]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: Limit support to the lowest namespace
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
611d9529
MD
91#define IMSM_RESERVED_SECTORS 8192
92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
c2462068
PB
95#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
cdddbdbc 98
fbc42556
JR
99/*
100 * Internal Write-intent bitmap is stored in the same area where PPL.
101 * Both features are mutually exclusive, so it is not an issue.
102 * The first 8KiB of the area are reserved and shall not be used.
103 */
104#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
105
106#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
107#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
108
109#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
110#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
111#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
112
113#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
114#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
115
761e3bd9
N
116/*
117 * This macro let's us ensure that no-one accidentally
118 * changes the size of a struct
119 */
120#define ASSERT_SIZE(_struct, size) \
121static inline void __assert_size_##_struct(void) \
122{ \
123 switch (0) { \
124 case 0: break; \
125 case (sizeof(struct _struct) == size): break; \
126 } \
127}
128
cdddbdbc
DW
129/* Disk configuration info. */
130#define IMSM_MAX_DEVICES 255
131struct imsm_disk {
132 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 133 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 134 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
135#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
136#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
137#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 138#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 139 __u32 status; /* 0xF0 - 0xF3 */
1011e834 140 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
141 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
142#define IMSM_DISK_FILLERS 3
143 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 144};
761e3bd9 145ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 146
3b451610
AK
147/* map selector for map managment
148 */
238c0a71
AK
149#define MAP_0 0
150#define MAP_1 1
151#define MAP_X -1
3b451610 152
cdddbdbc
DW
153/* RAID map configuration infos. */
154struct imsm_map {
5551b113
CA
155 __u32 pba_of_lba0_lo; /* start address of partition */
156 __u32 blocks_per_member_lo;/* blocks per member */
157 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
158 __u16 blocks_per_strip;
159 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
160#define IMSM_T_STATE_NORMAL 0
161#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
162#define IMSM_T_STATE_DEGRADED 2
163#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
164 __u8 raid_level;
165#define IMSM_T_RAID0 0
166#define IMSM_T_RAID1 1
167#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
168 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
169 __u8 num_domains; /* number of parity domains */
170 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 171 __u8 ddf;
5551b113
CA
172 __u32 pba_of_lba0_hi;
173 __u32 blocks_per_member_hi;
174 __u32 num_data_stripes_hi;
175 __u32 filler[4]; /* expansion area */
7eef0453 176#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 177 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
178 * top byte contains some flags
179 */
761e3bd9
N
180};
181ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
182
183struct imsm_vol {
4036e7ee 184 __u32 curr_migr_unit_lo;
fe7ed8cb 185 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 186 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
187#define MIGR_INIT 0
188#define MIGR_REBUILD 1
189#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
190#define MIGR_GEN_MIGR 3
191#define MIGR_STATE_CHANGE 4
1484e727 192#define MIGR_REPAIR 5
cdddbdbc 193 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
194#define RAIDVOL_CLEAN 0
195#define RAIDVOL_DIRTY 1
196#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 197 __u8 dirty;
fe7ed8cb
DW
198 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
199 __u16 verify_errors; /* number of mismatches */
200 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
201 __u32 curr_migr_unit_hi;
202 __u32 filler[3];
cdddbdbc
DW
203 struct imsm_map map[1];
204 /* here comes another one if migr_state */
761e3bd9
N
205};
206ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
207
208struct imsm_dev {
fe7ed8cb 209 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
210 __u32 size_low;
211 __u32 size_high;
fe7ed8cb
DW
212#define DEV_BOOTABLE __cpu_to_le32(0x01)
213#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
214#define DEV_READ_COALESCING __cpu_to_le32(0x04)
215#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
216#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
217#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
218#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
219#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
220#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
221#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
222#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
223#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
224#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
225 __u32 status; /* Persistent RaidDev status */
226 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
227 __u8 migr_priority;
228 __u8 num_sub_vols;
229 __u8 tid;
230 __u8 cng_master_disk;
231 __u16 cache_policy;
232 __u8 cng_state;
233 __u8 cng_sub_state;
2432ce9b
AP
234 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
235
236 /* NVM_EN */
237 __u8 nv_cache_mode;
238 __u8 nv_cache_flags;
239
240 /* Unique Volume Id of the NvCache Volume associated with this volume */
241 __u32 nvc_vol_orig_family_num;
242 __u16 nvc_vol_raid_dev_num;
243
244#define RWH_OFF 0
245#define RWH_DISTRIBUTED 1
246#define RWH_JOURNALING_DRIVE 2
c2462068
PB
247#define RWH_MULTIPLE_DISTRIBUTED 3
248#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
249#define RWH_MULTIPLE_OFF 5
fbc42556 250#define RWH_BITMAP 6
2432ce9b
AP
251 __u8 rwh_policy; /* Raid Write Hole Policy */
252 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
253 __u8 filler1;
254
255#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
256 __u32 filler[IMSM_DEV_FILLERS];
257 struct imsm_vol vol;
761e3bd9
N
258};
259ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
260
261struct imsm_super {
262 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
263 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
264 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
265 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
266 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
267 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
268 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
269 __u8 num_disks; /* 0x38 Number of configured disks */
270 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
271 __u8 error_log_pos; /* 0x3A */
272 __u8 fill[1]; /* 0x3B */
273 __u32 cache_size; /* 0x3c - 0x40 in mb */
274 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
275 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
276 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
277 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
278 * volume IDs for raid_dev created in this array
279 * (starts at 1)
280 */
281 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
282 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
283#define IMSM_FILLERS 32
284 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
285 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
286 /* here comes imsm_dev[num_raid_devs] */
604b746f 287 /* here comes BBM logs */
761e3bd9
N
288};
289ASSERT_SIZE(imsm_super, 264)
cdddbdbc 290
604b746f 291#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
292#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
293#define BBM_LOG_SIGNATURE 0xabadb10c
294
295struct bbm_log_block_addr {
296 __u16 w1;
297 __u32 dw1;
298} __attribute__ ((__packed__));
604b746f
JD
299
300struct bbm_log_entry {
8d67477f
TM
301 __u8 marked_count; /* Number of blocks marked - 1 */
302 __u8 disk_ordinal; /* Disk entry within the imsm_super */
303 struct bbm_log_block_addr defective_block_start;
604b746f
JD
304} __attribute__ ((__packed__));
305
306struct bbm_log {
307 __u32 signature; /* 0xABADB10C */
308 __u32 entry_count;
8d67477f 309 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
310};
311ASSERT_SIZE(bbm_log, 2040)
604b746f 312
cdddbdbc 313static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 314
b53bfba6
TM
315#define BLOCKS_PER_KB (1024/512)
316
8e59f3d8
AK
317#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
318
319#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
320
de44e46f
PB
321#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
322#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
323 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
324 */
325
8e59f3d8
AK
326#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
327 * be recovered using srcMap */
328#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
329 * already been migrated and must
330 * be recovered from checkpoint area */
2432ce9b 331
c2462068 332#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 333
8e59f3d8
AK
334struct migr_record {
335 __u32 rec_status; /* Status used to determine how to restart
336 * migration in case it aborts
337 * in some fashion */
9f421827 338 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
339 __u32 family_num; /* Family number of MPB
340 * containing the RaidDev
341 * that is migrating */
342 __u32 ascending_migr; /* True if migrating in increasing
343 * order of lbas */
344 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
345 __u32 dest_depth_per_unit; /* Num member blocks each destMap
346 * member disk
347 * advances per unit-of-operation */
9f421827
PB
348 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
349 __u32 dest_1st_member_lba_lo; /* First member lba on first
350 * stripe of destination */
351 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
352 __u32 post_migr_vol_cap; /* Size of volume after
353 * migration completes */
354 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
355 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
356 * migration ckpt record was read from
357 * (for recovered migrations) */
9f421827
PB
358 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
359 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
360 * high order 32 bits */
361 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
362 * destination - high order 32 bits */
363 __u32 num_migr_units_hi; /* Total num migration units-of-op
364 * high order 32 bits */
4036e7ee 365 __u32 filler[16];
761e3bd9 366};
4036e7ee 367ASSERT_SIZE(migr_record, 128)
8e59f3d8 368
ec50f7b6
LM
369struct md_list {
370 /* usage marker:
371 * 1: load metadata
372 * 2: metadata does not match
373 * 4: already checked
374 */
375 int used;
376 char *devname;
377 int found;
378 int container;
379 dev_t st_rdev;
380 struct md_list *next;
381};
382
e7b84f9d 383#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 384
1484e727
DW
385static __u8 migr_type(struct imsm_dev *dev)
386{
387 if (dev->vol.migr_type == MIGR_VERIFY &&
388 dev->status & DEV_VERIFY_AND_FIX)
389 return MIGR_REPAIR;
390 else
391 return dev->vol.migr_type;
392}
393
394static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
395{
396 /* for compatibility with older oroms convert MIGR_REPAIR, into
397 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
398 */
399 if (migr_type == MIGR_REPAIR) {
400 dev->vol.migr_type = MIGR_VERIFY;
401 dev->status |= DEV_VERIFY_AND_FIX;
402 } else {
403 dev->vol.migr_type = migr_type;
404 dev->status &= ~DEV_VERIFY_AND_FIX;
405 }
406}
407
f36a9ecd 408static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 409{
f36a9ecd 410 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 411}
cdddbdbc 412
f36a9ecd
PB
413static unsigned int mpb_sectors(struct imsm_super *mpb,
414 unsigned int sector_size)
87eb16df 415{
f36a9ecd 416 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
417}
418
ba2de7ba
DW
419struct intel_dev {
420 struct imsm_dev *dev;
421 struct intel_dev *next;
f21e18ca 422 unsigned index;
ba2de7ba
DW
423};
424
88654014
LM
425struct intel_hba {
426 enum sys_dev_type type;
427 char *path;
428 char *pci_id;
429 struct intel_hba *next;
430};
431
1a64be56
LM
432enum action {
433 DISK_REMOVE = 1,
434 DISK_ADD
435};
cdddbdbc
DW
436/* internal representation of IMSM metadata */
437struct intel_super {
438 union {
949c47a0
DW
439 void *buf; /* O_DIRECT buffer for reading/writing metadata */
440 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 441 };
8e59f3d8
AK
442 union {
443 void *migr_rec_buf; /* buffer for I/O operations */
444 struct migr_record *migr_rec; /* migration record */
445 };
51d83f5d
AK
446 int clean_migration_record_by_mdmon; /* when reshape is switched to next
447 array, it indicates that mdmon is allowed to clean migration
448 record */
949c47a0 449 size_t len; /* size of the 'buf' allocation */
bbab0940 450 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
451 void *next_buf; /* for realloc'ing buf from the manager */
452 size_t next_len;
c2c087e6 453 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 454 int current_vol; /* index of raid device undergoing creation */
5551b113 455 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 456 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 457 struct intel_dev *devlist;
fa7bb6f8 458 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
459 struct dl {
460 struct dl *next;
461 int index;
462 __u8 serial[MAX_RAID_SERIAL_LEN];
463 int major, minor;
464 char *devname;
b9f594fe 465 struct imsm_disk disk;
cdddbdbc 466 int fd;
0dcecb2e
DW
467 int extent_cnt;
468 struct extent *e; /* for determining freespace @ create */
efb30e7f 469 int raiddisk; /* slot to fill in autolayout */
1a64be56 470 enum action action;
ca0748fa 471 } *disks, *current_disk;
1a64be56
LM
472 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
473 active */
47ee5a45 474 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 475 struct bbm_log *bbm_log;
88654014 476 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 477 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 478 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 479 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
480};
481
482struct intel_disk {
483 struct imsm_disk disk;
484 #define IMSM_UNKNOWN_OWNER (-1)
485 int owner;
486 struct intel_disk *next;
cdddbdbc
DW
487};
488
c2c087e6
DW
489struct extent {
490 unsigned long long start, size;
491};
492
694575e7
KW
493/* definitions of reshape process types */
494enum imsm_reshape_type {
495 CH_TAKEOVER,
b5347799 496 CH_MIGRATION,
7abc9871 497 CH_ARRAY_SIZE,
694575e7
KW
498};
499
88758e9d
DW
500/* definition of messages passed to imsm_process_update */
501enum imsm_update_type {
502 update_activate_spare,
8273f55e 503 update_create_array,
33414a01 504 update_kill_array,
aa534678 505 update_rename_array,
1a64be56 506 update_add_remove_disk,
78b10e66 507 update_reshape_container_disks,
48c5303a 508 update_reshape_migration,
2d40f3a1
AK
509 update_takeover,
510 update_general_migration_checkpoint,
f3871fdc 511 update_size_change,
bbab0940 512 update_prealloc_badblocks_mem,
e6e9dd3f 513 update_rwh_policy,
88758e9d
DW
514};
515
516struct imsm_update_activate_spare {
517 enum imsm_update_type type;
d23fe947 518 struct dl *dl;
88758e9d
DW
519 int slot;
520 int array;
521 struct imsm_update_activate_spare *next;
522};
523
78b10e66 524struct geo_params {
4dd2df09 525 char devnm[32];
78b10e66 526 char *dev_name;
d04f65f4 527 unsigned long long size;
78b10e66
N
528 int level;
529 int layout;
530 int chunksize;
531 int raid_disks;
532};
533
bb025c2f
KW
534enum takeover_direction {
535 R10_TO_R0,
536 R0_TO_R10
537};
538struct imsm_update_takeover {
539 enum imsm_update_type type;
540 int subarray;
541 enum takeover_direction direction;
542};
78b10e66
N
543
544struct imsm_update_reshape {
545 enum imsm_update_type type;
546 int old_raid_disks;
547 int new_raid_disks;
48c5303a
PC
548
549 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
550};
551
552struct imsm_update_reshape_migration {
553 enum imsm_update_type type;
554 int old_raid_disks;
555 int new_raid_disks;
556 /* fields for array migration changes
557 */
558 int subdev;
559 int new_level;
560 int new_layout;
4bba0439 561 int new_chunksize;
48c5303a 562
d195167d 563 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
564};
565
f3871fdc
AK
566struct imsm_update_size_change {
567 enum imsm_update_type type;
568 int subdev;
569 long long new_size;
570};
571
2d40f3a1
AK
572struct imsm_update_general_migration_checkpoint {
573 enum imsm_update_type type;
4036e7ee 574 __u64 curr_migr_unit;
2d40f3a1
AK
575};
576
54c2c1ea
DW
577struct disk_info {
578 __u8 serial[MAX_RAID_SERIAL_LEN];
579};
580
8273f55e
DW
581struct imsm_update_create_array {
582 enum imsm_update_type type;
8273f55e 583 int dev_idx;
6a3e913e 584 struct imsm_dev dev;
8273f55e
DW
585};
586
33414a01
DW
587struct imsm_update_kill_array {
588 enum imsm_update_type type;
589 int dev_idx;
590};
591
aa534678
DW
592struct imsm_update_rename_array {
593 enum imsm_update_type type;
594 __u8 name[MAX_RAID_SERIAL_LEN];
595 int dev_idx;
596};
597
1a64be56 598struct imsm_update_add_remove_disk {
43dad3d6
DW
599 enum imsm_update_type type;
600};
601
bbab0940
TM
602struct imsm_update_prealloc_bb_mem {
603 enum imsm_update_type type;
604};
605
e6e9dd3f
AP
606struct imsm_update_rwh_policy {
607 enum imsm_update_type type;
608 int new_policy;
609 int dev_idx;
610};
611
88654014
LM
612static const char *_sys_dev_type[] = {
613 [SYS_DEV_UNKNOWN] = "Unknown",
614 [SYS_DEV_SAS] = "SAS",
614902f6 615 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
616 [SYS_DEV_NVME] = "NVMe",
617 [SYS_DEV_VMD] = "VMD"
88654014
LM
618};
619
620const char *get_sys_dev_type(enum sys_dev_type type)
621{
622 if (type >= SYS_DEV_MAX)
623 type = SYS_DEV_UNKNOWN;
624
625 return _sys_dev_type[type];
626}
627
628static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
629{
503975b9
N
630 struct intel_hba *result = xmalloc(sizeof(*result));
631
632 result->type = device->type;
633 result->path = xstrdup(device->path);
634 result->next = NULL;
635 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
636 result->pci_id++;
637
88654014
LM
638 return result;
639}
640
641static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
642{
594dc1b8
JS
643 struct intel_hba *result;
644
88654014
LM
645 for (result = hba; result; result = result->next) {
646 if (result->type == device->type && strcmp(result->path, device->path) == 0)
647 break;
648 }
649 return result;
650}
651
b4cf4cba 652static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
653{
654 struct intel_hba *hba;
655
656 /* check if disk attached to Intel HBA */
657 hba = find_intel_hba(super->hba, device);
658 if (hba != NULL)
659 return 1;
660 /* Check if HBA is already attached to super */
661 if (super->hba == NULL) {
662 super->hba = alloc_intel_hba(device);
663 return 1;
6b781d33
AP
664 }
665
666 hba = super->hba;
667 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 668 * Do not support HBA types mixing
6b781d33
AP
669 */
670 if (device->type != hba->type)
88654014 671 return 2;
6b781d33
AP
672
673 /* Multiple same type HBAs can be used if they share the same OROM */
674 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
675
676 if (device_orom != super->orom)
677 return 2;
678
679 while (hba->next)
680 hba = hba->next;
681
682 hba->next = alloc_intel_hba(device);
683 return 1;
88654014
LM
684}
685
686static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
687{
9bc4ae77 688 struct sys_dev *list, *elem;
88654014
LM
689 char *disk_path;
690
691 if ((list = find_intel_devices()) == NULL)
692 return 0;
693
694 if (fd < 0)
695 disk_path = (char *) devname;
696 else
7c798f87 697 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 698
9bc4ae77 699 if (!disk_path)
88654014 700 return 0;
88654014 701
9bc4ae77
N
702 for (elem = list; elem; elem = elem->next)
703 if (path_attached_to_hba(disk_path, elem->path))
88654014 704 return elem;
9bc4ae77 705
88654014
LM
706 if (disk_path != devname)
707 free(disk_path);
88654014
LM
708
709 return NULL;
710}
711
d424212e
N
712static int find_intel_hba_capability(int fd, struct intel_super *super,
713 char *devname);
f2f5c343 714
cdddbdbc
DW
715static struct supertype *match_metadata_desc_imsm(char *arg)
716{
717 struct supertype *st;
718
719 if (strcmp(arg, "imsm") != 0 &&
720 strcmp(arg, "default") != 0
721 )
722 return NULL;
723
503975b9 724 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
725 st->ss = &super_imsm;
726 st->max_devs = IMSM_MAX_DEVICES;
727 st->minor_version = 0;
728 st->sb = NULL;
729 return st;
730}
731
cdddbdbc
DW
732static __u8 *get_imsm_version(struct imsm_super *mpb)
733{
734 return &mpb->sig[MPB_SIG_LEN];
735}
736
949c47a0
DW
737/* retrieve a disk directly from the anchor when the anchor is known to be
738 * up-to-date, currently only at load time
739 */
740static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 741{
949c47a0 742 if (index >= mpb->num_disks)
cdddbdbc
DW
743 return NULL;
744 return &mpb->disk[index];
745}
746
95d07a2c
LM
747/* retrieve the disk description based on a index of the disk
748 * in the sub-array
749 */
750static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 751{
b9f594fe
DW
752 struct dl *d;
753
754 for (d = super->disks; d; d = d->next)
755 if (d->index == index)
95d07a2c
LM
756 return d;
757
758 return NULL;
759}
760/* retrieve a disk from the parsed metadata */
761static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
762{
763 struct dl *dl;
764
765 dl = get_imsm_dl_disk(super, index);
766 if (dl)
767 return &dl->disk;
768
b9f594fe 769 return NULL;
949c47a0
DW
770}
771
772/* generate a checksum directly from the anchor when the anchor is known to be
773 * up-to-date, currently only at load or write_super after coalescing
774 */
775static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
776{
777 __u32 end = mpb->mpb_size / sizeof(end);
778 __u32 *p = (__u32 *) mpb;
779 __u32 sum = 0;
780
5d500228
N
781 while (end--) {
782 sum += __le32_to_cpu(*p);
97f734fd
N
783 p++;
784 }
cdddbdbc 785
5d500228 786 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
787}
788
a965f303
DW
789static size_t sizeof_imsm_map(struct imsm_map *map)
790{
791 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
792}
793
794struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 795{
5e7b0330
AK
796 /* A device can have 2 maps if it is in the middle of a migration.
797 * If second_map is:
238c0a71
AK
798 * MAP_0 - we return the first map
799 * MAP_1 - we return the second map if it exists, else NULL
800 * MAP_X - we return the second map if it exists, else the first
5e7b0330 801 */
a965f303 802 struct imsm_map *map = &dev->vol.map[0];
9535fc47 803 struct imsm_map *map2 = NULL;
a965f303 804
9535fc47
AK
805 if (dev->vol.migr_state)
806 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 807
9535fc47 808 switch (second_map) {
3b451610 809 case MAP_0:
9535fc47 810 break;
3b451610 811 case MAP_1:
9535fc47
AK
812 map = map2;
813 break;
238c0a71 814 case MAP_X:
9535fc47
AK
815 if (map2)
816 map = map2;
817 break;
9535fc47
AK
818 default:
819 map = NULL;
820 }
821 return map;
5e7b0330 822
a965f303 823}
cdddbdbc 824
3393c6af
DW
825/* return the size of the device.
826 * migr_state increases the returned size if map[0] were to be duplicated
827 */
828static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
829{
830 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 831 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
832
833 /* migrating means an additional map */
a965f303 834 if (dev->vol.migr_state)
238c0a71 835 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 836 else if (migr_state)
238c0a71 837 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
838
839 return size;
840}
841
54c2c1ea
DW
842/* retrieve disk serial number list from a metadata update */
843static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
844{
845 void *u = update;
846 struct disk_info *inf;
847
848 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
849 sizeof_imsm_dev(&update->dev, 0);
850
851 return inf;
852}
54c2c1ea 853
949c47a0 854static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
855{
856 int offset;
857 int i;
858 void *_mpb = mpb;
859
949c47a0 860 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
861 return NULL;
862
863 /* devices start after all disks */
864 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
865
866 for (i = 0; i <= index; i++)
867 if (i == index)
868 return _mpb + offset;
869 else
3393c6af 870 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
871
872 return NULL;
873}
874
949c47a0
DW
875static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
876{
ba2de7ba
DW
877 struct intel_dev *dv;
878
949c47a0
DW
879 if (index >= super->anchor->num_raid_devs)
880 return NULL;
ba2de7ba
DW
881 for (dv = super->devlist; dv; dv = dv->next)
882 if (dv->index == index)
883 return dv->dev;
884 return NULL;
949c47a0
DW
885}
886
8d67477f
TM
887static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
888 *addr)
889{
890 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
891 __le16_to_cpu(addr->w1));
892}
893
894static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
895{
896 struct bbm_log_block_addr addr;
897
898 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
899 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
900 return addr;
901}
902
8d67477f
TM
903/* get size of the bbm log */
904static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
905{
906 if (!log || log->entry_count == 0)
907 return 0;
908
909 return sizeof(log->signature) +
910 sizeof(log->entry_count) +
911 log->entry_count * sizeof(struct bbm_log_entry);
912}
6f50473f
TM
913
914/* check if bad block is not partially stored in bbm log */
915static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
916 long long sector, const int length, __u32 *pos)
917{
918 __u32 i;
919
920 for (i = *pos; i < log->entry_count; i++) {
921 struct bbm_log_entry *entry = &log->marked_block_entries[i];
922 unsigned long long bb_start;
923 unsigned long long bb_end;
924
925 bb_start = __le48_to_cpu(&entry->defective_block_start);
926 bb_end = bb_start + (entry->marked_count + 1);
927
928 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
929 (bb_end <= sector + length)) {
930 *pos = i;
931 return 1;
932 }
933 }
934 return 0;
935}
936
937/* record new bad block in bbm log */
938static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
939 long long sector, int length)
940{
941 int new_bb = 0;
942 __u32 pos = 0;
943 struct bbm_log_entry *entry = NULL;
944
945 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
946 struct bbm_log_entry *e = &log->marked_block_entries[pos];
947
948 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
949 (__le48_to_cpu(&e->defective_block_start) == sector)) {
950 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
951 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
952 pos = pos + 1;
953 continue;
954 }
955 entry = e;
956 break;
957 }
958
959 if (entry) {
960 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
961 BBM_LOG_MAX_LBA_ENTRY_VAL;
962 entry->defective_block_start = __cpu_to_le48(sector);
963 entry->marked_count = cnt - 1;
964 if (cnt == length)
965 return 1;
966 sector += cnt;
967 length -= cnt;
968 }
969
970 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
971 BBM_LOG_MAX_LBA_ENTRY_VAL;
972 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
973 return 0;
974
975 while (length > 0) {
976 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
977 BBM_LOG_MAX_LBA_ENTRY_VAL;
978 struct bbm_log_entry *entry =
979 &log->marked_block_entries[log->entry_count];
980
981 entry->defective_block_start = __cpu_to_le48(sector);
982 entry->marked_count = cnt - 1;
983 entry->disk_ordinal = idx;
984
985 sector += cnt;
986 length -= cnt;
987
988 log->entry_count++;
989 }
990
991 return new_bb;
992}
c07a5a4f 993
4c9e8c1e
TM
994/* clear all bad blocks for given disk */
995static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
996{
997 __u32 i = 0;
998
999 while (i < log->entry_count) {
1000 struct bbm_log_entry *entries = log->marked_block_entries;
1001
1002 if (entries[i].disk_ordinal == idx) {
1003 if (i < log->entry_count - 1)
1004 entries[i] = entries[log->entry_count - 1];
1005 log->entry_count--;
1006 } else {
1007 i++;
1008 }
1009 }
1010}
1011
c07a5a4f
TM
1012/* clear given bad block */
1013static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1014 long long sector, const int length) {
1015 __u32 i = 0;
1016
1017 while (i < log->entry_count) {
1018 struct bbm_log_entry *entries = log->marked_block_entries;
1019
1020 if ((entries[i].disk_ordinal == idx) &&
1021 (__le48_to_cpu(&entries[i].defective_block_start) ==
1022 sector) && (entries[i].marked_count + 1 == length)) {
1023 if (i < log->entry_count - 1)
1024 entries[i] = entries[log->entry_count - 1];
1025 log->entry_count--;
1026 break;
1027 }
1028 i++;
1029 }
1030
1031 return 1;
1032}
8d67477f
TM
1033
1034/* allocate and load BBM log from metadata */
1035static int load_bbm_log(struct intel_super *super)
1036{
1037 struct imsm_super *mpb = super->anchor;
1038 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1039
1040 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1041 if (!super->bbm_log)
1042 return 1;
1043
1044 if (bbm_log_size) {
1045 struct bbm_log *log = (void *)mpb +
1046 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1047
1048 __u32 entry_count;
1049
1050 if (bbm_log_size < sizeof(log->signature) +
1051 sizeof(log->entry_count))
1052 return 2;
1053
1054 entry_count = __le32_to_cpu(log->entry_count);
1055 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1056 (entry_count > BBM_LOG_MAX_ENTRIES))
1057 return 3;
1058
1059 if (bbm_log_size !=
1060 sizeof(log->signature) + sizeof(log->entry_count) +
1061 entry_count * sizeof(struct bbm_log_entry))
1062 return 4;
1063
1064 memcpy(super->bbm_log, log, bbm_log_size);
1065 } else {
1066 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1067 super->bbm_log->entry_count = 0;
1068 }
1069
1070 return 0;
1071}
1072
b12796be
TM
1073/* checks if bad block is within volume boundaries */
1074static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1075 const unsigned long long start_sector,
1076 const unsigned long long size)
1077{
1078 unsigned long long bb_start;
1079 unsigned long long bb_end;
1080
1081 bb_start = __le48_to_cpu(&entry->defective_block_start);
1082 bb_end = bb_start + (entry->marked_count + 1);
1083
1084 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1085 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1086 return 1;
1087
1088 return 0;
1089}
1090
1091/* get list of bad blocks on a drive for a volume */
1092static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1093 const unsigned long long start_sector,
1094 const unsigned long long size,
1095 struct md_bb *bbs)
1096{
1097 __u32 count = 0;
1098 __u32 i;
1099
1100 for (i = 0; i < log->entry_count; i++) {
1101 const struct bbm_log_entry *ent =
1102 &log->marked_block_entries[i];
1103 struct md_bb_entry *bb;
1104
1105 if ((ent->disk_ordinal == idx) &&
1106 is_bad_block_in_volume(ent, start_sector, size)) {
1107
1108 if (!bbs->entries) {
1109 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1110 sizeof(*bb));
1111 if (!bbs->entries)
1112 break;
1113 }
1114
1115 bb = &bbs->entries[count++];
1116 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1117 bb->length = ent->marked_count + 1;
1118 }
1119 }
1120 bbs->count = count;
1121}
1122
98130f40
AK
1123/*
1124 * for second_map:
238c0a71
AK
1125 * == MAP_0 get first map
1126 * == MAP_1 get second map
1127 * == MAP_X than get map according to the current migr_state
98130f40
AK
1128 */
1129static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1130 int slot,
1131 int second_map)
7eef0453
DW
1132{
1133 struct imsm_map *map;
1134
5e7b0330 1135 map = get_imsm_map(dev, second_map);
7eef0453 1136
ff077194
DW
1137 /* top byte identifies disk under rebuild */
1138 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1139}
1140
1141#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1142static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1143{
98130f40 1144 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1145
1146 return ord_to_idx(ord);
7eef0453
DW
1147}
1148
be73972f
DW
1149static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1150{
1151 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1152}
1153
f21e18ca 1154static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1155{
1156 int slot;
1157 __u32 ord;
1158
1159 for (slot = 0; slot < map->num_members; slot++) {
1160 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1161 if (ord_to_idx(ord) == idx)
1162 return slot;
1163 }
1164
1165 return -1;
1166}
1167
cdddbdbc
DW
1168static int get_imsm_raid_level(struct imsm_map *map)
1169{
1170 if (map->raid_level == 1) {
1171 if (map->num_members == 2)
1172 return 1;
1173 else
1174 return 10;
1175 }
1176
1177 return map->raid_level;
1178}
1179
c2c087e6
DW
1180static int cmp_extent(const void *av, const void *bv)
1181{
1182 const struct extent *a = av;
1183 const struct extent *b = bv;
1184 if (a->start < b->start)
1185 return -1;
1186 if (a->start > b->start)
1187 return 1;
1188 return 0;
1189}
1190
0dcecb2e 1191static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1192{
c2c087e6 1193 int memberships = 0;
620b1713 1194 int i;
c2c087e6 1195
949c47a0
DW
1196 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1197 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1198 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1199
620b1713
DW
1200 if (get_imsm_disk_slot(map, dl->index) >= 0)
1201 memberships++;
c2c087e6 1202 }
0dcecb2e
DW
1203
1204 return memberships;
1205}
1206
b81221b7
CA
1207static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1208
486720e0 1209static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1210{
1211 if (lo == 0 || hi == 0)
1212 return 1;
486720e0
JS
1213 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1214 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1215 return 0;
1216}
1217
1218static unsigned long long join_u32(__u32 lo, __u32 hi)
1219{
1220 return (unsigned long long)__le32_to_cpu(lo) |
1221 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1222}
1223
1224static unsigned long long total_blocks(struct imsm_disk *disk)
1225{
1226 if (disk == NULL)
1227 return 0;
1228 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1229}
1230
1231static unsigned long long pba_of_lba0(struct imsm_map *map)
1232{
1233 if (map == NULL)
1234 return 0;
1235 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1236}
1237
1238static unsigned long long blocks_per_member(struct imsm_map *map)
1239{
1240 if (map == NULL)
1241 return 0;
1242 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1243}
1244
1245static unsigned long long num_data_stripes(struct imsm_map *map)
1246{
1247 if (map == NULL)
1248 return 0;
1249 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1250}
1251
4036e7ee
MT
1252static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1253{
1254 if (dev == NULL)
1255 return 0;
1256
1257 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1258}
1259
fcc2c9da
MD
1260static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1261{
1262 if (dev == NULL)
1263 return 0;
1264 return join_u32(dev->size_low, dev->size_high);
1265}
1266
9f421827
PB
1267static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1268{
1269 if (migr_rec == NULL)
1270 return 0;
1271 return join_u32(migr_rec->ckpt_area_pba_lo,
1272 migr_rec->ckpt_area_pba_hi);
1273}
1274
1275static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1276{
1277 if (migr_rec == NULL)
1278 return 0;
1279 return join_u32(migr_rec->curr_migr_unit_lo,
1280 migr_rec->curr_migr_unit_hi);
1281}
1282
1283static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1284{
1285 if (migr_rec == NULL)
1286 return 0;
1287 return join_u32(migr_rec->dest_1st_member_lba_lo,
1288 migr_rec->dest_1st_member_lba_hi);
1289}
1290
1291static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1292{
1293 if (migr_rec == NULL)
1294 return 0;
1295 return join_u32(migr_rec->num_migr_units_lo,
1296 migr_rec->num_migr_units_hi);
1297}
1298
5551b113
CA
1299static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1300{
1301 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1302}
1303
1304static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1305{
1306 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1307}
1308
1309static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1310{
1311 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1312}
1313
1314static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1315{
1316 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1317}
1318
4036e7ee
MT
1319static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1320{
1321 if (dev == NULL)
1322 return;
1323
1324 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1325}
1326
fcc2c9da
MD
1327static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1328{
1329 split_ull(n, &dev->size_low, &dev->size_high);
1330}
1331
9f421827
PB
1332static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1333 unsigned long long n)
1334{
1335 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1336}
1337
1338static void set_current_migr_unit(struct migr_record *migr_rec,
1339 unsigned long long n)
1340{
1341 split_ull(n, &migr_rec->curr_migr_unit_lo,
1342 &migr_rec->curr_migr_unit_hi);
1343}
1344
1345static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1346 unsigned long long n)
1347{
1348 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1349 &migr_rec->dest_1st_member_lba_hi);
1350}
1351
1352static void set_num_migr_units(struct migr_record *migr_rec,
1353 unsigned long long n)
1354{
1355 split_ull(n, &migr_rec->num_migr_units_lo,
1356 &migr_rec->num_migr_units_hi);
1357}
1358
44490938
MD
1359static unsigned long long per_dev_array_size(struct imsm_map *map)
1360{
1361 unsigned long long array_size = 0;
1362
1363 if (map == NULL)
1364 return array_size;
1365
1366 array_size = num_data_stripes(map) * map->blocks_per_strip;
1367 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1368 array_size *= 2;
1369
1370 return array_size;
1371}
1372
05501181
PB
1373static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1374 int get_minimal_reservation)
0dcecb2e
DW
1375{
1376 /* find a list of used extents on the given physical device */
1377 struct extent *rv, *e;
620b1713 1378 int i;
0dcecb2e 1379 int memberships = count_memberships(dl, super);
b276dd33
DW
1380 __u32 reservation;
1381
1382 /* trim the reserved area for spares, so they can join any array
1383 * regardless of whether the OROM has assigned sectors from the
1384 * IMSM_RESERVED_SECTORS region
1385 */
05501181 1386 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1387 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1388 else
1389 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1390
503975b9 1391 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1392 e = rv;
1393
949c47a0
DW
1394 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1395 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1396 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1397
620b1713 1398 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1399 e->start = pba_of_lba0(map);
44490938 1400 e->size = per_dev_array_size(map);
620b1713 1401 e++;
c2c087e6
DW
1402 }
1403 }
1404 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1405
1011e834 1406 /* determine the start of the metadata
14e8215b
DW
1407 * when no raid devices are defined use the default
1408 * ...otherwise allow the metadata to truncate the value
1409 * as is the case with older versions of imsm
1410 */
1411 if (memberships) {
1412 struct extent *last = &rv[memberships - 1];
5551b113 1413 unsigned long long remainder;
14e8215b 1414
5551b113 1415 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1416 /* round down to 1k block to satisfy precision of the kernel
1417 * 'size' interface
1418 */
1419 remainder &= ~1UL;
1420 /* make sure remainder is still sane */
f21e18ca 1421 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1422 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1423 if (reservation > remainder)
1424 reservation = remainder;
1425 }
5551b113 1426 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1427 e->size = 0;
1428 return rv;
1429}
1430
14e8215b
DW
1431/* try to determine how much space is reserved for metadata from
1432 * the last get_extents() entry, otherwise fallback to the
1433 * default
1434 */
1435static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1436{
1437 struct extent *e;
1438 int i;
1439 __u32 rv;
1440
1441 /* for spares just return a minimal reservation which will grow
1442 * once the spare is picked up by an array
1443 */
1444 if (dl->index == -1)
1445 return MPB_SECTOR_CNT;
1446
05501181 1447 e = get_extents(super, dl, 0);
14e8215b
DW
1448 if (!e)
1449 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1450
1451 /* scroll to last entry */
1452 for (i = 0; e[i].size; i++)
1453 continue;
1454
5551b113 1455 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1456
1457 free(e);
1458
1459 return rv;
1460}
1461
25ed7e59
DW
1462static int is_spare(struct imsm_disk *disk)
1463{
1464 return (disk->status & SPARE_DISK) == SPARE_DISK;
1465}
1466
1467static int is_configured(struct imsm_disk *disk)
1468{
1469 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1470}
1471
1472static int is_failed(struct imsm_disk *disk)
1473{
1474 return (disk->status & FAILED_DISK) == FAILED_DISK;
1475}
1476
2432ce9b
AP
1477static int is_journal(struct imsm_disk *disk)
1478{
1479 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1480}
1481
b53bfba6
TM
1482/* round array size down to closest MB and ensure it splits evenly
1483 * between members
1484 */
1485static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1486 disk_count)
1487{
1488 size /= disk_count;
1489 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1490 size *= disk_count;
1491
1492 return size;
1493}
1494
8b9cd157
MK
1495static int able_to_resync(int raid_level, int missing_disks)
1496{
1497 int max_missing_disks = 0;
1498
1499 switch (raid_level) {
1500 case 10:
1501 max_missing_disks = 1;
1502 break;
1503 default:
1504 max_missing_disks = 0;
1505 }
1506 return missing_disks <= max_missing_disks;
1507}
1508
b81221b7
CA
1509/* try to determine how much space is reserved for metadata from
1510 * the last get_extents() entry on the smallest active disk,
1511 * otherwise fallback to the default
1512 */
1513static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1514{
1515 struct extent *e;
1516 int i;
5551b113
CA
1517 unsigned long long min_active;
1518 __u32 remainder;
b81221b7
CA
1519 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1520 struct dl *dl, *dl_min = NULL;
1521
1522 if (!super)
1523 return rv;
1524
1525 min_active = 0;
1526 for (dl = super->disks; dl; dl = dl->next) {
1527 if (dl->index < 0)
1528 continue;
5551b113
CA
1529 unsigned long long blocks = total_blocks(&dl->disk);
1530 if (blocks < min_active || min_active == 0) {
b81221b7 1531 dl_min = dl;
5551b113 1532 min_active = blocks;
b81221b7
CA
1533 }
1534 }
1535 if (!dl_min)
1536 return rv;
1537
1538 /* find last lba used by subarrays on the smallest active disk */
05501181 1539 e = get_extents(super, dl_min, 0);
b81221b7
CA
1540 if (!e)
1541 return rv;
1542 for (i = 0; e[i].size; i++)
1543 continue;
1544
1545 remainder = min_active - e[i].start;
1546 free(e);
1547
1548 /* to give priority to recovery we should not require full
1549 IMSM_RESERVED_SECTORS from the spare */
1550 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1551
1552 /* if real reservation is smaller use that value */
1553 return (remainder < rv) ? remainder : rv;
1554}
1555
fbfdcb06
AO
1556/*
1557 * Return minimum size of a spare and sector size
1558 * that can be used in this array
1559 */
1560int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1561{
1562 struct intel_super *super = st->sb;
1563 struct dl *dl;
1564 struct extent *e;
1565 int i;
fbfdcb06
AO
1566 unsigned long long size = 0;
1567
1568 c->min_size = 0;
4b57ecf6 1569 c->sector_size = 0;
80e7f8c3
AC
1570
1571 if (!super)
fbfdcb06 1572 return -EINVAL;
80e7f8c3
AC
1573 /* find first active disk in array */
1574 dl = super->disks;
1575 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1576 dl = dl->next;
1577 if (!dl)
fbfdcb06 1578 return -EINVAL;
80e7f8c3 1579 /* find last lba used by subarrays */
05501181 1580 e = get_extents(super, dl, 0);
80e7f8c3 1581 if (!e)
fbfdcb06 1582 return -EINVAL;
80e7f8c3
AC
1583 for (i = 0; e[i].size; i++)
1584 continue;
1585 if (i > 0)
fbfdcb06 1586 size = e[i-1].start + e[i-1].size;
80e7f8c3 1587 free(e);
b81221b7 1588
80e7f8c3 1589 /* add the amount of space needed for metadata */
fbfdcb06
AO
1590 size += imsm_min_reserved_sectors(super);
1591
1592 c->min_size = size * 512;
4b57ecf6 1593 c->sector_size = super->sector_size;
b81221b7 1594
fbfdcb06 1595 return 0;
80e7f8c3
AC
1596}
1597
d1e02575
AK
1598static int is_gen_migration(struct imsm_dev *dev);
1599
f36a9ecd
PB
1600#define IMSM_4K_DIV 8
1601
c47b0ff6
AK
1602static __u64 blocks_per_migr_unit(struct intel_super *super,
1603 struct imsm_dev *dev);
1e5c6983 1604
c47b0ff6
AK
1605static void print_imsm_dev(struct intel_super *super,
1606 struct imsm_dev *dev,
1607 char *uuid,
1608 int disk_idx)
cdddbdbc
DW
1609{
1610 __u64 sz;
0d80bb2f 1611 int slot, i;
238c0a71
AK
1612 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1613 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1614 __u32 ord;
cdddbdbc
DW
1615
1616 printf("\n");
1e7bc0ed 1617 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1618 printf(" Subarray : %d\n", super->current_vol);
44470971 1619 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1620 printf(" RAID Level : %d", get_imsm_raid_level(map));
1621 if (map2)
1622 printf(" <-- %d", get_imsm_raid_level(map2));
1623 printf("\n");
1624 printf(" Members : %d", map->num_members);
1625 if (map2)
1626 printf(" <-- %d", map2->num_members);
1627 printf("\n");
0d80bb2f
DW
1628 printf(" Slots : [");
1629 for (i = 0; i < map->num_members; i++) {
238c0a71 1630 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1631 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1632 }
dd8bcb3b
AK
1633 printf("]");
1634 if (map2) {
1635 printf(" <-- [");
1636 for (i = 0; i < map2->num_members; i++) {
238c0a71 1637 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1638 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1639 }
1640 printf("]");
1641 }
1642 printf("\n");
7095bccb
AK
1643 printf(" Failed disk : ");
1644 if (map->failed_disk_num == 0xff)
1645 printf("none");
1646 else
1647 printf("%i", map->failed_disk_num);
1648 printf("\n");
620b1713
DW
1649 slot = get_imsm_disk_slot(map, disk_idx);
1650 if (slot >= 0) {
238c0a71 1651 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1652 printf(" This Slot : %d%s\n", slot,
1653 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1654 } else
cdddbdbc 1655 printf(" This Slot : ?\n");
84918897 1656 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1657 sz = imsm_dev_size(dev);
84918897
MK
1658 printf(" Array Size : %llu%s\n",
1659 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1660 human_size(sz * 512));
5551b113 1661 sz = blocks_per_member(map);
84918897
MK
1662 printf(" Per Dev Size : %llu%s\n",
1663 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1664 human_size(sz * 512));
5551b113
CA
1665 printf(" Sector Offset : %llu\n",
1666 pba_of_lba0(map));
1667 printf(" Num Stripes : %llu\n",
1668 num_data_stripes(map));
dd8bcb3b 1669 printf(" Chunk Size : %u KiB",
cdddbdbc 1670 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1671 if (map2)
1672 printf(" <-- %u KiB",
1673 __le16_to_cpu(map2->blocks_per_strip) / 2);
1674 printf("\n");
cdddbdbc 1675 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1676 printf(" Migrate State : ");
1484e727
DW
1677 if (dev->vol.migr_state) {
1678 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1679 printf("initialize\n");
1484e727 1680 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1681 printf("rebuild\n");
1484e727 1682 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1683 printf("check\n");
1484e727 1684 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1685 printf("general migration\n");
1484e727 1686 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1687 printf("state change\n");
1484e727 1688 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1689 printf("repair\n");
1484e727 1690 else
8655a7b1
DW
1691 printf("<unknown:%d>\n", migr_type(dev));
1692 } else
1693 printf("idle\n");
3393c6af
DW
1694 printf(" Map State : %s", map_state_str[map->map_state]);
1695 if (dev->vol.migr_state) {
238c0a71 1696 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1697
b10b37b8 1698 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1699 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1700 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1701 printf("(N/A)");
1702 else
1703 printf("(%llu)", (unsigned long long)
1704 blocks_per_migr_unit(super, dev));
3393c6af
DW
1705 }
1706 printf("\n");
2432ce9b
AP
1707 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1708 "dirty" : "clean");
1709 printf(" RWH Policy : ");
c2462068 1710 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1711 printf("off\n");
1712 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1713 printf("PPL distributed\n");
1714 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1715 printf("PPL journaling drive\n");
c2462068
PB
1716 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1717 printf("Multiple distributed PPLs\n");
1718 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1719 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1720 else if (dev->rwh_policy == RWH_BITMAP)
1721 printf("Write-intent bitmap\n");
2432ce9b
AP
1722 else
1723 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1724
1725 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1726}
1727
ef5c214e
MK
1728static void print_imsm_disk(struct imsm_disk *disk,
1729 int index,
1730 __u32 reserved,
1731 unsigned int sector_size) {
1f24f035 1732 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1733 __u64 sz;
1734
0ec1f4e8 1735 if (index < -1 || !disk)
e9d82038
DW
1736 return;
1737
cdddbdbc 1738 printf("\n");
1f24f035 1739 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1740 if (index >= 0)
1741 printf(" Disk%02d Serial : %s\n", index, str);
1742 else
1743 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1744 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1745 is_configured(disk) ? " active" : "",
1746 is_failed(disk) ? " failed" : "",
1747 is_journal(disk) ? " journal" : "");
cdddbdbc 1748 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1749 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1750 printf(" Usable Size : %llu%s\n",
1751 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1752 human_size(sz * 512));
1753}
1754
de44e46f
PB
1755void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1756{
1757 struct migr_record *migr_rec = super->migr_rec;
1758
1759 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1760 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1761 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1762 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1763 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1764 set_migr_chkp_area_pba(migr_rec,
1765 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1766 set_migr_dest_1st_member_lba(migr_rec,
1767 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1768}
1769
f36a9ecd
PB
1770void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1771{
1772 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1773}
1774
1775void convert_to_4k(struct intel_super *super)
1776{
1777 struct imsm_super *mpb = super->anchor;
1778 struct imsm_disk *disk;
1779 int i;
e4467bc7 1780 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1781
1782 for (i = 0; i < mpb->num_disks ; i++) {
1783 disk = __get_imsm_disk(mpb, i);
1784 /* disk */
1785 convert_to_4k_imsm_disk(disk);
1786 }
1787 for (i = 0; i < mpb->num_raid_devs; i++) {
1788 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1789 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1790 /* dev */
fcc2c9da 1791 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1792 set_vol_curr_migr_unit(dev,
1793 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1794
1795 /* map0 */
1796 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1797 map->blocks_per_strip /= IMSM_4K_DIV;
1798 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1799
1800 if (dev->vol.migr_state) {
1801 /* map1 */
1802 map = get_imsm_map(dev, MAP_1);
1803 set_blocks_per_member(map,
1804 blocks_per_member(map)/IMSM_4K_DIV);
1805 map->blocks_per_strip /= IMSM_4K_DIV;
1806 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1807 }
1808 }
e4467bc7
TM
1809 if (bbm_log_size) {
1810 struct bbm_log *log = (void *)mpb +
1811 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1812 __u32 i;
1813
1814 for (i = 0; i < log->entry_count; i++) {
1815 struct bbm_log_entry *entry =
1816 &log->marked_block_entries[i];
1817
1818 __u8 count = entry->marked_count + 1;
1819 unsigned long long sector =
1820 __le48_to_cpu(&entry->defective_block_start);
1821
1822 entry->defective_block_start =
1823 __cpu_to_le48(sector/IMSM_4K_DIV);
1824 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1825 }
1826 }
f36a9ecd
PB
1827
1828 mpb->check_sum = __gen_imsm_checksum(mpb);
1829}
1830
520e69e2
AK
1831void examine_migr_rec_imsm(struct intel_super *super)
1832{
1833 struct migr_record *migr_rec = super->migr_rec;
1834 struct imsm_super *mpb = super->anchor;
1835 int i;
1836
1837 for (i = 0; i < mpb->num_raid_devs; i++) {
1838 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1839 struct imsm_map *map;
b4ab44d8 1840 int slot = -1;
3136abe5 1841
520e69e2
AK
1842 if (is_gen_migration(dev) == 0)
1843 continue;
1844
1845 printf("\nMigration Record Information:");
3136abe5 1846
44bfe6df
AK
1847 /* first map under migration */
1848 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1849 if (map)
1850 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1851 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1852 printf(" Empty\n ");
1853 printf("Examine one of first two disks in array\n");
1854 break;
1855 }
1856 printf("\n Status : ");
1857 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1858 printf("Normal\n");
1859 else
1860 printf("Contains Data\n");
9f421827
PB
1861 printf(" Current Unit : %llu\n",
1862 current_migr_unit(migr_rec));
520e69e2
AK
1863 printf(" Family : %u\n",
1864 __le32_to_cpu(migr_rec->family_num));
1865 printf(" Ascending : %u\n",
1866 __le32_to_cpu(migr_rec->ascending_migr));
1867 printf(" Blocks Per Unit : %u\n",
1868 __le32_to_cpu(migr_rec->blocks_per_unit));
1869 printf(" Dest. Depth Per Unit : %u\n",
1870 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
1871 printf(" Checkpoint Area pba : %llu\n",
1872 migr_chkp_area_pba(migr_rec));
1873 printf(" First member lba : %llu\n",
1874 migr_dest_1st_member_lba(migr_rec));
1875 printf(" Total Number of Units : %llu\n",
1876 get_num_migr_units(migr_rec));
1877 printf(" Size of volume : %llu\n",
1878 join_u32(migr_rec->post_migr_vol_cap,
1879 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
1880 printf(" Record was read from : %u\n",
1881 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1882
1883 break;
1884 }
1885}
f36a9ecd 1886
de44e46f
PB
1887void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1888{
1889 struct migr_record *migr_rec = super->migr_rec;
1890
1891 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
1892 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1893 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1894 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1895 &migr_rec->post_migr_vol_cap,
1896 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1897 set_migr_chkp_area_pba(migr_rec,
1898 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
1899 set_migr_dest_1st_member_lba(migr_rec,
1900 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
1901}
1902
f36a9ecd
PB
1903void convert_from_4k(struct intel_super *super)
1904{
1905 struct imsm_super *mpb = super->anchor;
1906 struct imsm_disk *disk;
1907 int i;
e4467bc7 1908 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1909
1910 for (i = 0; i < mpb->num_disks ; i++) {
1911 disk = __get_imsm_disk(mpb, i);
1912 /* disk */
1913 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1914 }
1915
1916 for (i = 0; i < mpb->num_raid_devs; i++) {
1917 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1918 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1919 /* dev */
fcc2c9da 1920 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
1921 set_vol_curr_migr_unit(dev,
1922 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
1923
1924 /* map0 */
1925 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1926 map->blocks_per_strip *= IMSM_4K_DIV;
1927 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1928
1929 if (dev->vol.migr_state) {
1930 /* map1 */
1931 map = get_imsm_map(dev, MAP_1);
1932 set_blocks_per_member(map,
1933 blocks_per_member(map)*IMSM_4K_DIV);
1934 map->blocks_per_strip *= IMSM_4K_DIV;
1935 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1936 }
1937 }
e4467bc7
TM
1938 if (bbm_log_size) {
1939 struct bbm_log *log = (void *)mpb +
1940 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1941 __u32 i;
1942
1943 for (i = 0; i < log->entry_count; i++) {
1944 struct bbm_log_entry *entry =
1945 &log->marked_block_entries[i];
1946
1947 __u8 count = entry->marked_count + 1;
1948 unsigned long long sector =
1949 __le48_to_cpu(&entry->defective_block_start);
1950
1951 entry->defective_block_start =
1952 __cpu_to_le48(sector*IMSM_4K_DIV);
1953 entry->marked_count = count*IMSM_4K_DIV - 1;
1954 }
1955 }
f36a9ecd
PB
1956
1957 mpb->check_sum = __gen_imsm_checksum(mpb);
1958}
1959
19482bcc
AK
1960/*******************************************************************************
1961 * function: imsm_check_attributes
1962 * Description: Function checks if features represented by attributes flags
1011e834 1963 * are supported by mdadm.
