]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
fs: add mount_setattr()
[people/ms/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
2a186721
CB
76struct mount_kattr {
77 unsigned int attr_set;
78 unsigned int attr_clr;
79 unsigned int propagation;
80 unsigned int lookup_flags;
81 bool recurse;
82};
83
f87fd4c2 84/* /sys/fs */
00d26666
GKH
85struct kobject *fs_kobj;
86EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 87
99b7db7b
NP
88/*
89 * vfsmount lock may be taken for read to prevent changes to the
90 * vfsmount hash, ie. during mountpoint lookups or walking back
91 * up the tree.
92 *
93 * It should be taken for write in all cases where the vfsmount
94 * tree or hash is modified or when a vfsmount structure is modified.
95 */
48a066e7 96__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 97
d033cb67
CB
98static inline void lock_mount_hash(void)
99{
100 write_seqlock(&mount_lock);
101}
102
103static inline void unlock_mount_hash(void)
104{
105 write_sequnlock(&mount_lock);
106}
107
38129a13 108static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 109{
b58fed8b
RP
110 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
111 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
112 tmp = tmp + (tmp >> m_hash_shift);
113 return &mount_hashtable[tmp & m_hash_mask];
114}
115
116static inline struct hlist_head *mp_hash(struct dentry *dentry)
117{
118 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
119 tmp = tmp + (tmp >> mp_hash_shift);
120 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
121}
122
b105e270 123static int mnt_alloc_id(struct mount *mnt)
73cd49ec 124{
169b480e
MW
125 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_id = res;
130 return 0;
73cd49ec
MS
131}
132
b105e270 133static void mnt_free_id(struct mount *mnt)
73cd49ec 134{
169b480e 135 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
136}
137
719f5d7f
MS
138/*
139 * Allocate a new peer group ID
719f5d7f 140 */
4b8b21f4 141static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 142{
169b480e 143 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 144
169b480e
MW
145 if (res < 0)
146 return res;
147 mnt->mnt_group_id = res;
148 return 0;
719f5d7f
MS
149}
150
151/*
152 * Release a peer group ID
153 */
4b8b21f4 154void mnt_release_group_id(struct mount *mnt)
719f5d7f 155{
169b480e 156 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
edf7ddbf 177int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
edf7ddbf 180 int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
fcc139ae 204 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 229 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 230 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
a6435940 231 mnt->mnt.mnt_userns = &init_user_ns;
1da177e4 232 }
c63181e6 233 return mnt;
88b38782 234
d3ef3d73
NP
235#ifdef CONFIG_SMP
236out_free_devname:
fcc139ae 237 kfree_const(mnt->mnt_devname);
d3ef3d73 238#endif
88b38782 239out_free_id:
c63181e6 240 mnt_free_id(mnt);
88b38782 241out_free_cache:
c63181e6 242 kmem_cache_free(mnt_cache, mnt);
88b38782 243 return NULL;
1da177e4
LT
244}
245
3d733633
DH
246/*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254/*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
43f5e655 265bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 266{
43f5e655 267 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
268}
269EXPORT_SYMBOL_GPL(__mnt_is_readonly);
270
83adc753 271static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
272{
273#ifdef CONFIG_SMP
68e8a9fe 274 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 275#else
68e8a9fe 276 mnt->mnt_writers++;
d3ef3d73
NP
277#endif
278}
3d733633 279
83adc753 280static inline void mnt_dec_writers(struct mount *mnt)
3d733633 281{
d3ef3d73 282#ifdef CONFIG_SMP
68e8a9fe 283 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 284#else
68e8a9fe 285 mnt->mnt_writers--;
d3ef3d73 286#endif
3d733633 287}
3d733633 288
83adc753 289static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 290{
d3ef3d73
NP
291#ifdef CONFIG_SMP
292 unsigned int count = 0;
3d733633 293 int cpu;
3d733633
DH
294
295 for_each_possible_cpu(cpu) {
68e8a9fe 296 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 297 }
3d733633 298
d3ef3d73
NP
299 return count;
300#else
301 return mnt->mnt_writers;
302#endif
3d733633
DH
303}
304
4ed5e82f
MS
305static int mnt_is_readonly(struct vfsmount *mnt)
306{
307 if (mnt->mnt_sb->s_readonly_remount)
308 return 1;
309 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
310 smp_rmb();
311 return __mnt_is_readonly(mnt);
312}
313
8366025e 314/*
eb04c282
JK
315 * Most r/o & frozen checks on a fs are for operations that take discrete
316 * amounts of time, like a write() or unlink(). We must keep track of when
317 * those operations start (for permission checks) and when they end, so that we
318 * can determine when writes are able to occur to a filesystem.
8366025e
DH
319 */
320/**
eb04c282 321 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 322 * @m: the mount on which to take a write
8366025e 323 *
eb04c282
JK
324 * This tells the low-level filesystem that a write is about to be performed to
325 * it, and makes sure that writes are allowed (mnt it read-write) before
326 * returning success. This operation does not protect against filesystem being
327 * frozen. When the write operation is finished, __mnt_drop_write() must be
328 * called. This is effectively a refcount.
8366025e 329 */
eb04c282 330int __mnt_want_write(struct vfsmount *m)
8366025e 331{
83adc753 332 struct mount *mnt = real_mount(m);
3d733633 333 int ret = 0;
3d733633 334
d3ef3d73 335 preempt_disable();
c6653a83 336 mnt_inc_writers(mnt);
d3ef3d73 337 /*
c6653a83 338 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
339 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
340 * incremented count after it has set MNT_WRITE_HOLD.
341 */
342 smp_mb();
6aa7de05 343 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
344 cpu_relax();
345 /*
346 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
347 * be set to match its requirements. So we must not load that until
348 * MNT_WRITE_HOLD is cleared.
349 */
350 smp_rmb();
4ed5e82f 351 if (mnt_is_readonly(m)) {
c6653a83 352 mnt_dec_writers(mnt);
3d733633 353 ret = -EROFS;
3d733633 354 }
d3ef3d73 355 preempt_enable();
eb04c282
JK
356
357 return ret;
358}
359
360/**
361 * mnt_want_write - get write access to a mount
362 * @m: the mount on which to take a write
363 *
364 * This tells the low-level filesystem that a write is about to be performed to
365 * it, and makes sure that writes are allowed (mount is read-write, filesystem
366 * is not frozen) before returning success. When the write operation is
367 * finished, mnt_drop_write() must be called. This is effectively a refcount.
368 */
369int mnt_want_write(struct vfsmount *m)
370{
371 int ret;
372
373 sb_start_write(m->mnt_sb);
374 ret = __mnt_want_write(m);
375 if (ret)
376 sb_end_write(m->mnt_sb);
3d733633 377 return ret;
8366025e
DH
378}
379EXPORT_SYMBOL_GPL(mnt_want_write);
380
96029c4e
NP
381/**
382 * mnt_clone_write - get write access to a mount
383 * @mnt: the mount on which to take a write
384 *
385 * This is effectively like mnt_want_write, except
386 * it must only be used to take an extra write reference
387 * on a mountpoint that we already know has a write reference
388 * on it. This allows some optimisation.
389 *
390 * After finished, mnt_drop_write must be called as usual to
391 * drop the reference.
392 */
393int mnt_clone_write(struct vfsmount *mnt)
394{
395 /* superblock may be r/o */
396 if (__mnt_is_readonly(mnt))
397 return -EROFS;
398 preempt_disable();
83adc753 399 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
400 preempt_enable();
401 return 0;
402}
403EXPORT_SYMBOL_GPL(mnt_clone_write);
404
405/**
eb04c282 406 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
407 * @file: the file who's mount on which to take a write
408 *
eb04c282 409 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
410 * do some optimisations if the file is open for write already
411 */
eb04c282 412int __mnt_want_write_file(struct file *file)
96029c4e 413{
83f936c7 414 if (!(file->f_mode & FMODE_WRITER))
eb04c282 415 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
416 else
417 return mnt_clone_write(file->f_path.mnt);
418}
eb04c282 419
7c6893e3
MS
420/**
421 * mnt_want_write_file - get write access to a file's mount
422 * @file: the file who's mount on which to take a write
423 *
424 * This is like mnt_want_write, but it takes a file and can
425 * do some optimisations if the file is open for write already
7c6893e3
MS
426 */
427int mnt_want_write_file(struct file *file)
428{
429 int ret;
430
a6795a58 431 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
432 ret = __mnt_want_write_file(file);
433 if (ret)
a6795a58 434 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
435 return ret;
436}
96029c4e
NP
437EXPORT_SYMBOL_GPL(mnt_want_write_file);
438
8366025e 439/**
eb04c282 440 * __mnt_drop_write - give up write access to a mount
8366025e
DH
441 * @mnt: the mount on which to give up write access
442 *
443 * Tells the low-level filesystem that we are done
444 * performing writes to it. Must be matched with
eb04c282 445 * __mnt_want_write() call above.
8366025e 446 */
eb04c282 447void __mnt_drop_write(struct vfsmount *mnt)
8366025e 448{
d3ef3d73 449 preempt_disable();
83adc753 450 mnt_dec_writers(real_mount(mnt));
d3ef3d73 451 preempt_enable();
8366025e 452}
eb04c282
JK
453
454/**
455 * mnt_drop_write - give up write access to a mount
456 * @mnt: the mount on which to give up write access
457 *
458 * Tells the low-level filesystem that we are done performing writes to it and
459 * also allows filesystem to be frozen again. Must be matched with
460 * mnt_want_write() call above.
461 */
462void mnt_drop_write(struct vfsmount *mnt)
463{
464 __mnt_drop_write(mnt);
465 sb_end_write(mnt->mnt_sb);
466}
8366025e
DH
467EXPORT_SYMBOL_GPL(mnt_drop_write);
468
eb04c282
JK
469void __mnt_drop_write_file(struct file *file)
470{
471 __mnt_drop_write(file->f_path.mnt);
472}
473
7c6893e3
MS
474void mnt_drop_write_file(struct file *file)
475{
a6795a58 476 __mnt_drop_write_file(file);
7c6893e3
MS
477 sb_end_write(file_inode(file)->i_sb);
478}
2a79f17e
AV
479EXPORT_SYMBOL(mnt_drop_write_file);
480
fbdc2f6c 481static inline int mnt_hold_writers(struct mount *mnt)
8366025e 482{
83adc753 483 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 484 /*
d3ef3d73
NP
485 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
486 * should be visible before we do.
3d733633 487 */
d3ef3d73
NP
488 smp_mb();
489
3d733633 490 /*
d3ef3d73
NP
491 * With writers on hold, if this value is zero, then there are
492 * definitely no active writers (although held writers may subsequently
493 * increment the count, they'll have to wait, and decrement it after
494 * seeing MNT_READONLY).
495 *
496 * It is OK to have counter incremented on one CPU and decremented on
497 * another: the sum will add up correctly. The danger would be when we
498 * sum up each counter, if we read a counter before it is incremented,
499 * but then read another CPU's count which it has been subsequently
500 * decremented from -- we would see more decrements than we should.
501 * MNT_WRITE_HOLD protects against this scenario, because
502 * mnt_want_write first increments count, then smp_mb, then spins on
503 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
504 * we're counting up here.
3d733633 505 */
c6653a83 506 if (mnt_get_writers(mnt) > 0)
fbdc2f6c
CB
507 return -EBUSY;
508
509 return 0;
510}
511
512static inline void mnt_unhold_writers(struct mount *mnt)
513{
d3ef3d73
NP
514 /*
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
517 */
518 smp_wmb();
83adc753 519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
fbdc2f6c
CB
520}
521
522static int mnt_make_readonly(struct mount *mnt)
523{
524 int ret;
525
526 ret = mnt_hold_writers(mnt);
527 if (!ret)
528 mnt->mnt.mnt_flags |= MNT_READONLY;
529 mnt_unhold_writers(mnt);
3d733633 530 return ret;
8366025e 531}
8366025e 532
4ed5e82f
MS
533int sb_prepare_remount_readonly(struct super_block *sb)
534{
535 struct mount *mnt;
536 int err = 0;
537
8e8b8796
MS
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
719ea2fb 542 lock_mount_hash();
4ed5e82f
MS
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
8e8b8796
MS
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
4ed5e82f
MS
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
719ea2fb 564 unlock_mount_hash();
4ed5e82f
MS
565
566 return err;
567}
568
b105e270 569static void free_vfsmnt(struct mount *mnt)
1da177e4 570{
a6435940
CB
571 struct user_namespace *mnt_userns;
572
573 mnt_userns = mnt_user_ns(&mnt->mnt);
574 if (mnt_userns != &init_user_ns)
575 put_user_ns(mnt_userns);
fcc139ae 576 kfree_const(mnt->mnt_devname);
d3ef3d73 577#ifdef CONFIG_SMP
68e8a9fe 578 free_percpu(mnt->mnt_pcp);
d3ef3d73 579#endif
b105e270 580 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
581}
582
8ffcb32e
DH
583static void delayed_free_vfsmnt(struct rcu_head *head)
584{
585 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
586}
587
48a066e7 588/* call under rcu_read_lock */
294d71ff 589int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
590{
591 struct mount *mnt;
592 if (read_seqretry(&mount_lock, seq))
294d71ff 593 return 1;
48a066e7 594 if (bastard == NULL)
294d71ff 595 return 0;
48a066e7
AV
596 mnt = real_mount(bastard);
597 mnt_add_count(mnt, 1);
119e1ef8 598 smp_mb(); // see mntput_no_expire()
48a066e7 599 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 600 return 0;
48a066e7
AV
601 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
602 mnt_add_count(mnt, -1);
294d71ff
AV
603 return 1;
604 }
119e1ef8
AV
605 lock_mount_hash();
606 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
607 mnt_add_count(mnt, -1);
608 unlock_mount_hash();
609 return 1;
610 }
611 unlock_mount_hash();
612 /* caller will mntput() */
294d71ff
AV
613 return -1;
614}
615
616/* call under rcu_read_lock */
617bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
618{
619 int res = __legitimize_mnt(bastard, seq);
620 if (likely(!res))
621 return true;
622 if (unlikely(res < 0)) {
623 rcu_read_unlock();
624 mntput(bastard);
625 rcu_read_lock();
48a066e7 626 }
48a066e7
AV
627 return false;
628}
629
1da177e4 630/*
474279dc 631 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 632 * call under rcu_read_lock()
1da177e4 633 */
474279dc 634struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 635{
38129a13 636 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
637 struct mount *p;
638
38129a13 639 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
640 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
641 return p;
642 return NULL;
643}
644
a05964f3 645/*
f015f126
DH
646 * lookup_mnt - Return the first child mount mounted at path
647 *
648 * "First" means first mounted chronologically. If you create the
649 * following mounts:
650 *
651 * mount /dev/sda1 /mnt
652 * mount /dev/sda2 /mnt
653 * mount /dev/sda3 /mnt
654 *
655 * Then lookup_mnt() on the base /mnt dentry in the root mount will
656 * return successively the root dentry and vfsmount of /dev/sda1, then
657 * /dev/sda2, then /dev/sda3, then NULL.
658 *
659 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 660 */
ca71cf71 661struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 662{
c7105365 663 struct mount *child_mnt;
48a066e7
AV
664 struct vfsmount *m;
665 unsigned seq;
99b7db7b 666
48a066e7
AV
667 rcu_read_lock();
668 do {
669 seq = read_seqbegin(&mount_lock);
670 child_mnt = __lookup_mnt(path->mnt, path->dentry);
671 m = child_mnt ? &child_mnt->mnt : NULL;
672 } while (!legitimize_mnt(m, seq));
673 rcu_read_unlock();
674 return m;
a05964f3
RP
675}
676
9f6c61f9
MS
677static inline void lock_ns_list(struct mnt_namespace *ns)
678{
679 spin_lock(&ns->ns_lock);
680}
681
682static inline void unlock_ns_list(struct mnt_namespace *ns)
683{
684 spin_unlock(&ns->ns_lock);
685}
686
687static inline bool mnt_is_cursor(struct mount *mnt)
688{
689 return mnt->mnt.mnt_flags & MNT_CURSOR;
690}
691
7af1364f
EB
692/*
693 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
694 * current mount namespace.
695 *
696 * The common case is dentries are not mountpoints at all and that
697 * test is handled inline. For the slow case when we are actually
698 * dealing with a mountpoint of some kind, walk through all of the
699 * mounts in the current mount namespace and test to see if the dentry
700 * is a mountpoint.
701 *
702 * The mount_hashtable is not usable in the context because we
703 * need to identify all mounts that may be in the current mount
704 * namespace not just a mount that happens to have some specified
705 * parent mount.
