]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
Licenses: introduce SPDX Unique Lincense Identifiers
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
e2a66e60 34#include <linux/compiler.h>
0b23fb36
IY
35
36DECLARE_GLOBAL_DATA_PTR;
37
bc1ce150
MV
38/*
39 * Timeout the transfer after 5 mS. This is usually a bit more, since
40 * the code in the tightloops this timeout is used in adds some overhead.
41 */
42#define FEC_XFER_TIMEOUT 5000
43
0b23fb36
IY
44#ifndef CONFIG_MII
45#error "CONFIG_MII has to be defined!"
46#endif
47
5c1ad3e6
EN
48#ifndef CONFIG_FEC_XCV_TYPE
49#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
50#endif
51
be7e87e2
MV
52/*
53 * The i.MX28 operates with packets in big endian. We need to swap them before
54 * sending and after receiving.
55 */
5c1ad3e6
EN
56#ifdef CONFIG_MX28
57#define CONFIG_FEC_MXC_SWAP_PACKET
58#endif
59
60#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61
62/* Check various alignment issues at compile time */
63#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64#error "ARCH_DMA_MINALIGN must be multiple of 16!"
65#endif
66
67#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
69#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
70#endif
71
0b23fb36
IY
72#undef DEBUG
73
74struct nbuf {
75 uint8_t data[1500]; /**< actual data */
76 int length; /**< actual length */
77 int used; /**< buffer in use or not */
78 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
79};
80
5c1ad3e6 81#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
82static void swap_packet(uint32_t *packet, int length)
83{
84 int i;
85
86 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
87 packet[i] = __swab32(packet[i]);
88}
89#endif
90
0b23fb36
IY
91/*
92 * MII-interface related functions
93 */
13947f43
TK
94static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
95 uint8_t regAddr)
0b23fb36 96{
0b23fb36
IY
97 uint32_t reg; /* convenient holder for the PHY register */
98 uint32_t phy; /* convenient holder for the PHY */
99 uint32_t start;
13947f43 100 int val;
0b23fb36
IY
101
102 /*
103 * reading from any PHY's register is done by properly
104 * programming the FEC's MII data register.
105 */
d133b881 106 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
107 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109
110 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 111 phy | reg, &eth->mii_data);
0b23fb36
IY
112
113 /*
114 * wait for the related interrupt
115 */
a60d1e5b 116 start = get_timer(0);
d133b881 117 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
118 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 printf("Read MDIO failed...\n");
120 return -1;
121 }
122 }
123
124 /*
125 * clear mii interrupt bit
126 */
d133b881 127 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
128
129 /*
130 * it's now safe to read the PHY's register
131 */
13947f43
TK
132 val = (unsigned short)readl(&eth->mii_data);
133 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
134 regAddr, val);
135 return val;
0b23fb36
IY
136}
137
575c5cc0 138static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
139{
140 /*
141 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 * and do not drop the Preamble.