19482bcc
AK
1964 * Parameters:
1965 * attributes - Attributes read from metadata
1966 * Returns:
1011e834
N
1967 * 0 - passed attributes contains unsupported features flags
1968 * 1 - all features are supported
19482bcc
AK
1969 ******************************************************************************/
1970static int imsm_check_attributes(__u32 attributes)
1971{
1972 int ret_val = 1;
418f9b36
N
1973 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1974
1975 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1976
1977 not_supported &= attributes;
1978 if (not_supported) {
e7b84f9d 1979 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1980 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1981 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1982 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1983 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1984 }
1985 if (not_supported & MPB_ATTRIB_2TB) {
1986 dprintf("\t\tMPB_ATTRIB_2TB\n");
1987 not_supported ^= MPB_ATTRIB_2TB;
1988 }
1989 if (not_supported & MPB_ATTRIB_RAID0) {
1990 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1991 not_supported ^= MPB_ATTRIB_RAID0;
1992 }
1993 if (not_supported & MPB_ATTRIB_RAID1) {
1994 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1995 not_supported ^= MPB_ATTRIB_RAID1;
1996 }
1997 if (not_supported & MPB_ATTRIB_RAID10) {
1998 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1999 not_supported ^= MPB_ATTRIB_RAID10;
2000 }
2001 if (not_supported & MPB_ATTRIB_RAID1E) {
2002 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2003 not_supported ^= MPB_ATTRIB_RAID1E;
2004 }
2005 if (not_supported & MPB_ATTRIB_RAID5) {
2006 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2007 not_supported ^= MPB_ATTRIB_RAID5;
2008 }
2009 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2010 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2011 not_supported ^= MPB_ATTRIB_RAIDCNG;
2012 }
2013 if (not_supported & MPB_ATTRIB_BBM) {
2014 dprintf("\t\tMPB_ATTRIB_BBM\n");
2015 not_supported ^= MPB_ATTRIB_BBM;
2016 }
2017 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2018 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2019 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2020 }
2021 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2022 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2023 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2024 }
2025 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2026 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2027 not_supported ^= MPB_ATTRIB_2TB_DISK;
2028 }
2029 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2030 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2031 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2032 }
2033 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2034 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2035 not_supported ^= MPB_ATTRIB_NEVER_USE;
2036 }
2037
2038 if (not_supported)
1ade5cc1 2039 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
2040
2041 ret_val = 0;
2042 }
2043
2044 return ret_val;
2045}
2046
a5d85af7 2047static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2048
cdddbdbc
DW
2049static void examine_super_imsm(struct supertype *st, char *homehost)
2050{
2051 struct intel_super *super = st->sb;
949c47a0 2052 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2053 char str[MAX_SIGNATURE_LENGTH];
2054 int i;
27fd6274
DW
2055 struct mdinfo info;
2056 char nbuf[64];
cdddbdbc 2057 __u32 sum;
14e8215b 2058 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2059 struct dl *dl;
e48aed3c 2060 time_t creation_time;
27fd6274 2061
618f4e6d
XN
2062 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2063 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2064 printf(" Magic : %s\n", str);
cdddbdbc 2065 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2066 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2067 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2068 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2069 creation_time = __le64_to_cpu(mpb->creation_time);
2070 printf(" Creation Time : %.24s\n",
2071 creation_time ? ctime(&creation_time) : "Unknown");
19482bcc
AK
2072 printf(" Attributes : ");
2073 if (imsm_check_attributes(mpb->attributes))
2074 printf("All supported\n");
2075 else
2076 printf("not supported\n");
a5d85af7 2077 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2078 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 2079 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2080 sum = __le32_to_cpu(mpb->check_sum);
2081 printf(" Checksum : %08x %s\n", sum,
949c47a0 2082 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2083 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2084 printf(" Disks : %d\n", mpb->num_disks);
2085 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2086 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2087 super->disks->index, reserved, super->sector_size);
8d67477f 2088 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2089 struct bbm_log *log = super->bbm_log;
2090
2091 printf("\n");
2092 printf("Bad Block Management Log:\n");
2093 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2094 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2095 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2096 }
44470971
DW
2097 for (i = 0; i < mpb->num_raid_devs; i++) {
2098 struct mdinfo info;
2099 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2100
2101 super->current_vol = i;
a5d85af7 2102 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2103 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 2104 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2105 }
cdddbdbc
DW
2106 for (i = 0; i < mpb->num_disks; i++) {
2107 if (i == super->disks->index)
2108 continue;
ef5c214e
MK
2109 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2110 super->sector_size);
cdddbdbc 2111 }
94827db3 2112
0ec1f4e8
DW
2113 for (dl = super->disks; dl; dl = dl->next)
2114 if (dl->index == -1)
ef5c214e
MK
2115 print_imsm_disk(&dl->disk, -1, reserved,
2116 super->sector_size);
520e69e2
AK
2117
2118 examine_migr_rec_imsm(super);
cdddbdbc
DW
2119}
2120
061f2c6a 2121static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2122{
27fd6274 2123 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2124 struct mdinfo info;
2125 char nbuf[64];
1e7bc0ed 2126 struct intel_super *super = st->sb;
1e7bc0ed 2127
0d5a423f
DW
2128 if (!super->anchor->num_raid_devs) {
2129 printf("ARRAY metadata=imsm\n");
1e7bc0ed 2130 return;
0d5a423f 2131 }
ff54de6e 2132
a5d85af7 2133 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
2134 fname_from_uuid(st, &info, nbuf, ':');
2135 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2136}
2137
2138static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2139{
2140 /* We just write a generic IMSM ARRAY entry */
2141 struct mdinfo info;
2142 char nbuf[64];
2143 char nbuf1[64];
2144 struct intel_super *super = st->sb;
2145 int i;
2146
2147 if (!super->anchor->num_raid_devs)
2148 return;
2149
a5d85af7 2150 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2151 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2152 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2153 struct imsm_dev *dev = get_imsm_dev(super, i);
2154
2155 super->current_vol = i;
a5d85af7 2156 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2157 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 2158 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 2159 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2160 }
cdddbdbc
DW
2161}
2162
9d84c8ea
DW
2163static void export_examine_super_imsm(struct supertype *st)
2164{
2165 struct intel_super *super = st->sb;
2166 struct imsm_super *mpb = super->anchor;
2167 struct mdinfo info;
2168 char nbuf[64];
2169
a5d85af7 2170 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2171 fname_from_uuid(st, &info, nbuf, ':');
2172 printf("MD_METADATA=imsm\n");
2173 printf("MD_LEVEL=container\n");
2174 printf("MD_UUID=%s\n", nbuf+5);
2175 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2176 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2177}
2178
b771faef
BK
2179static void detail_super_imsm(struct supertype *st, char *homehost,
2180 char *subarray)
cdddbdbc 2181{
3ebe00a1
DW
2182 struct mdinfo info;
2183 char nbuf[64];
b771faef
BK
2184 struct intel_super *super = st->sb;
2185 int temp_vol = super->current_vol;
2186
2187 if (subarray)
2188 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2189
a5d85af7 2190 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2191 fname_from_uuid(st, &info, nbuf, ':');
65884368 2192 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2193
2194 super->current_vol = temp_vol;
cdddbdbc
DW
2195}
2196
b771faef 2197static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2198{
ff54de6e
N
2199 struct mdinfo info;
2200 char nbuf[64];
b771faef
BK
2201 struct intel_super *super = st->sb;
2202 int temp_vol = super->current_vol;
2203
2204 if (subarray)
2205 super->current_vol = strtoul(subarray, NULL, 10);
2206
a5d85af7 2207 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2208 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2209 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2210
2211 super->current_vol = temp_vol;
cdddbdbc 2212}
d665cc31 2213
6da53c0e
BK
2214static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2215 size_t serial_buf_len);
d665cc31
DW
2216static void fd2devname(int fd, char *name);
2217
120dc887 2218static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2219{
120dc887
LM
2220 /* dump an unsorted list of devices attached to AHCI Intel storage
2221 * controller, as well as non-connected ports
d665cc31
DW
2222 */
2223 int hba_len = strlen(hba_path) + 1;
2224 struct dirent *ent;
2225 DIR *dir;
2226 char *path = NULL;
2227 int err = 0;
2228 unsigned long port_mask = (1 << port_count) - 1;
2229
f21e18ca 2230 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2231 if (verbose > 0)
e7b84f9d 2232 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2233 return 2;
2234 }
2235
2236 /* scroll through /sys/dev/block looking for devices attached to
2237 * this hba
2238 */
2239 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2240 if (!dir)
2241 return 1;
2242
2243 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2244 int fd;
2245 char model[64];
2246 char vendor[64];
2247 char buf[1024];
2248 int major, minor;
fcebeb77 2249 char device[PATH_MAX];
d665cc31
DW
2250 char *c;
2251 int port;
2252 int type;
2253
2254 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2255 continue;
7c798f87 2256 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2257 if (!path)
2258 continue;
2259 if (!path_attached_to_hba(path, hba_path)) {
2260 free(path);
2261 path = NULL;
2262 continue;
2263 }
2264
fcebeb77
MT
2265 /* retrieve the scsi device */
2266 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2267 if (verbose > 0)
fcebeb77 2268 pr_err("failed to get device\n");
d665cc31
DW
2269 err = 2;
2270 break;
2271 }
fcebeb77 2272 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2273 err = 2;
d665cc31
DW
2274 break;
2275 }
2276 type = strtoul(buf, NULL, 10);
2277
2278 /* if it's not a disk print the vendor and model */
2279 if (!(type == 0 || type == 7 || type == 14)) {
2280 vendor[0] = '\0';
2281 model[0] = '\0';
fcebeb77
MT
2282
2283 if (devpath_to_char(device, "vendor", buf,
2284 sizeof(buf), 0) == 0) {
d665cc31
DW
2285 strncpy(vendor, buf, sizeof(vendor));
2286 vendor[sizeof(vendor) - 1] = '\0';
2287 c = (char *) &vendor[sizeof(vendor) - 1];
2288 while (isspace(*c) || *c == '\0')
2289 *c-- = '\0';
2290
2291 }
fcebeb77
MT
2292
2293 if (devpath_to_char(device, "model", buf,
2294 sizeof(buf), 0) == 0) {
d665cc31
DW
2295 strncpy(model, buf, sizeof(model));
2296 model[sizeof(model) - 1] = '\0';
2297 c = (char *) &model[sizeof(model) - 1];
2298 while (isspace(*c) || *c == '\0')
2299 *c-- = '\0';
2300 }
2301
2302 if (vendor[0] && model[0])
2303 sprintf(buf, "%.64s %.64s", vendor, model);
2304 else
2305 switch (type) { /* numbers from hald/linux/device.c */
2306 case 1: sprintf(buf, "tape"); break;
2307 case 2: sprintf(buf, "printer"); break;
2308 case 3: sprintf(buf, "processor"); break;
2309 case 4:
2310 case 5: sprintf(buf, "cdrom"); break;
2311 case 6: sprintf(buf, "scanner"); break;
2312 case 8: sprintf(buf, "media_changer"); break;
2313 case 9: sprintf(buf, "comm"); break;
2314 case 12: sprintf(buf, "raid"); break;
2315 default: sprintf(buf, "unknown");
2316 }
2317 } else
2318 buf[0] = '\0';
d665cc31
DW
2319
2320 /* chop device path to 'host%d' and calculate the port number */
2321 c = strchr(&path[hba_len], '/');
4e5e717d 2322 if (!c) {
ba728be7 2323 if (verbose > 0)
e7b84f9d 2324 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2325 err = 2;
2326 break;
2327 }
d665cc31 2328 *c = '\0';
0858eccf
AP
2329 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2330 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2331 port -= host_base;
2332 else {
ba728be7 2333 if (verbose > 0) {
d665cc31 2334 *c = '/'; /* repair the full string */
e7b84f9d 2335 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2336 path);
2337 }
2338 err = 2;
2339 break;
2340 }
2341
2342 /* mark this port as used */
2343 port_mask &= ~(1 << port);
2344
2345 /* print out the device information */
2346 if (buf[0]) {
2347 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2348 continue;
2349 }
2350
2351 fd = dev_open(ent->d_name, O_RDONLY);
2352 if (fd < 0)
2353 printf(" Port%d : - disk info unavailable -\n", port);
2354 else {
2355 fd2devname(fd, buf);
2356 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2357 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2358 sizeof(buf)) == 0)
2359 printf(" (%s)\n", buf);
d665cc31 2360 else
664d5325 2361 printf(" ()\n");
4dab422a 2362 close(fd);
d665cc31 2363 }
d665cc31
DW
2364 free(path);
2365 path = NULL;
2366 }
2367 if (path)
2368 free(path);
2369 if (dir)
2370 closedir(dir);
2371 if (err == 0) {
2372 int i;
2373
2374 for (i = 0; i < port_count; i++)
2375 if (port_mask & (1 << i))
2376 printf(" Port%d : - no device attached -\n", i);
2377 }
2378
2379 return err;
2380}
2381
6da53c0e 2382static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2383{
2384 struct dirent *ent;
2385 DIR *dir;
60f0f54d 2386
6da53c0e 2387 dir = opendir("/sys/block/");
b9135011 2388 if (!dir)
b5eece69 2389 return 1;
b9135011
JS
2390
2391 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2392 char ns_path[PATH_MAX];
2393 char cntrl_path[PATH_MAX];
2394 char buf[PATH_MAX];
2395 int fd = -1;
60f0f54d 2396
8662f92d
MT
2397 if (!strstr(ent->d_name, "nvme"))
2398 goto skip;
d835518b 2399
8662f92d
MT
2400 fd = open_dev(ent->d_name);
2401 if (fd < 0)
2402 goto skip;
d835518b 2403
8662f92d
MT
2404 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2405 !diskfd_to_devpath(fd, 1, cntrl_path))
2406 goto skip;
2407
2408 if (!path_attached_to_hba(cntrl_path, hba->path))
2409 goto skip;
2410
2411 if (!imsm_is_nvme_namespace_supported(fd, 0))
2412 goto skip;
2413
2414 fd2devname(fd, buf);
2415 if (hba->type == SYS_DEV_VMD)
2416 printf(" NVMe under VMD : %s", buf);
2417 else if (hba->type == SYS_DEV_NVME)
2418 printf(" NVMe Device : %s", buf);
2419
2420 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2421 sizeof(buf)))
2422 printf(" (%s)\n", buf);
2423 else
2424 printf("()\n");
2425
2426skip:
2427 if (fd > -1)
d835518b 2428 close(fd);
60f0f54d
PB
2429 }
2430
b9135011 2431 closedir(dir);
b5eece69 2432 return 0;
60f0f54d
PB
2433}
2434
120dc887
LM
2435static void print_found_intel_controllers(struct sys_dev *elem)
2436{
2437 for (; elem; elem = elem->next) {
e7b84f9d 2438 pr_err("found Intel(R) ");
120dc887
LM
2439 if (elem->type == SYS_DEV_SATA)
2440 fprintf(stderr, "SATA ");
155cbb4c
LM
2441 else if (elem->type == SYS_DEV_SAS)
2442 fprintf(stderr, "SAS ");
0858eccf
AP
2443 else if (elem->type == SYS_DEV_NVME)
2444 fprintf(stderr, "NVMe ");
60f0f54d
PB
2445
2446 if (elem->type == SYS_DEV_VMD)
2447 fprintf(stderr, "VMD domain");
2448 else
2449 fprintf(stderr, "RAID controller");
2450
120dc887
LM
2451 if (elem->pci_id)
2452 fprintf(stderr, " at %s", elem->pci_id);
2453 fprintf(stderr, ".\n");
2454 }
2455 fflush(stderr);
2456}
2457
120dc887
LM
2458static int ahci_get_port_count(const char *hba_path, int *port_count)
2459{
2460 struct dirent *ent;
2461 DIR *dir;
2462 int host_base = -1;
2463
2464 *port_count = 0;
2465 if ((dir = opendir(hba_path)) == NULL)
2466 return -1;
2467
2468 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2469 int host;
2470
0858eccf
AP
2471 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2472 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2473 continue;
2474 if (*port_count == 0)
2475 host_base = host;
2476 else if (host < host_base)
2477 host_base = host;
2478
2479 if (host + 1 > *port_count + host_base)
2480 *port_count = host + 1 - host_base;
2481 }
2482 closedir(dir);
2483 return host_base;
2484}
2485
a891a3c2
LM
2486static void print_imsm_capability(const struct imsm_orom *orom)
2487{
0858eccf
AP
2488 printf(" Platform : Intel(R) ");
2489 if (orom->capabilities == 0 && orom->driver_features == 0)
2490 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2491 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2492 printf("Virtual RAID on CPU\n");
0858eccf
AP
2493 else
2494 printf("Rapid Storage Technology%s\n",
2495 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2496 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2497 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2498 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2499 printf(" RAID Levels :%s%s%s%s%s\n",
2500 imsm_orom_has_raid0(orom) ? " raid0" : "",
2501 imsm_orom_has_raid1(orom) ? " raid1" : "",
2502 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2503 imsm_orom_has_raid10(orom) ? " raid10" : "",
2504 imsm_orom_has_raid5(orom) ? " raid5" : "");
2505 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2506 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2507 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2508 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2509 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2510 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2511 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2512 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2513 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2514 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2515 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2516 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2517 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2518 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2519 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2520 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2521 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2522 printf(" 2TB volumes :%s supported\n",
2523 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2524 printf(" 2TB disks :%s supported\n",
2525 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2526 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2527 printf(" Max Volumes : %d per array, %d per %s\n",
2528 orom->vpa, orom->vphba,
2529 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2530 return;
2531}
2532
e50cf220
MN
2533static void print_imsm_capability_export(const struct imsm_orom *orom)
2534{
2535 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2536 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2537 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2538 orom->hotfix_ver, orom->build);
e50cf220
MN
2539 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2540 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2541 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2542 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2543 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2544 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2545 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2546 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2547 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2548 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2549 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2550 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2551 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2552 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2553 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2554 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2555 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2556 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2557 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2558 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2559 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2560 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2561 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2562 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2563 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2564 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2565 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2566 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2567}
2568
9eafa1de 2569static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2570{
2571 /* There are two components to imsm platform support, the ahci SATA
2572 * controller and the option-rom. To find the SATA controller we
2573 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2574 * controller with the Intel vendor id is present. This approach
2575 * allows mdadm to leverage the kernel's ahci detection logic, with the
2576 * caveat that if ahci.ko is not loaded mdadm will not be able to
2577 * detect platform raid capabilities. The option-rom resides in a
2578 * platform "Adapter ROM". We scan for its signature to retrieve the
2579 * platform capabilities. If raid support is disabled in the BIOS the
2580 * option-rom capability structure will not be available.
2581 */
d665cc31 2582 struct sys_dev *list, *hba;
d665cc31
DW
2583 int host_base = 0;
2584 int port_count = 0;
9eafa1de 2585 int result=1;
d665cc31 2586
5615172f 2587 if (enumerate_only) {
a891a3c2 2588 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2589 return 0;
a891a3c2
LM
2590 list = find_intel_devices();
2591 if (!list)
2592 return 2;
2593 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2594 if (find_imsm_capability(hba)) {
2595 result = 0;
a891a3c2
LM
2596 break;
2597 }
9eafa1de 2598 else
6b781d33 2599 result = 2;
a891a3c2 2600 }
a891a3c2 2601 return result;
5615172f
DW
2602 }
2603
155cbb4c
LM
2604 list = find_intel_devices();
2605 if (!list) {
ba728be7 2606 if (verbose > 0)
7a862a02 2607 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2608 return 2;
ba728be7 2609 } else if (verbose > 0)
155cbb4c 2610 print_found_intel_controllers(list);
d665cc31 2611
a891a3c2 2612 for (hba = list; hba; hba = hba->next) {
0858eccf 2613 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2614 continue;
0858eccf 2615 if (!find_imsm_capability(hba)) {
60f0f54d 2616 char buf[PATH_MAX];
e7b84f9d 2617 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2618 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2619 get_sys_dev_type(hba->type));
0858eccf
AP
2620 continue;
2621 }
2622 result = 0;
2623 }
2624
2625 if (controller_path && result == 1) {
2626 pr_err("no active Intel(R) RAID controller found under %s\n",
2627 controller_path);
2628 return result;
2629 }
2630
5e1d6128 2631 const struct orom_entry *entry;
0858eccf 2632
5e1d6128 2633 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2634 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2635 print_imsm_capability(&entry->orom);
32716c51
PB
2636 printf(" 3rd party NVMe :%s supported\n",
2637 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2638 for (hba = list; hba; hba = hba->next) {
2639 if (hba->type == SYS_DEV_VMD) {
2640 char buf[PATH_MAX];
60f0f54d
PB
2641 printf(" I/O Controller : %s (%s)\n",
2642 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2643 if (print_nvme_info(hba)) {
b5eece69
PB
2644 if (verbose > 0)
2645 pr_err("failed to get devices attached to VMD domain.\n");
2646 result |= 2;
2647 }
60f0f54d
PB
2648 }
2649 }
07cb1e57 2650 printf("\n");
60f0f54d
PB
2651 continue;
2652 }
0858eccf 2653
60f0f54d
PB
2654 print_imsm_capability(&entry->orom);
2655 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2656 for (hba = list; hba; hba = hba->next) {
2657 if (hba->type == SYS_DEV_NVME)
6da53c0e 2658 print_nvme_info(hba);
0858eccf 2659 }
60f0f54d 2660 printf("\n");
0858eccf
AP
2661 continue;
2662 }
2663
2664 struct devid_list *devid;
5e1d6128 2665 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2666 hba = device_by_id(devid->devid);
2667 if (!hba)
2668 continue;
2669
9eafa1de
MN
2670 printf(" I/O Controller : %s (%s)\n",
2671 hba->path, get_sys_dev_type(hba->type));
2672 if (hba->type == SYS_DEV_SATA) {
2673 host_base = ahci_get_port_count(hba->path, &port_count);
2674 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2675 if (verbose > 0)
7a862a02 2676 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2677 result |= 2;
2678 }
120dc887
LM
2679 }
2680 }
0858eccf 2681 printf("\n");
d665cc31 2682 }
155cbb4c 2683
120dc887 2684 return result;
d665cc31 2685}
e50cf220 2686
9eafa1de 2687static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2688{
e50cf220
MN
2689 struct sys_dev *list, *hba;
2690 int result=1;
2691
2692 list = find_intel_devices();
2693 if (!list) {
2694 if (verbose > 0)
2695 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2696 result = 2;
e50cf220
MN
2697 return result;
2698 }
2699
2700 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2701 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2702 continue;
60f0f54d
PB
2703 if (!find_imsm_capability(hba) && verbose > 0) {
2704 char buf[PATH_MAX];
2705 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2706 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2707 }
0858eccf 2708 else
e50cf220 2709 result = 0;
e50cf220
MN
2710 }
2711
5e1d6128 2712 const struct orom_entry *entry;
0858eccf 2713
60f0f54d
PB
2714 for (entry = orom_entries; entry; entry = entry->next) {
2715 if (entry->type == SYS_DEV_VMD) {
2716 for (hba = list; hba; hba = hba->next)
2717 print_imsm_capability_export(&entry->orom);
2718 continue;
2719 }
5e1d6128 2720 print_imsm_capability_export(&entry->orom);
60f0f54d 2721 }
0858eccf 2722
e50cf220
MN
2723 return result;
2724}
2725
cdddbdbc
DW
2726static int match_home_imsm(struct supertype *st, char *homehost)
2727{
5115ca67
DW
2728 /* the imsm metadata format does not specify any host
2729 * identification information. We return -1 since we can never
2730 * confirm nor deny whether a given array is "meant" for this
148acb7b 2731 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2732 * exclude member disks that do not belong, and we rely on
2733 * mdadm.conf to specify the arrays that should be assembled.
2734 * Auto-assembly may still pick up "foreign" arrays.
2735 */
cdddbdbc 2736
9362c1c8 2737 return -1;
cdddbdbc
DW
2738}
2739
2740static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2741{
51006d85
N
2742 /* The uuid returned here is used for:
2743 * uuid to put into bitmap file (Create, Grow)
2744 * uuid for backup header when saving critical section (Grow)
2745 * comparing uuids when re-adding a device into an array
2746 * In these cases the uuid required is that of the data-array,
2747 * not the device-set.
2748 * uuid to recognise same set when adding a missing device back
2749 * to an array. This is a uuid for the device-set.
1011e834 2750 *
51006d85
N
2751 * For each of these we can make do with a truncated
2752 * or hashed uuid rather than the original, as long as
2753 * everyone agrees.
2754 * In each case the uuid required is that of the data-array,
2755 * not the device-set.
43dad3d6 2756 */
51006d85
N
2757 /* imsm does not track uuid's so we synthesis one using sha1 on
2758 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2759 * - the orig_family_num of the container
51006d85
N
2760 * - the index number of the volume
2761 * - the 'serial' number of the volume.
2762 * Hopefully these are all constant.
2763 */
2764 struct intel_super *super = st->sb;
43dad3d6 2765
51006d85
N
2766 char buf[20];
2767 struct sha1_ctx ctx;
2768 struct imsm_dev *dev = NULL;
148acb7b 2769 __u32 family_num;
51006d85 2770
148acb7b
DW
2771 /* some mdadm versions failed to set ->orig_family_num, in which
2772 * case fall back to ->family_num. orig_family_num will be
2773 * fixed up with the first metadata update.
2774 */
2775 family_num = super->anchor->orig_family_num;
2776 if (family_num == 0)
2777 family_num = super->anchor->family_num;
51006d85 2778 sha1_init_ctx(&ctx);
92bd8f8d 2779 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2780 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2781 if (super->current_vol >= 0)
2782 dev = get_imsm_dev(super, super->current_vol);
2783 if (dev) {
2784 __u32 vol = super->current_vol;
2785 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2786 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2787 }
2788 sha1_finish_ctx(&ctx, buf);
2789 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2790}
2791
0d481d37 2792#if 0
4f5bc454
DW
2793static void
2794get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2795{
cdddbdbc
DW
2796 __u8 *v = get_imsm_version(mpb);
2797 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2798 char major[] = { 0, 0, 0 };
2799 char minor[] = { 0 ,0, 0 };
2800 char patch[] = { 0, 0, 0 };
2801 char *ver_parse[] = { major, minor, patch };
2802 int i, j;
2803
2804 i = j = 0;
2805 while (*v != '\0' && v < end) {
2806 if (*v != '.' && j < 2)
2807 ver_parse[i][j++] = *v;
2808 else {
2809 i++;
2810 j = 0;
2811 }
2812 v++;
2813 }
2814
4f5bc454
DW
2815 *m = strtol(minor, NULL, 0);
2816 *p = strtol(patch, NULL, 0);
2817}
0d481d37 2818#endif
4f5bc454 2819
1e5c6983
DW
2820static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2821{
2822 /* migr_strip_size when repairing or initializing parity */
238c0a71 2823 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2824 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2825
2826 switch (get_imsm_raid_level(map)) {
2827 case 5:
2828 case 10:
2829 return chunk;
2830 default:
2831 return 128*1024 >> 9;
2832 }
2833}
2834
2835static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2836{
2837 /* migr_strip_size when rebuilding a degraded disk, no idea why
2838 * this is different than migr_strip_size_resync(), but it's good
2839 * to be compatible
2840 */
238c0a71 2841 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2842 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2843
2844 switch (get_imsm_raid_level(map)) {
2845 case 1:
2846 case 10:
2847 if (map->num_members % map->num_domains == 0)
2848 return 128*1024 >> 9;
2849 else
2850 return chunk;
2851 case 5:
2852 return max((__u32) 64*1024 >> 9, chunk);
2853 default:
2854 return 128*1024 >> 9;
2855 }
2856}
2857
2858static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2859{
238c0a71
AK
2860 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2861 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2862 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2863 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2864
2865 return max((__u32) 1, hi_chunk / lo_chunk);
2866}
2867
2868static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2869{
238c0a71 2870 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2871 int level = get_imsm_raid_level(lo);
2872
2873 if (level == 1 || level == 10) {
238c0a71 2874 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2875
2876 return hi->num_domains;
2877 } else
2878 return num_stripes_per_unit_resync(dev);
2879}
2880
9529d343 2881static __u8 imsm_num_data_members(struct imsm_map *map)
1e5c6983
DW
2882{
2883 /* named 'imsm_' because raid0, raid1 and raid10
2884 * counter-intuitively have the same number of data disks
2885 */
1e5c6983
DW
2886 switch (get_imsm_raid_level(map)) {
2887 case 0:
36fd8ccc
AK
2888 return map->num_members;
2889 break;
1e5c6983
DW
2890 case 1:
2891 case 10:
36fd8ccc 2892 return map->num_members/2;
1e5c6983
DW
2893 case 5:
2894 return map->num_members - 1;
2895 default:
1ade5cc1 2896 dprintf("unsupported raid level\n");
1e5c6983
DW
2897 return 0;
2898 }
2899}
2900
44490938
MD
2901static unsigned long long calc_component_size(struct imsm_map *map,
2902 struct imsm_dev *dev)
2903{
2904 unsigned long long component_size;
2905 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 2906 long long calc_dev_size = 0;
44490938
MD
2907 unsigned int member_disks = imsm_num_data_members(map);
2908
2909 if (member_disks == 0)
2910 return 0;
2911
2912 component_size = per_dev_array_size(map);
2913 calc_dev_size = component_size * member_disks;
2914
2915 /* Component size is rounded to 1MB so difference between size from
2916 * metadata and size calculated from num_data_stripes equals up to
2917 * 2048 blocks per each device. If the difference is higher it means
2918 * that array size was expanded and num_data_stripes was not updated.
2919 */
a4f7290c 2920 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
2921 (1 << SECT_PER_MB_SHIFT) * member_disks) {
2922 component_size = dev_size / member_disks;
2923 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
2924 component_size / map->blocks_per_strip,
2925 num_data_stripes(map));
2926 }
2927
2928 return component_size;
2929}
2930
1e5c6983
DW
2931static __u32 parity_segment_depth(struct imsm_dev *dev)
2932{
238c0a71 2933 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2934 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2935
2936 switch(get_imsm_raid_level(map)) {
2937 case 1:
2938 case 10:
2939 return chunk * map->num_domains;
2940 case 5:
2941 return chunk * map->num_members;
2942 default:
2943 return chunk;
2944 }
2945}
2946
2947static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2948{
238c0a71 2949 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2950 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2951 __u32 strip = block / chunk;
2952
2953 switch (get_imsm_raid_level(map)) {
2954 case 1:
2955 case 10: {
2956 __u32 vol_strip = (strip * map->num_domains) + 1;
2957 __u32 vol_stripe = vol_strip / map->num_members;
2958
2959 return vol_stripe * chunk + block % chunk;
2960 } case 5: {
2961 __u32 stripe = strip / (map->num_members - 1);
2962
2963 return stripe * chunk + block % chunk;
2964 }
2965 default:
2966 return 0;
2967 }
2968}
2969
c47b0ff6
AK
2970static __u64 blocks_per_migr_unit(struct intel_super *super,
2971 struct imsm_dev *dev)
1e5c6983
DW
2972{
2973 /* calculate the conversion factor between per member 'blocks'
2974 * (md/{resync,rebuild}_start) and imsm migration units, return
2975 * 0 for the 'not migrating' and 'unsupported migration' cases
2976 */
2977 if (!dev->vol.migr_state)
2978 return 0;
2979
2980 switch (migr_type(dev)) {
c47b0ff6
AK
2981 case MIGR_GEN_MIGR: {
2982 struct migr_record *migr_rec = super->migr_rec;
2983 return __le32_to_cpu(migr_rec->blocks_per_unit);
2984 }
1e5c6983
DW
2985 case MIGR_VERIFY:
2986 case MIGR_REPAIR:
2987 case MIGR_INIT: {
238c0a71 2988 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2989 __u32 stripes_per_unit;
2990 __u32 blocks_per_unit;
2991 __u32 parity_depth;
2992 __u32 migr_chunk;
2993 __u32 block_map;
2994 __u32 block_rel;
2995 __u32 segment;
2996 __u32 stripe;
2997 __u8 disks;
2998
2999 /* yes, this is really the translation of migr_units to
3000 * per-member blocks in the 'resync' case
3001 */
3002 stripes_per_unit = num_stripes_per_unit_resync(dev);
3003 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3004 disks = imsm_num_data_members(map);
1e5c6983 3005 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3006 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3007 segment = blocks_per_unit / stripe;
3008 block_rel = blocks_per_unit - segment * stripe;
3009 parity_depth = parity_segment_depth(dev);
3010 block_map = map_migr_block(dev, block_rel);
3011 return block_map + parity_depth * segment;
3012 }
3013 case MIGR_REBUILD: {
3014 __u32 stripes_per_unit;
3015 __u32 migr_chunk;
3016
3017 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3018 migr_chunk = migr_strip_blocks_rebuild(dev);
3019 return migr_chunk * stripes_per_unit;
3020 }
1e5c6983
DW
3021 case MIGR_STATE_CHANGE:
3022 default:
3023 return 0;
3024 }
3025}
3026
c2c087e6
DW
3027static int imsm_level_to_layout(int level)
3028{
3029 switch (level) {
3030 case 0:
3031 case 1:
3032 return 0;
3033 case 5:
3034 case 6:
a380c027 3035 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3036 case 10:
c92a2527 3037 return 0x102;
c2c087e6 3038 }
a18a888e 3039 return UnSet;
c2c087e6
DW
3040}
3041
8e59f3d8
AK
3042/*******************************************************************************
3043 * Function: read_imsm_migr_rec
3044 * Description: Function reads imsm migration record from last sector of disk
3045 * Parameters:
3046 * fd : disk descriptor
3047 * super : metadata info
3048 * Returns:
3049 * 0 : success,
3050 * -1 : fail
3051 ******************************************************************************/
3052static int read_imsm_migr_rec(int fd, struct intel_super *super)
3053{
3054 int ret_val = -1;
de44e46f 3055 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3056 unsigned long long dsize;
3057
3058 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3059 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3060 SEEK_SET) < 0) {
e7b84f9d
N
3061 pr_err("Cannot seek to anchor block: %s\n",
3062 strerror(errno));
8e59f3d8
AK
3063 goto out;
3064 }
466070ad 3065 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3066 MIGR_REC_BUF_SECTORS*sector_size) !=
3067 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3068 pr_err("Cannot read migr record block: %s\n",
3069 strerror(errno));
8e59f3d8
AK
3070 goto out;
3071 }
3072 ret_val = 0;
de44e46f
PB
3073 if (sector_size == 4096)
3074 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3075
3076out:
3077 return ret_val;
3078}
3079
3136abe5
AK
3080static struct imsm_dev *imsm_get_device_during_migration(
3081 struct intel_super *super)
3082{
3083
3084 struct intel_dev *dv;
3085
3086 for (dv = super->devlist; dv; dv = dv->next) {
3087 if (is_gen_migration(dv->dev))
3088 return dv->dev;
3089 }
3090 return NULL;
3091}
3092
8e59f3d8
AK
3093/*******************************************************************************
3094 * Function: load_imsm_migr_rec
3095 * Description: Function reads imsm migration record (it is stored at the last
3096 * sector of disk)
3097 * Parameters:
3098 * super : imsm internal array info
8e59f3d8
AK
3099 * Returns:
3100 * 0 : success
3101 * -1 : fail
4c965cc9 3102 * -2 : no migration in progress
8e59f3d8 3103 ******************************************************************************/
2f86fda3 3104static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3105{
594dc1b8 3106 struct dl *dl;
8e59f3d8
AK
3107 char nm[30];
3108 int retval = -1;
3109 int fd = -1;
3136abe5 3110 struct imsm_dev *dev;
594dc1b8 3111 struct imsm_map *map;
b4ab44d8 3112 int slot = -1;
2f86fda3 3113 int keep_fd = 1;
3136abe5
AK
3114
3115 /* find map under migration */
3116 dev = imsm_get_device_during_migration(super);
3117 /* nothing to load,no migration in progress?
3118 */
3119 if (dev == NULL)
4c965cc9 3120 return -2;
8e59f3d8 3121
2f86fda3
MT
3122 map = get_imsm_map(dev, MAP_0);
3123 if (!map)
3124 return -1;
3136abe5 3125
2f86fda3
MT
3126 for (dl = super->disks; dl; dl = dl->next) {
3127 /* skip spare and failed disks
3128 */
3129 if (dl->index < 0)
3130 continue;
3131 /* read only from one of the first two slots
3132 */
3133 slot = get_imsm_disk_slot(map, dl->index);
3134 if (slot > 1 || slot < 0)
3135 continue;
3136
3137 if (dl->fd < 0) {
8e59f3d8
AK
3138 sprintf(nm, "%d:%d", dl->major, dl->minor);
3139 fd = dev_open(nm, O_RDONLY);
2f86fda3
MT
3140 if (fd >= 0) {
3141 keep_fd = 0;
8e59f3d8 3142 break;
2f86fda3
MT
3143 }
3144 } else {
3145 fd = dl->fd;
3146 break;
8e59f3d8
AK
3147 }
3148 }
2f86fda3 3149
8e59f3d8 3150 if (fd < 0)
2f86fda3 3151 return retval;
8e59f3d8 3152 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3153 if (!keep_fd)
8e59f3d8 3154 close(fd);
2f86fda3 3155
8e59f3d8
AK
3156 return retval;
3157}
3158
c17608ea
AK
3159/*******************************************************************************
3160 * function: imsm_create_metadata_checkpoint_update
3161 * Description: It creates update for checkpoint change.
3162 * Parameters:
3163 * super : imsm internal array info
3164 * u : pointer to prepared update
3165 * Returns:
3166 * Uptate length.
3167 * If length is equal to 0, input pointer u contains no update
3168 ******************************************************************************/
3169static int imsm_create_metadata_checkpoint_update(
3170 struct intel_super *super,
3171 struct imsm_update_general_migration_checkpoint **u)
3172{
3173
3174 int update_memory_size = 0;
3175
1ade5cc1 3176 dprintf("(enter)\n");
c17608ea
AK
3177
3178 if (u == NULL)
3179 return 0;
3180 *u = NULL;
3181
3182 /* size of all update data without anchor */
3183 update_memory_size =
3184 sizeof(struct imsm_update_general_migration_checkpoint);
3185
503975b9 3186 *u = xcalloc(1, update_memory_size);
c17608ea 3187 if (*u == NULL) {
1ade5cc1 3188 dprintf("error: cannot get memory\n");
c17608ea
AK
3189 return 0;
3190 }
3191 (*u)->type = update_general_migration_checkpoint;
9f421827 3192 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3193 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3194
3195 return update_memory_size;
3196}
3197
c17608ea
AK
3198static void imsm_update_metadata_locally(struct supertype *st,
3199 void *buf, int len);
3200
687629c2
AK
3201/*******************************************************************************
3202 * Function: write_imsm_migr_rec
3203 * Description: Function writes imsm migration record
3204 * (at the last sector of disk)
3205 * Parameters:
3206 * super : imsm internal array info
3207 * Returns:
3208 * 0 : success
3209 * -1 : if fail
3210 ******************************************************************************/
3211static int write_imsm_migr_rec(struct supertype *st)
3212{
3213 struct intel_super *super = st->sb;
de44e46f 3214 unsigned int sector_size = super->sector_size;
687629c2 3215 unsigned long long dsize;
687629c2
AK
3216 int retval = -1;
3217 struct dl *sd;
c17608ea
AK
3218 int len;
3219 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3220 struct imsm_dev *dev;
594dc1b8 3221 struct imsm_map *map;
3136abe5
AK
3222
3223 /* find map under migration */
3224 dev = imsm_get_device_during_migration(super);
3225 /* if no migration, write buffer anyway to clear migr_record
3226 * on disk based on first available device
3227 */
3228 if (dev == NULL)
3229 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3230 super->current_vol);
3231
44bfe6df 3232 map = get_imsm_map(dev, MAP_0);
687629c2 3233
de44e46f
PB
3234 if (sector_size == 4096)
3235 convert_to_4k_imsm_migr_rec(super);
687629c2 3236 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3237 int slot = -1;
3136abe5
AK
3238
3239 /* skip failed and spare devices */
3240 if (sd->index < 0)
3241 continue;
687629c2 3242 /* write to 2 first slots only */
3136abe5
AK
3243 if (map)
3244 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3245 if (map == NULL || slot > 1 || slot < 0)
687629c2 3246 continue;
3136abe5 3247
2f86fda3
MT
3248 get_dev_size(sd->fd, NULL, &dsize);
3249 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3250 sector_size),
de44e46f 3251 SEEK_SET) < 0) {
e7b84f9d
N
3252 pr_err("Cannot seek to anchor block: %s\n",
3253 strerror(errno));
687629c2
AK
3254 goto out;
3255 }
2f86fda3 3256 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3257 MIGR_REC_BUF_SECTORS*sector_size) !=
3258 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3259 pr_err("Cannot write migr record block: %s\n",
3260 strerror(errno));
687629c2
AK
3261 goto out;
3262 }
687629c2 3263 }
de44e46f
PB
3264 if (sector_size == 4096)
3265 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3266 /* update checkpoint information in metadata */
3267 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3268 if (len <= 0) {
3269 dprintf("imsm: Cannot prepare update\n");
3270 goto out;
3271 }
3272 /* update metadata locally */
3273 imsm_update_metadata_locally(st, u, len);
3274 /* and possibly remotely */
3275 if (st->update_tail) {
3276 append_metadata_update(st, u, len);
3277 /* during reshape we do all work inside metadata handler
3278 * manage_reshape(), so metadata update has to be triggered
3279 * insida it
3280 */
3281 flush_metadata_updates(st);
3282 st->update_tail = &st->updates;
3283 } else
3284 free(u);
687629c2
AK
3285
3286 retval = 0;
3287 out:
687629c2
AK
3288 return retval;
3289}
3290
e2962bfc
AK
3291/* spare/missing disks activations are not allowe when
3292 * array/container performs reshape operation, because
3293 * all arrays in container works on the same disks set
3294 */
3295int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3296{
3297 int rv = 0;
3298 struct intel_dev *i_dev;
3299 struct imsm_dev *dev;
3300
3301 /* check whole container
3302 */
3303 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3304 dev = i_dev->dev;
3ad25638 3305 if (is_gen_migration(dev)) {
e2962bfc
AK
3306 /* No repair during any migration in container
3307 */
3308 rv = 1;
3309 break;
3310 }
3311 }
3312 return rv;
3313}
3e684231 3314static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3315 int chunk_size,
f36a9ecd 3316 unsigned int sector_size,
c41e00b2
AK
3317 unsigned long long component_size)
3318{
3e684231 3319 unsigned int component_size_alignment;
c41e00b2 3320
3e684231 3321 /* check component size alignment
c41e00b2 3322 */
3e684231 3323 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3324
3e684231 3325 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3326 level, chunk_size, component_size,
3e684231 3327 component_size_alignment);
c41e00b2 3328
3e684231
MZ
3329 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3330 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3331 component_size);
3e684231 3332 component_size -= component_size_alignment;
1ade5cc1 3333 dprintf_cont("to %llu (%i).\n",
3e684231 3334 component_size, component_size_alignment);
c41e00b2
AK
3335 }
3336
3337 return component_size;
3338}
e2962bfc 3339
fbc42556
JR
3340/*******************************************************************************
3341 * Function: get_bitmap_header_sector
3342 * Description: Returns the sector where the bitmap header is placed.
3343 * Parameters:
3344 * st : supertype information
3345 * dev_idx : index of the device with bitmap
3346 *
3347 * Returns:
3348 * The sector where the bitmap header is placed
3349 ******************************************************************************/
3350static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3351 int dev_idx)
3352{
3353 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3354 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3355
3356 if (!super->sector_size) {
3357 dprintf("sector size is not set\n");
3358 return 0;
3359 }
3360
3361 return pba_of_lba0(map) + calc_component_size(map, dev) +
3362 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3363}
3364
3365/*******************************************************************************
3366 * Function: get_bitmap_sector
3367 * Description: Returns the sector where the bitmap is placed.
3368 * Parameters:
3369 * st : supertype information
3370 * dev_idx : index of the device with bitmap
3371 *
3372 * Returns:
3373 * The sector where the bitmap is placed
3374 ******************************************************************************/
3375static unsigned long long get_bitmap_sector(struct intel_super *super,
3376 int dev_idx)
3377{
3378 if (!super->sector_size) {
3379 dprintf("sector size is not set\n");
3380 return 0;
3381 }
3382
3383 return get_bitmap_header_sector(super, dev_idx) +
3384 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3385}
3386
2432ce9b
AP
3387static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3388{
3389 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3390 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3391
3392 return pba_of_lba0(map) +
3393 (num_data_stripes(map) * map->blocks_per_strip);
3394}
3395
a5d85af7 3396static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3397{
3398 struct intel_super *super = st->sb;
c47b0ff6 3399 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3400 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3401 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3402 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3403 struct imsm_map *map_to_analyse = map;
efb30e7f 3404 struct dl *dl;
a5d85af7 3405 int map_disks = info->array.raid_disks;
bf5a934a 3406
95eeceeb 3407 memset(info, 0, sizeof(*info));
b335e593
AK
3408 if (prev_map)
3409 map_to_analyse = prev_map;
3410
ca0748fa 3411 dl = super->current_disk;
9894ec0d 3412
bf5a934a 3413 info->container_member = super->current_vol;
cd0430a1 3414 info->array.raid_disks = map->num_members;
b335e593 3415 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3416 info->array.layout = imsm_level_to_layout(info->array.level);
3417 info->array.md_minor = -1;
3418 info->array.ctime = 0;
3419 info->array.utime = 0;
b335e593
AK
3420 info->array.chunk_size =
3421 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3422 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3423 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3424 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3425
3f510843 3426 if (is_gen_migration(dev)) {
3f83228a 3427 info->reshape_active = 1;
b335e593
AK
3428 info->new_level = get_imsm_raid_level(map);
3429 info->new_layout = imsm_level_to_layout(info->new_level);
3430 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3431 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3432 if (info->delta_disks) {
3433 /* this needs to be applied to every array
3434 * in the container.
3435 */
81219e70 3436 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3437 }
3f83228a
N
3438 /* We shape information that we give to md might have to be
3439 * modify to cope with md's requirement for reshaping arrays.
3440 * For example, when reshaping a RAID0, md requires it to be
3441 * presented as a degraded RAID4.
3442 * Also if a RAID0 is migrating to a RAID5 we need to specify
3443 * the array as already being RAID5, but the 'before' layout
3444 * is a RAID4-like layout.
