]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
nsproxy: attach to namespaces via pidfds
[people/ms/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
f87fd4c2 76/* /sys/fs */
00d26666
GKH
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 79
99b7db7b
NP
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
48a066e7 88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 89
38129a13 90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 91{
b58fed8b
RP
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
103}
104
b105e270 105static int mnt_alloc_id(struct mount *mnt)
73cd49ec 106{
169b480e
MW
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
73cd49ec
MS
113}
114
b105e270 115static void mnt_free_id(struct mount *mnt)
73cd49ec 116{
169b480e 117 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
118}
119
719f5d7f
MS
120/*
121 * Allocate a new peer group ID
719f5d7f 122 */
4b8b21f4 123static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 124{
169b480e 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 126
169b480e
MW
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
719f5d7f
MS
131}
132
133/*
134 * Release a peer group ID
135 */
4b8b21f4 136void mnt_release_group_id(struct mount *mnt)
719f5d7f 137{
169b480e 138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 139 mnt->mnt_group_id = 0;
719f5d7f
MS
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for read
144 */
83adc753 145static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
68e8a9fe 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
149#else
150 preempt_disable();
68e8a9fe 151 mnt->mnt_count += n;
b3e19d92
NP
152 preempt_enable();
153#endif
154}
155
b3e19d92
NP
156/*
157 * vfsmount lock must be held for write
158 */
83adc753 159unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
160{
161#ifdef CONFIG_SMP
f03c6599 162 unsigned int count = 0;
b3e19d92
NP
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
68e8a9fe 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
167 }
168
169 return count;
170#else
68e8a9fe 171 return mnt->mnt_count;
b3e19d92
NP
172#endif
173}
174
b105e270 175static struct mount *alloc_vfsmnt(const char *name)
1da177e4 176{
c63181e6
AV
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
73cd49ec
MS
179 int err;
180
c63181e6 181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
fcc139ae 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 187 if (!mnt->mnt_devname)
88b38782 188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92 191#ifdef CONFIG_SMP
c63181e6
AV
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
b3e19d92
NP
194 goto out_free_devname;
195
c63181e6 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 197#else
c63181e6
AV
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
b3e19d92
NP
200#endif
201
38129a13 202 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 211 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
1da177e4 213 }
c63181e6 214 return mnt;
88b38782 215
d3ef3d73
NP
216#ifdef CONFIG_SMP
217out_free_devname:
fcc139ae 218 kfree_const(mnt->mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
c63181e6 221 mnt_free_id(mnt);
88b38782 222out_free_cache:
c63181e6 223 kmem_cache_free(mnt_cache, mnt);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
43f5e655 246bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 247{
43f5e655 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
83adc753 252static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
253{
254#ifdef CONFIG_SMP
68e8a9fe 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 256#else
68e8a9fe 257 mnt->mnt_writers++;
d3ef3d73
NP
258#endif
259}
3d733633 260
83adc753 261static inline void mnt_dec_writers(struct mount *mnt)
3d733633 262{
d3ef3d73 263#ifdef CONFIG_SMP
68e8a9fe 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 265#else
68e8a9fe 266 mnt->mnt_writers--;
d3ef3d73 267#endif
3d733633 268}
3d733633 269
83adc753 270static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 271{
d3ef3d73
NP
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
3d733633 274 int cpu;
3d733633
DH
275
276 for_each_possible_cpu(cpu) {
68e8a9fe 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 278 }
3d733633 279
d3ef3d73
NP
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
3d733633
DH
284}
285
4ed5e82f
MS
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
8366025e 295/*
eb04c282
JK
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
8366025e
DH
300 */
301/**
eb04c282 302 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 303 * @m: the mount on which to take a write
8366025e 304 *
eb04c282
JK
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
8366025e 310 */
eb04c282 311int __mnt_want_write(struct vfsmount *m)
8366025e 312{
83adc753 313 struct mount *mnt = real_mount(m);
3d733633 314 int ret = 0;
3d733633 315
d3ef3d73 316 preempt_disable();
c6653a83 317 mnt_inc_writers(mnt);
d3ef3d73 318 /*
c6653a83 319 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
6aa7de05 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
4ed5e82f 332 if (mnt_is_readonly(m)) {
c6653a83 333 mnt_dec_writers(mnt);
3d733633 334 ret = -EROFS;
3d733633 335 }
d3ef3d73 336 preempt_enable();
eb04c282
JK
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
3d733633 358 return ret;
8366025e
DH
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
96029c4e
NP
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
83adc753 380 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
eb04c282 387 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
388 * @file: the file who's mount on which to take a write
389 *
eb04c282 390 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
391 * do some optimisations if the file is open for write already
392 */
eb04c282 393int __mnt_want_write_file(struct file *file)
96029c4e 394{
83f936c7 395 if (!(file->f_mode & FMODE_WRITER))
eb04c282 396 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
eb04c282 400
7c6893e3
MS
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
7c6893e3
MS
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
a6795a58 412 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
413 ret = __mnt_want_write_file(file);
414 if (ret)
a6795a58 415 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
416 return ret;
417}
96029c4e
NP
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
8366025e 420/**
eb04c282 421 * __mnt_drop_write - give up write access to a mount
8366025e
DH
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
eb04c282 426 * __mnt_want_write() call above.
8366025e 427 */
eb04c282 428void __mnt_drop_write(struct vfsmount *mnt)
8366025e 429{
d3ef3d73 430 preempt_disable();
83adc753 431 mnt_dec_writers(real_mount(mnt));
d3ef3d73 432 preempt_enable();
8366025e 433}
eb04c282
JK
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
8366025e
DH
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
eb04c282
JK
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
7c6893e3
MS
455void mnt_drop_write_file(struct file *file)
456{
a6795a58 457 __mnt_drop_write_file(file);
7c6893e3
MS
458 sb_end_write(file_inode(file)->i_sb);
459}
2a79f17e
AV
460EXPORT_SYMBOL(mnt_drop_write_file);
461
83adc753 462static int mnt_make_readonly(struct mount *mnt)
8366025e 463{
3d733633
DH
464 int ret = 0;
465
719ea2fb 466 lock_mount_hash();
83adc753 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 468 /*
d3ef3d73
NP
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
3d733633 471 */
d3ef3d73
NP
472 smp_mb();
473
3d733633 474 /*
d3ef3d73
NP
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
3d733633 489 */
c6653a83 490 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
491 ret = -EBUSY;
492 else
83adc753 493 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
83adc753 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 500 unlock_mount_hash();
3d733633 501 return ret;
8366025e 502}
8366025e 503
43f5e655 504static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 505{
719ea2fb 506 lock_mount_hash();
83adc753 507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 508 unlock_mount_hash();
43f5e655 509 return 0;
2e4b7fcd
DH
510}
511
4ed5e82f
MS
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
8e8b8796
MS
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
719ea2fb 521 lock_mount_hash();
4ed5e82f
MS
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
8e8b8796
MS
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
4ed5e82f
MS
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
719ea2fb 543 unlock_mount_hash();
4ed5e82f
MS
544
545 return err;
546}
547
b105e270 548static void free_vfsmnt(struct mount *mnt)
1da177e4 549{
fcc139ae 550 kfree_const(mnt->mnt_devname);
d3ef3d73 551#ifdef CONFIG_SMP
68e8a9fe 552 free_percpu(mnt->mnt_pcp);
d3ef3d73 553#endif
b105e270 554 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
555}
556
8ffcb32e
DH
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
48a066e7 562/* call under rcu_read_lock */
294d71ff 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
294d71ff 567 return 1;
48a066e7 568 if (bastard == NULL)
294d71ff 569 return 0;
48a066e7
AV
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
119e1ef8 572 smp_mb(); // see mntput_no_expire()
48a066e7 573 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 574 return 0;
48a066e7
AV
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
294d71ff
AV
577 return 1;
578 }
119e1ef8
AV
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
294d71ff
AV
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
48a066e7 600 }
48a066e7
AV
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
a05964f3 619/*
f015f126
DH
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 634 */
ca71cf71 635struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 636{
c7105365 637 struct mount *child_mnt;
48a066e7
AV
638 struct vfsmount *m;
639 unsigned seq;
99b7db7b 640
48a066e7
AV
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
a05964f3
RP
649}
650
7af1364f
EB
651/*
652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653 * current mount namespace.
654 *
655 * The common case is dentries are not mountpoints at all and that
656 * test is handled inline. For the slow case when we are actually
657 * dealing with a mountpoint of some kind, walk through all of the
658 * mounts in the current mount namespace and test to see if the dentry
659 * is a mountpoint.
660 *
661 * The mount_hashtable is not usable in the context because we
662 * need to identify all mounts that may be in the current mount
663 * namespace not just a mount that happens to have some specified
664 * parent mount.
665 */
666bool __is_local_mountpoint(struct dentry *dentry)
667{
668 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 struct mount *mnt;
670 bool is_covered = false;
671
672 if (!d_mountpoint(dentry))
673 goto out;
674
675 down_read(&namespace_sem);
676 list_for_each_entry(mnt, &ns->list, mnt_list) {
677 is_covered = (mnt->mnt_mountpoint == dentry);
678 if (is_covered)
679 break;
680 }
681 up_read(&namespace_sem);
682out:
683 return is_covered;
684}
685
e2dfa935 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 687{
0818bf27 688 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
689 struct mountpoint *mp;
690
0818bf27 691 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 692 if (mp->m_dentry == dentry) {
84d17192
AV
693 mp->m_count++;
694 return mp;
695 }
696 }
e2dfa935
EB
697 return NULL;
698}
699
3895dbf8 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 701{
3895dbf8 702 struct mountpoint *mp, *new = NULL;
e2dfa935 703 int ret;
84d17192 704
3895dbf8 705 if (d_mountpoint(dentry)) {
1e9c75fb
BC
706 /* might be worth a WARN_ON() */
707 if (d_unlinked(dentry))
708 return ERR_PTR(-ENOENT);
3895dbf8
EB
709mountpoint:
710 read_seqlock_excl(&mount_lock);
711 mp = lookup_mountpoint(dentry);
712 read_sequnlock_excl(&mount_lock);
713 if (mp)
714 goto done;
715 }
716
717 if (!new)
718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 if (!new)
84d17192
AV
720 return ERR_PTR(-ENOMEM);
721
3895dbf8
EB
722
723 /* Exactly one processes may set d_mounted */
eed81007 724 ret = d_set_mounted(dentry);
eed81007 725
3895dbf8
EB
726 /* Someone else set d_mounted? */
727 if (ret == -EBUSY)
728 goto mountpoint;
729
730 /* The dentry is not available as a mountpoint? */
731 mp = ERR_PTR(ret);
732 if (ret)
733 goto done;
734
735 /* Add the new mountpoint to the hash table */
736 read_seqlock_excl(&mount_lock);
4edbe133 737 new->m_dentry = dget(dentry);
3895dbf8
EB
738 new->m_count = 1;
739 hlist_add_head(&new->m_hash, mp_hash(dentry));
740 INIT_HLIST_HEAD(&new->m_list);
741 read_sequnlock_excl(&mount_lock);
742
743 mp = new;
744 new = NULL;
745done:
746 kfree(new);
84d17192
AV
747 return mp;
748}
749
4edbe133
AV
750/*
751 * vfsmount lock must be held. Additionally, the caller is responsible
752 * for serializing calls for given disposal list.
753 */
754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 758 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
4edbe133 762 dput_to_list(dentry, list);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
4edbe133
AV
768/* called with namespace_lock and vfsmount lock */
769static void put_mountpoint(struct mountpoint *mp)
770{
771 __put_mountpoint(mp, &ex_mountpoints);
772}
773
143c8c91 774static inline int check_mnt(struct mount *mnt)
1da177e4 775{
6b3286ed 776 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
777}
778
99b7db7b
NP
779/*
780 * vfsmount lock must be held for write
781 */
6b3286ed 782static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
783{
784 if (ns) {
785 ns->event = ++event;
786 wake_up_interruptible(&ns->poll);
787 }
788}
789
99b7db7b
NP
790/*
791 * vfsmount lock must be held for write
792 */
6b3286ed 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
794{
795 if (ns && ns->event != event) {
796 ns->event = event;
797 wake_up_interruptible(&ns->poll);
798 }
799}
800
99b7db7b
NP
801/*
802 * vfsmount lock must be held for write
803 */
e4e59906 804static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 805{
e4e59906 806 struct mountpoint *mp;
0714a533 807 mnt->mnt_parent = mnt;
a73324da 808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 809 list_del_init(&mnt->mnt_child);
38129a13 810 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 811 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 812 mp = mnt->mnt_mp;
84d17192 813 mnt->mnt_mp = NULL;
e4e59906 814 return mp;
7bdb11de
EB
815}
816
6a46c573
EB
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
e4e59906 822 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
823}
824
99b7db7b
NP
825/*
826 * vfsmount lock must be held for write
827 */
84d17192
AV
828void mnt_set_mountpoint(struct mount *mnt,
829 struct mountpoint *mp,
44d964d6 830 struct mount *child_mnt)
b90fa9ae 831{
84d17192 832 mp->m_count++;
3a2393d7 833 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 834 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 835 child_mnt->mnt_parent = mnt;
84d17192 836 child_mnt->mnt_mp = mp;
0a5eb7c8 837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
838}
839
1064f874
EB
840static void __attach_mnt(struct mount *mnt, struct mount *parent)
841{
842 hlist_add_head_rcu(&mnt->mnt_hash,
843 m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845}
846
99b7db7b
NP
847/*
848 * vfsmount lock must be held for write
849 */
84d17192
AV
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
1da177e4 853{
84d17192 854 mnt_set_mountpoint(parent, mp, mnt);
1064f874 855 __attach_mnt(mnt, parent);
b90fa9ae
RP
856}
857
1064f874 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 859{
1064f874 860 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
861 struct mount *old_parent = mnt->mnt_parent;
862
863 list_del_init(&mnt->mnt_child);
864 hlist_del_init(&mnt->mnt_mp_list);
865 hlist_del_init_rcu(&mnt->mnt_hash);
866
867 attach_mnt(mnt, parent, mp);
868
869 put_mountpoint(old_mp);
1064f874 870 mnt_add_count(old_parent, -1);
12a5b529
AV
871}
872
b90fa9ae 873/*
99b7db7b 874 * vfsmount lock must be held for write
b90fa9ae 875 */
1064f874 876static void commit_tree(struct mount *mnt)
b90fa9ae 877{
0714a533 878 struct mount *parent = mnt->mnt_parent;
83adc753 879 struct mount *m;
b90fa9ae 880 LIST_HEAD(head);
143c8c91 881 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 882
0714a533 883 BUG_ON(parent == mnt);
b90fa9ae 884
1a4eeaf2 885 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 886 list_for_each_entry(m, &head, mnt_list)
143c8c91 887 m->mnt_ns = n;
f03c6599 888
b90fa9ae
RP
889 list_splice(&head, n->list.prev);
890
d2921684
EB
891 n->mounts += n->pending_mounts;
892 n->pending_mounts = 0;
893
1064f874 894 __attach_mnt(mnt, parent);
6b3286ed 895 touch_mnt_namespace(n);
1da177e4
LT
896}
897
909b0a88 898static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 899{
6b41d536
AV
900 struct list_head *next = p->mnt_mounts.next;
901 if (next == &p->mnt_mounts) {
1da177e4 902 while (1) {
909b0a88 903 if (p == root)
1da177e4 904 return NULL;
6b41d536
AV
905 next = p->mnt_child.next;
906 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 907 break;
0714a533 908 p = p->mnt_parent;
1da177e4
LT
909 }
910 }
6b41d536 911 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
912}
913
315fc83e 914static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 915{
6b41d536
AV
916 struct list_head *prev = p->mnt_mounts.prev;
917 while (prev != &p->mnt_mounts) {
918 p = list_entry(prev, struct mount, mnt_child);
919 prev = p->mnt_mounts.prev;
9676f0c6
RP
920 }
921 return p;
922}
923
8f291889
AV
924/**
925 * vfs_create_mount - Create a mount for a configured superblock
926 * @fc: The configuration context with the superblock attached
927 *
928 * Create a mount to an already configured superblock. If necessary, the
929 * caller should invoke vfs_get_tree() before calling this.