143 */
144 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
575c5cc0
TK
145 &eth->mii_speed);
146 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 147}
0b23fb36 148
13947f43
TK
149static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
150 uint8_t regAddr, uint16_t data)
151{
0b23fb36
IY
152 uint32_t reg; /* convenient holder for the PHY register */
153 uint32_t phy; /* convenient holder for the PHY */
154 uint32_t start;
155
156 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
157 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
158
159 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 160 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
161
162 /*
163 * wait for the MII interrupt
164 */
a60d1e5b 165 start = get_timer(0);
d133b881 166 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
167 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
168 printf("Write MDIO failed...\n");
169 return -1;
170 }
171 }
172
173 /*
174 * clear MII interrupt bit
175 */
d133b881 176 writel(FEC_IEVENT_MII, &eth->ievent);
13947f43 177 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
0b23fb36
IY
178 regAddr, data);
179
180 return 0;
181}
182
13947f43
TK
183int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
184{
185 return fec_mdio_read(bus->priv, phyAddr, regAddr);
186}
187
188int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
189 u16 data)
190{
191 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
192}
193
194#ifndef CONFIG_PHYLIB
0b23fb36
IY
195static int miiphy_restart_aneg(struct eth_device *dev)
196{
b774fe9d
SB
197 int ret = 0;
198#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 199 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 200 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 201
0b23fb36
IY
202 /*
203 * Wake up from sleep if necessary
204 * Reset PHY, then delay 300ns
205 */
cb17b92d 206#ifdef CONFIG_MX27
13947f43 207 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 208#endif
13947f43 209 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
210 udelay(1000);
211
212 /*
213 * Set the auto-negotiation advertisement register bits
214 */
13947f43 215 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
216 LPA_100FULL | LPA_100HALF | LPA_10FULL |
217 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 218 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
8ef583a0 219 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
220
221 if (fec->mii_postcall)
222 ret = fec->mii_postcall(fec->phy_id);
223
b774fe9d 224#endif
2e5f4421 225 return ret;
0b23fb36
IY
226}
227
228static int miiphy_wait_aneg(struct eth_device *dev)
229{
230 uint32_t start;
13947f43 231 int status;
9e27e9dc 232 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 233 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36
IY
234
235 /*
236 * Wait for AN completion
237 */
a60d1e5b 238 start = get_timer(0);
0b23fb36
IY
239 do {
240 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
241 printf("%s: Autonegotiation timeout\n", dev->name);
242 return -1;
243 }
244
13947f43
TK
245 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
246 if (status < 0) {
247 printf("%s: Autonegotiation failed. status: %d\n",
0b23fb36
IY
248 dev->name, status);
249 return -1;
250 }
8ef583a0 251 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
252
253 return 0;
254}
13947f43
TK
255#endif
256
0b23fb36
IY
257static int fec_rx_task_enable(struct fec_priv *fec)
258{
c0b5a3bb 259 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
260 return 0;
261}
262
263static int fec_rx_task_disable(struct fec_priv *fec)
264{
265 return 0;
266}
267
268static int fec_tx_task_enable(struct fec_priv *fec)
269{
c0b5a3bb 270 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
271 return 0;
272}
273
274static int fec_tx_task_disable(struct fec_priv *fec)
275{
276 return 0;
277}
278
279/**
280 * Initialize receive task's buffer descriptors
281 * @param[in] fec all we know about the device yet
282 * @param[in] count receive buffer count to be allocated
5c1ad3e6 283 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
284 * @return 0 on success
285 *
286 * For this task we need additional memory for the data buffers. And each
287 * data buffer requires some alignment. Thy must be aligned to a specific
5c1ad3e6 288 * boundary each.
0b23fb36 289 */
5c1ad3e6 290static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 291{
5c1ad3e6
EN
292 uint32_t size;
293 int i;
294
0b23fb36 295 /*
5c1ad3e6
EN
296 * Allocate memory for the buffers. This allocation respects the
297 * alignment
0b23fb36 298 */
5c1ad3e6
EN
299 size = roundup(dsize, ARCH_DMA_MINALIGN);
300 for (i = 0; i < count; i++) {
301 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
302 if (data_ptr == 0) {
303 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
304 size);
305 if (!data) {
306 printf("%s: error allocating rxbuf %d\n",
307 __func__, i);
308 goto err;
309 }
310 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
311 } /* needs allocation */
312 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
313 writew(0, &fec->rbd_base[i].data_length);
314 }
315
316 /* Mark the last RBD to close the ring. */
317 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
0b23fb36
IY
318 fec->rbd_index = 0;
319
320 return 0;
5c1ad3e6
EN
321
322err:
323 for (; i >= 0; i--) {
324 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
325 free((void *)data_ptr);
326 }
327
328 return -ENOMEM;
0b23fb36
IY
329}
330
331/**
332 * Initialize transmit task's buffer descriptors
333 * @param[in] fec all we know about the device yet
334 *
335 * Transmit buffers are created externally. We only have to init the BDs here.\n
336 * Note: There is a race condition in the hardware. When only one BD is in
337 * use it must be marked with the WRAP bit to use it for every transmitt.
338 * This bit in combination with the READY bit results into double transmit
339 * of each data buffer. It seems the state machine checks READY earlier then
340 * resetting it after the first transfer.
