]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: don't allow disks with different sector size in one array
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
c2c087e6 91#define IMSM_RESERVED_SECTORS 4096
b81221b7 92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
cdddbdbc
DW
95
96/* Disk configuration info. */
97#define IMSM_MAX_DEVICES 255
98struct imsm_disk {
99 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 100 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 101 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
102#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
103#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
104#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 105#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 106 __u32 status; /* 0xF0 - 0xF3 */
1011e834 107 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
108 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
109#define IMSM_DISK_FILLERS 3
110 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
111};
112
3b451610
AK
113/* map selector for map managment
114 */
238c0a71
AK
115#define MAP_0 0
116#define MAP_1 1
117#define MAP_X -1
3b451610 118
cdddbdbc
DW
119/* RAID map configuration infos. */
120struct imsm_map {
5551b113
CA
121 __u32 pba_of_lba0_lo; /* start address of partition */
122 __u32 blocks_per_member_lo;/* blocks per member */
123 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
124 __u16 blocks_per_strip;
125 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
126#define IMSM_T_STATE_NORMAL 0
127#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
128#define IMSM_T_STATE_DEGRADED 2
129#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
130 __u8 raid_level;
131#define IMSM_T_RAID0 0
132#define IMSM_T_RAID1 1
133#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
134 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
135 __u8 num_domains; /* number of parity domains */
136 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 137 __u8 ddf;
5551b113
CA
138 __u32 pba_of_lba0_hi;
139 __u32 blocks_per_member_hi;
140 __u32 num_data_stripes_hi;
141 __u32 filler[4]; /* expansion area */
7eef0453 142#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 143 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
144 * top byte contains some flags
145 */
cdddbdbc
DW
146} __attribute__ ((packed));
147
148struct imsm_vol {
f8f603f1 149 __u32 curr_migr_unit;
fe7ed8cb 150 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 151 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
152#define MIGR_INIT 0
153#define MIGR_REBUILD 1
154#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
155#define MIGR_GEN_MIGR 3
156#define MIGR_STATE_CHANGE 4
1484e727 157#define MIGR_REPAIR 5
cdddbdbc 158 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
159#define RAIDVOL_CLEAN 0
160#define RAIDVOL_DIRTY 1
161#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 162 __u8 dirty;
fe7ed8cb
DW
163 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
164 __u16 verify_errors; /* number of mismatches */
165 __u16 bad_blocks; /* number of bad blocks during verify */
166 __u32 filler[4];
cdddbdbc
DW
167 struct imsm_map map[1];
168 /* here comes another one if migr_state */
169} __attribute__ ((packed));
170
171struct imsm_dev {
fe7ed8cb 172 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
173 __u32 size_low;
174 __u32 size_high;
fe7ed8cb
DW
175#define DEV_BOOTABLE __cpu_to_le32(0x01)
176#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
177#define DEV_READ_COALESCING __cpu_to_le32(0x04)
178#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
179#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
180#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
181#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
182#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
183#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
184#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
185#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
186#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
187#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
188 __u32 status; /* Persistent RaidDev status */
189 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
190 __u8 migr_priority;
191 __u8 num_sub_vols;
192 __u8 tid;
193 __u8 cng_master_disk;
194 __u16 cache_policy;
195 __u8 cng_state;
196 __u8 cng_sub_state;
2432ce9b
AP
197 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
198
199 /* NVM_EN */
200 __u8 nv_cache_mode;
201 __u8 nv_cache_flags;
202
203 /* Unique Volume Id of the NvCache Volume associated with this volume */
204 __u32 nvc_vol_orig_family_num;
205 __u16 nvc_vol_raid_dev_num;
206
207#define RWH_OFF 0
208#define RWH_DISTRIBUTED 1
209#define RWH_JOURNALING_DRIVE 2
210 __u8 rwh_policy; /* Raid Write Hole Policy */
211 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
212 __u8 filler1;
213
214#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
215 __u32 filler[IMSM_DEV_FILLERS];
216 struct imsm_vol vol;
217} __attribute__ ((packed));
218
219struct imsm_super {
220 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
221 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
222 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
223 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
224 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
225 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
226 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
227 __u8 num_disks; /* 0x38 Number of configured disks */
228 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
229 __u8 error_log_pos; /* 0x3A */
230 __u8 fill[1]; /* 0x3B */
231 __u32 cache_size; /* 0x3c - 0x40 in mb */
232 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
233 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
234 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
235 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
236 * volume IDs for raid_dev created in this array
237 * (starts at 1)
238 */
239 __u16 filler1; /* 0x4E - 0x4F */
240#define IMSM_FILLERS 34
241 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
242 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
243 /* here comes imsm_dev[num_raid_devs] */
604b746f 244 /* here comes BBM logs */
cdddbdbc
DW
245} __attribute__ ((packed));
246
604b746f 247#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
248#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
249#define BBM_LOG_SIGNATURE 0xabadb10c
250
251struct bbm_log_block_addr {
252 __u16 w1;
253 __u32 dw1;
254} __attribute__ ((__packed__));
604b746f
JD
255
256struct bbm_log_entry {
8d67477f
TM
257 __u8 marked_count; /* Number of blocks marked - 1 */
258 __u8 disk_ordinal; /* Disk entry within the imsm_super */
259 struct bbm_log_block_addr defective_block_start;
604b746f
JD
260} __attribute__ ((__packed__));
261
262struct bbm_log {
263 __u32 signature; /* 0xABADB10C */
264 __u32 entry_count;
8d67477f 265 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
604b746f
JD
266} __attribute__ ((__packed__));
267
cdddbdbc 268static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 269
b53bfba6
TM
270#define BLOCKS_PER_KB (1024/512)
271
8e59f3d8
AK
272#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
273
274#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
275
de44e46f
PB
276#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
277#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
278 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
279 */
280
8e59f3d8
AK
281#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
282 * be recovered using srcMap */
283#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
284 * already been migrated and must
285 * be recovered from checkpoint area */
2432ce9b
AP
286
287#define PPL_ENTRY_SPACE (128 * 1024) /* Size of the PPL, without the header */
288
8e59f3d8
AK
289struct migr_record {
290 __u32 rec_status; /* Status used to determine how to restart
291 * migration in case it aborts
292 * in some fashion */
293 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
294 __u32 family_num; /* Family number of MPB
295 * containing the RaidDev
296 * that is migrating */
297 __u32 ascending_migr; /* True if migrating in increasing
298 * order of lbas */
299 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
300 __u32 dest_depth_per_unit; /* Num member blocks each destMap
301 * member disk
302 * advances per unit-of-operation */
303 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
304 __u32 dest_1st_member_lba; /* First member lba on first
305 * stripe of destination */
306 __u32 num_migr_units; /* Total num migration units-of-op */
307 __u32 post_migr_vol_cap; /* Size of volume after
308 * migration completes */
309 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
310 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
311 * migration ckpt record was read from
312 * (for recovered migrations) */
313} __attribute__ ((__packed__));
314
ec50f7b6
LM
315struct md_list {
316 /* usage marker:
317 * 1: load metadata
318 * 2: metadata does not match
319 * 4: already checked
320 */
321 int used;
322 char *devname;
323 int found;
324 int container;
325 dev_t st_rdev;
326 struct md_list *next;
327};
328
e7b84f9d 329#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 330
1484e727
DW
331static __u8 migr_type(struct imsm_dev *dev)
332{
333 if (dev->vol.migr_type == MIGR_VERIFY &&
334 dev->status & DEV_VERIFY_AND_FIX)
335 return MIGR_REPAIR;
336 else
337 return dev->vol.migr_type;
338}
339
340static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
341{
342 /* for compatibility with older oroms convert MIGR_REPAIR, into
343 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
344 */
345 if (migr_type == MIGR_REPAIR) {
346 dev->vol.migr_type = MIGR_VERIFY;
347 dev->status |= DEV_VERIFY_AND_FIX;
348 } else {
349 dev->vol.migr_type = migr_type;
350 dev->status &= ~DEV_VERIFY_AND_FIX;
351 }
352}
353
f36a9ecd 354static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 355{
f36a9ecd 356 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 357}
cdddbdbc 358
f36a9ecd
PB
359static unsigned int mpb_sectors(struct imsm_super *mpb,
360 unsigned int sector_size)
87eb16df 361{
f36a9ecd 362 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
363}
364
ba2de7ba
DW
365struct intel_dev {
366 struct imsm_dev *dev;
367 struct intel_dev *next;
f21e18ca 368 unsigned index;
ba2de7ba
DW
369};
370
88654014
LM
371struct intel_hba {
372 enum sys_dev_type type;
373 char *path;
374 char *pci_id;
375 struct intel_hba *next;
376};
377
1a64be56
LM
378enum action {
379 DISK_REMOVE = 1,
380 DISK_ADD
381};
cdddbdbc
DW
382/* internal representation of IMSM metadata */
383struct intel_super {
384 union {
949c47a0
DW
385 void *buf; /* O_DIRECT buffer for reading/writing metadata */
386 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 387 };
8e59f3d8
AK
388 union {
389 void *migr_rec_buf; /* buffer for I/O operations */
390 struct migr_record *migr_rec; /* migration record */
391 };
51d83f5d
AK
392 int clean_migration_record_by_mdmon; /* when reshape is switched to next
393 array, it indicates that mdmon is allowed to clean migration
394 record */
949c47a0 395 size_t len; /* size of the 'buf' allocation */
bbab0940 396 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
397 void *next_buf; /* for realloc'ing buf from the manager */
398 size_t next_len;
c2c087e6 399 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 400 int current_vol; /* index of raid device undergoing creation */
5551b113 401 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 402 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 403 struct intel_dev *devlist;
fa7bb6f8 404 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
405 struct dl {
406 struct dl *next;
407 int index;
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409 int major, minor;
410 char *devname;
b9f594fe 411 struct imsm_disk disk;
cdddbdbc 412 int fd;
0dcecb2e
DW
413 int extent_cnt;
414 struct extent *e; /* for determining freespace @ create */
efb30e7f 415 int raiddisk; /* slot to fill in autolayout */
1a64be56 416 enum action action;
ca0748fa 417 } *disks, *current_disk;
1a64be56
LM
418 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
419 active */
47ee5a45 420 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 421 struct bbm_log *bbm_log;
88654014 422 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 423 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 424 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 425 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
426};
427
428struct intel_disk {
429 struct imsm_disk disk;
430 #define IMSM_UNKNOWN_OWNER (-1)
431 int owner;
432 struct intel_disk *next;
cdddbdbc
DW
433};
434
c2c087e6
DW
435struct extent {
436 unsigned long long start, size;
437};
438
694575e7
KW
439/* definitions of reshape process types */
440enum imsm_reshape_type {
441 CH_TAKEOVER,
b5347799 442 CH_MIGRATION,
7abc9871 443 CH_ARRAY_SIZE,
694575e7
KW
444};
445
88758e9d
DW
446/* definition of messages passed to imsm_process_update */
447enum imsm_update_type {
448 update_activate_spare,
8273f55e 449 update_create_array,
33414a01 450 update_kill_array,
aa534678 451 update_rename_array,
1a64be56 452 update_add_remove_disk,
78b10e66 453 update_reshape_container_disks,
48c5303a 454 update_reshape_migration,
2d40f3a1
AK
455 update_takeover,
456 update_general_migration_checkpoint,
f3871fdc 457 update_size_change,
bbab0940 458 update_prealloc_badblocks_mem,
e6e9dd3f 459 update_rwh_policy,
88758e9d
DW
460};
461
462struct imsm_update_activate_spare {
463 enum imsm_update_type type;
d23fe947 464 struct dl *dl;
88758e9d
DW
465 int slot;
466 int array;
467 struct imsm_update_activate_spare *next;
468};
469
78b10e66 470struct geo_params {
4dd2df09 471 char devnm[32];
78b10e66 472 char *dev_name;
d04f65f4 473 unsigned long long size;
78b10e66
N
474 int level;
475 int layout;
476 int chunksize;
477 int raid_disks;
478};
479
bb025c2f
KW
480enum takeover_direction {
481 R10_TO_R0,
482 R0_TO_R10
483};
484struct imsm_update_takeover {
485 enum imsm_update_type type;
486 int subarray;
487 enum takeover_direction direction;
488};
78b10e66
N
489
490struct imsm_update_reshape {
491 enum imsm_update_type type;
492 int old_raid_disks;
493 int new_raid_disks;
48c5303a
PC
494
495 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
496};
497
498struct imsm_update_reshape_migration {
499 enum imsm_update_type type;
500 int old_raid_disks;
501 int new_raid_disks;
502 /* fields for array migration changes
503 */
504 int subdev;
505 int new_level;
506 int new_layout;
4bba0439 507 int new_chunksize;
48c5303a 508
d195167d 509 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
510};
511
f3871fdc
AK
512struct imsm_update_size_change {
513 enum imsm_update_type type;
514 int subdev;
515 long long new_size;
516};
517
2d40f3a1
AK
518struct imsm_update_general_migration_checkpoint {
519 enum imsm_update_type type;
520 __u32 curr_migr_unit;
521};
522
54c2c1ea
DW
523struct disk_info {
524 __u8 serial[MAX_RAID_SERIAL_LEN];
525};
526
8273f55e
DW
527struct imsm_update_create_array {
528 enum imsm_update_type type;
8273f55e 529 int dev_idx;
6a3e913e 530 struct imsm_dev dev;
8273f55e
DW
531};
532
33414a01
DW
533struct imsm_update_kill_array {
534 enum imsm_update_type type;
535 int dev_idx;
536};
537
aa534678
DW
538struct imsm_update_rename_array {
539 enum imsm_update_type type;
540 __u8 name[MAX_RAID_SERIAL_LEN];
541 int dev_idx;
542};
543
1a64be56 544struct imsm_update_add_remove_disk {
43dad3d6
DW
545 enum imsm_update_type type;
546};
547
bbab0940
TM
548struct imsm_update_prealloc_bb_mem {
549 enum imsm_update_type type;
550};
551
e6e9dd3f
AP
552struct imsm_update_rwh_policy {
553 enum imsm_update_type type;
554 int new_policy;
555 int dev_idx;
556};
557
88654014
LM
558static const char *_sys_dev_type[] = {
559 [SYS_DEV_UNKNOWN] = "Unknown",
560 [SYS_DEV_SAS] = "SAS",
614902f6 561 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
562 [SYS_DEV_NVME] = "NVMe",
563 [SYS_DEV_VMD] = "VMD"
88654014
LM
564};
565
566const char *get_sys_dev_type(enum sys_dev_type type)
567{
568 if (type >= SYS_DEV_MAX)
569 type = SYS_DEV_UNKNOWN;
570
571 return _sys_dev_type[type];
572}
573
574static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
575{
503975b9
N
576 struct intel_hba *result = xmalloc(sizeof(*result));
577
578 result->type = device->type;
579 result->path = xstrdup(device->path);
580 result->next = NULL;
581 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
582 result->pci_id++;
583
88654014
LM
584 return result;
585}
586
587static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
588{
594dc1b8
JS
589 struct intel_hba *result;
590
88654014
LM
591 for (result = hba; result; result = result->next) {
592 if (result->type == device->type && strcmp(result->path, device->path) == 0)
593 break;
594 }
595 return result;
596}
597
b4cf4cba 598static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
599{
600 struct intel_hba *hba;
601
602 /* check if disk attached to Intel HBA */
603 hba = find_intel_hba(super->hba, device);
604 if (hba != NULL)
605 return 1;
606 /* Check if HBA is already attached to super */
607 if (super->hba == NULL) {
608 super->hba = alloc_intel_hba(device);
609 return 1;
6b781d33
AP
610 }
611
612 hba = super->hba;
613 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 614 * Do not support HBA types mixing
6b781d33
AP
615 */
616 if (device->type != hba->type)
88654014 617 return 2;
6b781d33
AP
618
619 /* Multiple same type HBAs can be used if they share the same OROM */
620 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
621
622 if (device_orom != super->orom)
623 return 2;
624
625 while (hba->next)
626 hba = hba->next;
627
628 hba->next = alloc_intel_hba(device);
629 return 1;
88654014
LM
630}
631
632static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
633{
9bc4ae77 634 struct sys_dev *list, *elem;
88654014
LM
635 char *disk_path;
636
637 if ((list = find_intel_devices()) == NULL)
638 return 0;
639
640 if (fd < 0)
641 disk_path = (char *) devname;
642 else
643 disk_path = diskfd_to_devpath(fd);
644
9bc4ae77 645 if (!disk_path)
88654014 646 return 0;
88654014 647
9bc4ae77
N
648 for (elem = list; elem; elem = elem->next)
649 if (path_attached_to_hba(disk_path, elem->path))
88654014 650 return elem;
9bc4ae77 651
88654014
LM
652 if (disk_path != devname)
653 free(disk_path);
88654014
LM
654
655 return NULL;
656}
657
d424212e
N
658static int find_intel_hba_capability(int fd, struct intel_super *super,
659 char *devname);
f2f5c343 660
cdddbdbc
DW
661static struct supertype *match_metadata_desc_imsm(char *arg)
662{
663 struct supertype *st;
664
665 if (strcmp(arg, "imsm") != 0 &&
666 strcmp(arg, "default") != 0
667 )
668 return NULL;
669
503975b9 670 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
671 st->ss = &super_imsm;
672 st->max_devs = IMSM_MAX_DEVICES;
673 st->minor_version = 0;
674 st->sb = NULL;
675 return st;
676}
677
cdddbdbc
DW
678static __u8 *get_imsm_version(struct imsm_super *mpb)
679{
680 return &mpb->sig[MPB_SIG_LEN];
681}
682
949c47a0
DW
683/* retrieve a disk directly from the anchor when the anchor is known to be
684 * up-to-date, currently only at load time
685 */
686static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 687{
949c47a0 688 if (index >= mpb->num_disks)
cdddbdbc
DW
689 return NULL;
690 return &mpb->disk[index];
691}
692
95d07a2c
LM
693/* retrieve the disk description based on a index of the disk
694 * in the sub-array
695 */
696static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 697{
b9f594fe
DW
698 struct dl *d;
699
700 for (d = super->disks; d; d = d->next)
701 if (d->index == index)
95d07a2c
LM
702 return d;
703
704 return NULL;
705}
706/* retrieve a disk from the parsed metadata */
707static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
708{
709 struct dl *dl;
710
711 dl = get_imsm_dl_disk(super, index);
712 if (dl)
713 return &dl->disk;
714
b9f594fe 715 return NULL;
949c47a0
DW
716}
717
718/* generate a checksum directly from the anchor when the anchor is known to be
719 * up-to-date, currently only at load or write_super after coalescing
720 */
721static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
722{
723 __u32 end = mpb->mpb_size / sizeof(end);
724 __u32 *p = (__u32 *) mpb;
725 __u32 sum = 0;
726
5d500228
N
727 while (end--) {
728 sum += __le32_to_cpu(*p);
97f734fd
N
729 p++;
730 }
cdddbdbc 731
5d500228 732 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
733}
734
a965f303
DW
735static size_t sizeof_imsm_map(struct imsm_map *map)
736{
737 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
738}
739
740struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 741{
5e7b0330
AK
742 /* A device can have 2 maps if it is in the middle of a migration.
743 * If second_map is:
238c0a71
AK
744 * MAP_0 - we return the first map
745 * MAP_1 - we return the second map if it exists, else NULL
746 * MAP_X - we return the second map if it exists, else the first
5e7b0330 747 */
a965f303 748 struct imsm_map *map = &dev->vol.map[0];
9535fc47 749 struct imsm_map *map2 = NULL;
a965f303 750
9535fc47
AK
751 if (dev->vol.migr_state)
752 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 753
9535fc47 754 switch (second_map) {
3b451610 755 case MAP_0:
9535fc47 756 break;
3b451610 757 case MAP_1:
9535fc47
AK
758 map = map2;
759 break;
238c0a71 760 case MAP_X:
9535fc47
AK
761 if (map2)
762 map = map2;
763 break;
9535fc47
AK
764 default:
765 map = NULL;
766 }
767 return map;
5e7b0330 768
a965f303 769}
cdddbdbc 770
3393c6af
DW
771/* return the size of the device.
772 * migr_state increases the returned size if map[0] were to be duplicated
773 */
774static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
775{
776 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 777 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
778
779 /* migrating means an additional map */
a965f303 780 if (dev->vol.migr_state)
238c0a71 781 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 782 else if (migr_state)
238c0a71 783 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
784
785 return size;
786}
787
54c2c1ea
DW
788/* retrieve disk serial number list from a metadata update */
789static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
790{
791 void *u = update;
792 struct disk_info *inf;
793
794 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
795 sizeof_imsm_dev(&update->dev, 0);
796
797 return inf;
798}
54c2c1ea 799
949c47a0 800static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
801{
802 int offset;
803 int i;
804 void *_mpb = mpb;
805
949c47a0 806 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
807 return NULL;
808
809 /* devices start after all disks */
810 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
811
812 for (i = 0; i <= index; i++)
813 if (i == index)
814 return _mpb + offset;
815 else
3393c6af 816 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
817
818 return NULL;
819}
820
949c47a0
DW
821static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
822{
ba2de7ba
DW
823 struct intel_dev *dv;
824
949c47a0
DW
825 if (index >= super->anchor->num_raid_devs)
826 return NULL;
ba2de7ba
DW
827 for (dv = super->devlist; dv; dv = dv->next)
828 if (dv->index == index)
829 return dv->dev;
830 return NULL;
949c47a0
DW
831}
832
8d67477f
TM
833static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
834 *addr)
835{
836 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
837 __le16_to_cpu(addr->w1));
838}
839
840static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
841{
842 struct bbm_log_block_addr addr;
843
844 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
845 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
846 return addr;
847}
848
8d67477f
TM
849/* get size of the bbm log */
850static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
851{
852 if (!log || log->entry_count == 0)
853 return 0;
854
855 return sizeof(log->signature) +
856 sizeof(log->entry_count) +
857 log->entry_count * sizeof(struct bbm_log_entry);
858}
6f50473f
TM
859
860/* check if bad block is not partially stored in bbm log */
861static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
862 long long sector, const int length, __u32 *pos)
863{
864 __u32 i;
865
866 for (i = *pos; i < log->entry_count; i++) {
867 struct bbm_log_entry *entry = &log->marked_block_entries[i];
868 unsigned long long bb_start;
869 unsigned long long bb_end;
870
871 bb_start = __le48_to_cpu(&entry->defective_block_start);
872 bb_end = bb_start + (entry->marked_count + 1);
873
874 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
875 (bb_end <= sector + length)) {
876 *pos = i;
877 return 1;
878 }
879 }
880 return 0;
881}
882
883/* record new bad block in bbm log */
884static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
885 long long sector, int length)
886{
887 int new_bb = 0;
888 __u32 pos = 0;
889 struct bbm_log_entry *entry = NULL;
890
891 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
892 struct bbm_log_entry *e = &log->marked_block_entries[pos];
893
894 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
895 (__le48_to_cpu(&e->defective_block_start) == sector)) {
896 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
897 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
898 pos = pos + 1;
899 continue;
900 }
901 entry = e;
902 break;
903 }
904
905 if (entry) {
906 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
907 BBM_LOG_MAX_LBA_ENTRY_VAL;
908 entry->defective_block_start = __cpu_to_le48(sector);
909 entry->marked_count = cnt - 1;
910 if (cnt == length)
911 return 1;
912 sector += cnt;
913 length -= cnt;
914 }
915
916 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
917 BBM_LOG_MAX_LBA_ENTRY_VAL;
918 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
919 return 0;
920
921 while (length > 0) {
922 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 struct bbm_log_entry *entry =
925 &log->marked_block_entries[log->entry_count];
926
927 entry->defective_block_start = __cpu_to_le48(sector);
928 entry->marked_count = cnt - 1;
929 entry->disk_ordinal = idx;
930
931 sector += cnt;
932 length -= cnt;
933
934 log->entry_count++;
935 }
936
937 return new_bb;
938}
c07a5a4f 939
4c9e8c1e
TM
940/* clear all bad blocks for given disk */
941static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
942{
943 __u32 i = 0;
944
945 while (i < log->entry_count) {
946 struct bbm_log_entry *entries = log->marked_block_entries;
947
948 if (entries[i].disk_ordinal == idx) {
949 if (i < log->entry_count - 1)
950 entries[i] = entries[log->entry_count - 1];
951 log->entry_count--;
952 } else {
953 i++;
954 }
955 }
956}
957
c07a5a4f
TM
958/* clear given bad block */
959static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
960 long long sector, const int length) {
961 __u32 i = 0;
962
963 while (i < log->entry_count) {
964 struct bbm_log_entry *entries = log->marked_block_entries;
965
966 if ((entries[i].disk_ordinal == idx) &&
967 (__le48_to_cpu(&entries[i].defective_block_start) ==
968 sector) && (entries[i].marked_count + 1 == length)) {
969 if (i < log->entry_count - 1)
970 entries[i] = entries[log->entry_count - 1];
971 log->entry_count--;
972 break;
973 }
974 i++;
975 }
976
977 return 1;
978}
8d67477f
TM
979
980/* allocate and load BBM log from metadata */
981static int load_bbm_log(struct intel_super *super)
982{
983 struct imsm_super *mpb = super->anchor;
984 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
985
986 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
987 if (!super->bbm_log)
988 return 1;
989
990 if (bbm_log_size) {
991 struct bbm_log *log = (void *)mpb +
992 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
993
994 __u32 entry_count;
995
996 if (bbm_log_size < sizeof(log->signature) +
997 sizeof(log->entry_count))
998 return 2;
999
1000 entry_count = __le32_to_cpu(log->entry_count);
1001 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1002 (entry_count > BBM_LOG_MAX_ENTRIES))
1003 return 3;
1004
1005 if (bbm_log_size !=
1006 sizeof(log->signature) + sizeof(log->entry_count) +
1007 entry_count * sizeof(struct bbm_log_entry))
1008 return 4;
1009
1010 memcpy(super->bbm_log, log, bbm_log_size);
1011 } else {
1012 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1013 super->bbm_log->entry_count = 0;
1014 }
1015
1016 return 0;
1017}
1018
b12796be
TM
1019/* checks if bad block is within volume boundaries */
1020static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1021 const unsigned long long start_sector,
1022 const unsigned long long size)
1023{
1024 unsigned long long bb_start;
1025 unsigned long long bb_end;
1026
1027 bb_start = __le48_to_cpu(&entry->defective_block_start);
1028 bb_end = bb_start + (entry->marked_count + 1);
1029
1030 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1031 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1032 return 1;
1033
1034 return 0;
1035}
1036
1037/* get list of bad blocks on a drive for a volume */
1038static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1039 const unsigned long long start_sector,
1040 const unsigned long long size,
1041 struct md_bb *bbs)
1042{
1043 __u32 count = 0;
1044 __u32 i;
1045
1046 for (i = 0; i < log->entry_count; i++) {
1047 const struct bbm_log_entry *ent =
1048 &log->marked_block_entries[i];
1049 struct md_bb_entry *bb;
1050
1051 if ((ent->disk_ordinal == idx) &&
1052 is_bad_block_in_volume(ent, start_sector, size)) {
1053
1054 if (!bbs->entries) {
1055 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1056 sizeof(*bb));
1057 if (!bbs->entries)
1058 break;
1059 }
1060
1061 bb = &bbs->entries[count++];
1062 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1063 bb->length = ent->marked_count + 1;
1064 }
1065 }
1066 bbs->count = count;
1067}
1068
98130f40
AK
1069/*
1070 * for second_map:
238c0a71
AK
1071 * == MAP_0 get first map
1072 * == MAP_1 get second map
1073 * == MAP_X than get map according to the current migr_state
98130f40
AK
1074 */
1075static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1076 int slot,
1077 int second_map)
7eef0453
DW
1078{
1079 struct imsm_map *map;
1080
5e7b0330 1081 map = get_imsm_map(dev, second_map);
7eef0453 1082
ff077194
DW
1083 /* top byte identifies disk under rebuild */
1084 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1085}
1086
1087#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1088static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1089{
98130f40 1090 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1091
1092 return ord_to_idx(ord);
7eef0453
DW
1093}
1094
be73972f
DW
1095static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1096{
1097 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1098}
1099
f21e18ca 1100static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1101{
1102 int slot;
1103 __u32 ord;
1104
1105 for (slot = 0; slot < map->num_members; slot++) {
1106 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1107 if (ord_to_idx(ord) == idx)
1108 return slot;
1109 }
1110
1111 return -1;
1112}
1113
cdddbdbc
DW
1114static int get_imsm_raid_level(struct imsm_map *map)
1115{
1116 if (map->raid_level == 1) {
1117 if (map->num_members == 2)
1118 return 1;
1119 else
1120 return 10;
1121 }
1122
1123 return map->raid_level;
1124}
1125
c2c087e6
DW
1126static int cmp_extent(const void *av, const void *bv)
1127{
1128 const struct extent *a = av;
1129 const struct extent *b = bv;
1130 if (a->start < b->start)
1131 return -1;
1132 if (a->start > b->start)
1133 return 1;
1134 return 0;
1135}
1136
0dcecb2e 1137static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1138{
c2c087e6 1139 int memberships = 0;
620b1713 1140 int i;
c2c087e6 1141
949c47a0
DW
1142 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1143 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1144 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1145
620b1713
DW
1146 if (get_imsm_disk_slot(map, dl->index) >= 0)
1147 memberships++;
c2c087e6 1148 }
0dcecb2e
DW
1149
1150 return memberships;
1151}
1152
b81221b7
CA
1153static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1154
5551b113
CA
1155static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1156{
1157 if (lo == 0 || hi == 0)
1158 return 1;
1159 *lo = __le32_to_cpu((unsigned)n);
1160 *hi = __le32_to_cpu((unsigned)(n >> 32));
1161 return 0;
1162}
1163
1164static unsigned long long join_u32(__u32 lo, __u32 hi)
1165{
1166 return (unsigned long long)__le32_to_cpu(lo) |
1167 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1168}
1169
1170static unsigned long long total_blocks(struct imsm_disk *disk)
1171{
1172 if (disk == NULL)
1173 return 0;
1174 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1175}
1176
1177static unsigned long long pba_of_lba0(struct imsm_map *map)
1178{
1179 if (map == NULL)
1180 return 0;
1181 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1182}
1183
1184static unsigned long long blocks_per_member(struct imsm_map *map)
1185{
1186 if (map == NULL)
1187 return 0;
1188 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1189}
1190
1191static unsigned long long num_data_stripes(struct imsm_map *map)
1192{
1193 if (map == NULL)
1194 return 0;
1195 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1196}
1197
1198static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1199{
1200 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1201}
1202
1203static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1204{
1205 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1206}
1207
1208static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1209{
1210 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1211}
1212
1213static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1214{
1215 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1216}
1217
0dcecb2e
DW
1218static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1219{
1220 /* find a list of used extents on the given physical device */
1221 struct extent *rv, *e;
620b1713 1222 int i;
0dcecb2e 1223 int memberships = count_memberships(dl, super);
b276dd33
DW
1224 __u32 reservation;
1225
1226 /* trim the reserved area for spares, so they can join any array
1227 * regardless of whether the OROM has assigned sectors from the
1228 * IMSM_RESERVED_SECTORS region
1229 */
1230 if (dl->index == -1)
b81221b7 1231 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1232 else
1233 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1234
503975b9 1235 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1236 e = rv;
1237
949c47a0
DW
1238 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1239 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1240 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1241
620b1713 1242 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
1243 e->start = pba_of_lba0(map);
1244 e->size = blocks_per_member(map);
620b1713 1245 e++;
c2c087e6
DW
1246 }
1247 }
1248 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1249
1011e834 1250 /* determine the start of the metadata
14e8215b
DW
1251 * when no raid devices are defined use the default
1252 * ...otherwise allow the metadata to truncate the value
1253 * as is the case with older versions of imsm
1254 */
1255 if (memberships) {
1256 struct extent *last = &rv[memberships - 1];
5551b113 1257 unsigned long long remainder;
14e8215b 1258
5551b113 1259 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1260 /* round down to 1k block to satisfy precision of the kernel
1261 * 'size' interface
1262 */
1263 remainder &= ~1UL;
1264 /* make sure remainder is still sane */
f21e18ca 1265 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1266 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1267 if (reservation > remainder)
1268 reservation = remainder;
1269 }
5551b113 1270 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1271 e->size = 0;
1272 return rv;
1273}
1274
14e8215b
DW
1275/* try to determine how much space is reserved for metadata from
1276 * the last get_extents() entry, otherwise fallback to the
1277 * default
1278 */
1279static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1280{
1281 struct extent *e;
1282 int i;
1283 __u32 rv;
1284
1285 /* for spares just return a minimal reservation which will grow
1286 * once the spare is picked up by an array
1287 */
1288 if (dl->index == -1)
1289 return MPB_SECTOR_CNT;
1290
1291 e = get_extents(super, dl);
1292 if (!e)
1293 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1294
1295 /* scroll to last entry */
1296 for (i = 0; e[i].size; i++)
1297 continue;
1298
5551b113 1299 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1300
1301 free(e);
1302
1303 return rv;
1304}
1305
25ed7e59
DW
1306static int is_spare(struct imsm_disk *disk)
1307{
1308 return (disk->status & SPARE_DISK) == SPARE_DISK;
1309}
1310
1311static int is_configured(struct imsm_disk *disk)
1312{
1313 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1314}
1315
1316static int is_failed(struct imsm_disk *disk)
1317{
1318 return (disk->status & FAILED_DISK) == FAILED_DISK;
1319}
1320
2432ce9b
AP
1321static int is_journal(struct imsm_disk *disk)
1322{
1323 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1324}
1325
b53bfba6
TM
1326/* round array size down to closest MB and ensure it splits evenly
1327 * between members
1328 */
1329static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1330 disk_count)
1331{
1332 size /= disk_count;
1333 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1334 size *= disk_count;
1335
1336 return size;
1337}
1338
b81221b7
CA
1339/* try to determine how much space is reserved for metadata from
1340 * the last get_extents() entry on the smallest active disk,
1341 * otherwise fallback to the default
1342 */
1343static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1344{
1345 struct extent *e;
1346 int i;
5551b113
CA
1347 unsigned long long min_active;
1348 __u32 remainder;
b81221b7
CA
1349 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1350 struct dl *dl, *dl_min = NULL;
1351
1352 if (!super)
1353 return rv;
1354
1355 min_active = 0;
1356 for (dl = super->disks; dl; dl = dl->next) {
1357 if (dl->index < 0)
1358 continue;
5551b113
CA
1359 unsigned long long blocks = total_blocks(&dl->disk);
1360 if (blocks < min_active || min_active == 0) {
b81221b7 1361 dl_min = dl;
5551b113 1362 min_active = blocks;
b81221b7
CA
1363 }
1364 }
1365 if (!dl_min)
1366 return rv;
1367
1368 /* find last lba used by subarrays on the smallest active disk */
1369 e = get_extents(super, dl_min);
1370 if (!e)
1371 return rv;
1372 for (i = 0; e[i].size; i++)
1373 continue;
1374
1375 remainder = min_active - e[i].start;
1376 free(e);
1377
1378 /* to give priority to recovery we should not require full
1379 IMSM_RESERVED_SECTORS from the spare */
1380 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1381
1382 /* if real reservation is smaller use that value */
1383 return (remainder < rv) ? remainder : rv;
1384}
1385
80e7f8c3
AC
1386/* Return minimum size of a spare that can be used in this array*/
1387static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1388{
1389 struct intel_super *super = st->sb;
1390 struct dl *dl;
1391 struct extent *e;
1392 int i;
1393 unsigned long long rv = 0;
1394
1395 if (!super)
1396 return rv;
1397 /* find first active disk in array */
1398 dl = super->disks;
1399 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1400 dl = dl->next;
1401 if (!dl)
1402 return rv;
1403 /* find last lba used by subarrays */
1404 e = get_extents(super, dl);
1405 if (!e)
1406 return rv;
1407 for (i = 0; e[i].size; i++)
1408 continue;
1409 if (i > 0)
1410 rv = e[i-1].start + e[i-1].size;
1411 free(e);
b81221b7 1412
80e7f8c3 1413 /* add the amount of space needed for metadata */
b81221b7
CA
1414 rv = rv + imsm_min_reserved_sectors(super);
1415
80e7f8c3
AC
1416 return rv * 512;
1417}
1418
d1e02575
AK
1419static int is_gen_migration(struct imsm_dev *dev);
1420
f36a9ecd
PB
1421#define IMSM_4K_DIV 8
1422
c47b0ff6
AK
1423static __u64 blocks_per_migr_unit(struct intel_super *super,
1424 struct imsm_dev *dev);
1e5c6983 1425
c47b0ff6
AK
1426static void print_imsm_dev(struct intel_super *super,
1427 struct imsm_dev *dev,
1428 char *uuid,
1429 int disk_idx)
cdddbdbc
DW
1430{
1431 __u64 sz;
0d80bb2f 1432 int slot, i;
238c0a71
AK
1433 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1434 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1435 __u32 ord;
cdddbdbc
DW
1436
1437 printf("\n");
1e7bc0ed 1438 printf("[%.16s]:\n", dev->volume);
44470971 1439 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1440 printf(" RAID Level : %d", get_imsm_raid_level(map));
1441 if (map2)
1442 printf(" <-- %d", get_imsm_raid_level(map2));
1443 printf("\n");
1444 printf(" Members : %d", map->num_members);
1445 if (map2)
1446 printf(" <-- %d", map2->num_members);
1447 printf("\n");
0d80bb2f
DW
1448 printf(" Slots : [");
1449 for (i = 0; i < map->num_members; i++) {
238c0a71 1450 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1451 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1452 }
dd8bcb3b
AK
1453 printf("]");
1454 if (map2) {
1455 printf(" <-- [");
1456 for (i = 0; i < map2->num_members; i++) {
238c0a71 1457 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1458 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1459 }
1460 printf("]");
1461 }
1462 printf("\n");
7095bccb
AK
1463 printf(" Failed disk : ");
1464 if (map->failed_disk_num == 0xff)
1465 printf("none");
1466 else
1467 printf("%i", map->failed_disk_num);
1468 printf("\n");
620b1713
DW
1469 slot = get_imsm_disk_slot(map, disk_idx);
1470 if (slot >= 0) {
238c0a71 1471 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1472 printf(" This Slot : %d%s\n", slot,
1473 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1474 } else
cdddbdbc
DW
1475 printf(" This Slot : ?\n");
1476 sz = __le32_to_cpu(dev->size_high);
1477 sz <<= 32;
1478 sz += __le32_to_cpu(dev->size_low);
1479 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1480 human_size(sz * 512));
5551b113 1481 sz = blocks_per_member(map);
cdddbdbc
DW
1482 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1483 human_size(sz * 512));
5551b113
CA
1484 printf(" Sector Offset : %llu\n",
1485 pba_of_lba0(map));
1486 printf(" Num Stripes : %llu\n",
1487 num_data_stripes(map));
dd8bcb3b 1488 printf(" Chunk Size : %u KiB",
cdddbdbc 1489 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1490 if (map2)
1491 printf(" <-- %u KiB",
1492 __le16_to_cpu(map2->blocks_per_strip) / 2);
1493 printf("\n");
cdddbdbc 1494 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1495 printf(" Migrate State : ");
1484e727
DW
1496 if (dev->vol.migr_state) {
1497 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1498 printf("initialize\n");
1484e727 1499 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1500 printf("rebuild\n");
1484e727 1501 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1502 printf("check\n");
1484e727 1503 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1504 printf("general migration\n");
1484e727 1505 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1506 printf("state change\n");
1484e727 1507 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1508 printf("repair\n");
1484e727 1509 else
8655a7b1
DW
1510 printf("<unknown:%d>\n", migr_type(dev));
1511 } else
1512 printf("idle\n");
3393c6af
DW
1513 printf(" Map State : %s", map_state_str[map->map_state]);
1514 if (dev->vol.migr_state) {
238c0a71 1515 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1516
b10b37b8 1517 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1518 printf("\n Checkpoint : %u ",
1519 __le32_to_cpu(dev->vol.curr_migr_unit));
089f9d79 1520 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1521 printf("(N/A)");
1522 else
1523 printf("(%llu)", (unsigned long long)
1524 blocks_per_migr_unit(super, dev));
3393c6af
DW
1525 }
1526 printf("\n");
2432ce9b
AP
1527 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1528 "dirty" : "clean");
1529 printf(" RWH Policy : ");
1530 if (dev->rwh_policy == RWH_OFF)
1531 printf("off\n");
1532 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1533 printf("PPL distributed\n");
1534 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1535 printf("PPL journaling drive\n");
1536 else
1537 printf("<unknown:%d>\n", dev->rwh_policy);
cdddbdbc
DW
1538}
1539
ef5c214e
MK
1540static void print_imsm_disk(struct imsm_disk *disk,
1541 int index,
1542 __u32 reserved,
1543 unsigned int sector_size) {
1f24f035 1544 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1545 __u64 sz;
1546
0ec1f4e8 1547 if (index < -1 || !disk)
e9d82038
DW
1548 return;
1549
cdddbdbc 1550 printf("\n");
1f24f035 1551 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1552 if (index >= 0)
1553 printf(" Disk%02d Serial : %s\n", index, str);
1554 else
1555 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1556 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1557 is_configured(disk) ? " active" : "",
1558 is_failed(disk) ? " failed" : "",
1559 is_journal(disk) ? " journal" : "");
cdddbdbc 1560 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1561 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1562 printf(" Usable Size : %llu%s\n",
1563 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1564 human_size(sz * 512));
1565}
1566
de44e46f
PB
1567void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1568{
1569 struct migr_record *migr_rec = super->migr_rec;
1570
1571 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1572 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1573 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1574 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1575 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1576 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1577 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1578}
1579
f36a9ecd
PB
1580void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1581{
1582 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1583}
1584
1585void convert_to_4k(struct intel_super *super)
1586{
1587 struct imsm_super *mpb = super->anchor;
1588 struct imsm_disk *disk;
1589 int i;
e4467bc7 1590 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1591
1592 for (i = 0; i < mpb->num_disks ; i++) {
1593 disk = __get_imsm_disk(mpb, i);
1594 /* disk */
1595 convert_to_4k_imsm_disk(disk);
1596 }
1597 for (i = 0; i < mpb->num_raid_devs; i++) {
1598 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1599 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1600 /* dev */
1601 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1602 &dev->size_low, &dev->size_high);
1603 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1604
1605 /* map0 */
1606 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1607 map->blocks_per_strip /= IMSM_4K_DIV;
1608 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1609
1610 if (dev->vol.migr_state) {
1611 /* map1 */
1612 map = get_imsm_map(dev, MAP_1);
1613 set_blocks_per_member(map,
1614 blocks_per_member(map)/IMSM_4K_DIV);
1615 map->blocks_per_strip /= IMSM_4K_DIV;
1616 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1617 }
1618 }
e4467bc7
TM
1619 if (bbm_log_size) {
1620 struct bbm_log *log = (void *)mpb +
1621 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1622 __u32 i;
1623
1624 for (i = 0; i < log->entry_count; i++) {
1625 struct bbm_log_entry *entry =
1626 &log->marked_block_entries[i];
1627
1628 __u8 count = entry->marked_count + 1;
1629 unsigned long long sector =
1630 __le48_to_cpu(&entry->defective_block_start);
1631
1632 entry->defective_block_start =
1633 __cpu_to_le48(sector/IMSM_4K_DIV);
1634 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1635 }
1636 }
f36a9ecd
PB
1637
1638 mpb->check_sum = __gen_imsm_checksum(mpb);
1639}
1640
520e69e2
AK
1641void examine_migr_rec_imsm(struct intel_super *super)
1642{
1643 struct migr_record *migr_rec = super->migr_rec;
1644 struct imsm_super *mpb = super->anchor;
1645 int i;
1646
1647 for (i = 0; i < mpb->num_raid_devs; i++) {
1648 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1649 struct imsm_map *map;
b4ab44d8 1650 int slot = -1;
3136abe5 1651
520e69e2
AK
1652 if (is_gen_migration(dev) == 0)
1653 continue;
1654
1655 printf("\nMigration Record Information:");
3136abe5 1656
44bfe6df
AK
1657 /* first map under migration */
1658 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1659 if (map)
1660 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1661 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1662 printf(" Empty\n ");
1663 printf("Examine one of first two disks in array\n");
1664 break;
1665 }
1666 printf("\n Status : ");
1667 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1668 printf("Normal\n");
1669 else
1670 printf("Contains Data\n");
1671 printf(" Current Unit : %u\n",
1672 __le32_to_cpu(migr_rec->curr_migr_unit));
1673 printf(" Family : %u\n",
1674 __le32_to_cpu(migr_rec->family_num));
1675 printf(" Ascending : %u\n",
1676 __le32_to_cpu(migr_rec->ascending_migr));
1677 printf(" Blocks Per Unit : %u\n",
1678 __le32_to_cpu(migr_rec->blocks_per_unit));
1679 printf(" Dest. Depth Per Unit : %u\n",
1680 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1681 printf(" Checkpoint Area pba : %u\n",
1682 __le32_to_cpu(migr_rec->ckpt_area_pba));
1683 printf(" First member lba : %u\n",
1684 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1685 printf(" Total Number of Units : %u\n",
1686 __le32_to_cpu(migr_rec->num_migr_units));
1687 printf(" Size of volume : %u\n",
1688 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1689 printf(" Expansion space for LBA64 : %u\n",
1690 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1691 printf(" Record was read from : %u\n",
1692 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1693
1694 break;
1695 }
1696}
f36a9ecd 1697
de44e46f
PB
1698void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1699{
1700 struct migr_record *migr_rec = super->migr_rec;
1701
1702 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1703 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1704 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1705 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1706 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1707 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1708 &migr_rec->post_migr_vol_cap,
1709 &migr_rec->post_migr_vol_cap_hi);
1710}
1711
f36a9ecd
PB
1712void convert_from_4k(struct intel_super *super)
1713{
1714 struct imsm_super *mpb = super->anchor;
1715 struct imsm_disk *disk;
1716 int i;
e4467bc7 1717 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1718
1719 for (i = 0; i < mpb->num_disks ; i++) {
1720 disk = __get_imsm_disk(mpb, i);
1721 /* disk */
1722 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1723 }
1724
1725 for (i = 0; i < mpb->num_raid_devs; i++) {
1726 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1727 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1728 /* dev */
1729 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1730 &dev->size_low, &dev->size_high);
1731 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1732
1733 /* map0 */
1734 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1735 map->blocks_per_strip *= IMSM_4K_DIV;
1736 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1737
1738 if (dev->vol.migr_state) {
1739 /* map1 */
1740 map = get_imsm_map(dev, MAP_1);
1741 set_blocks_per_member(map,
1742 blocks_per_member(map)*IMSM_4K_DIV);
1743 map->blocks_per_strip *= IMSM_4K_DIV;
1744 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1745 }
1746 }
e4467bc7
TM
1747 if (bbm_log_size) {
1748 struct bbm_log *log = (void *)mpb +
1749 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1750 __u32 i;
1751
1752 for (i = 0; i < log->entry_count; i++) {
1753 struct bbm_log_entry *entry =
1754 &log->marked_block_entries[i];
1755
1756 __u8 count = entry->marked_count + 1;
1757 unsigned long long sector =
1758 __le48_to_cpu(&entry->defective_block_start);
1759
1760 entry->defective_block_start =
1761 __cpu_to_le48(sector*IMSM_4K_DIV);
1762 entry->marked_count = count*IMSM_4K_DIV - 1;
1763 }
1764 }
f36a9ecd
PB
1765
1766 mpb->check_sum = __gen_imsm_checksum(mpb);
1767}
1768
19482bcc
AK
1769/*******************************************************************************
1770 * function: imsm_check_attributes
1771 * Description: Function checks if features represented by attributes flags
1011e834 1772 * are supported by mdadm.