930 *
931 * Note that this does not attach the mount to anything.
932 */
933struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 934{
b105e270 935 struct mount *mnt;
9d412a43 936
8f291889
AV
937 if (!fc->root)
938 return ERR_PTR(-EINVAL);
9d412a43 939
8f291889 940 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
941 if (!mnt)
942 return ERR_PTR(-ENOMEM);
943
8f291889 944 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 945 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 946
8f291889
AV
947 atomic_inc(&fc->root->d_sb->s_active);
948 mnt->mnt.mnt_sb = fc->root->d_sb;
949 mnt->mnt.mnt_root = dget(fc->root);
950 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
951 mnt->mnt_parent = mnt;
9d412a43 952
719ea2fb 953 lock_mount_hash();
8f291889 954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 955 unlock_mount_hash();
b105e270 956 return &mnt->mnt;
9d412a43 957}
8f291889
AV
958EXPORT_SYMBOL(vfs_create_mount);
959
960struct vfsmount *fc_mount(struct fs_context *fc)
961{
962 int err = vfs_get_tree(fc);
963 if (!err) {
964 up_write(&fc->root->d_sb->s_umount);
965 return vfs_create_mount(fc);
966 }
967 return ERR_PTR(err);
968}
969EXPORT_SYMBOL(fc_mount);
970
9bc61ab1
DH
971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 int flags, const char *name,
973 void *data)
9d412a43 974{
9bc61ab1 975 struct fs_context *fc;
8f291889 976 struct vfsmount *mnt;
9bc61ab1 977 int ret = 0;
9d412a43
AV
978
979 if (!type)
3e1aeb00 980 return ERR_PTR(-EINVAL);
9d412a43 981
9bc61ab1
DH
982 fc = fs_context_for_mount(type, flags);
983 if (IS_ERR(fc))
984 return ERR_CAST(fc);
985
3e1aeb00
DH
986 if (name)
987 ret = vfs_parse_fs_string(fc, "source",
988 name, strlen(name));
9bc61ab1
DH
989 if (!ret)
990 ret = parse_monolithic_mount_data(fc, data);
991 if (!ret)
8f291889
AV
992 mnt = fc_mount(fc);
993 else
994 mnt = ERR_PTR(ret);
9d412a43 995
9bc61ab1 996 put_fs_context(fc);
8f291889 997 return mnt;
9d412a43
AV
998}
999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
93faccbb
EB
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 const char *name, void *data)
1004{
1005 /* Until it is worked out how to pass the user namespace
1006 * through from the parent mount to the submount don't support
1007 * unprivileged mounts with submounts.
1008 */
1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 return ERR_PTR(-EPERM);
1011
e462ec50 1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
87129cc0 1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1017 int flag)
1da177e4 1018{
87129cc0 1019 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1020 struct mount *mnt;
1021 int err;
1da177e4 1022
be34d1a3
DH
1023 mnt = alloc_vfsmnt(old->mnt_devname);
1024 if (!mnt)
1025 return ERR_PTR(-ENOMEM);
719f5d7f 1026
7a472ef4 1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1028 mnt->mnt_group_id = 0; /* not a peer of original */
1029 else
1030 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1031
be34d1a3
DH
1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 err = mnt_alloc_group_id(mnt);
1034 if (err)
1035 goto out_free;
1da177e4 1036 }
be34d1a3 1037
16a34adb
AV
1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1040
be34d1a3
DH
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
719ea2fb 1046 lock_mount_hash();
be34d1a3 1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1048 unlock_mount_hash();
be34d1a3 1049
7a472ef4
EB
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
5235d448
AV
1061 } else {
1062 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1063 }
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1066
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 }
1073
cb338d06 1074 return mnt;
719f5d7f
MS
1075
1076 out_free:
8ffcb32e 1077 mnt_free_id(mnt);
719f5d7f 1078 free_vfsmnt(mnt);
be34d1a3 1079 return ERR_PTR(err);
1da177e4
LT
1080}
1081
9ea459e1
AV
1082static void cleanup_mnt(struct mount *mnt)
1083{
56cbb429
AV
1084 struct hlist_node *p;
1085 struct mount *m;
9ea459e1 1086 /*
56cbb429
AV
1087 * The warning here probably indicates that somebody messed
1088 * up a mnt_want/drop_write() pair. If this happens, the
1089 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
56cbb429
AV
1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 hlist_del(&m->mnt_umount);
1098 mntput(&m->mnt);
1099 }
9ea459e1
AV
1100 fsnotify_vfsmount_delete(&mnt->mnt);
1101 dput(mnt->mnt.mnt_root);
1102 deactivate_super(mnt->mnt.mnt_sb);
1103 mnt_free_id(mnt);
1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1116 struct mount *m, *t;
9ea459e1 1117
29785735
BP
1118 llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 cleanup_mnt(m);
9ea459e1
AV
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
900148dc 1123static void mntput_no_expire(struct mount *mnt)
b3e19d92 1124{
4edbe133
AV
1125 LIST_HEAD(list);
1126
48a066e7 1127 rcu_read_lock();
9ea0a46c
AV
1128 if (likely(READ_ONCE(mnt->mnt_ns))) {
1129 /*
1130 * Since we don't do lock_mount_hash() here,
1131 * ->mnt_ns can change under us. However, if it's
1132 * non-NULL, then there's a reference that won't
1133 * be dropped until after an RCU delay done after
1134 * turning ->mnt_ns NULL. So if we observe it
1135 * non-NULL under rcu_read_lock(), the reference
1136 * we are dropping is not the final one.
1137 */
1138 mnt_add_count(mnt, -1);
48a066e7 1139 rcu_read_unlock();
f03c6599 1140 return;
b3e19d92 1141 }
719ea2fb 1142 lock_mount_hash();
119e1ef8
AV
1143 /*
1144 * make sure that if __legitimize_mnt() has not seen us grab
1145 * mount_lock, we'll see their refcount increment here.
1146 */
1147 smp_mb();
9ea0a46c 1148 mnt_add_count(mnt, -1);
b3e19d92 1149 if (mnt_get_count(mnt)) {
48a066e7 1150 rcu_read_unlock();
719ea2fb 1151 unlock_mount_hash();
99b7db7b
NP
1152 return;
1153 }
48a066e7
AV
1154 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155 rcu_read_unlock();
1156 unlock_mount_hash();
1157 return;
1158 }
1159 mnt->mnt.mnt_flags |= MNT_DOOMED;
1160 rcu_read_unlock();
962830df 1161
39f7c4db 1162 list_del(&mnt->mnt_instance);
ce07d891
EB
1163
1164 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165 struct mount *p, *tmp;
1166 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1167 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1168 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1169 }
1170 }
719ea2fb 1171 unlock_mount_hash();
4edbe133 1172 shrink_dentry_list(&list);
649a795a 1173
9ea459e1
AV
1174 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175 struct task_struct *task = current;
1176 if (likely(!(task->flags & PF_KTHREAD))) {
1177 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178 if (!task_work_add(task, &mnt->mnt_rcu, true))
1179 return;
1180 }
1181 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182 schedule_delayed_work(&delayed_mntput_work, 1);
1183 return;
1184 }
1185 cleanup_mnt(mnt);
b3e19d92 1186}
b3e19d92
NP
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190 if (mnt) {
863d684f 1191 struct mount *m = real_mount(mnt);
b3e19d92 1192 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1193 if (unlikely(m->mnt_expiry_mark))
1194 m->mnt_expiry_mark = 0;
1195 mntput_no_expire(m);
b3e19d92
NP
1196 }
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202 if (mnt)
83adc753 1203 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1204 return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
c6609c0a
IK
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 * namespace.
1210 *
1211 * d_mountpoint() can only be used reliably to establish if a dentry is
1212 * not mounted in any namespace and that common case is handled inline.
1213 * d_mountpoint() isn't aware of the possibility there may be multiple
1214 * mounts using a given dentry in a different namespace. This function
1215 * checks if the passed in path is a mountpoint rather than the dentry
1216 * alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220 unsigned seq;
1221 bool res;
1222
1223 if (!d_mountpoint(path->dentry))
1224 return false;
1225
1226 rcu_read_lock();
1227 do {
1228 seq = read_seqbegin(&mount_lock);
1229 res = __path_is_mountpoint(path);
1230 } while (read_seqretry(&mount_lock, seq));
1231 rcu_read_unlock();
1232
1233 return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
ca71cf71 1237struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1238{
3064c356
AV
1239 struct mount *p;
1240 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241 if (IS_ERR(p))
1242 return ERR_CAST(p);
1243 p->mnt.mnt_flags |= MNT_INTERNAL;
1244 return &p->mnt;
7b7b1ace 1245}
1da177e4 1246
a1a2c409 1247#ifdef CONFIG_PROC_FS
0226f492 1248/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
ede1bf0d 1251 struct proc_mounts *p = m->private;
1da177e4 1252
390c6843 1253 down_read(&namespace_sem);
c7999c36
AV
1254 if (p->cached_event == p->ns->event) {
1255 void *v = p->cached_mount;
1256 if (*pos == p->cached_index)
1257 return v;
1258 if (*pos == p->cached_index + 1) {
1259 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260 return p->cached_mount = v;
1261 }
1262 }
1263
1264 p->cached_event = p->ns->event;
1265 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266 p->cached_index = *pos;
1267 return p->cached_mount;
1da177e4
LT
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
ede1bf0d 1272 struct proc_mounts *p = m->private;
b0765fb8 1273
c7999c36
AV
1274 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275 p->cached_index = *pos;
1276 return p->cached_mount;
1da177e4
LT
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
390c6843 1281 up_read(&namespace_sem);
1da177e4
LT
1282}
1283
0226f492 1284static int m_show(struct seq_file *m, void *v)
2d4d4864 1285{
ede1bf0d 1286 struct proc_mounts *p = m->private;
1a4eeaf2 1287 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1288 return p->show(m, &r->mnt);
1da177e4
LT
1289}
1290
a1a2c409 1291const struct seq_operations mounts_op = {
1da177e4
LT
1292 .start = m_start,
1293 .next = m_next,
1294 .stop = m_stop,
0226f492 1295 .show = m_show,
b4629fe2 1296};
a1a2c409 1297#endif /* CONFIG_PROC_FS */
b4629fe2 1298
1da177e4
LT
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
909b0a88 1307int may_umount_tree(struct vfsmount *m)
1da177e4 1308{
909b0a88 1309 struct mount *mnt = real_mount(m);
36341f64
RP
1310 int actual_refs = 0;
1311 int minimum_refs = 0;
315fc83e 1312 struct mount *p;
909b0a88 1313 BUG_ON(!m);
1da177e4 1314
b3e19d92 1315 /* write lock needed for mnt_get_count */
719ea2fb 1316 lock_mount_hash();
909b0a88 1317 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1318 actual_refs += mnt_get_count(p);
1da177e4 1319 minimum_refs += 2;
1da177e4 1320 }
719ea2fb 1321 unlock_mount_hash();
1da177e4
LT
1322
1323 if (actual_refs > minimum_refs)
e3474a8e 1324 return 0;
1da177e4 1325
e3474a8e 1326 return 1;
1da177e4
LT
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
e3474a8e 1346 int ret = 1;
8ad08d8a 1347 down_read(&namespace_sem);
719ea2fb 1348 lock_mount_hash();
1ab59738 1349 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1350 ret = 0;
719ea2fb 1351 unlock_mount_hash();
8ad08d8a 1352 up_read(&namespace_sem);
a05964f3 1353 return ret;
1da177e4
LT
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
97216be0 1358static void namespace_unlock(void)
70fbcdf4 1359{
a3b3c562 1360 struct hlist_head head;
56cbb429
AV
1361 struct hlist_node *p;
1362 struct mount *m;
4edbe133 1363 LIST_HEAD(list);
97216be0 1364
a3b3c562 1365 hlist_move_list(&unmounted, &head);
4edbe133 1366 list_splice_init(&ex_mountpoints, &list);
97216be0 1367
97216be0
AV
1368 up_write(&namespace_sem);
1369
4edbe133
AV
1370 shrink_dentry_list(&list);
1371
a3b3c562
EB
1372 if (likely(hlist_empty(&head)))
1373 return;
1374
22cb7405 1375 synchronize_rcu_expedited();
48a066e7 1376
56cbb429
AV
1377 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378 hlist_del(&m->mnt_umount);
1379 mntput(&m->mnt);
1380 }
70fbcdf4
RP
1381}
1382
97216be0 1383static inline void namespace_lock(void)
e3197d83 1384{
97216be0 1385 down_write(&namespace_sem);
e3197d83
AV
1386}
1387
e819f152
EB
1388enum umount_tree_flags {
1389 UMOUNT_SYNC = 1,
1390 UMOUNT_PROPAGATE = 2,
e0c9c0af 1391 UMOUNT_CONNECTED = 4,
e819f152 1392};
f2d0a123
EB
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396 /* Leaving mounts connected is only valid for lazy umounts */
1397 if (how & UMOUNT_SYNC)
1398 return true;
1399
1400 /* A mount without a parent has nothing to be connected to */
1401 if (!mnt_has_parent(mnt))
1402 return true;
1403
1404 /* Because the reference counting rules change when mounts are
1405 * unmounted and connected, umounted mounts may not be
1406 * connected to mounted mounts.