706 */
707bool __is_local_mountpoint(struct dentry *dentry)
708{
709 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
710 struct mount *mnt;
711 bool is_covered = false;
712
7af1364f 713 down_read(&namespace_sem);
9f6c61f9 714 lock_ns_list(ns);
7af1364f 715 list_for_each_entry(mnt, &ns->list, mnt_list) {
9f6c61f9
MS
716 if (mnt_is_cursor(mnt))
717 continue;
7af1364f
EB
718 is_covered = (mnt->mnt_mountpoint == dentry);
719 if (is_covered)
720 break;
721 }
9f6c61f9 722 unlock_ns_list(ns);
7af1364f 723 up_read(&namespace_sem);
5ad05cc8 724
7af1364f
EB
725 return is_covered;
726}
727
e2dfa935 728static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 729{
0818bf27 730 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
731 struct mountpoint *mp;
732
0818bf27 733 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 734 if (mp->m_dentry == dentry) {
84d17192
AV
735 mp->m_count++;
736 return mp;
737 }
738 }
e2dfa935
EB
739 return NULL;
740}
741
3895dbf8 742static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 743{
3895dbf8 744 struct mountpoint *mp, *new = NULL;
e2dfa935 745 int ret;
84d17192 746
3895dbf8 747 if (d_mountpoint(dentry)) {
1e9c75fb
BC
748 /* might be worth a WARN_ON() */
749 if (d_unlinked(dentry))
750 return ERR_PTR(-ENOENT);
3895dbf8
EB
751mountpoint:
752 read_seqlock_excl(&mount_lock);
753 mp = lookup_mountpoint(dentry);
754 read_sequnlock_excl(&mount_lock);
755 if (mp)
756 goto done;
757 }
758
759 if (!new)
760 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
761 if (!new)
84d17192
AV
762 return ERR_PTR(-ENOMEM);
763
3895dbf8
EB
764
765 /* Exactly one processes may set d_mounted */
eed81007 766 ret = d_set_mounted(dentry);
eed81007 767
3895dbf8
EB
768 /* Someone else set d_mounted? */
769 if (ret == -EBUSY)
770 goto mountpoint;
771
772 /* The dentry is not available as a mountpoint? */
773 mp = ERR_PTR(ret);
774 if (ret)
775 goto done;
776
777 /* Add the new mountpoint to the hash table */
778 read_seqlock_excl(&mount_lock);
4edbe133 779 new->m_dentry = dget(dentry);
3895dbf8
EB
780 new->m_count = 1;
781 hlist_add_head(&new->m_hash, mp_hash(dentry));
782 INIT_HLIST_HEAD(&new->m_list);
783 read_sequnlock_excl(&mount_lock);
784
785 mp = new;
786 new = NULL;
787done:
788 kfree(new);
84d17192
AV
789 return mp;
790}
791
4edbe133
AV
792/*
793 * vfsmount lock must be held. Additionally, the caller is responsible
794 * for serializing calls for given disposal list.
795 */
796static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
797{
798 if (!--mp->m_count) {
799 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 800 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
801 spin_lock(&dentry->d_lock);
802 dentry->d_flags &= ~DCACHE_MOUNTED;
803 spin_unlock(&dentry->d_lock);
4edbe133 804 dput_to_list(dentry, list);
0818bf27 805 hlist_del(&mp->m_hash);
84d17192
AV
806 kfree(mp);
807 }
808}
809
4edbe133
AV
810/* called with namespace_lock and vfsmount lock */
811static void put_mountpoint(struct mountpoint *mp)
812{
813 __put_mountpoint(mp, &ex_mountpoints);
814}
815
143c8c91 816static inline int check_mnt(struct mount *mnt)
1da177e4 817{
6b3286ed 818 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
819}
820
99b7db7b
NP
821/*
822 * vfsmount lock must be held for write
823 */
6b3286ed 824static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
825{
826 if (ns) {
827 ns->event = ++event;
828 wake_up_interruptible(&ns->poll);
829 }
830}
831
99b7db7b
NP
832/*
833 * vfsmount lock must be held for write
834 */
6b3286ed 835static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
836{
837 if (ns && ns->event != event) {
838 ns->event = event;
839 wake_up_interruptible(&ns->poll);
840 }
841}
842
99b7db7b
NP
843/*
844 * vfsmount lock must be held for write
845 */
e4e59906 846static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 847{
e4e59906 848 struct mountpoint *mp;
0714a533 849 mnt->mnt_parent = mnt;
a73324da 850 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 851 list_del_init(&mnt->mnt_child);
38129a13 852 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 853 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 854 mp = mnt->mnt_mp;
84d17192 855 mnt->mnt_mp = NULL;
e4e59906 856 return mp;
7bdb11de
EB
857}
858
6a46c573
EB
859/*
860 * vfsmount lock must be held for write
861 */
862static void umount_mnt(struct mount *mnt)
863{
e4e59906 864 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
865}
866
99b7db7b
NP
867/*
868 * vfsmount lock must be held for write
869 */
84d17192
AV
870void mnt_set_mountpoint(struct mount *mnt,
871 struct mountpoint *mp,
44d964d6 872 struct mount *child_mnt)
b90fa9ae 873{
84d17192 874 mp->m_count++;
3a2393d7 875 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 876 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 877 child_mnt->mnt_parent = mnt;
84d17192 878 child_mnt->mnt_mp = mp;
0a5eb7c8 879 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
880}
881
1064f874
EB
882static void __attach_mnt(struct mount *mnt, struct mount *parent)
883{
884 hlist_add_head_rcu(&mnt->mnt_hash,
885 m_hash(&parent->mnt, mnt->mnt_mountpoint));
886 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
887}
888
99b7db7b
NP
889/*
890 * vfsmount lock must be held for write
891 */
84d17192
AV
892static void attach_mnt(struct mount *mnt,
893 struct mount *parent,
894 struct mountpoint *mp)
1da177e4 895{
84d17192 896 mnt_set_mountpoint(parent, mp, mnt);
1064f874 897 __attach_mnt(mnt, parent);
b90fa9ae
RP
898}
899
1064f874 900void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 901{
1064f874 902 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
903 struct mount *old_parent = mnt->mnt_parent;
904
905 list_del_init(&mnt->mnt_child);
906 hlist_del_init(&mnt->mnt_mp_list);
907 hlist_del_init_rcu(&mnt->mnt_hash);
908
909 attach_mnt(mnt, parent, mp);
910
911 put_mountpoint(old_mp);
1064f874 912 mnt_add_count(old_parent, -1);
12a5b529
AV
913}
914
b90fa9ae 915/*
99b7db7b 916 * vfsmount lock must be held for write
b90fa9ae 917 */
1064f874 918static void commit_tree(struct mount *mnt)
b90fa9ae 919{
0714a533 920 struct mount *parent = mnt->mnt_parent;
83adc753 921 struct mount *m;
b90fa9ae 922 LIST_HEAD(head);
143c8c91 923 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 924
0714a533 925 BUG_ON(parent == mnt);
b90fa9ae 926
1a4eeaf2 927 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 928 list_for_each_entry(m, &head, mnt_list)
143c8c91 929 m->mnt_ns = n;
f03c6599 930
b90fa9ae
RP
931 list_splice(&head, n->list.prev);
932
d2921684
EB
933 n->mounts += n->pending_mounts;
934 n->pending_mounts = 0;
935
1064f874 936 __attach_mnt(mnt, parent);
6b3286ed 937 touch_mnt_namespace(n);
1da177e4
LT
938}
939
909b0a88 940static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 941{
6b41d536
AV
942 struct list_head *next = p->mnt_mounts.next;
943 if (next == &p->mnt_mounts) {
1da177e4 944 while (1) {
909b0a88 945 if (p == root)
1da177e4 946 return NULL;
6b41d536
AV
947 next = p->mnt_child.next;
948 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 949 break;
0714a533 950 p = p->mnt_parent;
1da177e4
LT
951 }
952 }
6b41d536 953 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
954}
955
315fc83e 956static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 957{
6b41d536
AV
958 struct list_head *prev = p->mnt_mounts.prev;
959 while (prev != &p->mnt_mounts) {
960 p = list_entry(prev, struct mount, mnt_child);
961 prev = p->mnt_mounts.prev;
9676f0c6
RP
962 }
963 return p;
964}
965
8f291889
AV
966/**
967 * vfs_create_mount - Create a mount for a configured superblock
968 * @fc: The configuration context with the superblock attached
969 *
970 * Create a mount to an already configured superblock. If necessary, the
971 * caller should invoke vfs_get_tree() before calling this.
972 *
973 * Note that this does not attach the mount to anything.
974 */
975struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 976{
b105e270 977 struct mount *mnt;
9d412a43 978
8f291889
AV
979 if (!fc->root)
980 return ERR_PTR(-EINVAL);
9d412a43 981
8f291889 982 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
983 if (!mnt)
984 return ERR_PTR(-ENOMEM);
985
8f291889 986 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 987 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 988
8f291889
AV
989 atomic_inc(&fc->root->d_sb->s_active);
990 mnt->mnt.mnt_sb = fc->root->d_sb;
991 mnt->mnt.mnt_root = dget(fc->root);
992 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
993 mnt->mnt_parent = mnt;
9d412a43 994
719ea2fb 995 lock_mount_hash();
8f291889 996 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 997 unlock_mount_hash();
b105e270 998 return &mnt->mnt;
9d412a43 999}
8f291889
AV
1000EXPORT_SYMBOL(vfs_create_mount);
1001
1002struct vfsmount *fc_mount(struct fs_context *fc)
1003{
1004 int err = vfs_get_tree(fc);
1005 if (!err) {
1006 up_write(&fc->root->d_sb->s_umount);
1007 return vfs_create_mount(fc);
1008 }
1009 return ERR_PTR(err);
1010}
1011EXPORT_SYMBOL(fc_mount);
1012
9bc61ab1
DH
1013struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1014 int flags, const char *name,
1015 void *data)
9d412a43 1016{
9bc61ab1 1017 struct fs_context *fc;
8f291889 1018 struct vfsmount *mnt;
9bc61ab1 1019 int ret = 0;
9d412a43
AV
1020
1021 if (!type)
3e1aeb00 1022 return ERR_PTR(-EINVAL);
9d412a43 1023
9bc61ab1
DH
1024 fc = fs_context_for_mount(type, flags);
1025 if (IS_ERR(fc))
1026 return ERR_CAST(fc);
1027
3e1aeb00
DH
1028 if (name)
1029 ret = vfs_parse_fs_string(fc, "source",
1030 name, strlen(name));
9bc61ab1
DH
1031 if (!ret)
1032 ret = parse_monolithic_mount_data(fc, data);
1033 if (!ret)
8f291889
AV
1034 mnt = fc_mount(fc);
1035 else
1036 mnt = ERR_PTR(ret);
9d412a43 1037
9bc61ab1 1038 put_fs_context(fc);
8f291889 1039 return mnt;
9d412a43
AV
1040}
1041EXPORT_SYMBOL_GPL(vfs_kern_mount);
1042
93faccbb
EB
1043struct vfsmount *
1044vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1045 const char *name, void *data)
1046{
1047 /* Until it is worked out how to pass the user namespace
1048 * through from the parent mount to the submount don't support
1049 * unprivileged mounts with submounts.
1050 */
1051 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1052 return ERR_PTR(-EPERM);
1053
e462ec50 1054 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1055}
1056EXPORT_SYMBOL_GPL(vfs_submount);
1057
87129cc0 1058static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1059 int flag)
1da177e4 1060{
87129cc0 1061 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1062 struct mount *mnt;
1063 int err;
1da177e4 1064
be34d1a3
DH
1065 mnt = alloc_vfsmnt(old->mnt_devname);
1066 if (!mnt)
1067 return ERR_PTR(-ENOMEM);
719f5d7f 1068
7a472ef4 1069 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1070 mnt->mnt_group_id = 0; /* not a peer of original */
1071 else
1072 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1073
be34d1a3
DH
1074 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1075 err = mnt_alloc_group_id(mnt);
1076 if (err)
1077 goto out_free;
1da177e4 1078 }
be34d1a3 1079
16a34adb
AV
1080 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1081 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1082
be34d1a3 1083 atomic_inc(&sb->s_active);
a6435940
CB
1084 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1085 if (mnt->mnt.mnt_userns != &init_user_ns)
1086 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
be34d1a3
DH
1087 mnt->mnt.mnt_sb = sb;
1088 mnt->mnt.mnt_root = dget(root);
1089 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1090 mnt->mnt_parent = mnt;
719ea2fb 1091 lock_mount_hash();
be34d1a3 1092 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1093 unlock_mount_hash();
be34d1a3 1094
7a472ef4
EB
1095 if ((flag & CL_SLAVE) ||
1096 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1097 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1098 mnt->mnt_master = old;
1099 CLEAR_MNT_SHARED(mnt);
1100 } else if (!(flag & CL_PRIVATE)) {
1101 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1102 list_add(&mnt->mnt_share, &old->mnt_share);
1103 if (IS_MNT_SLAVE(old))
1104 list_add(&mnt->mnt_slave, &old->mnt_slave);
1105 mnt->mnt_master = old->mnt_master;
5235d448
AV
1106 } else {
1107 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1108 }
1109 if (flag & CL_MAKE_SHARED)
1110 set_mnt_shared(mnt);
1111
1112 /* stick the duplicate mount on the same expiry list
1113 * as the original if that was on one */
1114 if (flag & CL_EXPIRE) {
1115 if (!list_empty(&old->mnt_expire))
1116 list_add(&mnt->mnt_expire, &old->mnt_expire);
1117 }
1118
cb338d06 1119 return mnt;
719f5d7f
MS
1120
1121 out_free:
8ffcb32e 1122 mnt_free_id(mnt);
719f5d7f 1123 free_vfsmnt(mnt);
be34d1a3 1124 return ERR_PTR(err);
1da177e4
LT
1125}
1126
9ea459e1
AV
1127static void cleanup_mnt(struct mount *mnt)
1128{
56cbb429
AV
1129 struct hlist_node *p;
1130 struct mount *m;
9ea459e1 1131 /*
56cbb429
AV
1132 * The warning here probably indicates that somebody messed
1133 * up a mnt_want/drop_write() pair. If this happens, the
1134 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1135 * The locking used to deal with mnt_count decrement provides barriers,
1136 * so mnt_get_writers() below is safe.
1137 */
1138 WARN_ON(mnt_get_writers(mnt));
1139 if (unlikely(mnt->mnt_pins.first))
1140 mnt_pin_kill(mnt);
56cbb429
AV
1141 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1142 hlist_del(&m->mnt_umount);
1143 mntput(&m->mnt);
1144 }
9ea459e1
AV
1145 fsnotify_vfsmount_delete(&mnt->mnt);
1146 dput(mnt->mnt.mnt_root);
1147 deactivate_super(mnt->mnt.mnt_sb);
1148 mnt_free_id(mnt);
1149 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1150}
1151
1152static void __cleanup_mnt(struct rcu_head *head)
1153{
1154 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1155}
1156
1157static LLIST_HEAD(delayed_mntput_list);
1158static void delayed_mntput(struct work_struct *unused)
1159{
1160 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1161 struct mount *m, *t;
9ea459e1 1162
29785735
BP
1163 llist_for_each_entry_safe(m, t, node, mnt_llist)
1164 cleanup_mnt(m);
9ea459e1
AV
1165}
1166static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1167
900148dc 1168static void mntput_no_expire(struct mount *mnt)
b3e19d92 1169{
4edbe133 1170 LIST_HEAD(list);
edf7ddbf 1171 int count;
4edbe133 1172
48a066e7 1173 rcu_read_lock();
9ea0a46c
AV
1174 if (likely(READ_ONCE(mnt->mnt_ns))) {
1175 /*
1176 * Since we don't do lock_mount_hash() here,
1177 * ->mnt_ns can change under us. However, if it's
1178 * non-NULL, then there's a reference that won't
1179 * be dropped until after an RCU delay done after
1180 * turning ->mnt_ns NULL. So if we observe it
1181 * non-NULL under rcu_read_lock(), the reference
1182 * we are dropping is not the final one.
1183 */
1184 mnt_add_count(mnt, -1);
48a066e7 1185 rcu_read_unlock();
f03c6599 1186 return;
b3e19d92 1187 }
719ea2fb 1188 lock_mount_hash();
119e1ef8
AV
1189 /*
1190 * make sure that if __legitimize_mnt() has not seen us grab
1191 * mount_lock, we'll see their refcount increment here.
1192 */
1193 smp_mb();
9ea0a46c 1194 mnt_add_count(mnt, -1);
edf7ddbf
EB
1195 count = mnt_get_count(mnt);
1196 if (count != 0) {
1197 WARN_ON(count < 0);
48a066e7 1198 rcu_read_unlock();
719ea2fb 1199 unlock_mount_hash();
99b7db7b
NP
1200 return;
1201 }
48a066e7
AV
1202 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1203 rcu_read_unlock();
1204 unlock_mount_hash();
1205 return;
1206 }
1207 mnt->mnt.mnt_flags |= MNT_DOOMED;
1208 rcu_read_unlock();
962830df 1209
39f7c4db 1210 list_del(&mnt->mnt_instance);
ce07d891
EB
1211
1212 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1213 struct mount *p, *tmp;
1214 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1215 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1216 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1217 }
1218 }
719ea2fb 1219 unlock_mount_hash();
4edbe133 1220 shrink_dentry_list(&list);
649a795a 1221
9ea459e1
AV
1222 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1223 struct task_struct *task = current;
1224 if (likely(!(task->flags & PF_KTHREAD))) {
1225 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
91989c70 1226 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
9ea459e1
AV
1227 return;
1228 }
1229 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1230 schedule_delayed_work(&delayed_mntput_work, 1);
1231 return;
1232 }
1233 cleanup_mnt(mnt);
b3e19d92 1234}
b3e19d92
NP
1235
1236void mntput(struct vfsmount *mnt)
1237{
1238 if (mnt) {
863d684f 1239 struct mount *m = real_mount(mnt);
b3e19d92 1240 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1241 if (unlikely(m->mnt_expiry_mark))
1242 m->mnt_expiry_mark = 0;
1243 mntput_no_expire(m);
b3e19d92
NP
1244 }
1245}
1246EXPORT_SYMBOL(mntput);
1247
1248struct vfsmount *mntget(struct vfsmount *mnt)
1249{
1250 if (mnt)
83adc753 1251 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1252 return mnt;
1253}
1254EXPORT_SYMBOL(mntget);
1255
c6609c0a
IK
1256/* path_is_mountpoint() - Check if path is a mount in the current
1257 * namespace.