19482bcc
AK
1773 * Parameters:
1774 * attributes - Attributes read from metadata
1775 * Returns:
1011e834
N
1776 * 0 - passed attributes contains unsupported features flags
1777 * 1 - all features are supported
19482bcc
AK
1778 ******************************************************************************/
1779static int imsm_check_attributes(__u32 attributes)
1780{
1781 int ret_val = 1;
418f9b36
N
1782 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1783
1784 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1785
1786 not_supported &= attributes;
1787 if (not_supported) {
e7b84f9d 1788 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1789 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1790 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1791 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1792 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1793 }
1794 if (not_supported & MPB_ATTRIB_2TB) {
1795 dprintf("\t\tMPB_ATTRIB_2TB\n");
1796 not_supported ^= MPB_ATTRIB_2TB;
1797 }
1798 if (not_supported & MPB_ATTRIB_RAID0) {
1799 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1800 not_supported ^= MPB_ATTRIB_RAID0;
1801 }
1802 if (not_supported & MPB_ATTRIB_RAID1) {
1803 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1804 not_supported ^= MPB_ATTRIB_RAID1;
1805 }
1806 if (not_supported & MPB_ATTRIB_RAID10) {
1807 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1808 not_supported ^= MPB_ATTRIB_RAID10;
1809 }
1810 if (not_supported & MPB_ATTRIB_RAID1E) {
1811 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1812 not_supported ^= MPB_ATTRIB_RAID1E;
1813 }
1814 if (not_supported & MPB_ATTRIB_RAID5) {
1815 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1816 not_supported ^= MPB_ATTRIB_RAID5;
1817 }
1818 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1819 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1820 not_supported ^= MPB_ATTRIB_RAIDCNG;
1821 }
1822 if (not_supported & MPB_ATTRIB_BBM) {
1823 dprintf("\t\tMPB_ATTRIB_BBM\n");
1824 not_supported ^= MPB_ATTRIB_BBM;
1825 }
1826 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1827 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1828 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1829 }
1830 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1831 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1832 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1833 }
1834 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1835 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1836 not_supported ^= MPB_ATTRIB_2TB_DISK;
1837 }
1838 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1839 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1840 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1841 }
1842 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1843 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1844 not_supported ^= MPB_ATTRIB_NEVER_USE;
1845 }
1846
1847 if (not_supported)
1ade5cc1 1848 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1849
1850 ret_val = 0;
1851 }
1852
1853 return ret_val;
1854}
1855
a5d85af7 1856static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1857
cdddbdbc
DW
1858static void examine_super_imsm(struct supertype *st, char *homehost)
1859{
1860 struct intel_super *super = st->sb;
949c47a0 1861 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1862 char str[MAX_SIGNATURE_LENGTH];
1863 int i;
27fd6274
DW
1864 struct mdinfo info;
1865 char nbuf[64];
cdddbdbc 1866 __u32 sum;
14e8215b 1867 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1868 struct dl *dl;
27fd6274 1869
618f4e6d
XN
1870 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1871 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc
DW
1872 printf(" Magic : %s\n", str);
1873 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1874 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1875 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1876 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1877 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1878 printf(" Attributes : ");
1879 if (imsm_check_attributes(mpb->attributes))
1880 printf("All supported\n");
1881 else
1882 printf("not supported\n");
a5d85af7 1883 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1884 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1885 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1886 sum = __le32_to_cpu(mpb->check_sum);
1887 printf(" Checksum : %08x %s\n", sum,
949c47a0 1888 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 1889 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
1890 printf(" Disks : %d\n", mpb->num_disks);
1891 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
1892 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1893 super->disks->index, reserved, super->sector_size);
8d67477f 1894 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
1895 struct bbm_log *log = super->bbm_log;
1896
1897 printf("\n");
1898 printf("Bad Block Management Log:\n");
1899 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1900 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1901 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 1902 }
44470971
DW
1903 for (i = 0; i < mpb->num_raid_devs; i++) {
1904 struct mdinfo info;
1905 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1906
1907 super->current_vol = i;
a5d85af7 1908 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1909 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1910 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1911 }
cdddbdbc
DW
1912 for (i = 0; i < mpb->num_disks; i++) {
1913 if (i == super->disks->index)
1914 continue;
ef5c214e
MK
1915 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1916 super->sector_size);
cdddbdbc 1917 }
94827db3 1918
0ec1f4e8
DW
1919 for (dl = super->disks; dl; dl = dl->next)
1920 if (dl->index == -1)
ef5c214e
MK
1921 print_imsm_disk(&dl->disk, -1, reserved,
1922 super->sector_size);
520e69e2
AK
1923
1924 examine_migr_rec_imsm(super);
cdddbdbc
DW
1925}
1926
061f2c6a 1927static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1928{
27fd6274 1929 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1930 struct mdinfo info;
1931 char nbuf[64];
1e7bc0ed 1932 struct intel_super *super = st->sb;
1e7bc0ed 1933
0d5a423f
DW
1934 if (!super->anchor->num_raid_devs) {
1935 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1936 return;
0d5a423f 1937 }
ff54de6e 1938
a5d85af7 1939 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1940 fname_from_uuid(st, &info, nbuf, ':');
1941 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1942}
1943
1944static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1945{
1946 /* We just write a generic IMSM ARRAY entry */
1947 struct mdinfo info;
1948 char nbuf[64];
1949 char nbuf1[64];
1950 struct intel_super *super = st->sb;
1951 int i;
1952
1953 if (!super->anchor->num_raid_devs)
1954 return;
1955
a5d85af7 1956 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1957 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1958 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1959 struct imsm_dev *dev = get_imsm_dev(super, i);
1960
1961 super->current_vol = i;
a5d85af7 1962 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1963 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1964 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1965 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1966 }
cdddbdbc
DW
1967}
1968
9d84c8ea
DW
1969static void export_examine_super_imsm(struct supertype *st)
1970{
1971 struct intel_super *super = st->sb;
1972 struct imsm_super *mpb = super->anchor;
1973 struct mdinfo info;
1974 char nbuf[64];
1975
a5d85af7 1976 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1977 fname_from_uuid(st, &info, nbuf, ':');
1978 printf("MD_METADATA=imsm\n");
1979 printf("MD_LEVEL=container\n");
1980 printf("MD_UUID=%s\n", nbuf+5);
1981 printf("MD_DEVICES=%u\n", mpb->num_disks);
1982}
1983
74db60b0
N
1984static int copy_metadata_imsm(struct supertype *st, int from, int to)
1985{
f36a9ecd 1986 /* The second last sector of the device contains
74db60b0
N
1987 * the "struct imsm_super" metadata.
1988 * This contains mpb_size which is the size in bytes of the
1989 * extended metadata. This is located immediately before
1990 * the imsm_super.
1991 * We want to read all that, plus the last sector which
1992 * may contain a migration record, and write it all
1993 * to the target.
1994 */
1995 void *buf;
1996 unsigned long long dsize, offset;
1997 int sectors;
1998 struct imsm_super *sb;
f36a9ecd
PB
1999 struct intel_super *super = st->sb;
2000 unsigned int sector_size = super->sector_size;
2001 unsigned int written = 0;
74db60b0 2002
de44e46f 2003 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
74db60b0
N
2004 return 1;
2005
2006 if (!get_dev_size(from, NULL, &dsize))
2007 goto err;
2008
f36a9ecd 2009 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
74db60b0 2010 goto err;
466070ad 2011 if ((unsigned int)read(from, buf, sector_size) != sector_size)
74db60b0
N
2012 goto err;
2013 sb = buf;
2014 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2015 goto err;
2016
f36a9ecd
PB
2017 sectors = mpb_sectors(sb, sector_size) + 2;
2018 offset = dsize - sectors * sector_size;
74db60b0
N
2019 if (lseek64(from, offset, 0) < 0 ||
2020 lseek64(to, offset, 0) < 0)
2021 goto err;
f36a9ecd
PB
2022 while (written < sectors * sector_size) {
2023 int n = sectors*sector_size - written;
74db60b0
N
2024 if (n > 4096)
2025 n = 4096;
2026 if (read(from, buf, n) != n)
2027 goto err;
2028 if (write(to, buf, n) != n)
2029 goto err;
2030 written += n;
2031 }
2032 free(buf);
2033 return 0;
2034err:
2035 free(buf);
2036 return 1;
2037}
2038
cdddbdbc
DW
2039static void detail_super_imsm(struct supertype *st, char *homehost)
2040{
3ebe00a1
DW
2041 struct mdinfo info;
2042 char nbuf[64];
2043
a5d85af7 2044 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2045 fname_from_uuid(st, &info, nbuf, ':');
65884368 2046 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2047}
2048
2049static void brief_detail_super_imsm(struct supertype *st)
2050{
ff54de6e
N
2051 struct mdinfo info;
2052 char nbuf[64];
a5d85af7 2053 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2054 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2055 printf(" UUID=%s", nbuf + 5);
cdddbdbc 2056}
d665cc31
DW
2057
2058static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2059static void fd2devname(int fd, char *name);
2060
120dc887 2061static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2062{
120dc887
LM
2063 /* dump an unsorted list of devices attached to AHCI Intel storage
2064 * controller, as well as non-connected ports
d665cc31
DW
2065 */
2066 int hba_len = strlen(hba_path) + 1;
2067 struct dirent *ent;
2068 DIR *dir;
2069 char *path = NULL;
2070 int err = 0;
2071 unsigned long port_mask = (1 << port_count) - 1;
2072
f21e18ca 2073 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2074 if (verbose > 0)
e7b84f9d 2075 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2076 return 2;
2077 }
2078
2079 /* scroll through /sys/dev/block looking for devices attached to
2080 * this hba
2081 */
2082 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2083 if (!dir)
2084 return 1;
2085
2086 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2087 int fd;
2088 char model[64];
2089 char vendor[64];
2090 char buf[1024];
2091 int major, minor;
2092 char *device;
2093 char *c;
2094 int port;
2095 int type;
2096
2097 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2098 continue;
2099 path = devt_to_devpath(makedev(major, minor));
2100 if (!path)
2101 continue;
2102 if (!path_attached_to_hba(path, hba_path)) {
2103 free(path);
2104 path = NULL;
2105 continue;
2106 }
2107
2108 /* retrieve the scsi device type */
2109 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 2110 if (verbose > 0)
e7b84f9d 2111 pr_err("failed to allocate 'device'\n");
d665cc31
DW
2112 err = 2;
2113 break;
2114 }
2115 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 2116 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 2117 if (verbose > 0)
e7b84f9d 2118 pr_err("failed to read device type for %s\n",
d665cc31
DW
2119 path);
2120 err = 2;
2121 free(device);
2122 break;
2123 }
2124 type = strtoul(buf, NULL, 10);
2125
2126 /* if it's not a disk print the vendor and model */
2127 if (!(type == 0 || type == 7 || type == 14)) {
2128 vendor[0] = '\0';
2129 model[0] = '\0';
2130 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 2131 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2132 strncpy(vendor, buf, sizeof(vendor));
2133 vendor[sizeof(vendor) - 1] = '\0';
2134 c = (char *) &vendor[sizeof(vendor) - 1];
2135 while (isspace(*c) || *c == '\0')
2136 *c-- = '\0';
2137
2138 }
2139 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 2140 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2141 strncpy(model, buf, sizeof(model));
2142 model[sizeof(model) - 1] = '\0';
2143 c = (char *) &model[sizeof(model) - 1];
2144 while (isspace(*c) || *c == '\0')
2145 *c-- = '\0';
2146 }
2147
2148 if (vendor[0] && model[0])
2149 sprintf(buf, "%.64s %.64s", vendor, model);
2150 else
2151 switch (type) { /* numbers from hald/linux/device.c */
2152 case 1: sprintf(buf, "tape"); break;
2153 case 2: sprintf(buf, "printer"); break;
2154 case 3: sprintf(buf, "processor"); break;
2155 case 4:
2156 case 5: sprintf(buf, "cdrom"); break;
2157 case 6: sprintf(buf, "scanner"); break;
2158 case 8: sprintf(buf, "media_changer"); break;
2159 case 9: sprintf(buf, "comm"); break;
2160 case 12: sprintf(buf, "raid"); break;
2161 default: sprintf(buf, "unknown");
2162 }
2163 } else
2164 buf[0] = '\0';
2165 free(device);
2166
2167 /* chop device path to 'host%d' and calculate the port number */
2168 c = strchr(&path[hba_len], '/');
4e5e717d 2169 if (!c) {
ba728be7 2170 if (verbose > 0)
e7b84f9d 2171 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2172 err = 2;
2173 break;
2174 }
d665cc31 2175 *c = '\0';
0858eccf
AP
2176 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2177 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2178 port -= host_base;
2179 else {
ba728be7 2180 if (verbose > 0) {
d665cc31 2181 *c = '/'; /* repair the full string */
e7b84f9d 2182 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2183 path);
2184 }
2185 err = 2;
2186 break;
2187 }
2188
2189 /* mark this port as used */
2190 port_mask &= ~(1 << port);
2191
2192 /* print out the device information */
2193 if (buf[0]) {
2194 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2195 continue;
2196 }
2197
2198 fd = dev_open(ent->d_name, O_RDONLY);
2199 if (fd < 0)
2200 printf(" Port%d : - disk info unavailable -\n", port);
2201 else {
2202 fd2devname(fd, buf);
2203 printf(" Port%d : %s", port, buf);
2204 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 2205 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 2206 else
664d5325 2207 printf(" ()\n");
4dab422a 2208 close(fd);
d665cc31 2209 }
d665cc31
DW
2210 free(path);
2211 path = NULL;
2212 }
2213 if (path)
2214 free(path);
2215 if (dir)
2216 closedir(dir);
2217 if (err == 0) {
2218 int i;
2219
2220 for (i = 0; i < port_count; i++)
2221 if (port_mask & (1 << i))
2222 printf(" Port%d : - no device attached -\n", i);
2223 }
2224
2225 return err;
2226}
2227
b5eece69 2228static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
2229{
2230 struct dirent *ent;
2231 DIR *dir;
2232 char path[292];
2233 char link[256];
2234 char *c, *rp;
2235
2236 if (hba->type != SYS_DEV_VMD)
b5eece69 2237 return 1;
60f0f54d
PB
2238
2239 /* scroll through /sys/dev/block looking for devices attached to
2240 * this hba
2241 */
2242 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 2243 if (!dir)
b5eece69 2244 return 1;
b9135011
JS
2245
2246 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
2247 int n;
2248
2249 /* is 'ent' a device? check that the 'subsystem' link exists and
2250 * that its target matches 'bus'
2251 */
2252 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2253 ent->d_name);
2254 n = readlink(path, link, sizeof(link));
2255 if (n < 0 || n >= (int)sizeof(link))
2256 continue;
2257 link[n] = '\0';
2258 c = strrchr(link, '/');
2259 if (!c)
2260 continue;
2261 if (strncmp("pci", c+1, strlen("pci")) != 0)
2262 continue;
2263
2264 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
60f0f54d
PB
2265
2266 rp = realpath(path, NULL);
2267 if (!rp)
2268 continue;
2269
2270 if (path_attached_to_hba(rp, hba->path)) {
2271 printf(" NVMe under VMD : %s\n", rp);
2272 }
2273 free(rp);
2274 }
2275
b9135011 2276 closedir(dir);
b5eece69 2277 return 0;
60f0f54d
PB
2278}
2279
120dc887
LM
2280static void print_found_intel_controllers(struct sys_dev *elem)
2281{
2282 for (; elem; elem = elem->next) {
e7b84f9d 2283 pr_err("found Intel(R) ");
120dc887
LM
2284 if (elem->type == SYS_DEV_SATA)
2285 fprintf(stderr, "SATA ");
155cbb4c
LM
2286 else if (elem->type == SYS_DEV_SAS)
2287 fprintf(stderr, "SAS ");
0858eccf
AP
2288 else if (elem->type == SYS_DEV_NVME)
2289 fprintf(stderr, "NVMe ");
60f0f54d
PB
2290
2291 if (elem->type == SYS_DEV_VMD)
2292 fprintf(stderr, "VMD domain");
2293 else
2294 fprintf(stderr, "RAID controller");
2295
120dc887
LM
2296 if (elem->pci_id)
2297 fprintf(stderr, " at %s", elem->pci_id);
2298 fprintf(stderr, ".\n");
2299 }
2300 fflush(stderr);
2301}
2302
120dc887
LM
2303static int ahci_get_port_count(const char *hba_path, int *port_count)
2304{
2305 struct dirent *ent;
2306 DIR *dir;
2307 int host_base = -1;
2308
2309 *port_count = 0;
2310 if ((dir = opendir(hba_path)) == NULL)
2311 return -1;
2312
2313 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2314 int host;
2315
0858eccf
AP
2316 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2317 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2318 continue;
2319 if (*port_count == 0)
2320 host_base = host;
2321 else if (host < host_base)
2322 host_base = host;
2323
2324 if (host + 1 > *port_count + host_base)
2325 *port_count = host + 1 - host_base;
2326 }
2327 closedir(dir);
2328 return host_base;
2329}
2330
a891a3c2
LM
2331static void print_imsm_capability(const struct imsm_orom *orom)
2332{
0858eccf
AP
2333 printf(" Platform : Intel(R) ");
2334 if (orom->capabilities == 0 && orom->driver_features == 0)
2335 printf("Matrix Storage Manager\n");
2336 else
2337 printf("Rapid Storage Technology%s\n",
2338 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2339 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2340 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2341 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2342 printf(" RAID Levels :%s%s%s%s%s\n",
2343 imsm_orom_has_raid0(orom) ? " raid0" : "",
2344 imsm_orom_has_raid1(orom) ? " raid1" : "",
2345 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2346 imsm_orom_has_raid10(orom) ? " raid10" : "",
2347 imsm_orom_has_raid5(orom) ? " raid5" : "");
2348 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2349 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2350 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2351 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2352 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2353 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2354 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2355 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2356 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2357 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2358 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2359 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2360 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2361 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2362 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2363 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2364 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2365 printf(" 2TB volumes :%s supported\n",
2366 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2367 printf(" 2TB disks :%s supported\n",
2368 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2369 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2370 printf(" Max Volumes : %d per array, %d per %s\n",
2371 orom->vpa, orom->vphba,
2372 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2373 return;
2374}
2375
e50cf220
MN
2376static void print_imsm_capability_export(const struct imsm_orom *orom)
2377{
2378 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2379 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2380 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2381 orom->hotfix_ver, orom->build);
e50cf220
MN
2382 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2383 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2384 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2385 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2386 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2387 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2388 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2389 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2390 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2391 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2392 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2393 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2394 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2395 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2396 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2397 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2398 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2399 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2400 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2401 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2402 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2403 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2404 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2405 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2406 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2407 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2408 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2409 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2410}
2411
9eafa1de 2412static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2413{
2414 /* There are two components to imsm platform support, the ahci SATA
2415 * controller and the option-rom. To find the SATA controller we
2416 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2417 * controller with the Intel vendor id is present. This approach
2418 * allows mdadm to leverage the kernel's ahci detection logic, with the
2419 * caveat that if ahci.ko is not loaded mdadm will not be able to
2420 * detect platform raid capabilities. The option-rom resides in a
2421 * platform "Adapter ROM". We scan for its signature to retrieve the
2422 * platform capabilities. If raid support is disabled in the BIOS the
2423 * option-rom capability structure will not be available.
2424 */
d665cc31 2425 struct sys_dev *list, *hba;
d665cc31
DW
2426 int host_base = 0;
2427 int port_count = 0;
9eafa1de 2428 int result=1;
d665cc31 2429
5615172f 2430 if (enumerate_only) {
a891a3c2 2431 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2432 return 0;
a891a3c2
LM
2433 list = find_intel_devices();
2434 if (!list)
2435 return 2;
2436 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2437 if (find_imsm_capability(hba)) {
2438 result = 0;
a891a3c2
LM
2439 break;
2440 }
9eafa1de 2441 else
6b781d33 2442 result = 2;
a891a3c2 2443 }
a891a3c2 2444 return result;
5615172f
DW
2445 }
2446
155cbb4c
LM
2447 list = find_intel_devices();
2448 if (!list) {
ba728be7 2449 if (verbose > 0)
7a862a02 2450 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2451 return 2;
ba728be7 2452 } else if (verbose > 0)
155cbb4c 2453 print_found_intel_controllers(list);
d665cc31 2454
a891a3c2 2455 for (hba = list; hba; hba = hba->next) {
0858eccf 2456 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2457 continue;
0858eccf 2458 if (!find_imsm_capability(hba)) {
60f0f54d 2459 char buf[PATH_MAX];
e7b84f9d 2460 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2461 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2462 get_sys_dev_type(hba->type));
0858eccf
AP
2463 continue;
2464 }
2465 result = 0;
2466 }
2467
2468 if (controller_path && result == 1) {
2469 pr_err("no active Intel(R) RAID controller found under %s\n",
2470 controller_path);
2471 return result;
2472 }
2473
5e1d6128 2474 const struct orom_entry *entry;
0858eccf 2475
5e1d6128 2476 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2477 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2478 print_imsm_capability(&entry->orom);
32716c51
PB
2479 printf(" 3rd party NVMe :%s supported\n",
2480 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2481 for (hba = list; hba; hba = hba->next) {
2482 if (hba->type == SYS_DEV_VMD) {
2483 char buf[PATH_MAX];
60f0f54d
PB
2484 printf(" I/O Controller : %s (%s)\n",
2485 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2486 if (print_vmd_attached_devs(hba)) {
2487 if (verbose > 0)
2488 pr_err("failed to get devices attached to VMD domain.\n");
2489 result |= 2;
2490 }
60f0f54d
PB
2491 }
2492 }
07cb1e57 2493 printf("\n");
60f0f54d
PB
2494 continue;
2495 }
0858eccf 2496
60f0f54d
PB
2497 print_imsm_capability(&entry->orom);
2498 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2499 for (hba = list; hba; hba = hba->next) {
2500 if (hba->type == SYS_DEV_NVME)
2501 printf(" NVMe Device : %s\n", hba->path);
2502 }
60f0f54d 2503 printf("\n");
0858eccf
AP
2504 continue;
2505 }
2506
2507 struct devid_list *devid;
5e1d6128 2508 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2509 hba = device_by_id(devid->devid);
2510 if (!hba)
2511 continue;
2512
9eafa1de
MN
2513 printf(" I/O Controller : %s (%s)\n",
2514 hba->path, get_sys_dev_type(hba->type));
2515 if (hba->type == SYS_DEV_SATA) {
2516 host_base = ahci_get_port_count(hba->path, &port_count);
2517 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2518 if (verbose > 0)
7a862a02 2519 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2520 result |= 2;
2521 }
120dc887
LM
2522 }
2523 }
0858eccf 2524 printf("\n");
d665cc31 2525 }
155cbb4c 2526
120dc887 2527 return result;
d665cc31 2528}
e50cf220 2529
9eafa1de 2530static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2531{
e50cf220
MN
2532 struct sys_dev *list, *hba;
2533 int result=1;
2534
2535 list = find_intel_devices();
2536 if (!list) {
2537 if (verbose > 0)
2538 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2539 result = 2;
e50cf220
MN
2540 return result;
2541 }
2542
2543 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2544 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2545 continue;
60f0f54d
PB
2546 if (!find_imsm_capability(hba) && verbose > 0) {
2547 char buf[PATH_MAX];
2548 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2549 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2550 }
0858eccf 2551 else
e50cf220 2552 result = 0;
e50cf220
MN
2553 }
2554
5e1d6128 2555 const struct orom_entry *entry;
0858eccf 2556
60f0f54d
PB
2557 for (entry = orom_entries; entry; entry = entry->next) {
2558 if (entry->type == SYS_DEV_VMD) {
2559 for (hba = list; hba; hba = hba->next)
2560 print_imsm_capability_export(&entry->orom);
2561 continue;
2562 }
5e1d6128 2563 print_imsm_capability_export(&entry->orom);
60f0f54d 2564 }
0858eccf 2565
e50cf220
MN
2566 return result;
2567}
2568
cdddbdbc
DW
2569static int match_home_imsm(struct supertype *st, char *homehost)
2570{
5115ca67
DW
2571 /* the imsm metadata format does not specify any host
2572 * identification information. We return -1 since we can never
2573 * confirm nor deny whether a given array is "meant" for this
148acb7b 2574 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2575 * exclude member disks that do not belong, and we rely on
2576 * mdadm.conf to specify the arrays that should be assembled.
2577 * Auto-assembly may still pick up "foreign" arrays.
2578 */
cdddbdbc 2579
9362c1c8 2580 return -1;
cdddbdbc
DW
2581}
2582
2583static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2584{
51006d85
N
2585 /* The uuid returned here is used for:
2586 * uuid to put into bitmap file (Create, Grow)
2587 * uuid for backup header when saving critical section (Grow)
2588 * comparing uuids when re-adding a device into an array
2589 * In these cases the uuid required is that of the data-array,
2590 * not the device-set.
2591 * uuid to recognise same set when adding a missing device back
2592 * to an array. This is a uuid for the device-set.
1011e834 2593 *
51006d85
N
2594 * For each of these we can make do with a truncated
2595 * or hashed uuid rather than the original, as long as
2596 * everyone agrees.
2597 * In each case the uuid required is that of the data-array,
2598 * not the device-set.
43dad3d6 2599 */
51006d85
N
2600 /* imsm does not track uuid's so we synthesis one using sha1 on
2601 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2602 * - the orig_family_num of the container
51006d85
N
2603 * - the index number of the volume
2604 * - the 'serial' number of the volume.
2605 * Hopefully these are all constant.
2606 */
2607 struct intel_super *super = st->sb;
43dad3d6 2608
51006d85
N
2609 char buf[20];
2610 struct sha1_ctx ctx;
2611 struct imsm_dev *dev = NULL;
148acb7b 2612 __u32 family_num;
51006d85 2613
148acb7b
DW
2614 /* some mdadm versions failed to set ->orig_family_num, in which
2615 * case fall back to ->family_num. orig_family_num will be
2616 * fixed up with the first metadata update.
2617 */
2618 family_num = super->anchor->orig_family_num;
2619 if (family_num == 0)
2620 family_num = super->anchor->family_num;
51006d85 2621 sha1_init_ctx(&ctx);
92bd8f8d 2622 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2623 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2624 if (super->current_vol >= 0)
2625 dev = get_imsm_dev(super, super->current_vol);
2626 if (dev) {
2627 __u32 vol = super->current_vol;
2628 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2629 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2630 }
2631 sha1_finish_ctx(&ctx, buf);
2632 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2633}
2634
0d481d37 2635#if 0
4f5bc454
DW
2636static void
2637get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2638{
cdddbdbc
DW
2639 __u8 *v = get_imsm_version(mpb);
2640 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2641 char major[] = { 0, 0, 0 };
2642 char minor[] = { 0 ,0, 0 };
2643 char patch[] = { 0, 0, 0 };
2644 char *ver_parse[] = { major, minor, patch };
2645 int i, j;
2646
2647 i = j = 0;
2648 while (*v != '\0' && v < end) {
2649 if (*v != '.' && j < 2)
2650 ver_parse[i][j++] = *v;
2651 else {
2652 i++;
2653 j = 0;
2654 }
2655 v++;
2656 }
2657
4f5bc454
DW
2658 *m = strtol(minor, NULL, 0);
2659 *p = strtol(patch, NULL, 0);
2660}
0d481d37 2661#endif
4f5bc454 2662
1e5c6983
DW
2663static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2664{
2665 /* migr_strip_size when repairing or initializing parity */
238c0a71 2666 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2667 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2668
2669 switch (get_imsm_raid_level(map)) {
2670 case 5:
2671 case 10:
2672 return chunk;
2673 default:
2674 return 128*1024 >> 9;
2675 }
2676}
2677
2678static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2679{
2680 /* migr_strip_size when rebuilding a degraded disk, no idea why
2681 * this is different than migr_strip_size_resync(), but it's good
2682 * to be compatible
2683 */
238c0a71 2684 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2685 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2686
2687 switch (get_imsm_raid_level(map)) {
2688 case 1:
2689 case 10:
2690 if (map->num_members % map->num_domains == 0)
2691 return 128*1024 >> 9;
2692 else
2693 return chunk;
2694 case 5:
2695 return max((__u32) 64*1024 >> 9, chunk);
2696 default:
2697 return 128*1024 >> 9;
2698 }
2699}
2700
2701static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2702{
238c0a71
AK
2703 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2704 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2705 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2706 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2707
2708 return max((__u32) 1, hi_chunk / lo_chunk);
2709}
2710
2711static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2712{
238c0a71 2713 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2714 int level = get_imsm_raid_level(lo);
2715
2716 if (level == 1 || level == 10) {
238c0a71 2717 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2718
2719 return hi->num_domains;
2720 } else
2721 return num_stripes_per_unit_resync(dev);
2722}
2723
98130f40 2724static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2725{
2726 /* named 'imsm_' because raid0, raid1 and raid10
2727 * counter-intuitively have the same number of data disks
2728 */
98130f40 2729 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2730
2731 switch (get_imsm_raid_level(map)) {
2732 case 0:
36fd8ccc
AK
2733 return map->num_members;
2734 break;
1e5c6983
DW
2735 case 1:
2736 case 10:
36fd8ccc 2737 return map->num_members/2;
1e5c6983
DW
2738 case 5:
2739 return map->num_members - 1;
2740 default:
1ade5cc1 2741 dprintf("unsupported raid level\n");
1e5c6983
DW
2742 return 0;
2743 }
2744}
2745
2746static __u32 parity_segment_depth(struct imsm_dev *dev)
2747{
238c0a71 2748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2749 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2750
2751 switch(get_imsm_raid_level(map)) {
2752 case 1:
2753 case 10:
2754 return chunk * map->num_domains;
2755 case 5:
2756 return chunk * map->num_members;
2757 default:
2758 return chunk;
2759 }
2760}
2761
2762static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2763{
238c0a71 2764 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2765 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2766 __u32 strip = block / chunk;
2767
2768 switch (get_imsm_raid_level(map)) {
2769 case 1:
2770 case 10: {
2771 __u32 vol_strip = (strip * map->num_domains) + 1;
2772 __u32 vol_stripe = vol_strip / map->num_members;
2773
2774 return vol_stripe * chunk + block % chunk;
2775 } case 5: {
2776 __u32 stripe = strip / (map->num_members - 1);
2777
2778 return stripe * chunk + block % chunk;
2779 }
2780 default:
2781 return 0;
2782 }
2783}
2784
c47b0ff6
AK
2785static __u64 blocks_per_migr_unit(struct intel_super *super,
2786 struct imsm_dev *dev)
1e5c6983
DW
2787{
2788 /* calculate the conversion factor between per member 'blocks'
2789 * (md/{resync,rebuild}_start) and imsm migration units, return
2790 * 0 for the 'not migrating' and 'unsupported migration' cases
2791 */
2792 if (!dev->vol.migr_state)
2793 return 0;
2794
2795 switch (migr_type(dev)) {
c47b0ff6
AK
2796 case MIGR_GEN_MIGR: {
2797 struct migr_record *migr_rec = super->migr_rec;
2798 return __le32_to_cpu(migr_rec->blocks_per_unit);
2799 }
1e5c6983
DW
2800 case MIGR_VERIFY:
2801 case MIGR_REPAIR:
2802 case MIGR_INIT: {
238c0a71 2803 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2804 __u32 stripes_per_unit;
2805 __u32 blocks_per_unit;
2806 __u32 parity_depth;
2807 __u32 migr_chunk;
2808 __u32 block_map;
2809 __u32 block_rel;
2810 __u32 segment;
2811 __u32 stripe;
2812 __u8 disks;
2813
2814 /* yes, this is really the translation of migr_units to
2815 * per-member blocks in the 'resync' case
2816 */
2817 stripes_per_unit = num_stripes_per_unit_resync(dev);
2818 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2819 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2820 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2821 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2822 segment = blocks_per_unit / stripe;
2823 block_rel = blocks_per_unit - segment * stripe;
2824 parity_depth = parity_segment_depth(dev);
2825 block_map = map_migr_block(dev, block_rel);
2826 return block_map + parity_depth * segment;
2827 }
2828 case MIGR_REBUILD: {
2829 __u32 stripes_per_unit;
2830 __u32 migr_chunk;
2831
2832 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2833 migr_chunk = migr_strip_blocks_rebuild(dev);
2834 return migr_chunk * stripes_per_unit;
2835 }
1e5c6983
DW
2836 case MIGR_STATE_CHANGE:
2837 default:
2838 return 0;
2839 }
2840}
2841
c2c087e6
DW
2842static int imsm_level_to_layout(int level)
2843{
2844 switch (level) {
2845 case 0:
2846 case 1:
2847 return 0;
2848 case 5:
2849 case 6:
a380c027 2850 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2851 case 10:
c92a2527 2852 return 0x102;
c2c087e6 2853 }
a18a888e 2854 return UnSet;
c2c087e6
DW
2855}
2856
8e59f3d8
AK
2857/*******************************************************************************
2858 * Function: read_imsm_migr_rec
2859 * Description: Function reads imsm migration record from last sector of disk
2860 * Parameters:
2861 * fd : disk descriptor
2862 * super : metadata info
2863 * Returns:
2864 * 0 : success,
2865 * -1 : fail
2866 ******************************************************************************/
2867static int read_imsm_migr_rec(int fd, struct intel_super *super)
2868{
2869 int ret_val = -1;
de44e46f 2870 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
2871 unsigned long long dsize;
2872
2873 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2874 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2875 SEEK_SET) < 0) {
e7b84f9d
N
2876 pr_err("Cannot seek to anchor block: %s\n",
2877 strerror(errno));
8e59f3d8
AK
2878 goto out;
2879 }
466070ad 2880 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
2881 MIGR_REC_BUF_SECTORS*sector_size) !=
2882 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2883 pr_err("Cannot read migr record block: %s\n",
2884 strerror(errno));
8e59f3d8
AK
2885 goto out;
2886 }
2887 ret_val = 0;
de44e46f
PB
2888 if (sector_size == 4096)
2889 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
2890
2891out:
2892 return ret_val;
2893}
2894
3136abe5
AK
2895static struct imsm_dev *imsm_get_device_during_migration(
2896 struct intel_super *super)
2897{
2898
2899 struct intel_dev *dv;
2900
2901 for (dv = super->devlist; dv; dv = dv->next) {
2902 if (is_gen_migration(dv->dev))
2903 return dv->dev;
2904 }
2905 return NULL;
2906}
2907
8e59f3d8
AK
2908/*******************************************************************************
2909 * Function: load_imsm_migr_rec
2910 * Description: Function reads imsm migration record (it is stored at the last
2911 * sector of disk)
2912 * Parameters:
2913 * super : imsm internal array info
2914 * info : general array info
2915 * Returns:
2916 * 0 : success
2917 * -1 : fail
4c965cc9 2918 * -2 : no migration in progress
8e59f3d8
AK
2919 ******************************************************************************/
2920static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2921{
2922 struct mdinfo *sd;
594dc1b8 2923 struct dl *dl;
8e59f3d8
AK
2924 char nm[30];
2925 int retval = -1;
2926 int fd = -1;
3136abe5 2927 struct imsm_dev *dev;
594dc1b8 2928 struct imsm_map *map;
b4ab44d8 2929 int slot = -1;
3136abe5
AK
2930
2931 /* find map under migration */
2932 dev = imsm_get_device_during_migration(super);
2933 /* nothing to load,no migration in progress?
2934 */
2935 if (dev == NULL)
4c965cc9 2936 return -2;
8e59f3d8
AK
2937
2938 if (info) {
2939 for (sd = info->devs ; sd ; sd = sd->next) {
2940 /* read only from one of the first two slots */
12fe93e9
TM
2941 if ((sd->disk.raid_disk < 0) ||
2942 (sd->disk.raid_disk > 1))
8e59f3d8 2943 continue;
3136abe5 2944
8e59f3d8
AK
2945 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2946 fd = dev_open(nm, O_RDONLY);
2947 if (fd >= 0)
2948 break;
2949 }
2950 }
2951 if (fd < 0) {
12fe93e9 2952 map = get_imsm_map(dev, MAP_0);
8e59f3d8 2953 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2954 /* skip spare and failed disks
2955 */
2956 if (dl->index < 0)
2957 continue;
8e59f3d8 2958 /* read only from one of the first two slots */
3136abe5
AK
2959 if (map)
2960 slot = get_imsm_disk_slot(map, dl->index);
089f9d79 2961 if (map == NULL || slot > 1 || slot < 0)
8e59f3d8
AK
2962 continue;
2963 sprintf(nm, "%d:%d", dl->major, dl->minor);
2964 fd = dev_open(nm, O_RDONLY);
2965 if (fd >= 0)
2966 break;
2967 }
2968 }
2969 if (fd < 0)
2970 goto out;
2971 retval = read_imsm_migr_rec(fd, super);
2972
2973out:
2974 if (fd >= 0)
2975 close(fd);
2976 return retval;
2977}
2978
c17608ea
AK
2979/*******************************************************************************
2980 * function: imsm_create_metadata_checkpoint_update
2981 * Description: It creates update for checkpoint change.
2982 * Parameters:
2983 * super : imsm internal array info
2984 * u : pointer to prepared update
2985 * Returns:
2986 * Uptate length.