341 * Using two BDs solves this issue.
342 */
343static void fec_tbd_init(struct fec_priv *fec)
344{
5c1ad3e6
EN
345 unsigned addr = (unsigned)fec->tbd_base;
346 unsigned size = roundup(2 * sizeof(struct fec_bd),
347 ARCH_DMA_MINALIGN);
0b23fb36
IY
348 writew(0x0000, &fec->tbd_base[0].status);
349 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
350 fec->tbd_index = 0;
5c1ad3e6 351 flush_dcache_range(addr, addr+size);
0b23fb36
IY
352}
353
354/**
355 * Mark the given read buffer descriptor as free
356 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
357 * @param[in] pRbd buffer descriptor to mark free again
358 */
359static void fec_rbd_clean(int last, struct fec_bd *pRbd)
360{
5c1ad3e6 361 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 362 if (last)
5c1ad3e6
EN
363 flags |= FEC_RBD_WRAP;
364 writew(flags, &pRbd->status);
0b23fb36
IY
365 writew(0, &pRbd->data_length);
366}
367
be252b65
FE
368static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
369 unsigned char *mac)
0b23fb36 370{
be252b65 371 imx_get_mac_from_fuse(dev_id, mac);
2e236bf2 372 return !is_valid_ether_addr(mac);
0b23fb36
IY
373}
374
4294b248 375static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 376{
4294b248 377 uchar *mac = dev->enetaddr;
0b23fb36
IY
378 struct fec_priv *fec = (struct fec_priv *)dev->priv;
379
380 writel(0, &fec->eth->iaddr1);
381 writel(0, &fec->eth->iaddr2);
382 writel(0, &fec->eth->gaddr1);
383 writel(0, &fec->eth->gaddr2);
384
385 /*
386 * Set physical address
387 */
388 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
389 &fec->eth->paddr1);
390 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
391
392 return 0;
393}
394
a5990b26
MV
395/*
396 * Do initial configuration of the FEC registers
397 */
398static void fec_reg_setup(struct fec_priv *fec)
399{
400 uint32_t rcntrl;
401
402 /*
403 * Set interrupt mask register
404 */
405 writel(0x00000000, &fec->eth->imask);
406
407 /*
408 * Clear FEC-Lite interrupt event register(IEVENT)
409 */
410 writel(0xffffffff, &fec->eth->ievent);
411
412
413 /*
414 * Set FEC-Lite receive control register(R_CNTRL):
415 */
416
417 /* Start with frame length = 1518, common for all modes. */
418 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 419 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
420 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
421 if (fec->xcv_type == RGMII)
a5990b26
MV
422 rcntrl |= FEC_RCNTRL_RGMII;
423 else if (fec->xcv_type == RMII)
424 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
425
426 writel(rcntrl, &fec->eth->r_cntrl);
427}
428
0b23fb36
IY
429/**
430 * Start the FEC engine
431 * @param[in] dev Our device to handle
432 */
433static int fec_open(struct eth_device *edev)
434{
435 struct fec_priv *fec = (struct fec_priv *)edev->priv;
28774cba 436 int speed;
5c1ad3e6
EN
437 uint32_t addr, size;
438 int i;
0b23fb36
IY
439
440 debug("fec_open: fec_open(dev)\n");
441 /* full-duplex, heartbeat disabled */
442 writel(1 << 2, &fec->eth->x_cntrl);
443 fec->rbd_index = 0;
444
5c1ad3e6
EN
445 /* Invalidate all descriptors */
446 for (i = 0; i < FEC_RBD_NUM - 1; i++)
447 fec_rbd_clean(0, &fec->rbd_base[i]);
448 fec_rbd_clean(1, &fec->rbd_base[i]);
449
450 /* Flush the descriptors into RAM */
451 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
452 ARCH_DMA_MINALIGN);
