01
DW
7277
7278 return 2;
7279 }
7280 }
7281
7282 if (st->update_tail) {
503975b9 7283 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7284
33414a01
DW
7285 u->type = update_kill_array;
7286 u->dev_idx = current_vol;
7287 append_metadata_update(st, u, sizeof(*u));
7288
7289 return 0;
7290 }
7291
7292 for (dp = &super->devlist; *dp;)
7293 if ((*dp)->index == current_vol) {
7294 *dp = (*dp)->next;
7295 } else {
7296 handle_missing(super, (*dp)->dev);
7297 if ((*dp)->index > current_vol)
7298 (*dp)->index--;
7299 dp = &(*dp)->next;
7300 }
7301
7302 /* no more raid devices, all active components are now spares,
7303 * but of course failed are still failed
7304 */
7305 if (--mpb->num_raid_devs == 0) {
7306 struct dl *d;
7307
7308 for (d = super->disks; d; d = d->next)
a8619d23
AK
7309 if (d->index > -2)
7310 mark_spare(d);
33414a01
DW
7311 }
7312
7313 super->updates_pending++;
7314
7315 return 0;
7316}
aa534678 7317
a951a4f7 7318static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7319 char *update, struct mddev_ident *ident)
aa534678
DW
7320{
7321 /* update the subarray currently referenced by ->current_vol */
7322 struct intel_super *super = st->sb;
7323 struct imsm_super *mpb = super->anchor;
7324
aa534678
DW
7325 if (strcmp(update, "name") == 0) {
7326 char *name = ident->name;
a951a4f7
N
7327 char *ep;
7328 int vol;
aa534678 7329
4dd2df09 7330 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7331 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7332 return 2;
7333 }
7334
7335 if (!check_name(super, name, 0))
7336 return 2;
7337
a951a4f7
N
7338 vol = strtoul(subarray, &ep, 10);
7339 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7340 return 2;
7341
aa534678 7342 if (st->update_tail) {
503975b9 7343 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7344
aa534678 7345 u->type = update_rename_array;
a951a4f7 7346 u->dev_idx = vol;
618f4e6d
XN
7347 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7348 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7349 append_metadata_update(st, u, sizeof(*u));
7350 } else {
7351 struct imsm_dev *dev;
7352 int i;
7353
a951a4f7 7354 dev = get_imsm_dev(super, vol);
618f4e6d
XN
7355 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7356 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7357 for (i = 0; i < mpb->num_raid_devs; i++) {
7358 dev = get_imsm_dev(super, i);
7359 handle_missing(super, dev);
7360 }
7361 super->updates_pending++;
7362 }
e6e9dd3f
AP
7363 } else if (strcmp(update, "ppl") == 0 ||
7364 strcmp(update, "no-ppl") == 0) {
7365 int new_policy;
7366 char *ep;
7367 int vol = strtoul(subarray, &ep, 10);
7368
7369 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7370 return 2;
7371
7372 if (strcmp(update, "ppl") == 0)
7373 new_policy = RWH_DISTRIBUTED;
7374 else
7375 new_policy = RWH_OFF;
7376
7377 if (st->update_tail) {
7378 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7379
7380 u->type = update_rwh_policy;
7381 u->dev_idx = vol;
7382 u->new_policy = new_policy;
7383 append_metadata_update(st, u, sizeof(*u));
7384 } else {
7385 struct imsm_dev *dev;
7386
7387 dev = get_imsm_dev(super, vol);
7388 dev->rwh_policy = new_policy;
7389 super->updates_pending++;
7390 }
aa534678
DW
7391 } else
7392 return 2;
7393
7394 return 0;
7395}
bf5a934a 7396
28bce06f
AK
7397static int is_gen_migration(struct imsm_dev *dev)
7398{
7534230b
AK
7399 if (dev == NULL)
7400 return 0;
7401
28bce06f
AK
7402 if (!dev->vol.migr_state)
7403 return 0;
7404
7405 if (migr_type(dev) == MIGR_GEN_MIGR)
7406 return 1;
7407
7408 return 0;
7409}
7410
1e5c6983
DW
7411static int is_rebuilding(struct imsm_dev *dev)
7412{
7413 struct imsm_map *migr_map;
7414
7415 if (!dev->vol.migr_state)
7416 return 0;
7417
7418 if (migr_type(dev) != MIGR_REBUILD)
7419 return 0;
7420
238c0a71 7421 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7422
7423 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7424 return 1;
7425 else
7426 return 0;
7427}
7428
6ce1fbf1
AK
7429static int is_initializing(struct imsm_dev *dev)
7430{
7431 struct imsm_map *migr_map;
7432
7433 if (!dev->vol.migr_state)
7434 return 0;
7435
7436 if (migr_type(dev) != MIGR_INIT)
7437 return 0;
7438
238c0a71 7439 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7440
7441 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7442 return 1;
7443
7444 return 0;
6ce1fbf1
AK
7445}
7446
c47b0ff6
AK
7447static void update_recovery_start(struct intel_super *super,
7448 struct imsm_dev *dev,
7449 struct mdinfo *array)
1e5c6983
DW
7450{
7451 struct mdinfo *rebuild = NULL;
7452 struct mdinfo *d;
7453 __u32 units;
7454
7455 if (!is_rebuilding(dev))
7456 return;
7457
7458 /* Find the rebuild target, but punt on the dual rebuild case */
7459 for (d = array->devs; d; d = d->next)
7460 if (d->recovery_start == 0) {
7461 if (rebuild)
7462 return;
7463 rebuild = d;
7464 }
7465
4363fd80
DW
7466 if (!rebuild) {
7467 /* (?) none of the disks are marked with
7468 * IMSM_ORD_REBUILD, so assume they are missing and the
7469 * disk_ord_tbl was not correctly updated
7470 */
1ade5cc1 7471 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7472 return;
7473 }
7474
1e5c6983 7475 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 7476 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7477}
7478
276d77db 7479static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 7480
00bbdbda 7481static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7482{
4f5bc454
DW
7483 /* Given a container loaded by load_super_imsm_all,
7484 * extract information about all the arrays into
7485 * an mdinfo tree.
00bbdbda 7486 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7487 *
7488 * For each imsm_dev create an mdinfo, fill it in,
7489 * then look for matching devices in super->disks
7490 * and create appropriate device mdinfo.
7491 */
7492 struct intel_super *super = st->sb;
949c47a0 7493 struct imsm_super *mpb = super->anchor;
4f5bc454 7494 struct mdinfo *rest = NULL;
00bbdbda 7495 unsigned int i;
81219e70 7496 int sb_errors = 0;
abef11a3
AK
7497 struct dl *d;
7498 int spare_disks = 0;
cdddbdbc 7499
19482bcc
AK
7500 /* do not assemble arrays when not all attributes are supported */
7501 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7502 sb_errors = 1;
7a862a02 7503 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7504 }
7505
abef11a3
AK
7506 /* count spare devices, not used in maps
7507 */
7508 for (d = super->disks; d; d = d->next)
7509 if (d->index == -1)
7510 spare_disks++;
7511
4f5bc454 7512 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7513 struct imsm_dev *dev;
7514 struct imsm_map *map;
86e3692b 7515 struct imsm_map *map2;
4f5bc454 7516 struct mdinfo *this;
a6482415 7517 int slot;
a6482415 7518 int chunk;
00bbdbda
N
7519 char *ep;
7520
7521 if (subarray &&
7522 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7523 continue;
7524
7525 dev = get_imsm_dev(super, i);
238c0a71
AK
7526 map = get_imsm_map(dev, MAP_0);
7527 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 7528
1ce0101c
DW
7529 /* do not publish arrays that are in the middle of an
7530 * unsupported migration
7531 */
7532 if (dev->vol.migr_state &&
28bce06f 7533 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 7534 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
7535 dev->volume);
7536 continue;
7537 }
2db86302
LM
7538 /* do not publish arrays that are not support by controller's
7539 * OROM/EFI
7540 */
1ce0101c 7541
503975b9 7542 this = xmalloc(sizeof(*this));
4f5bc454 7543
301406c9 7544 super->current_vol = i;
a5d85af7 7545 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 7546 this->next = rest;
a6482415 7547 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
7548 /* mdadm does not support all metadata features- set the bit in all arrays state */
7549 if (!validate_geometry_imsm_orom(super,
7550 get_imsm_raid_level(map), /* RAID level */
7551 imsm_level_to_layout(get_imsm_raid_level(map)),
7552 map->num_members, /* raid disks */
2cc699af 7553 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 7554 1 /* verbose */)) {
7a862a02 7555 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
7556 dev->volume);
7557 this->array.state |=
7558 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7559 (1<<MD_SB_BLOCK_VOLUME);
7560 }
81219e70
LM
7561
7562 /* if array has bad blocks, set suitable bit in all arrays state */
7563 if (sb_errors)
7564 this->array.state |=
7565 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7566 (1<<MD_SB_BLOCK_VOLUME);
7567
4f5bc454 7568 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 7569 unsigned long long recovery_start;
4f5bc454
DW
7570 struct mdinfo *info_d;
7571 struct dl *d;
7572 int idx;
9a1608e5 7573 int skip;
7eef0453 7574 __u32 ord;
4f5bc454 7575
9a1608e5 7576 skip = 0;
238c0a71
AK
7577 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7578 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
7579 for (d = super->disks; d ; d = d->next)
7580 if (d->index == idx)
0fbd635c 7581 break;
4f5bc454 7582
1e5c6983 7583 recovery_start = MaxSector;
4f5bc454 7584 if (d == NULL)
9a1608e5 7585 skip = 1;
25ed7e59 7586 if (d && is_failed(&d->disk))
9a1608e5 7587 skip = 1;
7eef0453 7588 if (ord & IMSM_ORD_REBUILD)
1e5c6983 7589 recovery_start = 0;
9a1608e5 7590
1011e834 7591 /*
9a1608e5 7592 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
7593 * reset resync start to avoid a dirty-degraded
7594 * situation when performing the intial sync
9a1608e5
DW
7595 *
7596 * FIXME handle dirty degraded
7597 */
2432ce9b
AP
7598 if ((skip || recovery_start == 0) &&
7599 !(dev->vol.dirty & RAIDVOL_DIRTY))
b7528a20 7600 this->resync_start = MaxSector;
9a1608e5
DW
7601 if (skip)
7602 continue;
4f5bc454 7603
503975b9 7604 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
7605 info_d->next = this->devs;
7606 this->devs = info_d;
7607
4f5bc454
DW
7608 info_d->disk.number = d->index;
7609 info_d->disk.major = d->major;
7610 info_d->disk.minor = d->minor;
7611 info_d->disk.raid_disk = slot;
1e5c6983 7612 info_d->recovery_start = recovery_start;
86e3692b
AK
7613 if (map2) {
7614 if (slot < map2->num_members)
7615 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7616 else
7617 this->array.spare_disks++;
86e3692b
AK
7618 } else {
7619 if (slot < map->num_members)
7620 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7621 else
7622 this->array.spare_disks++;
86e3692b 7623 }
1e5c6983
DW
7624 if (info_d->recovery_start == MaxSector)
7625 this->array.working_disks++;
4f5bc454
DW
7626
7627 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 7628 info_d->data_offset = pba_of_lba0(map);
06fb291a
PB
7629
7630 if (map->raid_level == 5) {
7631 info_d->component_size =
7632 num_data_stripes(map) *
7633 map->blocks_per_strip;
2432ce9b
AP
7634 info_d->ppl_sector = this->ppl_sector;
7635 info_d->ppl_size = this->ppl_size;
06fb291a
PB
7636 } else {
7637 info_d->component_size = blocks_per_member(map);
7638 }
2432ce9b 7639 info_d->consistency_policy = this->consistency_policy;
b12796be 7640
5e46202e 7641 info_d->bb.supported = 1;
b12796be
TM
7642 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7643 info_d->data_offset,
7644 info_d->component_size,
7645 &info_d->bb);
4f5bc454 7646 }
1e5c6983 7647 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 7648 update_recovery_start(super, dev, this);
abef11a3 7649 this->array.spare_disks += spare_disks;
276d77db
AK
7650
7651 /* check for reshape */
7652 if (this->reshape_active == 1)
7653 recover_backup_imsm(st, this);
9a1608e5 7654 rest = this;
4f5bc454
DW
7655 }
7656
7657 return rest;
cdddbdbc
DW
7658}
7659
3b451610
AK
7660static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7661 int failed, int look_in_map)
c2a1e7da 7662{
3b451610
AK
7663 struct imsm_map *map;
7664
7665 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
7666
7667 if (!failed)
1011e834 7668 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 7669 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
7670
7671 switch (get_imsm_raid_level(map)) {
7672 case 0:
7673 return IMSM_T_STATE_FAILED;
7674 break;
7675 case 1:
7676 if (failed < map->num_members)
7677 return IMSM_T_STATE_DEGRADED;
7678 else
7679 return IMSM_T_STATE_FAILED;
7680 break;
7681 case 10:
7682 {
7683 /**
c92a2527
DW
7684 * check to see if any mirrors have failed, otherwise we
7685 * are degraded. Even numbered slots are mirrored on
7686 * slot+1
c2a1e7da 7687 */
c2a1e7da 7688 int i;
d9b420a5
N
7689 /* gcc -Os complains that this is unused */
7690 int insync = insync;
c2a1e7da
DW
7691
7692 for (i = 0; i < map->num_members; i++) {
238c0a71 7693 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
7694 int idx = ord_to_idx(ord);
7695 struct imsm_disk *disk;
c2a1e7da 7696
c92a2527 7697 /* reset the potential in-sync count on even-numbered
1011e834 7698 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
7699 */
7700 if ((i & 1) == 0)
7701 insync = 2;
c2a1e7da 7702
c92a2527 7703 disk = get_imsm_disk(super, idx);
25ed7e59 7704 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 7705 insync--;
c2a1e7da 7706
c92a2527
DW
7707 /* no in-sync disks left in this mirror the
7708 * array has failed
7709 */
7710 if (insync == 0)
7711 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
7712 }
7713
7714 return IMSM_T_STATE_DEGRADED;
7715 }
7716 case 5:
7717 if (failed < 2)
7718 return IMSM_T_STATE_DEGRADED;
7719 else
7720 return IMSM_T_STATE_FAILED;
7721 break;
7722 default:
7723 break;
7724 }
7725
7726 return map->map_state;
7727}
7728
3b451610
AK
7729static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7730 int look_in_map)
c2a1e7da
DW
7731{
7732 int i;
7733 int failed = 0;
7734 struct imsm_disk *disk;
d5985138
AK
7735 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7736 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 7737 struct imsm_map *map_for_loop;
0556e1a2
DW
7738 __u32 ord;
7739 int idx;
d5985138 7740 int idx_1;
c2a1e7da 7741
0556e1a2
DW
7742 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7743 * disks that are being rebuilt. New failures are recorded to
7744 * map[0]. So we look through all the disks we started with and
7745 * see if any failures are still present, or if any new ones
7746 * have arrived
0556e1a2 7747 */
d5985138
AK
7748 map_for_loop = map;
7749 if (prev && (map->num_members < prev->num_members))
7750 map_for_loop = prev;
68fe4598
LD
7751
7752 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 7753 idx_1 = -255;
238c0a71
AK
7754 /* when MAP_X is passed both maps failures are counted
7755 */
d5985138 7756 if (prev &&
089f9d79
JS
7757 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7758 i < prev->num_members) {
d5985138
AK
7759 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7760 idx_1 = ord_to_idx(ord);
c2a1e7da 7761
d5985138
AK
7762 disk = get_imsm_disk(super, idx_1);
7763 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7764 failed++;
7765 }
089f9d79
JS
7766 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7767 i < map->num_members) {
d5985138
AK
7768 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7769 idx = ord_to_idx(ord);
7770
7771 if (idx != idx_1) {
7772 disk = get_imsm_disk(super, idx);
7773 if (!disk || is_failed(disk) ||
7774 ord & IMSM_ORD_REBUILD)
7775 failed++;
7776 }
7777 }
c2a1e7da
DW
7778 }
7779
7780 return failed;
845dea95
NB
7781}
7782
97b4d0e9
DW
7783static int imsm_open_new(struct supertype *c, struct active_array *a,
7784 char *inst)
7785{
7786 struct intel_super *super = c->sb;
7787 struct imsm_super *mpb = super->anchor;
bbab0940 7788 struct imsm_update_prealloc_bb_mem u;
9587c373 7789
97b4d0e9 7790 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7791 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7792 return -ENODEV;
7793 }
7794
7795 dprintf("imsm: open_new %s\n", inst);
7796 a->info.container_member = atoi(inst);
bbab0940
TM
7797
7798 u.type = update_prealloc_badblocks_mem;
7799 imsm_update_metadata_locally(c, &u, sizeof(u));
7800
97b4d0e9
DW
7801 return 0;
7802}
7803
0c046afd
DW
7804static int is_resyncing(struct imsm_dev *dev)
7805{
7806 struct imsm_map *migr_map;
7807
7808 if (!dev->vol.migr_state)
7809 return 0;
7810
1484e727
DW
7811 if (migr_type(dev) == MIGR_INIT ||
7812 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
7813 return 1;
7814
4c9bc37b
AK
7815 if (migr_type(dev) == MIGR_GEN_MIGR)
7816 return 0;
7817
238c0a71 7818 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 7819
089f9d79
JS
7820 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7821 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
7822 return 1;
7823 else
7824 return 0;
7825}
7826
0556e1a2 7827/* return true if we recorded new information */
4c9e8c1e
TM
7828static int mark_failure(struct intel_super *super,
7829 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 7830{
0556e1a2
DW
7831 __u32 ord;
7832 int slot;
7833 struct imsm_map *map;
86c54047
DW
7834 char buf[MAX_RAID_SERIAL_LEN+3];
7835 unsigned int len, shift = 0;
0556e1a2
DW
7836
7837 /* new failures are always set in map[0] */
238c0a71 7838 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
7839
7840 slot = get_imsm_disk_slot(map, idx);
7841 if (slot < 0)
7842 return 0;
7843
7844 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 7845 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
7846 return 0;
7847
7d0c5e24
LD
7848 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7849 buf[MAX_RAID_SERIAL_LEN] = '\000';
7850 strcat(buf, ":0");
86c54047
DW
7851 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7852 shift = len - MAX_RAID_SERIAL_LEN + 1;
7853 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7854
f2f27e63 7855 disk->status |= FAILED_DISK;
0556e1a2 7856 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
7857 /* mark failures in second map if second map exists and this disk
7858 * in this slot.