2987 * If length is equal to 0, input pointer u contains no update
2988 ******************************************************************************/
2989static int imsm_create_metadata_checkpoint_update(
2990 struct intel_super *super,
2991 struct imsm_update_general_migration_checkpoint **u)
2992{
2993
2994 int update_memory_size = 0;
2995
1ade5cc1 2996 dprintf("(enter)\n");
c17608ea
AK
2997
2998 if (u == NULL)
2999 return 0;
3000 *u = NULL;
3001
3002 /* size of all update data without anchor */
3003 update_memory_size =
3004 sizeof(struct imsm_update_general_migration_checkpoint);
3005
503975b9 3006 *u = xcalloc(1, update_memory_size);
c17608ea 3007 if (*u == NULL) {
1ade5cc1 3008 dprintf("error: cannot get memory\n");
c17608ea
AK
3009 return 0;
3010 }
3011 (*u)->type = update_general_migration_checkpoint;
3012 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 3013 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
3014
3015 return update_memory_size;
3016}
3017
c17608ea
AK
3018static void imsm_update_metadata_locally(struct supertype *st,
3019 void *buf, int len);
3020
687629c2
AK
3021/*******************************************************************************
3022 * Function: write_imsm_migr_rec
3023 * Description: Function writes imsm migration record
3024 * (at the last sector of disk)
3025 * Parameters:
3026 * super : imsm internal array info
3027 * Returns:
3028 * 0 : success
3029 * -1 : if fail
3030 ******************************************************************************/
3031static int write_imsm_migr_rec(struct supertype *st)
3032{
3033 struct intel_super *super = st->sb;
de44e46f 3034 unsigned int sector_size = super->sector_size;
687629c2
AK
3035 unsigned long long dsize;
3036 char nm[30];
3037 int fd = -1;
3038 int retval = -1;
3039 struct dl *sd;
c17608ea
AK
3040 int len;
3041 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3042 struct imsm_dev *dev;
594dc1b8 3043 struct imsm_map *map;
3136abe5
AK
3044
3045 /* find map under migration */
3046 dev = imsm_get_device_during_migration(super);
3047 /* if no migration, write buffer anyway to clear migr_record
3048 * on disk based on first available device
3049 */
3050 if (dev == NULL)
3051 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3052 super->current_vol);
3053
44bfe6df 3054 map = get_imsm_map(dev, MAP_0);
687629c2 3055
de44e46f
PB
3056 if (sector_size == 4096)
3057 convert_to_4k_imsm_migr_rec(super);
687629c2 3058 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3059 int slot = -1;
3136abe5
AK
3060
3061 /* skip failed and spare devices */
3062 if (sd->index < 0)
3063 continue;
687629c2 3064 /* write to 2 first slots only */
3136abe5
AK
3065 if (map)
3066 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3067 if (map == NULL || slot > 1 || slot < 0)
687629c2 3068 continue;
3136abe5 3069
687629c2
AK
3070 sprintf(nm, "%d:%d", sd->major, sd->minor);
3071 fd = dev_open(nm, O_RDWR);
3072 if (fd < 0)
3073 continue;
3074 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3075 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3076 SEEK_SET) < 0) {
e7b84f9d
N
3077 pr_err("Cannot seek to anchor block: %s\n",
3078 strerror(errno));
687629c2
AK
3079 goto out;
3080 }
466070ad 3081 if ((unsigned int)write(fd, super->migr_rec_buf,
de44e46f
PB
3082 MIGR_REC_BUF_SECTORS*sector_size) !=
3083 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3084 pr_err("Cannot write migr record block: %s\n",
3085 strerror(errno));
687629c2
AK
3086 goto out;
3087 }
3088 close(fd);
3089 fd = -1;
3090 }
de44e46f
PB
3091 if (sector_size == 4096)
3092 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3093 /* update checkpoint information in metadata */
3094 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3095 if (len <= 0) {
3096 dprintf("imsm: Cannot prepare update\n");
3097 goto out;
3098 }
3099 /* update metadata locally */
3100 imsm_update_metadata_locally(st, u, len);
3101 /* and possibly remotely */
3102 if (st->update_tail) {
3103 append_metadata_update(st, u, len);
3104 /* during reshape we do all work inside metadata handler
3105 * manage_reshape(), so metadata update has to be triggered
3106 * insida it
3107 */
3108 flush_metadata_updates(st);
3109 st->update_tail = &st->updates;
3110 } else
3111 free(u);
687629c2
AK
3112
3113 retval = 0;
3114 out:
3115 if (fd >= 0)
3116 close(fd);
3117 return retval;
3118}
3119
e2962bfc
AK
3120/* spare/missing disks activations are not allowe when
3121 * array/container performs reshape operation, because
3122 * all arrays in container works on the same disks set
3123 */
3124int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3125{
3126 int rv = 0;
3127 struct intel_dev *i_dev;
3128 struct imsm_dev *dev;
3129
3130 /* check whole container
3131 */
3132 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3133 dev = i_dev->dev;
3ad25638 3134 if (is_gen_migration(dev)) {
e2962bfc
AK
3135 /* No repair during any migration in container
3136 */
3137 rv = 1;
3138 break;
3139 }
3140 }
3141 return rv;
3142}
c41e00b2
AK
3143static unsigned long long imsm_component_size_aligment_check(int level,
3144 int chunk_size,
f36a9ecd 3145 unsigned int sector_size,
c41e00b2
AK
3146 unsigned long long component_size)
3147{
3148 unsigned int component_size_alligment;
3149
3150 /* check component size aligment
3151 */
f36a9ecd 3152 component_size_alligment = component_size % (chunk_size/sector_size);
c41e00b2 3153
1ade5cc1 3154 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
3155 level, chunk_size, component_size,
3156 component_size_alligment);
3157
3158 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3159 dprintf("imsm: reported component size alligned from %llu ",
3160 component_size);
3161 component_size -= component_size_alligment;
1ade5cc1 3162 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
3163 component_size, component_size_alligment);
3164 }
3165
3166 return component_size;
3167}
e2962bfc 3168
2432ce9b
AP
3169static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3170{
3171 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3172 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3173
3174 return pba_of_lba0(map) +
3175 (num_data_stripes(map) * map->blocks_per_strip);
3176}
3177
a5d85af7 3178static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3179{
3180 struct intel_super *super = st->sb;
c47b0ff6 3181 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3182 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3183 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3184 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3185 struct imsm_map *map_to_analyse = map;
efb30e7f 3186 struct dl *dl;
a5d85af7 3187 int map_disks = info->array.raid_disks;
bf5a934a 3188
95eeceeb 3189 memset(info, 0, sizeof(*info));
b335e593
AK
3190 if (prev_map)
3191 map_to_analyse = prev_map;
3192
ca0748fa 3193 dl = super->current_disk;
9894ec0d 3194
bf5a934a 3195 info->container_member = super->current_vol;
cd0430a1 3196 info->array.raid_disks = map->num_members;
b335e593 3197 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3198 info->array.layout = imsm_level_to_layout(info->array.level);
3199 info->array.md_minor = -1;
3200 info->array.ctime = 0;
3201 info->array.utime = 0;
b335e593
AK
3202 info->array.chunk_size =
3203 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3204 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
da9b4a62
DW
3205 info->custom_array_size = __le32_to_cpu(dev->size_high);
3206 info->custom_array_size <<= 32;
3207 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
3208 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3209
3f510843 3210 if (is_gen_migration(dev)) {
3f83228a 3211 info->reshape_active = 1;
b335e593
AK
3212 info->new_level = get_imsm_raid_level(map);
3213 info->new_layout = imsm_level_to_layout(info->new_level);
3214 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3215 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3216 if (info->delta_disks) {
3217 /* this needs to be applied to every array
3218 * in the container.
3219 */
81219e70 3220 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3221 }
3f83228a
N
3222 /* We shape information that we give to md might have to be
3223 * modify to cope with md's requirement for reshaping arrays.
3224 * For example, when reshaping a RAID0, md requires it to be
3225 * presented as a degraded RAID4.
3226 * Also if a RAID0 is migrating to a RAID5 we need to specify
3227 * the array as already being RAID5, but the 'before' layout
3228 * is a RAID4-like layout.
3229 */
3230 switch (info->array.level) {
3231 case 0:
3232 switch(info->new_level) {
3233 case 0:
3234 /* conversion is happening as RAID4 */
3235 info->array.level = 4;
3236 info->array.raid_disks += 1;
3237 break;
3238 case 5:
3239 /* conversion is happening as RAID5 */
3240 info->array.level = 5;
3241 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3242 info->delta_disks -= 1;
3243 break;
3244 default:
3245 /* FIXME error message */
3246 info->array.level = UnSet;
3247 break;
3248 }
3249 break;
3250 }
b335e593
AK
3251 } else {
3252 info->new_level = UnSet;
3253 info->new_layout = UnSet;
3254 info->new_chunk = info->array.chunk_size;
3f83228a 3255 info->delta_disks = 0;
b335e593 3256 }
ca0748fa 3257
efb30e7f
DW
3258 if (dl) {
3259 info->disk.major = dl->major;
3260 info->disk.minor = dl->minor;
ca0748fa 3261 info->disk.number = dl->index;
656b6b5a
N
3262 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3263 dl->index);
efb30e7f 3264 }
bf5a934a 3265
5551b113 3266 info->data_offset = pba_of_lba0(map_to_analyse);
06fb291a
PB
3267
3268 if (info->array.level == 5) {
3269 info->component_size = num_data_stripes(map_to_analyse) *
3270 map_to_analyse->blocks_per_strip;
3271 } else {
3272 info->component_size = blocks_per_member(map_to_analyse);
3273 }
139dae11 3274
c41e00b2
AK
3275 info->component_size = imsm_component_size_aligment_check(
3276 info->array.level,
3277 info->array.chunk_size,
f36a9ecd 3278 super->sector_size,
c41e00b2 3279 info->component_size);
5e46202e 3280 info->bb.supported = 1;
139dae11 3281
301406c9 3282 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3283 info->recovery_start = MaxSector;
bf5a934a 3284
2432ce9b
AP
3285 if (info->array.level == 5 && dev->rwh_policy == RWH_DISTRIBUTED) {
3286 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3287 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3288 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
3289 } else if (info->array.level <= 0) {
3290 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3291 } else {
3292 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3293 }
3294
d2e6d5d6 3295 info->reshape_progress = 0;
b6796ce1 3296 info->resync_start = MaxSector;
b9172665 3297 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3298 !(info->array.state & 1)) &&
b9172665 3299 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3300 info->resync_start = 0;
b6796ce1
AK
3301 }
3302 if (dev->vol.migr_state) {
1e5c6983
DW
3303 switch (migr_type(dev)) {
3304 case MIGR_REPAIR:
3305 case MIGR_INIT: {
c47b0ff6
AK
3306 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3307 dev);
1e5c6983
DW
3308 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3309
3310 info->resync_start = blocks_per_unit * units;
3311 break;
3312 }
d2e6d5d6 3313 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3314 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3315 dev);
3316 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
3317 unsigned long long array_blocks;
3318 int used_disks;
d2e6d5d6 3319
befb629b
AK
3320 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3321 (units <
3322 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3323 (super->migr_rec->rec_status ==
3324 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3325 units++;
3326
d2e6d5d6 3327 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3328
7a862a02 3329 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3330 (unsigned long long)units,
3331 (unsigned long long)blocks_per_unit,
3332 info->reshape_progress);
75156c46 3333
238c0a71 3334 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 3335 if (used_disks > 0) {
5551b113 3336 array_blocks = blocks_per_member(map) *
75156c46 3337 used_disks;
b53bfba6
TM
3338 info->custom_array_size =
3339 round_size_to_mb(array_blocks,
3340 used_disks);
3341
75156c46 3342 }
d2e6d5d6 3343 }
1e5c6983
DW
3344 case MIGR_VERIFY:
3345 /* we could emulate the checkpointing of
3346 * 'sync_action=check' migrations, but for now
3347 * we just immediately complete them
3348 */
3349 case MIGR_REBUILD:
3350 /* this is handled by container_content_imsm() */
1e5c6983
DW
3351 case MIGR_STATE_CHANGE:
3352 /* FIXME handle other migrations */
3353 default:
3354 /* we are not dirty, so... */
3355 info->resync_start = MaxSector;
3356 }
b6796ce1 3357 }
301406c9
DW
3358
3359 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3360 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3361
f35f2525
N
3362 info->array.major_version = -1;
3363 info->array.minor_version = -2;
4dd2df09 3364 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3365 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3366 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3367
3368 if (dmap) {
3369 int i, j;
3370 for (i=0; i<map_disks; i++) {
3371 dmap[i] = 0;
3372 if (i < info->array.raid_disks) {
3373 struct imsm_disk *dsk;
238c0a71 3374 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3375 dsk = get_imsm_disk(super, j);
3376 if (dsk && (dsk->status & CONFIGURED_DISK))
3377 dmap[i] = 1;
3378 }
3379 }
3380 }
81ac8b4d 3381}
bf5a934a 3382
3b451610
AK
3383static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3384 int failed, int look_in_map);
3385
3386static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3387 int look_in_map);
3388
3389static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3390{
3391 if (is_gen_migration(dev)) {
3392 int failed;
3393 __u8 map_state;
3394 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3395
3396 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3397 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3398 if (map2->map_state != map_state) {
3399 map2->map_state = map_state;
3400 super->updates_pending++;
3401 }
3402 }
3403}
97b4d0e9
DW
3404
3405static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3406{
3407 struct dl *d;
3408
3409 for (d = super->missing; d; d = d->next)
3410 if (d->index == index)
3411 return &d->disk;
3412 return NULL;
3413}
3414
a5d85af7 3415static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3416{
3417 struct intel_super *super = st->sb;
4f5bc454 3418 struct imsm_disk *disk;
a5d85af7 3419 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3420 int max_enough = -1;
3421 int i;
3422 struct imsm_super *mpb;
4f5bc454 3423
bf5a934a 3424 if (super->current_vol >= 0) {
a5d85af7 3425 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3426 return;
3427 }
95eeceeb 3428 memset(info, 0, sizeof(*info));
d23fe947
DW
3429
3430 /* Set raid_disks to zero so that Assemble will always pull in valid
3431 * spares
3432 */
3433 info->array.raid_disks = 0;
cdddbdbc
DW
3434 info->array.level = LEVEL_CONTAINER;
3435 info->array.layout = 0;
3436 info->array.md_minor = -1;
1011e834 3437 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3438 info->array.utime = 0;
3439 info->array.chunk_size = 0;
3440
3441 info->disk.major = 0;
3442 info->disk.minor = 0;
cdddbdbc 3443 info->disk.raid_disk = -1;
c2c087e6 3444 info->reshape_active = 0;
f35f2525
N
3445 info->array.major_version = -1;
3446 info->array.minor_version = -2;
c2c087e6 3447 strcpy(info->text_version, "imsm");
a67dd8cc 3448 info->safe_mode_delay = 0;
c2c087e6
DW
3449 info->disk.number = -1;
3450 info->disk.state = 0;
c5afc314 3451 info->name[0] = 0;
921d9e16 3452 info->recovery_start = MaxSector;
3ad25638 3453 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3454 info->bb.supported = 1;
c2c087e6 3455
97b4d0e9 3456 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3457 mpb = super->anchor;
b7d81a38 3458 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3459
ab3cb6b3
N
3460 for (i = 0; i < mpb->num_raid_devs; i++) {
3461 struct imsm_dev *dev = get_imsm_dev(super, i);
3462 int failed, enough, j, missing = 0;
3463 struct imsm_map *map;
3464 __u8 state;
97b4d0e9 3465
3b451610
AK
3466 failed = imsm_count_failed(super, dev, MAP_0);
3467 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3468 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3469
3470 /* any newly missing disks?
3471 * (catches single-degraded vs double-degraded)
3472 */
3473 for (j = 0; j < map->num_members; j++) {
238c0a71 3474 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3475 __u32 idx = ord_to_idx(ord);
3476
3477 if (!(ord & IMSM_ORD_REBUILD) &&
3478 get_imsm_missing(super, idx)) {
3479 missing = 1;
3480 break;
3481 }
97b4d0e9 3482 }
ab3cb6b3
N
3483
3484 if (state == IMSM_T_STATE_FAILED)
3485 enough = -1;
3486 else if (state == IMSM_T_STATE_DEGRADED &&
3487 (state != map->map_state || missing))
3488 enough = 0;
3489 else /* we're normal, or already degraded */
3490 enough = 1;
d2bde6d3
AK
3491 if (is_gen_migration(dev) && missing) {
3492 /* during general migration we need all disks
3493 * that process is running on.
3494 * No new missing disk is allowed.
3495 */
3496 max_enough = -1;
3497 enough = -1;
3498 /* no more checks necessary
3499 */
3500 break;
3501 }
ab3cb6b3
N
3502 /* in the missing/failed disk case check to see
3503 * if at least one array is runnable
3504 */
3505 max_enough = max(max_enough, enough);
3506 }
1ade5cc1 3507 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3508 info->container_enough = max_enough;
97b4d0e9 3509
4a04ec6c 3510 if (super->disks) {
14e8215b
DW
3511 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3512
b9f594fe 3513 disk = &super->disks->disk;
5551b113 3514 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3515 info->component_size = reserved;
25ed7e59 3516 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3517 /* we don't change info->disk.raid_disk here because
3518 * this state will be finalized in mdmon after we have
3519 * found the 'most fresh' version of the metadata
3520 */
25ed7e59 3521 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3522 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3523 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3524 }
a575e2a7
DW
3525
3526 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3527 * ->compare_super may have updated the 'num_raid_devs' field for spares
3528 */
3529 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3530 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3531 else
3532 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3533
3534 /* I don't know how to compute 'map' on imsm, so use safe default */
3535 if (map) {
3536 int i;
3537 for (i = 0; i < map_disks; i++)
3538 map[i] = 1;
3539 }
3540
cdddbdbc
DW
3541}
3542
5c4cd5da
AC
3543/* allocates memory and fills disk in mdinfo structure
3544 * for each disk in array */
3545struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3546{
594dc1b8 3547 struct mdinfo *mddev;
5c4cd5da
AC
3548 struct intel_super *super = st->sb;
3549 struct imsm_disk *disk;
3550 int count = 0;
3551 struct dl *dl;
3552 if (!super || !super->disks)
3553 return NULL;
3554 dl = super->disks;
503975b9 3555 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3556 while (dl) {
3557 struct mdinfo *tmp;
3558 disk = &dl->disk;
503975b9 3559 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3560 if (mddev->devs)
3561 tmp->next = mddev->devs;
3562 mddev->devs = tmp;
3563 tmp->disk.number = count++;
3564 tmp->disk.major = dl->major;
3565 tmp->disk.minor = dl->minor;
3566 tmp->disk.state = is_configured(disk) ?
3567 (1 << MD_DISK_ACTIVE) : 0;
3568 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3569 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3570 tmp->disk.raid_disk = -1;
3571 dl = dl->next;
3572 }
3573 return mddev;
3574}
3575
cdddbdbc
DW
3576static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3577 char *update, char *devname, int verbose,
3578 int uuid_set, char *homehost)
3579{
f352c545
DW
3580 /* For 'assemble' and 'force' we need to return non-zero if any
3581 * change was made. For others, the return value is ignored.
3582 * Update options are:
3583 * force-one : This device looks a bit old but needs to be included,
3584 * update age info appropriately.
3585 * assemble: clear any 'faulty' flag to allow this device to
3586 * be assembled.
3587 * force-array: Array is degraded but being forced, mark it clean
3588 * if that will be needed to assemble it.
3589 *
3590 * newdev: not used ????
3591 * grow: Array has gained a new device - this is currently for
3592 * linear only
3593 * resync: mark as dirty so a resync will happen.
3594 * name: update the name - preserving the homehost
6e46bf34 3595 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3596 *
3597 * Following are not relevant for this imsm:
3598 * sparc2.2 : update from old dodgey metadata
3599 * super-minor: change the preferred_minor number
3600 * summaries: update redundant counters.
f352c545
DW
3601 * homehost: update the recorded homehost
3602 * _reshape_progress: record new reshape_progress position.
3603 */
6e46bf34
DW
3604 int rv = 1;
3605 struct intel_super *super = st->sb;
3606 struct imsm_super *mpb;
f352c545 3607
6e46bf34
DW
3608 /* we can only update container info */
3609 if (!super || super->current_vol >= 0 || !super->anchor)
3610 return 1;
3611
3612 mpb = super->anchor;
3613
81a5b4f5
N
3614 if (strcmp(update, "uuid") == 0) {
3615 /* We take this to mean that the family_num should be updated.
3616 * However that is much smaller than the uuid so we cannot really
3617 * allow an explicit uuid to be given. And it is hard to reliably
3618 * know if one was.
3619 * So if !uuid_set we know the current uuid is random and just used
3620 * the first 'int' and copy it to the other 3 positions.
3621 * Otherwise we require the 4 'int's to be the same as would be the
3622 * case if we are using a random uuid. So an explicit uuid will be
3623 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3624 */
81a5b4f5
N
3625 if (!uuid_set) {
3626 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3627 rv = 0;
81a5b4f5
N
3628 } else {
3629 if (info->uuid[0] != info->uuid[1] ||
3630 info->uuid[1] != info->uuid[2] ||
3631 info->uuid[2] != info->uuid[3])
3632 rv = -1;
3633 else
3634 rv = 0;
6e46bf34 3635 }
81a5b4f5
N
3636 if (rv == 0)
3637 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3638 } else if (strcmp(update, "assemble") == 0)
3639 rv = 0;
3640 else
1e2b2765 3641 rv = -1;
f352c545 3642
6e46bf34
DW
3643 /* successful update? recompute checksum */
3644 if (rv == 0)
3645 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3646
3647 return rv;
cdddbdbc
DW
3648}
3649
c2c087e6 3650static size_t disks_to_mpb_size(int disks)
cdddbdbc 3651{
c2c087e6 3652 size_t size;
cdddbdbc 3653
c2c087e6
DW
3654 size = sizeof(struct imsm_super);
3655 size += (disks - 1) * sizeof(struct imsm_disk);
3656 size += 2 * sizeof(struct imsm_dev);
3657 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3658 size += (4 - 2) * sizeof(struct imsm_map);
3659 /* 4 possible disk_ord_tbl's */
3660 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3661 /* maximum bbm log */
3662 size += sizeof(struct bbm_log);
c2c087e6
DW
3663
3664 return size;
3665}
3666
387fcd59
N
3667static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3668 unsigned long long data_offset)
c2c087e6
DW
3669{
3670 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3671 return 0;
3672
3673 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3674}
3675
ba2de7ba
DW
3676static void free_devlist(struct intel_super *super)
3677{
3678 struct intel_dev *dv;
3679
3680 while (super->devlist) {
3681 dv = super->devlist->next;
3682 free(super->devlist->dev);
3683 free(super->devlist);
3684 super->devlist = dv;
3685 }
3686}
3687
3688static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3689{
3690 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3691}
3692
cdddbdbc
DW
3693static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3694{
3695 /*
3696 * return:
3697 * 0 same, or first was empty, and second was copied
3698 * 1 second had wrong number
3699 * 2 wrong uuid
3700 * 3 wrong other info
3701 */
3702 struct intel_super *first = st->sb;
3703 struct intel_super *sec = tst->sb;
3704
5d500228
N
3705 if (!first) {
3706 st->sb = tst->sb;
3707 tst->sb = NULL;
3708 return 0;
3709 }
8603ea6f
LM
3710 /* in platform dependent environment test if the disks
3711 * use the same Intel hba
cb8f6859 3712 * If not on Intel hba at all, allow anything.
8603ea6f 3713 */
6b781d33
AP
3714 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3715 if (first->hba->type != sec->hba->type) {
8603ea6f 3716 fprintf(stderr,
6b781d33
AP
3717 "HBAs of devices do not match %s != %s\n",
3718 get_sys_dev_type(first->hba->type),
3719 get_sys_dev_type(sec->hba->type));
3720 return 3;
3721 }
3722 if (first->orom != sec->orom) {
3723 fprintf(stderr,
3724 "HBAs of devices do not match %s != %s\n",
3725 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3726 return 3;
3727 }
3728 }
cdddbdbc 3729
d23fe947
DW
3730 /* if an anchor does not have num_raid_devs set then it is a free
3731 * floating spare
3732 */
3733 if (first->anchor->num_raid_devs > 0 &&
3734 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3735 /* Determine if these disks might ever have been
3736 * related. Further disambiguation can only take place
3737 * in load_super_imsm_all
3738 */
3739 __u32 first_family = first->anchor->orig_family_num;
3740 __u32 sec_family = sec->anchor->orig_family_num;
3741
f796af5d
DW
3742 if (memcmp(first->anchor->sig, sec->anchor->sig,
3743 MAX_SIGNATURE_LENGTH) != 0)
3744 return 3;
3745
a2b97981
DW
3746 if (first_family == 0)
3747 first_family = first->anchor->family_num;
3748 if (sec_family == 0)
3749 sec_family = sec->anchor->family_num;
3750
3751 if (first_family != sec_family)
d23fe947 3752 return 3;
f796af5d 3753
d23fe947 3754 }
cdddbdbc 3755
3e372e5a
DW
3756 /* if 'first' is a spare promote it to a populated mpb with sec's
3757 * family number
3758 */
3759 if (first->anchor->num_raid_devs == 0 &&
3760 sec->anchor->num_raid_devs > 0) {
78d30f94 3761 int i;
ba2de7ba
DW
3762 struct intel_dev *dv;
3763 struct imsm_dev *dev;
78d30f94
DW
3764
3765 /* we need to copy raid device info from sec if an allocation
3766 * fails here we don't associate the spare
3767 */
3768 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3769 dv = xmalloc(sizeof(*dv));
3770 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3771 dv->dev = dev;
3772 dv->index = i;
3773 dv->next = first->devlist;
3774 first->devlist = dv;
78d30f94 3775 }
709743c5 3776 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3777 /* allocation failure */
3778 free_devlist(first);
e12b3daa 3779 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3780 return 3;
78d30f94 3781 }
3e372e5a 3782 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3783 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3784 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3785 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3786 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3787 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3788 }
3789
cdddbdbc
DW
3790 return 0;
3791}
3792
0030e8d6
DW
3793static void fd2devname(int fd, char *name)
3794{
3795 struct stat st;
3796 char path[256];
33a6535d 3797 char dname[PATH_MAX];
0030e8d6
DW
3798 char *nm;
3799 int rv;
3800
3801 name[0] = '\0';
3802 if (fstat(fd, &st) != 0)
3803 return;
3804 sprintf(path, "/sys/dev/block/%d:%d",
3805 major(st.st_rdev), minor(st.st_rdev));
3806
9cf014ec 3807 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3808 if (rv <= 0)
3809 return;
9587c373 3810
0030e8d6
DW
3811 dname[rv] = '\0';
3812 nm = strrchr(dname, '/');
7897de29
JS
3813 if (nm) {
3814 nm++;
3815 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3816 }
0030e8d6
DW
3817}
3818
21e9380b
AP
3819static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3820{
3821 char path[60];
3822 char *name = fd2kname(fd);
3823
3824 if (!name)
3825 return 1;
3826
3827 if (strncmp(name, "nvme", 4) != 0)
3828 return 1;
3829
3830 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3831
3832 return load_sys(path, buf, buf_len);
3833}
3834
cdddbdbc
DW
3835extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3836
3837static int imsm_read_serial(int fd, char *devname,
3838 __u8 serial[MAX_RAID_SERIAL_LEN])
3839{
21e9380b 3840 char buf[50];
cdddbdbc 3841 int rv;
1f24f035 3842 int len;
316e2bf4
DW
3843 char *dest;
3844 char *src;
21e9380b
AP
3845 unsigned int i;
3846
3847 memset(buf, 0, sizeof(buf));
cdddbdbc 3848
21e9380b 3849 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 3850
21e9380b
AP
3851 if (rv)
3852 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 3853
40ebbb9c 3854 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3855 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3856 fd2devname(fd, (char *) serial);
0030e8d6
DW
3857 return 0;
3858 }
3859
cdddbdbc
DW
3860 if (rv != 0) {
3861 if (devname)
e7b84f9d
N
3862 pr_err("Failed to retrieve serial for %s\n",
3863 devname);
cdddbdbc
DW
3864 return rv;
3865 }
3866
316e2bf4
DW
3867 /* trim all whitespace and non-printable characters and convert
3868 * ':' to ';'
3869 */
21e9380b
AP
3870 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3871 src = &buf[i];
316e2bf4
DW
3872 if (*src > 0x20) {
3873 /* ':' is reserved for use in placeholder serial
3874 * numbers for missing disks
3875 */
3876 if (*src == ':')
3877 *dest++ = ';';
3878 else
3879 *dest++ = *src;
3880 }
3881 }
21e9380b
AP
3882 len = dest - buf;
3883 dest = buf;
316e2bf4
DW
3884
3885 /* truncate leading characters */
3886 if (len > MAX_RAID_SERIAL_LEN) {
3887 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3888 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3889 }
5c3db629 3890
5c3db629 3891 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3892 memcpy(serial, dest, len);
cdddbdbc
DW
3893
3894 return 0;
3895}
3896
1f24f035
DW
3897static int serialcmp(__u8 *s1, __u8 *s2)
3898{
3899 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3900}
3901
3902static void serialcpy(__u8 *dest, __u8 *src)
3903{
3904 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3905}
3906
54c2c1ea
DW
3907static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3908{
3909 struct dl *dl;
3910
3911 for (dl = super->disks; dl; dl = dl->next)
3912 if (serialcmp(dl->serial, serial) == 0)
3913 break;
3914
3915 return dl;
3916}
3917
a2b97981
DW
3918static struct imsm_disk *
3919__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3920{
3921 int i;
3922
3923 for (i = 0; i < mpb->num_disks; i++) {
3924 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3925
3926 if (serialcmp(disk->serial, serial) == 0) {
3927 if (idx)
3928 *idx = i;
3929 return disk;
3930 }
3931 }
3932
3933 return NULL;
3934}
3935
cdddbdbc
DW
3936static int
3937load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3938{
a2b97981 3939 struct imsm_disk *disk;
cdddbdbc
DW
3940 struct dl *dl;
3941 struct stat stb;
cdddbdbc 3942 int rv;
a2b97981 3943 char name[40];
d23fe947
DW
3944 __u8 serial[MAX_RAID_SERIAL_LEN];
3945
3946 rv = imsm_read_serial(fd, devname, serial);
3947
3948 if (rv != 0)
3949 return 2;
3950
503975b9 3951 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3952
a2b97981
DW
3953 fstat(fd, &stb);
3954 dl->major = major(stb.st_rdev);
3955 dl->minor = minor(stb.st_rdev);
3956 dl->next = super->disks;
3957 dl->fd = keep_fd ? fd : -1;
3958 assert(super->disks == NULL);
3959 super->disks = dl;
3960 serialcpy(dl->serial, serial);
3961 dl->index = -2;
3962 dl->e = NULL;
3963 fd2devname(fd, name);
3964 if (devname)
503975b9 3965 dl->devname = xstrdup(devname);
a2b97981 3966 else
503975b9 3967 dl->devname = xstrdup(name);
cdddbdbc 3968
d23fe947 3969 /* look up this disk's index in the current anchor */
a2b97981
DW
3970 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3971 if (disk) {
3972 dl->disk = *disk;
3973 /* only set index on disks that are a member of a
3974 * populated contianer, i.e. one with raid_devs
3975 */
3976 if (is_failed(&dl->disk))
3f6efecc 3977 dl->index = -2;
2432ce9b 3978 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 3979 dl->index = -1;
3f6efecc
DW
3980 }
3981
949c47a0
DW
3982 return 0;
3983}
3984
0c046afd
DW
3985/* When migrating map0 contains the 'destination' state while map1
3986 * contains the current state. When not migrating map0 contains the
3987 * current state. This routine assumes that map[0].map_state is set to
3988 * the current array state before being called.
3989 *
3990 * Migration is indicated by one of the following states
3991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3993 * map1state=unitialized)
1484e727 3994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3995 * map1state=normal)
e3bba0e0 3996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3997 * map1state=degraded)
8e59f3d8
AK
3998 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3999 * map1state=normal)
0c046afd 4000 */
8e59f3d8
AK
4001static void migrate(struct imsm_dev *dev, struct intel_super *super,
4002 __u8 to_state, int migr_type)
3393c6af 4003{
0c046afd 4004 struct imsm_map *dest;
238c0a71 4005 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4006
0c046afd 4007 dev->vol.migr_state = 1;
1484e727 4008 set_migr_type(dev, migr_type);
f8f603f1 4009 dev->vol.curr_migr_unit = 0;
238c0a71 4010 dest = get_imsm_map(dev, MAP_1);
0c046afd 4011
0556e1a2 4012 /* duplicate and then set the target end state in map[0] */
3393c6af 4013 memcpy(dest, src, sizeof_imsm_map(src));
089f9d79 4014 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4015 __u32 ord;
4016 int i;
4017
4018 for (i = 0; i < src->num_members; i++) {
4019 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4020 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4021 }
4022 }
4023
8e59f3d8
AK
4024 if (migr_type == MIGR_GEN_MIGR)
4025 /* Clear migration record */
4026 memset(super->migr_rec, 0, sizeof(struct migr_record));
4027
0c046afd 4028 src->map_state = to_state;
949c47a0 4029}
f8f603f1 4030
809da78e
AK
4031static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4032 __u8 map_state)
f8f603f1 4033{
238c0a71
AK
4034 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4035 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4036 MAP_0 : MAP_1);
28bce06f 4037 int i, j;
0556e1a2
DW
4038
4039 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4040 * completed in the last migration.
4041 *
28bce06f 4042 * FIXME add support for raid-level-migration
0556e1a2 4043 */
089f9d79
JS
4044 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4045 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4046 /* when final map state is other than expected
4047 * merge maps (not for migration)
4048 */
4049 int failed;
4050
4051 for (i = 0; i < prev->num_members; i++)
4052 for (j = 0; j < map->num_members; j++)
4053 /* during online capacity expansion
4054 * disks position can be changed
4055 * if takeover is used
4056 */
4057 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4058 ord_to_idx(prev->disk_ord_tbl[i])) {
4059 map->disk_ord_tbl[j] |=
4060 prev->disk_ord_tbl[i];
4061 break;
4062 }
4063 failed = imsm_count_failed(super, dev, MAP_0);
4064 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4065 }
f8f603f1
DW
4066
4067 dev->vol.migr_state = 0;
ea672ee1 4068 set_migr_type(dev, 0);
f8f603f1
DW
4069 dev->vol.curr_migr_unit = 0;
4070 map->map_state = map_state;
4071}
949c47a0
DW
4072
4073static int parse_raid_devices(struct intel_super *super)
4074{
4075 int i;
4076 struct imsm_dev *dev_new;
4d7b1503 4077 size_t len, len_migr;
401d313b 4078 size_t max_len = 0;
4d7b1503
DW
4079 size_t space_needed = 0;
4080 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4081
4082 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4083 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4084 struct intel_dev *dv;
949c47a0 4085
4d7b1503
DW
4086 len = sizeof_imsm_dev(dev_iter, 0);
4087 len_migr = sizeof_imsm_dev(dev_iter, 1);
4088 if (len_migr > len)
4089 space_needed += len_migr - len;
ca9de185 4090
503975b9 4091 dv = xmalloc(sizeof(*dv));
401d313b
AK
4092 if (max_len < len_migr)
4093 max_len = len_migr;
4094 if (max_len > len_migr)
4095 space_needed += max_len - len_migr;
503975b9 4096 dev_new = xmalloc(max_len);
949c47a0 4097 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4098 dv->dev = dev_new;
4099 dv->index = i;
4100 dv->next = super->devlist;
4101 super->devlist = dv;
949c47a0 4102 }
cdddbdbc 4103
4d7b1503
DW
4104 /* ensure that super->buf is large enough when all raid devices
4105 * are migrating
4106 */
4107 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4108 void *buf;
4109
f36a9ecd
PB
4110 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4111 super->sector_size);
4112 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4113 return 1;
4114
1f45a8ad
DW
4115 memcpy(buf, super->buf, super->len);
4116 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4117 free(super->buf);
4118 super->buf = buf;
4119 super->len = len;
4120 }
ca9de185 4121
bbab0940
TM
4122 super->extra_space += space_needed;
4123
cdddbdbc
DW
4124 return 0;
4125}
4126
e2f41b2c
AK
4127/*******************************************************************************
4128 * Function: check_mpb_migr_compatibility
4129 * Description: Function checks for unsupported migration features:
4130 * - migration optimization area (pba_of_lba0)
4131 * - descending reshape (ascending_migr)
4132 * Parameters:
4133 * super : imsm metadata information
4134 * Returns:
4135 * 0 : migration is compatible
4136 * -1 : migration is not compatible
4137 ******************************************************************************/
4138int check_mpb_migr_compatibility(struct intel_super *super)
4139{
4140 struct imsm_map *map0, *map1;
4141 struct migr_record *migr_rec = super->migr_rec;
4142 int i;
4143
4144 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4145 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4146
4147 if (dev_iter &&
4148 dev_iter->vol.migr_state == 1 &&
4149 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4150 /* This device is migrating */
238c0a71
AK
4151 map0 = get_imsm_map(dev_iter, MAP_0);
4152 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4153 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4154 /* migration optimization area was used */
4155 return -1;
4156 if (migr_rec->ascending_migr == 0
4157 && migr_rec->dest_depth_per_unit > 0)
4158 /* descending reshape not supported yet */
4159 return -1;
4160 }
4161 }
4162 return 0;
4163}
4164
d23fe947 4165static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4166
cdddbdbc 4167/* load_imsm_mpb - read matrix metadata
f2f5c343 4168 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4169 */
4170static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4171{
4172 unsigned long long dsize;
cdddbdbc 4173 unsigned long long sectors;
f36a9ecd 4174 unsigned int sector_size = super->sector_size;
cdddbdbc 4175 struct stat;
6416d527 4176 struct imsm_super *anchor;
cdddbdbc
DW
4177 __u32 check_sum;
4178
cdddbdbc 4179 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4180 if (dsize < 2*sector_size) {
64436f06 4181 if (devname)
e7b84f9d
N
4182 pr_err("%s: device to small for imsm\n",
4183 devname);
64436f06
N
4184 return 1;
4185 }
cdddbdbc 4186
f36a9ecd 4187 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4188 if (devname)
e7b84f9d
N
4189 pr_err("Cannot seek to anchor block on %s: %s\n",
4190 devname, strerror(errno));
cdddbdbc
DW
4191 return 1;
4192 }
4193
f36a9ecd 4194 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4195 if (devname)
7a862a02 4196 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4197 return 1;
4198 }
466070ad 4199 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4200 if (devname)
e7b84f9d
N
4201 pr_err("Cannot read anchor block on %s: %s\n",
4202 devname, strerror(errno));
6416d527 4203 free(anchor);
cdddbdbc
DW
4204 return 1;
4205 }
4206
6416d527 4207 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4208 if (devname)
e7b84f9d 4209 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4210 free(anchor);
cdddbdbc
DW
4211 return 2;
4212 }
4213
d23fe947 4214 __free_imsm(super, 0);
f2f5c343
LM
4215 /* reload capability and hba */
4216
4217 /* capability and hba must be updated with new super allocation */
d424212e 4218 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4219 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4220 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4221 if (devname)
e7b84f9d
N
4222 pr_err("unable to allocate %zu byte mpb buffer\n",
4223 super->len);
6416d527 4224 free(anchor);
cdddbdbc
DW
4225 return 2;
4226 }
f36a9ecd 4227 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4228
f36a9ecd 4229 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4230 free(anchor);
8e59f3d8 4231
85337573
AO
4232 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4233 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4234 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4235 free(super->buf);
4236 return 2;
4237 }
51d83f5d 4238 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4239
949c47a0 4240 if (!sectors) {
ecf45690
DW
4241 check_sum = __gen_imsm_checksum(super->anchor);
4242 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4243 if (devname)
e7b84f9d
N
4244 pr_err("IMSM checksum %x != %x on %s\n",
4245 check_sum,
4246 __le32_to_cpu(super->anchor->check_sum),
4247 devname);
ecf45690
DW
4248 return 2;
4249 }
4250
a2b97981 4251 return 0;
949c47a0 4252 }
cdddbdbc
DW
4253
4254 /* read the extended mpb */
f36a9ecd 4255 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4256 if (devname)
e7b84f9d
N
4257 pr_err("Cannot seek to extended mpb on %s: %s\n",
4258 devname, strerror(errno));
cdddbdbc
DW
4259 return 1;
4260 }
4261
f36a9ecd
PB
4262 if ((unsigned int)read(fd, super->buf + sector_size,
4263 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4264 if (devname)
e7b84f9d
N
4265 pr_err("Cannot read extended mpb on %s: %s\n",
4266 devname, strerror(errno));
cdddbdbc
DW
4267 return 2;
4268 }
4269
949c47a0
DW
4270 check_sum = __gen_imsm_checksum(super->anchor);
4271 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4272 if (devname)
e7b84f9d
N
4273 pr_err("IMSM checksum %x != %x on %s\n",
4274 check_sum, __le32_to_cpu(super->anchor->check_sum),
4275 devname);
db575f3b 4276 return 3;
cdddbdbc
DW
4277 }
4278
a2b97981
DW
4279 return 0;
4280}
4281
8e59f3d8
AK
4282static int read_imsm_migr_rec(int fd, struct intel_super *super);
4283
97f81ee2
CA
4284/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4285static void clear_hi(struct intel_super *super)
4286{
4287 struct imsm_super *mpb = super->anchor;
4288 int i, n;
4289 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4290 return;
4291 for (i = 0; i < mpb->num_disks; ++i) {
4292 struct imsm_disk *disk = &mpb->disk[i];
4293 disk->total_blocks_hi = 0;
4294 }
4295 for (i = 0; i < mpb->num_raid_devs; ++i) {
4296 struct imsm_dev *dev = get_imsm_dev(super, i);
4297 if (!dev)
4298 return;
4299 for (n = 0; n < 2; ++n) {
4300 struct imsm_map *map = get_imsm_map(dev, n);
4301 if (!map)
4302 continue;
4303 map->pba_of_lba0_hi = 0;
4304 map->blocks_per_member_hi = 0;
4305 map->num_data_stripes_hi = 0;
4306 }
4307 }
4308}
4309
a2b97981
DW
4310static int
4311load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4312{
4313 int err;
4314
4315 err = load_imsm_mpb(fd, super, devname);
4316 if (err)
4317 return err;
f36a9ecd
PB
4318 if (super->sector_size == 4096)
4319 convert_from_4k(super);
a2b97981
DW
4320 err = load_imsm_disk(fd, super, devname, keep_fd);
4321 if (err)
4322 return err;
4323 err = parse_raid_devices(super);
8d67477f
TM
4324 if (err)
4325 return err;
4326 err = load_bbm_log(super);
97f81ee2 4327 clear_hi(super);
a2b97981 4328 return err;
cdddbdbc
DW
4329}
4330
ae6aad82
DW
4331static void __free_imsm_disk(struct dl *d)
4332{
4333 if (d->fd >= 0)
4334 close(d->fd);
4335 if (d->devname)
4336 free(d->devname);
0dcecb2e
DW
4337 if (d->e)
4338 free(d->e);
ae6aad82
DW
4339 free(d);
4340
4341}
1a64be56 4342
cdddbdbc
DW
4343static void free_imsm_disks(struct intel_super *super)
4344{
47ee5a45 4345 struct dl *d;
cdddbdbc 4346
47ee5a45
DW
4347 while (super->disks) {
4348 d = super->disks;
cdddbdbc 4349 super->disks = d->next;
ae6aad82 4350 __free_imsm_disk(d);
cdddbdbc 4351 }
cb82edca
AK
4352 while (super->disk_mgmt_list) {
4353 d = super->disk_mgmt_list;
4354 super->disk_mgmt_list = d->next;
4355 __free_imsm_disk(d);
4356 }
47ee5a45
DW
4357 while (super->missing) {
4358 d = super->missing;
4359 super->missing = d->next;
4360 __free_imsm_disk(d);
4361 }
4362
cdddbdbc
DW
4363}
4364
9ca2c81c 4365/* free all the pieces hanging off of a super pointer */
d23fe947 4366static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4367{
88654014
LM
4368 struct intel_hba *elem, *next;
4369
9ca2c81c 4370 if (super->buf) {
949c47a0 4371 free(super->buf);
9ca2c81c
DW
4372 super->buf = NULL;
4373 }
f2f5c343
LM
4374 /* unlink capability description */
4375 super->orom = NULL;
8e59f3d8
AK
4376 if (super->migr_rec_buf) {
4377 free(super->migr_rec_buf);
4378 super->migr_rec_buf = NULL;
4379 }
d23fe947
DW
4380 if (free_disks)
4381 free_imsm_disks(super);
ba2de7ba 4382 free_devlist(super);
88654014
LM
4383 elem = super->hba;
4384 while (elem) {
4385 if (elem->path)
4386 free((void *)elem->path);
4387 next = elem->next;
4388 free(elem);
4389 elem = next;
88c32bb1 4390 }
8d67477f
TM
4391 if (super->bbm_log)
4392 free(super->bbm_log);
88654014 4393 super->hba = NULL;
cdddbdbc
DW
4394}
4395
9ca2c81c
DW
4396static void free_imsm(struct intel_super *super)
4397{
d23fe947 4398 __free_imsm(super, 1);
928f1424 4399 free(super->bb.entries);
9ca2c81c
DW
4400 free(super);
4401}
cdddbdbc
DW
4402
4403static void free_super_imsm(struct supertype *st)
4404{
4405 struct intel_super *super = st->sb;
4406
4407 if (!super)
4408 return;
4409
4410 free_imsm(super);
4411 st->sb = NULL;
4412}
4413
49133e57 4414static struct intel_super *alloc_super(void)
c2c087e6 4415{
503975b9 4416 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4417
503975b9
N
4418 super->current_vol = -1;
4419 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4420
4421 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4422 sizeof(struct md_bb_entry));
4423 if (!super->bb.entries) {
4424 free(super);
4425 return NULL;
4426 }
4427
c2c087e6
DW
4428 return super;
4429}
4430
f0f5a016
LM
4431/*
4432 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4433 */
d424212e 4434static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4435{
4436 struct sys_dev *hba_name;
4437 int rv = 0;
4438
089f9d79 4439 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4440 super->orom = NULL;
f0f5a016
LM
4441 super->hba = NULL;
4442 return 0;
4443 }
4444 hba_name = find_disk_attached_hba(fd, NULL);
4445 if (!hba_name) {
d424212e 4446 if (devname)
e7b84f9d
N
4447 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4448 devname);
f0f5a016
LM
4449 return 1;
4450 }
4451 rv = attach_hba_to_super(super, hba_name);
4452 if (rv == 2) {
d424212e
N
4453 if (devname) {
4454 struct intel_hba *hba = super->hba;
f0f5a016 4455
60f0f54d
PB
4456 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4457 " but the container is assigned to Intel(R) %s %s (",
d424212e 4458 devname,
614902f6 4459 get_sys_dev_type(hba_name->type),
60f0f54d 4460 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4461 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4462 get_sys_dev_type(super->hba->type),
4463 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4464
f0f5a016
LM
4465 while (hba) {
4466 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4467 if (hba->next)
4468 fprintf(stderr, ", ");
4469 hba = hba->next;
4470 }
6b781d33 4471 fprintf(stderr, ").\n"
60f0f54d
PB
4472 " Mixing devices attached to different %s is not allowed.\n",
4473 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
f0f5a016 4474 }
f0f5a016
LM
4475 return 2;
4476 }
6b781d33 4477 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4478 if (!super->orom)
4479 return 3;
614902f6 4480
f0f5a016
LM
4481 return 0;
4482}
4483
47ee5a45
DW
4484/* find_missing - helper routine for load_super_imsm_all that identifies
4485 * disks that have disappeared from the system. This routine relies on
4486 * the mpb being uptodate, which it is at load time.