1407 */
1408 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409 return true;
1410
1411 /* Has it been requested that the mount remain connected? */
1412 if (how & UMOUNT_CONNECTED)
1413 return false;
1414
1415 /* Is the mount locked such that it needs to remain connected? */
1416 if (IS_MNT_LOCKED(mnt))
1417 return false;
1418
1419 /* By default disconnect the mount */
1420 return true;
1421}
1422
99b7db7b 1423/*
48a066e7 1424 * mount_lock must be held
99b7db7b
NP
1425 * namespace_sem must be held for write
1426 */
e819f152 1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1428{
c003b26f 1429 LIST_HEAD(tmp_list);
315fc83e 1430 struct mount *p;
1da177e4 1431
5d88457e
EB
1432 if (how & UMOUNT_PROPAGATE)
1433 propagate_mount_unlock(mnt);
1434
c003b26f 1435 /* Gather the mounts to umount */
590ce4bc
EB
1436 for (p = mnt; p; p = next_mnt(p, mnt)) {
1437 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1438 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1439 }
1da177e4 1440
411a938b 1441 /* Hide the mounts from mnt_mounts */
c003b26f 1442 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1443 list_del_init(&p->mnt_child);
c003b26f 1444 }
88b368f2 1445
c003b26f 1446 /* Add propogated mounts to the tmp_list */
e819f152 1447 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1448 propagate_umount(&tmp_list);
a05964f3 1449
c003b26f 1450 while (!list_empty(&tmp_list)) {
d2921684 1451 struct mnt_namespace *ns;
ce07d891 1452 bool disconnect;
c003b26f 1453 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1454 list_del_init(&p->mnt_expire);
1a4eeaf2 1455 list_del_init(&p->mnt_list);
d2921684
EB
1456 ns = p->mnt_ns;
1457 if (ns) {
1458 ns->mounts--;
1459 __touch_mnt_namespace(ns);
1460 }
143c8c91 1461 p->mnt_ns = NULL;
e819f152 1462 if (how & UMOUNT_SYNC)
48a066e7 1463 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1464
f2d0a123 1465 disconnect = disconnect_mount(p, how);
676da58d 1466 if (mnt_has_parent(p)) {
81b6b061 1467 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1468 if (!disconnect) {
1469 /* Don't forget about p */
1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471 } else {
1472 umount_mnt(p);
1473 }
7c4b93d8 1474 }
0f0afb1d 1475 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1476 if (disconnect)
1477 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1478 }
1479}
1480
b54b9be7 1481static void shrink_submounts(struct mount *mnt);
c35038be 1482
8d0347f6
DH
1483static int do_umount_root(struct super_block *sb)
1484{
1485 int ret = 0;
1486
1487 down_write(&sb->s_umount);
1488 if (!sb_rdonly(sb)) {
1489 struct fs_context *fc;
1490
1491 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492 SB_RDONLY);
1493 if (IS_ERR(fc)) {
1494 ret = PTR_ERR(fc);
1495 } else {
1496 ret = parse_monolithic_mount_data(fc, NULL);
1497 if (!ret)
1498 ret = reconfigure_super(fc);
1499 put_fs_context(fc);
1500 }
1501 }
1502 up_write(&sb->s_umount);
1503 return ret;
1504}
1505
1ab59738 1506static int do_umount(struct mount *mnt, int flags)
1da177e4 1507{
1ab59738 1508 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1509 int retval;
1510
1ab59738 1511 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1512 if (retval)
1513 return retval;
1514
1515 /*
1516 * Allow userspace to request a mountpoint be expired rather than
1517 * unmounting unconditionally. Unmount only happens if:
1518 * (1) the mark is already set (the mark is cleared by mntput())
1519 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520 */
1521 if (flags & MNT_EXPIRE) {
1ab59738 1522 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1523 flags & (MNT_FORCE | MNT_DETACH))
1524 return -EINVAL;
1525
b3e19d92
NP
1526 /*
1527 * probably don't strictly need the lock here if we examined
1528 * all race cases, but it's a slowpath.
1529 */
719ea2fb 1530 lock_mount_hash();
83adc753 1531 if (mnt_get_count(mnt) != 2) {
719ea2fb 1532 unlock_mount_hash();
1da177e4 1533 return -EBUSY;
b3e19d92 1534 }
719ea2fb 1535 unlock_mount_hash();
1da177e4 1536
863d684f 1537 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1538 return -EAGAIN;
1539 }
1540
1541 /*
1542 * If we may have to abort operations to get out of this
1543 * mount, and they will themselves hold resources we must
1544 * allow the fs to do things. In the Unix tradition of
1545 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546 * might fail to complete on the first run through as other tasks
1547 * must return, and the like. Thats for the mount program to worry
1548 * about for the moment.
1549 */
1550
42faad99 1551 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1552 sb->s_op->umount_begin(sb);
42faad99 1553 }
1da177e4
LT
1554
1555 /*
1556 * No sense to grab the lock for this test, but test itself looks
1557 * somewhat bogus. Suggestions for better replacement?
1558 * Ho-hum... In principle, we might treat that as umount + switch
1559 * to rootfs. GC would eventually take care of the old vfsmount.
1560 * Actually it makes sense, especially if rootfs would contain a
1561 * /reboot - static binary that would close all descriptors and
1562 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563 */
1ab59738 1564 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1565 /*
1566 * Special case for "unmounting" root ...
1567 * we just try to remount it readonly.
1568 */
bc6155d1 1569 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1570 return -EPERM;
8d0347f6 1571 return do_umount_root(sb);
1da177e4
LT
1572 }
1573
97216be0 1574 namespace_lock();
719ea2fb 1575 lock_mount_hash();
1da177e4 1576
25d202ed
EB
1577 /* Recheck MNT_LOCKED with the locks held */
1578 retval = -EINVAL;
1579 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580 goto out;
1581
1582 event++;
48a066e7 1583 if (flags & MNT_DETACH) {
1a4eeaf2 1584 if (!list_empty(&mnt->mnt_list))
e819f152 1585 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1586 retval = 0;
48a066e7
AV
1587 } else {
1588 shrink_submounts(mnt);
1589 retval = -EBUSY;
1590 if (!propagate_mount_busy(mnt, 2)) {
1591 if (!list_empty(&mnt->mnt_list))
e819f152 1592 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1593 retval = 0;
1594 }
1da177e4 1595 }
25d202ed 1596out:
719ea2fb 1597 unlock_mount_hash();
e3197d83 1598 namespace_unlock();
1da177e4
LT
1599 return retval;
1600}
1601
80b5dce8
EB
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614 struct mountpoint *mp;
1615 struct mount *mnt;
1616
1617 namespace_lock();
3895dbf8 1618 lock_mount_hash();
80b5dce8 1619 mp = lookup_mountpoint(dentry);
adc9b5c0 1620 if (!mp)
80b5dce8
EB
1621 goto out_unlock;
1622
e06b933e 1623 event++;
80b5dce8
EB
1624 while (!hlist_empty(&mp->m_list)) {
1625 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1626 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1627 umount_mnt(mnt);
56cbb429 1628 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1629 }
e0c9c0af 1630 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1631 }
80b5dce8
EB
1632 put_mountpoint(mp);
1633out_unlock:
3895dbf8 1634 unlock_mount_hash();
80b5dce8
EB
1635 namespace_unlock();
1636}
1637
dd111b31 1638/*
9b40bc90
AV
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
df2474a2 1646#ifdef CONFIG_MANDATORY_FILE_LOCKING
9e8925b6
JL
1647static inline bool may_mandlock(void)
1648{
95ace754 1649 return capable(CAP_SYS_ADMIN);
9e8925b6 1650}
df2474a2
JL
1651#else
1652static inline bool may_mandlock(void)
1653{
1654 pr_warn("VFS: \"mand\" mount option not supported");
1655 return false;
1656}
1657#endif
9e8925b6 1658
1da177e4
LT
1659/*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
3a18ef5c 1667int ksys_umount(char __user *name, int flags)
1da177e4 1668{
2d8f3038 1669 struct path path;
900148dc 1670 struct mount *mnt;
1da177e4 1671 int retval;
161aff1d 1672 int lookup_flags = LOOKUP_MOUNTPOINT;
1da177e4 1673
db1f05bb
MS
1674 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675 return -EINVAL;
1676
9b40bc90
AV
1677 if (!may_mount())
1678 return -EPERM;
1679
db1f05bb
MS
1680 if (!(flags & UMOUNT_NOFOLLOW))
1681 lookup_flags |= LOOKUP_FOLLOW;
1682
161aff1d 1683 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1684 if (retval)
1685 goto out;
900148dc 1686 mnt = real_mount(path.mnt);
1da177e4 1687 retval = -EINVAL;
2d8f3038 1688 if (path.dentry != path.mnt->mnt_root)
1da177e4 1689 goto dput_and_out;
143c8c91 1690 if (!check_mnt(mnt))
1da177e4 1691 goto dput_and_out;
25d202ed 1692 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1693 goto dput_and_out;
b2f5d4dc
EB
1694 retval = -EPERM;
1695 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696 goto dput_and_out;
1da177e4 1697
900148dc 1698 retval = do_umount(mnt, flags);
1da177e4 1699dput_and_out:
429731b1 1700 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1701 dput(path.dentry);
900148dc 1702 mntput_no_expire(mnt);
1da177e4
LT
1703out:
1704 return retval;
1705}
1706
3a18ef5c
DB
1707SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708{
1709 return ksys_umount(name, flags);
1710}
1711
1da177e4
LT
1712#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713
1714/*
b58fed8b 1715 * The 2.0 compatible umount. No flags.
1da177e4 1716 */
bdc480e3 1717SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1718{
3a18ef5c 1719 return ksys_umount(name, 0);
1da177e4
LT
1720}
1721
1722#endif
1723
4ce5d2b1 1724static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1725{
4ce5d2b1 1726 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1727 return dentry->d_op == &ns_dentry_operations &&
1728 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1729}
1730
213921f9 1731static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1732{
1733 return container_of(ns, struct mnt_namespace, ns);
1734}
1735
303cc571
CB
1736struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1737{
1738 return &mnt->ns;
1739}
1740
4ce5d2b1
EB
1741static bool mnt_ns_loop(struct dentry *dentry)
1742{
1743 /* Could bind mounting the mount namespace inode cause a
1744 * mount namespace loop?