1258 *
1259 * d_mountpoint() can only be used reliably to establish if a dentry is
1260 * not mounted in any namespace and that common case is handled inline.
1261 * d_mountpoint() isn't aware of the possibility there may be multiple
1262 * mounts using a given dentry in a different namespace. This function
1263 * checks if the passed in path is a mountpoint rather than the dentry
1264 * alone.
1265 */
1266bool path_is_mountpoint(const struct path *path)
1267{
1268 unsigned seq;
1269 bool res;
1270
1271 if (!d_mountpoint(path->dentry))
1272 return false;
1273
1274 rcu_read_lock();
1275 do {
1276 seq = read_seqbegin(&mount_lock);
1277 res = __path_is_mountpoint(path);
1278 } while (read_seqretry(&mount_lock, seq));
1279 rcu_read_unlock();
1280
1281 return res;
1282}
1283EXPORT_SYMBOL(path_is_mountpoint);
1284
ca71cf71 1285struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1286{
3064c356
AV
1287 struct mount *p;
1288 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1289 if (IS_ERR(p))
1290 return ERR_CAST(p);
1291 p->mnt.mnt_flags |= MNT_INTERNAL;
1292 return &p->mnt;
7b7b1ace 1293}
1da177e4 1294
a1a2c409 1295#ifdef CONFIG_PROC_FS
9f6c61f9
MS
1296static struct mount *mnt_list_next(struct mnt_namespace *ns,
1297 struct list_head *p)
1298{
1299 struct mount *mnt, *ret = NULL;
1300
1301 lock_ns_list(ns);
1302 list_for_each_continue(p, &ns->list) {
1303 mnt = list_entry(p, typeof(*mnt), mnt_list);
1304 if (!mnt_is_cursor(mnt)) {
1305 ret = mnt;
1306 break;
1307 }
1308 }
1309 unlock_ns_list(ns);
1310
1311 return ret;
1312}
1313
0226f492 1314/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1315static void *m_start(struct seq_file *m, loff_t *pos)
1316{
ede1bf0d 1317 struct proc_mounts *p = m->private;
9f6c61f9 1318 struct list_head *prev;
1da177e4 1319
390c6843 1320 down_read(&namespace_sem);
9f6c61f9
MS
1321 if (!*pos) {
1322 prev = &p->ns->list;
1323 } else {
1324 prev = &p->cursor.mnt_list;
1325
1326 /* Read after we'd reached the end? */
1327 if (list_empty(prev))
1328 return NULL;
c7999c36
AV
1329 }
1330
9f6c61f9 1331 return mnt_list_next(p->ns, prev);
1da177e4
LT
1332}
1333
1334static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1335{
ede1bf0d 1336 struct proc_mounts *p = m->private;
9f6c61f9 1337 struct mount *mnt = v;
b0765fb8 1338
9f6c61f9
MS
1339 ++*pos;
1340 return mnt_list_next(p->ns, &mnt->mnt_list);
1da177e4
LT
1341}
1342
1343static void m_stop(struct seq_file *m, void *v)
1344{
9f6c61f9
MS
1345 struct proc_mounts *p = m->private;
1346 struct mount *mnt = v;
1347
1348 lock_ns_list(p->ns);
1349 if (mnt)
1350 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1351 else
1352 list_del_init(&p->cursor.mnt_list);
1353 unlock_ns_list(p->ns);
390c6843 1354 up_read(&namespace_sem);
1da177e4
LT
1355}
1356
0226f492 1357static int m_show(struct seq_file *m, void *v)
2d4d4864 1358{
ede1bf0d 1359 struct proc_mounts *p = m->private;
9f6c61f9 1360 struct mount *r = v;
0226f492 1361 return p->show(m, &r->mnt);
1da177e4
LT
1362}
1363
a1a2c409 1364const struct seq_operations mounts_op = {
1da177e4
LT
1365 .start = m_start,
1366 .next = m_next,
1367 .stop = m_stop,
0226f492 1368 .show = m_show,
b4629fe2 1369};
9f6c61f9
MS
1370
1371void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1372{
1373 down_read(&namespace_sem);
1374 lock_ns_list(ns);
1375 list_del(&cursor->mnt_list);
1376 unlock_ns_list(ns);
1377 up_read(&namespace_sem);
1378}
a1a2c409 1379#endif /* CONFIG_PROC_FS */
b4629fe2 1380
1da177e4
LT
1381/**
1382 * may_umount_tree - check if a mount tree is busy
1383 * @mnt: root of mount tree
1384 *
1385 * This is called to check if a tree of mounts has any
1386 * open files, pwds, chroots or sub mounts that are
1387 * busy.
1388 */
909b0a88 1389int may_umount_tree(struct vfsmount *m)
1da177e4 1390{
909b0a88 1391 struct mount *mnt = real_mount(m);
36341f64
RP
1392 int actual_refs = 0;
1393 int minimum_refs = 0;
315fc83e 1394 struct mount *p;
909b0a88 1395 BUG_ON(!m);
1da177e4 1396
b3e19d92 1397 /* write lock needed for mnt_get_count */
719ea2fb 1398 lock_mount_hash();
909b0a88 1399 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1400 actual_refs += mnt_get_count(p);
1da177e4 1401 minimum_refs += 2;
1da177e4 1402 }
719ea2fb 1403 unlock_mount_hash();
1da177e4
LT
1404
1405 if (actual_refs > minimum_refs)
e3474a8e 1406 return 0;
1da177e4 1407
e3474a8e 1408 return 1;
1da177e4
LT
1409}
1410
1411EXPORT_SYMBOL(may_umount_tree);
1412
1413/**
1414 * may_umount - check if a mount point is busy
1415 * @mnt: root of mount
1416 *
1417 * This is called to check if a mount point has any
1418 * open files, pwds, chroots or sub mounts. If the
1419 * mount has sub mounts this will return busy
1420 * regardless of whether the sub mounts are busy.
1421 *
1422 * Doesn't take quota and stuff into account. IOW, in some cases it will
1423 * give false negatives. The main reason why it's here is that we need
1424 * a non-destructive way to look for easily umountable filesystems.
1425 */
1426int may_umount(struct vfsmount *mnt)
1427{
e3474a8e 1428 int ret = 1;
8ad08d8a 1429 down_read(&namespace_sem);
719ea2fb 1430 lock_mount_hash();
1ab59738 1431 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1432 ret = 0;
719ea2fb 1433 unlock_mount_hash();
8ad08d8a 1434 up_read(&namespace_sem);
a05964f3 1435 return ret;
1da177e4
LT
1436}
1437
1438EXPORT_SYMBOL(may_umount);
1439
97216be0 1440static void namespace_unlock(void)
70fbcdf4 1441{
a3b3c562 1442 struct hlist_head head;
56cbb429
AV
1443 struct hlist_node *p;
1444 struct mount *m;
4edbe133 1445 LIST_HEAD(list);
97216be0 1446
a3b3c562 1447 hlist_move_list(&unmounted, &head);
4edbe133 1448 list_splice_init(&ex_mountpoints, &list);
97216be0 1449
97216be0
AV
1450 up_write(&namespace_sem);
1451
4edbe133
AV
1452 shrink_dentry_list(&list);
1453
a3b3c562
EB
1454 if (likely(hlist_empty(&head)))
1455 return;
1456
22cb7405 1457 synchronize_rcu_expedited();
48a066e7 1458
56cbb429
AV
1459 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1460 hlist_del(&m->mnt_umount);
1461 mntput(&m->mnt);
1462 }
70fbcdf4
RP
1463}
1464
97216be0 1465static inline void namespace_lock(void)
e3197d83 1466{
97216be0 1467 down_write(&namespace_sem);
e3197d83
AV
1468}
1469
e819f152
EB
1470enum umount_tree_flags {
1471 UMOUNT_SYNC = 1,
1472 UMOUNT_PROPAGATE = 2,
e0c9c0af 1473 UMOUNT_CONNECTED = 4,
e819f152 1474};
f2d0a123
EB
1475
1476static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1477{
1478 /* Leaving mounts connected is only valid for lazy umounts */
1479 if (how & UMOUNT_SYNC)
1480 return true;
1481
1482 /* A mount without a parent has nothing to be connected to */
1483 if (!mnt_has_parent(mnt))
1484 return true;
1485
1486 /* Because the reference counting rules change when mounts are
1487 * unmounted and connected, umounted mounts may not be
1488 * connected to mounted mounts.
1489 */
1490 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1491 return true;
1492
1493 /* Has it been requested that the mount remain connected? */
1494 if (how & UMOUNT_CONNECTED)
1495 return false;
1496
1497 /* Is the mount locked such that it needs to remain connected? */
1498 if (IS_MNT_LOCKED(mnt))
1499 return false;
1500
1501 /* By default disconnect the mount */
1502 return true;
1503}
1504
99b7db7b 1505/*
48a066e7 1506 * mount_lock must be held
99b7db7b
NP
1507 * namespace_sem must be held for write
1508 */
e819f152 1509static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1510{
c003b26f 1511 LIST_HEAD(tmp_list);
315fc83e 1512 struct mount *p;
1da177e4 1513
5d88457e
EB
1514 if (how & UMOUNT_PROPAGATE)
1515 propagate_mount_unlock(mnt);
1516
c003b26f 1517 /* Gather the mounts to umount */
590ce4bc
EB
1518 for (p = mnt; p; p = next_mnt(p, mnt)) {
1519 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1520 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1521 }
1da177e4 1522
411a938b 1523 /* Hide the mounts from mnt_mounts */
c003b26f 1524 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1525 list_del_init(&p->mnt_child);
c003b26f 1526 }
88b368f2 1527
c003b26f 1528 /* Add propogated mounts to the tmp_list */
e819f152 1529 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1530 propagate_umount(&tmp_list);
a05964f3 1531
c003b26f 1532 while (!list_empty(&tmp_list)) {
d2921684 1533 struct mnt_namespace *ns;
ce07d891 1534 bool disconnect;
c003b26f 1535 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1536 list_del_init(&p->mnt_expire);
1a4eeaf2 1537 list_del_init(&p->mnt_list);
d2921684
EB
1538 ns = p->mnt_ns;
1539 if (ns) {
1540 ns->mounts--;
1541 __touch_mnt_namespace(ns);
1542 }
143c8c91 1543 p->mnt_ns = NULL;
e819f152 1544 if (how & UMOUNT_SYNC)
48a066e7 1545 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1546
f2d0a123 1547 disconnect = disconnect_mount(p, how);
676da58d 1548 if (mnt_has_parent(p)) {
81b6b061 1549 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1550 if (!disconnect) {
1551 /* Don't forget about p */
1552 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1553 } else {
1554 umount_mnt(p);
1555 }
7c4b93d8 1556 }
0f0afb1d 1557 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1558 if (disconnect)
1559 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1560 }
1561}
1562
b54b9be7 1563static void shrink_submounts(struct mount *mnt);
c35038be 1564
8d0347f6
DH
1565static int do_umount_root(struct super_block *sb)
1566{
1567 int ret = 0;
1568
1569 down_write(&sb->s_umount);
1570 if (!sb_rdonly(sb)) {
1571 struct fs_context *fc;
1572
1573 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1574 SB_RDONLY);
1575 if (IS_ERR(fc)) {
1576 ret = PTR_ERR(fc);
1577 } else {
1578 ret = parse_monolithic_mount_data(fc, NULL);
1579 if (!ret)
1580 ret = reconfigure_super(fc);
1581 put_fs_context(fc);
1582 }
1583 }
1584 up_write(&sb->s_umount);
1585 return ret;
1586}
1587
1ab59738 1588static int do_umount(struct mount *mnt, int flags)
1da177e4 1589{
1ab59738 1590 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1591 int retval;
1592
1ab59738 1593 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1594 if (retval)
1595 return retval;
1596
1597 /*
1598 * Allow userspace to request a mountpoint be expired rather than
1599 * unmounting unconditionally. Unmount only happens if:
1600 * (1) the mark is already set (the mark is cleared by mntput())
1601 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1602 */
1603 if (flags & MNT_EXPIRE) {
1ab59738 1604 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1605 flags & (MNT_FORCE | MNT_DETACH))
1606 return -EINVAL;
1607
b3e19d92
NP
1608 /*
1609 * probably don't strictly need the lock here if we examined
1610 * all race cases, but it's a slowpath.
1611 */
719ea2fb 1612 lock_mount_hash();
83adc753 1613 if (mnt_get_count(mnt) != 2) {
719ea2fb 1614 unlock_mount_hash();
1da177e4 1615 return -EBUSY;
b3e19d92 1616 }
719ea2fb 1617 unlock_mount_hash();
1da177e4 1618
863d684f 1619 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1620 return -EAGAIN;
1621 }
1622
1623 /*
1624 * If we may have to abort operations to get out of this
1625 * mount, and they will themselves hold resources we must
1626 * allow the fs to do things. In the Unix tradition of
1627 * 'Gee thats tricky lets do it in userspace' the umount_begin
1628 * might fail to complete on the first run through as other tasks
1629 * must return, and the like. Thats for the mount program to worry
1630 * about for the moment.
1631 */
1632
42faad99 1633 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1634 sb->s_op->umount_begin(sb);
42faad99 1635 }
1da177e4
LT
1636
1637 /*
1638 * No sense to grab the lock for this test, but test itself looks
1639 * somewhat bogus. Suggestions for better replacement?
1640 * Ho-hum... In principle, we might treat that as umount + switch
1641 * to rootfs. GC would eventually take care of the old vfsmount.
1642 * Actually it makes sense, especially if rootfs would contain a
1643 * /reboot - static binary that would close all descriptors and
1644 * call reboot(9). Then init(8) could umount root and exec /reboot.
1645 */
1ab59738 1646 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1647 /*
1648 * Special case for "unmounting" root ...
1649 * we just try to remount it readonly.
1650 */
bc6155d1 1651 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1652 return -EPERM;
8d0347f6 1653 return do_umount_root(sb);
1da177e4
LT
1654 }
1655
97216be0 1656 namespace_lock();
719ea2fb 1657 lock_mount_hash();
1da177e4 1658
25d202ed
EB
1659 /* Recheck MNT_LOCKED with the locks held */
1660 retval = -EINVAL;
1661 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1662 goto out;
1663
1664 event++;
48a066e7 1665 if (flags & MNT_DETACH) {
1a4eeaf2 1666 if (!list_empty(&mnt->mnt_list))
e819f152 1667 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1668 retval = 0;
48a066e7
AV
1669 } else {
1670 shrink_submounts(mnt);
1671 retval = -EBUSY;
1672 if (!propagate_mount_busy(mnt, 2)) {
1673 if (!list_empty(&mnt->mnt_list))
e819f152 1674 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1675 retval = 0;
1676 }
1da177e4 1677 }
25d202ed 1678out:
719ea2fb 1679 unlock_mount_hash();
e3197d83 1680 namespace_unlock();
1da177e4
LT
1681 return retval;
1682}
1683
80b5dce8
EB
1684/*
1685 * __detach_mounts - lazily unmount all mounts on the specified dentry
1686 *
1687 * During unlink, rmdir, and d_drop it is possible to loose the path
1688 * to an existing mountpoint, and wind up leaking the mount.
1689 * detach_mounts allows lazily unmounting those mounts instead of
1690 * leaking them.
1691 *
1692 * The caller may hold dentry->d_inode->i_mutex.
1693 */
1694void __detach_mounts(struct dentry *dentry)
1695{
1696 struct mountpoint *mp;
1697 struct mount *mnt;
1698
1699 namespace_lock();
3895dbf8 1700 lock_mount_hash();
80b5dce8 1701 mp = lookup_mountpoint(dentry);
adc9b5c0 1702 if (!mp)
80b5dce8
EB
1703 goto out_unlock;
1704
e06b933e 1705 event++;
80b5dce8
EB
1706 while (!hlist_empty(&mp->m_list)) {
1707 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1708 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1709 umount_mnt(mnt);
56cbb429 1710 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1711 }
e0c9c0af 1712 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1713 }
80b5dce8
EB
1714 put_mountpoint(mp);
1715out_unlock:
3895dbf8 1716 unlock_mount_hash();
80b5dce8
EB
1717 namespace_unlock();
1718}
1719
dd111b31 1720/*
9b40bc90
AV
1721 * Is the caller allowed to modify his namespace?
