]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
mx6qsabreauto: Return error if cpu_eth_init() fails
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
1a459660 8 * SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
9 */
10
11#include <common.h>
12#include <malloc.h>
13#include <net.h>
14#include <miiphy.h>
15#include "fec_mxc.h"
16
17#include <asm/arch/clock.h>
18#include <asm/arch/imx-regs.h>
19#include <asm/io.h>
20#include <asm/errno.h>
e2a66e60 21#include <linux/compiler.h>
0b23fb36
IY
22
23DECLARE_GLOBAL_DATA_PTR;
24
bc1ce150
MV
25/*
26 * Timeout the transfer after 5 mS. This is usually a bit more, since
27 * the code in the tightloops this timeout is used in adds some overhead.
28 */
29#define FEC_XFER_TIMEOUT 5000
30
0b23fb36
IY
31#ifndef CONFIG_MII
32#error "CONFIG_MII has to be defined!"
33#endif
34
5c1ad3e6
EN
35#ifndef CONFIG_FEC_XCV_TYPE
36#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
37#endif
38
be7e87e2
MV
39/*
40 * The i.MX28 operates with packets in big endian. We need to swap them before
41 * sending and after receiving.
42 */
5c1ad3e6
EN
43#ifdef CONFIG_MX28
44#define CONFIG_FEC_MXC_SWAP_PACKET
45#endif
46
47#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
48
49/* Check various alignment issues at compile time */
50#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
51#error "ARCH_DMA_MINALIGN must be multiple of 16!"
52#endif
53
54#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
55 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
56#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
57#endif
58
0b23fb36
IY
59#undef DEBUG
60
61struct nbuf {
62 uint8_t data[1500]; /**< actual data */
63 int length; /**< actual length */
64 int used; /**< buffer in use or not */
65 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
66};
67
5c1ad3e6 68#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
69static void swap_packet(uint32_t *packet, int length)
70{
71 int i;
72
73 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
74 packet[i] = __swab32(packet[i]);
75}
76#endif
77
0b23fb36
IY
78/*
79 * MII-interface related functions
80 */
13947f43
TK
81static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
82 uint8_t regAddr)
0b23fb36 83{
0b23fb36
IY
84 uint32_t reg; /* convenient holder for the PHY register */
85 uint32_t phy; /* convenient holder for the PHY */
86 uint32_t start;
13947f43 87 int val;
0b23fb36
IY
88
89 /*
90 * reading from any PHY's register is done by properly
91 * programming the FEC's MII data register.
92 */
d133b881 93 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
94 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
95 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
96
97 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 98 phy | reg, &eth->mii_data);
0b23fb36
IY
99
100 /*
101 * wait for the related interrupt
102 */
a60d1e5b 103 start = get_timer(0);
d133b881 104 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
105 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
106 printf("Read MDIO failed...\n");
107 return -1;
108 }
109 }
110
111 /*
112 * clear mii interrupt bit
113 */
d133b881 114 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
115
116 /*
117 * it's now safe to read the PHY's register
118 */
13947f43
TK
119 val = (unsigned short)readl(&eth->mii_data);
120 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
121 regAddr, val);
122 return val;
0b23fb36
IY
123}
124
575c5cc0 125static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
126{
127 /*
128 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
129 * and do not drop the Preamble.