3445 */
3446 switch (info->array.level) {
3447 case 0:
3448 switch(info->new_level) {
3449 case 0:
3450 /* conversion is happening as RAID4 */
3451 info->array.level = 4;
3452 info->array.raid_disks += 1;
3453 break;
3454 case 5:
3455 /* conversion is happening as RAID5 */
3456 info->array.level = 5;
3457 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3458 info->delta_disks -= 1;
3459 break;
3460 default:
3461 /* FIXME error message */
3462 info->array.level = UnSet;
3463 break;
3464 }
3465 break;
3466 }
b335e593
AK
3467 } else {
3468 info->new_level = UnSet;
3469 info->new_layout = UnSet;
3470 info->new_chunk = info->array.chunk_size;
3f83228a 3471 info->delta_disks = 0;
b335e593 3472 }
ca0748fa 3473
efb30e7f
DW
3474 if (dl) {
3475 info->disk.major = dl->major;
3476 info->disk.minor = dl->minor;
ca0748fa 3477 info->disk.number = dl->index;
656b6b5a
N
3478 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3479 dl->index);
efb30e7f 3480 }
bf5a934a 3481
5551b113 3482 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3483 info->component_size = calc_component_size(map, dev);
3e684231 3484 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3485 info->array.level,
3486 info->array.chunk_size,
f36a9ecd 3487 super->sector_size,
c41e00b2 3488 info->component_size);
5e46202e 3489 info->bb.supported = 1;
139dae11 3490
301406c9 3491 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3492 info->recovery_start = MaxSector;
bf5a934a 3493
c2462068
PB
3494 if (info->array.level == 5 &&
3495 (dev->rwh_policy == RWH_DISTRIBUTED ||
3496 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3497 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3498 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3499 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3500 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3501 else
3502 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3503 >> 9;
2432ce9b
AP
3504 } else if (info->array.level <= 0) {
3505 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3506 } else {
fbc42556
JR
3507 if (dev->rwh_policy == RWH_BITMAP) {
3508 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3509 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3510 } else {
3511 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3512 }
2432ce9b
AP
3513 }
3514
d2e6d5d6 3515 info->reshape_progress = 0;
b6796ce1 3516 info->resync_start = MaxSector;
b9172665 3517 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3518 !(info->array.state & 1)) &&
b9172665 3519 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3520 info->resync_start = 0;
b6796ce1
AK
3521 }
3522 if (dev->vol.migr_state) {
1e5c6983
DW
3523 switch (migr_type(dev)) {
3524 case MIGR_REPAIR:
3525 case MIGR_INIT: {
c47b0ff6
AK
3526 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3527 dev);
4036e7ee 3528 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3529
3530 info->resync_start = blocks_per_unit * units;
3531 break;
3532 }
d2e6d5d6 3533 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3534 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3535 dev);
9f421827 3536 __u64 units = current_migr_unit(migr_rec);
04fa9523 3537 int used_disks;
d2e6d5d6 3538
befb629b
AK
3539 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3540 (units <
9f421827 3541 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3542 (super->migr_rec->rec_status ==
3543 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3544 units++;
3545
d2e6d5d6 3546 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3547
7a862a02 3548 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3549 (unsigned long long)units,
3550 (unsigned long long)blocks_per_unit,
3551 info->reshape_progress);
75156c46 3552
9529d343 3553 used_disks = imsm_num_data_members(prev_map);
75156c46 3554 if (used_disks > 0) {
895ffd99 3555 info->custom_array_size = per_dev_array_size(map) *
75156c46 3556 used_disks;
75156c46 3557 }
d2e6d5d6 3558 }
1e5c6983
DW
3559 case MIGR_VERIFY:
3560 /* we could emulate the checkpointing of
3561 * 'sync_action=check' migrations, but for now
3562 * we just immediately complete them
3563 */
3564 case MIGR_REBUILD:
3565 /* this is handled by container_content_imsm() */
1e5c6983
DW
3566 case MIGR_STATE_CHANGE:
3567 /* FIXME handle other migrations */
3568 default:
3569 /* we are not dirty, so... */
3570 info->resync_start = MaxSector;
3571 }
b6796ce1 3572 }
301406c9
DW
3573
3574 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3575 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3576
f35f2525
N
3577 info->array.major_version = -1;
3578 info->array.minor_version = -2;
4dd2df09 3579 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3580 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3581 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3582
3583 if (dmap) {
3584 int i, j;
3585 for (i=0; i<map_disks; i++) {
3586 dmap[i] = 0;
3587 if (i < info->array.raid_disks) {
3588 struct imsm_disk *dsk;
238c0a71 3589 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3590 dsk = get_imsm_disk(super, j);
3591 if (dsk && (dsk->status & CONFIGURED_DISK))
3592 dmap[i] = 1;
3593 }
3594 }
3595 }
81ac8b4d 3596}
bf5a934a 3597
3b451610
AK
3598static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3599 int failed, int look_in_map);
3600
3601static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3602 int look_in_map);
3603
3604static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3605{
3606 if (is_gen_migration(dev)) {
3607 int failed;
3608 __u8 map_state;
3609 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3610
3611 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3612 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3613 if (map2->map_state != map_state) {
3614 map2->map_state = map_state;
3615 super->updates_pending++;
3616 }
3617 }
3618}
97b4d0e9
DW
3619
3620static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3621{
3622 struct dl *d;
3623
3624 for (d = super->missing; d; d = d->next)
3625 if (d->index == index)
3626 return &d->disk;
3627 return NULL;
3628}
3629
a5d85af7 3630static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3631{
3632 struct intel_super *super = st->sb;
4f5bc454 3633 struct imsm_disk *disk;
a5d85af7 3634 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3635 int max_enough = -1;
3636 int i;
3637 struct imsm_super *mpb;
4f5bc454 3638
bf5a934a 3639 if (super->current_vol >= 0) {
a5d85af7 3640 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3641 return;
3642 }
95eeceeb 3643 memset(info, 0, sizeof(*info));
d23fe947
DW
3644
3645 /* Set raid_disks to zero so that Assemble will always pull in valid
3646 * spares
3647 */
3648 info->array.raid_disks = 0;
cdddbdbc
DW
3649 info->array.level = LEVEL_CONTAINER;
3650 info->array.layout = 0;
3651 info->array.md_minor = -1;
1011e834 3652 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3653 info->array.utime = 0;
3654 info->array.chunk_size = 0;
3655
3656 info->disk.major = 0;
3657 info->disk.minor = 0;
cdddbdbc 3658 info->disk.raid_disk = -1;
c2c087e6 3659 info->reshape_active = 0;
f35f2525
N
3660 info->array.major_version = -1;
3661 info->array.minor_version = -2;
c2c087e6 3662 strcpy(info->text_version, "imsm");
a67dd8cc 3663 info->safe_mode_delay = 0;
c2c087e6
DW
3664 info->disk.number = -1;
3665 info->disk.state = 0;
c5afc314 3666 info->name[0] = 0;
921d9e16 3667 info->recovery_start = MaxSector;
3ad25638 3668 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3669 info->bb.supported = 1;
c2c087e6 3670
97b4d0e9 3671 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3672 mpb = super->anchor;
b7d81a38 3673 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3674
ab3cb6b3
N
3675 for (i = 0; i < mpb->num_raid_devs; i++) {
3676 struct imsm_dev *dev = get_imsm_dev(super, i);
3677 int failed, enough, j, missing = 0;
3678 struct imsm_map *map;
3679 __u8 state;
97b4d0e9 3680
3b451610
AK
3681 failed = imsm_count_failed(super, dev, MAP_0);
3682 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3683 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3684
3685 /* any newly missing disks?
3686 * (catches single-degraded vs double-degraded)
3687 */
3688 for (j = 0; j < map->num_members; j++) {
238c0a71 3689 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3690 __u32 idx = ord_to_idx(ord);
3691
20dc76d1
MT
3692 if (super->disks && super->disks->index == (int)idx)
3693 info->disk.raid_disk = j;
3694
ab3cb6b3
N
3695 if (!(ord & IMSM_ORD_REBUILD) &&
3696 get_imsm_missing(super, idx)) {
3697 missing = 1;
3698 break;
3699 }
97b4d0e9 3700 }
ab3cb6b3
N
3701
3702 if (state == IMSM_T_STATE_FAILED)
3703 enough = -1;
3704 else if (state == IMSM_T_STATE_DEGRADED &&
3705 (state != map->map_state || missing))
3706 enough = 0;
3707 else /* we're normal, or already degraded */
3708 enough = 1;
d2bde6d3
AK
3709 if (is_gen_migration(dev) && missing) {
3710 /* during general migration we need all disks
3711 * that process is running on.
3712 * No new missing disk is allowed.
3713 */
3714 max_enough = -1;
3715 enough = -1;
3716 /* no more checks necessary
3717 */
3718 break;
3719 }
ab3cb6b3
N
3720 /* in the missing/failed disk case check to see
3721 * if at least one array is runnable
3722 */
3723 max_enough = max(max_enough, enough);
3724 }
1ade5cc1 3725 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3726 info->container_enough = max_enough;
97b4d0e9 3727
4a04ec6c 3728 if (super->disks) {
14e8215b
DW
3729 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3730
b9f594fe 3731 disk = &super->disks->disk;
5551b113 3732 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3733 info->component_size = reserved;
25ed7e59 3734 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3735 /* we don't change info->disk.raid_disk here because
3736 * this state will be finalized in mdmon after we have
3737 * found the 'most fresh' version of the metadata
3738 */
25ed7e59 3739 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3740 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3741 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3742 }
a575e2a7
DW
3743
3744 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3745 * ->compare_super may have updated the 'num_raid_devs' field for spares
3746 */
3747 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3748 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3749 else
3750 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3751
3752 /* I don't know how to compute 'map' on imsm, so use safe default */
3753 if (map) {
3754 int i;
3755 for (i = 0; i < map_disks; i++)
3756 map[i] = 1;
3757 }
3758
cdddbdbc
DW
3759}
3760
5c4cd5da
AC
3761/* allocates memory and fills disk in mdinfo structure
3762 * for each disk in array */
3763struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3764{
594dc1b8 3765 struct mdinfo *mddev;
5c4cd5da
AC
3766 struct intel_super *super = st->sb;
3767 struct imsm_disk *disk;
3768 int count = 0;
3769 struct dl *dl;
3770 if (!super || !super->disks)
3771 return NULL;
3772 dl = super->disks;
503975b9 3773 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3774 while (dl) {
3775 struct mdinfo *tmp;
3776 disk = &dl->disk;
503975b9 3777 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3778 if (mddev->devs)
3779 tmp->next = mddev->devs;
3780 mddev->devs = tmp;
3781 tmp->disk.number = count++;
3782 tmp->disk.major = dl->major;
3783 tmp->disk.minor = dl->minor;
3784 tmp->disk.state = is_configured(disk) ?
3785 (1 << MD_DISK_ACTIVE) : 0;
3786 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3787 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3788 tmp->disk.raid_disk = -1;
3789 dl = dl->next;
3790 }
3791 return mddev;
3792}
3793
cdddbdbc
DW
3794static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3795 char *update, char *devname, int verbose,
3796 int uuid_set, char *homehost)
3797{
f352c545
DW
3798 /* For 'assemble' and 'force' we need to return non-zero if any
3799 * change was made. For others, the return value is ignored.
3800 * Update options are:
3801 * force-one : This device looks a bit old but needs to be included,
3802 * update age info appropriately.
3803 * assemble: clear any 'faulty' flag to allow this device to
3804 * be assembled.
3805 * force-array: Array is degraded but being forced, mark it clean
3806 * if that will be needed to assemble it.
3807 *
3808 * newdev: not used ????
3809 * grow: Array has gained a new device - this is currently for
3810 * linear only
3811 * resync: mark as dirty so a resync will happen.
3812 * name: update the name - preserving the homehost
6e46bf34 3813 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3814 *
3815 * Following are not relevant for this imsm:
3816 * sparc2.2 : update from old dodgey metadata
3817 * super-minor: change the preferred_minor number
3818 * summaries: update redundant counters.
f352c545
DW
3819 * homehost: update the recorded homehost
3820 * _reshape_progress: record new reshape_progress position.
3821 */
6e46bf34
DW
3822 int rv = 1;
3823 struct intel_super *super = st->sb;
3824 struct imsm_super *mpb;
f352c545 3825
6e46bf34
DW
3826 /* we can only update container info */
3827 if (!super || super->current_vol >= 0 || !super->anchor)
3828 return 1;
3829
3830 mpb = super->anchor;
3831
81a5b4f5
N
3832 if (strcmp(update, "uuid") == 0) {
3833 /* We take this to mean that the family_num should be updated.
3834 * However that is much smaller than the uuid so we cannot really
3835 * allow an explicit uuid to be given. And it is hard to reliably
3836 * know if one was.
3837 * So if !uuid_set we know the current uuid is random and just used
3838 * the first 'int' and copy it to the other 3 positions.
3839 * Otherwise we require the 4 'int's to be the same as would be the
3840 * case if we are using a random uuid. So an explicit uuid will be
3841 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3842 */
81a5b4f5
N
3843 if (!uuid_set) {
3844 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3845 rv = 0;
81a5b4f5
N
3846 } else {
3847 if (info->uuid[0] != info->uuid[1] ||
3848 info->uuid[1] != info->uuid[2] ||
3849 info->uuid[2] != info->uuid[3])
3850 rv = -1;
3851 else
3852 rv = 0;
6e46bf34 3853 }
81a5b4f5
N
3854 if (rv == 0)
3855 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3856 } else if (strcmp(update, "assemble") == 0)
3857 rv = 0;
3858 else
1e2b2765 3859 rv = -1;
f352c545 3860
6e46bf34
DW
3861 /* successful update? recompute checksum */
3862 if (rv == 0)
3863 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3864
3865 return rv;
cdddbdbc
DW
3866}
3867
c2c087e6 3868static size_t disks_to_mpb_size(int disks)
cdddbdbc 3869{
c2c087e6 3870 size_t size;
cdddbdbc 3871
c2c087e6
DW
3872 size = sizeof(struct imsm_super);
3873 size += (disks - 1) * sizeof(struct imsm_disk);
3874 size += 2 * sizeof(struct imsm_dev);
3875 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3876 size += (4 - 2) * sizeof(struct imsm_map);
3877 /* 4 possible disk_ord_tbl's */
3878 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3879 /* maximum bbm log */
3880 size += sizeof(struct bbm_log);
c2c087e6
DW
3881
3882 return size;
3883}
3884
387fcd59
N
3885static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3886 unsigned long long data_offset)
c2c087e6
DW
3887{
3888 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3889 return 0;
3890
3891 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3892}
3893
ba2de7ba
DW
3894static void free_devlist(struct intel_super *super)
3895{
3896 struct intel_dev *dv;
3897
3898 while (super->devlist) {
3899 dv = super->devlist->next;
3900 free(super->devlist->dev);
3901 free(super->devlist);
3902 super->devlist = dv;
3903 }
3904}
3905
3906static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3907{
3908 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3909}
3910
c7b8547c
MT
3911static int compare_super_imsm(struct supertype *st, struct supertype *tst,
3912 int verbose)
cdddbdbc
DW
3913{
3914 /*
3915 * return:
3916 * 0 same, or first was empty, and second was copied
3917 * 1 second had wrong number
3918 * 2 wrong uuid
3919 * 3 wrong other info
3920 */
3921 struct intel_super *first = st->sb;
3922 struct intel_super *sec = tst->sb;
3923
5d500228
N
3924 if (!first) {
3925 st->sb = tst->sb;
3926 tst->sb = NULL;
3927 return 0;
3928 }
8603ea6f
LM
3929 /* in platform dependent environment test if the disks
3930 * use the same Intel hba
cb8f6859 3931 * If not on Intel hba at all, allow anything.
8603ea6f 3932 */
6b781d33
AP
3933 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3934 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
3935 if (verbose)
3936 pr_err("HBAs of devices do not match %s != %s\n",
3937 get_sys_dev_type(first->hba->type),
3938 get_sys_dev_type(sec->hba->type));
6b781d33
AP
3939 return 3;
3940 }
c7b8547c 3941
6b781d33 3942 if (first->orom != sec->orom) {
c7b8547c
MT
3943 if (verbose)
3944 pr_err("HBAs of devices do not match %s != %s\n",
3945 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3946 return 3;
3947 }
c7b8547c 3948
8603ea6f 3949 }
cdddbdbc 3950
d23fe947
DW
3951 /* if an anchor does not have num_raid_devs set then it is a free
3952 * floating spare
3953 */
3954 if (first->anchor->num_raid_devs > 0 &&
3955 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3956 /* Determine if these disks might ever have been
3957 * related. Further disambiguation can only take place
3958 * in load_super_imsm_all
3959 */
3960 __u32 first_family = first->anchor->orig_family_num;
3961 __u32 sec_family = sec->anchor->orig_family_num;
3962
f796af5d
DW
3963 if (memcmp(first->anchor->sig, sec->anchor->sig,
3964 MAX_SIGNATURE_LENGTH) != 0)
3965 return 3;
3966
a2b97981
DW
3967 if (first_family == 0)
3968 first_family = first->anchor->family_num;
3969 if (sec_family == 0)
3970 sec_family = sec->anchor->family_num;
3971
3972 if (first_family != sec_family)
d23fe947 3973 return 3;
f796af5d 3974
d23fe947 3975 }
cdddbdbc 3976
3e372e5a
DW
3977 /* if 'first' is a spare promote it to a populated mpb with sec's
3978 * family number
3979 */
3980 if (first->anchor->num_raid_devs == 0 &&
3981 sec->anchor->num_raid_devs > 0) {
78d30f94 3982 int i;
ba2de7ba
DW
3983 struct intel_dev *dv;
3984 struct imsm_dev *dev;
78d30f94
DW
3985
3986 /* we need to copy raid device info from sec if an allocation
3987 * fails here we don't associate the spare
3988 */
3989 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3990 dv = xmalloc(sizeof(*dv));
3991 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3992 dv->dev = dev;
3993 dv->index = i;
3994 dv->next = first->devlist;
3995 first->devlist = dv;
78d30f94 3996 }
709743c5 3997 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3998 /* allocation failure */
3999 free_devlist(first);
e12b3daa 4000 pr_err("imsm: failed to associate spare\n");
ba2de7ba 4001 return 3;
78d30f94 4002 }
3e372e5a 4003 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 4004 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 4005 first->anchor->family_num = sec->anchor->family_num;
ac6449be 4006 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
4007 for (i = 0; i < sec->anchor->num_raid_devs; i++)
4008 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
4009 }
4010
cdddbdbc
DW
4011 return 0;
4012}
4013
0030e8d6
DW
4014static void fd2devname(int fd, char *name)
4015{
0030e8d6 4016 char *nm;
0030e8d6 4017
7c798f87
MT
4018 nm = fd2kname(fd);
4019 if (!nm)
0030e8d6 4020 return;
9587c373 4021
7c798f87 4022 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4023}
4024
21e9380b
AP
4025static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4026{
fcebeb77 4027 char path[PATH_MAX];
21e9380b
AP
4028 char *name = fd2kname(fd);
4029
4030 if (!name)
4031 return 1;
4032
4033 if (strncmp(name, "nvme", 4) != 0)
4034 return 1;
4035
fcebeb77
MT
4036 if (!diskfd_to_devpath(fd, 1, path))
4037 return 1;
21e9380b 4038
fcebeb77 4039 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4040}
4041
cdddbdbc
DW
4042extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4043
4044static int imsm_read_serial(int fd, char *devname,
6da53c0e 4045 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4046{
21e9380b 4047 char buf[50];
cdddbdbc 4048 int rv;
6da53c0e 4049 size_t len;
316e2bf4
DW
4050 char *dest;
4051 char *src;
21e9380b
AP
4052 unsigned int i;
4053
4054 memset(buf, 0, sizeof(buf));
cdddbdbc 4055
21e9380b 4056 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4057
21e9380b
AP
4058 if (rv)
4059 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4060
40ebbb9c 4061 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
4062 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4063 fd2devname(fd, (char *) serial);
0030e8d6
DW
4064 return 0;
4065 }
4066
cdddbdbc
DW
4067 if (rv != 0) {
4068 if (devname)
e7b84f9d
N
4069 pr_err("Failed to retrieve serial for %s\n",
4070 devname);
cdddbdbc
DW
4071 return rv;
4072 }
4073
316e2bf4
DW
4074 /* trim all whitespace and non-printable characters and convert
4075 * ':' to ';'
4076 */
21e9380b
AP
4077 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4078 src = &buf[i];
316e2bf4
DW
4079 if (*src > 0x20) {
4080 /* ':' is reserved for use in placeholder serial
4081 * numbers for missing disks
4082 */
4083 if (*src == ':')
4084 *dest++ = ';';
4085 else
4086 *dest++ = *src;
4087 }
4088 }
21e9380b
AP
4089 len = dest - buf;
4090 dest = buf;
316e2bf4 4091
6da53c0e
BK
4092 if (len > serial_buf_len) {
4093 /* truncate leading characters */
4094 dest += len - serial_buf_len;
4095 len = serial_buf_len;
316e2bf4 4096 }
5c3db629 4097
6da53c0e 4098 memset(serial, 0, serial_buf_len);
316e2bf4 4099 memcpy(serial, dest, len);
cdddbdbc
DW
4100
4101 return 0;
4102}
4103
1f24f035
DW
4104static int serialcmp(__u8 *s1, __u8 *s2)
4105{
4106 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4107}
4108
4109static void serialcpy(__u8 *dest, __u8 *src)
4110{
4111 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4112}
4113
54c2c1ea
DW
4114static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4115{
4116 struct dl *dl;
4117
4118 for (dl = super->disks; dl; dl = dl->next)
4119 if (serialcmp(dl->serial, serial) == 0)
4120 break;
4121
4122 return dl;
4123}
4124
a2b97981
DW
4125static struct imsm_disk *
4126__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4127{
4128 int i;
4129
4130 for (i = 0; i < mpb->num_disks; i++) {
4131 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4132
4133 if (serialcmp(disk->serial, serial) == 0) {
4134 if (idx)
4135 *idx = i;
4136 return disk;
4137 }
4138 }
4139
4140 return NULL;
4141}
4142
cdddbdbc
DW
4143static int
4144load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4145{
a2b97981 4146 struct imsm_disk *disk;
cdddbdbc
DW
4147 struct dl *dl;
4148 struct stat stb;
cdddbdbc 4149 int rv;
a2b97981 4150 char name[40];
d23fe947
DW
4151 __u8 serial[MAX_RAID_SERIAL_LEN];
4152
6da53c0e 4153 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4154
4155 if (rv != 0)
4156 return 2;
4157
503975b9 4158 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4159
a2b97981
DW
4160 fstat(fd, &stb);
4161 dl->major = major(stb.st_rdev);
4162 dl->minor = minor(stb.st_rdev);
4163 dl->next = super->disks;
4164 dl->fd = keep_fd ? fd : -1;
4165 assert(super->disks == NULL);
4166 super->disks = dl;
4167 serialcpy(dl->serial, serial);
4168 dl->index = -2;
4169 dl->e = NULL;
4170 fd2devname(fd, name);
4171 if (devname)
503975b9 4172 dl->devname = xstrdup(devname);
a2b97981 4173 else
503975b9 4174 dl->devname = xstrdup(name);
cdddbdbc 4175
d23fe947 4176 /* look up this disk's index in the current anchor */
a2b97981
DW
4177 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4178 if (disk) {
4179 dl->disk = *disk;
4180 /* only set index on disks that are a member of a
4181 * populated contianer, i.e. one with raid_devs
4182 */
4183 if (is_failed(&dl->disk))
3f6efecc 4184 dl->index = -2;
2432ce9b 4185 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4186 dl->index = -1;
3f6efecc
DW
4187 }
4188
949c47a0
DW
4189 return 0;
4190}
4191
0c046afd
DW
4192/* When migrating map0 contains the 'destination' state while map1
4193 * contains the current state. When not migrating map0 contains the
4194 * current state. This routine assumes that map[0].map_state is set to
4195 * the current array state before being called.
4196 *
4197 * Migration is indicated by one of the following states
4198 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4199 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4200 * map1state=unitialized)
1484e727 4201 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4202 * map1state=normal)
e3bba0e0 4203 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4204 * map1state=degraded)
8e59f3d8
AK
4205 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4206 * map1state=normal)
0c046afd 4207 */
8e59f3d8
AK
4208static void migrate(struct imsm_dev *dev, struct intel_super *super,
4209 __u8 to_state, int migr_type)
3393c6af 4210{
0c046afd 4211 struct imsm_map *dest;
238c0a71 4212 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4213
0c046afd 4214 dev->vol.migr_state = 1;
1484e727 4215 set_migr_type(dev, migr_type);
4036e7ee 4216 set_vol_curr_migr_unit(dev, 0);
238c0a71 4217 dest = get_imsm_map(dev, MAP_1);
0c046afd 4218
0556e1a2 4219 /* duplicate and then set the target end state in map[0] */
3393c6af 4220 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4221 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4222 __u32 ord;
4223 int i;
4224
4225 for (i = 0; i < src->num_members; i++) {
4226 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4227 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4228 }
4229 }
4230
8e59f3d8
AK
4231 if (migr_type == MIGR_GEN_MIGR)
4232 /* Clear migration record */
4233 memset(super->migr_rec, 0, sizeof(struct migr_record));
4234
0c046afd 4235 src->map_state = to_state;
949c47a0 4236}
f8f603f1 4237
809da78e
AK
4238static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4239 __u8 map_state)
f8f603f1 4240{
238c0a71
AK
4241 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4242 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4243 MAP_0 : MAP_1);
28bce06f 4244 int i, j;
0556e1a2
DW
4245
4246 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4247 * completed in the last migration.
4248 *
28bce06f 4249 * FIXME add support for raid-level-migration
0556e1a2 4250 */
089f9d79
JS
4251 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4252 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4253 /* when final map state is other than expected
4254 * merge maps (not for migration)
4255 */
4256 int failed;
4257
4258 for (i = 0; i < prev->num_members; i++)
4259 for (j = 0; j < map->num_members; j++)
4260 /* during online capacity expansion
4261 * disks position can be changed
4262 * if takeover is used
4263 */
4264 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4265 ord_to_idx(prev->disk_ord_tbl[i])) {
4266 map->disk_ord_tbl[j] |=
4267 prev->disk_ord_tbl[i];
4268 break;
4269 }
4270 failed = imsm_count_failed(super, dev, MAP_0);
4271 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4272 }
f8f603f1
DW
4273
4274 dev->vol.migr_state = 0;
ea672ee1 4275 set_migr_type(dev, 0);
4036e7ee 4276 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4277 map->map_state = map_state;
4278}
949c47a0
DW
4279
4280static int parse_raid_devices(struct intel_super *super)
4281{
4282 int i;
4283 struct imsm_dev *dev_new;
4d7b1503 4284 size_t len, len_migr;
401d313b 4285 size_t max_len = 0;
4d7b1503
DW
4286 size_t space_needed = 0;
4287 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4288
4289 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4290 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4291 struct intel_dev *dv;
949c47a0 4292
4d7b1503
DW
4293 len = sizeof_imsm_dev(dev_iter, 0);
4294 len_migr = sizeof_imsm_dev(dev_iter, 1);
4295 if (len_migr > len)
4296 space_needed += len_migr - len;
ca9de185 4297
503975b9 4298 dv = xmalloc(sizeof(*dv));
401d313b
AK
4299 if (max_len < len_migr)
4300 max_len = len_migr;
4301 if (max_len > len_migr)
4302 space_needed += max_len - len_migr;
503975b9 4303 dev_new = xmalloc(max_len);
949c47a0 4304 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4305 dv->dev = dev_new;
4306 dv->index = i;
4307 dv->next = super->devlist;
4308 super->devlist = dv;
949c47a0 4309 }
cdddbdbc 4310
4d7b1503
DW
4311 /* ensure that super->buf is large enough when all raid devices
4312 * are migrating
4313 */
4314 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4315 void *buf;
4316
f36a9ecd
PB
4317 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4318 super->sector_size);
4319 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4320 return 1;
4321
1f45a8ad
DW
4322 memcpy(buf, super->buf, super->len);
4323 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4324 free(super->buf);
4325 super->buf = buf;
4326 super->len = len;
4327 }
ca9de185 4328
bbab0940
TM
4329 super->extra_space += space_needed;
4330
cdddbdbc
DW
4331 return 0;
4332}
4333
e2f41b2c
AK
4334/*******************************************************************************
4335 * Function: check_mpb_migr_compatibility
4336 * Description: Function checks for unsupported migration features:
4337 * - migration optimization area (pba_of_lba0)
4338 * - descending reshape (ascending_migr)
4339 * Parameters:
4340 * super : imsm metadata information
4341 * Returns:
4342 * 0 : migration is compatible
4343 * -1 : migration is not compatible
4344 ******************************************************************************/
4345int check_mpb_migr_compatibility(struct intel_super *super)
4346{
4347 struct imsm_map *map0, *map1;
4348 struct migr_record *migr_rec = super->migr_rec;
4349 int i;
4350
4351 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4352 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4353
4354 if (dev_iter &&
4355 dev_iter->vol.migr_state == 1 &&
4356 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4357 /* This device is migrating */
238c0a71
AK
4358 map0 = get_imsm_map(dev_iter, MAP_0);
4359 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4360 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4361 /* migration optimization area was used */
4362 return -1;
fc54fe7a
JS
4363 if (migr_rec->ascending_migr == 0 &&
4364 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4365 /* descending reshape not supported yet */
4366 return -1;
4367 }
4368 }
4369 return 0;
4370}
4371
d23fe947 4372static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4373
cdddbdbc 4374/* load_imsm_mpb - read matrix metadata
f2f5c343 4375 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4376 */
4377static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4378{
4379 unsigned long long dsize;
cdddbdbc 4380 unsigned long long sectors;
f36a9ecd 4381 unsigned int sector_size = super->sector_size;
cdddbdbc 4382 struct stat;
6416d527 4383 struct imsm_super *anchor;
cdddbdbc
DW
4384 __u32 check_sum;
4385
cdddbdbc 4386 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4387 if (dsize < 2*sector_size) {
64436f06 4388 if (devname)
e7b84f9d
N
4389 pr_err("%s: device to small for imsm\n",
4390 devname);
64436f06
N
4391 return 1;
4392 }
cdddbdbc 4393
f36a9ecd 4394 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4395 if (devname)
e7b84f9d
N
4396 pr_err("Cannot seek to anchor block on %s: %s\n",
4397 devname, strerror(errno));
cdddbdbc
DW
4398 return 1;
4399 }
4400
f36a9ecd 4401 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4402 if (devname)
7a862a02 4403 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4404 return 1;
4405 }
466070ad 4406 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4407 if (devname)
e7b84f9d
N
4408 pr_err("Cannot read anchor block on %s: %s\n",
4409 devname, strerror(errno));
6416d527 4410 free(anchor);
cdddbdbc
DW
4411 return 1;
4412 }
4413
6416d527 4414 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4415 if (devname)
e7b84f9d 4416 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4417 free(anchor);
cdddbdbc
DW
4418 return 2;
4419 }
4420
d23fe947 4421 __free_imsm(super, 0);
f2f5c343
LM
4422 /* reload capability and hba */
4423
4424 /* capability and hba must be updated with new super allocation */
d424212e 4425 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4426 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4427 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4428 if (devname)
e7b84f9d
N
4429 pr_err("unable to allocate %zu byte mpb buffer\n",
4430 super->len);
6416d527 4431 free(anchor);
cdddbdbc
DW
4432 return 2;
4433 }
f36a9ecd 4434 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4435
f36a9ecd 4436 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4437 free(anchor);
8e59f3d8 4438
85337573
AO
4439 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4440 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4441 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4442 free(super->buf);
4443 return 2;
4444 }
51d83f5d 4445 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4446
949c47a0 4447 if (!sectors) {
ecf45690
DW
4448 check_sum = __gen_imsm_checksum(super->anchor);
4449 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4450 if (devname)
e7b84f9d
N
4451 pr_err("IMSM checksum %x != %x on %s\n",
4452 check_sum,
4453 __le32_to_cpu(super->anchor->check_sum),
4454 devname);
ecf45690
DW
4455 return 2;
4456 }
4457
a2b97981 4458 return 0;
949c47a0 4459 }
cdddbdbc
DW
4460
4461 /* read the extended mpb */
f36a9ecd 4462 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4463 if (devname)
e7b84f9d
N
4464 pr_err("Cannot seek to extended mpb on %s: %s\n",
4465 devname, strerror(errno));
cdddbdbc
DW
4466 return 1;
4467 }
4468
f36a9ecd
PB
4469 if ((unsigned int)read(fd, super->buf + sector_size,
4470 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4471 if (devname)
e7b84f9d
N
4472 pr_err("Cannot read extended mpb on %s: %s\n",
4473 devname, strerror(errno));
cdddbdbc
DW
4474 return 2;
4475 }
4476
949c47a0
DW
4477 check_sum = __gen_imsm_checksum(super->anchor);
4478 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4479 if (devname)
e7b84f9d
N
4480 pr_err("IMSM checksum %x != %x on %s\n",
4481 check_sum, __le32_to_cpu(super->anchor->check_sum),
4482 devname);
db575f3b 4483 return 3;
cdddbdbc
DW
4484 }
4485
a2b97981
DW
4486 return 0;
4487}
4488
8e59f3d8
AK
4489static int read_imsm_migr_rec(int fd, struct intel_super *super);
4490
97f81ee2
CA
4491/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4492static void clear_hi(struct intel_super *super)
4493{
4494 struct imsm_super *mpb = super->anchor;
4495 int i, n;
4496 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4497 return;
4498 for (i = 0; i < mpb->num_disks; ++i) {
4499 struct imsm_disk *disk = &mpb->disk[i];
4500 disk->total_blocks_hi = 0;
4501 }
4502 for (i = 0; i < mpb->num_raid_devs; ++i) {
4503 struct imsm_dev *dev = get_imsm_dev(super, i);
4504 if (!dev)
4505 return;
4506 for (n = 0; n < 2; ++n) {
4507 struct imsm_map *map = get_imsm_map(dev, n);
4508 if (!map)
4509 continue;
4510 map->pba_of_lba0_hi = 0;
4511 map->blocks_per_member_hi = 0;
4512 map->num_data_stripes_hi = 0;
4513 }
4514 }
4515}
4516
a2b97981
DW
4517static int
4518load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4519{
4520 int err;
4521
4522 err = load_imsm_mpb(fd, super, devname);
4523 if (err)
4524 return err;
f36a9ecd
PB
4525 if (super->sector_size == 4096)
4526 convert_from_4k(super);
a2b97981
DW
4527 err = load_imsm_disk(fd, super, devname, keep_fd);
4528 if (err)
4529 return err;
4530 err = parse_raid_devices(super);
8d67477f
TM
4531 if (err)
4532 return err;
4533 err = load_bbm_log(super);
97f81ee2 4534 clear_hi(super);
a2b97981 4535 return err;
cdddbdbc
DW
4536}
4537
ae6aad82
DW
4538static void __free_imsm_disk(struct dl *d)
4539{
4540 if (d->fd >= 0)
4541 close(d->fd);
4542 if (d->devname)
4543 free(d->devname);
0dcecb2e
DW
4544 if (d->e)
4545 free(d->e);
ae6aad82
DW
4546 free(d);
4547
4548}
1a64be56 4549
cdddbdbc
DW
4550static void free_imsm_disks(struct intel_super *super)
4551{
47ee5a45 4552 struct dl *d;
cdddbdbc 4553
47ee5a45
DW
4554 while (super->disks) {
4555 d = super->disks;
cdddbdbc 4556 super->disks = d->next;
ae6aad82 4557 __free_imsm_disk(d);
cdddbdbc 4558 }
cb82edca
AK
4559 while (super->disk_mgmt_list) {
4560 d = super->disk_mgmt_list;
4561 super->disk_mgmt_list = d->next;
4562 __free_imsm_disk(d);
4563 }
47ee5a45
DW
4564 while (super->missing) {
4565 d = super->missing;
4566 super->missing = d->next;
4567 __free_imsm_disk(d);
4568 }
4569
cdddbdbc
DW
4570}
4571
9ca2c81c 4572/* free all the pieces hanging off of a super pointer */
d23fe947 4573static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4574{
88654014
LM
4575 struct intel_hba *elem, *next;
4576
9ca2c81c 4577 if (super->buf) {
949c47a0 4578 free(super->buf);
9ca2c81c
DW
4579 super->buf = NULL;
4580 }
f2f5c343
LM
4581 /* unlink capability description */
4582 super->orom = NULL;
8e59f3d8
AK
4583 if (super->migr_rec_buf) {
4584 free(super->migr_rec_buf);
4585 super->migr_rec_buf = NULL;
4586 }
d23fe947
DW
4587 if (free_disks)
4588 free_imsm_disks(super);
ba2de7ba 4589 free_devlist(super);
88654014
LM
4590 elem = super->hba;
4591 while (elem) {
4592 if (elem->path)
4593 free((void *)elem->path);
4594 next = elem->next;
4595 free(elem);
4596 elem = next;
88c32bb1 4597 }
8d67477f
TM
4598 if (super->bbm_log)
4599 free(super->bbm_log);
88654014 4600 super->hba = NULL;
cdddbdbc
DW
4601}
4602
9ca2c81c
DW
4603static void free_imsm(struct intel_super *super)
4604{
d23fe947 4605 __free_imsm(super, 1);
928f1424 4606 free(super->bb.entries);
9ca2c81c
DW
4607 free(super);
4608}
cdddbdbc
DW
4609
4610static void free_super_imsm(struct supertype *st)
4611{
4612 struct intel_super *super = st->sb;
4613
4614 if (!super)
4615 return;
4616
4617 free_imsm(super);
4618 st->sb = NULL;
4619}
4620
49133e57 4621static struct intel_super *alloc_super(void)
c2c087e6 4622{
503975b9 4623 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4624
503975b9
N
4625 super->current_vol = -1;
4626 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4627
4628 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4629 sizeof(struct md_bb_entry));
4630 if (!super->bb.entries) {
4631 free(super);
4632 return NULL;
4633 }
4634
c2c087e6
DW
4635 return super;
4636}
4637
f0f5a016
LM
4638/*
4639 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4640 */
d424212e 4641static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4642{
4643 struct sys_dev *hba_name;
4644 int rv = 0;
4645
3a30e28e
MT
4646 if (fd >= 0 && test_partition(fd)) {
4647 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4648 devname);
4649 return 1;
4650 }
089f9d79 4651 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4652 super->orom = NULL;
f0f5a016
LM
4653 super->hba = NULL;
4654 return 0;
4655 }
4656 hba_name = find_disk_attached_hba(fd, NULL);
4657 if (!hba_name) {
d424212e 4658 if (devname)
e7b84f9d
N
4659 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4660 devname);
f0f5a016
LM
4661 return 1;
4662 }
4663 rv = attach_hba_to_super(super, hba_name);
4664 if (rv == 2) {
d424212e
N
4665 if (devname) {
4666 struct intel_hba *hba = super->hba;
f0f5a016 4667
60f0f54d
PB
4668 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4669 " but the container is assigned to Intel(R) %s %s (",
d424212e 4670 devname,
614902f6 4671 get_sys_dev_type(hba_name->type),
60f0f54d 4672 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4673 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4674 get_sys_dev_type(super->hba->type),
4675 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4676
f0f5a016
LM
4677 while (hba) {
4678 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4679 if (hba->next)
4680 fprintf(stderr, ", ");
4681 hba = hba->next;
4682 }
6b781d33 4683 fprintf(stderr, ").\n"
cca67208 4684 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4685 }
f0f5a016
LM
4686 return 2;
4687 }
6b781d33 4688 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4689 if (!super->orom)
4690 return 3;
614902f6 4691
f0f5a016
LM
4692 return 0;
4693}
4694
47ee5a45
DW
4695/* find_missing - helper routine for load_super_imsm_all that identifies
4696 * disks that have disappeared from the system. This routine relies on
4697 * the mpb being uptodate, which it is at load time.
4698 */
4699static int find_missing(struct intel_super *super)
4700{
4701 int i;
4702 struct imsm_super *mpb = super->anchor;
4703 struct dl *dl;
4704 struct imsm_disk *disk;
47ee5a45
DW
4705
4706 for (i = 0; i < mpb->num_disks; i++) {
4707 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4708 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4709 if (dl)
4710 continue;
47ee5a45 4711
503975b9 4712 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4713 dl->major = 0;
4714 dl->minor = 0;
4715 dl->fd = -1;
503975b9 4716 dl->devname = xstrdup("missing");
47ee5a45
DW
4717 dl->index = i;
4718 serialcpy(dl->serial, disk->serial);
4719 dl->disk = *disk;
689c9bf3 4720 dl->e = NULL;
47ee5a45
DW
4721 dl->next = super->missing;
4722 super->missing = dl;
4723 }
4724
4725 return 0;
4726}
4727
a2b97981
DW
4728static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4729{
4730 struct intel_disk *idisk = disk_list;
4731
4732 while (idisk) {
4733 if (serialcmp(idisk->disk.serial, serial) == 0)
4734 break;
4735 idisk = idisk->next;
4736 }
4737
4738 return idisk;
4739}
4740
4741static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4742 struct intel_super *super,
4743 struct intel_disk **disk_list)
4744{
4745 struct imsm_disk *d = &super->disks->disk;
4746 struct imsm_super *mpb = super->anchor;
4747 int i, j;
4748
4749 for (i = 0; i < tbl_size; i++) {
4750 struct imsm_super *tbl_mpb = table[i]->anchor;
4751 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4752
4753 if (tbl_mpb->family_num == mpb->family_num) {
4754 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4755 dprintf("mpb from %d:%d matches %d:%d\n",
4756 super->disks->major,
a2b97981
DW
4757 super->disks->minor,
4758 table[i]->disks->major,
4759 table[i]->disks->minor);
4760 break;
4761 }
4762
4763 if (((is_configured(d) && !is_configured(tbl_d)) ||
4764 is_configured(d) == is_configured(tbl_d)) &&
4765 tbl_mpb->generation_num < mpb->generation_num) {
4766 /* current version of the mpb is a
4767 * better candidate than the one in
4768 * super_table, but copy over "cross
4769 * generational" status
4770 */
4771 struct intel_disk *idisk;
4772
1ade5cc1
N
4773 dprintf("mpb from %d:%d replaces %d:%d\n",
4774 super->disks->major,
a2b97981
DW
4775 super->disks->minor,
4776 table[i]->disks->major,
4777 table[i]->disks->minor);
4778
4779 idisk = disk_list_get(tbl_d->serial, *disk_list);
4780 if (idisk && is_failed(&idisk->disk))
4781 tbl_d->status |= FAILED_DISK;
4782 break;
4783 } else {
4784 struct intel_disk *idisk;
4785 struct imsm_disk *disk;
4786
4787 /* tbl_mpb is more up to date, but copy
4788 * over cross generational status before
4789 * returning
4790 */
4791 disk = __serial_to_disk(d->serial, mpb, NULL);
4792 if (disk && is_failed(disk))
4793 d->status |= FAILED_DISK;
4794
4795 idisk = disk_list_get(d->serial, *disk_list);
4796 if (idisk) {
4797 idisk->owner = i;
4798 if (disk && is_configured(disk))
4799 idisk->disk.status |= CONFIGURED_DISK;
4800 }
4801
1ade5cc1
N
4802 dprintf("mpb from %d:%d prefer %d:%d\n",
4803 super->disks->major,
a2b97981
DW
4804 super->disks->minor,
4805 table[i]->disks->major,
4806 table[i]->disks->minor);
4807
4808 return tbl_size;
4809 }
4810 }
4811 }
4812
4813 if (i >= tbl_size)
4814 table[tbl_size++] = super;
4815 else
4816 table[i] = super;
4817
4818 /* update/extend the merged list of imsm_disk records */
4819 for (j = 0; j < mpb->num_disks; j++) {
4820 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4821 struct intel_disk *idisk;
4822
4823 idisk = disk_list_get(disk->serial, *disk_list);
4824 if (idisk) {
4825 idisk->disk.status |= disk->status;
4826 if (is_configured(&idisk->disk) ||
4827 is_failed(&idisk->disk))
4828 idisk->disk.status &= ~(SPARE_DISK);
4829 } else {
503975b9 4830 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4831 idisk->owner = IMSM_UNKNOWN_OWNER;
4832 idisk->disk = *disk;
4833 idisk->next = *disk_list;
4834 *disk_list = idisk;
4835 }
4836
4837 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4838 idisk->owner = i;
4839 }
4840
4841 return tbl_size;
4842}
4843
4844static struct intel_super *
4845validate_members(struct intel_super *super, struct intel_disk *disk_list,
4846 const int owner)
4847{
4848 struct imsm_super *mpb = super->anchor;
4849 int ok_count = 0;
4850 int i;
4851
4852 for (i = 0; i < mpb->num_disks; i++) {
4853 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4854 struct intel_disk *idisk;
4855
4856 idisk = disk_list_get(disk->serial, disk_list);
4857 if (idisk) {
4858 if (idisk->owner == owner ||
4859 idisk->owner == IMSM_UNKNOWN_OWNER)
4860 ok_count++;
4861 else
1ade5cc1
N
4862 dprintf("'%.16s' owner %d != %d\n",
4863 disk->serial, idisk->owner,
a2b97981
DW
4864 owner);
4865 } else {
1ade5cc1
N
4866 dprintf("unknown disk %x [%d]: %.16s\n",
4867 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4868 disk->serial);
4869 break;
4870 }
4871 }
4872
4873 if (ok_count == mpb->num_disks)
4874 return super;
4875 return NULL;
4876}
4877
4878static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4879{
4880 struct intel_super *s;
4881
4882 for (s = super_list; s; s = s->next) {
4883 if (family_num != s->anchor->family_num)
4884 continue;
e12b3daa 4885 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4886 __le32_to_cpu(family_num), s->disks->devname);
4887 }
4888}
4889
4890static struct intel_super *
4891imsm_thunderdome(struct intel_super **super_list, int len)
4892{
4893 struct intel_super *super_table[len];
4894 struct intel_disk *disk_list = NULL;
4895 struct intel_super *champion, *spare;
4896 struct intel_super *s, **del;
4897 int tbl_size = 0;
4898 int conflict;
4899 int i;
4900
4901 memset(super_table, 0, sizeof(super_table));
4902 for (s = *super_list; s; s = s->next)
4903 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4904
4905 for (i = 0; i < tbl_size; i++) {
4906 struct imsm_disk *d;
4907 struct intel_disk *idisk;
4908 struct imsm_super *mpb = super_table[i]->anchor;
4909
4910 s = super_table[i];
4911 d = &s->disks->disk;
4912
4913 /* 'd' must appear in merged disk list for its
4914 * configuration to be valid
4915 */
4916 idisk = disk_list_get(d->serial, disk_list);
4917 if (idisk && idisk->owner == i)
4918 s = validate_members(s, disk_list, i);
4919 else
4920 s = NULL;
4921
4922 if (!s)
1ade5cc1
N
4923 dprintf("marking family: %#x from %d:%d offline\n",
4924 mpb->family_num,
a2b97981
DW
4925 super_table[i]->disks->major,
4926 super_table[i]->disks->minor);
4927 super_table[i] = s;
4928 }
4929
4930 /* This is where the mdadm implementation differs from the Windows
4931 * driver which has no strict concept of a container. We can only
4932 * assemble one family from a container, so when returning a prodigal
4933 * array member to this system the code will not be able to disambiguate
4934 * the container contents that should be assembled ("foreign" versus
4935 * "local"). It requires user intervention to set the orig_family_num
4936 * to a new value to establish a new container. The Windows driver in
4937 * this situation fixes up the volume name in place and manages the
4938 * foreign array as an independent entity.