1722 */
1723static inline bool may_mount(void)
1724{
1725 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1726}
1727
df2474a2 1728#ifdef CONFIG_MANDATORY_FILE_LOCKING
9e8925b6
JL
1729static inline bool may_mandlock(void)
1730{
95ace754 1731 return capable(CAP_SYS_ADMIN);
9e8925b6 1732}
df2474a2
JL
1733#else
1734static inline bool may_mandlock(void)
1735{
1736 pr_warn("VFS: \"mand\" mount option not supported");
1737 return false;
1738}
1739#endif
9e8925b6 1740
25ccd24f 1741static int can_umount(const struct path *path, int flags)
1da177e4 1742{
25ccd24f 1743 struct mount *mnt = real_mount(path->mnt);
1da177e4 1744
9b40bc90
AV
1745 if (!may_mount())
1746 return -EPERM;
41525f56 1747 if (path->dentry != path->mnt->mnt_root)
25ccd24f 1748 return -EINVAL;
143c8c91 1749 if (!check_mnt(mnt))
25ccd24f 1750 return -EINVAL;
25d202ed 1751 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
25ccd24f 1752 return -EINVAL;
b2f5d4dc 1753 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
25ccd24f
CH
1754 return -EPERM;
1755 return 0;
1756}
1757
a0a6df9a 1758// caller is responsible for flags being sane
25ccd24f
CH
1759int path_umount(struct path *path, int flags)
1760{
1761 struct mount *mnt = real_mount(path->mnt);
1762 int ret;
1763
1764 ret = can_umount(path, flags);
1765 if (!ret)
1766 ret = do_umount(mnt, flags);
1da177e4 1767
429731b1 1768 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
41525f56 1769 dput(path->dentry);
900148dc 1770 mntput_no_expire(mnt);
25ccd24f 1771 return ret;
1da177e4
LT
1772}
1773
09267def 1774static int ksys_umount(char __user *name, int flags)
41525f56
CH
1775{
1776 int lookup_flags = LOOKUP_MOUNTPOINT;
1777 struct path path;
1778 int ret;
1779
a0a6df9a
AV
1780 // basic validity checks done first
1781 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1782 return -EINVAL;
1783
41525f56
CH
1784 if (!(flags & UMOUNT_NOFOLLOW))
1785 lookup_flags |= LOOKUP_FOLLOW;
1786 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1787 if (ret)
1788 return ret;
1789 return path_umount(&path, flags);
1790}
1791
3a18ef5c
DB
1792SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1793{
1794 return ksys_umount(name, flags);
1795}
1796
1da177e4
LT
1797#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1798
1799/*
b58fed8b 1800 * The 2.0 compatible umount. No flags.
1da177e4 1801 */
bdc480e3 1802SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1803{
3a18ef5c 1804 return ksys_umount(name, 0);
1da177e4
LT
1805}
1806
1807#endif
1808
4ce5d2b1 1809static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1810{
4ce5d2b1 1811 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1812 return dentry->d_op == &ns_dentry_operations &&
1813 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1814}
1815
213921f9 1816static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1817{
1818 return container_of(ns, struct mnt_namespace, ns);
1819}
1820
303cc571
CB
1821struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1822{
1823 return &mnt->ns;
1824}
1825
4ce5d2b1
EB
1826static bool mnt_ns_loop(struct dentry *dentry)
1827{
1828 /* Could bind mounting the mount namespace inode cause a
1829 * mount namespace loop?
1830 */
1831 struct mnt_namespace *mnt_ns;
1832 if (!is_mnt_ns_file(dentry))
1833 return false;
1834
f77c8014 1835 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1836 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1837}
1838
87129cc0 1839struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1840 int flag)
1da177e4 1841{
84d17192 1842 struct mount *res, *p, *q, *r, *parent;
1da177e4 1843
4ce5d2b1
EB
1844 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1845 return ERR_PTR(-EINVAL);
1846
1847 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1848 return ERR_PTR(-EINVAL);
9676f0c6 1849
36341f64 1850 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1851 if (IS_ERR(q))
1852 return q;
1853
a73324da 1854 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1855
1856 p = mnt;
6b41d536 1857 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1858 struct mount *s;
7ec02ef1 1859 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1860 continue;
1861
909b0a88 1862 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1863 if (!(flag & CL_COPY_UNBINDABLE) &&
1864 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1865 if (s->mnt.mnt_flags & MNT_LOCKED) {
1866 /* Both unbindable and locked. */
1867 q = ERR_PTR(-EPERM);
1868 goto out;
1869 } else {
1870 s = skip_mnt_tree(s);
1871 continue;
1872 }
4ce5d2b1
EB
1873 }
1874 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1875 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1876 s = skip_mnt_tree(s);
1877 continue;
1878 }
0714a533
AV
1879 while (p != s->mnt_parent) {
1880 p = p->mnt_parent;
1881 q = q->mnt_parent;
1da177e4 1882 }
87129cc0 1883 p = s;
84d17192 1884 parent = q;
87129cc0 1885 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1886 if (IS_ERR(q))
1887 goto out;
719ea2fb 1888 lock_mount_hash();
1a4eeaf2 1889 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1890 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1891 unlock_mount_hash();
1da177e4
LT
1892 }
1893 }
1894 return res;
be34d1a3 1895out:
1da177e4 1896 if (res) {
719ea2fb 1897 lock_mount_hash();
e819f152 1898 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1899 unlock_mount_hash();
1da177e4 1900 }
be34d1a3 1901 return q;
1da177e4
LT
1902}
1903
be34d1a3
DH
1904/* Caller should check returned pointer for errors */
1905
ca71cf71 1906struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1907{
cb338d06 1908 struct mount *tree;
97216be0 1909 namespace_lock();
cd4a4017
EB
1910 if (!check_mnt(real_mount(path->mnt)))
1911 tree = ERR_PTR(-EINVAL);
1912 else
1913 tree = copy_tree(real_mount(path->mnt), path->dentry,
1914 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1915 namespace_unlock();
be34d1a3 1916 if (IS_ERR(tree))
52e220d3 1917 return ERR_CAST(tree);
be34d1a3 1918 return &tree->mnt;
8aec0809
AV
1919}
1920
a07b2000
AV
1921static void free_mnt_ns(struct mnt_namespace *);
1922static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1923
1924void dissolve_on_fput(struct vfsmount *mnt)
1925{
1926 struct mnt_namespace *ns;
1927 namespace_lock();
1928 lock_mount_hash();
1929 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1930 if (ns) {
1931 if (is_anon_ns(ns))
1932 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1933 else
1934 ns = NULL;
1935 }
a07b2000
AV
1936 unlock_mount_hash();
1937 namespace_unlock();
44dfd84a
DH
1938 if (ns)
1939 free_mnt_ns(ns);
a07b2000
AV
1940}
1941
8aec0809
AV
1942void drop_collected_mounts(struct vfsmount *mnt)
1943{
97216be0 1944 namespace_lock();
719ea2fb 1945 lock_mount_hash();
9c8e0a1b 1946 umount_tree(real_mount(mnt), 0);
719ea2fb 1947 unlock_mount_hash();
3ab6abee 1948 namespace_unlock();
8aec0809
AV
1949}
1950
c771d683
MS
1951/**
1952 * clone_private_mount - create a private clone of a path
1953 *
1954 * This creates a new vfsmount, which will be the clone of @path. The new will
1955 * not be attached anywhere in the namespace and will be private (i.e. changes
1956 * to the originating mount won't be propagated into this).
1957 *
1958 * Release with mntput().
1959 */
ca71cf71 1960struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1961{
1962 struct mount *old_mnt = real_mount(path->mnt);
1963 struct mount *new_mnt;
1964
1965 if (IS_MNT_UNBINDABLE(old_mnt))
1966 return ERR_PTR(-EINVAL);
1967
c771d683 1968 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1969 if (IS_ERR(new_mnt))
1970 return ERR_CAST(new_mnt);
1971
df820f8d
MS
1972 /* Longterm mount to be removed by kern_unmount*() */
1973 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1974
c771d683
MS
1975 return &new_mnt->mnt;
1976}
1977EXPORT_SYMBOL_GPL(clone_private_mount);
1978
1f707137
AV
1979int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1980 struct vfsmount *root)
1981{
1a4eeaf2 1982 struct mount *mnt;
1f707137
AV
1983 int res = f(root, arg);
1984 if (res)
1985 return res;
1a4eeaf2
AV
1986 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1987 res = f(&mnt->mnt, arg);
1f707137
AV
1988 if (res)
1989 return res;
1990 }
1991 return 0;
1992}
1993
3bd045cc
AV
1994static void lock_mnt_tree(struct mount *mnt)
1995{
1996 struct mount *p;
1997
1998 for (p = mnt; p; p = next_mnt(p, mnt)) {
1999 int flags = p->mnt.mnt_flags;
2000 /* Don't allow unprivileged users to change mount flags */
2001 flags |= MNT_LOCK_ATIME;
2002
2003 if (flags & MNT_READONLY)
2004 flags |= MNT_LOCK_READONLY;
2005
2006 if (flags & MNT_NODEV)
2007 flags |= MNT_LOCK_NODEV;
2008
2009 if (flags & MNT_NOSUID)
2010 flags |= MNT_LOCK_NOSUID;
2011
2012 if (flags & MNT_NOEXEC)
2013 flags |= MNT_LOCK_NOEXEC;
2014 /* Don't allow unprivileged users to reveal what is under a mount */
2015 if (list_empty(&p->mnt_expire))
2016 flags |= MNT_LOCKED;
2017 p->mnt.mnt_flags = flags;
2018 }
2019}
2020
4b8b21f4 2021static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 2022{
315fc83e 2023 struct mount *p;
719f5d7f 2024
909b0a88 2025 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 2026 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 2027 mnt_release_group_id(p);
719f5d7f
MS
2028 }
2029}
2030
4b8b21f4 2031static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 2032{
315fc83e 2033 struct mount *p;
719f5d7f 2034
909b0a88 2035 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 2036 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 2037 int err = mnt_alloc_group_id(p);
719f5d7f 2038 if (err) {
4b8b21f4 2039 cleanup_group_ids(mnt, p);
719f5d7f
MS
2040 return err;
2041 }
2042 }
2043 }
2044
2045 return 0;
2046}
2047
d2921684
EB
2048int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2049{
2050 unsigned int max = READ_ONCE(sysctl_mount_max);
2051 unsigned int mounts = 0, old, pending, sum;
2052 struct mount *p;
2053
2054 for (p = mnt; p; p = next_mnt(p, mnt))
2055 mounts++;
2056
2057 old = ns->mounts;
2058 pending = ns->pending_mounts;
2059 sum = old + pending;
2060 if ((old > sum) ||
2061 (pending > sum) ||
2062 (max < sum) ||
2063 (mounts > (max - sum)))
2064 return -ENOSPC;
2065
2066 ns->pending_mounts = pending + mounts;
2067 return 0;
2068}
2069
b90fa9ae
RP
2070/*
2071 * @source_mnt : mount tree to be attached
21444403
RP
2072 * @nd : place the mount tree @source_mnt is attached
2073 * @parent_nd : if non-null, detach the source_mnt from its parent and
2074 * store the parent mount and mountpoint dentry.
2075 * (done when source_mnt is moved)
b90fa9ae
RP
2076 *
2077 * NOTE: in the table below explains the semantics when a source mount
2078 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2079 * ---------------------------------------------------------------------------
2080 * | BIND MOUNT OPERATION |
2081 * |**************************************************************************
2082 * | source-->| shared | private | slave | unbindable |
2083 * | dest | | | | |
2084 * | | | | | | |
2085 * | v | | | | |
2086 * |**************************************************************************
2087 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2088 * | | | | | |
2089 * |non-shared| shared (+) | private | slave (*) | invalid |
2090 * ***************************************************************************
b90fa9ae
RP
2091 * A bind operation clones the source mount and mounts the clone on the
2092 * destination mount.
2093 *
2094 * (++) the cloned mount is propagated to all the mounts in the propagation
2095 * tree of the destination mount and the cloned mount is added to
2096 * the peer group of the source mount.
2097 * (+) the cloned mount is created under the destination mount and is marked
2098 * as shared. The cloned mount is added to the peer group of the source
2099 * mount.
5afe0022
RP
2100 * (+++) the mount is propagated to all the mounts in the propagation tree
2101 * of the destination mount and the cloned mount is made slave
2102 * of the same master as that of the source mount. The cloned mount
2103 * is marked as 'shared and slave'.
2104 * (*) the cloned mount is made a slave of the same master as that of the
2105 * source mount.
2106 *
9676f0c6
RP
2107 * ---------------------------------------------------------------------------
2108 * | MOVE MOUNT OPERATION |
2109 * |**************************************************************************
2110 * | source-->| shared | private | slave | unbindable |
2111 * | dest | | | | |
2112 * | | | | | | |
2113 * | v | | | | |
2114 * |**************************************************************************
2115 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2116 * | | | | | |
2117 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2118 * ***************************************************************************
5afe0022
RP
2119 *
2120 * (+) the mount is moved to the destination. And is then propagated to
2121 * all the mounts in the propagation tree of the destination mount.
21444403 2122 * (+*) the mount is moved to the destination.
5afe0022
RP
2123 * (+++) the mount is moved to the destination and is then propagated to
2124 * all the mounts belonging to the destination mount's propagation tree.
2125 * the mount is marked as 'shared and slave'.
2126 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2127 *
2128 * if the source mount is a tree, the operations explained above is
2129 * applied to each mount in the tree.
2130 * Must be called without spinlocks held, since this function can sleep
2131 * in allocations.
2132 */
0fb54e50 2133static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2134 struct mount *dest_mnt,
2135 struct mountpoint *dest_mp,
2763d119 2136 bool moving)
b90fa9ae 2137{
3bd045cc 2138 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2139 HLIST_HEAD(tree_list);
d2921684 2140 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2141 struct mountpoint *smp;
315fc83e 2142 struct mount *child, *p;
38129a13 2143 struct hlist_node *n;
719f5d7f 2144 int err;
b90fa9ae 2145
1064f874
EB
2146 /* Preallocate a mountpoint in case the new mounts need
2147 * to be tucked under other mounts.
2148 */
2149 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2150 if (IS_ERR(smp))
2151 return PTR_ERR(smp);
2152
d2921684 2153 /* Is there space to add these mounts to the mount namespace? */
2763d119 2154 if (!moving) {
d2921684
EB
2155 err = count_mounts(ns, source_mnt);
2156 if (err)
2157 goto out;
2158 }
2159
fc7be130 2160 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2161 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2162 if (err)
2163 goto out;
0b1b901b 2164 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2165 lock_mount_hash();
0b1b901b
AV
2166 if (err)
2167 goto out_cleanup_ids;
909b0a88 2168 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2169 set_mnt_shared(p);
0b1b901b
AV
2170 } else {
2171 lock_mount_hash();
b90fa9ae 2172 }
2763d119
AV
2173 if (moving) {
2174 unhash_mnt(source_mnt);
84d17192 2175 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2176 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2177 } else {
44dfd84a
DH
2178 if (source_mnt->mnt_ns) {
2179 /* move from anon - the caller will destroy */
2180 list_del_init(&source_mnt->mnt_ns->list);
2181 }
84d17192 2182 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2183 commit_tree(source_mnt);
21444403 2184 }
b90fa9ae 2185
38129a13 2186 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2187 struct mount *q;
38129a13 2188 hlist_del_init(&child->mnt_hash);
1064f874
EB
2189 q = __lookup_mnt(&child->mnt_parent->mnt,
2190 child->mnt_mountpoint);
2191 if (q)
2192 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2193 /* Notice when we are propagating across user namespaces */
2194 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2195 lock_mnt_tree(child);
d728cf79 2196 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2197 commit_tree(child);
b90fa9ae 2198 }
1064f874 2199 put_mountpoint(smp);
719ea2fb 2200 unlock_mount_hash();
99b7db7b 2201
b90fa9ae 2202 return 0;
719f5d7f
MS
2203
2204 out_cleanup_ids:
f2ebb3a9
AV
2205 while (!hlist_empty(&tree_list)) {
2206 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2207 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2208 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2209 }
2210 unlock_mount_hash();
0b1b901b 2211 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2212 out:
d2921684 2213 ns->pending_mounts = 0;
1064f874
EB
2214
2215 read_seqlock_excl(&mount_lock);
2216 put_mountpoint(smp);
2217 read_sequnlock_excl(&mount_lock);
2218
719f5d7f 2219 return err;
b90fa9ae
RP
2220}
2221
84d17192 2222static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2223{
2224 struct vfsmount *mnt;
84d17192 2225 struct dentry *dentry = path->dentry;
b12cea91 2226retry:
5955102c 2227 inode_lock(dentry->d_inode);
84d17192 2228 if (unlikely(cant_mount(dentry))) {
5955102c 2229 inode_unlock(dentry->d_inode);
84d17192 2230 return ERR_PTR(-ENOENT);
b12cea91 2231 }
97216be0 2232 namespace_lock();
b12cea91 2233 mnt = lookup_mnt(path);
84d17192 2234 if (likely(!mnt)) {
3895dbf8 2235 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2236 if (IS_ERR(mp)) {
97216be0 2237 namespace_unlock();
5955102c 2238 inode_unlock(dentry->d_inode);
84d17192
AV
2239 return mp;
2240 }
2241 return mp;
2242 }
97216be0 2243 namespace_unlock();
5955102c 2244 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2245 path_put(path);
2246 path->mnt = mnt;
84d17192 2247 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2248 goto retry;
2249}
2250
84d17192 2251static void unlock_mount(struct mountpoint *where)
b12cea91 2252{
84d17192 2253 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2254
2255 read_seqlock_excl(&mount_lock);
84d17192 2256 put_mountpoint(where);
3895dbf8
EB
2257 read_sequnlock_excl(&mount_lock);
2258
328e6d90 2259 namespace_unlock();
5955102c 2260 inode_unlock(dentry->d_inode);
b12cea91
AV
2261}
2262
84d17192 2263static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2264{
e462ec50 2265 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2266 return -EINVAL;
2267
e36cb0b8
DH
2268 if (d_is_dir(mp->m_dentry) !=
2269 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2270 return -ENOTDIR;
2271
2763d119 2272 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2273}
2274
7a2e8a8f
VA
2275/*
2276 * Sanity check the flags to change_mnt_propagation.