453 addr = (uint32_t)fec->rbd_base;
454 flush_dcache_range(addr, addr + size);
455
28774cba 456#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
457 /* Enable ENET HW endian SWAP */
458 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
459 &fec->eth->ecntrl);
460 /* Enable ENET store and forward mode */
461 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
462 &fec->eth->x_wmrk);
463#endif
0b23fb36
IY
464 /*
465 * Enable FEC-Lite controller
466 */
cb17b92d
JR
467 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
468 &fec->eth->ecntrl);
96912453 469#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
470 udelay(100);
471 /*
472 * setup the MII gasket for RMII mode
473 */
474
475 /* disable the gasket */
476 writew(0, &fec->eth->miigsk_enr);
477
478 /* wait for the gasket to be disabled */
479 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
480 udelay(2);
481
482 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
483 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
484
485 /* re-enable the gasket */
486 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
487
488 /* wait until MII gasket is ready */
489 int max_loops = 10;
490 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
491 if (--max_loops <= 0) {
492 printf("WAIT for MII Gasket ready timed out\n");
493 break;
494 }
495 }
496#endif
0b23fb36 497
13947f43 498#ifdef CONFIG_PHYLIB
4dc27eed 499 {
13947f43 500 /* Start up the PHY */
11af8d65
TT
501 int ret = phy_startup(fec->phydev);
502
503 if (ret) {
504 printf("Could not initialize PHY %s\n",
505 fec->phydev->dev->name);
506 return ret;
507 }
13947f43 508 speed = fec->phydev->speed;
13947f43
TK
509 }
510#else
0b23fb36 511 miiphy_wait_aneg(edev);
28774cba 512 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 513 miiphy_duplex(edev->name, fec->phy_id);
13947f43 514#endif
0b23fb36 515
28774cba
TK
516#ifdef FEC_QUIRK_ENET_MAC
517 {
518 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 519 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
520 if (speed == _1000BASET)
521 ecr |= FEC_ECNTRL_SPEED;
522 else if (speed != _100BASET)
523 rcr |= FEC_RCNTRL_RMII_10T;
524 writel(ecr, &fec->eth->ecntrl);
525 writel(rcr, &fec->eth->r_cntrl);
526 }
527#endif
528 debug("%s:Speed=%i\n", __func__, speed);
529
0b23fb36
IY
530 /*
531 * Enable SmartDMA receive task
532 */
533 fec_rx_task_enable(fec);
534
535 udelay(100000);
536 return 0;
537}
538
539static int fec_init(struct eth_device *dev, bd_t* bd)
540{
0b23fb36 541 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 542 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
5c1ad3e6
EN
543 uint32_t size;
544 int i, ret;
0b23fb36 545
e9319f11
JR
546 /* Initialize MAC address */
547 fec_set_hwaddr(dev);
548
0b23fb36 549 /*
5c1ad3e6
EN
550 * Allocate transmit descriptors, there are two in total. This
551 * allocation respects cache alignment.
0b23fb36 552 */
5c1ad3e6
EN
553 if (!fec->tbd_base) {
554 size = roundup(2 * sizeof(struct fec_bd),
555 ARCH_DMA_MINALIGN);
556 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
557 if (!fec->tbd_base) {
558 ret = -ENOMEM;
559 goto err1;
560 }
561 memset(fec->tbd_base, 0, size);
562 fec_tbd_init(fec);
0b23fb36 563 }
0b23fb36 564
5c1ad3e6
EN
565 /*
566 * Allocate receive descriptors. This allocation respects cache
567 * alignment.
