]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
FIX: Add error message in container_reshape()
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
3b451610
AK
109/* map selector for map managment
110 */
238c0a71
AK
111#define MAP_0 0
112#define MAP_1 1
113#define MAP_X -1
3b451610 114
cdddbdbc
DW
115/* RAID map configuration infos. */
116struct imsm_map {
117 __u32 pba_of_lba0; /* start address of partition */
118 __u32 blocks_per_member;/* blocks per member */
119 __u32 num_data_stripes; /* number of data stripes */
120 __u16 blocks_per_strip;
121 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
122#define IMSM_T_STATE_NORMAL 0
123#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
124#define IMSM_T_STATE_DEGRADED 2
125#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
126 __u8 raid_level;
127#define IMSM_T_RAID0 0
128#define IMSM_T_RAID1 1
129#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
130 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
131 __u8 num_domains; /* number of parity domains */
132 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 133 __u8 ddf;
cdddbdbc 134 __u32 filler[7]; /* expansion area */
7eef0453 135#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 136 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
137 * top byte contains some flags
138 */
cdddbdbc
DW
139} __attribute__ ((packed));
140
141struct imsm_vol {
f8f603f1 142 __u32 curr_migr_unit;
fe7ed8cb 143 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 144 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
145#define MIGR_INIT 0
146#define MIGR_REBUILD 1
147#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
148#define MIGR_GEN_MIGR 3
149#define MIGR_STATE_CHANGE 4
1484e727 150#define MIGR_REPAIR 5
cdddbdbc
DW
151 __u8 migr_type; /* Initializing, Rebuilding, ... */
152 __u8 dirty;
fe7ed8cb
DW
153 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
154 __u16 verify_errors; /* number of mismatches */
155 __u16 bad_blocks; /* number of bad blocks during verify */
156 __u32 filler[4];
cdddbdbc
DW
157 struct imsm_map map[1];
158 /* here comes another one if migr_state */
159} __attribute__ ((packed));
160
161struct imsm_dev {
fe7ed8cb 162 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
163 __u32 size_low;
164 __u32 size_high;
fe7ed8cb
DW
165#define DEV_BOOTABLE __cpu_to_le32(0x01)
166#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
167#define DEV_READ_COALESCING __cpu_to_le32(0x04)
168#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
169#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
170#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
171#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
172#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
173#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
174#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
175#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
176#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
177#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
178 __u32 status; /* Persistent RaidDev status */
179 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
180 __u8 migr_priority;
181 __u8 num_sub_vols;
182 __u8 tid;
183 __u8 cng_master_disk;
184 __u16 cache_policy;
185 __u8 cng_state;
186 __u8 cng_sub_state;
187#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
188 __u32 filler[IMSM_DEV_FILLERS];
189 struct imsm_vol vol;
190} __attribute__ ((packed));
191
192struct imsm_super {
193 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
194 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
195 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
196 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
197 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
198 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
199 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
200 __u8 num_disks; /* 0x38 Number of configured disks */
201 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
202 __u8 error_log_pos; /* 0x3A */
203 __u8 fill[1]; /* 0x3B */
204 __u32 cache_size; /* 0x3c - 0x40 in mb */
205 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
206 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
207 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
208#define IMSM_FILLERS 35
209 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
210 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
211 /* here comes imsm_dev[num_raid_devs] */
604b746f 212 /* here comes BBM logs */
cdddbdbc
DW
213} __attribute__ ((packed));
214
604b746f
JD
215#define BBM_LOG_MAX_ENTRIES 254
216
217struct bbm_log_entry {
218 __u64 defective_block_start;
219#define UNREADABLE 0xFFFFFFFF
220 __u32 spare_block_offset;
221 __u16 remapped_marked_count;
222 __u16 disk_ordinal;
223} __attribute__ ((__packed__));
224
225struct bbm_log {
226 __u32 signature; /* 0xABADB10C */
227 __u32 entry_count;
228 __u32 reserved_spare_block_count; /* 0 */
229 __u32 reserved; /* 0xFFFF */
230 __u64 first_spare_lba;
231 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
232} __attribute__ ((__packed__));
233
234
cdddbdbc
DW
235#ifndef MDASSEMBLE
236static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
237#endif
238
8e59f3d8
AK
239#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
240
241#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
242
17a4eaf9
AK
243#define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
244#define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
245 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
246 */
247
248
8e59f3d8
AK
249#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
250 * be recovered using srcMap */
251#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
252 * already been migrated and must
253 * be recovered from checkpoint area */
254struct migr_record {
255 __u32 rec_status; /* Status used to determine how to restart
256 * migration in case it aborts
257 * in some fashion */
258 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
259 __u32 family_num; /* Family number of MPB
260 * containing the RaidDev
261 * that is migrating */
262 __u32 ascending_migr; /* True if migrating in increasing
263 * order of lbas */
264 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
265 __u32 dest_depth_per_unit; /* Num member blocks each destMap
266 * member disk
267 * advances per unit-of-operation */
268 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
269 __u32 dest_1st_member_lba; /* First member lba on first
270 * stripe of destination */
271 __u32 num_migr_units; /* Total num migration units-of-op */
272 __u32 post_migr_vol_cap; /* Size of volume after
273 * migration completes */
274 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
275 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
276 * migration ckpt record was read from
277 * (for recovered migrations) */
278} __attribute__ ((__packed__));
279
1484e727
DW
280static __u8 migr_type(struct imsm_dev *dev)
281{
282 if (dev->vol.migr_type == MIGR_VERIFY &&
283 dev->status & DEV_VERIFY_AND_FIX)
284 return MIGR_REPAIR;
285 else
286 return dev->vol.migr_type;
287}
288
289static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
290{
291 /* for compatibility with older oroms convert MIGR_REPAIR, into
292 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
293 */
294 if (migr_type == MIGR_REPAIR) {
295 dev->vol.migr_type = MIGR_VERIFY;
296 dev->status |= DEV_VERIFY_AND_FIX;
297 } else {
298 dev->vol.migr_type = migr_type;
299 dev->status &= ~DEV_VERIFY_AND_FIX;
300 }
301}
302
87eb16df 303static unsigned int sector_count(__u32 bytes)
cdddbdbc 304{
87eb16df
DW
305 return ((bytes + (512-1)) & (~(512-1))) / 512;
306}
cdddbdbc 307
87eb16df
DW
308static unsigned int mpb_sectors(struct imsm_super *mpb)
309{
310 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
311}
312
ba2de7ba
DW
313struct intel_dev {
314 struct imsm_dev *dev;
315 struct intel_dev *next;
f21e18ca 316 unsigned index;
ba2de7ba
DW
317};
318
88654014
LM
319struct intel_hba {
320 enum sys_dev_type type;
321 char *path;
322 char *pci_id;
323 struct intel_hba *next;
324};
325
1a64be56
LM
326enum action {
327 DISK_REMOVE = 1,
328 DISK_ADD
329};
cdddbdbc
DW
330/* internal representation of IMSM metadata */
331struct intel_super {
332 union {
949c47a0
DW
333 void *buf; /* O_DIRECT buffer for reading/writing metadata */
334 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 335 };
8e59f3d8
AK
336 union {
337 void *migr_rec_buf; /* buffer for I/O operations */
338 struct migr_record *migr_rec; /* migration record */
339 };
949c47a0 340 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
341 void *next_buf; /* for realloc'ing buf from the manager */
342 size_t next_len;
c2c087e6 343 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 344 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 345 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 346 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 347 struct intel_dev *devlist;
cdddbdbc
DW
348 struct dl {
349 struct dl *next;
350 int index;
351 __u8 serial[MAX_RAID_SERIAL_LEN];
352 int major, minor;
353 char *devname;
b9f594fe 354 struct imsm_disk disk;
cdddbdbc 355 int fd;
0dcecb2e
DW
356 int extent_cnt;
357 struct extent *e; /* for determining freespace @ create */
efb30e7f 358 int raiddisk; /* slot to fill in autolayout */
1a64be56 359 enum action action;
ca0748fa 360 } *disks, *current_disk;
1a64be56
LM
361 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
362 active */
47ee5a45 363 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 364 struct bbm_log *bbm_log;
88654014 365 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 366 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
367 struct intel_super *next; /* (temp) list for disambiguating family_num */
368};
369
370struct intel_disk {
371 struct imsm_disk disk;
372 #define IMSM_UNKNOWN_OWNER (-1)
373 int owner;
374 struct intel_disk *next;
cdddbdbc
DW
375};
376
c2c087e6
DW
377struct extent {
378 unsigned long long start, size;
379};
380
694575e7
KW
381/* definitions of reshape process types */
382enum imsm_reshape_type {
383 CH_TAKEOVER,
b5347799 384 CH_MIGRATION,
694575e7
KW
385};
386
88758e9d
DW
387/* definition of messages passed to imsm_process_update */
388enum imsm_update_type {
389 update_activate_spare,
8273f55e 390 update_create_array,
33414a01 391 update_kill_array,
aa534678 392 update_rename_array,
1a64be56 393 update_add_remove_disk,
78b10e66 394 update_reshape_container_disks,
48c5303a 395 update_reshape_migration,
2d40f3a1
AK
396 update_takeover,
397 update_general_migration_checkpoint,
88758e9d
DW
398};
399
400struct imsm_update_activate_spare {
401 enum imsm_update_type type;
d23fe947 402 struct dl *dl;
88758e9d
DW
403 int slot;
404 int array;
405 struct imsm_update_activate_spare *next;
406};
407
78b10e66
N
408struct geo_params {
409 int dev_id;
410 char *dev_name;
411 long long size;
412 int level;
413 int layout;
414 int chunksize;
415 int raid_disks;
416};
417
bb025c2f
KW
418enum takeover_direction {
419 R10_TO_R0,
420 R0_TO_R10
421};
422struct imsm_update_takeover {
423 enum imsm_update_type type;
424 int subarray;
425 enum takeover_direction direction;
426};
78b10e66
N
427
428struct imsm_update_reshape {
429 enum imsm_update_type type;
430 int old_raid_disks;
431 int new_raid_disks;
48c5303a
PC
432
433 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
434};
435
436struct imsm_update_reshape_migration {
437 enum imsm_update_type type;
438 int old_raid_disks;
439 int new_raid_disks;
440 /* fields for array migration changes
441 */
442 int subdev;
443 int new_level;
444 int new_layout;
4bba0439 445 int new_chunksize;
48c5303a 446
d195167d 447 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
448};
449
2d40f3a1
AK
450struct imsm_update_general_migration_checkpoint {
451 enum imsm_update_type type;
452 __u32 curr_migr_unit;
453};
454
54c2c1ea
DW
455struct disk_info {
456 __u8 serial[MAX_RAID_SERIAL_LEN];
457};
458
8273f55e
DW
459struct imsm_update_create_array {
460 enum imsm_update_type type;
8273f55e 461 int dev_idx;
6a3e913e 462 struct imsm_dev dev;
8273f55e
DW
463};
464
33414a01
DW
465struct imsm_update_kill_array {
466 enum imsm_update_type type;
467 int dev_idx;
468};
469
aa534678
DW
470struct imsm_update_rename_array {
471 enum imsm_update_type type;
472 __u8 name[MAX_RAID_SERIAL_LEN];
473 int dev_idx;
474};
475
1a64be56 476struct imsm_update_add_remove_disk {
43dad3d6
DW
477 enum imsm_update_type type;
478};
479
88654014
LM
480
481static const char *_sys_dev_type[] = {
482 [SYS_DEV_UNKNOWN] = "Unknown",
483 [SYS_DEV_SAS] = "SAS",
484 [SYS_DEV_SATA] = "SATA"
485};
486
487const char *get_sys_dev_type(enum sys_dev_type type)
488{
489 if (type >= SYS_DEV_MAX)
490 type = SYS_DEV_UNKNOWN;
491
492 return _sys_dev_type[type];
493}
494
495static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
496{
497 struct intel_hba *result = malloc(sizeof(*result));
498 if (result) {
499 result->type = device->type;
500 result->path = strdup(device->path);
501 result->next = NULL;
502 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
503 result->pci_id++;
504 }
505 return result;
506}
507
508static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
509{
510 struct intel_hba *result=NULL;
511 for (result = hba; result; result = result->next) {
512 if (result->type == device->type && strcmp(result->path, device->path) == 0)
513 break;
514 }
515 return result;
516}
517
b4cf4cba 518static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
519{
520 struct intel_hba *hba;
521
522 /* check if disk attached to Intel HBA */
523 hba = find_intel_hba(super->hba, device);
524 if (hba != NULL)
525 return 1;
526 /* Check if HBA is already attached to super */
527 if (super->hba == NULL) {
528 super->hba = alloc_intel_hba(device);
529 return 1;
530 }
531
532 hba = super->hba;
533 /* Intel metadata allows for all disks attached to the same type HBA.
534 * Do not sypport odf HBA types mixing
535 */
536 if (device->type != hba->type)
537 return 2;
538
539 while (hba->next)
540 hba = hba->next;
541
542 hba->next = alloc_intel_hba(device);
543 return 1;
544}
545
546static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
547{
548 struct sys_dev *list, *elem, *prev;
549 char *disk_path;
550
551 if ((list = find_intel_devices()) == NULL)
552 return 0;
553
554 if (fd < 0)
555 disk_path = (char *) devname;
556 else
557 disk_path = diskfd_to_devpath(fd);
558
559 if (!disk_path) {
560 free_sys_dev(&list);
561 return 0;
562 }
563
564 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
565 if (path_attached_to_hba(disk_path, elem->path)) {
566 if (prev == NULL)
567 list = list->next;
568 else
569 prev->next = elem->next;
570 elem->next = NULL;
571 if (disk_path != devname)
572 free(disk_path);
573 free_sys_dev(&list);
574 return elem;
575 }
576 }
577 if (disk_path != devname)
578 free(disk_path);
579 free_sys_dev(&list);
580
581 return NULL;
582}
583
584
d424212e
N
585static int find_intel_hba_capability(int fd, struct intel_super *super,
586 char *devname);
f2f5c343 587
cdddbdbc
DW
588static struct supertype *match_metadata_desc_imsm(char *arg)
589{
590 struct supertype *st;
591
592 if (strcmp(arg, "imsm") != 0 &&
593 strcmp(arg, "default") != 0
594 )
595 return NULL;
596
597 st = malloc(sizeof(*st));
4e9d2186
AW
598 if (!st)
599 return NULL;
ef609477 600 memset(st, 0, sizeof(*st));
d1d599ea 601 st->container_dev = NoMdDev;
cdddbdbc
DW
602 st->ss = &super_imsm;
603 st->max_devs = IMSM_MAX_DEVICES;
604 st->minor_version = 0;
605 st->sb = NULL;
606 return st;
607}
608
0e600426 609#ifndef MDASSEMBLE
cdddbdbc
DW
610static __u8 *get_imsm_version(struct imsm_super *mpb)
611{
612 return &mpb->sig[MPB_SIG_LEN];
613}
9e2d750d 614#endif
cdddbdbc 615
949c47a0
DW
616/* retrieve a disk directly from the anchor when the anchor is known to be
617 * up-to-date, currently only at load time
618 */
619static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 620{
949c47a0 621 if (index >= mpb->num_disks)
cdddbdbc
DW
622 return NULL;
623 return &mpb->disk[index];
624}
625
95d07a2c
LM
626/* retrieve the disk description based on a index of the disk
627 * in the sub-array
628 */
629static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 630{
b9f594fe
DW
631 struct dl *d;
632
633 for (d = super->disks; d; d = d->next)
634 if (d->index == index)
95d07a2c
LM
635 return d;
636
637 return NULL;
638}
639/* retrieve a disk from the parsed metadata */
640static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
641{
642 struct dl *dl;
643
644 dl = get_imsm_dl_disk(super, index);
645 if (dl)
646 return &dl->disk;
647
b9f594fe 648 return NULL;
949c47a0
DW
649}
650
651/* generate a checksum directly from the anchor when the anchor is known to be
652 * up-to-date, currently only at load or write_super after coalescing
653 */
654static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
655{
656 __u32 end = mpb->mpb_size / sizeof(end);
657 __u32 *p = (__u32 *) mpb;
658 __u32 sum = 0;
659
97f734fd
N
660 while (end--) {
661 sum += __le32_to_cpu(*p);
662 p++;
663 }
cdddbdbc
DW
664
665 return sum - __le32_to_cpu(mpb->check_sum);
666}
667
a965f303
DW
668static size_t sizeof_imsm_map(struct imsm_map *map)
669{
670 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
671}
672
673struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 674{
5e7b0330
AK
675 /* A device can have 2 maps if it is in the middle of a migration.
676 * If second_map is:
238c0a71
AK
677 * MAP_0 - we return the first map
678 * MAP_1 - we return the second map if it exists, else NULL
679 * MAP_X - we return the second map if it exists, else the first
5e7b0330 680 */
a965f303 681 struct imsm_map *map = &dev->vol.map[0];
9535fc47 682 struct imsm_map *map2 = NULL;
a965f303 683
9535fc47
AK
684 if (dev->vol.migr_state)
685 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 686
9535fc47 687 switch (second_map) {
3b451610 688 case MAP_0:
9535fc47 689 break;
3b451610 690 case MAP_1:
9535fc47
AK
691 map = map2;
692 break;
238c0a71 693 case MAP_X:
9535fc47
AK
694 if (map2)
695 map = map2;
696 break;
9535fc47
AK
697 default:
698 map = NULL;
699 }
700 return map;
5e7b0330 701
a965f303 702}
cdddbdbc 703
3393c6af
DW
704/* return the size of the device.
705 * migr_state increases the returned size if map[0] were to be duplicated
706 */
707static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
708{
709 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 710 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
711
712 /* migrating means an additional map */
a965f303 713 if (dev->vol.migr_state)
238c0a71 714 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 715 else if (migr_state)
238c0a71 716 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
717
718 return size;
719}
720
54c2c1ea
DW
721#ifndef MDASSEMBLE
722/* retrieve disk serial number list from a metadata update */
723static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
724{
725 void *u = update;
726 struct disk_info *inf;
727
728 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
729 sizeof_imsm_dev(&update->dev, 0);
730
731 return inf;
732}
733#endif
734
949c47a0 735static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
736{
737 int offset;
738 int i;
739 void *_mpb = mpb;
740
949c47a0 741 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
742 return NULL;
743
744 /* devices start after all disks */
745 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
746
747 for (i = 0; i <= index; i++)
748 if (i == index)
749 return _mpb + offset;
750 else
3393c6af 751 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
752
753 return NULL;
754}
755
949c47a0
DW
756static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
757{
ba2de7ba
DW
758 struct intel_dev *dv;
759
949c47a0
DW
760 if (index >= super->anchor->num_raid_devs)
761 return NULL;
ba2de7ba
DW
762 for (dv = super->devlist; dv; dv = dv->next)
763 if (dv->index == index)
764 return dv->dev;
765 return NULL;
949c47a0
DW
766}
767
98130f40
AK
768/*
769 * for second_map:
238c0a71
AK
770 * == MAP_0 get first map
771 * == MAP_1 get second map
772 * == MAP_X than get map according to the current migr_state
98130f40
AK
773 */
774static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
775 int slot,
776 int second_map)
7eef0453
DW
777{
778 struct imsm_map *map;
779
5e7b0330 780 map = get_imsm_map(dev, second_map);
7eef0453 781
ff077194
DW
782 /* top byte identifies disk under rebuild */
783 return __le32_to_cpu(map->disk_ord_tbl[slot]);
784}
785
786#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 787static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 788{
98130f40 789 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
790
791 return ord_to_idx(ord);
7eef0453
DW
792}
793
be73972f
DW
794static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
795{
796 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
797}
798
f21e18ca 799static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
800{
801 int slot;
802 __u32 ord;
803
804 for (slot = 0; slot < map->num_members; slot++) {
805 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
806 if (ord_to_idx(ord) == idx)
807 return slot;
808 }
809
810 return -1;
811}
812
cdddbdbc
DW
813static int get_imsm_raid_level(struct imsm_map *map)
814{
815 if (map->raid_level == 1) {
816 if (map->num_members == 2)
817 return 1;
818 else
819 return 10;
820 }
821
822 return map->raid_level;
823}
824
c2c087e6
DW
825static int cmp_extent(const void *av, const void *bv)
826{
827 const struct extent *a = av;
828 const struct extent *b = bv;
829 if (a->start < b->start)
830 return -1;
831 if (a->start > b->start)
832 return 1;
833 return 0;
834}
835
0dcecb2e 836static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 837{
c2c087e6 838 int memberships = 0;
620b1713 839 int i;
c2c087e6 840
949c47a0
DW
841 for (i = 0; i < super->anchor->num_raid_devs; i++) {
842 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 843 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 844
620b1713
DW
845 if (get_imsm_disk_slot(map, dl->index) >= 0)
846 memberships++;
c2c087e6 847 }
0dcecb2e
DW
848
849 return memberships;
850}
851
b81221b7
CA
852static __u32 imsm_min_reserved_sectors(struct intel_super *super);
853
0dcecb2e
DW
854static struct extent *get_extents(struct intel_super *super, struct dl *dl)
855{
856 /* find a list of used extents on the given physical device */
857 struct extent *rv, *e;
620b1713 858 int i;
0dcecb2e 859 int memberships = count_memberships(dl, super);
b276dd33
DW
860 __u32 reservation;
861
862 /* trim the reserved area for spares, so they can join any array
863 * regardless of whether the OROM has assigned sectors from the
864 * IMSM_RESERVED_SECTORS region
865 */
866 if (dl->index == -1)
b81221b7 867 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
868 else
869 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 870
c2c087e6
DW
871 rv = malloc(sizeof(struct extent) * (memberships + 1));
872 if (!rv)
873 return NULL;
874 e = rv;
875
949c47a0
DW
876 for (i = 0; i < super->anchor->num_raid_devs; i++) {
877 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 878 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 879
620b1713
DW
880 if (get_imsm_disk_slot(map, dl->index) >= 0) {
881 e->start = __le32_to_cpu(map->pba_of_lba0);
882 e->size = __le32_to_cpu(map->blocks_per_member);
883 e++;
c2c087e6
DW
884 }
885 }
886 qsort(rv, memberships, sizeof(*rv), cmp_extent);
887
14e8215b
DW
888 /* determine the start of the metadata
889 * when no raid devices are defined use the default
890 * ...otherwise allow the metadata to truncate the value
891 * as is the case with older versions of imsm
892 */
893 if (memberships) {
894 struct extent *last = &rv[memberships - 1];
895 __u32 remainder;
896
897 remainder = __le32_to_cpu(dl->disk.total_blocks) -
898 (last->start + last->size);
dda5855f
DW
899 /* round down to 1k block to satisfy precision of the kernel
900 * 'size' interface
901 */
902 remainder &= ~1UL;
903 /* make sure remainder is still sane */
f21e18ca 904 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 905 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
906 if (reservation > remainder)
907 reservation = remainder;
908 }
909 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
910 e->size = 0;
911 return rv;
912}
913
14e8215b
DW
914/* try to determine how much space is reserved for metadata from
915 * the last get_extents() entry, otherwise fallback to the
916 * default
917 */
918static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
919{
920 struct extent *e;
921 int i;
922 __u32 rv;
923
924 /* for spares just return a minimal reservation which will grow
925 * once the spare is picked up by an array
926 */
927 if (dl->index == -1)
928 return MPB_SECTOR_CNT;
929
930 e = get_extents(super, dl);
931 if (!e)
932 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
933
934 /* scroll to last entry */
935 for (i = 0; e[i].size; i++)
936 continue;
937
938 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
939
940 free(e);
941
942 return rv;
943}
944
25ed7e59
DW
945static int is_spare(struct imsm_disk *disk)
946{
947 return (disk->status & SPARE_DISK) == SPARE_DISK;
948}
949
950static int is_configured(struct imsm_disk *disk)
951{
952 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
953}
954
955static int is_failed(struct imsm_disk *disk)
956{
957 return (disk->status & FAILED_DISK) == FAILED_DISK;
958}
959
b81221b7
CA
960/* try to determine how much space is reserved for metadata from
961 * the last get_extents() entry on the smallest active disk,
962 * otherwise fallback to the default
963 */
964static __u32 imsm_min_reserved_sectors(struct intel_super *super)
965{
966 struct extent *e;
967 int i;
968 __u32 min_active, remainder;
969 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
970 struct dl *dl, *dl_min = NULL;
971
972 if (!super)
973 return rv;
974
975 min_active = 0;
976 for (dl = super->disks; dl; dl = dl->next) {
977 if (dl->index < 0)
978 continue;
979 if (dl->disk.total_blocks < min_active || min_active == 0) {
980 dl_min = dl;
981 min_active = dl->disk.total_blocks;
982 }
983 }
984 if (!dl_min)
985 return rv;
986
987 /* find last lba used by subarrays on the smallest active disk */
988 e = get_extents(super, dl_min);
989 if (!e)
990 return rv;
991 for (i = 0; e[i].size; i++)
992 continue;
993
994 remainder = min_active - e[i].start;
995 free(e);
996
997 /* to give priority to recovery we should not require full
998 IMSM_RESERVED_SECTORS from the spare */
999 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1000
1001 /* if real reservation is smaller use that value */
1002 return (remainder < rv) ? remainder : rv;
1003}
1004
80e7f8c3
AC
1005/* Return minimum size of a spare that can be used in this array*/
1006static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1007{
1008 struct intel_super *super = st->sb;
1009 struct dl *dl;
1010 struct extent *e;
1011 int i;
1012 unsigned long long rv = 0;
1013
1014 if (!super)
1015 return rv;
1016 /* find first active disk in array */
1017 dl = super->disks;
1018 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1019 dl = dl->next;
1020 if (!dl)
1021 return rv;
1022 /* find last lba used by subarrays */
1023 e = get_extents(super, dl);
1024 if (!e)
1025 return rv;
1026 for (i = 0; e[i].size; i++)
1027 continue;
1028 if (i > 0)
1029 rv = e[i-1].start + e[i-1].size;
1030 free(e);
b81221b7 1031
80e7f8c3 1032 /* add the amount of space needed for metadata */
b81221b7
CA
1033 rv = rv + imsm_min_reserved_sectors(super);
1034
80e7f8c3
AC
1035 return rv * 512;
1036}
1037
d1e02575
AK
1038static int is_gen_migration(struct imsm_dev *dev);
1039
1799c9e8 1040#ifndef MDASSEMBLE
c47b0ff6
AK
1041static __u64 blocks_per_migr_unit(struct intel_super *super,
1042 struct imsm_dev *dev);
1e5c6983 1043
c47b0ff6
AK
1044static void print_imsm_dev(struct intel_super *super,
1045 struct imsm_dev *dev,
1046 char *uuid,
1047 int disk_idx)
cdddbdbc
DW
1048{
1049 __u64 sz;
0d80bb2f 1050 int slot, i;
238c0a71
AK
1051 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1052 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1053 __u32 ord;
cdddbdbc
DW
1054
1055 printf("\n");
1e7bc0ed 1056 printf("[%.16s]:\n", dev->volume);
44470971 1057 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1058 printf(" RAID Level : %d", get_imsm_raid_level(map));
1059 if (map2)
1060 printf(" <-- %d", get_imsm_raid_level(map2));
1061 printf("\n");
1062 printf(" Members : %d", map->num_members);
1063 if (map2)
1064 printf(" <-- %d", map2->num_members);
1065 printf("\n");
0d80bb2f
DW
1066 printf(" Slots : [");
1067 for (i = 0; i < map->num_members; i++) {
238c0a71 1068 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1069 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1070 }
dd8bcb3b
AK
1071 printf("]");
1072 if (map2) {
1073 printf(" <-- [");
1074 for (i = 0; i < map2->num_members; i++) {
238c0a71 1075 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1076 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1077 }
1078 printf("]");
1079 }
1080 printf("\n");
7095bccb
AK
1081 printf(" Failed disk : ");
1082 if (map->failed_disk_num == 0xff)
1083 printf("none");
1084 else
1085 printf("%i", map->failed_disk_num);
1086 printf("\n");
620b1713
DW
1087 slot = get_imsm_disk_slot(map, disk_idx);
1088 if (slot >= 0) {
238c0a71 1089 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1090 printf(" This Slot : %d%s\n", slot,
1091 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1092 } else
cdddbdbc
DW
1093 printf(" This Slot : ?\n");
1094 sz = __le32_to_cpu(dev->size_high);
1095 sz <<= 32;
1096 sz += __le32_to_cpu(dev->size_low);
1097 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1098 human_size(sz * 512));
1099 sz = __le32_to_cpu(map->blocks_per_member);
1100 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1101 human_size(sz * 512));
1102 printf(" Sector Offset : %u\n",
1103 __le32_to_cpu(map->pba_of_lba0));
1104 printf(" Num Stripes : %u\n",
1105 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1106 printf(" Chunk Size : %u KiB",
cdddbdbc 1107 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1108 if (map2)
1109 printf(" <-- %u KiB",
1110 __le16_to_cpu(map2->blocks_per_strip) / 2);
1111 printf("\n");
cdddbdbc 1112 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1113 printf(" Migrate State : ");
1484e727
DW
1114 if (dev->vol.migr_state) {
1115 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1116 printf("initialize\n");
1484e727 1117 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1118 printf("rebuild\n");
1484e727 1119 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1120 printf("check\n");
1484e727 1121 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1122 printf("general migration\n");
1484e727 1123 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1124 printf("state change\n");
1484e727 1125 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1126 printf("repair\n");
1484e727 1127 else
8655a7b1
DW
1128 printf("<unknown:%d>\n", migr_type(dev));
1129 } else
1130 printf("idle\n");
3393c6af
DW
1131 printf(" Map State : %s", map_state_str[map->map_state]);
1132 if (dev->vol.migr_state) {
238c0a71 1133 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1134
b10b37b8 1135 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1136 printf("\n Checkpoint : %u ",
1137 __le32_to_cpu(dev->vol.curr_migr_unit));
3136abe5 1138 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
464d40e8
LD
1139 printf("(N/A)");
1140 else
1141 printf("(%llu)", (unsigned long long)
1142 blocks_per_migr_unit(super, dev));
3393c6af
DW
1143 }
1144 printf("\n");
cdddbdbc 1145 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1146}
1147
0ec1f4e8 1148static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1149{
1f24f035 1150 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1151 __u64 sz;
1152
0ec1f4e8 1153 if (index < -1 || !disk)
e9d82038
DW
1154 return;
1155
cdddbdbc 1156 printf("\n");
1f24f035 1157 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1158 if (index >= 0)
1159 printf(" Disk%02d Serial : %s\n", index, str);
1160 else
1161 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1162 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1163 is_configured(disk) ? " active" : "",
1164 is_failed(disk) ? " failed" : "");
cdddbdbc 1165 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1166 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1167 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1168 human_size(sz * 512));
1169}
1170
520e69e2
AK
1171void examine_migr_rec_imsm(struct intel_super *super)
1172{
1173 struct migr_record *migr_rec = super->migr_rec;
1174 struct imsm_super *mpb = super->anchor;
1175 int i;
1176
1177 for (i = 0; i < mpb->num_raid_devs; i++) {
1178 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1179 struct imsm_map *map;
b4ab44d8 1180 int slot = -1;
3136abe5 1181
520e69e2
AK
1182 if (is_gen_migration(dev) == 0)
1183 continue;
1184
1185 printf("\nMigration Record Information:");
3136abe5 1186
44bfe6df
AK
1187 /* first map under migration */
1188 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1189 if (map)
1190 slot = get_imsm_disk_slot(map, super->disks->index);
1191 if ((map == NULL) || (slot > 1) || (slot < 0)) {
520e69e2
AK
1192 printf(" Empty\n ");
1193 printf("Examine one of first two disks in array\n");
1194 break;
1195 }
1196 printf("\n Status : ");
1197 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1198 printf("Normal\n");
1199 else
1200 printf("Contains Data\n");
1201 printf(" Current Unit : %u\n",
1202 __le32_to_cpu(migr_rec->curr_migr_unit));
1203 printf(" Family : %u\n",
1204 __le32_to_cpu(migr_rec->family_num));
1205 printf(" Ascending : %u\n",
1206 __le32_to_cpu(migr_rec->ascending_migr));
1207 printf(" Blocks Per Unit : %u\n",
1208 __le32_to_cpu(migr_rec->blocks_per_unit));
1209 printf(" Dest. Depth Per Unit : %u\n",
1210 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1211 printf(" Checkpoint Area pba : %u\n",
1212 __le32_to_cpu(migr_rec->ckpt_area_pba));
1213 printf(" First member lba : %u\n",
1214 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1215 printf(" Total Number of Units : %u\n",
1216 __le32_to_cpu(migr_rec->num_migr_units));
1217 printf(" Size of volume : %u\n",
1218 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1219 printf(" Expansion space for LBA64 : %u\n",
1220 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1221 printf(" Record was read from : %u\n",
1222 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1223
1224 break;
1225 }
1226}
9e2d750d 1227#endif /* MDASSEMBLE */
19482bcc
AK
1228/*******************************************************************************
1229 * function: imsm_check_attributes
1230 * Description: Function checks if features represented by attributes flags
1231 * are supported by mdadm.