2277 */
2278
e462ec50 2279static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2280{
e462ec50 2281 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2282
2283 /* Fail if any non-propagation flags are set */
2284 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2285 return 0;
2286 /* Only one propagation flag should be set */
2287 if (!is_power_of_2(type))
2288 return 0;
2289 return type;
2290}
2291
07b20889
RP
2292/*
2293 * recursively change the type of the mountpoint.
2294 */
e462ec50 2295static int do_change_type(struct path *path, int ms_flags)
07b20889 2296{
315fc83e 2297 struct mount *m;
4b8b21f4 2298 struct mount *mnt = real_mount(path->mnt);
e462ec50 2299 int recurse = ms_flags & MS_REC;
7a2e8a8f 2300 int type;
719f5d7f 2301 int err = 0;
07b20889 2302
2d92ab3c 2303 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2304 return -EINVAL;
2305
e462ec50 2306 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2307 if (!type)
2308 return -EINVAL;
2309
97216be0 2310 namespace_lock();
719f5d7f
MS
2311 if (type == MS_SHARED) {
2312 err = invent_group_ids(mnt, recurse);
2313 if (err)
2314 goto out_unlock;
2315 }
2316
719ea2fb 2317 lock_mount_hash();
909b0a88 2318 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2319 change_mnt_propagation(m, type);
719ea2fb 2320 unlock_mount_hash();
719f5d7f
MS
2321
2322 out_unlock:
97216be0 2323 namespace_unlock();
719f5d7f 2324 return err;
07b20889
RP
2325}
2326
5ff9d8a6
EB
2327static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2328{
2329 struct mount *child;
2330 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2331 if (!is_subdir(child->mnt_mountpoint, dentry))
2332 continue;
2333
2334 if (child->mnt.mnt_flags & MNT_LOCKED)
2335 return true;
2336 }
2337 return false;
2338}
2339
a07b2000
AV
2340static struct mount *__do_loopback(struct path *old_path, int recurse)
2341{
2342 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2343
2344 if (IS_MNT_UNBINDABLE(old))
2345 return mnt;
2346
2347 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2348 return mnt;
2349
2350 if (!recurse && has_locked_children(old, old_path->dentry))
2351 return mnt;
2352
2353 if (recurse)
2354 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2355 else
2356 mnt = clone_mnt(old, old_path->dentry, 0);
2357
2358 if (!IS_ERR(mnt))
2359 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2360
2361 return mnt;
2362}
2363
1da177e4
LT
2364/*
2365 * do loopback mount.
2366 */
808d4e3c 2367static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2368 int recurse)
1da177e4 2369{
2d92ab3c 2370 struct path old_path;
a07b2000 2371 struct mount *mnt = NULL, *parent;
84d17192 2372 struct mountpoint *mp;
57eccb83 2373 int err;
1da177e4
LT
2374 if (!old_name || !*old_name)
2375 return -EINVAL;
815d405c 2376 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2377 if (err)
2378 return err;
2379
8823c079 2380 err = -EINVAL;
4ce5d2b1 2381 if (mnt_ns_loop(old_path.dentry))
dd111b31 2382 goto out;
8823c079 2383
84d17192 2384 mp = lock_mount(path);
a07b2000
AV
2385 if (IS_ERR(mp)) {
2386 err = PTR_ERR(mp);
b12cea91 2387 goto out;
a07b2000 2388 }
b12cea91 2389
84d17192 2390 parent = real_mount(path->mnt);
e149ed2b
AV
2391 if (!check_mnt(parent))
2392 goto out2;
2393
a07b2000 2394 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2395 if (IS_ERR(mnt)) {
2396 err = PTR_ERR(mnt);
e9c5d8a5 2397 goto out2;
be34d1a3 2398 }
ccd48bc7 2399
84d17192 2400 err = graft_tree(mnt, parent, mp);
ccd48bc7 2401 if (err) {
719ea2fb 2402 lock_mount_hash();
e819f152 2403 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2404 unlock_mount_hash();
5b83d2c5 2405 }
b12cea91 2406out2:
84d17192 2407 unlock_mount(mp);
ccd48bc7 2408out:
2d92ab3c 2409 path_put(&old_path);
1da177e4
LT
2410 return err;
2411}
2412
a07b2000
AV
2413static struct file *open_detached_copy(struct path *path, bool recursive)
2414{
2415 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2416 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2417 struct mount *mnt, *p;
2418 struct file *file;
2419
2420 if (IS_ERR(ns))
2421 return ERR_CAST(ns);
2422
2423 namespace_lock();
2424 mnt = __do_loopback(path, recursive);
2425 if (IS_ERR(mnt)) {
2426 namespace_unlock();
2427 free_mnt_ns(ns);
2428 return ERR_CAST(mnt);
2429 }
2430
2431 lock_mount_hash();
2432 for (p = mnt; p; p = next_mnt(p, mnt)) {
2433 p->mnt_ns = ns;
2434 ns->mounts++;
2435 }
2436 ns->root = mnt;
2437 list_add_tail(&ns->list, &mnt->mnt_list);
2438 mntget(&mnt->mnt);
2439 unlock_mount_hash();
2440 namespace_unlock();
2441
2442 mntput(path->mnt);
2443 path->mnt = &mnt->mnt;
2444 file = dentry_open(path, O_PATH, current_cred());
2445 if (IS_ERR(file))
2446 dissolve_on_fput(path->mnt);
2447 else
2448 file->f_mode |= FMODE_NEED_UNMOUNT;
2449 return file;
2450}
2451
2658ce09 2452SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2453{
2454 struct file *file;
2455 struct path path;
2456 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2457 bool detached = flags & OPEN_TREE_CLONE;
2458 int error;
2459 int fd;
2460
2461 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2462
2463 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2464 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2465 OPEN_TREE_CLOEXEC))
2466 return -EINVAL;
2467
2468 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2469 return -EINVAL;
2470
2471 if (flags & AT_NO_AUTOMOUNT)
2472 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2473 if (flags & AT_SYMLINK_NOFOLLOW)
2474 lookup_flags &= ~LOOKUP_FOLLOW;
2475 if (flags & AT_EMPTY_PATH)
2476 lookup_flags |= LOOKUP_EMPTY;
2477
2478 if (detached && !may_mount())
2479 return -EPERM;
2480
2481 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2482 if (fd < 0)
2483 return fd;
2484
2485 error = user_path_at(dfd, filename, lookup_flags, &path);
2486 if (unlikely(error)) {
2487 file = ERR_PTR(error);
2488 } else {
2489 if (detached)
2490 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2491 else
2492 file = dentry_open(&path, O_PATH, current_cred());
2493 path_put(&path);
2494 }
2495 if (IS_ERR(file)) {
2496 put_unused_fd(fd);
2497 return PTR_ERR(file);
2498 }
2499 fd_install(fd, file);
2500 return fd;
2501}
2502
43f5e655
DH
2503/*
2504 * Don't allow locked mount flags to be cleared.
2505 *
2506 * No locks need to be held here while testing the various MNT_LOCK
2507 * flags because those flags can never be cleared once they are set.
2508 */
2509static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2510{
43f5e655
DH
2511 unsigned int fl = mnt->mnt.mnt_flags;
2512
2513 if ((fl & MNT_LOCK_READONLY) &&
2514 !(mnt_flags & MNT_READONLY))
2515 return false;
2516
2517 if ((fl & MNT_LOCK_NODEV) &&
2518 !(mnt_flags & MNT_NODEV))
2519 return false;
2520
2521 if ((fl & MNT_LOCK_NOSUID) &&
2522 !(mnt_flags & MNT_NOSUID))
2523 return false;
2524
2525 if ((fl & MNT_LOCK_NOEXEC) &&
2526 !(mnt_flags & MNT_NOEXEC))
2527 return false;
2528
2529 if ((fl & MNT_LOCK_ATIME) &&
2530 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2531 return false;
2e4b7fcd 2532
43f5e655
DH
2533 return true;
2534}
2535
2536static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2537{
43f5e655 2538 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2539
43f5e655 2540 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2541 return 0;
2542
2543 if (readonly_request)
43f5e655
DH
2544 return mnt_make_readonly(mnt);
2545
68847c94
CB
2546 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2547 return 0;
43f5e655
DH
2548}
2549
43f5e655
DH
2550static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2551{
43f5e655
DH
2552 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2553 mnt->mnt.mnt_flags = mnt_flags;
2554 touch_mnt_namespace(mnt->mnt_ns);
43f5e655
DH
2555}
2556
f8b92ba6
DD
2557static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2558{
2559 struct super_block *sb = mnt->mnt_sb;
2560
2561 if (!__mnt_is_readonly(mnt) &&
2562 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2563 char *buf = (char *)__get_free_page(GFP_KERNEL);
2564 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2565 struct tm tm;
2566
2567 time64_to_tm(sb->s_time_max, 0, &tm);
2568
0ecee669
EB
2569 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2570 sb->s_type->name,
2571 is_mounted(mnt) ? "remounted" : "mounted",
2572 mntpath,
f8b92ba6
DD
2573 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2574
2575 free_page((unsigned long)buf);
2576 }
2577}
2578
43f5e655
DH
2579/*
2580 * Handle reconfiguration of the mountpoint only without alteration of the
2581 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2582 * to mount(2).
2583 */
2584static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2585{
2586 struct super_block *sb = path->mnt->mnt_sb;
2587 struct mount *mnt = real_mount(path->mnt);
2588 int ret;
2589
2590 if (!check_mnt(mnt))
2591 return -EINVAL;
2592
2593 if (path->dentry != mnt->mnt.mnt_root)
2594 return -EINVAL;
2595
2596 if (!can_change_locked_flags(mnt, mnt_flags))
2597 return -EPERM;
2598
e58ace1a
CB
2599 /*
2600 * We're only checking whether the superblock is read-only not
2601 * changing it, so only take down_read(&sb->s_umount).
2602 */
2603 down_read(&sb->s_umount);
68847c94 2604 lock_mount_hash();
43f5e655
DH
2605 ret = change_mount_ro_state(mnt, mnt_flags);
2606 if (ret == 0)
2607 set_mount_attributes(mnt, mnt_flags);
68847c94 2608 unlock_mount_hash();
e58ace1a 2609 up_read(&sb->s_umount);
f8b92ba6
DD
2610
2611 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2612
43f5e655 2613 return ret;
2e4b7fcd
DH
2614}
2615
1da177e4
LT
2616/*
2617 * change filesystem flags. dir should be a physical root of filesystem.
2618 * If you've mounted a non-root directory somewhere and want to do remount
2619 * on it - tough luck.
2620 */
e462ec50
DH
2621static int do_remount(struct path *path, int ms_flags, int sb_flags,
2622 int mnt_flags, void *data)
1da177e4
LT
2623{
2624 int err;
2d92ab3c 2625 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2626 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2627 struct fs_context *fc;
1da177e4 2628
143c8c91 2629 if (!check_mnt(mnt))
1da177e4
LT
2630 return -EINVAL;
2631
2d92ab3c 2632 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2633 return -EINVAL;
2634
43f5e655 2635 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2636 return -EPERM;
9566d674 2637
8d0347f6
DH
2638 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2639 if (IS_ERR(fc))
2640 return PTR_ERR(fc);
ff36fe2c 2641
b330966f 2642 fc->oldapi = true;
8d0347f6
DH
2643 err = parse_monolithic_mount_data(fc, data);
2644 if (!err) {
2645 down_write(&sb->s_umount);
2646 err = -EPERM;
2647 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2648 err = reconfigure_super(fc);
68847c94
CB
2649 if (!err) {
2650 lock_mount_hash();
8d0347f6 2651 set_mount_attributes(mnt, mnt_flags);
68847c94
CB
2652 unlock_mount_hash();
2653 }
8d0347f6
DH
2654 }
2655 up_write(&sb->s_umount);
0e55a7cc 2656 }
f8b92ba6
DD
2657
2658 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2659
8d0347f6 2660 put_fs_context(fc);
1da177e4
LT
2661 return err;
2662}
2663
cbbe362c 2664static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2665{
315fc83e 2666 struct mount *p;
909b0a88 2667 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2668 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2669 return 1;
2670 }
2671 return 0;
2672}
2673
44dfd84a
DH
2674/*
2675 * Check that there aren't references to earlier/same mount namespaces in the
2676 * specified subtree. Such references can act as pins for mount namespaces
2677 * that aren't checked by the mount-cycle checking code, thereby allowing
2678 * cycles to be made.
2679 */
2680static bool check_for_nsfs_mounts(struct mount *subtree)
2681{
2682 struct mount *p;
2683 bool ret = false;
2684
2685 lock_mount_hash();
2686 for (p = subtree; p; p = next_mnt(p, subtree))
2687 if (mnt_ns_loop(p->mnt.mnt_root))
2688 goto out;
2689
2690 ret = true;
2691out:
2692 unlock_mount_hash();
2693 return ret;
2694}
2695
2db154b3 2696static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2697{
44dfd84a 2698 struct mnt_namespace *ns;
676da58d 2699 struct mount *p;
0fb54e50 2700 struct mount *old;
2763d119
AV
2701 struct mount *parent;
2702 struct mountpoint *mp, *old_mp;
57eccb83 2703 int err;
44dfd84a 2704 bool attached;
1da177e4 2705
2db154b3 2706 mp = lock_mount(new_path);
84d17192 2707 if (IS_ERR(mp))
2db154b3 2708 return PTR_ERR(mp);
cc53ce53 2709
2db154b3
DH
2710 old = real_mount(old_path->mnt);
2711 p = real_mount(new_path->mnt);
2763d119 2712 parent = old->mnt_parent;
44dfd84a 2713 attached = mnt_has_parent(old);
2763d119 2714 old_mp = old->mnt_mp;
44dfd84a 2715 ns = old->mnt_ns;
143c8c91 2716
1da177e4 2717 err = -EINVAL;
44dfd84a
DH
2718 /* The mountpoint must be in our namespace. */
2719 if (!check_mnt(p))
2db154b3 2720 goto out;
1da177e4 2721
570d7a98
EB
2722 /* The thing moved must be mounted... */
2723 if (!is_mounted(&old->mnt))
44dfd84a
DH
2724 goto out;
2725
570d7a98
EB
2726 /* ... and either ours or the root of anon namespace */
2727 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2728 goto out;
5ff9d8a6 2729
2db154b3
DH
2730 if (old->mnt.mnt_flags & MNT_LOCKED)
2731 goto out;
1da177e4 2732
2db154b3
DH
2733 if (old_path->dentry != old_path->mnt->mnt_root)
2734 goto out;
1da177e4 2735
2db154b3
DH
2736 if (d_is_dir(new_path->dentry) !=
2737 d_is_dir(old_path->dentry))
2738 goto out;
21444403
RP
2739 /*
2740 * Don't move a mount residing in a shared parent.
2741 */
2763d119 2742 if (attached && IS_MNT_SHARED(parent))
2db154b3 2743 goto out;
9676f0c6
RP
2744 /*
2745 * Don't move a mount tree containing unbindable mounts to a destination
2746 * mount which is shared.
2747 */
fc7be130 2748 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2749 goto out;
1da177e4 2750 err = -ELOOP;
44dfd84a
DH
2751 if (!check_for_nsfs_mounts(old))
2752 goto out;
fc7be130 2753 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2754 if (p == old)
2db154b3 2755 goto out;
1da177e4 2756
2db154b3 2757 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2758 attached);
4ac91378 2759 if (err)
2db154b3 2760 goto out;
1da177e4
LT
2761
2762 /* if the mount is moved, it should no longer be expire
2763 * automatically */
6776db3d 2764 list_del_init(&old->mnt_expire);
2763d119
AV
2765 if (attached)
2766 put_mountpoint(old_mp);
1da177e4 2767out:
2db154b3 2768 unlock_mount(mp);
44dfd84a 2769 if (!err) {
2763d119
AV
2770 if (attached)
2771 mntput_no_expire(parent);
2772 else
44dfd84a
DH
2773 free_mnt_ns(ns);
2774 }
2db154b3
DH
2775 return err;
2776}
2777
2778static int do_move_mount_old(struct path *path, const char *old_name)
2779{
2780 struct path old_path;
2781 int err;
2782
2783 if (!old_name || !*old_name)
2784 return -EINVAL;
2785
2786 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2787 if (err)
2788 return err;
2789
2790 err = do_move_mount(&old_path, path);
2d92ab3c 2791 path_put(&old_path);
1da177e4
LT
2792 return err;
2793}
2794
9d412a43
AV
2795/*
2796 * add a mount into a namespace's mount tree
2797 */
8f11538e
AV
2798static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2799 struct path *path, int mnt_flags)
9d412a43 2800{
8f11538e 2801 struct mount *parent = real_mount(path->mnt);
9d412a43 2802
f2ebb3a9 2803 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2804
84d17192 2805 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2806 /* that's acceptable only for automounts done in private ns */
2807 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2808 return -EINVAL;
156cacb1 2809 /* ... and for those we'd better have mountpoint still alive */
84d17192 2810 if (!parent->mnt_ns)
8f11538e 2811 return -EINVAL;
156cacb1 2812 }
9d412a43
AV
2813
2814 /* Refuse the same filesystem on the same mount point */
95bc5f25 2815 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2816 path->mnt->mnt_root == path->dentry)
8f11538e 2817 return -EBUSY;
9d412a43 2818
e36cb0b8 2819 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2820 return -EINVAL;
9d412a43 2821
95bc5f25 2822 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2823 return graft_tree(newmnt, parent, mp);
9d412a43 2824}
b1e75df4 2825
132e4608
DH
2826static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2827
2828/*
2829 * Create a new mount using a superblock configuration and request it
2830 * be added to the namespace tree.