568 */
569 if (!fec->rbd_base) {
570 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
571 ARCH_DMA_MINALIGN);
572 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
573 if (!fec->rbd_base) {
574 ret = -ENOMEM;
575 goto err2;
576 }
577 memset(fec->rbd_base, 0, size);
578 /*
579 * Initialize RxBD ring
580 */
581 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
582 ret = -ENOMEM;
583 goto err3;
584 }
585 flush_dcache_range((unsigned)fec->rbd_base,
586 (unsigned)fec->rbd_base + size);
587 }
0b23fb36 588
a5990b26 589 fec_reg_setup(fec);
9eb3770b 590
f41471e6 591 if (fec->xcv_type != SEVENWIRE)
575c5cc0 592 fec_mii_setspeed(fec->bus->priv);
9eb3770b 593
0b23fb36
IY
594 /*
595 * Set Opcode/Pause Duration Register
596 */
597 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
598 writel(0x2, &fec->eth->x_wmrk);
599 /*
600 * Set multicast address filter
601 */
602 writel(0x00000000, &fec->eth->gaddr1);
603 writel(0x00000000, &fec->eth->gaddr2);
604
605
606 /* clear MIB RAM */
9e27e9dc
MV
607 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
608 writel(0, i);
0b23fb36
IY
609
610 /* FIFO receive start register */
611 writel(0x520, &fec->eth->r_fstart);
612
613 /* size and address of each buffer */
614 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
615 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
616 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
617
13947f43 618#ifndef CONFIG_PHYLIB
0b23fb36
IY
619 if (fec->xcv_type != SEVENWIRE)
620 miiphy_restart_aneg(dev);
13947f43 621#endif
0b23fb36
IY
622 fec_open(dev);
623 return 0;
5c1ad3e6
EN
624
625err3:
626 free(fec->rbd_base);
627err2:
628 free(fec->tbd_base);
629err1:
630 return ret;
0b23fb36
IY
631}
632
633/**
634 * Halt the FEC engine
635 * @param[in] dev Our device to handle
636 */
637static void fec_halt(struct eth_device *dev)
638{
9e27e9dc 639 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
640 int counter = 0xffff;
641
642 /*
643 * issue graceful stop command to the FEC transmitter if necessary
644 */
cb17b92d 645 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
646 &fec->eth->x_cntrl);
647
648 debug("eth_halt: wait for stop regs\n");
649 /*
650 * wait for graceful stop to register
651 */
652 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 653 udelay(1);
0b23fb36
IY
654
655 /*
656 * Disable SmartDMA tasks
657 */
658 fec_tx_task_disable(fec);
659 fec_rx_task_disable(fec);
660
661 /*
662 * Disable the Ethernet Controller
663 * Note: this will also reset the BD index counter!
664 */
740d6ae5
JR
665 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
666 &fec->eth->ecntrl);
0b23fb36
IY
667 fec->rbd_index = 0;
668 fec->tbd_index = 0;
0b23fb36
IY
669 debug("eth_halt: done\n");
670}
671
672/**
673 * Transmit one frame
674 * @param[in] dev Our ethernet device to handle
675 * @param[in] packet Pointer to the data to be transmitted
676 * @param[in] length Data count in bytes
677 * @return 0 on success
678 */
442dac4c 679static int fec_send(struct eth_device *dev, void *packet, int length)
0b23fb36
IY
680{
681 unsigned int status;
efe24d2e 682 uint32_t size, end;
5c1ad3e6 683 uint32_t addr;
bc1ce150
MV
684 int timeout = FEC_XFER_TIMEOUT;
685 int ret = 0;
0b23fb36
IY
686
687 /*
688 * This routine transmits one frame. This routine only accepts
689 * 6-byte Ethernet addresses.
690 */
691 struct fec_priv *fec = (struct fec_priv *)dev->priv;
692
693 /*
694 * Check for valid length of data.
695 */
696 if ((length > 1500) || (length <= 0)) {
4294b248 697 printf("Payload (%d) too large\n", length);
0b23fb36
IY
698 return -1;
699 }
700
701 /*
5c1ad3e6
EN
702 * Setup the transmit buffer. We are always using the first buffer for
703 * transmission, the second will be empty and only used to stop the DMA
704 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 705 */
5c1ad3e6 706#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
707 swap_packet((uint32_t *)packet, length);
708#endif
5c1ad3e6
EN
709
710 addr = (uint32_t)packet;
efe24d2e
MV
711 end = roundup(addr + length, ARCH_DMA_MINALIGN);
712 addr &= ~(ARCH_DMA_MINALIGN - 1);
713 flush_dcache_range(addr, end);
5c1ad3e6 714
0b23fb36 715 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
5c1ad3e6
EN
716 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
717
0b23fb36
IY
718 /*
719 * update BD's status now
720 * This block:
721 * - is always the last in a chain (means no chain)
722 * - should transmitt the CRC
723 * - might be the last BD in the list, so the address counter should
724 * wrap (-> keep the WRAP flag)
725 */
726 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
727 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
728 writew(status, &fec->tbd_base[fec->tbd_index].status);
729
5c1ad3e6
EN
730 /*
731 * Flush data cache. This code flushes both TX descriptors to RAM.