130 */
131 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
575c5cc0
TK
132 &eth->mii_speed);
133 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 134}
0b23fb36 135
13947f43
TK
136static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
137 uint8_t regAddr, uint16_t data)
138{
0b23fb36
IY
139 uint32_t reg; /* convenient holder for the PHY register */
140 uint32_t phy; /* convenient holder for the PHY */
141 uint32_t start;
142
143 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
144 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
145
146 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 147 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
148
149 /*
150 * wait for the MII interrupt
151 */
a60d1e5b 152 start = get_timer(0);
d133b881 153 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
154 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
155 printf("Write MDIO failed...\n");
156 return -1;
157 }
158 }
159
160 /*
161 * clear MII interrupt bit
162 */
d133b881 163 writel(FEC_IEVENT_MII, &eth->ievent);
13947f43 164 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
0b23fb36
IY
165 regAddr, data);
166
167 return 0;
168}
169
13947f43
TK
170int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
171{
172 return fec_mdio_read(bus->priv, phyAddr, regAddr);
173}
174
175int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
176 u16 data)
177{
178 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
179}
180
181#ifndef CONFIG_PHYLIB
0b23fb36
IY
182static int miiphy_restart_aneg(struct eth_device *dev)
183{
b774fe9d
SB
184 int ret = 0;
185#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 186 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 187 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 188
0b23fb36
IY
189 /*
190 * Wake up from sleep if necessary
191 * Reset PHY, then delay 300ns
192 */
cb17b92d 193#ifdef CONFIG_MX27
13947f43 194 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 195#endif
13947f43 196 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
197 udelay(1000);
198
199 /*
200 * Set the auto-negotiation advertisement register bits
201 */
13947f43 202 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
203 LPA_100FULL | LPA_100HALF | LPA_10FULL |
204 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 205 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
8ef583a0 206 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
207
208 if (fec->mii_postcall)
209 ret = fec->mii_postcall(fec->phy_id);
210
b774fe9d 211#endif
2e5f4421 212 return ret;
0b23fb36
IY
213}
214
215static int miiphy_wait_aneg(struct eth_device *dev)
216{
217 uint32_t start;
13947f43 218 int status;
9e27e9dc 219 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 220 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36
IY
221
222 /*
223 * Wait for AN completion
224 */
a60d1e5b 225 start = get_timer(0);
0b23fb36
IY
226 do {
227 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
228 printf("%s: Autonegotiation timeout\n", dev->name);
229 return -1;
230 }
231
13947f43
TK
232 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
233 if (status < 0) {
234 printf("%s: Autonegotiation failed. status: %d\n",
0b23fb36
IY
235 dev->name, status);
236 return -1;
237 }
8ef583a0 238 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
239
240 return 0;
241}
13947f43
TK
242#endif
243
0b23fb36
IY
244static int fec_rx_task_enable(struct fec_priv *fec)
245{
c0b5a3bb 246 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
247 return 0;
248}
249
250static int fec_rx_task_disable(struct fec_priv *fec)
251{
252 return 0;
253}
254
255static int fec_tx_task_enable(struct fec_priv *fec)
256{
c0b5a3bb 257 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
258 return 0;
259}
260
261static int fec_tx_task_disable(struct fec_priv *fec)
262{
263 return 0;
264}
265
266/**
267 * Initialize receive task's buffer descriptors
268 * @param[in] fec all we know about the device yet
269 * @param[in] count receive buffer count to be allocated
5c1ad3e6 270 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
271 * @return 0 on success
272 *
273 * For this task we need additional memory for the data buffers. And each
274 * data buffer requires some alignment. Thy must be aligned to a specific
5c1ad3e6 275 * boundary each.
0b23fb36 276 */
5c1ad3e6 277static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 278{
5c1ad3e6
EN
279 uint32_t size;
280 int i;
281
0b23fb36 282 /*
5c1ad3e6
EN
283 * Allocate memory for the buffers. This allocation respects the
284 * alignment
0b23fb36 285 */
5c1ad3e6
EN
286 size = roundup(dsize, ARCH_DMA_MINALIGN);
287 for (i = 0; i < count; i++) {
288 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
289 if (data_ptr == 0) {
290 uint8_t *data = memalign(ARCH_DMA_MINALIGN,
291 size);
292 if (!data) {
293 printf("%s: error allocating rxbuf %d\n",
294 __func__, i);
295 goto err;
296 }
297 writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
298 } /* needs allocation */
299 writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
300 writew(0, &fec->rbd_base[i].data_length);
301 }
302
303 /* Mark the last RBD to close the ring. */
304 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
0b23fb36
IY
305 fec->rbd_index = 0;
306
307 return 0;
5c1ad3e6
EN
308
309err:
310 for (; i >= 0; i--) {
311 uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
312 free((void *)data_ptr);
313 }
314
315 return -ENOMEM;
0b23fb36
IY
316}
317
318/**
319 * Initialize transmit task's buffer descriptors
320 * @param[in] fec all we know about the device yet
321 *
322 * Transmit buffers are created externally. We only have to init the BDs here.\n
323 * Note: There is a race condition in the hardware. When only one BD is in
324 * use it must be marked with the WRAP bit to use it for every transmitt.