1745 */
1746 struct mnt_namespace *mnt_ns;
1747 if (!is_mnt_ns_file(dentry))
1748 return false;
1749
f77c8014 1750 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1751 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752}
1753
87129cc0 1754struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1755 int flag)
1da177e4 1756{
84d17192 1757 struct mount *res, *p, *q, *r, *parent;
1da177e4 1758
4ce5d2b1
EB
1759 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760 return ERR_PTR(-EINVAL);
1761
1762 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1763 return ERR_PTR(-EINVAL);
9676f0c6 1764
36341f64 1765 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1766 if (IS_ERR(q))
1767 return q;
1768
a73324da 1769 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1770
1771 p = mnt;
6b41d536 1772 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1773 struct mount *s;
7ec02ef1 1774 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1775 continue;
1776
909b0a88 1777 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1778 if (!(flag & CL_COPY_UNBINDABLE) &&
1779 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1780 if (s->mnt.mnt_flags & MNT_LOCKED) {
1781 /* Both unbindable and locked. */
1782 q = ERR_PTR(-EPERM);
1783 goto out;
1784 } else {
1785 s = skip_mnt_tree(s);
1786 continue;
1787 }
4ce5d2b1
EB
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
0714a533
AV
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1da177e4 1797 }
87129cc0 1798 p = s;
84d17192 1799 parent = q;
87129cc0 1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1801 if (IS_ERR(q))
1802 goto out;
719ea2fb 1803 lock_mount_hash();
1a4eeaf2 1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1805 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1806 unlock_mount_hash();
1da177e4
LT
1807 }
1808 }
1809 return res;
be34d1a3 1810out:
1da177e4 1811 if (res) {
719ea2fb 1812 lock_mount_hash();
e819f152 1813 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1814 unlock_mount_hash();
1da177e4 1815 }
be34d1a3 1816 return q;
1da177e4
LT
1817}
1818
be34d1a3
DH
1819/* Caller should check returned pointer for errors */
1820
ca71cf71 1821struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1822{
cb338d06 1823 struct mount *tree;
97216be0 1824 namespace_lock();
cd4a4017
EB
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1830 namespace_unlock();
be34d1a3 1831 if (IS_ERR(tree))
52e220d3 1832 return ERR_CAST(tree);
be34d1a3 1833 return &tree->mnt;
8aec0809
AV
1834}
1835
a07b2000
AV
1836static void free_mnt_ns(struct mnt_namespace *);
1837static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839void dissolve_on_fput(struct vfsmount *mnt)
1840{
1841 struct mnt_namespace *ns;
1842 namespace_lock();
1843 lock_mount_hash();
1844 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1845 if (ns) {
1846 if (is_anon_ns(ns))
1847 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848 else
1849 ns = NULL;
1850 }
a07b2000
AV
1851 unlock_mount_hash();
1852 namespace_unlock();
44dfd84a
DH
1853 if (ns)
1854 free_mnt_ns(ns);
a07b2000
AV
1855}
1856
8aec0809
AV
1857void drop_collected_mounts(struct vfsmount *mnt)
1858{
97216be0 1859 namespace_lock();
719ea2fb 1860 lock_mount_hash();
9c8e0a1b 1861 umount_tree(real_mount(mnt), 0);
719ea2fb 1862 unlock_mount_hash();
3ab6abee 1863 namespace_unlock();
8aec0809
AV
1864}
1865
c771d683
MS
1866/**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
ca71cf71 1875struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1876{
1877 struct mount *old_mnt = real_mount(path->mnt);
1878 struct mount *new_mnt;
1879
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 return ERR_PTR(-EINVAL);
1882
c771d683 1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1884 if (IS_ERR(new_mnt))
1885 return ERR_CAST(new_mnt);
1886
1887 return &new_mnt->mnt;
1888}
1889EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1f707137
AV
1891int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 struct vfsmount *root)
1893{
1a4eeaf2 1894 struct mount *mnt;
1f707137
AV
1895 int res = f(root, arg);
1896 if (res)
1897 return res;
1a4eeaf2
AV
1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 res = f(&mnt->mnt, arg);
1f707137
AV
1900 if (res)
1901 return res;
1902 }
1903 return 0;
1904}
1905
3bd045cc
AV
1906static void lock_mnt_tree(struct mount *mnt)
1907{
1908 struct mount *p;
1909
1910 for (p = mnt; p; p = next_mnt(p, mnt)) {
1911 int flags = p->mnt.mnt_flags;
1912 /* Don't allow unprivileged users to change mount flags */
1913 flags |= MNT_LOCK_ATIME;
1914
1915 if (flags & MNT_READONLY)
1916 flags |= MNT_LOCK_READONLY;
1917
1918 if (flags & MNT_NODEV)
1919 flags |= MNT_LOCK_NODEV;
1920
1921 if (flags & MNT_NOSUID)
1922 flags |= MNT_LOCK_NOSUID;
1923
1924 if (flags & MNT_NOEXEC)
1925 flags |= MNT_LOCK_NOEXEC;
1926 /* Don't allow unprivileged users to reveal what is under a mount */
1927 if (list_empty(&p->mnt_expire))
1928 flags |= MNT_LOCKED;
1929 p->mnt.mnt_flags = flags;
1930 }
1931}
1932
4b8b21f4 1933static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1934{
315fc83e 1935 struct mount *p;
719f5d7f 1936
909b0a88 1937 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1938 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1939 mnt_release_group_id(p);
719f5d7f
MS
1940 }
1941}
1942
4b8b21f4 1943static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1944{
315fc83e 1945 struct mount *p;
719f5d7f 1946
909b0a88 1947 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1948 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1949 int err = mnt_alloc_group_id(p);
719f5d7f 1950 if (err) {
4b8b21f4 1951 cleanup_group_ids(mnt, p);
719f5d7f
MS
1952 return err;
1953 }
1954 }
1955 }
1956
1957 return 0;
1958}
1959
d2921684
EB
1960int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961{
1962 unsigned int max = READ_ONCE(sysctl_mount_max);
1963 unsigned int mounts = 0, old, pending, sum;
1964 struct mount *p;
1965
1966 for (p = mnt; p; p = next_mnt(p, mnt))
1967 mounts++;
1968
1969 old = ns->mounts;
1970 pending = ns->pending_mounts;
1971 sum = old + pending;
1972 if ((old > sum) ||
1973 (pending > sum) ||
1974 (max < sum) ||
1975 (mounts > (max - sum)))
1976 return -ENOSPC;
1977
1978 ns->pending_mounts = pending + mounts;
1979 return 0;
1980}
1981
b90fa9ae
RP
1982/*
1983 * @source_mnt : mount tree to be attached
21444403
RP
1984 * @nd : place the mount tree @source_mnt is attached
1985 * @parent_nd : if non-null, detach the source_mnt from its parent and
1986 * store the parent mount and mountpoint dentry.
1987 * (done when source_mnt is moved)
b90fa9ae
RP
1988 *
1989 * NOTE: in the table below explains the semantics when a source mount
1990 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1991 * ---------------------------------------------------------------------------
1992 * | BIND MOUNT OPERATION |
1993 * |**************************************************************************
1994 * | source-->| shared | private | slave | unbindable |
1995 * | dest | | | | |
1996 * | | | | | | |
1997 * | v | | | | |
1998 * |**************************************************************************
1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2000 * | | | | | |
2001 * |non-shared| shared (+) | private | slave (*) | invalid |
2002 * ***************************************************************************
b90fa9ae
RP
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2005 *
2006 * (++) the cloned mount is propagated to all the mounts in the propagation
2007 * tree of the destination mount and the cloned mount is added to
2008 * the peer group of the source mount.
2009 * (+) the cloned mount is created under the destination mount and is marked
2010 * as shared. The cloned mount is added to the peer group of the source
2011 * mount.
5afe0022
RP
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 * of the destination mount and the cloned mount is made slave
2014 * of the same master as that of the source mount. The cloned mount
2015 * is marked as 'shared and slave'.
2016 * (*) the cloned mount is made a slave of the same master as that of the
2017 * source mount.
2018 *
9676f0c6
RP
2019 * ---------------------------------------------------------------------------
2020 * | MOVE MOUNT OPERATION |
2021 * |**************************************************************************
2022 * | source-->| shared | private | slave | unbindable |
2023 * | dest | | | | |
2024 * | | | | | | |
2025 * | v | | | | |
2026 * |**************************************************************************
2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2028 * | | | | | |
2029 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2030 * ***************************************************************************
5afe0022
RP
2031 *
2032 * (+) the mount is moved to the destination. And is then propagated to
2033 * all the mounts in the propagation tree of the destination mount.
21444403 2034 * (+*) the mount is moved to the destination.
5afe0022
RP
2035 * (+++) the mount is moved to the destination and is then propagated to
2036 * all the mounts belonging to the destination mount's propagation tree.
2037 * the mount is marked as 'shared and slave'.
2038 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2039 *
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2043 * in allocations.
2044 */
0fb54e50 2045static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2046 struct mount *dest_mnt,
2047 struct mountpoint *dest_mp,
2763d119 2048 bool moving)
b90fa9ae 2049{
3bd045cc 2050 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2051 HLIST_HEAD(tree_list);
d2921684 2052 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2053 struct mountpoint *smp;
315fc83e 2054 struct mount *child, *p;
38129a13 2055 struct hlist_node *n;
719f5d7f 2056 int err;
b90fa9ae 2057
1064f874
EB
2058 /* Preallocate a mountpoint in case the new mounts need
2059 * to be tucked under other mounts.
2060 */
2061 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062 if (IS_ERR(smp))
2063 return PTR_ERR(smp);
2064
d2921684 2065 /* Is there space to add these mounts to the mount namespace? */
2763d119 2066 if (!moving) {
d2921684
EB
2067 err = count_mounts(ns, source_mnt);
2068 if (err)
2069 goto out;
2070 }
2071
fc7be130 2072 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2073 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2074 if (err)
2075 goto out;
0b1b901b 2076 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2077 lock_mount_hash();
0b1b901b
AV
2078 if (err)
2079 goto out_cleanup_ids;
909b0a88 2080 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2081 set_mnt_shared(p);
0b1b901b
AV
2082 } else {
2083 lock_mount_hash();
b90fa9ae 2084 }
2763d119
AV
2085 if (moving) {
2086 unhash_mnt(source_mnt);
84d17192 2087 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2088 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2089 } else {
44dfd84a
DH
2090 if (source_mnt->mnt_ns) {
2091 /* move from anon - the caller will destroy */
2092 list_del_init(&source_mnt->mnt_ns->list);
2093 }
84d17192 2094 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2095 commit_tree(source_mnt);
21444403 2096 }
b90fa9ae 2097
38129a13 2098 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2099 struct mount *q;
38129a13 2100 hlist_del_init(&child->mnt_hash);
1064f874
EB
2101 q = __lookup_mnt(&child->mnt_parent->mnt,
2102 child->mnt_mountpoint);
2103 if (q)
2104 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2105 /* Notice when we are propagating across user namespaces */
2106 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107 lock_mnt_tree(child);
d728cf79 2108 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2109 commit_tree(child);
b90fa9ae 2110 }
1064f874 2111 put_mountpoint(smp);
719ea2fb 2112 unlock_mount_hash();
99b7db7b 2113
b90fa9ae 2114 return 0;
719f5d7f
MS
2115
2116 out_cleanup_ids:
f2ebb3a9
AV
2117 while (!hlist_empty(&tree_list)) {
2118 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2119 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2120 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2121 }
2122 unlock_mount_hash();
0b1b901b 2123 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2124 out:
d2921684 2125 ns->pending_mounts = 0;
1064f874
EB
2126
2127 read_seqlock_excl(&mount_lock);
2128 put_mountpoint(smp);
2129 read_sequnlock_excl(&mount_lock);
2130
719f5d7f 2131 return err;
b90fa9ae
RP
2132}
2133
84d17192 2134static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2135{
2136 struct vfsmount *mnt;
84d17192 2137 struct dentry *dentry = path->dentry;
b12cea91 2138retry:
5955102c 2139 inode_lock(dentry->d_inode);
84d17192 2140 if (unlikely(cant_mount(dentry))) {
5955102c 2141 inode_unlock(dentry->d_inode);
84d17192 2142 return ERR_PTR(-ENOENT);
b12cea91 2143 }
97216be0 2144 namespace_lock();
b12cea91 2145 mnt = lookup_mnt(path);
84d17192 2146 if (likely(!mnt)) {
3895dbf8 2147 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2148 if (IS_ERR(mp)) {
97216be0 2149 namespace_unlock();
5955102c 2150 inode_unlock(dentry->d_inode);
84d17192
AV
2151 return mp;
2152 }
2153 return mp;
2154 }
97216be0 2155 namespace_unlock();
5955102c 2156 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2157 path_put(path);
2158 path->mnt = mnt;
84d17192 2159 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2160 goto retry;
2161}
2162
84d17192 2163static void unlock_mount(struct mountpoint *where)
b12cea91 2164{
84d17192 2165 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2166
2167 read_seqlock_excl(&mount_lock);
84d17192 2168 put_mountpoint(where);
3895dbf8
EB
2169 read_sequnlock_excl(&mount_lock);
2170
328e6d90 2171 namespace_unlock();
5955102c 2172 inode_unlock(dentry->d_inode);
b12cea91
AV
2173}
2174
84d17192 2175static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2176{
e462ec50 2177 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2178 return -EINVAL;
2179
e36cb0b8
DH
2180 if (d_is_dir(mp->m_dentry) !=
2181 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2182 return -ENOTDIR;
2183
2763d119 2184 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2185}
2186
7a2e8a8f
VA
2187/*
2188 * Sanity check the flags to change_mnt_propagation.
2189 */
2190
e462ec50 2191static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2192{
e462ec50 2193 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2194
2195 /* Fail if any non-propagation flags are set */
2196 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2197 return 0;
2198 /* Only one propagation flag should be set */
2199 if (!is_power_of_2(type))
2200 return 0;
2201 return type;
2202}
2203
07b20889
RP
2204/*
2205 * recursively change the type of the mountpoint.
2206 */
e462ec50 2207static int do_change_type(struct path *path, int ms_flags)
07b20889 2208{
315fc83e 2209 struct mount *m;
4b8b21f4 2210 struct mount *mnt = real_mount(path->mnt);
e462ec50 2211 int recurse = ms_flags & MS_REC;
7a2e8a8f 2212 int type;
719f5d7f 2213 int err = 0;
07b20889 2214
2d92ab3c 2215 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2216 return -EINVAL;
2217
e462ec50 2218 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2219 if (!type)
2220 return -EINVAL;
2221
97216be0 2222 namespace_lock();
719f5d7f
MS
2223 if (type == MS_SHARED) {
2224 err = invent_group_ids(mnt, recurse);
2225 if (err)
2226 goto out_unlock;
2227 }
2228
719ea2fb 2229 lock_mount_hash();
909b0a88 2230 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2231 change_mnt_propagation(m, type);
719ea2fb 2232 unlock_mount_hash();
719f5d7f
MS
2233
2234 out_unlock:
97216be0 2235 namespace_unlock();
719f5d7f 2236 return err;
07b20889
RP
2237}
2238
5ff9d8a6
EB
2239static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2240{
2241 struct mount *child;
2242 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2243 if (!is_subdir(child->mnt_mountpoint, dentry))
2244 continue;
2245
2246 if (child->mnt.mnt_flags & MNT_LOCKED)
2247 return true;
2248 }
2249 return false;
2250}
2251
a07b2000
AV
2252static struct mount *__do_loopback(struct path *old_path, int recurse)
2253{
2254 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2255
2256 if (IS_MNT_UNBINDABLE(old))
2257 return mnt;
2258
2259 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2260 return mnt;
2261
2262 if (!recurse && has_locked_children(old, old_path->dentry))
2263 return mnt;
2264
2265 if (recurse)
2266 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2267 else
2268 mnt = clone_mnt(old, old_path->dentry, 0);
2269
2270 if (!IS_ERR(mnt))
2271 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2272
2273 return mnt;
2274}
2275
1da177e4
LT
2276/*
2277 * do loopback mount.