1232 * Parameters:
1233 * attributes - Attributes read from metadata
1234 * Returns:
1235 * 0 - passed attributes contains unsupported features flags
1236 * 1 - all features are supported
1237 ******************************************************************************/
1238static int imsm_check_attributes(__u32 attributes)
1239{
1240 int ret_val = 1;
418f9b36
N
1241 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1242
1243 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1244
1245 not_supported &= attributes;
1246 if (not_supported) {
418f9b36
N
1247 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1248 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1249 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1250 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1251 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1252 }
1253 if (not_supported & MPB_ATTRIB_2TB) {
1254 dprintf("\t\tMPB_ATTRIB_2TB\n");
1255 not_supported ^= MPB_ATTRIB_2TB;
1256 }
1257 if (not_supported & MPB_ATTRIB_RAID0) {
1258 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1259 not_supported ^= MPB_ATTRIB_RAID0;
1260 }
1261 if (not_supported & MPB_ATTRIB_RAID1) {
1262 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1263 not_supported ^= MPB_ATTRIB_RAID1;
1264 }
1265 if (not_supported & MPB_ATTRIB_RAID10) {
1266 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1267 not_supported ^= MPB_ATTRIB_RAID10;
1268 }
1269 if (not_supported & MPB_ATTRIB_RAID1E) {
1270 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1271 not_supported ^= MPB_ATTRIB_RAID1E;
1272 }
1273 if (not_supported & MPB_ATTRIB_RAID5) {
1274 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1275 not_supported ^= MPB_ATTRIB_RAID5;
1276 }
1277 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1278 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1279 not_supported ^= MPB_ATTRIB_RAIDCNG;
1280 }
1281 if (not_supported & MPB_ATTRIB_BBM) {
1282 dprintf("\t\tMPB_ATTRIB_BBM\n");
1283 not_supported ^= MPB_ATTRIB_BBM;
1284 }
1285 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1286 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1287 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1288 }
1289 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1290 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1291 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1292 }
1293 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1294 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1295 not_supported ^= MPB_ATTRIB_2TB_DISK;
1296 }
1297 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1298 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1299 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1300 }
1301 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1302 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1303 not_supported ^= MPB_ATTRIB_NEVER_USE;
1304 }
1305
1306 if (not_supported)
1307 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1308
1309 ret_val = 0;
1310 }
1311
1312 return ret_val;
1313}
1314
9e2d750d 1315#ifndef MDASSEMBLE
a5d85af7 1316static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1317
cdddbdbc
DW
1318static void examine_super_imsm(struct supertype *st, char *homehost)
1319{
1320 struct intel_super *super = st->sb;
949c47a0 1321 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1322 char str[MAX_SIGNATURE_LENGTH];
1323 int i;
27fd6274
DW
1324 struct mdinfo info;
1325 char nbuf[64];
cdddbdbc 1326 __u32 sum;
14e8215b 1327 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1328 struct dl *dl;
27fd6274 1329
cdddbdbc
DW
1330 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1331 printf(" Magic : %s\n", str);
1332 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1333 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1334 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1335 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1336 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1337 printf(" Attributes : ");
1338 if (imsm_check_attributes(mpb->attributes))
1339 printf("All supported\n");
1340 else
1341 printf("not supported\n");
a5d85af7 1342 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1343 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1344 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1345 sum = __le32_to_cpu(mpb->check_sum);
1346 printf(" Checksum : %08x %s\n", sum,
949c47a0 1347 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1348 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1349 printf(" Disks : %d\n", mpb->num_disks);
1350 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1351 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1352 if (super->bbm_log) {
1353 struct bbm_log *log = super->bbm_log;
1354
1355 printf("\n");
1356 printf("Bad Block Management Log:\n");
1357 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1358 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1359 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1360 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1361 printf(" First Spare : %llx\n",
1362 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1363 }
44470971
DW
1364 for (i = 0; i < mpb->num_raid_devs; i++) {
1365 struct mdinfo info;
1366 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1367
1368 super->current_vol = i;
a5d85af7 1369 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1370 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1371 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1372 }
cdddbdbc
DW
1373 for (i = 0; i < mpb->num_disks; i++) {
1374 if (i == super->disks->index)
1375 continue;
0ec1f4e8 1376 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1377 }
94827db3 1378
0ec1f4e8
DW
1379 for (dl = super->disks; dl; dl = dl->next)
1380 if (dl->index == -1)
1381 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1382
1383 examine_migr_rec_imsm(super);
cdddbdbc
DW
1384}
1385
061f2c6a 1386static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1387{
27fd6274 1388 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1389 struct mdinfo info;
1390 char nbuf[64];
1e7bc0ed 1391 struct intel_super *super = st->sb;
1e7bc0ed 1392
0d5a423f
DW
1393 if (!super->anchor->num_raid_devs) {
1394 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1395 return;
0d5a423f 1396 }
ff54de6e 1397
a5d85af7 1398 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1399 fname_from_uuid(st, &info, nbuf, ':');
1400 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1401}
1402
1403static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1404{
1405 /* We just write a generic IMSM ARRAY entry */
1406 struct mdinfo info;
1407 char nbuf[64];
1408 char nbuf1[64];
1409 struct intel_super *super = st->sb;
1410 int i;
1411
1412 if (!super->anchor->num_raid_devs)
1413 return;
1414
a5d85af7 1415 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1416 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1417 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1418 struct imsm_dev *dev = get_imsm_dev(super, i);
1419
1420 super->current_vol = i;
a5d85af7 1421 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1422 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1423 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1424 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1425 }
cdddbdbc
DW
1426}
1427
9d84c8ea
DW
1428static void export_examine_super_imsm(struct supertype *st)
1429{
1430 struct intel_super *super = st->sb;
1431 struct imsm_super *mpb = super->anchor;
1432 struct mdinfo info;
1433 char nbuf[64];
1434
a5d85af7 1435 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1436 fname_from_uuid(st, &info, nbuf, ':');
1437 printf("MD_METADATA=imsm\n");
1438 printf("MD_LEVEL=container\n");
1439 printf("MD_UUID=%s\n", nbuf+5);
1440 printf("MD_DEVICES=%u\n", mpb->num_disks);
1441}
1442
cdddbdbc
DW
1443static void detail_super_imsm(struct supertype *st, char *homehost)
1444{
3ebe00a1
DW
1445 struct mdinfo info;
1446 char nbuf[64];
1447
a5d85af7 1448 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1449 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1450 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1451}
1452
1453static void brief_detail_super_imsm(struct supertype *st)
1454{
ff54de6e
N
1455 struct mdinfo info;
1456 char nbuf[64];
a5d85af7 1457 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1458 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1459 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1460}
d665cc31
DW
1461
1462static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1463static void fd2devname(int fd, char *name);
1464
120dc887 1465static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1466{
120dc887
LM
1467 /* dump an unsorted list of devices attached to AHCI Intel storage
1468 * controller, as well as non-connected ports
d665cc31
DW
1469 */
1470 int hba_len = strlen(hba_path) + 1;
1471 struct dirent *ent;
1472 DIR *dir;
1473 char *path = NULL;
1474 int err = 0;
1475 unsigned long port_mask = (1 << port_count) - 1;
1476
f21e18ca 1477 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1478 if (verbose)
1479 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1480 return 2;
1481 }
1482
1483 /* scroll through /sys/dev/block looking for devices attached to
1484 * this hba
1485 */
1486 dir = opendir("/sys/dev/block");
1487 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1488 int fd;
1489 char model[64];
1490 char vendor[64];
1491 char buf[1024];
1492 int major, minor;
1493 char *device;
1494 char *c;
1495 int port;
1496 int type;
1497
1498 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1499 continue;
1500 path = devt_to_devpath(makedev(major, minor));
1501 if (!path)
1502 continue;
1503 if (!path_attached_to_hba(path, hba_path)) {
1504 free(path);
1505 path = NULL;
1506 continue;
1507 }
1508
1509 /* retrieve the scsi device type */
1510 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1511 if (verbose)
1512 fprintf(stderr, Name ": failed to allocate 'device'\n");
1513 err = 2;
1514 break;
1515 }
1516 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1517 if (load_sys(device, buf) != 0) {
1518 if (verbose)
1519 fprintf(stderr, Name ": failed to read device type for %s\n",
1520 path);
1521 err = 2;
1522 free(device);
1523 break;
1524 }
1525 type = strtoul(buf, NULL, 10);
1526
1527 /* if it's not a disk print the vendor and model */
1528 if (!(type == 0 || type == 7 || type == 14)) {
1529 vendor[0] = '\0';
1530 model[0] = '\0';
1531 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1532 if (load_sys(device, buf) == 0) {
1533 strncpy(vendor, buf, sizeof(vendor));
1534 vendor[sizeof(vendor) - 1] = '\0';
1535 c = (char *) &vendor[sizeof(vendor) - 1];
1536 while (isspace(*c) || *c == '\0')
1537 *c-- = '\0';
1538
1539 }
1540 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1541 if (load_sys(device, buf) == 0) {
1542 strncpy(model, buf, sizeof(model));
1543 model[sizeof(model) - 1] = '\0';
1544 c = (char *) &model[sizeof(model) - 1];
1545 while (isspace(*c) || *c == '\0')
1546 *c-- = '\0';
1547 }
1548
1549 if (vendor[0] && model[0])
1550 sprintf(buf, "%.64s %.64s", vendor, model);
1551 else
1552 switch (type) { /* numbers from hald/linux/device.c */
1553 case 1: sprintf(buf, "tape"); break;
1554 case 2: sprintf(buf, "printer"); break;
1555 case 3: sprintf(buf, "processor"); break;
1556 case 4:
1557 case 5: sprintf(buf, "cdrom"); break;
1558 case 6: sprintf(buf, "scanner"); break;
1559 case 8: sprintf(buf, "media_changer"); break;
1560 case 9: sprintf(buf, "comm"); break;
1561 case 12: sprintf(buf, "raid"); break;
1562 default: sprintf(buf, "unknown");
1563 }
1564 } else
1565 buf[0] = '\0';
1566 free(device);
1567
1568 /* chop device path to 'host%d' and calculate the port number */
1569 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1570 if (!c) {
1571 if (verbose)
1572 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1573 err = 2;
1574 break;
1575 }
d665cc31
DW
1576 *c = '\0';
1577 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1578 port -= host_base;
1579 else {
1580 if (verbose) {
1581 *c = '/'; /* repair the full string */
1582 fprintf(stderr, Name ": failed to determine port number for %s\n",
1583 path);
1584 }
1585 err = 2;
1586 break;
1587 }
1588
1589 /* mark this port as used */
1590 port_mask &= ~(1 << port);
1591
1592 /* print out the device information */
1593 if (buf[0]) {
1594 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1595 continue;
1596 }
1597
1598 fd = dev_open(ent->d_name, O_RDONLY);
1599 if (fd < 0)
1600 printf(" Port%d : - disk info unavailable -\n", port);
1601 else {
1602 fd2devname(fd, buf);
1603 printf(" Port%d : %s", port, buf);
1604 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1605 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1606 else
664d5325 1607 printf(" ()\n");
4dab422a 1608 close(fd);
d665cc31 1609 }
d665cc31
DW
1610 free(path);
1611 path = NULL;
1612 }
1613 if (path)
1614 free(path);
1615 if (dir)
1616 closedir(dir);
1617 if (err == 0) {
1618 int i;
1619
1620 for (i = 0; i < port_count; i++)
1621 if (port_mask & (1 << i))
1622 printf(" Port%d : - no device attached -\n", i);
1623 }
1624
1625 return err;
1626}
1627
120dc887
LM
1628static void print_found_intel_controllers(struct sys_dev *elem)
1629{
1630 for (; elem; elem = elem->next) {
1631 fprintf(stderr, Name ": found Intel(R) ");
1632 if (elem->type == SYS_DEV_SATA)
1633 fprintf(stderr, "SATA ");
155cbb4c
LM
1634 else if (elem->type == SYS_DEV_SAS)
1635 fprintf(stderr, "SAS ");
120dc887
LM
1636 fprintf(stderr, "RAID controller");
1637 if (elem->pci_id)
1638 fprintf(stderr, " at %s", elem->pci_id);
1639 fprintf(stderr, ".\n");
1640 }
1641 fflush(stderr);
1642}
1643
120dc887
LM
1644static int ahci_get_port_count(const char *hba_path, int *port_count)
1645{
1646 struct dirent *ent;
1647 DIR *dir;
1648 int host_base = -1;
1649
1650 *port_count = 0;
1651 if ((dir = opendir(hba_path)) == NULL)
1652 return -1;
1653
1654 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1655 int host;
1656
1657 if (sscanf(ent->d_name, "host%d", &host) != 1)
1658 continue;
1659 if (*port_count == 0)
1660 host_base = host;
1661 else if (host < host_base)
1662 host_base = host;
1663
1664 if (host + 1 > *port_count + host_base)
1665 *port_count = host + 1 - host_base;
1666 }
1667 closedir(dir);
1668 return host_base;
1669}
1670
a891a3c2
LM
1671static void print_imsm_capability(const struct imsm_orom *orom)
1672{
1673 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1674 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1675 orom->hotfix_ver, orom->build);
1676 printf(" RAID Levels :%s%s%s%s%s\n",
1677 imsm_orom_has_raid0(orom) ? " raid0" : "",
1678 imsm_orom_has_raid1(orom) ? " raid1" : "",
1679 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1680 imsm_orom_has_raid10(orom) ? " raid10" : "",
1681 imsm_orom_has_raid5(orom) ? " raid5" : "");
1682 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1683 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1684 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1685 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1686 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1687 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1688 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1689 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1690 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1691 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1692 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1693 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1694 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1695 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1696 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1697 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1698 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1699 printf(" Max Disks : %d\n", orom->tds);
1700 printf(" Max Volumes : %d\n", orom->vpa);
1701 return;
1702}
1703
5615172f 1704static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1705{
1706 /* There are two components to imsm platform support, the ahci SATA
1707 * controller and the option-rom. To find the SATA controller we
1708 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1709 * controller with the Intel vendor id is present. This approach
1710 * allows mdadm to leverage the kernel's ahci detection logic, with the
1711 * caveat that if ahci.ko is not loaded mdadm will not be able to
1712 * detect platform raid capabilities. The option-rom resides in a
1713 * platform "Adapter ROM". We scan for its signature to retrieve the
1714 * platform capabilities. If raid support is disabled in the BIOS the
1715 * option-rom capability structure will not be available.
1716 */
1717 const struct imsm_orom *orom;
1718 struct sys_dev *list, *hba;
d665cc31
DW
1719 int host_base = 0;
1720 int port_count = 0;
120dc887 1721 int result=0;
d665cc31 1722
5615172f 1723 if (enumerate_only) {
a891a3c2 1724 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1725 return 0;
a891a3c2
LM
1726 list = find_intel_devices();
1727 if (!list)
1728 return 2;
1729 for (hba = list; hba; hba = hba->next) {
1730 orom = find_imsm_capability(hba->type);
1731 if (!orom) {
1732 result = 2;
1733 break;
1734 }
1735 }
1736 free_sys_dev(&list);
1737 return result;
5615172f
DW
1738 }
1739
155cbb4c
LM
1740 list = find_intel_devices();
1741 if (!list) {
d665cc31 1742 if (verbose)
155cbb4c
LM
1743 fprintf(stderr, Name ": no active Intel(R) RAID "
1744 "controller found.\n");
d665cc31
DW
1745 free_sys_dev(&list);
1746 return 2;
1747 } else if (verbose)
155cbb4c 1748 print_found_intel_controllers(list);
d665cc31 1749
a891a3c2
LM
1750 for (hba = list; hba; hba = hba->next) {
1751 orom = find_imsm_capability(hba->type);
1752 if (!orom)
1753 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1754 hba->path, get_sys_dev_type(hba->type));
1755 else
1756 print_imsm_capability(orom);
d665cc31
DW
1757 }
1758
120dc887
LM
1759 for (hba = list; hba; hba = hba->next) {
1760 printf(" I/O Controller : %s (%s)\n",
1761 hba->path, get_sys_dev_type(hba->type));
d665cc31 1762
120dc887
LM
1763 if (hba->type == SYS_DEV_SATA) {
1764 host_base = ahci_get_port_count(hba->path, &port_count);
1765 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1766 if (verbose)
1767 fprintf(stderr, Name ": failed to enumerate "
1768 "ports on SATA controller at %s.", hba->pci_id);
1769 result |= 2;
1770 }
1771 }
d665cc31 1772 }
155cbb4c 1773
120dc887
LM
1774 free_sys_dev(&list);
1775 return result;
d665cc31 1776}
cdddbdbc
DW
1777#endif
1778
1779static int match_home_imsm(struct supertype *st, char *homehost)
1780{
5115ca67
DW
1781 /* the imsm metadata format does not specify any host
1782 * identification information. We return -1 since we can never
1783 * confirm nor deny whether a given array is "meant" for this
148acb7b 1784 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1785 * exclude member disks that do not belong, and we rely on
1786 * mdadm.conf to specify the arrays that should be assembled.
1787 * Auto-assembly may still pick up "foreign" arrays.
1788 */
cdddbdbc 1789
9362c1c8 1790 return -1;
cdddbdbc
DW
1791}
1792
1793static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1794{
51006d85
N
1795 /* The uuid returned here is used for:
1796 * uuid to put into bitmap file (Create, Grow)
1797 * uuid for backup header when saving critical section (Grow)
1798 * comparing uuids when re-adding a device into an array
1799 * In these cases the uuid required is that of the data-array,
1800 * not the device-set.
1801 * uuid to recognise same set when adding a missing device back
1802 * to an array. This is a uuid for the device-set.
1803 *
1804 * For each of these we can make do with a truncated
1805 * or hashed uuid rather than the original, as long as
1806 * everyone agrees.
1807 * In each case the uuid required is that of the data-array,
1808 * not the device-set.
43dad3d6 1809 */
51006d85
N
1810 /* imsm does not track uuid's so we synthesis one using sha1 on
1811 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1812 * - the orig_family_num of the container
51006d85
N
1813 * - the index number of the volume
1814 * - the 'serial' number of the volume.
1815 * Hopefully these are all constant.
1816 */
1817 struct intel_super *super = st->sb;
43dad3d6 1818
51006d85
N
1819 char buf[20];
1820 struct sha1_ctx ctx;
1821 struct imsm_dev *dev = NULL;
148acb7b 1822 __u32 family_num;
51006d85 1823
148acb7b
DW
1824 /* some mdadm versions failed to set ->orig_family_num, in which
1825 * case fall back to ->family_num. orig_family_num will be
1826 * fixed up with the first metadata update.
1827 */
1828 family_num = super->anchor->orig_family_num;
1829 if (family_num == 0)
1830 family_num = super->anchor->family_num;
51006d85 1831 sha1_init_ctx(&ctx);
92bd8f8d 1832 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1833 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1834 if (super->current_vol >= 0)
1835 dev = get_imsm_dev(super, super->current_vol);
1836 if (dev) {
1837 __u32 vol = super->current_vol;
1838 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1839 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1840 }
1841 sha1_finish_ctx(&ctx, buf);
1842 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1843}
1844
0d481d37 1845#if 0
4f5bc454
DW
1846static void
1847get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1848{
cdddbdbc
DW
1849 __u8 *v = get_imsm_version(mpb);
1850 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1851 char major[] = { 0, 0, 0 };
1852 char minor[] = { 0 ,0, 0 };
1853 char patch[] = { 0, 0, 0 };
1854 char *ver_parse[] = { major, minor, patch };
1855 int i, j;
1856
1857 i = j = 0;
1858 while (*v != '\0' && v < end) {
1859 if (*v != '.' && j < 2)
1860 ver_parse[i][j++] = *v;
1861 else {
1862 i++;
1863 j = 0;
1864 }
1865 v++;
1866 }
1867
4f5bc454
DW
1868 *m = strtol(minor, NULL, 0);
1869 *p = strtol(patch, NULL, 0);
1870}
0d481d37 1871#endif
4f5bc454 1872
1e5c6983
DW
1873static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1874{
1875 /* migr_strip_size when repairing or initializing parity */
238c0a71 1876 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1877 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1878
1879 switch (get_imsm_raid_level(map)) {
1880 case 5:
1881 case 10:
1882 return chunk;
1883 default:
1884 return 128*1024 >> 9;
1885 }
1886}
1887
1888static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1889{
1890 /* migr_strip_size when rebuilding a degraded disk, no idea why
1891 * this is different than migr_strip_size_resync(), but it's good
1892 * to be compatible
1893 */
238c0a71 1894 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1895 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1896
1897 switch (get_imsm_raid_level(map)) {
1898 case 1:
1899 case 10:
1900 if (map->num_members % map->num_domains == 0)
1901 return 128*1024 >> 9;
1902 else
1903 return chunk;
1904 case 5:
1905 return max((__u32) 64*1024 >> 9, chunk);
1906 default:
1907 return 128*1024 >> 9;
1908 }
1909}
1910
1911static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1912{
238c0a71
AK
1913 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1914 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1915 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1916 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1917
1918 return max((__u32) 1, hi_chunk / lo_chunk);
1919}
1920
1921static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1922{
238c0a71 1923 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1924 int level = get_imsm_raid_level(lo);
1925
1926 if (level == 1 || level == 10) {
238c0a71 1927 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1928
1929 return hi->num_domains;
1930 } else
1931 return num_stripes_per_unit_resync(dev);
1932}
1933
98130f40 1934static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1935{
1936 /* named 'imsm_' because raid0, raid1 and raid10
1937 * counter-intuitively have the same number of data disks
1938 */
98130f40 1939 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1940
1941 switch (get_imsm_raid_level(map)) {
1942 case 0:
1943 case 1:
1944 case 10:
1945 return map->num_members;
1946 case 5:
1947 return map->num_members - 1;
1948 default:
1949 dprintf("%s: unsupported raid level\n", __func__);
1950 return 0;
1951 }
1952}
1953
1954static __u32 parity_segment_depth(struct imsm_dev *dev)
1955{
238c0a71 1956 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
1957 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1958
1959 switch(get_imsm_raid_level(map)) {
1960 case 1:
1961 case 10:
1962 return chunk * map->num_domains;
1963 case 5:
1964 return chunk * map->num_members;
1965 default:
1966 return chunk;
1967 }
1968}
1969
1970static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1971{
238c0a71 1972 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
1973 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1974 __u32 strip = block / chunk;
1975
1976 switch (get_imsm_raid_level(map)) {
1977 case 1:
1978 case 10: {
1979 __u32 vol_strip = (strip * map->num_domains) + 1;
1980 __u32 vol_stripe = vol_strip / map->num_members;
1981
1982 return vol_stripe * chunk + block % chunk;
1983 } case 5: {
1984 __u32 stripe = strip / (map->num_members - 1);
1985
1986 return stripe * chunk + block % chunk;
1987 }
1988 default:
1989 return 0;
1990 }
1991}
1992
c47b0ff6
AK
1993static __u64 blocks_per_migr_unit(struct intel_super *super,
1994 struct imsm_dev *dev)
1e5c6983
DW
1995{
1996 /* calculate the conversion factor between per member 'blocks'
1997 * (md/{resync,rebuild}_start) and imsm migration units, return
1998 * 0 for the 'not migrating' and 'unsupported migration' cases
1999 */
2000 if (!dev->vol.migr_state)
2001 return 0;
2002
2003 switch (migr_type(dev)) {
c47b0ff6
AK
2004 case MIGR_GEN_MIGR: {
2005 struct migr_record *migr_rec = super->migr_rec;
2006 return __le32_to_cpu(migr_rec->blocks_per_unit);
2007 }
1e5c6983
DW
2008 case MIGR_VERIFY:
2009 case MIGR_REPAIR:
2010 case MIGR_INIT: {
238c0a71 2011 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2012 __u32 stripes_per_unit;
2013 __u32 blocks_per_unit;
2014 __u32 parity_depth;
2015 __u32 migr_chunk;
2016 __u32 block_map;
2017 __u32 block_rel;
2018 __u32 segment;
2019 __u32 stripe;
2020 __u8 disks;
2021
2022 /* yes, this is really the translation of migr_units to
2023 * per-member blocks in the 'resync' case
2024 */
2025 stripes_per_unit = num_stripes_per_unit_resync(dev);
2026 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2027 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2028 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2029 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2030 segment = blocks_per_unit / stripe;
2031 block_rel = blocks_per_unit - segment * stripe;
2032 parity_depth = parity_segment_depth(dev);
2033 block_map = map_migr_block(dev, block_rel);
2034 return block_map + parity_depth * segment;
2035 }
2036 case MIGR_REBUILD: {
2037 __u32 stripes_per_unit;
2038 __u32 migr_chunk;
2039
2040 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2041 migr_chunk = migr_strip_blocks_rebuild(dev);
2042 return migr_chunk * stripes_per_unit;
2043 }
1e5c6983
DW
2044 case MIGR_STATE_CHANGE:
2045 default:
2046 return 0;
2047 }
2048}
2049
c2c087e6
DW
2050static int imsm_level_to_layout(int level)
2051{
2052 switch (level) {
2053 case 0:
2054 case 1:
2055 return 0;
2056 case 5:
2057 case 6:
a380c027 2058 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2059 case 10:
c92a2527 2060 return 0x102;
c2c087e6 2061 }
a18a888e 2062 return UnSet;
c2c087e6
DW
2063}
2064
8e59f3d8
AK
2065/*******************************************************************************
2066 * Function: read_imsm_migr_rec
2067 * Description: Function reads imsm migration record from last sector of disk
2068 * Parameters:
2069 * fd : disk descriptor
2070 * super : metadata info
2071 * Returns:
2072 * 0 : success,
2073 * -1 : fail
2074 ******************************************************************************/
2075static int read_imsm_migr_rec(int fd, struct intel_super *super)
2076{
2077 int ret_val = -1;
2078 unsigned long long dsize;
2079
2080 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2081 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
8e59f3d8
AK
2082 fprintf(stderr,
2083 Name ": Cannot seek to anchor block: %s\n",
2084 strerror(errno));
2085 goto out;
2086 }
17a4eaf9
AK
2087 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2088 MIGR_REC_BUF_SIZE) {
8e59f3d8
AK
2089 fprintf(stderr,
2090 Name ": Cannot read migr record block: %s\n",
2091 strerror(errno));
2092 goto out;
2093 }
2094 ret_val = 0;
2095
2096out:
2097 return ret_val;
2098}
2099
3136abe5
AK
2100static struct imsm_dev *imsm_get_device_during_migration(
2101 struct intel_super *super)
2102{
2103
2104 struct intel_dev *dv;
2105
2106 for (dv = super->devlist; dv; dv = dv->next) {
2107 if (is_gen_migration(dv->dev))
2108 return dv->dev;
2109 }
2110 return NULL;
2111}
2112
8e59f3d8
AK
2113/*******************************************************************************
2114 * Function: load_imsm_migr_rec
2115 * Description: Function reads imsm migration record (it is stored at the last
2116 * sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * info : general array info
2120 * Returns:
2121 * 0 : success
2122 * -1 : fail
2123 ******************************************************************************/
2124static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2125{
2126 struct mdinfo *sd;
2127 struct dl *dl = NULL;
2128 char nm[30];
2129 int retval = -1;
2130 int fd = -1;
3136abe5
AK
2131 struct imsm_dev *dev;
2132 struct imsm_map *map = NULL;
b4ab44d8 2133 int slot = -1;
3136abe5
AK
2134
2135 /* find map under migration */
2136 dev = imsm_get_device_during_migration(super);
2137 /* nothing to load,no migration in progress?
2138 */
2139 if (dev == NULL)
2140 return 0;
44bfe6df 2141 map = get_imsm_map(dev, MAP_0);
8e59f3d8
AK
2142
2143 if (info) {
2144 for (sd = info->devs ; sd ; sd = sd->next) {
3136abe5
AK
2145 /* skip spare and failed disks
2146 */
2147 if (sd->disk.raid_disk < 0)
2148 continue;
8e59f3d8 2149 /* read only from one of the first two slots */
3136abe5
AK
2150 if (map)
2151 slot = get_imsm_disk_slot(map,
2152 sd->disk.raid_disk);
2153 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8 2154 continue;
3136abe5 2155
8e59f3d8
AK
2156 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2157 fd = dev_open(nm, O_RDONLY);
2158 if (fd >= 0)
2159 break;
2160 }
2161 }
2162 if (fd < 0) {
2163 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2164 /* skip spare and failed disks
2165 */
2166 if (dl->index < 0)
2167 continue;
8e59f3d8 2168 /* read only from one of the first two slots */
3136abe5
AK
2169 if (map)
2170 slot = get_imsm_disk_slot(map, dl->index);
2171 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8
AK
2172 continue;
2173 sprintf(nm, "%d:%d", dl->major, dl->minor);
2174 fd = dev_open(nm, O_RDONLY);
2175 if (fd >= 0)
2176 break;
2177 }
2178 }
2179 if (fd < 0)
2180 goto out;
2181 retval = read_imsm_migr_rec(fd, super);
2182
2183out:
2184 if (fd >= 0)
2185 close(fd);
2186 return retval;
2187}
2188
9e2d750d 2189#ifndef MDASSEMBLE
c17608ea
AK
2190/*******************************************************************************
2191 * function: imsm_create_metadata_checkpoint_update
2192 * Description: It creates update for checkpoint change.
2193 * Parameters:
2194 * super : imsm internal array info
2195 * u : pointer to prepared update
2196 * Returns:
2197 * Uptate length.
2198 * If length is equal to 0, input pointer u contains no update
2199 ******************************************************************************/
2200static int imsm_create_metadata_checkpoint_update(
2201 struct intel_super *super,
2202 struct imsm_update_general_migration_checkpoint **u)
2203{
2204
2205 int update_memory_size = 0;
2206
2207 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2208
2209 if (u == NULL)
2210 return 0;
2211 *u = NULL;
2212
2213 /* size of all update data without anchor */
2214 update_memory_size =
2215 sizeof(struct imsm_update_general_migration_checkpoint);
2216
2217 *u = calloc(1, update_memory_size);
2218 if (*u == NULL) {
2219 dprintf("error: cannot get memory for "
2220 "imsm_create_metadata_checkpoint_update update\n");
2221 return 0;
2222 }
2223 (*u)->type = update_general_migration_checkpoint;
2224 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2225 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2226 (*u)->curr_migr_unit);
2227
2228 return update_memory_size;
2229}
2230
2231
2232static void imsm_update_metadata_locally(struct supertype *st,
2233 void *buf, int len);
2234
687629c2
AK
2235/*******************************************************************************
2236 * Function: write_imsm_migr_rec
2237 * Description: Function writes imsm migration record
2238 * (at the last sector of disk)
2239 * Parameters:
2240 * super : imsm internal array info
2241 * Returns:
2242 * 0 : success
2243 * -1 : if fail
2244 ******************************************************************************/
2245static int write_imsm_migr_rec(struct supertype *st)
2246{
2247 struct intel_super *super = st->sb;
2248 unsigned long long dsize;
2249 char nm[30];
2250 int fd = -1;
2251 int retval = -1;
2252 struct dl *sd;
c17608ea
AK
2253 int len;
2254 struct imsm_update_general_migration_checkpoint *u;
3136abe5
AK
2255 struct imsm_dev *dev;
2256 struct imsm_map *map = NULL;
2257
2258 /* find map under migration */
2259 dev = imsm_get_device_during_migration(super);
2260 /* if no migration, write buffer anyway to clear migr_record
2261 * on disk based on first available device
2262 */
2263 if (dev == NULL)
2264 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2265 super->current_vol);
2266
44bfe6df 2267 map = get_imsm_map(dev, MAP_0);
687629c2
AK
2268
2269 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 2270 int slot = -1;
3136abe5
AK
2271
2272 /* skip failed and spare devices */
2273 if (sd->index < 0)
2274 continue;
687629c2 2275 /* write to 2 first slots only */
3136abe5
AK
2276 if (map)
2277 slot = get_imsm_disk_slot(map, sd->index);
2278 if ((map == NULL) || (slot > 1) || (slot < 0))
687629c2 2279 continue;
3136abe5 2280
687629c2
AK
2281 sprintf(nm, "%d:%d", sd->major, sd->minor);
2282 fd = dev_open(nm, O_RDWR);
2283 if (fd < 0)
2284 continue;
2285 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2286 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
687629c2
AK
2287 fprintf(stderr,
2288 Name ": Cannot seek to anchor block: %s\n",
2289 strerror(errno));
2290 goto out;
2291 }
17a4eaf9
AK
2292 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2293 MIGR_REC_BUF_SIZE) {
687629c2
AK
2294 fprintf(stderr,
2295 Name ": Cannot write migr record block: %s\n",
2296 strerror(errno));
2297 goto out;
2298 }
2299 close(fd);
2300 fd = -1;
2301 }
c17608ea
AK
2302 /* update checkpoint information in metadata */
2303 len = imsm_create_metadata_checkpoint_update(super, &u);
2304
2305 if (len <= 0) {
2306 dprintf("imsm: Cannot prepare update\n");
2307 goto out;
2308 }
2309 /* update metadata locally */
2310 imsm_update_metadata_locally(st, u, len);
2311 /* and possibly remotely */
2312 if (st->update_tail) {
2313 append_metadata_update(st, u, len);
2314 /* during reshape we do all work inside metadata handler
2315 * manage_reshape(), so metadata update has to be triggered
2316 * insida it
2317 */
2318 flush_metadata_updates(st);
2319 st->update_tail = &st->updates;
2320 } else
2321 free(u);
687629c2
AK
2322
2323 retval = 0;
2324 out:
2325 if (fd >= 0)
2326 close(fd);
2327 return retval;
2328}
9e2d750d 2329#endif /* MDASSEMBLE */
687629c2 2330
e2962bfc
AK
2331/* spare/missing disks activations are not allowe when
2332 * array/container performs reshape operation, because
2333 * all arrays in container works on the same disks set
2334 */
2335int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2336{
2337 int rv = 0;
2338 struct intel_dev *i_dev;
2339 struct imsm_dev *dev;
2340
2341 /* check whole container
2342 */
2343 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2344 dev = i_dev->dev;
3ad25638 2345 if (is_gen_migration(dev)) {
e2962bfc
AK
2346 /* No repair during any migration in container
2347 */
2348 rv = 1;
2349 break;
2350 }
2351 }
2352 return rv;
2353}
2354
a5d85af7 2355static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2356{
2357 struct intel_super *super = st->sb;
c47b0ff6 2358 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2359 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
2360 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2361 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 2362 struct imsm_map *map_to_analyse = map;
efb30e7f 2363 struct dl *dl;
e207da2f 2364 char *devname;
139dae11 2365 unsigned int component_size_alligment;
a5d85af7 2366 int map_disks = info->array.raid_disks;
bf5a934a 2367
95eeceeb 2368 memset(info, 0, sizeof(*info));
b335e593
AK
2369 if (prev_map)
2370 map_to_analyse = prev_map;
2371
ca0748fa 2372 dl = super->current_disk;
9894ec0d 2373
bf5a934a 2374 info->container_member = super->current_vol;
cd0430a1 2375 info->array.raid_disks = map->num_members;
b335e593 2376 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2377 info->array.layout = imsm_level_to_layout(info->array.level);
2378 info->array.md_minor = -1;
2379 info->array.ctime = 0;
2380 info->array.utime = 0;
b335e593
AK
2381 info->array.chunk_size =
2382 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2383 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2384 info->custom_array_size = __le32_to_cpu(dev->size_high);
2385 info->custom_array_size <<= 32;
2386 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2387 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2388
3f510843 2389 if (is_gen_migration(dev)) {
3f83228a 2390 info->reshape_active = 1;
b335e593
AK
2391 info->new_level = get_imsm_raid_level(map);
2392 info->new_layout = imsm_level_to_layout(info->new_level);
2393 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2394 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2395 if (info->delta_disks) {
2396 /* this needs to be applied to every array
2397 * in the container.
2398 */
81219e70 2399 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2400 }
3f83228a
N
2401 /* We shape information that we give to md might have to be
2402 * modify to cope with md's requirement for reshaping arrays.
2403 * For example, when reshaping a RAID0, md requires it to be
2404 * presented as a degraded RAID4.
2405 * Also if a RAID0 is migrating to a RAID5 we need to specify
2406 * the array as already being RAID5, but the 'before' layout
2407 * is a RAID4-like layout.
2408 */
2409 switch (info->array.level) {
2410 case 0:
2411 switch(info->new_level) {
2412 case 0:
2413 /* conversion is happening as RAID4 */
2414 info->array.level = 4;
2415 info->array.raid_disks += 1;
2416 break;
2417 case 5:
2418 /* conversion is happening as RAID5 */
2419 info->array.level = 5;
2420 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2421 info->delta_disks -= 1;
2422 break;
2423 default:
2424 /* FIXME error message */
2425 info->array.level = UnSet;
2426 break;
2427 }
2428 break;
2429 }
b335e593
AK
2430 } else {
2431 info->new_level = UnSet;
2432 info->new_layout = UnSet;
2433 info->new_chunk = info->array.chunk_size;
3f83228a 2434 info->delta_disks = 0;
b335e593 2435 }
ca0748fa 2436
efb30e7f
DW
2437 if (dl) {
2438 info->disk.major = dl->major;
2439 info->disk.minor = dl->minor;
ca0748fa 2440 info->disk.number = dl->index;
656b6b5a
N
2441 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2442 dl->index);
efb30e7f 2443 }
bf5a934a 2444
b335e593
AK
2445 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2446 info->component_size =
2447 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2448
2449 /* check component size aligment
2450 */
2451 component_size_alligment =
2452 info->component_size % (info->array.chunk_size/512);
2453
2454 if (component_size_alligment &&
2455 (info->array.level != 1) && (info->array.level != UnSet)) {
2456 dprintf("imsm: reported component size alligned from %llu ",
2457 info->component_size);
2458 info->component_size -= component_size_alligment;
2459 dprintf("to %llu (%i).\n",
2460 info->component_size, component_size_alligment);
2461 }
2462
301406c9 2463 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2464 info->recovery_start = MaxSector;
bf5a934a 2465
d2e6d5d6 2466 info->reshape_progress = 0;
b6796ce1 2467 info->resync_start = MaxSector;
b9172665
AK
2468 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2469 dev->vol.dirty) &&
2470 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2471 info->resync_start = 0;
b6796ce1
AK
2472 }
2473 if (dev->vol.migr_state) {
1e5c6983
DW
2474 switch (migr_type(dev)) {
2475 case MIGR_REPAIR:
2476 case MIGR_INIT: {
c47b0ff6
AK
2477 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2478 dev);
1e5c6983
DW
2479 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2480
2481 info->resync_start = blocks_per_unit * units;
2482 break;
2483 }
d2e6d5d6 2484 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2485 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2486 dev);
2487 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2488 unsigned long long array_blocks;
2489 int used_disks;
d2e6d5d6 2490
befb629b
AK
2491 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2492 (units <
2493 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2494 (super->migr_rec->rec_status ==
2495 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2496 units++;
2497
d2e6d5d6 2498 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2499
d2e6d5d6
AK
2500 dprintf("IMSM: General Migration checkpoint : %llu "
2501 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2502 (unsigned long long)units,
2503 (unsigned long long)blocks_per_unit,
2504 info->reshape_progress);
75156c46 2505
238c0a71 2506 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46
AK
2507 if (used_disks > 0) {
2508 array_blocks = map->blocks_per_member *
2509 used_disks;
2510 /* round array size down to closest MB
2511 */
2512 info->custom_array_size = (array_blocks
2513 >> SECT_PER_MB_SHIFT)
2514 << SECT_PER_MB_SHIFT;
2515 }
d2e6d5d6 2516 }
1e5c6983
DW
2517 case MIGR_VERIFY:
2518 /* we could emulate the checkpointing of
2519 * 'sync_action=check' migrations, but for now
2520 * we just immediately complete them
2521 */
2522 case MIGR_REBUILD:
2523 /* this is handled by container_content_imsm() */
1e5c6983
DW
2524 case MIGR_STATE_CHANGE:
2525 /* FIXME handle other migrations */
2526 default:
2527 /* we are not dirty, so... */
2528 info->resync_start = MaxSector;
2529 }
b6796ce1 2530 }
301406c9
DW
2531
2532 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2533 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2534
f35f2525
N
2535 info->array.major_version = -1;
2536 info->array.minor_version = -2;
e207da2f
AW
2537 devname = devnum2devname(st->container_dev);
2538 *info->text_version = '\0';
2539 if (devname)
2540 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2541 free(devname);
a67dd8cc 2542 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2543 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2544
2545 if (dmap) {
2546 int i, j;
2547 for (i=0; i<map_disks; i++) {
2548 dmap[i] = 0;
2549 if (i < info->array.raid_disks) {
2550 struct imsm_disk *dsk;
238c0a71 2551 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
2552 dsk = get_imsm_disk(super, j);
2553 if (dsk && (dsk->status & CONFIGURED_DISK))
2554 dmap[i] = 1;
2555 }
2556 }
2557 }
81ac8b4d 2558}
bf5a934a 2559
3b451610
AK
2560static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2561 int failed, int look_in_map);
2562
2563static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2564 int look_in_map);
2565
b4ab44d8
AK
2566
2567#ifndef MDASSEMBLE
3b451610
AK
2568static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2569{
2570 if (is_gen_migration(dev)) {
2571 int failed;
2572 __u8 map_state;
2573 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2574
2575 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 2576 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
2577 if (map2->map_state != map_state) {
2578 map2->map_state = map_state;
2579 super->updates_pending++;
2580 }
2581 }
2582}
b4ab44d8 2583#endif
97b4d0e9
DW
2584
2585static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2586{
2587 struct dl *d;
2588
2589 for (d = super->missing; d; d = d->next)
2590 if (d->index == index)
2591 return &d->disk;
2592 return NULL;
2593}
2594
a5d85af7 2595static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2596{
2597 struct intel_super *super = st->sb;
4f5bc454 2598 struct imsm_disk *disk;
a5d85af7 2599 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2600 int max_enough = -1;
2601 int i;
2602 struct imsm_super *mpb;
4f5bc454 2603
bf5a934a 2604 if (super->current_vol >= 0) {
a5d85af7 2605 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2606 return;
2607 }
95eeceeb 2608 memset(info, 0, sizeof(*info));
d23fe947
DW
2609
2610 /* Set raid_disks to zero so that Assemble will always pull in valid
2611 * spares
2612 */
2613 info->array.raid_disks = 0;
cdddbdbc
DW
2614 info->array.level = LEVEL_CONTAINER;
2615 info->array.layout = 0;
2616 info->array.md_minor = -1;
c2c087e6 2617 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2618 info->array.utime = 0;
2619 info->array.chunk_size = 0;
2620
2621 info->disk.major = 0;
2622 info->disk.minor = 0;
cdddbdbc 2623 info->disk.raid_disk = -1;
c2c087e6 2624 info->reshape_active = 0;
f35f2525
N
2625 info->array.major_version = -1;
2626 info->array.minor_version = -2;
c2c087e6 2627 strcpy(info->text_version, "imsm");
a67dd8cc 2628 info->safe_mode_delay = 0;
c2c087e6
DW
2629 info->disk.number = -1;
2630 info->disk.state = 0;
c5afc314 2631 info->name[0] = 0;
921d9e16 2632 info->recovery_start = MaxSector;
3ad25638 2633 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2634
97b4d0e9 2635 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2636 mpb = super->anchor;
97b4d0e9 2637
ab3cb6b3
N
2638 for (i = 0; i < mpb->num_raid_devs; i++) {
2639 struct imsm_dev *dev = get_imsm_dev(super, i);
2640 int failed, enough, j, missing = 0;
2641 struct imsm_map *map;
2642 __u8 state;
97b4d0e9 2643
3b451610
AK
2644 failed = imsm_count_failed(super, dev, MAP_0);
2645 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 2646 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
2647
2648 /* any newly missing disks?