325 * This bit in combination with the READY bit results into double transmit
326 * of each data buffer. It seems the state machine checks READY earlier then
327 * resetting it after the first transfer.
328 * Using two BDs solves this issue.
329 */
330static void fec_tbd_init(struct fec_priv *fec)
331{
5c1ad3e6
EN
332 unsigned addr = (unsigned)fec->tbd_base;
333 unsigned size = roundup(2 * sizeof(struct fec_bd),
334 ARCH_DMA_MINALIGN);
0b23fb36
IY
335 writew(0x0000, &fec->tbd_base[0].status);
336 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
337 fec->tbd_index = 0;
5c1ad3e6 338 flush_dcache_range(addr, addr+size);
0b23fb36
IY
339}
340
341/**
342 * Mark the given read buffer descriptor as free
343 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
344 * @param[in] pRbd buffer descriptor to mark free again
345 */
346static void fec_rbd_clean(int last, struct fec_bd *pRbd)
347{
5c1ad3e6 348 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 349 if (last)
5c1ad3e6
EN
350 flags |= FEC_RBD_WRAP;
351 writew(flags, &pRbd->status);
0b23fb36
IY
352 writew(0, &pRbd->data_length);
353}
354
be252b65
FE
355static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
356 unsigned char *mac)
0b23fb36 357{
be252b65 358 imx_get_mac_from_fuse(dev_id, mac);
2e236bf2 359 return !is_valid_ether_addr(mac);
0b23fb36
IY
360}
361
4294b248 362static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 363{
4294b248 364 uchar *mac = dev->enetaddr;
0b23fb36
IY
365 struct fec_priv *fec = (struct fec_priv *)dev->priv;
366
367 writel(0, &fec->eth->iaddr1);
368 writel(0, &fec->eth->iaddr2);
369 writel(0, &fec->eth->gaddr1);
370 writel(0, &fec->eth->gaddr2);
371
372 /*
373 * Set physical address
374 */
375 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
376 &fec->eth->paddr1);
377 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
378
379 return 0;
380}
381
a5990b26
MV
382/*
383 * Do initial configuration of the FEC registers
384 */
385static void fec_reg_setup(struct fec_priv *fec)
386{
387 uint32_t rcntrl;
388
389 /*
390 * Set interrupt mask register
391 */
392 writel(0x00000000, &fec->eth->imask);
393
394 /*
395 * Clear FEC-Lite interrupt event register(IEVENT)
396 */
397 writel(0xffffffff, &fec->eth->ievent);
398
399
400 /*
401 * Set FEC-Lite receive control register(R_CNTRL):
402 */
403
404 /* Start with frame length = 1518, common for all modes. */
405 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 406 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
407 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
408 if (fec->xcv_type == RGMII)
a5990b26
MV
409 rcntrl |= FEC_RCNTRL_RGMII;
410 else if (fec->xcv_type == RMII)
411 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
412
413 writel(rcntrl, &fec->eth->r_cntrl);
414}
415
0b23fb36
IY
416/**
417 * Start the FEC engine
418 * @param[in] dev Our device to handle
419 */
420static int fec_open(struct eth_device *edev)
421{
422 struct fec_priv *fec = (struct fec_priv *)edev->priv;
28774cba 423 int speed;
5c1ad3e6
EN
424 uint32_t addr, size;
425 int i;
0b23fb36
IY
426
427 debug("fec_open: fec_open(dev)\n");
428 /* full-duplex, heartbeat disabled */
429 writel(1 << 2, &fec->eth->x_cntrl);
430 fec->rbd_index = 0;
431
5c1ad3e6
EN
432 /* Invalidate all descriptors */
433 for (i = 0; i < FEC_RBD_NUM - 1; i++)
434 fec_rbd_clean(0, &fec->rbd_base[i]);
435 fec_rbd_clean(1, &fec->rbd_base[i]);
436