7859 * This is valid for migration, initialization and rebuild
7860 */
7861 if (dev->vol.migr_state) {
238c0a71 7862 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
7863 int slot2 = get_imsm_disk_slot(map2, idx);
7864
089f9d79 7865 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 7866 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
7867 idx | IMSM_ORD_REBUILD);
7868 }
f21e18ca 7869 if (map->failed_disk_num == 0xff)
0556e1a2 7870 map->failed_disk_num = slot;
4c9e8c1e
TM
7871
7872 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7873
0556e1a2
DW
7874 return 1;
7875}
7876
4c9e8c1e
TM
7877static void mark_missing(struct intel_super *super,
7878 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 7879{
4c9e8c1e 7880 mark_failure(super, dev, disk, idx);
0556e1a2
DW
7881
7882 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7883 return;
7884
47ee5a45
DW
7885 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7886 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7887}
7888
33414a01
DW
7889static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7890{
33414a01 7891 struct dl *dl;
33414a01
DW
7892
7893 if (!super->missing)
7894 return;
33414a01 7895
79b68f1b
PC
7896 /* When orom adds replacement for missing disk it does
7897 * not remove entry of missing disk, but just updates map with
7898 * new added disk. So it is not enough just to test if there is
7899 * any missing disk, we have to look if there are any failed disks
7900 * in map to stop migration */
7901
33414a01 7902 dprintf("imsm: mark missing\n");
3d59f0c0
AK
7903 /* end process for initialization and rebuild only
7904 */
7905 if (is_gen_migration(dev) == 0) {
7906 __u8 map_state;
7907 int failed;
7908
7909 failed = imsm_count_failed(super, dev, MAP_0);
7910 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7911
79b68f1b
PC
7912 if (failed)
7913 end_migration(dev, super, map_state);
3d59f0c0 7914 }
33414a01 7915 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 7916 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
7917 super->updates_pending++;
7918}
7919
f3871fdc
AK
7920static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7921 long long new_size)
70bdf0dc 7922{
238c0a71 7923 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
7924 unsigned long long array_blocks;
7925 struct imsm_map *map;
7926
7927 if (used_disks == 0) {
7928 /* when problems occures
7929 * return current array_blocks value
7930 */
7931 array_blocks = __le32_to_cpu(dev->size_high);
7932 array_blocks = array_blocks << 32;
7933 array_blocks += __le32_to_cpu(dev->size_low);
7934
7935 return array_blocks;
7936 }
7937
7938 /* set array size in metadata
7939 */
f3871fdc
AK
7940 if (new_size <= 0) {
7941 /* OLCE size change is caused by added disks
7942 */
7943 map = get_imsm_map(dev, MAP_0);
7944 array_blocks = blocks_per_member(map) * used_disks;
7945 } else {
7946 /* Online Volume Size Change
7947 * Using available free space
7948 */
7949 array_blocks = new_size;
7950 }
70bdf0dc 7951
b53bfba6 7952 array_blocks = round_size_to_mb(array_blocks, used_disks);
70bdf0dc
AK
7953 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7954 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7955
7956 return array_blocks;
7957}
7958
28bce06f
AK
7959static void imsm_set_disk(struct active_array *a, int n, int state);
7960
0e2d1a4e
AK
7961static void imsm_progress_container_reshape(struct intel_super *super)
7962{
7963 /* if no device has a migr_state, but some device has a
7964 * different number of members than the previous device, start
7965 * changing the number of devices in this device to match
7966 * previous.
7967 */
7968 struct imsm_super *mpb = super->anchor;
7969 int prev_disks = -1;
7970 int i;
1dfaa380 7971 int copy_map_size;
0e2d1a4e
AK
7972
7973 for (i = 0; i < mpb->num_raid_devs; i++) {
7974 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7975 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7976 struct imsm_map *map2;
7977 int prev_num_members;
0e2d1a4e
AK
7978
7979 if (dev->vol.migr_state)
7980 return;
7981
7982 if (prev_disks == -1)
7983 prev_disks = map->num_members;
7984 if (prev_disks == map->num_members)
7985 continue;
7986
7987 /* OK, this array needs to enter reshape mode.
7988 * i.e it needs a migr_state
7989 */
7990
1dfaa380 7991 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
7992 prev_num_members = map->num_members;
7993 map->num_members = prev_disks;
7994 dev->vol.migr_state = 1;
7995 dev->vol.curr_migr_unit = 0;
ea672ee1 7996 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
7997 for (i = prev_num_members;
7998 i < map->num_members; i++)
7999 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8000 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8001 /* Copy the current map */
1dfaa380 8002 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8003 map2->num_members = prev_num_members;
8004
f3871fdc 8005 imsm_set_array_size(dev, -1);
51d83f5d 8006 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8007 super->updates_pending++;
8008 }
8009}
8010
aad6f216 8011/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8012 * states are handled in imsm_set_disk() with one exception, when a
8013 * resync is stopped due to a new failure this routine will set the
8014 * 'degraded' state for the array.
8015 */
01f157d7 8016static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8017{
8018 int inst = a->info.container_member;
8019 struct intel_super *super = a->container->sb;
949c47a0 8020 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8021 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8022 int failed = imsm_count_failed(super, dev, MAP_0);
8023 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8024 __u32 blocks_per_unit;
a862209d 8025
1af97990
AK
8026 if (dev->vol.migr_state &&
8027 dev->vol.migr_type == MIGR_GEN_MIGR) {
8028 /* array state change is blocked due to reshape action
aad6f216
N
8029 * We might need to
8030 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8031 * - finish the reshape (if last_checkpoint is big and action != reshape)
8032 * - update curr_migr_unit
1af97990 8033 */
aad6f216
N
8034 if (a->curr_action == reshape) {
8035 /* still reshaping, maybe update curr_migr_unit */
633b5610 8036 goto mark_checkpoint;
aad6f216
N
8037 } else {
8038 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8039 /* for some reason we aborted the reshape.
b66e591b
AK
8040 *
8041 * disable automatic metadata rollback
8042 * user action is required to recover process
aad6f216 8043 */
b66e591b 8044 if (0) {
238c0a71
AK
8045 struct imsm_map *map2 =
8046 get_imsm_map(dev, MAP_1);
8047 dev->vol.migr_state = 0;
8048 set_migr_type(dev, 0);
8049 dev->vol.curr_migr_unit = 0;
8050 memcpy(map, map2,
8051 sizeof_imsm_map(map2));
8052 super->updates_pending++;
b66e591b 8053 }
aad6f216
N
8054 }
8055 if (a->last_checkpoint >= a->info.component_size) {
8056 unsigned long long array_blocks;
8057 int used_disks;
e154ced3 8058 struct mdinfo *mdi;
aad6f216 8059
238c0a71 8060 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
8061 if (used_disks > 0) {
8062 array_blocks =
5551b113 8063 blocks_per_member(map) *
d55adef9 8064 used_disks;
b53bfba6
TM
8065 array_blocks =
8066 round_size_to_mb(array_blocks,
8067 used_disks);
d55adef9
AK
8068 a->info.custom_array_size = array_blocks;
8069 /* encourage manager to update array
8070 * size
8071 */
e154ced3 8072
d55adef9 8073 a->check_reshape = 1;
633b5610 8074 }
e154ced3
AK
8075 /* finalize online capacity expansion/reshape */
8076 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8077 imsm_set_disk(a,
8078 mdi->disk.raid_disk,
8079 mdi->curr_state);
8080
0e2d1a4e 8081 imsm_progress_container_reshape(super);
e154ced3 8082 }
aad6f216 8083 }
1af97990
AK
8084 }
8085
47ee5a45 8086 /* before we activate this array handle any missing disks */
33414a01
DW
8087 if (consistent == 2)
8088 handle_missing(super, dev);
1e5c6983 8089
0c046afd 8090 if (consistent == 2 &&
b7941fd6 8091 (!is_resync_complete(&a->info) ||
0c046afd
DW
8092 map_state != IMSM_T_STATE_NORMAL ||
8093 dev->vol.migr_state))
01f157d7 8094 consistent = 0;
272906ef 8095
b7941fd6 8096 if (is_resync_complete(&a->info)) {
0c046afd 8097 /* complete intialization / resync,
0556e1a2
DW
8098 * recovery and interrupted recovery is completed in
8099 * ->set_disk
0c046afd
DW
8100 */
8101 if (is_resyncing(dev)) {
8102 dprintf("imsm: mark resync done\n");
809da78e 8103 end_migration(dev, super, map_state);
115c3803 8104 super->updates_pending++;
484240d8 8105 a->last_checkpoint = 0;
115c3803 8106 }
b9172665
AK
8107 } else if ((!is_resyncing(dev) && !failed) &&
8108 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8109 /* mark the start of the init process if nothing is failed */
b7941fd6 8110 dprintf("imsm: mark resync start\n");
1484e727 8111 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8112 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8113 else
8e59f3d8 8114 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8115 super->updates_pending++;
115c3803 8116 }
a862209d 8117
633b5610 8118mark_checkpoint:
5b83bacf
AK
8119 /* skip checkpointing for general migration,
8120 * it is controlled in mdadm
8121 */
8122 if (is_gen_migration(dev))
8123 goto skip_mark_checkpoint;
8124
1e5c6983 8125 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 8126 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8127 if (blocks_per_unit) {
1e5c6983
DW
8128 __u32 units32;
8129 __u64 units;
8130
4f0a7acc 8131 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
8132 units32 = units;
8133
8134 /* check that we did not overflow 32-bits, and that
8135 * curr_migr_unit needs updating
8136 */
8137 if (units32 == units &&
bfd80a56 8138 units32 != 0 &&
1e5c6983
DW
8139 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8140 dprintf("imsm: mark checkpoint (%u)\n", units32);
8141 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8142 super->updates_pending++;
8143 }
8144 }
f8f603f1 8145
5b83bacf 8146skip_mark_checkpoint:
3393c6af 8147 /* mark dirty / clean */
2432ce9b
AP
8148 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8149 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8150 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8151 if (consistent) {
8152 dev->vol.dirty = RAIDVOL_CLEAN;
8153 } else {
8154 dev->vol.dirty = RAIDVOL_DIRTY;
8155 if (dev->rwh_policy == RWH_DISTRIBUTED)
8156 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8157 }
a862209d
DW
8158 super->updates_pending++;
8159 }
28bce06f 8160
01f157d7 8161 return consistent;
a862209d
DW
8162}
8163
6f50473f
TM
8164static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8165{
8166 int inst = a->info.container_member;
8167 struct intel_super *super = a->container->sb;
8168 struct imsm_dev *dev = get_imsm_dev(super, inst);
8169 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8170
8171 if (slot > map->num_members) {
8172 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8173 slot, map->num_members - 1);
8174 return -1;
8175 }
8176
8177 if (slot < 0)
8178 return -1;
8179
8180 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8181}
8182
8d45d196 8183static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8184{
8d45d196
DW
8185 int inst = a->info.container_member;
8186 struct intel_super *super = a->container->sb;
949c47a0 8187 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8188 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8189 struct imsm_disk *disk;
7ce05701
LD
8190 struct mdinfo *mdi;
8191 int recovery_not_finished = 0;
0c046afd 8192 int failed;
6f50473f 8193 int ord;
0c046afd 8194 __u8 map_state;
8d45d196 8195
6f50473f
TM
8196 ord = imsm_disk_slot_to_ord(a, n);
8197 if (ord < 0)
8d45d196
DW
8198 return;
8199
4e6e574a 8200 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8201 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8202
5802a811 8203 /* check for new failures */
0556e1a2 8204 if (state & DS_FAULTY) {
4c9e8c1e 8205 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8206 super->updates_pending++;
8d45d196 8207 }
47ee5a45 8208
19859edc 8209 /* check if in_sync */
0556e1a2 8210 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8211 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8212
8213 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
8214 super->updates_pending++;
8215 }
8d45d196 8216
3b451610
AK
8217 failed = imsm_count_failed(super, dev, MAP_0);
8218 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8219
0c046afd 8220 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8221 dprintf("imsm: Detected transition to state ");
8222 switch (map_state) {
8223 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8224 dprintf("normal: ");
8225 if (is_rebuilding(dev)) {
1ade5cc1 8226 dprintf_cont("while rebuilding");
7ce05701
LD
8227 /* check if recovery is really finished */
8228 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8229 if (mdi->recovery_start != MaxSector) {
8230 recovery_not_finished = 1;
8231 break;
8232 }
8233 if (recovery_not_finished) {
1ade5cc1
N
8234 dprintf_cont("\n");
8235 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8236 if (a->last_checkpoint < mdi->recovery_start) {
8237 a->last_checkpoint = mdi->recovery_start;
8238 super->updates_pending++;
8239 }
8240 break;
8241 }
94002678 8242 end_migration(dev, super, map_state);
238c0a71 8243 map = get_imsm_map(dev, MAP_0);
94002678
AK
8244 map->failed_disk_num = ~0;
8245 super->updates_pending++;
8246 a->last_checkpoint = 0;
8247 break;
8248 }
8249 if (is_gen_migration(dev)) {
1ade5cc1 8250 dprintf_cont("while general migration");
bf2f0071 8251 if (a->last_checkpoint >= a->info.component_size)
809da78e 8252 end_migration(dev, super, map_state);
94002678
AK
8253 else
8254 map->map_state = map_state;
238c0a71 8255 map = get_imsm_map(dev, MAP_0);
28bce06f 8256 map->failed_disk_num = ~0;
94002678 8257 super->updates_pending++;
bf2f0071 8258 break;
94002678
AK
8259 }
8260 break;
8261 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8262 dprintf_cont("degraded: ");
089f9d79 8263 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8264 dprintf_cont("mark degraded");
94002678
AK
8265 map->map_state = map_state;
8266 super->updates_pending++;
8267 a->last_checkpoint = 0;
8268 break;
8269 }
8270 if (is_rebuilding(dev)) {
1ade5cc1 8271 dprintf_cont("while rebuilding.");
94002678 8272 if (map->map_state != map_state) {
1ade5cc1 8273 dprintf_cont(" Map state change");
94002678
AK
8274 end_migration(dev, super, map_state);
8275 super->updates_pending++;
8276 }
8277 break;
8278 }
8279 if (is_gen_migration(dev)) {
1ade5cc1 8280 dprintf_cont("while general migration");
bf2f0071 8281 if (a->last_checkpoint >= a->info.component_size)
809da78e 8282 end_migration(dev, super, map_state);
94002678
AK
8283 else {
8284 map->map_state = map_state;
3b451610 8285 manage_second_map(super, dev);
94002678
AK
8286 }
8287 super->updates_pending++;
bf2f0071 8288 break;
28bce06f 8289 }
6ce1fbf1 8290 if (is_initializing(dev)) {
1ade5cc1 8291 dprintf_cont("while initialization.");
6ce1fbf1
AK
8292 map->map_state = map_state;
8293 super->updates_pending++;
8294 break;
8295 }
94002678
AK
8296 break;
8297 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8298 dprintf_cont("failed: ");
94002678 8299 if (is_gen_migration(dev)) {
1ade5cc1 8300 dprintf_cont("while general migration");
94002678
AK
8301 map->map_state = map_state;
8302 super->updates_pending++;
8303 break;
8304 }
8305 if (map->map_state != map_state) {
1ade5cc1 8306 dprintf_cont("mark failed");
94002678
AK
8307 end_migration(dev, super, map_state);
8308 super->updates_pending++;
8309 a->last_checkpoint = 0;
8310 break;
8311 }
8312 break;
8313 default:
1ade5cc1 8314 dprintf_cont("state %i\n", map_state);
5802a811 8315 }
1ade5cc1 8316 dprintf_cont("\n");
845dea95
NB
8317}
8318
f796af5d 8319static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8320{
f796af5d 8321 void *buf = mpb;
c2a1e7da
DW
8322 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8323 unsigned long long dsize;
8324 unsigned long long sectors;
f36a9ecd 8325 unsigned int sector_size;
c2a1e7da 8326
f36a9ecd 8327 get_dev_sector_size(fd, NULL, &sector_size);
c2a1e7da
DW
8328 get_dev_size(fd, NULL, &dsize);
8329
f36a9ecd 8330 if (mpb_size > sector_size) {
272f648f 8331 /* -1 to account for anchor */
f36a9ecd 8332 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8333
272f648f 8334 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8335 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8336 SEEK_SET) < 0)
272f648f 8337 return 1;
c2a1e7da 8338
f36a9ecd
PB
8339 if ((unsigned long long)write(fd, buf + sector_size,
8340 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8341 return 1;
8342 }
c2a1e7da 8343
272f648f 8344 /* first block is stored on second to last sector of the disk */
f36a9ecd 8345 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8346 return 1;
8347
466070ad 8348 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8349 return 1;
8350
c2a1e7da
DW
8351 return 0;
8352}
8353
2e735d19 8354static void imsm_sync_metadata(struct supertype *container)
845dea95 8355{
2e735d19 8356 struct intel_super *super = container->sb;
c2a1e7da 8357
1a64be56 8358 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8359 if (!super->updates_pending)
8360 return;
8361
36988a3d 8362 write_super_imsm(container, 0);
c2a1e7da
DW
8363
8364 super->updates_pending = 0;
845dea95
NB
8365}
8366
272906ef
DW
8367static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8368{
8369 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8370 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8371 struct dl *dl;
8372
8373 for (dl = super->disks; dl; dl = dl->next)
8374 if (dl->index == i)
8375 break;
8376
25ed7e59 8377 if (dl && is_failed(&dl->disk))
272906ef
DW
8378 dl = NULL;
8379
8380 if (dl)
1ade5cc1 8381 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8382
8383 return dl;
8384}
8385
a20d2ba5 8386static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8387 struct active_array *a, int activate_new,
8388 struct mdinfo *additional_test_list)
272906ef
DW
8389{
8390 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8391 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8392 struct imsm_super *mpb = super->anchor;
8393 struct imsm_map *map;
272906ef
DW
8394 unsigned long long pos;
8395 struct mdinfo *d;
8396 struct extent *ex;
a20d2ba5 8397 int i, j;
272906ef 8398 int found;
569cc43f
DW
8399 __u32 array_start = 0;
8400 __u32 array_end = 0;
272906ef 8401 struct dl *dl;
6c932028 8402 struct mdinfo *test_list;
272906ef
DW
8403
8404 for (dl = super->disks; dl; dl = dl->next) {
8405 /* If in this array, skip */
8406 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8407 if (d->state_fd >= 0 &&
8408 d->disk.major == dl->major &&
272906ef 8409 d->disk.minor == dl->minor) {
8ba77d32
AK
8410 dprintf("%x:%x already in array\n",
8411 dl->major, dl->minor);
272906ef
DW
8412 break;
8413 }
8414 if (d)
8415 continue;
6c932028
AK
8416 test_list = additional_test_list;
8417 while (test_list) {
8418 if (test_list->disk.major == dl->major &&
8419 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8420 dprintf("%x:%x already in additional test list\n",
8421 dl->major, dl->minor);
8422 break;
8423 }
6c932028 8424 test_list = test_list->next;
8ba77d32 8425 }
6c932028 8426 if (test_list)
8ba77d32 8427 continue;
272906ef 8428
e553d2a4 8429 /* skip in use or failed drives */
25ed7e59 8430 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8431 dl->index == -2) {
8432 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8433 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8434 continue;
8435 }
8436
a20d2ba5
DW
8437 /* skip pure spares when we are looking for partially
8438 * assimilated drives
8439 */
8440 if (dl->index == -1 && !activate_new)
8441 continue;
8442
272906ef 8443 /* Does this unused device have the requisite free space?
a20d2ba5 8444 * It needs to be able to cover all member volumes
272906ef
DW
8445 */
8446 ex = get_extents(super, dl);
8447 if (!ex) {
8448 dprintf("cannot get extents\n");
8449 continue;
8450 }
a20d2ba5
DW
8451 for (i = 0; i < mpb->num_raid_devs; i++) {
8452 dev = get_imsm_dev(super, i);
238c0a71 8453 map = get_imsm_map(dev, MAP_0);
272906ef 8454
a20d2ba5
DW
8455 /* check if this disk is already a member of
8456 * this array
272906ef 8457 */
620b1713 8458 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8459 continue;
8460
8461 found = 0;
8462 j = 0;
8463 pos = 0;
5551b113 8464 array_start = pba_of_lba0(map);
329c8278 8465 array_end = array_start +
5551b113 8466 blocks_per_member(map) - 1;
a20d2ba5
DW
8467
8468 do {
8469 /* check that we can start at pba_of_lba0 with
8470 * blocks_per_member of space
8471 */
329c8278 8472 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
8473 found = 1;
8474 break;
8475 }
8476 pos = ex[j].start + ex[j].size;
8477 j++;
8478 } while (ex[j-1].size);
8479
8480 if (!found)
272906ef 8481 break;
a20d2ba5 8482 }
272906ef
DW
8483
8484 free(ex);
a20d2ba5 8485 if (i < mpb->num_raid_devs) {
329c8278
DW
8486 dprintf("%x:%x does not have %u to %u available\n",
8487 dl->major, dl->minor, array_start, array_end);
272906ef
DW
8488 /* No room */
8489 continue;
a20d2ba5
DW
8490 }
8491 return dl;
272906ef
DW
8492 }
8493
8494 return dl;
8495}
8496
95d07a2c
LM
8497static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8498{
8499 struct imsm_dev *dev2;
8500 struct imsm_map *map;
8501 struct dl *idisk;
8502 int slot;
8503 int idx;
8504 __u8 state;
8505
8506 dev2 = get_imsm_dev(cont->sb, dev_idx);
8507 if (dev2) {
238c0a71 8508 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 8509 if (state == IMSM_T_STATE_FAILED) {
238c0a71 8510 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
8511 if (!map)
8512 return 1;
8513 for (slot = 0; slot < map->num_members; slot++) {
8514 /*
8515 * Check if failed disks are deleted from intel
8516 * disk list or are marked to be deleted
8517 */
238c0a71 8518 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
8519 idisk = get_imsm_dl_disk(cont->sb, idx);
8520 /*
8521 * Do not rebuild the array if failed disks
8522 * from failed sub-array are not removed from
8523 * container.