4939 */
4940 s = NULL;
4941 spare = NULL;
4942 conflict = 0;
4943 for (i = 0; i < tbl_size; i++) {
4944 struct intel_super *tbl_ent = super_table[i];
4945 int is_spare = 0;
4946
4947 if (!tbl_ent)
4948 continue;
4949
4950 if (tbl_ent->anchor->num_raid_devs == 0) {
4951 spare = tbl_ent;
4952 is_spare = 1;
4953 }
4954
4955 if (s && !is_spare) {
4956 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4957 conflict++;
4958 } else if (!s && !is_spare)
4959 s = tbl_ent;
4960 }
4961
4962 if (!s)
4963 s = spare;
4964 if (!s) {
4965 champion = NULL;
4966 goto out;
4967 }
4968 champion = s;
4969
4970 if (conflict)
7a862a02 4971 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4972 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4973
4974 /* collect all dl's onto 'champion', and update them to
4975 * champion's version of the status
4976 */
4977 for (s = *super_list; s; s = s->next) {
4978 struct imsm_super *mpb = champion->anchor;
4979 struct dl *dl = s->disks;
4980
4981 if (s == champion)
4982 continue;
4983
5d7b407a
CA
4984 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4985
a2b97981
DW
4986 for (i = 0; i < mpb->num_disks; i++) {
4987 struct imsm_disk *disk;
4988
4989 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4990 if (disk) {
4991 dl->disk = *disk;
4992 /* only set index on disks that are a member of
4993 * a populated contianer, i.e. one with
4994 * raid_devs
4995 */
4996 if (is_failed(&dl->disk))
4997 dl->index = -2;
4998 else if (is_spare(&dl->disk))
4999 dl->index = -1;
5000 break;
5001 }
5002 }
5003
5004 if (i >= mpb->num_disks) {
5005 struct intel_disk *idisk;
5006
5007 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5008 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5009 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5010 dl->index = -1;
5011 else {
5012 dl->index = -2;
5013 continue;
5014 }
5015 }
5016
5017 dl->next = champion->disks;
5018 champion->disks = dl;
5019 s->disks = NULL;
5020 }
5021
5022 /* delete 'champion' from super_list */
5023 for (del = super_list; *del; ) {
5024 if (*del == champion) {
5025 *del = (*del)->next;
5026 break;
5027 } else
5028 del = &(*del)->next;
5029 }
5030 champion->next = NULL;
5031
5032 out:
5033 while (disk_list) {
5034 struct intel_disk *idisk = disk_list;
5035
5036 disk_list = disk_list->next;
5037 free(idisk);
5038 }
5039
5040 return champion;
5041}
5042
9587c373
LM
5043static int
5044get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5045static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5046 int major, int minor, int keep_fd);
ec50f7b6
LM
5047static int
5048get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5049 int *max, int keep_fd);
5050
cdddbdbc 5051static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5052 char *devname, struct md_list *devlist,
5053 int keep_fd)
cdddbdbc 5054{
a2b97981
DW
5055 struct intel_super *super_list = NULL;
5056 struct intel_super *super = NULL;
a2b97981 5057 int err = 0;
9587c373 5058 int i = 0;
dab4a513 5059
9587c373
LM
5060 if (fd >= 0)
5061 /* 'fd' is an opened container */
5062 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5063 else
ec50f7b6
LM
5064 /* get super block from devlist devices */
5065 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5066 if (err)
1602d52c 5067 goto error;
a2b97981
DW
5068 /* all mpbs enter, maybe one leaves */
5069 super = imsm_thunderdome(&super_list, i);
5070 if (!super) {
5071 err = 1;
5072 goto error;
cdddbdbc
DW
5073 }
5074
47ee5a45
DW
5075 if (find_missing(super) != 0) {
5076 free_imsm(super);
a2b97981
DW
5077 err = 2;
5078 goto error;
47ee5a45 5079 }
8e59f3d8
AK
5080
5081 /* load migration record */
2f86fda3 5082 err = load_imsm_migr_rec(super);
4c965cc9
AK
5083 if (err == -1) {
5084 /* migration is in progress,
5085 * but migr_rec cannot be loaded,
5086 */
8e59f3d8
AK
5087 err = 4;
5088 goto error;
5089 }
e2f41b2c
AK
5090
5091 /* Check migration compatibility */
089f9d79 5092 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5093 pr_err("Unsupported migration detected");
e2f41b2c
AK
5094 if (devname)
5095 fprintf(stderr, " on %s\n", devname);
5096 else
5097 fprintf(stderr, " (IMSM).\n");
5098
5099 err = 5;
5100 goto error;
5101 }
5102
a2b97981
DW
5103 err = 0;
5104
5105 error:
5106 while (super_list) {
5107 struct intel_super *s = super_list;
5108
5109 super_list = super_list->next;
5110 free_imsm(s);
5111 }
9587c373 5112
a2b97981
DW
5113 if (err)
5114 return err;
f7e7067b 5115
cdddbdbc 5116 *sbp = super;
9587c373 5117 if (fd >= 0)
4dd2df09 5118 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5119 else
4dd2df09 5120 st->container_devnm[0] = 0;
a2b97981 5121 if (err == 0 && st->ss == NULL) {
bf5a934a 5122 st->ss = &super_imsm;
cdddbdbc
DW
5123 st->minor_version = 0;
5124 st->max_devs = IMSM_MAX_DEVICES;
5125 }
cdddbdbc
DW
5126 return 0;
5127}
2b959fbf 5128
ec50f7b6
LM
5129static int
5130get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5131 int *max, int keep_fd)
5132{
5133 struct md_list *tmpdev;
5134 int err = 0;
5135 int i = 0;
9587c373 5136
ec50f7b6
LM
5137 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5138 if (tmpdev->used != 1)
5139 continue;
5140 if (tmpdev->container == 1) {
ca9de185 5141 int lmax = 0;
ec50f7b6
LM
5142 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5143 if (fd < 0) {
e7b84f9d 5144 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5145 tmpdev->devname, strerror(errno));
5146 err = 8;
5147 goto error;
5148 }
5149 err = get_sra_super_block(fd, super_list,
5150 tmpdev->devname, &lmax,
5151 keep_fd);
5152 i += lmax;
5153 close(fd);
5154 if (err) {
5155 err = 7;
5156 goto error;
5157 }
5158 } else {
5159 int major = major(tmpdev->st_rdev);
5160 int minor = minor(tmpdev->st_rdev);
5161 err = get_super_block(super_list,
4dd2df09 5162 NULL,
ec50f7b6
LM
5163 tmpdev->devname,
5164 major, minor,
5165 keep_fd);
5166 i++;
5167 if (err) {
5168 err = 6;
5169 goto error;
5170 }
5171 }
5172 }
5173 error:
5174 *max = i;
5175 return err;
5176}
9587c373 5177
4dd2df09 5178static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5179 int major, int minor, int keep_fd)
5180{
594dc1b8 5181 struct intel_super *s;
9587c373
LM
5182 char nm[32];
5183 int dfd = -1;
9587c373
LM
5184 int err = 0;
5185 int retry;
5186
5187 s = alloc_super();
5188 if (!s) {
5189 err = 1;
5190 goto error;
5191 }
5192
5193 sprintf(nm, "%d:%d", major, minor);
5194 dfd = dev_open(nm, O_RDWR);
5195 if (dfd < 0) {
5196 err = 2;
5197 goto error;
5198 }
5199
aec01630
JS
5200 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5201 err = 2;
5202 goto error;
5203 }
cb8f6859 5204 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5205 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5206
5207 /* retry the load if we might have raced against mdmon */
4dd2df09 5208 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
5209 for (retry = 0; retry < 3; retry++) {
5210 usleep(3000);
5211 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5212 if (err != 3)
5213 break;
5214 }
5215 error:
5216 if (!err) {
5217 s->next = *super_list;
5218 *super_list = s;
5219 } else {
5220 if (s)
8d67477f 5221 free_imsm(s);
36614e95 5222 if (dfd >= 0)
9587c373
LM
5223 close(dfd);
5224 }
089f9d79 5225 if (dfd >= 0 && !keep_fd)
9587c373
LM
5226 close(dfd);
5227 return err;
5228
5229}
5230
5231static int
5232get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5233{
5234 struct mdinfo *sra;
4dd2df09 5235 char *devnm;
9587c373
LM
5236 struct mdinfo *sd;
5237 int err = 0;
5238 int i = 0;
4dd2df09 5239 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5240 if (!sra)
5241 return 1;
5242
5243 if (sra->array.major_version != -1 ||
5244 sra->array.minor_version != -2 ||
5245 strcmp(sra->text_version, "imsm") != 0) {
5246 err = 1;
5247 goto error;
5248 }
5249 /* load all mpbs */
4dd2df09 5250 devnm = fd2devnm(fd);
9587c373 5251 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5252 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5253 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5254 err = 7;
5255 goto error;
5256 }
5257 }
5258 error:
5259 sysfs_free(sra);
5260 *max = i;
5261 return err;
5262}
5263
2b959fbf
N
5264static int load_container_imsm(struct supertype *st, int fd, char *devname)
5265{
ec50f7b6 5266 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5267}
cdddbdbc
DW
5268
5269static int load_super_imsm(struct supertype *st, int fd, char *devname)
5270{
5271 struct intel_super *super;
5272 int rv;
8a3544f8 5273 int retry;
cdddbdbc 5274
357ac106 5275 if (test_partition(fd))
691c6ee1
N
5276 /* IMSM not allowed on partitions */
5277 return 1;
5278
37424f13
DW
5279 free_super_imsm(st);
5280
49133e57 5281 super = alloc_super();
aec01630
JS
5282 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
5283 return 1;
8d67477f
TM
5284 if (!super)
5285 return 1;
ea2bc72b
LM
5286 /* Load hba and capabilities if they exist.
5287 * But do not preclude loading metadata in case capabilities or hba are
5288 * non-compliant and ignore_hw_compat is set.
5289 */
d424212e 5290 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5291 /* no orom/efi or non-intel hba of the disk */
089f9d79 5292 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5293 if (devname)
e7b84f9d 5294 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5295 free_imsm(super);
5296 return 2;
5297 }
a2b97981 5298 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5299
8a3544f8
AP
5300 /* retry the load if we might have raced against mdmon */
5301 if (rv == 3) {
f96b1302
AP
5302 struct mdstat_ent *mdstat = NULL;
5303 char *name = fd2kname(fd);
5304
5305 if (name)
5306 mdstat = mdstat_by_component(name);
8a3544f8
AP
5307
5308 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5309 for (retry = 0; retry < 3; retry++) {
5310 usleep(3000);
5311 rv = load_and_parse_mpb(fd, super, devname, 0);
5312 if (rv != 3)
5313 break;
5314 }
5315 }
5316
5317 free_mdstat(mdstat);
5318 }
5319
cdddbdbc
DW
5320 if (rv) {
5321 if (devname)
7a862a02 5322 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5323 free_imsm(super);
5324 return rv;
5325 }
5326
5327 st->sb = super;
5328 if (st->ss == NULL) {
5329 st->ss = &super_imsm;
5330 st->minor_version = 0;
5331 st->max_devs = IMSM_MAX_DEVICES;
5332 }
8e59f3d8
AK
5333
5334 /* load migration record */
2f86fda3 5335 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5336 /* Check for unsupported migration features */
5337 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5338 pr_err("Unsupported migration detected");
2e062e82
AK
5339 if (devname)
5340 fprintf(stderr, " on %s\n", devname);
5341 else
5342 fprintf(stderr, " (IMSM).\n");
5343 return 3;
5344 }
e2f41b2c
AK
5345 }
5346
cdddbdbc
DW
5347 return 0;
5348}
5349
ef6ffade
DW
5350static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5351{
5352 if (info->level == 1)
5353 return 128;
5354 return info->chunk_size >> 9;
5355}
5356
5551b113
CA
5357static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5358 unsigned long long size)
fcfd9599 5359{
4025c288 5360 if (info->level == 1)
5551b113 5361 return size * 2;
4025c288 5362 else
5551b113 5363 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5364}
5365
4d1313e9
DW
5366static void imsm_update_version_info(struct intel_super *super)
5367{
5368 /* update the version and attributes */
5369 struct imsm_super *mpb = super->anchor;
5370 char *version;
5371 struct imsm_dev *dev;
5372 struct imsm_map *map;
5373 int i;
5374
5375 for (i = 0; i < mpb->num_raid_devs; i++) {
5376 dev = get_imsm_dev(super, i);
238c0a71 5377 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5378 if (__le32_to_cpu(dev->size_high) > 0)
5379 mpb->attributes |= MPB_ATTRIB_2TB;
5380
5381 /* FIXME detect when an array spans a port multiplier */
5382 #if 0
5383 mpb->attributes |= MPB_ATTRIB_PM;
5384 #endif
5385
5386 if (mpb->num_raid_devs > 1 ||
5387 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5388 version = MPB_VERSION_ATTRIBS;
5389 switch (get_imsm_raid_level(map)) {
5390 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5391 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5392 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5393 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5394 }
5395 } else {
5396 if (map->num_members >= 5)
5397 version = MPB_VERSION_5OR6_DISK_ARRAY;
5398 else if (dev->status == DEV_CLONE_N_GO)
5399 version = MPB_VERSION_CNG;
5400 else if (get_imsm_raid_level(map) == 5)
5401 version = MPB_VERSION_RAID5;
5402 else if (map->num_members >= 3)
5403 version = MPB_VERSION_3OR4_DISK_ARRAY;
5404 else if (get_imsm_raid_level(map) == 1)
5405 version = MPB_VERSION_RAID1;
5406 else
5407 version = MPB_VERSION_RAID0;
5408 }
5409 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5410 }
5411}
5412
aa534678
DW
5413static int check_name(struct intel_super *super, char *name, int quiet)
5414{
5415 struct imsm_super *mpb = super->anchor;
5416 char *reason = NULL;
9bd99a90
RS
5417 char *start = name;
5418 size_t len = strlen(name);
aa534678
DW
5419 int i;
5420
9bd99a90
RS
5421 if (len > 0) {
5422 while (isspace(start[len - 1]))
5423 start[--len] = 0;
5424 while (*start && isspace(*start))
5425 ++start, --len;
5426 memmove(name, start, len + 1);
5427 }
5428
5429 if (len > MAX_RAID_SERIAL_LEN)
aa534678 5430 reason = "must be 16 characters or less";
9bd99a90
RS
5431 else if (len == 0)
5432 reason = "must be a non-empty string";
aa534678
DW
5433
5434 for (i = 0; i < mpb->num_raid_devs; i++) {
5435 struct imsm_dev *dev = get_imsm_dev(super, i);
5436
5437 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5438 reason = "already exists";
5439 break;
5440 }
5441 }
5442
5443 if (reason && !quiet)
e7b84f9d 5444 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5445
5446 return !reason;
5447}
5448
8b353278 5449static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5450 struct shape *s, char *name,
83cd1e97
N
5451 char *homehost, int *uuid,
5452 long long data_offset)
cdddbdbc 5453{
c2c087e6
DW
5454 /* We are creating a volume inside a pre-existing container.
5455 * so st->sb is already set.
5456 */
5457 struct intel_super *super = st->sb;
f36a9ecd 5458 unsigned int sector_size = super->sector_size;
949c47a0 5459 struct imsm_super *mpb = super->anchor;
ba2de7ba 5460 struct intel_dev *dv;
c2c087e6
DW
5461 struct imsm_dev *dev;
5462 struct imsm_vol *vol;
5463 struct imsm_map *map;
5464 int idx = mpb->num_raid_devs;
5465 int i;
760365f9 5466 int namelen;
c2c087e6 5467 unsigned long long array_blocks;
2c092cad 5468 size_t size_old, size_new;
5551b113 5469 unsigned long long num_data_stripes;
b53bfba6
TM
5470 unsigned int data_disks;
5471 unsigned long long size_per_member;
cdddbdbc 5472
88c32bb1 5473 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5474 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5475 return 0;
5476 }
5477
2c092cad
DW
5478 /* ensure the mpb is large enough for the new data */
5479 size_old = __le32_to_cpu(mpb->mpb_size);
5480 size_new = disks_to_mpb_size(info->nr_disks);
5481 if (size_new > size_old) {
5482 void *mpb_new;
f36a9ecd 5483 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5484
f36a9ecd 5485 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5486 pr_err("could not allocate new mpb\n");
2c092cad
DW
5487 return 0;
5488 }
85337573
AO
5489 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5490 MIGR_REC_BUF_SECTORS*
5491 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5492 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5493 free(super->buf);
5494 free(super);
ea944c8f 5495 free(mpb_new);
8e59f3d8
AK
5496 return 0;
5497 }
2c092cad
DW
5498 memcpy(mpb_new, mpb, size_old);
5499 free(mpb);
5500 mpb = mpb_new;
949c47a0 5501 super->anchor = mpb_new;
2c092cad
DW
5502 mpb->mpb_size = __cpu_to_le32(size_new);
5503 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5504 super->len = size_round;
2c092cad 5505 }
bf5a934a 5506 super->current_vol = idx;
3960e579
DW
5507
5508 /* handle 'failed_disks' by either:
5509 * a) create dummy disk entries in the table if this the first
5510 * volume in the array. We add them here as this is the only
5511 * opportunity to add them. add_to_super_imsm_volume()
5512 * handles the non-failed disks and continues incrementing
5513 * mpb->num_disks.
5514 * b) validate that 'failed_disks' matches the current number
5515 * of missing disks if the container is populated
d23fe947 5516 */
3960e579 5517 if (super->current_vol == 0) {
d23fe947 5518 mpb->num_disks = 0;
3960e579
DW
5519 for (i = 0; i < info->failed_disks; i++) {
5520 struct imsm_disk *disk;
5521
5522 mpb->num_disks++;
5523 disk = __get_imsm_disk(mpb, i);
5524 disk->status = CONFIGURED_DISK | FAILED_DISK;
5525 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5526 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5527 "missing:%d", (__u8)i);
3960e579
DW
5528 }
5529 find_missing(super);
5530 } else {
5531 int missing = 0;
5532 struct dl *d;
5533
5534 for (d = super->missing; d; d = d->next)
5535 missing++;
5536 if (info->failed_disks > missing) {
e7b84f9d 5537 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5538 return 0;
5539 }
5540 }
5a038140 5541
aa534678
DW
5542 if (!check_name(super, name, 0))
5543 return 0;
503975b9
N
5544 dv = xmalloc(sizeof(*dv));
5545 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5546 /*
5547 * Explicitly allow truncating to not confuse gcc's
5548 * -Werror=stringop-truncation
5549 */
5550 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5551 memcpy(dev->volume, name, namelen);
e03640bd 5552 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5553 info->layout, info->chunk_size,
b53bfba6
TM
5554 s->size * BLOCKS_PER_KB);
5555 data_disks = get_data_disks(info->level, info->layout,
5556 info->raid_disks);
5557 array_blocks = round_size_to_mb(array_blocks, data_disks);
5558 size_per_member = array_blocks / data_disks;
979d38be 5559
fcc2c9da 5560 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5561 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5562 vol = &dev->vol;
5563 vol->migr_state = 0;
1484e727 5564 set_migr_type(dev, MIGR_INIT);
3960e579 5565 vol->dirty = !info->state;
4036e7ee 5566 set_vol_curr_migr_unit(dev, 0);
238c0a71 5567 map = get_imsm_map(dev, MAP_0);
5551b113 5568 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5569 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5570 map->failed_disk_num = ~0;
bf4442ab 5571 if (info->level > 0)
fffaf1ff
N
5572 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5573 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5574 else
5575 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5576 IMSM_T_STATE_NORMAL;
252d23c0 5577 map->ddf = 1;
ef6ffade
DW
5578
5579 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5580 free(dev);
5581 free(dv);
7a862a02 5582 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5583 return 0;
5584 }
81062a36
DW
5585
5586 map->raid_level = info->level;
4d1313e9 5587 if (info->level == 10) {
c2c087e6 5588 map->raid_level = 1;
4d1313e9 5589 map->num_domains = info->raid_disks / 2;
81062a36
DW
5590 } else if (info->level == 1)
5591 map->num_domains = info->raid_disks;
5592 else
ff596308 5593 map->num_domains = 1;
81062a36 5594
5551b113 5595 /* info->size is only int so use the 'size' parameter instead */
b53bfba6 5596 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5551b113
CA
5597 num_data_stripes /= map->num_domains;
5598 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5599
44490938
MD
5600 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5601 set_blocks_per_member(map, info_to_blocks_per_member(info,
5602 size_per_member /
5603 BLOCKS_PER_KB));
5604
c2c087e6
DW
5605 map->num_members = info->raid_disks;
5606 for (i = 0; i < map->num_members; i++) {
5607 /* initialized in add_to_super */
4eb26970 5608 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5609 }
949c47a0 5610 mpb->num_raid_devs++;
2a24dc1b
PB
5611 mpb->num_raid_devs_created++;
5612 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5613
b7580566 5614 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5615 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5616 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5617 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5618 } else {
5619 free(dev);
5620 free(dv);
5621 pr_err("imsm does not support consistency policy %s\n",
5622 map_num(consistency_policies, s->consistency_policy));
5623 return 0;
5624 }
5625
ba2de7ba
DW
5626 dv->dev = dev;
5627 dv->index = super->current_vol;
5628 dv->next = super->devlist;
5629 super->devlist = dv;
c2c087e6 5630
4d1313e9
DW
5631 imsm_update_version_info(super);
5632
c2c087e6 5633 return 1;
cdddbdbc
DW
5634}
5635
bf5a934a 5636static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5637 struct shape *s, char *name,
83cd1e97
N
5638 char *homehost, int *uuid,
5639 unsigned long long data_offset)
bf5a934a
DW
5640{
5641 /* This is primarily called by Create when creating a new array.
5642 * We will then get add_to_super called for each component, and then
5643 * write_init_super called to write it out to each device.
5644 * For IMSM, Create can create on fresh devices or on a pre-existing
5645 * array.
5646 * To create on a pre-existing array a different method will be called.
5647 * This one is just for fresh drives.
5648 */
5649 struct intel_super *super;
5650 struct imsm_super *mpb;
5651 size_t mpb_size;
4d1313e9 5652 char *version;
bf5a934a 5653
83cd1e97 5654 if (data_offset != INVALID_SECTORS) {
ed503f89 5655 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5656 return 0;
5657 }
5658
bf5a934a 5659 if (st->sb)
5308f117 5660 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5661 data_offset);
e683ca88
DW
5662
5663 if (info)
5664 mpb_size = disks_to_mpb_size(info->nr_disks);
5665 else
f36a9ecd 5666 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5667
49133e57 5668 super = alloc_super();
f36a9ecd
PB
5669 if (super &&
5670 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5671 free_imsm(super);
e683ca88
DW
5672 super = NULL;
5673 }
5674 if (!super) {
1ade5cc1 5675 pr_err("could not allocate superblock\n");
bf5a934a
DW
5676 return 0;
5677 }
de44e46f
PB
5678 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5679 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5680 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5681 free(super->buf);
8d67477f 5682 free_imsm(super);
8e59f3d8
AK
5683 return 0;
5684 }
e683ca88 5685 memset(super->buf, 0, mpb_size);
ef649044 5686 mpb = super->buf;
e683ca88
DW
5687 mpb->mpb_size = __cpu_to_le32(mpb_size);
5688 st->sb = super;
5689
5690 if (info == NULL) {
5691 /* zeroing superblock */
5692 return 0;
5693 }
bf5a934a 5694
4d1313e9
DW
5695 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5696
5697 version = (char *) mpb->sig;
5698 strcpy(version, MPB_SIGNATURE);
5699 version += strlen(MPB_SIGNATURE);
5700 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5701
bf5a934a
DW
5702 return 1;
5703}
5704
f2cc4f7d
AO
5705static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5706{
5707 unsigned int member_sector_size;
5708
5709 if (dl->fd < 0) {
5710 pr_err("Invalid file descriptor for %s\n", dl->devname);
5711 return 0;
5712 }
5713
5714 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5715 return 0;
5716 if (member_sector_size != super->sector_size)
5717 return 0;
5718 return 1;
5719}
5720
f20c3968 5721static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5722 int fd, char *devname)
5723{
5724 struct intel_super *super = st->sb;
d23fe947 5725 struct imsm_super *mpb = super->anchor;
3960e579 5726 struct imsm_disk *_disk;
bf5a934a
DW
5727 struct imsm_dev *dev;
5728 struct imsm_map *map;
3960e579 5729 struct dl *dl, *df;
4eb26970 5730 int slot;
bf5a934a 5731
949c47a0 5732 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5733 map = get_imsm_map(dev, MAP_0);
bf5a934a 5734
208933a7 5735 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5736 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5737 devname);
5738 return 1;
5739 }
5740
efb30e7f
DW
5741 if (fd == -1) {
5742 /* we're doing autolayout so grab the pre-marked (in
5743 * validate_geometry) raid_disk
5744 */
5745 for (dl = super->disks; dl; dl = dl->next)
5746 if (dl->raiddisk == dk->raid_disk)
5747 break;
5748 } else {
5749 for (dl = super->disks; dl ; dl = dl->next)
5750 if (dl->major == dk->major &&
5751 dl->minor == dk->minor)
5752 break;
5753 }
d23fe947 5754
208933a7 5755 if (!dl) {
e7b84f9d 5756 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5757 return 1;
208933a7 5758 }
bf5a934a 5759
59632db9
MZ
5760 if (mpb->num_disks == 0)
5761 if (!get_dev_sector_size(dl->fd, dl->devname,
5762 &super->sector_size))
5763 return 1;
5764
f2cc4f7d
AO
5765 if (!drive_validate_sector_size(super, dl)) {
5766 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5767 return 1;
5768 }
5769
d23fe947
DW
5770 /* add a pristine spare to the metadata */
5771 if (dl->index < 0) {
5772 dl->index = super->anchor->num_disks;
5773 super->anchor->num_disks++;
5774 }
4eb26970
DW
5775 /* Check the device has not already been added */
5776 slot = get_imsm_disk_slot(map, dl->index);
5777 if (slot >= 0 &&
238c0a71 5778 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5779 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5780 devname);
5781 return 1;
5782 }
656b6b5a 5783 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5784 dl->disk.status = CONFIGURED_DISK;
d23fe947 5785
3960e579
DW
5786 /* update size of 'missing' disks to be at least as large as the
5787 * largest acitve member (we only have dummy missing disks when
5788 * creating the first volume)
5789 */
5790 if (super->current_vol == 0) {
5791 for (df = super->missing; df; df = df->next) {
5551b113
CA
5792 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5793 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5794 _disk = __get_imsm_disk(mpb, df->index);
5795 *_disk = df->disk;
5796 }
5797 }
5798
5799 /* refresh unset/failed slots to point to valid 'missing' entries */
5800 for (df = super->missing; df; df = df->next)
5801 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5802 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5803
5804 if ((ord & IMSM_ORD_REBUILD) == 0)
5805 continue;
5806 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5807 if (is_gen_migration(dev)) {
238c0a71
AK
5808 struct imsm_map *map2 = get_imsm_map(dev,
5809 MAP_1);
0a108d63 5810 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5811 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5812 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5813 slot2,
5814 MAP_1);
1ace8403
AK
5815 if ((unsigned)df->index ==
5816 ord_to_idx(ord2))
5817 set_imsm_ord_tbl_ent(map2,
0a108d63 5818 slot2,
1ace8403
AK
5819 df->index |
5820 IMSM_ORD_REBUILD);
5821 }
5822 }
3960e579
DW
5823 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5824 break;
5825 }
5826
d23fe947
DW
5827 /* if we are creating the first raid device update the family number */
5828 if (super->current_vol == 0) {
5829 __u32 sum;
5830 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5831
3960e579 5832 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5833 if (!_dev || !_disk) {
e7b84f9d 5834 pr_err("BUG mpb setup error\n");
791b666a
AW
5835 return 1;
5836 }
d23fe947
DW
5837 *_dev = *dev;
5838 *_disk = dl->disk;
148acb7b
DW
5839 sum = random32();
5840 sum += __gen_imsm_checksum(mpb);
d23fe947 5841 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5842 mpb->orig_family_num = mpb->family_num;
e48aed3c 5843 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5844 }
ca0748fa 5845 super->current_disk = dl;
f20c3968 5846 return 0;
bf5a934a
DW
5847}
5848
a8619d23
AK
5849/* mark_spare()
5850 * Function marks disk as spare and restores disk serial
5851 * in case it was previously marked as failed by takeover operation
5852 * reruns:
5853 * -1 : critical error
5854 * 0 : disk is marked as spare but serial is not set
5855 * 1 : success
5856 */
5857int mark_spare(struct dl *disk)
5858{
5859 __u8 serial[MAX_RAID_SERIAL_LEN];
5860 int ret_val = -1;
5861
5862 if (!disk)
5863 return ret_val;
5864
5865 ret_val = 0;
6da53c0e 5866 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
5867 /* Restore disk serial number, because takeover marks disk
5868 * as failed and adds to serial ':0' before it becomes
5869 * a spare disk.
5870 */
5871 serialcpy(disk->serial, serial);
5872 serialcpy(disk->disk.serial, serial);
5873 ret_val = 1;
5874 }
5875 disk->disk.status = SPARE_DISK;
5876 disk->index = -1;
5877
5878 return ret_val;
5879}
88654014 5880
12724c01
TM
5881
5882static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5883
f20c3968 5884static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5885 int fd, char *devname,
5886 unsigned long long data_offset)
cdddbdbc 5887{
c2c087e6 5888 struct intel_super *super = st->sb;
c2c087e6
DW
5889 struct dl *dd;
5890 unsigned long long size;
fa7bb6f8 5891 unsigned int member_sector_size;
f2f27e63 5892 __u32 id;
c2c087e6
DW
5893 int rv;
5894 struct stat stb;
5895
88654014
LM
5896 /* If we are on an RAID enabled platform check that the disk is
5897 * attached to the raid controller.
5898 * We do not need to test disks attachment for container based additions,
5899 * they shall be already tested when container was created/assembled.
88c32bb1 5900 */
d424212e 5901 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5902 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5903 if (rv != 0) {
5904 dprintf("capability: %p fd: %d ret: %d\n",
5905 super->orom, fd, rv);
5906 return 1;
88c32bb1
DW
5907 }
5908
f20c3968
DW
5909 if (super->current_vol >= 0)
5910 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5911
c2c087e6 5912 fstat(fd, &stb);
503975b9 5913 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5914 dd->major = major(stb.st_rdev);
5915 dd->minor = minor(stb.st_rdev);
503975b9 5916 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5917 dd->fd = fd;
689c9bf3 5918 dd->e = NULL;
1a64be56 5919 dd->action = DISK_ADD;
6da53c0e 5920 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 5921 if (rv) {
e7b84f9d 5922 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5923 if (dd->devname)
5924 free(dd->devname);
949c47a0 5925 free(dd);
0030e8d6 5926 abort();
c2c087e6 5927 }
7c798f87 5928
20bee0f8
PB
5929 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5930 (super->hba->type == SYS_DEV_VMD))) {
5931 int i;
7c798f87
MT
5932 char cntrl_path[PATH_MAX];
5933 char *cntrl_name;
5934 char pci_dev_path[PATH_MAX];
20bee0f8 5935
7c798f87
MT
5936 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
5937 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 5938 pr_err("failed to get dev paths, aborting\n");
20bee0f8 5939
a8f3cfd5
MT
5940 if (dd->devname)
5941 free(dd->devname);
5942 free(dd);
5943 return 1;
5944 }
5945
7c798f87
MT
5946 cntrl_name = basename(cntrl_path);
5947 if (is_multipath_nvme(fd))
5948 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
5949 cntrl_name);
5950
5951 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
5952 /*
5953 * If Intel's NVMe drive has serial ended with
5954 * "-A","-B","-1" or "-2" it means that this is "x8"
5955 * device (double drive on single PCIe card).
5956 * User should be warned about potential data loss.
5957 */
5958 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5959 /* Skip empty character at the end */
5960 if (dd->serial[i] == 0)
5961 continue;
5962
5963 if (((dd->serial[i] == 'A') ||
5964 (dd->serial[i] == 'B') ||
5965 (dd->serial[i] == '1') ||
5966 (dd->serial[i] == '2')) &&
5967 (dd->serial[i-1] == '-'))
5968 pr_err("\tThe action you are about to take may put your data at risk.\n"
5969 "\tPlease note that x8 devices may consist of two separate x4 devices "
5970 "located on a single PCIe port.\n"
5971 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5972 break;
5973 }
32716c51
PB
5974 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5975 !imsm_orom_has_tpv_support(super->orom)) {
5976 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 5977 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
32716c51
PB
5978 free(dd->devname);
5979 free(dd);
5980 return 1;
20bee0f8
PB
5981 }
5982 }
c2c087e6 5983
c2c087e6 5984 get_dev_size(fd, NULL, &size);
aec01630
JS
5985 if (!get_dev_sector_size(fd, NULL, &member_sector_size))
5986 return 1;
fa7bb6f8
PB
5987
5988 if (super->sector_size == 0) {
5989 /* this a first device, so sector_size is not set yet */
5990 super->sector_size = member_sector_size;
fa7bb6f8
PB
5991 }
5992
71e5411e 5993 /* clear migr_rec when adding disk to container */
85337573
AO
5994 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5995 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 5996 SEEK_SET) >= 0) {
466070ad 5997 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
5998 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5999 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
6000 perror("Write migr_rec failed");
6001 }
6002
c2c087e6 6003 size /= 512;
1f24f035 6004 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6005 set_total_blocks(&dd->disk, size);
6006 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6007 struct imsm_super *mpb = super->anchor;
6008 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6009 }
a8619d23 6010 mark_spare(dd);
c2c087e6 6011 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6012 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6013 else
b9f594fe 6014 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6015
6016 if (st->update_tail) {
1a64be56
LM
6017 dd->next = super->disk_mgmt_list;
6018 super->disk_mgmt_list = dd;
43dad3d6 6019 } else {
12724c01
TM
6020 /* this is called outside of mdmon
6021 * write initial spare metadata
6022 * mdmon will overwrite it.
6023 */
43dad3d6
DW
6024 dd->next = super->disks;
6025 super->disks = dd;
12724c01 6026 write_super_imsm_spare(super, dd);
43dad3d6 6027 }
f20c3968
DW
6028
6029 return 0;
cdddbdbc
DW
6030}
6031
1a64be56
LM
6032static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6033{
6034 struct intel_super *super = st->sb;
6035 struct dl *dd;
6036
6037 /* remove from super works only in mdmon - for communication
6038 * manager - monitor. Check if communication memory buffer
6039 * is prepared.
6040 */
6041 if (!st->update_tail) {
1ade5cc1 6042 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6043 return 1;
6044 }
503975b9 6045 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6046 dd->major = dk->major;
6047 dd->minor = dk->minor;
1a64be56 6048 dd->fd = -1;
a8619d23 6049 mark_spare(dd);
1a64be56
LM
6050 dd->action = DISK_REMOVE;
6051
6052 dd->next = super->disk_mgmt_list;
6053 super->disk_mgmt_list = dd;
6054
1a64be56
LM
6055 return 0;
6056}
6057
f796af5d
DW
6058static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6059
6060static union {
f36a9ecd 6061 char buf[MAX_SECTOR_SIZE];
f796af5d 6062 struct imsm_super anchor;
f36a9ecd 6063} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6064
12724c01
TM
6065
6066static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6067{
d23fe947 6068 struct imsm_super *mpb = super->anchor;
f796af5d 6069 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6070 __u32 sum;
12724c01
TM
6071
6072 if (d->index != -1)
6073 return 1;
d23fe947 6074
68641cdb
JS
6075 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6076 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 6077 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
6078 spare->num_disks = 1;
6079 spare->num_raid_devs = 0;
6080 spare->cache_size = mpb->cache_size;
6081 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
6082
6083 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6084 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947 6085
12724c01
TM
6086 spare->disk[0] = d->disk;
6087 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6088 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6089
6090 if (super->sector_size == 4096)
6091 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6092
12724c01
TM
6093 sum = __gen_imsm_checksum(spare);
6094 spare->family_num = __cpu_to_le32(sum);
6095 spare->orig_family_num = 0;
6096 sum = __gen_imsm_checksum(spare);
6097 spare->check_sum = __cpu_to_le32(sum);
027c374f 6098
12724c01
TM
6099 if (store_imsm_mpb(d->fd, spare)) {
6100 pr_err("failed for device %d:%d %s\n",
6101 d->major, d->minor, strerror(errno));
6102 return 1;
6103 }
6104
6105 return 0;
6106}
6107/* spare records have their own family number and do not have any defined raid
6108 * devices
6109 */
6110static int write_super_imsm_spares(struct intel_super *super, int doclose)
6111{
6112 struct dl *d;
f36a9ecd 6113
12724c01
TM
6114 for (d = super->disks; d; d = d->next) {
6115 if (d->index != -1)
6116 continue;
d23fe947 6117
12724c01 6118 if (write_super_imsm_spare(super, d))
e74255d9 6119 return 1;
12724c01 6120
d23fe947
DW
6121 if (doclose) {
6122 close(d->fd);
6123 d->fd = -1;
6124 }
6125 }
6126
e74255d9 6127 return 0;
d23fe947
DW
6128}
6129
36988a3d 6130static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6131{
36988a3d 6132 struct intel_super *super = st->sb;
f36a9ecd 6133 unsigned int sector_size = super->sector_size;
949c47a0 6134 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6135 struct dl *d;
6136 __u32 generation;
6137 __u32 sum;
d23fe947 6138 int spares = 0;
949c47a0 6139 int i;
a48ac0a8 6140 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6141 int num_disks = 0;
146c6260 6142 int clear_migration_record = 1;
bbab0940 6143 __u32 bbm_log_size;
cdddbdbc 6144
c2c087e6
DW
6145 /* 'generation' is incremented everytime the metadata is written */
6146 generation = __le32_to_cpu(mpb->generation_num);
6147 generation++;
6148 mpb->generation_num = __cpu_to_le32(generation);
6149
148acb7b
DW
6150 /* fix up cases where previous mdadm releases failed to set
6151 * orig_family_num
6152 */
6153 if (mpb->orig_family_num == 0)
6154 mpb->orig_family_num = mpb->family_num;
6155
d23fe947 6156 for (d = super->disks; d; d = d->next) {
8796fdc4 6157 if (d->index == -1)
d23fe947 6158 spares++;
36988a3d 6159 else {
d23fe947 6160 mpb->disk[d->index] = d->disk;
36988a3d
AK
6161 num_disks++;
6162 }
d23fe947 6163 }
36988a3d 6164 for (d = super->missing; d; d = d->next) {
47ee5a45 6165 mpb->disk[d->index] = d->disk;
36988a3d
AK
6166 num_disks++;
6167 }
6168 mpb->num_disks = num_disks;
6169 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6170
949c47a0
DW
6171 for (i = 0; i < mpb->num_raid_devs; i++) {
6172 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
6173 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6174 if (dev && dev2) {
6175 imsm_copy_dev(dev, dev2);
6176 mpb_size += sizeof_imsm_dev(dev, 0);
6177 }
146c6260
AK
6178 if (is_gen_migration(dev2))
6179 clear_migration_record = 0;
949c47a0 6180 }
bbab0940
TM
6181
6182 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6183
6184 if (bbm_log_size) {
6185 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6186 mpb->attributes |= MPB_ATTRIB_BBM;
6187 } else
6188 mpb->attributes &= ~MPB_ATTRIB_BBM;
6189
6190 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6191 mpb_size += bbm_log_size;
a48ac0a8 6192 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6193
bbab0940
TM
6194#ifdef DEBUG
6195 assert(super->len == 0 || mpb_size <= super->len);
6196#endif
6197
c2c087e6 6198 /* recalculate checksum */
949c47a0 6199 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6200 mpb->check_sum = __cpu_to_le32(sum);
6201
51d83f5d
AK
6202 if (super->clean_migration_record_by_mdmon) {
6203 clear_migration_record = 1;
6204 super->clean_migration_record_by_mdmon = 0;
6205 }
146c6260 6206 if (clear_migration_record)
de44e46f 6207 memset(super->migr_rec_buf, 0,
85337573 6208 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6209
f36a9ecd
PB
6210 if (sector_size == 4096)
6211 convert_to_4k(super);
6212
d23fe947 6213 /* write the mpb for disks that compose raid devices */
c2c087e6 6214 for (d = super->disks; d ; d = d->next) {
86c54047 6215 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6216 continue;
30602f53 6217
146c6260
AK
6218 if (clear_migration_record) {
6219 unsigned long long dsize;
6220
6221 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6222 if (lseek64(d->fd, dsize - sector_size,
6223 SEEK_SET) >= 0) {
466070ad
PB
6224 if ((unsigned int)write(d->fd,
6225 super->migr_rec_buf,
de44e46f
PB
6226 MIGR_REC_BUF_SECTORS*sector_size) !=
6227 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6228 perror("Write migr_rec failed");
146c6260
AK
6229 }
6230 }
51d83f5d
AK
6231
6232 if (store_imsm_mpb(d->fd, mpb))
6233 fprintf(stderr,
1ade5cc1
N
6234 "failed for device %d:%d (fd: %d)%s\n",
6235 d->major, d->minor,
51d83f5d
AK
6236 d->fd, strerror(errno));
6237
c2c087e6
DW
6238 if (doclose) {
6239 close(d->fd);
6240 d->fd = -1;
6241 }
6242 }
6243
d23fe947
DW
6244 if (spares)
6245 return write_super_imsm_spares(super, doclose);
6246
e74255d9 6247 return 0;
c2c087e6
DW
6248}
6249
9b1fb677 6250static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6251{
6252 size_t len;
6253 struct imsm_update_create_array *u;
6254 struct intel_super *super = st->sb;
9b1fb677 6255 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6256 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6257 struct disk_info *inf;
6258 struct imsm_disk *disk;
6259 int i;
43dad3d6 6260
54c2c1ea
DW
6261 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6262 sizeof(*inf) * map->num_members;
503975b9 6263 u = xmalloc(len);
43dad3d6 6264 u->type = update_create_array;
9b1fb677 6265 u->dev_idx = dev_idx;
43dad3d6 6266 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6267 inf = get_disk_info(u);
6268 for (i = 0; i < map->num_members; i++) {
238c0a71 6269 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6270
54c2c1ea 6271 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6272 if (!disk)
6273 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6274 serialcpy(inf[i].serial, disk->serial);
6275 }
43dad3d6
DW
6276 append_metadata_update(st, u, len);
6277
6278 return 0;
6279}
6280
1a64be56 6281static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6282{
6283 struct intel_super *super = st->sb;
6284 size_t len;
1a64be56 6285 struct imsm_update_add_remove_disk *u;
43dad3d6 6286
1a64be56 6287 if (!super->disk_mgmt_list)
43dad3d6
DW
6288 return 0;
6289
6290 len = sizeof(*u);
503975b9 6291 u = xmalloc(len);
1a64be56 6292 u->type = update_add_remove_disk;
43dad3d6
DW
6293 append_metadata_update(st, u, len);
6294
6295 return 0;
6296}
2432ce9b
AP
6297
6298__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6299
e397cefe
AP
6300static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6301{
6302 struct ppl_header *ppl_hdr = buf;
6303 int ret;
6304
6305 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6306
6307 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6308 ret = -errno;
6309 perror("Failed to seek to PPL header location");
6310 return ret;
6311 }
6312
6313 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6314 ret = -errno;
6315 perror("Write PPL header failed");
6316 return ret;
6317 }
6318
6319 fsync(fd);
6320
6321 return 0;
6322}
6323
2432ce9b
AP
6324static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6325{
6326 struct intel_super *super = st->sb;
6327 void *buf;
6328 struct ppl_header *ppl_hdr;
6329 int ret;
6330
b2514242
PB
6331 /* first clear entire ppl space */
6332 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6333 if (ret)
6334 return ret;
6335
6336 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6337 if (ret) {
6338 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6339 return -ret;
2432ce9b
AP
6340 }
6341
6342 memset(buf, 0, PPL_HEADER_SIZE);
6343 ppl_hdr = buf;
6344 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6345 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6346
6347 if (info->mismatch_cnt) {
6348 /*
6349 * We are overwriting an invalid ppl. Make one entry with wrong
6350 * checksum to prevent the kernel from skipping resync.
6351 */
6352 ppl_hdr->entries_count = __cpu_to_le32(1);
6353 ppl_hdr->entries[0].checksum = ~0;
6354 }
6355
e397cefe 6356 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6357
6358 free(buf);
6359 return ret;
6360}
6361
e397cefe
AP
6362static int is_rebuilding(struct imsm_dev *dev);
6363
2432ce9b
AP
6364static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6365 struct mdinfo *disk)
6366{
6367 struct intel_super *super = st->sb;
6368 struct dl *d;
e397cefe 6369 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6370 int ret = 0;
e397cefe 6371 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6372 __u32 crc;
6373 struct imsm_dev *dev;
2432ce9b 6374 __u32 idx;
44b6b876
PB
6375 unsigned int i;
6376 unsigned long long ppl_offset = 0;
6377 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6378
6379 if (disk->disk.raid_disk < 0)
6380 return 0;
6381
2432ce9b 6382 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6383 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6384 d = get_imsm_dl_disk(super, idx);
6385
6386 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6387 return 0;
6388
6389 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6390 pr_err("Failed to allocate PPL header buffer\n");
6391 return -1;
6392 }
6393 buf = buf_orig;
2432ce9b 6394
44b6b876
PB
6395 ret = 1;
6396 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6397 void *tmp;
6398
44b6b876 6399 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6400
44b6b876
PB
6401 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6402 SEEK_SET) < 0) {
6403 perror("Failed to seek to PPL header location");
6404 ret = -1;
e397cefe 6405 break;
44b6b876 6406 }
2432ce9b 6407
44b6b876
PB
6408 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6409 perror("Read PPL header failed");
6410 ret = -1;
e397cefe 6411 break;
44b6b876 6412 }
2432ce9b 6413
44b6b876 6414 ppl_hdr = buf;
2432ce9b 6415
44b6b876
PB
6416 crc = __le32_to_cpu(ppl_hdr->checksum);
6417 ppl_hdr->checksum = 0;
6418
6419 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6420 dprintf("Wrong PPL header checksum on %s\n",
6421 d->devname);
e397cefe 6422 break;
44b6b876
PB
6423 }
6424
6425 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6426 /* previous was newest, it was already checked */
e397cefe 6427 break;
44b6b876
PB
6428 }
6429
6430 if ((__le32_to_cpu(ppl_hdr->signature) !=
6431 super->anchor->orig_family_num)) {
6432 dprintf("Wrong PPL header signature on %s\n",
6433 d->devname);
6434 ret = 1;
e397cefe 6435 break;
44b6b876
PB
6436 }
6437
6438 ret = 0;
6439 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6440
44b6b876
PB
6441 ppl_offset += PPL_HEADER_SIZE;
6442 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6443 ppl_offset +=
6444 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6445
6446 if (!buf_prev)
6447 buf_prev = buf + PPL_HEADER_SIZE;
6448 tmp = buf_prev;
6449 buf_prev = buf;
6450 buf = tmp;
2432ce9b
AP
6451 }
6452
e397cefe
AP
6453 if (buf_prev) {
6454 buf = buf_prev;
6455 ppl_hdr = buf_prev;
6456 }
2432ce9b 6457
54148aba
PB
6458 /*
6459 * Update metadata to use mutliple PPLs area (1MB).
6460 * This is done once for all RAID members
6461 */
6462 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6463 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6464 char subarray[20];
6465 struct mdinfo *member_dev;
6466
6467 sprintf(subarray, "%d", info->container_member);
6468
6469 if (mdmon_running(st->container_devnm))
6470 st->update_tail = &st->updates;
6471
6472 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6473 pr_err("Failed to update subarray %s\n",
6474 subarray);
6475 } else {
6476 if (st->update_tail)
6477 flush_metadata_updates(st);
6478 else
6479 st->ss->sync_metadata(st);
6480 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6481 for (member_dev = info->devs; member_dev;
6482 member_dev = member_dev->next)
6483 member_dev->ppl_size =
6484 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6485 }
6486 }
6487
b23d0750 6488 if (ret == 1) {
2fc0fc63
AP
6489 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6490
50b9c10d
PB
6491 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6492 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6493 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6494 (is_rebuilding(dev) &&
4036e7ee 6495 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6496 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6497 ret = st->ss->write_init_ppl(st, info, d->fd);
6498 else
6499 info->mismatch_cnt++;
e397cefe
AP
6500 } else if (ret == 0 &&
6501 ppl_hdr->entries_count == 0 &&
6502 is_rebuilding(dev) &&
6503 info->resync_start == 0) {
6504 /*
6505 * The header has no entries - add a single empty entry and
6506 * rewrite the header to prevent the kernel from going into
6507 * resync after an interrupted rebuild.
6508 */
6509 ppl_hdr->entries_count = __cpu_to_le32(1);
6510 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6511 }
2432ce9b 6512
e397cefe
AP
6513 free(buf_orig);
6514
2432ce9b
AP
6515 return ret;
6516}
6517
2432ce9b
AP
6518static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6519{
6520 struct intel_super *super = st->sb;
6521 struct dl *d;
6522 int ret = 0;
6523
6524 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6525 info->array.level != 5)
6526 return 0;
6527
6528 for (d = super->disks; d ; d = d->next) {
6529 if (d->index < 0 || is_failed(&d->disk))
6530 continue;
6531
6532 ret = st->ss->write_init_ppl(st, info, d->fd);
6533 if (ret)
6534 break;
6535 }
6536
6537 return ret;
6538}
43dad3d6 6539
fbc42556
JR
6540/*******************************************************************************
6541 * Function: write_init_bitmap_imsm_vol
6542 * Description: Write a bitmap header and prepares the area for the bitmap.
6543 * Parameters:
6544 * st : supertype information
6545 * vol_idx : the volume index to use
6546 *
6547 * Returns:
6548 * 0 : success
6549 * -1 : fail
6550 ******************************************************************************/
6551static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6552{
6553 struct intel_super *super = st->sb;
6554 int prev_current_vol = super->current_vol;
6555 struct dl *d;
6556 int ret = 0;
6557
6558 super->current_vol = vol_idx;
6559 for (d = super->disks; d; d = d->next) {
6560 if (d->index < 0 || is_failed(&d->disk))
6561 continue;
6562 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6563 if (ret)
6564 break;
6565 }
6566 super->current_vol = prev_current_vol;
6567 return ret;
6568}
6569
6570/*******************************************************************************
6571 * Function: write_init_bitmap_imsm_all
6572 * Description: Write a bitmap header and prepares the area for the bitmap.
6573 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6574 * Parameters:
6575 * st : supertype information
6576 * info : info about the volume where the bitmap should be written
6577 * vol_idx : the volume index to use
6578 *
6579 * Returns:
6580 * 0 : success
6581 * -1 : fail
6582 ******************************************************************************/
6583static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6584 int vol_idx)
6585{
6586 int ret = 0;
6587
6588 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6589 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6590
6591 return ret;
6592}
6593
c2c087e6
DW
6594static int write_init_super_imsm(struct supertype *st)
6595{
9b1fb677
DW
6596 struct intel_super *super = st->sb;
6597 int current_vol = super->current_vol;
2432ce9b
AP
6598 int rv = 0;
6599 struct mdinfo info;
6600
6601 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6602
6603 /* we are done with current_vol reset it to point st at the container */
6604 super->current_vol = -1;
6605
8273f55e 6606 if (st->update_tail) {
43dad3d6
DW
6607 /* queue the recently created array / added disk
6608 * as a metadata update */
8273f55e 6609
43dad3d6 6610 /* determine if we are creating a volume or adding a disk */
9b1fb677 6611 if (current_vol < 0) {
1a64be56
LM
6612 /* in the mgmt (add/remove) disk case we are running
6613 * in mdmon context, so don't close fd's
43dad3d6 6614 */
2432ce9b
AP
6615 rv = mgmt_disk(st);
6616 } else {
fbc42556 6617 /* adding the second volume to the array */
2432ce9b 6618 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6619 if (!rv)
6620 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6621 if (!rv)
6622 rv = create_array(st, current_vol);
6623 }
d682f344
N
6624 } else {
6625 struct dl *d;
6626 for (d = super->disks; d; d = d->next)
ba728be7 6627 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6628 if (current_vol >= 0) {
2432ce9b 6629 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6630 if (!rv)
6631 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6632 }
6633
2432ce9b
AP
6634 if (!rv)
6635 rv = write_super_imsm(st, 1);
d682f344 6636 }
2432ce9b
AP
6637
6638 return rv;
cdddbdbc
DW
6639}
6640
e683ca88 6641static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6642{
e683ca88
DW
6643 struct intel_super *super = st->sb;
6644 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6645
e683ca88 6646 if (!mpb)
ad97895e
DW
6647 return 1;
6648
f36a9ecd
PB
6649 if (super->sector_size == 4096)
6650 convert_to_4k(super);
e683ca88 6651 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6652}
6653
cdddbdbc
DW
6654static int validate_geometry_imsm_container(struct supertype *st, int level,
6655 int layout, int raiddisks, int chunk,
af4348dd
N
6656 unsigned long long size,
6657 unsigned long long data_offset,
6658 char *dev,
2c514b71
NB
6659 unsigned long long *freesize,
6660 int verbose)
cdddbdbc 6661{
c2c087e6
DW
6662 int fd;
6663 unsigned long long ldsize;
8662f92d 6664 struct intel_super *super = NULL;
f2f5c343 6665 int rv = 0;
cdddbdbc 6666
c2c087e6
DW
6667 if (level != LEVEL_CONTAINER)
6668 return 0;
6669 if (!dev)
6670 return 1;
6671
6672 fd = open(dev, O_RDONLY|O_EXCL, 0);
6673 if (fd < 0) {
ba728be7 6674 if (verbose > 0)
e7b84f9d 6675 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6676 dev, strerror(errno));
c2c087e6
DW
6677 return 0;
6678 }
8662f92d
MT
6679 if (!get_dev_size(fd, dev, &ldsize))
6680 goto exit;
f2f5c343
LM
6681
6682 /* capabilities retrieve could be possible
6683 * note that there is no fd for the disks in array.