437 /* Flush the descriptors into RAM */
438 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
439 ARCH_DMA_MINALIGN);
440 addr = (uint32_t)fec->rbd_base;
441 flush_dcache_range(addr, addr + size);
442
28774cba 443#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
444 /* Enable ENET HW endian SWAP */
445 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
446 &fec->eth->ecntrl);
447 /* Enable ENET store and forward mode */
448 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
449 &fec->eth->x_wmrk);
450#endif
0b23fb36
IY
451 /*
452 * Enable FEC-Lite controller
453 */
cb17b92d
JR
454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
455 &fec->eth->ecntrl);
96912453 456#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
457 udelay(100);
458 /*
459 * setup the MII gasket for RMII mode
460 */
461
462 /* disable the gasket */
463 writew(0, &fec->eth->miigsk_enr);
464
465 /* wait for the gasket to be disabled */
466 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
467 udelay(2);
468
469 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
470 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
471
472 /* re-enable the gasket */
473 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
474
475 /* wait until MII gasket is ready */
476 int max_loops = 10;
477 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
478 if (--max_loops <= 0) {
479 printf("WAIT for MII Gasket ready timed out\n");
480 break;
481 }
482 }
483#endif
0b23fb36 484
13947f43 485#ifdef CONFIG_PHYLIB
4dc27eed 486 {
13947f43 487 /* Start up the PHY */
11af8d65
TT
488 int ret = phy_startup(fec->phydev);
489
490 if (ret) {
491 printf("Could not initialize PHY %s\n",
492 fec->phydev->dev->name);
493 return ret;
494 }
13947f43 495 speed = fec->phydev->speed;
13947f43
TK
496 }
497#else
0b23fb36 498 miiphy_wait_aneg(edev);
28774cba 499 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 500 miiphy_duplex(edev->name, fec->phy_id);
13947f43 501#endif
0b23fb36 502
28774cba
TK
503#ifdef FEC_QUIRK_ENET_MAC
504 {
505 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 506 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
507 if (speed == _1000BASET)
508 ecr |= FEC_ECNTRL_SPEED;
509 else if (speed != _100BASET)
510 rcr |= FEC_RCNTRL_RMII_10T;
511 writel(ecr, &fec->eth->ecntrl);
512 writel(rcr, &fec->eth->r_cntrl);
513 }
514#endif
515 debug("%s:Speed=%i\n", __func__, speed);
516
0b23fb36
IY
517 /*
518 * Enable SmartDMA receive task
519 */
520 fec_rx_task_enable(fec);
521
522 udelay(100000);
523 return 0;
524}
525
526static int fec_init(struct eth_device *dev, bd_t* bd)
527{
0b23fb36 528 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 529 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
5c1ad3e6
EN
530 uint32_t size;
531 int i, ret;
0b23fb36 532
e9319f11
JR
533 /* Initialize MAC address */
534 fec_set_hwaddr(dev);
535
0b23fb36 536 /*
5c1ad3e6
EN
537 * Allocate transmit descriptors, there are two in total. This
538 * allocation respects cache alignment.
0b23fb36 539 */
5c1ad3e6
EN
540 if (!fec->tbd_base) {
541 size = roundup(2 * sizeof(struct fec_bd),
542 ARCH_DMA_MINALIGN);
543 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
544 if (!fec->tbd_base) {
545 ret = -ENOMEM;
546 goto err1;
547 }
548 memset(fec->tbd_base, 0, size);
549 fec_tbd_init(fec);
0b23fb36 550 }
0b23fb36 551
5c1ad3e6
EN
552 /*
553 * Allocate receive descriptors. This allocation respects cache
554 * alignment.