8524 */
8525 if (idisk &&
8526 is_failed(&idisk->disk) &&
8527 (idisk->action != DISK_REMOVE))
8528 return 0;
8529 }
8530 }
8531 }
8532 return 1;
8533}
8534
88758e9d
DW
8535static struct mdinfo *imsm_activate_spare(struct active_array *a,
8536 struct metadata_update **updates)
8537{
8538 /**
d23fe947
DW
8539 * Find a device with unused free space and use it to replace a
8540 * failed/vacant region in an array. We replace failed regions one a
8541 * array at a time. The result is that a new spare disk will be added
8542 * to the first failed array and after the monitor has finished
8543 * propagating failures the remainder will be consumed.
88758e9d 8544 *
d23fe947
DW
8545 * FIXME add a capability for mdmon to request spares from another
8546 * container.
88758e9d
DW
8547 */
8548
8549 struct intel_super *super = a->container->sb;
88758e9d 8550 int inst = a->info.container_member;
949c47a0 8551 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8552 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
8553 int failed = a->info.array.raid_disks;
8554 struct mdinfo *rv = NULL;
8555 struct mdinfo *d;
8556 struct mdinfo *di;
8557 struct metadata_update *mu;
8558 struct dl *dl;
8559 struct imsm_update_activate_spare *u;
8560 int num_spares = 0;
8561 int i;
95d07a2c 8562 int allowed;
88758e9d
DW
8563
8564 for (d = a->info.devs ; d ; d = d->next) {
8565 if ((d->curr_state & DS_FAULTY) &&
8566 d->state_fd >= 0)
8567 /* wait for Removal to happen */
8568 return NULL;
8569 if (d->state_fd >= 0)
8570 failed--;
8571 }
8572
8573 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8574 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 8575
e2962bfc
AK
8576 if (imsm_reshape_blocks_arrays_changes(super))
8577 return NULL;
1af97990 8578
fc8ca064
AK
8579 /* Cannot activate another spare if rebuild is in progress already
8580 */
8581 if (is_rebuilding(dev)) {
7a862a02 8582 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
8583 return NULL;
8584 }
8585
89c67882
AK
8586 if (a->info.array.level == 4)
8587 /* No repair for takeovered array
8588 * imsm doesn't support raid4
8589 */
8590 return NULL;
8591
3b451610
AK
8592 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8593 IMSM_T_STATE_DEGRADED)
88758e9d
DW
8594 return NULL;
8595
83ca7d45
AP
8596 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8597 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8598 return NULL;
8599 }
8600
95d07a2c
LM
8601 /*
8602 * If there are any failed disks check state of the other volume.
8603 * Block rebuild if the another one is failed until failed disks
8604 * are removed from container.
8605 */
8606 if (failed) {
7a862a02 8607 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 8608 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
8609 /* check if states of the other volumes allow for rebuild */
8610 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8611 if (i != inst) {
8612 allowed = imsm_rebuild_allowed(a->container,
8613 i, failed);
8614 if (!allowed)
8615 return NULL;
8616 }
8617 }
8618 }
8619
88758e9d 8620 /* For each slot, if it is not working, find a spare */
88758e9d
DW
8621 for (i = 0; i < a->info.array.raid_disks; i++) {
8622 for (d = a->info.devs ; d ; d = d->next)
8623 if (d->disk.raid_disk == i)
8624 break;
8625 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8626 if (d && (d->state_fd >= 0))
8627 continue;
8628
272906ef 8629 /*
a20d2ba5
DW
8630 * OK, this device needs recovery. Try to re-add the
8631 * previous occupant of this slot, if this fails see if
8632 * we can continue the assimilation of a spare that was
8633 * partially assimilated, finally try to activate a new
8634 * spare.
272906ef
DW
8635 */
8636 dl = imsm_readd(super, i, a);
8637 if (!dl)
b303fe21 8638 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 8639 if (!dl)
b303fe21 8640 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
8641 if (!dl)
8642 continue;
1011e834 8643
272906ef 8644 /* found a usable disk with enough space */
503975b9 8645 di = xcalloc(1, sizeof(*di));
272906ef
DW
8646
8647 /* dl->index will be -1 in the case we are activating a
8648 * pristine spare. imsm_process_update() will create a
8649 * new index in this case. Once a disk is found to be
8650 * failed in all member arrays it is kicked from the
8651 * metadata
8652 */
8653 di->disk.number = dl->index;
d23fe947 8654
272906ef
DW
8655 /* (ab)use di->devs to store a pointer to the device
8656 * we chose
8657 */
8658 di->devs = (struct mdinfo *) dl;
8659
8660 di->disk.raid_disk = i;
8661 di->disk.major = dl->major;
8662 di->disk.minor = dl->minor;
8663 di->disk.state = 0;
d23534e4 8664 di->recovery_start = 0;
5551b113 8665 di->data_offset = pba_of_lba0(map);
272906ef
DW
8666 di->component_size = a->info.component_size;
8667 di->container_member = inst;
5e46202e 8668 di->bb.supported = 1;
2432ce9b
AP
8669 if (dev->rwh_policy == RWH_DISTRIBUTED) {
8670 di->consistency_policy = CONSISTENCY_POLICY_PPL;
8671 di->ppl_sector = get_ppl_sector(super, inst);
8672 di->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
8673 }
148acb7b 8674 super->random = random32();
272906ef
DW
8675 di->next = rv;
8676 rv = di;
8677 num_spares++;
8678 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8679 i, di->data_offset);
88758e9d
DW
8680 }
8681
8682 if (!rv)
8683 /* No spares found */
8684 return rv;
8685 /* Now 'rv' has a list of devices to return.
8686 * Create a metadata_update record to update the
8687 * disk_ord_tbl for the array
8688 */
503975b9 8689 mu = xmalloc(sizeof(*mu));
1011e834 8690 mu->buf = xcalloc(num_spares,
503975b9 8691 sizeof(struct imsm_update_activate_spare));
88758e9d 8692 mu->space = NULL;
cb23f1f4 8693 mu->space_list = NULL;
88758e9d
DW
8694 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8695 mu->next = *updates;
8696 u = (struct imsm_update_activate_spare *) mu->buf;
8697
8698 for (di = rv ; di ; di = di->next) {
8699 u->type = update_activate_spare;
d23fe947
DW
8700 u->dl = (struct dl *) di->devs;
8701 di->devs = NULL;
88758e9d
DW
8702 u->slot = di->disk.raid_disk;
8703 u->array = inst;
8704 u->next = u + 1;
8705 u++;
8706 }
8707 (u-1)->next = NULL;
8708 *updates = mu;
8709
8710 return rv;
8711}
8712
54c2c1ea 8713static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 8714{
54c2c1ea 8715 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
8716 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8717 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
8718 struct disk_info *inf = get_disk_info(u);
8719 struct imsm_disk *disk;
8273f55e
DW
8720 int i;
8721 int j;
8273f55e 8722
54c2c1ea 8723 for (i = 0; i < map->num_members; i++) {
238c0a71 8724 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
8725 for (j = 0; j < new_map->num_members; j++)
8726 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
8727 return 1;
8728 }
8729
8730 return 0;
8731}
8732
1a64be56
LM
8733static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8734{
594dc1b8
JS
8735 struct dl *dl;
8736
1a64be56 8737 for (dl = super->disks; dl; dl = dl->next)
089f9d79 8738 if (dl->major == major && dl->minor == minor)
1a64be56
LM
8739 return dl;
8740 return NULL;
8741}
8742
8743static int remove_disk_super(struct intel_super *super, int major, int minor)
8744{
594dc1b8 8745 struct dl *prev;
1a64be56
LM
8746 struct dl *dl;
8747
8748 prev = NULL;
8749 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 8750 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
8751 /* remove */
8752 if (prev)
8753 prev->next = dl->next;
8754 else
8755 super->disks = dl->next;
8756 dl->next = NULL;
8757 __free_imsm_disk(dl);
1ade5cc1 8758 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
8759 break;
8760 }
8761 prev = dl;
8762 }
8763 return 0;
8764}
8765
f21e18ca 8766static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 8767
1a64be56
LM
8768static int add_remove_disk_update(struct intel_super *super)
8769{
8770 int check_degraded = 0;
594dc1b8
JS
8771 struct dl *disk;
8772
1a64be56
LM
8773 /* add/remove some spares to/from the metadata/contrainer */
8774 while (super->disk_mgmt_list) {
8775 struct dl *disk_cfg;
8776
8777 disk_cfg = super->disk_mgmt_list;
8778 super->disk_mgmt_list = disk_cfg->next;
8779 disk_cfg->next = NULL;
8780
8781 if (disk_cfg->action == DISK_ADD) {
8782 disk_cfg->next = super->disks;
8783 super->disks = disk_cfg;
8784 check_degraded = 1;
1ade5cc1
N
8785 dprintf("added %x:%x\n",
8786 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
8787 } else if (disk_cfg->action == DISK_REMOVE) {
8788 dprintf("Disk remove action processed: %x.%x\n",
8789 disk_cfg->major, disk_cfg->minor);
8790 disk = get_disk_super(super,
8791 disk_cfg->major,
8792 disk_cfg->minor);
8793 if (disk) {
8794 /* store action status */
8795 disk->action = DISK_REMOVE;
8796 /* remove spare disks only */
8797 if (disk->index == -1) {
8798 remove_disk_super(super,
8799 disk_cfg->major,
8800 disk_cfg->minor);
8801 }
8802 }
8803 /* release allocate disk structure */
8804 __free_imsm_disk(disk_cfg);
8805 }
8806 }
8807 return check_degraded;
8808}
8809
a29911da
PC
8810static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8811 struct intel_super *super,
8812 void ***space_list)
8813{
8814 struct intel_dev *id;
8815 void **tofree = NULL;
8816 int ret_val = 0;
8817
1ade5cc1 8818 dprintf("(enter)\n");
089f9d79 8819 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
8820 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8821 return ret_val;
8822 }
089f9d79 8823 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
8824 dprintf("imsm: Error: Memory is not allocated\n");
8825 return ret_val;
8826 }
8827
8828 for (id = super->devlist ; id; id = id->next) {
8829 if (id->index == (unsigned)u->subdev) {
8830 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8831 struct imsm_map *map;
8832 struct imsm_dev *new_dev =
8833 (struct imsm_dev *)*space_list;
238c0a71 8834 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
8835 int to_state;
8836 struct dl *new_disk;
8837
8838 if (new_dev == NULL)
8839 return ret_val;
8840 *space_list = **space_list;
8841 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 8842 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
8843 if (migr_map) {
8844 dprintf("imsm: Error: migration in progress");
8845 return ret_val;
8846 }
8847
8848 to_state = map->map_state;
8849 if ((u->new_level == 5) && (map->raid_level == 0)) {
8850 map->num_members++;
8851 /* this should not happen */
8852 if (u->new_disks[0] < 0) {
8853 map->failed_disk_num =
8854 map->num_members - 1;
8855 to_state = IMSM_T_STATE_DEGRADED;
8856 } else
8857 to_state = IMSM_T_STATE_NORMAL;
8858 }
8e59f3d8 8859 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
8860 if (u->new_level > -1)
8861 map->raid_level = u->new_level;
238c0a71 8862 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
8863 if ((u->new_level == 5) &&
8864 (migr_map->raid_level == 0)) {
8865 int ord = map->num_members - 1;
8866 migr_map->num_members--;
8867 if (u->new_disks[0] < 0)
8868 ord |= IMSM_ORD_REBUILD;
8869 set_imsm_ord_tbl_ent(map,
8870 map->num_members - 1,
8871 ord);
8872 }
8873 id->dev = new_dev;
8874 tofree = (void **)dev;
8875
4bba0439
PC
8876 /* update chunk size
8877 */
06fb291a
PB
8878 if (u->new_chunksize > 0) {
8879 unsigned long long num_data_stripes;
8880 int used_disks =
8881 imsm_num_data_members(dev, MAP_0);
8882
8883 if (used_disks == 0)
8884 return ret_val;
8885
4bba0439
PC
8886 map->blocks_per_strip =
8887 __cpu_to_le16(u->new_chunksize * 2);
06fb291a
PB
8888 num_data_stripes =
8889 (join_u32(dev->size_low, dev->size_high)
8890 / used_disks);
8891 num_data_stripes /= map->blocks_per_strip;
8892 num_data_stripes /= map->num_domains;
8893 set_num_data_stripes(map, num_data_stripes);
8894 }
4bba0439 8895
a29911da
PC
8896 /* add disk
8897 */
089f9d79
JS
8898 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8899 migr_map->raid_level == map->raid_level)
a29911da
PC
8900 goto skip_disk_add;
8901
8902 if (u->new_disks[0] >= 0) {
8903 /* use passes spare
8904 */
8905 new_disk = get_disk_super(super,
8906 major(u->new_disks[0]),
8907 minor(u->new_disks[0]));
7a862a02 8908 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
8909 major(u->new_disks[0]),
8910 minor(u->new_disks[0]),
8911 new_disk, new_disk->index);
8912 if (new_disk == NULL)
8913 goto error_disk_add;
8914
8915 new_disk->index = map->num_members - 1;
8916 /* slot to fill in autolayout
8917 */
8918 new_disk->raiddisk = new_disk->index;
8919 new_disk->disk.status |= CONFIGURED_DISK;
8920 new_disk->disk.status &= ~SPARE_DISK;
8921 } else
8922 goto error_disk_add;
8923
8924skip_disk_add:
8925 *tofree = *space_list;
8926 /* calculate new size
8927 */
f3871fdc 8928 imsm_set_array_size(new_dev, -1);
a29911da
PC
8929
8930 ret_val = 1;
8931 }
8932 }
8933
8934 if (tofree)
8935 *space_list = tofree;
8936 return ret_val;
8937
8938error_disk_add:
8939 dprintf("Error: imsm: Cannot find disk.\n");
8940 return ret_val;
8941}
8942
f3871fdc
AK
8943static int apply_size_change_update(struct imsm_update_size_change *u,
8944 struct intel_super *super)
8945{
8946 struct intel_dev *id;
8947 int ret_val = 0;
8948
1ade5cc1 8949 dprintf("(enter)\n");
089f9d79 8950 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
8951 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8952 return ret_val;
8953 }
8954
8955 for (id = super->devlist ; id; id = id->next) {
8956 if (id->index == (unsigned)u->subdev) {
8957 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8958 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8959 int used_disks = imsm_num_data_members(dev, MAP_0);
8960 unsigned long long blocks_per_member;
06fb291a 8961 unsigned long long num_data_stripes;
f3871fdc
AK
8962
8963 /* calculate new size
8964 */
8965 blocks_per_member = u->new_size / used_disks;
06fb291a
PB
8966 num_data_stripes = blocks_per_member /
8967 map->blocks_per_strip;
8968 num_data_stripes /= map->num_domains;
8969 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8970 u->new_size, blocks_per_member,
8971 num_data_stripes);
f3871fdc 8972 set_blocks_per_member(map, blocks_per_member);
06fb291a 8973 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
8974 imsm_set_array_size(dev, u->new_size);
8975
8976 ret_val = 1;
8977 break;
8978 }
8979 }
8980
8981 return ret_val;
8982}
8983
061d7da3 8984static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 8985 struct intel_super *super,
061d7da3
LO
8986 struct active_array *active_array)
8987{
8988 struct imsm_super *mpb = super->anchor;
8989 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 8990 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
8991 struct imsm_map *migr_map;
8992 struct active_array *a;
8993 struct imsm_disk *disk;
8994 __u8 to_state;
8995 struct dl *dl;
8996 unsigned int found;
8997 int failed;
5961eeec 8998 int victim;
061d7da3 8999 int i;
5961eeec 9000 int second_map_created = 0;
061d7da3 9001
5961eeec 9002 for (; u; u = u->next) {
238c0a71 9003 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9004
5961eeec 9005 if (victim < 0)
9006 return 0;
061d7da3 9007
5961eeec 9008 for (dl = super->disks; dl; dl = dl->next)
9009 if (dl == u->dl)
9010 break;
061d7da3 9011
5961eeec 9012 if (!dl) {
7a862a02 9013 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9014 u->dl->index);
9015 return 0;
9016 }
061d7da3 9017
5961eeec 9018 /* count failures (excluding rebuilds and the victim)
9019 * to determine map[0] state
9020 */
9021 failed = 0;
9022 for (i = 0; i < map->num_members; i++) {
9023 if (i == u->slot)
9024 continue;
9025 disk = get_imsm_disk(super,
238c0a71 9026 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9027 if (!disk || is_failed(disk))
9028 failed++;
9029 }
061d7da3 9030
5961eeec 9031 /* adding a pristine spare, assign a new index */
9032 if (dl->index < 0) {
9033 dl->index = super->anchor->num_disks;
9034 super->anchor->num_disks++;
9035 }
9036 disk = &dl->disk;
9037 disk->status |= CONFIGURED_DISK;
9038 disk->status &= ~SPARE_DISK;
9039
9040 /* mark rebuild */
238c0a71 9041 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9042 if (!second_map_created) {
9043 second_map_created = 1;
9044 map->map_state = IMSM_T_STATE_DEGRADED;
9045 migrate(dev, super, to_state, MIGR_REBUILD);
9046 } else
9047 map->map_state = to_state;
238c0a71 9048 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9049 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9050 set_imsm_ord_tbl_ent(migr_map, u->slot,
9051 dl->index | IMSM_ORD_REBUILD);
9052
9053 /* update the family_num to mark a new container
9054 * generation, being careful to record the existing
9055 * family_num in orig_family_num to clean up after
9056 * earlier mdadm versions that neglected to set it.