732 * After this code, the descriptors will be safely in RAM and we
733 * can start DMA.
734 */
735 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
736 addr = (uint32_t)fec->tbd_base;
737 flush_dcache_range(addr, addr + size);
738
ab94cd49
MV
739 /*
740 * Below we read the DMA descriptor's last four bytes back from the
741 * DRAM. This is important in order to make sure that all WRITE
742 * operations on the bus that were triggered by previous cache FLUSH
743 * have completed.
744 *
745 * Otherwise, on MX28, it is possible to observe a corruption of the
746 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
747 * for the bus structure of MX28. The scenario is as follows:
748 *
749 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
750 * to DRAM due to flush_dcache_range()
751 * 2) ARM core writes the FEC registers via AHB_ARB2
752 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
753 *
754 * Note that 2) does sometimes finish before 1) due to reordering of
755 * WRITE accesses on the AHB bus, therefore triggering 3) before the
756 * DMA descriptor is fully written into DRAM. This results in occasional
757 * corruption of the DMA descriptor.
758 */
759 readl(addr + size - 4);
760
0b23fb36
IY
761 /*
762 * Enable SmartDMA transmit task
763 */
764 fec_tx_task_enable(fec);
765
766 /*
5c1ad3e6
EN
767 * Wait until frame is sent. On each turn of the wait cycle, we must
768 * invalidate data cache to see what's really in RAM. Also, we need
769 * barrier here.
0b23fb36 770 */
67449098 771 while (--timeout) {
c0b5a3bb 772 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 773 break;
0b23fb36 774 }
5c1ad3e6 775
67449098
MV
776 if (!timeout)
777 ret = -EINVAL;
778
779 invalidate_dcache_range(addr, addr + size);
780 if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
781 ret = -EINVAL;
782
783 debug("fec_send: status 0x%x index %d ret %i\n",
0b23fb36 784 readw(&fec->tbd_base[fec->tbd_index].status),
67449098 785 fec->tbd_index, ret);
0b23fb36
IY
786 /* for next transmission use the other buffer */
787 if (fec->tbd_index)
788 fec->tbd_index = 0;
789 else
790 fec->tbd_index = 1;
791
bc1ce150 792 return ret;
0b23fb36
IY
793}
794
795/**
796 * Pull one frame from the card
797 * @param[in] dev Our ethernet device to handle
798 * @return Length of packet read
799 */
800static int fec_recv(struct eth_device *dev)
801{
802 struct fec_priv *fec = (struct fec_priv *)dev->priv;
803 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
804 unsigned long ievent;
805 int frame_length, len = 0;
806 struct nbuf *frame;
807 uint16_t bd_status;
efe24d2e 808 uint32_t addr, size, end;
5c1ad3e6 809 int i;
e2a66e60 810 uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
0b23fb36
IY
811
812 /*
813 * Check if any critical events have happened
814 */
815 ievent = readl(&fec->eth->ievent);
816 writel(ievent, &fec->eth->ievent);
eda959f3 817 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
818 if (ievent & FEC_IEVENT_BABR) {
819 fec_halt(dev);
820 fec_init(dev, fec->bd);
821 printf("some error: 0x%08lx\n", ievent);
822 return 0;
823 }
824 if (ievent & FEC_IEVENT_HBERR) {
825 /* Heartbeat error */
826 writel(0x00000001 | readl(&fec->eth->x_cntrl),
827 &fec->eth->x_cntrl);
828 }
829 if (ievent & FEC_IEVENT_GRA) {
830 /* Graceful stop complete */
831 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
832 fec_halt(dev);
833 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
834 &fec->eth->x_cntrl);
835 fec_init(dev, fec->bd);
836 }
837 }
838
839 /*
5c1ad3e6
EN
840 * Read the buffer status. Before the status can be read, the data cache
841 * must be invalidated, because the data in RAM might have been changed
842 * by DMA. The descriptors are properly aligned to cachelines so there's
843 * no need to worry they'd overlap.