555 */
556 if (!fec->rbd_base) {
557 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
558 ARCH_DMA_MINALIGN);
559 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
560 if (!fec->rbd_base) {
561 ret = -ENOMEM;
562 goto err2;
563 }
564 memset(fec->rbd_base, 0, size);
565 /*
566 * Initialize RxBD ring
567 */
568 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
569 ret = -ENOMEM;
570 goto err3;
571 }
572 flush_dcache_range((unsigned)fec->rbd_base,
573 (unsigned)fec->rbd_base + size);
574 }
0b23fb36 575
a5990b26 576 fec_reg_setup(fec);
9eb3770b 577
f41471e6 578 if (fec->xcv_type != SEVENWIRE)
575c5cc0 579 fec_mii_setspeed(fec->bus->priv);
9eb3770b 580
0b23fb36
IY
581 /*
582 * Set Opcode/Pause Duration Register
583 */
584 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
585 writel(0x2, &fec->eth->x_wmrk);
586 /*
587 * Set multicast address filter
588 */
589 writel(0x00000000, &fec->eth->gaddr1);
590 writel(0x00000000, &fec->eth->gaddr2);
591
592
593 /* clear MIB RAM */
9e27e9dc
MV
594 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
595 writel(0, i);
0b23fb36
IY
596
597 /* FIFO receive start register */
598 writel(0x520, &fec->eth->r_fstart);
599
600 /* size and address of each buffer */
601 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
602 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
603 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
604
13947f43 605#ifndef CONFIG_PHYLIB
0b23fb36
IY
606 if (fec->xcv_type != SEVENWIRE)
607 miiphy_restart_aneg(dev);
13947f43 608#endif
0b23fb36
IY
609 fec_open(dev);
610 return 0;
5c1ad3e6
EN
611
612err3:
613 free(fec->rbd_base);
614err2:
615 free(fec->tbd_base);
616err1:
617 return ret;
0b23fb36
IY
618}
619
620/**
621 * Halt the FEC engine
622 * @param[in] dev Our device to handle
623 */
624static void fec_halt(struct eth_device *dev)
625{
9e27e9dc 626 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
627 int counter = 0xffff;
628
629 /*
630 * issue graceful stop command to the FEC transmitter if necessary
631 */
cb17b92d 632 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
633 &fec->eth->x_cntrl);
634
635 debug("eth_halt: wait for stop regs\n");
636 /*
637 * wait for graceful stop to register
638 */
639 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 640 udelay(1);
0b23fb36
IY
641
642 /*
643 * Disable SmartDMA tasks
644 */
645 fec_tx_task_disable(fec);
646 fec_rx_task_disable(fec);
647
648 /*
649 * Disable the Ethernet Controller
650 * Note: this will also reset the BD index counter!
651 */
740d6ae5
JR
652 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
653 &fec->eth->ecntrl);
0b23fb36
IY
654 fec->rbd_index = 0;
655 fec->tbd_index = 0;
0b23fb36
IY
656 debug("eth_halt: done\n");
657}
658
659/**
660 * Transmit one frame
661 * @param[in] dev Our ethernet device to handle
662 * @param[in] packet Pointer to the data to be transmitted
663 * @param[in] length Data count in bytes
664 * @return 0 on success
665 */
442dac4c 666static int fec_send(struct eth_device *dev, void *packet, int length)
0b23fb36
IY
667{
668 unsigned int status;
efe24d2e 669 uint32_t size, end;
5c1ad3e6 670 uint32_t addr;
bc1ce150
MV
671 int timeout = FEC_XFER_TIMEOUT;
672 int ret = 0;
0b23fb36
IY
673
674 /*
675 * This routine transmits one frame. This routine only accepts
676 * 6-byte Ethernet addresses.
677 */
678 struct fec_priv *fec = (struct fec_priv *)dev->priv;
679
680 /*
681 * Check for valid length of data.
682 */
683 if ((length > 1500) || (length <= 0)) {
4294b248 684 printf("Payload (%d) too large\n", length);
0b23fb36
IY
685 return -1;
686 }
687
688 /*
5c1ad3e6
EN
689 * Setup the transmit buffer. We are always using the first buffer for
690 * transmission, the second will be empty and only used to stop the DMA
691 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 692 */
5c1ad3e6 693#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
694 swap_packet((uint32_t *)packet, length);
695#endif
5c1ad3e6
EN
696
697 addr = (uint32_t)packet;
efe24d2e
MV
698 end = roundup(addr + length, ARCH_DMA_MINALIGN);
699 addr &= ~(ARCH_DMA_MINALIGN - 1);
700 flush_dcache_range(addr, end);
5c1ad3e6 701
0b23fb36 702 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
5c1ad3e6
EN
703 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
704
0b23fb36
IY
705 /*
706 * update BD's status now
707 * This block:
708 * - is always the last in a chain (means no chain)
709 * - should transmitt the CRC
710 * - might be the last BD in the list, so the address counter should
711 * wrap (-> keep the WRAP flag)
712 */
713 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
714 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
715 writew(status, &fec->tbd_base[fec->tbd_index].status);
716
5c1ad3e6
EN
717 /*
718 * Flush data cache. This code flushes both TX descriptors to RAM.