6684 */
6685 super = alloc_super();
8662f92d
MT
6686 if (!super)
6687 goto exit;
6688
6689 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6690 goto exit;
fa7bb6f8 6691
ba728be7 6692 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6693 if (rv != 0) {
6694#if DEBUG
6695 char str[256];
6696 fd2devname(fd, str);
1ade5cc1 6697 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6698 fd, str, super->orom, rv, raiddisks);
6699#endif
6700 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6701 rv = 0;
6702 goto exit;
f2f5c343 6703 }
9126b9a8
CA
6704 if (super->orom) {
6705 if (raiddisks > super->orom->tds) {
6706 if (verbose)
7a862a02 6707 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6708 raiddisks, super->orom->tds);
8662f92d 6709 goto exit;
9126b9a8
CA
6710 }
6711 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6712 (ldsize >> 9) >> 32 > 0) {
6713 if (verbose)
e7b84f9d 6714 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6715 goto exit;
6716 }
6717
6718 if (super->hba->type == SYS_DEV_VMD ||
6719 super->hba->type == SYS_DEV_NVME) {
6720 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6721 if (verbose)
6722 pr_err("NVMe namespace %s is not supported by IMSM\n",
6723 basename(dev));
6724 goto exit;
6725 }
9126b9a8 6726 }
f2f5c343 6727 }
c2c087e6 6728
af4348dd 6729 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6730 rv = 1;
6731exit:
6732 if (super)
6733 free_imsm(super);
6734 close(fd);
c2c087e6 6735
8662f92d 6736 return rv;
cdddbdbc
DW
6737}
6738
0dcecb2e
DW
6739static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6740{
6741 const unsigned long long base_start = e[*idx].start;
6742 unsigned long long end = base_start + e[*idx].size;
6743 int i;
6744
6745 if (base_start == end)
6746 return 0;
6747
6748 *idx = *idx + 1;
6749 for (i = *idx; i < num_extents; i++) {
6750 /* extend overlapping extents */
6751 if (e[i].start >= base_start &&
6752 e[i].start <= end) {
6753 if (e[i].size == 0)
6754 return 0;
6755 if (e[i].start + e[i].size > end)
6756 end = e[i].start + e[i].size;
6757 } else if (e[i].start > end) {
6758 *idx = i;
6759 break;
6760 }
6761 }
6762
6763 return end - base_start;
6764}
6765
6766static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6767{
6768 /* build a composite disk with all known extents and generate a new
6769 * 'maxsize' given the "all disks in an array must share a common start
6770 * offset" constraint
6771 */
503975b9 6772 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6773 struct dl *dl;
6774 int i, j;
6775 int start_extent;
6776 unsigned long long pos;
b9d77223 6777 unsigned long long start = 0;
0dcecb2e
DW
6778 unsigned long long maxsize;
6779 unsigned long reserve;
6780
0dcecb2e
DW
6781 /* coalesce and sort all extents. also, check to see if we need to
6782 * reserve space between member arrays
6783 */
6784 j = 0;
6785 for (dl = super->disks; dl; dl = dl->next) {
6786 if (!dl->e)
6787 continue;
6788 for (i = 0; i < dl->extent_cnt; i++)
6789 e[j++] = dl->e[i];
6790 }
6791 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6792
6793 /* merge extents */
6794 i = 0;
6795 j = 0;
6796 while (i < sum_extents) {
6797 e[j].start = e[i].start;
6798 e[j].size = find_size(e, &i, sum_extents);
6799 j++;
6800 if (e[j-1].size == 0)
6801 break;
6802 }
6803
6804 pos = 0;
6805 maxsize = 0;
6806 start_extent = 0;
6807 i = 0;
6808 do {
6809 unsigned long long esize;
6810
6811 esize = e[i].start - pos;
6812 if (esize >= maxsize) {
6813 maxsize = esize;
6814 start = pos;
6815 start_extent = i;
6816 }
6817 pos = e[i].start + e[i].size;
6818 i++;
6819 } while (e[i-1].size);
6820 free(e);
6821
a7dd165b
DW
6822 if (maxsize == 0)
6823 return 0;
6824
6825 /* FIXME assumes volume at offset 0 is the first volume in a
6826 * container
6827 */
0dcecb2e
DW
6828 if (start_extent > 0)
6829 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6830 else
6831 reserve = 0;
6832
6833 if (maxsize < reserve)
a7dd165b 6834 return 0;
0dcecb2e 6835
5551b113 6836 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6837 if (start + reserve > super->create_offset)
a7dd165b 6838 return 0; /* start overflows create_offset */
0dcecb2e
DW
6839 super->create_offset = start + reserve;
6840
6841 return maxsize - reserve;
6842}
6843
88c32bb1
DW
6844static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6845{
6846 if (level < 0 || level == 6 || level == 4)
6847 return 0;
6848
6849 /* if we have an orom prevent invalid raid levels */
6850 if (orom)
6851 switch (level) {
6852 case 0: return imsm_orom_has_raid0(orom);
6853 case 1:
6854 if (raiddisks > 2)
6855 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6856 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6857 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6858 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6859 }
6860 else
6861 return 1; /* not on an Intel RAID platform so anything goes */
6862
6863 return 0;
6864}
6865
ca9de185
LM
6866static int
6867active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6868 int dpa, int verbose)
6869{
6870 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6871 struct mdstat_ent *memb;
ca9de185
LM
6872 int count = 0;
6873 int num = 0;
594dc1b8 6874 struct md_list *dv;
ca9de185
LM
6875 int found;
6876
6877 for (memb = mdstat ; memb ; memb = memb->next) {
6878 if (memb->metadata_version &&
fc54fe7a 6879 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6880 (strcmp(&memb->metadata_version[9], name) == 0) &&
6881 !is_subarray(memb->metadata_version+9) &&
6882 memb->members) {
6883 struct dev_member *dev = memb->members;
6884 int fd = -1;
6885 while(dev && (fd < 0)) {
503975b9
N
6886 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6887 num = sprintf(path, "%s%s", "/dev/", dev->name);
6888 if (num > 0)
6889 fd = open(path, O_RDONLY, 0);
089f9d79 6890 if (num <= 0 || fd < 0) {
676e87a8 6891 pr_vrb("Cannot open %s: %s\n",
503975b9 6892 dev->name, strerror(errno));
ca9de185 6893 }
503975b9 6894 free(path);
ca9de185
LM
6895 dev = dev->next;
6896 }
6897 found = 0;
089f9d79 6898 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6899 struct mdstat_ent *vol;
6900 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6901 if (vol->active > 0 &&
ca9de185 6902 vol->metadata_version &&
9581efb1 6903 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6904 found++;
6905 count++;
6906 }
6907 }
6908 if (*devlist && (found < dpa)) {
503975b9 6909 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6910 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6911 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6912 dv->found = found;
6913 dv->used = 0;
6914 dv->next = *devlist;
6915 *devlist = dv;
ca9de185
LM
6916 }
6917 }
6918 if (fd >= 0)
6919 close(fd);
6920 }
6921 }
6922 free_mdstat(mdstat);
6923 return count;
6924}
6925
6926#ifdef DEBUG_LOOP
6927static struct md_list*
6928get_loop_devices(void)
6929{
6930 int i;
6931 struct md_list *devlist = NULL;
594dc1b8 6932 struct md_list *dv;
ca9de185
LM
6933
6934 for(i = 0; i < 12; i++) {
503975b9
N
6935 dv = xcalloc(1, sizeof(*dv));
6936 dv->devname = xmalloc(40);
ca9de185
LM
6937 sprintf(dv->devname, "/dev/loop%d", i);
6938 dv->next = devlist;
6939 devlist = dv;
6940 }
6941 return devlist;
6942}
6943#endif
6944
6945static struct md_list*
6946get_devices(const char *hba_path)
6947{
6948 struct md_list *devlist = NULL;
594dc1b8 6949 struct md_list *dv;
ca9de185
LM
6950 struct dirent *ent;
6951 DIR *dir;
6952 int err = 0;
6953
6954#if DEBUG_LOOP
6955 devlist = get_loop_devices();
6956 return devlist;
6957#endif
6958 /* scroll through /sys/dev/block looking for devices attached to
6959 * this hba
6960 */
6961 dir = opendir("/sys/dev/block");
6962 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6963 int fd;
6964 char buf[1024];
6965 int major, minor;
6966 char *path = NULL;
6967 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6968 continue;
7c798f87 6969 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
6970 if (!path)
6971 continue;
6972 if (!path_attached_to_hba(path, hba_path)) {
6973 free(path);
6974 path = NULL;
6975 continue;
6976 }
6977 free(path);
6978 path = NULL;
6979 fd = dev_open(ent->d_name, O_RDONLY);
6980 if (fd >= 0) {
6981 fd2devname(fd, buf);
6982 close(fd);
6983 } else {
e7b84f9d 6984 pr_err("cannot open device: %s\n",
ca9de185
LM
6985 ent->d_name);
6986 continue;
6987 }
6988
503975b9
N
6989 dv = xcalloc(1, sizeof(*dv));
6990 dv->devname = xstrdup(buf);
ca9de185
LM
6991 dv->next = devlist;
6992 devlist = dv;
6993 }
6994 if (err) {
6995 while(devlist) {
6996 dv = devlist;
6997 devlist = devlist->next;
6998 free(dv->devname);
6999 free(dv);
7000 }
7001 }
562aa102 7002 closedir(dir);
ca9de185
LM
7003 return devlist;
7004}
7005
7006static int
7007count_volumes_list(struct md_list *devlist, char *homehost,
7008 int verbose, int *found)
7009{
7010 struct md_list *tmpdev;
7011 int count = 0;
594dc1b8 7012 struct supertype *st;
ca9de185
LM
7013
7014 /* first walk the list of devices to find a consistent set
7015 * that match the criterea, if that is possible.
7016 * We flag the ones we like with 'used'.
7017 */
7018 *found = 0;
7019 st = match_metadata_desc_imsm("imsm");
7020 if (st == NULL) {
676e87a8 7021 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7022 return 0;
7023 }
7024
7025 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7026 char *devname = tmpdev->devname;
0a6bff09 7027 dev_t rdev;
ca9de185
LM
7028 struct supertype *tst;
7029 int dfd;
7030 if (tmpdev->used > 1)
7031 continue;
7032 tst = dup_super(st);
7033 if (tst == NULL) {
676e87a8 7034 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7035 goto err_1;
7036 }
7037 tmpdev->container = 0;
7038 dfd = dev_open(devname, O_RDONLY|O_EXCL);
7039 if (dfd < 0) {
1ade5cc1 7040 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7041 devname, strerror(errno));
7042 tmpdev->used = 2;
0a6bff09 7043 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7044 tmpdev->used = 2;
7045 } else if (must_be_container(dfd)) {
7046 struct supertype *cst;
7047 cst = super_by_fd(dfd, NULL);
7048 if (cst == NULL) {
1ade5cc1 7049 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7050 devname);
7051 tmpdev->used = 2;
7052 } else if (tst->ss != st->ss) {
1ade5cc1 7053 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7054 devname);
7055 tmpdev->used = 2;
7056 } else if (!tst->ss->load_container ||
7057 tst->ss->load_container(tst, dfd, NULL))
7058 tmpdev->used = 2;
7059 else {
7060 tmpdev->container = 1;
7061 }
7062 if (cst)
7063 cst->ss->free_super(cst);
7064 } else {
0a6bff09 7065 tmpdev->st_rdev = rdev;
ca9de185 7066 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7067 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7068 devname);
7069 tmpdev->used = 2;
7070 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7071 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7072 tst->ss->name, devname);
7073 tmpdev->used = 2;
7074 }
7075 }
7076 if (dfd >= 0)
7077 close(dfd);
7078 if (tmpdev->used == 2 || tmpdev->used == 4) {
7079 /* Ignore unrecognised devices during auto-assembly */
7080 goto loop;
7081 }
7082 else {
7083 struct mdinfo info;
7084 tst->ss->getinfo_super(tst, &info, NULL);
7085
7086 if (st->minor_version == -1)
7087 st->minor_version = tst->minor_version;
7088
7089 if (memcmp(info.uuid, uuid_zero,
7090 sizeof(int[4])) == 0) {
7091 /* this is a floating spare. It cannot define
7092 * an array unless there are no more arrays of
7093 * this type to be found. It can be included
7094 * in an array of this type though.
7095 */
7096 tmpdev->used = 3;
7097 goto loop;
7098 }
7099
7100 if (st->ss != tst->ss ||
7101 st->minor_version != tst->minor_version ||
c7b8547c 7102 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7103 /* Some mismatch. If exactly one array matches this host,
7104 * we can resolve on that one.
7105 * Or, if we are auto assembling, we just ignore the second
7106 * for now.
7107 */
1ade5cc1 7108 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7109 devname);
7110 goto loop;
7111 }
7112 tmpdev->used = 1;
7113 *found = 1;
7114 dprintf("found: devname: %s\n", devname);
7115 }
7116 loop:
7117 if (tst)
7118 tst->ss->free_super(tst);
7119 }
7120 if (*found != 0) {
7121 int err;
7122 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7123 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7124 for (iter = head; iter; iter = iter->next) {
7125 dprintf("content->text_version: %s vol\n",
7126 iter->text_version);
7127 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7128 /* do not assemble arrays with unsupported
7129 configurations */
1ade5cc1 7130 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7131 iter->text_version);
7132 } else
7133 count++;
7134 }
7135 sysfs_free(head);
7136
7137 } else {
1ade5cc1 7138 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7139 err, st->sb);
7140 }
7141 } else {
1ade5cc1 7142 dprintf("no more devices to examine\n");
ca9de185
LM
7143 }
7144
7145 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7146 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7147 if (count) {
7148 if (count < tmpdev->found)
7149 count = 0;
7150 else
7151 count -= tmpdev->found;
7152 }
7153 }
7154 if (tmpdev->used == 1)
7155 tmpdev->used = 4;
7156 }
7157 err_1:
7158 if (st)
7159 st->ss->free_super(st);
7160 return count;
7161}
7162
d3c11416
AO
7163static int __count_volumes(char *hba_path, int dpa, int verbose,
7164 int cmp_hba_path)
ca9de185 7165{
72a45777 7166 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7167 int count = 0;
72a45777
PB
7168 const struct orom_entry *entry;
7169 struct devid_list *dv, *devid_list;
ca9de185 7170
d3c11416 7171 if (!hba_path)
ca9de185
LM
7172 return 0;
7173
72a45777 7174 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7175 if (strstr(idev->path, hba_path))
7176 break;
72a45777
PB
7177 }
7178
7179 if (!idev || !idev->dev_id)
ca9de185 7180 return 0;
72a45777
PB
7181
7182 entry = get_orom_entry_by_device_id(idev->dev_id);
7183
7184 if (!entry || !entry->devid_list)
7185 return 0;
7186
7187 devid_list = entry->devid_list;
7188 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7189 struct md_list *devlist;
d3c11416
AO
7190 struct sys_dev *device = NULL;
7191 char *hpath;
72a45777
PB
7192 int found = 0;
7193
d3c11416
AO
7194 if (cmp_hba_path)
7195 device = device_by_id_and_path(dv->devid, hba_path);
7196 else
7197 device = device_by_id(dv->devid);
7198
72a45777 7199 if (device)
d3c11416 7200 hpath = device->path;
72a45777
PB
7201 else
7202 return 0;
7203
d3c11416 7204 devlist = get_devices(hpath);
72a45777
PB
7205 /* if no intel devices return zero volumes */
7206 if (devlist == NULL)
7207 return 0;
7208
d3c11416
AO
7209 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7210 verbose);
7211 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7212 if (devlist == NULL)
7213 return 0;
7214 do {
7215 found = 0;
7216 count += count_volumes_list(devlist,
7217 NULL,
7218 verbose,
7219 &found);
7220 dprintf("found %d count: %d\n", found, count);
7221 } while (found);
7222
d3c11416 7223 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7224
7225 while (devlist) {
7226 struct md_list *dv = devlist;
7227 devlist = devlist->next;
7228 free(dv->devname);
7229 free(dv);
7230 }
ca9de185
LM
7231 }
7232 return count;
7233}
7234
d3c11416
AO
7235static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7236{
7237 if (!hba)
7238 return 0;
7239 if (hba->type == SYS_DEV_VMD) {
7240 struct sys_dev *dev;
7241 int count = 0;
7242
7243 for (dev = find_intel_devices(); dev; dev = dev->next) {
7244 if (dev->type == SYS_DEV_VMD)
7245 count += __count_volumes(dev->path, dpa,
7246 verbose, 1);
7247 }
7248 return count;
7249 }
7250 return __count_volumes(hba->path, dpa, verbose, 0);
7251}
7252
cd9d1ac7
DW
7253static int imsm_default_chunk(const struct imsm_orom *orom)
7254{
7255 /* up to 512 if the plaform supports it, otherwise the platform max.
7256 * 128 if no platform detected
7257 */
7258 int fs = max(7, orom ? fls(orom->sss) : 0);
7259
7260 return min(512, (1 << fs));
7261}
73408129 7262
6592ce37
DW
7263static int
7264validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7265 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7266{
660260d0
DW
7267 /* check/set platform and metadata limits/defaults */
7268 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7269 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7270 super->orom->dpa);
73408129
LM
7271 return 0;
7272 }
7273
5d500228 7274 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7275 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7276 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7277 level, raiddisks, raiddisks > 1 ? "s" : "");
7278 return 0;
7279 }
cd9d1ac7 7280
7ccc4cc4 7281 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7282 *chunk = imsm_default_chunk(super->orom);
7283
7ccc4cc4 7284 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7285 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7286 return 0;
6592ce37 7287 }
cd9d1ac7 7288
6592ce37
DW
7289 if (layout != imsm_level_to_layout(level)) {
7290 if (level == 5)
676e87a8 7291 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7292 else if (level == 10)
676e87a8 7293 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7294 else
676e87a8 7295 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7296 layout, level);
7297 return 0;
7298 }
2cc699af 7299
7ccc4cc4 7300 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7301 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7302 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7303 return 0;
7304 }
614902f6 7305
6592ce37
DW
7306 return 1;
7307}
7308
1011e834 7309/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7310 * FIX ME add ahci details
7311 */
8b353278 7312static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7313 int layout, int raiddisks, int *chunk,
af4348dd
N
7314 unsigned long long size,
7315 unsigned long long data_offset,
7316 char *dev,
2c514b71
NB
7317 unsigned long long *freesize,
7318 int verbose)
cdddbdbc 7319{
9e04ac1c 7320 dev_t rdev;
c2c087e6 7321 struct intel_super *super = st->sb;
b2916f25 7322 struct imsm_super *mpb;
c2c087e6
DW
7323 struct dl *dl;
7324 unsigned long long pos = 0;
7325 unsigned long long maxsize;
7326 struct extent *e;
7327 int i;
cdddbdbc 7328
88c32bb1
DW
7329 /* We must have the container info already read in. */
7330 if (!super)
c2c087e6
DW
7331 return 0;
7332
b2916f25
JS
7333 mpb = super->anchor;
7334
2cc699af 7335 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7336 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7337 return 0;
d54559f0 7338 }
c2c087e6
DW
7339 if (!dev) {
7340 /* General test: make sure there is space for
2da8544a
DW
7341 * 'raiddisks' device extents of size 'size' at a given
7342 * offset
c2c087e6 7343 */
e46273eb 7344 unsigned long long minsize = size;
b7528a20 7345 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7346 int dcnt = 0;
7347 if (minsize == 0)
7348 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7349 for (dl = super->disks; dl ; dl = dl->next) {
7350 int found = 0;
7351
bf5a934a 7352 pos = 0;
c2c087e6 7353 i = 0;
05501181 7354 e = get_extents(super, dl, 0);
c2c087e6
DW
7355 if (!e) continue;
7356 do {
7357 unsigned long long esize;
7358 esize = e[i].start - pos;
7359 if (esize >= minsize)
7360 found = 1;
b7528a20 7361 if (found && start_offset == MaxSector) {
2da8544a
DW
7362 start_offset = pos;
7363 break;
7364 } else if (found && pos != start_offset) {
7365 found = 0;
7366 break;
7367 }
c2c087e6
DW
7368 pos = e[i].start + e[i].size;
7369 i++;
7370 } while (e[i-1].size);
7371 if (found)
7372 dcnt++;
7373 free(e);
7374 }
7375 if (dcnt < raiddisks) {
2c514b71 7376 if (verbose)
7a862a02 7377 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7378 dcnt, raiddisks);
c2c087e6
DW
7379 return 0;
7380 }
7381 return 1;
7382 }
0dcecb2e 7383
c2c087e6 7384 /* This device must be a member of the set */
9e04ac1c 7385 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7386 return 0;
7387 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7388 if (dl->major == (int)major(rdev) &&
7389 dl->minor == (int)minor(rdev))
c2c087e6
DW
7390 break;
7391 }
7392 if (!dl) {
2c514b71 7393 if (verbose)
7a862a02 7394 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7395 return 0;
a20d2ba5
DW
7396 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7397 /* If a volume is present then the current creation attempt
7398 * cannot incorporate new spares because the orom may not
7399 * understand this configuration (all member disks must be
7400 * members of each array in the container).
7401 */
7a862a02
N
7402 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7403 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7404 return 0;
5fe62b94
WD
7405 } else if (super->orom && mpb->num_raid_devs > 0 &&
7406 mpb->num_disks != raiddisks) {
7a862a02 7407 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7408 return 0;
c2c087e6 7409 }
0dcecb2e
DW
7410
7411 /* retrieve the largest free space block */
05501181 7412 e = get_extents(super, dl, 0);
c2c087e6
DW
7413 maxsize = 0;
7414 i = 0;
0dcecb2e
DW
7415 if (e) {
7416 do {
7417 unsigned long long esize;
7418
7419 esize = e[i].start - pos;
7420 if (esize >= maxsize)
7421 maxsize = esize;
7422 pos = e[i].start + e[i].size;
7423 i++;
7424 } while (e[i-1].size);
7425 dl->e = e;
7426 dl->extent_cnt = i;
7427 } else {
7428 if (verbose)
e7b84f9d 7429 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7430 dev);
7431 return 0;
7432 }
7433 if (maxsize < size) {
7434 if (verbose)
e7b84f9d 7435 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7436 dev, maxsize, size);
7437 return 0;
7438 }
7439
7440 /* count total number of extents for merge */
7441 i = 0;
7442 for (dl = super->disks; dl; dl = dl->next)
7443 if (dl->e)
7444 i += dl->extent_cnt;
7445
7446 maxsize = merge_extents(super, i);
3baa56ab 7447
1a1ced1e
KS
7448 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7449 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7450
a7dd165b 7451 if (maxsize < size || maxsize == 0) {
b3071342
LD
7452 if (verbose) {
7453 if (maxsize == 0)
7a862a02 7454 pr_err("no free space left on device. Aborting...\n");
b3071342 7455 else
7a862a02 7456 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7457 maxsize, size);
7458 }
0dcecb2e 7459 return 0;
0dcecb2e
DW
7460 }
7461
c2c087e6
DW
7462 *freesize = maxsize;
7463
ca9de185 7464 if (super->orom) {
72a45777 7465 int count = count_volumes(super->hba,
ca9de185
LM
7466 super->orom->dpa, verbose);
7467 if (super->orom->vphba <= count) {
676e87a8 7468 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7469 super->orom->vphba);
7470 return 0;
7471 }
7472 }
c2c087e6 7473 return 1;
cdddbdbc
DW
7474}
7475
13bcac90 7476static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
7477 unsigned long long size, int chunk,
7478 unsigned long long *freesize)
7479{
7480 struct intel_super *super = st->sb;
7481 struct imsm_super *mpb = super->anchor;
7482 struct dl *dl;
7483 int i;
7484 int extent_cnt;
7485 struct extent *e;
7486 unsigned long long maxsize;
7487 unsigned long long minsize;
7488 int cnt;
7489 int used;
7490
7491 /* find the largest common start free region of the possible disks */
7492 used = 0;
7493 extent_cnt = 0;
7494 cnt = 0;
7495 for (dl = super->disks; dl; dl = dl->next) {
7496 dl->raiddisk = -1;
7497
7498 if (dl->index >= 0)
7499 used++;
7500
7501 /* don't activate new spares if we are orom constrained
7502 * and there is already a volume active in the container
7503 */
7504 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7505 continue;
7506
05501181 7507 e = get_extents(super, dl, 0);
efb30e7f
DW
7508 if (!e)
7509 continue;
7510 for (i = 1; e[i-1].size; i++)
7511 ;
7512 dl->e = e;
7513 dl->extent_cnt = i;
7514 extent_cnt += i;
7515 cnt++;
7516 }
7517
7518 maxsize = merge_extents(super, extent_cnt);
7519 minsize = size;
7520 if (size == 0)
612e59d8
CA
7521 /* chunk is in K */
7522 minsize = chunk * 2;
efb30e7f
DW
7523
7524 if (cnt < raiddisks ||
7525 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
7526 maxsize < minsize ||
7527 maxsize == 0) {
e7b84f9d 7528 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
7529 return 0; /* No enough free spaces large enough */
7530 }
7531
7532 if (size == 0) {
7533 size = maxsize;
7534 if (chunk) {
612e59d8
CA
7535 size /= 2 * chunk;
7536 size *= 2 * chunk;
efb30e7f 7537 }
f878b242
LM
7538 maxsize = size;
7539 }
1a1ced1e
KS
7540 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7541 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7542 cnt = 0;
7543 for (dl = super->disks; dl; dl = dl->next)
7544 if (dl->e)
7545 dl->raiddisk = cnt++;
7546
7547 *freesize = size;
7548
13bcac90
AK
7549 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7550
efb30e7f
DW
7551 return 1;
7552}
7553
13bcac90
AK
7554static int reserve_space(struct supertype *st, int raiddisks,
7555 unsigned long long size, int chunk,
7556 unsigned long long *freesize)
7557{
7558 struct intel_super *super = st->sb;
7559 struct dl *dl;
7560 int cnt;
7561 int rv = 0;
7562
7563 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7564 if (rv) {
7565 cnt = 0;
7566 for (dl = super->disks; dl; dl = dl->next)
7567 if (dl->e)
7568 dl->raiddisk = cnt++;
7569 rv = 1;
7570 }
7571
7572 return rv;
7573}
7574
bf5a934a 7575static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7576 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7577 unsigned long long data_offset,
bf5a934a 7578 char *dev, unsigned long long *freesize,
5308f117 7579 int consistency_policy, int verbose)
bf5a934a
DW
7580{
7581 int fd, cfd;
7582 struct mdinfo *sra;
20cbe8d2 7583 int is_member = 0;
bf5a934a 7584
d54559f0
LM
7585 /* load capability
7586 * if given unused devices create a container
bf5a934a
DW
7587 * if given given devices in a container create a member volume
7588 */
7589 if (level == LEVEL_CONTAINER) {
7590 /* Must be a fresh device to add to a container */
7591 return validate_geometry_imsm_container(st, level, layout,
c21e737b 7592 raiddisks,
7ccc4cc4 7593 *chunk,
af4348dd 7594 size, data_offset,
bf5a934a
DW
7595 dev, freesize,
7596 verbose);
7597 }
9587c373 7598
06a6101c
BK
7599 /*
7600 * Size is given in sectors.
7601 */
7602 if (size && (size < 2048)) {
22dc741f 7603 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7604 /* Depends on algorithm in Create.c :
7605 * if container was given (dev == NULL) return -1,
7606 * if block device was given ( dev != NULL) return 0.
7607 */
7608 return dev ? -1 : 0;
7609 }
7610
8592f29d 7611 if (!dev) {
e91a3bad 7612 if (st->sb) {
ca9de185 7613 struct intel_super *super = st->sb;
e91a3bad 7614 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 7615 raiddisks, chunk, size,
e91a3bad
LM
7616 verbose))
7617 return 0;
efb30e7f
DW
7618 /* we are being asked to automatically layout a
7619 * new volume based on the current contents of
7620 * the container. If the the parameters can be
7621 * satisfied reserve_space will record the disks,
7622 * start offset, and size of the volume to be
7623 * created. add_to_super and getinfo_super
7624 * detect when autolayout is in progress.
7625 */
ca9de185
LM
7626 /* assuming that freesize is always given when array is
7627 created */
7628 if (super->orom && freesize) {
7629 int count;
72a45777 7630 count = count_volumes(super->hba,
ca9de185
LM
7631 super->orom->dpa, verbose);
7632 if (super->orom->vphba <= count) {
676e87a8 7633 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7634 super->orom->vphba);
7635 return 0;
7636 }
7637 }
e91a3bad
LM
7638 if (freesize)
7639 return reserve_space(st, raiddisks, size,
7ccc4cc4 7640 *chunk, freesize);
8592f29d
N
7641 }
7642 return 1;
7643 }
bf5a934a
DW
7644 if (st->sb) {
7645 /* creating in a given container */
7646 return validate_geometry_imsm_volume(st, level, layout,
7647 raiddisks, chunk, size,
af4348dd 7648 data_offset,
bf5a934a
DW
7649 dev, freesize, verbose);
7650 }
7651
bf5a934a
DW
7652 /* This device needs to be a device in an 'imsm' container */
7653 fd = open(dev, O_RDONLY|O_EXCL, 0);
7654 if (fd >= 0) {
7655 if (verbose)
e7b84f9d
N
7656 pr_err("Cannot create this array on device %s\n",
7657 dev);
bf5a934a
DW
7658 close(fd);
7659 return 0;
7660 }
7661 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7662 if (verbose)
e7b84f9d 7663 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
7664 dev, strerror(errno));
7665 return 0;
7666 }
7667 /* Well, it is in use by someone, maybe an 'imsm' container. */
7668 cfd = open_container(fd);
20cbe8d2 7669 close(fd);
bf5a934a 7670 if (cfd < 0) {
bf5a934a 7671 if (verbose)
e7b84f9d 7672 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
7673 dev);
7674 return 0;
7675 }
4dd2df09 7676 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7677 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7678 strcmp(sra->text_version, "imsm") == 0)
7679 is_member = 1;
7680 sysfs_free(sra);
7681 if (is_member) {
bf5a934a
DW
7682 /* This is a member of a imsm container. Load the container
7683 * and try to create a volume
7684 */
7685 struct intel_super *super;
7686
ec50f7b6 7687 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7688 st->sb = super;
4dd2df09 7689 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7690 close(cfd);
7691 return validate_geometry_imsm_volume(st, level, layout,
7692 raiddisks, chunk,
af4348dd 7693 size, data_offset, dev,
ecbd9e81
N
7694 freesize, 1)
7695 ? 1 : -1;
bf5a934a 7696 }
20cbe8d2 7697 }
bf5a934a 7698
20cbe8d2 7699 if (verbose)
e7b84f9d 7700 pr_err("failed container membership check\n");
20cbe8d2
AW
7701
7702 close(cfd);
7703 return 0;
bf5a934a 7704}
0bd16cf2 7705
30f58b22 7706static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7707{
7708 struct intel_super *super = st->sb;
7709
30f58b22
DW
7710 if (level && *level == UnSet)
7711 *level = LEVEL_CONTAINER;
7712
7713 if (level && layout && *layout == UnSet)
7714 *layout = imsm_level_to_layout(*level);
0bd16cf2 7715
cd9d1ac7
DW
7716 if (chunk && (*chunk == UnSet || *chunk == 0))
7717 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7718}
7719
33414a01
DW
7720static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7721
3364781b 7722static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7723{
3364781b 7724 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7725 __u8 i;
7726 struct intel_dev **dp;
7727 struct intel_super *super = st->sb;
3364781b 7728 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7729 struct imsm_super *mpb = super->anchor;
7730
3364781b 7731 if (mpb->num_raid_devs == 0)
33414a01 7732 return 2;
33414a01
DW
7733
7734 /* block deletions that would change the uuid of active subarrays
7735 *
7736 * FIXME when immutable ids are available, but note that we'll
7737 * also need to fixup the invalidated/active subarray indexes in
7738 * mdstat
7739 */
7740 for (i = 0; i < mpb->num_raid_devs; i++) {
7741 char subarray[4];
7742
7743 if (i < current_vol)
7744 continue;
7745 sprintf(subarray, "%u", i);
4dd2df09 7746 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7747 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7748 current_vol, i);
33414a01
DW
7749
7750 return 2;
7751 }
7752 }
7753
7754 if (st->update_tail) {
503975b9 7755 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7756
33414a01
DW
7757 u->type = update_kill_array;
7758 u->dev_idx = current_vol;
7759 append_metadata_update(st, u, sizeof(*u));
7760
7761 return 0;
7762 }
7763
7764 for (dp = &super->devlist; *dp;)
7765 if ((*dp)->index == current_vol) {
7766 *dp = (*dp)->next;
7767 } else {
7768 handle_missing(super, (*dp)->dev);
7769 if ((*dp)->index > current_vol)
7770 (*dp)->index--;
7771 dp = &(*dp)->next;
7772 }
7773
7774 /* no more raid devices, all active components are now spares,
7775 * but of course failed are still failed
7776 */
7777 if (--mpb->num_raid_devs == 0) {
7778 struct dl *d;
7779
7780 for (d = super->disks; d; d = d->next)
a8619d23
AK
7781 if (d->index > -2)
7782 mark_spare(d);
33414a01
DW
7783 }
7784
7785 super->updates_pending++;
7786
7787 return 0;
7788}
aa534678 7789
19ad203e
JR
7790static int get_rwh_policy_from_update(char *update)
7791{
7792 if (strcmp(update, "ppl") == 0)
7793 return RWH_MULTIPLE_DISTRIBUTED;
7794 else if (strcmp(update, "no-ppl") == 0)
7795 return RWH_MULTIPLE_OFF;
7796 else if (strcmp(update, "bitmap") == 0)
7797 return RWH_BITMAP;
7798 else if (strcmp(update, "no-bitmap") == 0)
7799 return RWH_OFF;
7800 return -1;
7801}
7802
a951a4f7 7803static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7804 char *update, struct mddev_ident *ident)
aa534678
DW
7805{
7806 /* update the subarray currently referenced by ->current_vol */
7807 struct intel_super *super = st->sb;
7808 struct imsm_super *mpb = super->anchor;
7809
aa534678
DW
7810 if (strcmp(update, "name") == 0) {
7811 char *name = ident->name;
a951a4f7
N
7812 char *ep;
7813 int vol;
aa534678 7814
4dd2df09 7815 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7816 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7817 return 2;
7818 }
7819
7820 if (!check_name(super, name, 0))
7821 return 2;
7822
a951a4f7
N
7823 vol = strtoul(subarray, &ep, 10);
7824 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7825 return 2;
7826
aa534678 7827 if (st->update_tail) {
503975b9 7828 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7829
aa534678 7830 u->type = update_rename_array;
a951a4f7 7831 u->dev_idx = vol;
618f4e6d
XN
7832 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7833 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7834 append_metadata_update(st, u, sizeof(*u));
7835 } else {
7836 struct imsm_dev *dev;
ebad3af2 7837 int i, namelen;
aa534678 7838
a951a4f7 7839 dev = get_imsm_dev(super, vol);
ebad3af2
JS
7840 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7841 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7842 memcpy(dev->volume, name, namelen);
aa534678
DW
7843 for (i = 0; i < mpb->num_raid_devs; i++) {
7844 dev = get_imsm_dev(super, i);
7845 handle_missing(super, dev);
7846 }
7847 super->updates_pending++;
7848 }
19ad203e 7849 } else if (get_rwh_policy_from_update(update) != -1) {
e6e9dd3f
AP
7850 int new_policy;
7851 char *ep;
7852 int vol = strtoul(subarray, &ep, 10);
7853
7854 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7855 return 2;
7856
19ad203e 7857 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
7858
7859 if (st->update_tail) {
7860 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7861
7862 u->type = update_rwh_policy;
7863 u->dev_idx = vol;
7864 u->new_policy = new_policy;
7865 append_metadata_update(st, u, sizeof(*u));
7866 } else {
7867 struct imsm_dev *dev;
7868
7869 dev = get_imsm_dev(super, vol);
7870 dev->rwh_policy = new_policy;
7871 super->updates_pending++;
7872 }
19ad203e
JR
7873 if (new_policy == RWH_BITMAP)
7874 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
7875 } else
7876 return 2;
7877
7878 return 0;
7879}
bf5a934a 7880
28bce06f
AK
7881static int is_gen_migration(struct imsm_dev *dev)
7882{
7534230b
AK
7883 if (dev == NULL)
7884 return 0;
7885
28bce06f
AK
7886 if (!dev->vol.migr_state)
7887 return 0;
7888
7889 if (migr_type(dev) == MIGR_GEN_MIGR)
7890 return 1;
7891
7892 return 0;
7893}
7894
1e5c6983
DW
7895static int is_rebuilding(struct imsm_dev *dev)
7896{
7897 struct imsm_map *migr_map;
7898
7899 if (!dev->vol.migr_state)
7900 return 0;
7901
7902 if (migr_type(dev) != MIGR_REBUILD)
7903 return 0;
7904
238c0a71 7905 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7906
7907 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7908 return 1;
7909 else
7910 return 0;
7911}
7912
6ce1fbf1
AK
7913static int is_initializing(struct imsm_dev *dev)
7914{
7915 struct imsm_map *migr_map;
7916
7917 if (!dev->vol.migr_state)
7918 return 0;
7919
7920 if (migr_type(dev) != MIGR_INIT)
7921 return 0;
7922
238c0a71 7923 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7924
7925 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7926 return 1;
7927
7928 return 0;
6ce1fbf1
AK
7929}
7930
c47b0ff6
AK
7931static void update_recovery_start(struct intel_super *super,
7932 struct imsm_dev *dev,
7933 struct mdinfo *array)
1e5c6983
DW
7934{
7935 struct mdinfo *rebuild = NULL;
7936 struct mdinfo *d;
7937 __u32 units;
7938
7939 if (!is_rebuilding(dev))
7940 return;
7941
7942 /* Find the rebuild target, but punt on the dual rebuild case */
7943 for (d = array->devs; d; d = d->next)
7944 if (d->recovery_start == 0) {
7945 if (rebuild)
7946 return;
7947 rebuild = d;
7948 }
7949
4363fd80
DW
7950 if (!rebuild) {
7951 /* (?) none of the disks are marked with
7952 * IMSM_ORD_REBUILD, so assume they are missing and the
7953 * disk_ord_tbl was not correctly updated
7954 */
1ade5cc1 7955 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7956 return;
7957 }
7958
4036e7ee 7959 units = vol_curr_migr_unit(dev);
c47b0ff6 7960 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7961}
7962
276d77db 7963static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 7964
00bbdbda 7965static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7966{
4f5bc454
DW
7967 /* Given a container loaded by load_super_imsm_all,
7968 * extract information about all the arrays into
7969 * an mdinfo tree.
00bbdbda 7970 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7971 *
7972 * For each imsm_dev create an mdinfo, fill it in,
7973 * then look for matching devices in super->disks
7974 * and create appropriate device mdinfo.
7975 */
7976 struct intel_super *super = st->sb;
949c47a0 7977 struct imsm_super *mpb = super->anchor;
4f5bc454 7978 struct mdinfo *rest = NULL;
00bbdbda 7979 unsigned int i;
81219e70 7980 int sb_errors = 0;
abef11a3
AK
7981 struct dl *d;
7982 int spare_disks = 0;
b6180160 7983 int current_vol = super->current_vol;
cdddbdbc 7984
19482bcc
AK
7985 /* do not assemble arrays when not all attributes are supported */
7986 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7987 sb_errors = 1;
7a862a02 7988 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7989 }
7990
abef11a3
AK
7991 /* count spare devices, not used in maps
7992 */
7993 for (d = super->disks; d; d = d->next)
7994 if (d->index == -1)
7995 spare_disks++;
7996
4f5bc454 7997 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7998 struct imsm_dev *dev;
7999 struct imsm_map *map;
86e3692b 8000 struct imsm_map *map2;
4f5bc454 8001 struct mdinfo *this;
a6482415 8002 int slot;
a6482415 8003 int chunk;
00bbdbda 8004 char *ep;
8b9cd157 8005 int level;
00bbdbda
N
8006
8007 if (subarray &&
8008 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8009 continue;
8010
8011 dev = get_imsm_dev(super, i);
238c0a71
AK
8012 map = get_imsm_map(dev, MAP_0);
8013 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8014 level = get_imsm_raid_level(map);
4f5bc454 8015
1ce0101c
DW
8016 /* do not publish arrays that are in the middle of an
8017 * unsupported migration
8018 */
8019 if (dev->vol.migr_state &&
28bce06f 8020 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8021 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8022 dev->volume);
8023 continue;
8024 }
2db86302
LM
8025 /* do not publish arrays that are not support by controller's
8026 * OROM/EFI
8027 */
1ce0101c 8028
503975b9 8029 this = xmalloc(sizeof(*this));
4f5bc454 8030
301406c9 8031 super->current_vol = i;
a5d85af7 8032 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8033 this->next = rest;
a6482415 8034 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8035 /* mdadm does not support all metadata features- set the bit in all arrays state */
8036 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8037 level, /* RAID level */
8038 imsm_level_to_layout(level),
81219e70 8039 map->num_members, /* raid disks */
fcc2c9da 8040 &chunk, imsm_dev_size(dev),
81219e70 8041 1 /* verbose */)) {
7a862a02 8042 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8043 dev->volume);
8044 this->array.state |=
8045 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8046 (1<<MD_SB_BLOCK_VOLUME);
8047 }
81219e70
LM
8048
8049 /* if array has bad blocks, set suitable bit in all arrays state */
8050 if (sb_errors)
8051 this->array.state |=
8052 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8053 (1<<MD_SB_BLOCK_VOLUME);
8054
4f5bc454 8055 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8056 unsigned long long recovery_start;
4f5bc454
DW
8057 struct mdinfo *info_d;
8058 struct dl *d;
8059 int idx;
9a1608e5 8060 int skip;
7eef0453 8061 __u32 ord;
8b9cd157 8062 int missing = 0;
4f5bc454 8063
9a1608e5 8064 skip = 0;
238c0a71
AK
8065 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8066 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8067 for (d = super->disks; d ; d = d->next)
8068 if (d->index == idx)
0fbd635c 8069 break;
4f5bc454 8070
1e5c6983 8071 recovery_start = MaxSector;
4f5bc454 8072 if (d == NULL)
9a1608e5 8073 skip = 1;
25ed7e59 8074 if (d && is_failed(&d->disk))
9a1608e5 8075 skip = 1;
8b9cd157 8076 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8077 recovery_start = 0;
1e93d0d1
BK
8078 if (!(ord & IMSM_ORD_REBUILD))
8079 this->array.working_disks++;
1011e834 8080 /*
9a1608e5 8081 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8082 * reset resync start to avoid a dirty-degraded
8083 * situation when performing the intial sync
9a1608e5 8084 */
8b9cd157
MK
8085 if (skip)
8086 missing++;
8087
8088 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8089 if ((!able_to_resync(level, missing) ||
8090 recovery_start == 0))
8091 this->resync_start = MaxSector;
8092 } else {
8093 /*
8094 * FIXME handle dirty degraded
8095 */
8096 }
8097
9a1608e5
DW
8098 if (skip)
8099 continue;
4f5bc454 8100
503975b9 8101 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8102 info_d->next = this->devs;
8103 this->devs = info_d;
8104
4f5bc454
DW
8105 info_d->disk.number = d->index;
8106 info_d->disk.major = d->major;
8107 info_d->disk.minor = d->minor;
8108 info_d->disk.raid_disk = slot;
1e5c6983 8109 info_d->recovery_start = recovery_start;
86e3692b
AK
8110 if (map2) {
8111 if (slot < map2->num_members)
8112 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8113 else
8114 this->array.spare_disks++;
86e3692b
AK
8115 } else {
8116 if (slot < map->num_members)
8117 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8118 else
8119 this->array.spare_disks++;
86e3692b 8120 }
4f5bc454
DW
8121
8122 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8123 info_d->data_offset = pba_of_lba0(map);
44490938 8124 info_d->component_size = calc_component_size(map, dev);
06fb291a
PB
8125
8126 if (map->raid_level == 5) {
2432ce9b
AP
8127 info_d->ppl_sector = this->ppl_sector;
8128 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8129 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8130 recovery_start == 0)
8131 this->resync_start = 0;
06fb291a 8132 }
b12796be 8133
5e46202e 8134 info_d->bb.supported = 1;
b12796be
TM
8135 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8136 info_d->data_offset,
8137 info_d->component_size,
8138 &info_d->bb);
4f5bc454 8139 }
1e5c6983 8140 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8141 update_recovery_start(super, dev, this);
abef11a3 8142 this->array.spare_disks += spare_disks;
276d77db
AK
8143
8144 /* check for reshape */
8145 if (this->reshape_active == 1)
8146 recover_backup_imsm(st, this);
9a1608e5 8147 rest = this;
4f5bc454
DW
8148 }
8149
b6180160 8150 super->current_vol = current_vol;
4f5bc454 8151 return rest;
cdddbdbc
DW
8152}
8153
3b451610
AK
8154static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8155 int failed, int look_in_map)
c2a1e7da 8156{
3b451610
AK
8157 struct imsm_map *map;
8158
8159 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8160
8161 if (!failed)
1011e834 8162 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8163 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8164
8165 switch (get_imsm_raid_level(map)) {
8166 case 0:
8167 return IMSM_T_STATE_FAILED;
8168 break;
8169 case 1:
8170 if (failed < map->num_members)
8171 return IMSM_T_STATE_DEGRADED;
8172 else
8173 return IMSM_T_STATE_FAILED;
8174 break;
8175 case 10:
8176 {
8177 /**
c92a2527
DW
8178 * check to see if any mirrors have failed, otherwise we
8179 * are degraded. Even numbered slots are mirrored on
8180 * slot+1
c2a1e7da 8181 */
c2a1e7da 8182 int i;
d9b420a5
N
8183 /* gcc -Os complains that this is unused */
8184 int insync = insync;
c2a1e7da
DW
8185
8186 for (i = 0; i < map->num_members; i++) {
238c0a71 8187 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8188 int idx = ord_to_idx(ord);
8189 struct imsm_disk *disk;
c2a1e7da 8190
c92a2527 8191 /* reset the potential in-sync count on even-numbered
1011e834 8192 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8193 */
8194 if ((i & 1) == 0)
8195 insync = 2;
c2a1e7da 8196
c92a2527 8197 disk = get_imsm_disk(super, idx);
25ed7e59 8198 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8199 insync--;
c2a1e7da 8200
c92a2527
DW
8201 /* no in-sync disks left in this mirror the
8202 * array has failed
8203 */
8204 if (insync == 0)
8205 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8206 }
8207
8208 return IMSM_T_STATE_DEGRADED;
8209 }
8210 case 5:
8211 if (failed < 2)
8212 return IMSM_T_STATE_DEGRADED;
8213 else
8214 return IMSM_T_STATE_FAILED;
8215 break;
8216 default:
8217 break;
8218 }
8219
8220 return map->map_state;
8221}
8222
3b451610
AK
8223static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8224 int look_in_map)
c2a1e7da
DW
8225{
8226 int i;
8227 int failed = 0;
8228 struct imsm_disk *disk;
d5985138
AK
8229 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8230 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8231 struct imsm_map *map_for_loop;
0556e1a2
DW
8232 __u32 ord;
8233 int idx;
d5985138 8234 int idx_1;
c2a1e7da 8235
0556e1a2
DW
8236 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8237 * disks that are being rebuilt. New failures are recorded to
8238 * map[0]. So we look through all the disks we started with and
8239 * see if any failures are still present, or if any new ones
8240 * have arrived
0556e1a2 8241 */
d5985138
AK
8242 map_for_loop = map;
8243 if (prev && (map->num_members < prev->num_members))
8244 map_for_loop = prev;
68fe4598
LD
8245
8246 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8247 idx_1 = -255;
238c0a71
AK
8248 /* when MAP_X is passed both maps failures are counted
8249 */
d5985138 8250 if (prev &&
089f9d79
JS
8251 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8252 i < prev->num_members) {
d5985138
AK
8253 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8254 idx_1 = ord_to_idx(ord);
c2a1e7da 8255
d5985138
AK
8256 disk = get_imsm_disk(super, idx_1);
8257 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8258 failed++;
8259 }
089f9d79
JS
8260 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8261 i < map->num_members) {
d5985138
AK
8262 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8263 idx = ord_to_idx(ord);
8264
8265 if (idx != idx_1) {
8266 disk = get_imsm_disk(super, idx);
8267 if (!disk || is_failed(disk) ||
8268 ord & IMSM_ORD_REBUILD)
8269 failed++;
8270 }
8271 }
c2a1e7da
DW
8272 }
8273
8274 return failed;
845dea95
NB
8275}
8276
97b4d0e9
DW
8277static int imsm_open_new(struct supertype *c, struct active_array *a,
8278 char *inst)
8279{
8280 struct intel_super *super = c->sb;
8281 struct imsm_super *mpb = super->anchor;
bbab0940 8282 struct imsm_update_prealloc_bb_mem u;
9587c373 8283
97b4d0e9 8284 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 8285 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
8286 return -ENODEV;
8287 }
8288
8289 dprintf("imsm: open_new %s\n", inst);
8290 a->info.container_member = atoi(inst);
bbab0940
TM
8291
8292 u.type = update_prealloc_badblocks_mem;
8293 imsm_update_metadata_locally(c, &u, sizeof(u));
8294
97b4d0e9
DW
8295 return 0;
8296}
8297
0c046afd
DW
8298static int is_resyncing(struct imsm_dev *dev)
8299{
8300 struct imsm_map *migr_map;
8301
8302 if (!dev->vol.migr_state)
8303 return 0;
8304
1484e727
DW
8305 if (migr_type(dev) == MIGR_INIT ||
8306 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8307 return 1;
8308
4c9bc37b
AK
8309 if (migr_type(dev) == MIGR_GEN_MIGR)
8310 return 0;
8311
238c0a71 8312 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8313
089f9d79
JS
8314 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8315 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8316 return 1;
8317 else
8318 return 0;
8319}
8320
0556e1a2 8321/* return true if we recorded new information */
4c9e8c1e
TM
8322static int mark_failure(struct intel_super *super,
8323 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8324{
0556e1a2
DW
8325 __u32 ord;
8326 int slot;
8327 struct imsm_map *map;
86c54047
DW
8328 char buf[MAX_RAID_SERIAL_LEN+3];
8329 unsigned int len, shift = 0;
0556e1a2
DW
8330
8331 /* new failures are always set in map[0] */
238c0a71 8332 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8333
8334 slot = get_imsm_disk_slot(map, idx);
8335 if (slot < 0)
8336 return 0;
8337
8338 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8339 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8340 return 0;
8341
7d0c5e24
LD
8342 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8343 buf[MAX_RAID_SERIAL_LEN] = '\000';
8344 strcat(buf, ":0");
86c54047
DW
8345 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8346 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8347 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8348
f2f27e63 8349 disk->status |= FAILED_DISK;
0556e1a2 8350 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8351 /* mark failures in second map if second map exists and this disk
8352 * in this slot.