4487 */
4488static int find_missing(struct intel_super *super)
4489{
4490 int i;
4491 struct imsm_super *mpb = super->anchor;
4492 struct dl *dl;
4493 struct imsm_disk *disk;
47ee5a45
DW
4494
4495 for (i = 0; i < mpb->num_disks; i++) {
4496 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4497 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4498 if (dl)
4499 continue;
47ee5a45 4500
503975b9 4501 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4502 dl->major = 0;
4503 dl->minor = 0;
4504 dl->fd = -1;
503975b9 4505 dl->devname = xstrdup("missing");
47ee5a45
DW
4506 dl->index = i;
4507 serialcpy(dl->serial, disk->serial);
4508 dl->disk = *disk;
689c9bf3 4509 dl->e = NULL;
47ee5a45
DW
4510 dl->next = super->missing;
4511 super->missing = dl;
4512 }
4513
4514 return 0;
4515}
4516
a2b97981
DW
4517static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4518{
4519 struct intel_disk *idisk = disk_list;
4520
4521 while (idisk) {
4522 if (serialcmp(idisk->disk.serial, serial) == 0)
4523 break;
4524 idisk = idisk->next;
4525 }
4526
4527 return idisk;
4528}
4529
4530static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4531 struct intel_super *super,
4532 struct intel_disk **disk_list)
4533{
4534 struct imsm_disk *d = &super->disks->disk;
4535 struct imsm_super *mpb = super->anchor;
4536 int i, j;
4537
4538 for (i = 0; i < tbl_size; i++) {
4539 struct imsm_super *tbl_mpb = table[i]->anchor;
4540 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4541
4542 if (tbl_mpb->family_num == mpb->family_num) {
4543 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4544 dprintf("mpb from %d:%d matches %d:%d\n",
4545 super->disks->major,
a2b97981
DW
4546 super->disks->minor,
4547 table[i]->disks->major,
4548 table[i]->disks->minor);
4549 break;
4550 }
4551
4552 if (((is_configured(d) && !is_configured(tbl_d)) ||
4553 is_configured(d) == is_configured(tbl_d)) &&
4554 tbl_mpb->generation_num < mpb->generation_num) {
4555 /* current version of the mpb is a
4556 * better candidate than the one in
4557 * super_table, but copy over "cross
4558 * generational" status
4559 */
4560 struct intel_disk *idisk;
4561
1ade5cc1
N
4562 dprintf("mpb from %d:%d replaces %d:%d\n",
4563 super->disks->major,
a2b97981
DW
4564 super->disks->minor,
4565 table[i]->disks->major,
4566 table[i]->disks->minor);
4567
4568 idisk = disk_list_get(tbl_d->serial, *disk_list);
4569 if (idisk && is_failed(&idisk->disk))
4570 tbl_d->status |= FAILED_DISK;
4571 break;
4572 } else {
4573 struct intel_disk *idisk;
4574 struct imsm_disk *disk;
4575
4576 /* tbl_mpb is more up to date, but copy
4577 * over cross generational status before
4578 * returning
4579 */
4580 disk = __serial_to_disk(d->serial, mpb, NULL);
4581 if (disk && is_failed(disk))
4582 d->status |= FAILED_DISK;
4583
4584 idisk = disk_list_get(d->serial, *disk_list);
4585 if (idisk) {
4586 idisk->owner = i;
4587 if (disk && is_configured(disk))
4588 idisk->disk.status |= CONFIGURED_DISK;
4589 }
4590
1ade5cc1
N
4591 dprintf("mpb from %d:%d prefer %d:%d\n",
4592 super->disks->major,
a2b97981
DW
4593 super->disks->minor,
4594 table[i]->disks->major,
4595 table[i]->disks->minor);
4596
4597 return tbl_size;
4598 }
4599 }
4600 }
4601
4602 if (i >= tbl_size)
4603 table[tbl_size++] = super;
4604 else
4605 table[i] = super;
4606
4607 /* update/extend the merged list of imsm_disk records */
4608 for (j = 0; j < mpb->num_disks; j++) {
4609 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4610 struct intel_disk *idisk;
4611
4612 idisk = disk_list_get(disk->serial, *disk_list);
4613 if (idisk) {
4614 idisk->disk.status |= disk->status;
4615 if (is_configured(&idisk->disk) ||
4616 is_failed(&idisk->disk))
4617 idisk->disk.status &= ~(SPARE_DISK);
4618 } else {
503975b9 4619 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4620 idisk->owner = IMSM_UNKNOWN_OWNER;
4621 idisk->disk = *disk;
4622 idisk->next = *disk_list;
4623 *disk_list = idisk;
4624 }
4625
4626 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4627 idisk->owner = i;
4628 }
4629
4630 return tbl_size;
4631}
4632
4633static struct intel_super *
4634validate_members(struct intel_super *super, struct intel_disk *disk_list,
4635 const int owner)
4636{
4637 struct imsm_super *mpb = super->anchor;
4638 int ok_count = 0;
4639 int i;
4640
4641 for (i = 0; i < mpb->num_disks; i++) {
4642 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4643 struct intel_disk *idisk;
4644
4645 idisk = disk_list_get(disk->serial, disk_list);
4646 if (idisk) {
4647 if (idisk->owner == owner ||
4648 idisk->owner == IMSM_UNKNOWN_OWNER)
4649 ok_count++;
4650 else
1ade5cc1
N
4651 dprintf("'%.16s' owner %d != %d\n",
4652 disk->serial, idisk->owner,
a2b97981
DW
4653 owner);
4654 } else {
1ade5cc1
N
4655 dprintf("unknown disk %x [%d]: %.16s\n",
4656 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4657 disk->serial);
4658 break;
4659 }
4660 }
4661
4662 if (ok_count == mpb->num_disks)
4663 return super;
4664 return NULL;
4665}
4666
4667static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4668{
4669 struct intel_super *s;
4670
4671 for (s = super_list; s; s = s->next) {
4672 if (family_num != s->anchor->family_num)
4673 continue;
e12b3daa 4674 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4675 __le32_to_cpu(family_num), s->disks->devname);
4676 }
4677}
4678
4679static struct intel_super *
4680imsm_thunderdome(struct intel_super **super_list, int len)
4681{
4682 struct intel_super *super_table[len];
4683 struct intel_disk *disk_list = NULL;
4684 struct intel_super *champion, *spare;
4685 struct intel_super *s, **del;
4686 int tbl_size = 0;
4687 int conflict;
4688 int i;
4689
4690 memset(super_table, 0, sizeof(super_table));
4691 for (s = *super_list; s; s = s->next)
4692 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4693
4694 for (i = 0; i < tbl_size; i++) {
4695 struct imsm_disk *d;
4696 struct intel_disk *idisk;
4697 struct imsm_super *mpb = super_table[i]->anchor;
4698
4699 s = super_table[i];
4700 d = &s->disks->disk;
4701
4702 /* 'd' must appear in merged disk list for its
4703 * configuration to be valid
4704 */
4705 idisk = disk_list_get(d->serial, disk_list);
4706 if (idisk && idisk->owner == i)
4707 s = validate_members(s, disk_list, i);
4708 else
4709 s = NULL;
4710
4711 if (!s)
1ade5cc1
N
4712 dprintf("marking family: %#x from %d:%d offline\n",
4713 mpb->family_num,
a2b97981
DW
4714 super_table[i]->disks->major,
4715 super_table[i]->disks->minor);
4716 super_table[i] = s;
4717 }
4718
4719 /* This is where the mdadm implementation differs from the Windows
4720 * driver which has no strict concept of a container. We can only
4721 * assemble one family from a container, so when returning a prodigal
4722 * array member to this system the code will not be able to disambiguate
4723 * the container contents that should be assembled ("foreign" versus
4724 * "local"). It requires user intervention to set the orig_family_num
4725 * to a new value to establish a new container. The Windows driver in
4726 * this situation fixes up the volume name in place and manages the
4727 * foreign array as an independent entity.
4728 */
4729 s = NULL;
4730 spare = NULL;
4731 conflict = 0;
4732 for (i = 0; i < tbl_size; i++) {
4733 struct intel_super *tbl_ent = super_table[i];
4734 int is_spare = 0;
4735
4736 if (!tbl_ent)
4737 continue;
4738
4739 if (tbl_ent->anchor->num_raid_devs == 0) {
4740 spare = tbl_ent;
4741 is_spare = 1;
4742 }
4743
4744 if (s && !is_spare) {
4745 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4746 conflict++;
4747 } else if (!s && !is_spare)
4748 s = tbl_ent;
4749 }
4750
4751 if (!s)
4752 s = spare;
4753 if (!s) {
4754 champion = NULL;
4755 goto out;
4756 }
4757 champion = s;
4758
4759 if (conflict)
7a862a02 4760 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4761 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4762
4763 /* collect all dl's onto 'champion', and update them to
4764 * champion's version of the status
4765 */
4766 for (s = *super_list; s; s = s->next) {
4767 struct imsm_super *mpb = champion->anchor;
4768 struct dl *dl = s->disks;
4769
4770 if (s == champion)
4771 continue;
4772
5d7b407a
CA
4773 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4774
a2b97981
DW
4775 for (i = 0; i < mpb->num_disks; i++) {
4776 struct imsm_disk *disk;
4777
4778 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4779 if (disk) {
4780 dl->disk = *disk;
4781 /* only set index on disks that are a member of
4782 * a populated contianer, i.e. one with
4783 * raid_devs
4784 */
4785 if (is_failed(&dl->disk))
4786 dl->index = -2;
4787 else if (is_spare(&dl->disk))
4788 dl->index = -1;
4789 break;
4790 }
4791 }
4792
4793 if (i >= mpb->num_disks) {
4794 struct intel_disk *idisk;
4795
4796 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4797 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4798 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4799 dl->index = -1;
4800 else {
4801 dl->index = -2;
4802 continue;
4803 }
4804 }
4805
4806 dl->next = champion->disks;
4807 champion->disks = dl;
4808 s->disks = NULL;
4809 }
4810
4811 /* delete 'champion' from super_list */
4812 for (del = super_list; *del; ) {
4813 if (*del == champion) {
4814 *del = (*del)->next;
4815 break;
4816 } else
4817 del = &(*del)->next;
4818 }
4819 champion->next = NULL;
4820
4821 out:
4822 while (disk_list) {
4823 struct intel_disk *idisk = disk_list;
4824
4825 disk_list = disk_list->next;
4826 free(idisk);
4827 }
4828
4829 return champion;
4830}
4831
9587c373
LM
4832static int
4833get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4834static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4835 int major, int minor, int keep_fd);
ec50f7b6
LM
4836static int
4837get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4838 int *max, int keep_fd);
4839
cdddbdbc 4840static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4841 char *devname, struct md_list *devlist,
4842 int keep_fd)
cdddbdbc 4843{
a2b97981
DW
4844 struct intel_super *super_list = NULL;
4845 struct intel_super *super = NULL;
a2b97981 4846 int err = 0;
9587c373 4847 int i = 0;
dab4a513 4848
9587c373
LM
4849 if (fd >= 0)
4850 /* 'fd' is an opened container */
4851 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4852 else
ec50f7b6
LM
4853 /* get super block from devlist devices */
4854 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4855 if (err)
1602d52c 4856 goto error;
a2b97981
DW
4857 /* all mpbs enter, maybe one leaves */
4858 super = imsm_thunderdome(&super_list, i);
4859 if (!super) {
4860 err = 1;
4861 goto error;
cdddbdbc
DW
4862 }
4863
47ee5a45
DW
4864 if (find_missing(super) != 0) {
4865 free_imsm(super);
a2b97981
DW
4866 err = 2;
4867 goto error;
47ee5a45 4868 }
8e59f3d8
AK
4869
4870 /* load migration record */
4871 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4872 if (err == -1) {
4873 /* migration is in progress,
4874 * but migr_rec cannot be loaded,
4875 */
8e59f3d8
AK
4876 err = 4;
4877 goto error;
4878 }
e2f41b2c
AK
4879
4880 /* Check migration compatibility */
089f9d79 4881 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4882 pr_err("Unsupported migration detected");
e2f41b2c
AK
4883 if (devname)
4884 fprintf(stderr, " on %s\n", devname);
4885 else
4886 fprintf(stderr, " (IMSM).\n");
4887
4888 err = 5;
4889 goto error;
4890 }
4891
a2b97981
DW
4892 err = 0;
4893
4894 error:
4895 while (super_list) {
4896 struct intel_super *s = super_list;
4897
4898 super_list = super_list->next;
4899 free_imsm(s);
4900 }
9587c373 4901
a2b97981
DW
4902 if (err)
4903 return err;
f7e7067b 4904
cdddbdbc 4905 *sbp = super;
9587c373 4906 if (fd >= 0)
4dd2df09 4907 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4908 else
4dd2df09 4909 st->container_devnm[0] = 0;
a2b97981 4910 if (err == 0 && st->ss == NULL) {
bf5a934a 4911 st->ss = &super_imsm;
cdddbdbc
DW
4912 st->minor_version = 0;
4913 st->max_devs = IMSM_MAX_DEVICES;
4914 }
cdddbdbc
DW
4915 return 0;
4916}
2b959fbf 4917
ec50f7b6
LM
4918static int
4919get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4920 int *max, int keep_fd)
4921{
4922 struct md_list *tmpdev;
4923 int err = 0;
4924 int i = 0;
9587c373 4925
ec50f7b6
LM
4926 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4927 if (tmpdev->used != 1)
4928 continue;
4929 if (tmpdev->container == 1) {
ca9de185 4930 int lmax = 0;
ec50f7b6
LM
4931 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4932 if (fd < 0) {
e7b84f9d 4933 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4934 tmpdev->devname, strerror(errno));
4935 err = 8;
4936 goto error;
4937 }
4938 err = get_sra_super_block(fd, super_list,
4939 tmpdev->devname, &lmax,
4940 keep_fd);
4941 i += lmax;
4942 close(fd);
4943 if (err) {
4944 err = 7;
4945 goto error;
4946 }
4947 } else {
4948 int major = major(tmpdev->st_rdev);
4949 int minor = minor(tmpdev->st_rdev);
4950 err = get_super_block(super_list,
4dd2df09 4951 NULL,
ec50f7b6
LM
4952 tmpdev->devname,
4953 major, minor,
4954 keep_fd);
4955 i++;
4956 if (err) {
4957 err = 6;
4958 goto error;
4959 }
4960 }
4961 }
4962 error:
4963 *max = i;
4964 return err;
4965}
9587c373 4966
4dd2df09 4967static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4968 int major, int minor, int keep_fd)
4969{
594dc1b8 4970 struct intel_super *s;
9587c373
LM
4971 char nm[32];
4972 int dfd = -1;
9587c373
LM
4973 int err = 0;
4974 int retry;
4975
4976 s = alloc_super();
4977 if (!s) {
4978 err = 1;
4979 goto error;
4980 }
4981
4982 sprintf(nm, "%d:%d", major, minor);
4983 dfd = dev_open(nm, O_RDWR);
4984 if (dfd < 0) {
4985 err = 2;
4986 goto error;
4987 }
4988
fa7bb6f8 4989 get_dev_sector_size(dfd, NULL, &s->sector_size);
cb8f6859 4990 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
4991 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4992
4993 /* retry the load if we might have raced against mdmon */
4dd2df09 4994 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
4995 for (retry = 0; retry < 3; retry++) {
4996 usleep(3000);
4997 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4998 if (err != 3)
4999 break;
5000 }
5001 error:
5002 if (!err) {
5003 s->next = *super_list;
5004 *super_list = s;
5005 } else {
5006 if (s)
8d67477f 5007 free_imsm(s);
36614e95 5008 if (dfd >= 0)
9587c373
LM
5009 close(dfd);
5010 }
089f9d79 5011 if (dfd >= 0 && !keep_fd)
9587c373
LM
5012 close(dfd);
5013 return err;
5014
5015}
5016
5017static int
5018get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5019{
5020 struct mdinfo *sra;
4dd2df09 5021 char *devnm;
9587c373
LM
5022 struct mdinfo *sd;
5023 int err = 0;
5024 int i = 0;
4dd2df09 5025 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5026 if (!sra)
5027 return 1;
5028
5029 if (sra->array.major_version != -1 ||
5030 sra->array.minor_version != -2 ||
5031 strcmp(sra->text_version, "imsm") != 0) {
5032 err = 1;
5033 goto error;
5034 }
5035 /* load all mpbs */
4dd2df09 5036 devnm = fd2devnm(fd);
9587c373 5037 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5038 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5039 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5040 err = 7;
5041 goto error;
5042 }
5043 }
5044 error:
5045 sysfs_free(sra);
5046 *max = i;
5047 return err;
5048}
5049
2b959fbf
N
5050static int load_container_imsm(struct supertype *st, int fd, char *devname)
5051{
ec50f7b6 5052 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5053}
cdddbdbc
DW
5054
5055static int load_super_imsm(struct supertype *st, int fd, char *devname)
5056{
5057 struct intel_super *super;
5058 int rv;
8a3544f8 5059 int retry;
cdddbdbc 5060
357ac106 5061 if (test_partition(fd))
691c6ee1
N
5062 /* IMSM not allowed on partitions */
5063 return 1;
5064
37424f13
DW
5065 free_super_imsm(st);
5066
49133e57 5067 super = alloc_super();
fa7bb6f8 5068 get_dev_sector_size(fd, NULL, &super->sector_size);
8d67477f
TM
5069 if (!super)
5070 return 1;
ea2bc72b
LM
5071 /* Load hba and capabilities if they exist.
5072 * But do not preclude loading metadata in case capabilities or hba are
5073 * non-compliant and ignore_hw_compat is set.
5074 */
d424212e 5075 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5076 /* no orom/efi or non-intel hba of the disk */
089f9d79 5077 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5078 if (devname)
e7b84f9d 5079 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5080 free_imsm(super);
5081 return 2;
5082 }
a2b97981 5083 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5084
8a3544f8
AP
5085 /* retry the load if we might have raced against mdmon */
5086 if (rv == 3) {
f96b1302
AP
5087 struct mdstat_ent *mdstat = NULL;
5088 char *name = fd2kname(fd);
5089
5090 if (name)
5091 mdstat = mdstat_by_component(name);
8a3544f8
AP
5092
5093 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5094 for (retry = 0; retry < 3; retry++) {
5095 usleep(3000);
5096 rv = load_and_parse_mpb(fd, super, devname, 0);
5097 if (rv != 3)
5098 break;
5099 }
5100 }
5101
5102 free_mdstat(mdstat);
5103 }
5104
cdddbdbc
DW
5105 if (rv) {
5106 if (devname)
7a862a02 5107 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5108 free_imsm(super);
5109 return rv;
5110 }
5111
5112 st->sb = super;
5113 if (st->ss == NULL) {
5114 st->ss = &super_imsm;
5115 st->minor_version = 0;
5116 st->max_devs = IMSM_MAX_DEVICES;
5117 }
8e59f3d8
AK
5118
5119 /* load migration record */
2e062e82
AK
5120 if (load_imsm_migr_rec(super, NULL) == 0) {
5121 /* Check for unsupported migration features */
5122 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5123 pr_err("Unsupported migration detected");
2e062e82
AK
5124 if (devname)
5125 fprintf(stderr, " on %s\n", devname);
5126 else
5127 fprintf(stderr, " (IMSM).\n");
5128 return 3;
5129 }
e2f41b2c
AK
5130 }
5131
cdddbdbc
DW
5132 return 0;
5133}
5134
ef6ffade
DW
5135static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5136{
5137 if (info->level == 1)
5138 return 128;
5139 return info->chunk_size >> 9;
5140}
5141
5551b113
CA
5142static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5143 unsigned long long size)
fcfd9599 5144{
4025c288 5145 if (info->level == 1)
5551b113 5146 return size * 2;
4025c288 5147 else
5551b113 5148 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5149}
5150
4d1313e9
DW
5151static void imsm_update_version_info(struct intel_super *super)
5152{
5153 /* update the version and attributes */
5154 struct imsm_super *mpb = super->anchor;
5155 char *version;
5156 struct imsm_dev *dev;
5157 struct imsm_map *map;
5158 int i;
5159
5160 for (i = 0; i < mpb->num_raid_devs; i++) {
5161 dev = get_imsm_dev(super, i);
238c0a71 5162 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5163 if (__le32_to_cpu(dev->size_high) > 0)
5164 mpb->attributes |= MPB_ATTRIB_2TB;
5165
5166 /* FIXME detect when an array spans a port multiplier */
5167 #if 0
5168 mpb->attributes |= MPB_ATTRIB_PM;
5169 #endif
5170
5171 if (mpb->num_raid_devs > 1 ||
5172 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5173 version = MPB_VERSION_ATTRIBS;
5174 switch (get_imsm_raid_level(map)) {
5175 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5176 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5177 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5178 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5179 }
5180 } else {
5181 if (map->num_members >= 5)
5182 version = MPB_VERSION_5OR6_DISK_ARRAY;
5183 else if (dev->status == DEV_CLONE_N_GO)
5184 version = MPB_VERSION_CNG;
5185 else if (get_imsm_raid_level(map) == 5)
5186 version = MPB_VERSION_RAID5;
5187 else if (map->num_members >= 3)
5188 version = MPB_VERSION_3OR4_DISK_ARRAY;
5189 else if (get_imsm_raid_level(map) == 1)
5190 version = MPB_VERSION_RAID1;
5191 else
5192 version = MPB_VERSION_RAID0;
5193 }
5194 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5195 }
5196}
5197
aa534678
DW
5198static int check_name(struct intel_super *super, char *name, int quiet)
5199{
5200 struct imsm_super *mpb = super->anchor;
5201 char *reason = NULL;
5202 int i;
5203
5204 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5205 reason = "must be 16 characters or less";
5206
5207 for (i = 0; i < mpb->num_raid_devs; i++) {
5208 struct imsm_dev *dev = get_imsm_dev(super, i);
5209
5210 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5211 reason = "already exists";
5212 break;
5213 }
5214 }
5215
5216 if (reason && !quiet)
e7b84f9d 5217 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5218
5219 return !reason;
5220}
5221
8b353278 5222static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5223 struct shape *s, char *name,
83cd1e97
N
5224 char *homehost, int *uuid,
5225 long long data_offset)
cdddbdbc 5226{
c2c087e6
DW
5227 /* We are creating a volume inside a pre-existing container.
5228 * so st->sb is already set.
5229 */
5230 struct intel_super *super = st->sb;
f36a9ecd 5231 unsigned int sector_size = super->sector_size;
949c47a0 5232 struct imsm_super *mpb = super->anchor;
ba2de7ba 5233 struct intel_dev *dv;
c2c087e6
DW
5234 struct imsm_dev *dev;
5235 struct imsm_vol *vol;
5236 struct imsm_map *map;
5237 int idx = mpb->num_raid_devs;
5238 int i;
5239 unsigned long long array_blocks;
2c092cad 5240 size_t size_old, size_new;
5551b113 5241 unsigned long long num_data_stripes;
b53bfba6
TM
5242 unsigned int data_disks;
5243 unsigned long long size_per_member;
cdddbdbc 5244
88c32bb1 5245 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5246 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5247 return 0;
5248 }
5249
2c092cad
DW
5250 /* ensure the mpb is large enough for the new data */
5251 size_old = __le32_to_cpu(mpb->mpb_size);
5252 size_new = disks_to_mpb_size(info->nr_disks);
5253 if (size_new > size_old) {
5254 void *mpb_new;
f36a9ecd 5255 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5256
f36a9ecd 5257 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5258 pr_err("could not allocate new mpb\n");
2c092cad
DW
5259 return 0;
5260 }
85337573
AO
5261 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5262 MIGR_REC_BUF_SECTORS*
5263 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5264 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5265 free(super->buf);
5266 free(super);
ea944c8f 5267 free(mpb_new);
8e59f3d8
AK
5268 return 0;
5269 }
2c092cad
DW
5270 memcpy(mpb_new, mpb, size_old);
5271 free(mpb);
5272 mpb = mpb_new;
949c47a0 5273 super->anchor = mpb_new;
2c092cad
DW
5274 mpb->mpb_size = __cpu_to_le32(size_new);
5275 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5276 super->len = size_round;
2c092cad 5277 }
bf5a934a 5278 super->current_vol = idx;
3960e579
DW
5279
5280 /* handle 'failed_disks' by either:
5281 * a) create dummy disk entries in the table if this the first
5282 * volume in the array. We add them here as this is the only
5283 * opportunity to add them. add_to_super_imsm_volume()
5284 * handles the non-failed disks and continues incrementing
5285 * mpb->num_disks.
5286 * b) validate that 'failed_disks' matches the current number
5287 * of missing disks if the container is populated
d23fe947 5288 */
3960e579 5289 if (super->current_vol == 0) {
d23fe947 5290 mpb->num_disks = 0;
3960e579
DW
5291 for (i = 0; i < info->failed_disks; i++) {
5292 struct imsm_disk *disk;
5293
5294 mpb->num_disks++;
5295 disk = __get_imsm_disk(mpb, i);
5296 disk->status = CONFIGURED_DISK | FAILED_DISK;
5297 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5298 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5299 "missing:%d", (__u8)i);
3960e579
DW
5300 }
5301 find_missing(super);
5302 } else {
5303 int missing = 0;
5304 struct dl *d;
5305
5306 for (d = super->missing; d; d = d->next)
5307 missing++;
5308 if (info->failed_disks > missing) {
e7b84f9d 5309 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5310 return 0;
5311 }
5312 }
5a038140 5313
aa534678
DW
5314 if (!check_name(super, name, 0))
5315 return 0;
503975b9
N
5316 dv = xmalloc(sizeof(*dv));
5317 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 5318 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 5319 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5320 info->layout, info->chunk_size,
b53bfba6
TM
5321 s->size * BLOCKS_PER_KB);
5322 data_disks = get_data_disks(info->level, info->layout,
5323 info->raid_disks);
5324 array_blocks = round_size_to_mb(array_blocks, data_disks);
5325 size_per_member = array_blocks / data_disks;
979d38be 5326
c2c087e6
DW
5327 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5328 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 5329 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5330 vol = &dev->vol;
5331 vol->migr_state = 0;
1484e727 5332 set_migr_type(dev, MIGR_INIT);
3960e579 5333 vol->dirty = !info->state;
f8f603f1 5334 vol->curr_migr_unit = 0;
238c0a71 5335 map = get_imsm_map(dev, MAP_0);
5551b113 5336 set_pba_of_lba0(map, super->create_offset);
b53bfba6
TM
5337 set_blocks_per_member(map, info_to_blocks_per_member(info,
5338 size_per_member /
5339 BLOCKS_PER_KB));
ef6ffade 5340 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5341 map->failed_disk_num = ~0;
bf4442ab 5342 if (info->level > 0)
fffaf1ff
N
5343 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5344 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5345 else
5346 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5347 IMSM_T_STATE_NORMAL;
252d23c0 5348 map->ddf = 1;
ef6ffade
DW
5349
5350 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5351 free(dev);
5352 free(dv);
7a862a02 5353 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5354 return 0;
5355 }
81062a36
DW
5356
5357 map->raid_level = info->level;
4d1313e9 5358 if (info->level == 10) {
c2c087e6 5359 map->raid_level = 1;
4d1313e9 5360 map->num_domains = info->raid_disks / 2;
81062a36
DW
5361 } else if (info->level == 1)
5362 map->num_domains = info->raid_disks;
5363 else
ff596308 5364 map->num_domains = 1;
81062a36 5365
5551b113 5366 /* info->size is only int so use the 'size' parameter instead */
b53bfba6 5367 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5551b113
CA
5368 num_data_stripes /= map->num_domains;
5369 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5370
c2c087e6
DW
5371 map->num_members = info->raid_disks;
5372 for (i = 0; i < map->num_members; i++) {
5373 /* initialized in add_to_super */
4eb26970 5374 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5375 }
949c47a0 5376 mpb->num_raid_devs++;
2a24dc1b
PB
5377 mpb->num_raid_devs_created++;
5378 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5379
b7580566 5380 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
2432ce9b
AP
5381 dev->rwh_policy = RWH_OFF;
5382 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5383 dev->rwh_policy = RWH_DISTRIBUTED;
5384 } else {
5385 free(dev);
5386 free(dv);
5387 pr_err("imsm does not support consistency policy %s\n",
5388 map_num(consistency_policies, s->consistency_policy));
5389 return 0;
5390 }
5391
ba2de7ba
DW
5392 dv->dev = dev;
5393 dv->index = super->current_vol;
5394 dv->next = super->devlist;
5395 super->devlist = dv;
c2c087e6 5396
4d1313e9
DW
5397 imsm_update_version_info(super);
5398
c2c087e6 5399 return 1;
cdddbdbc
DW
5400}
5401
bf5a934a 5402static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5403 struct shape *s, char *name,
83cd1e97
N
5404 char *homehost, int *uuid,
5405 unsigned long long data_offset)
bf5a934a
DW
5406{
5407 /* This is primarily called by Create when creating a new array.
5408 * We will then get add_to_super called for each component, and then
5409 * write_init_super called to write it out to each device.
5410 * For IMSM, Create can create on fresh devices or on a pre-existing
5411 * array.
5412 * To create on a pre-existing array a different method will be called.
5413 * This one is just for fresh drives.
5414 */
5415 struct intel_super *super;
5416 struct imsm_super *mpb;
5417 size_t mpb_size;
4d1313e9 5418 char *version;
bf5a934a 5419
83cd1e97 5420 if (data_offset != INVALID_SECTORS) {
ed503f89 5421 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5422 return 0;
5423 }
5424
bf5a934a 5425 if (st->sb)
5308f117 5426 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5427 data_offset);
e683ca88
DW
5428
5429 if (info)
5430 mpb_size = disks_to_mpb_size(info->nr_disks);
5431 else
f36a9ecd 5432 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5433
49133e57 5434 super = alloc_super();
f36a9ecd
PB
5435 if (super &&
5436 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5437 free_imsm(super);
e683ca88
DW
5438 super = NULL;
5439 }
5440 if (!super) {
1ade5cc1 5441 pr_err("could not allocate superblock\n");
bf5a934a
DW
5442 return 0;
5443 }
de44e46f
PB
5444 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5445 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5446 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5447 free(super->buf);
8d67477f 5448 free_imsm(super);
8e59f3d8
AK
5449 return 0;
5450 }
e683ca88 5451 memset(super->buf, 0, mpb_size);
ef649044 5452 mpb = super->buf;
e683ca88
DW
5453 mpb->mpb_size = __cpu_to_le32(mpb_size);
5454 st->sb = super;
5455
5456 if (info == NULL) {
5457 /* zeroing superblock */
5458 return 0;
5459 }
bf5a934a 5460
4d1313e9
DW
5461 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5462
5463 version = (char *) mpb->sig;
5464 strcpy(version, MPB_SIGNATURE);
5465 version += strlen(MPB_SIGNATURE);
5466 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5467
bf5a934a
DW
5468 return 1;
5469}
5470
f2cc4f7d
AO
5471static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5472{
5473 unsigned int member_sector_size;
5474
5475 if (dl->fd < 0) {
5476 pr_err("Invalid file descriptor for %s\n", dl->devname);
5477 return 0;
5478 }
5479
5480 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5481 return 0;
5482 if (member_sector_size != super->sector_size)
5483 return 0;
5484 return 1;
5485}
5486
f20c3968 5487static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5488 int fd, char *devname)
5489{
5490 struct intel_super *super = st->sb;
d23fe947 5491 struct imsm_super *mpb = super->anchor;
3960e579 5492 struct imsm_disk *_disk;
bf5a934a
DW
5493 struct imsm_dev *dev;
5494 struct imsm_map *map;
3960e579 5495 struct dl *dl, *df;
4eb26970 5496 int slot;
bf5a934a 5497
949c47a0 5498 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5499 map = get_imsm_map(dev, MAP_0);
bf5a934a 5500
208933a7 5501 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5502 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5503 devname);
5504 return 1;
5505 }
5506
efb30e7f
DW
5507 if (fd == -1) {
5508 /* we're doing autolayout so grab the pre-marked (in
5509 * validate_geometry) raid_disk
5510 */
5511 for (dl = super->disks; dl; dl = dl->next)
5512 if (dl->raiddisk == dk->raid_disk)
5513 break;
5514 } else {
5515 for (dl = super->disks; dl ; dl = dl->next)
5516 if (dl->major == dk->major &&
5517 dl->minor == dk->minor)
5518 break;
5519 }
d23fe947 5520
208933a7 5521 if (!dl) {
e7b84f9d 5522 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5523 return 1;
208933a7 5524 }
bf5a934a 5525
f2cc4f7d
AO
5526 if (!drive_validate_sector_size(super, dl)) {
5527 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5528 return 1;
5529 }
5530
d23fe947
DW
5531 /* add a pristine spare to the metadata */
5532 if (dl->index < 0) {
5533 dl->index = super->anchor->num_disks;
5534 super->anchor->num_disks++;
5535 }
4eb26970
DW
5536 /* Check the device has not already been added */
5537 slot = get_imsm_disk_slot(map, dl->index);
5538 if (slot >= 0 &&
238c0a71 5539 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5540 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5541 devname);
5542 return 1;
5543 }
656b6b5a 5544 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5545 dl->disk.status = CONFIGURED_DISK;
d23fe947 5546
3960e579
DW
5547 /* update size of 'missing' disks to be at least as large as the
5548 * largest acitve member (we only have dummy missing disks when
5549 * creating the first volume)
5550 */
5551 if (super->current_vol == 0) {
5552 for (df = super->missing; df; df = df->next) {
5551b113
CA
5553 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5554 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5555 _disk = __get_imsm_disk(mpb, df->index);
5556 *_disk = df->disk;
5557 }
5558 }
5559
5560 /* refresh unset/failed slots to point to valid 'missing' entries */
5561 for (df = super->missing; df; df = df->next)
5562 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5563 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5564
5565 if ((ord & IMSM_ORD_REBUILD) == 0)
5566 continue;
5567 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5568 if (is_gen_migration(dev)) {
238c0a71
AK
5569 struct imsm_map *map2 = get_imsm_map(dev,
5570 MAP_1);
0a108d63 5571 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5572 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5573 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5574 slot2,
5575 MAP_1);
1ace8403
AK
5576 if ((unsigned)df->index ==
5577 ord_to_idx(ord2))
5578 set_imsm_ord_tbl_ent(map2,
0a108d63 5579 slot2,
1ace8403
AK
5580 df->index |
5581 IMSM_ORD_REBUILD);
5582 }
5583 }
3960e579
DW
5584 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5585 break;
5586 }
5587
d23fe947
DW
5588 /* if we are creating the first raid device update the family number */
5589 if (super->current_vol == 0) {
5590 __u32 sum;
5591 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5592
3960e579 5593 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5594 if (!_dev || !_disk) {
e7b84f9d 5595 pr_err("BUG mpb setup error\n");
791b666a
AW
5596 return 1;
5597 }
d23fe947
DW
5598 *_dev = *dev;
5599 *_disk = dl->disk;
148acb7b
DW
5600 sum = random32();
5601 sum += __gen_imsm_checksum(mpb);
d23fe947 5602 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5603 mpb->orig_family_num = mpb->family_num;
d23fe947 5604 }
ca0748fa 5605 super->current_disk = dl;
f20c3968 5606 return 0;
bf5a934a
DW
5607}
5608
a8619d23
AK
5609/* mark_spare()
5610 * Function marks disk as spare and restores disk serial
5611 * in case it was previously marked as failed by takeover operation
5612 * reruns:
5613 * -1 : critical error
5614 * 0 : disk is marked as spare but serial is not set
5615 * 1 : success
5616 */
5617int mark_spare(struct dl *disk)
5618{
5619 __u8 serial[MAX_RAID_SERIAL_LEN];
5620 int ret_val = -1;
5621
5622 if (!disk)
5623 return ret_val;
5624
5625 ret_val = 0;
5626 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5627 /* Restore disk serial number, because takeover marks disk
5628 * as failed and adds to serial ':0' before it becomes
5629 * a spare disk.
5630 */
5631 serialcpy(disk->serial, serial);
5632 serialcpy(disk->disk.serial, serial);
5633 ret_val = 1;
5634 }
5635 disk->disk.status = SPARE_DISK;
5636 disk->index = -1;
5637
5638 return ret_val;
5639}
88654014 5640
f20c3968 5641static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5642 int fd, char *devname,
5643 unsigned long long data_offset)
cdddbdbc 5644{
c2c087e6 5645 struct intel_super *super = st->sb;
c2c087e6
DW
5646 struct dl *dd;
5647 unsigned long long size;
fa7bb6f8 5648 unsigned int member_sector_size;
f2f27e63 5649 __u32 id;
c2c087e6
DW
5650 int rv;
5651 struct stat stb;
5652
88654014
LM
5653 /* If we are on an RAID enabled platform check that the disk is
5654 * attached to the raid controller.
5655 * We do not need to test disks attachment for container based additions,
5656 * they shall be already tested when container was created/assembled.
88c32bb1 5657 */
d424212e 5658 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5659 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5660 if (rv != 0) {
5661 dprintf("capability: %p fd: %d ret: %d\n",
5662 super->orom, fd, rv);
5663 return 1;
88c32bb1
DW
5664 }
5665
f20c3968
DW
5666 if (super->current_vol >= 0)
5667 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5668
c2c087e6 5669 fstat(fd, &stb);
503975b9 5670 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5671 dd->major = major(stb.st_rdev);
5672 dd->minor = minor(stb.st_rdev);
503975b9 5673 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5674 dd->fd = fd;
689c9bf3 5675 dd->e = NULL;
1a64be56 5676 dd->action = DISK_ADD;
c2c087e6 5677 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5678 if (rv) {
e7b84f9d 5679 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5680 if (dd->devname)
5681 free(dd->devname);
949c47a0 5682 free(dd);
0030e8d6 5683 abort();
c2c087e6 5684 }
20bee0f8
PB
5685 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5686 (super->hba->type == SYS_DEV_VMD))) {
5687 int i;
5688 char *devpath = diskfd_to_devpath(fd);
5689 char controller_path[PATH_MAX];
5690
5691 if (!devpath) {
5692 pr_err("failed to get devpath, aborting\n");
5693 if (dd->devname)
5694 free(dd->devname);
5695 free(dd);
5696 return 1;
5697 }
5698
5699 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5700 free(devpath);
5701
5702 if (devpath_to_vendor(controller_path) == 0x8086) {
5703 /*
5704 * If Intel's NVMe drive has serial ended with
5705 * "-A","-B","-1" or "-2" it means that this is "x8"
5706 * device (double drive on single PCIe card).
5707 * User should be warned about potential data loss.
5708 */
5709 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5710 /* Skip empty character at the end */
5711 if (dd->serial[i] == 0)
5712 continue;
5713
5714 if (((dd->serial[i] == 'A') ||
5715 (dd->serial[i] == 'B') ||
5716 (dd->serial[i] == '1') ||
5717 (dd->serial[i] == '2')) &&
5718 (dd->serial[i-1] == '-'))
5719 pr_err("\tThe action you are about to take may put your data at risk.\n"
5720 "\tPlease note that x8 devices may consist of two separate x4 devices "
5721 "located on a single PCIe port.\n"
5722 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5723 break;
5724 }
32716c51
PB
5725 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5726 !imsm_orom_has_tpv_support(super->orom)) {
5727 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5728 "\tPlease refer to Intel(R) RSTe user guide.\n");
5729 free(dd->devname);
5730 free(dd);
5731 return 1;
20bee0f8
PB
5732 }
5733 }
c2c087e6 5734
c2c087e6 5735 get_dev_size(fd, NULL, &size);
fa7bb6f8
PB
5736 get_dev_sector_size(fd, NULL, &member_sector_size);
5737
5738 if (super->sector_size == 0) {
5739 /* this a first device, so sector_size is not set yet */
5740 super->sector_size = member_sector_size;
fa7bb6f8
PB
5741 }
5742
71e5411e 5743 /* clear migr_rec when adding disk to container */
85337573
AO
5744 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5745 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 5746 SEEK_SET) >= 0) {
466070ad 5747 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
5748 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5749 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
5750 perror("Write migr_rec failed");
5751 }
5752
c2c087e6 5753 size /= 512;
1f24f035 5754 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5755 set_total_blocks(&dd->disk, size);
5756 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5757 struct imsm_super *mpb = super->anchor;
5758 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5759 }
a8619d23 5760 mark_spare(dd);
c2c087e6 5761 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5762 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5763 else
b9f594fe 5764 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5765
5766 if (st->update_tail) {
1a64be56
LM
5767 dd->next = super->disk_mgmt_list;
5768 super->disk_mgmt_list = dd;
43dad3d6
DW
5769 } else {
5770 dd->next = super->disks;
5771 super->disks = dd;
ceaf0ee1 5772 super->updates_pending++;
43dad3d6 5773 }
f20c3968
DW
5774
5775 return 0;
cdddbdbc
DW
5776}
5777
1a64be56
LM
5778static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5779{
5780 struct intel_super *super = st->sb;
5781 struct dl *dd;
5782
5783 /* remove from super works only in mdmon - for communication
5784 * manager - monitor. Check if communication memory buffer
5785 * is prepared.