719 * After this code, the descriptors will be safely in RAM and we
720 * can start DMA.
721 */
722 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
723 addr = (uint32_t)fec->tbd_base;
724 flush_dcache_range(addr, addr + size);
725
ab94cd49
MV
726 /*
727 * Below we read the DMA descriptor's last four bytes back from the
728 * DRAM. This is important in order to make sure that all WRITE
729 * operations on the bus that were triggered by previous cache FLUSH
730 * have completed.
731 *
732 * Otherwise, on MX28, it is possible to observe a corruption of the
733 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
734 * for the bus structure of MX28. The scenario is as follows:
735 *
736 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
737 * to DRAM due to flush_dcache_range()
738 * 2) ARM core writes the FEC registers via AHB_ARB2
739 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
740 *
741 * Note that 2) does sometimes finish before 1) due to reordering of
742 * WRITE accesses on the AHB bus, therefore triggering 3) before the
743 * DMA descriptor is fully written into DRAM. This results in occasional
744 * corruption of the DMA descriptor.
745 */
746 readl(addr + size - 4);
747
0b23fb36
IY
748 /*
749 * Enable SmartDMA transmit task
750 */
751 fec_tx_task_enable(fec);
752
753 /*
5c1ad3e6
EN
754 * Wait until frame is sent. On each turn of the wait cycle, we must
755 * invalidate data cache to see what's really in RAM. Also, we need
756 * barrier here.
0b23fb36 757 */
67449098 758 while (--timeout) {
c0b5a3bb 759 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 760 break;
0b23fb36 761 }
5c1ad3e6 762
67449098
MV
763 if (!timeout)
764 ret = -EINVAL;
765
766 invalidate_dcache_range(addr, addr + size);
767 if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
768 ret = -EINVAL;
769
770 debug("fec_send: status 0x%x index %d ret %i\n",
0b23fb36 771 readw(&fec->tbd_base[fec->tbd_index].status),
67449098 772 fec->tbd_index, ret);
0b23fb36
IY
773 /* for next transmission use the other buffer */
774 if (fec->tbd_index)
775 fec->tbd_index = 0;
776 else
777 fec->tbd_index = 1;
778
bc1ce150 779 return ret;
0b23fb36
IY
780}
781
782/**
783 * Pull one frame from the card
784 * @param[in] dev Our ethernet device to handle
785 * @return Length of packet read
786 */
787static int fec_recv(struct eth_device *dev)
788{
789 struct fec_priv *fec = (struct fec_priv *)dev->priv;
790 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
791 unsigned long ievent;
792 int frame_length, len = 0;
793 struct nbuf *frame;
794 uint16_t bd_status;
efe24d2e 795 uint32_t addr, size, end;
5c1ad3e6 796 int i;
e2a66e60 797 uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
0b23fb36
IY
798
799 /*
800 * Check if any critical events have happened
801 */
802 ievent = readl(&fec->eth->ievent);
803 writel(ievent, &fec->eth->ievent);
eda959f3 804 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
805 if (ievent & FEC_IEVENT_BABR) {
806 fec_halt(dev);
807 fec_init(dev, fec->bd);
808 printf("some error: 0x%08lx\n", ievent);
809 return 0;
810 }
811 if (ievent & FEC_IEVENT_HBERR) {
812 /* Heartbeat error */
813 writel(0x00000001 | readl(&fec->eth->x_cntrl),
814 &fec->eth->x_cntrl);
815 }
816 if (ievent & FEC_IEVENT_GRA) {
817 /* Graceful stop complete */
818 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
819 fec_halt(dev);
820 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
821 &fec->eth->x_cntrl);
822 fec_init(dev, fec->bd);
823 }
824 }
825
826 /*
5c1ad3e6
EN
827 * Read the buffer status. Before the status can be read, the data cache
828 * must be invalidated, because the data in RAM might have been changed
829 * by DMA. The descriptors are properly aligned to cachelines so there's
830 * no need to worry they'd overlap.