2649 * (catches single-degraded vs double-degraded)
2650 */
2651 for (j = 0; j < map->num_members; j++) {
238c0a71 2652 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
2653 __u32 idx = ord_to_idx(ord);
2654
2655 if (!(ord & IMSM_ORD_REBUILD) &&
2656 get_imsm_missing(super, idx)) {
2657 missing = 1;
2658 break;
2659 }
97b4d0e9 2660 }
ab3cb6b3
N
2661
2662 if (state == IMSM_T_STATE_FAILED)
2663 enough = -1;
2664 else if (state == IMSM_T_STATE_DEGRADED &&
2665 (state != map->map_state || missing))
2666 enough = 0;
2667 else /* we're normal, or already degraded */
2668 enough = 1;
2669
2670 /* in the missing/failed disk case check to see
2671 * if at least one array is runnable
2672 */
2673 max_enough = max(max_enough, enough);
2674 }
2675 dprintf("%s: enough: %d\n", __func__, max_enough);
2676 info->container_enough = max_enough;
97b4d0e9 2677
4a04ec6c 2678 if (super->disks) {
14e8215b
DW
2679 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2680
b9f594fe 2681 disk = &super->disks->disk;
14e8215b
DW
2682 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2683 info->component_size = reserved;
25ed7e59 2684 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2685 /* we don't change info->disk.raid_disk here because
2686 * this state will be finalized in mdmon after we have
2687 * found the 'most fresh' version of the metadata
2688 */
25ed7e59
DW
2689 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2690 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2691 }
a575e2a7
DW
2692
2693 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2694 * ->compare_super may have updated the 'num_raid_devs' field for spares
2695 */
2696 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2697 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2698 else
2699 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2700
2701 /* I don't know how to compute 'map' on imsm, so use safe default */
2702 if (map) {
2703 int i;
2704 for (i = 0; i < map_disks; i++)
2705 map[i] = 1;
2706 }
2707
cdddbdbc
DW
2708}
2709
5c4cd5da
AC
2710/* allocates memory and fills disk in mdinfo structure
2711 * for each disk in array */
2712struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2713{
2714 struct mdinfo *mddev = NULL;
2715 struct intel_super *super = st->sb;
2716 struct imsm_disk *disk;
2717 int count = 0;
2718 struct dl *dl;
2719 if (!super || !super->disks)
2720 return NULL;
2721 dl = super->disks;
2722 mddev = malloc(sizeof(*mddev));
2723 if (!mddev) {
2724 fprintf(stderr, Name ": Failed to allocate memory.\n");
2725 return NULL;
2726 }
2727 memset(mddev, 0, sizeof(*mddev));
2728 while (dl) {
2729 struct mdinfo *tmp;
2730 disk = &dl->disk;
2731 tmp = malloc(sizeof(*tmp));
2732 if (!tmp) {
2733 fprintf(stderr, Name ": Failed to allocate memory.\n");
2734 if (mddev)
2735 sysfs_free(mddev);
2736 return NULL;
2737 }
2738 memset(tmp, 0, sizeof(*tmp));
2739 if (mddev->devs)
2740 tmp->next = mddev->devs;
2741 mddev->devs = tmp;
2742 tmp->disk.number = count++;
2743 tmp->disk.major = dl->major;
2744 tmp->disk.minor = dl->minor;
2745 tmp->disk.state = is_configured(disk) ?
2746 (1 << MD_DISK_ACTIVE) : 0;
2747 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2748 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2749 tmp->disk.raid_disk = -1;
2750 dl = dl->next;
2751 }
2752 return mddev;
2753}
2754
cdddbdbc
DW
2755static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2756 char *update, char *devname, int verbose,
2757 int uuid_set, char *homehost)
2758{
f352c545
DW
2759 /* For 'assemble' and 'force' we need to return non-zero if any
2760 * change was made. For others, the return value is ignored.
2761 * Update options are:
2762 * force-one : This device looks a bit old but needs to be included,
2763 * update age info appropriately.
2764 * assemble: clear any 'faulty' flag to allow this device to
2765 * be assembled.
2766 * force-array: Array is degraded but being forced, mark it clean
2767 * if that will be needed to assemble it.
2768 *
2769 * newdev: not used ????
2770 * grow: Array has gained a new device - this is currently for
2771 * linear only
2772 * resync: mark as dirty so a resync will happen.
2773 * name: update the name - preserving the homehost
6e46bf34 2774 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2775 *
2776 * Following are not relevant for this imsm:
2777 * sparc2.2 : update from old dodgey metadata
2778 * super-minor: change the preferred_minor number
2779 * summaries: update redundant counters.
f352c545
DW
2780 * homehost: update the recorded homehost
2781 * _reshape_progress: record new reshape_progress position.
2782 */
6e46bf34
DW
2783 int rv = 1;
2784 struct intel_super *super = st->sb;
2785 struct imsm_super *mpb;
f352c545 2786
6e46bf34
DW
2787 /* we can only update container info */
2788 if (!super || super->current_vol >= 0 || !super->anchor)
2789 return 1;
2790
2791 mpb = super->anchor;
2792
2793 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2794 rv = -1;
6e46bf34
DW
2795 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2796 mpb->orig_family_num = *((__u32 *) info->update_private);
2797 rv = 0;
2798 } else if (strcmp(update, "uuid") == 0) {
2799 __u32 *new_family = malloc(sizeof(*new_family));
2800
2801 /* update orig_family_number with the incoming random
2802 * data, report the new effective uuid, and store the
2803 * new orig_family_num for future updates.
2804 */
2805 if (new_family) {
2806 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2807 uuid_from_super_imsm(st, info->uuid);
2808 *new_family = mpb->orig_family_num;
2809 info->update_private = new_family;
2810 rv = 0;
2811 }
2812 } else if (strcmp(update, "assemble") == 0)
2813 rv = 0;
2814 else
1e2b2765 2815 rv = -1;
f352c545 2816
6e46bf34
DW
2817 /* successful update? recompute checksum */
2818 if (rv == 0)
2819 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2820
2821 return rv;
cdddbdbc
DW
2822}
2823
c2c087e6 2824static size_t disks_to_mpb_size(int disks)
cdddbdbc 2825{
c2c087e6 2826 size_t size;
cdddbdbc 2827
c2c087e6
DW
2828 size = sizeof(struct imsm_super);
2829 size += (disks - 1) * sizeof(struct imsm_disk);
2830 size += 2 * sizeof(struct imsm_dev);
2831 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2832 size += (4 - 2) * sizeof(struct imsm_map);
2833 /* 4 possible disk_ord_tbl's */
2834 size += 4 * (disks - 1) * sizeof(__u32);
2835
2836 return size;
2837}
2838
2839static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2840{
2841 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2842 return 0;
2843
2844 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2845}
2846
ba2de7ba
DW
2847static void free_devlist(struct intel_super *super)
2848{
2849 struct intel_dev *dv;
2850
2851 while (super->devlist) {
2852 dv = super->devlist->next;
2853 free(super->devlist->dev);
2854 free(super->devlist);
2855 super->devlist = dv;
2856 }
2857}
2858
2859static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2860{
2861 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2862}
2863
cdddbdbc
DW
2864static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2865{
2866 /*
2867 * return:
2868 * 0 same, or first was empty, and second was copied
2869 * 1 second had wrong number
2870 * 2 wrong uuid
2871 * 3 wrong other info
2872 */
2873 struct intel_super *first = st->sb;
2874 struct intel_super *sec = tst->sb;
2875
2876 if (!first) {
2877 st->sb = tst->sb;
2878 tst->sb = NULL;
2879 return 0;
2880 }
8603ea6f
LM
2881 /* in platform dependent environment test if the disks
2882 * use the same Intel hba
2883 */
2884 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2885 if (!first->hba || !sec->hba ||
2886 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2887 fprintf(stderr,
2888 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2889 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2890 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2891 return 3;
2892 }
2893 }
cdddbdbc 2894
d23fe947
DW
2895 /* if an anchor does not have num_raid_devs set then it is a free
2896 * floating spare
2897 */
2898 if (first->anchor->num_raid_devs > 0 &&
2899 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2900 /* Determine if these disks might ever have been
2901 * related. Further disambiguation can only take place
2902 * in load_super_imsm_all
2903 */
2904 __u32 first_family = first->anchor->orig_family_num;
2905 __u32 sec_family = sec->anchor->orig_family_num;
2906
f796af5d
DW
2907 if (memcmp(first->anchor->sig, sec->anchor->sig,
2908 MAX_SIGNATURE_LENGTH) != 0)
2909 return 3;
2910
a2b97981
DW
2911 if (first_family == 0)
2912 first_family = first->anchor->family_num;
2913 if (sec_family == 0)
2914 sec_family = sec->anchor->family_num;
2915
2916 if (first_family != sec_family)
d23fe947 2917 return 3;
f796af5d 2918
d23fe947 2919 }
cdddbdbc 2920
f796af5d 2921
3e372e5a
DW
2922 /* if 'first' is a spare promote it to a populated mpb with sec's
2923 * family number
2924 */
2925 if (first->anchor->num_raid_devs == 0 &&
2926 sec->anchor->num_raid_devs > 0) {
78d30f94 2927 int i;
ba2de7ba
DW
2928 struct intel_dev *dv;
2929 struct imsm_dev *dev;
78d30f94
DW
2930
2931 /* we need to copy raid device info from sec if an allocation
2932 * fails here we don't associate the spare
2933 */
2934 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2935 dv = malloc(sizeof(*dv));
2936 if (!dv)
2937 break;
2938 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2939 if (!dev) {
2940 free(dv);
2941 break;
78d30f94 2942 }
ba2de7ba
DW
2943 dv->dev = dev;
2944 dv->index = i;
2945 dv->next = first->devlist;
2946 first->devlist = dv;
78d30f94 2947 }
709743c5 2948 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2949 /* allocation failure */
2950 free_devlist(first);
2951 fprintf(stderr, "imsm: failed to associate spare\n");
2952 return 3;
78d30f94 2953 }
3e372e5a 2954 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2955 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2956 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2957 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2958 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2959 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2960 }
2961
cdddbdbc
DW
2962 return 0;
2963}
2964
0030e8d6
DW
2965static void fd2devname(int fd, char *name)
2966{
2967 struct stat st;
2968 char path[256];
33a6535d 2969 char dname[PATH_MAX];
0030e8d6
DW
2970 char *nm;
2971 int rv;
2972
2973 name[0] = '\0';
2974 if (fstat(fd, &st) != 0)
2975 return;
2976 sprintf(path, "/sys/dev/block/%d:%d",
2977 major(st.st_rdev), minor(st.st_rdev));
2978
9cf014ec 2979 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2980 if (rv <= 0)
2981 return;
2982
2983 dname[rv] = '\0';
2984 nm = strrchr(dname, '/');
7897de29
JS
2985 if (nm) {
2986 nm++;
2987 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2988 }
0030e8d6
DW
2989}
2990
cdddbdbc
DW
2991extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2992
2993static int imsm_read_serial(int fd, char *devname,
2994 __u8 serial[MAX_RAID_SERIAL_LEN])
2995{
2996 unsigned char scsi_serial[255];
cdddbdbc
DW
2997 int rv;
2998 int rsp_len;
1f24f035 2999 int len;
316e2bf4
DW
3000 char *dest;
3001 char *src;
3002 char *rsp_buf;
3003 int i;
cdddbdbc
DW
3004
3005 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 3006
f9ba0ff1
DW
3007 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3008
40ebbb9c 3009 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3010 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3011 fd2devname(fd, (char *) serial);
0030e8d6
DW
3012 return 0;
3013 }
3014
cdddbdbc
DW
3015 if (rv != 0) {
3016 if (devname)
3017 fprintf(stderr,
3018 Name ": Failed to retrieve serial for %s\n",
3019 devname);
3020 return rv;
3021 }
3022
3023 rsp_len = scsi_serial[3];
03cd4cc8
DW
3024 if (!rsp_len) {
3025 if (devname)
3026 fprintf(stderr,
3027 Name ": Failed to retrieve serial for %s\n",
3028 devname);
3029 return 2;
3030 }
1f24f035 3031 rsp_buf = (char *) &scsi_serial[4];
5c3db629 3032
316e2bf4
DW
3033 /* trim all whitespace and non-printable characters and convert
3034 * ':' to ';'
3035 */
3036 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3037 src = &rsp_buf[i];
3038 if (*src > 0x20) {
3039 /* ':' is reserved for use in placeholder serial
3040 * numbers for missing disks
3041 */
3042 if (*src == ':')
3043 *dest++ = ';';
3044 else
3045 *dest++ = *src;
3046 }
3047 }
3048 len = dest - rsp_buf;
3049 dest = rsp_buf;
3050
3051 /* truncate leading characters */
3052 if (len > MAX_RAID_SERIAL_LEN) {
3053 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3054 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3055 }
5c3db629 3056
5c3db629 3057 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3058 memcpy(serial, dest, len);
cdddbdbc
DW
3059
3060 return 0;
3061}
3062
1f24f035
DW
3063static int serialcmp(__u8 *s1, __u8 *s2)
3064{
3065 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3066}
3067
3068static void serialcpy(__u8 *dest, __u8 *src)
3069{
3070 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3071}
3072
54c2c1ea
DW
3073static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3074{
3075 struct dl *dl;
3076
3077 for (dl = super->disks; dl; dl = dl->next)
3078 if (serialcmp(dl->serial, serial) == 0)
3079 break;
3080
3081 return dl;
3082}
3083
a2b97981
DW
3084static struct imsm_disk *
3085__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3086{
3087 int i;
3088
3089 for (i = 0; i < mpb->num_disks; i++) {
3090 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3091
3092 if (serialcmp(disk->serial, serial) == 0) {
3093 if (idx)
3094 *idx = i;
3095 return disk;
3096 }
3097 }
3098
3099 return NULL;
3100}
3101
cdddbdbc
DW
3102static int
3103load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3104{
a2b97981 3105 struct imsm_disk *disk;
cdddbdbc
DW
3106 struct dl *dl;
3107 struct stat stb;
cdddbdbc 3108 int rv;
a2b97981 3109 char name[40];
d23fe947
DW
3110 __u8 serial[MAX_RAID_SERIAL_LEN];
3111
3112 rv = imsm_read_serial(fd, devname, serial);
3113
3114 if (rv != 0)
3115 return 2;
3116
a2b97981 3117 dl = calloc(1, sizeof(*dl));
b9f594fe 3118 if (!dl) {
cdddbdbc
DW
3119 if (devname)
3120 fprintf(stderr,
3121 Name ": failed to allocate disk buffer for %s\n",
3122 devname);
3123 return 2;
3124 }
cdddbdbc 3125
a2b97981
DW
3126 fstat(fd, &stb);
3127 dl->major = major(stb.st_rdev);
3128 dl->minor = minor(stb.st_rdev);
3129 dl->next = super->disks;
3130 dl->fd = keep_fd ? fd : -1;
3131 assert(super->disks == NULL);
3132 super->disks = dl;
3133 serialcpy(dl->serial, serial);
3134 dl->index = -2;
3135 dl->e = NULL;
3136 fd2devname(fd, name);
3137 if (devname)
3138 dl->devname = strdup(devname);
3139 else
3140 dl->devname = strdup(name);
cdddbdbc 3141
d23fe947 3142 /* look up this disk's index in the current anchor */
a2b97981
DW
3143 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3144 if (disk) {
3145 dl->disk = *disk;
3146 /* only set index on disks that are a member of a
3147 * populated contianer, i.e. one with raid_devs
3148 */
3149 if (is_failed(&dl->disk))
3f6efecc 3150 dl->index = -2;
a2b97981
DW
3151 else if (is_spare(&dl->disk))
3152 dl->index = -1;
3f6efecc
DW
3153 }
3154
949c47a0
DW
3155 return 0;
3156}
3157
0e600426 3158#ifndef MDASSEMBLE
0c046afd
DW
3159/* When migrating map0 contains the 'destination' state while map1
3160 * contains the current state. When not migrating map0 contains the
3161 * current state. This routine assumes that map[0].map_state is set to
3162 * the current array state before being called.
3163 *
3164 * Migration is indicated by one of the following states
3165 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3166 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3167 * map1state=unitialized)
1484e727 3168 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3169 * map1state=normal)
e3bba0e0 3170 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3171 * map1state=degraded)
8e59f3d8
AK
3172 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3173 * map1state=normal)
0c046afd 3174 */
8e59f3d8
AK
3175static void migrate(struct imsm_dev *dev, struct intel_super *super,
3176 __u8 to_state, int migr_type)
3393c6af 3177{
0c046afd 3178 struct imsm_map *dest;
238c0a71 3179 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3180
0c046afd 3181 dev->vol.migr_state = 1;
1484e727 3182 set_migr_type(dev, migr_type);
f8f603f1 3183 dev->vol.curr_migr_unit = 0;
238c0a71 3184 dest = get_imsm_map(dev, MAP_1);
0c046afd 3185
0556e1a2 3186 /* duplicate and then set the target end state in map[0] */
3393c6af 3187 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3188 if ((migr_type == MIGR_REBUILD) ||
3189 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3190 __u32 ord;
3191 int i;
3192
3193 for (i = 0; i < src->num_members; i++) {
3194 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3195 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3196 }
3197 }
3198
8e59f3d8
AK
3199 if (migr_type == MIGR_GEN_MIGR)
3200 /* Clear migration record */
3201 memset(super->migr_rec, 0, sizeof(struct migr_record));
3202
0c046afd 3203 src->map_state = to_state;
949c47a0 3204}
f8f603f1 3205
809da78e
AK
3206static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3207 __u8 map_state)
f8f603f1 3208{
238c0a71
AK
3209 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3210 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3211 MAP_0 : MAP_1);
28bce06f 3212 int i, j;
0556e1a2
DW
3213
3214 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3215 * completed in the last migration.
3216 *
28bce06f 3217 * FIXME add support for raid-level-migration
0556e1a2 3218 */
809da78e
AK
3219 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3220 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3221 /* when final map state is other than expected
3222 * merge maps (not for migration)
3223 */
3224 int failed;
3225
3226 for (i = 0; i < prev->num_members; i++)
3227 for (j = 0; j < map->num_members; j++)
3228 /* during online capacity expansion
3229 * disks position can be changed
3230 * if takeover is used
3231 */
3232 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3233 ord_to_idx(prev->disk_ord_tbl[i])) {
3234 map->disk_ord_tbl[j] |=
3235 prev->disk_ord_tbl[i];
3236 break;
3237 }
3238 failed = imsm_count_failed(super, dev, MAP_0);
3239 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3240 }
f8f603f1
DW
3241
3242 dev->vol.migr_state = 0;
ea672ee1 3243 set_migr_type(dev, 0);
f8f603f1
DW
3244 dev->vol.curr_migr_unit = 0;
3245 map->map_state = map_state;
3246}
0e600426 3247#endif
949c47a0
DW
3248
3249static int parse_raid_devices(struct intel_super *super)
3250{
3251 int i;
3252 struct imsm_dev *dev_new;
4d7b1503 3253 size_t len, len_migr;
401d313b 3254 size_t max_len = 0;
4d7b1503
DW
3255 size_t space_needed = 0;
3256 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3257
3258 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3259 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3260 struct intel_dev *dv;
949c47a0 3261
4d7b1503
DW
3262 len = sizeof_imsm_dev(dev_iter, 0);
3263 len_migr = sizeof_imsm_dev(dev_iter, 1);
3264 if (len_migr > len)
3265 space_needed += len_migr - len;
3266
ba2de7ba
DW
3267 dv = malloc(sizeof(*dv));
3268 if (!dv)
3269 return 1;
401d313b
AK
3270 if (max_len < len_migr)
3271 max_len = len_migr;
3272 if (max_len > len_migr)
3273 space_needed += max_len - len_migr;
3274 dev_new = malloc(max_len);
ba2de7ba
DW
3275 if (!dev_new) {
3276 free(dv);
949c47a0 3277 return 1;
ba2de7ba 3278 }
949c47a0 3279 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3280 dv->dev = dev_new;
3281 dv->index = i;
3282 dv->next = super->devlist;
3283 super->devlist = dv;
949c47a0 3284 }
cdddbdbc 3285
4d7b1503
DW
3286 /* ensure that super->buf is large enough when all raid devices
3287 * are migrating
3288 */
3289 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3290 void *buf;
3291
3292 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3293 if (posix_memalign(&buf, 512, len) != 0)
3294 return 1;
3295
1f45a8ad
DW
3296 memcpy(buf, super->buf, super->len);
3297 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3298 free(super->buf);
3299 super->buf = buf;
3300 super->len = len;
3301 }
3302
cdddbdbc
DW
3303 return 0;
3304}
3305
604b746f
JD
3306/* retrieve a pointer to the bbm log which starts after all raid devices */
3307struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3308{
3309 void *ptr = NULL;
3310
3311 if (__le32_to_cpu(mpb->bbm_log_size)) {
3312 ptr = mpb;
3313 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3314 }
3315
3316 return ptr;
3317}
3318
e2f41b2c
AK
3319/*******************************************************************************
3320 * Function: check_mpb_migr_compatibility
3321 * Description: Function checks for unsupported migration features:
3322 * - migration optimization area (pba_of_lba0)
3323 * - descending reshape (ascending_migr)
3324 * Parameters:
3325 * super : imsm metadata information
3326 * Returns:
3327 * 0 : migration is compatible
3328 * -1 : migration is not compatible
3329 ******************************************************************************/
3330int check_mpb_migr_compatibility(struct intel_super *super)
3331{
3332 struct imsm_map *map0, *map1;
3333 struct migr_record *migr_rec = super->migr_rec;
3334 int i;
3335
3336 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3337 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3338
3339 if (dev_iter &&
3340 dev_iter->vol.migr_state == 1 &&
3341 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3342 /* This device is migrating */
238c0a71
AK
3343 map0 = get_imsm_map(dev_iter, MAP_0);
3344 map1 = get_imsm_map(dev_iter, MAP_1);
e2f41b2c
AK
3345 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3346 /* migration optimization area was used */
3347 return -1;
3348 if (migr_rec->ascending_migr == 0
3349 && migr_rec->dest_depth_per_unit > 0)
3350 /* descending reshape not supported yet */
3351 return -1;
3352 }
3353 }
3354 return 0;
3355}
3356
d23fe947 3357static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3358
cdddbdbc 3359/* load_imsm_mpb - read matrix metadata
f2f5c343 3360 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3361 */
3362static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3363{
3364 unsigned long long dsize;
cdddbdbc
DW
3365 unsigned long long sectors;
3366 struct stat;
6416d527 3367 struct imsm_super *anchor;
cdddbdbc
DW
3368 __u32 check_sum;
3369
cdddbdbc 3370 get_dev_size(fd, NULL, &dsize);
64436f06
N
3371 if (dsize < 1024) {
3372 if (devname)
3373 fprintf(stderr,
3374 Name ": %s: device to small for imsm\n",
3375 devname);
3376 return 1;
3377 }
cdddbdbc
DW
3378
3379 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3380 if (devname)
2e062e82
AK
3381 fprintf(stderr, Name
3382 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3383 devname, strerror(errno));
3384 return 1;
3385 }
3386
949c47a0 3387 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3388 if (devname)
3389 fprintf(stderr,
3390 Name ": Failed to allocate imsm anchor buffer"
3391 " on %s\n", devname);
3392 return 1;
3393 }
949c47a0 3394 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3395 if (devname)
3396 fprintf(stderr,
3397 Name ": Cannot read anchor block on %s: %s\n",
3398 devname, strerror(errno));
6416d527 3399 free(anchor);
cdddbdbc
DW
3400 return 1;
3401 }
3402
6416d527 3403 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3404 if (devname)
3405 fprintf(stderr,
3406 Name ": no IMSM anchor on %s\n", devname);
6416d527 3407 free(anchor);
cdddbdbc
DW
3408 return 2;
3409 }
3410
d23fe947 3411 __free_imsm(super, 0);
f2f5c343
LM
3412 /* reload capability and hba */
3413
3414 /* capability and hba must be updated with new super allocation */
d424212e 3415 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3416 super->len = ROUND_UP(anchor->mpb_size, 512);
3417 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3418 if (devname)
3419 fprintf(stderr,
3420 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3421 super->len);
6416d527 3422 free(anchor);
cdddbdbc
DW
3423 return 2;
3424 }
949c47a0 3425 memcpy(super->buf, anchor, 512);
cdddbdbc 3426
6416d527
NB
3427 sectors = mpb_sectors(anchor) - 1;
3428 free(anchor);
8e59f3d8 3429
17a4eaf9 3430 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
8e59f3d8
AK
3431 fprintf(stderr, Name
3432 ": %s could not allocate migr_rec buffer\n", __func__);
3433 free(super->buf);
3434 return 2;
3435 }
3436
949c47a0 3437 if (!sectors) {
ecf45690
DW
3438 check_sum = __gen_imsm_checksum(super->anchor);
3439 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3440 if (devname)
3441 fprintf(stderr,
3442 Name ": IMSM checksum %x != %x on %s\n",
3443 check_sum,
3444 __le32_to_cpu(super->anchor->check_sum),
3445 devname);
3446 return 2;
3447 }
3448
a2b97981 3449 return 0;
949c47a0 3450 }
cdddbdbc
DW
3451
3452 /* read the extended mpb */
3453 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3454 if (devname)
3455 fprintf(stderr,
3456 Name ": Cannot seek to extended mpb on %s: %s\n",
3457 devname, strerror(errno));
3458 return 1;
3459 }
3460
f21e18ca 3461 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3462 if (devname)
3463 fprintf(stderr,
3464 Name ": Cannot read extended mpb on %s: %s\n",
3465 devname, strerror(errno));
3466 return 2;
3467 }
3468
949c47a0
DW
3469 check_sum = __gen_imsm_checksum(super->anchor);
3470 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3471 if (devname)
3472 fprintf(stderr,
3473 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3474 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3475 devname);
db575f3b 3476 return 3;
cdddbdbc
DW
3477 }
3478
604b746f
JD
3479 /* FIXME the BBM log is disk specific so we cannot use this global
3480 * buffer for all disks. Ok for now since we only look at the global
3481 * bbm_log_size parameter to gate assembly
3482 */
3483 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3484
a2b97981
DW
3485 return 0;
3486}
3487
8e59f3d8
AK
3488static int read_imsm_migr_rec(int fd, struct intel_super *super);
3489
a2b97981
DW
3490static int
3491load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3492{
3493 int err;
3494
3495 err = load_imsm_mpb(fd, super, devname);
3496 if (err)
3497 return err;
3498 err = load_imsm_disk(fd, super, devname, keep_fd);
3499 if (err)
3500 return err;
3501 err = parse_raid_devices(super);
4d7b1503 3502
a2b97981 3503 return err;
cdddbdbc
DW
3504}
3505
ae6aad82
DW
3506static void __free_imsm_disk(struct dl *d)
3507{
3508 if (d->fd >= 0)
3509 close(d->fd);
3510 if (d->devname)
3511 free(d->devname);
0dcecb2e
DW
3512 if (d->e)
3513 free(d->e);
ae6aad82
DW
3514 free(d);
3515
3516}
1a64be56 3517
cdddbdbc
DW
3518static void free_imsm_disks(struct intel_super *super)
3519{
47ee5a45 3520 struct dl *d;
cdddbdbc 3521
47ee5a45
DW
3522 while (super->disks) {
3523 d = super->disks;
cdddbdbc 3524 super->disks = d->next;
ae6aad82 3525 __free_imsm_disk(d);
cdddbdbc 3526 }
cb82edca
AK
3527 while (super->disk_mgmt_list) {
3528 d = super->disk_mgmt_list;
3529 super->disk_mgmt_list = d->next;
3530 __free_imsm_disk(d);
3531 }
47ee5a45
DW
3532 while (super->missing) {
3533 d = super->missing;
3534 super->missing = d->next;
3535 __free_imsm_disk(d);
3536 }
3537
cdddbdbc
DW
3538}
3539
9ca2c81c 3540/* free all the pieces hanging off of a super pointer */
d23fe947 3541static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3542{
88654014
LM
3543 struct intel_hba *elem, *next;
3544
9ca2c81c 3545 if (super->buf) {
949c47a0 3546 free(super->buf);
9ca2c81c
DW
3547 super->buf = NULL;
3548 }
f2f5c343
LM
3549 /* unlink capability description */
3550 super->orom = NULL;
8e59f3d8
AK
3551 if (super->migr_rec_buf) {
3552 free(super->migr_rec_buf);
3553 super->migr_rec_buf = NULL;
3554 }
d23fe947
DW
3555 if (free_disks)
3556 free_imsm_disks(super);
ba2de7ba 3557 free_devlist(super);
88654014
LM
3558 elem = super->hba;
3559 while (elem) {
3560 if (elem->path)
3561 free((void *)elem->path);
3562 next = elem->next;
3563 free(elem);
3564 elem = next;
88c32bb1 3565 }
88654014 3566 super->hba = NULL;
cdddbdbc
DW
3567}
3568
9ca2c81c
DW
3569static void free_imsm(struct intel_super *super)
3570{
d23fe947 3571 __free_imsm(super, 1);
9ca2c81c
DW
3572 free(super);
3573}
cdddbdbc
DW
3574
3575static void free_super_imsm(struct supertype *st)
3576{
3577 struct intel_super *super = st->sb;
3578
3579 if (!super)
3580 return;
3581
3582 free_imsm(super);
3583 st->sb = NULL;
3584}
3585
49133e57 3586static struct intel_super *alloc_super(void)
c2c087e6
DW
3587{
3588 struct intel_super *super = malloc(sizeof(*super));
3589
3590 if (super) {
3591 memset(super, 0, sizeof(*super));
bf5a934a 3592 super->current_vol = -1;
0dcecb2e 3593 super->create_offset = ~((__u32 ) 0);
c2c087e6 3594 }
c2c087e6
DW
3595 return super;
3596}
3597
f0f5a016
LM
3598/*
3599 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3600 */
d424212e 3601static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3602{
3603 struct sys_dev *hba_name;
3604 int rv = 0;
3605
3606 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3607 super->orom = NULL;
f0f5a016
LM
3608 super->hba = NULL;
3609 return 0;
3610 }
3611 hba_name = find_disk_attached_hba(fd, NULL);
3612 if (!hba_name) {
d424212e 3613 if (devname)
f0f5a016
LM
3614 fprintf(stderr,
3615 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3616 devname);
f0f5a016
LM
3617 return 1;
3618 }
3619 rv = attach_hba_to_super(super, hba_name);
3620 if (rv == 2) {
d424212e
N
3621 if (devname) {
3622 struct intel_hba *hba = super->hba;
f0f5a016 3623
f0f5a016
LM
3624 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3625 "controller (%s),\n"
3626 " but the container is assigned to Intel(R) "
3627 "%s RAID controller (",
d424212e 3628 devname,
f0f5a016
LM
3629 hba_name->path,
3630 hba_name->pci_id ? : "Err!",
3631 get_sys_dev_type(hba_name->type));
3632
f0f5a016
LM
3633 while (hba) {
3634 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3635 if (hba->next)
3636 fprintf(stderr, ", ");
3637 hba = hba->next;
3638 }
3639
3640 fprintf(stderr, ").\n"
3641 " Mixing devices attached to different controllers "
3642 "is not allowed.\n");
3643 }
3644 free_sys_dev(&hba_name);
3645 return 2;
3646 }
f2f5c343 3647 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3648 free_sys_dev(&hba_name);
f2f5c343
LM
3649 if (!super->orom)
3650 return 3;
f0f5a016
LM
3651 return 0;
3652}
3653
47ee5a45
DW
3654/* find_missing - helper routine for load_super_imsm_all that identifies
3655 * disks that have disappeared from the system. This routine relies on
3656 * the mpb being uptodate, which it is at load time.
3657 */
3658static int find_missing(struct intel_super *super)
3659{
3660 int i;
3661 struct imsm_super *mpb = super->anchor;
3662 struct dl *dl;
3663 struct imsm_disk *disk;
47ee5a45
DW
3664
3665 for (i = 0; i < mpb->num_disks; i++) {
3666 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3667 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3668 if (dl)
3669 continue;
47ee5a45
DW
3670
3671 dl = malloc(sizeof(*dl));
3672 if (!dl)
3673 return 1;
3674 dl->major = 0;
3675 dl->minor = 0;
3676 dl->fd = -1;
3677 dl->devname = strdup("missing");
3678 dl->index = i;
3679 serialcpy(dl->serial, disk->serial);
3680 dl->disk = *disk;
689c9bf3 3681 dl->e = NULL;
47ee5a45
DW
3682 dl->next = super->missing;
3683 super->missing = dl;
3684 }
3685
3686 return 0;
3687}
3688
3960e579 3689#ifndef MDASSEMBLE
a2b97981
DW
3690static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3691{
3692 struct intel_disk *idisk = disk_list;
3693
3694 while (idisk) {
3695 if (serialcmp(idisk->disk.serial, serial) == 0)
3696 break;
3697 idisk = idisk->next;
3698 }
3699
3700 return idisk;
3701}
3702
3703static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3704 struct intel_super *super,
3705 struct intel_disk **disk_list)
3706{
3707 struct imsm_disk *d = &super->disks->disk;
3708 struct imsm_super *mpb = super->anchor;
3709 int i, j;
3710
3711 for (i = 0; i < tbl_size; i++) {
3712 struct imsm_super *tbl_mpb = table[i]->anchor;
3713 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3714
3715 if (tbl_mpb->family_num == mpb->family_num) {
3716 if (tbl_mpb->check_sum == mpb->check_sum) {
3717 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3718 __func__, super->disks->major,
3719 super->disks->minor,
3720 table[i]->disks->major,
3721 table[i]->disks->minor);
3722 break;
3723 }
3724
3725 if (((is_configured(d) && !is_configured(tbl_d)) ||
3726 is_configured(d) == is_configured(tbl_d)) &&
3727 tbl_mpb->generation_num < mpb->generation_num) {
3728 /* current version of the mpb is a
3729 * better candidate than the one in
3730 * super_table, but copy over "cross
3731 * generational" status
3732 */
3733 struct intel_disk *idisk;
3734
3735 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3736 __func__, super->disks->major,
3737 super->disks->minor,
3738 table[i]->disks->major,
3739 table[i]->disks->minor);
3740
3741 idisk = disk_list_get(tbl_d->serial, *disk_list);
3742 if (idisk && is_failed(&idisk->disk))
3743 tbl_d->status |= FAILED_DISK;
3744 break;
3745 } else {
3746 struct intel_disk *idisk;
3747 struct imsm_disk *disk;
3748
3749 /* tbl_mpb is more up to date, but copy
3750 * over cross generational status before
3751 * returning
3752 */
3753 disk = __serial_to_disk(d->serial, mpb, NULL);
3754 if (disk && is_failed(disk))
3755 d->status |= FAILED_DISK;
3756
3757 idisk = disk_list_get(d->serial, *disk_list);
3758 if (idisk) {
3759 idisk->owner = i;
3760 if (disk && is_configured(disk))
3761 idisk->disk.status |= CONFIGURED_DISK;
3762 }
3763
3764 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3765 __func__, super->disks->major,
3766 super->disks->minor,
3767 table[i]->disks->major,
3768 table[i]->disks->minor);
3769
3770 return tbl_size;
3771 }
3772 }
3773 }
3774
3775 if (i >= tbl_size)
3776 table[tbl_size++] = super;
3777 else
3778 table[i] = super;
3779
3780 /* update/extend the merged list of imsm_disk records */
3781 for (j = 0; j < mpb->num_disks; j++) {
3782 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3783 struct intel_disk *idisk;
3784
3785 idisk = disk_list_get(disk->serial, *disk_list);
3786 if (idisk) {
3787 idisk->disk.status |= disk->status;
3788 if (is_configured(&idisk->disk) ||
3789 is_failed(&idisk->disk))
3790 idisk->disk.status &= ~(SPARE_DISK);
3791 } else {
3792 idisk = calloc(1, sizeof(*idisk));
3793 if (!idisk)
3794 return -1;
3795 idisk->owner = IMSM_UNKNOWN_OWNER;
3796 idisk->disk = *disk;
3797 idisk->next = *disk_list;
3798 *disk_list = idisk;
3799 }
3800
3801 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3802 idisk->owner = i;
3803 }
3804
3805 return tbl_size;
3806}
3807
3808static struct intel_super *
3809validate_members(struct intel_super *super, struct intel_disk *disk_list,
3810 const int owner)
3811{
3812 struct imsm_super *mpb = super->anchor;
3813 int ok_count = 0;
3814 int i;
3815
3816 for (i = 0; i < mpb->num_disks; i++) {
3817 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3818 struct intel_disk *idisk;
3819
3820 idisk = disk_list_get(disk->serial, disk_list);
3821 if (idisk) {
3822 if (idisk->owner == owner ||
3823 idisk->owner == IMSM_UNKNOWN_OWNER)
3824 ok_count++;
3825 else
3826 dprintf("%s: '%.16s' owner %d != %d\n",
3827 __func__, disk->serial, idisk->owner,
3828 owner);
3829 } else {
3830 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3831 __func__, __le32_to_cpu(mpb->family_num), i,
3832 disk->serial);
3833 break;
3834 }
3835 }
3836
3837 if (ok_count == mpb->num_disks)
3838 return super;
3839 return NULL;
3840}
3841
3842static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3843{
3844 struct intel_super *s;
3845
3846 for (s = super_list; s; s = s->next) {
3847 if (family_num != s->anchor->family_num)
3848 continue;
3849 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3850 __le32_to_cpu(family_num), s->disks->devname);
3851 }
3852}
3853
3854static struct intel_super *
3855imsm_thunderdome(struct intel_super **super_list, int len)
3856{
3857 struct intel_super *super_table[len];
3858 struct intel_disk *disk_list = NULL;
3859 struct intel_super *champion, *spare;
3860 struct intel_super *s, **del;
3861 int tbl_size = 0;
3862 int conflict;
3863 int i;
3864
3865 memset(super_table, 0, sizeof(super_table));
3866 for (s = *super_list; s; s = s->next)
3867 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3868
3869 for (i = 0; i < tbl_size; i++) {
3870 struct imsm_disk *d;
3871 struct intel_disk *idisk;
3872 struct imsm_super *mpb = super_table[i]->anchor;
3873
3874 s = super_table[i];
3875 d = &s->disks->disk;
3876
3877 /* 'd' must appear in merged disk list for its
3878 * configuration to be valid
3879 */
3880 idisk = disk_list_get(d->serial, disk_list);
3881 if (idisk && idisk->owner == i)
3882 s = validate_members(s, disk_list, i);
3883 else
3884 s = NULL;
3885
3886 if (!s)
3887 dprintf("%s: marking family: %#x from %d:%d offline\n",
3888 __func__, mpb->family_num,
3889 super_table[i]->disks->major,
3890 super_table[i]->disks->minor);
3891 super_table[i] = s;
3892 }
3893
3894 /* This is where the mdadm implementation differs from the Windows
3895 * driver which has no strict concept of a container. We can only
3896 * assemble one family from a container, so when returning a prodigal
3897 * array member to this system the code will not be able to disambiguate
3898 * the container contents that should be assembled ("foreign" versus
3899 * "local"). It requires user intervention to set the orig_family_num
3900 * to a new value to establish a new container. The Windows driver in
3901 * this situation fixes up the volume name in place and manages the
3902 * foreign array as an independent entity.