5786 */
5787 if (!st->update_tail) {
1ade5cc1 5788 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5789 return 1;
5790 }
503975b9 5791 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5792 dd->major = dk->major;
5793 dd->minor = dk->minor;
1a64be56 5794 dd->fd = -1;
a8619d23 5795 mark_spare(dd);
1a64be56
LM
5796 dd->action = DISK_REMOVE;
5797
5798 dd->next = super->disk_mgmt_list;
5799 super->disk_mgmt_list = dd;
5800
1a64be56
LM
5801 return 0;
5802}
5803
f796af5d
DW
5804static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5805
5806static union {
f36a9ecd 5807 char buf[MAX_SECTOR_SIZE];
f796af5d 5808 struct imsm_super anchor;
f36a9ecd 5809} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 5810
d23fe947
DW
5811/* spare records have their own family number and do not have any defined raid
5812 * devices
5813 */
5814static int write_super_imsm_spares(struct intel_super *super, int doclose)
5815{
d23fe947 5816 struct imsm_super *mpb = super->anchor;
f796af5d 5817 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5818 __u32 sum;
5819 struct dl *d;
5820
68641cdb
JS
5821 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5822 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5823 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5824 spare->num_disks = 1;
5825 spare->num_raid_devs = 0;
5826 spare->cache_size = mpb->cache_size;
5827 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5828
5829 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5830 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5831
5832 for (d = super->disks; d; d = d->next) {
8796fdc4 5833 if (d->index != -1)
d23fe947
DW
5834 continue;
5835
f796af5d 5836 spare->disk[0] = d->disk;
027c374f
CA
5837 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5838 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5839
f36a9ecd
PB
5840 if (super->sector_size == 4096)
5841 convert_to_4k_imsm_disk(&spare->disk[0]);
5842
f796af5d
DW
5843 sum = __gen_imsm_checksum(spare);
5844 spare->family_num = __cpu_to_le32(sum);
5845 spare->orig_family_num = 0;
5846 sum = __gen_imsm_checksum(spare);
5847 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5848
f796af5d 5849 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5850 pr_err("failed for device %d:%d %s\n",
5851 d->major, d->minor, strerror(errno));
e74255d9 5852 return 1;
d23fe947
DW
5853 }
5854 if (doclose) {
5855 close(d->fd);
5856 d->fd = -1;
5857 }
5858 }
5859
e74255d9 5860 return 0;
d23fe947
DW
5861}
5862
36988a3d 5863static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5864{
36988a3d 5865 struct intel_super *super = st->sb;
f36a9ecd 5866 unsigned int sector_size = super->sector_size;
949c47a0 5867 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5868 struct dl *d;
5869 __u32 generation;
5870 __u32 sum;
d23fe947 5871 int spares = 0;
949c47a0 5872 int i;
a48ac0a8 5873 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5874 int num_disks = 0;
146c6260 5875 int clear_migration_record = 1;
bbab0940 5876 __u32 bbm_log_size;
cdddbdbc 5877
c2c087e6
DW
5878 /* 'generation' is incremented everytime the metadata is written */
5879 generation = __le32_to_cpu(mpb->generation_num);
5880 generation++;
5881 mpb->generation_num = __cpu_to_le32(generation);
5882
148acb7b
DW
5883 /* fix up cases where previous mdadm releases failed to set
5884 * orig_family_num
5885 */
5886 if (mpb->orig_family_num == 0)
5887 mpb->orig_family_num = mpb->family_num;
5888
d23fe947 5889 for (d = super->disks; d; d = d->next) {
8796fdc4 5890 if (d->index == -1)
d23fe947 5891 spares++;
36988a3d 5892 else {
d23fe947 5893 mpb->disk[d->index] = d->disk;
36988a3d
AK
5894 num_disks++;
5895 }
d23fe947 5896 }
36988a3d 5897 for (d = super->missing; d; d = d->next) {
47ee5a45 5898 mpb->disk[d->index] = d->disk;
36988a3d
AK
5899 num_disks++;
5900 }
5901 mpb->num_disks = num_disks;
5902 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5903
949c47a0
DW
5904 for (i = 0; i < mpb->num_raid_devs; i++) {
5905 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5906 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5907 if (dev && dev2) {
5908 imsm_copy_dev(dev, dev2);
5909 mpb_size += sizeof_imsm_dev(dev, 0);
5910 }
146c6260
AK
5911 if (is_gen_migration(dev2))
5912 clear_migration_record = 0;
949c47a0 5913 }
bbab0940
TM
5914
5915 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5916
5917 if (bbm_log_size) {
5918 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5919 mpb->attributes |= MPB_ATTRIB_BBM;
5920 } else
5921 mpb->attributes &= ~MPB_ATTRIB_BBM;
5922
5923 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5924 mpb_size += bbm_log_size;
a48ac0a8 5925 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5926
bbab0940
TM
5927#ifdef DEBUG
5928 assert(super->len == 0 || mpb_size <= super->len);
5929#endif
5930
c2c087e6 5931 /* recalculate checksum */
949c47a0 5932 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5933 mpb->check_sum = __cpu_to_le32(sum);
5934
51d83f5d
AK
5935 if (super->clean_migration_record_by_mdmon) {
5936 clear_migration_record = 1;
5937 super->clean_migration_record_by_mdmon = 0;
5938 }
146c6260 5939 if (clear_migration_record)
de44e46f 5940 memset(super->migr_rec_buf, 0,
85337573 5941 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 5942
f36a9ecd
PB
5943 if (sector_size == 4096)
5944 convert_to_4k(super);
5945
d23fe947 5946 /* write the mpb for disks that compose raid devices */
c2c087e6 5947 for (d = super->disks; d ; d = d->next) {
86c54047 5948 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5949 continue;
30602f53 5950
146c6260
AK
5951 if (clear_migration_record) {
5952 unsigned long long dsize;
5953
5954 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
5955 if (lseek64(d->fd, dsize - sector_size,
5956 SEEK_SET) >= 0) {
466070ad
PB
5957 if ((unsigned int)write(d->fd,
5958 super->migr_rec_buf,
de44e46f
PB
5959 MIGR_REC_BUF_SECTORS*sector_size) !=
5960 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 5961 perror("Write migr_rec failed");
146c6260
AK
5962 }
5963 }
51d83f5d
AK
5964
5965 if (store_imsm_mpb(d->fd, mpb))
5966 fprintf(stderr,
1ade5cc1
N
5967 "failed for device %d:%d (fd: %d)%s\n",
5968 d->major, d->minor,
51d83f5d
AK
5969 d->fd, strerror(errno));
5970
c2c087e6
DW
5971 if (doclose) {
5972 close(d->fd);
5973 d->fd = -1;
5974 }
5975 }
5976
d23fe947
DW
5977 if (spares)
5978 return write_super_imsm_spares(super, doclose);
5979
e74255d9 5980 return 0;
c2c087e6
DW
5981}
5982
9b1fb677 5983static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5984{
5985 size_t len;
5986 struct imsm_update_create_array *u;
5987 struct intel_super *super = st->sb;
9b1fb677 5988 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5989 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5990 struct disk_info *inf;
5991 struct imsm_disk *disk;
5992 int i;
43dad3d6 5993
54c2c1ea
DW
5994 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5995 sizeof(*inf) * map->num_members;
503975b9 5996 u = xmalloc(len);
43dad3d6 5997 u->type = update_create_array;
9b1fb677 5998 u->dev_idx = dev_idx;
43dad3d6 5999 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6000 inf = get_disk_info(u);
6001 for (i = 0; i < map->num_members; i++) {
238c0a71 6002 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6003
54c2c1ea 6004 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6005 if (!disk)
6006 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6007 serialcpy(inf[i].serial, disk->serial);
6008 }
43dad3d6
DW
6009 append_metadata_update(st, u, len);
6010
6011 return 0;
6012}
6013
1a64be56 6014static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6015{
6016 struct intel_super *super = st->sb;
6017 size_t len;
1a64be56 6018 struct imsm_update_add_remove_disk *u;
43dad3d6 6019
1a64be56 6020 if (!super->disk_mgmt_list)
43dad3d6
DW
6021 return 0;
6022
6023 len = sizeof(*u);
503975b9 6024 u = xmalloc(len);
1a64be56 6025 u->type = update_add_remove_disk;
43dad3d6
DW
6026 append_metadata_update(st, u, len);
6027
6028 return 0;
6029}
2432ce9b
AP
6030
6031__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6032
6033static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6034{
6035 struct intel_super *super = st->sb;
6036 void *buf;
6037 struct ppl_header *ppl_hdr;
6038 int ret;
6039
6040 ret = posix_memalign(&buf, 4096, PPL_HEADER_SIZE);
6041 if (ret) {
6042 pr_err("Failed to allocate PPL header buffer\n");
6043 return ret;
6044 }
6045
6046 memset(buf, 0, PPL_HEADER_SIZE);
6047 ppl_hdr = buf;
6048 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6049 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6050 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6051
6052 if (lseek64(fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6053 ret = errno;
6054 perror("Failed to seek to PPL header location");
6055 }
6056
6057 if (!ret && write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6058 ret = errno;
6059 perror("Write PPL header failed");
6060 }
6061
6062 if (!ret)
6063 fsync(fd);
6064
6065 free(buf);
6066 return ret;
6067}
6068
6069static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6070 struct mdinfo *disk)
6071{
6072 struct intel_super *super = st->sb;
6073 struct dl *d;
6074 void *buf;
6075 int ret = 0;
6076 struct ppl_header *ppl_hdr;
6077 __u32 crc;
6078 struct imsm_dev *dev;
6079 struct imsm_map *map;
6080 __u32 idx;
6081
6082 if (disk->disk.raid_disk < 0)
6083 return 0;
6084
6085 if (posix_memalign(&buf, 4096, PPL_HEADER_SIZE)) {
6086 pr_err("Failed to allocate PPL header buffer\n");
6087 return -1;
6088 }
6089
6090 dev = get_imsm_dev(super, info->container_member);
6091 map = get_imsm_map(dev, MAP_X);
6092 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_X);
6093 d = get_imsm_dl_disk(super, idx);
6094
6095 if (!d || d->index < 0 || is_failed(&d->disk))
6096 goto out;
6097
6098 if (lseek64(d->fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6099 perror("Failed to seek to PPL header location");
6100 ret = -1;
6101 goto out;
6102 }
6103
6104 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6105 perror("Read PPL header failed");
6106 ret = -1;
6107 goto out;
6108 }
6109
6110 ppl_hdr = buf;
6111
6112 crc = __le32_to_cpu(ppl_hdr->checksum);
6113 ppl_hdr->checksum = 0;
6114
6115 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6116 dprintf("Wrong PPL header checksum on %s\n",
6117 d->devname);
6118 ret = 1;
6119 }
6120
6121 if (!ret && (__le32_to_cpu(ppl_hdr->signature) !=
6122 super->anchor->orig_family_num)) {
6123 dprintf("Wrong PPL header signature on %s\n",
6124 d->devname);
6125 ret = 1;
6126 }
6127
6128out:
6129 free(buf);
6130
6131 if (ret == 1 && map->map_state == IMSM_T_STATE_UNINITIALIZED)
6132 return st->ss->write_init_ppl(st, info, d->fd);
6133
6134 return ret;
6135}
6136
2432ce9b
AP
6137static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6138{
6139 struct intel_super *super = st->sb;
6140 struct dl *d;
6141 int ret = 0;
6142
6143 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6144 info->array.level != 5)
6145 return 0;
6146
6147 for (d = super->disks; d ; d = d->next) {
6148 if (d->index < 0 || is_failed(&d->disk))
6149 continue;
6150
6151 ret = st->ss->write_init_ppl(st, info, d->fd);
6152 if (ret)
6153 break;
6154 }
6155
6156 return ret;
6157}
43dad3d6 6158
c2c087e6
DW
6159static int write_init_super_imsm(struct supertype *st)
6160{
9b1fb677
DW
6161 struct intel_super *super = st->sb;
6162 int current_vol = super->current_vol;
2432ce9b
AP
6163 int rv = 0;
6164 struct mdinfo info;
6165
6166 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6167
6168 /* we are done with current_vol reset it to point st at the container */
6169 super->current_vol = -1;
6170
8273f55e 6171 if (st->update_tail) {
43dad3d6
DW
6172 /* queue the recently created array / added disk
6173 * as a metadata update */
8273f55e 6174
43dad3d6 6175 /* determine if we are creating a volume or adding a disk */
9b1fb677 6176 if (current_vol < 0) {
1a64be56
LM
6177 /* in the mgmt (add/remove) disk case we are running
6178 * in mdmon context, so don't close fd's
43dad3d6 6179 */
2432ce9b
AP
6180 rv = mgmt_disk(st);
6181 } else {
6182 rv = write_init_ppl_imsm_all(st, &info);
6183 if (!rv)
6184 rv = create_array(st, current_vol);
6185 }
d682f344
N
6186 } else {
6187 struct dl *d;
6188 for (d = super->disks; d; d = d->next)
ba728be7 6189 Kill(d->devname, NULL, 0, -1, 1);
2432ce9b
AP
6190 if (current_vol >= 0)
6191 rv = write_init_ppl_imsm_all(st, &info);
6192 if (!rv)
6193 rv = write_super_imsm(st, 1);
d682f344 6194 }
2432ce9b
AP
6195
6196 return rv;
cdddbdbc
DW
6197}
6198
e683ca88 6199static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6200{
e683ca88
DW
6201 struct intel_super *super = st->sb;
6202 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6203
e683ca88 6204 if (!mpb)
ad97895e
DW
6205 return 1;
6206
f36a9ecd
PB
6207 if (super->sector_size == 4096)
6208 convert_to_4k(super);
e683ca88 6209 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6210}
6211
cdddbdbc
DW
6212static int validate_geometry_imsm_container(struct supertype *st, int level,
6213 int layout, int raiddisks, int chunk,
af4348dd
N
6214 unsigned long long size,
6215 unsigned long long data_offset,
6216 char *dev,
2c514b71
NB
6217 unsigned long long *freesize,
6218 int verbose)
cdddbdbc 6219{
c2c087e6
DW
6220 int fd;
6221 unsigned long long ldsize;
594dc1b8 6222 struct intel_super *super;
f2f5c343 6223 int rv = 0;
cdddbdbc 6224
c2c087e6
DW
6225 if (level != LEVEL_CONTAINER)
6226 return 0;
6227 if (!dev)
6228 return 1;
6229
6230 fd = open(dev, O_RDONLY|O_EXCL, 0);
6231 if (fd < 0) {
ba728be7 6232 if (verbose > 0)
e7b84f9d 6233 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6234 dev, strerror(errno));
c2c087e6
DW
6235 return 0;
6236 }
6237 if (!get_dev_size(fd, dev, &ldsize)) {
6238 close(fd);
6239 return 0;
6240 }
f2f5c343
LM
6241
6242 /* capabilities retrieve could be possible
6243 * note that there is no fd for the disks in array.
6244 */
6245 super = alloc_super();
8d67477f
TM
6246 if (!super) {
6247 close(fd);
6248 return 0;
6249 }
fa7bb6f8
PB
6250 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6251 close(fd);
6252 free_imsm(super);
6253 return 0;
6254 }
6255
ba728be7 6256 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6257 if (rv != 0) {
6258#if DEBUG
6259 char str[256];
6260 fd2devname(fd, str);
1ade5cc1 6261 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6262 fd, str, super->orom, rv, raiddisks);
6263#endif
6264 /* no orom/efi or non-intel hba of the disk */
6265 close(fd);
6266 free_imsm(super);
6267 return 0;
6268 }
c2c087e6 6269 close(fd);
9126b9a8
CA
6270 if (super->orom) {
6271 if (raiddisks > super->orom->tds) {
6272 if (verbose)
7a862a02 6273 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
6274 raiddisks, super->orom->tds);
6275 free_imsm(super);
6276 return 0;
6277 }
6278 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6279 (ldsize >> 9) >> 32 > 0) {
6280 if (verbose)
e7b84f9d 6281 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
6282 free_imsm(super);
6283 return 0;
6284 }
f2f5c343 6285 }
c2c087e6 6286
af4348dd 6287 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 6288 free_imsm(super);
c2c087e6
DW
6289
6290 return 1;
cdddbdbc
DW
6291}
6292
0dcecb2e
DW
6293static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6294{
6295 const unsigned long long base_start = e[*idx].start;
6296 unsigned long long end = base_start + e[*idx].size;
6297 int i;
6298
6299 if (base_start == end)
6300 return 0;
6301
6302 *idx = *idx + 1;
6303 for (i = *idx; i < num_extents; i++) {
6304 /* extend overlapping extents */
6305 if (e[i].start >= base_start &&
6306 e[i].start <= end) {
6307 if (e[i].size == 0)
6308 return 0;
6309 if (e[i].start + e[i].size > end)
6310 end = e[i].start + e[i].size;
6311 } else if (e[i].start > end) {
6312 *idx = i;
6313 break;
6314 }
6315 }
6316
6317 return end - base_start;
6318}
6319
6320static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6321{
6322 /* build a composite disk with all known extents and generate a new
6323 * 'maxsize' given the "all disks in an array must share a common start
6324 * offset" constraint
6325 */
503975b9 6326 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6327 struct dl *dl;
6328 int i, j;
6329 int start_extent;
6330 unsigned long long pos;
b9d77223 6331 unsigned long long start = 0;
0dcecb2e
DW
6332 unsigned long long maxsize;
6333 unsigned long reserve;
6334
0dcecb2e
DW
6335 /* coalesce and sort all extents. also, check to see if we need to
6336 * reserve space between member arrays
6337 */
6338 j = 0;
6339 for (dl = super->disks; dl; dl = dl->next) {
6340 if (!dl->e)
6341 continue;
6342 for (i = 0; i < dl->extent_cnt; i++)
6343 e[j++] = dl->e[i];
6344 }
6345 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6346
6347 /* merge extents */
6348 i = 0;
6349 j = 0;
6350 while (i < sum_extents) {
6351 e[j].start = e[i].start;
6352 e[j].size = find_size(e, &i, sum_extents);
6353 j++;
6354 if (e[j-1].size == 0)
6355 break;
6356 }
6357
6358 pos = 0;
6359 maxsize = 0;
6360 start_extent = 0;
6361 i = 0;
6362 do {
6363 unsigned long long esize;
6364
6365 esize = e[i].start - pos;
6366 if (esize >= maxsize) {
6367 maxsize = esize;
6368 start = pos;
6369 start_extent = i;
6370 }
6371 pos = e[i].start + e[i].size;
6372 i++;
6373 } while (e[i-1].size);
6374 free(e);
6375
a7dd165b
DW
6376 if (maxsize == 0)
6377 return 0;
6378
6379 /* FIXME assumes volume at offset 0 is the first volume in a
6380 * container
6381 */
0dcecb2e
DW
6382 if (start_extent > 0)
6383 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6384 else
6385 reserve = 0;
6386
6387 if (maxsize < reserve)
a7dd165b 6388 return 0;
0dcecb2e 6389
5551b113 6390 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6391 if (start + reserve > super->create_offset)
a7dd165b 6392 return 0; /* start overflows create_offset */
0dcecb2e
DW
6393 super->create_offset = start + reserve;
6394
6395 return maxsize - reserve;
6396}
6397
88c32bb1
DW
6398static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6399{
6400 if (level < 0 || level == 6 || level == 4)
6401 return 0;
6402
6403 /* if we have an orom prevent invalid raid levels */
6404 if (orom)
6405 switch (level) {
6406 case 0: return imsm_orom_has_raid0(orom);
6407 case 1:
6408 if (raiddisks > 2)
6409 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6410 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6411 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6412 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6413 }
6414 else
6415 return 1; /* not on an Intel RAID platform so anything goes */
6416
6417 return 0;
6418}
6419
ca9de185
LM
6420static int
6421active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6422 int dpa, int verbose)
6423{
6424 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6425 struct mdstat_ent *memb;
ca9de185
LM
6426 int count = 0;
6427 int num = 0;
594dc1b8 6428 struct md_list *dv;
ca9de185
LM
6429 int found;
6430
6431 for (memb = mdstat ; memb ; memb = memb->next) {
6432 if (memb->metadata_version &&
6433 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6434 (strcmp(&memb->metadata_version[9], name) == 0) &&
6435 !is_subarray(memb->metadata_version+9) &&
6436 memb->members) {
6437 struct dev_member *dev = memb->members;
6438 int fd = -1;
6439 while(dev && (fd < 0)) {
503975b9
N
6440 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6441 num = sprintf(path, "%s%s", "/dev/", dev->name);
6442 if (num > 0)
6443 fd = open(path, O_RDONLY, 0);
089f9d79 6444 if (num <= 0 || fd < 0) {
676e87a8 6445 pr_vrb("Cannot open %s: %s\n",
503975b9 6446 dev->name, strerror(errno));
ca9de185 6447 }
503975b9 6448 free(path);
ca9de185
LM
6449 dev = dev->next;
6450 }
6451 found = 0;
089f9d79 6452 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6453 struct mdstat_ent *vol;
6454 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6455 if (vol->active > 0 &&
ca9de185 6456 vol->metadata_version &&
9581efb1 6457 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6458 found++;
6459 count++;
6460 }
6461 }
6462 if (*devlist && (found < dpa)) {
503975b9 6463 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6464 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6465 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6466 dv->found = found;
6467 dv->used = 0;
6468 dv->next = *devlist;
6469 *devlist = dv;
ca9de185
LM
6470 }
6471 }
6472 if (fd >= 0)
6473 close(fd);
6474 }
6475 }
6476 free_mdstat(mdstat);
6477 return count;
6478}
6479
6480#ifdef DEBUG_LOOP
6481static struct md_list*
6482get_loop_devices(void)
6483{
6484 int i;
6485 struct md_list *devlist = NULL;
594dc1b8 6486 struct md_list *dv;
ca9de185
LM
6487
6488 for(i = 0; i < 12; i++) {
503975b9
N
6489 dv = xcalloc(1, sizeof(*dv));
6490 dv->devname = xmalloc(40);
ca9de185
LM
6491 sprintf(dv->devname, "/dev/loop%d", i);
6492 dv->next = devlist;
6493 devlist = dv;
6494 }
6495 return devlist;
6496}
6497#endif
6498
6499static struct md_list*
6500get_devices(const char *hba_path)
6501{
6502 struct md_list *devlist = NULL;
594dc1b8 6503 struct md_list *dv;
ca9de185
LM
6504 struct dirent *ent;
6505 DIR *dir;
6506 int err = 0;
6507
6508#if DEBUG_LOOP
6509 devlist = get_loop_devices();
6510 return devlist;
6511#endif
6512 /* scroll through /sys/dev/block looking for devices attached to
6513 * this hba
6514 */
6515 dir = opendir("/sys/dev/block");
6516 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6517 int fd;
6518 char buf[1024];
6519 int major, minor;
6520 char *path = NULL;
6521 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6522 continue;
6523 path = devt_to_devpath(makedev(major, minor));
6524 if (!path)
6525 continue;
6526 if (!path_attached_to_hba(path, hba_path)) {
6527 free(path);
6528 path = NULL;
6529 continue;
6530 }
6531 free(path);
6532 path = NULL;
6533 fd = dev_open(ent->d_name, O_RDONLY);
6534 if (fd >= 0) {
6535 fd2devname(fd, buf);
6536 close(fd);
6537 } else {
e7b84f9d 6538 pr_err("cannot open device: %s\n",
ca9de185
LM
6539 ent->d_name);
6540 continue;
6541 }
6542
503975b9
N
6543 dv = xcalloc(1, sizeof(*dv));
6544 dv->devname = xstrdup(buf);
ca9de185
LM
6545 dv->next = devlist;
6546 devlist = dv;
6547 }
6548 if (err) {
6549 while(devlist) {
6550 dv = devlist;
6551 devlist = devlist->next;
6552 free(dv->devname);
6553 free(dv);
6554 }
6555 }
562aa102 6556 closedir(dir);
ca9de185
LM
6557 return devlist;
6558}
6559
6560static int
6561count_volumes_list(struct md_list *devlist, char *homehost,
6562 int verbose, int *found)
6563{
6564 struct md_list *tmpdev;
6565 int count = 0;
594dc1b8 6566 struct supertype *st;
ca9de185
LM
6567
6568 /* first walk the list of devices to find a consistent set
6569 * that match the criterea, if that is possible.
6570 * We flag the ones we like with 'used'.
6571 */
6572 *found = 0;
6573 st = match_metadata_desc_imsm("imsm");
6574 if (st == NULL) {
676e87a8 6575 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6576 return 0;
6577 }
6578
6579 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6580 char *devname = tmpdev->devname;
0a6bff09 6581 dev_t rdev;
ca9de185
LM
6582 struct supertype *tst;
6583 int dfd;
6584 if (tmpdev->used > 1)
6585 continue;
6586 tst = dup_super(st);
6587 if (tst == NULL) {
676e87a8 6588 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6589 goto err_1;
6590 }
6591 tmpdev->container = 0;
6592 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6593 if (dfd < 0) {
1ade5cc1 6594 dprintf("cannot open device %s: %s\n",
ca9de185
LM
6595 devname, strerror(errno));
6596 tmpdev->used = 2;
0a6bff09 6597 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
6598 tmpdev->used = 2;
6599 } else if (must_be_container(dfd)) {
6600 struct supertype *cst;
6601 cst = super_by_fd(dfd, NULL);
6602 if (cst == NULL) {
1ade5cc1 6603 dprintf("cannot recognize container type %s\n",
ca9de185
LM
6604 devname);
6605 tmpdev->used = 2;
6606 } else if (tst->ss != st->ss) {
1ade5cc1 6607 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
6608 devname);
6609 tmpdev->used = 2;
6610 } else if (!tst->ss->load_container ||
6611 tst->ss->load_container(tst, dfd, NULL))
6612 tmpdev->used = 2;
6613 else {
6614 tmpdev->container = 1;
6615 }
6616 if (cst)
6617 cst->ss->free_super(cst);
6618 } else {
0a6bff09 6619 tmpdev->st_rdev = rdev;
ca9de185 6620 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 6621 dprintf("no RAID superblock on %s\n",
ca9de185
LM
6622 devname);
6623 tmpdev->used = 2;
6624 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 6625 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
6626 tst->ss->name, devname);
6627 tmpdev->used = 2;
6628 }
6629 }
6630 if (dfd >= 0)
6631 close(dfd);
6632 if (tmpdev->used == 2 || tmpdev->used == 4) {
6633 /* Ignore unrecognised devices during auto-assembly */
6634 goto loop;
6635 }
6636 else {
6637 struct mdinfo info;
6638 tst->ss->getinfo_super(tst, &info, NULL);
6639
6640 if (st->minor_version == -1)
6641 st->minor_version = tst->minor_version;
6642
6643 if (memcmp(info.uuid, uuid_zero,
6644 sizeof(int[4])) == 0) {
6645 /* this is a floating spare. It cannot define
6646 * an array unless there are no more arrays of
6647 * this type to be found. It can be included
6648 * in an array of this type though.
6649 */
6650 tmpdev->used = 3;
6651 goto loop;
6652 }
6653
6654 if (st->ss != tst->ss ||
6655 st->minor_version != tst->minor_version ||
6656 st->ss->compare_super(st, tst) != 0) {
6657 /* Some mismatch. If exactly one array matches this host,
6658 * we can resolve on that one.
6659 * Or, if we are auto assembling, we just ignore the second
6660 * for now.
6661 */
1ade5cc1 6662 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
6663 devname);
6664 goto loop;
6665 }
6666 tmpdev->used = 1;
6667 *found = 1;
6668 dprintf("found: devname: %s\n", devname);
6669 }
6670 loop:
6671 if (tst)
6672 tst->ss->free_super(tst);
6673 }
6674 if (*found != 0) {
6675 int err;
6676 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6677 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6678 for (iter = head; iter; iter = iter->next) {
6679 dprintf("content->text_version: %s vol\n",
6680 iter->text_version);
6681 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6682 /* do not assemble arrays with unsupported
6683 configurations */
1ade5cc1 6684 dprintf("Cannot activate member %s.\n",
ca9de185
LM
6685 iter->text_version);
6686 } else
6687 count++;
6688 }
6689 sysfs_free(head);
6690
6691 } else {
1ade5cc1 6692 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
6693 err, st->sb);
6694 }
6695 } else {
1ade5cc1 6696 dprintf("no more devices to examine\n");
ca9de185
LM
6697 }
6698
6699 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 6700 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
6701 if (count) {
6702 if (count < tmpdev->found)
6703 count = 0;
6704 else
6705 count -= tmpdev->found;
6706 }
6707 }
6708 if (tmpdev->used == 1)
6709 tmpdev->used = 4;
6710 }
6711 err_1:
6712 if (st)
6713 st->ss->free_super(st);
6714 return count;
6715}
6716
d3c11416
AO
6717static int __count_volumes(char *hba_path, int dpa, int verbose,
6718 int cmp_hba_path)
ca9de185 6719{
72a45777 6720 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 6721 int count = 0;
72a45777
PB
6722 const struct orom_entry *entry;
6723 struct devid_list *dv, *devid_list;
ca9de185 6724
d3c11416 6725 if (!hba_path)
ca9de185
LM
6726 return 0;
6727
72a45777 6728 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
6729 if (strstr(idev->path, hba_path))
6730 break;
72a45777
PB
6731 }
6732
6733 if (!idev || !idev->dev_id)
ca9de185 6734 return 0;
72a45777
PB
6735
6736 entry = get_orom_entry_by_device_id(idev->dev_id);
6737
6738 if (!entry || !entry->devid_list)
6739 return 0;
6740
6741 devid_list = entry->devid_list;
6742 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 6743 struct md_list *devlist;
d3c11416
AO
6744 struct sys_dev *device = NULL;
6745 char *hpath;
72a45777
PB
6746 int found = 0;
6747
d3c11416
AO
6748 if (cmp_hba_path)
6749 device = device_by_id_and_path(dv->devid, hba_path);
6750 else
6751 device = device_by_id(dv->devid);
6752
72a45777 6753 if (device)
d3c11416 6754 hpath = device->path;
72a45777
PB
6755 else
6756 return 0;
6757
d3c11416 6758 devlist = get_devices(hpath);
72a45777
PB
6759 /* if no intel devices return zero volumes */
6760 if (devlist == NULL)
6761 return 0;
6762
d3c11416
AO
6763 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6764 verbose);
6765 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
6766 if (devlist == NULL)
6767 return 0;
6768 do {
6769 found = 0;
6770 count += count_volumes_list(devlist,
6771 NULL,
6772 verbose,
6773 &found);
6774 dprintf("found %d count: %d\n", found, count);
6775 } while (found);
6776
d3c11416 6777 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
6778
6779 while (devlist) {
6780 struct md_list *dv = devlist;
6781 devlist = devlist->next;
6782 free(dv->devname);
6783 free(dv);
6784 }
ca9de185
LM
6785 }
6786 return count;
6787}
6788
d3c11416
AO
6789static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6790{
6791 if (!hba)
6792 return 0;
6793 if (hba->type == SYS_DEV_VMD) {
6794 struct sys_dev *dev;
6795 int count = 0;
6796
6797 for (dev = find_intel_devices(); dev; dev = dev->next) {
6798 if (dev->type == SYS_DEV_VMD)
6799 count += __count_volumes(dev->path, dpa,
6800 verbose, 1);
6801 }
6802 return count;
6803 }
6804 return __count_volumes(hba->path, dpa, verbose, 0);
6805}
6806
cd9d1ac7
DW
6807static int imsm_default_chunk(const struct imsm_orom *orom)
6808{
6809 /* up to 512 if the plaform supports it, otherwise the platform max.
6810 * 128 if no platform detected
6811 */
6812 int fs = max(7, orom ? fls(orom->sss) : 0);
6813
6814 return min(512, (1 << fs));
6815}
73408129 6816
6592ce37
DW
6817static int
6818validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6819 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6820{
660260d0
DW
6821 /* check/set platform and metadata limits/defaults */
6822 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 6823 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 6824 super->orom->dpa);
73408129
LM
6825 return 0;
6826 }
6827
5d500228 6828 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6829 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 6830 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
6831 level, raiddisks, raiddisks > 1 ? "s" : "");
6832 return 0;
6833 }
cd9d1ac7 6834
7ccc4cc4 6835 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
6836 *chunk = imsm_default_chunk(super->orom);
6837
7ccc4cc4 6838 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 6839 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 6840 return 0;
6592ce37 6841 }
cd9d1ac7 6842
6592ce37
DW
6843 if (layout != imsm_level_to_layout(level)) {
6844 if (level == 5)
676e87a8 6845 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 6846 else if (level == 10)
676e87a8 6847 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 6848 else
676e87a8 6849 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
6850 layout, level);
6851 return 0;
6852 }
2cc699af 6853
7ccc4cc4 6854 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 6855 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 6856 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
6857 return 0;
6858 }
614902f6 6859
6592ce37
DW
6860 return 1;
6861}
6862
1011e834 6863/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
6864 * FIX ME add ahci details
6865 */
8b353278 6866static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 6867 int layout, int raiddisks, int *chunk,
af4348dd
N
6868 unsigned long long size,
6869 unsigned long long data_offset,
6870 char *dev,
2c514b71
NB
6871 unsigned long long *freesize,
6872 int verbose)
cdddbdbc 6873{
9e04ac1c 6874 dev_t rdev;
c2c087e6 6875 struct intel_super *super = st->sb;
b2916f25 6876 struct imsm_super *mpb;
c2c087e6
DW
6877 struct dl *dl;
6878 unsigned long long pos = 0;
6879 unsigned long long maxsize;
6880 struct extent *e;
6881 int i;
cdddbdbc 6882
88c32bb1
DW
6883 /* We must have the container info already read in. */
6884 if (!super)
c2c087e6
DW
6885 return 0;
6886
b2916f25
JS
6887 mpb = super->anchor;
6888
2cc699af 6889 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 6890 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 6891 return 0;
d54559f0 6892 }
c2c087e6
DW
6893 if (!dev) {
6894 /* General test: make sure there is space for
2da8544a
DW
6895 * 'raiddisks' device extents of size 'size' at a given
6896 * offset
c2c087e6 6897 */
e46273eb 6898 unsigned long long minsize = size;
b7528a20 6899 unsigned long long start_offset = MaxSector;
c2c087e6
DW
6900 int dcnt = 0;
6901 if (minsize == 0)
6902 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6903 for (dl = super->disks; dl ; dl = dl->next) {
6904 int found = 0;
6905
bf5a934a 6906 pos = 0;
c2c087e6
DW
6907 i = 0;
6908 e = get_extents(super, dl);
6909 if (!e) continue;
6910 do {
6911 unsigned long long esize;
6912 esize = e[i].start - pos;
6913 if (esize >= minsize)
6914 found = 1;
b7528a20 6915 if (found && start_offset == MaxSector) {
2da8544a
DW
6916 start_offset = pos;
6917 break;
6918 } else if (found && pos != start_offset) {
6919 found = 0;
6920 break;
6921 }
c2c087e6
DW
6922 pos = e[i].start + e[i].size;
6923 i++;
6924 } while (e[i-1].size);
6925 if (found)
6926 dcnt++;
6927 free(e);
6928 }
6929 if (dcnt < raiddisks) {
2c514b71 6930 if (verbose)
7a862a02 6931 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 6932 dcnt, raiddisks);
c2c087e6
DW
6933 return 0;
6934 }
6935 return 1;
6936 }
0dcecb2e 6937
c2c087e6 6938 /* This device must be a member of the set */
9e04ac1c 6939 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
6940 return 0;
6941 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
6942 if (dl->major == (int)major(rdev) &&
6943 dl->minor == (int)minor(rdev))
c2c087e6
DW
6944 break;
6945 }
6946 if (!dl) {
2c514b71 6947 if (verbose)
7a862a02 6948 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 6949 return 0;
a20d2ba5
DW
6950 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6951 /* If a volume is present then the current creation attempt
6952 * cannot incorporate new spares because the orom may not
6953 * understand this configuration (all member disks must be
6954 * members of each array in the container).
6955 */
7a862a02
N
6956 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6957 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 6958 return 0;
5fe62b94
WD
6959 } else if (super->orom && mpb->num_raid_devs > 0 &&
6960 mpb->num_disks != raiddisks) {
7a862a02 6961 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 6962 return 0;
c2c087e6 6963 }
0dcecb2e
DW
6964
6965 /* retrieve the largest free space block */
c2c087e6
DW
6966 e = get_extents(super, dl);
6967 maxsize = 0;
6968 i = 0;
0dcecb2e
DW
6969 if (e) {
6970 do {
6971 unsigned long long esize;
6972
6973 esize = e[i].start - pos;
6974 if (esize >= maxsize)
6975 maxsize = esize;
6976 pos = e[i].start + e[i].size;
6977 i++;
6978 } while (e[i-1].size);
6979 dl->e = e;
6980 dl->extent_cnt = i;
6981 } else {
6982 if (verbose)
e7b84f9d 6983 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6984 dev);
6985 return 0;
6986 }
6987 if (maxsize < size) {
6988 if (verbose)
e7b84f9d 6989 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6990 dev, maxsize, size);
6991 return 0;
6992 }
6993
6994 /* count total number of extents for merge */
6995 i = 0;
6996 for (dl = super->disks; dl; dl = dl->next)
6997 if (dl->e)
6998 i += dl->extent_cnt;
6999
7000 maxsize = merge_extents(super, i);
3baa56ab
LO
7001
7002 if (!check_env("IMSM_NO_PLATFORM") &&
7003 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7004 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
7005 return 0;
7006 }
7007
a7dd165b 7008 if (maxsize < size || maxsize == 0) {
b3071342
LD
7009 if (verbose) {
7010 if (maxsize == 0)
7a862a02 7011 pr_err("no free space left on device. Aborting...\n");
b3071342 7012 else
7a862a02 7013 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7014 maxsize, size);
7015 }
0dcecb2e 7016 return 0;
0dcecb2e
DW
7017 }
7018
c2c087e6
DW
7019 *freesize = maxsize;
7020
ca9de185 7021 if (super->orom) {
72a45777 7022 int count = count_volumes(super->hba,
ca9de185
LM
7023 super->orom->dpa, verbose);
7024 if (super->orom->vphba <= count) {
676e87a8 7025 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7026 super->orom->vphba);
7027 return 0;
7028 }
7029 }
c2c087e6 7030 return 1;
cdddbdbc
DW
7031}
7032
13bcac90 7033static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
7034 unsigned long long size, int chunk,
7035 unsigned long long *freesize)
7036{
7037 struct intel_super *super = st->sb;
7038 struct imsm_super *mpb = super->anchor;
7039 struct dl *dl;
7040 int i;
7041 int extent_cnt;
7042 struct extent *e;
7043 unsigned long long maxsize;
7044 unsigned long long minsize;
7045 int cnt;
7046 int used;
7047
7048 /* find the largest common start free region of the possible disks */
7049 used = 0;
7050 extent_cnt = 0;
7051 cnt = 0;
7052 for (dl = super->disks; dl; dl = dl->next) {
7053 dl->raiddisk = -1;
7054
7055 if (dl->index >= 0)
7056 used++;
7057
7058 /* don't activate new spares if we are orom constrained
7059 * and there is already a volume active in the container
7060 */
7061 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7062 continue;
7063
7064 e = get_extents(super, dl);
7065 if (!e)
7066 continue;
7067 for (i = 1; e[i-1].size; i++)
7068 ;
7069 dl->e = e;
7070 dl->extent_cnt = i;
7071 extent_cnt += i;
7072 cnt++;
7073 }
7074
7075 maxsize = merge_extents(super, extent_cnt);
7076 minsize = size;
7077 if (size == 0)
612e59d8
CA
7078 /* chunk is in K */
7079 minsize = chunk * 2;
efb30e7f
DW
7080
7081 if (cnt < raiddisks ||
7082 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
7083 maxsize < minsize ||
7084 maxsize == 0) {
e7b84f9d 7085 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
7086 return 0; /* No enough free spaces large enough */
7087 }
7088
7089 if (size == 0) {
7090 size = maxsize;
7091 if (chunk) {
612e59d8
CA
7092 size /= 2 * chunk;
7093 size *= 2 * chunk;
efb30e7f 7094 }
f878b242
LM
7095 maxsize = size;
7096 }
7097 if (!check_env("IMSM_NO_PLATFORM") &&
7098 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7099 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 7100 return 0;
efb30e7f 7101 }
efb30e7f
DW
7102 cnt = 0;
7103 for (dl = super->disks; dl; dl = dl->next)
7104 if (dl->e)
7105 dl->raiddisk = cnt++;
7106
7107 *freesize = size;
7108
13bcac90
AK
7109 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7110
efb30e7f
DW
7111 return 1;
7112}
7113
13bcac90
AK
7114static int reserve_space(struct supertype *st, int raiddisks,
7115 unsigned long long size, int chunk,
7116 unsigned long long *freesize)
7117{
7118 struct intel_super *super = st->sb;
7119 struct dl *dl;
7120 int cnt;
7121 int rv = 0;
7122
7123 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7124 if (rv) {
7125 cnt = 0;
7126 for (dl = super->disks; dl; dl = dl->next)
7127 if (dl->e)
7128 dl->raiddisk = cnt++;
7129 rv = 1;
7130 }
7131
7132 return rv;
7133}
7134
bf5a934a 7135static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7136 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7137 unsigned long long data_offset,
bf5a934a 7138 char *dev, unsigned long long *freesize,
5308f117 7139 int consistency_policy, int verbose)
bf5a934a
DW
7140{
7141 int fd, cfd;
7142 struct mdinfo *sra;
20cbe8d2 7143 int is_member = 0;
bf5a934a 7144
d54559f0
LM
7145 /* load capability
7146 * if given unused devices create a container
bf5a934a
DW
7147 * if given given devices in a container create a member volume
7148 */
7149 if (level == LEVEL_CONTAINER) {
7150 /* Must be a fresh device to add to a container */
7151 return validate_geometry_imsm_container(st, level, layout,
c21e737b 7152 raiddisks,
7ccc4cc4 7153 *chunk,
af4348dd 7154 size, data_offset,
bf5a934a
DW
7155 dev, freesize,
7156 verbose);
7157 }
9587c373 7158
8592f29d 7159 if (!dev) {
e91a3bad 7160 if (st->sb) {
ca9de185 7161 struct intel_super *super = st->sb;
e91a3bad 7162 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 7163 raiddisks, chunk, size,
e91a3bad
LM
7164 verbose))
7165 return 0;
efb30e7f
DW
7166 /* we are being asked to automatically layout a
7167 * new volume based on the current contents of
7168 * the container. If the the parameters can be
7169 * satisfied reserve_space will record the disks,
7170 * start offset, and size of the volume to be
7171 * created. add_to_super and getinfo_super
7172 * detect when autolayout is in progress.