844 *
845 * WARNING: By invalidating the descriptor here, we also invalidate
846 * the descriptors surrounding this one. Therefore we can NOT change the
847 * contents of this descriptor nor the surrounding ones. The problem is
848 * that in order to mark the descriptor as processed, we need to change
849 * the descriptor. The solution is to mark the whole cache line when all
850 * descriptors in the cache line are processed.
0b23fb36 851 */
5c1ad3e6
EN
852 addr = (uint32_t)rbd;
853 addr &= ~(ARCH_DMA_MINALIGN - 1);
854 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
855 invalidate_dcache_range(addr, addr + size);
856
0b23fb36
IY
857 bd_status = readw(&rbd->status);
858 debug("fec_recv: status 0x%x\n", bd_status);
859
860 if (!(bd_status & FEC_RBD_EMPTY)) {
861 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
862 ((readw(&rbd->data_length) - 4) > 14)) {
863 /*
864 * Get buffer address and size
865 */
866 frame = (struct nbuf *)readl(&rbd->data_pointer);
867 frame_length = readw(&rbd->data_length) - 4;
5c1ad3e6
EN
868 /*
869 * Invalidate data cache over the buffer
870 */
871 addr = (uint32_t)frame;
efe24d2e
MV
872 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 addr &= ~(ARCH_DMA_MINALIGN - 1);
874 invalidate_dcache_range(addr, end);
5c1ad3e6 875
0b23fb36
IY
876 /*
877 * Fill the buffer and pass it to upper layers
878 */
5c1ad3e6 879#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
880 swap_packet((uint32_t *)frame->data, frame_length);
881#endif
0b23fb36
IY
882 memcpy(buff, frame->data, frame_length);
883 NetReceive(buff, frame_length);
884 len = frame_length;
885 } else {
886 if (bd_status & FEC_RBD_ERR)
887 printf("error frame: 0x%08lx 0x%08x\n",
888 (ulong)rbd->data_pointer,
889 bd_status);
890 }
5c1ad3e6 891
0b23fb36 892 /*
5c1ad3e6
EN
893 * Free the current buffer, restart the engine and move forward
894 * to the next buffer. Here we check if the whole cacheline of
895 * descriptors was already processed and if so, we mark it free
896 * as whole.
0b23fb36 897 */
5c1ad3e6
EN
898 size = RXDESC_PER_CACHELINE - 1;
899 if ((fec->rbd_index & size) == size) {
900 i = fec->rbd_index - size;
901 addr = (uint32_t)&fec->rbd_base[i];
902 for (; i <= fec->rbd_index ; i++) {
903 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
904 &fec->rbd_base[i]);
905 }
906 flush_dcache_range(addr,
907 addr + ARCH_DMA_MINALIGN);
908 }
909
0b23fb36
IY
910 fec_rx_task_enable(fec);
911 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
912 }
913 debug("fec_recv: stop\n");
914
915 return len;
916}
917
ef8e3a3b
TK
918static void fec_set_dev_name(char *dest, int dev_id)
919{
920 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
921}
922
fe428b90
TK
923#ifdef CONFIG_PHYLIB
924int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
925 struct mii_dev *bus, struct phy_device *phydev)
926#else
927static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
928 struct mii_dev *bus, int phy_id)
929#endif
0b23fb36 930{
0b23fb36 931 struct eth_device *edev;
9e27e9dc 932 struct fec_priv *fec;
0b23fb36 933 unsigned char ethaddr[6];
e382fb48
MV
934 uint32_t start;
935 int ret = 0;
0b23fb36
IY
936
937 /* create and fill edev struct */
938 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
939 if (!edev) {
9e27e9dc 940 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
941 ret = -ENOMEM;
942 goto err1;
9e27e9dc
MV
943 }
944
945 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
946 if (!fec) {
947 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
948 ret = -ENOMEM;
949 goto err2;
0b23fb36 950 }
9e27e9dc 951
de0b9576 952 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
953 memset(fec, 0, sizeof(*fec));
954
0b23fb36
IY