3903 */
3904 s = NULL;
3905 spare = NULL;
3906 conflict = 0;
3907 for (i = 0; i < tbl_size; i++) {
3908 struct intel_super *tbl_ent = super_table[i];
3909 int is_spare = 0;
3910
3911 if (!tbl_ent)
3912 continue;
3913
3914 if (tbl_ent->anchor->num_raid_devs == 0) {
3915 spare = tbl_ent;
3916 is_spare = 1;
3917 }
3918
3919 if (s && !is_spare) {
3920 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3921 conflict++;
3922 } else if (!s && !is_spare)
3923 s = tbl_ent;
3924 }
3925
3926 if (!s)
3927 s = spare;
3928 if (!s) {
3929 champion = NULL;
3930 goto out;
3931 }
3932 champion = s;
3933
3934 if (conflict)
3935 fprintf(stderr, "Chose family %#x on '%s', "
3936 "assemble conflicts to new container with '--update=uuid'\n",
3937 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3938
3939 /* collect all dl's onto 'champion', and update them to
3940 * champion's version of the status
3941 */
3942 for (s = *super_list; s; s = s->next) {
3943 struct imsm_super *mpb = champion->anchor;
3944 struct dl *dl = s->disks;
3945
3946 if (s == champion)
3947 continue;
3948
3949 for (i = 0; i < mpb->num_disks; i++) {
3950 struct imsm_disk *disk;
3951
3952 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3953 if (disk) {
3954 dl->disk = *disk;
3955 /* only set index on disks that are a member of
3956 * a populated contianer, i.e. one with
3957 * raid_devs
3958 */
3959 if (is_failed(&dl->disk))
3960 dl->index = -2;
3961 else if (is_spare(&dl->disk))
3962 dl->index = -1;
3963 break;
3964 }
3965 }
3966
3967 if (i >= mpb->num_disks) {
3968 struct intel_disk *idisk;
3969
3970 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3971 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3972 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3973 dl->index = -1;
3974 else {
3975 dl->index = -2;
3976 continue;
3977 }
3978 }
3979
3980 dl->next = champion->disks;
3981 champion->disks = dl;
3982 s->disks = NULL;
3983 }
3984
3985 /* delete 'champion' from super_list */
3986 for (del = super_list; *del; ) {
3987 if (*del == champion) {
3988 *del = (*del)->next;
3989 break;
3990 } else
3991 del = &(*del)->next;
3992 }
3993 champion->next = NULL;
3994
3995 out:
3996 while (disk_list) {
3997 struct intel_disk *idisk = disk_list;
3998
3999 disk_list = disk_list->next;
4000 free(idisk);
4001 }
4002
4003 return champion;
4004}
4005
cdddbdbc 4006static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 4007 char *devname)
cdddbdbc
DW
4008{
4009 struct mdinfo *sra;
a2b97981
DW
4010 struct intel_super *super_list = NULL;
4011 struct intel_super *super = NULL;
db575f3b 4012 int devnum = fd2devnum(fd);
a2b97981 4013 struct mdinfo *sd;
db575f3b 4014 int retry;
a2b97981
DW
4015 int err = 0;
4016 int i;
dab4a513
DW
4017
4018 /* check if 'fd' an opened container */
b526e52d 4019 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
4020 if (!sra)
4021 return 1;
4022
4023 if (sra->array.major_version != -1 ||
4024 sra->array.minor_version != -2 ||
1602d52c
AW
4025 strcmp(sra->text_version, "imsm") != 0) {
4026 err = 1;
4027 goto error;
4028 }
a2b97981
DW
4029 /* load all mpbs */
4030 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 4031 struct intel_super *s = alloc_super();
7a6ecd55 4032 char nm[32];
a2b97981 4033 int dfd;
f2f5c343 4034 int rv;
a2b97981
DW
4035
4036 err = 1;
4037 if (!s)
4038 goto error;
4039 s->next = super_list;
4040 super_list = s;
cdddbdbc 4041
a2b97981 4042 err = 2;
cdddbdbc 4043 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 4044 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
4045 if (dfd < 0)
4046 goto error;
4047
d424212e 4048 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
4049 /* no orom/efi or non-intel hba of the disk */
4050 if (rv != 0)
4051 goto error;
4052
e1902a7b 4053 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
4054
4055 /* retry the load if we might have raced against mdmon */
a2b97981 4056 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
4057 for (retry = 0; retry < 3; retry++) {
4058 usleep(3000);
e1902a7b 4059 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 4060 if (err != 3)
db575f3b
DW
4061 break;
4062 }
a2b97981
DW
4063 if (err)
4064 goto error;
cdddbdbc
DW
4065 }
4066
a2b97981
DW
4067 /* all mpbs enter, maybe one leaves */
4068 super = imsm_thunderdome(&super_list, i);
4069 if (!super) {
4070 err = 1;
4071 goto error;
cdddbdbc
DW
4072 }
4073
47ee5a45
DW
4074 if (find_missing(super) != 0) {
4075 free_imsm(super);
a2b97981
DW
4076 err = 2;
4077 goto error;
47ee5a45 4078 }
8e59f3d8
AK
4079
4080 /* load migration record */
4081 err = load_imsm_migr_rec(super, NULL);
4082 if (err) {
4083 err = 4;
4084 goto error;
4085 }
e2f41b2c
AK
4086
4087 /* Check migration compatibility */
4088 if (check_mpb_migr_compatibility(super) != 0) {
4089 fprintf(stderr, Name ": Unsupported migration detected");
4090 if (devname)
4091 fprintf(stderr, " on %s\n", devname);
4092 else
4093 fprintf(stderr, " (IMSM).\n");
4094
4095 err = 5;
4096 goto error;
4097 }
4098
a2b97981
DW
4099 err = 0;
4100
4101 error:
4102 while (super_list) {
4103 struct intel_super *s = super_list;
4104
4105 super_list = super_list->next;
4106 free_imsm(s);
4107 }
1602d52c 4108 sysfs_free(sra);
a2b97981
DW
4109
4110 if (err)
4111 return err;
f7e7067b 4112
cdddbdbc 4113 *sbp = super;
db575f3b 4114 st->container_dev = devnum;
a2b97981 4115 if (err == 0 && st->ss == NULL) {
bf5a934a 4116 st->ss = &super_imsm;
cdddbdbc
DW
4117 st->minor_version = 0;
4118 st->max_devs = IMSM_MAX_DEVICES;
4119 }
cdddbdbc
DW
4120 return 0;
4121}
2b959fbf
N
4122
4123static int load_container_imsm(struct supertype *st, int fd, char *devname)
4124{
4125 return load_super_imsm_all(st, fd, &st->sb, devname);
4126}
cdddbdbc
DW
4127#endif
4128
4129static int load_super_imsm(struct supertype *st, int fd, char *devname)
4130{
4131 struct intel_super *super;
4132 int rv;
4133
691c6ee1
N
4134 if (test_partition(fd))
4135 /* IMSM not allowed on partitions */
4136 return 1;
4137
37424f13
DW
4138 free_super_imsm(st);
4139
49133e57 4140 super = alloc_super();
cdddbdbc
DW
4141 if (!super) {
4142 fprintf(stderr,
4143 Name ": malloc of %zu failed.\n",
4144 sizeof(*super));
4145 return 1;
4146 }
ea2bc72b
LM
4147 /* Load hba and capabilities if they exist.
4148 * But do not preclude loading metadata in case capabilities or hba are
4149 * non-compliant and ignore_hw_compat is set.
4150 */
d424212e 4151 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4152 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4153 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4154 if (devname)
4155 fprintf(stderr,
4156 Name ": No OROM/EFI properties for %s\n", devname);
4157 free_imsm(super);
4158 return 2;
4159 }
a2b97981 4160 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4161
4162 if (rv) {
4163 if (devname)
4164 fprintf(stderr,
4165 Name ": Failed to load all information "
4166 "sections on %s\n", devname);
4167 free_imsm(super);
4168 return rv;
4169 }
4170
4171 st->sb = super;
4172 if (st->ss == NULL) {
4173 st->ss = &super_imsm;
4174 st->minor_version = 0;
4175 st->max_devs = IMSM_MAX_DEVICES;
4176 }
8e59f3d8
AK
4177
4178 /* load migration record */
2e062e82
AK
4179 if (load_imsm_migr_rec(super, NULL) == 0) {
4180 /* Check for unsupported migration features */
4181 if (check_mpb_migr_compatibility(super) != 0) {
4182 fprintf(stderr,
4183 Name ": Unsupported migration detected");
4184 if (devname)
4185 fprintf(stderr, " on %s\n", devname);
4186 else
4187 fprintf(stderr, " (IMSM).\n");
4188 return 3;
4189 }
e2f41b2c
AK
4190 }
4191
cdddbdbc
DW
4192 return 0;
4193}
4194
ef6ffade
DW
4195static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4196{
4197 if (info->level == 1)
4198 return 128;
4199 return info->chunk_size >> 9;
4200}
4201
ff596308 4202static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4203{
4204 __u32 num_stripes;
4205
4206 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4207 num_stripes /= num_domains;
ef6ffade
DW
4208
4209 return num_stripes;
4210}
4211
fcfd9599
DW
4212static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4213{
4025c288
DW
4214 if (info->level == 1)
4215 return info->size * 2;
4216 else
4217 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4218}
4219
4d1313e9
DW
4220static void imsm_update_version_info(struct intel_super *super)
4221{
4222 /* update the version and attributes */
4223 struct imsm_super *mpb = super->anchor;
4224 char *version;
4225 struct imsm_dev *dev;
4226 struct imsm_map *map;
4227 int i;
4228
4229 for (i = 0; i < mpb->num_raid_devs; i++) {
4230 dev = get_imsm_dev(super, i);
238c0a71 4231 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
4232 if (__le32_to_cpu(dev->size_high) > 0)
4233 mpb->attributes |= MPB_ATTRIB_2TB;
4234
4235 /* FIXME detect when an array spans a port multiplier */
4236 #if 0
4237 mpb->attributes |= MPB_ATTRIB_PM;
4238 #endif
4239
4240 if (mpb->num_raid_devs > 1 ||
4241 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4242 version = MPB_VERSION_ATTRIBS;
4243 switch (get_imsm_raid_level(map)) {
4244 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4245 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4246 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4247 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4248 }
4249 } else {
4250 if (map->num_members >= 5)
4251 version = MPB_VERSION_5OR6_DISK_ARRAY;
4252 else if (dev->status == DEV_CLONE_N_GO)
4253 version = MPB_VERSION_CNG;
4254 else if (get_imsm_raid_level(map) == 5)
4255 version = MPB_VERSION_RAID5;
4256 else if (map->num_members >= 3)
4257 version = MPB_VERSION_3OR4_DISK_ARRAY;
4258 else if (get_imsm_raid_level(map) == 1)
4259 version = MPB_VERSION_RAID1;
4260 else
4261 version = MPB_VERSION_RAID0;
4262 }
4263 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4264 }
4265}
4266
aa534678
DW
4267static int check_name(struct intel_super *super, char *name, int quiet)
4268{
4269 struct imsm_super *mpb = super->anchor;
4270 char *reason = NULL;
4271 int i;
4272
4273 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4274 reason = "must be 16 characters or less";
4275
4276 for (i = 0; i < mpb->num_raid_devs; i++) {
4277 struct imsm_dev *dev = get_imsm_dev(super, i);
4278
4279 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4280 reason = "already exists";
4281 break;
4282 }
4283 }
4284
4285 if (reason && !quiet)
4286 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4287
4288 return !reason;
4289}
4290
8b353278
DW
4291static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4292 unsigned long long size, char *name,
4293 char *homehost, int *uuid)
cdddbdbc 4294{
c2c087e6
DW
4295 /* We are creating a volume inside a pre-existing container.
4296 * so st->sb is already set.
4297 */
4298 struct intel_super *super = st->sb;
949c47a0 4299 struct imsm_super *mpb = super->anchor;
ba2de7ba 4300 struct intel_dev *dv;
c2c087e6
DW
4301 struct imsm_dev *dev;
4302 struct imsm_vol *vol;
4303 struct imsm_map *map;
4304 int idx = mpb->num_raid_devs;
4305 int i;
4306 unsigned long long array_blocks;
2c092cad 4307 size_t size_old, size_new;
ff596308 4308 __u32 num_data_stripes;
cdddbdbc 4309
88c32bb1 4310 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4311 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4312 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4313 return 0;
4314 }
4315
2c092cad
DW
4316 /* ensure the mpb is large enough for the new data */
4317 size_old = __le32_to_cpu(mpb->mpb_size);
4318 size_new = disks_to_mpb_size(info->nr_disks);
4319 if (size_new > size_old) {
4320 void *mpb_new;
4321 size_t size_round = ROUND_UP(size_new, 512);
4322
4323 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4324 fprintf(stderr, Name": could not allocate new mpb\n");
4325 return 0;
4326 }
17a4eaf9
AK
4327 if (posix_memalign(&super->migr_rec_buf, 512,
4328 MIGR_REC_BUF_SIZE) != 0) {
8e59f3d8
AK
4329 fprintf(stderr, Name
4330 ": %s could not allocate migr_rec buffer\n",
4331 __func__);
4332 free(super->buf);
4333 free(super);
ea944c8f 4334 free(mpb_new);
8e59f3d8
AK
4335 return 0;
4336 }
2c092cad
DW
4337 memcpy(mpb_new, mpb, size_old);
4338 free(mpb);
4339 mpb = mpb_new;
949c47a0 4340 super->anchor = mpb_new;
2c092cad
DW
4341 mpb->mpb_size = __cpu_to_le32(size_new);
4342 memset(mpb_new + size_old, 0, size_round - size_old);
4343 }
bf5a934a 4344 super->current_vol = idx;
3960e579
DW
4345
4346 /* handle 'failed_disks' by either:
4347 * a) create dummy disk entries in the table if this the first
4348 * volume in the array. We add them here as this is the only
4349 * opportunity to add them. add_to_super_imsm_volume()
4350 * handles the non-failed disks and continues incrementing
4351 * mpb->num_disks.
4352 * b) validate that 'failed_disks' matches the current number
4353 * of missing disks if the container is populated
d23fe947 4354 */
3960e579 4355 if (super->current_vol == 0) {
d23fe947 4356 mpb->num_disks = 0;
3960e579
DW
4357 for (i = 0; i < info->failed_disks; i++) {
4358 struct imsm_disk *disk;
4359
4360 mpb->num_disks++;
4361 disk = __get_imsm_disk(mpb, i);
4362 disk->status = CONFIGURED_DISK | FAILED_DISK;
4363 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4364 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4365 "missing:%d", i);
4366 }
4367 find_missing(super);
4368 } else {
4369 int missing = 0;
4370 struct dl *d;
4371
4372 for (d = super->missing; d; d = d->next)
4373 missing++;
4374 if (info->failed_disks > missing) {
4375 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4376 return 0;
4377 }
4378 }
5a038140 4379
aa534678
DW
4380 if (!check_name(super, name, 0))
4381 return 0;
ba2de7ba
DW
4382 dv = malloc(sizeof(*dv));
4383 if (!dv) {
4384 fprintf(stderr, Name ": failed to allocate device list entry\n");
4385 return 0;
4386 }
1a2487c2 4387 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4388 if (!dev) {
ba2de7ba 4389 free(dv);
949c47a0
DW
4390 fprintf(stderr, Name": could not allocate raid device\n");
4391 return 0;
4392 }
1a2487c2 4393
c2c087e6 4394 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4395 if (info->level == 1)
4396 array_blocks = info_to_blocks_per_member(info);
4397 else
4398 array_blocks = calc_array_size(info->level, info->raid_disks,
4399 info->layout, info->chunk_size,
4400 info->size*2);
979d38be
DW
4401 /* round array size down to closest MB */
4402 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4403
c2c087e6
DW
4404 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4405 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4406 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4407 vol = &dev->vol;
4408 vol->migr_state = 0;
1484e727 4409 set_migr_type(dev, MIGR_INIT);
3960e579 4410 vol->dirty = !info->state;
f8f603f1 4411 vol->curr_migr_unit = 0;
238c0a71 4412 map = get_imsm_map(dev, MAP_0);
0dcecb2e 4413 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4414 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4415 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4416 map->failed_disk_num = ~0;
bf4442ab
AK
4417 if (info->level > 0)
4418 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4419 else
4420 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4421 IMSM_T_STATE_NORMAL;
252d23c0 4422 map->ddf = 1;
ef6ffade
DW
4423
4424 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4425 free(dev);
4426 free(dv);
ef6ffade
DW
4427 fprintf(stderr, Name": imsm does not support more than 2 disks"
4428 "in a raid1 volume\n");
4429 return 0;
4430 }
81062a36
DW
4431
4432 map->raid_level = info->level;
4d1313e9 4433 if (info->level == 10) {
c2c087e6 4434 map->raid_level = 1;
4d1313e9 4435 map->num_domains = info->raid_disks / 2;
81062a36
DW
4436 } else if (info->level == 1)
4437 map->num_domains = info->raid_disks;
4438 else
ff596308 4439 map->num_domains = 1;
81062a36 4440
ff596308
DW
4441 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4442 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4443
c2c087e6
DW
4444 map->num_members = info->raid_disks;
4445 for (i = 0; i < map->num_members; i++) {
4446 /* initialized in add_to_super */
4eb26970 4447 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4448 }
949c47a0 4449 mpb->num_raid_devs++;
ba2de7ba
DW
4450
4451 dv->dev = dev;
4452 dv->index = super->current_vol;
4453 dv->next = super->devlist;
4454 super->devlist = dv;
c2c087e6 4455
4d1313e9
DW
4456 imsm_update_version_info(super);
4457
c2c087e6 4458 return 1;
cdddbdbc
DW
4459}
4460
bf5a934a
DW
4461static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4462 unsigned long long size, char *name,
4463 char *homehost, int *uuid)
4464{
4465 /* This is primarily called by Create when creating a new array.
4466 * We will then get add_to_super called for each component, and then
4467 * write_init_super called to write it out to each device.
4468 * For IMSM, Create can create on fresh devices or on a pre-existing
4469 * array.
4470 * To create on a pre-existing array a different method will be called.
4471 * This one is just for fresh drives.
4472 */
4473 struct intel_super *super;
4474 struct imsm_super *mpb;
4475 size_t mpb_size;
4d1313e9 4476 char *version;
bf5a934a 4477
bf5a934a 4478 if (st->sb)
e683ca88
DW
4479 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4480
4481 if (info)
4482 mpb_size = disks_to_mpb_size(info->nr_disks);
4483 else
4484 mpb_size = 512;
bf5a934a 4485
49133e57 4486 super = alloc_super();
e683ca88 4487 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4488 free(super);
e683ca88
DW
4489 super = NULL;
4490 }
4491 if (!super) {
4492 fprintf(stderr, Name
4493 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4494 return 0;
4495 }
17a4eaf9 4496 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
8e59f3d8
AK
4497 fprintf(stderr, Name
4498 ": %s could not allocate migr_rec buffer\n", __func__);
4499 free(super->buf);
4500 free(super);
4501 return 0;
4502 }
e683ca88 4503 memset(super->buf, 0, mpb_size);
ef649044 4504 mpb = super->buf;
e683ca88
DW
4505 mpb->mpb_size = __cpu_to_le32(mpb_size);
4506 st->sb = super;
4507
4508 if (info == NULL) {
4509 /* zeroing superblock */
4510 return 0;
4511 }
bf5a934a 4512
4d1313e9
DW
4513 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4514
4515 version = (char *) mpb->sig;
4516 strcpy(version, MPB_SIGNATURE);
4517 version += strlen(MPB_SIGNATURE);
4518 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4519
bf5a934a
DW
4520 return 1;
4521}
4522
0e600426 4523#ifndef MDASSEMBLE
f20c3968 4524static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4525 int fd, char *devname)
4526{
4527 struct intel_super *super = st->sb;
d23fe947 4528 struct imsm_super *mpb = super->anchor;
3960e579 4529 struct imsm_disk *_disk;
bf5a934a
DW
4530 struct imsm_dev *dev;
4531 struct imsm_map *map;
3960e579 4532 struct dl *dl, *df;
4eb26970 4533 int slot;
bf5a934a 4534
949c47a0 4535 dev = get_imsm_dev(super, super->current_vol);
238c0a71 4536 map = get_imsm_map(dev, MAP_0);
bf5a934a 4537
208933a7
N
4538 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4539 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4540 devname);
4541 return 1;
4542 }
4543
efb30e7f
DW
4544 if (fd == -1) {
4545 /* we're doing autolayout so grab the pre-marked (in
4546 * validate_geometry) raid_disk
4547 */
4548 for (dl = super->disks; dl; dl = dl->next)
4549 if (dl->raiddisk == dk->raid_disk)
4550 break;
4551 } else {
4552 for (dl = super->disks; dl ; dl = dl->next)
4553 if (dl->major == dk->major &&
4554 dl->minor == dk->minor)
4555 break;
4556 }
d23fe947 4557
208933a7
N
4558 if (!dl) {
4559 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4560 return 1;
208933a7 4561 }
bf5a934a 4562
d23fe947
DW
4563 /* add a pristine spare to the metadata */
4564 if (dl->index < 0) {
4565 dl->index = super->anchor->num_disks;
4566 super->anchor->num_disks++;
4567 }
4eb26970
DW
4568 /* Check the device has not already been added */
4569 slot = get_imsm_disk_slot(map, dl->index);
4570 if (slot >= 0 &&
238c0a71 4571 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4572 fprintf(stderr, Name ": %s has been included in this array twice\n",
4573 devname);
4574 return 1;
4575 }
656b6b5a 4576 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4577 dl->disk.status = CONFIGURED_DISK;
d23fe947 4578
3960e579
DW
4579 /* update size of 'missing' disks to be at least as large as the
4580 * largest acitve member (we only have dummy missing disks when
4581 * creating the first volume)
4582 */
4583 if (super->current_vol == 0) {
4584 for (df = super->missing; df; df = df->next) {
4585 if (dl->disk.total_blocks > df->disk.total_blocks)
4586 df->disk.total_blocks = dl->disk.total_blocks;
4587 _disk = __get_imsm_disk(mpb, df->index);
4588 *_disk = df->disk;
4589 }
4590 }
4591
4592 /* refresh unset/failed slots to point to valid 'missing' entries */
4593 for (df = super->missing; df; df = df->next)
4594 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 4595 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
4596
4597 if ((ord & IMSM_ORD_REBUILD) == 0)
4598 continue;
4599 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 4600 if (is_gen_migration(dev)) {
238c0a71
AK
4601 struct imsm_map *map2 = get_imsm_map(dev,
4602 MAP_1);
0a108d63
AK
4603 int slot2 = get_imsm_disk_slot(map2, df->index);
4604 if ((slot2 < map2->num_members) &&
4605 (slot2 >= 0)) {
1ace8403 4606 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
4607 slot2,
4608 MAP_1);
1ace8403
AK
4609 if ((unsigned)df->index ==
4610 ord_to_idx(ord2))
4611 set_imsm_ord_tbl_ent(map2,
0a108d63 4612 slot2,
1ace8403
AK
4613 df->index |
4614 IMSM_ORD_REBUILD);
4615 }
4616 }
3960e579
DW
4617 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4618 break;
4619 }
4620
d23fe947
DW
4621 /* if we are creating the first raid device update the family number */
4622 if (super->current_vol == 0) {
4623 __u32 sum;
4624 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4625
3960e579 4626 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4627 if (!_dev || !_disk) {
4628 fprintf(stderr, Name ": BUG mpb setup error\n");
4629 return 1;
4630 }
d23fe947
DW
4631 *_dev = *dev;
4632 *_disk = dl->disk;
148acb7b
DW
4633 sum = random32();
4634 sum += __gen_imsm_checksum(mpb);
d23fe947 4635 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4636 mpb->orig_family_num = mpb->family_num;
d23fe947 4637 }
ca0748fa 4638 super->current_disk = dl;
f20c3968 4639 return 0;
bf5a934a
DW
4640}
4641
a8619d23
AK
4642/* mark_spare()
4643 * Function marks disk as spare and restores disk serial
4644 * in case it was previously marked as failed by takeover operation
4645 * reruns:
4646 * -1 : critical error
4647 * 0 : disk is marked as spare but serial is not set
4648 * 1 : success
4649 */
4650int mark_spare(struct dl *disk)
4651{
4652 __u8 serial[MAX_RAID_SERIAL_LEN];
4653 int ret_val = -1;
4654
4655 if (!disk)
4656 return ret_val;
4657
4658 ret_val = 0;
4659 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4660 /* Restore disk serial number, because takeover marks disk
4661 * as failed and adds to serial ':0' before it becomes
4662 * a spare disk.
4663 */
4664 serialcpy(disk->serial, serial);
4665 serialcpy(disk->disk.serial, serial);
4666 ret_val = 1;
4667 }
4668 disk->disk.status = SPARE_DISK;
4669 disk->index = -1;
4670
4671 return ret_val;
4672}
88654014 4673
f20c3968 4674static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4675 int fd, char *devname)
cdddbdbc 4676{
c2c087e6 4677 struct intel_super *super = st->sb;
c2c087e6
DW
4678 struct dl *dd;
4679 unsigned long long size;
f2f27e63 4680 __u32 id;
c2c087e6
DW
4681 int rv;
4682 struct stat stb;
4683
88654014
LM
4684 /* If we are on an RAID enabled platform check that the disk is
4685 * attached to the raid controller.
4686 * We do not need to test disks attachment for container based additions,
4687 * they shall be already tested when container was created/assembled.
88c32bb1 4688 */
d424212e 4689 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4690 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4691 if (rv != 0) {
4692 dprintf("capability: %p fd: %d ret: %d\n",
4693 super->orom, fd, rv);
4694 return 1;
88c32bb1
DW
4695 }
4696
f20c3968
DW
4697 if (super->current_vol >= 0)
4698 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4699
c2c087e6
DW
4700 fstat(fd, &stb);
4701 dd = malloc(sizeof(*dd));
b9f594fe 4702 if (!dd) {
c2c087e6
DW
4703 fprintf(stderr,
4704 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4705 return 1;
c2c087e6
DW
4706 }
4707 memset(dd, 0, sizeof(*dd));
4708 dd->major = major(stb.st_rdev);
4709 dd->minor = minor(stb.st_rdev);
c2c087e6 4710 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4711 dd->fd = fd;
689c9bf3 4712 dd->e = NULL;
1a64be56 4713 dd->action = DISK_ADD;
c2c087e6 4714 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4715 if (rv) {
c2c087e6 4716 fprintf(stderr,
0030e8d6 4717 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4718 free(dd);
0030e8d6 4719 abort();
c2c087e6
DW
4720 }
4721
c2c087e6
DW
4722 get_dev_size(fd, NULL, &size);
4723 size /= 512;
1f24f035 4724 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4725 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4726 mark_spare(dd);
c2c087e6 4727 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4728 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4729 else
b9f594fe 4730 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4731
4732 if (st->update_tail) {
1a64be56
LM
4733 dd->next = super->disk_mgmt_list;
4734 super->disk_mgmt_list = dd;
43dad3d6
DW
4735 } else {
4736 dd->next = super->disks;
4737 super->disks = dd;
ceaf0ee1 4738 super->updates_pending++;
43dad3d6 4739 }
f20c3968
DW
4740
4741 return 0;
cdddbdbc
DW
4742}
4743
1a64be56
LM
4744
4745static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4746{
4747 struct intel_super *super = st->sb;
4748 struct dl *dd;
4749
4750 /* remove from super works only in mdmon - for communication
4751 * manager - monitor. Check if communication memory buffer
4752 * is prepared.
4753 */
4754 if (!st->update_tail) {
4755 fprintf(stderr,
4756 Name ": %s shall be used in mdmon context only"
4757 "(line %d).\n", __func__, __LINE__);
4758 return 1;
4759 }
4760 dd = malloc(sizeof(*dd));
4761 if (!dd) {
4762 fprintf(stderr,
4763 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4764 return 1;
4765 }
4766 memset(dd, 0, sizeof(*dd));
4767 dd->major = dk->major;
4768 dd->minor = dk->minor;
1a64be56 4769 dd->fd = -1;
a8619d23 4770 mark_spare(dd);
1a64be56
LM
4771 dd->action = DISK_REMOVE;
4772
4773 dd->next = super->disk_mgmt_list;
4774 super->disk_mgmt_list = dd;
4775
4776
4777 return 0;
4778}
4779
f796af5d
DW
4780static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4781
4782static union {
4783 char buf[512];
4784 struct imsm_super anchor;
4785} spare_record __attribute__ ((aligned(512)));
c2c087e6 4786
d23fe947
DW
4787/* spare records have their own family number and do not have any defined raid
4788 * devices
4789 */
4790static int write_super_imsm_spares(struct intel_super *super, int doclose)
4791{
d23fe947 4792 struct imsm_super *mpb = super->anchor;
f796af5d 4793 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4794 __u32 sum;
4795 struct dl *d;
4796
f796af5d
DW
4797 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4798 spare->generation_num = __cpu_to_le32(1UL),
4799 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4800 spare->num_disks = 1,
4801 spare->num_raid_devs = 0,
4802 spare->cache_size = mpb->cache_size,
4803 spare->pwr_cycle_count = __cpu_to_le32(1),
4804
4805 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4806 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4807
4808 for (d = super->disks; d; d = d->next) {
8796fdc4 4809 if (d->index != -1)
d23fe947
DW
4810 continue;
4811
f796af5d
DW
4812 spare->disk[0] = d->disk;
4813 sum = __gen_imsm_checksum(spare);
4814 spare->family_num = __cpu_to_le32(sum);
4815 spare->orig_family_num = 0;
4816 sum = __gen_imsm_checksum(spare);
4817 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4818
f796af5d 4819 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4820 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4821 __func__, d->major, d->minor, strerror(errno));
e74255d9 4822 return 1;
d23fe947
DW
4823 }
4824 if (doclose) {
4825 close(d->fd);
4826 d->fd = -1;
4827 }
4828 }
4829
e74255d9 4830 return 0;
d23fe947
DW
4831}
4832
36988a3d 4833static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4834{
36988a3d 4835 struct intel_super *super = st->sb;
949c47a0 4836 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4837 struct dl *d;
4838 __u32 generation;
4839 __u32 sum;
d23fe947 4840 int spares = 0;
949c47a0 4841 int i;
a48ac0a8 4842 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4843 int num_disks = 0;
146c6260 4844 int clear_migration_record = 1;
cdddbdbc 4845
c2c087e6
DW
4846 /* 'generation' is incremented everytime the metadata is written */
4847 generation = __le32_to_cpu(mpb->generation_num);
4848 generation++;
4849 mpb->generation_num = __cpu_to_le32(generation);
4850
148acb7b
DW
4851 /* fix up cases where previous mdadm releases failed to set
4852 * orig_family_num
4853 */
4854 if (mpb->orig_family_num == 0)
4855 mpb->orig_family_num = mpb->family_num;
4856
d23fe947 4857 for (d = super->disks; d; d = d->next) {
8796fdc4 4858 if (d->index == -1)
d23fe947 4859 spares++;
36988a3d 4860 else {
d23fe947 4861 mpb->disk[d->index] = d->disk;
36988a3d
AK
4862 num_disks++;
4863 }
d23fe947 4864 }
36988a3d 4865 for (d = super->missing; d; d = d->next) {
47ee5a45 4866 mpb->disk[d->index] = d->disk;
36988a3d
AK
4867 num_disks++;
4868 }
4869 mpb->num_disks = num_disks;
4870 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4871
949c47a0
DW
4872 for (i = 0; i < mpb->num_raid_devs; i++) {
4873 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4874 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4875 if (dev && dev2) {
4876 imsm_copy_dev(dev, dev2);
4877 mpb_size += sizeof_imsm_dev(dev, 0);
4878 }
146c6260
AK
4879 if (is_gen_migration(dev2))
4880 clear_migration_record = 0;
949c47a0 4881 }
a48ac0a8
DW
4882 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4883 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4884
c2c087e6 4885 /* recalculate checksum */
949c47a0 4886 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4887 mpb->check_sum = __cpu_to_le32(sum);
4888
146c6260 4889 if (clear_migration_record)
17a4eaf9 4890 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
146c6260 4891
d23fe947 4892 /* write the mpb for disks that compose raid devices */
c2c087e6 4893 for (d = super->disks; d ; d = d->next) {
86c54047 4894 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4895 continue;
f796af5d 4896 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4897 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4898 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4899 if (clear_migration_record) {
4900 unsigned long long dsize;
4901
4902 get_dev_size(d->fd, NULL, &dsize);
4903 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
17a4eaf9
AK
4904 if (write(d->fd, super->migr_rec_buf,
4905 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
9e2d750d 4906 perror("Write migr_rec failed");
146c6260
AK
4907 }
4908 }
c2c087e6
DW
4909 if (doclose) {
4910 close(d->fd);
4911 d->fd = -1;
4912 }
4913 }
4914
d23fe947
DW
4915 if (spares)
4916 return write_super_imsm_spares(super, doclose);
4917
e74255d9 4918 return 0;
c2c087e6
DW
4919}
4920
0e600426 4921
9b1fb677 4922static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4923{
4924 size_t len;
4925 struct imsm_update_create_array *u;
4926 struct intel_super *super = st->sb;
9b1fb677 4927 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 4928 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
4929 struct disk_info *inf;
4930 struct imsm_disk *disk;
4931 int i;
43dad3d6 4932
54c2c1ea
DW
4933 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4934 sizeof(*inf) * map->num_members;
43dad3d6
DW
4935 u = malloc(len);
4936 if (!u) {
4937 fprintf(stderr, "%s: failed to allocate update buffer\n",
4938 __func__);
4939 return 1;
4940 }
4941
4942 u->type = update_create_array;
9b1fb677 4943 u->dev_idx = dev_idx;
43dad3d6 4944 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4945 inf = get_disk_info(u);
4946 for (i = 0; i < map->num_members; i++) {
238c0a71 4947 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 4948
54c2c1ea
DW
4949 disk = get_imsm_disk(super, idx);
4950 serialcpy(inf[i].serial, disk->serial);
4951 }
43dad3d6
DW
4952 append_metadata_update(st, u, len);
4953
4954 return 0;
4955}
4956
1a64be56 4957static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4958{
4959 struct intel_super *super = st->sb;
4960 size_t len;
1a64be56 4961 struct imsm_update_add_remove_disk *u;
43dad3d6 4962
1a64be56 4963 if (!super->disk_mgmt_list)
43dad3d6
DW
4964 return 0;
4965
4966 len = sizeof(*u);
4967 u = malloc(len);
4968 if (!u) {
4969 fprintf(stderr, "%s: failed to allocate update buffer\n",
4970 __func__);
4971 return 1;
4972 }
4973
1a64be56 4974 u->type = update_add_remove_disk;
43dad3d6
DW
4975 append_metadata_update(st, u, len);
4976
4977 return 0;
4978}
4979
c2c087e6
DW
4980static int write_init_super_imsm(struct supertype *st)
4981{
9b1fb677
DW
4982 struct intel_super *super = st->sb;
4983 int current_vol = super->current_vol;
4984
4985 /* we are done with current_vol reset it to point st at the container */
4986 super->current_vol = -1;
4987
8273f55e 4988 if (st->update_tail) {
43dad3d6
DW
4989 /* queue the recently created array / added disk
4990 * as a metadata update */
43dad3d6 4991 int rv;
8273f55e 4992
43dad3d6 4993 /* determine if we are creating a volume or adding a disk */
9b1fb677 4994 if (current_vol < 0) {
1a64be56
LM
4995 /* in the mgmt (add/remove) disk case we are running
4996 * in mdmon context, so don't close fd's
43dad3d6 4997 */
1a64be56 4998 return mgmt_disk(st);
43dad3d6 4999 } else
9b1fb677 5000 rv = create_array(st, current_vol);
8273f55e 5001
43dad3d6 5002 return rv;
d682f344
N
5003 } else {
5004 struct dl *d;
5005 for (d = super->disks; d; d = d->next)
5006 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 5007 return write_super_imsm(st, 1);
d682f344 5008 }
cdddbdbc 5009}
0e600426 5010#endif
cdddbdbc 5011
e683ca88 5012static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 5013{
e683ca88
DW
5014 struct intel_super *super = st->sb;
5015 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 5016
e683ca88 5017 if (!mpb)
ad97895e
DW
5018 return 1;
5019
1799c9e8 5020#ifndef MDASSEMBLE
e683ca88 5021 return store_imsm_mpb(fd, mpb);
1799c9e8
N
5022#else
5023 return 1;
5024#endif
cdddbdbc
DW
5025}
5026
0e600426
N
5027static int imsm_bbm_log_size(struct imsm_super *mpb)
5028{
5029 return __le32_to_cpu(mpb->bbm_log_size);
5030}
5031
5032#ifndef MDASSEMBLE
cdddbdbc
DW
5033static int validate_geometry_imsm_container(struct supertype *st, int level,
5034 int layout, int raiddisks, int chunk,
c2c087e6 5035 unsigned long long size, char *dev,
2c514b71
NB
5036 unsigned long long *freesize,
5037 int verbose)
cdddbdbc 5038{
c2c087e6
DW
5039 int fd;
5040 unsigned long long ldsize;
f2f5c343
LM
5041 struct intel_super *super=NULL;
5042 int rv = 0;
cdddbdbc 5043
c2c087e6
DW
5044 if (level != LEVEL_CONTAINER)
5045 return 0;
5046 if (!dev)
5047 return 1;
5048
5049 fd = open(dev, O_RDONLY|O_EXCL, 0);
5050 if (fd < 0) {
2c514b71
NB
5051 if (verbose)
5052 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5053 dev, strerror(errno));
c2c087e6
DW
5054 return 0;
5055 }
5056 if (!get_dev_size(fd, dev, &ldsize)) {
5057 close(fd);
5058 return 0;
5059 }
f2f5c343
LM
5060
5061 /* capabilities retrieve could be possible
5062 * note that there is no fd for the disks in array.