9057 */
9058 if (mpb->orig_family_num == 0)
9059 mpb->orig_family_num = mpb->family_num;
9060 mpb->family_num += super->random;
9061
9062 /* count arrays using the victim in the metadata */
9063 found = 0;
9064 for (a = active_array; a ; a = a->next) {
9065 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9066 map = get_imsm_map(dev, MAP_0);
061d7da3 9067
5961eeec 9068 if (get_imsm_disk_slot(map, victim) >= 0)
9069 found++;
9070 }
061d7da3 9071
5961eeec 9072 /* delete the victim if it is no longer being
9073 * utilized anywhere
061d7da3 9074 */
5961eeec 9075 if (!found) {
9076 struct dl **dlp;
061d7da3 9077
5961eeec 9078 /* We know that 'manager' isn't touching anything,
9079 * so it is safe to delete
9080 */
9081 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9082 if ((*dlp)->index == victim)
9083 break;
5961eeec 9084
9085 /* victim may be on the missing list */
9086 if (!*dlp)
9087 for (dlp = &super->missing; *dlp;
9088 dlp = &(*dlp)->next)
9089 if ((*dlp)->index == victim)
9090 break;
9091 imsm_delete(super, dlp, victim);
9092 }
061d7da3
LO
9093 }
9094
9095 return 1;
9096}
a29911da 9097
2e5dc010
N
9098static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9099 struct intel_super *super,
9100 void ***space_list)
9101{
9102 struct dl *new_disk;
9103 struct intel_dev *id;
9104 int i;
9105 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9106 int disk_count = u->old_raid_disks;
2e5dc010
N
9107 void **tofree = NULL;
9108 int devices_to_reshape = 1;
9109 struct imsm_super *mpb = super->anchor;
9110 int ret_val = 0;
d098291a 9111 unsigned int dev_id;
2e5dc010 9112
1ade5cc1 9113 dprintf("(enter)\n");
2e5dc010
N
9114
9115 /* enable spares to use in array */
9116 for (i = 0; i < delta_disks; i++) {
9117 new_disk = get_disk_super(super,
9118 major(u->new_disks[i]),
9119 minor(u->new_disks[i]));
7a862a02 9120 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9121 major(u->new_disks[i]), minor(u->new_disks[i]),
9122 new_disk, new_disk->index);
089f9d79
JS
9123 if (new_disk == NULL ||
9124 (new_disk->index >= 0 &&
9125 new_disk->index < u->old_raid_disks))
2e5dc010 9126 goto update_reshape_exit;
ee4beede 9127 new_disk->index = disk_count++;
2e5dc010
N
9128 /* slot to fill in autolayout
9129 */
9130 new_disk->raiddisk = new_disk->index;
9131 new_disk->disk.status |=
9132 CONFIGURED_DISK;
9133 new_disk->disk.status &= ~SPARE_DISK;
9134 }
9135
ed7333bd
AK
9136 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9137 mpb->num_raid_devs);
2e5dc010
N
9138 /* manage changes in volume
9139 */
d098291a 9140 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9141 void **sp = *space_list;
9142 struct imsm_dev *newdev;
9143 struct imsm_map *newmap, *oldmap;
9144
d098291a
AK
9145 for (id = super->devlist ; id; id = id->next) {
9146 if (id->index == dev_id)
9147 break;
9148 }
9149 if (id == NULL)
9150 break;
2e5dc010
N
9151 if (!sp)
9152 continue;
9153 *space_list = *sp;
9154 newdev = (void*)sp;
9155 /* Copy the dev, but not (all of) the map */
9156 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9157 oldmap = get_imsm_map(id->dev, MAP_0);
9158 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9159 /* Copy the current map */
9160 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9161 /* update one device only
9162 */
9163 if (devices_to_reshape) {
ed7333bd
AK
9164 dprintf("imsm: modifying subdev: %i\n",
9165 id->index);
2e5dc010
N
9166 devices_to_reshape--;
9167 newdev->vol.migr_state = 1;
9168 newdev->vol.curr_migr_unit = 0;
ea672ee1 9169 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9170 newmap->num_members = u->new_raid_disks;
9171 for (i = 0; i < delta_disks; i++) {
9172 set_imsm_ord_tbl_ent(newmap,
9173 u->old_raid_disks + i,
9174 u->old_raid_disks + i);
9175 }
9176 /* New map is correct, now need to save old map
9177 */
238c0a71 9178 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9179 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9180
f3871fdc 9181 imsm_set_array_size(newdev, -1);
2e5dc010
N
9182 }
9183
9184 sp = (void **)id->dev;
9185 id->dev = newdev;
9186 *sp = tofree;
9187 tofree = sp;
8e59f3d8
AK
9188
9189 /* Clear migration record */
9190 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9191 }
819bc634
AK
9192 if (tofree)
9193 *space_list = tofree;
2e5dc010
N
9194 ret_val = 1;
9195
9196update_reshape_exit:
9197
9198 return ret_val;
9199}
9200
bb025c2f 9201static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9202 struct intel_super *super,
9203 void ***space_list)
bb025c2f
KW
9204{
9205 struct imsm_dev *dev = NULL;
8ca6df95
KW
9206 struct intel_dev *dv;
9207 struct imsm_dev *dev_new;
bb025c2f
KW
9208 struct imsm_map *map;
9209 struct dl *dm, *du;
8ca6df95 9210 int i;
bb025c2f
KW
9211
9212 for (dv = super->devlist; dv; dv = dv->next)
9213 if (dv->index == (unsigned int)u->subarray) {
9214 dev = dv->dev;
9215 break;
9216 }
9217
9218 if (dev == NULL)
9219 return 0;
9220
238c0a71 9221 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9222
9223 if (u->direction == R10_TO_R0) {
06fb291a
PB
9224 unsigned long long num_data_stripes;
9225
9226 map->num_domains = 1;
9227 num_data_stripes = blocks_per_member(map);
9228 num_data_stripes /= map->blocks_per_strip;
9229 num_data_stripes /= map->num_domains;
9230 set_num_data_stripes(map, num_data_stripes);
9231
43d5ec18 9232 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9233 if (imsm_count_failed(super, dev, MAP_0) !=
9234 (map->num_members / 2))
43d5ec18
KW
9235 return 0;
9236
bb025c2f
KW
9237 /* iterate through devices to mark removed disks as spare */
9238 for (dm = super->disks; dm; dm = dm->next) {
9239 if (dm->disk.status & FAILED_DISK) {
9240 int idx = dm->index;
9241 /* update indexes on the disk list */
9242/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9243 the index values will end up being correct.... NB */
9244 for (du = super->disks; du; du = du->next)
9245 if (du->index > idx)
9246 du->index--;
9247 /* mark as spare disk */
a8619d23 9248 mark_spare(dm);
bb025c2f
KW
9249 }
9250 }
bb025c2f
KW
9251 /* update map */
9252 map->num_members = map->num_members / 2;
9253 map->map_state = IMSM_T_STATE_NORMAL;
9254 map->num_domains = 1;
9255 map->raid_level = 0;
9256 map->failed_disk_num = -1;
9257 }
9258
8ca6df95
KW
9259 if (u->direction == R0_TO_R10) {
9260 void **space;
9261 /* update slots in current disk list */
9262 for (dm = super->disks; dm; dm = dm->next) {
9263 if (dm->index >= 0)
9264 dm->index *= 2;
9265 }
9266 /* create new *missing* disks */
9267 for (i = 0; i < map->num_members; i++) {
9268 space = *space_list;
9269 if (!space)
9270 continue;
9271 *space_list = *space;
9272 du = (void *)space;
9273 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9274 du->fd = -1;
9275 du->minor = 0;
9276 du->major = 0;
9277 du->index = (i * 2) + 1;
9278 sprintf((char *)du->disk.serial,
9279 " MISSING_%d", du->index);
9280 sprintf((char *)du->serial,
9281 "MISSING_%d", du->index);
9282 du->next = super->missing;
9283 super->missing = du;
9284 }
9285 /* create new dev and map */
9286 space = *space_list;
9287 if (!space)
9288 return 0;
9289 *space_list = *space;
9290 dev_new = (void *)space;
9291 memcpy(dev_new, dev, sizeof(*dev));
9292 /* update new map */
238c0a71 9293 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 9294 map->num_members = map->num_members * 2;
1a2487c2 9295 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
9296 map->num_domains = 2;
9297 map->raid_level = 1;
9298 /* replace dev<->dev_new */
9299 dv->dev = dev_new;
9300 }
bb025c2f
KW
9301 /* update disk order table */
9302 for (du = super->disks; du; du = du->next)
9303 if (du->index >= 0)
9304 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9305 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9306 if (du->index >= 0) {
9307 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9308 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9309 }
bb025c2f
KW
9310
9311 return 1;
9312}
9313
e8319a19
DW
9314static void imsm_process_update(struct supertype *st,
9315 struct metadata_update *update)
9316{
9317 /**
9318 * crack open the metadata_update envelope to find the update record
9319 * update can be one of:
d195167d
AK
9320 * update_reshape_container_disks - all the arrays in the container
9321 * are being reshaped to have more devices. We need to mark
9322 * the arrays for general migration and convert selected spares
9323 * into active devices.
9324 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9325 * device in an array, update the disk_ord_tbl. If this disk is
9326 * present in all member arrays then also clear the SPARE_DISK
9327 * flag
d195167d
AK
9328 * update_create_array
9329 * update_kill_array
9330 * update_rename_array
9331 * update_add_remove_disk
e8319a19
DW
9332 */
9333 struct intel_super *super = st->sb;
4d7b1503 9334 struct imsm_super *mpb;
e8319a19
DW
9335 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9336
4d7b1503
DW
9337 /* update requires a larger buf but the allocation failed */
9338 if (super->next_len && !super->next_buf) {
9339 super->next_len = 0;
9340 return;
9341 }
9342
9343 if (super->next_buf) {
9344 memcpy(super->next_buf, super->buf, super->len);
9345 free(super->buf);
9346 super->len = super->next_len;
9347 super->buf = super->next_buf;
9348
9349 super->next_len = 0;
9350 super->next_buf = NULL;
9351 }
9352
9353 mpb = super->anchor;
9354
e8319a19 9355 switch (type) {
0ec5d470
AK
9356 case update_general_migration_checkpoint: {
9357 struct intel_dev *id;
9358 struct imsm_update_general_migration_checkpoint *u =
9359 (void *)update->buf;
9360
1ade5cc1 9361 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9362
9363 /* find device under general migration */
9364 for (id = super->devlist ; id; id = id->next) {
9365 if (is_gen_migration(id->dev)) {
9366 id->dev->vol.curr_migr_unit =
9367 __cpu_to_le32(u->curr_migr_unit);
9368 super->updates_pending++;
9369 }
9370 }
9371 break;
9372 }
bb025c2f
KW
9373 case update_takeover: {
9374 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9375 if (apply_takeover_update(u, super, &update->space_list)) {
9376 imsm_update_version_info(super);
bb025c2f 9377 super->updates_pending++;
1a2487c2 9378 }
bb025c2f
KW
9379 break;
9380 }
9381
78b10e66 9382 case update_reshape_container_disks: {
d195167d 9383 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9384 if (apply_reshape_container_disks_update(
9385 u, super, &update->space_list))
9386 super->updates_pending++;
78b10e66
N
9387 break;
9388 }
48c5303a 9389 case update_reshape_migration: {
a29911da
PC
9390 struct imsm_update_reshape_migration *u = (void *)update->buf;
9391 if (apply_reshape_migration_update(
9392 u, super, &update->space_list))
9393 super->updates_pending++;
48c5303a
PC
9394 break;
9395 }
f3871fdc
AK
9396 case update_size_change: {
9397 struct imsm_update_size_change *u = (void *)update->buf;
9398 if (apply_size_change_update(u, super))
9399 super->updates_pending++;
9400 break;
9401 }
e8319a19 9402 case update_activate_spare: {
1011e834 9403 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
9404 if (apply_update_activate_spare(u, super, st->arrays))
9405 super->updates_pending++;
8273f55e
DW
9406 break;
9407 }
9408 case update_create_array: {
9409 /* someone wants to create a new array, we need to be aware of
9410 * a few races/collisions:
9411 * 1/ 'Create' called by two separate instances of mdadm
9412 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9413 * devices that have since been assimilated via
9414 * activate_spare.
9415 * In the event this update can not be carried out mdadm will
9416 * (FIX ME) notice that its update did not take hold.
9417 */
9418 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9419 struct intel_dev *dv;
8273f55e
DW
9420 struct imsm_dev *dev;
9421 struct imsm_map *map, *new_map;
9422 unsigned long long start, end;
9423 unsigned long long new_start, new_end;
9424 int i;
54c2c1ea
DW
9425 struct disk_info *inf;
9426 struct dl *dl;
8273f55e
DW
9427
9428 /* handle racing creates: first come first serve */
9429 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 9430 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 9431 goto create_error;
8273f55e
DW
9432 }
9433
9434 /* check update is next in sequence */
9435 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
9436 dprintf("can not create array %d expected index %d\n",
9437 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 9438 goto create_error;
8273f55e
DW
9439 }
9440
238c0a71 9441 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
9442 new_start = pba_of_lba0(new_map);
9443 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 9444 inf = get_disk_info(u);
8273f55e
DW
9445
9446 /* handle activate_spare versus create race:
9447 * check to make sure that overlapping arrays do not include
9448 * overalpping disks
9449 */
9450 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 9451 dev = get_imsm_dev(super, i);
238c0a71 9452 map = get_imsm_map(dev, MAP_0);
5551b113
CA
9453 start = pba_of_lba0(map);
9454 end = start + blocks_per_member(map);
8273f55e
DW
9455 if ((new_start >= start && new_start <= end) ||
9456 (start >= new_start && start <= new_end))
54c2c1ea
DW
9457 /* overlap */;
9458 else
9459 continue;
9460
9461 if (disks_overlap(super, i, u)) {
1ade5cc1 9462 dprintf("arrays overlap\n");
ba2de7ba 9463 goto create_error;
8273f55e
DW
9464 }
9465 }
8273f55e 9466
949c47a0
DW
9467 /* check that prepare update was successful */
9468 if (!update->space) {
1ade5cc1 9469 dprintf("prepare update failed\n");
ba2de7ba 9470 goto create_error;
949c47a0
DW
9471 }
9472
54c2c1ea
DW
9473 /* check that all disks are still active before committing
9474 * changes. FIXME: could we instead handle this by creating a
9475 * degraded array? That's probably not what the user expects,
9476 * so better to drop this update on the floor.
9477 */
9478 for (i = 0; i < new_map->num_members; i++) {
9479 dl = serial_to_dl(inf[i].serial, super);
9480 if (!dl) {
1ade5cc1 9481 dprintf("disk disappeared\n");
ba2de7ba 9482 goto create_error;
54c2c1ea 9483 }
949c47a0
DW
9484 }
9485
8273f55e 9486 super->updates_pending++;
54c2c1ea
DW
9487
9488 /* convert spares to members and fixup ord_tbl */
9489 for (i = 0; i < new_map->num_members; i++) {
9490 dl = serial_to_dl(inf[i].serial, super);
9491 if (dl->index == -1) {
9492 dl->index = mpb->num_disks;
9493 mpb->num_disks++;
9494 dl->disk.status |= CONFIGURED_DISK;
9495 dl->disk.status &= ~SPARE_DISK;
9496 }
9497 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9498 }
9499
ba2de7ba
DW
9500 dv = update->space;
9501 dev = dv->dev;
949c47a0
DW
9502 update->space = NULL;
9503 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
9504 dv->index = u->dev_idx;
9505 dv->next = super->devlist;
9506 super->devlist = dv;
8273f55e 9507 mpb->num_raid_devs++;
8273f55e 9508
4d1313e9 9509 imsm_update_version_info(super);
8273f55e 9510 break;
ba2de7ba
DW
9511 create_error:
9512 /* mdmon knows how to release update->space, but not
9513 * ((struct intel_dev *) update->space)->dev
9514 */
9515 if (update->space) {
9516 dv = update->space;
9517 free(dv->dev);
9518 }
8273f55e 9519 break;
e8319a19 9520 }
33414a01
DW
9521 case update_kill_array: {
9522 struct imsm_update_kill_array *u = (void *) update->buf;
9523 int victim = u->dev_idx;
9524 struct active_array *a;
9525 struct intel_dev **dp;
9526 struct imsm_dev *dev;
9527
9528 /* sanity check that we are not affecting the uuid of
9529 * active arrays, or deleting an active array
9530 *
9531 * FIXME when immutable ids are available, but note that
9532 * we'll also need to fixup the invalidated/active
9533 * subarray indexes in mdstat
9534 */
9535 for (a = st->arrays; a; a = a->next)
9536 if (a->info.container_member >= victim)
9537 break;
9538 /* by definition if mdmon is running at least one array
9539 * is active in the container, so checking
9540 * mpb->num_raid_devs is just extra paranoia
9541 */
9542 dev = get_imsm_dev(super, victim);
9543 if (a || !dev || mpb->num_raid_devs == 1) {
9544 dprintf("failed to delete subarray-%d\n", victim);
9545 break;
9546 }
9547
9548 for (dp = &super->devlist; *dp;)
f21e18ca 9549 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
9550 *dp = (*dp)->next;
9551 } else {
f21e18ca 9552 if ((*dp)->index > (unsigned)victim)
33414a01
DW
9553 (*dp)->index--;
9554 dp = &(*dp)->next;
9555 }
9556 mpb->num_raid_devs--;
9557 super->updates_pending++;
9558 break;
9559 }
aa534678
DW
9560 case update_rename_array: {
9561 struct imsm_update_rename_array *u = (void *) update->buf;
9562 char name[MAX_RAID_SERIAL_LEN+1];
9563 int target = u->dev_idx;
9564 struct active_array *a;
9565 struct imsm_dev *dev;
9566
9567 /* sanity check that we are not affecting the uuid of
9568 * an active array
9569 */
9570 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9571 name[MAX_RAID_SERIAL_LEN] = '\0';
9572 for (a = st->arrays; a; a = a->next)
9573 if (a->info.container_member == target)
9574 break;
9575 dev = get_imsm_dev(super, u->dev_idx);
9576 if (a || !dev || !check_name(super, name, 1)) {
9577 dprintf("failed to rename subarray-%d\n", target);
9578 break;
9579 }
9580
cdbe98cd 9581 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
9582 super->updates_pending++;
9583 break;
9584 }
1a64be56 9585 case update_add_remove_disk: {
43dad3d6 9586 /* we may be able to repair some arrays if disks are
095b8088 9587 * being added, check the status of add_remove_disk
1a64be56
LM
9588 * if discs has been added.