7173 */
ca9de185
LM
7174 /* assuming that freesize is always given when array is
7175 created */
7176 if (super->orom && freesize) {
7177 int count;
72a45777 7178 count = count_volumes(super->hba,
ca9de185
LM
7179 super->orom->dpa, verbose);
7180 if (super->orom->vphba <= count) {
676e87a8 7181 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7182 super->orom->vphba);
7183 return 0;
7184 }
7185 }
e91a3bad
LM
7186 if (freesize)
7187 return reserve_space(st, raiddisks, size,
7ccc4cc4 7188 *chunk, freesize);
8592f29d
N
7189 }
7190 return 1;
7191 }
bf5a934a
DW
7192 if (st->sb) {
7193 /* creating in a given container */
7194 return validate_geometry_imsm_volume(st, level, layout,
7195 raiddisks, chunk, size,
af4348dd 7196 data_offset,
bf5a934a
DW
7197 dev, freesize, verbose);
7198 }
7199
bf5a934a
DW
7200 /* This device needs to be a device in an 'imsm' container */
7201 fd = open(dev, O_RDONLY|O_EXCL, 0);
7202 if (fd >= 0) {
7203 if (verbose)
e7b84f9d
N
7204 pr_err("Cannot create this array on device %s\n",
7205 dev);
bf5a934a
DW
7206 close(fd);
7207 return 0;
7208 }
7209 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7210 if (verbose)
e7b84f9d 7211 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
7212 dev, strerror(errno));
7213 return 0;
7214 }
7215 /* Well, it is in use by someone, maybe an 'imsm' container. */
7216 cfd = open_container(fd);
20cbe8d2 7217 close(fd);
bf5a934a 7218 if (cfd < 0) {
bf5a934a 7219 if (verbose)
e7b84f9d 7220 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
7221 dev);
7222 return 0;
7223 }
4dd2df09 7224 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7225 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7226 strcmp(sra->text_version, "imsm") == 0)
7227 is_member = 1;
7228 sysfs_free(sra);
7229 if (is_member) {
bf5a934a
DW
7230 /* This is a member of a imsm container. Load the container
7231 * and try to create a volume
7232 */
7233 struct intel_super *super;
7234
ec50f7b6 7235 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7236 st->sb = super;
4dd2df09 7237 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7238 close(cfd);
7239 return validate_geometry_imsm_volume(st, level, layout,
7240 raiddisks, chunk,
af4348dd 7241 size, data_offset, dev,
ecbd9e81
N
7242 freesize, 1)
7243 ? 1 : -1;
bf5a934a 7244 }
20cbe8d2 7245 }
bf5a934a 7246
20cbe8d2 7247 if (verbose)
e7b84f9d 7248 pr_err("failed container membership check\n");
20cbe8d2
AW
7249
7250 close(cfd);
7251 return 0;
bf5a934a 7252}
0bd16cf2 7253
30f58b22 7254static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7255{
7256 struct intel_super *super = st->sb;
7257
30f58b22
DW
7258 if (level && *level == UnSet)
7259 *level = LEVEL_CONTAINER;
7260
7261 if (level && layout && *layout == UnSet)
7262 *layout = imsm_level_to_layout(*level);
0bd16cf2 7263
cd9d1ac7
DW
7264 if (chunk && (*chunk == UnSet || *chunk == 0))
7265 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7266}
7267
33414a01
DW
7268static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7269
7270static int kill_subarray_imsm(struct supertype *st)
7271{
7272 /* remove the subarray currently referenced by ->current_vol */
7273 __u8 i;
7274 struct intel_dev **dp;
7275 struct intel_super *super = st->sb;
7276 __u8 current_vol = super->current_vol;
7277 struct imsm_super *mpb = super->anchor;
7278
7279 if (super->current_vol < 0)
7280 return 2;
7281 super->current_vol = -1; /* invalidate subarray cursor */
7282
7283 /* block deletions that would change the uuid of active subarrays
7284 *
7285 * FIXME when immutable ids are available, but note that we'll
7286 * also need to fixup the invalidated/active subarray indexes in
7287 * mdstat
7288 */
7289 for (i = 0; i < mpb->num_raid_devs; i++) {
7290 char subarray[4];
7291
7292 if (i < current_vol)
7293 continue;
7294 sprintf(subarray, "%u", i);
4dd2df09 7295 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7296 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7297 current_vol, i);
33414a01
DW
7298
7299 return 2;
7300 }
7301 }
7302
7303 if (st->update_tail) {
503975b9 7304 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7305
33414a01
DW
7306 u->type = update_kill_array;
7307 u->dev_idx = current_vol;
7308 append_metadata_update(st, u, sizeof(*u));
7309
7310 return 0;
7311 }
7312
7313 for (dp = &super->devlist; *dp;)
7314 if ((*dp)->index == current_vol) {
7315 *dp = (*dp)->next;
7316 } else {
7317 handle_missing(super, (*dp)->dev);
7318 if ((*dp)->index > current_vol)
7319 (*dp)->index--;
7320 dp = &(*dp)->next;
7321 }
7322
7323 /* no more raid devices, all active components are now spares,
7324 * but of course failed are still failed
7325 */
7326 if (--mpb->num_raid_devs == 0) {
7327 struct dl *d;
7328
7329 for (d = super->disks; d; d = d->next)
a8619d23
AK
7330 if (d->index > -2)
7331 mark_spare(d);
33414a01
DW
7332 }
7333
7334 super->updates_pending++;
7335
7336 return 0;
7337}
aa534678 7338
a951a4f7 7339static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7340 char *update, struct mddev_ident *ident)
aa534678
DW
7341{
7342 /* update the subarray currently referenced by ->current_vol */
7343 struct intel_super *super = st->sb;
7344 struct imsm_super *mpb = super->anchor;
7345
aa534678
DW
7346 if (strcmp(update, "name") == 0) {
7347 char *name = ident->name;
a951a4f7
N
7348 char *ep;
7349 int vol;
aa534678 7350
4dd2df09 7351 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7352 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7353 return 2;
7354 }
7355
7356 if (!check_name(super, name, 0))
7357 return 2;
7358
a951a4f7
N
7359 vol = strtoul(subarray, &ep, 10);
7360 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7361 return 2;
7362
aa534678 7363 if (st->update_tail) {
503975b9 7364 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7365
aa534678 7366 u->type = update_rename_array;
a951a4f7 7367 u->dev_idx = vol;
618f4e6d
XN
7368 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7369 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7370 append_metadata_update(st, u, sizeof(*u));
7371 } else {
7372 struct imsm_dev *dev;
7373 int i;
7374
a951a4f7 7375 dev = get_imsm_dev(super, vol);
618f4e6d
XN
7376 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7377 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7378 for (i = 0; i < mpb->num_raid_devs; i++) {
7379 dev = get_imsm_dev(super, i);
7380 handle_missing(super, dev);
7381 }
7382 super->updates_pending++;
7383 }
e6e9dd3f
AP
7384 } else if (strcmp(update, "ppl") == 0 ||
7385 strcmp(update, "no-ppl") == 0) {
7386 int new_policy;
7387 char *ep;
7388 int vol = strtoul(subarray, &ep, 10);
7389
7390 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7391 return 2;
7392
7393 if (strcmp(update, "ppl") == 0)
7394 new_policy = RWH_DISTRIBUTED;
7395 else
7396 new_policy = RWH_OFF;
7397
7398 if (st->update_tail) {
7399 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7400
7401 u->type = update_rwh_policy;
7402 u->dev_idx = vol;
7403 u->new_policy = new_policy;
7404 append_metadata_update(st, u, sizeof(*u));
7405 } else {
7406 struct imsm_dev *dev;
7407
7408 dev = get_imsm_dev(super, vol);
7409 dev->rwh_policy = new_policy;
7410 super->updates_pending++;
7411 }
aa534678
DW
7412 } else
7413 return 2;
7414
7415 return 0;
7416}
bf5a934a 7417
28bce06f
AK
7418static int is_gen_migration(struct imsm_dev *dev)
7419{
7534230b
AK
7420 if (dev == NULL)
7421 return 0;
7422
28bce06f
AK
7423 if (!dev->vol.migr_state)
7424 return 0;
7425
7426 if (migr_type(dev) == MIGR_GEN_MIGR)
7427 return 1;
7428
7429 return 0;
7430}
7431
1e5c6983
DW
7432static int is_rebuilding(struct imsm_dev *dev)
7433{
7434 struct imsm_map *migr_map;
7435
7436 if (!dev->vol.migr_state)
7437 return 0;
7438
7439 if (migr_type(dev) != MIGR_REBUILD)
7440 return 0;
7441
238c0a71 7442 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7443
7444 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7445 return 1;
7446 else
7447 return 0;
7448}
7449
6ce1fbf1
AK
7450static int is_initializing(struct imsm_dev *dev)
7451{
7452 struct imsm_map *migr_map;
7453
7454 if (!dev->vol.migr_state)
7455 return 0;
7456
7457 if (migr_type(dev) != MIGR_INIT)
7458 return 0;
7459
238c0a71 7460 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7461
7462 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7463 return 1;
7464
7465 return 0;
6ce1fbf1
AK
7466}
7467
c47b0ff6
AK
7468static void update_recovery_start(struct intel_super *super,
7469 struct imsm_dev *dev,
7470 struct mdinfo *array)
1e5c6983
DW
7471{
7472 struct mdinfo *rebuild = NULL;
7473 struct mdinfo *d;
7474 __u32 units;
7475
7476 if (!is_rebuilding(dev))
7477 return;
7478
7479 /* Find the rebuild target, but punt on the dual rebuild case */
7480 for (d = array->devs; d; d = d->next)
7481 if (d->recovery_start == 0) {
7482 if (rebuild)
7483 return;
7484 rebuild = d;
7485 }
7486
4363fd80
DW
7487 if (!rebuild) {
7488 /* (?) none of the disks are marked with
7489 * IMSM_ORD_REBUILD, so assume they are missing and the
7490 * disk_ord_tbl was not correctly updated
7491 */
1ade5cc1 7492 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7493 return;
7494 }
7495
1e5c6983 7496 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 7497 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7498}
7499
276d77db 7500static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 7501
00bbdbda 7502static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7503{
4f5bc454
DW
7504 /* Given a container loaded by load_super_imsm_all,
7505 * extract information about all the arrays into
7506 * an mdinfo tree.
00bbdbda 7507 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7508 *
7509 * For each imsm_dev create an mdinfo, fill it in,
7510 * then look for matching devices in super->disks
7511 * and create appropriate device mdinfo.
7512 */
7513 struct intel_super *super = st->sb;
949c47a0 7514 struct imsm_super *mpb = super->anchor;
4f5bc454 7515 struct mdinfo *rest = NULL;
00bbdbda 7516 unsigned int i;
81219e70 7517 int sb_errors = 0;
abef11a3
AK
7518 struct dl *d;
7519 int spare_disks = 0;
cdddbdbc 7520
19482bcc
AK
7521 /* do not assemble arrays when not all attributes are supported */
7522 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7523 sb_errors = 1;
7a862a02 7524 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7525 }
7526
abef11a3
AK
7527 /* count spare devices, not used in maps
7528 */
7529 for (d = super->disks; d; d = d->next)
7530 if (d->index == -1)
7531 spare_disks++;
7532
4f5bc454 7533 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7534 struct imsm_dev *dev;
7535 struct imsm_map *map;
86e3692b 7536 struct imsm_map *map2;
4f5bc454 7537 struct mdinfo *this;
a6482415 7538 int slot;
a6482415 7539 int chunk;
00bbdbda
N
7540 char *ep;
7541
7542 if (subarray &&
7543 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7544 continue;
7545
7546 dev = get_imsm_dev(super, i);
238c0a71
AK
7547 map = get_imsm_map(dev, MAP_0);
7548 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 7549
1ce0101c
DW
7550 /* do not publish arrays that are in the middle of an
7551 * unsupported migration
7552 */
7553 if (dev->vol.migr_state &&
28bce06f 7554 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 7555 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
7556 dev->volume);
7557 continue;
7558 }
2db86302
LM
7559 /* do not publish arrays that are not support by controller's
7560 * OROM/EFI
7561 */
1ce0101c 7562
503975b9 7563 this = xmalloc(sizeof(*this));
4f5bc454 7564
301406c9 7565 super->current_vol = i;
a5d85af7 7566 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 7567 this->next = rest;
a6482415 7568 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
7569 /* mdadm does not support all metadata features- set the bit in all arrays state */
7570 if (!validate_geometry_imsm_orom(super,
7571 get_imsm_raid_level(map), /* RAID level */
7572 imsm_level_to_layout(get_imsm_raid_level(map)),
7573 map->num_members, /* raid disks */
2cc699af 7574 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 7575 1 /* verbose */)) {
7a862a02 7576 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
7577 dev->volume);
7578 this->array.state |=
7579 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7580 (1<<MD_SB_BLOCK_VOLUME);
7581 }
81219e70
LM
7582
7583 /* if array has bad blocks, set suitable bit in all arrays state */
7584 if (sb_errors)
7585 this->array.state |=
7586 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7587 (1<<MD_SB_BLOCK_VOLUME);
7588
4f5bc454 7589 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 7590 unsigned long long recovery_start;
4f5bc454
DW
7591 struct mdinfo *info_d;
7592 struct dl *d;
7593 int idx;
9a1608e5 7594 int skip;
7eef0453 7595 __u32 ord;
4f5bc454 7596
9a1608e5 7597 skip = 0;
238c0a71
AK
7598 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7599 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
7600 for (d = super->disks; d ; d = d->next)
7601 if (d->index == idx)
0fbd635c 7602 break;
4f5bc454 7603
1e5c6983 7604 recovery_start = MaxSector;
4f5bc454 7605 if (d == NULL)
9a1608e5 7606 skip = 1;
25ed7e59 7607 if (d && is_failed(&d->disk))
9a1608e5 7608 skip = 1;
7eef0453 7609 if (ord & IMSM_ORD_REBUILD)
1e5c6983 7610 recovery_start = 0;
9a1608e5 7611
1011e834 7612 /*
9a1608e5 7613 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
7614 * reset resync start to avoid a dirty-degraded
7615 * situation when performing the intial sync
9a1608e5
DW
7616 *
7617 * FIXME handle dirty degraded
7618 */
2432ce9b
AP
7619 if ((skip || recovery_start == 0) &&
7620 !(dev->vol.dirty & RAIDVOL_DIRTY))
b7528a20 7621 this->resync_start = MaxSector;
9a1608e5
DW
7622 if (skip)
7623 continue;
4f5bc454 7624
503975b9 7625 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
7626 info_d->next = this->devs;
7627 this->devs = info_d;
7628
4f5bc454
DW
7629 info_d->disk.number = d->index;
7630 info_d->disk.major = d->major;
7631 info_d->disk.minor = d->minor;
7632 info_d->disk.raid_disk = slot;
1e5c6983 7633 info_d->recovery_start = recovery_start;
86e3692b
AK
7634 if (map2) {
7635 if (slot < map2->num_members)
7636 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7637 else
7638 this->array.spare_disks++;
86e3692b
AK
7639 } else {
7640 if (slot < map->num_members)
7641 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7642 else
7643 this->array.spare_disks++;
86e3692b 7644 }
1e5c6983
DW
7645 if (info_d->recovery_start == MaxSector)
7646 this->array.working_disks++;
4f5bc454
DW
7647
7648 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 7649 info_d->data_offset = pba_of_lba0(map);
06fb291a
PB
7650
7651 if (map->raid_level == 5) {
7652 info_d->component_size =
7653 num_data_stripes(map) *
7654 map->blocks_per_strip;
2432ce9b
AP
7655 info_d->ppl_sector = this->ppl_sector;
7656 info_d->ppl_size = this->ppl_size;
06fb291a
PB
7657 } else {
7658 info_d->component_size = blocks_per_member(map);
7659 }
2432ce9b 7660 info_d->consistency_policy = this->consistency_policy;
b12796be 7661
5e46202e 7662 info_d->bb.supported = 1;
b12796be
TM
7663 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7664 info_d->data_offset,
7665 info_d->component_size,
7666 &info_d->bb);
4f5bc454 7667 }
1e5c6983 7668 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 7669 update_recovery_start(super, dev, this);
abef11a3 7670 this->array.spare_disks += spare_disks;
276d77db
AK
7671
7672 /* check for reshape */
7673 if (this->reshape_active == 1)
7674 recover_backup_imsm(st, this);
9a1608e5 7675 rest = this;
4f5bc454
DW
7676 }
7677
7678 return rest;
cdddbdbc
DW
7679}
7680
3b451610
AK
7681static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7682 int failed, int look_in_map)
c2a1e7da 7683{
3b451610
AK
7684 struct imsm_map *map;
7685
7686 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
7687
7688 if (!failed)
1011e834 7689 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 7690 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
7691
7692 switch (get_imsm_raid_level(map)) {
7693 case 0:
7694 return IMSM_T_STATE_FAILED;
7695 break;
7696 case 1:
7697 if (failed < map->num_members)
7698 return IMSM_T_STATE_DEGRADED;
7699 else
7700 return IMSM_T_STATE_FAILED;
7701 break;
7702 case 10:
7703 {
7704 /**
c92a2527
DW
7705 * check to see if any mirrors have failed, otherwise we
7706 * are degraded. Even numbered slots are mirrored on
7707 * slot+1
c2a1e7da 7708 */
c2a1e7da 7709 int i;
d9b420a5
N
7710 /* gcc -Os complains that this is unused */
7711 int insync = insync;
c2a1e7da
DW
7712
7713 for (i = 0; i < map->num_members; i++) {
238c0a71 7714 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
7715 int idx = ord_to_idx(ord);
7716 struct imsm_disk *disk;
c2a1e7da 7717
c92a2527 7718 /* reset the potential in-sync count on even-numbered
1011e834 7719 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
7720 */
7721 if ((i & 1) == 0)
7722 insync = 2;
c2a1e7da 7723
c92a2527 7724 disk = get_imsm_disk(super, idx);
25ed7e59 7725 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 7726 insync--;
c2a1e7da 7727
c92a2527
DW
7728 /* no in-sync disks left in this mirror the
7729 * array has failed
7730 */
7731 if (insync == 0)
7732 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
7733 }
7734
7735 return IMSM_T_STATE_DEGRADED;
7736 }
7737 case 5:
7738 if (failed < 2)
7739 return IMSM_T_STATE_DEGRADED;
7740 else
7741 return IMSM_T_STATE_FAILED;
7742 break;
7743 default:
7744 break;
7745 }
7746
7747 return map->map_state;
7748}
7749
3b451610
AK
7750static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7751 int look_in_map)
c2a1e7da
DW
7752{
7753 int i;
7754 int failed = 0;
7755 struct imsm_disk *disk;
d5985138
AK
7756 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7757 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 7758 struct imsm_map *map_for_loop;
0556e1a2
DW
7759 __u32 ord;
7760 int idx;
d5985138 7761 int idx_1;
c2a1e7da 7762
0556e1a2
DW
7763 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7764 * disks that are being rebuilt. New failures are recorded to
7765 * map[0]. So we look through all the disks we started with and
7766 * see if any failures are still present, or if any new ones
7767 * have arrived
0556e1a2 7768 */
d5985138
AK
7769 map_for_loop = map;
7770 if (prev && (map->num_members < prev->num_members))
7771 map_for_loop = prev;
68fe4598
LD
7772
7773 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 7774 idx_1 = -255;
238c0a71
AK
7775 /* when MAP_X is passed both maps failures are counted
7776 */
d5985138 7777 if (prev &&
089f9d79
JS
7778 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7779 i < prev->num_members) {
d5985138
AK
7780 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7781 idx_1 = ord_to_idx(ord);
c2a1e7da 7782
d5985138
AK
7783 disk = get_imsm_disk(super, idx_1);
7784 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7785 failed++;
7786 }
089f9d79
JS
7787 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7788 i < map->num_members) {
d5985138
AK
7789 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7790 idx = ord_to_idx(ord);
7791
7792 if (idx != idx_1) {
7793 disk = get_imsm_disk(super, idx);
7794 if (!disk || is_failed(disk) ||
7795 ord & IMSM_ORD_REBUILD)
7796 failed++;
7797 }
7798 }
c2a1e7da
DW
7799 }
7800
7801 return failed;
845dea95
NB
7802}
7803
97b4d0e9
DW
7804static int imsm_open_new(struct supertype *c, struct active_array *a,
7805 char *inst)
7806{
7807 struct intel_super *super = c->sb;
7808 struct imsm_super *mpb = super->anchor;
bbab0940 7809 struct imsm_update_prealloc_bb_mem u;
9587c373 7810
97b4d0e9 7811 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7812 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7813 return -ENODEV;
7814 }
7815
7816 dprintf("imsm: open_new %s\n", inst);
7817 a->info.container_member = atoi(inst);
bbab0940
TM
7818
7819 u.type = update_prealloc_badblocks_mem;
7820 imsm_update_metadata_locally(c, &u, sizeof(u));
7821
97b4d0e9
DW
7822 return 0;
7823}
7824
0c046afd
DW
7825static int is_resyncing(struct imsm_dev *dev)
7826{
7827 struct imsm_map *migr_map;
7828
7829 if (!dev->vol.migr_state)
7830 return 0;
7831
1484e727
DW
7832 if (migr_type(dev) == MIGR_INIT ||
7833 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
7834 return 1;
7835
4c9bc37b
AK
7836 if (migr_type(dev) == MIGR_GEN_MIGR)
7837 return 0;
7838
238c0a71 7839 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 7840
089f9d79
JS
7841 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7842 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
7843 return 1;
7844 else
7845 return 0;
7846}
7847
0556e1a2 7848/* return true if we recorded new information */
4c9e8c1e
TM
7849static int mark_failure(struct intel_super *super,
7850 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 7851{
0556e1a2
DW
7852 __u32 ord;
7853 int slot;
7854 struct imsm_map *map;
86c54047
DW
7855 char buf[MAX_RAID_SERIAL_LEN+3];
7856 unsigned int len, shift = 0;
0556e1a2
DW
7857
7858 /* new failures are always set in map[0] */
238c0a71 7859 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
7860
7861 slot = get_imsm_disk_slot(map, idx);
7862 if (slot < 0)
7863 return 0;
7864
7865 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 7866 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
7867 return 0;
7868
7d0c5e24
LD
7869 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7870 buf[MAX_RAID_SERIAL_LEN] = '\000';
7871 strcat(buf, ":0");
86c54047
DW
7872 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7873 shift = len - MAX_RAID_SERIAL_LEN + 1;
7874 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7875
f2f27e63 7876 disk->status |= FAILED_DISK;
0556e1a2 7877 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
7878 /* mark failures in second map if second map exists and this disk
7879 * in this slot.
7880 * This is valid for migration, initialization and rebuild
7881 */
7882 if (dev->vol.migr_state) {
238c0a71 7883 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
7884 int slot2 = get_imsm_disk_slot(map2, idx);
7885
089f9d79 7886 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 7887 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
7888 idx | IMSM_ORD_REBUILD);
7889 }
f21e18ca 7890 if (map->failed_disk_num == 0xff)
0556e1a2 7891 map->failed_disk_num = slot;
4c9e8c1e
TM
7892
7893 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7894
0556e1a2
DW
7895 return 1;
7896}
7897
4c9e8c1e
TM
7898static void mark_missing(struct intel_super *super,
7899 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 7900{
4c9e8c1e 7901 mark_failure(super, dev, disk, idx);
0556e1a2
DW
7902
7903 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7904 return;
7905
47ee5a45
DW
7906 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7907 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7908}
7909
33414a01
DW
7910static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7911{
33414a01 7912 struct dl *dl;
33414a01
DW
7913
7914 if (!super->missing)
7915 return;
33414a01 7916
79b68f1b
PC
7917 /* When orom adds replacement for missing disk it does
7918 * not remove entry of missing disk, but just updates map with
7919 * new added disk. So it is not enough just to test if there is
7920 * any missing disk, we have to look if there are any failed disks
7921 * in map to stop migration */
7922
33414a01 7923 dprintf("imsm: mark missing\n");
3d59f0c0
AK
7924 /* end process for initialization and rebuild only
7925 */
7926 if (is_gen_migration(dev) == 0) {
7927 __u8 map_state;
7928 int failed;
7929
7930 failed = imsm_count_failed(super, dev, MAP_0);
7931 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7932
79b68f1b
PC
7933 if (failed)
7934 end_migration(dev, super, map_state);
3d59f0c0 7935 }
33414a01 7936 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 7937 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
7938 super->updates_pending++;
7939}
7940
f3871fdc
AK
7941static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7942 long long new_size)
70bdf0dc 7943{
238c0a71 7944 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
7945 unsigned long long array_blocks;
7946 struct imsm_map *map;
7947
7948 if (used_disks == 0) {
7949 /* when problems occures
7950 * return current array_blocks value
7951 */
7952 array_blocks = __le32_to_cpu(dev->size_high);
7953 array_blocks = array_blocks << 32;
7954 array_blocks += __le32_to_cpu(dev->size_low);
7955
7956 return array_blocks;
7957 }
7958
7959 /* set array size in metadata
7960 */
f3871fdc
AK
7961 if (new_size <= 0) {
7962 /* OLCE size change is caused by added disks
7963 */
7964 map = get_imsm_map(dev, MAP_0);
7965 array_blocks = blocks_per_member(map) * used_disks;
7966 } else {
7967 /* Online Volume Size Change
7968 * Using available free space
7969 */
7970 array_blocks = new_size;
7971 }
70bdf0dc 7972
b53bfba6 7973 array_blocks = round_size_to_mb(array_blocks, used_disks);
70bdf0dc
AK
7974 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7975 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7976
7977 return array_blocks;
7978}
7979
28bce06f
AK
7980static void imsm_set_disk(struct active_array *a, int n, int state);
7981
0e2d1a4e
AK
7982static void imsm_progress_container_reshape(struct intel_super *super)
7983{
7984 /* if no device has a migr_state, but some device has a
7985 * different number of members than the previous device, start
7986 * changing the number of devices in this device to match
7987 * previous.
7988 */
7989 struct imsm_super *mpb = super->anchor;
7990 int prev_disks = -1;
7991 int i;
1dfaa380 7992 int copy_map_size;
0e2d1a4e
AK
7993
7994 for (i = 0; i < mpb->num_raid_devs; i++) {
7995 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7996 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7997 struct imsm_map *map2;
7998 int prev_num_members;
0e2d1a4e
AK
7999
8000 if (dev->vol.migr_state)
8001 return;
8002
8003 if (prev_disks == -1)
8004 prev_disks = map->num_members;
8005 if (prev_disks == map->num_members)
8006 continue;
8007
8008 /* OK, this array needs to enter reshape mode.
8009 * i.e it needs a migr_state
8010 */
8011
1dfaa380 8012 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8013 prev_num_members = map->num_members;
8014 map->num_members = prev_disks;
8015 dev->vol.migr_state = 1;
8016 dev->vol.curr_migr_unit = 0;
ea672ee1 8017 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8018 for (i = prev_num_members;
8019 i < map->num_members; i++)
8020 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8021 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8022 /* Copy the current map */
1dfaa380 8023 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8024 map2->num_members = prev_num_members;
8025
f3871fdc 8026 imsm_set_array_size(dev, -1);
51d83f5d 8027 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8028 super->updates_pending++;
8029 }
8030}
8031
aad6f216 8032/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8033 * states are handled in imsm_set_disk() with one exception, when a
8034 * resync is stopped due to a new failure this routine will set the
8035 * 'degraded' state for the array.
8036 */
01f157d7 8037static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8038{
8039 int inst = a->info.container_member;
8040 struct intel_super *super = a->container->sb;
949c47a0 8041 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8042 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8043 int failed = imsm_count_failed(super, dev, MAP_0);
8044 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8045 __u32 blocks_per_unit;
a862209d 8046
1af97990
AK
8047 if (dev->vol.migr_state &&
8048 dev->vol.migr_type == MIGR_GEN_MIGR) {
8049 /* array state change is blocked due to reshape action
aad6f216
N
8050 * We might need to
8051 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8052 * - finish the reshape (if last_checkpoint is big and action != reshape)
8053 * - update curr_migr_unit
1af97990 8054 */
aad6f216
N
8055 if (a->curr_action == reshape) {
8056 /* still reshaping, maybe update curr_migr_unit */
633b5610 8057 goto mark_checkpoint;
aad6f216
N
8058 } else {
8059 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8060 /* for some reason we aborted the reshape.
b66e591b
AK
8061 *
8062 * disable automatic metadata rollback
8063 * user action is required to recover process
aad6f216 8064 */
b66e591b 8065 if (0) {
238c0a71
AK
8066 struct imsm_map *map2 =
8067 get_imsm_map(dev, MAP_1);
8068 dev->vol.migr_state = 0;
8069 set_migr_type(dev, 0);
8070 dev->vol.curr_migr_unit = 0;
8071 memcpy(map, map2,
8072 sizeof_imsm_map(map2));
8073 super->updates_pending++;
b66e591b 8074 }
aad6f216
N
8075 }
8076 if (a->last_checkpoint >= a->info.component_size) {
8077 unsigned long long array_blocks;
8078 int used_disks;
e154ced3 8079 struct mdinfo *mdi;
aad6f216 8080
238c0a71 8081 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
8082 if (used_disks > 0) {
8083 array_blocks =
5551b113 8084 blocks_per_member(map) *
d55adef9 8085 used_disks;
b53bfba6
TM
8086 array_blocks =
8087 round_size_to_mb(array_blocks,
8088 used_disks);
d55adef9
AK
8089 a->info.custom_array_size = array_blocks;
8090 /* encourage manager to update array
8091 * size
8092 */
e154ced3 8093
d55adef9 8094 a->check_reshape = 1;
633b5610 8095 }
e154ced3
AK
8096 /* finalize online capacity expansion/reshape */
8097 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8098 imsm_set_disk(a,
8099 mdi->disk.raid_disk,
8100 mdi->curr_state);
8101
0e2d1a4e 8102 imsm_progress_container_reshape(super);
e154ced3 8103 }
aad6f216 8104 }
1af97990
AK
8105 }
8106
47ee5a45 8107 /* before we activate this array handle any missing disks */
33414a01
DW
8108 if (consistent == 2)
8109 handle_missing(super, dev);
1e5c6983 8110
0c046afd 8111 if (consistent == 2 &&
b7941fd6 8112 (!is_resync_complete(&a->info) ||
0c046afd
DW
8113 map_state != IMSM_T_STATE_NORMAL ||
8114 dev->vol.migr_state))
01f157d7 8115 consistent = 0;
272906ef 8116
b7941fd6 8117 if (is_resync_complete(&a->info)) {
0c046afd 8118 /* complete intialization / resync,
0556e1a2
DW
8119 * recovery and interrupted recovery is completed in
8120 * ->set_disk
0c046afd
DW
8121 */
8122 if (is_resyncing(dev)) {
8123 dprintf("imsm: mark resync done\n");
809da78e 8124 end_migration(dev, super, map_state);
115c3803 8125 super->updates_pending++;
484240d8 8126 a->last_checkpoint = 0;
115c3803 8127 }
b9172665
AK
8128 } else if ((!is_resyncing(dev) && !failed) &&
8129 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8130 /* mark the start of the init process if nothing is failed */
b7941fd6 8131 dprintf("imsm: mark resync start\n");
1484e727 8132 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8133 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8134 else
8e59f3d8 8135 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8136 super->updates_pending++;
115c3803 8137 }
a862209d 8138
633b5610 8139mark_checkpoint:
5b83bacf
AK
8140 /* skip checkpointing for general migration,
8141 * it is controlled in mdadm
8142 */
8143 if (is_gen_migration(dev))
8144 goto skip_mark_checkpoint;
8145
1e5c6983 8146 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 8147 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8148 if (blocks_per_unit) {
1e5c6983
DW
8149 __u32 units32;
8150 __u64 units;
8151
4f0a7acc 8152 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
8153 units32 = units;
8154
8155 /* check that we did not overflow 32-bits, and that
8156 * curr_migr_unit needs updating
8157 */
8158 if (units32 == units &&
bfd80a56 8159 units32 != 0 &&
1e5c6983
DW
8160 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8161 dprintf("imsm: mark checkpoint (%u)\n", units32);
8162 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8163 super->updates_pending++;
8164 }
8165 }
f8f603f1 8166
5b83bacf 8167skip_mark_checkpoint:
3393c6af 8168 /* mark dirty / clean */
2432ce9b
AP
8169 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8170 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8171 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8172 if (consistent) {
8173 dev->vol.dirty = RAIDVOL_CLEAN;
8174 } else {
8175 dev->vol.dirty = RAIDVOL_DIRTY;
8176 if (dev->rwh_policy == RWH_DISTRIBUTED)
8177 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8178 }
a862209d
DW
8179 super->updates_pending++;
8180 }
28bce06f 8181
01f157d7 8182 return consistent;
a862209d
DW
8183}
8184
6f50473f
TM
8185static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8186{
8187 int inst = a->info.container_member;
8188 struct intel_super *super = a->container->sb;
8189 struct imsm_dev *dev = get_imsm_dev(super, inst);
8190 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8191
8192 if (slot > map->num_members) {
8193 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8194 slot, map->num_members - 1);
8195 return -1;
8196 }
8197
8198 if (slot < 0)
8199 return -1;
8200
8201 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8202}
8203
8d45d196 8204static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8205{
8d45d196
DW
8206 int inst = a->info.container_member;
8207 struct intel_super *super = a->container->sb;
949c47a0 8208 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8209 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8210 struct imsm_disk *disk;
7ce05701
LD
8211 struct mdinfo *mdi;
8212 int recovery_not_finished = 0;
0c046afd 8213 int failed;
6f50473f 8214 int ord;
0c046afd 8215 __u8 map_state;
8d45d196 8216
6f50473f
TM
8217 ord = imsm_disk_slot_to_ord(a, n);
8218 if (ord < 0)
8d45d196
DW
8219 return;
8220
4e6e574a 8221 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8222 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8223
5802a811 8224 /* check for new failures */
0556e1a2 8225 if (state & DS_FAULTY) {
4c9e8c1e 8226 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8227 super->updates_pending++;
8d45d196 8228 }
47ee5a45 8229
19859edc 8230 /* check if in_sync */
0556e1a2 8231 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8232 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8233
8234 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
8235 super->updates_pending++;
8236 }
8d45d196 8237
3b451610
AK
8238 failed = imsm_count_failed(super, dev, MAP_0);
8239 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8240
0c046afd 8241 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8242 dprintf("imsm: Detected transition to state ");
8243 switch (map_state) {
8244 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8245 dprintf("normal: ");
8246 if (is_rebuilding(dev)) {
1ade5cc1 8247 dprintf_cont("while rebuilding");
7ce05701
LD
8248 /* check if recovery is really finished */
8249 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8250 if (mdi->recovery_start != MaxSector) {
8251 recovery_not_finished = 1;
8252 break;
8253 }
8254 if (recovery_not_finished) {
1ade5cc1
N
8255 dprintf_cont("\n");
8256 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8257 if (a->last_checkpoint < mdi->recovery_start) {
8258 a->last_checkpoint = mdi->recovery_start;
8259 super->updates_pending++;
8260 }
8261 break;
8262 }
94002678 8263 end_migration(dev, super, map_state);
238c0a71 8264 map = get_imsm_map(dev, MAP_0);
94002678
AK
8265 map->failed_disk_num = ~0;
8266 super->updates_pending++;
8267 a->last_checkpoint = 0;
8268 break;
8269 }
8270 if (is_gen_migration(dev)) {
1ade5cc1 8271 dprintf_cont("while general migration");
bf2f0071 8272 if (a->last_checkpoint >= a->info.component_size)
809da78e 8273 end_migration(dev, super, map_state);
94002678
AK
8274 else
8275 map->map_state = map_state;
238c0a71 8276 map = get_imsm_map(dev, MAP_0);
28bce06f 8277 map->failed_disk_num = ~0;
94002678 8278 super->updates_pending++;
bf2f0071 8279 break;
94002678
AK
8280 }
8281 break;
8282 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8283 dprintf_cont("degraded: ");
089f9d79 8284 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8285 dprintf_cont("mark degraded");
94002678
AK
8286 map->map_state = map_state;
8287 super->updates_pending++;
8288 a->last_checkpoint = 0;
8289 break;
8290 }
8291 if (is_rebuilding(dev)) {
1ade5cc1 8292 dprintf_cont("while rebuilding.");
94002678 8293 if (map->map_state != map_state) {
1ade5cc1 8294 dprintf_cont(" Map state change");
94002678
AK
8295 end_migration(dev, super, map_state);
8296 super->updates_pending++;
8297 }
8298 break;
8299 }
8300 if (is_gen_migration(dev)) {
1ade5cc1 8301 dprintf_cont("while general migration");
bf2f0071 8302 if (a->last_checkpoint >= a->info.component_size)
809da78e 8303 end_migration(dev, super, map_state);
94002678
AK
8304 else {
8305 map->map_state = map_state;
3b451610 8306 manage_second_map(super, dev);
94002678
AK
8307 }
8308 super->updates_pending++;
bf2f0071 8309 break;
28bce06f 8310 }
6ce1fbf1 8311 if (is_initializing(dev)) {
1ade5cc1 8312 dprintf_cont("while initialization.");
6ce1fbf1
AK
8313 map->map_state = map_state;
8314 super->updates_pending++;
8315 break;
8316 }
94002678
AK
8317 break;
8318 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8319 dprintf_cont("failed: ");
94002678 8320 if (is_gen_migration(dev)) {
1ade5cc1 8321 dprintf_cont("while general migration");
94002678
AK
8322 map->map_state = map_state;
8323 super->updates_pending++;
8324 break;
8325 }
8326 if (map->map_state != map_state) {
1ade5cc1 8327 dprintf_cont("mark failed");
94002678
AK
8328 end_migration(dev, super, map_state);
8329 super->updates_pending++;
8330 a->last_checkpoint = 0;
8331 break;
8332 }
8333 break;
8334 default:
1ade5cc1 8335 dprintf_cont("state %i\n", map_state);
5802a811 8336 }
1ade5cc1 8337 dprintf_cont("\n");
845dea95
NB
8338}
8339
f796af5d 8340static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8341{
f796af5d 8342 void *buf = mpb;
c2a1e7da
DW
8343 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8344 unsigned long long dsize;
8345 unsigned long long sectors;
f36a9ecd 8346 unsigned int sector_size;
c2a1e7da 8347
f36a9ecd 8348 get_dev_sector_size(fd, NULL, &sector_size);
c2a1e7da
DW
8349 get_dev_size(fd, NULL, &dsize);
8350
f36a9ecd 8351 if (mpb_size > sector_size) {
272f648f 8352 /* -1 to account for anchor */
f36a9ecd 8353 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8354
272f648f 8355 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8356 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8357 SEEK_SET) < 0)
272f648f 8358 return 1;
c2a1e7da 8359
f36a9ecd
PB
8360 if ((unsigned long long)write(fd, buf + sector_size,
8361 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8362 return 1;
8363 }
c2a1e7da 8364
272f648f 8365 /* first block is stored on second to last sector of the disk */
f36a9ecd 8366 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8367 return 1;
8368
466070ad 8369 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8370 return 1;
8371
c2a1e7da
DW
8372 return 0;
8373}
8374
2e735d19 8375static void imsm_sync_metadata(struct supertype *container)
845dea95 8376{
2e735d19 8377 struct intel_super *super = container->sb;
c2a1e7da 8378
1a64be56 8379 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8380 if (!super->updates_pending)
8381 return;
8382
36988a3d 8383 write_super_imsm(container, 0);
c2a1e7da
DW
8384
8385 super->updates_pending = 0;
845dea95
NB
8386}
8387
272906ef
DW
8388static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8389{
8390 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8391 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8392 struct dl *dl;
8393
8394 for (dl = super->disks; dl; dl = dl->next)
8395 if (dl->index == i)
8396 break;
8397
25ed7e59 8398 if (dl && is_failed(&dl->disk))
272906ef
DW
8399 dl = NULL;
8400
8401 if (dl)
1ade5cc1 8402 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8403
8404 return dl;
8405}
8406
a20d2ba5 8407static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8408 struct active_array *a, int activate_new,
8409 struct mdinfo *additional_test_list)
272906ef
DW
8410{
8411 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8412 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8413 struct imsm_super *mpb = super->anchor;
8414 struct imsm_map *map;
272906ef
DW
8415 unsigned long long pos;
8416 struct mdinfo *d;
8417 struct extent *ex;
a20d2ba5 8418 int i, j;
272906ef 8419 int found;
569cc43f
DW
8420 __u32 array_start = 0;
8421 __u32 array_end = 0;
272906ef 8422 struct dl *dl;
6c932028 8423 struct mdinfo *test_list;
272906ef
DW
8424
8425 for (dl = super->disks; dl; dl = dl->next) {
8426 /* If in this array, skip */
8427 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8428 if (d->state_fd >= 0 &&
8429 d->disk.major == dl->major &&
272906ef 8430 d->disk.minor == dl->minor) {
8ba77d32
AK
8431 dprintf("%x:%x already in array\n",
8432 dl->major, dl->minor);
272906ef
DW
8433 break;
8434 }
8435 if (d)
8436 continue;
6c932028
AK
8437 test_list = additional_test_list;
8438 while (test_list) {
8439 if (test_list->disk.major == dl->major &&
8440 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8441 dprintf("%x:%x already in additional test list\n",
8442 dl->major, dl->minor);
8443 break;
8444 }
6c932028 8445 test_list = test_list->next;
8ba77d32 8446 }
6c932028 8447 if (test_list)
8ba77d32 8448 continue;
272906ef 8449
e553d2a4 8450 /* skip in use or failed drives */
25ed7e59 8451 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8452 dl->index == -2) {
8453 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8454 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8455 continue;
8456 }
8457
a20d2ba5
DW
8458 /* skip pure spares when we are looking for partially
8459 * assimilated drives
8460 */
8461 if (dl->index == -1 && !activate_new)
8462 continue;
8463
f2cc4f7d
AO
8464 if (!drive_validate_sector_size(super, dl))
8465 continue;
8466
272906ef 8467 /* Does this unused device have the requisite free space?
a20d2ba5 8468 * It needs to be able to cover all member volumes
272906ef
DW
8469 */
8470 ex = get_extents(super, dl);
8471 if (!ex) {
8472 dprintf("cannot get extents\n");
8473 continue;
8474 }
a20d2ba5
DW
8475 for (i = 0; i < mpb->num_raid_devs; i++) {
8476 dev = get_imsm_dev(super, i);
238c0a71 8477 map = get_imsm_map(dev, MAP_0);
272906ef 8478
a20d2ba5
DW
8479 /* check if this disk is already a member of
8480 * this array
272906ef 8481 */
620b1713 8482 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8483 continue;
8484
8485 found = 0;
8486 j = 0;
8487 pos = 0;
5551b113 8488 array_start = pba_of_lba0(map);
329c8278 8489 array_end = array_start +
5551b113 8490 blocks_per_member(map) - 1;
a20d2ba5
DW
8491
8492 do {
8493 /* check that we can start at pba_of_lba0 with
8494 * blocks_per_member of space
8495 */
329c8278 8496 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
8497 found = 1;
8498 break;
8499 }
8500 pos = ex[j].start + ex[j].size;
8501 j++;
8502 } while (ex[j-1].size);
8503
8504 if (!found)
272906ef 8505 break;
a20d2ba5 8506 }
272906ef
DW
8507
8508 free(ex);
a20d2ba5 8509 if (i < mpb->num_raid_devs) {
329c8278
DW
8510 dprintf("%x:%x does not have %u to %u available\n",
8511 dl->major, dl->minor, array_start, array_end);
272906ef
DW
8512 /* No room */
8513 continue;
a20d2ba5
DW
8514 }
8515 return dl;
272906ef
DW
8516 }
8517
8518 return dl;
8519}
8520
95d07a2c
LM
8521static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8522{
8523 struct imsm_dev *dev2;
8524 struct imsm_map *map;
8525 struct dl *idisk;
8526 int slot;
8527 int idx;
8528 __u8 state;
8529
8530 dev2 = get_imsm_dev(cont->sb, dev_idx);
8531 if (dev2) {
238c0a71 8532 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 8533 if (state == IMSM_T_STATE_FAILED) {
238c0a71 8534 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
8535 if (!map)
8536 return 1;
8537 for (slot = 0; slot < map->num_members; slot++) {
8538 /*
8539 * Check if failed disks are deleted from intel
8540 * disk list or are marked to be deleted
8541 */
238c0a71 8542 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
8543 idisk = get_imsm_dl_disk(cont->sb, idx);
8544 /*
8545 * Do not rebuild the array if failed disks
8546 * from failed sub-array are not removed from
8547 * container.