831 *
832 * WARNING: By invalidating the descriptor here, we also invalidate
833 * the descriptors surrounding this one. Therefore we can NOT change the
834 * contents of this descriptor nor the surrounding ones. The problem is
835 * that in order to mark the descriptor as processed, we need to change
836 * the descriptor. The solution is to mark the whole cache line when all
837 * descriptors in the cache line are processed.
0b23fb36 838 */
5c1ad3e6
EN
839 addr = (uint32_t)rbd;
840 addr &= ~(ARCH_DMA_MINALIGN - 1);
841 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
842 invalidate_dcache_range(addr, addr + size);
843
0b23fb36
IY
844 bd_status = readw(&rbd->status);
845 debug("fec_recv: status 0x%x\n", bd_status);
846
847 if (!(bd_status & FEC_RBD_EMPTY)) {
848 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
849 ((readw(&rbd->data_length) - 4) > 14)) {
850 /*
851 * Get buffer address and size
852 */
853 frame = (struct nbuf *)readl(&rbd->data_pointer);
854 frame_length = readw(&rbd->data_length) - 4;
5c1ad3e6
EN
855 /*
856 * Invalidate data cache over the buffer
857 */
858 addr = (uint32_t)frame;
efe24d2e
MV
859 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
860 addr &= ~(ARCH_DMA_MINALIGN - 1);
861 invalidate_dcache_range(addr, end);
5c1ad3e6 862
0b23fb36
IY
863 /*
864 * Fill the buffer and pass it to upper layers
865 */
5c1ad3e6 866#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
867 swap_packet((uint32_t *)frame->data, frame_length);
868#endif
0b23fb36
IY
869 memcpy(buff, frame->data, frame_length);
870 NetReceive(buff, frame_length);
871 len = frame_length;
872 } else {
873 if (bd_status & FEC_RBD_ERR)
874 printf("error frame: 0x%08lx 0x%08x\n",
875 (ulong)rbd->data_pointer,
876 bd_status);
877 }
5c1ad3e6 878
0b23fb36 879 /*
5c1ad3e6
EN
880 * Free the current buffer, restart the engine and move forward
881 * to the next buffer. Here we check if the whole cacheline of
882 * descriptors was already processed and if so, we mark it free
883 * as whole.
0b23fb36 884 */
5c1ad3e6
EN
885 size = RXDESC_PER_CACHELINE - 1;
886 if ((fec->rbd_index & size) == size) {
887 i = fec->rbd_index - size;
888 addr = (uint32_t)&fec->rbd_base[i];
889 for (; i <= fec->rbd_index ; i++) {
890 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
891 &fec->rbd_base[i]);
892 }
893 flush_dcache_range(addr,
894 addr + ARCH_DMA_MINALIGN);
895 }
896
0b23fb36
IY
897 fec_rx_task_enable(fec);
898 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
899 }
900 debug("fec_recv: stop\n");
901
902 return len;
903}
904
ef8e3a3b
TK
905static void fec_set_dev_name(char *dest, int dev_id)
906{
907 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
908}
909
fe428b90
TK
910#ifdef CONFIG_PHYLIB
911int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
912 struct mii_dev *bus, struct phy_device *phydev)
913#else
914static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
915 struct mii_dev *bus, int phy_id)
916#endif
0b23fb36 917{
0b23fb36 918 struct eth_device *edev;
9e27e9dc 919 struct fec_priv *fec;
0b23fb36 920 unsigned char ethaddr[6];
e382fb48
MV
921 uint32_t start;
922 int ret = 0;
0b23fb36
IY
923
924 /* create and fill edev struct */
925 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
926 if (!edev) {
9e27e9dc 927 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
928 ret = -ENOMEM;
929 goto err1;
9e27e9dc
MV
930 }
931
932 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
933 if (!fec) {
934 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
935 ret = -ENOMEM;
936 goto err2;
0b23fb36 937 }
9e27e9dc 938
de0b9576 939 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
940 memset(fec, 0, sizeof(*fec));
941
0b23fb36
IY
942 edev->priv = fec;
943 edev->init = fec_init;