2278 */
808d4e3c 2279static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2280 int recurse)
1da177e4 2281{
2d92ab3c 2282 struct path old_path;
a07b2000 2283 struct mount *mnt = NULL, *parent;
84d17192 2284 struct mountpoint *mp;
57eccb83 2285 int err;
1da177e4
LT
2286 if (!old_name || !*old_name)
2287 return -EINVAL;
815d405c 2288 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2289 if (err)
2290 return err;
2291
8823c079 2292 err = -EINVAL;
4ce5d2b1 2293 if (mnt_ns_loop(old_path.dentry))
dd111b31 2294 goto out;
8823c079 2295
84d17192 2296 mp = lock_mount(path);
a07b2000
AV
2297 if (IS_ERR(mp)) {
2298 err = PTR_ERR(mp);
b12cea91 2299 goto out;
a07b2000 2300 }
b12cea91 2301
84d17192 2302 parent = real_mount(path->mnt);
e149ed2b
AV
2303 if (!check_mnt(parent))
2304 goto out2;
2305
a07b2000 2306 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2307 if (IS_ERR(mnt)) {
2308 err = PTR_ERR(mnt);
e9c5d8a5 2309 goto out2;
be34d1a3 2310 }
ccd48bc7 2311
84d17192 2312 err = graft_tree(mnt, parent, mp);
ccd48bc7 2313 if (err) {
719ea2fb 2314 lock_mount_hash();
e819f152 2315 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2316 unlock_mount_hash();
5b83d2c5 2317 }
b12cea91 2318out2:
84d17192 2319 unlock_mount(mp);
ccd48bc7 2320out:
2d92ab3c 2321 path_put(&old_path);
1da177e4
LT
2322 return err;
2323}
2324
a07b2000
AV
2325static struct file *open_detached_copy(struct path *path, bool recursive)
2326{
2327 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2328 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2329 struct mount *mnt, *p;
2330 struct file *file;
2331
2332 if (IS_ERR(ns))
2333 return ERR_CAST(ns);
2334
2335 namespace_lock();
2336 mnt = __do_loopback(path, recursive);
2337 if (IS_ERR(mnt)) {
2338 namespace_unlock();
2339 free_mnt_ns(ns);
2340 return ERR_CAST(mnt);
2341 }
2342
2343 lock_mount_hash();
2344 for (p = mnt; p; p = next_mnt(p, mnt)) {
2345 p->mnt_ns = ns;
2346 ns->mounts++;
2347 }
2348 ns->root = mnt;
2349 list_add_tail(&ns->list, &mnt->mnt_list);
2350 mntget(&mnt->mnt);
2351 unlock_mount_hash();
2352 namespace_unlock();
2353
2354 mntput(path->mnt);
2355 path->mnt = &mnt->mnt;
2356 file = dentry_open(path, O_PATH, current_cred());
2357 if (IS_ERR(file))
2358 dissolve_on_fput(path->mnt);
2359 else
2360 file->f_mode |= FMODE_NEED_UNMOUNT;
2361 return file;
2362}
2363
2658ce09 2364SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2365{
2366 struct file *file;
2367 struct path path;
2368 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2369 bool detached = flags & OPEN_TREE_CLONE;
2370 int error;
2371 int fd;
2372
2373 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2374
2375 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2376 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2377 OPEN_TREE_CLOEXEC))
2378 return -EINVAL;
2379
2380 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2381 return -EINVAL;
2382
2383 if (flags & AT_NO_AUTOMOUNT)
2384 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2385 if (flags & AT_SYMLINK_NOFOLLOW)
2386 lookup_flags &= ~LOOKUP_FOLLOW;
2387 if (flags & AT_EMPTY_PATH)
2388 lookup_flags |= LOOKUP_EMPTY;
2389
2390 if (detached && !may_mount())
2391 return -EPERM;
2392
2393 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2394 if (fd < 0)
2395 return fd;
2396
2397 error = user_path_at(dfd, filename, lookup_flags, &path);
2398 if (unlikely(error)) {
2399 file = ERR_PTR(error);
2400 } else {
2401 if (detached)
2402 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2403 else
2404 file = dentry_open(&path, O_PATH, current_cred());
2405 path_put(&path);
2406 }
2407 if (IS_ERR(file)) {
2408 put_unused_fd(fd);
2409 return PTR_ERR(file);
2410 }
2411 fd_install(fd, file);
2412 return fd;
2413}
2414
43f5e655
DH
2415/*
2416 * Don't allow locked mount flags to be cleared.
2417 *
2418 * No locks need to be held here while testing the various MNT_LOCK
2419 * flags because those flags can never be cleared once they are set.
2420 */
2421static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2422{
43f5e655
DH
2423 unsigned int fl = mnt->mnt.mnt_flags;
2424
2425 if ((fl & MNT_LOCK_READONLY) &&
2426 !(mnt_flags & MNT_READONLY))
2427 return false;
2428
2429 if ((fl & MNT_LOCK_NODEV) &&
2430 !(mnt_flags & MNT_NODEV))
2431 return false;
2432
2433 if ((fl & MNT_LOCK_NOSUID) &&
2434 !(mnt_flags & MNT_NOSUID))
2435 return false;
2436
2437 if ((fl & MNT_LOCK_NOEXEC) &&
2438 !(mnt_flags & MNT_NOEXEC))
2439 return false;
2440
2441 if ((fl & MNT_LOCK_ATIME) &&
2442 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2443 return false;
2e4b7fcd 2444
43f5e655
DH
2445 return true;
2446}
2447
2448static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2449{
43f5e655 2450 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2451
43f5e655 2452 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2453 return 0;
2454
2455 if (readonly_request)
43f5e655
DH
2456 return mnt_make_readonly(mnt);
2457
2458 return __mnt_unmake_readonly(mnt);
2459}
2460
2461/*
2462 * Update the user-settable attributes on a mount. The caller must hold
2463 * sb->s_umount for writing.
2464 */
2465static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2466{
2467 lock_mount_hash();
2468 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2469 mnt->mnt.mnt_flags = mnt_flags;
2470 touch_mnt_namespace(mnt->mnt_ns);
2471 unlock_mount_hash();
2472}
2473
f8b92ba6
DD
2474static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2475{
2476 struct super_block *sb = mnt->mnt_sb;
2477
2478 if (!__mnt_is_readonly(mnt) &&
2479 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2480 char *buf = (char *)__get_free_page(GFP_KERNEL);
2481 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2482 struct tm tm;
2483
2484 time64_to_tm(sb->s_time_max, 0, &tm);
2485
0ecee669
EB
2486 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2487 sb->s_type->name,
2488 is_mounted(mnt) ? "remounted" : "mounted",
2489 mntpath,
f8b92ba6
DD
2490 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2491
2492 free_page((unsigned long)buf);
2493 }
2494}
2495
43f5e655
DH
2496/*
2497 * Handle reconfiguration of the mountpoint only without alteration of the
2498 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2499 * to mount(2).
2500 */
2501static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2502{
2503 struct super_block *sb = path->mnt->mnt_sb;
2504 struct mount *mnt = real_mount(path->mnt);
2505 int ret;
2506
2507 if (!check_mnt(mnt))
2508 return -EINVAL;
2509
2510 if (path->dentry != mnt->mnt.mnt_root)
2511 return -EINVAL;
2512
2513 if (!can_change_locked_flags(mnt, mnt_flags))
2514 return -EPERM;
2515
2516 down_write(&sb->s_umount);
2517 ret = change_mount_ro_state(mnt, mnt_flags);
2518 if (ret == 0)
2519 set_mount_attributes(mnt, mnt_flags);
2520 up_write(&sb->s_umount);
f8b92ba6
DD
2521
2522 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2523
43f5e655 2524 return ret;
2e4b7fcd
DH
2525}
2526
1da177e4
LT
2527/*
2528 * change filesystem flags. dir should be a physical root of filesystem.
2529 * If you've mounted a non-root directory somewhere and want to do remount
2530 * on it - tough luck.
2531 */
e462ec50
DH
2532static int do_remount(struct path *path, int ms_flags, int sb_flags,
2533 int mnt_flags, void *data)
1da177e4
LT
2534{
2535 int err;
2d92ab3c 2536 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2537 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2538 struct fs_context *fc;
1da177e4 2539
143c8c91 2540 if (!check_mnt(mnt))
1da177e4
LT
2541 return -EINVAL;
2542
2d92ab3c 2543 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2544 return -EINVAL;
2545
43f5e655 2546 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2547 return -EPERM;
9566d674 2548
8d0347f6
DH
2549 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2550 if (IS_ERR(fc))
2551 return PTR_ERR(fc);
ff36fe2c 2552
8d0347f6
DH
2553 err = parse_monolithic_mount_data(fc, data);
2554 if (!err) {
2555 down_write(&sb->s_umount);
2556 err = -EPERM;
2557 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2558 err = reconfigure_super(fc);
2559 if (!err)
2560 set_mount_attributes(mnt, mnt_flags);
2561 }
2562 up_write(&sb->s_umount);
0e55a7cc 2563 }
f8b92ba6
DD
2564
2565 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2566
8d0347f6 2567 put_fs_context(fc);
1da177e4
LT
2568 return err;
2569}
2570
cbbe362c 2571static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2572{
315fc83e 2573 struct mount *p;
909b0a88 2574 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2575 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2576 return 1;
2577 }
2578 return 0;
2579}
2580
44dfd84a
DH
2581/*
2582 * Check that there aren't references to earlier/same mount namespaces in the
2583 * specified subtree. Such references can act as pins for mount namespaces
2584 * that aren't checked by the mount-cycle checking code, thereby allowing
2585 * cycles to be made.
2586 */
2587static bool check_for_nsfs_mounts(struct mount *subtree)
2588{
2589 struct mount *p;
2590 bool ret = false;
2591
2592 lock_mount_hash();
2593 for (p = subtree; p; p = next_mnt(p, subtree))
2594 if (mnt_ns_loop(p->mnt.mnt_root))
2595 goto out;
2596
2597 ret = true;
2598out:
2599 unlock_mount_hash();
2600 return ret;
2601}
2602
2db154b3 2603static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2604{
44dfd84a 2605 struct mnt_namespace *ns;
676da58d 2606 struct mount *p;
0fb54e50 2607 struct mount *old;
2763d119
AV
2608 struct mount *parent;
2609 struct mountpoint *mp, *old_mp;
57eccb83 2610 int err;
44dfd84a 2611 bool attached;
1da177e4 2612
2db154b3 2613 mp = lock_mount(new_path);
84d17192 2614 if (IS_ERR(mp))
2db154b3 2615 return PTR_ERR(mp);
cc53ce53 2616
2db154b3
DH
2617 old = real_mount(old_path->mnt);
2618 p = real_mount(new_path->mnt);
2763d119 2619 parent = old->mnt_parent;
44dfd84a 2620 attached = mnt_has_parent(old);
2763d119 2621 old_mp = old->mnt_mp;
44dfd84a 2622 ns = old->mnt_ns;
143c8c91 2623
1da177e4 2624 err = -EINVAL;
44dfd84a
DH
2625 /* The mountpoint must be in our namespace. */
2626 if (!check_mnt(p))
2db154b3 2627 goto out;
1da177e4 2628
570d7a98
EB
2629 /* The thing moved must be mounted... */
2630 if (!is_mounted(&old->mnt))
44dfd84a
DH
2631 goto out;
2632
570d7a98
EB
2633 /* ... and either ours or the root of anon namespace */
2634 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2635 goto out;
5ff9d8a6 2636
2db154b3
DH
2637 if (old->mnt.mnt_flags & MNT_LOCKED)
2638 goto out;
1da177e4 2639
2db154b3
DH
2640 if (old_path->dentry != old_path->mnt->mnt_root)
2641 goto out;
1da177e4 2642
2db154b3
DH
2643 if (d_is_dir(new_path->dentry) !=
2644 d_is_dir(old_path->dentry))
2645 goto out;
21444403
RP
2646 /*
2647 * Don't move a mount residing in a shared parent.
2648 */
2763d119 2649 if (attached && IS_MNT_SHARED(parent))
2db154b3 2650 goto out;
9676f0c6
RP
2651 /*
2652 * Don't move a mount tree containing unbindable mounts to a destination
2653 * mount which is shared.
2654 */
fc7be130 2655 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2656 goto out;
1da177e4 2657 err = -ELOOP;
44dfd84a
DH
2658 if (!check_for_nsfs_mounts(old))
2659 goto out;
fc7be130 2660 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2661 if (p == old)
2db154b3 2662 goto out;
1da177e4 2663
2db154b3 2664 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2665 attached);
4ac91378 2666 if (err)
2db154b3 2667 goto out;
1da177e4
LT
2668
2669 /* if the mount is moved, it should no longer be expire
2670 * automatically */
6776db3d 2671 list_del_init(&old->mnt_expire);
2763d119
AV
2672 if (attached)
2673 put_mountpoint(old_mp);
1da177e4 2674out:
2db154b3 2675 unlock_mount(mp);
44dfd84a 2676 if (!err) {
2763d119
AV
2677 if (attached)
2678 mntput_no_expire(parent);
2679 else
44dfd84a
DH
2680 free_mnt_ns(ns);
2681 }
2db154b3
DH
2682 return err;
2683}
2684
2685static int do_move_mount_old(struct path *path, const char *old_name)
2686{
2687 struct path old_path;
2688 int err;
2689
2690 if (!old_name || !*old_name)
2691 return -EINVAL;
2692
2693 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2694 if (err)
2695 return err;
2696
2697 err = do_move_mount(&old_path, path);
2d92ab3c 2698 path_put(&old_path);
1da177e4
LT
2699 return err;
2700}
2701
9d412a43
AV
2702/*
2703 * add a mount into a namespace's mount tree
2704 */
8f11538e
AV
2705static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2706 struct path *path, int mnt_flags)
9d412a43 2707{
8f11538e 2708 struct mount *parent = real_mount(path->mnt);
9d412a43 2709
f2ebb3a9 2710 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2711
84d17192 2712 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2713 /* that's acceptable only for automounts done in private ns */
2714 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2715 return -EINVAL;
156cacb1 2716 /* ... and for those we'd better have mountpoint still alive */
84d17192 2717 if (!parent->mnt_ns)
8f11538e 2718 return -EINVAL;
156cacb1 2719 }
9d412a43
AV
2720
2721 /* Refuse the same filesystem on the same mount point */
95bc5f25 2722 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2723 path->mnt->mnt_root == path->dentry)
8f11538e 2724 return -EBUSY;
9d412a43 2725
e36cb0b8 2726 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2727 return -EINVAL;
9d412a43 2728
95bc5f25 2729 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2730 return graft_tree(newmnt, parent, mp);
9d412a43 2731}
b1e75df4 2732
132e4608
DH
2733static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2734
2735/*
2736 * Create a new mount using a superblock configuration and request it
2737 * be added to the namespace tree.