9589 */
9590 if (add_remove_disk_update(super)) {
43dad3d6 9591 struct active_array *a;
072b727f
DW
9592
9593 super->updates_pending++;
1a64be56 9594 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
9595 a->check_degraded = 1;
9596 }
43dad3d6 9597 break;
e8319a19 9598 }
bbab0940
TM
9599 case update_prealloc_badblocks_mem:
9600 break;
e6e9dd3f
AP
9601 case update_rwh_policy: {
9602 struct imsm_update_rwh_policy *u = (void *)update->buf;
9603 int target = u->dev_idx;
9604 struct imsm_dev *dev = get_imsm_dev(super, target);
9605 if (!dev) {
9606 dprintf("could not find subarray-%d\n", target);
9607 break;
9608 }
9609
9610 if (dev->rwh_policy != u->new_policy) {
9611 dev->rwh_policy = u->new_policy;
9612 super->updates_pending++;
9613 }
9614 break;
9615 }
1a64be56 9616 default:
7a862a02 9617 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 9618 }
e8319a19 9619}
88758e9d 9620
bc0b9d34
PC
9621static struct mdinfo *get_spares_for_grow(struct supertype *st);
9622
5fe6f031
N
9623static int imsm_prepare_update(struct supertype *st,
9624 struct metadata_update *update)
8273f55e 9625{
949c47a0 9626 /**
4d7b1503
DW
9627 * Allocate space to hold new disk entries, raid-device entries or a new
9628 * mpb if necessary. The manager synchronously waits for updates to
9629 * complete in the monitor, so new mpb buffers allocated here can be
9630 * integrated by the monitor thread without worrying about live pointers
9631 * in the manager thread.
8273f55e 9632 */
095b8088 9633 enum imsm_update_type type;
4d7b1503 9634 struct intel_super *super = st->sb;
f36a9ecd 9635 unsigned int sector_size = super->sector_size;
4d7b1503
DW
9636 struct imsm_super *mpb = super->anchor;
9637 size_t buf_len;
9638 size_t len = 0;
949c47a0 9639
095b8088
N
9640 if (update->len < (int)sizeof(type))
9641 return 0;
9642
9643 type = *(enum imsm_update_type *) update->buf;
9644
949c47a0 9645 switch (type) {
0ec5d470 9646 case update_general_migration_checkpoint:
095b8088
N
9647 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9648 return 0;
1ade5cc1 9649 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 9650 break;
abedf5fc
KW
9651 case update_takeover: {
9652 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
9653 if (update->len < (int)sizeof(*u))
9654 return 0;
abedf5fc
KW
9655 if (u->direction == R0_TO_R10) {
9656 void **tail = (void **)&update->space_list;
9657 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 9658 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
9659 int num_members = map->num_members;
9660 void *space;
9661 int size, i;
abedf5fc
KW
9662 /* allocate memory for added disks */
9663 for (i = 0; i < num_members; i++) {
9664 size = sizeof(struct dl);
503975b9 9665 space = xmalloc(size);
abedf5fc
KW
9666 *tail = space;
9667 tail = space;
9668 *tail = NULL;
9669 }
9670 /* allocate memory for new device */
9671 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9672 (num_members * sizeof(__u32));
503975b9
N
9673 space = xmalloc(size);
9674 *tail = space;
9675 tail = space;
9676 *tail = NULL;
9677 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
9678 }
9679
9680 break;
9681 }
78b10e66 9682 case update_reshape_container_disks: {
d195167d
AK
9683 /* Every raid device in the container is about to
9684 * gain some more devices, and we will enter a
9685 * reconfiguration.
9686 * So each 'imsm_map' will be bigger, and the imsm_vol
9687 * will now hold 2 of them.
9688 * Thus we need new 'struct imsm_dev' allocations sized
9689 * as sizeof_imsm_dev but with more devices in both maps.
9690 */
9691 struct imsm_update_reshape *u = (void *)update->buf;
9692 struct intel_dev *dl;
9693 void **space_tail = (void**)&update->space_list;
9694
095b8088
N
9695 if (update->len < (int)sizeof(*u))
9696 return 0;
9697
1ade5cc1 9698 dprintf("for update_reshape\n");
d195167d
AK
9699
9700 for (dl = super->devlist; dl; dl = dl->next) {
9701 int size = sizeof_imsm_dev(dl->dev, 1);
9702 void *s;
d677e0b8
AK
9703 if (u->new_raid_disks > u->old_raid_disks)
9704 size += sizeof(__u32)*2*
9705 (u->new_raid_disks - u->old_raid_disks);
503975b9 9706 s = xmalloc(size);
d195167d
AK
9707 *space_tail = s;
9708 space_tail = s;
9709 *space_tail = NULL;
9710 }
9711
9712 len = disks_to_mpb_size(u->new_raid_disks);
9713 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
9714 break;
9715 }
48c5303a 9716 case update_reshape_migration: {
bc0b9d34
PC
9717 /* for migration level 0->5 we need to add disks
9718 * so the same as for container operation we will copy
9719 * device to the bigger location.
9720 * in memory prepared device and new disk area are prepared
9721 * for usage in process update
9722 */
9723 struct imsm_update_reshape_migration *u = (void *)update->buf;
9724 struct intel_dev *id;
9725 void **space_tail = (void **)&update->space_list;
9726 int size;
9727 void *s;
9728 int current_level = -1;
9729
095b8088
N
9730 if (update->len < (int)sizeof(*u))
9731 return 0;
9732
1ade5cc1 9733 dprintf("for update_reshape\n");
bc0b9d34
PC
9734
9735 /* add space for bigger array in update
9736 */
9737 for (id = super->devlist; id; id = id->next) {
9738 if (id->index == (unsigned)u->subdev) {
9739 size = sizeof_imsm_dev(id->dev, 1);
9740 if (u->new_raid_disks > u->old_raid_disks)
9741 size += sizeof(__u32)*2*
9742 (u->new_raid_disks - u->old_raid_disks);
503975b9 9743 s = xmalloc(size);
bc0b9d34
PC
9744 *space_tail = s;
9745 space_tail = s;
9746 *space_tail = NULL;
9747 break;
9748 }
9749 }
9750 if (update->space_list == NULL)
9751 break;
9752
9753 /* add space for disk in update
9754 */
9755 size = sizeof(struct dl);
503975b9 9756 s = xmalloc(size);
bc0b9d34
PC
9757 *space_tail = s;
9758 space_tail = s;
9759 *space_tail = NULL;
9760
9761 /* add spare device to update
9762 */
9763 for (id = super->devlist ; id; id = id->next)
9764 if (id->index == (unsigned)u->subdev) {
9765 struct imsm_dev *dev;
9766 struct imsm_map *map;
9767
9768 dev = get_imsm_dev(super, u->subdev);
238c0a71 9769 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
9770 current_level = map->raid_level;
9771 break;
9772 }
089f9d79 9773 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
9774 struct mdinfo *spares;
9775
9776 spares = get_spares_for_grow(st);
9777 if (spares) {
9778 struct dl *dl;
9779 struct mdinfo *dev;
9780
9781 dev = spares->devs;
9782 if (dev) {
9783 u->new_disks[0] =
9784 makedev(dev->disk.major,
9785 dev->disk.minor);
9786 dl = get_disk_super(super,
9787 dev->disk.major,
9788 dev->disk.minor);
9789 dl->index = u->old_raid_disks;
9790 dev = dev->next;
9791 }
9792 sysfs_free(spares);
9793 }
9794 }
9795 len = disks_to_mpb_size(u->new_raid_disks);
9796 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
9797 break;
9798 }
f3871fdc 9799 case update_size_change: {
095b8088
N
9800 if (update->len < (int)sizeof(struct imsm_update_size_change))
9801 return 0;
9802 break;
9803 }
9804 case update_activate_spare: {
9805 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9806 return 0;
f3871fdc
AK
9807 break;
9808 }
949c47a0
DW
9809 case update_create_array: {
9810 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9811 struct intel_dev *dv;
54c2c1ea 9812 struct imsm_dev *dev = &u->dev;
238c0a71 9813 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
9814 struct dl *dl;
9815 struct disk_info *inf;
9816 int i;
9817 int activate = 0;
949c47a0 9818
095b8088
N
9819 if (update->len < (int)sizeof(*u))
9820 return 0;
9821
54c2c1ea
DW
9822 inf = get_disk_info(u);
9823 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 9824 /* allocate a new super->devlist entry */
503975b9
N
9825 dv = xmalloc(sizeof(*dv));
9826 dv->dev = xmalloc(len);
9827 update->space = dv;
949c47a0 9828
54c2c1ea
DW
9829 /* count how many spares will be converted to members */
9830 for (i = 0; i < map->num_members; i++) {
9831 dl = serial_to_dl(inf[i].serial, super);
9832 if (!dl) {
9833 /* hmm maybe it failed?, nothing we can do about
9834 * it here
9835 */
9836 continue;
9837 }
9838 if (count_memberships(dl, super) == 0)
9839 activate++;
9840 }
9841 len += activate * sizeof(struct imsm_disk);
949c47a0 9842 break;
095b8088
N
9843 }
9844 case update_kill_array: {
9845 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9846 return 0;
949c47a0
DW
9847 break;
9848 }
095b8088
N
9849 case update_rename_array: {
9850 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9851 return 0;
9852 break;
9853 }
9854 case update_add_remove_disk:
9855 /* no update->len needed */
9856 break;
bbab0940
TM
9857 case update_prealloc_badblocks_mem:
9858 super->extra_space += sizeof(struct bbm_log) -
9859 get_imsm_bbm_log_size(super->bbm_log);
9860 break;
e6e9dd3f
AP
9861 case update_rwh_policy: {
9862 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
9863 return 0;
9864 break;
9865 }
095b8088
N
9866 default:
9867 return 0;
949c47a0 9868 }
8273f55e 9869
4d7b1503
DW
9870 /* check if we need a larger metadata buffer */
9871 if (super->next_buf)
9872 buf_len = super->next_len;
9873 else
9874 buf_len = super->len;
9875
bbab0940 9876 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
9877 /* ok we need a larger buf than what is currently allocated
9878 * if this allocation fails process_update will notice that
9879 * ->next_len is set and ->next_buf is NULL
9880 */
bbab0940
TM
9881 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9882 super->extra_space + len, sector_size);
4d7b1503
DW
9883 if (super->next_buf)
9884 free(super->next_buf);
9885
9886 super->next_len = buf_len;
f36a9ecd 9887 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
9888 memset(super->next_buf, 0, buf_len);
9889 else
4d7b1503
DW
9890 super->next_buf = NULL;
9891 }
5fe6f031 9892 return 1;
8273f55e
DW
9893}
9894
ae6aad82 9895/* must be called while manager is quiesced */
f21e18ca 9896static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
9897{
9898 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
9899 struct dl *iter;
9900 struct imsm_dev *dev;
9901 struct imsm_map *map;
4c9e8c1e 9902 unsigned int i, j, num_members;
24565c9a 9903 __u32 ord;
4c9e8c1e 9904 struct bbm_log *log = super->bbm_log;
ae6aad82 9905
1ade5cc1 9906 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
9907
9908 /* shift all indexes down one */
9909 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 9910 if (iter->index > (int)index)
ae6aad82 9911 iter->index--;
47ee5a45 9912 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 9913 if (iter->index > (int)index)
47ee5a45 9914 iter->index--;
ae6aad82
DW
9915
9916 for (i = 0; i < mpb->num_raid_devs; i++) {
9917 dev = get_imsm_dev(super, i);
238c0a71 9918 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
9919 num_members = map->num_members;
9920 for (j = 0; j < num_members; j++) {
9921 /* update ord entries being careful not to propagate
9922 * ord-flags to the first map
9923 */
238c0a71 9924 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 9925
24565c9a
DW
9926 if (ord_to_idx(ord) <= index)
9927 continue;
ae6aad82 9928
238c0a71 9929 map = get_imsm_map(dev, MAP_0);
24565c9a 9930 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 9931 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
9932 if (map)
9933 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
9934 }
9935 }
9936
4c9e8c1e
TM
9937 for (i = 0; i < log->entry_count; i++) {
9938 struct bbm_log_entry *entry = &log->marked_block_entries[i];
9939
9940 if (entry->disk_ordinal <= index)
9941 continue;
9942 entry->disk_ordinal--;
9943 }
9944
ae6aad82
DW
9945 mpb->num_disks--;
9946 super->updates_pending++;
24565c9a
DW
9947 if (*dlp) {
9948 struct dl *dl = *dlp;
9949
9950 *dlp = (*dlp)->next;
9951 __free_imsm_disk(dl);
9952 }
ae6aad82 9953}
9a717282
AK
9954
9955static void close_targets(int *targets, int new_disks)
9956{
9957 int i;
9958
9959 if (!targets)
9960 return;
9961
9962 for (i = 0; i < new_disks; i++) {
9963 if (targets[i] >= 0) {
9964 close(targets[i]);
9965 targets[i] = -1;
9966 }
9967 }
9968}
9969
9970static int imsm_get_allowed_degradation(int level, int raid_disks,
9971 struct intel_super *super,
9972 struct imsm_dev *dev)
9973{
9974 switch (level) {
bf5cf7c7 9975 case 1:
9a717282
AK
9976 case 10:{
9977 int ret_val = 0;
9978 struct imsm_map *map;
9979 int i;
9980
9981 ret_val = raid_disks/2;
9982 /* check map if all disks pairs not failed
9983 * in both maps
9984 */
238c0a71 9985 map = get_imsm_map(dev, MAP_0);
9a717282
AK
9986 for (i = 0; i < ret_val; i++) {
9987 int degradation = 0;
9988 if (get_imsm_disk(super, i) == NULL)
9989 degradation++;
9990 if (get_imsm_disk(super, i + 1) == NULL)
9991 degradation++;
9992 if (degradation == 2)
9993 return 0;
9994 }
238c0a71 9995 map = get_imsm_map(dev, MAP_1);
9a717282
AK
9996 /* if there is no second map
9997 * result can be returned
9998 */
9999 if (map == NULL)
10000 return ret_val;
10001 /* check degradation in second map
10002 */
10003 for (i = 0; i < ret_val; i++) {
10004 int degradation = 0;
10005 if (get_imsm_disk(super, i) == NULL)
10006 degradation++;
10007 if (get_imsm_disk(super, i + 1) == NULL)
10008 degradation++;
10009 if (degradation == 2)
10010 return 0;
10011 }
10012 return ret_val;
10013 }
10014 case 5:
10015 return 1;
10016 case 6:
10017 return 2;
10018 default:
10019 return 0;
10020 }
10021}
10022
687629c2
AK
10023/*******************************************************************************
10024 * Function: open_backup_targets
10025 * Description: Function opens file descriptors for all devices given in
10026 * info->devs
10027 * Parameters:
10028 * info : general array info
10029 * raid_disks : number of disks
10030 * raid_fds : table of device's file descriptors
9a717282
AK
10031 * super : intel super for raid10 degradation check
10032 * dev : intel device for raid10 degradation check
687629c2
AK
10033 * Returns:
10034 * 0 : success
10035 * -1 : fail
10036 ******************************************************************************/
9a717282
AK
10037int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10038 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
10039{
10040 struct mdinfo *sd;
f627f5ad 10041 int i;
9a717282 10042 int opened = 0;
f627f5ad
AK
10043
10044 for (i = 0; i < raid_disks; i++)
10045 raid_fds[i] = -1;
687629c2
AK
10046
10047 for (sd = info->devs ; sd ; sd = sd->next) {
10048 char *dn;
10049
10050 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10051 dprintf("disk is faulty!!\n");
10052 continue;
10053 }
10054
089f9d79 10055 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
687629c2
AK
10056 continue;
10057
10058 dn = map_dev(sd->disk.major,
10059 sd->disk.minor, 1);
10060 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10061 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 10062 pr_err("cannot open component\n");
9a717282 10063 continue;
687629c2 10064 }
9a717282
AK
10065 opened++;
10066 }
10067 /* check if maximum array degradation level is not exceeded
10068 */
10069 if ((raid_disks - opened) >
089f9d79
JS
10070 imsm_get_allowed_degradation(info->new_level, raid_disks,
10071 super, dev)) {
e12b3daa 10072 pr_err("Not enough disks can be opened.\n");
9a717282
AK
10073 close_targets(raid_fds, raid_disks);
10074 return -2;
687629c2
AK
10075 }
10076 return 0;
10077}
10078
d31ad643
PB
10079/*******************************************************************************
10080 * Function: validate_container_imsm
10081 * Description: This routine validates container after assemble,
10082 * eg. if devices in container are under the same controller.