944 edev->send = fec_send;
945 edev->recv = fec_recv;
946 edev->halt = fec_halt;
fb57ec97 947 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 948
9e27e9dc 949 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
950 fec->bd = bd;
951
392b8502 952 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
953
954 /* Reset chip. */
cb17b92d 955 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
956 start = get_timer(0);
957 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
958 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
959 printf("FEC MXC: Timeout reseting chip\n");
960 goto err3;
961 }
0b23fb36 962 udelay(10);
e382fb48 963 }
0b23fb36 964
a5990b26 965 fec_reg_setup(fec);
ef8e3a3b
TK
966 fec_set_dev_name(edev->name, dev_id);
967 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fe428b90
TK
968 fec->bus = bus;
969 fec_mii_setspeed(bus->priv);
970#ifdef CONFIG_PHYLIB
971 fec->phydev = phydev;
972 phy_connect_dev(phydev, edev);
973 /* Configure phy */
974 phy_config(phydev);
975#else
9e27e9dc 976 fec->phy_id = phy_id;
fe428b90
TK
977#endif
978 eth_register(edev);
979
980 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
981 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
982 memcpy(edev->enetaddr, ethaddr, 6);
ddb636bd
EN
983 if (!getenv("ethaddr"))
984 eth_setenv_enetaddr("ethaddr", ethaddr);
fe428b90
TK
985 }
986 return ret;
987err3:
988 free(fec);
989err2:
990 free(edev);
991err1:
992 return ret;
993}
994
995struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
996{
997 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
998 struct mii_dev *bus;
999 int ret;
0b23fb36 1000
13947f43
TK
1001 bus = mdio_alloc();
1002 if (!bus) {
1003 printf("mdio_alloc failed\n");
fe428b90 1004 return NULL;
13947f43
TK
1005 }
1006 bus->read = fec_phy_read;
1007 bus->write = fec_phy_write;
fe428b90 1008 bus->priv = eth;
ef8e3a3b 1009 fec_set_dev_name(bus->name, dev_id);
fe428b90
TK
1010
1011 ret = mdio_register(bus);
1012 if (ret) {
1013 printf("mdio_register failed\n");
1014 free(bus);
1015 return NULL;
1016 }
1017 fec_mii_setspeed(eth);
1018 return bus;
1019}
1020
1021int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1022{
1023 uint32_t base_mii;
1024 struct mii_dev *bus = NULL;
1025#ifdef CONFIG_PHYLIB
1026 struct phy_device *phydev = NULL;
1027#endif
1028 int ret;
1029
5c1ad3e6 1030#ifdef CONFIG_MX28
13947f43
TK
1031 /*
1032 * The i.MX28 has two ethernet interfaces, but they are not equal.
1033 * Only the first one can access the MDIO bus.
1034 */
fe428b90 1035 base_mii = MXS_ENET0_BASE;
13947f43 1036#else
fe428b90 1037 base_mii = addr;
13947f43 1038#endif
fe428b90
TK
1039 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1040 bus = fec_get_miibus(base_mii, dev_id);
1041 if (!bus)
1042 return -ENOMEM;
4dc27eed 1043#ifdef CONFIG_PHYLIB
fe428b90 1044 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
4dc27eed
TK
1045 if (!phydev) {
1046 free(bus);
fe428b90 1047 return -ENOMEM;
4dc27eed 1048 }
fe428b90
TK
1049 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1050#else
1051 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
4dc27eed 1052#endif
fe428b90
TK
1053 if (ret) {
1054#ifdef CONFIG_PHYLIB
1055 free(phydev);
1056#endif
1057 free(bus);
1058 }
e382fb48 1059 return ret;
eef24480 1060}
0b23fb36 1061
eef24480
TK
1062#ifdef CONFIG_FEC_MXC_PHYADDR
1063int fecmxc_initialize(bd_t *bd)
1064{
1065 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1066 IMX_FEC_BASE);
0b23fb36 1067}
eef24480 1068#endif
2e5f4421 1069
13947f43 1070#ifndef CONFIG_PHYLIB
2e5f4421
MV
1071int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1072{
1073 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1074 fec->mii_postcall = cb;
1075 return 0;
1076}
13947f43 1077#endif