2738 */
2739static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2740 unsigned int mnt_flags)
2741{
2742 struct vfsmount *mnt;
8f11538e 2743 struct mountpoint *mp;
132e4608
DH
2744 struct super_block *sb = fc->root->d_sb;
2745 int error;
2746
c9ce29ed
AV
2747 error = security_sb_kern_mount(sb);
2748 if (!error && mount_too_revealing(sb, &mnt_flags))
2749 error = -EPERM;
2750
2751 if (unlikely(error)) {
2752 fc_drop_locked(fc);
2753 return error;
132e4608
DH
2754 }
2755
2756 up_write(&sb->s_umount);
2757
2758 mnt = vfs_create_mount(fc);
2759 if (IS_ERR(mnt))
2760 return PTR_ERR(mnt);
2761
f8b92ba6
DD
2762 mnt_warn_timestamp_expiry(mountpoint, mnt);
2763
8f11538e
AV
2764 mp = lock_mount(mountpoint);
2765 if (IS_ERR(mp)) {
2766 mntput(mnt);
2767 return PTR_ERR(mp);
2768 }
2769 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2770 unlock_mount(mp);
0ecee669
EB
2771 if (error < 0)
2772 mntput(mnt);
132e4608
DH
2773 return error;
2774}
1b852bce 2775
1da177e4
LT
2776/*
2777 * create a new mount for userspace and request it to be added into the
2778 * namespace's tree
2779 */
e462ec50 2780static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2781 int mnt_flags, const char *name, void *data)
1da177e4 2782{
0c55cfc4 2783 struct file_system_type *type;
a0c9a8b8
AV
2784 struct fs_context *fc;
2785 const char *subtype = NULL;
2786 int err = 0;
1da177e4 2787
0c55cfc4 2788 if (!fstype)
1da177e4
LT
2789 return -EINVAL;
2790
0c55cfc4
EB
2791 type = get_fs_type(fstype);
2792 if (!type)
2793 return -ENODEV;
2794
a0c9a8b8
AV
2795 if (type->fs_flags & FS_HAS_SUBTYPE) {
2796 subtype = strchr(fstype, '.');
2797 if (subtype) {
2798 subtype++;
2799 if (!*subtype) {
2800 put_filesystem(type);
2801 return -EINVAL;
2802 }
a0c9a8b8
AV
2803 }
2804 }
0c55cfc4 2805
a0c9a8b8 2806 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2807 put_filesystem(type);
a0c9a8b8
AV
2808 if (IS_ERR(fc))
2809 return PTR_ERR(fc);
2810
3e1aeb00
DH
2811 if (subtype)
2812 err = vfs_parse_fs_string(fc, "subtype",
2813 subtype, strlen(subtype));
2814 if (!err && name)
2815 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2816 if (!err)
2817 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2818 if (!err && !mount_capable(fc))
2819 err = -EPERM;
a0c9a8b8
AV
2820 if (!err)
2821 err = vfs_get_tree(fc);
132e4608
DH
2822 if (!err)
2823 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2824
a0c9a8b8 2825 put_fs_context(fc);
15f9a3f3 2826 return err;
1da177e4
LT
2827}
2828
19a167af
AV
2829int finish_automount(struct vfsmount *m, struct path *path)
2830{
26df6034 2831 struct dentry *dentry = path->dentry;
8f11538e 2832 struct mountpoint *mp;
25e195aa 2833 struct mount *mnt;
19a167af 2834 int err;
25e195aa
AV
2835
2836 if (!m)
2837 return 0;
2838 if (IS_ERR(m))
2839 return PTR_ERR(m);
2840
2841 mnt = real_mount(m);
19a167af
AV
2842 /* The new mount record should have at least 2 refs to prevent it being
2843 * expired before we get a chance to add it
2844 */
6776db3d 2845 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2846
2847 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 2848 m->mnt_root == dentry) {
b1e75df4 2849 err = -ELOOP;
26df6034 2850 goto discard;
19a167af
AV
2851 }
2852
26df6034
AV
2853 /*
2854 * we don't want to use lock_mount() - in this case finding something
2855 * that overmounts our mountpoint to be means "quitely drop what we've
2856 * got", not "try to mount it on top".
2857 */
2858 inode_lock(dentry->d_inode);
2859 namespace_lock();
2860 if (unlikely(cant_mount(dentry))) {
2861 err = -ENOENT;
2862 goto discard_locked;
2863 }
2864 rcu_read_lock();
2865 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2866 rcu_read_unlock();
2867 err = 0;
2868 goto discard_locked;
2869 }
2870 rcu_read_unlock();
2871 mp = get_mountpoint(dentry);
8f11538e
AV
2872 if (IS_ERR(mp)) {
2873 err = PTR_ERR(mp);
26df6034 2874 goto discard_locked;
8f11538e 2875 }
26df6034 2876
8f11538e
AV
2877 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2878 unlock_mount(mp);
26df6034
AV
2879 if (unlikely(err))
2880 goto discard;
2881 mntput(m);
2882 return 0;
2883
2884discard_locked:
2885 namespace_unlock();
2886 inode_unlock(dentry->d_inode);
2887discard:
b1e75df4 2888 /* remove m from any expiration list it may be on */
6776db3d 2889 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2890 namespace_lock();
6776db3d 2891 list_del_init(&mnt->mnt_expire);
97216be0 2892 namespace_unlock();
19a167af 2893 }
b1e75df4
AV
2894 mntput(m);
2895 mntput(m);
19a167af
AV
2896 return err;
2897}
2898
ea5b778a
DH
2899/**
2900 * mnt_set_expiry - Put a mount on an expiration list
2901 * @mnt: The mount to list.
2902 * @expiry_list: The list to add the mount to.
2903 */
2904void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2905{
97216be0 2906 namespace_lock();
ea5b778a 2907
6776db3d 2908 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2909
97216be0 2910 namespace_unlock();
ea5b778a
DH
2911}
2912EXPORT_SYMBOL(mnt_set_expiry);
2913
1da177e4
LT
2914/*
2915 * process a list of expirable mountpoints with the intent of discarding any
2916 * mountpoints that aren't in use and haven't been touched since last we came
2917 * here
2918 */
2919void mark_mounts_for_expiry(struct list_head *mounts)
2920{
761d5c38 2921 struct mount *mnt, *next;
1da177e4
LT
2922 LIST_HEAD(graveyard);
2923
2924 if (list_empty(mounts))
2925 return;
2926
97216be0 2927 namespace_lock();
719ea2fb 2928 lock_mount_hash();
1da177e4
LT
2929
2930 /* extract from the expiration list every vfsmount that matches the
2931 * following criteria:
2932 * - only referenced by its parent vfsmount
2933 * - still marked for expiry (marked on the last call here; marks are
2934 * cleared by mntput())
2935 */
6776db3d 2936 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2937 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2938 propagate_mount_busy(mnt, 1))
1da177e4 2939 continue;
6776db3d 2940 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2941 }
bcc5c7d2 2942 while (!list_empty(&graveyard)) {
6776db3d 2943 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2944 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2945 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2946 }
719ea2fb 2947 unlock_mount_hash();
3ab6abee 2948 namespace_unlock();
5528f911
TM
2949}
2950
2951EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2952
2953/*
2954 * Ripoff of 'select_parent()'
2955 *
2956 * search the list of submounts for a given mountpoint, and move any
2957 * shrinkable submounts to the 'graveyard' list.
2958 */
692afc31 2959static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2960{
692afc31 2961 struct mount *this_parent = parent;
5528f911
TM
2962 struct list_head *next;
2963 int found = 0;
2964
2965repeat:
6b41d536 2966 next = this_parent->mnt_mounts.next;
5528f911 2967resume:
6b41d536 2968 while (next != &this_parent->mnt_mounts) {
5528f911 2969 struct list_head *tmp = next;
6b41d536 2970 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2971
2972 next = tmp->next;
692afc31 2973 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2974 continue;
5528f911
TM
2975 /*
2976 * Descend a level if the d_mounts list is non-empty.
2977 */
6b41d536 2978 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2979 this_parent = mnt;
2980 goto repeat;
2981 }
1da177e4 2982
1ab59738 2983 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2984 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2985 found++;
2986 }
1da177e4 2987 }
5528f911
TM
2988 /*
2989 * All done at this level ... ascend and resume the search
2990 */
2991 if (this_parent != parent) {
6b41d536 2992 next = this_parent->mnt_child.next;
0714a533 2993 this_parent = this_parent->mnt_parent;
5528f911
TM
2994 goto resume;
2995 }
2996 return found;
2997}
2998
2999/*
3000 * process a list of expirable mountpoints with the intent of discarding any
3001 * submounts of a specific parent mountpoint
99b7db7b 3002 *
48a066e7 3003 * mount_lock must be held for write
5528f911 3004 */
b54b9be7 3005static void shrink_submounts(struct mount *mnt)
5528f911
TM
3006{
3007 LIST_HEAD(graveyard);
761d5c38 3008 struct mount *m;
5528f911 3009
5528f911 3010 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3011 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3012 while (!list_empty(&graveyard)) {
761d5c38 3013 m = list_first_entry(&graveyard, struct mount,
6776db3d 3014 mnt_expire);
143c8c91 3015 touch_mnt_namespace(m->mnt_ns);
e819f152 3016 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3017 }
3018 }
1da177e4
LT
3019}
3020
b40ef869 3021void *copy_mount_options(const void __user * data)
1da177e4 3022{
b40ef869 3023 char *copy;
12efec56 3024 unsigned size;
b58fed8b 3025
1da177e4 3026 if (!data)
b40ef869 3027 return NULL;
1da177e4 3028
b40ef869
AV
3029 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3030 if (!copy)
3031 return ERR_PTR(-ENOMEM);
1da177e4 3032
12efec56 3033 size = PAGE_SIZE - offset_in_page(data);
1da177e4 3034
12efec56 3035 if (copy_from_user(copy, data, size)) {
b40ef869
AV
3036 kfree(copy);
3037 return ERR_PTR(-EFAULT);
1da177e4 3038 }
12efec56
AV
3039 if (size != PAGE_SIZE) {
3040 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3041 memset(copy + size, 0, PAGE_SIZE - size);
3042 }
b40ef869 3043 return copy;
1da177e4
LT
3044}
3045
b8850d1f 3046char *copy_mount_string(const void __user *data)
eca6f534 3047{
fbdb4401 3048 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3049}
3050
1da177e4
LT
3051/*
3052 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3053 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3054 *
3055 * data is a (void *) that can point to any structure up to
3056 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3057 * information (or be NULL).
3058 *
3059 * Pre-0.97 versions of mount() didn't have a flags word.
3060 * When the flags word was introduced its top half was required
3061 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3062 * Therefore, if this magic number is present, it carries no information
3063 * and must be discarded.
3064 */
5e6123f3 3065long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3066 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3067{
2d92ab3c 3068 struct path path;
e462ec50 3069 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3070 int retval = 0;
1da177e4
LT
3071
3072 /* Discard magic */
3073 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3074 flags &= ~MS_MGC_MSK;
3075
3076 /* Basic sanity checks */
1da177e4
LT
3077 if (data_page)
3078 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3079
e462ec50
DH
3080 if (flags & MS_NOUSER)
3081 return -EINVAL;
3082
a27ab9f2 3083 /* ... and get the mountpoint */
ce6595a2 3084 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
a27ab9f2
TH
3085 if (retval)
3086 return retval;
3087
3088 retval = security_sb_mount(dev_name, &path,
3089 type_page, flags, data_page);
0d5cadb8
AV
3090 if (!retval && !may_mount())
3091 retval = -EPERM;
e462ec50 3092 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3093 retval = -EPERM;
a27ab9f2
TH
3094 if (retval)
3095 goto dput_out;
3096
613cbe3d
AK
3097 /* Default to relatime unless overriden */
3098 if (!(flags & MS_NOATIME))
3099 mnt_flags |= MNT_RELATIME;
0a1c01c9 3100
1da177e4
LT
3101 /* Separate the per-mountpoint flags */
3102 if (flags & MS_NOSUID)
3103 mnt_flags |= MNT_NOSUID;
3104 if (flags & MS_NODEV)
3105 mnt_flags |= MNT_NODEV;
3106 if (flags & MS_NOEXEC)
3107 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3108 if (flags & MS_NOATIME)
3109 mnt_flags |= MNT_NOATIME;
3110 if (flags & MS_NODIRATIME)
3111 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3112 if (flags & MS_STRICTATIME)
3113 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3114 if (flags & MS_RDONLY)
2e4b7fcd 3115 mnt_flags |= MNT_READONLY;
fc33a7bb 3116
ffbc6f0e
EB
3117 /* The default atime for remount is preservation */
3118 if ((flags & MS_REMOUNT) &&
3119 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3120 MS_STRICTATIME)) == 0)) {
3121 mnt_flags &= ~MNT_ATIME_MASK;
3122 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3123 }
3124
e462ec50
DH
3125 sb_flags = flags & (SB_RDONLY |
3126 SB_SYNCHRONOUS |
3127 SB_MANDLOCK |
3128 SB_DIRSYNC |
3129 SB_SILENT |
917086ff 3130 SB_POSIXACL |
d7ee9469 3131 SB_LAZYTIME |
917086ff 3132 SB_I_VERSION);
1da177e4 3133
43f5e655
DH
3134 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3135 retval = do_reconfigure_mnt(&path, mnt_flags);
3136 else if (flags & MS_REMOUNT)
e462ec50 3137 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3138 data_page);
3139 else if (flags & MS_BIND)
2d92ab3c 3140 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3141 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3142 retval = do_change_type(&path, flags);
1da177e4 3143 else if (flags & MS_MOVE)
2db154b3 3144 retval = do_move_mount_old(&path, dev_name);
1da177e4 3145 else
e462ec50 3146 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3147 dev_name, data_page);
3148dput_out:
2d92ab3c 3149 path_put(&path);
1da177e4
LT
3150 return retval;
3151}
3152
537f7ccb
EB
3153static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3154{
3155 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3156}
3157
3158static void dec_mnt_namespaces(struct ucounts *ucounts)
3159{
3160 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3161}
3162
771b1371
EB
3163static void free_mnt_ns(struct mnt_namespace *ns)
3164{
74e83122
AV
3165 if (!is_anon_ns(ns))
3166 ns_free_inum(&ns->ns);
537f7ccb 3167 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3168 put_user_ns(ns->user_ns);
3169 kfree(ns);
3170}
3171
8823c079
EB
3172/*
3173 * Assign a sequence number so we can detect when we attempt to bind
3174 * mount a reference to an older mount namespace into the current
3175 * mount namespace, preventing reference counting loops. A 64bit
3176 * number incrementing at 10Ghz will take 12,427 years to wrap which
3177 * is effectively never, so we can ignore the possibility.