10083 *
10084 * Parameters:
10085 * info : linked list with info about devices used in array
10086 * Returns:
10087 * 1 : HBA mismatch
10088 * 0 : Success
10089 ******************************************************************************/
10090int validate_container_imsm(struct mdinfo *info)
10091{
6b781d33
AP
10092 if (check_env("IMSM_NO_PLATFORM"))
10093 return 0;
d31ad643 10094
6b781d33
AP
10095 struct sys_dev *idev;
10096 struct sys_dev *hba = NULL;
10097 struct sys_dev *intel_devices = find_intel_devices();
10098 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10099 info->disk.minor));
10100
10101 for (idev = intel_devices; idev; idev = idev->next) {
10102 if (dev_path && strstr(dev_path, idev->path)) {
10103 hba = idev;
10104 break;
d31ad643 10105 }
6b781d33
AP
10106 }
10107 if (dev_path)
d31ad643
PB
10108 free(dev_path);
10109
6b781d33
AP
10110 if (!hba) {
10111 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10112 devid2kname(makedev(info->disk.major, info->disk.minor)));
10113 return 1;
10114 }
10115
10116 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10117 struct mdinfo *dev;
10118
10119 for (dev = info->next; dev; dev = dev->next) {
10120 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10121
10122 struct sys_dev *hba2 = NULL;
10123 for (idev = intel_devices; idev; idev = idev->next) {
10124 if (dev_path && strstr(dev_path, idev->path)) {
10125 hba2 = idev;
10126 break;
d31ad643
PB
10127 }
10128 }
6b781d33
AP
10129 if (dev_path)
10130 free(dev_path);
10131
10132 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10133 get_orom_by_device_id(hba2->dev_id);
10134
10135 if (hba2 && hba->type != hba2->type) {
10136 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10137 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10138 return 1;
10139 }
10140
07cb1e57 10141 if (orom != orom2) {
6b781d33
AP
10142 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10143 " This operation is not supported and can lead to data loss.\n");
10144 return 1;
10145 }
10146
10147 if (!orom) {
10148 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10149 " This operation is not supported and can lead to data loss.\n");
10150 return 1;
10151 }
d31ad643 10152 }
6b781d33 10153
d31ad643
PB
10154 return 0;
10155}
32141c17 10156
6f50473f
TM
10157/*******************************************************************************
10158* Function: imsm_record_badblock
10159* Description: This routine stores new bad block record in BBM log
10160*
10161* Parameters:
10162* a : array containing a bad block
10163* slot : disk number containing a bad block
10164* sector : bad block sector
10165* length : bad block sectors range
10166* Returns:
10167* 1 : Success
10168* 0 : Error
10169******************************************************************************/
10170static int imsm_record_badblock(struct active_array *a, int slot,
10171 unsigned long long sector, int length)
10172{
10173 struct intel_super *super = a->container->sb;
10174 int ord;
10175 int ret;
10176
10177 ord = imsm_disk_slot_to_ord(a, slot);
10178 if (ord < 0)
10179 return 0;
10180
10181 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10182 length);
10183 if (ret)
10184 super->updates_pending++;
10185
10186 return ret;
10187}
c07a5a4f
TM
10188/*******************************************************************************
10189* Function: imsm_clear_badblock
10190* Description: This routine clears bad block record from BBM log
10191*
10192* Parameters:
10193* a : array containing a bad block
10194* slot : disk number containing a bad block
10195* sector : bad block sector
10196* length : bad block sectors range
10197* Returns:
10198* 1 : Success
10199* 0 : Error
10200******************************************************************************/
10201static int imsm_clear_badblock(struct active_array *a, int slot,
10202 unsigned long long sector, int length)
10203{
10204 struct intel_super *super = a->container->sb;
10205 int ord;
10206 int ret;
10207
10208 ord = imsm_disk_slot_to_ord(a, slot);
10209 if (ord < 0)
10210 return 0;
10211
10212 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10213 if (ret)
10214 super->updates_pending++;
10215
10216 return ret;
10217}
928f1424
TM
10218/*******************************************************************************
10219* Function: imsm_get_badblocks
10220* Description: This routine get list of bad blocks for an array
10221*
10222* Parameters:
10223* a : array
10224* slot : disk number
10225* Returns:
10226* bb : structure containing bad blocks
10227* NULL : error
10228******************************************************************************/
10229static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10230{
10231 int inst = a->info.container_member;
10232 struct intel_super *super = a->container->sb;
10233 struct imsm_dev *dev = get_imsm_dev(super, inst);
10234 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10235 int ord;
10236
10237 ord = imsm_disk_slot_to_ord(a, slot);
10238 if (ord < 0)
10239 return NULL;
10240
10241 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10242 blocks_per_member(map), &super->bb);
10243
10244 return &super->bb;
10245}
27156a57
TM
10246/*******************************************************************************
10247* Function: examine_badblocks_imsm
10248* Description: Prints list of bad blocks on a disk to the standard output
10249*
10250* Parameters:
10251* st : metadata handler
10252* fd : open file descriptor for device
10253* devname : device name
10254* Returns:
10255* 0 : Success
10256* 1 : Error
10257******************************************************************************/
10258static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10259{
10260 struct intel_super *super = st->sb;
10261 struct bbm_log *log = super->bbm_log;
10262 struct dl *d = NULL;
10263 int any = 0;
10264
10265 for (d = super->disks; d ; d = d->next) {
10266 if (strcmp(d->devname, devname) == 0)
10267 break;
10268 }
10269
10270 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10271 pr_err("%s doesn't appear to be part of a raid array\n",
10272 devname);
10273 return 1;
10274 }
10275
10276 if (log != NULL) {
10277 unsigned int i;
10278 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10279
10280 for (i = 0; i < log->entry_count; i++) {
10281 if (entry[i].disk_ordinal == d->index) {
10282 unsigned long long sector = __le48_to_cpu(
10283 &entry[i].defective_block_start);
10284 int cnt = entry[i].marked_count + 1;
10285
10286 if (!any) {
10287 printf("Bad-blocks on %s:\n", devname);
10288 any = 1;
10289 }
10290
10291 printf("%20llu for %d sectors\n", sector, cnt);
10292 }
10293 }
10294 }
10295
10296 if (!any)
10297 printf("No bad-blocks list configured on %s\n", devname);
10298
10299 return 0;
10300}
687629c2
AK
10301/*******************************************************************************
10302 * Function: init_migr_record_imsm
10303 * Description: Function inits imsm migration record
10304 * Parameters:
10305 * super : imsm internal array info
10306 * dev : device under migration
10307 * info : general array info to find the smallest device
10308 * Returns:
10309 * none
10310 ******************************************************************************/
10311void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10312 struct mdinfo *info)
10313{
10314 struct intel_super *super = st->sb;
10315 struct migr_record *migr_rec = super->migr_rec;
10316 int new_data_disks;
10317 unsigned long long dsize, dev_sectors;
10318 long long unsigned min_dev_sectors = -1LLU;
10319 struct mdinfo *sd;
10320 char nm[30];
10321 int fd;
238c0a71
AK
10322 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10323 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10324 unsigned long long num_migr_units;
3ef4403c 10325 unsigned long long array_blocks;
687629c2
AK
10326
10327 memset(migr_rec, 0, sizeof(struct migr_record));
10328 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10329
10330 /* only ascending reshape supported now */
10331 migr_rec->ascending_migr = __cpu_to_le32(1);
10332
10333 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10334 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10335 migr_rec->dest_depth_per_unit *=
10336 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 10337 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
10338 migr_rec->blocks_per_unit =
10339 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10340 migr_rec->dest_depth_per_unit =
10341 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10342 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10343 num_migr_units =
10344 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10345
10346 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10347 num_migr_units++;
10348 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10349
10350 migr_rec->post_migr_vol_cap = dev->size_low;
10351 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10352
687629c2
AK
10353 /* Find the smallest dev */
10354 for (sd = info->devs ; sd ; sd = sd->next) {
10355 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10356 fd = dev_open(nm, O_RDONLY);
10357 if (fd < 0)
10358 continue;
10359 get_dev_size(fd, NULL, &dsize);
10360 dev_sectors = dsize / 512;
10361 if (dev_sectors < min_dev_sectors)
10362 min_dev_sectors = dev_sectors;
10363 close(fd);
10364 }
10365 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10366 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10367
10368 write_imsm_migr_rec(st);
10369
10370 return;
10371}
10372
10373/*******************************************************************************
10374 * Function: save_backup_imsm
10375 * Description: Function saves critical data stripes to Migration Copy Area
10376 * and updates the current migration unit status.
10377 * Use restore_stripes() to form a destination stripe,
10378 * and to write it to the Copy Area.
10379 * Parameters:
10380 * st : supertype information
aea93171 10381 * dev : imsm device that backup is saved for
687629c2
AK
10382 * info : general array info
10383 * buf : input buffer
687629c2
AK
10384 * length : length of data to backup (blocks_per_unit)
10385 * Returns:
10386 * 0 : success
10387 *, -1 : fail
10388 ******************************************************************************/
10389int save_backup_imsm(struct supertype *st,
10390 struct imsm_dev *dev,
10391 struct mdinfo *info,
10392 void *buf,
687629c2
AK
10393 int length)
10394{
10395 int rv = -1;
10396 struct intel_super *super = st->sb;
594dc1b8
JS
10397 unsigned long long *target_offsets;
10398 int *targets;
687629c2 10399 int i;
238c0a71 10400 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10401 int new_disks = map_dest->num_members;
ab724b98
AK
10402 int dest_layout = 0;
10403 int dest_chunk;
d1877f69 10404 unsigned long long start;
238c0a71 10405 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 10406
503975b9 10407 targets = xmalloc(new_disks * sizeof(int));
687629c2 10408
7e45b550
AK
10409 for (i = 0; i < new_disks; i++)
10410 targets[i] = -1;
10411
503975b9 10412 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10413
d1877f69 10414 start = info->reshape_progress * 512;
687629c2 10415 for (i = 0; i < new_disks; i++) {
687629c2
AK
10416 target_offsets[i] = (unsigned long long)
10417 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
10418 /* move back copy area adderss, it will be moved forward
10419 * in restore_stripes() using start input variable
10420 */
10421 target_offsets[i] -= start/data_disks;
687629c2
AK
10422 }
10423
9a717282
AK
10424 if (open_backup_targets(info, new_disks, targets,
10425 super, dev))
687629c2
AK
10426 goto abort;
10427
68eb8bc6 10428 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10429 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10430
687629c2
AK
10431 if (restore_stripes(targets, /* list of dest devices */
10432 target_offsets, /* migration record offsets */
10433 new_disks,
ab724b98
AK
10434 dest_chunk,
10435 map_dest->raid_level,
10436 dest_layout,
10437 -1, /* source backup file descriptor */
10438 0, /* input buf offset
10439 * always 0 buf is already offseted */
d1877f69 10440 start,
687629c2
AK
10441 length,
10442 buf) != 0) {
e7b84f9d 10443 pr_err("Error restoring stripes\n");
687629c2
AK
10444 goto abort;
10445 }
10446
10447 rv = 0;
10448
10449abort:
10450 if (targets) {
9a717282 10451 close_targets(targets, new_disks);
687629c2
AK
10452 free(targets);
10453 }
10454 free(target_offsets);
10455
10456 return rv;
10457}
10458
10459/*******************************************************************************
10460 * Function: save_checkpoint_imsm
10461 * Description: Function called for current unit status update
10462 * in the migration record. It writes it to disk.
10463 * Parameters:
10464 * super : imsm internal array info
10465 * info : general array info
10466 * Returns:
10467 * 0: success
10468 * 1: failure
0228d92c
AK
10469 * 2: failure, means no valid migration record
10470 * / no general migration in progress /
687629c2
AK
10471 ******************************************************************************/
10472int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10473{
10474 struct intel_super *super = st->sb;
f8b72ef5
AK
10475 unsigned long long blocks_per_unit;
10476 unsigned long long curr_migr_unit;
10477
2e062e82 10478 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 10479 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10480 return 1;
10481 }
10482
f8b72ef5
AK
10483 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10484 if (blocks_per_unit == 0) {
0228d92c
AK
10485 dprintf("imsm: no migration in progress.\n");
10486 return 2;
687629c2 10487 }
f8b72ef5
AK
10488 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10489 /* check if array is alligned to copy area
10490 * if it is not alligned, add one to current migration unit value
10491 * this can happend on array reshape finish only
10492 */
10493 if (info->reshape_progress % blocks_per_unit)
10494 curr_migr_unit++;
687629c2
AK
10495
10496 super->migr_rec->curr_migr_unit =
f8b72ef5 10497 __cpu_to_le32(curr_migr_unit);
687629c2
AK
10498 super->migr_rec->rec_status = __cpu_to_le32(state);
10499 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
10500 __cpu_to_le32(curr_migr_unit *
10501 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 10502 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10503 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10504 return 1;
10505 }
10506
10507 return 0;
10508}
10509
276d77db
AK
10510/*******************************************************************************
10511 * Function: recover_backup_imsm
10512 * Description: Function recovers critical data from the Migration Copy Area
10513 * while assembling an array.
10514 * Parameters:
10515 * super : imsm internal array info
10516 * info : general array info
10517 * Returns:
10518 * 0 : success (or there is no data to recover)
10519 * 1 : fail
10520 ******************************************************************************/
10521int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10522{
10523 struct intel_super *super = st->sb;
10524 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 10525 struct imsm_map *map_dest;
276d77db
AK
10526 struct intel_dev *id = NULL;
10527 unsigned long long read_offset;
10528 unsigned long long write_offset;
10529 unsigned unit_len;
10530 int *targets = NULL;
10531 int new_disks, i, err;
10532 char *buf = NULL;
10533 int retval = 1;
f36a9ecd 10534 unsigned int sector_size = super->sector_size;
276d77db
AK
10535 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10536 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 10537 char buffer[20];
6c3560c0 10538 int skipped_disks = 0;
276d77db
AK
10539
10540 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10541 if (err < 1)
10542 return 1;
10543
10544 /* recover data only during assemblation */
10545 if (strncmp(buffer, "inactive", 8) != 0)
10546 return 0;
10547 /* no data to recover */
10548 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10549 return 0;
10550 if (curr_migr_unit >= num_migr_units)
10551 return 1;
10552
10553 /* find device during reshape */
10554 for (id = super->devlist; id; id = id->next)
10555 if (is_gen_migration(id->dev))
10556 break;
10557 if (id == NULL)
10558 return 1;
10559
238c0a71 10560 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
10561 new_disks = map_dest->num_members;
10562
10563 read_offset = (unsigned long long)
10564 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10565
10566 write_offset = ((unsigned long long)
10567 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 10568 pba_of_lba0(map_dest)) * 512;
276d77db
AK
10569
10570 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 10571 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 10572 goto abort;
503975b9 10573 targets = xcalloc(new_disks, sizeof(int));
276d77db 10574
9a717282 10575 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 10576 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
10577 goto abort;
10578 }
276d77db
AK
10579
10580 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
10581 if (targets[i] < 0) {
10582 skipped_disks++;
10583 continue;
10584 }
276d77db 10585 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
10586 pr_err("Cannot seek to block: %s\n",
10587 strerror(errno));
137debce
AK
10588 skipped_disks++;
10589 continue;
276d77db 10590 }
9ec11d1a 10591 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10592 pr_err("Cannot read copy area block: %s\n",
10593 strerror(errno));
137debce
AK
10594 skipped_disks++;
10595 continue;
276d77db
AK
10596 }
10597 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
10598 pr_err("Cannot seek to block: %s\n",
10599 strerror(errno));
137debce
AK
10600 skipped_disks++;
10601 continue;
276d77db 10602 }
9ec11d1a 10603 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10604 pr_err("Cannot restore block: %s\n",
10605 strerror(errno));
137debce
AK
10606 skipped_disks++;
10607 continue;
276d77db
AK
10608 }
10609 }
10610
137debce
AK
10611 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10612 new_disks,
10613 super,
10614 id->dev)) {
7a862a02 10615 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
10616 goto abort;
10617 }
10618
befb629b
AK
10619 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10620 /* ignore error == 2, this can mean end of reshape here
10621 */
7a862a02 10622 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 10623 } else
276d77db 10624 retval = 0;
276d77db
AK
10625
10626abort:
10627 if (targets) {
10628 for (i = 0; i < new_disks; i++)
10629 if (targets[i])
10630 close(targets[i]);
10631 free(targets);
10632 }
10633 free(buf);
10634 return retval;
10635}
10636
2cda7640
ML
10637static char disk_by_path[] = "/dev/disk/by-path/";
10638
10639static const char *imsm_get_disk_controller_domain(const char *path)
10640{
2cda7640 10641 char disk_path[PATH_MAX];
96234762
LM
10642 char *drv=NULL;
10643 struct stat st;
2cda7640 10644
6d8d290a 10645 strcpy(disk_path, disk_by_path);
96234762
LM
10646 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10647 if (stat(disk_path, &st) == 0) {
10648 struct sys_dev* hba;
594dc1b8 10649 char *path;
96234762
LM
10650
10651 path = devt_to_devpath(st.st_rdev);
10652 if (path == NULL)
10653 return "unknown";
10654 hba = find_disk_attached_hba(-1, path);
10655 if (hba && hba->type == SYS_DEV_SAS)
10656 drv = "isci";
10657 else if (hba && hba->type == SYS_DEV_SATA)
10658 drv = "ahci";
1011e834 10659 else
96234762
LM
10660 drv = "unknown";
10661 dprintf("path: %s hba: %s attached: %s\n",
10662 path, (hba) ? hba->path : "NULL", drv);
10663 free(path);
2cda7640 10664 }
96234762 10665 return drv;
2cda7640
ML
10666}
10667
4dd2df09 10668static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 10669{
4dd2df09 10670 static char devnm[32];
78b10e66
N
10671 char subdev_name[20];
10672 struct mdstat_ent *mdstat;
10673
10674 sprintf(subdev_name, "%d", subdev);
10675 mdstat = mdstat_by_subdev(subdev_name, container);
10676 if (!mdstat)
4dd2df09 10677 return NULL;
78b10e66 10678
4dd2df09 10679 strcpy(devnm, mdstat->devnm);
78b10e66 10680 free_mdstat(mdstat);
4dd2df09 10681 return devnm;
78b10e66
N
10682}
10683
10684static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10685 struct geo_params *geo,
fbf3d202
AK
10686 int *old_raid_disks,
10687 int direction)
78b10e66 10688{
694575e7
KW
10689 /* currently we only support increasing the number of devices
10690 * for a container. This increases the number of device for each
10691 * member array. They must all be RAID0 or RAID5.
10692 */
78b10e66
N
10693 int ret_val = 0;
10694 struct mdinfo *info, *member;
10695 int devices_that_can_grow = 0;
10696
7a862a02 10697 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 10698
d04f65f4 10699 if (geo->size > 0 ||
78b10e66
N
10700 geo->level != UnSet ||
10701 geo->layout != UnSet ||
10702 geo->chunksize != 0 ||
10703 geo->raid_disks == UnSet) {
7a862a02 10704 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
10705 return ret_val;
10706 }
10707
fbf3d202 10708 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 10709 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
10710 return ret_val;
10711 }
10712
78b10e66
N
10713 info = container_content_imsm(st, NULL);
10714 for (member = info; member; member = member->next) {
4dd2df09 10715 char *result;
78b10e66
N
10716
10717 dprintf("imsm: checking device_num: %i\n",
10718 member->container_member);
10719
d7d205bd 10720 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
10721 /* we work on container for Online Capacity Expansion
10722 * only so raid_disks has to grow
10723 */
7a862a02 10724 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
10725 break;
10726 }
10727
089f9d79 10728 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
10729 /* we cannot use this container with other raid level
10730 */
7a862a02 10731 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
10732 info->array.level);
10733 break;
10734 } else {
10735 /* check for platform support
10736 * for this raid level configuration
10737 */
10738 struct intel_super *super = st->sb;
10739 if (!is_raid_level_supported(super->orom,
10740 member->array.level,
10741 geo->raid_disks)) {
7a862a02 10742 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
10743 info->array.level,
10744 geo->raid_disks,
10745 geo->raid_disks > 1 ? "s" : "");
10746 break;
10747 }
2a4a08e7
AK
10748 /* check if component size is aligned to chunk size
10749 */
10750 if (info->component_size %
10751 (info->array.chunk_size/512)) {
7a862a02 10752 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
10753 break;
10754 }
78b10e66
N
10755 }
10756
10757 if (*old_raid_disks &&
10758 info->array.raid_disks != *old_raid_disks)
10759 break;
10760 *old_raid_disks = info->array.raid_disks;
10761
10762 /* All raid5 and raid0 volumes in container
10763 * have to be ready for Online Capacity Expansion
10764 * so they need to be assembled. We have already
10765 * checked that no recovery etc is happening.