8353 * This is valid for migration, initialization and rebuild
8354 */
8355 if (dev->vol.migr_state) {
238c0a71 8356 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8357 int slot2 = get_imsm_disk_slot(map2, idx);
8358
089f9d79 8359 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8360 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8361 idx | IMSM_ORD_REBUILD);
8362 }
d7a1fda2
MT
8363 if (map->failed_disk_num == 0xff ||
8364 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8365 map->failed_disk_num = slot;
4c9e8c1e
TM
8366
8367 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8368
0556e1a2
DW
8369 return 1;
8370}
8371
4c9e8c1e
TM
8372static void mark_missing(struct intel_super *super,
8373 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8374{
4c9e8c1e 8375 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8376
8377 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8378 return;
8379
47ee5a45
DW
8380 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8381 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8382}
8383
33414a01
DW
8384static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8385{
33414a01 8386 struct dl *dl;
33414a01
DW
8387
8388 if (!super->missing)
8389 return;
33414a01 8390
79b68f1b
PC
8391 /* When orom adds replacement for missing disk it does
8392 * not remove entry of missing disk, but just updates map with
8393 * new added disk. So it is not enough just to test if there is
8394 * any missing disk, we have to look if there are any failed disks
8395 * in map to stop migration */
8396
33414a01 8397 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8398 /* end process for initialization and rebuild only
8399 */
8400 if (is_gen_migration(dev) == 0) {
fb12a745 8401 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8402
fb12a745
TM
8403 if (failed) {
8404 __u8 map_state;
8405 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8406 struct imsm_map *map1;
8407 int i, ord, ord_map1;
8408 int rebuilt = 1;
3d59f0c0 8409
fb12a745
TM
8410 for (i = 0; i < map->num_members; i++) {
8411 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8412 if (!(ord & IMSM_ORD_REBUILD))
8413 continue;
8414
8415 map1 = get_imsm_map(dev, MAP_1);
8416 if (!map1)
8417 continue;
8418
8419 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8420 if (ord_map1 & IMSM_ORD_REBUILD)
8421 rebuilt = 0;
8422 }
8423
8424 if (rebuilt) {
8425 map_state = imsm_check_degraded(super, dev,
8426 failed, MAP_0);
8427 end_migration(dev, super, map_state);
8428 }
8429 }
3d59f0c0 8430 }
33414a01 8431 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8432 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8433 super->updates_pending++;
8434}
8435
f3871fdc
AK
8436static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8437 long long new_size)
70bdf0dc 8438{
70bdf0dc 8439 unsigned long long array_blocks;
9529d343
MD
8440 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8441 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8442
8443 if (used_disks == 0) {
8444 /* when problems occures
8445 * return current array_blocks value
8446 */
fcc2c9da 8447 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8448
8449 return array_blocks;
8450 }
8451
8452 /* set array size in metadata
8453 */
9529d343 8454 if (new_size <= 0)
f3871fdc
AK
8455 /* OLCE size change is caused by added disks
8456 */
44490938 8457 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8458 else
f3871fdc
AK
8459 /* Online Volume Size Change
8460 * Using available free space
8461 */
8462 array_blocks = new_size;
70bdf0dc 8463
b53bfba6 8464 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8465 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8466
8467 return array_blocks;
8468}
8469
28bce06f
AK
8470static void imsm_set_disk(struct active_array *a, int n, int state);
8471
0e2d1a4e
AK
8472static void imsm_progress_container_reshape(struct intel_super *super)
8473{
8474 /* if no device has a migr_state, but some device has a
8475 * different number of members than the previous device, start
8476 * changing the number of devices in this device to match
8477 * previous.
8478 */
8479 struct imsm_super *mpb = super->anchor;
8480 int prev_disks = -1;
8481 int i;
1dfaa380 8482 int copy_map_size;
0e2d1a4e
AK
8483
8484 for (i = 0; i < mpb->num_raid_devs; i++) {
8485 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8486 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8487 struct imsm_map *map2;
8488 int prev_num_members;
0e2d1a4e
AK
8489
8490 if (dev->vol.migr_state)
8491 return;
8492
8493 if (prev_disks == -1)
8494 prev_disks = map->num_members;
8495 if (prev_disks == map->num_members)
8496 continue;
8497
8498 /* OK, this array needs to enter reshape mode.
8499 * i.e it needs a migr_state
8500 */
8501
1dfaa380 8502 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8503 prev_num_members = map->num_members;
8504 map->num_members = prev_disks;
8505 dev->vol.migr_state = 1;
4036e7ee 8506 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8507 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8508 for (i = prev_num_members;
8509 i < map->num_members; i++)
8510 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8511 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8512 /* Copy the current map */
1dfaa380 8513 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8514 map2->num_members = prev_num_members;
8515
f3871fdc 8516 imsm_set_array_size(dev, -1);
51d83f5d 8517 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8518 super->updates_pending++;
8519 }
8520}
8521
aad6f216 8522/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8523 * states are handled in imsm_set_disk() with one exception, when a
8524 * resync is stopped due to a new failure this routine will set the
8525 * 'degraded' state for the array.
8526 */
01f157d7 8527static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8528{
8529 int inst = a->info.container_member;
8530 struct intel_super *super = a->container->sb;
949c47a0 8531 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8532 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8533 int failed = imsm_count_failed(super, dev, MAP_0);
8534 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8535 __u32 blocks_per_unit;
a862209d 8536
1af97990
AK
8537 if (dev->vol.migr_state &&
8538 dev->vol.migr_type == MIGR_GEN_MIGR) {
8539 /* array state change is blocked due to reshape action
aad6f216
N
8540 * We might need to
8541 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8542 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8543 * - update vol_curr_migr_unit
1af97990 8544 */
aad6f216 8545 if (a->curr_action == reshape) {
4036e7ee 8546 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8547 goto mark_checkpoint;
aad6f216
N
8548 } else {
8549 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8550 /* for some reason we aborted the reshape.
b66e591b
AK
8551 *
8552 * disable automatic metadata rollback
8553 * user action is required to recover process
aad6f216 8554 */
b66e591b 8555 if (0) {
238c0a71
AK
8556 struct imsm_map *map2 =
8557 get_imsm_map(dev, MAP_1);
8558 dev->vol.migr_state = 0;
8559 set_migr_type(dev, 0);
4036e7ee 8560 set_vol_curr_migr_unit(dev, 0);
238c0a71
AK
8561 memcpy(map, map2,
8562 sizeof_imsm_map(map2));
8563 super->updates_pending++;
b66e591b 8564 }
aad6f216
N
8565 }
8566 if (a->last_checkpoint >= a->info.component_size) {
8567 unsigned long long array_blocks;
8568 int used_disks;
e154ced3 8569 struct mdinfo *mdi;
aad6f216 8570
9529d343 8571 used_disks = imsm_num_data_members(map);
d55adef9
AK
8572 if (used_disks > 0) {
8573 array_blocks =
44490938 8574 per_dev_array_size(map) *
d55adef9 8575 used_disks;
b53bfba6
TM
8576 array_blocks =
8577 round_size_to_mb(array_blocks,
8578 used_disks);
d55adef9
AK
8579 a->info.custom_array_size = array_blocks;
8580 /* encourage manager to update array
8581 * size
8582 */
e154ced3 8583
d55adef9 8584 a->check_reshape = 1;
633b5610 8585 }
e154ced3
AK
8586 /* finalize online capacity expansion/reshape */
8587 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8588 imsm_set_disk(a,
8589 mdi->disk.raid_disk,
8590 mdi->curr_state);
8591
0e2d1a4e 8592 imsm_progress_container_reshape(super);
e154ced3 8593 }
aad6f216 8594 }
1af97990
AK
8595 }
8596
47ee5a45 8597 /* before we activate this array handle any missing disks */
33414a01
DW
8598 if (consistent == 2)
8599 handle_missing(super, dev);
1e5c6983 8600
0c046afd 8601 if (consistent == 2 &&
b7941fd6 8602 (!is_resync_complete(&a->info) ||
0c046afd
DW
8603 map_state != IMSM_T_STATE_NORMAL ||
8604 dev->vol.migr_state))
01f157d7 8605 consistent = 0;
272906ef 8606
b7941fd6 8607 if (is_resync_complete(&a->info)) {
0c046afd 8608 /* complete intialization / resync,
0556e1a2
DW
8609 * recovery and interrupted recovery is completed in
8610 * ->set_disk
0c046afd
DW
8611 */
8612 if (is_resyncing(dev)) {
8613 dprintf("imsm: mark resync done\n");
809da78e 8614 end_migration(dev, super, map_state);
115c3803 8615 super->updates_pending++;
484240d8 8616 a->last_checkpoint = 0;
115c3803 8617 }
b9172665
AK
8618 } else if ((!is_resyncing(dev) && !failed) &&
8619 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8620 /* mark the start of the init process if nothing is failed */
b7941fd6 8621 dprintf("imsm: mark resync start\n");
1484e727 8622 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8623 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8624 else
8e59f3d8 8625 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8626 super->updates_pending++;
115c3803 8627 }
a862209d 8628
633b5610 8629mark_checkpoint:
5b83bacf
AK
8630 /* skip checkpointing for general migration,
8631 * it is controlled in mdadm
8632 */
8633 if (is_gen_migration(dev))
8634 goto skip_mark_checkpoint;
8635
4036e7ee
MT
8636 /* check if we can update vol_curr_migr_unit from resync_start,
8637 * recovery_start
8638 */
c47b0ff6 8639 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8640 if (blocks_per_unit) {
4036e7ee
MT
8641 set_vol_curr_migr_unit(dev,
8642 a->last_checkpoint / blocks_per_unit);
8643 dprintf("imsm: mark checkpoint (%llu)\n",
8644 vol_curr_migr_unit(dev));
8645 super->updates_pending++;
1e5c6983 8646 }
f8f603f1 8647
5b83bacf 8648skip_mark_checkpoint:
3393c6af 8649 /* mark dirty / clean */
2432ce9b
AP
8650 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8651 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8652 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8653 if (consistent) {
8654 dev->vol.dirty = RAIDVOL_CLEAN;
8655 } else {
8656 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8657 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8658 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8659 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8660 }
a862209d
DW
8661 super->updates_pending++;
8662 }
28bce06f 8663
01f157d7 8664 return consistent;
a862209d
DW
8665}
8666
6f50473f
TM
8667static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8668{
8669 int inst = a->info.container_member;
8670 struct intel_super *super = a->container->sb;
8671 struct imsm_dev *dev = get_imsm_dev(super, inst);
8672 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8673
8674 if (slot > map->num_members) {
8675 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8676 slot, map->num_members - 1);
8677 return -1;
8678 }
8679
8680 if (slot < 0)
8681 return -1;
8682
8683 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8684}
8685
8d45d196 8686static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8687{
8d45d196
DW
8688 int inst = a->info.container_member;
8689 struct intel_super *super = a->container->sb;
949c47a0 8690 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8691 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8692 struct imsm_disk *disk;
7ce05701
LD
8693 struct mdinfo *mdi;
8694 int recovery_not_finished = 0;
0c046afd 8695 int failed;
6f50473f 8696 int ord;
0c046afd 8697 __u8 map_state;
fb12a745
TM
8698 int rebuild_done = 0;
8699 int i;
8d45d196 8700
fb12a745 8701 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8702 if (ord < 0)
8d45d196
DW
8703 return;
8704
4e6e574a 8705 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8706 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8707
5802a811 8708 /* check for new failures */
ae7d61e3 8709 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8710 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8711 super->updates_pending++;
8d45d196 8712 }
47ee5a45 8713
19859edc 8714 /* check if in_sync */
0556e1a2 8715 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8716 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8717
8718 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8719 rebuild_done = 1;
19859edc
DW
8720 super->updates_pending++;
8721 }
8d45d196 8722
3b451610
AK
8723 failed = imsm_count_failed(super, dev, MAP_0);
8724 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8725
0c046afd 8726 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8727 dprintf("imsm: Detected transition to state ");
8728 switch (map_state) {
8729 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8730 dprintf("normal: ");
8731 if (is_rebuilding(dev)) {
1ade5cc1 8732 dprintf_cont("while rebuilding");
7ce05701
LD
8733 /* check if recovery is really finished */
8734 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8735 if (mdi->recovery_start != MaxSector) {
8736 recovery_not_finished = 1;
8737 break;
8738 }
8739 if (recovery_not_finished) {
1ade5cc1
N
8740 dprintf_cont("\n");
8741 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8742 if (a->last_checkpoint < mdi->recovery_start) {
8743 a->last_checkpoint = mdi->recovery_start;
8744 super->updates_pending++;
8745 }
8746 break;
8747 }
94002678 8748 end_migration(dev, super, map_state);
94002678
AK
8749 map->failed_disk_num = ~0;
8750 super->updates_pending++;
8751 a->last_checkpoint = 0;
8752 break;
8753 }
8754 if (is_gen_migration(dev)) {
1ade5cc1 8755 dprintf_cont("while general migration");
bf2f0071 8756 if (a->last_checkpoint >= a->info.component_size)
809da78e 8757 end_migration(dev, super, map_state);
94002678
AK
8758 else
8759 map->map_state = map_state;
28bce06f 8760 map->failed_disk_num = ~0;
94002678 8761 super->updates_pending++;
bf2f0071 8762 break;
94002678
AK
8763 }
8764 break;
8765 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8766 dprintf_cont("degraded: ");
089f9d79 8767 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8768 dprintf_cont("mark degraded");
94002678
AK
8769 map->map_state = map_state;
8770 super->updates_pending++;
8771 a->last_checkpoint = 0;
8772 break;
8773 }
8774 if (is_rebuilding(dev)) {
d7a1fda2 8775 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8776 if (state & DS_FAULTY) {
8777 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8778 if (n == map->failed_disk_num) {
8779 dprintf_cont("end migration");
8780 end_migration(dev, super, map_state);
a4e96fd8 8781 a->last_checkpoint = 0;
d7a1fda2 8782 } else {
a4e96fd8 8783 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8784 map->map_state = map_state;
8785 }
94002678 8786 super->updates_pending++;
fb12a745
TM
8787 }
8788
a4e96fd8
MT
8789 if (!rebuild_done)
8790 break;
8791
fb12a745
TM
8792 /* check if recovery is really finished */
8793 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8794 if (mdi->recovery_start != MaxSector) {
8795 recovery_not_finished = 1;
8796 break;
8797 }
8798 if (recovery_not_finished) {
8799 dprintf_cont("\n");
a4e96fd8 8800 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8801 if (a->last_checkpoint < mdi->recovery_start) {
8802 a->last_checkpoint =
8803 mdi->recovery_start;
8804 super->updates_pending++;
8805 }
8806 break;
94002678 8807 }
fb12a745
TM
8808
8809 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8810 end_migration(dev, super, map_state);
8811 a->last_checkpoint = 0;
8812 super->updates_pending++;
fb12a745
TM
8813
8814 for (i = 0; i < map->num_members; i++) {
8815 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8816
8817 if (idx & IMSM_ORD_REBUILD)
8818 map->failed_disk_num = i;
8819 }
8820 super->updates_pending++;
94002678
AK
8821 break;
8822 }
8823 if (is_gen_migration(dev)) {
1ade5cc1 8824 dprintf_cont("while general migration");
bf2f0071 8825 if (a->last_checkpoint >= a->info.component_size)
809da78e 8826 end_migration(dev, super, map_state);
94002678
AK
8827 else {
8828 map->map_state = map_state;
3b451610 8829 manage_second_map(super, dev);
94002678
AK
8830 }
8831 super->updates_pending++;
bf2f0071 8832 break;
28bce06f 8833 }
6ce1fbf1 8834 if (is_initializing(dev)) {
1ade5cc1 8835 dprintf_cont("while initialization.");
6ce1fbf1
AK
8836 map->map_state = map_state;
8837 super->updates_pending++;
8838 break;
8839 }
94002678
AK
8840 break;
8841 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8842 dprintf_cont("failed: ");
94002678 8843 if (is_gen_migration(dev)) {
1ade5cc1 8844 dprintf_cont("while general migration");
94002678
AK
8845 map->map_state = map_state;
8846 super->updates_pending++;
8847 break;
8848 }
8849 if (map->map_state != map_state) {
1ade5cc1 8850 dprintf_cont("mark failed");
94002678
AK
8851 end_migration(dev, super, map_state);
8852 super->updates_pending++;
8853 a->last_checkpoint = 0;
8854 break;
8855 }
8856 break;
8857 default:
1ade5cc1 8858 dprintf_cont("state %i\n", map_state);
5802a811 8859 }
1ade5cc1 8860 dprintf_cont("\n");
845dea95
NB
8861}
8862
f796af5d 8863static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8864{
f796af5d 8865 void *buf = mpb;
c2a1e7da
DW
8866 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8867 unsigned long long dsize;
8868 unsigned long long sectors;
f36a9ecd 8869 unsigned int sector_size;
c2a1e7da 8870
aec01630
JS
8871 if (!get_dev_sector_size(fd, NULL, &sector_size))
8872 return 1;
c2a1e7da
DW
8873 get_dev_size(fd, NULL, &dsize);
8874
f36a9ecd 8875 if (mpb_size > sector_size) {
272f648f 8876 /* -1 to account for anchor */
f36a9ecd 8877 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8878
272f648f 8879 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8880 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8881 SEEK_SET) < 0)
272f648f 8882 return 1;
c2a1e7da 8883
f36a9ecd
PB
8884 if ((unsigned long long)write(fd, buf + sector_size,
8885 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8886 return 1;
8887 }
c2a1e7da 8888
272f648f 8889 /* first block is stored on second to last sector of the disk */
f36a9ecd 8890 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8891 return 1;
8892
466070ad 8893 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8894 return 1;
8895
c2a1e7da
DW
8896 return 0;
8897}
8898
2e735d19 8899static void imsm_sync_metadata(struct supertype *container)
845dea95 8900{
2e735d19 8901 struct intel_super *super = container->sb;
c2a1e7da 8902
1a64be56 8903 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8904 if (!super->updates_pending)
8905 return;
8906
36988a3d 8907 write_super_imsm(container, 0);
c2a1e7da
DW
8908
8909 super->updates_pending = 0;
845dea95
NB
8910}
8911
272906ef
DW
8912static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8913{
8914 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8915 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8916 struct dl *dl;
8917
8918 for (dl = super->disks; dl; dl = dl->next)
8919 if (dl->index == i)
8920 break;
8921
25ed7e59 8922 if (dl && is_failed(&dl->disk))
272906ef
DW
8923 dl = NULL;
8924
8925 if (dl)
1ade5cc1 8926 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8927
8928 return dl;
8929}
8930
a20d2ba5 8931static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8932 struct active_array *a, int activate_new,
8933 struct mdinfo *additional_test_list)
272906ef
DW
8934{
8935 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8936 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8937 struct imsm_super *mpb = super->anchor;
8938 struct imsm_map *map;
272906ef
DW
8939 unsigned long long pos;
8940 struct mdinfo *d;
8941 struct extent *ex;
a20d2ba5 8942 int i, j;
272906ef 8943 int found;
569cc43f
DW
8944 __u32 array_start = 0;
8945 __u32 array_end = 0;
272906ef 8946 struct dl *dl;
6c932028 8947 struct mdinfo *test_list;
272906ef
DW
8948
8949 for (dl = super->disks; dl; dl = dl->next) {
8950 /* If in this array, skip */
8951 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8952 if (d->state_fd >= 0 &&
8953 d->disk.major == dl->major &&
272906ef 8954 d->disk.minor == dl->minor) {
8ba77d32
AK
8955 dprintf("%x:%x already in array\n",
8956 dl->major, dl->minor);
272906ef
DW
8957 break;
8958 }
8959 if (d)
8960 continue;
6c932028
AK
8961 test_list = additional_test_list;
8962 while (test_list) {
8963 if (test_list->disk.major == dl->major &&
8964 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8965 dprintf("%x:%x already in additional test list\n",
8966 dl->major, dl->minor);
8967 break;
8968 }
6c932028 8969 test_list = test_list->next;
8ba77d32 8970 }
6c932028 8971 if (test_list)
8ba77d32 8972 continue;
272906ef 8973
e553d2a4 8974 /* skip in use or failed drives */
25ed7e59 8975 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8976 dl->index == -2) {
8977 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8978 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8979 continue;
8980 }
8981
a20d2ba5
DW
8982 /* skip pure spares when we are looking for partially
8983 * assimilated drives
8984 */
8985 if (dl->index == -1 && !activate_new)
8986 continue;
8987
f2cc4f7d
AO
8988 if (!drive_validate_sector_size(super, dl))
8989 continue;
8990
272906ef 8991 /* Does this unused device have the requisite free space?
a20d2ba5 8992 * It needs to be able to cover all member volumes
272906ef 8993 */
05501181 8994 ex = get_extents(super, dl, 1);
272906ef
DW
8995 if (!ex) {
8996 dprintf("cannot get extents\n");
8997 continue;
8998 }
a20d2ba5
DW
8999 for (i = 0; i < mpb->num_raid_devs; i++) {
9000 dev = get_imsm_dev(super, i);
238c0a71 9001 map = get_imsm_map(dev, MAP_0);
272906ef 9002
a20d2ba5
DW
9003 /* check if this disk is already a member of
9004 * this array
272906ef 9005 */
620b1713 9006 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
9007 continue;
9008
9009 found = 0;
9010 j = 0;
9011 pos = 0;
5551b113 9012 array_start = pba_of_lba0(map);
329c8278 9013 array_end = array_start +
44490938 9014 per_dev_array_size(map) - 1;
a20d2ba5
DW
9015
9016 do {
9017 /* check that we can start at pba_of_lba0 with
44490938 9018 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9019 */
329c8278 9020 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9021 found = 1;
9022 break;
9023 }
9024 pos = ex[j].start + ex[j].size;
9025 j++;
9026 } while (ex[j-1].size);
9027
9028 if (!found)
272906ef 9029 break;
a20d2ba5 9030 }
272906ef
DW
9031
9032 free(ex);
a20d2ba5 9033 if (i < mpb->num_raid_devs) {
329c8278
DW
9034 dprintf("%x:%x does not have %u to %u available\n",
9035 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9036 /* No room */
9037 continue;
a20d2ba5
DW
9038 }
9039 return dl;
272906ef
DW
9040 }
9041
9042 return dl;
9043}
9044
95d07a2c
LM
9045static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9046{
9047 struct imsm_dev *dev2;
9048 struct imsm_map *map;
9049 struct dl *idisk;
9050 int slot;
9051 int idx;
9052 __u8 state;
9053
9054 dev2 = get_imsm_dev(cont->sb, dev_idx);
9055 if (dev2) {
238c0a71 9056 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 9057 if (state == IMSM_T_STATE_FAILED) {
238c0a71 9058 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
9059 if (!map)
9060 return 1;
9061 for (slot = 0; slot < map->num_members; slot++) {
9062 /*
9063 * Check if failed disks are deleted from intel
9064 * disk list or are marked to be deleted
9065 */
238c0a71 9066 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
9067 idisk = get_imsm_dl_disk(cont->sb, idx);
9068 /*
9069 * Do not rebuild the array if failed disks
9070 * from failed sub-array are not removed from
9071 * container.
9072 */
9073 if (idisk &&
9074 is_failed(&idisk->disk) &&
9075 (idisk->action != DISK_REMOVE))
9076 return 0;
9077 }
9078 }
9079 }
9080 return 1;
9081}
9082
88758e9d
DW
9083static struct mdinfo *imsm_activate_spare(struct active_array *a,
9084 struct metadata_update **updates)
9085{
9086 /**
d23fe947
DW
9087 * Find a device with unused free space and use it to replace a
9088 * failed/vacant region in an array. We replace failed regions one a
9089 * array at a time. The result is that a new spare disk will be added
9090 * to the first failed array and after the monitor has finished
9091 * propagating failures the remainder will be consumed.
88758e9d 9092 *
d23fe947
DW
9093 * FIXME add a capability for mdmon to request spares from another
9094 * container.
88758e9d
DW
9095 */
9096
9097 struct intel_super *super = a->container->sb;
88758e9d 9098 int inst = a->info.container_member;
949c47a0 9099 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9100 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9101 int failed = a->info.array.raid_disks;
9102 struct mdinfo *rv = NULL;
9103 struct mdinfo *d;
9104 struct mdinfo *di;
9105 struct metadata_update *mu;
9106 struct dl *dl;
9107 struct imsm_update_activate_spare *u;
9108 int num_spares = 0;
9109 int i;
95d07a2c 9110 int allowed;
88758e9d
DW
9111
9112 for (d = a->info.devs ; d ; d = d->next) {
9113 if ((d->curr_state & DS_FAULTY) &&
9114 d->state_fd >= 0)
9115 /* wait for Removal to happen */
9116 return NULL;
9117 if (d->state_fd >= 0)
9118 failed--;
9119 }
9120
9121 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9122 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9123
e2962bfc
AK
9124 if (imsm_reshape_blocks_arrays_changes(super))
9125 return NULL;
1af97990 9126
fc8ca064
AK
9127 /* Cannot activate another spare if rebuild is in progress already
9128 */
9129 if (is_rebuilding(dev)) {
7a862a02 9130 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9131 return NULL;
9132 }
9133
89c67882
AK
9134 if (a->info.array.level == 4)
9135 /* No repair for takeovered array
9136 * imsm doesn't support raid4
9137 */
9138 return NULL;
9139
3b451610
AK
9140 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9141 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9142 return NULL;
9143
83ca7d45
AP
9144 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9145 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9146 return NULL;
9147 }
9148
95d07a2c
LM
9149 /*
9150 * If there are any failed disks check state of the other volume.
9151 * Block rebuild if the another one is failed until failed disks
9152 * are removed from container.
9153 */
9154 if (failed) {
7a862a02 9155 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9156 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9157 /* check if states of the other volumes allow for rebuild */
9158 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9159 if (i != inst) {
9160 allowed = imsm_rebuild_allowed(a->container,
9161 i, failed);
9162 if (!allowed)
9163 return NULL;
9164 }
9165 }
9166 }
9167
88758e9d 9168 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9169 for (i = 0; i < a->info.array.raid_disks; i++) {
9170 for (d = a->info.devs ; d ; d = d->next)
9171 if (d->disk.raid_disk == i)
9172 break;
9173 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
9174 if (d && (d->state_fd >= 0))
9175 continue;
9176
272906ef 9177 /*
a20d2ba5
DW
9178 * OK, this device needs recovery. Try to re-add the
9179 * previous occupant of this slot, if this fails see if
9180 * we can continue the assimilation of a spare that was
9181 * partially assimilated, finally try to activate a new
9182 * spare.
272906ef
DW
9183 */
9184 dl = imsm_readd(super, i, a);
9185 if (!dl)
b303fe21 9186 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9187 if (!dl)
b303fe21 9188 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9189 if (!dl)
9190 continue;
1011e834 9191
272906ef 9192 /* found a usable disk with enough space */
503975b9 9193 di = xcalloc(1, sizeof(*di));
272906ef
DW
9194
9195 /* dl->index will be -1 in the case we are activating a
9196 * pristine spare. imsm_process_update() will create a
9197 * new index in this case. Once a disk is found to be
9198 * failed in all member arrays it is kicked from the
9199 * metadata
9200 */
9201 di->disk.number = dl->index;
d23fe947 9202
272906ef
DW
9203 /* (ab)use di->devs to store a pointer to the device
9204 * we chose
9205 */
9206 di->devs = (struct mdinfo *) dl;
9207
9208 di->disk.raid_disk = i;
9209 di->disk.major = dl->major;
9210 di->disk.minor = dl->minor;
9211 di->disk.state = 0;
d23534e4 9212 di->recovery_start = 0;
5551b113 9213 di->data_offset = pba_of_lba0(map);
272906ef
DW
9214 di->component_size = a->info.component_size;
9215 di->container_member = inst;
5e46202e 9216 di->bb.supported = 1;
2c8890e9 9217 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9218 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9219 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9220 }
148acb7b 9221 super->random = random32();
272906ef
DW
9222 di->next = rv;
9223 rv = di;
9224 num_spares++;
9225 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9226 i, di->data_offset);
88758e9d
DW
9227 }
9228
9229 if (!rv)
9230 /* No spares found */
9231 return rv;
9232 /* Now 'rv' has a list of devices to return.
9233 * Create a metadata_update record to update the
9234 * disk_ord_tbl for the array
9235 */
503975b9 9236 mu = xmalloc(sizeof(*mu));
1011e834 9237 mu->buf = xcalloc(num_spares,
503975b9 9238 sizeof(struct imsm_update_activate_spare));
88758e9d 9239 mu->space = NULL;
cb23f1f4 9240 mu->space_list = NULL;
88758e9d
DW
9241 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9242 mu->next = *updates;
9243 u = (struct imsm_update_activate_spare *) mu->buf;
9244
9245 for (di = rv ; di ; di = di->next) {
9246 u->type = update_activate_spare;
d23fe947
DW
9247 u->dl = (struct dl *) di->devs;
9248 di->devs = NULL;
88758e9d
DW
9249 u->slot = di->disk.raid_disk;
9250 u->array = inst;
9251 u->next = u + 1;
9252 u++;
9253 }
9254 (u-1)->next = NULL;
9255 *updates = mu;
9256
9257 return rv;
9258}
9259
54c2c1ea 9260static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9261{
54c2c1ea 9262 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9263 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9264 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9265 struct disk_info *inf = get_disk_info(u);
9266 struct imsm_disk *disk;
8273f55e
DW
9267 int i;
9268 int j;
8273f55e 9269
54c2c1ea 9270 for (i = 0; i < map->num_members; i++) {
238c0a71 9271 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9272 for (j = 0; j < new_map->num_members; j++)
9273 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9274 return 1;
9275 }
9276
9277 return 0;
9278}
9279
1a64be56
LM
9280static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9281{
594dc1b8
JS
9282 struct dl *dl;
9283
1a64be56 9284 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9285 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9286 return dl;
9287 return NULL;
9288}
9289
9290static int remove_disk_super(struct intel_super *super, int major, int minor)
9291{
594dc1b8 9292 struct dl *prev;
1a64be56
LM
9293 struct dl *dl;
9294
9295 prev = NULL;
9296 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9297 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9298 /* remove */
9299 if (prev)
9300 prev->next = dl->next;
9301 else
9302 super->disks = dl->next;
9303 dl->next = NULL;
9304 __free_imsm_disk(dl);
1ade5cc1 9305 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9306 break;
9307 }
9308 prev = dl;
9309 }
9310 return 0;
9311}
9312
f21e18ca 9313static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9314
1a64be56
LM
9315static int add_remove_disk_update(struct intel_super *super)
9316{
9317 int check_degraded = 0;
594dc1b8
JS
9318 struct dl *disk;
9319
1a64be56
LM
9320 /* add/remove some spares to/from the metadata/contrainer */
9321 while (super->disk_mgmt_list) {
9322 struct dl *disk_cfg;
9323
9324 disk_cfg = super->disk_mgmt_list;
9325 super->disk_mgmt_list = disk_cfg->next;
9326 disk_cfg->next = NULL;
9327
9328 if (disk_cfg->action == DISK_ADD) {
9329 disk_cfg->next = super->disks;
9330 super->disks = disk_cfg;
9331 check_degraded = 1;
1ade5cc1
N
9332 dprintf("added %x:%x\n",
9333 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9334 } else if (disk_cfg->action == DISK_REMOVE) {
9335 dprintf("Disk remove action processed: %x.%x\n",
9336 disk_cfg->major, disk_cfg->minor);
9337 disk = get_disk_super(super,
9338 disk_cfg->major,
9339 disk_cfg->minor);
9340 if (disk) {
9341 /* store action status */
9342 disk->action = DISK_REMOVE;
9343 /* remove spare disks only */
9344 if (disk->index == -1) {
9345 remove_disk_super(super,
9346 disk_cfg->major,
9347 disk_cfg->minor);
91c97c54
MT
9348 } else {
9349 disk_cfg->fd = disk->fd;
9350 disk->fd = -1;
1a64be56
LM
9351 }
9352 }
9353 /* release allocate disk structure */
9354 __free_imsm_disk(disk_cfg);
9355 }
9356 }
9357 return check_degraded;
9358}
9359
a29911da
PC
9360static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9361 struct intel_super *super,
9362 void ***space_list)
9363{
9364 struct intel_dev *id;
9365 void **tofree = NULL;
9366 int ret_val = 0;
9367
1ade5cc1 9368 dprintf("(enter)\n");
089f9d79 9369 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9370 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9371 return ret_val;
9372 }
089f9d79 9373 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9374 dprintf("imsm: Error: Memory is not allocated\n");
9375 return ret_val;
9376 }
9377
9378 for (id = super->devlist ; id; id = id->next) {
9379 if (id->index == (unsigned)u->subdev) {
9380 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9381 struct imsm_map *map;
9382 struct imsm_dev *new_dev =
9383 (struct imsm_dev *)*space_list;
238c0a71 9384 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9385 int to_state;
9386 struct dl *new_disk;
9387
9388 if (new_dev == NULL)
9389 return ret_val;
9390 *space_list = **space_list;
9391 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9392 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9393 if (migr_map) {
9394 dprintf("imsm: Error: migration in progress");
9395 return ret_val;
9396 }
9397
9398 to_state = map->map_state;
9399 if ((u->new_level == 5) && (map->raid_level == 0)) {
9400 map->num_members++;
9401 /* this should not happen */
9402 if (u->new_disks[0] < 0) {
9403 map->failed_disk_num =
9404 map->num_members - 1;
9405 to_state = IMSM_T_STATE_DEGRADED;
9406 } else
9407 to_state = IMSM_T_STATE_NORMAL;
9408 }
8e59f3d8 9409 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9410 if (u->new_level > -1)
9411 map->raid_level = u->new_level;
238c0a71 9412 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9413 if ((u->new_level == 5) &&
9414 (migr_map->raid_level == 0)) {
9415 int ord = map->num_members - 1;
9416 migr_map->num_members--;
9417 if (u->new_disks[0] < 0)
9418 ord |= IMSM_ORD_REBUILD;
9419 set_imsm_ord_tbl_ent(map,
9420 map->num_members - 1,
9421 ord);
9422 }
9423 id->dev = new_dev;
9424 tofree = (void **)dev;
9425
4bba0439
PC
9426 /* update chunk size
9427 */
06fb291a
PB
9428 if (u->new_chunksize > 0) {
9429 unsigned long long num_data_stripes;
9529d343
MD
9430 struct imsm_map *dest_map =
9431 get_imsm_map(dev, MAP_0);
06fb291a 9432 int used_disks =
9529d343 9433 imsm_num_data_members(dest_map);
06fb291a
PB
9434
9435 if (used_disks == 0)
9436 return ret_val;
9437
4bba0439
PC
9438 map->blocks_per_strip =
9439 __cpu_to_le16(u->new_chunksize * 2);
06fb291a 9440 num_data_stripes =
fcc2c9da 9441 imsm_dev_size(dev) / used_disks;
06fb291a
PB
9442 num_data_stripes /= map->blocks_per_strip;
9443 num_data_stripes /= map->num_domains;
9444 set_num_data_stripes(map, num_data_stripes);
9445 }
4bba0439 9446
44490938
MD
9447 /* ensure blocks_per_member has valid value
9448 */
9449 set_blocks_per_member(map,
9450 per_dev_array_size(map) +
9451 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9452
a29911da
PC
9453 /* add disk
9454 */
089f9d79
JS
9455 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9456 migr_map->raid_level == map->raid_level)
a29911da
PC
9457 goto skip_disk_add;
9458
9459 if (u->new_disks[0] >= 0) {
9460 /* use passes spare
9461 */
9462 new_disk = get_disk_super(super,
9463 major(u->new_disks[0]),
9464 minor(u->new_disks[0]));
7a862a02 9465 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9466 major(u->new_disks[0]),
9467 minor(u->new_disks[0]),
9468 new_disk, new_disk->index);
9469 if (new_disk == NULL)
9470 goto error_disk_add;
9471
9472 new_disk->index = map->num_members - 1;
9473 /* slot to fill in autolayout
9474 */
9475 new_disk->raiddisk = new_disk->index;
9476 new_disk->disk.status |= CONFIGURED_DISK;
9477 new_disk->disk.status &= ~SPARE_DISK;
9478 } else
9479 goto error_disk_add;
9480
9481skip_disk_add:
9482 *tofree = *space_list;
9483 /* calculate new size
9484 */
f3871fdc 9485 imsm_set_array_size(new_dev, -1);
a29911da
PC
9486
9487 ret_val = 1;
9488 }
9489 }
9490
9491 if (tofree)
9492 *space_list = tofree;
9493 return ret_val;
9494
9495error_disk_add:
9496 dprintf("Error: imsm: Cannot find disk.\n");
9497 return ret_val;
9498}
9499
f3871fdc
AK
9500static int apply_size_change_update(struct imsm_update_size_change *u,
9501 struct intel_super *super)
9502{
9503 struct intel_dev *id;
9504 int ret_val = 0;
9505
1ade5cc1 9506 dprintf("(enter)\n");
089f9d79 9507 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9508 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9509 return ret_val;
9510 }
9511
9512 for (id = super->devlist ; id; id = id->next) {
9513 if (id->index == (unsigned)u->subdev) {
9514 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9515 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9516 int used_disks = imsm_num_data_members(map);
f3871fdc 9517 unsigned long long blocks_per_member;
06fb291a 9518 unsigned long long num_data_stripes;
44490938
MD
9519 unsigned long long new_size_per_disk;
9520
9521 if (used_disks == 0)
9522 return 0;
f3871fdc
AK
9523
9524 /* calculate new size
9525 */
44490938
MD
9526 new_size_per_disk = u->new_size / used_disks;
9527 blocks_per_member = new_size_per_disk +
9528 NUM_BLOCKS_DIRTY_STRIPE_REGION;
9529 num_data_stripes = new_size_per_disk /
06fb291a
PB
9530 map->blocks_per_strip;
9531 num_data_stripes /= map->num_domains;
9532 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
44490938 9533 u->new_size, new_size_per_disk,
06fb291a 9534 num_data_stripes);
f3871fdc 9535 set_blocks_per_member(map, blocks_per_member);
06fb291a 9536 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
9537 imsm_set_array_size(dev, u->new_size);
9538
9539 ret_val = 1;
9540 break;
9541 }
9542 }
9543
9544 return ret_val;
9545}
9546
69d40de4
JR
9547static int prepare_spare_to_activate(struct supertype *st,
9548 struct imsm_update_activate_spare *u)
9549{
9550 struct intel_super *super = st->sb;
9551 int prev_current_vol = super->current_vol;
9552 struct active_array *a;
9553 int ret = 1;
9554
9555 for (a = st->arrays; a; a = a->next)
9556 /*
9557 * Additional initialization (adding bitmap header, filling
9558 * the bitmap area with '1's to force initial rebuild for a whole
9559 * data-area) is required when adding the spare to the volume
9560 * with write-intent bitmap.
9561 */
9562 if (a->info.container_member == u->array &&
9563 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9564 struct dl *dl;
9565
9566 for (dl = super->disks; dl; dl = dl->next)
9567 if (dl == u->dl)
9568 break;
9569 if (!dl)
9570 break;
9571
9572 super->current_vol = u->array;
9573 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9574 ret = 0;
9575 super->current_vol = prev_current_vol;
9576 }
9577 return ret;
9578}
9579
061d7da3 9580static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9581 struct intel_super *super,
061d7da3
LO
9582 struct active_array *active_array)
9583{
9584 struct imsm_super *mpb = super->anchor;
9585 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9586 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9587 struct imsm_map *migr_map;
9588 struct active_array *a;
9589 struct imsm_disk *disk;
9590 __u8 to_state;
9591 struct dl *dl;
9592 unsigned int found;
9593 int failed;
5961eeec 9594 int victim;
061d7da3 9595 int i;
5961eeec 9596 int second_map_created = 0;
061d7da3 9597
5961eeec 9598 for (; u; u = u->next) {
238c0a71 9599 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9600
5961eeec 9601 if (victim < 0)
9602 return 0;
061d7da3 9603
5961eeec 9604 for (dl = super->disks; dl; dl = dl->next)
9605 if (dl == u->dl)
9606 break;
061d7da3 9607
5961eeec 9608 if (!dl) {
7a862a02 9609 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9610 u->dl->index);
9611 return 0;
9612 }
061d7da3 9613
5961eeec 9614 /* count failures (excluding rebuilds and the victim)
9615 * to determine map[0] state
9616 */
9617 failed = 0;
9618 for (i = 0; i < map->num_members; i++) {
9619 if (i == u->slot)
9620 continue;
9621 disk = get_imsm_disk(super,
238c0a71 9622 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9623 if (!disk || is_failed(disk))
9624 failed++;
9625 }
061d7da3 9626
5961eeec 9627 /* adding a pristine spare, assign a new index */
9628 if (dl->index < 0) {
9629 dl->index = super->anchor->num_disks;
9630 super->anchor->num_disks++;
9631 }
9632 disk = &dl->disk;
9633 disk->status |= CONFIGURED_DISK;
9634 disk->status &= ~SPARE_DISK;
9635
9636 /* mark rebuild */
238c0a71 9637 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9638 if (!second_map_created) {
9639 second_map_created = 1;
9640 map->map_state = IMSM_T_STATE_DEGRADED;
9641 migrate(dev, super, to_state, MIGR_REBUILD);
9642 } else
9643 map->map_state = to_state;
238c0a71 9644 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9645 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9646 set_imsm_ord_tbl_ent(migr_map, u->slot,
9647 dl->index | IMSM_ORD_REBUILD);
9648
9649 /* update the family_num to mark a new container
9650 * generation, being careful to record the existing
9651 * family_num in orig_family_num to clean up after
9652 * earlier mdadm versions that neglected to set it.
9653 */
9654 if (mpb->orig_family_num == 0)
9655 mpb->orig_family_num = mpb->family_num;
9656 mpb->family_num += super->random;
9657
9658 /* count arrays using the victim in the metadata */
9659 found = 0;
9660 for (a = active_array; a ; a = a->next) {
9661 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9662 map = get_imsm_map(dev, MAP_0);
061d7da3 9663
5961eeec 9664 if (get_imsm_disk_slot(map, victim) >= 0)
9665 found++;
9666 }
061d7da3 9667
5961eeec 9668 /* delete the victim if it is no longer being
9669 * utilized anywhere
061d7da3 9670 */
5961eeec 9671 if (!found) {
9672 struct dl **dlp;
061d7da3 9673
5961eeec 9674 /* We know that 'manager' isn't touching anything,
9675 * so it is safe to delete
9676 */
9677 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9678 if ((*dlp)->index == victim)
9679 break;
5961eeec 9680
9681 /* victim may be on the missing list */
9682 if (!*dlp)
9683 for (dlp = &super->missing; *dlp;
9684 dlp = &(*dlp)->next)
9685 if ((*dlp)->index == victim)
9686 break;
9687 imsm_delete(super, dlp, victim);
9688 }
061d7da3
LO
9689 }
9690
9691 return 1;
9692}
a29911da 9693
2e5dc010
N
9694static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9695 struct intel_super *super,
9696 void ***space_list)
9697{
9698 struct dl *new_disk;
9699 struct intel_dev *id;
9700 int i;
9701 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9702 int disk_count = u->old_raid_disks;
2e5dc010
N
9703 void **tofree = NULL;
9704 int devices_to_reshape = 1;
9705 struct imsm_super *mpb = super->anchor;
9706 int ret_val = 0;
d098291a 9707 unsigned int dev_id;
2e5dc010 9708
1ade5cc1 9709 dprintf("(enter)\n");
2e5dc010
N
9710
9711 /* enable spares to use in array */
9712 for (i = 0; i < delta_disks; i++) {
9713 new_disk = get_disk_super(super,
9714 major(u->new_disks[i]),
9715 minor(u->new_disks[i]));
7a862a02 9716 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9717 major(u->new_disks[i]), minor(u->new_disks[i]),
9718 new_disk, new_disk->index);
089f9d79
JS
9719 if (new_disk == NULL ||
9720 (new_disk->index >= 0 &&
9721 new_disk->index < u->old_raid_disks))
2e5dc010 9722 goto update_reshape_exit;
ee4beede 9723 new_disk->index = disk_count++;
2e5dc010
N
9724 /* slot to fill in autolayout
9725 */
9726 new_disk->raiddisk = new_disk->index;
9727 new_disk->disk.status |=
9728 CONFIGURED_DISK;
9729 new_disk->disk.status &= ~SPARE_DISK;
9730 }
9731
ed7333bd
AK
9732 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9733 mpb->num_raid_devs);
2e5dc010
N
9734 /* manage changes in volume
9735 */
d098291a 9736 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9737 void **sp = *space_list;
9738 struct imsm_dev *newdev;
9739 struct imsm_map *newmap, *oldmap;
9740
d098291a
AK
9741 for (id = super->devlist ; id; id = id->next) {
9742 if (id->index == dev_id)
9743 break;
9744 }
9745 if (id == NULL)
9746 break;
2e5dc010
N
9747 if (!sp)
9748 continue;
9749 *space_list = *sp;
9750 newdev = (void*)sp;
9751 /* Copy the dev, but not (all of) the map */
9752 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9753 oldmap = get_imsm_map(id->dev, MAP_0);
9754 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9755 /* Copy the current map */
9756 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9757 /* update one device only
9758 */
9759 if (devices_to_reshape) {
ed7333bd
AK
9760 dprintf("imsm: modifying subdev: %i\n",
9761 id->index);
2e5dc010
N
9762 devices_to_reshape--;
9763 newdev->vol.migr_state = 1;
4036e7ee 9764 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9765 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9766 newmap->num_members = u->new_raid_disks;
9767 for (i = 0; i < delta_disks; i++) {
9768 set_imsm_ord_tbl_ent(newmap,
9769 u->old_raid_disks + i,
9770 u->old_raid_disks + i);
9771 }
9772 /* New map is correct, now need to save old map
9773 */
238c0a71 9774 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9775 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9776
f3871fdc 9777 imsm_set_array_size(newdev, -1);
2e5dc010
N
9778 }
9779
9780 sp = (void **)id->dev;
9781 id->dev = newdev;
9782 *sp = tofree;
9783 tofree = sp;
8e59f3d8
AK
9784
9785 /* Clear migration record */
9786 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9787 }
819bc634
AK
9788 if (tofree)
9789 *space_list = tofree;
2e5dc010
N
9790 ret_val = 1;
9791
9792update_reshape_exit:
9793
9794 return ret_val;
9795}
9796
bb025c2f 9797static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9798 struct intel_super *super,
9799 void ***space_list)
bb025c2f
KW
9800{
9801 struct imsm_dev *dev = NULL;
8ca6df95
KW
9802 struct intel_dev *dv;
9803 struct imsm_dev *dev_new;
bb025c2f
KW
9804 struct imsm_map *map;
9805 struct dl *dm, *du;
8ca6df95 9806 int i;
bb025c2f
KW
9807
9808 for (dv = super->devlist; dv; dv = dv->next)
9809 if (dv->index == (unsigned int)u->subarray) {
9810 dev = dv->dev;
9811 break;
9812 }
9813
9814 if (dev == NULL)
9815 return 0;
9816
238c0a71 9817 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9818
9819 if (u->direction == R10_TO_R0) {
06fb291a
PB
9820 unsigned long long num_data_stripes;
9821
43d5ec18 9822 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9823 if (imsm_count_failed(super, dev, MAP_0) !=
9824 (map->num_members / 2))
43d5ec18
KW
9825 return 0;
9826
bb025c2f
KW
9827 /* iterate through devices to mark removed disks as spare */
9828 for (dm = super->disks; dm; dm = dm->next) {
9829 if (dm->disk.status & FAILED_DISK) {
9830 int idx = dm->index;
9831 /* update indexes on the disk list */
9832/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9833 the index values will end up being correct.... NB */
9834 for (du = super->disks; du; du = du->next)
9835 if (du->index > idx)
9836 du->index--;
9837 /* mark as spare disk */
a8619d23 9838 mark_spare(dm);
bb025c2f
KW
9839 }
9840 }
bb025c2f
KW
9841 /* update map */
9842 map->num_members = map->num_members / 2;
9843 map->map_state = IMSM_T_STATE_NORMAL;
9844 map->num_domains = 1;
9845 map->raid_level = 0;
9846 map->failed_disk_num = -1;
4a353e6e
RS
9847 num_data_stripes = imsm_dev_size(dev) / 2;
9848 num_data_stripes /= map->blocks_per_strip;
9849 set_num_data_stripes(map, num_data_stripes);
bb025c2f
KW
9850 }
9851
8ca6df95
KW
9852 if (u->direction == R0_TO_R10) {
9853 void **space;
4a353e6e
RS
9854 unsigned long long num_data_stripes;
9855
8ca6df95
KW
9856 /* update slots in current disk list */
9857 for (dm = super->disks; dm; dm = dm->next) {
9858 if (dm->index >= 0)
9859 dm->index *= 2;
9860 }
9861 /* create new *missing* disks */
9862 for (i = 0; i < map->num_members; i++) {
9863 space = *space_list;
9864 if (!space)
9865 continue;
9866 *space_list = *space;
9867 du = (void *)space;
9868 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9869 du->fd = -1;
9870 du->minor = 0;
9871 du->major = 0;
9872 du->index = (i * 2) + 1;
9873 sprintf((char *)du->disk.serial,
9874 " MISSING_%d", du->index);
9875 sprintf((char *)du->serial,
9876 "MISSING_%d", du->index);
9877 du->next = super->missing;
9878 super->missing = du;
9879 }
9880 /* create new dev and map */
9881 space = *space_list;
9882 if (!space)
9883 return 0;
9884 *space_list = *space;
9885 dev_new = (void *)space;
9886 memcpy(dev_new, dev, sizeof(*dev));
9887 /* update new map */
238c0a71 9888 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 9889 map->num_members = map->num_members * 2;
1a2487c2 9890 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
9891 map->num_domains = 2;
9892 map->raid_level = 1;
4a353e6e
RS
9893 num_data_stripes = imsm_dev_size(dev) / 2;
9894 num_data_stripes /= map->blocks_per_strip;
9895 num_data_stripes /= map->num_domains;
9896 set_num_data_stripes(map, num_data_stripes);
9897
8ca6df95
KW
9898 /* replace dev<->dev_new */
9899 dv->dev = dev_new;
9900 }
bb025c2f
KW
9901 /* update disk order table */
9902 for (du = super->disks; du; du = du->next)
9903 if (du->index >= 0)
9904 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9905 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9906 if (du->index >= 0) {
9907 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9908 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9909 }
bb025c2f
KW
9910
9911 return 1;
9912}
9913
e8319a19
DW
9914static void imsm_process_update(struct supertype *st,
9915 struct metadata_update *update)
9916{
9917 /**
9918 * crack open the metadata_update envelope to find the update record
9919 * update can be one of:
d195167d
AK
9920 * update_reshape_container_disks - all the arrays in the container
9921 * are being reshaped to have more devices. We need to mark
9922 * the arrays for general migration and convert selected spares
9923 * into active devices.