3178 */
3179static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3180
74e83122 3181static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3182{
3183 struct mnt_namespace *new_ns;
537f7ccb 3184 struct ucounts *ucounts;
98f842e6 3185 int ret;
cf8d2c11 3186
537f7ccb
EB
3187 ucounts = inc_mnt_namespaces(user_ns);
3188 if (!ucounts)
df75e774 3189 return ERR_PTR(-ENOSPC);
537f7ccb 3190
74e83122 3191 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3192 if (!new_ns) {
3193 dec_mnt_namespaces(ucounts);
cf8d2c11 3194 return ERR_PTR(-ENOMEM);
537f7ccb 3195 }
74e83122
AV
3196 if (!anon) {
3197 ret = ns_alloc_inum(&new_ns->ns);
3198 if (ret) {
3199 kfree(new_ns);
3200 dec_mnt_namespaces(ucounts);
3201 return ERR_PTR(ret);
3202 }
98f842e6 3203 }
33c42940 3204 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3205 if (!anon)
3206 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3207 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3208 INIT_LIST_HEAD(&new_ns->list);
3209 init_waitqueue_head(&new_ns->poll);
771b1371 3210 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3211 new_ns->ucounts = ucounts;
cf8d2c11
TM
3212 return new_ns;
3213}
3214
0766f788 3215__latent_entropy
9559f689
AV
3216struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3217 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3218{
6b3286ed 3219 struct mnt_namespace *new_ns;
7f2da1e7 3220 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3221 struct mount *p, *q;
9559f689 3222 struct mount *old;
cb338d06 3223 struct mount *new;
7a472ef4 3224 int copy_flags;
1da177e4 3225
9559f689
AV
3226 BUG_ON(!ns);
3227
3228 if (likely(!(flags & CLONE_NEWNS))) {
3229 get_mnt_ns(ns);
3230 return ns;
3231 }
3232
3233 old = ns->root;
3234
74e83122 3235 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3236 if (IS_ERR(new_ns))
3237 return new_ns;
1da177e4 3238
97216be0 3239 namespace_lock();
1da177e4 3240 /* First pass: copy the tree topology */
4ce5d2b1 3241 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3242 if (user_ns != ns->user_ns)
3bd045cc 3243 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3244 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3245 if (IS_ERR(new)) {
328e6d90 3246 namespace_unlock();
771b1371 3247 free_mnt_ns(new_ns);
be34d1a3 3248 return ERR_CAST(new);
1da177e4 3249 }
3bd045cc
AV
3250 if (user_ns != ns->user_ns) {
3251 lock_mount_hash();
3252 lock_mnt_tree(new);
3253 unlock_mount_hash();
3254 }
be08d6d2 3255 new_ns->root = new;
1a4eeaf2 3256 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3257
3258 /*
3259 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3260 * as belonging to new namespace. We have already acquired a private
3261 * fs_struct, so tsk->fs->lock is not needed.
3262 */
909b0a88 3263 p = old;
cb338d06 3264 q = new;
1da177e4 3265 while (p) {
143c8c91 3266 q->mnt_ns = new_ns;
d2921684 3267 new_ns->mounts++;
9559f689
AV
3268 if (new_fs) {
3269 if (&p->mnt == new_fs->root.mnt) {
3270 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3271 rootmnt = &p->mnt;
1da177e4 3272 }
9559f689
AV
3273 if (&p->mnt == new_fs->pwd.mnt) {
3274 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3275 pwdmnt = &p->mnt;
1da177e4 3276 }
1da177e4 3277 }
909b0a88
AV
3278 p = next_mnt(p, old);
3279 q = next_mnt(q, new);
4ce5d2b1
EB
3280 if (!q)
3281 break;
3282 while (p->mnt.mnt_root != q->mnt.mnt_root)
3283 p = next_mnt(p, old);
1da177e4 3284 }
328e6d90 3285 namespace_unlock();
1da177e4 3286
1da177e4 3287 if (rootmnt)
f03c6599 3288 mntput(rootmnt);
1da177e4 3289 if (pwdmnt)
f03c6599 3290 mntput(pwdmnt);
1da177e4 3291
741a2951 3292 return new_ns;
1da177e4
LT
3293}
3294
74e83122 3295struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3296{
74e83122 3297 struct mount *mnt = real_mount(m);
ea441d11 3298 struct mnt_namespace *ns;
d31da0f0 3299 struct super_block *s;
ea441d11
AV
3300 struct path path;
3301 int err;
3302
74e83122
AV
3303 ns = alloc_mnt_ns(&init_user_ns, true);
3304 if (IS_ERR(ns)) {
3305 mntput(m);
ea441d11 3306 return ERR_CAST(ns);
74e83122
AV
3307 }
3308 mnt->mnt_ns = ns;
3309 ns->root = mnt;
3310 ns->mounts++;
3311 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3312
74e83122 3313 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3314 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3315
3316 put_mnt_ns(ns);
3317
3318 if (err)
3319 return ERR_PTR(err);
3320
3321 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3322 s = path.mnt->mnt_sb;
3323 atomic_inc(&s->s_active);
ea441d11
AV
3324 mntput(path.mnt);
3325 /* lock the sucker */
d31da0f0 3326 down_write(&s->s_umount);
ea441d11
AV
3327 /* ... and return the root of (sub)tree on it */
3328 return path.dentry;
3329}
3330EXPORT_SYMBOL(mount_subtree);
3331
cccaa5e3
DB
3332SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3333 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3334{
eca6f534
VN
3335 int ret;
3336 char *kernel_type;
eca6f534 3337 char *kernel_dev;
b40ef869 3338 void *options;
1da177e4 3339
b8850d1f
TG
3340 kernel_type = copy_mount_string(type);
3341 ret = PTR_ERR(kernel_type);
3342 if (IS_ERR(kernel_type))
eca6f534 3343 goto out_type;
1da177e4 3344
b8850d1f
TG
3345 kernel_dev = copy_mount_string(dev_name);
3346 ret = PTR_ERR(kernel_dev);
3347 if (IS_ERR(kernel_dev))
eca6f534 3348 goto out_dev;
1da177e4 3349
b40ef869
AV
3350 options = copy_mount_options(data);
3351 ret = PTR_ERR(options);
3352 if (IS_ERR(options))
eca6f534 3353 goto out_data;
1da177e4 3354
b40ef869 3355 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3356
b40ef869 3357 kfree(options);
eca6f534
VN
3358out_data:
3359 kfree(kernel_dev);
3360out_dev:
eca6f534
VN
3361 kfree(kernel_type);
3362out_type:
3363 return ret;
1da177e4
LT
3364}
3365
2db154b3 3366/*
93766fbd
DH
3367 * Create a kernel mount representation for a new, prepared superblock
3368 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3369 */
3370SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3371 unsigned int, attr_flags)
3372{
3373 struct mnt_namespace *ns;
3374 struct fs_context *fc;
3375 struct file *file;
3376 struct path newmount;
3377 struct mount *mnt;
3378 struct fd f;
3379 unsigned int mnt_flags = 0;
3380 long ret;
3381
3382 if (!may_mount())
3383 return -EPERM;
3384
3385 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3386 return -EINVAL;
3387
3388 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3389 MOUNT_ATTR_NOSUID |
3390 MOUNT_ATTR_NODEV |
3391 MOUNT_ATTR_NOEXEC |
3392 MOUNT_ATTR__ATIME |
3393 MOUNT_ATTR_NODIRATIME))
3394 return -EINVAL;
3395
3396 if (attr_flags & MOUNT_ATTR_RDONLY)
3397 mnt_flags |= MNT_READONLY;
3398 if (attr_flags & MOUNT_ATTR_NOSUID)
3399 mnt_flags |= MNT_NOSUID;
3400 if (attr_flags & MOUNT_ATTR_NODEV)
3401 mnt_flags |= MNT_NODEV;
3402 if (attr_flags & MOUNT_ATTR_NOEXEC)
3403 mnt_flags |= MNT_NOEXEC;
3404 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3405 mnt_flags |= MNT_NODIRATIME;
3406
3407 switch (attr_flags & MOUNT_ATTR__ATIME) {
3408 case MOUNT_ATTR_STRICTATIME:
3409 break;
3410 case MOUNT_ATTR_NOATIME:
3411 mnt_flags |= MNT_NOATIME;
3412 break;
3413 case MOUNT_ATTR_RELATIME:
3414 mnt_flags |= MNT_RELATIME;
3415 break;
3416 default:
3417 return -EINVAL;
3418 }
3419
3420 f = fdget(fs_fd);
3421 if (!f.file)
3422 return -EBADF;
3423
3424 ret = -EINVAL;
3425 if (f.file->f_op != &fscontext_fops)
3426 goto err_fsfd;
3427
3428 fc = f.file->private_data;
3429
3430 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3431 if (ret < 0)
3432 goto err_fsfd;
3433
3434 /* There must be a valid superblock or we can't mount it */
3435 ret = -EINVAL;
3436 if (!fc->root)
3437 goto err_unlock;
3438
3439 ret = -EPERM;
3440 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3441 pr_warn("VFS: Mount too revealing\n");
3442 goto err_unlock;
3443 }
3444
3445 ret = -EBUSY;
3446 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3447 goto err_unlock;
3448
3449 ret = -EPERM;
3450 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3451 goto err_unlock;
3452
3453 newmount.mnt = vfs_create_mount(fc);
3454 if (IS_ERR(newmount.mnt)) {
3455 ret = PTR_ERR(newmount.mnt);
3456 goto err_unlock;
3457 }
3458 newmount.dentry = dget(fc->root);
3459 newmount.mnt->mnt_flags = mnt_flags;
3460
3461 /* We've done the mount bit - now move the file context into more or
3462 * less the same state as if we'd done an fspick(). We don't want to
3463 * do any memory allocation or anything like that at this point as we
3464 * don't want to have to handle any errors incurred.
3465 */
3466 vfs_clean_context(fc);
3467
3468 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3469 if (IS_ERR(ns)) {
3470 ret = PTR_ERR(ns);
3471 goto err_path;
3472 }
3473 mnt = real_mount(newmount.mnt);
3474 mnt->mnt_ns = ns;
3475 ns->root = mnt;
3476 ns->mounts = 1;
3477 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3478 mntget(newmount.mnt);
93766fbd
DH
3479
3480 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3481 * it, not just simply put it.
3482 */
3483 file = dentry_open(&newmount, O_PATH, fc->cred);
3484 if (IS_ERR(file)) {
3485 dissolve_on_fput(newmount.mnt);
3486 ret = PTR_ERR(file);
3487 goto err_path;
3488 }
3489 file->f_mode |= FMODE_NEED_UNMOUNT;
3490
3491 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3492 if (ret >= 0)
3493 fd_install(ret, file);
3494 else
3495 fput(file);
3496
3497err_path:
3498 path_put(&newmount);
3499err_unlock:
3500 mutex_unlock(&fc->uapi_mutex);
3501err_fsfd:
3502 fdput(f);
3503 return ret;
3504}
3505
3506/*
3507 * Move a mount from one place to another. In combination with
3508 * fsopen()/fsmount() this is used to install a new mount and in combination
3509 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3510 * a mount subtree.
2db154b3
DH
3511 *
3512 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3513 */
3514SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3515 int, from_dfd, const char __user *, from_pathname,
3516 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3517 unsigned int, flags)
3518{
3519 struct path from_path, to_path;
3520 unsigned int lflags;
3521 int ret = 0;
3522
3523 if (!may_mount())
3524 return -EPERM;
3525
3526 if (flags & ~MOVE_MOUNT__MASK)
3527 return -EINVAL;
3528
3529 /* If someone gives a pathname, they aren't permitted to move
3530 * from an fd that requires unmount as we can't get at the flag
3531 * to clear it afterwards.
3532 */
3533 lflags = 0;
3534 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3535 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3536 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3537
3538 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3539 if (ret < 0)
3540 return ret;
3541
3542 lflags = 0;
3543 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3544 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3545 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3546
3547 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3548 if (ret < 0)
3549 goto out_from;
3550
3551 ret = security_move_mount(&from_path, &to_path);
3552 if (ret < 0)
3553 goto out_to;
3554
3555 ret = do_move_mount(&from_path, &to_path);
3556
3557out_to:
3558 path_put(&to_path);
3559out_from:
3560 path_put(&from_path);
3561 return ret;
3562}
3563
afac7cba
AV
3564/*
3565 * Return true if path is reachable from root
3566 *
48a066e7 3567 * namespace_sem or mount_lock is held
afac7cba 3568 */
643822b4 3569bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3570 const struct path *root)
3571{
643822b4 3572 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3573 dentry = mnt->mnt_mountpoint;
0714a533 3574 mnt = mnt->mnt_parent;
afac7cba 3575 }
643822b4 3576 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3577}
3578
640eb7e7 3579bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3580{
25ab4c9b 3581 bool res;
48a066e7 3582 read_seqlock_excl(&mount_lock);
643822b4 3583 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3584 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3585 return res;
3586}
3587EXPORT_SYMBOL(path_is_under);
3588
1da177e4
LT
3589/*
3590 * pivot_root Semantics:
3591 * Moves the root file system of the current process to the directory put_old,
3592 * makes new_root as the new root file system of the current process, and sets
3593 * root/cwd of all processes which had them on the current root to new_root.
3594 *
3595 * Restrictions:
3596 * The new_root and put_old must be directories, and must not be on the
3597 * same file system as the current process root. The put_old must be
3598 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3599 * pointed to by put_old must yield the same directory as new_root. No other
3600 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3601 *
4a0d11fa
NB
3602 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3603 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3604 * in this situation.