10766 */
4dd2df09
N
10767 result = imsm_find_array_devnm_by_subdev(member->container_member,
10768 st->container_devnm);
10769 if (result == NULL) {
78b10e66
N
10770 dprintf("imsm: cannot find array\n");
10771 break;
10772 }
10773 devices_that_can_grow++;
10774 }
10775 sysfs_free(info);
10776 if (!member && devices_that_can_grow)
10777 ret_val = 1;
10778
10779 if (ret_val)
1ade5cc1 10780 dprintf("Container operation allowed\n");
78b10e66 10781 else
1ade5cc1 10782 dprintf("Error: %i\n", ret_val);
78b10e66
N
10783
10784 return ret_val;
10785}
10786
10787/* Function: get_spares_for_grow
10788 * Description: Allocates memory and creates list of spare devices
1011e834 10789 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
10790 * Parameters: Pointer to the supertype structure
10791 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 10792 * NULL if fail
78b10e66
N
10793 */
10794static struct mdinfo *get_spares_for_grow(struct supertype *st)
10795{
78b10e66 10796 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 10797 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
10798}
10799
10800/******************************************************************************
10801 * function: imsm_create_metadata_update_for_reshape
10802 * Function creates update for whole IMSM container.
10803 *
10804 ******************************************************************************/
10805static int imsm_create_metadata_update_for_reshape(
10806 struct supertype *st,
10807 struct geo_params *geo,
10808 int old_raid_disks,
10809 struct imsm_update_reshape **updatep)
10810{
10811 struct intel_super *super = st->sb;
10812 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
10813 int update_memory_size;
10814 struct imsm_update_reshape *u;
10815 struct mdinfo *spares;
78b10e66 10816 int i;
594dc1b8 10817 int delta_disks;
bbd24d86 10818 struct mdinfo *dev;
78b10e66 10819
1ade5cc1 10820 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
10821
10822 delta_disks = geo->raid_disks - old_raid_disks;
10823
10824 /* size of all update data without anchor */
10825 update_memory_size = sizeof(struct imsm_update_reshape);
10826
10827 /* now add space for spare disks that we need to add. */
10828 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10829
503975b9 10830 u = xcalloc(1, update_memory_size);
78b10e66
N
10831 u->type = update_reshape_container_disks;
10832 u->old_raid_disks = old_raid_disks;
10833 u->new_raid_disks = geo->raid_disks;
10834
10835 /* now get spare disks list
10836 */
10837 spares = get_spares_for_grow(st);
10838
10839 if (spares == NULL
10840 || delta_disks > spares->array.spare_disks) {
7a862a02 10841 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 10842 i = -1;
78b10e66
N
10843 goto abort;
10844 }
10845
10846 /* we have got spares
10847 * update disk list in imsm_disk list table in anchor
10848 */
10849 dprintf("imsm: %i spares are available.\n\n",
10850 spares->array.spare_disks);
10851
bbd24d86 10852 dev = spares->devs;
78b10e66 10853 for (i = 0; i < delta_disks; i++) {
78b10e66
N
10854 struct dl *dl;
10855
bbd24d86
AK
10856 if (dev == NULL)
10857 break;
78b10e66
N
10858 u->new_disks[i] = makedev(dev->disk.major,
10859 dev->disk.minor);
10860 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
10861 dl->index = mpb->num_disks;
10862 mpb->num_disks++;
bbd24d86 10863 dev = dev->next;
78b10e66 10864 }
78b10e66
N
10865
10866abort:
10867 /* free spares
10868 */
10869 sysfs_free(spares);
10870
d677e0b8 10871 dprintf("imsm: reshape update preparation :");
78b10e66 10872 if (i == delta_disks) {
1ade5cc1 10873 dprintf_cont(" OK\n");
78b10e66
N
10874 *updatep = u;
10875 return update_memory_size;
10876 }
10877 free(u);
1ade5cc1 10878 dprintf_cont(" Error\n");
78b10e66
N
10879
10880 return 0;
10881}
10882
f3871fdc
AK
10883/******************************************************************************
10884 * function: imsm_create_metadata_update_for_size_change()
10885 * Creates update for IMSM array for array size change.
10886 *
10887 ******************************************************************************/
10888static int imsm_create_metadata_update_for_size_change(
10889 struct supertype *st,
10890 struct geo_params *geo,
10891 struct imsm_update_size_change **updatep)
10892{
10893 struct intel_super *super = st->sb;
594dc1b8
JS
10894 int update_memory_size;
10895 struct imsm_update_size_change *u;
f3871fdc 10896
1ade5cc1 10897 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
10898
10899 /* size of all update data without anchor */
10900 update_memory_size = sizeof(struct imsm_update_size_change);
10901
503975b9 10902 u = xcalloc(1, update_memory_size);
f3871fdc
AK
10903 u->type = update_size_change;
10904 u->subdev = super->current_vol;
10905 u->new_size = geo->size;
10906
10907 dprintf("imsm: reshape update preparation : OK\n");
10908 *updatep = u;
10909
10910 return update_memory_size;
10911}
10912
48c5303a
PC
10913/******************************************************************************
10914 * function: imsm_create_metadata_update_for_migration()
10915 * Creates update for IMSM array.
10916 *
10917 ******************************************************************************/
10918static int imsm_create_metadata_update_for_migration(
10919 struct supertype *st,
10920 struct geo_params *geo,
10921 struct imsm_update_reshape_migration **updatep)
10922{
10923 struct intel_super *super = st->sb;
594dc1b8
JS
10924 int update_memory_size;
10925 struct imsm_update_reshape_migration *u;
48c5303a
PC
10926 struct imsm_dev *dev;
10927 int previous_level = -1;
10928
1ade5cc1 10929 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
10930
10931 /* size of all update data without anchor */
10932 update_memory_size = sizeof(struct imsm_update_reshape_migration);
10933
503975b9 10934 u = xcalloc(1, update_memory_size);
48c5303a
PC
10935 u->type = update_reshape_migration;
10936 u->subdev = super->current_vol;
10937 u->new_level = geo->level;
10938 u->new_layout = geo->layout;
10939 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10940 u->new_disks[0] = -1;
4bba0439 10941 u->new_chunksize = -1;
48c5303a
PC
10942
10943 dev = get_imsm_dev(super, u->subdev);
10944 if (dev) {
10945 struct imsm_map *map;
10946
238c0a71 10947 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
10948 if (map) {
10949 int current_chunk_size =
10950 __le16_to_cpu(map->blocks_per_strip) / 2;
10951
10952 if (geo->chunksize != current_chunk_size) {
10953 u->new_chunksize = geo->chunksize / 1024;
7a862a02 10954 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
10955 current_chunk_size, u->new_chunksize);
10956 }
48c5303a 10957 previous_level = map->raid_level;
4bba0439 10958 }
48c5303a 10959 }
089f9d79 10960 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
10961 struct mdinfo *spares = NULL;
10962
10963 u->new_raid_disks++;
10964 spares = get_spares_for_grow(st);
089f9d79 10965 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
10966 free(u);
10967 sysfs_free(spares);
10968 update_memory_size = 0;
565cc99e 10969 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
10970 return 0;
10971 }
10972 sysfs_free(spares);
10973 }
10974 dprintf("imsm: reshape update preparation : OK\n");
10975 *updatep = u;
10976
10977 return update_memory_size;
10978}
10979
8dd70bce
AK
10980static void imsm_update_metadata_locally(struct supertype *st,
10981 void *buf, int len)
10982{
10983 struct metadata_update mu;
10984
10985 mu.buf = buf;
10986 mu.len = len;
10987 mu.space = NULL;
10988 mu.space_list = NULL;
10989 mu.next = NULL;
5fe6f031
N
10990 if (imsm_prepare_update(st, &mu))
10991 imsm_process_update(st, &mu);
8dd70bce
AK
10992
10993 while (mu.space_list) {
10994 void **space = mu.space_list;
10995 mu.space_list = *space;
10996 free(space);
10997 }
10998}
78b10e66 10999
471bceb6 11000/***************************************************************************
694575e7 11001* Function: imsm_analyze_change
471bceb6 11002* Description: Function analyze change for single volume
1011e834 11003* and validate if transition is supported
fbf3d202
AK
11004* Parameters: Geometry parameters, supertype structure,
11005* metadata change direction (apply/rollback)
694575e7 11006* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11007****************************************************************************/
11008enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11009 struct geo_params *geo,
11010 int direction)
694575e7 11011{
471bceb6
KW
11012 struct mdinfo info;
11013 int change = -1;
11014 int check_devs = 0;
c21e737b 11015 int chunk;
67a2db32
AK
11016 /* number of added/removed disks in operation result */
11017 int devNumChange = 0;
11018 /* imsm compatible layout value for array geometry verification */
11019 int imsm_layout = -1;
7abc9871
AK
11020 int data_disks;
11021 struct imsm_dev *dev;
11022 struct intel_super *super;
d04f65f4 11023 unsigned long long current_size;
65d38cca 11024 unsigned long long free_size;
d04f65f4 11025 unsigned long long max_size;
65d38cca 11026 int rv;
471bceb6
KW
11027
11028 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11029 if (geo->level != info.array.level && geo->level >= 0 &&
11030 geo->level != UnSet) {
471bceb6
KW
11031 switch (info.array.level) {
11032 case 0:
11033 if (geo->level == 5) {
b5347799 11034 change = CH_MIGRATION;
e13ce846 11035 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11036 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11037 change = -1;
11038 goto analyse_change_exit;
11039 }
67a2db32 11040 imsm_layout = geo->layout;
471bceb6 11041 check_devs = 1;
e91a3bad
LM
11042 devNumChange = 1; /* parity disk added */
11043 } else if (geo->level == 10) {
471bceb6
KW
11044 change = CH_TAKEOVER;
11045 check_devs = 1;
e91a3bad 11046 devNumChange = 2; /* two mirrors added */
67a2db32 11047 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11048 }
dfe77a9e
KW
11049 break;
11050 case 1:
471bceb6
KW
11051 case 10:
11052 if (geo->level == 0) {
11053 change = CH_TAKEOVER;
11054 check_devs = 1;
e91a3bad 11055 devNumChange = -(geo->raid_disks/2);
67a2db32 11056 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11057 }
11058 break;
11059 }
11060 if (change == -1) {
7a862a02 11061 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11062 info.array.level, geo->level);
471bceb6
KW
11063 goto analyse_change_exit;
11064 }
11065 } else
11066 geo->level = info.array.level;
11067
089f9d79
JS
11068 if (geo->layout != info.array.layout &&
11069 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11070 change = CH_MIGRATION;
089f9d79
JS
11071 if (info.array.layout == 0 && info.array.level == 5 &&
11072 geo->layout == 5) {
471bceb6 11073 /* reshape 5 -> 4 */
089f9d79
JS
11074 } else if (info.array.layout == 5 && info.array.level == 5 &&
11075 geo->layout == 0) {
471bceb6
KW
11076 /* reshape 4 -> 5 */
11077 geo->layout = 0;
11078 geo->level = 5;
11079 } else {
7a862a02 11080 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11081 info.array.layout, geo->layout);
471bceb6
KW
11082 change = -1;
11083 goto analyse_change_exit;
11084 }
67a2db32 11085 } else {
471bceb6 11086 geo->layout = info.array.layout;
67a2db32
AK
11087 if (imsm_layout == -1)
11088 imsm_layout = info.array.layout;
11089 }
471bceb6 11090
089f9d79
JS
11091 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11092 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11093 if (info.array.level == 10) {
11094 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11095 change = -1;
11096 goto analyse_change_exit;
1e9b2c3f
PB
11097 } else if (info.component_size % (geo->chunksize/512)) {
11098 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11099 geo->chunksize/1024, info.component_size/2);
11100 change = -1;
11101 goto analyse_change_exit;
2d2b0eb7 11102 }
b5347799 11103 change = CH_MIGRATION;
2d2b0eb7 11104 } else {
471bceb6 11105 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11106 }
471bceb6 11107
c21e737b 11108 chunk = geo->chunksize / 1024;
7abc9871
AK
11109
11110 super = st->sb;
11111 dev = get_imsm_dev(super, super->current_vol);
11112 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 11113 /* compute current size per disk member
7abc9871 11114 */
c41e00b2
AK
11115 current_size = info.custom_array_size / data_disks;
11116
089f9d79 11117 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11118 /* align component size
11119 */
11120 geo->size = imsm_component_size_aligment_check(
11121 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11122 chunk * 1024, super->sector_size,
c41e00b2 11123 geo->size * 2);
65d0b4ce 11124 if (geo->size == 0) {
7a862a02 11125 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11126 current_size);
11127 goto analyse_change_exit;
11128 }
c41e00b2 11129 }
7abc9871 11130
089f9d79 11131 if (current_size != geo->size && geo->size > 0) {
7abc9871 11132 if (change != -1) {
7a862a02 11133 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11134 change = -1;
11135 goto analyse_change_exit;
11136 }
11137 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11138 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11139 super->current_vol, st->devnm);
7abc9871
AK
11140 goto analyse_change_exit;
11141 }
65d38cca
LD
11142 /* check the maximum available size
11143 */
11144 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11145 0, chunk, &free_size);
11146 if (rv == 0)
11147 /* Cannot find maximum available space
11148 */
11149 max_size = 0;
11150 else {
11151 max_size = free_size + current_size;
11152 /* align component size
11153 */
11154 max_size = imsm_component_size_aligment_check(
11155 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11156 chunk * 1024, super->sector_size,
65d38cca
LD
11157 max_size);
11158 }
d04f65f4 11159 if (geo->size == MAX_SIZE) {
b130333f
AK
11160 /* requested size change to the maximum available size
11161 */
65d38cca 11162 if (max_size == 0) {
7a862a02 11163 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11164 change = -1;
11165 goto analyse_change_exit;
65d38cca
LD
11166 } else
11167 geo->size = max_size;
c41e00b2 11168 }
b130333f 11169
681b7ae2 11170 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11171 /* accept size for rollback only
11172 */
11173 } else {
11174 /* round size due to metadata compatibility
11175 */
11176 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11177 << SECT_PER_MB_SHIFT;
11178 dprintf("Prepare update for size change to %llu\n",
11179 geo->size );
11180 if (current_size >= geo->size) {
7a862a02 11181 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11182 current_size, geo->size);
fbf3d202
AK
11183 goto analyse_change_exit;
11184 }
65d38cca 11185 if (max_size && geo->size > max_size) {
7a862a02 11186 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11187 max_size, geo->size);
65d38cca
LD
11188 goto analyse_change_exit;
11189 }
7abc9871
AK
11190 }
11191 geo->size *= data_disks;
11192 geo->raid_disks = dev->vol.map->num_members;
11193 change = CH_ARRAY_SIZE;
11194 }
471bceb6
KW
11195 if (!validate_geometry_imsm(st,
11196 geo->level,
67a2db32 11197 imsm_layout,
e91a3bad 11198 geo->raid_disks + devNumChange,
c21e737b 11199 &chunk,
af4348dd 11200 geo->size, INVALID_SECTORS,
5308f117 11201 0, 0, info.consistency_policy, 1))
471bceb6
KW
11202 change = -1;
11203
11204 if (check_devs) {
11205 struct intel_super *super = st->sb;
11206 struct imsm_super *mpb = super->anchor;
11207
11208 if (mpb->num_raid_devs > 1) {
7a862a02 11209 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 11210 geo->dev_name);
471bceb6
KW
11211 change = -1;
11212 }
11213 }
11214
11215analyse_change_exit:
089f9d79
JS
11216 if (direction == ROLLBACK_METADATA_CHANGES &&
11217 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11218 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11219 change = -1;
11220 }
471bceb6 11221 return change;
694575e7
KW
11222}
11223
bb025c2f
KW
11224int imsm_takeover(struct supertype *st, struct geo_params *geo)
11225{
11226 struct intel_super *super = st->sb;
11227 struct imsm_update_takeover *u;
11228
503975b9 11229 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11230
11231 u->type = update_takeover;
11232 u->subarray = super->current_vol;
11233
11234 /* 10->0 transition */
11235 if (geo->level == 0)
11236 u->direction = R10_TO_R0;
11237
0529c688
KW
11238 /* 0->10 transition */
11239 if (geo->level == 10)
11240 u->direction = R0_TO_R10;
11241
bb025c2f
KW
11242 /* update metadata locally */
11243 imsm_update_metadata_locally(st, u,
11244 sizeof(struct imsm_update_takeover));
11245 /* and possibly remotely */
11246 if (st->update_tail)
11247 append_metadata_update(st, u,
11248 sizeof(struct imsm_update_takeover));
11249 else
11250 free(u);
11251
11252 return 0;
11253}
11254
d04f65f4
N
11255static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11256 int level,
78b10e66 11257 int layout, int chunksize, int raid_disks,
41784c88 11258 int delta_disks, char *backup, char *dev,
016e00f5 11259 int direction, int verbose)
78b10e66 11260{
78b10e66
N
11261 int ret_val = 1;
11262 struct geo_params geo;
11263
1ade5cc1 11264 dprintf("(enter)\n");
78b10e66 11265
71204a50 11266 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11267
11268 geo.dev_name = dev;
4dd2df09 11269 strcpy(geo.devnm, st->devnm);
78b10e66
N
11270 geo.size = size;
11271 geo.level = level;
11272 geo.layout = layout;
11273 geo.chunksize = chunksize;
11274 geo.raid_disks = raid_disks;
41784c88
AK
11275 if (delta_disks != UnSet)
11276 geo.raid_disks += delta_disks;
78b10e66 11277
1ade5cc1
N
11278 dprintf("for level : %i\n", geo.level);
11279 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
11280
11281 if (experimental() == 0)
11282 return ret_val;
11283
4dd2df09 11284 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11285 /* On container level we can only increase number of devices. */
11286 dprintf("imsm: info: Container operation\n");
78b10e66 11287 int old_raid_disks = 0;
6dc0be30 11288
78b10e66 11289 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11290 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11291 struct imsm_update_reshape *u = NULL;
11292 int len;
11293
11294 len = imsm_create_metadata_update_for_reshape(
11295 st, &geo, old_raid_disks, &u);
11296
ed08d51c
AK
11297 if (len <= 0) {
11298 dprintf("imsm: Cannot prepare update\n");
11299 goto exit_imsm_reshape_super;
11300 }
11301
8dd70bce
AK
11302 ret_val = 0;
11303 /* update metadata locally */
11304 imsm_update_metadata_locally(st, u, len);
11305 /* and possibly remotely */
11306 if (st->update_tail)
11307 append_metadata_update(st, u, len);
11308 else
ed08d51c 11309 free(u);
8dd70bce 11310
694575e7 11311 } else {
7a862a02 11312 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11313 }
11314 } else {
11315 /* On volume level we support following operations
471bceb6
KW
11316 * - takeover: raid10 -> raid0; raid0 -> raid10
11317 * - chunk size migration
11318 * - migration: raid5 -> raid0; raid0 -> raid5
11319 */
11320 struct intel_super *super = st->sb;
11321 struct intel_dev *dev = super->devlist;
4dd2df09 11322 int change;
694575e7 11323 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11324 /* find requested device */
11325 while (dev) {
1011e834 11326 char *devnm =
4dd2df09
N