9924 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9925 * device in an array, update the disk_ord_tbl. If this disk is
9926 * present in all member arrays then also clear the SPARE_DISK
9927 * flag
d195167d
AK
9928 * update_create_array
9929 * update_kill_array
9930 * update_rename_array
9931 * update_add_remove_disk
e8319a19
DW
9932 */
9933 struct intel_super *super = st->sb;
4d7b1503 9934 struct imsm_super *mpb;
e8319a19
DW
9935 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9936
4d7b1503
DW
9937 /* update requires a larger buf but the allocation failed */
9938 if (super->next_len && !super->next_buf) {
9939 super->next_len = 0;
9940 return;
9941 }
9942
9943 if (super->next_buf) {
9944 memcpy(super->next_buf, super->buf, super->len);
9945 free(super->buf);
9946 super->len = super->next_len;
9947 super->buf = super->next_buf;
9948
9949 super->next_len = 0;
9950 super->next_buf = NULL;
9951 }
9952
9953 mpb = super->anchor;
9954
e8319a19 9955 switch (type) {
0ec5d470
AK
9956 case update_general_migration_checkpoint: {
9957 struct intel_dev *id;
9958 struct imsm_update_general_migration_checkpoint *u =
9959 (void *)update->buf;
9960
1ade5cc1 9961 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9962
9963 /* find device under general migration */
9964 for (id = super->devlist ; id; id = id->next) {
9965 if (is_gen_migration(id->dev)) {
4036e7ee
MT
9966 set_vol_curr_migr_unit(id->dev,
9967 u->curr_migr_unit);
0ec5d470
AK
9968 super->updates_pending++;
9969 }
9970 }
9971 break;
9972 }
bb025c2f
KW
9973 case update_takeover: {
9974 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9975 if (apply_takeover_update(u, super, &update->space_list)) {
9976 imsm_update_version_info(super);
bb025c2f 9977 super->updates_pending++;
1a2487c2 9978 }
bb025c2f
KW
9979 break;
9980 }
9981
78b10e66 9982 case update_reshape_container_disks: {
d195167d 9983 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9984 if (apply_reshape_container_disks_update(
9985 u, super, &update->space_list))
9986 super->updates_pending++;
78b10e66
N
9987 break;
9988 }
48c5303a 9989 case update_reshape_migration: {
a29911da
PC
9990 struct imsm_update_reshape_migration *u = (void *)update->buf;
9991 if (apply_reshape_migration_update(
9992 u, super, &update->space_list))
9993 super->updates_pending++;
48c5303a
PC
9994 break;
9995 }
f3871fdc
AK
9996 case update_size_change: {
9997 struct imsm_update_size_change *u = (void *)update->buf;
9998 if (apply_size_change_update(u, super))
9999 super->updates_pending++;
10000 break;
10001 }
e8319a19 10002 case update_activate_spare: {
1011e834 10003 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
10004
10005 if (prepare_spare_to_activate(st, u) &&
10006 apply_update_activate_spare(u, super, st->arrays))
061d7da3 10007 super->updates_pending++;
8273f55e
DW
10008 break;
10009 }
10010 case update_create_array: {
10011 /* someone wants to create a new array, we need to be aware of
10012 * a few races/collisions:
10013 * 1/ 'Create' called by two separate instances of mdadm
10014 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10015 * devices that have since been assimilated via
10016 * activate_spare.
10017 * In the event this update can not be carried out mdadm will
10018 * (FIX ME) notice that its update did not take hold.
10019 */
10020 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10021 struct intel_dev *dv;
8273f55e
DW
10022 struct imsm_dev *dev;
10023 struct imsm_map *map, *new_map;
10024 unsigned long long start, end;
10025 unsigned long long new_start, new_end;
10026 int i;
54c2c1ea
DW
10027 struct disk_info *inf;
10028 struct dl *dl;
8273f55e
DW
10029
10030 /* handle racing creates: first come first serve */
10031 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10032 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10033 goto create_error;
8273f55e
DW
10034 }
10035
10036 /* check update is next in sequence */
10037 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10038 dprintf("can not create array %d expected index %d\n",
10039 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10040 goto create_error;
8273f55e
DW
10041 }
10042
238c0a71 10043 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10044 new_start = pba_of_lba0(new_map);
44490938 10045 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10046 inf = get_disk_info(u);
8273f55e
DW
10047
10048 /* handle activate_spare versus create race:
10049 * check to make sure that overlapping arrays do not include
10050 * overalpping disks
10051 */
10052 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10053 dev = get_imsm_dev(super, i);
238c0a71 10054 map = get_imsm_map(dev, MAP_0);
5551b113 10055 start = pba_of_lba0(map);
44490938 10056 end = start + per_dev_array_size(map);
8273f55e
DW
10057 if ((new_start >= start && new_start <= end) ||
10058 (start >= new_start && start <= new_end))
54c2c1ea
DW
10059 /* overlap */;
10060 else
10061 continue;
10062
10063 if (disks_overlap(super, i, u)) {
1ade5cc1 10064 dprintf("arrays overlap\n");
ba2de7ba 10065 goto create_error;
8273f55e
DW
10066 }
10067 }
8273f55e 10068
949c47a0
DW
10069 /* check that prepare update was successful */
10070 if (!update->space) {
1ade5cc1 10071 dprintf("prepare update failed\n");
ba2de7ba 10072 goto create_error;
949c47a0
DW
10073 }
10074
54c2c1ea
DW
10075 /* check that all disks are still active before committing
10076 * changes. FIXME: could we instead handle this by creating a
10077 * degraded array? That's probably not what the user expects,
10078 * so better to drop this update on the floor.
10079 */
10080 for (i = 0; i < new_map->num_members; i++) {
10081 dl = serial_to_dl(inf[i].serial, super);
10082 if (!dl) {
1ade5cc1 10083 dprintf("disk disappeared\n");
ba2de7ba 10084 goto create_error;
54c2c1ea 10085 }
949c47a0
DW
10086 }
10087
8273f55e 10088 super->updates_pending++;
54c2c1ea
DW
10089
10090 /* convert spares to members and fixup ord_tbl */
10091 for (i = 0; i < new_map->num_members; i++) {
10092 dl = serial_to_dl(inf[i].serial, super);
10093 if (dl->index == -1) {
10094 dl->index = mpb->num_disks;
10095 mpb->num_disks++;
10096 dl->disk.status |= CONFIGURED_DISK;
10097 dl->disk.status &= ~SPARE_DISK;
10098 }
10099 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10100 }
10101
ba2de7ba
DW
10102 dv = update->space;
10103 dev = dv->dev;
949c47a0
DW
10104 update->space = NULL;
10105 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10106 dv->index = u->dev_idx;
10107 dv->next = super->devlist;
10108 super->devlist = dv;
8273f55e 10109 mpb->num_raid_devs++;
8273f55e 10110
4d1313e9 10111 imsm_update_version_info(super);
8273f55e 10112 break;
ba2de7ba
DW
10113 create_error:
10114 /* mdmon knows how to release update->space, but not
10115 * ((struct intel_dev *) update->space)->dev
10116 */
10117 if (update->space) {
10118 dv = update->space;
10119 free(dv->dev);
10120 }
8273f55e 10121 break;
e8319a19 10122 }
33414a01
DW
10123 case update_kill_array: {
10124 struct imsm_update_kill_array *u = (void *) update->buf;
10125 int victim = u->dev_idx;
10126 struct active_array *a;
10127 struct intel_dev **dp;
10128 struct imsm_dev *dev;
10129
10130 /* sanity check that we are not affecting the uuid of
10131 * active arrays, or deleting an active array
10132 *
10133 * FIXME when immutable ids are available, but note that
10134 * we'll also need to fixup the invalidated/active
10135 * subarray indexes in mdstat
10136 */
10137 for (a = st->arrays; a; a = a->next)
10138 if (a->info.container_member >= victim)
10139 break;
10140 /* by definition if mdmon is running at least one array
10141 * is active in the container, so checking
10142 * mpb->num_raid_devs is just extra paranoia
10143 */
10144 dev = get_imsm_dev(super, victim);
10145 if (a || !dev || mpb->num_raid_devs == 1) {
10146 dprintf("failed to delete subarray-%d\n", victim);
10147 break;
10148 }
10149
10150 for (dp = &super->devlist; *dp;)
f21e18ca 10151 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10152 *dp = (*dp)->next;
10153 } else {
f21e18ca 10154 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10155 (*dp)->index--;
10156 dp = &(*dp)->next;
10157 }
10158 mpb->num_raid_devs--;
10159 super->updates_pending++;
10160 break;
10161 }
aa534678
DW
10162 case update_rename_array: {
10163 struct imsm_update_rename_array *u = (void *) update->buf;
10164 char name[MAX_RAID_SERIAL_LEN+1];
10165 int target = u->dev_idx;
10166 struct active_array *a;
10167 struct imsm_dev *dev;
10168
10169 /* sanity check that we are not affecting the uuid of
10170 * an active array
10171 */
40659392 10172 memset(name, 0, sizeof(name));
aa534678
DW
10173 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10174 name[MAX_RAID_SERIAL_LEN] = '\0';
10175 for (a = st->arrays; a; a = a->next)
10176 if (a->info.container_member == target)
10177 break;
10178 dev = get_imsm_dev(super, u->dev_idx);
10179 if (a || !dev || !check_name(super, name, 1)) {
10180 dprintf("failed to rename subarray-%d\n", target);
10181 break;
10182 }
10183
40659392 10184 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10185 super->updates_pending++;
10186 break;
10187 }
1a64be56 10188 case update_add_remove_disk: {
43dad3d6 10189 /* we may be able to repair some arrays if disks are
095b8088 10190 * being added, check the status of add_remove_disk
1a64be56
LM
10191 * if discs has been added.
10192 */
10193 if (add_remove_disk_update(super)) {
43dad3d6 10194 struct active_array *a;
072b727f
DW
10195
10196 super->updates_pending++;
1a64be56 10197 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10198 a->check_degraded = 1;
10199 }
43dad3d6 10200 break;
e8319a19 10201 }
bbab0940
TM
10202 case update_prealloc_badblocks_mem:
10203 break;
e6e9dd3f
AP
10204 case update_rwh_policy: {
10205 struct imsm_update_rwh_policy *u = (void *)update->buf;
10206 int target = u->dev_idx;
10207 struct imsm_dev *dev = get_imsm_dev(super, target);
10208 if (!dev) {
10209 dprintf("could not find subarray-%d\n", target);
10210 break;
10211 }
10212
10213 if (dev->rwh_policy != u->new_policy) {
10214 dev->rwh_policy = u->new_policy;
10215 super->updates_pending++;
10216 }
10217 break;
10218 }
1a64be56 10219 default:
ebf3be99 10220 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10221 }
e8319a19 10222}
88758e9d 10223
bc0b9d34
PC
10224static struct mdinfo *get_spares_for_grow(struct supertype *st);
10225
5fe6f031
N
10226static int imsm_prepare_update(struct supertype *st,
10227 struct metadata_update *update)
8273f55e 10228{
949c47a0 10229 /**
4d7b1503
DW
10230 * Allocate space to hold new disk entries, raid-device entries or a new
10231 * mpb if necessary. The manager synchronously waits for updates to
10232 * complete in the monitor, so new mpb buffers allocated here can be
10233 * integrated by the monitor thread without worrying about live pointers
10234 * in the manager thread.
8273f55e 10235 */
095b8088 10236 enum imsm_update_type type;
4d7b1503 10237 struct intel_super *super = st->sb;
f36a9ecd 10238 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10239 struct imsm_super *mpb = super->anchor;
10240 size_t buf_len;
10241 size_t len = 0;
949c47a0 10242
095b8088
N
10243 if (update->len < (int)sizeof(type))
10244 return 0;
10245
10246 type = *(enum imsm_update_type *) update->buf;
10247
949c47a0 10248 switch (type) {
0ec5d470 10249 case update_general_migration_checkpoint:
095b8088
N
10250 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10251 return 0;
1ade5cc1 10252 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10253 break;
abedf5fc
KW
10254 case update_takeover: {
10255 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10256 if (update->len < (int)sizeof(*u))
10257 return 0;
abedf5fc
KW
10258 if (u->direction == R0_TO_R10) {
10259 void **tail = (void **)&update->space_list;
10260 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10261 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10262 int num_members = map->num_members;
10263 void *space;
10264 int size, i;
abedf5fc
KW
10265 /* allocate memory for added disks */
10266 for (i = 0; i < num_members; i++) {
10267 size = sizeof(struct dl);
503975b9 10268 space = xmalloc(size);
abedf5fc
KW
10269 *tail = space;
10270 tail = space;
10271 *tail = NULL;
10272 }
10273 /* allocate memory for new device */
10274 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10275 (num_members * sizeof(__u32));
503975b9
N
10276 space = xmalloc(size);
10277 *tail = space;
10278 tail = space;
10279 *tail = NULL;
10280 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10281 }
10282
10283 break;
10284 }
78b10e66 10285 case update_reshape_container_disks: {
d195167d
AK
10286 /* Every raid device in the container is about to
10287 * gain some more devices, and we will enter a
10288 * reconfiguration.
10289 * So each 'imsm_map' will be bigger, and the imsm_vol
10290 * will now hold 2 of them.
10291 * Thus we need new 'struct imsm_dev' allocations sized
10292 * as sizeof_imsm_dev but with more devices in both maps.
10293 */
10294 struct imsm_update_reshape *u = (void *)update->buf;
10295 struct intel_dev *dl;
10296 void **space_tail = (void**)&update->space_list;
10297
095b8088
N
10298 if (update->len < (int)sizeof(*u))
10299 return 0;
10300
1ade5cc1 10301 dprintf("for update_reshape\n");
d195167d
AK
10302
10303 for (dl = super->devlist; dl; dl = dl->next) {
10304 int size = sizeof_imsm_dev(dl->dev, 1);
10305 void *s;
d677e0b8
AK
10306 if (u->new_raid_disks > u->old_raid_disks)
10307 size += sizeof(__u32)*2*
10308 (u->new_raid_disks - u->old_raid_disks);
503975b9 10309 s = xmalloc(size);
d195167d
AK
10310 *space_tail = s;
10311 space_tail = s;
10312 *space_tail = NULL;
10313 }
10314
10315 len = disks_to_mpb_size(u->new_raid_disks);
10316 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10317 break;
10318 }
48c5303a 10319 case update_reshape_migration: {
bc0b9d34
PC
10320 /* for migration level 0->5 we need to add disks
10321 * so the same as for container operation we will copy
10322 * device to the bigger location.
10323 * in memory prepared device and new disk area are prepared
10324 * for usage in process update
10325 */
10326 struct imsm_update_reshape_migration *u = (void *)update->buf;
10327 struct intel_dev *id;
10328 void **space_tail = (void **)&update->space_list;
10329 int size;
10330 void *s;
10331 int current_level = -1;
10332
095b8088
N
10333 if (update->len < (int)sizeof(*u))
10334 return 0;
10335
1ade5cc1 10336 dprintf("for update_reshape\n");
bc0b9d34
PC
10337
10338 /* add space for bigger array in update
10339 */
10340 for (id = super->devlist; id; id = id->next) {
10341 if (id->index == (unsigned)u->subdev) {
10342 size = sizeof_imsm_dev(id->dev, 1);
10343 if (u->new_raid_disks > u->old_raid_disks)
10344 size += sizeof(__u32)*2*
10345 (u->new_raid_disks - u->old_raid_disks);
503975b9 10346 s = xmalloc(size);
bc0b9d34
PC
10347 *space_tail = s;
10348 space_tail = s;
10349 *space_tail = NULL;
10350 break;
10351 }
10352 }
10353 if (update->space_list == NULL)
10354 break;
10355
10356 /* add space for disk in update
10357 */
10358 size = sizeof(struct dl);
503975b9 10359 s = xmalloc(size);
bc0b9d34
PC
10360 *space_tail = s;
10361 space_tail = s;
10362 *space_tail = NULL;
10363
10364 /* add spare device to update
10365 */
10366 for (id = super->devlist ; id; id = id->next)
10367 if (id->index == (unsigned)u->subdev) {
10368 struct imsm_dev *dev;
10369 struct imsm_map *map;
10370
10371 dev = get_imsm_dev(super, u->subdev);
238c0a71 10372 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10373 current_level = map->raid_level;
10374 break;
10375 }
089f9d79 10376 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10377 struct mdinfo *spares;
10378
10379 spares = get_spares_for_grow(st);
10380 if (spares) {
10381 struct dl *dl;
10382 struct mdinfo *dev;
10383
10384 dev = spares->devs;
10385 if (dev) {
10386 u->new_disks[0] =
10387 makedev(dev->disk.major,
10388 dev->disk.minor);
10389 dl = get_disk_super(super,
10390 dev->disk.major,
10391 dev->disk.minor);
10392 dl->index = u->old_raid_disks;
10393 dev = dev->next;
10394 }
10395 sysfs_free(spares);
10396 }
10397 }
10398 len = disks_to_mpb_size(u->new_raid_disks);
10399 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10400 break;
10401 }
f3871fdc 10402 case update_size_change: {
095b8088
N
10403 if (update->len < (int)sizeof(struct imsm_update_size_change))
10404 return 0;
10405 break;
10406 }
10407 case update_activate_spare: {
10408 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10409 return 0;
f3871fdc
AK
10410 break;
10411 }
949c47a0
DW
10412 case update_create_array: {
10413 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10414 struct intel_dev *dv;
54c2c1ea 10415 struct imsm_dev *dev = &u->dev;
238c0a71 10416 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10417 struct dl *dl;
10418 struct disk_info *inf;
10419 int i;
10420 int activate = 0;
949c47a0 10421
095b8088
N
10422 if (update->len < (int)sizeof(*u))
10423 return 0;
10424
54c2c1ea
DW
10425 inf = get_disk_info(u);
10426 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10427 /* allocate a new super->devlist entry */
503975b9
N
10428 dv = xmalloc(sizeof(*dv));
10429 dv->dev = xmalloc(len);
10430 update->space = dv;
949c47a0 10431
54c2c1ea
DW
10432 /* count how many spares will be converted to members */
10433 for (i = 0; i < map->num_members; i++) {
10434 dl = serial_to_dl(inf[i].serial, super);
10435 if (!dl) {
10436 /* hmm maybe it failed?, nothing we can do about
10437 * it here
10438 */
10439 continue;
10440 }
10441 if (count_memberships(dl, super) == 0)
10442 activate++;
10443 }
10444 len += activate * sizeof(struct imsm_disk);
949c47a0 10445 break;
095b8088
N
10446 }
10447 case update_kill_array: {
10448 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10449 return 0;
949c47a0
DW
10450 break;
10451 }
095b8088
N
10452 case update_rename_array: {
10453 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10454 return 0;
10455 break;
10456 }
10457 case update_add_remove_disk:
10458 /* no update->len needed */
10459 break;
bbab0940
TM
10460 case update_prealloc_badblocks_mem:
10461 super->extra_space += sizeof(struct bbm_log) -
10462 get_imsm_bbm_log_size(super->bbm_log);
10463 break;
e6e9dd3f
AP
10464 case update_rwh_policy: {
10465 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10466 return 0;
10467 break;
10468 }
095b8088
N
10469 default:
10470 return 0;
949c47a0 10471 }
8273f55e 10472
4d7b1503
DW
10473 /* check if we need a larger metadata buffer */
10474 if (super->next_buf)
10475 buf_len = super->next_len;
10476 else
10477 buf_len = super->len;
10478
bbab0940 10479 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10480 /* ok we need a larger buf than what is currently allocated
10481 * if this allocation fails process_update will notice that
10482 * ->next_len is set and ->next_buf is NULL
10483 */
bbab0940
TM
10484 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10485 super->extra_space + len, sector_size);
4d7b1503
DW
10486 if (super->next_buf)
10487 free(super->next_buf);
10488
10489 super->next_len = buf_len;
f36a9ecd 10490 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10491 memset(super->next_buf, 0, buf_len);
10492 else
4d7b1503
DW
10493 super->next_buf = NULL;
10494 }
5fe6f031 10495 return 1;
8273f55e
DW
10496}
10497
ae6aad82 10498/* must be called while manager is quiesced */
f21e18ca 10499static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10500{
10501 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10502 struct dl *iter;
10503 struct imsm_dev *dev;
10504 struct imsm_map *map;
4c9e8c1e 10505 unsigned int i, j, num_members;
fb12a745 10506 __u32 ord, ord_map0;
4c9e8c1e 10507 struct bbm_log *log = super->bbm_log;
ae6aad82 10508
1ade5cc1 10509 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10510
10511 /* shift all indexes down one */
10512 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10513 if (iter->index > (int)index)
ae6aad82 10514 iter->index--;
47ee5a45 10515 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10516 if (iter->index > (int)index)
47ee5a45 10517 iter->index--;
ae6aad82
DW
10518
10519 for (i = 0; i < mpb->num_raid_devs; i++) {
10520 dev = get_imsm_dev(super, i);
238c0a71 10521 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10522 num_members = map->num_members;
10523 for (j = 0; j < num_members; j++) {
10524 /* update ord entries being careful not to propagate
10525 * ord-flags to the first map
10526 */
238c0a71 10527 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10528 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10529
24565c9a
DW
10530 if (ord_to_idx(ord) <= index)
10531 continue;
ae6aad82 10532
238c0a71 10533 map = get_imsm_map(dev, MAP_0);
fb12a745 10534 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10535 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10536 if (map)
10537 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10538 }
10539 }
10540
4c9e8c1e
TM
10541 for (i = 0; i < log->entry_count; i++) {
10542 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10543
10544 if (entry->disk_ordinal <= index)
10545 continue;
10546 entry->disk_ordinal--;
10547 }
10548
ae6aad82
DW
10549 mpb->num_disks--;
10550 super->updates_pending++;
24565c9a
DW
10551 if (*dlp) {
10552 struct dl *dl = *dlp;
10553
10554 *dlp = (*dlp)->next;
10555 __free_imsm_disk(dl);
10556 }
ae6aad82 10557}
9a717282 10558
9a717282
AK
10559static int imsm_get_allowed_degradation(int level, int raid_disks,
10560 struct intel_super *super,
10561 struct imsm_dev *dev)
10562{
10563 switch (level) {
bf5cf7c7 10564 case 1:
9a717282
AK
10565 case 10:{
10566 int ret_val = 0;
10567 struct imsm_map *map;
10568 int i;
10569
10570 ret_val = raid_disks/2;
10571 /* check map if all disks pairs not failed
10572 * in both maps
10573 */
238c0a71 10574 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10575 for (i = 0; i < ret_val; i++) {
10576 int degradation = 0;
10577 if (get_imsm_disk(super, i) == NULL)
10578 degradation++;
10579 if (get_imsm_disk(super, i + 1) == NULL)
10580 degradation++;
10581 if (degradation == 2)
10582 return 0;
10583 }
238c0a71 10584 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10585 /* if there is no second map
10586 * result can be returned
10587 */
10588 if (map == NULL)
10589 return ret_val;
10590 /* check degradation in second map
10591 */
10592 for (i = 0; i < ret_val; i++) {
10593 int degradation = 0;
10594 if (get_imsm_disk(super, i) == NULL)
10595 degradation++;
10596 if (get_imsm_disk(super, i + 1) == NULL)
10597 degradation++;
10598 if (degradation == 2)
10599 return 0;
10600 }
10601 return ret_val;
10602 }
10603 case 5:
10604 return 1;
10605 case 6:
10606 return 2;
10607 default:
10608 return 0;
10609 }
10610}
10611
d31ad643
PB
10612/*******************************************************************************
10613 * Function: validate_container_imsm
10614 * Description: This routine validates container after assemble,
10615 * eg. if devices in container are under the same controller.
10616 *
10617 * Parameters:
10618 * info : linked list with info about devices used in array
10619 * Returns:
10620 * 1 : HBA mismatch
10621 * 0 : Success
10622 ******************************************************************************/
10623int validate_container_imsm(struct mdinfo *info)
10624{
6b781d33
AP
10625 if (check_env("IMSM_NO_PLATFORM"))
10626 return 0;
d31ad643 10627
6b781d33
AP
10628 struct sys_dev *idev;
10629 struct sys_dev *hba = NULL;
10630 struct sys_dev *intel_devices = find_intel_devices();
10631 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10632 info->disk.minor), 1, NULL);
6b781d33
AP
10633
10634 for (idev = intel_devices; idev; idev = idev->next) {
10635 if (dev_path && strstr(dev_path, idev->path)) {
10636 hba = idev;
10637 break;
d31ad643 10638 }
6b781d33
AP
10639 }
10640 if (dev_path)
d31ad643
PB
10641 free(dev_path);
10642
6b781d33
AP
10643 if (!hba) {
10644 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10645 devid2kname(makedev(info->disk.major, info->disk.minor)));
10646 return 1;
10647 }
10648
10649 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10650 struct mdinfo *dev;
10651
10652 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10653 dev_path = devt_to_devpath(makedev(dev->disk.major,
10654 dev->disk.minor), 1, NULL);
6b781d33
AP
10655
10656 struct sys_dev *hba2 = NULL;
10657 for (idev = intel_devices; idev; idev = idev->next) {
10658 if (dev_path && strstr(dev_path, idev->path)) {
10659 hba2 = idev;
10660 break;
d31ad643
PB
10661 }
10662 }
6b781d33
AP
10663 if (dev_path)
10664 free(dev_path);
10665
10666 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10667 get_orom_by_device_id(hba2->dev_id);
10668
10669 if (hba2 && hba->type != hba2->type) {
10670 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10671 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10672 return 1;
10673 }
10674
07cb1e57 10675 if (orom != orom2) {
6b781d33
AP
10676 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10677 " This operation is not supported and can lead to data loss.\n");
10678 return 1;
10679 }
10680
10681 if (!orom) {
10682 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10683 " This operation is not supported and can lead to data loss.\n");
10684 return 1;
10685 }
d31ad643 10686 }
6b781d33 10687
d31ad643
PB
10688 return 0;
10689}
32141c17 10690
6f50473f
TM
10691/*******************************************************************************
10692* Function: imsm_record_badblock
10693* Description: This routine stores new bad block record in BBM log
10694*
10695* Parameters:
10696* a : array containing a bad block
10697* slot : disk number containing a bad block
10698* sector : bad block sector
10699* length : bad block sectors range
10700* Returns:
10701* 1 : Success
10702* 0 : Error
10703******************************************************************************/
10704static int imsm_record_badblock(struct active_array *a, int slot,
10705 unsigned long long sector, int length)
10706{
10707 struct intel_super *super = a->container->sb;
10708 int ord;
10709 int ret;
10710
10711 ord = imsm_disk_slot_to_ord(a, slot);
10712 if (ord < 0)
10713 return 0;
10714
10715 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10716 length);
10717 if (ret)
10718 super->updates_pending++;
10719
10720 return ret;
10721}
c07a5a4f
TM
10722/*******************************************************************************
10723* Function: imsm_clear_badblock
10724* Description: This routine clears bad block record from BBM log
10725*
10726* Parameters:
10727* a : array containing a bad block
10728* slot : disk number containing a bad block
10729* sector : bad block sector
10730* length : bad block sectors range
10731* Returns:
10732* 1 : Success
10733* 0 : Error
10734******************************************************************************/
10735static int imsm_clear_badblock(struct active_array *a, int slot,
10736 unsigned long long sector, int length)
10737{
10738 struct intel_super *super = a->container->sb;
10739 int ord;
10740 int ret;
10741
10742 ord = imsm_disk_slot_to_ord(a, slot);
10743 if (ord < 0)
10744 return 0;
10745
10746 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10747 if (ret)
10748 super->updates_pending++;
10749
10750 return ret;
10751}
928f1424
TM
10752/*******************************************************************************
10753* Function: imsm_get_badblocks
10754* Description: This routine get list of bad blocks for an array
10755*
10756* Parameters:
10757* a : array
10758* slot : disk number
10759* Returns:
10760* bb : structure containing bad blocks
10761* NULL : error
10762******************************************************************************/
10763static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10764{
10765 int inst = a->info.container_member;
10766 struct intel_super *super = a->container->sb;
10767 struct imsm_dev *dev = get_imsm_dev(super, inst);
10768 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10769 int ord;
10770
10771 ord = imsm_disk_slot_to_ord(a, slot);
10772 if (ord < 0)
10773 return NULL;
10774
10775 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10776 per_dev_array_size(map), &super->bb);
928f1424
TM
10777
10778 return &super->bb;
10779}
27156a57
TM
10780/*******************************************************************************
10781* Function: examine_badblocks_imsm
10782* Description: Prints list of bad blocks on a disk to the standard output
10783*
10784* Parameters:
10785* st : metadata handler
10786* fd : open file descriptor for device
10787* devname : device name
10788* Returns:
10789* 0 : Success
10790* 1 : Error
10791******************************************************************************/
10792static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10793{
10794 struct intel_super *super = st->sb;
10795 struct bbm_log *log = super->bbm_log;
10796 struct dl *d = NULL;
10797 int any = 0;
10798
10799 for (d = super->disks; d ; d = d->next) {
10800 if (strcmp(d->devname, devname) == 0)
10801 break;
10802 }
10803
10804 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10805 pr_err("%s doesn't appear to be part of a raid array\n",
10806 devname);
10807 return 1;
10808 }
10809
10810 if (log != NULL) {
10811 unsigned int i;
10812 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10813
10814 for (i = 0; i < log->entry_count; i++) {
10815 if (entry[i].disk_ordinal == d->index) {
10816 unsigned long long sector = __le48_to_cpu(
10817 &entry[i].defective_block_start);
10818 int cnt = entry[i].marked_count + 1;
10819
10820 if (!any) {
10821 printf("Bad-blocks on %s:\n", devname);
10822 any = 1;
10823 }
10824
10825 printf("%20llu for %d sectors\n", sector, cnt);
10826 }
10827 }
10828 }
10829
10830 if (!any)
10831 printf("No bad-blocks list configured on %s\n", devname);
10832
10833 return 0;
10834}
687629c2
AK
10835/*******************************************************************************
10836 * Function: init_migr_record_imsm
10837 * Description: Function inits imsm migration record
10838 * Parameters:
10839 * super : imsm internal array info
10840 * dev : device under migration
10841 * info : general array info to find the smallest device
10842 * Returns:
10843 * none
10844 ******************************************************************************/
10845void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10846 struct mdinfo *info)
10847{
10848 struct intel_super *super = st->sb;
10849 struct migr_record *migr_rec = super->migr_rec;
10850 int new_data_disks;
10851 unsigned long long dsize, dev_sectors;
10852 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
10853 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10854 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10855 unsigned long long num_migr_units;
3ef4403c 10856 unsigned long long array_blocks;
2f86fda3 10857 struct dl *dl_disk = NULL;
687629c2
AK
10858
10859 memset(migr_rec, 0, sizeof(struct migr_record));
10860 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10861
10862 /* only ascending reshape supported now */
10863 migr_rec->ascending_migr = __cpu_to_le32(1);
10864
10865 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10866 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10867 migr_rec->dest_depth_per_unit *=
10868 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 10869 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
10870 migr_rec->blocks_per_unit =
10871 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10872 migr_rec->dest_depth_per_unit =
10873 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10874 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10875 num_migr_units =
10876 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10877
10878 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10879 num_migr_units++;
9f421827 10880 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
10881
10882 migr_rec->post_migr_vol_cap = dev->size_low;
10883 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10884
687629c2 10885 /* Find the smallest dev */
2f86fda3
MT
10886 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10887 /* ignore spares in container */
10888 if (dl_disk->index < 0)
687629c2 10889 continue;
2f86fda3 10890 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
10891 dev_sectors = dsize / 512;
10892 if (dev_sectors < min_dev_sectors)
10893 min_dev_sectors = dev_sectors;
687629c2 10894 }
9f421827 10895 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
10896 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10897
10898 write_imsm_migr_rec(st);
10899
10900 return;
10901}
10902
10903/*******************************************************************************
10904 * Function: save_backup_imsm
10905 * Description: Function saves critical data stripes to Migration Copy Area
10906 * and updates the current migration unit status.
10907 * Use restore_stripes() to form a destination stripe,
10908 * and to write it to the Copy Area.
10909 * Parameters:
10910 * st : supertype information
aea93171 10911 * dev : imsm device that backup is saved for
687629c2
AK
10912 * info : general array info
10913 * buf : input buffer
687629c2
AK
10914 * length : length of data to backup (blocks_per_unit)
10915 * Returns:
10916 * 0 : success
10917 *, -1 : fail
10918 ******************************************************************************/
10919int save_backup_imsm(struct supertype *st,
10920 struct imsm_dev *dev,
10921 struct mdinfo *info,
10922 void *buf,
687629c2
AK
10923 int length)
10924{
10925 int rv = -1;
10926 struct intel_super *super = st->sb;
594dc1b8
JS
10927 unsigned long long *target_offsets;
10928 int *targets;
687629c2 10929 int i;
238c0a71 10930 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10931 int new_disks = map_dest->num_members;
ab724b98
AK
10932 int dest_layout = 0;
10933 int dest_chunk;
d1877f69 10934 unsigned long long start;
9529d343 10935 int data_disks = imsm_num_data_members(map_dest);
687629c2 10936
503975b9 10937 targets = xmalloc(new_disks * sizeof(int));
687629c2 10938
2f86fda3
MT
10939 for (i = 0; i < new_disks; i++) {
10940 struct dl *dl_disk = get_imsm_dl_disk(super, i);
10941
10942 targets[i] = dl_disk->fd;
10943 }
7e45b550 10944
503975b9 10945 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10946
d1877f69 10947 start = info->reshape_progress * 512;
687629c2 10948 for (i = 0; i < new_disks; i++) {
9f421827 10949 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
10950 /* move back copy area adderss, it will be moved forward
10951 * in restore_stripes() using start input variable
10952 */
10953 target_offsets[i] -= start/data_disks;
687629c2
AK
10954 }
10955
68eb8bc6 10956 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10957 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10958
687629c2
AK
10959 if (restore_stripes(targets, /* list of dest devices */
10960 target_offsets, /* migration record offsets */
10961 new_disks,
ab724b98
AK
10962 dest_chunk,
10963 map_dest->raid_level,
10964 dest_layout,
10965 -1, /* source backup file descriptor */
10966 0, /* input buf offset
10967 * always 0 buf is already offseted */
d1877f69 10968 start,
687629c2
AK
10969 length,
10970 buf) != 0) {
e7b84f9d 10971 pr_err("Error restoring stripes\n");
687629c2
AK
10972 goto abort;
10973 }
10974
10975 rv = 0;
10976
10977abort:
10978 if (targets) {
687629c2
AK
10979 free(targets);
10980 }
10981 free(target_offsets);
10982
10983 return rv;
10984}
10985
10986/*******************************************************************************
10987 * Function: save_checkpoint_imsm
10988 * Description: Function called for current unit status update
10989 * in the migration record. It writes it to disk.
10990 * Parameters:
10991 * super : imsm internal array info
10992 * info : general array info
10993 * Returns:
10994 * 0: success
10995 * 1: failure
0228d92c
AK
10996 * 2: failure, means no valid migration record
10997 * / no general migration in progress /
687629c2
AK
10998 ******************************************************************************/
10999int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11000{
11001 struct intel_super *super = st->sb;
f8b72ef5
AK
11002 unsigned long long blocks_per_unit;
11003 unsigned long long curr_migr_unit;
11004
2f86fda3 11005 if (load_imsm_migr_rec(super) != 0) {
7a862a02 11006 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
11007 return 1;
11008 }
11009
f8b72ef5
AK
11010 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11011 if (blocks_per_unit == 0) {
0228d92c
AK
11012 dprintf("imsm: no migration in progress.\n");
11013 return 2;
687629c2 11014 }
f8b72ef5
AK
11015 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11016 /* check if array is alligned to copy area
11017 * if it is not alligned, add one to current migration unit value
11018 * this can happend on array reshape finish only
11019 */
11020 if (info->reshape_progress % blocks_per_unit)
11021 curr_migr_unit++;
687629c2 11022
9f421827 11023 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 11024 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
11025 set_migr_dest_1st_member_lba(super->migr_rec,
11026 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11027
687629c2 11028 if (write_imsm_migr_rec(st) < 0) {
7a862a02 11029 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
11030 return 1;
11031 }
11032
11033 return 0;
11034}
11035
276d77db
AK
11036/*******************************************************************************
11037 * Function: recover_backup_imsm
11038 * Description: Function recovers critical data from the Migration Copy Area
11039 * while assembling an array.
11040 * Parameters:
11041 * super : imsm internal array info
11042 * info : general array info
11043 * Returns:
11044 * 0 : success (or there is no data to recover)
11045 * 1 : fail
11046 ******************************************************************************/
11047int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11048{
11049 struct intel_super *super = st->sb;
11050 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11051 struct imsm_map *map_dest;
276d77db
AK
11052 struct intel_dev *id = NULL;
11053 unsigned long long read_offset;
11054 unsigned long long write_offset;
11055 unsigned unit_len;
2f86fda3 11056 int new_disks, err;
276d77db
AK
11057 char *buf = NULL;
11058 int retval = 1;
f36a9ecd 11059 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11060 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11061 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
276d77db 11062 char buffer[20];
6c3560c0 11063 int skipped_disks = 0;
2f86fda3 11064 struct dl *dl_disk;
276d77db
AK
11065
11066 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
11067 if (err < 1)
11068 return 1;
11069
11070 /* recover data only during assemblation */
11071 if (strncmp(buffer, "inactive", 8) != 0)
11072 return 0;
11073 /* no data to recover */
11074 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11075 return 0;
11076 if (curr_migr_unit >= num_migr_units)
11077 return 1;
11078
11079 /* find device during reshape */
11080 for (id = super->devlist; id; id = id->next)
11081 if (is_gen_migration(id->dev))
11082 break;
11083 if (id == NULL)
11084 return 1;
11085
238c0a71 11086 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11087 new_disks = map_dest->num_members;
11088
9f421827 11089 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11090
9f421827 11091 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11092 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11093
11094 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11095 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11096 goto abort;
276d77db 11097
2f86fda3
MT
11098 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11099 if (dl_disk->index < 0)
11100 continue;
276d77db 11101
2f86fda3 11102 if (dl_disk->fd < 0) {
6c3560c0
AK
11103 skipped_disks++;
11104 continue;
11105 }
2f86fda3 11106 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11107 pr_err("Cannot seek to block: %s\n",
11108 strerror(errno));
137debce
AK
11109 skipped_disks++;
11110 continue;
276d77db 11111 }
83b3de77 11112 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11113 pr_err("Cannot read copy area block: %s\n",
11114 strerror(errno));
137debce
AK
11115 skipped_disks++;
11116 continue;
276d77db 11117 }
2f86fda3 11118 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11119 pr_err("Cannot seek to block: %s\n",
11120 strerror(errno));
137debce
AK
11121 skipped_disks++;
11122 continue;
276d77db 11123 }
83b3de77 11124 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11125 pr_err("Cannot restore block: %s\n",
11126 strerror(errno));
137debce
AK
11127 skipped_disks++;
11128 continue;
276d77db
AK
11129 }
11130 }
11131
137debce
AK
11132 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11133 new_disks,
11134 super,
11135 id->dev)) {
7a862a02 11136 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11137 goto abort;
11138 }
11139
befb629b
AK
11140 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11141 /* ignore error == 2, this can mean end of reshape here
11142 */
7a862a02 11143 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11144 } else
276d77db 11145 retval = 0;
276d77db
AK
11146
11147abort:
276d77db
AK
11148 free(buf);
11149 return retval;
11150}
11151
2cda7640
ML
11152static char disk_by_path[] = "/dev/disk/by-path/";
11153
11154static const char *imsm_get_disk_controller_domain(const char *path)
11155{
2cda7640 11156 char disk_path[PATH_MAX];
96234762
LM
11157 char *drv=NULL;
11158 struct stat st;
2cda7640 11159
6d8d290a 11160 strcpy(disk_path, disk_by_path);
96234762
LM
11161 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11162 if (stat(disk_path, &st) == 0) {
11163 struct sys_dev* hba;
594dc1b8 11164 char *path;
96234762 11165
7c798f87 11166 path = devt_to_devpath(st.st_rdev, 1, NULL);
96234762
LM
11167 if (path == NULL)
11168 return "unknown";
11169 hba = find_disk_attached_hba(-1, path);
11170 if (hba && hba->type == SYS_DEV_SAS)
11171 drv = "isci";
11172 else if (hba && hba->type == SYS_DEV_SATA)
11173 drv = "ahci";
c6839718
MT
11174 else if (hba && hba->type == SYS_DEV_VMD)
11175 drv = "vmd";
11176 else if (hba && hba->type == SYS_DEV_NVME)
11177 drv = "nvme";
1011e834 11178 else
96234762
LM
11179 drv = "unknown";
11180 dprintf("path: %s hba: %s attached: %s\n",
11181 path, (hba) ? hba->path : "NULL", drv);
11182 free(path);
2cda7640 11183 }
96234762 11184 return drv;
2cda7640
ML
11185}
11186
4dd2df09 11187static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11188{
4dd2df09 11189 static char devnm[32];
78b10e66
N
11190 char subdev_name[20];
11191 struct mdstat_ent *mdstat;
11192
11193 sprintf(subdev_name, "%d", subdev);
11194 mdstat = mdstat_by_subdev(subdev_name, container);
11195 if (!mdstat)
4dd2df09 11196 return NULL;
78b10e66 11197
4dd2df09 11198 strcpy(devnm, mdstat->devnm);
78b10e66 11199 free_mdstat(mdstat);
4dd2df09 11200 return devnm;
78b10e66
N
11201}
11202
11203static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11204 struct geo_params *geo,
fbf3d202
AK
11205 int *old_raid_disks,
11206 int direction)
78b10e66 11207{
694575e7
KW
11208 /* currently we only support increasing the number of devices
11209 * for a container. This increases the number of device for each
11210 * member array. They must all be RAID0 or RAID5.
11211 */
78b10e66
N
11212 int ret_val = 0;
11213 struct mdinfo *info, *member;
11214 int devices_that_can_grow = 0;
11215
7a862a02 11216 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11217
d04f65f4 11218 if (geo->size > 0 ||
78b10e66
N
11219 geo->level != UnSet ||
11220 geo->layout != UnSet ||
11221 geo->chunksize != 0 ||
11222 geo->raid_disks == UnSet) {
7a862a02 11223 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11224 return ret_val;
11225 }
11226
fbf3d202 11227 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11228 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11229 return ret_val;
11230 }
11231
78b10e66
N
11232 info = container_content_imsm(st, NULL);
11233 for (member = info; member; member = member->next) {
4dd2df09 11234 char *result;
78b10e66
N
11235
11236 dprintf("imsm: checking device_num: %i\n",
11237 member->container_member);
11238
d7d205bd 11239 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11240 /* we work on container for Online Capacity Expansion
11241 * only so raid_disks has to grow
11242 */
7a862a02 11243 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11244 break;
11245 }
11246
089f9d79 11247 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11248 /* we cannot use this container with other raid level
11249 */
7a862a02 11250 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11251 info->array.level);
11252 break;
11253 } else {
11254 /* check for platform support
11255 * for this raid level configuration
11256 */
11257 struct intel_super *super = st->sb;
11258 if (!is_raid_level_supported(super->orom,
11259 member->array.level,
11260 geo->raid_disks)) {
7a862a02 11261 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11262 info->array.level,
11263 geo->raid_disks,
11264 geo->raid_disks > 1 ? "s" : "");
11265 break;
11266 }
2a4a08e7
AK
11267 /* check if component size is aligned to chunk size
11268 */
11269 if (info->component_size %
11270 (info->array.chunk_size/512)) {
7a862a02 11271 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11272 break;
11273 }
78b10e66
N
11274 }
11275
11276 if (*old_raid_disks &&
11277 info->array.raid_disks != *old_raid_disks)
11278 break;
11279 *old_raid_disks = info->array.raid_disks;
11280
11281 /* All raid5 and raid0 volumes in container
11282 * have to be ready for Online Capacity Expansion
11283 * so they need to be assembled. We have already
11284 * checked that no recovery etc is happening.
11285 */
4dd2df09
N
11286 result = imsm_find_array_devnm_by_subdev(member->container_member,
11287 st->container_devnm);
11288 if (result == NULL) {
78b10e66
N
11289 dprintf("imsm: cannot find array\n");
11290 break;
11291 }
11292 devices_that_can_grow++;
11293 }
11294 sysfs_free(info);
11295 if (!member && devices_that_can_grow)
11296 ret_val = 1;
11297
11298 if (ret_val)
1ade5cc1 11299 dprintf("Container operation allowed\n");
78b10e66 11300 else
1ade5cc1 11301 dprintf("Error: %i\n", ret_val);
78b10e66
N
11302
11303 return ret_val;
11304}
11305
11306/* Function: get_spares_for_grow
11307 * Description: Allocates memory and creates list of spare devices
1011e834 11308 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11309 * Parameters: Pointer to the supertype structure
11310 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11311 * NULL if fail
78b10e66
N
11312 */
11313static struct mdinfo *get_spares_for_grow(struct supertype *st)
11314{
fbfdcb06
AO
11315 struct spare_criteria sc;
11316
11317 get_spare_criteria_imsm(st, &sc);
11318 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11319}
11320
11321/******************************************************************************
11322 * function: imsm_create_metadata_update_for_reshape
11323 * Function creates update for whole IMSM container.
11324 *
11325 ******************************************************************************/
11326static int imsm_create_metadata_update_for_reshape(
11327 struct supertype *st,
11328 struct geo_params *geo,
11329 int old_raid_disks,
11330 struct imsm_update_reshape **updatep)
11331{
11332 struct intel_super *super = st->sb;
11333 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11334 int update_memory_size;
11335 struct imsm_update_reshape *u;
11336 struct mdinfo *spares;
78b10e66 11337 int i;
594dc1b8 11338 int delta_disks;
bbd24d86 11339 struct mdinfo *dev;
78b10e66 11340
1ade5cc1 11341 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11342
11343 delta_disks = geo->raid_disks - old_raid_disks;
11344
11345 /* size of all update data without anchor */
11346 update_memory_size = sizeof(struct imsm_update_reshape);
11347
11348 /* now add space for spare disks that we need to add. */
11349 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11350
503975b9 11351 u = xcalloc(1, update_memory_size);
78b10e66
N
11352 u->type = update_reshape_container_disks;
11353 u->old_raid_disks = old_raid_disks;
11354 u->new_raid_disks = geo->raid_disks;
11355
11356 /* now get spare disks list
11357 */
11358 spares = get_spares_for_grow(st);
11359
d7be7d87 11360 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11361 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11362 i = -1;
78b10e66
N
11363 goto abort;
11364 }
11365
11366 /* we have got spares
11367 * update disk list in imsm_disk list table in anchor
11368 */
11369 dprintf("imsm: %i spares are available.\n\n",
11370 spares->array.spare_disks);
11371
bbd24d86 11372 dev = spares->devs;
78b10e66 11373 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11374 struct dl *dl;
11375
bbd24d86
AK
11376 if (dev == NULL)
11377 break;
78b10e66
N
11378 u->new_disks[i] = makedev(dev->disk.major,
11379 dev->disk.minor);
11380 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11381 dl->index = mpb->num_disks;
11382 mpb->num_disks++;
bbd24d86 11383 dev = dev->next;
78b10e66 11384 }
78b10e66
N
11385
11386abort:
11387 /* free spares
11388 */
11389 sysfs_free(spares);
11390
d677e0b8 11391 dprintf("imsm: reshape update preparation :");
78b10e66 11392 if (i == delta_disks) {
1ade5cc1 11393 dprintf_cont(" OK\n");
78b10e66
N
11394 *updatep = u;
11395 return update_memory_size;
11396 }
11397 free(u);
1ade5cc1 11398 dprintf_cont(" Error\n");
78b10e66
N
11399
11400 return 0;
11401}
11402
f3871fdc
AK
11403/******************************************************************************
11404 * function: imsm_create_metadata_update_for_size_change()
11405 * Creates update for IMSM array for array size change.