955 edev->priv = fec;
956 edev->init = fec_init;
957 edev->send = fec_send;
958 edev->recv = fec_recv;
959 edev->halt = fec_halt;
fb57ec97 960 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 961
9e27e9dc 962 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
963 fec->bd = bd;
964
392b8502 965 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
966
967 /* Reset chip. */
cb17b92d 968 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
969 start = get_timer(0);
970 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
971 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
972 printf("FEC MXC: Timeout reseting chip\n");
973 goto err3;
974 }
0b23fb36 975 udelay(10);
e382fb48 976 }
0b23fb36 977
a5990b26 978 fec_reg_setup(fec);
ef8e3a3b
TK
979 fec_set_dev_name(edev->name, dev_id);
980 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fe428b90
TK
981 fec->bus = bus;
982 fec_mii_setspeed(bus->priv);
983#ifdef CONFIG_PHYLIB
984 fec->phydev = phydev;
985 phy_connect_dev(phydev, edev);
986 /* Configure phy */
987 phy_config(phydev);
988#else
9e27e9dc 989 fec->phy_id = phy_id;
fe428b90
TK
990#endif
991 eth_register(edev);
992
993 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
994 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
995 memcpy(edev->enetaddr, ethaddr, 6);
996 }
997 return ret;
998err3:
999 free(fec);
1000err2:
1001 free(edev);
1002err1:
1003 return ret;
1004}
1005
1006struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1007{
1008 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1009 struct mii_dev *bus;
1010 int ret;
0b23fb36 1011
13947f43
TK
1012 bus = mdio_alloc();
1013 if (!bus) {
1014 printf("mdio_alloc failed\n");
fe428b90 1015 return NULL;
13947f43
TK
1016 }
1017 bus->read = fec_phy_read;
1018 bus->write = fec_phy_write;
fe428b90 1019 bus->priv = eth;
ef8e3a3b 1020 fec_set_dev_name(bus->name, dev_id);
fe428b90
TK
1021
1022 ret = mdio_register(bus);
1023 if (ret) {
1024 printf("mdio_register failed\n");
1025 free(bus);
1026 return NULL;
1027 }
1028 fec_mii_setspeed(eth);
1029 return bus;
1030}
1031
1032int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1033{
1034 uint32_t base_mii;
1035 struct mii_dev *bus = NULL;
1036#ifdef CONFIG_PHYLIB
1037 struct phy_device *phydev = NULL;
1038#endif
1039 int ret;
1040
5c1ad3e6 1041#ifdef CONFIG_MX28
13947f43
TK
1042 /*
1043 * The i.MX28 has two ethernet interfaces, but they are not equal.
1044 * Only the first one can access the MDIO bus.
1045 */
fe428b90 1046 base_mii = MXS_ENET0_BASE;
13947f43 1047#else
fe428b90 1048 base_mii = addr;
13947f43 1049#endif
fe428b90
TK
1050 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1051 bus = fec_get_miibus(base_mii, dev_id);
1052 if (!bus)
1053 return -ENOMEM;
4dc27eed 1054#ifdef CONFIG_PHYLIB
fe428b90 1055 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
4dc27eed
TK
1056 if (!phydev) {
1057 free(bus);
fe428b90 1058 return -ENOMEM;
4dc27eed 1059 }
fe428b90
TK
1060 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1061#else
1062 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
4dc27eed 1063#endif
fe428b90
TK
1064 if (ret) {
1065#ifdef CONFIG_PHYLIB
1066 free(phydev);
1067#endif
1068 free(bus);
1069 }
e382fb48 1070 return ret;
eef24480 1071}
0b23fb36 1072
eef24480
TK
1073#ifdef CONFIG_FEC_MXC_PHYADDR
1074int fecmxc_initialize(bd_t *bd)
1075{
1076 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1077 IMX_FEC_BASE);
0b23fb36 1078}
eef24480 1079#endif
2e5f4421 1080
13947f43 1081#ifndef CONFIG_PHYLIB
2e5f4421
MV
1082int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1083{
1084 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1085 fec->mii_postcall = cb;
1086 return 0;
1087}
13947f43 1088#endif