2831 */
2832static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2833 unsigned int mnt_flags)
2834{
2835 struct vfsmount *mnt;
8f11538e 2836 struct mountpoint *mp;
132e4608
DH
2837 struct super_block *sb = fc->root->d_sb;
2838 int error;
2839
c9ce29ed
AV
2840 error = security_sb_kern_mount(sb);
2841 if (!error && mount_too_revealing(sb, &mnt_flags))
2842 error = -EPERM;
2843
2844 if (unlikely(error)) {
2845 fc_drop_locked(fc);
2846 return error;
132e4608
DH
2847 }
2848
2849 up_write(&sb->s_umount);
2850
2851 mnt = vfs_create_mount(fc);
2852 if (IS_ERR(mnt))
2853 return PTR_ERR(mnt);
2854
f8b92ba6
DD
2855 mnt_warn_timestamp_expiry(mountpoint, mnt);
2856
8f11538e
AV
2857 mp = lock_mount(mountpoint);
2858 if (IS_ERR(mp)) {
2859 mntput(mnt);
2860 return PTR_ERR(mp);
2861 }
2862 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2863 unlock_mount(mp);
0ecee669
EB
2864 if (error < 0)
2865 mntput(mnt);
132e4608
DH
2866 return error;
2867}
1b852bce 2868
1da177e4
LT
2869/*
2870 * create a new mount for userspace and request it to be added into the
2871 * namespace's tree
2872 */
e462ec50 2873static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2874 int mnt_flags, const char *name, void *data)
1da177e4 2875{
0c55cfc4 2876 struct file_system_type *type;
a0c9a8b8
AV
2877 struct fs_context *fc;
2878 const char *subtype = NULL;
2879 int err = 0;
1da177e4 2880
0c55cfc4 2881 if (!fstype)
1da177e4
LT
2882 return -EINVAL;
2883
0c55cfc4
EB
2884 type = get_fs_type(fstype);
2885 if (!type)
2886 return -ENODEV;
2887
a0c9a8b8
AV
2888 if (type->fs_flags & FS_HAS_SUBTYPE) {
2889 subtype = strchr(fstype, '.');
2890 if (subtype) {
2891 subtype++;
2892 if (!*subtype) {
2893 put_filesystem(type);
2894 return -EINVAL;
2895 }
a0c9a8b8
AV
2896 }
2897 }
0c55cfc4 2898
a0c9a8b8 2899 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2900 put_filesystem(type);
a0c9a8b8
AV
2901 if (IS_ERR(fc))
2902 return PTR_ERR(fc);
2903
3e1aeb00
DH
2904 if (subtype)
2905 err = vfs_parse_fs_string(fc, "subtype",
2906 subtype, strlen(subtype));
2907 if (!err && name)
2908 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2909 if (!err)
2910 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2911 if (!err && !mount_capable(fc))
2912 err = -EPERM;
a0c9a8b8
AV
2913 if (!err)
2914 err = vfs_get_tree(fc);
132e4608
DH
2915 if (!err)
2916 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2917
a0c9a8b8 2918 put_fs_context(fc);
15f9a3f3 2919 return err;
1da177e4
LT
2920}
2921
19a167af
AV
2922int finish_automount(struct vfsmount *m, struct path *path)
2923{
26df6034 2924 struct dentry *dentry = path->dentry;
8f11538e 2925 struct mountpoint *mp;
25e195aa 2926 struct mount *mnt;
19a167af 2927 int err;
25e195aa
AV
2928
2929 if (!m)
2930 return 0;
2931 if (IS_ERR(m))
2932 return PTR_ERR(m);
2933
2934 mnt = real_mount(m);
19a167af
AV
2935 /* The new mount record should have at least 2 refs to prevent it being
2936 * expired before we get a chance to add it
2937 */
6776db3d 2938 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2939
2940 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 2941 m->mnt_root == dentry) {
b1e75df4 2942 err = -ELOOP;
26df6034 2943 goto discard;
19a167af
AV
2944 }
2945
26df6034
AV
2946 /*
2947 * we don't want to use lock_mount() - in this case finding something
2948 * that overmounts our mountpoint to be means "quitely drop what we've
2949 * got", not "try to mount it on top".
2950 */
2951 inode_lock(dentry->d_inode);
2952 namespace_lock();
2953 if (unlikely(cant_mount(dentry))) {
2954 err = -ENOENT;
2955 goto discard_locked;
2956 }
2957 rcu_read_lock();
2958 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2959 rcu_read_unlock();
2960 err = 0;
2961 goto discard_locked;
2962 }
2963 rcu_read_unlock();
2964 mp = get_mountpoint(dentry);
8f11538e
AV
2965 if (IS_ERR(mp)) {
2966 err = PTR_ERR(mp);
26df6034 2967 goto discard_locked;
8f11538e 2968 }
26df6034 2969
8f11538e
AV
2970 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2971 unlock_mount(mp);
26df6034
AV
2972 if (unlikely(err))
2973 goto discard;
2974 mntput(m);
2975 return 0;
2976
2977discard_locked:
2978 namespace_unlock();
2979 inode_unlock(dentry->d_inode);
2980discard:
b1e75df4 2981 /* remove m from any expiration list it may be on */
6776db3d 2982 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2983 namespace_lock();
6776db3d 2984 list_del_init(&mnt->mnt_expire);
97216be0 2985 namespace_unlock();
19a167af 2986 }
b1e75df4
AV
2987 mntput(m);
2988 mntput(m);
19a167af
AV
2989 return err;
2990}
2991
ea5b778a
DH
2992/**
2993 * mnt_set_expiry - Put a mount on an expiration list
2994 * @mnt: The mount to list.
2995 * @expiry_list: The list to add the mount to.
2996 */
2997void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2998{
97216be0 2999 namespace_lock();
ea5b778a 3000
6776db3d 3001 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 3002
97216be0 3003 namespace_unlock();
ea5b778a
DH
3004}
3005EXPORT_SYMBOL(mnt_set_expiry);
3006
1da177e4
LT
3007/*
3008 * process a list of expirable mountpoints with the intent of discarding any
3009 * mountpoints that aren't in use and haven't been touched since last we came
3010 * here
3011 */
3012void mark_mounts_for_expiry(struct list_head *mounts)
3013{
761d5c38 3014 struct mount *mnt, *next;
1da177e4
LT
3015 LIST_HEAD(graveyard);
3016
3017 if (list_empty(mounts))
3018 return;
3019
97216be0 3020 namespace_lock();
719ea2fb 3021 lock_mount_hash();
1da177e4
LT
3022
3023 /* extract from the expiration list every vfsmount that matches the
3024 * following criteria:
3025 * - only referenced by its parent vfsmount
3026 * - still marked for expiry (marked on the last call here; marks are
3027 * cleared by mntput())
3028 */
6776db3d 3029 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 3030 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 3031 propagate_mount_busy(mnt, 1))
1da177e4 3032 continue;
6776db3d 3033 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 3034 }
bcc5c7d2 3035 while (!list_empty(&graveyard)) {
6776db3d 3036 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 3037 touch_mnt_namespace(mnt->mnt_ns);
e819f152 3038 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 3039 }
719ea2fb 3040 unlock_mount_hash();
3ab6abee 3041 namespace_unlock();
5528f911
TM
3042}
3043
3044EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3045
3046/*
3047 * Ripoff of 'select_parent()'
3048 *
3049 * search the list of submounts for a given mountpoint, and move any
3050 * shrinkable submounts to the 'graveyard' list.
3051 */
692afc31 3052static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 3053{
692afc31 3054 struct mount *this_parent = parent;
5528f911
TM
3055 struct list_head *next;
3056 int found = 0;
3057
3058repeat:
6b41d536 3059 next = this_parent->mnt_mounts.next;
5528f911 3060resume:
6b41d536 3061 while (next != &this_parent->mnt_mounts) {
5528f911 3062 struct list_head *tmp = next;
6b41d536 3063 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
3064
3065 next = tmp->next;
692afc31 3066 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 3067 continue;
5528f911
TM
3068 /*
3069 * Descend a level if the d_mounts list is non-empty.
3070 */
6b41d536 3071 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
3072 this_parent = mnt;
3073 goto repeat;
3074 }
1da177e4 3075
1ab59738 3076 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 3077 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
3078 found++;
3079 }
1da177e4 3080 }
5528f911
TM
3081 /*
3082 * All done at this level ... ascend and resume the search
3083 */
3084 if (this_parent != parent) {
6b41d536 3085 next = this_parent->mnt_child.next;
0714a533 3086 this_parent = this_parent->mnt_parent;
5528f911
TM
3087 goto resume;
3088 }
3089 return found;
3090}
3091
3092/*
3093 * process a list of expirable mountpoints with the intent of discarding any
3094 * submounts of a specific parent mountpoint
99b7db7b 3095 *
48a066e7 3096 * mount_lock must be held for write
5528f911 3097 */
b54b9be7 3098static void shrink_submounts(struct mount *mnt)
5528f911
TM
3099{
3100 LIST_HEAD(graveyard);
761d5c38 3101 struct mount *m;
5528f911 3102
5528f911 3103 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3104 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3105 while (!list_empty(&graveyard)) {
761d5c38 3106 m = list_first_entry(&graveyard, struct mount,
6776db3d 3107 mnt_expire);
143c8c91 3108 touch_mnt_namespace(m->mnt_ns);
e819f152 3109 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3110 }
3111 }
1da177e4
LT
3112}
3113
028abd92 3114static void *copy_mount_options(const void __user * data)
1da177e4 3115{
b40ef869 3116 char *copy;
d563d678 3117 unsigned left, offset;
b58fed8b 3118
1da177e4 3119 if (!data)
b40ef869 3120 return NULL;
1da177e4 3121
b40ef869
AV
3122 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3123 if (!copy)
3124 return ERR_PTR(-ENOMEM);
1da177e4 3125
d563d678 3126 left = copy_from_user(copy, data, PAGE_SIZE);
1da177e4 3127
d563d678
CM
3128 /*
3129 * Not all architectures have an exact copy_from_user(). Resort to
3130 * byte at a time.
3131 */
3132 offset = PAGE_SIZE - left;
3133 while (left) {
3134 char c;
3135 if (get_user(c, (const char __user *)data + offset))
3136 break;
3137 copy[offset] = c;
3138 left--;
3139 offset++;
3140 }
3141
3142 if (left == PAGE_SIZE) {
b40ef869
AV
3143 kfree(copy);
3144 return ERR_PTR(-EFAULT);
1da177e4 3145 }
d563d678 3146
b40ef869 3147 return copy;
1da177e4
LT
3148}
3149
028abd92 3150static char *copy_mount_string(const void __user *data)
eca6f534 3151{
fbdb4401 3152 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3153}
3154
1da177e4
LT
3155/*
3156 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3157 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3158 *
3159 * data is a (void *) that can point to any structure up to
3160 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3161 * information (or be NULL).
3162 *
3163 * Pre-0.97 versions of mount() didn't have a flags word.
3164 * When the flags word was introduced its top half was required
3165 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3166 * Therefore, if this magic number is present, it carries no information
3167 * and must be discarded.
3168 */
c60166f0 3169int path_mount(const char *dev_name, struct path *path,
808d4e3c 3170 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3171{
e462ec50 3172 unsigned int mnt_flags = 0, sb_flags;
a1e6aaa3 3173 int ret;
1da177e4
LT
3174
3175 /* Discard magic */
3176 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3177 flags &= ~MS_MGC_MSK;
3178
3179 /* Basic sanity checks */
1da177e4
LT
3180 if (data_page)
3181 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3182
e462ec50
DH
3183 if (flags & MS_NOUSER)
3184 return -EINVAL;
3185
a1e6aaa3
CH
3186 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3187 if (ret)
3188 return ret;
3189 if (!may_mount())
3190 return -EPERM;
3191 if ((flags & SB_MANDLOCK) && !may_mandlock())
3192 return -EPERM;
a27ab9f2 3193
613cbe3d
AK
3194 /* Default to relatime unless overriden */
3195 if (!(flags & MS_NOATIME))
3196 mnt_flags |= MNT_RELATIME;
0a1c01c9 3197
1da177e4
LT
3198 /* Separate the per-mountpoint flags */
3199 if (flags & MS_NOSUID)
3200 mnt_flags |= MNT_NOSUID;
3201 if (flags & MS_NODEV)
3202 mnt_flags |= MNT_NODEV;
3203 if (flags & MS_NOEXEC)
3204 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3205 if (flags & MS_NOATIME)
3206 mnt_flags |= MNT_NOATIME;
3207 if (flags & MS_NODIRATIME)
3208 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3209 if (flags & MS_STRICTATIME)
3210 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3211 if (flags & MS_RDONLY)
2e4b7fcd 3212 mnt_flags |= MNT_READONLY;
dab741e0
MN
3213 if (flags & MS_NOSYMFOLLOW)
3214 mnt_flags |= MNT_NOSYMFOLLOW;
fc33a7bb 3215
ffbc6f0e
EB
3216 /* The default atime for remount is preservation */
3217 if ((flags & MS_REMOUNT) &&
3218 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3219 MS_STRICTATIME)) == 0)) {
3220 mnt_flags &= ~MNT_ATIME_MASK;
a1e6aaa3 3221 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
ffbc6f0e
EB
3222 }
3223
e462ec50
DH
3224 sb_flags = flags & (SB_RDONLY |
3225 SB_SYNCHRONOUS |
3226 SB_MANDLOCK |
3227 SB_DIRSYNC |
3228 SB_SILENT |
917086ff 3229 SB_POSIXACL |
d7ee9469 3230 SB_LAZYTIME |
917086ff 3231 SB_I_VERSION);
1da177e4 3232
43f5e655 3233 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
a1e6aaa3
CH
3234 return do_reconfigure_mnt(path, mnt_flags);
3235 if (flags & MS_REMOUNT)
3236 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3237 if (flags & MS_BIND)
3238 return do_loopback(path, dev_name, flags & MS_REC);
3239 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3240 return do_change_type(path, flags);
3241 if (flags & MS_MOVE)
3242 return do_move_mount_old(path, dev_name);
3243
3244 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3245 data_page);
3246}
3247
3248long do_mount(const char *dev_name, const char __user *dir_name,
3249 const char *type_page, unsigned long flags, void *data_page)
3250{
3251 struct path path;
3252 int ret;
3253
3254 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3255 if (ret)
3256 return ret;
3257 ret = path_mount(dev_name, &path, type_page, flags, data_page);
2d92ab3c 3258 path_put(&path);
a1e6aaa3 3259 return ret;
1da177e4
LT
3260}
3261
537f7ccb
EB
3262static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3263{
3264 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3265}
3266
3267static void dec_mnt_namespaces(struct ucounts *ucounts)
3268{
3269 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3270}
3271
771b1371
EB
3272static void free_mnt_ns(struct mnt_namespace *ns)
3273{
74e83122
AV
3274 if (!is_anon_ns(ns))
3275 ns_free_inum(&ns->ns);
537f7ccb 3276 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3277 put_user_ns(ns->user_ns);
3278 kfree(ns);
3279}
3280
8823c079
EB
3281/*
3282 * Assign a sequence number so we can detect when we attempt to bind
3283 * mount a reference to an older mount namespace into the current
3284 * mount namespace, preventing reference counting loops. A 64bit
3285 * number incrementing at 10Ghz will take 12,427 years to wrap which
3286 * is effectively never, so we can ignore the possibility.