8548 */
8549 if (idisk &&
8550 is_failed(&idisk->disk) &&
8551 (idisk->action != DISK_REMOVE))
8552 return 0;
8553 }
8554 }
8555 }
8556 return 1;
8557}
8558
88758e9d
DW
8559static struct mdinfo *imsm_activate_spare(struct active_array *a,
8560 struct metadata_update **updates)
8561{
8562 /**
d23fe947
DW
8563 * Find a device with unused free space and use it to replace a
8564 * failed/vacant region in an array. We replace failed regions one a
8565 * array at a time. The result is that a new spare disk will be added
8566 * to the first failed array and after the monitor has finished
8567 * propagating failures the remainder will be consumed.
88758e9d 8568 *
d23fe947
DW
8569 * FIXME add a capability for mdmon to request spares from another
8570 * container.
88758e9d
DW
8571 */
8572
8573 struct intel_super *super = a->container->sb;
88758e9d 8574 int inst = a->info.container_member;
949c47a0 8575 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8576 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
8577 int failed = a->info.array.raid_disks;
8578 struct mdinfo *rv = NULL;
8579 struct mdinfo *d;
8580 struct mdinfo *di;
8581 struct metadata_update *mu;
8582 struct dl *dl;
8583 struct imsm_update_activate_spare *u;
8584 int num_spares = 0;
8585 int i;
95d07a2c 8586 int allowed;
88758e9d
DW
8587
8588 for (d = a->info.devs ; d ; d = d->next) {
8589 if ((d->curr_state & DS_FAULTY) &&
8590 d->state_fd >= 0)
8591 /* wait for Removal to happen */
8592 return NULL;
8593 if (d->state_fd >= 0)
8594 failed--;
8595 }
8596
8597 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8598 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 8599
e2962bfc
AK
8600 if (imsm_reshape_blocks_arrays_changes(super))
8601 return NULL;
1af97990 8602
fc8ca064
AK
8603 /* Cannot activate another spare if rebuild is in progress already
8604 */
8605 if (is_rebuilding(dev)) {
7a862a02 8606 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
8607 return NULL;
8608 }
8609
89c67882
AK
8610 if (a->info.array.level == 4)
8611 /* No repair for takeovered array
8612 * imsm doesn't support raid4
8613 */
8614 return NULL;
8615
3b451610
AK
8616 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8617 IMSM_T_STATE_DEGRADED)
88758e9d
DW
8618 return NULL;
8619
83ca7d45
AP
8620 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8621 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8622 return NULL;
8623 }
8624
95d07a2c
LM
8625 /*
8626 * If there are any failed disks check state of the other volume.
8627 * Block rebuild if the another one is failed until failed disks
8628 * are removed from container.
8629 */
8630 if (failed) {
7a862a02 8631 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 8632 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
8633 /* check if states of the other volumes allow for rebuild */
8634 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8635 if (i != inst) {
8636 allowed = imsm_rebuild_allowed(a->container,
8637 i, failed);
8638 if (!allowed)
8639 return NULL;
8640 }
8641 }
8642 }
8643
88758e9d 8644 /* For each slot, if it is not working, find a spare */
88758e9d
DW
8645 for (i = 0; i < a->info.array.raid_disks; i++) {
8646 for (d = a->info.devs ; d ; d = d->next)
8647 if (d->disk.raid_disk == i)
8648 break;
8649 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8650 if (d && (d->state_fd >= 0))
8651 continue;
8652
272906ef 8653 /*
a20d2ba5
DW
8654 * OK, this device needs recovery. Try to re-add the
8655 * previous occupant of this slot, if this fails see if
8656 * we can continue the assimilation of a spare that was
8657 * partially assimilated, finally try to activate a new
8658 * spare.
272906ef
DW
8659 */
8660 dl = imsm_readd(super, i, a);
8661 if (!dl)
b303fe21 8662 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 8663 if (!dl)
b303fe21 8664 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
8665 if (!dl)
8666 continue;
1011e834 8667
272906ef 8668 /* found a usable disk with enough space */
503975b9 8669 di = xcalloc(1, sizeof(*di));
272906ef
DW
8670
8671 /* dl->index will be -1 in the case we are activating a
8672 * pristine spare. imsm_process_update() will create a
8673 * new index in this case. Once a disk is found to be
8674 * failed in all member arrays it is kicked from the
8675 * metadata
8676 */
8677 di->disk.number = dl->index;
d23fe947 8678
272906ef
DW
8679 /* (ab)use di->devs to store a pointer to the device
8680 * we chose
8681 */
8682 di->devs = (struct mdinfo *) dl;
8683
8684 di->disk.raid_disk = i;
8685 di->disk.major = dl->major;
8686 di->disk.minor = dl->minor;
8687 di->disk.state = 0;
d23534e4 8688 di->recovery_start = 0;
5551b113 8689 di->data_offset = pba_of_lba0(map);
272906ef
DW
8690 di->component_size = a->info.component_size;
8691 di->container_member = inst;
5e46202e 8692 di->bb.supported = 1;
2432ce9b
AP
8693 if (dev->rwh_policy == RWH_DISTRIBUTED) {
8694 di->consistency_policy = CONSISTENCY_POLICY_PPL;
8695 di->ppl_sector = get_ppl_sector(super, inst);
8696 di->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
8697 }
148acb7b 8698 super->random = random32();
272906ef
DW
8699 di->next = rv;
8700 rv = di;
8701 num_spares++;
8702 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8703 i, di->data_offset);
88758e9d
DW
8704 }
8705
8706 if (!rv)
8707 /* No spares found */
8708 return rv;
8709 /* Now 'rv' has a list of devices to return.
8710 * Create a metadata_update record to update the
8711 * disk_ord_tbl for the array
8712 */
503975b9 8713 mu = xmalloc(sizeof(*mu));
1011e834 8714 mu->buf = xcalloc(num_spares,
503975b9 8715 sizeof(struct imsm_update_activate_spare));
88758e9d 8716 mu->space = NULL;
cb23f1f4 8717 mu->space_list = NULL;
88758e9d
DW
8718 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8719 mu->next = *updates;
8720 u = (struct imsm_update_activate_spare *) mu->buf;
8721
8722 for (di = rv ; di ; di = di->next) {
8723 u->type = update_activate_spare;
d23fe947
DW
8724 u->dl = (struct dl *) di->devs;
8725 di->devs = NULL;
88758e9d
DW
8726 u->slot = di->disk.raid_disk;
8727 u->array = inst;
8728 u->next = u + 1;
8729 u++;
8730 }
8731 (u-1)->next = NULL;
8732 *updates = mu;
8733
8734 return rv;
8735}
8736
54c2c1ea 8737static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 8738{
54c2c1ea 8739 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
8740 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8741 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
8742 struct disk_info *inf = get_disk_info(u);
8743 struct imsm_disk *disk;
8273f55e
DW
8744 int i;
8745 int j;
8273f55e 8746
54c2c1ea 8747 for (i = 0; i < map->num_members; i++) {
238c0a71 8748 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
8749 for (j = 0; j < new_map->num_members; j++)
8750 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
8751 return 1;
8752 }
8753
8754 return 0;
8755}
8756
1a64be56
LM
8757static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8758{
594dc1b8
JS
8759 struct dl *dl;
8760
1a64be56 8761 for (dl = super->disks; dl; dl = dl->next)
089f9d79 8762 if (dl->major == major && dl->minor == minor)
1a64be56
LM
8763 return dl;
8764 return NULL;
8765}
8766
8767static int remove_disk_super(struct intel_super *super, int major, int minor)
8768{
594dc1b8 8769 struct dl *prev;
1a64be56
LM
8770 struct dl *dl;
8771
8772 prev = NULL;
8773 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 8774 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
8775 /* remove */
8776 if (prev)
8777 prev->next = dl->next;
8778 else
8779 super->disks = dl->next;
8780 dl->next = NULL;
8781 __free_imsm_disk(dl);
1ade5cc1 8782 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
8783 break;
8784 }
8785 prev = dl;
8786 }
8787 return 0;
8788}
8789
f21e18ca 8790static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 8791
1a64be56
LM
8792static int add_remove_disk_update(struct intel_super *super)
8793{
8794 int check_degraded = 0;
594dc1b8
JS
8795 struct dl *disk;
8796
1a64be56
LM
8797 /* add/remove some spares to/from the metadata/contrainer */
8798 while (super->disk_mgmt_list) {
8799 struct dl *disk_cfg;
8800
8801 disk_cfg = super->disk_mgmt_list;
8802 super->disk_mgmt_list = disk_cfg->next;
8803 disk_cfg->next = NULL;
8804
8805 if (disk_cfg->action == DISK_ADD) {
8806 disk_cfg->next = super->disks;
8807 super->disks = disk_cfg;
8808 check_degraded = 1;
1ade5cc1
N
8809 dprintf("added %x:%x\n",
8810 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
8811 } else if (disk_cfg->action == DISK_REMOVE) {
8812 dprintf("Disk remove action processed: %x.%x\n",
8813 disk_cfg->major, disk_cfg->minor);
8814 disk = get_disk_super(super,
8815 disk_cfg->major,
8816 disk_cfg->minor);
8817 if (disk) {
8818 /* store action status */
8819 disk->action = DISK_REMOVE;
8820 /* remove spare disks only */
8821 if (disk->index == -1) {
8822 remove_disk_super(super,
8823 disk_cfg->major,
8824 disk_cfg->minor);
8825 }
8826 }
8827 /* release allocate disk structure */
8828 __free_imsm_disk(disk_cfg);
8829 }
8830 }
8831 return check_degraded;
8832}
8833
a29911da
PC
8834static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8835 struct intel_super *super,
8836 void ***space_list)
8837{
8838 struct intel_dev *id;
8839 void **tofree = NULL;
8840 int ret_val = 0;
8841
1ade5cc1 8842 dprintf("(enter)\n");
089f9d79 8843 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
8844 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8845 return ret_val;
8846 }
089f9d79 8847 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
8848 dprintf("imsm: Error: Memory is not allocated\n");
8849 return ret_val;
8850 }
8851
8852 for (id = super->devlist ; id; id = id->next) {
8853 if (id->index == (unsigned)u->subdev) {
8854 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8855 struct imsm_map *map;
8856 struct imsm_dev *new_dev =
8857 (struct imsm_dev *)*space_list;
238c0a71 8858 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
8859 int to_state;
8860 struct dl *new_disk;
8861
8862 if (new_dev == NULL)
8863 return ret_val;
8864 *space_list = **space_list;
8865 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 8866 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
8867 if (migr_map) {
8868 dprintf("imsm: Error: migration in progress");
8869 return ret_val;
8870 }
8871
8872 to_state = map->map_state;
8873 if ((u->new_level == 5) && (map->raid_level == 0)) {
8874 map->num_members++;
8875 /* this should not happen */
8876 if (u->new_disks[0] < 0) {
8877 map->failed_disk_num =
8878 map->num_members - 1;
8879 to_state = IMSM_T_STATE_DEGRADED;
8880 } else
8881 to_state = IMSM_T_STATE_NORMAL;
8882 }
8e59f3d8 8883 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
8884 if (u->new_level > -1)
8885 map->raid_level = u->new_level;
238c0a71 8886 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
8887 if ((u->new_level == 5) &&
8888 (migr_map->raid_level == 0)) {
8889 int ord = map->num_members - 1;
8890 migr_map->num_members--;
8891 if (u->new_disks[0] < 0)
8892 ord |= IMSM_ORD_REBUILD;
8893 set_imsm_ord_tbl_ent(map,
8894 map->num_members - 1,
8895 ord);
8896 }
8897 id->dev = new_dev;
8898 tofree = (void **)dev;
8899
4bba0439
PC
8900 /* update chunk size
8901 */
06fb291a
PB
8902 if (u->new_chunksize > 0) {
8903 unsigned long long num_data_stripes;
8904 int used_disks =
8905 imsm_num_data_members(dev, MAP_0);
8906
8907 if (used_disks == 0)
8908 return ret_val;
8909
4bba0439
PC
8910 map->blocks_per_strip =
8911 __cpu_to_le16(u->new_chunksize * 2);
06fb291a
PB
8912 num_data_stripes =
8913 (join_u32(dev->size_low, dev->size_high)
8914 / used_disks);
8915 num_data_stripes /= map->blocks_per_strip;
8916 num_data_stripes /= map->num_domains;
8917 set_num_data_stripes(map, num_data_stripes);
8918 }
4bba0439 8919
a29911da
PC
8920 /* add disk
8921 */
089f9d79
JS
8922 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8923 migr_map->raid_level == map->raid_level)
a29911da
PC
8924 goto skip_disk_add;
8925
8926 if (u->new_disks[0] >= 0) {
8927 /* use passes spare
8928 */
8929 new_disk = get_disk_super(super,
8930 major(u->new_disks[0]),
8931 minor(u->new_disks[0]));
7a862a02 8932 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
8933 major(u->new_disks[0]),
8934 minor(u->new_disks[0]),
8935 new_disk, new_disk->index);
8936 if (new_disk == NULL)
8937 goto error_disk_add;
8938
8939 new_disk->index = map->num_members - 1;
8940 /* slot to fill in autolayout
8941 */
8942 new_disk->raiddisk = new_disk->index;
8943 new_disk->disk.status |= CONFIGURED_DISK;
8944 new_disk->disk.status &= ~SPARE_DISK;
8945 } else
8946 goto error_disk_add;
8947
8948skip_disk_add:
8949 *tofree = *space_list;
8950 /* calculate new size
8951 */
f3871fdc 8952 imsm_set_array_size(new_dev, -1);
a29911da
PC
8953
8954 ret_val = 1;
8955 }
8956 }
8957
8958 if (tofree)
8959 *space_list = tofree;
8960 return ret_val;
8961
8962error_disk_add:
8963 dprintf("Error: imsm: Cannot find disk.\n");
8964 return ret_val;
8965}
8966
f3871fdc
AK
8967static int apply_size_change_update(struct imsm_update_size_change *u,
8968 struct intel_super *super)
8969{
8970 struct intel_dev *id;
8971 int ret_val = 0;
8972
1ade5cc1 8973 dprintf("(enter)\n");
089f9d79 8974 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
8975 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8976 return ret_val;
8977 }
8978
8979 for (id = super->devlist ; id; id = id->next) {
8980 if (id->index == (unsigned)u->subdev) {
8981 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8982 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8983 int used_disks = imsm_num_data_members(dev, MAP_0);
8984 unsigned long long blocks_per_member;
06fb291a 8985 unsigned long long num_data_stripes;
f3871fdc
AK
8986
8987 /* calculate new size
8988 */
8989 blocks_per_member = u->new_size / used_disks;
06fb291a
PB
8990 num_data_stripes = blocks_per_member /
8991 map->blocks_per_strip;
8992 num_data_stripes /= map->num_domains;
8993 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8994 u->new_size, blocks_per_member,
8995 num_data_stripes);
f3871fdc 8996 set_blocks_per_member(map, blocks_per_member);
06fb291a 8997 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
8998 imsm_set_array_size(dev, u->new_size);
8999
9000 ret_val = 1;
9001 break;
9002 }
9003 }
9004
9005 return ret_val;
9006}
9007
061d7da3 9008static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9009 struct intel_super *super,
061d7da3
LO
9010 struct active_array *active_array)
9011{
9012 struct imsm_super *mpb = super->anchor;
9013 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9014 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9015 struct imsm_map *migr_map;
9016 struct active_array *a;
9017 struct imsm_disk *disk;
9018 __u8 to_state;
9019 struct dl *dl;
9020 unsigned int found;
9021 int failed;
5961eeec 9022 int victim;
061d7da3 9023 int i;
5961eeec 9024 int second_map_created = 0;
061d7da3 9025
5961eeec 9026 for (; u; u = u->next) {
238c0a71 9027 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9028
5961eeec 9029 if (victim < 0)
9030 return 0;
061d7da3 9031
5961eeec 9032 for (dl = super->disks; dl; dl = dl->next)
9033 if (dl == u->dl)
9034 break;
061d7da3 9035
5961eeec 9036 if (!dl) {
7a862a02 9037 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9038 u->dl->index);
9039 return 0;
9040 }
061d7da3 9041
5961eeec 9042 /* count failures (excluding rebuilds and the victim)
9043 * to determine map[0] state
9044 */
9045 failed = 0;
9046 for (i = 0; i < map->num_members; i++) {
9047 if (i == u->slot)
9048 continue;
9049 disk = get_imsm_disk(super,
238c0a71 9050 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9051 if (!disk || is_failed(disk))
9052 failed++;
9053 }
061d7da3 9054
5961eeec 9055 /* adding a pristine spare, assign a new index */
9056 if (dl->index < 0) {
9057 dl->index = super->anchor->num_disks;
9058 super->anchor->num_disks++;
9059 }
9060 disk = &dl->disk;
9061 disk->status |= CONFIGURED_DISK;
9062 disk->status &= ~SPARE_DISK;
9063
9064 /* mark rebuild */
238c0a71 9065 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9066 if (!second_map_created) {
9067 second_map_created = 1;
9068 map->map_state = IMSM_T_STATE_DEGRADED;
9069 migrate(dev, super, to_state, MIGR_REBUILD);
9070 } else
9071 map->map_state = to_state;
238c0a71 9072 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9073 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9074 set_imsm_ord_tbl_ent(migr_map, u->slot,
9075 dl->index | IMSM_ORD_REBUILD);
9076
9077 /* update the family_num to mark a new container
9078 * generation, being careful to record the existing
9079 * family_num in orig_family_num to clean up after
9080 * earlier mdadm versions that neglected to set it.
9081 */
9082 if (mpb->orig_family_num == 0)
9083 mpb->orig_family_num = mpb->family_num;
9084 mpb->family_num += super->random;
9085
9086 /* count arrays using the victim in the metadata */
9087 found = 0;
9088 for (a = active_array; a ; a = a->next) {
9089 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9090 map = get_imsm_map(dev, MAP_0);
061d7da3 9091
5961eeec 9092 if (get_imsm_disk_slot(map, victim) >= 0)
9093 found++;
9094 }
061d7da3 9095
5961eeec 9096 /* delete the victim if it is no longer being
9097 * utilized anywhere
061d7da3 9098 */
5961eeec 9099 if (!found) {
9100 struct dl **dlp;
061d7da3 9101
5961eeec 9102 /* We know that 'manager' isn't touching anything,
9103 * so it is safe to delete
9104 */
9105 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9106 if ((*dlp)->index == victim)
9107 break;
5961eeec 9108
9109 /* victim may be on the missing list */
9110 if (!*dlp)
9111 for (dlp = &super->missing; *dlp;
9112 dlp = &(*dlp)->next)
9113 if ((*dlp)->index == victim)
9114 break;
9115 imsm_delete(super, dlp, victim);
9116 }
061d7da3
LO
9117 }
9118
9119 return 1;
9120}
a29911da 9121
2e5dc010
N
9122static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9123 struct intel_super *super,
9124 void ***space_list)
9125{
9126 struct dl *new_disk;
9127 struct intel_dev *id;
9128 int i;
9129 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9130 int disk_count = u->old_raid_disks;
2e5dc010
N
9131 void **tofree = NULL;
9132 int devices_to_reshape = 1;
9133 struct imsm_super *mpb = super->anchor;
9134 int ret_val = 0;
d098291a 9135 unsigned int dev_id;
2e5dc010 9136
1ade5cc1 9137 dprintf("(enter)\n");
2e5dc010
N
9138
9139 /* enable spares to use in array */
9140 for (i = 0; i < delta_disks; i++) {
9141 new_disk = get_disk_super(super,
9142 major(u->new_disks[i]),
9143 minor(u->new_disks[i]));
7a862a02 9144 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9145 major(u->new_disks[i]), minor(u->new_disks[i]),
9146 new_disk, new_disk->index);
089f9d79
JS
9147 if (new_disk == NULL ||
9148 (new_disk->index >= 0 &&
9149 new_disk->index < u->old_raid_disks))
2e5dc010 9150 goto update_reshape_exit;
ee4beede 9151 new_disk->index = disk_count++;
2e5dc010
N
9152 /* slot to fill in autolayout
9153 */
9154 new_disk->raiddisk = new_disk->index;
9155 new_disk->disk.status |=
9156 CONFIGURED_DISK;
9157 new_disk->disk.status &= ~SPARE_DISK;
9158 }
9159
ed7333bd
AK
9160 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9161 mpb->num_raid_devs);
2e5dc010
N
9162 /* manage changes in volume
9163 */
d098291a 9164 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9165 void **sp = *space_list;
9166 struct imsm_dev *newdev;
9167 struct imsm_map *newmap, *oldmap;
9168
d098291a
AK
9169 for (id = super->devlist ; id; id = id->next) {
9170 if (id->index == dev_id)
9171 break;
9172 }
9173 if (id == NULL)
9174 break;
2e5dc010
N
9175 if (!sp)
9176 continue;
9177 *space_list = *sp;
9178 newdev = (void*)sp;
9179 /* Copy the dev, but not (all of) the map */
9180 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9181 oldmap = get_imsm_map(id->dev, MAP_0);
9182 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9183 /* Copy the current map */
9184 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9185 /* update one device only
9186 */
9187 if (devices_to_reshape) {
ed7333bd
AK
9188 dprintf("imsm: modifying subdev: %i\n",
9189 id->index);
2e5dc010
N
9190 devices_to_reshape--;
9191 newdev->vol.migr_state = 1;
9192 newdev->vol.curr_migr_unit = 0;
ea672ee1 9193 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9194 newmap->num_members = u->new_raid_disks;
9195 for (i = 0; i < delta_disks; i++) {
9196 set_imsm_ord_tbl_ent(newmap,
9197 u->old_raid_disks + i,
9198 u->old_raid_disks + i);
9199 }
9200 /* New map is correct, now need to save old map
9201 */
238c0a71 9202 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9203 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9204
f3871fdc 9205 imsm_set_array_size(newdev, -1);
2e5dc010
N
9206 }
9207
9208 sp = (void **)id->dev;
9209 id->dev = newdev;
9210 *sp = tofree;
9211 tofree = sp;
8e59f3d8
AK
9212
9213 /* Clear migration record */
9214 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9215 }
819bc634
AK
9216 if (tofree)
9217 *space_list = tofree;
2e5dc010
N
9218 ret_val = 1;
9219
9220update_reshape_exit:
9221
9222 return ret_val;
9223}
9224
bb025c2f 9225static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9226 struct intel_super *super,
9227 void ***space_list)
bb025c2f
KW
9228{
9229 struct imsm_dev *dev = NULL;
8ca6df95
KW
9230 struct intel_dev *dv;
9231 struct imsm_dev *dev_new;
bb025c2f
KW
9232 struct imsm_map *map;
9233 struct dl *dm, *du;
8ca6df95 9234 int i;
bb025c2f
KW
9235
9236 for (dv = super->devlist; dv; dv = dv->next)
9237 if (dv->index == (unsigned int)u->subarray) {
9238 dev = dv->dev;
9239 break;
9240 }
9241
9242 if (dev == NULL)
9243 return 0;
9244
238c0a71 9245 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9246
9247 if (u->direction == R10_TO_R0) {
06fb291a
PB
9248 unsigned long long num_data_stripes;
9249
9250 map->num_domains = 1;
9251 num_data_stripes = blocks_per_member(map);
9252 num_data_stripes /= map->blocks_per_strip;
9253 num_data_stripes /= map->num_domains;
9254 set_num_data_stripes(map, num_data_stripes);
9255
43d5ec18 9256 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9257 if (imsm_count_failed(super, dev, MAP_0) !=
9258 (map->num_members / 2))
43d5ec18
KW
9259 return 0;
9260
bb025c2f
KW
9261 /* iterate through devices to mark removed disks as spare */
9262 for (dm = super->disks; dm; dm = dm->next) {
9263 if (dm->disk.status & FAILED_DISK) {
9264 int idx = dm->index;
9265 /* update indexes on the disk list */
9266/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9267 the index values will end up being correct.... NB */
9268 for (du = super->disks; du; du = du->next)
9269 if (du->index > idx)
9270 du->index--;
9271 /* mark as spare disk */
a8619d23 9272 mark_spare(dm);
bb025c2f
KW
9273 }
9274 }
bb025c2f
KW
9275 /* update map */
9276 map->num_members = map->num_members / 2;
9277 map->map_state = IMSM_T_STATE_NORMAL;
9278 map->num_domains = 1;
9279 map->raid_level = 0;
9280 map->failed_disk_num = -1;
9281 }
9282
8ca6df95
KW
9283 if (u->direction == R0_TO_R10) {
9284 void **space;
9285 /* update slots in current disk list */
9286 for (dm = super->disks; dm; dm = dm->next) {
9287 if (dm->index >= 0)
9288 dm->index *= 2;
9289 }
9290 /* create new *missing* disks */
9291 for (i = 0; i < map->num_members; i++) {
9292 space = *space_list;
9293 if (!space)
9294 continue;
9295 *space_list = *space;
9296 du = (void *)space;
9297 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9298 du->fd = -1;
9299 du->minor = 0;
9300 du->major = 0;
9301 du->index = (i * 2) + 1;
9302 sprintf((char *)du->disk.serial,
9303 " MISSING_%d", du->index);
9304 sprintf((char *)du->serial,
9305 "MISSING_%d", du->index);
9306 du->next = super->missing;
9307 super->missing = du;
9308 }
9309 /* create new dev and map */
9310 space = *space_list;
9311 if (!space)
9312 return 0;
9313 *space_list = *space;
9314 dev_new = (void *)space;
9315 memcpy(dev_new, dev, sizeof(*dev));
9316 /* update new map */
238c0a71 9317 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 9318 map->num_members = map->num_members * 2;
1a2487c2 9319 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
9320 map->num_domains = 2;
9321 map->raid_level = 1;
9322 /* replace dev<->dev_new */
9323 dv->dev = dev_new;
9324 }
bb025c2f
KW
9325 /* update disk order table */
9326 for (du = super->disks; du; du = du->next)
9327 if (du->index >= 0)
9328 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9329 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9330 if (du->index >= 0) {
9331 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9332 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9333 }
bb025c2f
KW
9334
9335 return 1;
9336}
9337
e8319a19
DW
9338static void imsm_process_update(struct supertype *st,
9339 struct metadata_update *update)
9340{
9341 /**
9342 * crack open the metadata_update envelope to find the update record
9343 * update can be one of:
d195167d
AK
9344 * update_reshape_container_disks - all the arrays in the container
9345 * are being reshaped to have more devices. We need to mark
9346 * the arrays for general migration and convert selected spares
9347 * into active devices.
9348 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9349 * device in an array, update the disk_ord_tbl. If this disk is
9350 * present in all member arrays then also clear the SPARE_DISK
9351 * flag
d195167d
AK
9352 * update_create_array
9353 * update_kill_array
9354 * update_rename_array
9355 * update_add_remove_disk
e8319a19
DW
9356 */
9357 struct intel_super *super = st->sb;
4d7b1503 9358 struct imsm_super *mpb;
e8319a19
DW
9359 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9360
4d7b1503
DW
9361 /* update requires a larger buf but the allocation failed */
9362 if (super->next_len && !super->next_buf) {
9363 super->next_len = 0;
9364 return;
9365 }
9366
9367 if (super->next_buf) {
9368 memcpy(super->next_buf, super->buf, super->len);
9369 free(super->buf);
9370 super->len = super->next_len;
9371 super->buf = super->next_buf;
9372
9373 super->next_len = 0;
9374 super->next_buf = NULL;
9375 }
9376
9377 mpb = super->anchor;
9378
e8319a19 9379 switch (type) {
0ec5d470
AK
9380 case update_general_migration_checkpoint: {
9381 struct intel_dev *id;
9382 struct imsm_update_general_migration_checkpoint *u =
9383 (void *)update->buf;
9384
1ade5cc1 9385 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9386
9387 /* find device under general migration */
9388 for (id = super->devlist ; id; id = id->next) {
9389 if (is_gen_migration(id->dev)) {
9390 id->dev->vol.curr_migr_unit =
9391 __cpu_to_le32(u->curr_migr_unit);
9392 super->updates_pending++;
9393 }
9394 }
9395 break;
9396 }
bb025c2f
KW
9397 case update_takeover: {
9398 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9399 if (apply_takeover_update(u, super, &update->space_list)) {
9400 imsm_update_version_info(super);
bb025c2f 9401 super->updates_pending++;
1a2487c2 9402 }
bb025c2f
KW
9403 break;
9404 }
9405
78b10e66 9406 case update_reshape_container_disks: {
d195167d 9407 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9408 if (apply_reshape_container_disks_update(
9409 u, super, &update->space_list))
9410 super->updates_pending++;
78b10e66
N
9411 break;
9412 }
48c5303a 9413 case update_reshape_migration: {
a29911da
PC
9414 struct imsm_update_reshape_migration *u = (void *)update->buf;
9415 if (apply_reshape_migration_update(
9416 u, super, &update->space_list))
9417 super->updates_pending++;
48c5303a
PC
9418 break;
9419 }
f3871fdc
AK
9420 case update_size_change: {
9421 struct imsm_update_size_change *u = (void *)update->buf;
9422 if (apply_size_change_update(u, super))
9423 super->updates_pending++;
9424 break;
9425 }
e8319a19 9426 case update_activate_spare: {
1011e834 9427 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
9428 if (apply_update_activate_spare(u, super, st->arrays))
9429 super->updates_pending++;
8273f55e
DW
9430 break;
9431 }
9432 case update_create_array: {
9433 /* someone wants to create a new array, we need to be aware of
9434 * a few races/collisions:
9435 * 1/ 'Create' called by two separate instances of mdadm
9436 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9437 * devices that have since been assimilated via
9438 * activate_spare.
9439 * In the event this update can not be carried out mdadm will
9440 * (FIX ME) notice that its update did not take hold.
9441 */
9442 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9443 struct intel_dev *dv;
8273f55e
DW
9444 struct imsm_dev *dev;
9445 struct imsm_map *map, *new_map;
9446 unsigned long long start, end;
9447 unsigned long long new_start, new_end;
9448 int i;
54c2c1ea
DW
9449 struct disk_info *inf;
9450 struct dl *dl;
8273f55e
DW
9451
9452 /* handle racing creates: first come first serve */
9453 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 9454 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 9455 goto create_error;
8273f55e
DW
9456 }
9457
9458 /* check update is next in sequence */
9459 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
9460 dprintf("can not create array %d expected index %d\n",
9461 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 9462 goto create_error;
8273f55e
DW
9463 }
9464
238c0a71 9465 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
9466 new_start = pba_of_lba0(new_map);
9467 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 9468 inf = get_disk_info(u);
8273f55e
DW
9469
9470 /* handle activate_spare versus create race:
9471 * check to make sure that overlapping arrays do not include
9472 * overalpping disks
9473 */
9474 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 9475 dev = get_imsm_dev(super, i);
238c0a71 9476 map = get_imsm_map(dev, MAP_0);
5551b113
CA
9477 start = pba_of_lba0(map);
9478 end = start + blocks_per_member(map);
8273f55e
DW
9479 if ((new_start >= start && new_start <= end) ||
9480 (start >= new_start && start <= new_end))
54c2c1ea
DW
9481 /* overlap */;
9482 else
9483 continue;
9484
9485 if (disks_overlap(super, i, u)) {
1ade5cc1 9486 dprintf("arrays overlap\n");
ba2de7ba 9487 goto create_error;
8273f55e
DW
9488 }
9489 }
8273f55e 9490
949c47a0
DW
9491 /* check that prepare update was successful */
9492 if (!update->space) {
1ade5cc1 9493 dprintf("prepare update failed\n");
ba2de7ba 9494 goto create_error;
949c47a0
DW
9495 }
9496
54c2c1ea
DW
9497 /* check that all disks are still active before committing
9498 * changes. FIXME: could we instead handle this by creating a
9499 * degraded array? That's probably not what the user expects,
9500 * so better to drop this update on the floor.
9501 */
9502 for (i = 0; i < new_map->num_members; i++) {
9503 dl = serial_to_dl(inf[i].serial, super);
9504 if (!dl) {
1ade5cc1 9505 dprintf("disk disappeared\n");
ba2de7ba 9506 goto create_error;
54c2c1ea 9507 }
949c47a0
DW
9508 }
9509
8273f55e 9510 super->updates_pending++;
54c2c1ea
DW
9511
9512 /* convert spares to members and fixup ord_tbl */
9513 for (i = 0; i < new_map->num_members; i++) {
9514 dl = serial_to_dl(inf[i].serial, super);
9515 if (dl->index == -1) {
9516 dl->index = mpb->num_disks;
9517 mpb->num_disks++;
9518 dl->disk.status |= CONFIGURED_DISK;
9519 dl->disk.status &= ~SPARE_DISK;
9520 }
9521 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9522 }
9523
ba2de7ba
DW
9524 dv = update->space;
9525 dev = dv->dev;
949c47a0
DW
9526 update->space = NULL;
9527 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
9528 dv->index = u->dev_idx;
9529 dv->next = super->devlist;
9530 super->devlist = dv;
8273f55e 9531 mpb->num_raid_devs++;
8273f55e 9532
4d1313e9 9533 imsm_update_version_info(super);
8273f55e 9534 break;
ba2de7ba
DW
9535 create_error:
9536 /* mdmon knows how to release update->space, but not
9537 * ((struct intel_dev *) update->space)->dev
9538 */
9539 if (update->space) {
9540 dv = update->space;
9541 free(dv->dev);
9542 }
8273f55e 9543 break;
e8319a19 9544 }
33414a01
DW
9545 case update_kill_array: {
9546 struct imsm_update_kill_array *u = (void *) update->buf;
9547 int victim = u->dev_idx;
9548 struct active_array *a;
9549 struct intel_dev **dp;
9550 struct imsm_dev *dev;
9551
9552 /* sanity check that we are not affecting the uuid of
9553 * active arrays, or deleting an active array
9554 *
9555 * FIXME when immutable ids are available, but note that
9556 * we'll also need to fixup the invalidated/active
9557 * subarray indexes in mdstat
9558 */
9559 for (a = st->arrays; a; a = a->next)
9560 if (a->info.container_member >= victim)
9561 break;
9562 /* by definition if mdmon is running at least one array
9563 * is active in the container, so checking
9564 * mpb->num_raid_devs is just extra paranoia
9565 */
9566 dev = get_imsm_dev(super, victim);
9567 if (a || !dev || mpb->num_raid_devs == 1) {
9568 dprintf("failed to delete subarray-%d\n", victim);
9569 break;
9570 }
9571
9572 for (dp = &super->devlist; *dp;)
f21e18ca 9573 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
9574 *dp = (*dp)->next;
9575 } else {
f21e18ca 9576 if ((*dp)->index > (unsigned)victim)
33414a01
DW
9577 (*dp)->index--;
9578 dp = &(*dp)->next;
9579 }
9580 mpb->num_raid_devs--;
9581 super->updates_pending++;
9582 break;
9583 }
aa534678
DW
9584 case update_rename_array: {
9585 struct imsm_update_rename_array *u = (void *) update->buf;
9586 char name[MAX_RAID_SERIAL_LEN+1];
9587 int target = u->dev_idx;
9588 struct active_array *a;
9589 struct imsm_dev *dev;
9590
9591 /* sanity check that we are not affecting the uuid of
9592 * an active array
9593 */
9594 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9595 name[MAX_RAID_SERIAL_LEN] = '\0';
9596 for (a = st->arrays; a; a = a->next)
9597 if (a->info.container_member == target)
9598 break;
9599 dev = get_imsm_dev(super, u->dev_idx);
9600 if (a || !dev || !check_name(super, name, 1)) {
9601 dprintf("failed to rename subarray-%d\n", target);
9602 break;
9603 }
9604
cdbe98cd 9605 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
9606 super->updates_pending++;
9607 break;
9608 }
1a64be56 9609 case update_add_remove_disk: {
43dad3d6 9610 /* we may be able to repair some arrays if disks are
095b8088 9611 * being added, check the status of add_remove_disk
1a64be56
LM
9612 * if discs has been added.
9613 */
9614 if (add_remove_disk_update(super)) {
43dad3d6 9615 struct active_array *a;
072b727f
DW
9616
9617 super->updates_pending++;
1a64be56 9618 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
9619 a->check_degraded = 1;
9620 }
43dad3d6 9621 break;
e8319a19 9622 }
bbab0940
TM
9623 case update_prealloc_badblocks_mem:
9624 break;
e6e9dd3f
AP
9625 case update_rwh_policy: {
9626 struct imsm_update_rwh_policy *u = (void *)update->buf;
9627 int target = u->dev_idx;
9628 struct imsm_dev *dev = get_imsm_dev(super, target);
9629 if (!dev) {
9630 dprintf("could not find subarray-%d\n", target);
9631 break;
9632 }
9633
9634 if (dev->rwh_policy != u->new_policy) {
9635 dev->rwh_policy = u->new_policy;
9636 super->updates_pending++;
9637 }
9638 break;
9639 }
1a64be56 9640 default:
7a862a02 9641 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 9642 }
e8319a19 9643}
88758e9d 9644
bc0b9d34
PC
9645static struct mdinfo *get_spares_for_grow(struct supertype *st);
9646
5fe6f031
N
9647static int imsm_prepare_update(struct supertype *st,
9648 struct metadata_update *update)
8273f55e 9649{
949c47a0 9650 /**
4d7b1503
DW
9651 * Allocate space to hold new disk entries, raid-device entries or a new
9652 * mpb if necessary. The manager synchronously waits for updates to
9653 * complete in the monitor, so new mpb buffers allocated here can be
9654 * integrated by the monitor thread without worrying about live pointers
9655 * in the manager thread.
8273f55e 9656 */
095b8088 9657 enum imsm_update_type type;
4d7b1503 9658 struct intel_super *super = st->sb;
f36a9ecd 9659 unsigned int sector_size = super->sector_size;
4d7b1503
DW
9660 struct imsm_super *mpb = super->anchor;
9661 size_t buf_len;
9662 size_t len = 0;
949c47a0 9663
095b8088
N
9664 if (update->len < (int)sizeof(type))
9665 return 0;
9666
9667 type = *(enum imsm_update_type *) update->buf;
9668
949c47a0 9669 switch (type) {
0ec5d470 9670 case update_general_migration_checkpoint:
095b8088
N
9671 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9672 return 0;
1ade5cc1 9673 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 9674 break;
abedf5fc
KW
9675 case update_takeover: {
9676 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
9677 if (update->len < (int)sizeof(*u))
9678 return 0;
abedf5fc
KW
9679 if (u->direction == R0_TO_R10) {
9680 void **tail = (void **)&update->space_list;
9681 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 9682 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
9683 int num_members = map->num_members;
9684 void *space;
9685 int size, i;
abedf5fc
KW
9686 /* allocate memory for added disks */
9687 for (i = 0; i < num_members; i++) {
9688 size = sizeof(struct dl);
503975b9 9689 space = xmalloc(size);
abedf5fc
KW
9690 *tail = space;
9691 tail = space;
9692 *tail = NULL;
9693 }
9694 /* allocate memory for new device */
9695 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9696 (num_members * sizeof(__u32));
503975b9
N
9697 space = xmalloc(size);
9698 *tail = space;
9699 tail = space;
9700 *tail = NULL;
9701 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
9702 }
9703
9704 break;
9705 }
78b10e66 9706 case update_reshape_container_disks: {
d195167d
AK
9707 /* Every raid device in the container is about to
9708 * gain some more devices, and we will enter a
9709 * reconfiguration.
9710 * So each 'imsm_map' will be bigger, and the imsm_vol
9711 * will now hold 2 of them.
9712 * Thus we need new 'struct imsm_dev' allocations sized
9713 * as sizeof_imsm_dev but with more devices in both maps.
9714 */
9715 struct imsm_update_reshape *u = (void *)update->buf;
9716 struct intel_dev *dl;
9717 void **space_tail = (void**)&update->space_list;
9718
095b8088
N
9719 if (update->len < (int)sizeof(*u))
9720 return 0;
9721
1ade5cc1 9722 dprintf("for update_reshape\n");
d195167d
AK
9723
9724 for (dl = super->devlist; dl; dl = dl->next) {
9725 int size = sizeof_imsm_dev(dl->dev, 1);
9726 void *s;
d677e0b8
AK
9727 if (u->new_raid_disks > u->old_raid_disks)
9728 size += sizeof(__u32)*2*
9729 (u->new_raid_disks - u->old_raid_disks);
503975b9 9730 s = xmalloc(size);
d195167d
AK
9731 *space_tail = s;
9732 space_tail = s;
9733 *space_tail = NULL;
9734 }
9735
9736 len = disks_to_mpb_size(u->new_raid_disks);
9737 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
9738 break;
9739 }
48c5303a 9740 case update_reshape_migration: {
bc0b9d34
PC
9741 /* for migration level 0->5 we need to add disks
9742 * so the same as for container operation we will copy
9743 * device to the bigger location.