11406 *
11407 ******************************************************************************/
11408static int imsm_create_metadata_update_for_size_change(
11409 struct supertype *st,
11410 struct geo_params *geo,
11411 struct imsm_update_size_change **updatep)
11412{
11413 struct intel_super *super = st->sb;
594dc1b8
JS
11414 int update_memory_size;
11415 struct imsm_update_size_change *u;
f3871fdc 11416
1ade5cc1 11417 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11418
11419 /* size of all update data without anchor */
11420 update_memory_size = sizeof(struct imsm_update_size_change);
11421
503975b9 11422 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11423 u->type = update_size_change;
11424 u->subdev = super->current_vol;
11425 u->new_size = geo->size;
11426
11427 dprintf("imsm: reshape update preparation : OK\n");
11428 *updatep = u;
11429
11430 return update_memory_size;
11431}
11432
48c5303a
PC
11433/******************************************************************************
11434 * function: imsm_create_metadata_update_for_migration()
11435 * Creates update for IMSM array.
11436 *
11437 ******************************************************************************/
11438static int imsm_create_metadata_update_for_migration(
11439 struct supertype *st,
11440 struct geo_params *geo,
11441 struct imsm_update_reshape_migration **updatep)
11442{
11443 struct intel_super *super = st->sb;
594dc1b8
JS
11444 int update_memory_size;
11445 struct imsm_update_reshape_migration *u;
48c5303a
PC
11446 struct imsm_dev *dev;
11447 int previous_level = -1;
11448
1ade5cc1 11449 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11450
11451 /* size of all update data without anchor */
11452 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11453
503975b9 11454 u = xcalloc(1, update_memory_size);
48c5303a
PC
11455 u->type = update_reshape_migration;
11456 u->subdev = super->current_vol;
11457 u->new_level = geo->level;
11458 u->new_layout = geo->layout;
11459 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11460 u->new_disks[0] = -1;
4bba0439 11461 u->new_chunksize = -1;
48c5303a
PC
11462
11463 dev = get_imsm_dev(super, u->subdev);
11464 if (dev) {
11465 struct imsm_map *map;
11466
238c0a71 11467 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
11468 if (map) {
11469 int current_chunk_size =
11470 __le16_to_cpu(map->blocks_per_strip) / 2;
11471
11472 if (geo->chunksize != current_chunk_size) {
11473 u->new_chunksize = geo->chunksize / 1024;
7a862a02 11474 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
11475 current_chunk_size, u->new_chunksize);
11476 }
48c5303a 11477 previous_level = map->raid_level;
4bba0439 11478 }
48c5303a 11479 }
089f9d79 11480 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11481 struct mdinfo *spares = NULL;
11482
11483 u->new_raid_disks++;
11484 spares = get_spares_for_grow(st);
089f9d79 11485 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11486 free(u);
11487 sysfs_free(spares);
11488 update_memory_size = 0;
565cc99e 11489 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11490 return 0;
11491 }
11492 sysfs_free(spares);
11493 }
11494 dprintf("imsm: reshape update preparation : OK\n");
11495 *updatep = u;
11496
11497 return update_memory_size;
11498}
11499
8dd70bce
AK
11500static void imsm_update_metadata_locally(struct supertype *st,
11501 void *buf, int len)
11502{
11503 struct metadata_update mu;
11504
11505 mu.buf = buf;
11506 mu.len = len;
11507 mu.space = NULL;
11508 mu.space_list = NULL;
11509 mu.next = NULL;
5fe6f031
N
11510 if (imsm_prepare_update(st, &mu))
11511 imsm_process_update(st, &mu);
8dd70bce
AK
11512
11513 while (mu.space_list) {
11514 void **space = mu.space_list;
11515 mu.space_list = *space;
11516 free(space);
11517 }
11518}
78b10e66 11519
471bceb6 11520/***************************************************************************
694575e7 11521* Function: imsm_analyze_change
471bceb6 11522* Description: Function analyze change for single volume
1011e834 11523* and validate if transition is supported
fbf3d202
AK
11524* Parameters: Geometry parameters, supertype structure,
11525* metadata change direction (apply/rollback)
694575e7 11526* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11527****************************************************************************/
11528enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11529 struct geo_params *geo,
11530 int direction)
694575e7 11531{
471bceb6
KW
11532 struct mdinfo info;
11533 int change = -1;
11534 int check_devs = 0;
c21e737b 11535 int chunk;
67a2db32
AK
11536 /* number of added/removed disks in operation result */
11537 int devNumChange = 0;
11538 /* imsm compatible layout value for array geometry verification */
11539 int imsm_layout = -1;
7abc9871
AK
11540 int data_disks;
11541 struct imsm_dev *dev;
9529d343 11542 struct imsm_map *map;
7abc9871 11543 struct intel_super *super;
d04f65f4 11544 unsigned long long current_size;
65d38cca 11545 unsigned long long free_size;
d04f65f4 11546 unsigned long long max_size;
65d38cca 11547 int rv;
471bceb6
KW
11548
11549 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11550 if (geo->level != info.array.level && geo->level >= 0 &&
11551 geo->level != UnSet) {
471bceb6
KW
11552 switch (info.array.level) {
11553 case 0:
11554 if (geo->level == 5) {
b5347799 11555 change = CH_MIGRATION;
e13ce846 11556 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11557 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11558 change = -1;
11559 goto analyse_change_exit;
11560 }
67a2db32 11561 imsm_layout = geo->layout;
471bceb6 11562 check_devs = 1;
e91a3bad
LM
11563 devNumChange = 1; /* parity disk added */
11564 } else if (geo->level == 10) {
471bceb6
KW
11565 change = CH_TAKEOVER;
11566 check_devs = 1;
e91a3bad 11567 devNumChange = 2; /* two mirrors added */
67a2db32 11568 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11569 }
dfe77a9e
KW
11570 break;
11571 case 1:
471bceb6
KW
11572 case 10:
11573 if (geo->level == 0) {
11574 change = CH_TAKEOVER;
11575 check_devs = 1;
e91a3bad 11576 devNumChange = -(geo->raid_disks/2);
67a2db32 11577 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11578 }
11579 break;
11580 }
11581 if (change == -1) {
7a862a02 11582 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11583 info.array.level, geo->level);
471bceb6
KW
11584 goto analyse_change_exit;
11585 }
11586 } else
11587 geo->level = info.array.level;
11588
089f9d79
JS
11589 if (geo->layout != info.array.layout &&
11590 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11591 change = CH_MIGRATION;
089f9d79
JS
11592 if (info.array.layout == 0 && info.array.level == 5 &&
11593 geo->layout == 5) {
471bceb6 11594 /* reshape 5 -> 4 */
089f9d79
JS
11595 } else if (info.array.layout == 5 && info.array.level == 5 &&
11596 geo->layout == 0) {
471bceb6
KW
11597 /* reshape 4 -> 5 */
11598 geo->layout = 0;
11599 geo->level = 5;
11600 } else {
7a862a02 11601 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11602 info.array.layout, geo->layout);
471bceb6
KW
11603 change = -1;
11604 goto analyse_change_exit;
11605 }
67a2db32 11606 } else {
471bceb6 11607 geo->layout = info.array.layout;
67a2db32
AK
11608 if (imsm_layout == -1)
11609 imsm_layout = info.array.layout;
11610 }
471bceb6 11611
089f9d79
JS
11612 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11613 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11614 if (info.array.level == 10) {
11615 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11616 change = -1;
11617 goto analyse_change_exit;
1e9b2c3f
PB
11618 } else if (info.component_size % (geo->chunksize/512)) {
11619 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11620 geo->chunksize/1024, info.component_size/2);
11621 change = -1;
11622 goto analyse_change_exit;
2d2b0eb7 11623 }
b5347799 11624 change = CH_MIGRATION;
2d2b0eb7 11625 } else {
471bceb6 11626 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11627 }
471bceb6 11628
c21e737b 11629 chunk = geo->chunksize / 1024;
7abc9871
AK
11630
11631 super = st->sb;
11632 dev = get_imsm_dev(super, super->current_vol);
9529d343
MD
11633 map = get_imsm_map(dev, MAP_0);
11634 data_disks = imsm_num_data_members(map);
c41e00b2 11635 /* compute current size per disk member
7abc9871 11636 */
c41e00b2
AK
11637 current_size = info.custom_array_size / data_disks;
11638
089f9d79 11639 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11640 /* align component size
11641 */
3e684231 11642 geo->size = imsm_component_size_alignment_check(
c41e00b2 11643 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11644 chunk * 1024, super->sector_size,
c41e00b2 11645 geo->size * 2);
65d0b4ce 11646 if (geo->size == 0) {
7a862a02 11647 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11648 current_size);
11649 goto analyse_change_exit;
11650 }
c41e00b2 11651 }
7abc9871 11652
089f9d79 11653 if (current_size != geo->size && geo->size > 0) {
7abc9871 11654 if (change != -1) {
7a862a02 11655 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11656 change = -1;
11657 goto analyse_change_exit;
11658 }
11659 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11660 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11661 super->current_vol, st->devnm);
7abc9871
AK
11662 goto analyse_change_exit;
11663 }
65d38cca
LD
11664 /* check the maximum available size
11665 */
11666 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11667 0, chunk, &free_size);
11668 if (rv == 0)
11669 /* Cannot find maximum available space
11670 */
11671 max_size = 0;
11672 else {
11673 max_size = free_size + current_size;
11674 /* align component size
11675 */
3e684231 11676 max_size = imsm_component_size_alignment_check(
65d38cca 11677 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11678 chunk * 1024, super->sector_size,
65d38cca
LD
11679 max_size);
11680 }
d04f65f4 11681 if (geo->size == MAX_SIZE) {
b130333f
AK
11682 /* requested size change to the maximum available size
11683 */
65d38cca 11684 if (max_size == 0) {
7a862a02 11685 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11686 change = -1;
11687 goto analyse_change_exit;
65d38cca
LD
11688 } else
11689 geo->size = max_size;
c41e00b2 11690 }
b130333f 11691
681b7ae2 11692 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11693 /* accept size for rollback only
11694 */
11695 } else {
11696 /* round size due to metadata compatibility
11697 */
11698 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11699 << SECT_PER_MB_SHIFT;
11700 dprintf("Prepare update for size change to %llu\n",
11701 geo->size );
11702 if (current_size >= geo->size) {
7a862a02 11703 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11704 current_size, geo->size);
fbf3d202
AK
11705 goto analyse_change_exit;
11706 }
65d38cca 11707 if (max_size && geo->size > max_size) {
7a862a02 11708 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11709 max_size, geo->size);
65d38cca
LD
11710 goto analyse_change_exit;
11711 }
7abc9871
AK
11712 }
11713 geo->size *= data_disks;
11714 geo->raid_disks = dev->vol.map->num_members;
11715 change = CH_ARRAY_SIZE;
11716 }
471bceb6
KW
11717 if (!validate_geometry_imsm(st,
11718 geo->level,
67a2db32 11719 imsm_layout,
e91a3bad 11720 geo->raid_disks + devNumChange,
c21e737b 11721 &chunk,
af4348dd 11722 geo->size, INVALID_SECTORS,
5308f117 11723 0, 0, info.consistency_policy, 1))
471bceb6
KW
11724 change = -1;
11725
11726 if (check_devs) {
11727 struct intel_super *super = st->sb;
11728 struct imsm_super *mpb = super->anchor;
11729
11730 if (mpb->num_raid_devs > 1) {
7a862a02 11731 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 11732 geo->dev_name);
471bceb6
KW
11733 change = -1;
11734 }
11735 }
11736
11737analyse_change_exit:
089f9d79
JS
11738 if (direction == ROLLBACK_METADATA_CHANGES &&
11739 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11740 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11741 change = -1;
11742 }
471bceb6 11743 return change;
694575e7
KW
11744}
11745
bb025c2f
KW
11746int imsm_takeover(struct supertype *st, struct geo_params *geo)
11747{
11748 struct intel_super *super = st->sb;
11749 struct imsm_update_takeover *u;
11750
503975b9 11751 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11752
11753 u->type = update_takeover;
11754 u->subarray = super->current_vol;
11755
11756 /* 10->0 transition */
11757 if (geo->level == 0)
11758 u->direction = R10_TO_R0;
11759
0529c688
KW
11760 /* 0->10 transition */
11761 if (geo->level == 10)
11762 u->direction = R0_TO_R10;
11763
bb025c2f
KW
11764 /* update metadata locally */
11765 imsm_update_metadata_locally(st, u,
11766 sizeof(struct imsm_update_takeover));
11767 /* and possibly remotely */
11768 if (st->update_tail)
11769 append_metadata_update(st, u,
11770 sizeof(struct imsm_update_takeover));
11771 else
11772 free(u);
11773
11774 return 0;
11775}
11776
895ffd99
MT
11777/* Flush size update if size calculated by num_data_stripes is higher than
11778 * imsm_dev_size to eliminate differences during reshape.
11779 * Mdmon will recalculate them correctly.
11780 * If subarray index is not set then check whole container.
11781 * Returns:
11782 * 0 - no error occurred
11783 * 1 - error detected
11784 */
11785static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11786{
11787 struct intel_super *super = st->sb;
11788 int tmp = super->current_vol;
11789 int ret_val = 1;
11790 int i;
11791
11792 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11793 if (subarray_index >= 0 && i != subarray_index)
11794 continue;
11795 super->current_vol = i;
11796 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11797 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11798 unsigned int disc_count = imsm_num_data_members(map);
11799 struct geo_params geo;
11800 struct imsm_update_size_change *update;
11801 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11802 unsigned long long d_size = imsm_dev_size(dev);
11803 int u_size;
11804
11805 if (calc_size == d_size || dev->vol.migr_type == MIGR_GEN_MIGR)
11806 continue;
11807
ff904202
MT
11808 /* There is a difference, confirm that imsm_dev_size is
11809 * smaller and push update.
895ffd99 11810 */
ff904202
MT
11811 if (d_size > calc_size) {
11812 pr_err("imsm: dev size of subarray %d is incorrect\n",
11813 i);
895ffd99
MT
11814 goto exit;
11815 }
11816 memset(&geo, 0, sizeof(struct geo_params));
11817 geo.size = d_size;
11818 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11819 &update);
11820 if (u_size < 1) {
11821 dprintf("imsm: Cannot prepare size change update\n");
11822 goto exit;
11823 }
11824 imsm_update_metadata_locally(st, update, u_size);
11825 if (st->update_tail) {
11826 append_metadata_update(st, update, u_size);
11827 flush_metadata_updates(st);
11828 st->update_tail = &st->updates;
11829 } else {
11830 imsm_sync_metadata(st);
11831 }
11832 }
11833 ret_val = 0;
11834exit:
11835 super->current_vol = tmp;
11836 return ret_val;
11837}
11838
d04f65f4
N
11839static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11840 int level,
78b10e66 11841 int layout, int chunksize, int raid_disks,
41784c88 11842 int delta_disks, char *backup, char *dev,
016e00f5 11843 int direction, int verbose)
78b10e66 11844{
78b10e66
N
11845 int ret_val = 1;
11846 struct geo_params geo;
11847
1ade5cc1 11848 dprintf("(enter)\n");
78b10e66 11849
71204a50 11850 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11851
11852 geo.dev_name = dev;
4dd2df09 11853 strcpy(geo.devnm, st->devnm);
78b10e66
N
11854 geo.size = size;
11855 geo.level = level;
11856 geo.layout = layout;
11857 geo.chunksize = chunksize;
11858 geo.raid_disks = raid_disks;
41784c88
AK
11859 if (delta_disks != UnSet)
11860 geo.raid_disks += delta_disks;
78b10e66 11861
1ade5cc1
N
11862 dprintf("for level : %i\n", geo.level);
11863 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 11864
4dd2df09 11865 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11866 /* On container level we can only increase number of devices. */
11867 dprintf("imsm: info: Container operation\n");
78b10e66 11868 int old_raid_disks = 0;
6dc0be30 11869
78b10e66 11870 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11871 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11872 struct imsm_update_reshape *u = NULL;
11873 int len;
11874
895ffd99
MT
11875 if (imsm_fix_size_mismatch(st, -1)) {
11876 dprintf("imsm: Cannot fix size mismatch\n");
11877 goto exit_imsm_reshape_super;
11878 }
11879
78b10e66
N
11880 len = imsm_create_metadata_update_for_reshape(
11881 st, &geo, old_raid_disks, &u);
11882
ed08d51c
AK
11883 if (len <= 0) {
11884 dprintf("imsm: Cannot prepare update\n");
11885 goto exit_imsm_reshape_super;
11886 }
11887
8dd70bce
AK
11888 ret_val = 0;
11889 /* update metadata locally */
11890 imsm_update_metadata_locally(st, u, len);
11891 /* and possibly remotely */
11892 if (st->update_tail)
11893 append_metadata_update(st, u, len);
11894 else
ed08d51c 11895 free(u);
8dd70bce 11896
694575e7 11897 } else {
7a862a02 11898 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11899 }
11900 } else {
11901 /* On volume level we support following operations
471bceb6
KW
11902 * - takeover: raid10 -> raid0; raid0 -> raid10
11903 * - chunk size migration
11904 * - migration: raid5 -> raid0; raid0 -> raid5
11905 */
11906 struct intel_super *super = st->sb;
11907 struct intel_dev *dev = super->devlist;
4dd2df09 11908 int change;
694575e7 11909 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11910 /* find requested device */
11911 while (dev) {
1011e834 11912 char *devnm =
4dd2df09
N
11913 imsm_find_array_devnm_by_subdev(
11914 dev->index, st->container_devnm);
11915 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11916 break;
11917 dev = dev->next;
11918 }
11919 if (dev == NULL) {
4dd2df09
N
11920 pr_err("Cannot find %s (%s) subarray\n",
11921 geo.dev_name, geo.devnm);
471bceb6
KW
11922 goto exit_imsm_reshape_super;
11923 }
11924 super->current_vol = dev->index;
fbf3d202 11925 change = imsm_analyze_change(st, &geo, direction);
694575e7 11926 switch (change) {
471bceb6 11927 case CH_TAKEOVER:
bb025c2f 11928 ret_val = imsm_takeover(st, &geo);
694575e7 11929 break;
48c5303a
PC
11930 case CH_MIGRATION: {
11931 struct imsm_update_reshape_migration *u = NULL;
11932 int len =
11933 imsm_create_metadata_update_for_migration(
11934 st, &geo, &u);
11935 if (len < 1) {
7a862a02 11936 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11937 break;
11938 }
471bceb6 11939 ret_val = 0;
48c5303a
PC
11940 /* update metadata locally */
11941 imsm_update_metadata_locally(st, u, len);
11942 /* and possibly remotely */
11943 if (st->update_tail)
11944 append_metadata_update(st, u, len);
11945 else
11946 free(u);
11947 }
11948 break;
7abc9871 11949 case CH_ARRAY_SIZE: {
f3871fdc
AK
11950 struct imsm_update_size_change *u = NULL;
11951 int len =
11952 imsm_create_metadata_update_for_size_change(
11953 st, &geo, &u);
11954 if (len < 1) {
7a862a02 11955 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11956 break;
11957 }
11958 ret_val = 0;
11959 /* update metadata locally */
11960 imsm_update_metadata_locally(st, u, len);
11961 /* and possibly remotely */
11962 if (st->update_tail)
11963 append_metadata_update(st, u, len);
11964 else
11965 free(u);
7abc9871
AK
11966 }
11967 break;
471bceb6
KW
11968 default:
11969 ret_val = 1;
694575e7 11970 }
694575e7 11971 }
78b10e66 11972
ed08d51c 11973exit_imsm_reshape_super:
78b10e66
N
11974 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11975 return ret_val;
11976}
2cda7640 11977
0febb20c
AO
11978#define COMPLETED_OK 0
11979#define COMPLETED_NONE 1
11980#define COMPLETED_DELAYED 2
11981
11982static int read_completed(int fd, unsigned long long *val)
11983{
11984 int ret;
11985 char buf[50];
11986
11987 ret = sysfs_fd_get_str(fd, buf, 50);
11988 if (ret < 0)
11989 return ret;
11990
11991 ret = COMPLETED_OK;
11992 if (strncmp(buf, "none", 4) == 0) {
11993 ret = COMPLETED_NONE;
11994 } else if (strncmp(buf, "delayed", 7) == 0) {
11995 ret = COMPLETED_DELAYED;
11996 } else {
11997 char *ep;
11998 *val = strtoull(buf, &ep, 0);
11999 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12000 ret = -1;
12001 }
12002 return ret;
12003}
12004
eee67a47
AK
12005/*******************************************************************************
12006 * Function: wait_for_reshape_imsm
12007 * Description: Function writes new sync_max value and waits until
12008 * reshape process reach new position
12009 * Parameters:
12010 * sra : general array info
eee67a47
AK
12011 * ndata : number of disks in new array's layout
12012 * Returns:
12013 * 0 : success,
12014 * 1 : there is no reshape in progress,
12015 * -1 : fail
12016 ******************************************************************************/
ae9f01f8 12017int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 12018{
85ca499c 12019 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 12020 int retry = 3;
eee67a47 12021 unsigned long long completed;
ae9f01f8
AK
12022 /* to_complete : new sync_max position */
12023 unsigned long long to_complete = sra->reshape_progress;
12024 unsigned long long position_to_set = to_complete / ndata;
eee67a47 12025
ae9f01f8 12026 if (fd < 0) {
1ade5cc1 12027 dprintf("cannot open reshape_position\n");
eee67a47 12028 return 1;
ae9f01f8 12029 }
eee67a47 12030
df2647fa
PB
12031 do {
12032 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12033 if (!retry) {
12034 dprintf("cannot read reshape_position (no reshape in progres)\n");
12035 close(fd);
12036 return 1;
12037 }
12038 usleep(30000);
12039 } else
12040 break;
12041 } while (retry--);
eee67a47 12042
85ca499c 12043 if (completed > position_to_set) {
1ade5cc1 12044 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12045 to_complete, position_to_set);
ae9f01f8
AK
12046 close(fd);
12047 return -1;
12048 }
12049 dprintf("Position set: %llu\n", position_to_set);
12050 if (sysfs_set_num(sra, NULL, "sync_max",
12051 position_to_set) != 0) {
1ade5cc1 12052 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12053 position_to_set);
12054 close(fd);
12055 return -1;
eee67a47
AK
12056 }
12057
eee67a47 12058 do {
0febb20c 12059 int rc;
eee67a47 12060 char action[20];
5ff3a780 12061 int timeout = 3000;
0febb20c 12062
5ff3a780 12063 sysfs_wait(fd, &timeout);
a47e44fb
AK
12064 if (sysfs_get_str(sra, NULL, "sync_action",
12065 action, 20) > 0 &&
d7d3809a 12066 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12067 if (strncmp(action, "idle", 4) == 0)
12068 break;
d7d3809a
AP
12069 close(fd);
12070 return -1;
12071 }
0febb20c
AO
12072
12073 rc = read_completed(fd, &completed);
12074 if (rc < 0) {
1ade5cc1 12075 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12076 close(fd);
12077 return 1;
0febb20c
AO
12078 } else if (rc == COMPLETED_NONE)
12079 break;
85ca499c 12080 } while (completed < position_to_set);
b2be2b62 12081
eee67a47
AK
12082 close(fd);
12083 return 0;
eee67a47
AK
12084}
12085
b915c95f
AK
12086/*******************************************************************************
12087 * Function: check_degradation_change
12088 * Description: Check that array hasn't become failed.
12089 * Parameters:
12090 * info : for sysfs access
12091 * sources : source disks descriptors
12092 * degraded: previous degradation level
12093 * Returns:
12094 * degradation level
12095 ******************************************************************************/
12096int check_degradation_change(struct mdinfo *info,
12097 int *sources,
12098 int degraded)
12099{
12100 unsigned long long new_degraded;
e1993023
LD
12101 int rv;
12102
12103 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12104 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12105 /* check each device to ensure it is still working */
12106 struct mdinfo *sd;
12107 new_degraded = 0;
12108 for (sd = info->devs ; sd ; sd = sd->next) {
12109 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12110 continue;
12111 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
12112 char sbuf[100];
12113
b915c95f 12114 if (sysfs_get_str(info,
cf52eff5 12115 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12116 strstr(sbuf, "faulty") ||
12117 strstr(sbuf, "in_sync") == NULL) {
12118 /* this device is dead */
12119 sd->disk.state = (1<<MD_DISK_FAULTY);
12120 if (sd->disk.raid_disk >= 0 &&
12121 sources[sd->disk.raid_disk] >= 0) {
12122 close(sources[
12123 sd->disk.raid_disk]);
12124 sources[sd->disk.raid_disk] =
12125 -1;
12126 }
12127 new_degraded++;
12128 }
12129 }
12130 }
12131 }
12132
12133 return new_degraded;
12134}
12135
10f22854
AK
12136/*******************************************************************************
12137 * Function: imsm_manage_reshape
12138 * Description: Function finds array under reshape and it manages reshape
12139 * process. It creates stripes backups (if required) and sets
942e1cdb 12140 * checkpoints.
10f22854
AK
12141 * Parameters:
12142 * afd : Backup handle (nattive) - not used
12143 * sra : general array info
12144 * reshape : reshape parameters - not used
12145 * st : supertype structure
12146 * blocks : size of critical section [blocks]
12147 * fds : table of source device descriptor
12148 * offsets : start of array (offest per devices)
12149 * dests : not used
12150 * destfd : table of destination device descriptor
12151 * destoffsets : table of destination offsets (per device)
12152 * Returns:
12153 * 1 : success, reshape is done
12154 * 0 : fail
12155 ******************************************************************************/
999b4972
N
12156static int imsm_manage_reshape(
12157 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12158 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12159 int *fds, unsigned long long *offsets,
12160 int dests, int *destfd, unsigned long long *destoffsets)
12161{
10f22854
AK
12162 int ret_val = 0;
12163 struct intel_super *super = st->sb;
594dc1b8 12164 struct intel_dev *dv;
de44e46f 12165 unsigned int sector_size = super->sector_size;
10f22854 12166 struct imsm_dev *dev = NULL;
9529d343 12167 struct imsm_map *map_src, *map_dest;
10f22854
AK
12168 int migr_vol_qan = 0;
12169 int ndata, odata; /* [bytes] */
12170 int chunk; /* [bytes] */
12171 struct migr_record *migr_rec;
12172 char *buf = NULL;
12173 unsigned int buf_size; /* [bytes] */
12174 unsigned long long max_position; /* array size [bytes] */
12175 unsigned long long next_step; /* [blocks]/[bytes] */
12176 unsigned long long old_data_stripe_length;
10f22854
AK
12177 unsigned long long start_src; /* [bytes] */
12178 unsigned long long start; /* [bytes] */
12179 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12180 int degraded = 0;
ab724b98 12181 int source_layout = 0;
895ffd99 12182 int subarray_index = -1;
10f22854 12183
79a16a9b
JS
12184 if (!sra)
12185 return ret_val;
12186
12187 if (!fds || !offsets)
10f22854
AK
12188 goto abort;
12189
12190 /* Find volume during the reshape */
12191 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12192 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12193 dv->dev->vol.migr_state == 1) {
10f22854
AK
12194 dev = dv->dev;
12195 migr_vol_qan++;
895ffd99 12196 subarray_index = dv->index;
10f22854
AK
12197 }
12198 }
12199 /* Only one volume can migrate at the same time */
12200 if (migr_vol_qan != 1) {
676e87a8 12201 pr_err("%s", migr_vol_qan ?
10f22854
AK
12202 "Number of migrating volumes greater than 1\n" :
12203 "There is no volume during migrationg\n");
12204 goto abort;
12205 }
12206
9529d343 12207 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12208 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12209 if (map_src == NULL)
12210 goto abort;
10f22854 12211
9529d343
MD
12212 ndata = imsm_num_data_members(map_dest);
12213 odata = imsm_num_data_members(map_src);
10f22854 12214
7b1ab482 12215 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12216 old_data_stripe_length = odata * chunk;
12217
12218 migr_rec = super->migr_rec;
12219
10f22854
AK
12220 /* initialize migration record for start condition */
12221 if (sra->reshape_progress == 0)
12222 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12223 else {
12224 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12225 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12226 goto abort;
12227 }
6a75c8ca
AK
12228 /* Save checkpoint to update migration record for current
12229 * reshape position (in md). It can be farther than current
12230 * reshape position in metadata.
12231 */
12232 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12233 /* ignore error == 2, this can mean end of reshape here
12234 */
7a862a02 12235 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12236 goto abort;
12237 }
b2c59438 12238 }
10f22854
AK
12239
12240 /* size for data */
12241 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12242 /* extend buffer size for parity disk */
12243 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12244 /* add space for stripe alignment */
10f22854 12245 buf_size += old_data_stripe_length;
de44e46f
PB
12246 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12247 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12248 goto abort;
12249 }
12250
3ef4403c 12251 max_position = sra->component_size * ndata;
68eb8bc6 12252 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12253
9f421827
PB
12254 while (current_migr_unit(migr_rec) <
12255 get_num_migr_units(migr_rec)) {
10f22854
AK
12256 /* current reshape position [blocks] */
12257 unsigned long long current_position =
12258 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12259 * current_migr_unit(migr_rec);
10f22854
AK
12260 unsigned long long border;
12261
b915c95f
AK
12262 /* Check that array hasn't become failed.
12263 */
12264 degraded = check_degradation_change(sra, fds, degraded);
12265 if (degraded > 1) {
7a862a02 12266 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12267 goto abort;
12268 }
12269
10f22854
AK
12270 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12271
12272 if ((current_position + next_step) > max_position)
12273 next_step = max_position - current_position;
12274
92144abf 12275 start = current_position * 512;
10f22854 12276
942e1cdb 12277 /* align reading start to old geometry */
10f22854
AK
12278 start_buf_shift = start % old_data_stripe_length;
12279 start_src = start - start_buf_shift;
12280
12281 border = (start_src / odata) - (start / ndata);
12282 border /= 512;
12283 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12284 /* save critical stripes to buf
12285 * start - start address of current unit
12286 * to backup [bytes]
12287 * start_src - start address of current unit
12288 * to backup alligned to source array
12289 * [bytes]
12290 */
594dc1b8 12291 unsigned long long next_step_filler;
10f22854
AK
12292 unsigned long long copy_length = next_step * 512;
12293
12294 /* allign copy area length to stripe in old geometry */
12295 next_step_filler = ((copy_length + start_buf_shift)
12296 % old_data_stripe_length);
12297 if (next_step_filler)
12298 next_step_filler = (old_data_stripe_length
12299 - next_step_filler);
7a862a02 12300 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12301 start, start_src, copy_length,
12302 start_buf_shift, next_step_filler);
12303
12304 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12305 chunk, map_src->raid_level,
12306 source_layout, 0, NULL, start_src,
10f22854
AK
12307 copy_length +
12308 next_step_filler + start_buf_shift,
12309 buf)) {
7a862a02 12310 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12311 goto abort;
12312 }
12313 /* Convert data to destination format and store it
12314 * in backup general migration area
12315 */
12316 if (save_backup_imsm(st, dev, sra,
aea93171 12317 buf + start_buf_shift, copy_length)) {
7a862a02 12318 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12319 goto abort;
12320 }
12321 if (save_checkpoint_imsm(st, sra,
12322 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12323 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12324 goto abort;
12325 }
8016a6d4
AK
12326 } else {
12327 /* set next step to use whole border area */
12328 border /= next_step;
12329 if (border > 1)
12330 next_step *= border;
10f22854
AK
12331 }
12332 /* When data backed up, checkpoint stored,
12333 * kick the kernel to reshape unit of data
12334 */
12335 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12336 /* limit next step to array max position */
12337 if (next_step > max_position)
12338 next_step = max_position;
10f22854
AK
12339 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12340 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12341 sra->reshape_progress = next_step;
10f22854
AK
12342
12343 /* wait until reshape finish */
c85338c6 12344 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12345 dprintf("wait_for_reshape_imsm returned error!\n");
12346 goto abort;
12347 }
84d11e6c
N
12348 if (sigterm)
12349 goto abort;
10f22854 12350
0228d92c
AK
12351 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12352 /* ignore error == 2, this can mean end of reshape here
12353 */
7a862a02 12354 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12355 goto abort;
12356 }
12357
12358 }
12359
71e5411e
PB
12360 /* clear migr_rec on disks after successful migration */
12361 struct dl *d;
12362
85337573 12363 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12364 for (d = super->disks; d; d = d->next) {
12365 if (d->index < 0 || is_failed(&d->disk))
12366 continue;
12367 unsigned long long dsize;
12368
12369 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12370 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12371 SEEK_SET) >= 0) {
466070ad 12372 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12373 MIGR_REC_BUF_SECTORS*sector_size) !=
12374 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12375 perror("Write migr_rec failed");
12376 }
12377 }
12378
10f22854
AK
12379 /* return '1' if done */
12380 ret_val = 1;
895ffd99
MT
12381
12382 /* After the reshape eliminate size mismatch in metadata.
12383 * Don't update md/component_size here, volume hasn't
12384 * to take whole space. It is allowed by kernel.
12385 * md/component_size will be set propoperly after next assembly.
12386 */
12387 imsm_fix_size_mismatch(st, subarray_index);
12388
10f22854
AK
12389abort:
12390 free(buf);
942e1cdb
N
12391 /* See Grow.c: abort_reshape() for further explanation */
12392 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12393 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12394 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12395
12396 return ret_val;
999b4972 12397}
0c21b485 12398
fbc42556
JR
12399/*******************************************************************************
12400 * Function: calculate_bitmap_min_chunksize
12401 * Description: Calculates the minimal valid bitmap chunk size
12402 * Parameters:
12403 * max_bits : indicate how many bits can be used for the bitmap
12404 * data_area_size : the size of the data area covered by the bitmap
12405 *
12406 * Returns:
12407 * The bitmap chunk size
12408 ******************************************************************************/
12409static unsigned long long
12410calculate_bitmap_min_chunksize(unsigned long long max_bits,
12411 unsigned long long data_area_size)
12412{
12413 unsigned long long min_chunk =
12414 4096; /* sub-page chunks don't work yet.. */
12415 unsigned long long bits = data_area_size / min_chunk + 1;
12416
12417 while (bits > max_bits) {
12418 min_chunk *= 2;
12419 bits = (bits + 1) / 2;
12420 }
12421 return min_chunk;
12422}
12423
12424/*******************************************************************************
12425 * Function: calculate_bitmap_chunksize
12426 * Description: Calculates the bitmap chunk size for the given device
12427 * Parameters:
12428 * st : supertype information
12429 * dev : device for the bitmap
12430 *
12431 * Returns:
12432 * The bitmap chunk size
12433 ******************************************************************************/
12434static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12435 struct imsm_dev *dev)
12436{
12437 struct intel_super *super = st->sb;
12438 unsigned long long min_chunksize;
12439 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12440 size_t dev_size = imsm_dev_size(dev);
12441
12442 min_chunksize = calculate_bitmap_min_chunksize(
12443 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12444
12445 if (result < min_chunksize)
12446 result = min_chunksize;
12447
12448 return result;
12449}
12450
12451/*******************************************************************************
12452 * Function: init_bitmap_header
12453 * Description: Initialize the bitmap header structure
12454 * Parameters:
12455 * st : supertype information
12456 * bms : bitmap header struct to initialize
12457 * dev : device for the bitmap
12458 *
12459 * Returns:
12460 * 0 : success
12461 * -1 : fail
12462 ******************************************************************************/
12463static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12464 struct imsm_dev *dev)
12465{
12466 int vol_uuid[4];
12467
12468 if (!bms || !dev)
12469 return -1;
12470
12471 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12472 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12473 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12474 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12475 bms->write_behind = __cpu_to_le32(0);
12476
12477 uuid_from_super_imsm(st, vol_uuid);
12478 memcpy(bms->uuid, vol_uuid, 16);
12479
12480 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12481
12482 return 0;
12483}
12484
12485/*******************************************************************************
12486 * Function: validate_internal_bitmap_for_drive
12487 * Description: Verify if the bitmap header for a given drive.
12488 * Parameters:
12489 * st : supertype information
12490 * offset : The offset from the beginning of the drive where to look for
12491 * the bitmap header.
12492 * d : the drive info
12493 *
12494 * Returns:
12495 * 0 : success
12496 * -1 : fail
12497 ******************************************************************************/
12498static int validate_internal_bitmap_for_drive(struct supertype *st,
12499 unsigned long long offset,
12500 struct dl *d)
12501{
12502 struct intel_super *super = st->sb;
12503 int ret = -1;
12504 int vol_uuid[4];
12505 bitmap_super_t *bms;
12506 int fd;
12507
12508 if (!d)
12509 return -1;
12510
12511 void *read_buf;
12512
12513 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12514 return -1;
12515
12516 fd = d->fd;
12517 if (fd < 0) {
12518 fd = open(d->devname, O_RDONLY, 0);
12519 if (fd < 0) {
12520 dprintf("cannot open the device %s\n", d->devname);
12521 goto abort;
12522 }
12523 }
12524
12525 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12526 goto abort;
12527 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12528 IMSM_BITMAP_HEADER_SIZE)
12529 goto abort;
12530
12531 uuid_from_super_imsm(st, vol_uuid);
12532
12533 bms = read_buf;
12534 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12535 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12536 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12537 dprintf("wrong bitmap header detected\n");
12538 goto abort;
12539 }
12540
12541 ret = 0;
12542abort:
12543 if ((d->fd < 0) && (fd >= 0))
12544 close(fd);
12545 if (read_buf)
12546 free(read_buf);
12547
12548 return ret;
12549}
12550
12551/*******************************************************************************
12552 * Function: validate_internal_bitmap_imsm
12553 * Description: Verify if the bitmap header is in place and with proper data.
12554 * Parameters:
12555 * st : supertype information
12556 *
12557 * Returns:
12558 * 0 : success or device w/o RWH_BITMAP
12559 * -1 : fail
12560 ******************************************************************************/
12561static int validate_internal_bitmap_imsm(struct supertype *st)
12562{
12563 struct intel_super *super = st->sb;
12564 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12565 unsigned long long offset;
12566 struct dl *d;
12567
12568 if (!dev)
12569 return -1;
12570
12571 if (dev->rwh_policy != RWH_BITMAP)
12572 return 0;
12573
12574 offset = get_bitmap_header_sector(super, super->current_vol);
12575 for (d = super->disks; d; d = d->next) {
12576 if (d->index < 0 || is_failed(&d->disk))
12577 continue;
12578
12579 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12580 pr_err("imsm: bitmap validation failed\n");
12581 return -1;
12582 }
12583 }
12584 return 0;
12585}
12586
12587/*******************************************************************************
12588 * Function: add_internal_bitmap_imsm
12589 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12590 * Parameters:
12591 * st : supertype information
12592 * chunkp : bitmap chunk size
12593 * delay : not used for imsm
12594 * write_behind : not used for imsm
12595 * size : not used for imsm
12596 * may_change : not used for imsm
12597 * amajor : not used for imsm
12598 *
12599 * Returns:
12600 * 0 : success
12601 * -1 : fail
12602 ******************************************************************************/
12603static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12604 int delay, int write_behind,
12605 unsigned long long size, int may_change,
12606 int amajor)
12607{
12608 struct intel_super *super = st->sb;
12609 int vol_idx = super->current_vol;
12610 struct imsm_dev *dev;
12611
12612 if (!super->devlist || vol_idx == -1 || !chunkp)
12613 return -1;
12614
12615 dev = get_imsm_dev(super, vol_idx);
12616
12617 if (!dev) {
12618 dprintf("cannot find the device for volume index %d\n",
12619 vol_idx);
12620 return -1;
12621 }
12622 dev->rwh_policy = RWH_BITMAP;
12623
12624 *chunkp = calculate_bitmap_chunksize(st, dev);
12625
12626 return 0;
12627}
12628
12629/*******************************************************************************
12630 * Function: locate_bitmap_imsm
12631 * Description: Seek 'fd' to start of write-intent-bitmap.
12632 * Parameters:
12633 * st : supertype information
12634 * fd : file descriptor for the device
12635 * node_num : not used for imsm
12636 *
12637 * Returns:
12638 * 0 : success
12639 * -1 : fail
12640 ******************************************************************************/
12641static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12642{
12643 struct intel_super *super = st->sb;
12644 unsigned long long offset;
12645 int vol_idx = super->current_vol;
12646
12647 if (!super->devlist || vol_idx == -1)
12648 return -1;
12649
12650 offset = get_bitmap_header_sector(super, super->current_vol);
12651 dprintf("bitmap header offset is %llu\n", offset);
12652
12653 lseek64(fd, offset << 9, 0);
12654
12655 return 0;
12656}
12657
12658/*******************************************************************************
12659 * Function: write_init_bitmap_imsm
12660 * Description: Write a bitmap header and prepares the area for the bitmap.
12661 * Parameters:
12662 * st : supertype information
12663 * fd : file descriptor for the device
12664 * update : not used for imsm
12665 *
12666 * Returns:
12667 * 0 : success
12668 * -1 : fail
12669 ******************************************************************************/
12670static int write_init_bitmap_imsm(struct supertype *st, int fd,
12671 enum bitmap_update update)
12672{
12673 struct intel_super *super = st->sb;
12674 int vol_idx = super->current_vol;
12675 int ret = 0;
12676 unsigned long long offset;
12677 bitmap_super_t bms = { 0 };
12678 size_t written = 0;
12679 size_t to_write;
12680 ssize_t rv_num;
12681 void *buf;
12682
12683 if (!super->devlist || !super->sector_size || vol_idx == -1)
12684 return -1;
12685
12686 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12687
12688 /* first clear the space for bitmap header */
12689 unsigned long long bitmap_area_start =
12690 get_bitmap_header_sector(super, vol_idx);
12691
12692 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12693 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12694 if (zero_disk_range(fd, bitmap_area_start,
12695 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12696 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12697 return -1;
12698 }
12699
12700 /* The bitmap area should be filled with "1"s to perform initial
12701 * synchronization.
12702 */
12703 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12704 return -1;
12705 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12706 offset = get_bitmap_sector(super, vol_idx);
12707 lseek64(fd, offset << 9, 0);
12708 while (written < IMSM_BITMAP_AREA_SIZE) {
12709 to_write = IMSM_BITMAP_AREA_SIZE - written;
12710 if (to_write > MAX_SECTOR_SIZE)
12711 to_write = MAX_SECTOR_SIZE;
12712 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12713 if (rv_num != MAX_SECTOR_SIZE) {
12714 ret = -1;
12715 dprintf("cannot initialize bitmap area\n");
12716 goto abort;
12717 }
12718 written += rv_num;
12719 }
12720
12721 /* write a bitmap header */
12722 init_bitmap_header(st, &bms, dev);
12723 memset(buf, 0, MAX_SECTOR_SIZE);
12724 memcpy(buf, &bms, sizeof(bitmap_super_t));
12725 if (locate_bitmap_imsm(st, fd, 0)) {
12726 ret = -1;
12727 dprintf("cannot locate the bitmap\n");
12728 goto abort;
12729 }
12730 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12731 ret = -1;
12732 dprintf("cannot write the bitmap header\n");
12733 goto abort;
12734 }
12735 fsync(fd);
12736
12737abort:
12738 free(buf);
12739
12740 return ret;
12741}
12742
12743/*******************************************************************************
12744 * Function: is_vol_to_setup_bitmap
12745 * Description: Checks if a bitmap should be activated on the dev.
12746 * Parameters:
12747 * info : info about the volume to setup the bitmap
12748 * dev : the device to check against bitmap creation
12749 *
12750 * Returns:
12751 * 0 : bitmap should be set up on the device
12752 * -1 : otherwise
12753 ******************************************************************************/
12754static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12755{
12756 if (!dev || !info)
12757 return -1;
12758
12759 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12760 (dev->rwh_policy == RWH_BITMAP))
12761 return -1;
12762
12763 return 0;
12764}
12765
12766/*******************************************************************************
12767 * Function: set_bitmap_sysfs
12768 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12769 * Parameters:
12770 * info : info about the volume where the bitmap should be setup
12771 * chunksize : bitmap chunk size
12772 * location : location of the bitmap
12773 *
12774 * Returns:
12775 * 0 : success
12776 * -1 : fail
12777 ******************************************************************************/
12778static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12779 char *location)
12780{
12781 /* The bitmap/metadata is set to external to allow changing of value for
12782 * bitmap/location. When external is used, the kernel will treat an offset
12783 * related to the device's first lba (in opposition to the "internal" case
12784 * when this value is related to the beginning of the superblock).
12785 */
12786 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12787 dprintf("failed to set bitmap/metadata\n");
12788 return -1;
12789 }
12790
12791 /* It can only be changed when no bitmap is active.
12792 * Should be bigger than 512 and must be power of 2.
12793 * It is expecting the value in bytes.
12794 */
12795 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12796 __cpu_to_le32(chunksize))) {
12797 dprintf("failed to set bitmap/chunksize\n");
12798 return -1;
12799 }
12800
12801 /* It is expecting the value in sectors. */
12802 if (sysfs_set_num(info, NULL, "bitmap/space",
12803 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12804 dprintf("failed to set bitmap/space\n");
12805 return -1;
12806 }
12807
12808 /* Determines the delay between the bitmap updates.
12809 * It is expecting the value in seconds.
12810 */
12811 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12812 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12813 dprintf("failed to set bitmap/time_base\n");
12814 return -1;
12815 }
12816
12817 /* It is expecting the value in sectors with a sign at the beginning. */
12818 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12819 dprintf("failed to set bitmap/location\n");
12820 return -1;
12821 }
12822
12823 return 0;
12824}
12825
12826/*******************************************************************************
12827 * Function: set_bitmap_imsm
12828 * Description: Setup the bitmap for the given volume
12829 * Parameters:
12830 * st : supertype information
12831 * info : info about the volume where the bitmap should be setup
12832 *
12833 * Returns:
12834 * 0 : success
12835 * -1 : fail
12836 ******************************************************************************/
12837static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12838{
12839 struct intel_super *super = st->sb;
12840 int prev_current_vol = super->current_vol;
12841 struct imsm_dev *dev;
12842 int ret = -1;
12843 char location[16] = "";
12844 unsigned long long chunksize;
12845 struct intel_dev *dev_it;
12846
12847 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12848 super->current_vol = dev_it->index;
12849 dev = get_imsm_dev(super, super->current_vol);
12850
12851 if (is_vol_to_setup_bitmap(info, dev)) {
12852 if (validate_internal_bitmap_imsm(st)) {
12853 dprintf("bitmap header validation failed\n");
12854 goto abort;
12855 }
12856
12857 chunksize = calculate_bitmap_chunksize(st, dev);
12858 dprintf("chunk size is %llu\n", chunksize);
12859
12860 snprintf(location, sizeof(location), "+%llu",
12861 get_bitmap_sector(super, super->current_vol));
12862 dprintf("bitmap offset is %s\n", location);
12863
12864 if (set_bitmap_sysfs(info, chunksize, location)) {
12865 dprintf("cannot setup the bitmap\n");
12866 goto abort;
12867 }
12868 }
12869 }
12870 ret = 0;
12871abort:
12872 super->current_vol = prev_current_vol;
12873 return ret;
12874}
12875
cdddbdbc 12876struct superswitch super_imsm = {
cdddbdbc
DW
12877 .examine_super = examine_super_imsm,
12878 .brief_examine_super = brief_examine_super_imsm,
4737ae25 12879 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 12880 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
12881 .detail_super = detail_super_imsm,
12882 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 12883 .write_init_super = write_init_super_imsm,
0e600426
N
12884 .validate_geometry = validate_geometry_imsm,
12885 .add_to_super = add_to_super_imsm,
1a64be56 12886 .remove_from_super = remove_from_super_imsm,
d665cc31 12887 .detail_platform = detail_platform_imsm,
e50cf220 12888 .export_detail_platform = export_detail_platform_imsm,
33414a01 12889 .kill_subarray = kill_subarray_imsm,
aa534678 12890 .update_subarray = update_subarray_imsm,
2b959fbf 12891 .load_container = load_container_imsm,
71204a50
N
12892 .default_geometry = default_geometry_imsm,
12893 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12894 .reshape_super = imsm_reshape_super,
12895 .manage_reshape = imsm_manage_reshape,
9e2d750d 12896 .recover_backup = recover_backup_imsm,
27156a57 12897 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12898 .match_home = match_home_imsm,
12899 .uuid_from_super= uuid_from_super_imsm,
12900 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12901 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12902 .update_super = update_super_imsm,
12903
12904 .avail_size = avail_size_imsm,
fbfdcb06 12905 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12906
12907 .compare_super = compare_super_imsm,
12908
12909 .load_super = load_super_imsm,
bf5a934a 12910 .init_super = init_super_imsm,
e683ca88 12911 .store_super = store_super_imsm,
cdddbdbc
DW
12912 .free_super = free_super_imsm,
12913 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12914 .container_content = container_content_imsm,
0c21b485 12915 .validate_container = validate_container_imsm,
cdddbdbc 12916
fbc42556
JR
12917 .add_internal_bitmap = add_internal_bitmap_imsm,
12918 .locate_bitmap = locate_bitmap_imsm,
12919 .write_bitmap = write_init_bitmap_imsm,
12920 .set_bitmap = set_bitmap_imsm,
12921
2432ce9b
AP
12922 .write_init_ppl = write_init_ppl_imsm,
12923 .validate_ppl = validate_ppl_imsm,
12924
cdddbdbc 12925 .external = 1,
4cce4069 12926 .name = "imsm",
845dea95
NB
12927
12928/* for mdmon */
12929 .open_new = imsm_open_new,
ed9d66aa 12930 .set_array_state= imsm_set_array_state,
845dea95
NB
12931 .set_disk = imsm_set_disk,
12932 .sync_metadata = imsm_sync_metadata,
88758e9d 12933 .activate_spare = imsm_activate_spare,
e8319a19 12934 .process_update = imsm_process_update,
8273f55e 12935 .prepare_update = imsm_prepare_update,
6f50473f 12936 .record_bad_block = imsm_record_badblock,
c07a5a4f 12937 .clear_bad_block = imsm_clear_badblock,
928f1424 12938 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 12939};