3287 */
3288static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3289
74e83122 3290static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3291{
3292 struct mnt_namespace *new_ns;
537f7ccb 3293 struct ucounts *ucounts;
98f842e6 3294 int ret;
cf8d2c11 3295
537f7ccb
EB
3296 ucounts = inc_mnt_namespaces(user_ns);
3297 if (!ucounts)
df75e774 3298 return ERR_PTR(-ENOSPC);
537f7ccb 3299
74e83122 3300 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3301 if (!new_ns) {
3302 dec_mnt_namespaces(ucounts);
cf8d2c11 3303 return ERR_PTR(-ENOMEM);
537f7ccb 3304 }
74e83122
AV
3305 if (!anon) {
3306 ret = ns_alloc_inum(&new_ns->ns);
3307 if (ret) {
3308 kfree(new_ns);
3309 dec_mnt_namespaces(ucounts);
3310 return ERR_PTR(ret);
3311 }
98f842e6 3312 }
33c42940 3313 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3314 if (!anon)
3315 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
1a7b8969 3316 refcount_set(&new_ns->ns.count, 1);
cf8d2c11
TM
3317 INIT_LIST_HEAD(&new_ns->list);
3318 init_waitqueue_head(&new_ns->poll);
9f6c61f9 3319 spin_lock_init(&new_ns->ns_lock);
771b1371 3320 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3321 new_ns->ucounts = ucounts;
cf8d2c11
TM
3322 return new_ns;
3323}
3324
0766f788 3325__latent_entropy
9559f689
AV
3326struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3327 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3328{
6b3286ed 3329 struct mnt_namespace *new_ns;
7f2da1e7 3330 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3331 struct mount *p, *q;
9559f689 3332 struct mount *old;
cb338d06 3333 struct mount *new;
7a472ef4 3334 int copy_flags;
1da177e4 3335
9559f689
AV
3336 BUG_ON(!ns);
3337
3338 if (likely(!(flags & CLONE_NEWNS))) {
3339 get_mnt_ns(ns);
3340 return ns;
3341 }
3342
3343 old = ns->root;
3344
74e83122 3345 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3346 if (IS_ERR(new_ns))
3347 return new_ns;
1da177e4 3348
97216be0 3349 namespace_lock();
1da177e4 3350 /* First pass: copy the tree topology */
4ce5d2b1 3351 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3352 if (user_ns != ns->user_ns)
3bd045cc 3353 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3354 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3355 if (IS_ERR(new)) {
328e6d90 3356 namespace_unlock();
771b1371 3357 free_mnt_ns(new_ns);
be34d1a3 3358 return ERR_CAST(new);
1da177e4 3359 }
3bd045cc
AV
3360 if (user_ns != ns->user_ns) {
3361 lock_mount_hash();
3362 lock_mnt_tree(new);
3363 unlock_mount_hash();
3364 }
be08d6d2 3365 new_ns->root = new;
1a4eeaf2 3366 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3367
3368 /*
3369 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3370 * as belonging to new namespace. We have already acquired a private
3371 * fs_struct, so tsk->fs->lock is not needed.
3372 */
909b0a88 3373 p = old;
cb338d06 3374 q = new;
1da177e4 3375 while (p) {
143c8c91 3376 q->mnt_ns = new_ns;
d2921684 3377 new_ns->mounts++;
9559f689
AV
3378 if (new_fs) {
3379 if (&p->mnt == new_fs->root.mnt) {
3380 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3381 rootmnt = &p->mnt;
1da177e4 3382 }
9559f689
AV
3383 if (&p->mnt == new_fs->pwd.mnt) {
3384 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3385 pwdmnt = &p->mnt;
1da177e4 3386 }
1da177e4 3387 }
909b0a88
AV
3388 p = next_mnt(p, old);
3389 q = next_mnt(q, new);
4ce5d2b1
EB
3390 if (!q)
3391 break;
3392 while (p->mnt.mnt_root != q->mnt.mnt_root)
3393 p = next_mnt(p, old);
1da177e4 3394 }
328e6d90 3395 namespace_unlock();
1da177e4 3396
1da177e4 3397 if (rootmnt)
f03c6599 3398 mntput(rootmnt);
1da177e4 3399 if (pwdmnt)
f03c6599 3400 mntput(pwdmnt);
1da177e4 3401
741a2951 3402 return new_ns;
1da177e4
LT
3403}
3404
74e83122 3405struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3406{
74e83122 3407 struct mount *mnt = real_mount(m);
ea441d11 3408 struct mnt_namespace *ns;
d31da0f0 3409 struct super_block *s;
ea441d11
AV
3410 struct path path;
3411 int err;
3412
74e83122
AV
3413 ns = alloc_mnt_ns(&init_user_ns, true);
3414 if (IS_ERR(ns)) {
3415 mntput(m);
ea441d11 3416 return ERR_CAST(ns);
74e83122
AV
3417 }
3418 mnt->mnt_ns = ns;
3419 ns->root = mnt;
3420 ns->mounts++;
3421 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3422
74e83122 3423 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3424 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3425
3426 put_mnt_ns(ns);
3427
3428 if (err)
3429 return ERR_PTR(err);
3430
3431 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3432 s = path.mnt->mnt_sb;
3433 atomic_inc(&s->s_active);
ea441d11
AV
3434 mntput(path.mnt);
3435 /* lock the sucker */
d31da0f0 3436 down_write(&s->s_umount);
ea441d11
AV
3437 /* ... and return the root of (sub)tree on it */
3438 return path.dentry;
3439}
3440EXPORT_SYMBOL(mount_subtree);
3441
cccaa5e3
DB
3442SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3443 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3444{
eca6f534
VN
3445 int ret;
3446 char *kernel_type;
eca6f534 3447 char *kernel_dev;
b40ef869 3448 void *options;
1da177e4 3449
b8850d1f
TG
3450 kernel_type = copy_mount_string(type);
3451 ret = PTR_ERR(kernel_type);
3452 if (IS_ERR(kernel_type))
eca6f534 3453 goto out_type;
1da177e4 3454
b8850d1f
TG
3455 kernel_dev = copy_mount_string(dev_name);
3456 ret = PTR_ERR(kernel_dev);
3457 if (IS_ERR(kernel_dev))
eca6f534 3458 goto out_dev;
1da177e4 3459
b40ef869
AV
3460 options = copy_mount_options(data);
3461 ret = PTR_ERR(options);
3462 if (IS_ERR(options))
eca6f534 3463 goto out_data;
1da177e4 3464
b40ef869 3465 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3466
b40ef869 3467 kfree(options);
eca6f534
VN
3468out_data:
3469 kfree(kernel_dev);
3470out_dev:
eca6f534
VN
3471 kfree(kernel_type);
3472out_type:
3473 return ret;
1da177e4
LT
3474}
3475
5b490500
CB
3476#define FSMOUNT_VALID_FLAGS \
3477 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3478 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)
3479
2a186721
CB
3480#define MOUNT_SETATTR_VALID_FLAGS FSMOUNT_VALID_FLAGS
3481
3482#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3483 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3484
5b490500
CB
3485static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3486{
3487 unsigned int mnt_flags = 0;
3488
3489 if (attr_flags & MOUNT_ATTR_RDONLY)
3490 mnt_flags |= MNT_READONLY;
3491 if (attr_flags & MOUNT_ATTR_NOSUID)
3492 mnt_flags |= MNT_NOSUID;
3493 if (attr_flags & MOUNT_ATTR_NODEV)
3494 mnt_flags |= MNT_NODEV;
3495 if (attr_flags & MOUNT_ATTR_NOEXEC)
3496 mnt_flags |= MNT_NOEXEC;
3497 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3498 mnt_flags |= MNT_NODIRATIME;
3499
3500 return mnt_flags;
3501}
3502
2db154b3 3503/*
93766fbd
DH
3504 * Create a kernel mount representation for a new, prepared superblock
3505 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3506 */
3507SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3508 unsigned int, attr_flags)
3509{
3510 struct mnt_namespace *ns;
3511 struct fs_context *fc;
3512 struct file *file;
3513 struct path newmount;
3514 struct mount *mnt;
3515 struct fd f;
3516 unsigned int mnt_flags = 0;
3517 long ret;
3518
3519 if (!may_mount())
3520 return -EPERM;
3521
3522 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3523 return -EINVAL;
3524
5b490500 3525 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
93766fbd
DH
3526 return -EINVAL;
3527
5b490500 3528 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
93766fbd
DH
3529
3530 switch (attr_flags & MOUNT_ATTR__ATIME) {
3531 case MOUNT_ATTR_STRICTATIME:
3532 break;
3533 case MOUNT_ATTR_NOATIME:
3534 mnt_flags |= MNT_NOATIME;
3535 break;
3536 case MOUNT_ATTR_RELATIME:
3537 mnt_flags |= MNT_RELATIME;
3538 break;
3539 default:
3540 return -EINVAL;
3541 }
3542
3543 f = fdget(fs_fd);
3544 if (!f.file)
3545 return -EBADF;
3546
3547 ret = -EINVAL;
3548 if (f.file->f_op != &fscontext_fops)
3549 goto err_fsfd;
3550
3551 fc = f.file->private_data;
3552
3553 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3554 if (ret < 0)
3555 goto err_fsfd;
3556
3557 /* There must be a valid superblock or we can't mount it */
3558 ret = -EINVAL;
3559 if (!fc->root)
3560 goto err_unlock;
3561
3562 ret = -EPERM;
3563 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3564 pr_warn("VFS: Mount too revealing\n");
3565 goto err_unlock;
3566 }
3567
3568 ret = -EBUSY;
3569 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3570 goto err_unlock;
3571
3572 ret = -EPERM;
3573 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3574 goto err_unlock;
3575
3576 newmount.mnt = vfs_create_mount(fc);
3577 if (IS_ERR(newmount.mnt)) {
3578 ret = PTR_ERR(newmount.mnt);
3579 goto err_unlock;
3580 }
3581 newmount.dentry = dget(fc->root);
3582 newmount.mnt->mnt_flags = mnt_flags;
3583
3584 /* We've done the mount bit - now move the file context into more or
3585 * less the same state as if we'd done an fspick(). We don't want to
3586 * do any memory allocation or anything like that at this point as we
3587 * don't want to have to handle any errors incurred.
3588 */
3589 vfs_clean_context(fc);
3590
3591 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3592 if (IS_ERR(ns)) {
3593 ret = PTR_ERR(ns);
3594 goto err_path;
3595 }
3596 mnt = real_mount(newmount.mnt);
3597 mnt->mnt_ns = ns;
3598 ns->root = mnt;
3599 ns->mounts = 1;
3600 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3601 mntget(newmount.mnt);
93766fbd
DH
3602
3603 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3604 * it, not just simply put it.
3605 */
3606 file = dentry_open(&newmount, O_PATH, fc->cred);
3607 if (IS_ERR(file)) {
3608 dissolve_on_fput(newmount.mnt);
3609 ret = PTR_ERR(file);
3610 goto err_path;
3611 }
3612 file->f_mode |= FMODE_NEED_UNMOUNT;
3613
3614 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3615 if (ret >= 0)
3616 fd_install(ret, file);
3617 else
3618 fput(file);
3619
3620err_path:
3621 path_put(&newmount);
3622err_unlock:
3623 mutex_unlock(&fc->uapi_mutex);
3624err_fsfd:
3625 fdput(f);
3626 return ret;
3627}
3628
3629/*
3630 * Move a mount from one place to another. In combination with
3631 * fsopen()/fsmount() this is used to install a new mount and in combination
3632 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3633 * a mount subtree.
2db154b3
DH
3634 *
3635 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3636 */
3637SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3638 int, from_dfd, const char __user *, from_pathname,
3639 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3640 unsigned int, flags)
3641{
3642 struct path from_path, to_path;
3643 unsigned int lflags;
3644 int ret = 0;
3645
3646 if (!may_mount())
3647 return -EPERM;
3648
3649 if (flags & ~MOVE_MOUNT__MASK)
3650 return -EINVAL;
3651
3652 /* If someone gives a pathname, they aren't permitted to move
3653 * from an fd that requires unmount as we can't get at the flag
3654 * to clear it afterwards.
3655 */
3656 lflags = 0;
3657 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3658 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3659 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3660
3661 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3662 if (ret < 0)
3663 return ret;
3664
3665 lflags = 0;
3666 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3667 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3668 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3669
3670 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3671 if (ret < 0)
3672 goto out_from;
3673
3674 ret = security_move_mount(&from_path, &to_path);
3675 if (ret < 0)
3676 goto out_to;
3677
3678 ret = do_move_mount(&from_path, &to_path);
3679
3680out_to:
3681 path_put(&to_path);
3682out_from:
3683 path_put(&from_path);
3684 return ret;
3685}
3686
afac7cba
AV
3687/*
3688 * Return true if path is reachable from root
3689 *
48a066e7 3690 * namespace_sem or mount_lock is held
afac7cba 3691 */
643822b4 3692bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3693 const struct path *root)
3694{
643822b4 3695 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3696 dentry = mnt->mnt_mountpoint;
0714a533 3697 mnt = mnt->mnt_parent;
afac7cba 3698 }
643822b4 3699 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3700}
3701
640eb7e7 3702bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3703{
25ab4c9b 3704 bool res;
48a066e7 3705 read_seqlock_excl(&mount_lock);
643822b4 3706 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3707 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3708 return res;
3709}
3710EXPORT_SYMBOL(path_is_under);
3711
1da177e4
LT
3712/*
3713 * pivot_root Semantics:
3714 * Moves the root file system of the current process to the directory put_old,
3715 * makes new_root as the new root file system of the current process, and sets
3716 * root/cwd of all processes which had them on the current root to new_root.
3717 *
3718 * Restrictions:
3719 * The new_root and put_old must be directories, and must not be on the
3720 * same file system as the current process root. The put_old must be
3721 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3722 * pointed to by put_old must yield the same directory as new_root. No other
3723 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3724 *
4a0d11fa 3725 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
0c1bc6b8 3726 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4a0d11fa
NB
3727 * in this situation.
3728 *
1da177e4
LT
3729 * Notes:
3730 * - we don't move root/cwd if they are not at the root (reason: if something
3731 * cared enough to change them, it's probably wrong to force them elsewhere)
3732 * - it's okay to pick a root that isn't the root of a file system, e.g.
3733 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3734 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3735 * first.
3736 */
3480b257
HC
3737SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3738 const char __user *, put_old)
1da177e4 3739{
2763d119
AV
3740 struct path new, old, root;
3741 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3742 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3743 int error;
3744
9b40bc90 3745 if (!may_mount())
1da177e4
LT
3746 return -EPERM;
3747
ce6595a2
AV
3748 error = user_path_at(AT_FDCWD, new_root,
3749 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3750 if (error)
3751 goto out0;
1da177e4 3752
ce6595a2
AV
3753 error = user_path_at(AT_FDCWD, put_old,
3754 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3755 if (error)
3756 goto out1;
3757
2d8f3038 3758 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3759 if (error)
3760 goto out2;
1da177e4 3761
f7ad3c6b 3762 get_fs_root(current->fs, &root);
84d17192
AV
3763 old_mp = lock_mount(&old);
3764 error = PTR_ERR(old_mp);
3765 if (IS_ERR(old_mp))
b12cea91
AV
3766 goto out3;
3767
1da177e4 3768 error = -EINVAL;
419148da
AV
3769 new_mnt = real_mount(new.mnt);
3770 root_mnt = real_mount(root.mnt);
84d17192 3771 old_mnt = real_mount(old.mnt);
2763d119
AV
3772 ex_parent = new_mnt->mnt_parent;
3773 root_parent = root_mnt->mnt_parent;
84d17192 3774 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3775 IS_MNT_SHARED(ex_parent) ||
3776 IS_MNT_SHARED(root_parent))
b12cea91 3777 goto out4;
143c8c91 3778 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3779 goto out4;
5ff9d8a6
EB
3780 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3781 goto out4;
1da177e4 3782 error = -ENOENT;
f3da392e 3783 if (d_unlinked(new.dentry))
b12cea91 3784 goto out4;
1da177e4 3785 error = -EBUSY;
84d17192 3786 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3787 goto out4; /* loop, on the same file system */
1da177e4 3788 error = -EINVAL;
8c3ee42e 3789 if (root.mnt->mnt_root != root.dentry)
b12cea91 3790 goto out4; /* not a mountpoint */
676da58d 3791 if (!mnt_has_parent(root_mnt))
b12cea91 3792 goto out4; /* not attached */
2d8f3038 3793 if (new.mnt->mnt_root != new.dentry)
b12cea91 3794 goto out4; /* not a mountpoint */
676da58d 3795 if (!mnt_has_parent(new_mnt))
b12cea91 3796 goto out4; /* not attached */
4ac91378 3797 /* make sure we can reach put_old from new_root */
84d17192 3798 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3799 goto out4;
0d082601
EB
3800 /* make certain new is below the root */
3801 if (!is_path_reachable(new_mnt, new.dentry, &root))
3802 goto out4;
719ea2fb 3803 lock_mount_hash();
2763d119
AV
3804 umount_mnt(new_mnt);
3805 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3806 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3807 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3808 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3809 }
4ac91378 3810 /* mount old root on put_old */
84d17192 3811 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3812 /* mount new_root on / */
2763d119
AV
3813 attach_mnt(new_mnt, root_parent, root_mp);
3814 mnt_add_count(root_parent, -1);
6b3286ed 3815 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3816 /* A moved mount should not expire automatically */
3817 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3818 put_mountpoint(root_mp);
719ea2fb 3819 unlock_mount_hash();
2d8f3038 3820 chroot_fs_refs(&root, &new);
1da177e4 3821 error = 0;
b12cea91 3822out4:
84d17192 3823 unlock_mount(old_mp);
2763d119
AV
3824 if (!error)
3825 mntput_no_expire(ex_parent);
b12cea91 3826out3:
8c3ee42e 3827 path_put(&root);
b12cea91 3828out2:
2d8f3038 3829 path_put(&old);
1da177e4 3830out1:
2d8f3038 3831 path_put(&new);
1da177e4 3832out0:
1da177e4 3833 return error;
1da177e4
LT
3834}
3835
2a186721
CB
3836static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3837{
3838 unsigned int flags = mnt->mnt.mnt_flags;
3839
3840 /* flags to clear */
3841 flags &= ~kattr->attr_clr;
3842 /* flags to raise */
3843 flags |= kattr->attr_set;
3844
3845 return flags;
3846}
3847
3848static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3849 struct mount *mnt, int *err)
3850{
3851 struct mount *m = mnt, *last = NULL;
3852
3853 if (!is_mounted(&m->mnt)) {
3854 *err = -EINVAL;
3855 goto out;
3856 }
3857
3858 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3859 *err = -EINVAL;
3860 goto out;
3861 }
3862
3863 do {
3864 unsigned int flags;
3865
3866 flags = recalc_flags(kattr, m);
3867 if (!can_change_locked_flags(m, flags)) {
3868 *err = -EPERM;
3869 goto out;
3870 }
3871
3872 last = m;
3873
3874 if ((kattr->attr_set & MNT_READONLY) &&
3875 !(m->mnt.mnt_flags & MNT_READONLY)) {
3876 *err = mnt_hold_writers(m);
3877 if (*err)
3878 goto out;
3879 }
3880 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3881
3882out:
3883 return last;
3884}
3885
3886static void mount_setattr_commit(struct mount_kattr *kattr,
3887 struct mount *mnt, struct mount *last,
3888 int err)
3889{
3890 struct mount *m = mnt;
3891
3892 do {
3893 if (!err) {
3894 unsigned int flags;
3895
3896 flags = recalc_flags(kattr, m);
3897 WRITE_ONCE(m->mnt.mnt_flags, flags);
3898 }
3899
3900 /*
3901 * We either set MNT_READONLY above so make it visible
3902 * before ~MNT_WRITE_HOLD or we failed to recursively
3903 * apply mount options.