5063 */
5064 super = alloc_super();
5065 if (!super) {
5066 fprintf(stderr,
5067 Name ": malloc of %zu failed.\n",
5068 sizeof(*super));
5069 close(fd);
5070 return 0;
5071 }
5072
d424212e 5073 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
5074 if (rv != 0) {
5075#if DEBUG
5076 char str[256];
5077 fd2devname(fd, str);
5078 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5079 fd, str, super->orom, rv, raiddisks);
5080#endif
5081 /* no orom/efi or non-intel hba of the disk */
5082 close(fd);
5083 free_imsm(super);
5084 return 0;
5085 }
c2c087e6 5086 close(fd);
f2f5c343
LM
5087 if (super->orom && raiddisks > super->orom->tds) {
5088 if (verbose)
5089 fprintf(stderr, Name ": %d exceeds maximum number of"
5090 " platform supported disks: %d\n",
5091 raiddisks, super->orom->tds);
5092
5093 free_imsm(super);
5094 return 0;
5095 }
c2c087e6
DW
5096
5097 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 5098 free_imsm(super);
c2c087e6
DW
5099
5100 return 1;
cdddbdbc
DW
5101}
5102
0dcecb2e
DW
5103static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5104{
5105 const unsigned long long base_start = e[*idx].start;
5106 unsigned long long end = base_start + e[*idx].size;
5107 int i;
5108
5109 if (base_start == end)
5110 return 0;
5111
5112 *idx = *idx + 1;
5113 for (i = *idx; i < num_extents; i++) {
5114 /* extend overlapping extents */
5115 if (e[i].start >= base_start &&
5116 e[i].start <= end) {
5117 if (e[i].size == 0)
5118 return 0;
5119 if (e[i].start + e[i].size > end)
5120 end = e[i].start + e[i].size;
5121 } else if (e[i].start > end) {
5122 *idx = i;
5123 break;
5124 }
5125 }
5126
5127 return end - base_start;
5128}
5129
5130static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5131{
5132 /* build a composite disk with all known extents and generate a new
5133 * 'maxsize' given the "all disks in an array must share a common start
5134 * offset" constraint
5135 */
5136 struct extent *e = calloc(sum_extents, sizeof(*e));
5137 struct dl *dl;
5138 int i, j;
5139 int start_extent;
5140 unsigned long long pos;
b9d77223 5141 unsigned long long start = 0;
0dcecb2e
DW
5142 unsigned long long maxsize;
5143 unsigned long reserve;
5144
5145 if (!e)
a7dd165b 5146 return 0;
0dcecb2e
DW
5147
5148 /* coalesce and sort all extents. also, check to see if we need to
5149 * reserve space between member arrays
5150 */
5151 j = 0;
5152 for (dl = super->disks; dl; dl = dl->next) {
5153 if (!dl->e)
5154 continue;
5155 for (i = 0; i < dl->extent_cnt; i++)
5156 e[j++] = dl->e[i];
5157 }
5158 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5159
5160 /* merge extents */
5161 i = 0;
5162 j = 0;
5163 while (i < sum_extents) {
5164 e[j].start = e[i].start;
5165 e[j].size = find_size(e, &i, sum_extents);
5166 j++;
5167 if (e[j-1].size == 0)
5168 break;
5169 }
5170
5171 pos = 0;
5172 maxsize = 0;
5173 start_extent = 0;
5174 i = 0;
5175 do {
5176 unsigned long long esize;
5177
5178 esize = e[i].start - pos;
5179 if (esize >= maxsize) {
5180 maxsize = esize;
5181 start = pos;
5182 start_extent = i;
5183 }
5184 pos = e[i].start + e[i].size;
5185 i++;
5186 } while (e[i-1].size);
5187 free(e);
5188
a7dd165b
DW
5189 if (maxsize == 0)
5190 return 0;
5191
5192 /* FIXME assumes volume at offset 0 is the first volume in a
5193 * container
5194 */
0dcecb2e
DW
5195 if (start_extent > 0)
5196 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5197 else
5198 reserve = 0;
5199
5200 if (maxsize < reserve)
a7dd165b 5201 return 0;
0dcecb2e
DW
5202
5203 super->create_offset = ~((__u32) 0);
5204 if (start + reserve > super->create_offset)
a7dd165b 5205 return 0; /* start overflows create_offset */
0dcecb2e
DW
5206 super->create_offset = start + reserve;
5207
5208 return maxsize - reserve;
5209}
5210
88c32bb1
DW
5211static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5212{
5213 if (level < 0 || level == 6 || level == 4)
5214 return 0;
5215
5216 /* if we have an orom prevent invalid raid levels */
5217 if (orom)
5218 switch (level) {
5219 case 0: return imsm_orom_has_raid0(orom);
5220 case 1:
5221 if (raiddisks > 2)
5222 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5223 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5224 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5225 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5226 }
5227 else
5228 return 1; /* not on an Intel RAID platform so anything goes */
5229
5230 return 0;
5231}
5232
cd9d1ac7
DW
5233static int imsm_default_chunk(const struct imsm_orom *orom)
5234{
5235 /* up to 512 if the plaform supports it, otherwise the platform max.
5236 * 128 if no platform detected
5237 */
5238 int fs = max(7, orom ? fls(orom->sss) : 0);
5239
5240 return min(512, (1 << fs));
5241}
73408129 5242
35f81cbb 5243#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5244static int
5245validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5246 int raiddisks, int *chunk, int verbose)
6592ce37 5247{
660260d0
DW
5248 /* check/set platform and metadata limits/defaults */
5249 if (super->orom && raiddisks > super->orom->dpa) {
5250 pr_vrb(": platform supports a maximum of %d disks per array\n",
5251 super->orom->dpa);
73408129
LM
5252 return 0;
5253 }
5254
5255 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5256 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5257 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5258 level, raiddisks, raiddisks > 1 ? "s" : "");
5259 return 0;
5260 }
cd9d1ac7
DW
5261
5262 if (chunk && (*chunk == 0 || *chunk == UnSet))
5263 *chunk = imsm_default_chunk(super->orom);
5264
5265 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5266 pr_vrb(": platform does not support a chunk size of: "
5267 "%d\n", *chunk);
5268 return 0;
6592ce37 5269 }
cd9d1ac7 5270
6592ce37
DW
5271 if (layout != imsm_level_to_layout(level)) {
5272 if (level == 5)
5273 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5274 else if (level == 10)
5275 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5276 else
5277 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5278 layout, level);
5279 return 0;
5280 }
6592ce37
DW
5281 return 1;
5282}
5283
c2c087e6
DW
5284/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5285 * FIX ME add ahci details
5286 */
8b353278 5287static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5288 int layout, int raiddisks, int *chunk,
c2c087e6 5289 unsigned long long size, char *dev,
2c514b71
NB
5290 unsigned long long *freesize,
5291 int verbose)
cdddbdbc 5292{
c2c087e6
DW
5293 struct stat stb;
5294 struct intel_super *super = st->sb;
b2916f25 5295 struct imsm_super *mpb;
c2c087e6
DW
5296 struct dl *dl;
5297 unsigned long long pos = 0;
5298 unsigned long long maxsize;
5299 struct extent *e;
5300 int i;
cdddbdbc 5301
88c32bb1
DW
5302 /* We must have the container info already read in. */
5303 if (!super)
c2c087e6
DW
5304 return 0;
5305
b2916f25
JS
5306 mpb = super->anchor;
5307
e7cb06c8
LO
5308 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5309 fprintf(stderr, Name ": the option-rom requires all "
5310 "member disks to be a member of all volumes.\n");
5311 return 0;
5312 }
5313
d54559f0
LM
5314 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5315 fprintf(stderr, Name ": RAID gemetry validation failed. "
5316 "Cannot proceed with the action(s).\n");
c2c087e6 5317 return 0;
d54559f0 5318 }
c2c087e6
DW
5319 if (!dev) {
5320 /* General test: make sure there is space for
2da8544a
DW
5321 * 'raiddisks' device extents of size 'size' at a given
5322 * offset
c2c087e6 5323 */
e46273eb 5324 unsigned long long minsize = size;
b7528a20 5325 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5326 int dcnt = 0;
5327 if (minsize == 0)
5328 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5329 for (dl = super->disks; dl ; dl = dl->next) {
5330 int found = 0;
5331
bf5a934a 5332 pos = 0;
c2c087e6
DW
5333 i = 0;
5334 e = get_extents(super, dl);
5335 if (!e) continue;
5336 do {
5337 unsigned long long esize;
5338 esize = e[i].start - pos;
5339 if (esize >= minsize)
5340 found = 1;
b7528a20 5341 if (found && start_offset == MaxSector) {
2da8544a
DW
5342 start_offset = pos;
5343 break;
5344 } else if (found && pos != start_offset) {
5345 found = 0;
5346 break;
5347 }
c2c087e6
DW
5348 pos = e[i].start + e[i].size;
5349 i++;
5350 } while (e[i-1].size);
5351 if (found)
5352 dcnt++;
5353 free(e);
5354 }
5355 if (dcnt < raiddisks) {
2c514b71
NB
5356 if (verbose)
5357 fprintf(stderr, Name ": imsm: Not enough "
5358 "devices with space for this array "
5359 "(%d < %d)\n",
5360 dcnt, raiddisks);
c2c087e6
DW
5361 return 0;
5362 }
5363 return 1;
5364 }
0dcecb2e 5365
c2c087e6
DW
5366 /* This device must be a member of the set */
5367 if (stat(dev, &stb) < 0)
5368 return 0;
5369 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5370 return 0;
5371 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5372 if (dl->major == (int)major(stb.st_rdev) &&
5373 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5374 break;
5375 }
5376 if (!dl) {
2c514b71
NB
5377 if (verbose)
5378 fprintf(stderr, Name ": %s is not in the "
5379 "same imsm set\n", dev);
c2c087e6 5380 return 0;
a20d2ba5
DW
5381 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5382 /* If a volume is present then the current creation attempt
5383 * cannot incorporate new spares because the orom may not
5384 * understand this configuration (all member disks must be
5385 * members of each array in the container).
5386 */
5387 fprintf(stderr, Name ": %s is a spare and a volume"
5388 " is already defined for this container\n", dev);
5389 fprintf(stderr, Name ": The option-rom requires all member"
5390 " disks to be a member of all volumes\n");
5391 return 0;
c2c087e6 5392 }
0dcecb2e
DW
5393
5394 /* retrieve the largest free space block */
c2c087e6
DW
5395 e = get_extents(super, dl);
5396 maxsize = 0;
5397 i = 0;
0dcecb2e
DW
5398 if (e) {
5399 do {
5400 unsigned long long esize;
5401
5402 esize = e[i].start - pos;
5403 if (esize >= maxsize)
5404 maxsize = esize;
5405 pos = e[i].start + e[i].size;
5406 i++;
5407 } while (e[i-1].size);
5408 dl->e = e;
5409 dl->extent_cnt = i;
5410 } else {
5411 if (verbose)
5412 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5413 dev);
5414 return 0;
5415 }
5416 if (maxsize < size) {
5417 if (verbose)
5418 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5419 dev, maxsize, size);
5420 return 0;
5421 }
5422
5423 /* count total number of extents for merge */
5424 i = 0;
5425 for (dl = super->disks; dl; dl = dl->next)
5426 if (dl->e)
5427 i += dl->extent_cnt;
5428
5429 maxsize = merge_extents(super, i);
3baa56ab
LO
5430
5431 if (!check_env("IMSM_NO_PLATFORM") &&
5432 mpb->num_raid_devs > 0 && size && size != maxsize) {
5433 fprintf(stderr, Name ": attempting to create a second "
5434 "volume with size less then remaining space. "
5435 "Aborting...\n");
5436 return 0;
5437 }
5438
a7dd165b 5439 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5440 if (verbose)
5441 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5442 maxsize, size);
5443 return 0;
0dcecb2e
DW
5444 }
5445
c2c087e6
DW
5446 *freesize = maxsize;
5447
5448 return 1;
cdddbdbc
DW
5449}
5450
efb30e7f
DW
5451static int reserve_space(struct supertype *st, int raiddisks,
5452 unsigned long long size, int chunk,
5453 unsigned long long *freesize)
5454{
5455 struct intel_super *super = st->sb;
5456 struct imsm_super *mpb = super->anchor;
5457 struct dl *dl;
5458 int i;
5459 int extent_cnt;
5460 struct extent *e;
5461 unsigned long long maxsize;
5462 unsigned long long minsize;
5463 int cnt;
5464 int used;
5465
5466 /* find the largest common start free region of the possible disks */
5467 used = 0;
5468 extent_cnt = 0;
5469 cnt = 0;
5470 for (dl = super->disks; dl; dl = dl->next) {
5471 dl->raiddisk = -1;
5472
5473 if (dl->index >= 0)
5474 used++;
5475
5476 /* don't activate new spares if we are orom constrained
5477 * and there is already a volume active in the container
5478 */
5479 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5480 continue;
5481
5482 e = get_extents(super, dl);
5483 if (!e)
5484 continue;
5485 for (i = 1; e[i-1].size; i++)
5486 ;
5487 dl->e = e;
5488 dl->extent_cnt = i;
5489 extent_cnt += i;
5490 cnt++;
5491 }
5492
5493 maxsize = merge_extents(super, extent_cnt);
5494 minsize = size;
5495 if (size == 0)
612e59d8
CA
5496 /* chunk is in K */
5497 minsize = chunk * 2;
efb30e7f
DW
5498
5499 if (cnt < raiddisks ||
5500 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5501 maxsize < minsize ||
5502 maxsize == 0) {
efb30e7f
DW
5503 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5504 return 0; /* No enough free spaces large enough */
5505 }
5506
5507 if (size == 0) {
5508 size = maxsize;
5509 if (chunk) {
612e59d8
CA
5510 size /= 2 * chunk;
5511 size *= 2 * chunk;
efb30e7f
DW
5512 }
5513 }
5514
5515 cnt = 0;
5516 for (dl = super->disks; dl; dl = dl->next)
5517 if (dl->e)
5518 dl->raiddisk = cnt++;
5519
5520 *freesize = size;
5521
5522 return 1;
5523}
5524
bf5a934a 5525static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5526 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5527 char *dev, unsigned long long *freesize,
5528 int verbose)
5529{
5530 int fd, cfd;
5531 struct mdinfo *sra;
20cbe8d2 5532 int is_member = 0;
bf5a934a 5533
d54559f0
LM
5534 /* load capability
5535 * if given unused devices create a container
bf5a934a
DW
5536 * if given given devices in a container create a member volume
5537 */
5538 if (level == LEVEL_CONTAINER) {
5539 /* Must be a fresh device to add to a container */
5540 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5541 raiddisks,
5542 chunk?*chunk:0, size,
bf5a934a
DW
5543 dev, freesize,
5544 verbose);
5545 }
5546
8592f29d 5547 if (!dev) {
e91a3bad
LM
5548 if (st->sb) {
5549 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5550 raiddisks, chunk,
5551 verbose))
5552 return 0;
efb30e7f
DW
5553 /* we are being asked to automatically layout a
5554 * new volume based on the current contents of
5555 * the container. If the the parameters can be
5556 * satisfied reserve_space will record the disks,
5557 * start offset, and size of the volume to be
5558 * created. add_to_super and getinfo_super
5559 * detect when autolayout is in progress.
5560 */
e91a3bad
LM
5561 if (freesize)
5562 return reserve_space(st, raiddisks, size,
5563 chunk?*chunk:0, freesize);
8592f29d
N
5564 }
5565 return 1;
5566 }
bf5a934a
DW
5567 if (st->sb) {
5568 /* creating in a given container */
5569 return validate_geometry_imsm_volume(st, level, layout,
5570 raiddisks, chunk, size,
5571 dev, freesize, verbose);
5572 }
5573
bf5a934a
DW
5574 /* This device needs to be a device in an 'imsm' container */
5575 fd = open(dev, O_RDONLY|O_EXCL, 0);
5576 if (fd >= 0) {
5577 if (verbose)
5578 fprintf(stderr,
5579 Name ": Cannot create this array on device %s\n",
5580 dev);
5581 close(fd);
5582 return 0;
5583 }
5584 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5585 if (verbose)
5586 fprintf(stderr, Name ": Cannot open %s: %s\n",
5587 dev, strerror(errno));
5588 return 0;
5589 }
5590 /* Well, it is in use by someone, maybe an 'imsm' container. */
5591 cfd = open_container(fd);
20cbe8d2 5592 close(fd);
bf5a934a 5593 if (cfd < 0) {
bf5a934a
DW
5594 if (verbose)
5595 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5596 dev);
5597 return 0;
5598 }
5599 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5600 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5601 strcmp(sra->text_version, "imsm") == 0)
5602 is_member = 1;
5603 sysfs_free(sra);
5604 if (is_member) {
bf5a934a
DW
5605 /* This is a member of a imsm container. Load the container
5606 * and try to create a volume
5607 */
5608 struct intel_super *super;
5609
e1902a7b 5610 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5611 st->sb = super;
5612 st->container_dev = fd2devnum(cfd);
5613 close(cfd);
5614 return validate_geometry_imsm_volume(st, level, layout,
5615 raiddisks, chunk,
5616 size, dev,
ecbd9e81
N
5617 freesize, 1)
5618 ? 1 : -1;
bf5a934a 5619 }
20cbe8d2 5620 }
bf5a934a 5621
20cbe8d2
AW
5622 if (verbose)
5623 fprintf(stderr, Name ": failed container membership check\n");
5624
5625 close(cfd);
5626 return 0;
bf5a934a 5627}
0bd16cf2 5628
30f58b22 5629static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5630{
5631 struct intel_super *super = st->sb;
5632
30f58b22
DW
5633 if (level && *level == UnSet)
5634 *level = LEVEL_CONTAINER;
5635
5636 if (level && layout && *layout == UnSet)
5637 *layout = imsm_level_to_layout(*level);
0bd16cf2 5638
cd9d1ac7
DW
5639 if (chunk && (*chunk == UnSet || *chunk == 0))
5640 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5641}
5642
33414a01
DW
5643static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5644
5645static int kill_subarray_imsm(struct supertype *st)
5646{
5647 /* remove the subarray currently referenced by ->current_vol */
5648 __u8 i;
5649 struct intel_dev **dp;
5650 struct intel_super *super = st->sb;
5651 __u8 current_vol = super->current_vol;
5652 struct imsm_super *mpb = super->anchor;
5653
5654 if (super->current_vol < 0)
5655 return 2;
5656 super->current_vol = -1; /* invalidate subarray cursor */
5657
5658 /* block deletions that would change the uuid of active subarrays
5659 *
5660 * FIXME when immutable ids are available, but note that we'll
5661 * also need to fixup the invalidated/active subarray indexes in
5662 * mdstat
5663 */
5664 for (i = 0; i < mpb->num_raid_devs; i++) {
5665 char subarray[4];
5666
5667 if (i < current_vol)
5668 continue;
5669 sprintf(subarray, "%u", i);
5670 if (is_subarray_active(subarray, st->devname)) {
5671 fprintf(stderr,
5672 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5673 current_vol, i);
5674
5675 return 2;
5676 }
5677 }
5678
5679 if (st->update_tail) {
5680 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5681
5682 if (!u)
5683 return 2;
5684 u->type = update_kill_array;
5685 u->dev_idx = current_vol;
5686 append_metadata_update(st, u, sizeof(*u));
5687
5688 return 0;
5689 }
5690
5691 for (dp = &super->devlist; *dp;)
5692 if ((*dp)->index == current_vol) {
5693 *dp = (*dp)->next;
5694 } else {
5695 handle_missing(super, (*dp)->dev);
5696 if ((*dp)->index > current_vol)
5697 (*dp)->index--;
5698 dp = &(*dp)->next;
5699 }
5700
5701 /* no more raid devices, all active components are now spares,
5702 * but of course failed are still failed
5703 */
5704 if (--mpb->num_raid_devs == 0) {
5705 struct dl *d;
5706
5707 for (d = super->disks; d; d = d->next)
a8619d23
AK
5708 if (d->index > -2)
5709 mark_spare(d);
33414a01
DW
5710 }
5711
5712 super->updates_pending++;
5713
5714 return 0;
5715}
aa534678 5716
a951a4f7 5717static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5718 char *update, struct mddev_ident *ident)
aa534678
DW
5719{
5720 /* update the subarray currently referenced by ->current_vol */
5721 struct intel_super *super = st->sb;
5722 struct imsm_super *mpb = super->anchor;
5723
aa534678
DW
5724 if (strcmp(update, "name") == 0) {
5725 char *name = ident->name;
a951a4f7
N
5726 char *ep;
5727 int vol;
aa534678 5728
a951a4f7 5729 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5730 fprintf(stderr,
5731 Name ": Unable to update name of active subarray\n");
5732 return 2;
5733 }
5734
5735 if (!check_name(super, name, 0))
5736 return 2;
5737
a951a4f7
N
5738 vol = strtoul(subarray, &ep, 10);
5739 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5740 return 2;
5741
aa534678
DW
5742 if (st->update_tail) {
5743 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5744
5745 if (!u)
5746 return 2;
5747 u->type = update_rename_array;
a951a4f7 5748 u->dev_idx = vol;
aa534678
DW
5749 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5750 append_metadata_update(st, u, sizeof(*u));
5751 } else {
5752 struct imsm_dev *dev;
5753 int i;
5754
a951a4f7 5755 dev = get_imsm_dev(super, vol);
aa534678
DW
5756 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5757 for (i = 0; i < mpb->num_raid_devs; i++) {
5758 dev = get_imsm_dev(super, i);
5759 handle_missing(super, dev);
5760 }
5761 super->updates_pending++;
5762 }
5763 } else
5764 return 2;
5765
5766 return 0;
5767}
d1e02575 5768#endif /* MDASSEMBLE */
bf5a934a 5769
28bce06f
AK
5770static int is_gen_migration(struct imsm_dev *dev)
5771{
7534230b
AK
5772 if (dev == NULL)
5773 return 0;
5774
28bce06f
AK
5775 if (!dev->vol.migr_state)
5776 return 0;
5777
5778 if (migr_type(dev) == MIGR_GEN_MIGR)
5779 return 1;
5780
5781 return 0;
5782}
5783
1e5c6983
DW
5784static int is_rebuilding(struct imsm_dev *dev)
5785{
5786 struct imsm_map *migr_map;
5787
5788 if (!dev->vol.migr_state)
5789 return 0;
5790
5791 if (migr_type(dev) != MIGR_REBUILD)
5792 return 0;
5793
238c0a71 5794 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
5795
5796 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5797 return 1;
5798 else
5799 return 0;
5800}
5801
b4ab44d8 5802#ifndef MDASSEMBLE
6ce1fbf1
AK
5803static int is_initializing(struct imsm_dev *dev)
5804{
5805 struct imsm_map *migr_map;
5806
5807 if (!dev->vol.migr_state)
5808 return 0;
5809
5810 if (migr_type(dev) != MIGR_INIT)
5811 return 0;
5812
238c0a71 5813 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
5814
5815 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
5816 return 1;
5817
5818 return 0;
6ce1fbf1 5819}
b4ab44d8 5820#endif
6ce1fbf1 5821
c47b0ff6
AK
5822static void update_recovery_start(struct intel_super *super,
5823 struct imsm_dev *dev,
5824 struct mdinfo *array)
1e5c6983
DW
5825{
5826 struct mdinfo *rebuild = NULL;
5827 struct mdinfo *d;
5828 __u32 units;
5829
5830 if (!is_rebuilding(dev))
5831 return;
5832
5833 /* Find the rebuild target, but punt on the dual rebuild case */
5834 for (d = array->devs; d; d = d->next)
5835 if (d->recovery_start == 0) {
5836 if (rebuild)
5837 return;
5838 rebuild = d;
5839 }
5840
4363fd80
DW
5841 if (!rebuild) {
5842 /* (?) none of the disks are marked with
5843 * IMSM_ORD_REBUILD, so assume they are missing and the
5844 * disk_ord_tbl was not correctly updated
5845 */
5846 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5847 return;
5848 }
5849
1e5c6983 5850 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5851 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5852}
5853
9e2d750d 5854#ifndef MDASSEMBLE
276d77db 5855static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5856#endif
1e5c6983 5857
00bbdbda 5858static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5859{
4f5bc454
DW
5860 /* Given a container loaded by load_super_imsm_all,
5861 * extract information about all the arrays into
5862 * an mdinfo tree.
00bbdbda 5863 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5864 *
5865 * For each imsm_dev create an mdinfo, fill it in,
5866 * then look for matching devices in super->disks
5867 * and create appropriate device mdinfo.
5868 */
5869 struct intel_super *super = st->sb;
949c47a0 5870 struct imsm_super *mpb = super->anchor;
4f5bc454 5871 struct mdinfo *rest = NULL;
00bbdbda 5872 unsigned int i;
81219e70 5873 int sb_errors = 0;
abef11a3
AK
5874 struct dl *d;
5875 int spare_disks = 0;
cdddbdbc 5876
19482bcc
AK
5877 /* do not assemble arrays when not all attributes are supported */
5878 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5879 sb_errors = 1;
5880 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5881 "Arrays activation is blocked.\n");
19482bcc
AK
5882 }
5883
a06d022d 5884 /* check for bad blocks */
81219e70
LM
5885 if (imsm_bbm_log_size(super->anchor)) {
5886 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5887 "Arrays activation is blocked.\n");
5888 sb_errors = 1;
5889 }
5890
604b746f 5891
abef11a3
AK
5892 /* count spare devices, not used in maps
5893 */
5894 for (d = super->disks; d; d = d->next)
5895 if (d->index == -1)
5896 spare_disks++;
5897
4f5bc454 5898 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5899 struct imsm_dev *dev;
5900 struct imsm_map *map;
86e3692b 5901 struct imsm_map *map2;
4f5bc454 5902 struct mdinfo *this;
a6482415
N
5903 int slot;
5904#ifndef MDASSEMBLE
5905 int chunk;
5906#endif
00bbdbda
N
5907 char *ep;
5908
5909 if (subarray &&
5910 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5911 continue;
5912
5913 dev = get_imsm_dev(super, i);
238c0a71
AK
5914 map = get_imsm_map(dev, MAP_0);
5915 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 5916
1ce0101c
DW
5917 /* do not publish arrays that are in the middle of an
5918 * unsupported migration
5919 */
5920 if (dev->vol.migr_state &&
28bce06f 5921 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5922 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5923 " unsupported migration in progress\n",
5924 dev->volume);
5925 continue;
5926 }
2db86302
LM
5927 /* do not publish arrays that are not support by controller's
5928 * OROM/EFI
5929 */
1ce0101c 5930
4f5bc454 5931 this = malloc(sizeof(*this));
0fbd635c 5932 if (!this) {
cf1be220 5933 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5934 sizeof(*this));
5935 break;
5936 }
4f5bc454 5937
301406c9 5938 super->current_vol = i;
a5d85af7 5939 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5940 this->next = rest;
81219e70 5941#ifndef MDASSEMBLE
a6482415 5942 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
5943 /* mdadm does not support all metadata features- set the bit in all arrays state */
5944 if (!validate_geometry_imsm_orom(super,
5945 get_imsm_raid_level(map), /* RAID level */
5946 imsm_level_to_layout(get_imsm_raid_level(map)),
5947 map->num_members, /* raid disks */
5948 &chunk,
5949 1 /* verbose */)) {
446894ea
N
5950 fprintf(stderr, Name ": IMSM RAID geometry validation"
5951 " failed. Array %s activation is blocked.\n",
81219e70
LM
5952 dev->volume);
5953 this->array.state |=
5954 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5955 (1<<MD_SB_BLOCK_VOLUME);
5956 }
5957#endif
5958
5959 /* if array has bad blocks, set suitable bit in all arrays state */
5960 if (sb_errors)
5961 this->array.state |=
5962 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5963 (1<<MD_SB_BLOCK_VOLUME);
5964
4f5bc454 5965 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5966 unsigned long long recovery_start;
4f5bc454
DW
5967 struct mdinfo *info_d;
5968 struct dl *d;
5969 int idx;
9a1608e5 5970 int skip;
7eef0453 5971 __u32 ord;
4f5bc454 5972
9a1608e5 5973 skip = 0;
238c0a71
AK
5974 idx = get_imsm_disk_idx(dev, slot, MAP_0);
5975 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
5976 for (d = super->disks; d ; d = d->next)
5977 if (d->index == idx)
0fbd635c 5978 break;
4f5bc454 5979
1e5c6983 5980 recovery_start = MaxSector;
4f5bc454 5981 if (d == NULL)
9a1608e5 5982 skip = 1;
25ed7e59 5983 if (d && is_failed(&d->disk))
9a1608e5 5984 skip = 1;
7eef0453 5985 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5986 recovery_start = 0;
9a1608e5
DW
5987
5988 /*
5989 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5990 * reset resync start to avoid a dirty-degraded
5991 * situation when performing the intial sync
9a1608e5
DW
5992 *
5993 * FIXME handle dirty degraded
5994 */
1e5c6983 5995 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5996 this->resync_start = MaxSector;
9a1608e5
DW
5997 if (skip)
5998 continue;
4f5bc454 5999
1e5c6983 6000 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
6001 if (!info_d) {
6002 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 6003 " for volume %.16s\n", dev->volume);
1e5c6983
DW
6004 info_d = this->devs;
6005 while (info_d) {
6006 struct mdinfo *d = info_d->next;
6007
6008 free(info_d);
6009 info_d = d;
6010 }
9a1608e5
DW
6011 free(this);
6012 this = rest;
6013 break;
6014 }
4f5bc454
DW
6015 info_d->next = this->devs;
6016 this->devs = info_d;
6017
4f5bc454
DW
6018 info_d->disk.number = d->index;
6019 info_d->disk.major = d->major;
6020 info_d->disk.minor = d->minor;
6021 info_d->disk.raid_disk = slot;
1e5c6983 6022 info_d->recovery_start = recovery_start;
86e3692b
AK
6023 if (map2) {
6024 if (slot < map2->num_members)
6025 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6026 else
6027 this->array.spare_disks++;
86e3692b
AK
6028 } else {
6029 if (slot < map->num_members)
6030 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6031 else
6032 this->array.spare_disks++;
86e3692b 6033 }
1e5c6983
DW
6034 if (info_d->recovery_start == MaxSector)
6035 this->array.working_disks++;
4f5bc454
DW
6036
6037 info_d->events = __le32_to_cpu(mpb->generation_num);
6038 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
6039 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 6040 }
1e5c6983 6041 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 6042 update_recovery_start(super, dev, this);
abef11a3 6043 this->array.spare_disks += spare_disks;
276d77db 6044
9e2d750d 6045#ifndef MDASSEMBLE
276d77db
AK
6046 /* check for reshape */
6047 if (this->reshape_active == 1)
6048 recover_backup_imsm(st, this);
9e2d750d 6049#endif
9a1608e5 6050 rest = this;
4f5bc454
DW
6051 }
6052
6053 return rest;
cdddbdbc
DW
6054}
6055
845dea95 6056
3b451610
AK
6057static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6058 int failed, int look_in_map)
c2a1e7da 6059{
3b451610
AK
6060 struct imsm_map *map;
6061
6062 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
6063
6064 if (!failed)
3393c6af
DW
6065 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6066 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
6067
6068 switch (get_imsm_raid_level(map)) {
6069 case 0:
6070 return IMSM_T_STATE_FAILED;
6071 break;
6072 case 1:
6073 if (failed < map->num_members)
6074 return IMSM_T_STATE_DEGRADED;
6075 else
6076 return IMSM_T_STATE_FAILED;
6077 break;
6078 case 10:
6079 {
6080 /**
c92a2527
DW
6081 * check to see if any mirrors have failed, otherwise we
6082 * are degraded. Even numbered slots are mirrored on
6083 * slot+1
c2a1e7da 6084 */
c2a1e7da 6085 int i;
d9b420a5
N
6086 /* gcc -Os complains that this is unused */
6087 int insync = insync;
c2a1e7da
DW
6088
6089 for (i = 0; i < map->num_members; i++) {
238c0a71 6090 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
6091 int idx = ord_to_idx(ord);
6092 struct imsm_disk *disk;
c2a1e7da 6093
c92a2527
DW
6094 /* reset the potential in-sync count on even-numbered
6095 * slots. num_copies is always 2 for imsm raid10
6096 */
6097 if ((i & 1) == 0)
6098 insync = 2;
c2a1e7da 6099
c92a2527 6100 disk = get_imsm_disk(super, idx);
25ed7e59 6101 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 6102 insync--;
c2a1e7da 6103
c92a2527
DW
6104 /* no in-sync disks left in this mirror the
6105 * array has failed
6106 */
6107 if (insync == 0)
6108 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
6109 }
6110
6111 return IMSM_T_STATE_DEGRADED;
6112 }
6113 case 5:
6114 if (failed < 2)
6115 return IMSM_T_STATE_DEGRADED;
6116 else
6117 return IMSM_T_STATE_FAILED;
6118 break;
6119 default:
6120 break;
6121 }
6122
6123 return map->map_state;
6124}
6125
3b451610
AK
6126static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6127 int look_in_map)
c2a1e7da
DW
6128{
6129 int i;
6130 int failed = 0;
6131 struct imsm_disk *disk;
d5985138
AK
6132 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6133 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 6134 struct imsm_map *map_for_loop;
0556e1a2
DW
6135 __u32 ord;
6136 int idx;
d5985138 6137 int idx_1;
c2a1e7da 6138
0556e1a2
DW
6139 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6140 * disks that are being rebuilt. New failures are recorded to
6141 * map[0]. So we look through all the disks we started with and
6142 * see if any failures are still present, or if any new ones
6143 * have arrived
0556e1a2 6144 */
d5985138
AK
6145 map_for_loop = map;
6146 if (prev && (map->num_members < prev->num_members))
6147 map_for_loop = prev;
68fe4598
LD
6148
6149 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 6150 idx_1 = -255;
238c0a71
AK
6151 /* when MAP_X is passed both maps failures are counted
6152 */
d5985138 6153 if (prev &&
238c0a71
AK
6154 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6155 (i < prev->num_members)) {
d5985138
AK
6156 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6157 idx_1 = ord_to_idx(ord);
c2a1e7da 6158
d5985138
AK
6159 disk = get_imsm_disk(super, idx_1);
6160 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6161 failed++;
6162 }
238c0a71
AK
6163 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6164 (i < map->num_members)) {
d5985138
AK
6165 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6166 idx = ord_to_idx(ord);
6167
6168 if (idx != idx_1) {
6169 disk = get_imsm_disk(super, idx);
6170 if (!disk || is_failed(disk) ||
6171 ord & IMSM_ORD_REBUILD)
6172 failed++;
6173 }
6174 }
c2a1e7da
DW
6175 }
6176
6177 return failed;
845dea95
NB
6178}
6179
97b4d0e9
DW
6180#ifndef MDASSEMBLE
6181static int imsm_open_new(struct supertype *c, struct active_array *a,
6182 char *inst)
6183{
6184 struct intel_super *super = c->sb;
6185 struct imsm_super *mpb = super->anchor;
6186
6187 if (atoi(inst) >= mpb->num_raid_devs) {
6188 fprintf(stderr, "%s: subarry index %d, out of range\n",
6189 __func__, atoi(inst));
6190 return -ENODEV;
6191 }
6192
6193 dprintf("imsm: open_new %s\n", inst);
6194 a->info.container_member = atoi(inst);
6195 return 0;
6196}
6197
0c046afd
DW
6198static int is_resyncing(struct imsm_dev *dev)
6199{
6200 struct imsm_map *migr_map;
6201
6202 if (!dev->vol.migr_state)
6203 return 0;
6204
1484e727
DW
6205 if (migr_type(dev) == MIGR_INIT ||
6206 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6207 return 1;
6208
4c9bc37b
AK
6209 if (migr_type(dev) == MIGR_GEN_MIGR)
6210 return 0;
6211
238c0a71 6212 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 6213
4c9bc37b
AK
6214 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6215 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6216 return 1;
6217 else
6218 return 0;
6219}
6220
0556e1a2
DW
6221/* return true if we recorded new information */
6222static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6223{
0556e1a2
DW
6224 __u32 ord;
6225 int slot;
6226 struct imsm_map *map;
86c54047
DW
6227 char buf[MAX_RAID_SERIAL_LEN+3];
6228 unsigned int len, shift = 0;
0556e1a2
DW
6229
6230 /* new failures are always set in map[0] */
238c0a71 6231 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
6232
6233 slot = get_imsm_disk_slot(map, idx);
6234 if (slot < 0)
6235 return 0;
6236
6237 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6238 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6239 return 0;
6240
7d0c5e24
LD
6241 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6242 buf[MAX_RAID_SERIAL_LEN] = '\000';
6243 strcat(buf, ":0");
86c54047
DW
6244 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6245 shift = len - MAX_RAID_SERIAL_LEN + 1;
6246 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6247
f2f27e63 6248 disk->status |= FAILED_DISK;
0556e1a2 6249 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
6250 /* mark failures in second map if second map exists and this disk
6251 * in this slot.