11327 imsm_find_array_devnm_by_subdev(
11328 dev->index, st->container_devnm);
11329 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11330 break;
11331 dev = dev->next;
11332 }
11333 if (dev == NULL) {
4dd2df09
N
11334 pr_err("Cannot find %s (%s) subarray\n",
11335 geo.dev_name, geo.devnm);
471bceb6
KW
11336 goto exit_imsm_reshape_super;
11337 }
11338 super->current_vol = dev->index;
fbf3d202 11339 change = imsm_analyze_change(st, &geo, direction);
694575e7 11340 switch (change) {
471bceb6 11341 case CH_TAKEOVER:
bb025c2f 11342 ret_val = imsm_takeover(st, &geo);
694575e7 11343 break;
48c5303a
PC
11344 case CH_MIGRATION: {
11345 struct imsm_update_reshape_migration *u = NULL;
11346 int len =
11347 imsm_create_metadata_update_for_migration(
11348 st, &geo, &u);
11349 if (len < 1) {
7a862a02 11350 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11351 break;
11352 }
471bceb6 11353 ret_val = 0;
48c5303a
PC
11354 /* update metadata locally */
11355 imsm_update_metadata_locally(st, u, len);
11356 /* and possibly remotely */
11357 if (st->update_tail)
11358 append_metadata_update(st, u, len);
11359 else
11360 free(u);
11361 }
11362 break;
7abc9871 11363 case CH_ARRAY_SIZE: {
f3871fdc
AK
11364 struct imsm_update_size_change *u = NULL;
11365 int len =
11366 imsm_create_metadata_update_for_size_change(
11367 st, &geo, &u);
11368 if (len < 1) {
7a862a02 11369 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11370 break;
11371 }
11372 ret_val = 0;
11373 /* update metadata locally */
11374 imsm_update_metadata_locally(st, u, len);
11375 /* and possibly remotely */
11376 if (st->update_tail)
11377 append_metadata_update(st, u, len);
11378 else
11379 free(u);
7abc9871
AK
11380 }
11381 break;
471bceb6
KW
11382 default:
11383 ret_val = 1;
694575e7 11384 }
694575e7 11385 }
78b10e66 11386
ed08d51c 11387exit_imsm_reshape_super:
78b10e66
N
11388 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11389 return ret_val;
11390}
2cda7640 11391
0febb20c
AO
11392#define COMPLETED_OK 0
11393#define COMPLETED_NONE 1
11394#define COMPLETED_DELAYED 2
11395
11396static int read_completed(int fd, unsigned long long *val)
11397{
11398 int ret;
11399 char buf[50];
11400
11401 ret = sysfs_fd_get_str(fd, buf, 50);
11402 if (ret < 0)
11403 return ret;
11404
11405 ret = COMPLETED_OK;
11406 if (strncmp(buf, "none", 4) == 0) {
11407 ret = COMPLETED_NONE;
11408 } else if (strncmp(buf, "delayed", 7) == 0) {
11409 ret = COMPLETED_DELAYED;
11410 } else {
11411 char *ep;
11412 *val = strtoull(buf, &ep, 0);
11413 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11414 ret = -1;
11415 }
11416 return ret;
11417}
11418
eee67a47
AK
11419/*******************************************************************************
11420 * Function: wait_for_reshape_imsm
11421 * Description: Function writes new sync_max value and waits until
11422 * reshape process reach new position
11423 * Parameters:
11424 * sra : general array info
eee67a47
AK
11425 * ndata : number of disks in new array's layout
11426 * Returns:
11427 * 0 : success,
11428 * 1 : there is no reshape in progress,
11429 * -1 : fail
11430 ******************************************************************************/
ae9f01f8 11431int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 11432{
85ca499c 11433 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 11434 int retry = 3;
eee67a47 11435 unsigned long long completed;
ae9f01f8
AK
11436 /* to_complete : new sync_max position */
11437 unsigned long long to_complete = sra->reshape_progress;
11438 unsigned long long position_to_set = to_complete / ndata;
eee67a47 11439
ae9f01f8 11440 if (fd < 0) {
1ade5cc1 11441 dprintf("cannot open reshape_position\n");
eee67a47 11442 return 1;
ae9f01f8 11443 }
eee67a47 11444
df2647fa
PB
11445 do {
11446 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11447 if (!retry) {
11448 dprintf("cannot read reshape_position (no reshape in progres)\n");
11449 close(fd);
11450 return 1;
11451 }
11452 usleep(30000);
11453 } else
11454 break;
11455 } while (retry--);
eee67a47 11456
85ca499c 11457 if (completed > position_to_set) {
1ade5cc1 11458 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 11459 to_complete, position_to_set);
ae9f01f8
AK
11460 close(fd);
11461 return -1;
11462 }
11463 dprintf("Position set: %llu\n", position_to_set);
11464 if (sysfs_set_num(sra, NULL, "sync_max",
11465 position_to_set) != 0) {
1ade5cc1 11466 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
11467 position_to_set);
11468 close(fd);
11469 return -1;
eee67a47
AK
11470 }
11471
eee67a47 11472 do {
0febb20c 11473 int rc;
eee67a47 11474 char action[20];
5ff3a780 11475 int timeout = 3000;
0febb20c 11476
5ff3a780 11477 sysfs_wait(fd, &timeout);
a47e44fb
AK
11478 if (sysfs_get_str(sra, NULL, "sync_action",
11479 action, 20) > 0 &&
d7d3809a 11480 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
11481 if (strncmp(action, "idle", 4) == 0)
11482 break;
d7d3809a
AP
11483 close(fd);
11484 return -1;
11485 }
0febb20c
AO
11486
11487 rc = read_completed(fd, &completed);
11488 if (rc < 0) {
1ade5cc1 11489 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
11490 close(fd);
11491 return 1;
0febb20c
AO
11492 } else if (rc == COMPLETED_NONE)
11493 break;
85ca499c 11494 } while (completed < position_to_set);
b2be2b62 11495
eee67a47
AK
11496 close(fd);
11497 return 0;
eee67a47
AK
11498}
11499
b915c95f
AK
11500/*******************************************************************************
11501 * Function: check_degradation_change
11502 * Description: Check that array hasn't become failed.
11503 * Parameters:
11504 * info : for sysfs access
11505 * sources : source disks descriptors
11506 * degraded: previous degradation level
11507 * Returns:
11508 * degradation level
11509 ******************************************************************************/
11510int check_degradation_change(struct mdinfo *info,
11511 int *sources,
11512 int degraded)
11513{
11514 unsigned long long new_degraded;
e1993023
LD
11515 int rv;
11516
11517 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 11518 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
11519 /* check each device to ensure it is still working */
11520 struct mdinfo *sd;
11521 new_degraded = 0;
11522 for (sd = info->devs ; sd ; sd = sd->next) {
11523 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11524 continue;
11525 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
11526 char sbuf[100];
11527
b915c95f 11528 if (sysfs_get_str(info,
cf52eff5 11529 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
11530 strstr(sbuf, "faulty") ||
11531 strstr(sbuf, "in_sync") == NULL) {
11532 /* this device is dead */
11533 sd->disk.state = (1<<MD_DISK_FAULTY);
11534 if (sd->disk.raid_disk >= 0 &&
11535 sources[sd->disk.raid_disk] >= 0) {
11536 close(sources[
11537 sd->disk.raid_disk]);
11538 sources[sd->disk.raid_disk] =
11539 -1;
11540 }
11541 new_degraded++;
11542 }
11543 }
11544 }
11545 }
11546
11547 return new_degraded;
11548}
11549
10f22854
AK
11550/*******************************************************************************
11551 * Function: imsm_manage_reshape
11552 * Description: Function finds array under reshape and it manages reshape
11553 * process. It creates stripes backups (if required) and sets
942e1cdb 11554 * checkpoints.
10f22854
AK
11555 * Parameters:
11556 * afd : Backup handle (nattive) - not used
11557 * sra : general array info
11558 * reshape : reshape parameters - not used
11559 * st : supertype structure
11560 * blocks : size of critical section [blocks]
11561 * fds : table of source device descriptor
11562 * offsets : start of array (offest per devices)
11563 * dests : not used
11564 * destfd : table of destination device descriptor
11565 * destoffsets : table of destination offsets (per device)
11566 * Returns:
11567 * 1 : success, reshape is done
11568 * 0 : fail
11569 ******************************************************************************/
999b4972
N
11570static int imsm_manage_reshape(
11571 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 11572 struct supertype *st, unsigned long backup_blocks,
999b4972
N
11573 int *fds, unsigned long long *offsets,
11574 int dests, int *destfd, unsigned long long *destoffsets)
11575{
10f22854
AK
11576 int ret_val = 0;
11577 struct intel_super *super = st->sb;
594dc1b8 11578 struct intel_dev *dv;
de44e46f 11579 unsigned int sector_size = super->sector_size;
10f22854 11580 struct imsm_dev *dev = NULL;
a6b6d984 11581 struct imsm_map *map_src;
10f22854
AK
11582 int migr_vol_qan = 0;
11583 int ndata, odata; /* [bytes] */
11584 int chunk; /* [bytes] */
11585 struct migr_record *migr_rec;
11586 char *buf = NULL;
11587 unsigned int buf_size; /* [bytes] */
11588 unsigned long long max_position; /* array size [bytes] */
11589 unsigned long long next_step; /* [blocks]/[bytes] */
11590 unsigned long long old_data_stripe_length;
10f22854
AK
11591 unsigned long long start_src; /* [bytes] */
11592 unsigned long long start; /* [bytes] */
11593 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 11594 int degraded = 0;
ab724b98 11595 int source_layout = 0;
10f22854 11596
79a16a9b
JS
11597 if (!sra)
11598 return ret_val;
11599
11600 if (!fds || !offsets)
10f22854
AK
11601 goto abort;
11602
11603 /* Find volume during the reshape */
11604 for (dv = super->devlist; dv; dv = dv->next) {
11605 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11606 && dv->dev->vol.migr_state == 1) {
11607 dev = dv->dev;
11608 migr_vol_qan++;
11609 }
11610 }
11611 /* Only one volume can migrate at the same time */
11612 if (migr_vol_qan != 1) {
676e87a8 11613 pr_err("%s", migr_vol_qan ?
10f22854
AK
11614 "Number of migrating volumes greater than 1\n" :
11615 "There is no volume during migrationg\n");
11616 goto abort;
11617 }
11618
238c0a71 11619 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
11620 if (map_src == NULL)
11621 goto abort;
10f22854 11622
238c0a71
AK
11623 ndata = imsm_num_data_members(dev, MAP_0);
11624 odata = imsm_num_data_members(dev, MAP_1);
10f22854 11625
7b1ab482 11626 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
11627 old_data_stripe_length = odata * chunk;
11628
11629 migr_rec = super->migr_rec;
11630
10f22854
AK
11631 /* initialize migration record for start condition */
11632 if (sra->reshape_progress == 0)
11633 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
11634 else {
11635 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 11636 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
11637 goto abort;
11638 }
6a75c8ca
AK
11639 /* Save checkpoint to update migration record for current
11640 * reshape position (in md). It can be farther than current
11641 * reshape position in metadata.
11642 */
11643 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11644 /* ignore error == 2, this can mean end of reshape here
11645 */
7a862a02 11646 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
11647 goto abort;
11648 }
b2c59438 11649 }
10f22854
AK
11650
11651 /* size for data */
11652 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11653 /* extend buffer size for parity disk */
11654 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11655 /* add space for stripe aligment */
11656 buf_size += old_data_stripe_length;
de44e46f
PB
11657 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11658 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
11659 goto abort;
11660 }
11661
3ef4403c 11662 max_position = sra->component_size * ndata;
68eb8bc6 11663 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
11664
11665 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11666 __le32_to_cpu(migr_rec->num_migr_units)) {
11667 /* current reshape position [blocks] */
11668 unsigned long long current_position =
11669 __le32_to_cpu(migr_rec->blocks_per_unit)
11670 * __le32_to_cpu(migr_rec->curr_migr_unit);
11671 unsigned long long border;
11672
b915c95f
AK
11673 /* Check that array hasn't become failed.
11674 */
11675 degraded = check_degradation_change(sra, fds, degraded);
11676 if (degraded > 1) {
7a862a02 11677 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
11678 goto abort;
11679 }
11680
10f22854
AK
11681 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11682
11683 if ((current_position + next_step) > max_position)
11684 next_step = max_position - current_position;
11685
92144abf 11686 start = current_position * 512;
10f22854 11687
942e1cdb 11688 /* align reading start to old geometry */
10f22854
AK
11689 start_buf_shift = start % old_data_stripe_length;
11690 start_src = start - start_buf_shift;
11691
11692 border = (start_src / odata) - (start / ndata);
11693 border /= 512;
11694 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11695 /* save critical stripes to buf
11696 * start - start address of current unit
11697 * to backup [bytes]
11698 * start_src - start address of current unit
11699 * to backup alligned to source array
11700 * [bytes]
11701 */
594dc1b8 11702 unsigned long long next_step_filler;
10f22854
AK
11703 unsigned long long copy_length = next_step * 512;
11704
11705 /* allign copy area length to stripe in old geometry */
11706 next_step_filler = ((copy_length + start_buf_shift)
11707 % old_data_stripe_length);
11708 if (next_step_filler)
11709 next_step_filler = (old_data_stripe_length
11710 - next_step_filler);
7a862a02 11711 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
11712 start, start_src, copy_length,
11713 start_buf_shift, next_step_filler);
11714
11715 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
11716 chunk, map_src->raid_level,
11717 source_layout, 0, NULL, start_src,
10f22854
AK
11718 copy_length +
11719 next_step_filler + start_buf_shift,
11720 buf)) {
7a862a02 11721 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
11722 goto abort;
11723 }
11724 /* Convert data to destination format and store it
11725 * in backup general migration area
11726 */
11727 if (save_backup_imsm(st, dev, sra,
aea93171 11728 buf + start_buf_shift, copy_length)) {
7a862a02 11729 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
11730 goto abort;
11731 }
11732 if (save_checkpoint_imsm(st, sra,
11733 UNIT_SRC_IN_CP_AREA)) {
7a862a02 11734 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
11735 goto abort;
11736 }
8016a6d4
AK
11737 } else {
11738 /* set next step to use whole border area */
11739 border /= next_step;
11740 if (border > 1)
11741 next_step *= border;
10f22854
AK
11742 }
11743 /* When data backed up, checkpoint stored,
11744 * kick the kernel to reshape unit of data
11745 */
11746 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
11747 /* limit next step to array max position */
11748 if (next_step > max_position)
11749 next_step = max_position;
10f22854
AK
11750 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11751 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 11752 sra->reshape_progress = next_step;
10f22854
AK
11753
11754 /* wait until reshape finish */
c85338c6 11755 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
11756 dprintf("wait_for_reshape_imsm returned error!\n");
11757 goto abort;
11758 }
84d11e6c
N
11759 if (sigterm)
11760 goto abort;
10f22854 11761
0228d92c
AK
11762 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11763 /* ignore error == 2, this can mean end of reshape here
11764 */
7a862a02 11765 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
11766 goto abort;
11767 }
11768
11769 }
11770
71e5411e
PB
11771 /* clear migr_rec on disks after successful migration */
11772 struct dl *d;
11773
85337573 11774 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
11775 for (d = super->disks; d; d = d->next) {
11776 if (d->index < 0 || is_failed(&d->disk))
11777 continue;
11778 unsigned long long dsize;
11779
11780 get_dev_size(d->fd, NULL, &dsize);
de44e46f 11781 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 11782 SEEK_SET) >= 0) {
466070ad 11783 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
11784 MIGR_REC_BUF_SECTORS*sector_size) !=
11785 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
11786 perror("Write migr_rec failed");
11787 }
11788 }
11789
10f22854
AK
11790 /* return '1' if done */
11791 ret_val = 1;
11792abort:
11793 free(buf);
942e1cdb
N
11794 /* See Grow.c: abort_reshape() for further explanation */
11795 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11796 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11797 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
11798
11799 return ret_val;
999b4972 11800}
0c21b485 11801
cdddbdbc 11802struct superswitch super_imsm = {
cdddbdbc
DW
11803 .examine_super = examine_super_imsm,
11804 .brief_examine_super = brief_examine_super_imsm,
4737ae25 11805 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 11806 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
11807 .detail_super = detail_super_imsm,
11808 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 11809 .write_init_super = write_init_super_imsm,
0e600426
N
11810 .validate_geometry = validate_geometry_imsm,
11811 .add_to_super = add_to_super_imsm,
1a64be56 11812 .remove_from_super = remove_from_super_imsm,
d665cc31 11813 .detail_platform = detail_platform_imsm,
e50cf220 11814 .export_detail_platform = export_detail_platform_imsm,
33414a01 11815 .kill_subarray = kill_subarray_imsm,
aa534678 11816 .update_subarray = update_subarray_imsm,
2b959fbf 11817 .load_container = load_container_imsm,
71204a50
N
11818 .default_geometry = default_geometry_imsm,
11819 .get_disk_controller_domain = imsm_get_disk_controller_domain,
11820 .reshape_super = imsm_reshape_super,
11821 .manage_reshape = imsm_manage_reshape,
9e2d750d 11822 .recover_backup = recover_backup_imsm,
74db60b0 11823 .copy_metadata = copy_metadata_imsm,
27156a57 11824 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
11825 .match_home = match_home_imsm,
11826 .uuid_from_super= uuid_from_super_imsm,
11827 .getinfo_super = getinfo_super_imsm,
5c4cd5da 11828 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
11829 .update_super = update_super_imsm,
11830
11831 .avail_size = avail_size_imsm,
80e7f8c3 11832 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
11833
11834 .compare_super = compare_super_imsm,
11835
11836 .load_super = load_super_imsm,
bf5a934a 11837 .init_super = init_super_imsm,
e683ca88 11838 .store_super = store_super_imsm,
cdddbdbc
DW
11839 .free_super = free_super_imsm,
11840 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 11841 .container_content = container_content_imsm,
0c21b485 11842 .validate_container = validate_container_imsm,
cdddbdbc 11843
2432ce9b
AP
11844 .write_init_ppl = write_init_ppl_imsm,
11845 .validate_ppl = validate_ppl_imsm,
11846
cdddbdbc 11847 .external = 1,
4cce4069 11848 .name = "imsm",
845dea95
NB
11849
11850/* for mdmon */
11851 .open_new = imsm_open_new,
ed9d66aa 11852 .set_array_state= imsm_set_array_state,
845dea95
NB
11853 .set_disk = imsm_set_disk,
11854 .sync_metadata = imsm_sync_metadata,
88758e9d 11855 .activate_spare = imsm_activate_spare,
e8319a19 11856 .process_update = imsm_process_update,
8273f55e 11857 .prepare_update = imsm_prepare_update,
6f50473f 11858 .record_bad_block = imsm_record_badblock,
c07a5a4f 11859 .clear_bad_block = imsm_clear_badblock,
928f1424 11860 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 11861};