3904 */
3905 if ((kattr->attr_set & MNT_READONLY) &&
3906 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3907 mnt_unhold_writers(m);
3908
3909 if (!err && kattr->propagation)
3910 change_mnt_propagation(m, kattr->propagation);
3911
3912 /*
3913 * On failure, only cleanup until we found the first mount
3914 * we failed to handle.
3915 */
3916 if (err && m == last)
3917 break;
3918 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3919
3920 if (!err)
3921 touch_mnt_namespace(mnt->mnt_ns);
3922}
3923
3924static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3925{
3926 struct mount *mnt = real_mount(path->mnt), *last = NULL;
3927 int err = 0;
3928
3929 if (path->dentry != mnt->mnt.mnt_root)
3930 return -EINVAL;
3931
3932 if (kattr->propagation) {
3933 /*
3934 * Only take namespace_lock() if we're actually changing
3935 * propagation.
3936 */
3937 namespace_lock();
3938 if (kattr->propagation == MS_SHARED) {
3939 err = invent_group_ids(mnt, kattr->recurse);
3940 if (err) {
3941 namespace_unlock();
3942 return err;
3943 }
3944 }
3945 }
3946
3947 lock_mount_hash();
3948
3949 /*
3950 * Get the mount tree in a shape where we can change mount
3951 * properties without failure.
3952 */
3953 last = mount_setattr_prepare(kattr, mnt, &err);
3954 if (last) /* Commit all changes or revert to the old state. */
3955 mount_setattr_commit(kattr, mnt, last, err);
3956
3957 unlock_mount_hash();
3958
3959 if (kattr->propagation) {
3960 namespace_unlock();
3961 if (err)
3962 cleanup_group_ids(mnt, NULL);
3963 }
3964
3965 return err;
3966}
3967
3968static int build_mount_kattr(const struct mount_attr *attr,
3969 struct mount_kattr *kattr, unsigned int flags)
3970{
3971 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3972
3973 if (flags & AT_NO_AUTOMOUNT)
3974 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3975 if (flags & AT_SYMLINK_NOFOLLOW)
3976 lookup_flags &= ~LOOKUP_FOLLOW;
3977 if (flags & AT_EMPTY_PATH)
3978 lookup_flags |= LOOKUP_EMPTY;
3979
3980 *kattr = (struct mount_kattr) {
3981 .lookup_flags = lookup_flags,
3982 .recurse = !!(flags & AT_RECURSIVE),
3983 };
3984
3985 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
3986 return -EINVAL;
3987 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
3988 return -EINVAL;
3989 kattr->propagation = attr->propagation;
3990
3991 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
3992 return -EINVAL;
3993
3994 if (attr->userns_fd)
3995 return -EINVAL;
3996
3997 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
3998 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
3999
4000 /*
4001 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4002 * users wanting to transition to a different atime setting cannot
4003 * simply specify the atime setting in @attr_set, but must also
4004 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4005 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4006 * @attr_clr and that @attr_set can't have any atime bits set if
4007 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4008 */
4009 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4010 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4011 return -EINVAL;
4012
4013 /*
4014 * Clear all previous time settings as they are mutually
4015 * exclusive.
4016 */
4017 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4018 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4019 case MOUNT_ATTR_RELATIME:
4020 kattr->attr_set |= MNT_RELATIME;
4021 break;
4022 case MOUNT_ATTR_NOATIME:
4023 kattr->attr_set |= MNT_NOATIME;
4024 break;
4025 case MOUNT_ATTR_STRICTATIME:
4026 break;
4027 default:
4028 return -EINVAL;
4029 }
4030 } else {
4031 if (attr->attr_set & MOUNT_ATTR__ATIME)
4032 return -EINVAL;
4033 }
4034
4035 return 0;
4036}
4037
4038SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4039 unsigned int, flags, struct mount_attr __user *, uattr,
4040 size_t, usize)
4041{
4042 int err;
4043 struct path target;
4044 struct mount_attr attr;
4045 struct mount_kattr kattr;
4046
4047 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4048
4049 if (flags & ~(AT_EMPTY_PATH |
4050 AT_RECURSIVE |
4051 AT_SYMLINK_NOFOLLOW |
4052 AT_NO_AUTOMOUNT))
4053 return -EINVAL;
4054
4055 if (unlikely(usize > PAGE_SIZE))
4056 return -E2BIG;
4057 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4058 return -EINVAL;
4059
4060 if (!may_mount())
4061 return -EPERM;
4062
4063 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4064 if (err)
4065 return err;
4066
4067 /* Don't bother walking through the mounts if this is a nop. */
4068 if (attr.attr_set == 0 &&
4069 attr.attr_clr == 0 &&
4070 attr.propagation == 0)
4071 return 0;
4072
4073 err = build_mount_kattr(&attr, &kattr, flags);
4074 if (err)
4075 return err;
4076
4077 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4078 if (err)
4079 return err;
4080
4081 err = do_mount_setattr(&target, &kattr);
4082 path_put(&target);
4083 return err;
4084}
4085
1da177e4
LT
4086static void __init init_mount_tree(void)
4087{
4088 struct vfsmount *mnt;
74e83122 4089 struct mount *m;
6b3286ed 4090 struct mnt_namespace *ns;
ac748a09 4091 struct path root;
1da177e4 4092
fd3e007f 4093 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
4094 if (IS_ERR(mnt))
4095 panic("Can't create rootfs");
b3e19d92 4096
74e83122 4097 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 4098 if (IS_ERR(ns))
1da177e4 4099 panic("Can't allocate initial namespace");
74e83122
AV
4100 m = real_mount(mnt);
4101 m->mnt_ns = ns;
4102 ns->root = m;
4103 ns->mounts = 1;
4104 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
4105 init_task.nsproxy->mnt_ns = ns;
4106 get_mnt_ns(ns);
4107
be08d6d2
AV
4108 root.mnt = mnt;
4109 root.dentry = mnt->mnt_root;
da362b09 4110 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
4111
4112 set_fs_pwd(current->fs, &root);
4113 set_fs_root(current->fs, &root);
1da177e4
LT
4114}
4115
74bf17cf 4116void __init mnt_init(void)
1da177e4 4117{
15a67dd8 4118 int err;
1da177e4 4119
7d6fec45 4120 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 4121 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 4122
0818bf27 4123 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 4124 sizeof(struct hlist_head),
0818bf27 4125 mhash_entries, 19,
3d375d78 4126 HASH_ZERO,
0818bf27
AV
4127 &m_hash_shift, &m_hash_mask, 0, 0);
4128 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4129 sizeof(struct hlist_head),
4130 mphash_entries, 19,
3d375d78 4131 HASH_ZERO,
0818bf27 4132 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 4133
84d17192 4134 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
4135 panic("Failed to allocate mount hash table\n");
4136
4b93dc9b
TH
4137 kernfs_init();
4138
15a67dd8
RD
4139 err = sysfs_init();
4140 if (err)
4141 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 4142 __func__, err);
00d26666
GKH
4143 fs_kobj = kobject_create_and_add("fs", NULL);
4144 if (!fs_kobj)
8e24eea7 4145 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 4146 shmem_init();
1da177e4
LT
4147 init_rootfs();
4148 init_mount_tree();
4149}
4150
616511d0 4151void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 4152{
1a7b8969 4153 if (!refcount_dec_and_test(&ns->ns.count))
616511d0 4154 return;
7b00ed6f 4155 drop_collected_mounts(&ns->root->mnt);
771b1371 4156 free_mnt_ns(ns);
1da177e4 4157}
9d412a43 4158
d911b458 4159struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 4160{
423e0ab0 4161 struct vfsmount *mnt;
d911b458 4162 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
4163 if (!IS_ERR(mnt)) {
4164 /*
4165 * it is a longterm mount, don't release mnt until
4166 * we unmount before file sys is unregistered
4167 */
f7a99c5b 4168 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
4169 }
4170 return mnt;
9d412a43 4171}
d911b458 4172EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
4173
4174void kern_unmount(struct vfsmount *mnt)
4175{
4176 /* release long term mount so mount point can be released */
4177 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 4178 real_mount(mnt)->mnt_ns = NULL;
48a066e7 4179 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
4180 mntput(mnt);
4181 }
4182}
4183EXPORT_SYMBOL(kern_unmount);
02125a82 4184
df820f8d
MS
4185void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4186{
4187 unsigned int i;
4188
4189 for (i = 0; i < num; i++)
4190 if (mnt[i])
4191 real_mount(mnt[i])->mnt_ns = NULL;
4192 synchronize_rcu_expedited();
4193 for (i = 0; i < num; i++)
4194 mntput(mnt[i]);
4195}
4196EXPORT_SYMBOL(kern_unmount_array);
4197
02125a82
AV
4198bool our_mnt(struct vfsmount *mnt)
4199{
143c8c91 4200 return check_mnt(real_mount(mnt));
02125a82 4201}
8823c079 4202
3151527e
EB
4203bool current_chrooted(void)
4204{
4205 /* Does the current process have a non-standard root */
4206 struct path ns_root;
4207 struct path fs_root;
4208 bool chrooted;
4209
4210 /* Find the namespace root */
4211 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4212 ns_root.dentry = ns_root.mnt->mnt_root;
4213 path_get(&ns_root);
4214 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4215 ;
4216
4217 get_fs_root(current->fs, &fs_root);
4218
4219 chrooted = !path_equal(&fs_root, &ns_root);
4220
4221 path_put(&fs_root);
4222 path_put(&ns_root);
4223
4224 return chrooted;
4225}
4226
132e4608
DH
4227static bool mnt_already_visible(struct mnt_namespace *ns,
4228 const struct super_block *sb,
8654df4e 4229 int *new_mnt_flags)
87a8ebd6 4230{
8c6cf9cc 4231 int new_flags = *new_mnt_flags;
87a8ebd6 4232 struct mount *mnt;
e51db735 4233 bool visible = false;
87a8ebd6 4234
44bb4385 4235 down_read(&namespace_sem);
9f6c61f9 4236 lock_ns_list(ns);
87a8ebd6 4237 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 4238 struct mount *child;
77b1a97d
EB
4239 int mnt_flags;
4240
9f6c61f9
MS
4241 if (mnt_is_cursor(mnt))
4242 continue;
4243
132e4608 4244 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
4245 continue;
4246
7e96c1b0
EB
4247 /* This mount is not fully visible if it's root directory
4248 * is not the root directory of the filesystem.
4249 */
4250 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4251 continue;
4252
a1935c17 4253 /* A local view of the mount flags */
77b1a97d 4254 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 4255
695e9df0 4256 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 4257 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
4258 mnt_flags |= MNT_LOCK_READONLY;
4259
8c6cf9cc
EB
4260 /* Verify the mount flags are equal to or more permissive
4261 * than the proposed new mount.
4262 */
77b1a97d 4263 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
4264 !(new_flags & MNT_READONLY))
4265 continue;
77b1a97d
EB
4266 if ((mnt_flags & MNT_LOCK_ATIME) &&
4267 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
4268 continue;
4269
ceeb0e5d
EB
4270 /* This mount is not fully visible if there are any
4271 * locked child mounts that cover anything except for
4272 * empty directories.
e51db735
EB
4273 */
4274 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4275 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 4276 /* Only worry about locked mounts */
d71ed6c9 4277 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 4278 continue;
7236c85e
EB
4279 /* Is the directory permanetly empty? */
4280 if (!is_empty_dir_inode(inode))
e51db735 4281 goto next;
87a8ebd6 4282 }
8c6cf9cc 4283 /* Preserve the locked attributes */
77b1a97d 4284 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 4285 MNT_LOCK_ATIME);
e51db735
EB
4286 visible = true;
4287 goto found;
4288 next: ;
87a8ebd6 4289 }
e51db735 4290found:
9f6c61f9 4291 unlock_ns_list(ns);
44bb4385 4292 up_read(&namespace_sem);
e51db735 4293 return visible;
87a8ebd6
EB
4294}
4295
132e4608 4296static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 4297{
a1935c17 4298 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
4299 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4300 unsigned long s_iflags;
4301
4302 if (ns->user_ns == &init_user_ns)
4303 return false;
4304
4305 /* Can this filesystem be too revealing? */
132e4608 4306 s_iflags = sb->s_iflags;
8654df4e
EB
4307 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4308 return false;
4309
a1935c17
EB
4310 if ((s_iflags & required_iflags) != required_iflags) {
4311 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4312 required_iflags);
4313 return true;
4314 }
4315
132e4608 4316 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
4317}
4318
380cf5ba
AL
4319bool mnt_may_suid(struct vfsmount *mnt)
4320{
4321 /*
4322 * Foreign mounts (accessed via fchdir or through /proc
4323 * symlinks) are always treated as if they are nosuid. This
4324 * prevents namespaces from trusting potentially unsafe
4325 * suid/sgid bits, file caps, or security labels that originate
4326 * in other namespaces.
4327 */
4328 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4329 current_in_userns(mnt->mnt_sb->s_user_ns);
4330}
4331
64964528 4332static struct ns_common *mntns_get(struct task_struct *task)
8823c079 4333{
58be2825 4334 struct ns_common *ns = NULL;
8823c079
EB
4335 struct nsproxy *nsproxy;
4336
728dba3a
EB
4337 task_lock(task);
4338 nsproxy = task->nsproxy;
8823c079 4339 if (nsproxy) {
58be2825
AV
4340 ns = &nsproxy->mnt_ns->ns;
4341 get_mnt_ns(to_mnt_ns(ns));
8823c079 4342 }
728dba3a 4343 task_unlock(task);
8823c079
EB
4344
4345 return ns;
4346}
4347
64964528 4348static void mntns_put(struct ns_common *ns)
8823c079 4349{
58be2825 4350 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
4351}
4352
f2a8d52e 4353static int mntns_install(struct nsset *nsset, struct ns_common *ns)
8823c079 4354{
f2a8d52e
CB
4355 struct nsproxy *nsproxy = nsset->nsproxy;
4356 struct fs_struct *fs = nsset->fs;
4f757f3c 4357 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
f2a8d52e 4358 struct user_namespace *user_ns = nsset->cred->user_ns;
8823c079 4359 struct path root;
4f757f3c 4360 int err;
8823c079 4361
0c55cfc4 4362 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e
CB
4363 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4364 !ns_capable(user_ns, CAP_SYS_ADMIN))
ae11e0f1 4365 return -EPERM;
8823c079 4366
74e83122
AV
4367 if (is_anon_ns(mnt_ns))
4368 return -EINVAL;
4369
8823c079
EB
4370 if (fs->users != 1)
4371 return -EINVAL;
4372
4373 get_mnt_ns(mnt_ns);
4f757f3c 4374 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4375 nsproxy->mnt_ns = mnt_ns;
4376
4377 /* Find the root */
4f757f3c
AV
4378 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4379 "/", LOOKUP_DOWN, &root);
4380 if (err) {
4381 /* revert to old namespace */
4382 nsproxy->mnt_ns = old_mnt_ns;
4383 put_mnt_ns(mnt_ns);
4384 return err;
4385 }
8823c079 4386
4068367c
AV
4387 put_mnt_ns(old_mnt_ns);
4388
8823c079
EB
4389 /* Update the pwd and root */
4390 set_fs_pwd(fs, &root);
4391 set_fs_root(fs, &root);
4392
4393 path_put(&root);
4394 return 0;
4395}
4396
bcac25a5
AV
4397static struct user_namespace *mntns_owner(struct ns_common *ns)
4398{
4399 return to_mnt_ns(ns)->user_ns;
4400}
4401
8823c079
EB
4402const struct proc_ns_operations mntns_operations = {
4403 .name = "mnt",
4404 .type = CLONE_NEWNS,
4405 .get = mntns_get,
4406 .put = mntns_put,
4407 .install = mntns_install,
bcac25a5 4408 .owner = mntns_owner,
8823c079 4409};