3605 *
1da177e4
LT
3606 * Notes:
3607 * - we don't move root/cwd if they are not at the root (reason: if something
3608 * cared enough to change them, it's probably wrong to force them elsewhere)
3609 * - it's okay to pick a root that isn't the root of a file system, e.g.
3610 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3611 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3612 * first.
3613 */
3480b257
HC
3614SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3615 const char __user *, put_old)
1da177e4 3616{
2763d119
AV
3617 struct path new, old, root;
3618 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3619 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3620 int error;
3621
9b40bc90 3622 if (!may_mount())
1da177e4
LT
3623 return -EPERM;
3624
ce6595a2
AV
3625 error = user_path_at(AT_FDCWD, new_root,
3626 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3627 if (error)
3628 goto out0;
1da177e4 3629
ce6595a2
AV
3630 error = user_path_at(AT_FDCWD, put_old,
3631 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3632 if (error)
3633 goto out1;
3634
2d8f3038 3635 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3636 if (error)
3637 goto out2;
1da177e4 3638
f7ad3c6b 3639 get_fs_root(current->fs, &root);
84d17192
AV
3640 old_mp = lock_mount(&old);
3641 error = PTR_ERR(old_mp);
3642 if (IS_ERR(old_mp))
b12cea91
AV
3643 goto out3;
3644
1da177e4 3645 error = -EINVAL;
419148da
AV
3646 new_mnt = real_mount(new.mnt);
3647 root_mnt = real_mount(root.mnt);
84d17192 3648 old_mnt = real_mount(old.mnt);
2763d119
AV
3649 ex_parent = new_mnt->mnt_parent;
3650 root_parent = root_mnt->mnt_parent;
84d17192 3651 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3652 IS_MNT_SHARED(ex_parent) ||
3653 IS_MNT_SHARED(root_parent))
b12cea91 3654 goto out4;
143c8c91 3655 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3656 goto out4;
5ff9d8a6
EB
3657 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3658 goto out4;
1da177e4 3659 error = -ENOENT;
f3da392e 3660 if (d_unlinked(new.dentry))
b12cea91 3661 goto out4;
1da177e4 3662 error = -EBUSY;
84d17192 3663 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3664 goto out4; /* loop, on the same file system */
1da177e4 3665 error = -EINVAL;
8c3ee42e 3666 if (root.mnt->mnt_root != root.dentry)
b12cea91 3667 goto out4; /* not a mountpoint */
676da58d 3668 if (!mnt_has_parent(root_mnt))
b12cea91 3669 goto out4; /* not attached */
2d8f3038 3670 if (new.mnt->mnt_root != new.dentry)
b12cea91 3671 goto out4; /* not a mountpoint */
676da58d 3672 if (!mnt_has_parent(new_mnt))
b12cea91 3673 goto out4; /* not attached */
4ac91378 3674 /* make sure we can reach put_old from new_root */
84d17192 3675 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3676 goto out4;
0d082601
EB
3677 /* make certain new is below the root */
3678 if (!is_path_reachable(new_mnt, new.dentry, &root))
3679 goto out4;
719ea2fb 3680 lock_mount_hash();
2763d119
AV
3681 umount_mnt(new_mnt);
3682 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3683 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3684 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3685 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3686 }
4ac91378 3687 /* mount old root on put_old */
84d17192 3688 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3689 /* mount new_root on / */
2763d119
AV
3690 attach_mnt(new_mnt, root_parent, root_mp);
3691 mnt_add_count(root_parent, -1);
6b3286ed 3692 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3693 /* A moved mount should not expire automatically */
3694 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3695 put_mountpoint(root_mp);
719ea2fb 3696 unlock_mount_hash();
2d8f3038 3697 chroot_fs_refs(&root, &new);
1da177e4 3698 error = 0;
b12cea91 3699out4:
84d17192 3700 unlock_mount(old_mp);
2763d119
AV
3701 if (!error)
3702 mntput_no_expire(ex_parent);
b12cea91 3703out3:
8c3ee42e 3704 path_put(&root);
b12cea91 3705out2:
2d8f3038 3706 path_put(&old);
1da177e4 3707out1:
2d8f3038 3708 path_put(&new);
1da177e4 3709out0:
1da177e4 3710 return error;
1da177e4
LT
3711}
3712
3713static void __init init_mount_tree(void)
3714{
3715 struct vfsmount *mnt;
74e83122 3716 struct mount *m;
6b3286ed 3717 struct mnt_namespace *ns;
ac748a09 3718 struct path root;
1da177e4 3719
fd3e007f 3720 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
3721 if (IS_ERR(mnt))
3722 panic("Can't create rootfs");
b3e19d92 3723
74e83122 3724 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3725 if (IS_ERR(ns))
1da177e4 3726 panic("Can't allocate initial namespace");
74e83122
AV
3727 m = real_mount(mnt);
3728 m->mnt_ns = ns;
3729 ns->root = m;
3730 ns->mounts = 1;
3731 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3732 init_task.nsproxy->mnt_ns = ns;
3733 get_mnt_ns(ns);
3734
be08d6d2
AV
3735 root.mnt = mnt;
3736 root.dentry = mnt->mnt_root;
da362b09 3737 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3738
3739 set_fs_pwd(current->fs, &root);
3740 set_fs_root(current->fs, &root);
1da177e4
LT
3741}
3742
74bf17cf 3743void __init mnt_init(void)
1da177e4 3744{
15a67dd8 3745 int err;
1da177e4 3746
7d6fec45 3747 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3748 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3749
0818bf27 3750 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3751 sizeof(struct hlist_head),
0818bf27 3752 mhash_entries, 19,
3d375d78 3753 HASH_ZERO,
0818bf27
AV
3754 &m_hash_shift, &m_hash_mask, 0, 0);
3755 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3756 sizeof(struct hlist_head),
3757 mphash_entries, 19,
3d375d78 3758 HASH_ZERO,
0818bf27 3759 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3760
84d17192 3761 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3762 panic("Failed to allocate mount hash table\n");
3763
4b93dc9b
TH
3764 kernfs_init();
3765
15a67dd8
RD
3766 err = sysfs_init();
3767 if (err)
3768 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3769 __func__, err);
00d26666
GKH
3770 fs_kobj = kobject_create_and_add("fs", NULL);
3771 if (!fs_kobj)
8e24eea7 3772 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 3773 shmem_init();
1da177e4
LT
3774 init_rootfs();
3775 init_mount_tree();
3776}
3777
616511d0 3778void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3779{
d498b25a 3780 if (!atomic_dec_and_test(&ns->count))
616511d0 3781 return;
7b00ed6f 3782 drop_collected_mounts(&ns->root->mnt);
771b1371 3783 free_mnt_ns(ns);
1da177e4 3784}
9d412a43 3785
d911b458 3786struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3787{
423e0ab0 3788 struct vfsmount *mnt;
d911b458 3789 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3790 if (!IS_ERR(mnt)) {
3791 /*
3792 * it is a longterm mount, don't release mnt until
3793 * we unmount before file sys is unregistered
3794 */
f7a99c5b 3795 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3796 }
3797 return mnt;
9d412a43 3798}
d911b458 3799EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3800
3801void kern_unmount(struct vfsmount *mnt)
3802{
3803 /* release long term mount so mount point can be released */
3804 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3805 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3806 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3807 mntput(mnt);
3808 }
3809}
3810EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3811
3812bool our_mnt(struct vfsmount *mnt)
3813{
143c8c91 3814 return check_mnt(real_mount(mnt));
02125a82 3815}
8823c079 3816
3151527e
EB
3817bool current_chrooted(void)
3818{
3819 /* Does the current process have a non-standard root */
3820 struct path ns_root;
3821 struct path fs_root;
3822 bool chrooted;
3823
3824 /* Find the namespace root */
3825 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3826 ns_root.dentry = ns_root.mnt->mnt_root;
3827 path_get(&ns_root);
3828 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3829 ;
3830
3831 get_fs_root(current->fs, &fs_root);
3832
3833 chrooted = !path_equal(&fs_root, &ns_root);
3834
3835 path_put(&fs_root);
3836 path_put(&ns_root);
3837
3838 return chrooted;
3839}
3840
132e4608
DH
3841static bool mnt_already_visible(struct mnt_namespace *ns,
3842 const struct super_block *sb,
8654df4e 3843 int *new_mnt_flags)
87a8ebd6 3844{
8c6cf9cc 3845 int new_flags = *new_mnt_flags;
87a8ebd6 3846 struct mount *mnt;
e51db735 3847 bool visible = false;
87a8ebd6 3848
44bb4385 3849 down_read(&namespace_sem);
87a8ebd6 3850 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3851 struct mount *child;
77b1a97d
EB
3852 int mnt_flags;
3853
132e4608 3854 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3855 continue;
3856
7e96c1b0
EB
3857 /* This mount is not fully visible if it's root directory
3858 * is not the root directory of the filesystem.
3859 */
3860 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3861 continue;
3862
a1935c17 3863 /* A local view of the mount flags */
77b1a97d 3864 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3865
695e9df0 3866 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3867 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3868 mnt_flags |= MNT_LOCK_READONLY;
3869
8c6cf9cc
EB
3870 /* Verify the mount flags are equal to or more permissive
3871 * than the proposed new mount.
3872 */
77b1a97d 3873 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3874 !(new_flags & MNT_READONLY))
3875 continue;
77b1a97d
EB
3876 if ((mnt_flags & MNT_LOCK_ATIME) &&
3877 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3878 continue;
3879
ceeb0e5d
EB
3880 /* This mount is not fully visible if there are any
3881 * locked child mounts that cover anything except for
3882 * empty directories.
e51db735
EB
3883 */
3884 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3885 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3886 /* Only worry about locked mounts */
d71ed6c9 3887 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3888 continue;
7236c85e
EB
3889 /* Is the directory permanetly empty? */
3890 if (!is_empty_dir_inode(inode))
e51db735 3891 goto next;
87a8ebd6 3892 }
8c6cf9cc 3893 /* Preserve the locked attributes */
77b1a97d 3894 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3895 MNT_LOCK_ATIME);
e51db735
EB
3896 visible = true;
3897 goto found;
3898 next: ;
87a8ebd6 3899 }
e51db735 3900found:
44bb4385 3901 up_read(&namespace_sem);
e51db735 3902 return visible;
87a8ebd6
EB
3903}
3904
132e4608 3905static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3906{
a1935c17 3907 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3908 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3909 unsigned long s_iflags;
3910
3911 if (ns->user_ns == &init_user_ns)
3912 return false;
3913
3914 /* Can this filesystem be too revealing? */
132e4608 3915 s_iflags = sb->s_iflags;
8654df4e
EB
3916 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3917 return false;
3918
a1935c17
EB
3919 if ((s_iflags & required_iflags) != required_iflags) {
3920 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3921 required_iflags);
3922 return true;
3923 }
3924
132e4608 3925 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3926}
3927
380cf5ba
AL
3928bool mnt_may_suid(struct vfsmount *mnt)
3929{
3930 /*
3931 * Foreign mounts (accessed via fchdir or through /proc
3932 * symlinks) are always treated as if they are nosuid. This
3933 * prevents namespaces from trusting potentially unsafe
3934 * suid/sgid bits, file caps, or security labels that originate
3935 * in other namespaces.
3936 */
3937 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3938 current_in_userns(mnt->mnt_sb->s_user_ns);
3939}
3940
64964528 3941static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3942{
58be2825 3943 struct ns_common *ns = NULL;
8823c079
EB
3944 struct nsproxy *nsproxy;
3945
728dba3a
EB
3946 task_lock(task);
3947 nsproxy = task->nsproxy;
8823c079 3948 if (nsproxy) {
58be2825
AV
3949 ns = &nsproxy->mnt_ns->ns;
3950 get_mnt_ns(to_mnt_ns(ns));
8823c079 3951 }
728dba3a 3952 task_unlock(task);
8823c079
EB
3953
3954 return ns;
3955}
3956
64964528 3957static void mntns_put(struct ns_common *ns)
8823c079 3958{
58be2825 3959 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3960}
3961
f2a8d52e 3962static int mntns_install(struct nsset *nsset, struct ns_common *ns)
8823c079 3963{
f2a8d52e
CB
3964 struct nsproxy *nsproxy = nsset->nsproxy;
3965 struct fs_struct *fs = nsset->fs;
4f757f3c 3966 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
f2a8d52e 3967 struct user_namespace *user_ns = nsset->cred->user_ns;
8823c079 3968 struct path root;
4f757f3c 3969 int err;
8823c079 3970
0c55cfc4 3971 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e
CB
3972 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
3973 !ns_capable(user_ns, CAP_SYS_ADMIN))
ae11e0f1 3974 return -EPERM;
8823c079 3975
74e83122
AV
3976 if (is_anon_ns(mnt_ns))
3977 return -EINVAL;
3978
8823c079
EB
3979 if (fs->users != 1)
3980 return -EINVAL;
3981
3982 get_mnt_ns(mnt_ns);
4f757f3c 3983 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3984 nsproxy->mnt_ns = mnt_ns;
3985
3986 /* Find the root */
4f757f3c
AV
3987 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3988 "/", LOOKUP_DOWN, &root);
3989 if (err) {
3990 /* revert to old namespace */
3991 nsproxy->mnt_ns = old_mnt_ns;
3992 put_mnt_ns(mnt_ns);
3993 return err;
3994 }
8823c079 3995
4068367c
AV
3996 put_mnt_ns(old_mnt_ns);
3997
8823c079
EB
3998 /* Update the pwd and root */
3999 set_fs_pwd(fs, &root);
4000 set_fs_root(fs, &root);
4001
4002 path_put(&root);
4003 return 0;
4004}
4005
bcac25a5
AV
4006static struct user_namespace *mntns_owner(struct ns_common *ns)
4007{
4008 return to_mnt_ns(ns)->user_ns;
4009}
4010
8823c079
EB
4011const struct proc_ns_operations mntns_operations = {
4012 .name = "mnt",
4013 .type = CLONE_NEWNS,
4014 .get = mntns_get,
4015 .put = mntns_put,
4016 .install = mntns_install,
bcac25a5 4017 .owner = mntns_owner,
8823c079 4018};