6252 * This is valid for migration, initialization and rebuild
6253 */
6254 if (dev->vol.migr_state) {
238c0a71 6255 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
6256 int slot2 = get_imsm_disk_slot(map2, idx);
6257
6258 if ((slot2 < map2->num_members) &&
6259 (slot2 >= 0))
6260 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
6261 idx | IMSM_ORD_REBUILD);
6262 }
f21e18ca 6263 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6264 map->failed_disk_num = slot;
6265 return 1;
6266}
6267
6268static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6269{
6270 mark_failure(dev, disk, idx);
6271
6272 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6273 return;
6274
47ee5a45
DW
6275 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6276 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6277}
6278
33414a01
DW
6279static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6280{
33414a01 6281 struct dl *dl;
33414a01
DW
6282
6283 if (!super->missing)
6284 return;
33414a01
DW
6285
6286 dprintf("imsm: mark missing\n");
3d59f0c0
AK
6287 /* end process for initialization and rebuild only
6288 */
6289 if (is_gen_migration(dev) == 0) {
6290 __u8 map_state;
6291 int failed;
6292
6293 failed = imsm_count_failed(super, dev, MAP_0);
6294 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6295
6296 end_migration(dev, super, map_state);
6297 }
33414a01
DW
6298 for (dl = super->missing; dl; dl = dl->next)
6299 mark_missing(dev, &dl->disk, dl->index);
6300 super->updates_pending++;
6301}
6302
70bdf0dc
AK
6303static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6304{
238c0a71 6305 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
6306 unsigned long long array_blocks;
6307 struct imsm_map *map;
6308
6309 if (used_disks == 0) {
6310 /* when problems occures
6311 * return current array_blocks value
6312 */
6313 array_blocks = __le32_to_cpu(dev->size_high);
6314 array_blocks = array_blocks << 32;
6315 array_blocks += __le32_to_cpu(dev->size_low);
6316
6317 return array_blocks;
6318 }
6319
6320 /* set array size in metadata
6321 */
238c0a71 6322 map = get_imsm_map(dev, MAP_0);
70bdf0dc
AK
6323 array_blocks = map->blocks_per_member * used_disks;
6324
6325 /* round array size down to closest MB
6326 */
6327 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6328 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6329 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6330
6331 return array_blocks;
6332}
6333
28bce06f
AK
6334static void imsm_set_disk(struct active_array *a, int n, int state);
6335
0e2d1a4e
AK
6336static void imsm_progress_container_reshape(struct intel_super *super)
6337{
6338 /* if no device has a migr_state, but some device has a
6339 * different number of members than the previous device, start
6340 * changing the number of devices in this device to match
6341 * previous.
6342 */
6343 struct imsm_super *mpb = super->anchor;
6344 int prev_disks = -1;
6345 int i;
1dfaa380 6346 int copy_map_size;
0e2d1a4e
AK
6347
6348 for (i = 0; i < mpb->num_raid_devs; i++) {
6349 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 6350 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
6351 struct imsm_map *map2;
6352 int prev_num_members;
0e2d1a4e
AK
6353
6354 if (dev->vol.migr_state)
6355 return;
6356
6357 if (prev_disks == -1)
6358 prev_disks = map->num_members;
6359 if (prev_disks == map->num_members)
6360 continue;
6361
6362 /* OK, this array needs to enter reshape mode.
6363 * i.e it needs a migr_state
6364 */
6365
1dfaa380 6366 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6367 prev_num_members = map->num_members;
6368 map->num_members = prev_disks;
6369 dev->vol.migr_state = 1;
6370 dev->vol.curr_migr_unit = 0;
ea672ee1 6371 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6372 for (i = prev_num_members;
6373 i < map->num_members; i++)
6374 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 6375 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 6376 /* Copy the current map */
1dfaa380 6377 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6378 map2->num_members = prev_num_members;
6379
70bdf0dc 6380 imsm_set_array_size(dev);
0e2d1a4e
AK
6381 super->updates_pending++;
6382 }
6383}
6384
aad6f216 6385/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6386 * states are handled in imsm_set_disk() with one exception, when a
6387 * resync is stopped due to a new failure this routine will set the
6388 * 'degraded' state for the array.
6389 */
01f157d7 6390static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6391{
6392 int inst = a->info.container_member;
6393 struct intel_super *super = a->container->sb;
949c47a0 6394 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 6395 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
6396 int failed = imsm_count_failed(super, dev, MAP_0);
6397 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 6398 __u32 blocks_per_unit;
a862209d 6399
1af97990
AK
6400 if (dev->vol.migr_state &&
6401 dev->vol.migr_type == MIGR_GEN_MIGR) {
6402 /* array state change is blocked due to reshape action
aad6f216
N
6403 * We might need to
6404 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6405 * - finish the reshape (if last_checkpoint is big and action != reshape)
6406 * - update curr_migr_unit
1af97990 6407 */
aad6f216
N
6408 if (a->curr_action == reshape) {
6409 /* still reshaping, maybe update curr_migr_unit */
633b5610 6410 goto mark_checkpoint;
aad6f216
N
6411 } else {
6412 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6413 /* for some reason we aborted the reshape.
b66e591b
AK
6414 *
6415 * disable automatic metadata rollback
6416 * user action is required to recover process
aad6f216 6417 */
b66e591b 6418 if (0) {
238c0a71
AK
6419 struct imsm_map *map2 =
6420 get_imsm_map(dev, MAP_1);
6421 dev->vol.migr_state = 0;
6422 set_migr_type(dev, 0);
6423 dev->vol.curr_migr_unit = 0;
6424 memcpy(map, map2,
6425 sizeof_imsm_map(map2));
6426 super->updates_pending++;
b66e591b 6427 }
aad6f216
N
6428 }
6429 if (a->last_checkpoint >= a->info.component_size) {
6430 unsigned long long array_blocks;
6431 int used_disks;
e154ced3 6432 struct mdinfo *mdi;
aad6f216 6433
238c0a71 6434 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
6435 if (used_disks > 0) {
6436 array_blocks =
6437 map->blocks_per_member *
6438 used_disks;
6439 /* round array size down to closest MB
6440 */
6441 array_blocks = (array_blocks
6442 >> SECT_PER_MB_SHIFT)
6443 << SECT_PER_MB_SHIFT;
d55adef9
AK
6444 a->info.custom_array_size = array_blocks;
6445 /* encourage manager to update array
6446 * size
6447 */
e154ced3 6448
d55adef9 6449 a->check_reshape = 1;
633b5610 6450 }
e154ced3
AK
6451 /* finalize online capacity expansion/reshape */
6452 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6453 imsm_set_disk(a,
6454 mdi->disk.raid_disk,
6455 mdi->curr_state);
6456
0e2d1a4e 6457 imsm_progress_container_reshape(super);
e154ced3 6458 }
aad6f216 6459 }
1af97990
AK
6460 }
6461
47ee5a45 6462 /* before we activate this array handle any missing disks */
33414a01
DW
6463 if (consistent == 2)
6464 handle_missing(super, dev);
1e5c6983 6465
0c046afd 6466 if (consistent == 2 &&
b7941fd6 6467 (!is_resync_complete(&a->info) ||
0c046afd
DW
6468 map_state != IMSM_T_STATE_NORMAL ||
6469 dev->vol.migr_state))
01f157d7 6470 consistent = 0;
272906ef 6471
b7941fd6 6472 if (is_resync_complete(&a->info)) {
0c046afd 6473 /* complete intialization / resync,
0556e1a2
DW
6474 * recovery and interrupted recovery is completed in
6475 * ->set_disk
0c046afd
DW
6476 */
6477 if (is_resyncing(dev)) {
6478 dprintf("imsm: mark resync done\n");
809da78e 6479 end_migration(dev, super, map_state);
115c3803 6480 super->updates_pending++;
484240d8 6481 a->last_checkpoint = 0;
115c3803 6482 }
b9172665
AK
6483 } else if ((!is_resyncing(dev) && !failed) &&
6484 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6485 /* mark the start of the init process if nothing is failed */
b7941fd6 6486 dprintf("imsm: mark resync start\n");
1484e727 6487 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6488 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6489 else
8e59f3d8 6490 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6491 super->updates_pending++;
115c3803 6492 }
a862209d 6493
633b5610 6494mark_checkpoint:
5b83bacf
AK
6495 /* skip checkpointing for general migration,
6496 * it is controlled in mdadm
6497 */
6498 if (is_gen_migration(dev))
6499 goto skip_mark_checkpoint;
6500
1e5c6983 6501 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6502 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6503 if (blocks_per_unit) {
1e5c6983
DW
6504 __u32 units32;
6505 __u64 units;
6506
4f0a7acc 6507 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6508 units32 = units;
6509
6510 /* check that we did not overflow 32-bits, and that
6511 * curr_migr_unit needs updating
6512 */
6513 if (units32 == units &&
bfd80a56 6514 units32 != 0 &&
1e5c6983
DW
6515 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6516 dprintf("imsm: mark checkpoint (%u)\n", units32);
6517 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6518 super->updates_pending++;
6519 }
6520 }
f8f603f1 6521
5b83bacf 6522skip_mark_checkpoint:
3393c6af 6523 /* mark dirty / clean */
0c046afd 6524 if (dev->vol.dirty != !consistent) {
b7941fd6 6525 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6526 if (consistent)
6527 dev->vol.dirty = 0;
6528 else
6529 dev->vol.dirty = 1;
a862209d
DW
6530 super->updates_pending++;
6531 }
28bce06f 6532
01f157d7 6533 return consistent;
a862209d
DW
6534}
6535
8d45d196 6536static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6537{
8d45d196
DW
6538 int inst = a->info.container_member;
6539 struct intel_super *super = a->container->sb;
949c47a0 6540 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 6541 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 6542 struct imsm_disk *disk;
0c046afd 6543 int failed;
b10b37b8 6544 __u32 ord;
0c046afd 6545 __u8 map_state;
8d45d196
DW
6546
6547 if (n > map->num_members)
6548 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6549 n, map->num_members - 1);
6550
6551 if (n < 0)
6552 return;
6553
4e6e574a 6554 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6555
238c0a71 6556 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
b10b37b8 6557 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6558
5802a811 6559 /* check for new failures */
0556e1a2
DW
6560 if (state & DS_FAULTY) {
6561 if (mark_failure(dev, disk, ord_to_idx(ord)))
6562 super->updates_pending++;
8d45d196 6563 }
47ee5a45 6564
19859edc 6565 /* check if in_sync */
0556e1a2 6566 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 6567 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
6568
6569 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6570 super->updates_pending++;
6571 }
8d45d196 6572
3b451610
AK
6573 failed = imsm_count_failed(super, dev, MAP_0);
6574 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 6575
0c046afd 6576 /* check if recovery complete, newly degraded, or failed */
94002678
AK
6577 dprintf("imsm: Detected transition to state ");
6578 switch (map_state) {
6579 case IMSM_T_STATE_NORMAL: /* transition to normal state */
6580 dprintf("normal: ");
6581 if (is_rebuilding(dev)) {
6582 dprintf("while rebuilding");
6583 end_migration(dev, super, map_state);
238c0a71 6584 map = get_imsm_map(dev, MAP_0);
94002678
AK
6585 map->failed_disk_num = ~0;
6586 super->updates_pending++;
6587 a->last_checkpoint = 0;
6588 break;
6589 }
6590 if (is_gen_migration(dev)) {
6591 dprintf("while general migration");
bf2f0071 6592 if (a->last_checkpoint >= a->info.component_size)
809da78e 6593 end_migration(dev, super, map_state);
94002678
AK
6594 else
6595 map->map_state = map_state;
238c0a71 6596 map = get_imsm_map(dev, MAP_0);
28bce06f 6597 map->failed_disk_num = ~0;
94002678 6598 super->updates_pending++;
bf2f0071 6599 break;
94002678
AK
6600 }
6601 break;
6602 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
6603 dprintf("degraded: ");
6604 if ((map->map_state != map_state) &&
6605 !dev->vol.migr_state) {
6606 dprintf("mark degraded");
6607 map->map_state = map_state;
6608 super->updates_pending++;
6609 a->last_checkpoint = 0;
6610 break;
6611 }
6612 if (is_rebuilding(dev)) {
6613 dprintf("while rebuilding.");
6614 if (map->map_state != map_state) {
6615 dprintf(" Map state change");
6616 end_migration(dev, super, map_state);
6617 super->updates_pending++;
6618 }
6619 break;
6620 }
6621 if (is_gen_migration(dev)) {
6622 dprintf("while general migration");
bf2f0071 6623 if (a->last_checkpoint >= a->info.component_size)
809da78e 6624 end_migration(dev, super, map_state);
94002678
AK
6625 else {
6626 map->map_state = map_state;
3b451610 6627 manage_second_map(super, dev);
94002678
AK
6628 }
6629 super->updates_pending++;
bf2f0071 6630 break;
28bce06f 6631 }
6ce1fbf1
AK
6632 if (is_initializing(dev)) {
6633 dprintf("while initialization.");
6634 map->map_state = map_state;
6635 super->updates_pending++;
6636 break;
6637 }
94002678
AK
6638 break;
6639 case IMSM_T_STATE_FAILED: /* transition to failed state */
6640 dprintf("failed: ");
6641 if (is_gen_migration(dev)) {
6642 dprintf("while general migration");
6643 map->map_state = map_state;
6644 super->updates_pending++;
6645 break;
6646 }
6647 if (map->map_state != map_state) {
6648 dprintf("mark failed");
6649 end_migration(dev, super, map_state);
6650 super->updates_pending++;
6651 a->last_checkpoint = 0;
6652 break;
6653 }
6654 break;
6655 default:
6656 dprintf("state %i\n", map_state);
5802a811 6657 }
94002678
AK
6658 dprintf("\n");
6659
845dea95
NB
6660}
6661
f796af5d 6662static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6663{
f796af5d 6664 void *buf = mpb;
c2a1e7da
DW
6665 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6666 unsigned long long dsize;
6667 unsigned long long sectors;
6668
6669 get_dev_size(fd, NULL, &dsize);
6670
272f648f
DW
6671 if (mpb_size > 512) {
6672 /* -1 to account for anchor */
6673 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6674
272f648f
DW
6675 /* write the extended mpb to the sectors preceeding the anchor */
6676 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6677 return 1;
c2a1e7da 6678
f21e18ca
N
6679 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6680 != 512 * sectors)
272f648f
DW
6681 return 1;
6682 }
c2a1e7da 6683
272f648f
DW
6684 /* first block is stored on second to last sector of the disk */
6685 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6686 return 1;
6687
f796af5d 6688 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6689 return 1;
6690
c2a1e7da
DW
6691 return 0;
6692}
6693
2e735d19 6694static void imsm_sync_metadata(struct supertype *container)
845dea95 6695{
2e735d19 6696 struct intel_super *super = container->sb;
c2a1e7da 6697
1a64be56 6698 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6699 if (!super->updates_pending)
6700 return;
6701
36988a3d 6702 write_super_imsm(container, 0);
c2a1e7da
DW
6703
6704 super->updates_pending = 0;
845dea95
NB
6705}
6706
272906ef
DW
6707static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6708{
6709 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 6710 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
6711 struct dl *dl;
6712
6713 for (dl = super->disks; dl; dl = dl->next)
6714 if (dl->index == i)
6715 break;
6716
25ed7e59 6717 if (dl && is_failed(&dl->disk))
272906ef
DW
6718 dl = NULL;
6719
6720 if (dl)
6721 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6722
6723 return dl;
6724}
6725
a20d2ba5 6726static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6727 struct active_array *a, int activate_new,
6728 struct mdinfo *additional_test_list)
272906ef
DW
6729{
6730 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 6731 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
6732 struct imsm_super *mpb = super->anchor;
6733 struct imsm_map *map;
272906ef
DW
6734 unsigned long long pos;
6735 struct mdinfo *d;
6736 struct extent *ex;
a20d2ba5 6737 int i, j;
272906ef 6738 int found;
569cc43f
DW
6739 __u32 array_start = 0;
6740 __u32 array_end = 0;
272906ef 6741 struct dl *dl;
6c932028 6742 struct mdinfo *test_list;
272906ef
DW
6743
6744 for (dl = super->disks; dl; dl = dl->next) {
6745 /* If in this array, skip */
6746 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6747 if (d->state_fd >= 0 &&
6748 d->disk.major == dl->major &&
272906ef 6749 d->disk.minor == dl->minor) {
8ba77d32
AK
6750 dprintf("%x:%x already in array\n",
6751 dl->major, dl->minor);
272906ef
DW
6752 break;
6753 }
6754 if (d)
6755 continue;
6c932028
AK
6756 test_list = additional_test_list;
6757 while (test_list) {
6758 if (test_list->disk.major == dl->major &&
6759 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6760 dprintf("%x:%x already in additional test list\n",
6761 dl->major, dl->minor);
6762 break;
6763 }
6c932028 6764 test_list = test_list->next;
8ba77d32 6765 }
6c932028 6766 if (test_list)
8ba77d32 6767 continue;
272906ef 6768
e553d2a4 6769 /* skip in use or failed drives */
25ed7e59 6770 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6771 dl->index == -2) {
6772 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6773 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6774 continue;
6775 }
6776
a20d2ba5
DW
6777 /* skip pure spares when we are looking for partially
6778 * assimilated drives
6779 */
6780 if (dl->index == -1 && !activate_new)
6781 continue;
6782
272906ef 6783 /* Does this unused device have the requisite free space?
a20d2ba5 6784 * It needs to be able to cover all member volumes
272906ef
DW
6785 */
6786 ex = get_extents(super, dl);
6787 if (!ex) {
6788 dprintf("cannot get extents\n");
6789 continue;
6790 }
a20d2ba5
DW
6791 for (i = 0; i < mpb->num_raid_devs; i++) {
6792 dev = get_imsm_dev(super, i);
238c0a71 6793 map = get_imsm_map(dev, MAP_0);
272906ef 6794
a20d2ba5
DW
6795 /* check if this disk is already a member of
6796 * this array
272906ef 6797 */
620b1713 6798 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6799 continue;
6800
6801 found = 0;
6802 j = 0;
6803 pos = 0;
6804 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6805 array_end = array_start +
6806 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6807
6808 do {
6809 /* check that we can start at pba_of_lba0 with
6810 * blocks_per_member of space
6811 */
329c8278 6812 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6813 found = 1;
6814 break;
6815 }
6816 pos = ex[j].start + ex[j].size;
6817 j++;
6818 } while (ex[j-1].size);
6819
6820 if (!found)
272906ef 6821 break;
a20d2ba5 6822 }
272906ef
DW
6823
6824 free(ex);
a20d2ba5 6825 if (i < mpb->num_raid_devs) {
329c8278
DW
6826 dprintf("%x:%x does not have %u to %u available\n",
6827 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6828 /* No room */
6829 continue;
a20d2ba5
DW
6830 }
6831 return dl;
272906ef
DW
6832 }
6833
6834 return dl;
6835}
6836
95d07a2c
LM
6837
6838static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6839{
6840 struct imsm_dev *dev2;
6841 struct imsm_map *map;
6842 struct dl *idisk;
6843 int slot;
6844 int idx;
6845 __u8 state;
6846
6847 dev2 = get_imsm_dev(cont->sb, dev_idx);
6848 if (dev2) {
238c0a71 6849 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 6850 if (state == IMSM_T_STATE_FAILED) {
238c0a71 6851 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
6852 if (!map)
6853 return 1;
6854 for (slot = 0; slot < map->num_members; slot++) {
6855 /*
6856 * Check if failed disks are deleted from intel
6857 * disk list or are marked to be deleted
6858 */
238c0a71 6859 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
6860 idisk = get_imsm_dl_disk(cont->sb, idx);
6861 /*
6862 * Do not rebuild the array if failed disks
6863 * from failed sub-array are not removed from
6864 * container.
6865 */
6866 if (idisk &&
6867 is_failed(&idisk->disk) &&
6868 (idisk->action != DISK_REMOVE))
6869 return 0;
6870 }
6871 }
6872 }
6873 return 1;
6874}
6875
88758e9d
DW
6876static struct mdinfo *imsm_activate_spare(struct active_array *a,
6877 struct metadata_update **updates)
6878{
6879 /**
d23fe947
DW
6880 * Find a device with unused free space and use it to replace a
6881 * failed/vacant region in an array. We replace failed regions one a
6882 * array at a time. The result is that a new spare disk will be added
6883 * to the first failed array and after the monitor has finished
6884 * propagating failures the remainder will be consumed.
88758e9d 6885 *
d23fe947
DW
6886 * FIXME add a capability for mdmon to request spares from another
6887 * container.
88758e9d
DW
6888 */
6889
6890 struct intel_super *super = a->container->sb;
88758e9d 6891 int inst = a->info.container_member;
949c47a0 6892 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 6893 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
6894 int failed = a->info.array.raid_disks;
6895 struct mdinfo *rv = NULL;
6896 struct mdinfo *d;
6897 struct mdinfo *di;
6898 struct metadata_update *mu;
6899 struct dl *dl;
6900 struct imsm_update_activate_spare *u;
6901 int num_spares = 0;
6902 int i;
95d07a2c 6903 int allowed;
88758e9d
DW
6904
6905 for (d = a->info.devs ; d ; d = d->next) {
6906 if ((d->curr_state & DS_FAULTY) &&
6907 d->state_fd >= 0)
6908 /* wait for Removal to happen */
6909 return NULL;
6910 if (d->state_fd >= 0)
6911 failed--;
6912 }
6913
6914 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6915 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6916
e2962bfc
AK
6917 if (imsm_reshape_blocks_arrays_changes(super))
6918 return NULL;
1af97990 6919
fc8ca064
AK
6920 /* Cannot activate another spare if rebuild is in progress already
6921 */
6922 if (is_rebuilding(dev)) {
6923 dprintf("imsm: No spare activation allowed. "
6924 "Rebuild in progress already.\n");
6925 return NULL;
6926 }
6927
89c67882
AK
6928 if (a->info.array.level == 4)
6929 /* No repair for takeovered array
6930 * imsm doesn't support raid4
6931 */
6932 return NULL;
6933
3b451610
AK
6934 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6935 IMSM_T_STATE_DEGRADED)
88758e9d
DW
6936 return NULL;
6937
95d07a2c
LM
6938 /*
6939 * If there are any failed disks check state of the other volume.
6940 * Block rebuild if the another one is failed until failed disks
6941 * are removed from container.
6942 */
6943 if (failed) {
c4acd1e5 6944 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6945 "failed sub-array.\n",
c4acd1e5 6946 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6947 /* check if states of the other volumes allow for rebuild */
6948 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6949 if (i != inst) {
6950 allowed = imsm_rebuild_allowed(a->container,
6951 i, failed);
6952 if (!allowed)
6953 return NULL;
6954 }
6955 }
6956 }
6957
88758e9d 6958 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6959 for (i = 0; i < a->info.array.raid_disks; i++) {
6960 for (d = a->info.devs ; d ; d = d->next)
6961 if (d->disk.raid_disk == i)
6962 break;
6963 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6964 if (d && (d->state_fd >= 0))
6965 continue;
6966
272906ef 6967 /*
a20d2ba5
DW
6968 * OK, this device needs recovery. Try to re-add the
6969 * previous occupant of this slot, if this fails see if
6970 * we can continue the assimilation of a spare that was
6971 * partially assimilated, finally try to activate a new
6972 * spare.
272906ef
DW
6973 */
6974 dl = imsm_readd(super, i, a);
6975 if (!dl)
b303fe21 6976 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6977 if (!dl)
b303fe21 6978 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6979 if (!dl)
6980 continue;
6981
6982 /* found a usable disk with enough space */
6983 di = malloc(sizeof(*di));
79244939
DW
6984 if (!di)
6985 continue;
272906ef
DW
6986 memset(di, 0, sizeof(*di));
6987
6988 /* dl->index will be -1 in the case we are activating a
6989 * pristine spare. imsm_process_update() will create a
6990 * new index in this case. Once a disk is found to be
6991 * failed in all member arrays it is kicked from the
6992 * metadata
6993 */
6994 di->disk.number = dl->index;
d23fe947 6995
272906ef
DW
6996 /* (ab)use di->devs to store a pointer to the device
6997 * we chose
6998 */
6999 di->devs = (struct mdinfo *) dl;
7000
7001 di->disk.raid_disk = i;
7002 di->disk.major = dl->major;
7003 di->disk.minor = dl->minor;
7004 di->disk.state = 0;
d23534e4 7005 di->recovery_start = 0;
272906ef
DW
7006 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
7007 di->component_size = a->info.component_size;
7008 di->container_member = inst;
148acb7b 7009 super->random = random32();
272906ef
DW
7010 di->next = rv;
7011 rv = di;
7012 num_spares++;
7013 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7014 i, di->data_offset);
88758e9d
DW
7015 }
7016
7017 if (!rv)
7018 /* No spares found */
7019 return rv;
7020 /* Now 'rv' has a list of devices to return.
7021 * Create a metadata_update record to update the
7022 * disk_ord_tbl for the array
7023 */
7024 mu = malloc(sizeof(*mu));
79244939
DW
7025 if (mu) {
7026 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7027 if (mu->buf == NULL) {
7028 free(mu);
7029 mu = NULL;
7030 }
7031 }
7032 if (!mu) {
7033 while (rv) {
7034 struct mdinfo *n = rv->next;
7035
7036 free(rv);
7037 rv = n;
7038 }
7039 return NULL;
7040 }
7041
88758e9d 7042 mu->space = NULL;
cb23f1f4 7043 mu->space_list = NULL;
88758e9d
DW
7044 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7045 mu->next = *updates;
7046 u = (struct imsm_update_activate_spare *) mu->buf;
7047
7048 for (di = rv ; di ; di = di->next) {
7049 u->type = update_activate_spare;
d23fe947
DW
7050 u->dl = (struct dl *) di->devs;
7051 di->devs = NULL;
88758e9d
DW
7052 u->slot = di->disk.raid_disk;
7053 u->array = inst;
7054 u->next = u + 1;
7055 u++;
7056 }
7057 (u-1)->next = NULL;
7058 *updates = mu;
7059
7060 return rv;
7061}
7062
54c2c1ea 7063static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 7064{
54c2c1ea 7065 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
7066 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7067 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
7068 struct disk_info *inf = get_disk_info(u);
7069 struct imsm_disk *disk;
8273f55e
DW
7070 int i;
7071 int j;
8273f55e 7072
54c2c1ea 7073 for (i = 0; i < map->num_members; i++) {
238c0a71 7074 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
7075 for (j = 0; j < new_map->num_members; j++)
7076 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
7077 return 1;
7078 }
7079
7080 return 0;
7081}
7082
1a64be56
LM
7083
7084static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7085{
7086 struct dl *dl = NULL;
7087 for (dl = super->disks; dl; dl = dl->next)
7088 if ((dl->major == major) && (dl->minor == minor))
7089 return dl;
7090 return NULL;
7091}
7092
7093static int remove_disk_super(struct intel_super *super, int major, int minor)
7094{
7095 struct dl *prev = NULL;
7096 struct dl *dl;
7097
7098 prev = NULL;
7099 for (dl = super->disks; dl; dl = dl->next) {
7100 if ((dl->major == major) && (dl->minor == minor)) {
7101 /* remove */
7102 if (prev)
7103 prev->next = dl->next;
7104 else
7105 super->disks = dl->next;
7106 dl->next = NULL;
7107 __free_imsm_disk(dl);
7108 dprintf("%s: removed %x:%x\n",
7109 __func__, major, minor);
7110 break;
7111 }
7112 prev = dl;
7113 }
7114 return 0;
7115}
7116
f21e18ca 7117static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 7118
1a64be56
LM
7119static int add_remove_disk_update(struct intel_super *super)
7120{
7121 int check_degraded = 0;
7122 struct dl *disk = NULL;
7123 /* add/remove some spares to/from the metadata/contrainer */
7124 while (super->disk_mgmt_list) {
7125 struct dl *disk_cfg;
7126
7127 disk_cfg = super->disk_mgmt_list;
7128 super->disk_mgmt_list = disk_cfg->next;
7129 disk_cfg->next = NULL;
7130
7131 if (disk_cfg->action == DISK_ADD) {
7132 disk_cfg->next = super->disks;
7133 super->disks = disk_cfg;
7134 check_degraded = 1;
7135 dprintf("%s: added %x:%x\n",
7136 __func__, disk_cfg->major,
7137 disk_cfg->minor);
7138 } else if (disk_cfg->action == DISK_REMOVE) {
7139 dprintf("Disk remove action processed: %x.%x\n",
7140 disk_cfg->major, disk_cfg->minor);
7141 disk = get_disk_super(super,
7142 disk_cfg->major,
7143 disk_cfg->minor);
7144 if (disk) {
7145 /* store action status */
7146 disk->action = DISK_REMOVE;
7147 /* remove spare disks only */
7148 if (disk->index == -1) {
7149 remove_disk_super(super,
7150 disk_cfg->major,
7151 disk_cfg->minor);
7152 }
7153 }
7154 /* release allocate disk structure */
7155 __free_imsm_disk(disk_cfg);
7156 }
7157 }
7158 return check_degraded;
7159}
7160
a29911da
PC
7161
7162static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7163 struct intel_super *super,
7164 void ***space_list)
7165{
7166 struct intel_dev *id;
7167 void **tofree = NULL;
7168 int ret_val = 0;
7169
7170 dprintf("apply_reshape_migration_update()\n");
7171 if ((u->subdev < 0) ||
7172 (u->subdev > 1)) {
7173 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7174 return ret_val;
7175 }
7176 if ((space_list == NULL) || (*space_list == NULL)) {
7177 dprintf("imsm: Error: Memory is not allocated\n");
7178 return ret_val;
7179 }
7180
7181 for (id = super->devlist ; id; id = id->next) {
7182 if (id->index == (unsigned)u->subdev) {
7183 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7184 struct imsm_map *map;
7185 struct imsm_dev *new_dev =
7186 (struct imsm_dev *)*space_list;
238c0a71 7187 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
7188 int to_state;
7189 struct dl *new_disk;
7190
7191 if (new_dev == NULL)
7192 return ret_val;
7193 *space_list = **space_list;
7194 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 7195 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
7196 if (migr_map) {
7197 dprintf("imsm: Error: migration in progress");
7198 return ret_val;
7199 }
7200
7201 to_state = map->map_state;
7202 if ((u->new_level == 5) && (map->raid_level == 0)) {
7203 map->num_members++;
7204 /* this should not happen */
7205 if (u->new_disks[0] < 0) {
7206 map->failed_disk_num =
7207 map->num_members - 1;
7208 to_state = IMSM_T_STATE_DEGRADED;
7209 } else
7210 to_state = IMSM_T_STATE_NORMAL;
7211 }
8e59f3d8 7212 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
7213 if (u->new_level > -1)
7214 map->raid_level = u->new_level;
238c0a71 7215 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
7216 if ((u->new_level == 5) &&
7217 (migr_map->raid_level == 0)) {
7218 int ord = map->num_members - 1;
7219 migr_map->num_members--;
7220 if (u->new_disks[0] < 0)
7221 ord |= IMSM_ORD_REBUILD;
7222 set_imsm_ord_tbl_ent(map,
7223 map->num_members - 1,
7224 ord);
7225 }
7226 id->dev = new_dev;
7227 tofree = (void **)dev;
7228
4bba0439
PC
7229 /* update chunk size
7230 */
7231 if (u->new_chunksize > 0)
7232 map->blocks_per_strip =
7233 __cpu_to_le16(u->new_chunksize * 2);
7234
a29911da
PC
7235 /* add disk
7236 */
7237 if ((u->new_level != 5) ||
7238 (migr_map->raid_level != 0) ||
7239 (migr_map->raid_level == map->raid_level))
7240 goto skip_disk_add;
7241
7242 if (u->new_disks[0] >= 0) {
7243 /* use passes spare
7244 */
7245 new_disk = get_disk_super(super,
7246 major(u->new_disks[0]),
7247 minor(u->new_disks[0]));
7248 dprintf("imsm: new disk for reshape is: %i:%i "
7249 "(%p, index = %i)\n",
7250 major(u->new_disks[0]),
7251 minor(u->new_disks[0]),
7252 new_disk, new_disk->index);
7253 if (new_disk == NULL)
7254 goto error_disk_add;
7255
7256 new_disk->index = map->num_members - 1;
7257 /* slot to fill in autolayout
7258 */
7259 new_disk->raiddisk = new_disk->index;
7260 new_disk->disk.status |= CONFIGURED_DISK;
7261 new_disk->disk.status &= ~SPARE_DISK;
7262 } else
7263 goto error_disk_add;
7264
7265skip_disk_add:
7266 *tofree = *space_list;
7267 /* calculate new size
7268 */
7269 imsm_set_array_size(new_dev);
7270
7271 ret_val = 1;
7272 }
7273 }
7274
7275 if (tofree)
7276 *space_list = tofree;
7277 return ret_val;
7278
7279error_disk_add:
7280 dprintf("Error: imsm: Cannot find disk.\n");
7281 return ret_val;
7282}
7283
061d7da3
LO
7284static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7285 struct intel_super *super,
7286 struct active_array *active_array)
7287{
7288 struct imsm_super *mpb = super->anchor;
7289 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 7290 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
7291 struct imsm_map *migr_map;
7292 struct active_array *a;
7293 struct imsm_disk *disk;
7294 __u8 to_state;
7295 struct dl *dl;
7296 unsigned int found;
7297 int failed;
5961eeec 7298 int victim;
061d7da3 7299 int i;
5961eeec 7300 int second_map_created = 0;
061d7da3 7301
5961eeec 7302 for (; u; u = u->next) {
238c0a71 7303 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 7304
5961eeec 7305 if (victim < 0)
7306 return 0;
061d7da3 7307
5961eeec 7308 for (dl = super->disks; dl; dl = dl->next)
7309 if (dl == u->dl)
7310 break;
061d7da3 7311
5961eeec 7312 if (!dl) {
7313 fprintf(stderr, "error: imsm_activate_spare passed "
7314 "an unknown disk (index: %d)\n",
7315 u->dl->index);
7316 return 0;
7317 }
061d7da3 7318
5961eeec 7319 /* count failures (excluding rebuilds and the victim)
7320 * to determine map[0] state
7321 */
7322 failed = 0;
7323 for (i = 0; i < map->num_members; i++) {
7324 if (i == u->slot)
7325 continue;
7326 disk = get_imsm_disk(super,
238c0a71 7327 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 7328 if (!disk || is_failed(disk))
7329 failed++;
7330 }
061d7da3 7331
5961eeec 7332 /* adding a pristine spare, assign a new index */
7333 if (dl->index < 0) {
7334 dl->index = super->anchor->num_disks;
7335 super->anchor->num_disks++;
7336 }
7337 disk = &dl->disk;
7338 disk->status |= CONFIGURED_DISK;
7339 disk->status &= ~SPARE_DISK;
7340
7341 /* mark rebuild */
238c0a71 7342 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 7343 if (!second_map_created) {
7344 second_map_created = 1;
7345 map->map_state = IMSM_T_STATE_DEGRADED;
7346 migrate(dev, super, to_state, MIGR_REBUILD);
7347 } else
7348 map->map_state = to_state;
238c0a71 7349 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 7350 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7351 set_imsm_ord_tbl_ent(migr_map, u->slot,
7352 dl->index | IMSM_ORD_REBUILD);
7353
7354 /* update the family_num to mark a new container
7355 * generation, being careful to record the existing
7356 * family_num in orig_family_num to clean up after
7357 * earlier mdadm versions that neglected to set it.
7358 */
7359 if (mpb->orig_family_num == 0)
7360 mpb->orig_family_num = mpb->family_num;
7361 mpb->family_num += super->random;
7362
7363 /* count arrays using the victim in the metadata */
7364 found = 0;
7365 for (a = active_array; a ; a = a->next) {
7366 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7367 map = get_imsm_map(dev, MAP_0);
061d7da3 7368
5961eeec 7369 if (get_imsm_disk_slot(map, victim) >= 0)
7370 found++;
7371 }
061d7da3 7372
5961eeec 7373 /* delete the victim if it is no longer being
7374 * utilized anywhere
061d7da3 7375 */
5961eeec 7376 if (!found) {
7377 struct dl **dlp;
061d7da3 7378
5961eeec 7379 /* We know that 'manager' isn't touching anything,
7380 * so it is safe to delete
7381 */
7382 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7383 if ((*dlp)->index == victim)
7384 break;
5961eeec 7385
7386 /* victim may be on the missing list */
7387 if (!*dlp)
7388 for (dlp = &super->missing; *dlp;
7389 dlp = &(*dlp)->next)
7390 if ((*dlp)->index == victim)
7391 break;
7392 imsm_delete(super, dlp, victim);
7393 }
061d7da3
LO
7394 }
7395
7396 return 1;
7397}
a29911da 7398
2e5dc010
N
7399static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7400 struct intel_super *super,
7401 void ***space_list)
7402{
7403 struct dl *new_disk;
7404 struct intel_dev *id;
7405 int i;
7406 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7407 int disk_count = u->old_raid_disks;
2e5dc010
N
7408 void **tofree = NULL;
7409 int devices_to_reshape = 1;
7410 struct imsm_super *mpb = super->anchor;
7411 int ret_val = 0;
d098291a 7412 unsigned int dev_id;
2e5dc010 7413
ed7333bd 7414 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7415
7416 /* enable spares to use in array */
7417 for (i = 0; i < delta_disks; i++) {
7418 new_disk = get_disk_super(super,
7419 major(u->new_disks[i]),
7420 minor(u->new_disks[i]));
ed7333bd
AK
7421 dprintf("imsm: new disk for reshape is: %i:%i "
7422 "(%p, index = %i)\n",
2e5dc010
N
7423 major(u->new_disks[i]), minor(u->new_disks[i]),
7424 new_disk, new_disk->index);
7425 if ((new_disk == NULL) ||
7426 ((new_disk->index >= 0) &&
7427 (new_disk->index < u->old_raid_disks)))
7428 goto update_reshape_exit;
ee4beede 7429 new_disk->index = disk_count++;
2e5dc010
N
7430 /* slot to fill in autolayout
7431 */
7432 new_disk->raiddisk = new_disk->index;
7433 new_disk->disk.status |=
7434 CONFIGURED_DISK;
7435 new_disk->disk.status &= ~SPARE_DISK;
7436 }
7437
ed7333bd
AK
7438 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7439 mpb->num_raid_devs);
2e5dc010
N
7440 /* manage changes in volume
7441 */
d098291a 7442 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7443 void **sp = *space_list;
7444 struct imsm_dev *newdev;
7445 struct imsm_map *newmap, *oldmap;
7446
d098291a
AK
7447 for (id = super->devlist ; id; id = id->next) {
7448 if (id->index == dev_id)
7449 break;
7450 }
7451 if (id == NULL)
7452 break;
2e5dc010
N
7453 if (!sp)
7454 continue;
7455 *space_list = *sp;
7456 newdev = (void*)sp;
7457 /* Copy the dev, but not (all of) the map */
7458 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
7459 oldmap = get_imsm_map(id->dev, MAP_0);
7460 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
7461 /* Copy the current map */
7462 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7463 /* update one device only
7464 */
7465 if (devices_to_reshape) {
ed7333bd
AK
7466 dprintf("imsm: modifying subdev: %i\n",
7467 id->index);
2e5dc010
N
7468 devices_to_reshape--;
7469 newdev->vol.migr_state = 1;
7470 newdev->vol.curr_migr_unit = 0;
ea672ee1 7471 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7472 newmap->num_members = u->new_raid_disks;
7473 for (i = 0; i < delta_disks; i++) {
7474 set_imsm_ord_tbl_ent(newmap,
7475 u->old_raid_disks + i,
7476 u->old_raid_disks + i);
7477 }
7478 /* New map is correct, now need to save old map
7479 */
238c0a71 7480 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
7481 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7482
70bdf0dc 7483 imsm_set_array_size(newdev);
2e5dc010
N
7484 }
7485
7486 sp = (void **)id->dev;
7487 id->dev = newdev;
7488 *sp = tofree;
7489 tofree = sp;
8e59f3d8
AK
7490
7491 /* Clear migration record */
7492 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7493 }
819bc634
AK
7494 if (tofree)
7495 *space_list = tofree;
2e5dc010
N
7496 ret_val = 1;
7497
7498update_reshape_exit:
7499
7500 return ret_val;
7501}
7502
bb025c2f 7503static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7504 struct intel_super *super,
7505 void ***space_list)
bb025c2f
KW
7506{
7507 struct imsm_dev *dev = NULL;
8ca6df95
KW
7508 struct intel_dev *dv;
7509 struct imsm_dev *dev_new;
bb025c2f
KW
7510 struct imsm_map *map;
7511 struct dl *dm, *du;
8ca6df95 7512 int i;
bb025c2f
KW
7513
7514 for (dv = super->devlist; dv; dv = dv->next)
7515 if (dv->index == (unsigned int)u->subarray) {
7516 dev = dv->dev;
7517 break;
7518 }
7519
7520 if (dev == NULL)
7521 return 0;
7522
238c0a71 7523 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
7524
7525 if (u->direction == R10_TO_R0) {
43d5ec18 7526 /* Number of failed disks must be half of initial disk number */
3b451610
AK
7527 if (imsm_count_failed(super, dev, MAP_0) !=
7528 (map->num_members / 2))
43d5ec18
KW
7529 return 0;
7530
bb025c2f
KW
7531 /* iterate through devices to mark removed disks as spare */
7532 for (dm = super->disks; dm; dm = dm->next) {
7533 if (dm->disk.status & FAILED_DISK) {
7534 int idx = dm->index;
7535 /* update indexes on the disk list */
7536/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7537 the index values will end up being correct.... NB */
7538 for (du = super->disks; du; du = du->next)
7539 if (du->index > idx)
7540 du->index--;
7541 /* mark as spare disk */
a8619d23 7542 mark_spare(dm);
bb025c2f
KW
7543 }
7544 }
bb025c2f
KW
7545 /* update map */
7546 map->num_members = map->num_members / 2;
7547 map->map_state = IMSM_T_STATE_NORMAL;
7548 map->num_domains = 1;
7549 map->raid_level = 0;
7550 map->failed_disk_num = -1;
7551 }
7552
8ca6df95
KW
7553 if (u->direction == R0_TO_R10) {
7554 void **space;
7555 /* update slots in current disk list */
7556 for (dm = super->disks; dm; dm = dm->next) {
7557 if (dm->index >= 0)
7558 dm->index *= 2;
7559 }
7560 /* create new *missing* disks */
7561 for (i = 0; i < map->num_members; i++) {
7562 space = *space_list;
7563 if (!space)
7564 continue;
7565 *space_list = *space;
7566 du = (void *)space;
7567 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7568 du->fd = -1;
7569 du->minor = 0;
7570 du->major = 0;
7571 du->index = (i * 2) + 1;
7572 sprintf((char *)du->disk.serial,
7573 " MISSING_%d", du->index);
7574 sprintf((char *)du->serial,
7575 "MISSING_%d", du->index);
7576 du->next = super->missing;
7577 super->missing = du;
7578 }
7579 /* create new dev and map */
7580 space = *space_list;
7581 if (!space)
7582 return 0;
7583 *space_list = *space;
7584 dev_new = (void *)space;
7585 memcpy(dev_new, dev, sizeof(*dev));
7586 /* update new map */
238c0a71 7587 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 7588 map->num_members = map->num_members * 2;
1a2487c2 7589 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7590 map->num_domains = 2;
7591 map->raid_level = 1;
7592 /* replace dev<->dev_new */
7593 dv->dev = dev_new;
7594 }
bb025c2f
KW
7595 /* update disk order table */
7596 for (du = super->disks; du; du = du->next)
7597 if (du->index >= 0)
7598 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7599 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7600 if (du->index >= 0) {
7601 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7602 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7603 }
bb025c2f
KW
7604
7605 return 1;
7606}
7607
e8319a19
DW
7608static void imsm_process_update(struct supertype *st,
7609 struct metadata_update *update)
7610{
7611 /**
7612 * crack open the metadata_update envelope to find the update record
7613 * update can be one of:
d195167d
AK
7614 * update_reshape_container_disks - all the arrays in the container
7615 * are being reshaped to have more devices. We need to mark
7616 * the arrays for general migration and convert selected spares
7617 * into active devices.
7618 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7619 * device in an array, update the disk_ord_tbl. If this disk is
7620 * present in all member arrays then also clear the SPARE_DISK
7621 * flag
d195167d
AK
7622 * update_create_array
7623 * update_kill_array
7624 * update_rename_array
7625 * update_add_remove_disk
e8319a19
DW
7626 */
7627 struct intel_super *super = st->sb;
4d7b1503 7628 struct imsm_super *mpb;
e8319a19
DW
7629 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7630
4d7b1503
DW
7631 /* update requires a larger buf but the allocation failed */
7632 if (super->next_len && !super->next_buf) {
7633 super->next_len = 0;
7634 return;
7635 }
7636
7637 if (super->next_buf) {
7638 memcpy(super->next_buf, super->buf, super->len);
7639 free(super->buf);
7640 super->len = super->next_len;
7641 super->buf = super->next_buf;
7642
7643 super->next_len = 0;
7644 super->next_buf = NULL;
7645 }
7646
7647 mpb = super->anchor;
7648
e8319a19 7649 switch (type) {
0ec5d470
AK
7650 case update_general_migration_checkpoint: {
7651 struct intel_dev *id;
7652 struct imsm_update_general_migration_checkpoint *u =
7653 (void *)update->buf;
7654
7655 dprintf("imsm: process_update() "
7656 "for update_general_migration_checkpoint called\n");
7657
7658 /* find device under general migration */
7659 for (id = super->devlist ; id; id = id->next) {
7660 if (is_gen_migration(id->dev)) {
7661 id->dev->vol.curr_migr_unit =
7662 __cpu_to_le32(u->curr_migr_unit);
7663 super->updates_pending++;
7664 }
7665 }
7666 break;
7667 }
bb025c2f
KW
7668 case update_takeover: {
7669 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7670 if (apply_takeover_update(u, super, &update->space_list)) {
7671 imsm_update_version_info(super);
bb025c2f 7672 super->updates_pending++;
1a2487c2 7673 }
bb025c2f
KW
7674 break;
7675 }
7676
78b10e66 7677 case update_reshape_container_disks: {
d195167d 7678 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7679 if (apply_reshape_container_disks_update(
7680 u, super, &update->space_list))
7681 super->updates_pending++;
78b10e66
N
7682 break;
7683 }
48c5303a 7684 case update_reshape_migration: {
a29911da
PC
7685 struct imsm_update_reshape_migration *u = (void *)update->buf;
7686 if (apply_reshape_migration_update(
7687 u, super, &update->space_list))
7688 super->updates_pending++;
48c5303a
PC
7689 break;
7690 }
e8319a19
DW
7691 case update_activate_spare: {
7692 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7693 if (apply_update_activate_spare(u, super, st->arrays))
7694 super->updates_pending++;
8273f55e
DW
7695 break;
7696 }
7697 case update_create_array: {
7698 /* someone wants to create a new array, we need to be aware of
7699 * a few races/collisions:
7700 * 1/ 'Create' called by two separate instances of mdadm
7701 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7702 * devices that have since been assimilated via
7703 * activate_spare.
7704 * In the event this update can not be carried out mdadm will
7705 * (FIX ME) notice that its update did not take hold.
7706 */
7707 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7708 struct intel_dev *dv;
8273f55e
DW
7709 struct imsm_dev *dev;
7710 struct imsm_map *map, *new_map;
7711 unsigned long long start, end;
7712 unsigned long long new_start, new_end;
7713 int i;
54c2c1ea
DW
7714 struct disk_info *inf;
7715 struct dl *dl;
8273f55e
DW
7716
7717 /* handle racing creates: first come first serve */
7718 if (u->dev_idx < mpb->num_raid_devs) {
7719 dprintf("%s: subarray %d already defined\n",
7720 __func__, u->dev_idx);
ba2de7ba 7721 goto create_error;
8273f55e
DW
7722 }
7723
7724 /* check update is next in sequence */
7725 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7726 dprintf("%s: can not create array %d expected index %d\n",
7727 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7728 goto create_error;
8273f55e
DW
7729 }
7730
238c0a71 7731 new_map = get_imsm_map(&u->dev, MAP_0);
8273f55e
DW
7732 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7733 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7734 inf = get_disk_info(u);
8273f55e
DW
7735
7736 /* handle activate_spare versus create race:
7737 * check to make sure that overlapping arrays do not include
7738 * overalpping disks
7739 */
7740 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7741 dev = get_imsm_dev(super, i);
238c0a71 7742 map = get_imsm_map(dev, MAP_0);
8273f55e
DW
7743 start = __le32_to_cpu(map->pba_of_lba0);
7744 end = start + __le32_to_cpu(map->blocks_per_member);
7745 if ((new_start >= start && new_start <= end) ||
7746 (start >= new_start && start <= new_end))
54c2c1ea
DW
7747 /* overlap */;
7748 else
7749 continue;
7750
7751 if (disks_overlap(super, i, u)) {
8273f55e 7752 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7753 goto create_error;
8273f55e
DW
7754 }
7755 }
8273f55e 7756
949c47a0
DW
7757 /* check that prepare update was successful */
7758 if (!update->space) {
7759 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7760 goto create_error;
949c47a0
DW
7761 }
7762
54c2c1ea
DW
7763 /* check that all disks are still active before committing
7764 * changes. FIXME: could we instead handle this by creating a
7765 * degraded array? That's probably not what the user expects,
7766 * so better to drop this update on the floor.
7767 */
7768 for (i = 0; i < new_map->num_members; i++) {
7769 dl = serial_to_dl(inf[i].serial, super);
7770 if (!dl) {
7771 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7772 goto create_error;
54c2c1ea 7773 }
949c47a0
DW
7774 }
7775
8273f55e 7776 super->updates_pending++;
54c2c1ea
DW
7777
7778 /* convert spares to members and fixup ord_tbl */
7779 for (i = 0; i < new_map->num_members; i++) {
7780 dl = serial_to_dl(inf[i].serial, super);
7781 if (dl->index == -1) {
7782 dl->index = mpb->num_disks;
7783 mpb->num_disks++;
7784 dl->disk.status |= CONFIGURED_DISK;
7785 dl->disk.status &= ~SPARE_DISK;
7786 }
7787 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7788 }
7789
ba2de7ba
DW
7790 dv = update->space;
7791 dev = dv->dev;
949c47a0
DW
7792 update->space = NULL;
7793 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7794 dv->index = u->dev_idx;
7795 dv->next = super->devlist;
7796 super->devlist = dv;
8273f55e 7797 mpb->num_raid_devs++;
8273f55e 7798
4d1313e9 7799 imsm_update_version_info(super);
8273f55e 7800 break;
ba2de7ba
DW
7801 create_error:
7802 /* mdmon knows how to release update->space, but not
7803 * ((struct intel_dev *) update->space)->dev
7804 */
7805 if (update->space) {
7806 dv = update->space;
7807 free(dv->dev);
7808 }
8273f55e 7809 break;
e8319a19 7810 }
33414a01
DW
7811 case update_kill_array: {
7812 struct imsm_update_kill_array *u = (void *) update->buf;
7813 int victim = u->dev_idx;
7814 struct active_array *a;
7815 struct intel_dev **dp;
7816 struct imsm_dev *dev;
7817
7818 /* sanity check that we are not affecting the uuid of
7819 * active arrays, or deleting an active array
7820 *
7821 * FIXME when immutable ids are available, but note that
7822 * we'll also need to fixup the invalidated/active
7823 * subarray indexes in mdstat
7824 */
7825 for (a = st->arrays; a; a = a->next)
7826 if (a->info.container_member >= victim)
7827 break;
7828 /* by definition if mdmon is running at least one array
7829 * is active in the container, so checking
7830 * mpb->num_raid_devs is just extra paranoia
7831 */
7832 dev = get_imsm_dev(super, victim);
7833 if (a || !dev || mpb->num_raid_devs == 1) {
7834 dprintf("failed to delete subarray-%d\n", victim);
7835 break;
7836 }
7837
7838 for (dp = &super->devlist; *dp;)
f21e18ca 7839 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7840 *dp = (*dp)->next;
7841 } else {
f21e18ca 7842 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7843 (*dp)->index--;
7844 dp = &(*dp)->next;
7845 }
7846 mpb->num_raid_devs--;
7847 super->updates_pending++;
7848 break;
7849 }
aa534678
DW
7850 case update_rename_array: {
7851 struct imsm_update_rename_array *u = (void *) update->buf;
7852 char name[MAX_RAID_SERIAL_LEN+1];
7853 int target = u->dev_idx;
7854 struct active_array *a;
7855 struct imsm_dev *dev;
7856
7857 /* sanity check that we are not affecting the uuid of
7858 * an active array
7859 */
7860 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7861 name[MAX_RAID_SERIAL_LEN] = '\0';
7862 for (a = st->arrays; a; a = a->next)
7863 if (a->info.container_member == target)
7864 break;
7865 dev = get_imsm_dev(super, u->dev_idx);
7866 if (a || !dev || !check_name(super, name, 1)) {
7867 dprintf("failed to rename subarray-%d\n", target);
7868 break;
7869 }
7870
cdbe98cd 7871 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7872 super->updates_pending++;
7873 break;
7874 }
1a64be56 7875 case update_add_remove_disk: {
43dad3d6 7876 /* we may be able to repair some arrays if disks are
1a64be56
LM
7877 * being added, check teh status of add_remove_disk
7878 * if discs has been added.
7879 */
7880 if (add_remove_disk_update(super)) {
43dad3d6 7881 struct active_array *a;
072b727f
DW
7882
7883 super->updates_pending++;
1a64be56 7884 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7885 a->check_degraded = 1;
7886 }
43dad3d6 7887 break;
e8319a19 7888 }
1a64be56
LM
7889 default:
7890 fprintf(stderr, "error: unsuported process update type:"
7891 "(type: %d)\n", type);
7892 }
e8319a19 7893}
88758e9d 7894
bc0b9d34
PC
7895static struct mdinfo *get_spares_for_grow(struct supertype *st);
7896
8273f55e
DW
7897static void imsm_prepare_update(struct supertype *st,
7898 struct metadata_update *update)
7899{
949c47a0 7900 /**
4d7b1503
DW
7901 * Allocate space to hold new disk entries, raid-device entries or a new
7902 * mpb if necessary. The manager synchronously waits for updates to
7903 * complete in the monitor, so new mpb buffers allocated here can be
7904 * integrated by the monitor thread without worrying about live pointers
7905 * in the manager thread.
8273f55e 7906 */
949c47a0 7907 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7908 struct intel_super *super = st->sb;
7909 struct imsm_super *mpb = super->anchor;
7910 size_t buf_len;
7911 size_t len = 0;
949c47a0
DW
7912
7913 switch (type) {
0ec5d470
AK
7914 case update_general_migration_checkpoint:
7915 dprintf("imsm: prepare_update() "
7916 "for update_general_migration_checkpoint called\n");
7917 break;
abedf5fc
KW
7918 case update_takeover: {
7919 struct imsm_update_takeover *u = (void *)update->buf;
7920 if (u->direction == R0_TO_R10) {
7921 void **tail = (void **)&update->space_list;
7922 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 7923 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
7924 int num_members = map->num_members;
7925 void *space;
7926 int size, i;
7927 int err = 0;
7928 /* allocate memory for added disks */
7929 for (i = 0; i < num_members; i++) {
7930 size = sizeof(struct dl);
7931 space = malloc(size);
7932 if (!space) {
7933 err++;
7934 break;
7935 }
7936 *tail = space;
7937 tail = space;
7938 *tail = NULL;
7939 }
7940 /* allocate memory for new device */
7941 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7942 (num_members * sizeof(__u32));
7943 space = malloc(size);
7944 if (!space)
7945 err++;
7946 else {
7947 *tail = space;
7948 tail = space;
7949 *tail = NULL;
7950 }
7951 if (!err) {
7952 len = disks_to_mpb_size(num_members * 2);
7953 } else {
7954 /* if allocation didn't success, free buffer */
7955 while (update->space_list) {
7956 void **sp = update->space_list;
7957 update->space_list = *sp;
7958 free(sp);
7959 }
7960 }
7961 }
7962
7963 break;
7964 }
78b10e66 7965 case update_reshape_container_disks: {
d195167d
AK
7966 /* Every raid device in the container is about to
7967 * gain some more devices, and we will enter a
7968 * reconfiguration.
7969 * So each 'imsm_map' will be bigger, and the imsm_vol
7970 * will now hold 2 of them.
7971 * Thus we need new 'struct imsm_dev' allocations sized
7972 * as sizeof_imsm_dev but with more devices in both maps.
7973 */
7974 struct imsm_update_reshape *u = (void *)update->buf;
7975 struct intel_dev *dl;
7976 void **space_tail = (void**)&update->space_list;
7977
7978 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7979
7980 for (dl = super->devlist; dl; dl = dl->next) {
7981 int size = sizeof_imsm_dev(dl->dev, 1);
7982 void *s;
d677e0b8
AK
7983 if (u->new_raid_disks > u->old_raid_disks)
7984 size += sizeof(__u32)*2*
7985 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7986 s = malloc(size);
7987 if (!s)
7988 break;
7989 *space_tail = s;
7990 space_tail = s;
7991 *space_tail = NULL;
7992 }
7993
7994 len = disks_to_mpb_size(u->new_raid_disks);
7995 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7996 break;
7997 }
48c5303a 7998 case update_reshape_migration: {
bc0b9d34
PC
7999 /* for migration level 0->5 we need to add disks
8000 * so the same as for container operation we will copy
8001 * device to the bigger location.
8002 * in memory prepared device and new disk area are prepared
8003 * for usage in process update
8004 */
8005 struct imsm_update_reshape_migration *u = (void *)update->buf;
8006 struct intel_dev *id;
8007 void **space_tail = (void **)&update->space_list;
8008 int size;
8009 void *s;
8010 int current_level = -1;
8011
8012 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8013
8014 /* add space for bigger array in update
8015 */
8016 for (id = super->devlist; id; id = id->next) {
8017 if (id->index == (unsigned)u->subdev) {
8018 size = sizeof_imsm_dev(id->dev, 1);
8019 if (u->new_raid_disks > u->old_raid_disks)
8020 size += sizeof(__u32)*2*
8021 (u->new_raid_disks - u->old_raid_disks);
8022 s = malloc(size);
8023 if (!s)
8024 break;
8025 *space_tail = s;
8026 space_tail = s;
8027 *space_tail = NULL;
8028 break;
8029 }
8030 }
8031 if (update->space_list == NULL)
8032 break;
8033
8034 /* add space for disk in update
8035 */
8036 size = sizeof(struct dl);
8037 s = malloc(size);
8038 if (!s) {
8039 free(update->space_list);
8040 update->space_list = NULL;
8041 break;
8042 }
8043 *space_tail = s;
8044 space_tail = s;
8045 *space_tail = NULL;
8046
8047 /* add spare device to update
8048 */
8049 for (id = super->devlist ; id; id = id->next)
8050 if (id->index == (unsigned)u->subdev) {
8051 struct imsm_dev *dev;
8052 struct imsm_map *map;
8053
8054 dev = get_imsm_dev(super, u->subdev);
238c0a71 8055 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
8056 current_level = map->raid_level;
8057 break;
8058 }
8059 if ((u->new_level == 5) && (u->new_level != current_level)) {
8060 struct mdinfo *spares;
8061
8062 spares = get_spares_for_grow(st);
8063 if (spares) {
8064 struct dl *dl;
8065 struct mdinfo *dev;
8066
8067 dev = spares->devs;
8068 if (dev) {
8069 u->new_disks[0] =
8070 makedev(dev->disk.major,
8071 dev->disk.minor);
8072 dl = get_disk_super(super,
8073 dev->disk.major,
8074 dev->disk.minor);
8075 dl->index = u->old_raid_disks;
8076 dev = dev->next;
8077 }
8078 sysfs_free(spares);
8079 }
8080 }
8081 len = disks_to_mpb_size(u->new_raid_disks);
8082 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
8083 break;
8084 }
949c47a0
DW
8085 case update_create_array: {
8086 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8087 struct intel_dev *dv;
54c2c1ea 8088 struct imsm_dev *dev = &u->dev;
238c0a71 8089 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
8090 struct dl *dl;
8091 struct disk_info *inf;
8092 int i;
8093 int activate = 0;
949c47a0 8094
54c2c1ea
DW
8095 inf = get_disk_info(u);
8096 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
8097 /* allocate a new super->devlist entry */
8098 dv = malloc(sizeof(*dv));
8099 if (dv) {
8100 dv->dev = malloc(len);
8101 if (dv->dev)
8102 update->space = dv;
8103 else {
8104 free(dv);
8105 update->space = NULL;
8106 }
8107 }
949c47a0 8108
54c2c1ea
DW
8109 /* count how many spares will be converted to members */
8110 for (i = 0; i < map->num_members; i++) {
8111 dl = serial_to_dl(inf[i].serial, super);
8112 if (!dl) {
8113 /* hmm maybe it failed?, nothing we can do about
8114 * it here
8115 */
8116 continue;
8117 }
8118 if (count_memberships(dl, super) == 0)
8119 activate++;
8120 }
8121 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
8122 break;
8123 default:
8124 break;
8125 }
8126 }
8273f55e 8127
4d7b1503
DW
8128 /* check if we need a larger metadata buffer */
8129 if (super->next_buf)
8130 buf_len = super->next_len;
8131 else
8132 buf_len = super->len;
8133
8134 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8135 /* ok we need a larger buf than what is currently allocated
8136 * if this allocation fails process_update will notice that
8137 * ->next_len is set and ->next_buf is NULL
8138 */
8139 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8140 if (super->next_buf)
8141 free(super->next_buf);
8142
8143 super->next_len = buf_len;
1f45a8ad
DW
8144 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8145 memset(super->next_buf, 0, buf_len);
8146 else
4d7b1503
DW
8147 super->next_buf = NULL;
8148 }
8273f55e
DW
8149}
8150
ae6aad82 8151/* must be called while manager is quiesced */
f21e18ca 8152static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
8153{
8154 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
8155 struct dl *iter;
8156 struct imsm_dev *dev;
8157 struct imsm_map *map;
24565c9a
DW
8158 int i, j, num_members;
8159 __u32 ord;
ae6aad82 8160
24565c9a
DW
8161 dprintf("%s: deleting device[%d] from imsm_super\n",
8162 __func__, index);
ae6aad82
DW
8163
8164 /* shift all indexes down one */
8165 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 8166 if (iter->index > (int)index)
ae6aad82 8167 iter->index--;
47ee5a45 8168 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 8169 if (iter->index > (int)index)
47ee5a45 8170 iter->index--;
ae6aad82
DW
8171
8172 for (i = 0; i < mpb->num_raid_devs; i++) {
8173 dev = get_imsm_dev(super, i);
238c0a71 8174 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
8175 num_members = map->num_members;
8176 for (j = 0; j < num_members; j++) {
8177 /* update ord entries being careful not to propagate
8178 * ord-flags to the first map
8179 */
238c0a71 8180 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 8181
24565c9a
DW
8182 if (ord_to_idx(ord) <= index)
8183 continue;
ae6aad82 8184
238c0a71 8185 map = get_imsm_map(dev, MAP_0);
24565c9a 8186 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 8187 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
8188 if (map)
8189 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
8190 }
8191 }
8192
8193 mpb->num_disks--;
8194 super->updates_pending++;
24565c9a
DW
8195 if (*dlp) {
8196 struct dl *dl = *dlp;
8197
8198 *dlp = (*dlp)->next;
8199 __free_imsm_disk(dl);
8200 }
ae6aad82 8201}
9e2d750d 8202#endif /* MDASSEMBLE */
9a717282
AK
8203
8204static void close_targets(int *targets, int new_disks)
8205{
8206 int i;
8207
8208 if (!targets)
8209 return;
8210
8211 for (i = 0; i < new_disks; i++) {
8212 if (targets[i] >= 0) {
8213 close(targets[i]);
8214 targets[i] = -1;
8215 }
8216 }
8217}
8218
8219static int imsm_get_allowed_degradation(int level, int raid_disks,
8220 struct intel_super *super,
8221 struct imsm_dev *dev)
8222{
8223 switch (level) {
8224 case 10:{
8225 int ret_val = 0;
8226 struct imsm_map *map;
8227 int i;
8228
8229 ret_val = raid_disks/2;
8230 /* check map if all disks pairs not failed
8231 * in both maps
8232 */
238c0a71 8233 map = get_imsm_map(dev, MAP_0);
9a717282
AK
8234 for (i = 0; i < ret_val; i++) {
8235 int degradation = 0;
8236 if (get_imsm_disk(super, i) == NULL)
8237 degradation++;
8238 if (get_imsm_disk(super, i + 1) == NULL)
8239 degradation++;
8240 if (degradation == 2)
8241 return 0;
8242 }
238c0a71 8243 map = get_imsm_map(dev, MAP_1);
9a717282
AK
8244 /* if there is no second map
8245 * result can be returned
8246 */
8247 if (map == NULL)
8248 return ret_val;
8249 /* check degradation in second map
8250 */
8251 for (i = 0; i < ret_val; i++) {
8252 int degradation = 0;
8253 if (get_imsm_disk(super, i) == NULL)
8254 degradation++;
8255 if (get_imsm_disk(super, i + 1) == NULL)
8256 degradation++;
8257 if (degradation == 2)
8258 return 0;
8259 }
8260 return ret_val;
8261 }
8262 case 5:
8263 return 1;
8264 case 6:
8265 return 2;
8266 default:
8267 return 0;
8268 }
8269}
8270
8271
687629c2
AK
8272/*******************************************************************************
8273 * Function: open_backup_targets
8274 * Description: Function opens file descriptors for all devices given in
8275 * info->devs
8276 * Parameters:
8277 * info : general array info
8278 * raid_disks : number of disks
8279 * raid_fds : table of device's file descriptors
9a717282
AK
8280 * super : intel super for raid10 degradation check
8281 * dev : intel device for raid10 degradation check
687629c2
AK
8282 * Returns:
8283 * 0 : success
8284 * -1 : fail
8285 ******************************************************************************/
9a717282
AK
8286int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8287 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
8288{
8289 struct mdinfo *sd;
f627f5ad 8290 int i;
9a717282 8291 int opened = 0;
f627f5ad
AK
8292
8293 for (i = 0; i < raid_disks; i++)
8294 raid_fds[i] = -1;
687629c2
AK
8295
8296 for (sd = info->devs ; sd ; sd = sd->next) {
8297 char *dn;
8298
8299 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8300 dprintf("disk is faulty!!\n");
8301 continue;
8302 }
8303
8304 if ((sd->disk.raid_disk >= raid_disks) ||
8305 (sd->disk.raid_disk < 0))
8306 continue;
8307
8308 dn = map_dev(sd->disk.major,
8309 sd->disk.minor, 1);
8310 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8311 if (raid_fds[sd->disk.raid_disk] < 0) {
8312 fprintf(stderr, "cannot open component\n");
9a717282 8313 continue;
687629c2 8314 }
9a717282
AK
8315 opened++;
8316 }
8317 /* check if maximum array degradation level is not exceeded
8318 */
8319 if ((raid_disks - opened) >
8320 imsm_get_allowed_degradation(info->new_level,
8321 raid_disks,
8322 super, dev)) {
8323 fprintf(stderr, "Not enough disks can be opened.\n");
8324 close_targets(raid_fds, raid_disks);
8325 return -2;
687629c2
AK
8326 }
8327 return 0;
8328}
8329
9e2d750d 8330#ifndef MDASSEMBLE
687629c2
AK
8331/*******************************************************************************
8332 * Function: init_migr_record_imsm
8333 * Description: Function inits imsm migration record
8334 * Parameters:
8335 * super : imsm internal array info
8336 * dev : device under migration
8337 * info : general array info to find the smallest device
8338 * Returns:
8339 * none
8340 ******************************************************************************/
8341void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8342 struct mdinfo *info)
8343{
8344 struct intel_super *super = st->sb;
8345 struct migr_record *migr_rec = super->migr_rec;
8346 int new_data_disks;
8347 unsigned long long dsize, dev_sectors;
8348 long long unsigned min_dev_sectors = -1LLU;
8349 struct mdinfo *sd;
8350 char nm[30];
8351 int fd;
238c0a71
AK
8352 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8353 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 8354 unsigned long long num_migr_units;
3ef4403c 8355 unsigned long long array_blocks;
687629c2
AK
8356
8357 memset(migr_rec, 0, sizeof(struct migr_record));
8358 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8359
8360 /* only ascending reshape supported now */
8361 migr_rec->ascending_migr = __cpu_to_le32(1);
8362
8363 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8364 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8365 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
238c0a71 8366 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
8367 migr_rec->blocks_per_unit =
8368 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8369 migr_rec->dest_depth_per_unit =
8370 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8371 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8372 num_migr_units =
8373 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8374
8375 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8376 num_migr_units++;
8377 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8378
8379 migr_rec->post_migr_vol_cap = dev->size_low;
8380 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8381
8382
8383 /* Find the smallest dev */
8384 for (sd = info->devs ; sd ; sd = sd->next) {
8385 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8386 fd = dev_open(nm, O_RDONLY);
8387 if (fd < 0)
8388 continue;
8389 get_dev_size(fd, NULL, &dsize);
8390 dev_sectors = dsize / 512;
8391 if (dev_sectors < min_dev_sectors)
8392 min_dev_sectors = dev_sectors;
8393 close(fd);
8394 }
8395 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8396 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8397
8398 write_imsm_migr_rec(st);
8399
8400 return;
8401}
8402
8403/*******************************************************************************
8404 * Function: save_backup_imsm
8405 * Description: Function saves critical data stripes to Migration Copy Area
8406 * and updates the current migration unit status.
8407 * Use restore_stripes() to form a destination stripe,
8408 * and to write it to the Copy Area.
8409 * Parameters:
8410 * st : supertype information
aea93171 8411 * dev : imsm device that backup is saved for
687629c2
AK
8412 * info : general array info
8413 * buf : input buffer
687629c2
AK
8414 * length : length of data to backup (blocks_per_unit)
8415 * Returns:
8416 * 0 : success
8417 *, -1 : fail
8418 ******************************************************************************/
8419int save_backup_imsm(struct supertype *st,
8420 struct imsm_dev *dev,
8421 struct mdinfo *info,
8422 void *buf,
687629c2
AK
8423 int length)
8424{
8425 int rv = -1;
8426 struct intel_super *super = st->sb;
8427 unsigned long long *target_offsets = NULL;
8428 int *targets = NULL;
8429 int i;
238c0a71 8430 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 8431 int new_disks = map_dest->num_members;
ab724b98
AK
8432 int dest_layout = 0;
8433 int dest_chunk;
d1877f69 8434 unsigned long long start;
238c0a71 8435 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
8436
8437 targets = malloc(new_disks * sizeof(int));
8438 if (!targets)
8439 goto abort;
8440
7e45b550
AK
8441 for (i = 0; i < new_disks; i++)
8442 targets[i] = -1;
8443
687629c2
AK
8444 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8445 if (!target_offsets)
8446 goto abort;
8447
d1877f69 8448 start = info->reshape_progress * 512;
687629c2 8449 for (i = 0; i < new_disks; i++) {
687629c2
AK
8450 target_offsets[i] = (unsigned long long)
8451 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8452 /* move back copy area adderss, it will be moved forward
8453 * in restore_stripes() using start input variable
8454 */
8455 target_offsets[i] -= start/data_disks;
687629c2
AK
8456 }
8457
9a717282
AK
8458 if (open_backup_targets(info, new_disks, targets,
8459 super, dev))
687629c2
AK
8460 goto abort;
8461
68eb8bc6 8462 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8463 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8464
687629c2
AK
8465 if (restore_stripes(targets, /* list of dest devices */
8466 target_offsets, /* migration record offsets */
8467 new_disks,
ab724b98
AK
8468 dest_chunk,
8469 map_dest->raid_level,
8470 dest_layout,
8471 -1, /* source backup file descriptor */
8472 0, /* input buf offset
8473 * always 0 buf is already offseted */
d1877f69 8474 start,
687629c2
AK
8475 length,
8476 buf) != 0) {
8477 fprintf(stderr, Name ": Error restoring stripes\n");
8478 goto abort;
8479 }
8480
8481 rv = 0;
8482
8483abort:
8484 if (targets) {
9a717282 8485 close_targets(targets, new_disks);
687629c2
AK
8486 free(targets);
8487 }
8488 free(target_offsets);
8489
8490 return rv;
8491}
8492
8493/*******************************************************************************
8494 * Function: save_checkpoint_imsm
8495 * Description: Function called for current unit status update
8496 * in the migration record. It writes it to disk.
8497 * Parameters:
8498 * super : imsm internal array info
8499 * info : general array info
8500 * Returns:
8501 * 0: success
8502 * 1: failure
0228d92c
AK
8503 * 2: failure, means no valid migration record
8504 * / no general migration in progress /
687629c2
AK
8505 ******************************************************************************/
8506int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8507{
8508 struct intel_super *super = st->sb;
f8b72ef5
AK
8509 unsigned long long blocks_per_unit;
8510 unsigned long long curr_migr_unit;
8511
2e062e82
AK
8512 if (load_imsm_migr_rec(super, info) != 0) {
8513 dprintf("imsm: ERROR: Cannot read migration record "
8514 "for checkpoint save.\n");
8515 return 1;
8516 }
8517
f8b72ef5
AK
8518 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8519 if (blocks_per_unit == 0) {
0228d92c
AK
8520 dprintf("imsm: no migration in progress.\n");
8521 return 2;
687629c2 8522 }
f8b72ef5
AK
8523 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8524 /* check if array is alligned to copy area
8525 * if it is not alligned, add one to current migration unit value
8526 * this can happend on array reshape finish only
8527 */
8528 if (info->reshape_progress % blocks_per_unit)
8529 curr_migr_unit++;
687629c2
AK
8530
8531 super->migr_rec->curr_migr_unit =
f8b72ef5 8532 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8533 super->migr_rec->rec_status = __cpu_to_le32(state);
8534 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8535 __cpu_to_le32(curr_migr_unit *
8536 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8537 if (write_imsm_migr_rec(st) < 0) {
8538 dprintf("imsm: Cannot write migration record "
8539 "outside backup area\n");
8540 return 1;
8541 }
8542
8543 return 0;
8544}
8545
276d77db
AK
8546/*******************************************************************************
8547 * Function: recover_backup_imsm
8548 * Description: Function recovers critical data from the Migration Copy Area
8549 * while assembling an array.
8550 * Parameters:
8551 * super : imsm internal array info
8552 * info : general array info
8553 * Returns:
8554 * 0 : success (or there is no data to recover)
8555 * 1 : fail
8556 ******************************************************************************/
8557int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8558{
8559 struct intel_super *super = st->sb;
8560 struct migr_record *migr_rec = super->migr_rec;
8561 struct imsm_map *map_dest = NULL;
8562 struct intel_dev *id = NULL;
8563 unsigned long long read_offset;
8564 unsigned long long write_offset;
8565 unsigned unit_len;
8566 int *targets = NULL;
8567 int new_disks, i, err;
8568 char *buf = NULL;
8569 int retval = 1;
8570 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8571 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8572 char buffer[20];
6c3560c0 8573 int skipped_disks = 0;
276d77db
AK
8574
8575 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8576 if (err < 1)
8577 return 1;
8578
8579 /* recover data only during assemblation */
8580 if (strncmp(buffer, "inactive", 8) != 0)
8581 return 0;
8582 /* no data to recover */
8583 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8584 return 0;
8585 if (curr_migr_unit >= num_migr_units)
8586 return 1;
8587
8588 /* find device during reshape */
8589 for (id = super->devlist; id; id = id->next)
8590 if (is_gen_migration(id->dev))
8591 break;
8592 if (id == NULL)
8593 return 1;
8594
238c0a71 8595 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
8596 new_disks = map_dest->num_members;
8597
8598 read_offset = (unsigned long long)
8599 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8600
8601 write_offset = ((unsigned long long)
8602 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8603 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8604
8605 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8606 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8607 goto abort;
8608 targets = malloc(new_disks * sizeof(int));
8609 if (!targets)
8610 goto abort;
8611
9a717282 8612 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
f627f5ad
AK
8613 fprintf(stderr,
8614 Name ": Cannot open some devices belonging to array.\n");
8615 goto abort;
8616 }
276d77db
AK
8617
8618 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8619 if (targets[i] < 0) {
8620 skipped_disks++;
8621 continue;
8622 }
276d77db
AK
8623 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8624 fprintf(stderr,
8625 Name ": Cannot seek to block: %s\n",
8626 strerror(errno));
137debce
AK
8627 skipped_disks++;
8628 continue;
276d77db 8629 }
9ec11d1a 8630 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8631 fprintf(stderr,
8632 Name ": Cannot read copy area block: %s\n",
8633 strerror(errno));
137debce
AK
8634 skipped_disks++;
8635 continue;
276d77db
AK
8636 }
8637 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8638 fprintf(stderr,
8639 Name ": Cannot seek to block: %s\n",
8640 strerror(errno));
137debce
AK
8641 skipped_disks++;
8642 continue;
276d77db 8643 }
9ec11d1a 8644 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8645 fprintf(stderr,
8646 Name ": Cannot restore block: %s\n",
8647 strerror(errno));
137debce
AK
8648 skipped_disks++;
8649 continue;
276d77db
AK
8650 }
8651 }
8652
137debce
AK
8653 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8654 new_disks,
8655 super,
8656 id->dev)) {
6c3560c0
AK
8657 fprintf(stderr,
8658 Name ": Cannot restore data from backup."
8659 " Too many failed disks\n");
8660 goto abort;
8661 }
8662
befb629b
AK
8663 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8664 /* ignore error == 2, this can mean end of reshape here
8665 */
8666 dprintf("imsm: Cannot write checkpoint to "
8667 "migration record (UNIT_SRC_NORMAL) during restart\n");
8668 } else
276d77db 8669 retval = 0;
276d77db
AK
8670
8671abort:
8672 if (targets) {
8673 for (i = 0; i < new_disks; i++)
8674 if (targets[i])
8675 close(targets[i]);
8676 free(targets);
8677 }
8678 free(buf);
8679 return retval;
8680}
8681
2cda7640
ML
8682static char disk_by_path[] = "/dev/disk/by-path/";
8683
8684static const char *imsm_get_disk_controller_domain(const char *path)
8685{
2cda7640 8686 char disk_path[PATH_MAX];
96234762
LM
8687 char *drv=NULL;
8688 struct stat st;
2cda7640 8689
96234762
LM
8690 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8691 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8692 if (stat(disk_path, &st) == 0) {
8693 struct sys_dev* hba;
8694 char *path=NULL;
8695
8696 path = devt_to_devpath(st.st_rdev);
8697 if (path == NULL)
8698 return "unknown";
8699 hba = find_disk_attached_hba(-1, path);
8700 if (hba && hba->type == SYS_DEV_SAS)
8701 drv = "isci";
8702 else if (hba && hba->type == SYS_DEV_SATA)
8703 drv = "ahci";
8704 else
8705 drv = "unknown";
8706 dprintf("path: %s hba: %s attached: %s\n",
8707 path, (hba) ? hba->path : "NULL", drv);
8708 free(path);
8709 if (hba)
8710 free_sys_dev(&hba);
2cda7640 8711 }
96234762 8712 return drv;
2cda7640
ML
8713}
8714
78b10e66
N
8715static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8716{
8717 char subdev_name[20];
8718 struct mdstat_ent *mdstat;
8719
8720 sprintf(subdev_name, "%d", subdev);
8721 mdstat = mdstat_by_subdev(subdev_name, container);
8722 if (!mdstat)
8723 return -1;
8724
8725 *minor = mdstat->devnum;
8726 free_mdstat(mdstat);
8727 return 0;
8728}
8729
8730static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8731 struct geo_params *geo,
8732 int *old_raid_disks)
8733{
694575e7
KW
8734 /* currently we only support increasing the number of devices
8735 * for a container. This increases the number of device for each
8736 * member array. They must all be RAID0 or RAID5.
8737 */
78b10e66
N
8738 int ret_val = 0;
8739 struct mdinfo *info, *member;
8740 int devices_that_can_grow = 0;
8741
8742 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8743 "st->devnum = (%i)\n",
8744 st->devnum);
8745
8746 if (geo->size != -1 ||
8747 geo->level != UnSet ||
8748 geo->layout != UnSet ||
8749 geo->chunksize != 0 ||
8750 geo->raid_disks == UnSet) {
8751 dprintf("imsm: Container operation is allowed for "
8752 "raid disks number change only.\n");
8753 return ret_val;
8754 }
8755
8756 info = container_content_imsm(st, NULL);
8757 for (member = info; member; member = member->next) {
8758 int result;
8759 int minor;
8760
8761 dprintf("imsm: checking device_num: %i\n",
8762 member->container_member);
8763
d7d205bd 8764 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8765 /* we work on container for Online Capacity Expansion
8766 * only so raid_disks has to grow
8767 */
8768 dprintf("imsm: for container operation raid disks "
8769 "increase is required\n");
8770 break;
8771 }
8772
8773 if ((info->array.level != 0) &&
8774 (info->array.level != 5)) {
8775 /* we cannot use this container with other raid level
8776 */
690aae1a 8777 dprintf("imsm: for container operation wrong"
78b10e66
N
8778 " raid level (%i) detected\n",
8779 info->array.level);
8780 break;
8781 } else {
8782 /* check for platform support
8783 * for this raid level configuration
8784 */
8785 struct intel_super *super = st->sb;
8786 if (!is_raid_level_supported(super->orom,
8787 member->array.level,
8788 geo->raid_disks)) {
690aae1a 8789 dprintf("platform does not support raid%d with"
78b10e66
N
8790 " %d disk%s\n",
8791 info->array.level,
8792 geo->raid_disks,
8793 geo->raid_disks > 1 ? "s" : "");
8794 break;
8795 }
2a4a08e7
AK
8796 /* check if component size is aligned to chunk size
8797 */
8798 if (info->component_size %
8799 (info->array.chunk_size/512)) {
8800 dprintf("Component size is not aligned to "
8801 "chunk size\n");
8802 break;
8803 }
78b10e66
N
8804 }
8805
8806 if (*old_raid_disks &&
8807 info->array.raid_disks != *old_raid_disks)
8808 break;
8809 *old_raid_disks = info->array.raid_disks;
8810
8811 /* All raid5 and raid0 volumes in container
8812 * have to be ready for Online Capacity Expansion
8813 * so they need to be assembled. We have already
8814 * checked that no recovery etc is happening.
8815 */
8816 result = imsm_find_array_minor_by_subdev(member->container_member,
8817 st->container_dev,
8818 &minor);
8819 if (result < 0) {
8820 dprintf("imsm: cannot find array\n");
8821 break;
8822 }
8823 devices_that_can_grow++;
8824 }
8825 sysfs_free(info);
8826 if (!member && devices_that_can_grow)
8827 ret_val = 1;
8828
8829 if (ret_val)
8830 dprintf("\tContainer operation allowed\n");
8831 else
8832 dprintf("\tError: %i\n", ret_val);
8833
8834 return ret_val;
8835}
8836
8837/* Function: get_spares_for_grow
8838 * Description: Allocates memory and creates list of spare devices
8839 * avaliable in container. Checks if spare drive size is acceptable.
8840 * Parameters: Pointer to the supertype structure
8841 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8842 * NULL if fail
8843 */
8844static struct mdinfo *get_spares_for_grow(struct supertype *st)
8845{
78b10e66 8846 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8847 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8848}
8849
8850/******************************************************************************
8851 * function: imsm_create_metadata_update_for_reshape
8852 * Function creates update for whole IMSM container.
8853 *
8854 ******************************************************************************/
8855static int imsm_create_metadata_update_for_reshape(
8856 struct supertype *st,
8857 struct geo_params *geo,
8858 int old_raid_disks,
8859 struct imsm_update_reshape **updatep)
8860{
8861 struct intel_super *super = st->sb;
8862 struct imsm_super *mpb = super->anchor;
8863 int update_memory_size = 0;
8864 struct imsm_update_reshape *u = NULL;
8865 struct mdinfo *spares = NULL;
8866 int i;
8867 int delta_disks = 0;
bbd24d86 8868 struct mdinfo *dev;
78b10e66
N
8869
8870 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8871 geo->raid_disks);
8872
8873 delta_disks = geo->raid_disks - old_raid_disks;
8874
8875 /* size of all update data without anchor */
8876 update_memory_size = sizeof(struct imsm_update_reshape);
8877
8878 /* now add space for spare disks that we need to add. */
8879 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8880
8881 u = calloc(1, update_memory_size);
8882 if (u == NULL) {
8883 dprintf("error: "
8884 "cannot get memory for imsm_update_reshape update\n");
8885 return 0;
8886 }
8887 u->type = update_reshape_container_disks;
8888 u->old_raid_disks = old_raid_disks;
8889 u->new_raid_disks = geo->raid_disks;
8890
8891 /* now get spare disks list
8892 */
8893 spares = get_spares_for_grow(st);
8894
8895 if (spares == NULL
8896 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8897 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8898 "for %s.\n", geo->dev_name);
e4c72d1d 8899 i = -1;
78b10e66
N
8900 goto abort;
8901 }
8902
8903 /* we have got spares
8904 * update disk list in imsm_disk list table in anchor
8905 */
8906 dprintf("imsm: %i spares are available.\n\n",
8907 spares->array.spare_disks);
8908
bbd24d86 8909 dev = spares->devs;
78b10e66 8910 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8911 struct dl *dl;
8912
bbd24d86
AK
8913 if (dev == NULL)
8914 break;
78b10e66
N
8915 u->new_disks[i] = makedev(dev->disk.major,
8916 dev->disk.minor);
8917 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8918 dl->index = mpb->num_disks;
8919 mpb->num_disks++;
bbd24d86 8920 dev = dev->next;
78b10e66 8921 }
78b10e66
N
8922
8923abort:
8924 /* free spares
8925 */
8926 sysfs_free(spares);
8927
d677e0b8 8928 dprintf("imsm: reshape update preparation :");
78b10e66 8929 if (i == delta_disks) {
d677e0b8 8930 dprintf(" OK\n");
78b10e66
N
8931 *updatep = u;
8932 return update_memory_size;
8933 }
8934 free(u);
d677e0b8 8935 dprintf(" Error\n");
78b10e66
N
8936
8937 return 0;
8938}
8939
48c5303a
PC
8940/******************************************************************************
8941 * function: imsm_create_metadata_update_for_migration()
8942 * Creates update for IMSM array.
8943 *
8944 ******************************************************************************/
8945static int imsm_create_metadata_update_for_migration(
8946 struct supertype *st,
8947 struct geo_params *geo,
8948 struct imsm_update_reshape_migration **updatep)
8949{
8950 struct intel_super *super = st->sb;
8951 int update_memory_size = 0;
8952 struct imsm_update_reshape_migration *u = NULL;
8953 struct imsm_dev *dev;
8954 int previous_level = -1;
8955
8956 dprintf("imsm_create_metadata_update_for_migration(enter)"
8957 " New Level = %i\n", geo->level);
8958
8959 /* size of all update data without anchor */
8960 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8961
8962 u = calloc(1, update_memory_size);
8963 if (u == NULL) {
8964 dprintf("error: cannot get memory for "
8965 "imsm_create_metadata_update_for_migration\n");
8966 return 0;
8967 }
8968 u->type = update_reshape_migration;
8969 u->subdev = super->current_vol;
8970 u->new_level = geo->level;
8971 u->new_layout = geo->layout;
8972 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8973 u->new_disks[0] = -1;
4bba0439 8974 u->new_chunksize = -1;
48c5303a
PC
8975
8976 dev = get_imsm_dev(super, u->subdev);
8977 if (dev) {
8978 struct imsm_map *map;
8979
238c0a71 8980 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
8981 if (map) {
8982 int current_chunk_size =
8983 __le16_to_cpu(map->blocks_per_strip) / 2;
8984
8985 if (geo->chunksize != current_chunk_size) {
8986 u->new_chunksize = geo->chunksize / 1024;
8987 dprintf("imsm: "
8988 "chunk size change from %i to %i\n",
8989 current_chunk_size, u->new_chunksize);
8990 }
48c5303a 8991 previous_level = map->raid_level;
4bba0439 8992 }
48c5303a
PC
8993 }
8994 if ((geo->level == 5) && (previous_level == 0)) {
8995 struct mdinfo *spares = NULL;
8996
8997 u->new_raid_disks++;
8998 spares = get_spares_for_grow(st);
8999 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9000 free(u);
9001 sysfs_free(spares);
9002 update_memory_size = 0;
9003 dprintf("error: cannot get spare device "
9004 "for requested migration");
9005 return 0;
9006 }
9007 sysfs_free(spares);
9008 }
9009 dprintf("imsm: reshape update preparation : OK\n");
9010 *updatep = u;
9011
9012 return update_memory_size;
9013}
9014
8dd70bce
AK
9015static void imsm_update_metadata_locally(struct supertype *st,
9016 void *buf, int len)
9017{
9018 struct metadata_update mu;
9019
9020 mu.buf = buf;
9021 mu.len = len;
9022 mu.space = NULL;
9023 mu.space_list = NULL;
9024 mu.next = NULL;
9025 imsm_prepare_update(st, &mu);
9026 imsm_process_update(st, &mu);
9027
9028 while (mu.space_list) {
9029 void **space = mu.space_list;
9030 mu.space_list = *space;
9031 free(space);
9032 }
9033}
78b10e66 9034
471bceb6 9035/***************************************************************************
694575e7 9036* Function: imsm_analyze_change
471bceb6
KW
9037* Description: Function analyze change for single volume
9038* and validate if transition is supported
694575e7
KW
9039* Parameters: Geometry parameters, supertype structure
9040* Returns: Operation type code on success, -1 if fail
471bceb6
KW
9041****************************************************************************/
9042enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9043 struct geo_params *geo)
694575e7 9044{
471bceb6
KW
9045 struct mdinfo info;
9046 int change = -1;
9047 int check_devs = 0;
c21e737b 9048 int chunk;
e91a3bad
LM
9049 int devNumChange=0;
9050 int layout = -1;
471bceb6
KW
9051
9052 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
9053 if ((geo->level != info.array.level) &&
9054 (geo->level >= 0) &&
9055 (geo->level != UnSet)) {
9056 switch (info.array.level) {
9057 case 0:
9058 if (geo->level == 5) {
b5347799 9059 change = CH_MIGRATION;
e13ce846
AK
9060 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9061 fprintf(stderr,
9062 Name " Error. Requested Layout "
9063 "not supported (left-asymmetric layout "
9064 "is supported only)!\n");
9065 change = -1;
9066 goto analyse_change_exit;
9067 }
e91a3bad 9068 layout = geo->layout;
471bceb6 9069 check_devs = 1;
e91a3bad
LM
9070 devNumChange = 1; /* parity disk added */
9071 } else if (geo->level == 10) {
471bceb6
KW
9072 change = CH_TAKEOVER;
9073 check_devs = 1;
e91a3bad
LM
9074 devNumChange = 2; /* two mirrors added */
9075 layout = 0x102; /* imsm supported layout */
471bceb6 9076 }
dfe77a9e
KW
9077 break;
9078 case 1:
471bceb6
KW
9079 case 10:
9080 if (geo->level == 0) {
9081 change = CH_TAKEOVER;
9082 check_devs = 1;
e91a3bad
LM
9083 devNumChange = -(geo->raid_disks/2);
9084 layout = 0; /* imsm raid0 layout */
471bceb6
KW
9085 }
9086 break;
9087 }
9088 if (change == -1) {
9089 fprintf(stderr,
9090 Name " Error. Level Migration from %d to %d "
9091 "not supported!\n",
9092 info.array.level, geo->level);
9093 goto analyse_change_exit;
9094 }
9095 } else
9096 geo->level = info.array.level;
9097
9098 if ((geo->layout != info.array.layout)
9099 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 9100 change = CH_MIGRATION;
471bceb6
KW
9101 if ((info.array.layout == 0)
9102 && (info.array.level == 5)
9103 && (geo->layout == 5)) {
9104 /* reshape 5 -> 4 */
9105 } else if ((info.array.layout == 5)
9106 && (info.array.level == 5)
9107 && (geo->layout == 0)) {
9108 /* reshape 4 -> 5 */
9109 geo->layout = 0;
9110 geo->level = 5;
9111 } else {
9112 fprintf(stderr,
9113 Name " Error. Layout Migration from %d to %d "
9114 "not supported!\n",
9115 info.array.layout, geo->layout);
9116 change = -1;
9117 goto analyse_change_exit;
9118 }
9119 } else
9120 geo->layout = info.array.layout;
9121
9122 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9123 && (geo->chunksize != info.array.chunk_size))
b5347799 9124 change = CH_MIGRATION;
471bceb6
KW
9125 else
9126 geo->chunksize = info.array.chunk_size;
9127
c21e737b 9128 chunk = geo->chunksize / 1024;
471bceb6
KW
9129 if (!validate_geometry_imsm(st,
9130 geo->level,
e91a3bad
LM
9131 layout,
9132 geo->raid_disks + devNumChange,
c21e737b 9133 &chunk,
471bceb6
KW
9134 geo->size,
9135 0, 0, 1))
9136 change = -1;
9137
9138 if (check_devs) {
9139 struct intel_super *super = st->sb;
9140 struct imsm_super *mpb = super->anchor;
9141
9142 if (mpb->num_raid_devs > 1) {
9143 fprintf(stderr,
9144 Name " Error. Cannot perform operation on %s"
9145 "- for this operation it MUST be single "
9146 "array in container\n",
9147 geo->dev_name);
9148 change = -1;
9149 }
9150 }
9151
9152analyse_change_exit:
9153
9154 return change;
694575e7
KW
9155}
9156
bb025c2f
KW
9157int imsm_takeover(struct supertype *st, struct geo_params *geo)
9158{
9159 struct intel_super *super = st->sb;
9160 struct imsm_update_takeover *u;
9161
9162 u = malloc(sizeof(struct imsm_update_takeover));
9163 if (u == NULL)
9164 return 1;
9165
9166 u->type = update_takeover;
9167 u->subarray = super->current_vol;
9168
9169 /* 10->0 transition */
9170 if (geo->level == 0)
9171 u->direction = R10_TO_R0;
9172
0529c688
KW
9173 /* 0->10 transition */
9174 if (geo->level == 10)
9175 u->direction = R0_TO_R10;
9176
bb025c2f
KW
9177 /* update metadata locally */
9178 imsm_update_metadata_locally(st, u,
9179 sizeof(struct imsm_update_takeover));
9180 /* and possibly remotely */
9181 if (st->update_tail)
9182 append_metadata_update(st, u,
9183 sizeof(struct imsm_update_takeover));
9184 else
9185 free(u);
9186
9187 return 0;
9188}
9189
78b10e66
N
9190static int imsm_reshape_super(struct supertype *st, long long size, int level,
9191 int layout, int chunksize, int raid_disks,
41784c88
AK
9192 int delta_disks, char *backup, char *dev,
9193 int verbose)
78b10e66 9194{
78b10e66
N
9195 int ret_val = 1;
9196 struct geo_params geo;
9197
9198 dprintf("imsm: reshape_super called.\n");
9199
71204a50 9200 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
9201
9202 geo.dev_name = dev;
694575e7 9203 geo.dev_id = st->devnum;
78b10e66
N
9204 geo.size = size;
9205 geo.level = level;
9206 geo.layout = layout;
9207 geo.chunksize = chunksize;
9208 geo.raid_disks = raid_disks;
41784c88
AK
9209 if (delta_disks != UnSet)
9210 geo.raid_disks += delta_disks;
78b10e66
N
9211
9212 dprintf("\tfor level : %i\n", geo.level);
9213 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9214
9215 if (experimental() == 0)
9216 return ret_val;
9217
78b10e66 9218 if (st->container_dev == st->devnum) {
694575e7
KW
9219 /* On container level we can only increase number of devices. */
9220 dprintf("imsm: info: Container operation\n");
78b10e66 9221 int old_raid_disks = 0;
6dc0be30 9222
78b10e66
N
9223 if (imsm_reshape_is_allowed_on_container(
9224 st, &geo, &old_raid_disks)) {
9225 struct imsm_update_reshape *u = NULL;
9226 int len;
9227
9228 len = imsm_create_metadata_update_for_reshape(
9229 st, &geo, old_raid_disks, &u);
9230
ed08d51c
AK
9231 if (len <= 0) {
9232 dprintf("imsm: Cannot prepare update\n");
9233 goto exit_imsm_reshape_super;
9234 }
9235
8dd70bce
AK
9236 ret_val = 0;
9237 /* update metadata locally */
9238 imsm_update_metadata_locally(st, u, len);
9239 /* and possibly remotely */
9240 if (st->update_tail)
9241 append_metadata_update(st, u, len);
9242 else
ed08d51c 9243 free(u);
8dd70bce 9244
694575e7 9245 } else {
e7ff7e40
AK
9246 fprintf(stderr, Name ": (imsm) Operation "
9247 "is not allowed on this container\n");
694575e7
KW
9248 }
9249 } else {
9250 /* On volume level we support following operations
471bceb6
KW
9251 * - takeover: raid10 -> raid0; raid0 -> raid10
9252 * - chunk size migration
9253 * - migration: raid5 -> raid0; raid0 -> raid5
9254 */
9255 struct intel_super *super = st->sb;
9256 struct intel_dev *dev = super->devlist;
9257 int change, devnum;
694575e7 9258 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
9259 /* find requested device */
9260 while (dev) {
19986c72
MB
9261 if (imsm_find_array_minor_by_subdev(
9262 dev->index, st->container_dev, &devnum) == 0
9263 && devnum == geo.dev_id)
471bceb6
KW
9264 break;
9265 dev = dev->next;
9266 }
9267 if (dev == NULL) {
9268 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9269 geo.dev_name, geo.dev_id);
9270 goto exit_imsm_reshape_super;
9271 }
9272 super->current_vol = dev->index;
694575e7
KW
9273 change = imsm_analyze_change(st, &geo);
9274 switch (change) {
471bceb6 9275 case CH_TAKEOVER:
bb025c2f 9276 ret_val = imsm_takeover(st, &geo);
694575e7 9277 break;
48c5303a
PC
9278 case CH_MIGRATION: {
9279 struct imsm_update_reshape_migration *u = NULL;
9280 int len =
9281 imsm_create_metadata_update_for_migration(
9282 st, &geo, &u);
9283 if (len < 1) {
9284 dprintf("imsm: "
9285 "Cannot prepare update\n");
9286 break;
9287 }
471bceb6 9288 ret_val = 0;
48c5303a
PC
9289 /* update metadata locally */
9290 imsm_update_metadata_locally(st, u, len);
9291 /* and possibly remotely */
9292 if (st->update_tail)
9293 append_metadata_update(st, u, len);
9294 else
9295 free(u);
9296 }
9297 break;
471bceb6
KW
9298 default:
9299 ret_val = 1;
694575e7 9300 }
694575e7 9301 }
78b10e66 9302
ed08d51c 9303exit_imsm_reshape_super:
78b10e66
N
9304 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9305 return ret_val;
9306}
2cda7640 9307
eee67a47
AK
9308/*******************************************************************************
9309 * Function: wait_for_reshape_imsm
9310 * Description: Function writes new sync_max value and waits until
9311 * reshape process reach new position
9312 * Parameters:
9313 * sra : general array info
eee67a47
AK
9314 * ndata : number of disks in new array's layout
9315 * Returns:
9316 * 0 : success,
9317 * 1 : there is no reshape in progress,
9318 * -1 : fail
9319 ******************************************************************************/
ae9f01f8 9320int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
9321{
9322 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9323 unsigned long long completed;
ae9f01f8
AK
9324 /* to_complete : new sync_max position */
9325 unsigned long long to_complete = sra->reshape_progress;
9326 unsigned long long position_to_set = to_complete / ndata;
eee67a47 9327
ae9f01f8
AK
9328 if (fd < 0) {
9329 dprintf("imsm: wait_for_reshape_imsm() "
9330 "cannot open reshape_position\n");
eee67a47 9331 return 1;
ae9f01f8 9332 }
eee67a47 9333
ae9f01f8
AK
9334 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9335 dprintf("imsm: wait_for_reshape_imsm() "
9336 "cannot read reshape_position (no reshape in progres)\n");
9337 close(fd);
9338 return 0;
9339 }
eee67a47 9340
ae9f01f8
AK
9341 if (completed > to_complete) {
9342 dprintf("imsm: wait_for_reshape_imsm() "
9343 "wrong next position to set %llu (%llu)\n",
9344 to_complete, completed);
9345 close(fd);
9346 return -1;
9347 }
9348 dprintf("Position set: %llu\n", position_to_set);
9349 if (sysfs_set_num(sra, NULL, "sync_max",
9350 position_to_set) != 0) {
9351 dprintf("imsm: wait_for_reshape_imsm() "
9352 "cannot set reshape position to %llu\n",
9353 position_to_set);
9354 close(fd);
9355 return -1;
eee67a47
AK
9356 }
9357
eee67a47
AK
9358 do {
9359 char action[20];
9360 fd_set rfds;
9361 FD_ZERO(&rfds);
9362 FD_SET(fd, &rfds);
a47e44fb
AK
9363 select(fd+1, &rfds, NULL, NULL, NULL);
9364 if (sysfs_get_str(sra, NULL, "sync_action",
9365 action, 20) > 0 &&
9366 strncmp(action, "reshape", 7) != 0)
9367 break;
eee67a47 9368 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9369 dprintf("imsm: wait_for_reshape_imsm() "
9370 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9371 close(fd);
9372 return 1;
9373 }
eee67a47
AK
9374 } while (completed < to_complete);
9375 close(fd);
9376 return 0;
9377
9378}
9379
b915c95f
AK
9380/*******************************************************************************
9381 * Function: check_degradation_change
9382 * Description: Check that array hasn't become failed.
9383 * Parameters:
9384 * info : for sysfs access
9385 * sources : source disks descriptors
9386 * degraded: previous degradation level
9387 * Returns:
9388 * degradation level
9389 ******************************************************************************/
9390int check_degradation_change(struct mdinfo *info,
9391 int *sources,
9392 int degraded)
9393{
9394 unsigned long long new_degraded;
9395 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9396 if (new_degraded != (unsigned long long)degraded) {
9397 /* check each device to ensure it is still working */
9398 struct mdinfo *sd;
9399 new_degraded = 0;
9400 for (sd = info->devs ; sd ; sd = sd->next) {
9401 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9402 continue;
9403 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9404 char sbuf[20];
9405 if (sysfs_get_str(info,
9406 sd, "state", sbuf, 20) < 0 ||
9407 strstr(sbuf, "faulty") ||
9408 strstr(sbuf, "in_sync") == NULL) {
9409 /* this device is dead */
9410 sd->disk.state = (1<<MD_DISK_FAULTY);
9411 if (sd->disk.raid_disk >= 0 &&
9412 sources[sd->disk.raid_disk] >= 0) {
9413 close(sources[
9414 sd->disk.raid_disk]);
9415 sources[sd->disk.raid_disk] =
9416 -1;
9417 }
9418 new_degraded++;
9419 }
9420 }
9421 }
9422 }
9423
9424 return new_degraded;
9425}
9426
10f22854
AK
9427/*******************************************************************************
9428 * Function: imsm_manage_reshape
9429 * Description: Function finds array under reshape and it manages reshape
9430 * process. It creates stripes backups (if required) and sets
9431 * checheckpoits.
9432 * Parameters:
9433 * afd : Backup handle (nattive) - not used
9434 * sra : general array info
9435 * reshape : reshape parameters - not used
9436 * st : supertype structure
9437 * blocks : size of critical section [blocks]
9438 * fds : table of source device descriptor
9439 * offsets : start of array (offest per devices)
9440 * dests : not used
9441 * destfd : table of destination device descriptor
9442 * destoffsets : table of destination offsets (per device)
9443 * Returns:
9444 * 1 : success, reshape is done
9445 * 0 : fail
9446 ******************************************************************************/
999b4972
N
9447static int imsm_manage_reshape(
9448 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9449 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9450 int *fds, unsigned long long *offsets,
9451 int dests, int *destfd, unsigned long long *destoffsets)
9452{
10f22854
AK
9453 int ret_val = 0;
9454 struct intel_super *super = st->sb;
9455 struct intel_dev *dv = NULL;
9456 struct imsm_dev *dev = NULL;
a6b6d984 9457 struct imsm_map *map_src;
10f22854
AK
9458 int migr_vol_qan = 0;
9459 int ndata, odata; /* [bytes] */
9460 int chunk; /* [bytes] */
9461 struct migr_record *migr_rec;
9462 char *buf = NULL;
9463 unsigned int buf_size; /* [bytes] */
9464 unsigned long long max_position; /* array size [bytes] */
9465 unsigned long long next_step; /* [blocks]/[bytes] */
9466 unsigned long long old_data_stripe_length;
10f22854
AK
9467 unsigned long long start_src; /* [bytes] */
9468 unsigned long long start; /* [bytes] */
9469 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9470 int degraded = 0;
ab724b98 9471 int source_layout = 0;
10f22854 9472
1ab242d8 9473 if (!fds || !offsets || !sra)
10f22854
AK
9474 goto abort;
9475
9476 /* Find volume during the reshape */
9477 for (dv = super->devlist; dv; dv = dv->next) {
9478 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9479 && dv->dev->vol.migr_state == 1) {
9480 dev = dv->dev;
9481 migr_vol_qan++;
9482 }
9483 }
9484 /* Only one volume can migrate at the same time */
9485 if (migr_vol_qan != 1) {
9486 fprintf(stderr, Name " : %s", migr_vol_qan ?
9487 "Number of migrating volumes greater than 1\n" :
9488 "There is no volume during migrationg\n");
9489 goto abort;
9490 }
9491
238c0a71 9492 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
9493 if (map_src == NULL)
9494 goto abort;
10f22854 9495
238c0a71
AK
9496 ndata = imsm_num_data_members(dev, MAP_0);
9497 odata = imsm_num_data_members(dev, MAP_1);
10f22854 9498
7b1ab482 9499 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9500 old_data_stripe_length = odata * chunk;
9501
9502 migr_rec = super->migr_rec;
9503
10f22854
AK
9504 /* initialize migration record for start condition */
9505 if (sra->reshape_progress == 0)
9506 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9507 else {
9508 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9509 dprintf("imsm: cannot restart migration when data "
9510 "are present in copy area.\n");
9511 goto abort;
9512 }
9513 }
10f22854
AK
9514
9515 /* size for data */
9516 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9517 /* extend buffer size for parity disk */
9518 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9519 /* add space for stripe aligment */
9520 buf_size += old_data_stripe_length;
9521 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9522 dprintf("imsm: Cannot allocate checpoint buffer\n");
9523 goto abort;
9524 }
9525
3ef4403c 9526 max_position = sra->component_size * ndata;
68eb8bc6 9527 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9528
9529 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9530 __le32_to_cpu(migr_rec->num_migr_units)) {
9531 /* current reshape position [blocks] */
9532 unsigned long long current_position =
9533 __le32_to_cpu(migr_rec->blocks_per_unit)
9534 * __le32_to_cpu(migr_rec->curr_migr_unit);
9535 unsigned long long border;
9536
b915c95f
AK
9537 /* Check that array hasn't become failed.
9538 */
9539 degraded = check_degradation_change(sra, fds, degraded);
9540 if (degraded > 1) {
9541 dprintf("imsm: Abort reshape due to degradation"
9542 " level (%i)\n", degraded);
9543 goto abort;
9544 }
9545
10f22854
AK
9546 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9547
9548 if ((current_position + next_step) > max_position)
9549 next_step = max_position - current_position;
9550
92144abf 9551 start = current_position * 512;
10f22854
AK
9552
9553 /* allign reading start to old geometry */
9554 start_buf_shift = start % old_data_stripe_length;
9555 start_src = start - start_buf_shift;
9556
9557 border = (start_src / odata) - (start / ndata);
9558 border /= 512;
9559 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9560 /* save critical stripes to buf
9561 * start - start address of current unit
9562 * to backup [bytes]
9563 * start_src - start address of current unit
9564 * to backup alligned to source array
9565 * [bytes]
9566 */
9567 unsigned long long next_step_filler = 0;
9568 unsigned long long copy_length = next_step * 512;
9569
9570 /* allign copy area length to stripe in old geometry */
9571 next_step_filler = ((copy_length + start_buf_shift)
9572 % old_data_stripe_length);
9573 if (next_step_filler)
9574 next_step_filler = (old_data_stripe_length
9575 - next_step_filler);
9576 dprintf("save_stripes() parameters: start = %llu,"
9577 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9578 "\tstart_in_buf_shift = %llu,"
9579 "\tnext_step_filler = %llu\n",
9580 start, start_src, copy_length,
9581 start_buf_shift, next_step_filler);
9582
9583 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9584 chunk, map_src->raid_level,
9585 source_layout, 0, NULL, start_src,
10f22854
AK
9586 copy_length +
9587 next_step_filler + start_buf_shift,
9588 buf)) {
9589 dprintf("imsm: Cannot save stripes"
9590 " to buffer\n");
9591 goto abort;
9592 }
9593 /* Convert data to destination format and store it
9594 * in backup general migration area
9595 */
9596 if (save_backup_imsm(st, dev, sra,
aea93171 9597 buf + start_buf_shift, copy_length)) {
10f22854
AK
9598 dprintf("imsm: Cannot save stripes to "
9599 "target devices\n");
9600 goto abort;
9601 }
9602 if (save_checkpoint_imsm(st, sra,
9603 UNIT_SRC_IN_CP_AREA)) {
9604 dprintf("imsm: Cannot write checkpoint to "
9605 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9606 goto abort;
9607 }
8016a6d4
AK
9608 } else {
9609 /* set next step to use whole border area */
9610 border /= next_step;
9611 if (border > 1)
9612 next_step *= border;
10f22854
AK
9613 }
9614 /* When data backed up, checkpoint stored,
9615 * kick the kernel to reshape unit of data
9616 */
9617 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9618 /* limit next step to array max position */
9619 if (next_step > max_position)
9620 next_step = max_position;
10f22854
AK
9621 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9622 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9623 sra->reshape_progress = next_step;
10f22854
AK
9624
9625 /* wait until reshape finish */
ae9f01f8 9626 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9627 dprintf("wait_for_reshape_imsm returned error!\n");
9628 goto abort;
9629 }
10f22854 9630
0228d92c
AK
9631 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9632 /* ignore error == 2, this can mean end of reshape here
9633 */
10f22854
AK
9634 dprintf("imsm: Cannot write checkpoint to "
9635 "migration record (UNIT_SRC_NORMAL)\n");
9636 goto abort;
9637 }
9638
9639 }
9640
9641 /* return '1' if done */
9642 ret_val = 1;
9643abort:
9644 free(buf);
9645 abort_reshape(sra);
9646
9647 return ret_val;
999b4972 9648}
71204a50 9649#endif /* MDASSEMBLE */
999b4972 9650
cdddbdbc
DW
9651struct superswitch super_imsm = {
9652#ifndef MDASSEMBLE
9653 .examine_super = examine_super_imsm,
9654 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9655 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9656 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9657 .detail_super = detail_super_imsm,
9658 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9659 .write_init_super = write_init_super_imsm,
0e600426
N
9660 .validate_geometry = validate_geometry_imsm,
9661 .add_to_super = add_to_super_imsm,
1a64be56 9662 .remove_from_super = remove_from_super_imsm,
d665cc31 9663 .detail_platform = detail_platform_imsm,
33414a01 9664 .kill_subarray = kill_subarray_imsm,
aa534678 9665 .update_subarray = update_subarray_imsm,
2b959fbf 9666 .load_container = load_container_imsm,
71204a50
N
9667 .default_geometry = default_geometry_imsm,
9668 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9669 .reshape_super = imsm_reshape_super,
9670 .manage_reshape = imsm_manage_reshape,
9e2d750d 9671 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9672#endif
9673 .match_home = match_home_imsm,
9674 .uuid_from_super= uuid_from_super_imsm,
9675 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9676 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9677 .update_super = update_super_imsm,
9678
9679 .avail_size = avail_size_imsm,
80e7f8c3 9680 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9681
9682 .compare_super = compare_super_imsm,
9683
9684 .load_super = load_super_imsm,
bf5a934a 9685 .init_super = init_super_imsm,
e683ca88 9686 .store_super = store_super_imsm,
cdddbdbc
DW
9687 .free_super = free_super_imsm,
9688 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9689 .container_content = container_content_imsm,
cdddbdbc 9690
276d77db 9691
cdddbdbc 9692 .external = 1,
4cce4069 9693 .name = "imsm",
845dea95 9694
0e600426 9695#ifndef MDASSEMBLE
845dea95
NB
9696/* for mdmon */
9697 .open_new = imsm_open_new,
ed9d66aa 9698 .set_array_state= imsm_set_array_state,
845dea95
NB
9699 .set_disk = imsm_set_disk,
9700 .sync_metadata = imsm_sync_metadata,
88758e9d 9701 .activate_spare = imsm_activate_spare,
e8319a19 9702 .process_update = imsm_process_update,
8273f55e 9703 .prepare_update = imsm_prepare_update,
0e600426 9704#endif /* MDASSEMBLE */
cdddbdbc 9705};