9744 * in memory prepared device and new disk area are prepared
9745 * for usage in process update
9746 */
9747 struct imsm_update_reshape_migration *u = (void *)update->buf;
9748 struct intel_dev *id;
9749 void **space_tail = (void **)&update->space_list;
9750 int size;
9751 void *s;
9752 int current_level = -1;
9753
095b8088
N
9754 if (update->len < (int)sizeof(*u))
9755 return 0;
9756
1ade5cc1 9757 dprintf("for update_reshape\n");
bc0b9d34
PC
9758
9759 /* add space for bigger array in update
9760 */
9761 for (id = super->devlist; id; id = id->next) {
9762 if (id->index == (unsigned)u->subdev) {
9763 size = sizeof_imsm_dev(id->dev, 1);
9764 if (u->new_raid_disks > u->old_raid_disks)
9765 size += sizeof(__u32)*2*
9766 (u->new_raid_disks - u->old_raid_disks);
503975b9 9767 s = xmalloc(size);
bc0b9d34
PC
9768 *space_tail = s;
9769 space_tail = s;
9770 *space_tail = NULL;
9771 break;
9772 }
9773 }
9774 if (update->space_list == NULL)
9775 break;
9776
9777 /* add space for disk in update
9778 */
9779 size = sizeof(struct dl);
503975b9 9780 s = xmalloc(size);
bc0b9d34
PC
9781 *space_tail = s;
9782 space_tail = s;
9783 *space_tail = NULL;
9784
9785 /* add spare device to update
9786 */
9787 for (id = super->devlist ; id; id = id->next)
9788 if (id->index == (unsigned)u->subdev) {
9789 struct imsm_dev *dev;
9790 struct imsm_map *map;
9791
9792 dev = get_imsm_dev(super, u->subdev);
238c0a71 9793 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
9794 current_level = map->raid_level;
9795 break;
9796 }
089f9d79 9797 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
9798 struct mdinfo *spares;
9799
9800 spares = get_spares_for_grow(st);
9801 if (spares) {
9802 struct dl *dl;
9803 struct mdinfo *dev;
9804
9805 dev = spares->devs;
9806 if (dev) {
9807 u->new_disks[0] =
9808 makedev(dev->disk.major,
9809 dev->disk.minor);
9810 dl = get_disk_super(super,
9811 dev->disk.major,
9812 dev->disk.minor);
9813 dl->index = u->old_raid_disks;
9814 dev = dev->next;
9815 }
9816 sysfs_free(spares);
9817 }
9818 }
9819 len = disks_to_mpb_size(u->new_raid_disks);
9820 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
9821 break;
9822 }
f3871fdc 9823 case update_size_change: {
095b8088
N
9824 if (update->len < (int)sizeof(struct imsm_update_size_change))
9825 return 0;
9826 break;
9827 }
9828 case update_activate_spare: {
9829 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9830 return 0;
f3871fdc
AK
9831 break;
9832 }
949c47a0
DW
9833 case update_create_array: {
9834 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9835 struct intel_dev *dv;
54c2c1ea 9836 struct imsm_dev *dev = &u->dev;
238c0a71 9837 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
9838 struct dl *dl;
9839 struct disk_info *inf;
9840 int i;
9841 int activate = 0;
949c47a0 9842
095b8088
N
9843 if (update->len < (int)sizeof(*u))
9844 return 0;
9845
54c2c1ea
DW
9846 inf = get_disk_info(u);
9847 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 9848 /* allocate a new super->devlist entry */
503975b9
N
9849 dv = xmalloc(sizeof(*dv));
9850 dv->dev = xmalloc(len);
9851 update->space = dv;
949c47a0 9852
54c2c1ea
DW
9853 /* count how many spares will be converted to members */
9854 for (i = 0; i < map->num_members; i++) {
9855 dl = serial_to_dl(inf[i].serial, super);
9856 if (!dl) {
9857 /* hmm maybe it failed?, nothing we can do about
9858 * it here
9859 */
9860 continue;
9861 }
9862 if (count_memberships(dl, super) == 0)
9863 activate++;
9864 }
9865 len += activate * sizeof(struct imsm_disk);
949c47a0 9866 break;
095b8088
N
9867 }
9868 case update_kill_array: {
9869 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9870 return 0;
949c47a0
DW
9871 break;
9872 }
095b8088
N
9873 case update_rename_array: {
9874 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9875 return 0;
9876 break;
9877 }
9878 case update_add_remove_disk:
9879 /* no update->len needed */
9880 break;
bbab0940
TM
9881 case update_prealloc_badblocks_mem:
9882 super->extra_space += sizeof(struct bbm_log) -
9883 get_imsm_bbm_log_size(super->bbm_log);
9884 break;
e6e9dd3f
AP
9885 case update_rwh_policy: {
9886 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
9887 return 0;
9888 break;
9889 }
095b8088
N
9890 default:
9891 return 0;
949c47a0 9892 }
8273f55e 9893
4d7b1503
DW
9894 /* check if we need a larger metadata buffer */
9895 if (super->next_buf)
9896 buf_len = super->next_len;
9897 else
9898 buf_len = super->len;
9899
bbab0940 9900 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
9901 /* ok we need a larger buf than what is currently allocated
9902 * if this allocation fails process_update will notice that
9903 * ->next_len is set and ->next_buf is NULL
9904 */
bbab0940
TM
9905 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9906 super->extra_space + len, sector_size);
4d7b1503
DW
9907 if (super->next_buf)
9908 free(super->next_buf);
9909
9910 super->next_len = buf_len;
f36a9ecd 9911 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
9912 memset(super->next_buf, 0, buf_len);
9913 else
4d7b1503
DW
9914 super->next_buf = NULL;
9915 }
5fe6f031 9916 return 1;
8273f55e
DW
9917}
9918
ae6aad82 9919/* must be called while manager is quiesced */
f21e18ca 9920static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
9921{
9922 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
9923 struct dl *iter;
9924 struct imsm_dev *dev;
9925 struct imsm_map *map;
4c9e8c1e 9926 unsigned int i, j, num_members;
24565c9a 9927 __u32 ord;
4c9e8c1e 9928 struct bbm_log *log = super->bbm_log;
ae6aad82 9929
1ade5cc1 9930 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
9931
9932 /* shift all indexes down one */
9933 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 9934 if (iter->index > (int)index)
ae6aad82 9935 iter->index--;
47ee5a45 9936 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 9937 if (iter->index > (int)index)
47ee5a45 9938 iter->index--;
ae6aad82
DW
9939
9940 for (i = 0; i < mpb->num_raid_devs; i++) {
9941 dev = get_imsm_dev(super, i);
238c0a71 9942 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
9943 num_members = map->num_members;
9944 for (j = 0; j < num_members; j++) {
9945 /* update ord entries being careful not to propagate
9946 * ord-flags to the first map
9947 */
238c0a71 9948 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 9949
24565c9a
DW
9950 if (ord_to_idx(ord) <= index)
9951 continue;
ae6aad82 9952
238c0a71 9953 map = get_imsm_map(dev, MAP_0);
24565c9a 9954 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 9955 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
9956 if (map)
9957 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
9958 }
9959 }
9960
4c9e8c1e
TM
9961 for (i = 0; i < log->entry_count; i++) {
9962 struct bbm_log_entry *entry = &log->marked_block_entries[i];
9963
9964 if (entry->disk_ordinal <= index)
9965 continue;
9966 entry->disk_ordinal--;
9967 }
9968
ae6aad82
DW
9969 mpb->num_disks--;
9970 super->updates_pending++;
24565c9a
DW
9971 if (*dlp) {
9972 struct dl *dl = *dlp;
9973
9974 *dlp = (*dlp)->next;
9975 __free_imsm_disk(dl);
9976 }
ae6aad82 9977}
9a717282
AK
9978
9979static void close_targets(int *targets, int new_disks)
9980{
9981 int i;
9982
9983 if (!targets)
9984 return;
9985
9986 for (i = 0; i < new_disks; i++) {
9987 if (targets[i] >= 0) {
9988 close(targets[i]);
9989 targets[i] = -1;
9990 }
9991 }
9992}
9993
9994static int imsm_get_allowed_degradation(int level, int raid_disks,
9995 struct intel_super *super,
9996 struct imsm_dev *dev)
9997{
9998 switch (level) {
bf5cf7c7 9999 case 1:
9a717282
AK
10000 case 10:{
10001 int ret_val = 0;
10002 struct imsm_map *map;
10003 int i;
10004
10005 ret_val = raid_disks/2;
10006 /* check map if all disks pairs not failed
10007 * in both maps
10008 */
238c0a71 10009 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10010 for (i = 0; i < ret_val; i++) {
10011 int degradation = 0;
10012 if (get_imsm_disk(super, i) == NULL)
10013 degradation++;
10014 if (get_imsm_disk(super, i + 1) == NULL)
10015 degradation++;
10016 if (degradation == 2)
10017 return 0;
10018 }
238c0a71 10019 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10020 /* if there is no second map
10021 * result can be returned
10022 */
10023 if (map == NULL)
10024 return ret_val;
10025 /* check degradation in second map
10026 */
10027 for (i = 0; i < ret_val; i++) {
10028 int degradation = 0;
10029 if (get_imsm_disk(super, i) == NULL)
10030 degradation++;
10031 if (get_imsm_disk(super, i + 1) == NULL)
10032 degradation++;
10033 if (degradation == 2)
10034 return 0;
10035 }
10036 return ret_val;
10037 }
10038 case 5:
10039 return 1;
10040 case 6:
10041 return 2;
10042 default:
10043 return 0;
10044 }
10045}
10046
687629c2
AK
10047/*******************************************************************************
10048 * Function: open_backup_targets
10049 * Description: Function opens file descriptors for all devices given in
10050 * info->devs
10051 * Parameters:
10052 * info : general array info
10053 * raid_disks : number of disks
10054 * raid_fds : table of device's file descriptors
9a717282
AK
10055 * super : intel super for raid10 degradation check
10056 * dev : intel device for raid10 degradation check
687629c2
AK
10057 * Returns:
10058 * 0 : success
10059 * -1 : fail
10060 ******************************************************************************/
9a717282
AK
10061int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10062 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
10063{
10064 struct mdinfo *sd;
f627f5ad 10065 int i;
9a717282 10066 int opened = 0;
f627f5ad
AK
10067
10068 for (i = 0; i < raid_disks; i++)
10069 raid_fds[i] = -1;
687629c2
AK
10070
10071 for (sd = info->devs ; sd ; sd = sd->next) {
10072 char *dn;
10073
10074 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10075 dprintf("disk is faulty!!\n");
10076 continue;
10077 }
10078
089f9d79 10079 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
687629c2
AK
10080 continue;
10081
10082 dn = map_dev(sd->disk.major,
10083 sd->disk.minor, 1);
10084 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10085 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 10086 pr_err("cannot open component\n");
9a717282 10087 continue;
687629c2 10088 }
9a717282
AK
10089 opened++;
10090 }
10091 /* check if maximum array degradation level is not exceeded
10092 */
10093 if ((raid_disks - opened) >
089f9d79
JS
10094 imsm_get_allowed_degradation(info->new_level, raid_disks,
10095 super, dev)) {
e12b3daa 10096 pr_err("Not enough disks can be opened.\n");
9a717282
AK
10097 close_targets(raid_fds, raid_disks);
10098 return -2;
687629c2
AK
10099 }
10100 return 0;
10101}
10102
d31ad643
PB
10103/*******************************************************************************
10104 * Function: validate_container_imsm
10105 * Description: This routine validates container after assemble,
10106 * eg. if devices in container are under the same controller.
10107 *
10108 * Parameters:
10109 * info : linked list with info about devices used in array
10110 * Returns:
10111 * 1 : HBA mismatch
10112 * 0 : Success
10113 ******************************************************************************/
10114int validate_container_imsm(struct mdinfo *info)
10115{
6b781d33
AP
10116 if (check_env("IMSM_NO_PLATFORM"))
10117 return 0;
d31ad643 10118
6b781d33
AP
10119 struct sys_dev *idev;
10120 struct sys_dev *hba = NULL;
10121 struct sys_dev *intel_devices = find_intel_devices();
10122 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10123 info->disk.minor));
10124
10125 for (idev = intel_devices; idev; idev = idev->next) {
10126 if (dev_path && strstr(dev_path, idev->path)) {
10127 hba = idev;
10128 break;
d31ad643 10129 }
6b781d33
AP
10130 }
10131 if (dev_path)
d31ad643
PB
10132 free(dev_path);
10133
6b781d33
AP
10134 if (!hba) {
10135 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10136 devid2kname(makedev(info->disk.major, info->disk.minor)));
10137 return 1;
10138 }
10139
10140 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10141 struct mdinfo *dev;
10142
10143 for (dev = info->next; dev; dev = dev->next) {
10144 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10145
10146 struct sys_dev *hba2 = NULL;
10147 for (idev = intel_devices; idev; idev = idev->next) {
10148 if (dev_path && strstr(dev_path, idev->path)) {
10149 hba2 = idev;
10150 break;
d31ad643
PB
10151 }
10152 }
6b781d33
AP
10153 if (dev_path)
10154 free(dev_path);
10155
10156 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10157 get_orom_by_device_id(hba2->dev_id);
10158
10159 if (hba2 && hba->type != hba2->type) {
10160 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10161 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10162 return 1;
10163 }
10164
07cb1e57 10165 if (orom != orom2) {
6b781d33
AP
10166 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10167 " This operation is not supported and can lead to data loss.\n");
10168 return 1;
10169 }
10170
10171 if (!orom) {
10172 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10173 " This operation is not supported and can lead to data loss.\n");
10174 return 1;
10175 }
d31ad643 10176 }
6b781d33 10177
d31ad643
PB
10178 return 0;
10179}
32141c17 10180
6f50473f
TM
10181/*******************************************************************************
10182* Function: imsm_record_badblock
10183* Description: This routine stores new bad block record in BBM log
10184*
10185* Parameters:
10186* a : array containing a bad block
10187* slot : disk number containing a bad block
10188* sector : bad block sector
10189* length : bad block sectors range
10190* Returns:
10191* 1 : Success
10192* 0 : Error
10193******************************************************************************/
10194static int imsm_record_badblock(struct active_array *a, int slot,
10195 unsigned long long sector, int length)
10196{
10197 struct intel_super *super = a->container->sb;
10198 int ord;
10199 int ret;
10200
10201 ord = imsm_disk_slot_to_ord(a, slot);
10202 if (ord < 0)
10203 return 0;
10204
10205 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10206 length);
10207 if (ret)
10208 super->updates_pending++;
10209
10210 return ret;
10211}
c07a5a4f
TM
10212/*******************************************************************************
10213* Function: imsm_clear_badblock
10214* Description: This routine clears bad block record from BBM log
10215*
10216* Parameters:
10217* a : array containing a bad block
10218* slot : disk number containing a bad block
10219* sector : bad block sector
10220* length : bad block sectors range
10221* Returns:
10222* 1 : Success
10223* 0 : Error
10224******************************************************************************/
10225static int imsm_clear_badblock(struct active_array *a, int slot,
10226 unsigned long long sector, int length)
10227{
10228 struct intel_super *super = a->container->sb;
10229 int ord;
10230 int ret;
10231
10232 ord = imsm_disk_slot_to_ord(a, slot);
10233 if (ord < 0)
10234 return 0;
10235
10236 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10237 if (ret)
10238 super->updates_pending++;
10239
10240 return ret;
10241}
928f1424
TM
10242/*******************************************************************************
10243* Function: imsm_get_badblocks
10244* Description: This routine get list of bad blocks for an array
10245*
10246* Parameters:
10247* a : array
10248* slot : disk number
10249* Returns:
10250* bb : structure containing bad blocks
10251* NULL : error
10252******************************************************************************/
10253static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10254{
10255 int inst = a->info.container_member;
10256 struct intel_super *super = a->container->sb;
10257 struct imsm_dev *dev = get_imsm_dev(super, inst);
10258 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10259 int ord;
10260
10261 ord = imsm_disk_slot_to_ord(a, slot);
10262 if (ord < 0)
10263 return NULL;
10264
10265 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10266 blocks_per_member(map), &super->bb);
10267
10268 return &super->bb;
10269}
27156a57
TM
10270/*******************************************************************************
10271* Function: examine_badblocks_imsm
10272* Description: Prints list of bad blocks on a disk to the standard output
10273*
10274* Parameters:
10275* st : metadata handler
10276* fd : open file descriptor for device
10277* devname : device name
10278* Returns:
10279* 0 : Success
10280* 1 : Error
10281******************************************************************************/
10282static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10283{
10284 struct intel_super *super = st->sb;
10285 struct bbm_log *log = super->bbm_log;
10286 struct dl *d = NULL;
10287 int any = 0;
10288
10289 for (d = super->disks; d ; d = d->next) {
10290 if (strcmp(d->devname, devname) == 0)
10291 break;
10292 }
10293
10294 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10295 pr_err("%s doesn't appear to be part of a raid array\n",
10296 devname);
10297 return 1;
10298 }
10299
10300 if (log != NULL) {
10301 unsigned int i;
10302 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10303
10304 for (i = 0; i < log->entry_count; i++) {
10305 if (entry[i].disk_ordinal == d->index) {
10306 unsigned long long sector = __le48_to_cpu(
10307 &entry[i].defective_block_start);
10308 int cnt = entry[i].marked_count + 1;
10309
10310 if (!any) {
10311 printf("Bad-blocks on %s:\n", devname);
10312 any = 1;
10313 }
10314
10315 printf("%20llu for %d sectors\n", sector, cnt);
10316 }
10317 }
10318 }
10319
10320 if (!any)
10321 printf("No bad-blocks list configured on %s\n", devname);
10322
10323 return 0;
10324}
687629c2
AK
10325/*******************************************************************************
10326 * Function: init_migr_record_imsm
10327 * Description: Function inits imsm migration record
10328 * Parameters:
10329 * super : imsm internal array info
10330 * dev : device under migration
10331 * info : general array info to find the smallest device
10332 * Returns:
10333 * none
10334 ******************************************************************************/
10335void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10336 struct mdinfo *info)
10337{
10338 struct intel_super *super = st->sb;
10339 struct migr_record *migr_rec = super->migr_rec;
10340 int new_data_disks;
10341 unsigned long long dsize, dev_sectors;
10342 long long unsigned min_dev_sectors = -1LLU;
10343 struct mdinfo *sd;
10344 char nm[30];
10345 int fd;
238c0a71
AK
10346 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10347 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10348 unsigned long long num_migr_units;
3ef4403c 10349 unsigned long long array_blocks;
687629c2
AK
10350
10351 memset(migr_rec, 0, sizeof(struct migr_record));
10352 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10353
10354 /* only ascending reshape supported now */
10355 migr_rec->ascending_migr = __cpu_to_le32(1);
10356
10357 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10358 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10359 migr_rec->dest_depth_per_unit *=
10360 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 10361 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
10362 migr_rec->blocks_per_unit =
10363 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10364 migr_rec->dest_depth_per_unit =
10365 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10366 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10367 num_migr_units =
10368 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10369
10370 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10371 num_migr_units++;
10372 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10373
10374 migr_rec->post_migr_vol_cap = dev->size_low;
10375 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10376
687629c2
AK
10377 /* Find the smallest dev */
10378 for (sd = info->devs ; sd ; sd = sd->next) {
10379 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10380 fd = dev_open(nm, O_RDONLY);
10381 if (fd < 0)
10382 continue;
10383 get_dev_size(fd, NULL, &dsize);
10384 dev_sectors = dsize / 512;
10385 if (dev_sectors < min_dev_sectors)
10386 min_dev_sectors = dev_sectors;
10387 close(fd);
10388 }
10389 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10390 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10391
10392 write_imsm_migr_rec(st);
10393
10394 return;
10395}
10396
10397/*******************************************************************************
10398 * Function: save_backup_imsm
10399 * Description: Function saves critical data stripes to Migration Copy Area
10400 * and updates the current migration unit status.
10401 * Use restore_stripes() to form a destination stripe,
10402 * and to write it to the Copy Area.
10403 * Parameters:
10404 * st : supertype information
aea93171 10405 * dev : imsm device that backup is saved for
687629c2
AK
10406 * info : general array info
10407 * buf : input buffer
687629c2
AK
10408 * length : length of data to backup (blocks_per_unit)
10409 * Returns:
10410 * 0 : success
10411 *, -1 : fail
10412 ******************************************************************************/
10413int save_backup_imsm(struct supertype *st,
10414 struct imsm_dev *dev,
10415 struct mdinfo *info,
10416 void *buf,
687629c2
AK
10417 int length)
10418{
10419 int rv = -1;
10420 struct intel_super *super = st->sb;
594dc1b8
JS
10421 unsigned long long *target_offsets;
10422 int *targets;
687629c2 10423 int i;
238c0a71 10424 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10425 int new_disks = map_dest->num_members;
ab724b98
AK
10426 int dest_layout = 0;
10427 int dest_chunk;
d1877f69 10428 unsigned long long start;
238c0a71 10429 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 10430
503975b9 10431 targets = xmalloc(new_disks * sizeof(int));
687629c2 10432
7e45b550
AK
10433 for (i = 0; i < new_disks; i++)
10434 targets[i] = -1;
10435
503975b9 10436 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10437
d1877f69 10438 start = info->reshape_progress * 512;
687629c2 10439 for (i = 0; i < new_disks; i++) {
687629c2
AK
10440 target_offsets[i] = (unsigned long long)
10441 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
10442 /* move back copy area adderss, it will be moved forward
10443 * in restore_stripes() using start input variable
10444 */
10445 target_offsets[i] -= start/data_disks;
687629c2
AK
10446 }
10447
9a717282
AK
10448 if (open_backup_targets(info, new_disks, targets,
10449 super, dev))
687629c2
AK
10450 goto abort;
10451
68eb8bc6 10452 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10453 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10454
687629c2
AK
10455 if (restore_stripes(targets, /* list of dest devices */
10456 target_offsets, /* migration record offsets */
10457 new_disks,
ab724b98
AK
10458 dest_chunk,
10459 map_dest->raid_level,
10460 dest_layout,
10461 -1, /* source backup file descriptor */
10462 0, /* input buf offset
10463 * always 0 buf is already offseted */
d1877f69 10464 start,
687629c2
AK
10465 length,
10466 buf) != 0) {
e7b84f9d 10467 pr_err("Error restoring stripes\n");
687629c2
AK
10468 goto abort;
10469 }
10470
10471 rv = 0;
10472
10473abort:
10474 if (targets) {
9a717282 10475 close_targets(targets, new_disks);
687629c2
AK
10476 free(targets);
10477 }
10478 free(target_offsets);
10479
10480 return rv;
10481}
10482
10483/*******************************************************************************
10484 * Function: save_checkpoint_imsm
10485 * Description: Function called for current unit status update
10486 * in the migration record. It writes it to disk.
10487 * Parameters:
10488 * super : imsm internal array info
10489 * info : general array info
10490 * Returns:
10491 * 0: success
10492 * 1: failure
0228d92c
AK
10493 * 2: failure, means no valid migration record
10494 * / no general migration in progress /
687629c2
AK
10495 ******************************************************************************/
10496int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10497{
10498 struct intel_super *super = st->sb;
f8b72ef5
AK
10499 unsigned long long blocks_per_unit;
10500 unsigned long long curr_migr_unit;
10501
2e062e82 10502 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 10503 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10504 return 1;
10505 }
10506
f8b72ef5
AK
10507 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10508 if (blocks_per_unit == 0) {
0228d92c
AK
10509 dprintf("imsm: no migration in progress.\n");
10510 return 2;
687629c2 10511 }
f8b72ef5
AK
10512 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10513 /* check if array is alligned to copy area
10514 * if it is not alligned, add one to current migration unit value
10515 * this can happend on array reshape finish only
10516 */
10517 if (info->reshape_progress % blocks_per_unit)
10518 curr_migr_unit++;
687629c2
AK
10519
10520 super->migr_rec->curr_migr_unit =
f8b72ef5 10521 __cpu_to_le32(curr_migr_unit);
687629c2
AK
10522 super->migr_rec->rec_status = __cpu_to_le32(state);
10523 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
10524 __cpu_to_le32(curr_migr_unit *
10525 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 10526 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10527 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10528 return 1;
10529 }
10530
10531 return 0;
10532}
10533
276d77db
AK
10534/*******************************************************************************
10535 * Function: recover_backup_imsm
10536 * Description: Function recovers critical data from the Migration Copy Area
10537 * while assembling an array.
10538 * Parameters:
10539 * super : imsm internal array info
10540 * info : general array info
10541 * Returns:
10542 * 0 : success (or there is no data to recover)
10543 * 1 : fail
10544 ******************************************************************************/
10545int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10546{
10547 struct intel_super *super = st->sb;
10548 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 10549 struct imsm_map *map_dest;
276d77db
AK
10550 struct intel_dev *id = NULL;
10551 unsigned long long read_offset;
10552 unsigned long long write_offset;
10553 unsigned unit_len;
10554 int *targets = NULL;
10555 int new_disks, i, err;
10556 char *buf = NULL;
10557 int retval = 1;
f36a9ecd 10558 unsigned int sector_size = super->sector_size;
276d77db
AK
10559 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10560 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 10561 char buffer[20];
6c3560c0 10562 int skipped_disks = 0;
276d77db
AK
10563
10564 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10565 if (err < 1)
10566 return 1;
10567
10568 /* recover data only during assemblation */
10569 if (strncmp(buffer, "inactive", 8) != 0)
10570 return 0;
10571 /* no data to recover */
10572 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10573 return 0;
10574 if (curr_migr_unit >= num_migr_units)
10575 return 1;
10576
10577 /* find device during reshape */
10578 for (id = super->devlist; id; id = id->next)
10579 if (is_gen_migration(id->dev))
10580 break;
10581 if (id == NULL)
10582 return 1;
10583
238c0a71 10584 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
10585 new_disks = map_dest->num_members;
10586
10587 read_offset = (unsigned long long)
10588 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10589
10590 write_offset = ((unsigned long long)
10591 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 10592 pba_of_lba0(map_dest)) * 512;
276d77db
AK
10593
10594 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 10595 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 10596 goto abort;
503975b9 10597 targets = xcalloc(new_disks, sizeof(int));
276d77db 10598
9a717282 10599 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 10600 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
10601 goto abort;
10602 }
276d77db
AK
10603
10604 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
10605 if (targets[i] < 0) {
10606 skipped_disks++;
10607 continue;
10608 }
276d77db 10609 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
10610 pr_err("Cannot seek to block: %s\n",
10611 strerror(errno));
137debce
AK
10612 skipped_disks++;
10613 continue;
276d77db 10614 }
9ec11d1a 10615 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10616 pr_err("Cannot read copy area block: %s\n",
10617 strerror(errno));
137debce
AK
10618 skipped_disks++;
10619 continue;
276d77db
AK
10620 }
10621 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
10622 pr_err("Cannot seek to block: %s\n",
10623 strerror(errno));
137debce
AK
10624 skipped_disks++;
10625 continue;
276d77db 10626 }
9ec11d1a 10627 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10628 pr_err("Cannot restore block: %s\n",
10629 strerror(errno));
137debce
AK
10630 skipped_disks++;
10631 continue;
276d77db
AK
10632 }
10633 }
10634
137debce
AK
10635 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10636 new_disks,
10637 super,
10638 id->dev)) {
7a862a02 10639 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
10640 goto abort;
10641 }
10642
befb629b
AK
10643 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10644 /* ignore error == 2, this can mean end of reshape here
10645 */
7a862a02 10646 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 10647 } else
276d77db 10648 retval = 0;
276d77db
AK
10649
10650abort:
10651 if (targets) {
10652 for (i = 0; i < new_disks; i++)
10653 if (targets[i])
10654 close(targets[i]);
10655 free(targets);
10656 }
10657 free(buf);
10658 return retval;
10659}
10660
2cda7640
ML
10661static char disk_by_path[] = "/dev/disk/by-path/";
10662
10663static const char *imsm_get_disk_controller_domain(const char *path)
10664{
2cda7640 10665 char disk_path[PATH_MAX];
96234762
LM
10666 char *drv=NULL;
10667 struct stat st;
2cda7640 10668
6d8d290a 10669 strcpy(disk_path, disk_by_path);
96234762
LM
10670 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10671 if (stat(disk_path, &st) == 0) {
10672 struct sys_dev* hba;
594dc1b8 10673 char *path;
96234762
LM
10674
10675 path = devt_to_devpath(st.st_rdev);
10676 if (path == NULL)
10677 return "unknown";
10678 hba = find_disk_attached_hba(-1, path);
10679 if (hba && hba->type == SYS_DEV_SAS)
10680 drv = "isci";
10681 else if (hba && hba->type == SYS_DEV_SATA)
10682 drv = "ahci";
1011e834 10683 else
96234762
LM
10684 drv = "unknown";
10685 dprintf("path: %s hba: %s attached: %s\n",
10686 path, (hba) ? hba->path : "NULL", drv);
10687 free(path);
2cda7640 10688 }
96234762 10689 return drv;
2cda7640
ML
10690}
10691
4dd2df09 10692static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 10693{
4dd2df09 10694 static char devnm[32];
78b10e66
N
10695 char subdev_name[20];
10696 struct mdstat_ent *mdstat;
10697
10698 sprintf(subdev_name, "%d", subdev);
10699 mdstat = mdstat_by_subdev(subdev_name, container);
10700 if (!mdstat)
4dd2df09 10701 return NULL;
78b10e66 10702
4dd2df09 10703 strcpy(devnm, mdstat->devnm);
78b10e66 10704 free_mdstat(mdstat);
4dd2df09 10705 return devnm;
78b10e66
N
10706}
10707
10708static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10709 struct geo_params *geo,
fbf3d202
AK
10710 int *old_raid_disks,
10711 int direction)
78b10e66 10712{
694575e7
KW
10713 /* currently we only support increasing the number of devices
10714 * for a container. This increases the number of device for each
10715 * member array. They must all be RAID0 or RAID5.
10716 */
78b10e66
N
10717 int ret_val = 0;
10718 struct mdinfo *info, *member;
10719 int devices_that_can_grow = 0;
10720
7a862a02 10721 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 10722
d04f65f4 10723 if (geo->size > 0 ||
78b10e66
N
10724 geo->level != UnSet ||
10725 geo->layout != UnSet ||
10726 geo->chunksize != 0 ||
10727 geo->raid_disks == UnSet) {
7a862a02 10728 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
10729 return ret_val;
10730 }
10731
fbf3d202 10732 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 10733 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
10734 return ret_val;
10735 }
10736
78b10e66
N
10737 info = container_content_imsm(st, NULL);
10738 for (member = info; member; member = member->next) {
4dd2df09 10739 char *result;
78b10e66
N
10740
10741 dprintf("imsm: checking device_num: %i\n",
10742 member->container_member);
10743
d7d205bd 10744 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
10745 /* we work on container for Online Capacity Expansion
10746 * only so raid_disks has to grow
10747 */
7a862a02 10748 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
10749 break;
10750 }
10751
089f9d79 10752 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
10753 /* we cannot use this container with other raid level
10754 */
7a862a02 10755 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
10756 info->array.level);
10757 break;
10758 } else {
10759 /* check for platform support
10760 * for this raid level configuration
10761 */
10762 struct intel_super *super = st->sb;
10763 if (!is_raid_level_supported(super->orom,
10764 member->array.level,
10765 geo->raid_disks)) {
7a862a02 10766 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
10767 info->array.level,
10768 geo->raid_disks,
10769 geo->raid_disks > 1 ? "s" : "");
10770 break;
10771 }
2a4a08e7
AK
10772 /* check if component size is aligned to chunk size
10773 */
10774 if (info->component_size %
10775 (info->array.chunk_size/512)) {
7a862a02 10776 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
10777 break;
10778 }
78b10e66
N
10779 }
10780
10781 if (*old_raid_disks &&
10782 info->array.raid_disks != *old_raid_disks)
10783 break;
10784 *old_raid_disks = info->array.raid_disks;
10785
10786 /* All raid5 and raid0 volumes in container
10787 * have to be ready for Online Capacity Expansion
10788 * so they need to be assembled. We have already
10789 * checked that no recovery etc is happening.
10790 */
4dd2df09
N
10791 result = imsm_find_array_devnm_by_subdev(member->container_member,
10792 st->container_devnm);
10793 if (result == NULL) {
78b10e66
N
10794 dprintf("imsm: cannot find array\n");
10795 break;
10796 }
10797 devices_that_can_grow++;
10798 }
10799 sysfs_free(info);
10800 if (!member && devices_that_can_grow)
10801 ret_val = 1;
10802
10803 if (ret_val)
1ade5cc1 10804 dprintf("Container operation allowed\n");
78b10e66 10805 else
1ade5cc1 10806 dprintf("Error: %i\n", ret_val);
78b10e66
N
10807
10808 return ret_val;
10809}
10810
10811/* Function: get_spares_for_grow
10812 * Description: Allocates memory and creates list of spare devices
1011e834 10813 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
10814 * Parameters: Pointer to the supertype structure
10815 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 10816 * NULL if fail
78b10e66
N
10817 */
10818static struct mdinfo *get_spares_for_grow(struct supertype *st)
10819{
78b10e66 10820 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 10821 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
10822}
10823
10824/******************************************************************************
10825 * function: imsm_create_metadata_update_for_reshape
10826 * Function creates update for whole IMSM container.
10827 *
10828 ******************************************************************************/
10829static int imsm_create_metadata_update_for_reshape(
10830 struct supertype *st,
10831 struct geo_params *geo,
10832 int old_raid_disks,
10833 struct imsm_update_reshape **updatep)
10834{
10835 struct intel_super *super = st->sb;
10836 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
10837 int update_memory_size;
10838 struct imsm_update_reshape *u;
10839 struct mdinfo *spares;
78b10e66 10840 int i;
594dc1b8 10841 int delta_disks;
bbd24d86 10842 struct mdinfo *dev;
78b10e66 10843
1ade5cc1 10844 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
10845
10846 delta_disks = geo->raid_disks - old_raid_disks;
10847
10848 /* size of all update data without anchor */
10849 update_memory_size = sizeof(struct imsm_update_reshape);
10850
10851 /* now add space for spare disks that we need to add. */
10852 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10853
503975b9 10854 u = xcalloc(1, update_memory_size);
78b10e66
N
10855 u->type = update_reshape_container_disks;
10856 u->old_raid_disks = old_raid_disks;
10857 u->new_raid_disks = geo->raid_disks;
10858
10859 /* now get spare disks list
10860 */
10861 spares = get_spares_for_grow(st);
10862
10863 if (spares == NULL
10864 || delta_disks > spares->array.spare_disks) {
7a862a02 10865 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 10866 i = -1;
78b10e66
N
10867 goto abort;
10868 }
10869
10870 /* we have got spares
10871 * update disk list in imsm_disk list table in anchor
10872 */
10873 dprintf("imsm: %i spares are available.\n\n",
10874 spares->array.spare_disks);
10875
bbd24d86 10876 dev = spares->devs;
78b10e66 10877 for (i = 0; i < delta_disks; i++) {
78b10e66
N
10878 struct dl *dl;
10879
bbd24d86
AK
10880 if (dev == NULL)
10881 break;
78b10e66
N
10882 u->new_disks[i] = makedev(dev->disk.major,
10883 dev->disk.minor);
10884 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
10885 dl->index = mpb->num_disks;
10886 mpb->num_disks++;
bbd24d86 10887 dev = dev->next;
78b10e66 10888 }
78b10e66
N
10889
10890abort:
10891 /* free spares
10892 */
10893 sysfs_free(spares);
10894
d677e0b8 10895 dprintf("imsm: reshape update preparation :");
78b10e66 10896 if (i == delta_disks) {
1ade5cc1 10897 dprintf_cont(" OK\n");
78b10e66
N
10898 *updatep = u;
10899 return update_memory_size;
10900 }
10901 free(u);
1ade5cc1 10902 dprintf_cont(" Error\n");
78b10e66
N
10903
10904 return 0;
10905}
10906
f3871fdc
AK
10907/******************************************************************************
10908 * function: imsm_create_metadata_update_for_size_change()
10909 * Creates update for IMSM array for array size change.
10910 *
10911 ******************************************************************************/
10912static int imsm_create_metadata_update_for_size_change(
10913 struct supertype *st,
10914 struct geo_params *geo,
10915 struct imsm_update_size_change **updatep)
10916{
10917 struct intel_super *super = st->sb;
594dc1b8
JS
10918 int update_memory_size;
10919 struct imsm_update_size_change *u;
f3871fdc 10920
1ade5cc1 10921 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
10922
10923 /* size of all update data without anchor */
10924 update_memory_size = sizeof(struct imsm_update_size_change);
10925
503975b9 10926 u = xcalloc(1, update_memory_size);
f3871fdc
AK
10927 u->type = update_size_change;
10928 u->subdev = super->current_vol;
10929 u->new_size = geo->size;
10930
10931 dprintf("imsm: reshape update preparation : OK\n");
10932 *updatep = u;
10933
10934 return update_memory_size;
10935}
10936
48c5303a
PC
10937/******************************************************************************
10938 * function: imsm_create_metadata_update_for_migration()
10939 * Creates update for IMSM array.
10940 *
10941 ******************************************************************************/
10942static int imsm_create_metadata_update_for_migration(
10943 struct supertype *st,
10944 struct geo_params *geo,
10945 struct imsm_update_reshape_migration **updatep)
10946{
10947 struct intel_super *super = st->sb;
594dc1b8
JS
10948 int update_memory_size;
10949 struct imsm_update_reshape_migration *u;
48c5303a
PC
10950 struct imsm_dev *dev;
10951 int previous_level = -1;
10952
1ade5cc1 10953 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
10954
10955 /* size of all update data without anchor */
10956 update_memory_size = sizeof(struct imsm_update_reshape_migration);
10957
503975b9 10958 u = xcalloc(1, update_memory_size);
48c5303a
PC
10959 u->type = update_reshape_migration;
10960 u->subdev = super->current_vol;
10961 u->new_level = geo->level;
10962 u->new_layout = geo->layout;
10963 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10964 u->new_disks[0] = -1;
4bba0439 10965 u->new_chunksize = -1;
48c5303a
PC
10966
10967 dev = get_imsm_dev(super, u->subdev);
10968 if (dev) {
10969 struct imsm_map *map;
10970
238c0a71 10971 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
10972 if (map) {
10973 int current_chunk_size =
10974 __le16_to_cpu(map->blocks_per_strip) / 2;
10975
10976 if (geo->chunksize != current_chunk_size) {
10977 u->new_chunksize = geo->chunksize / 1024;
7a862a02 10978 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
10979 current_chunk_size, u->new_chunksize);
10980 }
48c5303a 10981 previous_level = map->raid_level;
4bba0439 10982 }
48c5303a 10983 }
089f9d79 10984 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
10985 struct mdinfo *spares = NULL;
10986
10987 u->new_raid_disks++;
10988 spares = get_spares_for_grow(st);
089f9d79 10989 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
10990 free(u);
10991 sysfs_free(spares);
10992 update_memory_size = 0;
565cc99e 10993 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
10994 return 0;
10995 }
10996 sysfs_free(spares);
10997 }
10998 dprintf("imsm: reshape update preparation : OK\n");
10999 *updatep = u;
11000
11001 return update_memory_size;
11002}
11003
8dd70bce
AK
11004static void imsm_update_metadata_locally(struct supertype *st,
11005 void *buf, int len)
11006{
11007 struct metadata_update mu;
11008
11009 mu.buf = buf;
11010 mu.len = len;
11011 mu.space = NULL;
11012 mu.space_list = NULL;
11013 mu.next = NULL;
5fe6f031
N
11014 if (imsm_prepare_update(st, &mu))
11015 imsm_process_update(st, &mu);
8dd70bce
AK
11016
11017 while (mu.space_list) {
11018 void **space = mu.space_list;
11019 mu.space_list = *space;
11020 free(space);
11021 }
11022}
78b10e66 11023
471bceb6 11024/***************************************************************************
694575e7 11025* Function: imsm_analyze_change
471bceb6 11026* Description: Function analyze change for single volume
1011e834 11027* and validate if transition is supported
fbf3d202
AK
11028* Parameters: Geometry parameters, supertype structure,
11029* metadata change direction (apply/rollback)
694575e7 11030* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11031****************************************************************************/
11032enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11033 struct geo_params *geo,
11034 int direction)
694575e7 11035{
471bceb6
KW
11036 struct mdinfo info;
11037 int change = -1;
11038 int check_devs = 0;
c21e737b 11039 int chunk;
67a2db32
AK
11040 /* number of added/removed disks in operation result */
11041 int devNumChange = 0;
11042 /* imsm compatible layout value for array geometry verification */
11043 int imsm_layout = -1;
7abc9871
AK
11044 int data_disks;
11045 struct imsm_dev *dev;
11046 struct intel_super *super;
d04f65f4 11047 unsigned long long current_size;
65d38cca 11048 unsigned long long free_size;
d04f65f4 11049 unsigned long long max_size;
65d38cca 11050 int rv;
471bceb6
KW
11051
11052 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11053 if (geo->level != info.array.level && geo->level >= 0 &&
11054 geo->level != UnSet) {
471bceb6
KW
11055 switch (info.array.level) {
11056 case 0:
11057 if (geo->level == 5) {
b5347799 11058 change = CH_MIGRATION;
e13ce846 11059 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11060 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11061 change = -1;
11062 goto analyse_change_exit;
11063 }
67a2db32 11064 imsm_layout = geo->layout;
471bceb6 11065 check_devs = 1;
e91a3bad
LM
11066 devNumChange = 1; /* parity disk added */
11067 } else if (geo->level == 10) {
471bceb6
KW
11068 change = CH_TAKEOVER;
11069 check_devs = 1;
e91a3bad 11070 devNumChange = 2; /* two mirrors added */
67a2db32 11071 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11072 }
dfe77a9e
KW
11073 break;
11074 case 1:
471bceb6
KW
11075 case 10:
11076 if (geo->level == 0) {
11077 change = CH_TAKEOVER;
11078 check_devs = 1;
e91a3bad 11079 devNumChange = -(geo->raid_disks/2);
67a2db32 11080 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11081 }
11082 break;
11083 }
11084 if (change == -1) {
7a862a02 11085 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11086 info.array.level, geo->level);
471bceb6
KW
11087 goto analyse_change_exit;
11088 }
11089 } else
11090 geo->level = info.array.level;
11091
089f9d79
JS
11092 if (geo->layout != info.array.layout &&
11093 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11094 change = CH_MIGRATION;
089f9d79
JS
11095 if (info.array.layout == 0 && info.array.level == 5 &&
11096 geo->layout == 5) {
471bceb6 11097 /* reshape 5 -> 4 */
089f9d79
JS
11098 } else if (info.array.layout == 5 && info.array.level == 5 &&
11099 geo->layout == 0) {
471bceb6
KW
11100 /* reshape 4 -> 5 */
11101 geo->layout = 0;
11102 geo->level = 5;
11103 } else {
7a862a02 11104 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11105 info.array.layout, geo->layout);
471bceb6
KW
11106 change = -1;
11107 goto analyse_change_exit;
11108 }
67a2db32 11109 } else {
471bceb6 11110 geo->layout = info.array.layout;
67a2db32
AK
11111 if (imsm_layout == -1)
11112 imsm_layout = info.array.layout;
11113 }
471bceb6 11114
089f9d79
JS
11115 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11116 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11117 if (info.array.level == 10) {
11118 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11119 change = -1;
11120 goto analyse_change_exit;
1e9b2c3f
PB
11121 } else if (info.component_size % (geo->chunksize/512)) {
11122 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11123 geo->chunksize/1024, info.component_size/2);
11124 change = -1;
11125 goto analyse_change_exit;
2d2b0eb7 11126 }
b5347799 11127 change = CH_MIGRATION;
2d2b0eb7 11128 } else {
471bceb6 11129 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11130 }
471bceb6 11131
c21e737b 11132 chunk = geo->chunksize / 1024;
7abc9871
AK
11133
11134 super = st->sb;
11135 dev = get_imsm_dev(super, super->current_vol);
11136 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 11137 /* compute current size per disk member
7abc9871 11138 */
c41e00b2
AK
11139 current_size = info.custom_array_size / data_disks;
11140
089f9d79 11141 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11142 /* align component size
11143 */
11144 geo->size = imsm_component_size_aligment_check(
11145 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11146 chunk * 1024, super->sector_size,
c41e00b2 11147 geo->size * 2);
65d0b4ce 11148 if (geo->size == 0) {
7a862a02 11149 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11150 current_size);
11151 goto analyse_change_exit;
11152 }
c41e00b2 11153 }
7abc9871 11154
089f9d79 11155 if (current_size != geo->size && geo->size > 0) {
7abc9871 11156 if (change != -1) {
7a862a02 11157 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11158 change = -1;
11159 goto analyse_change_exit;
11160 }
11161 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11162 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11163 super->current_vol, st->devnm);
7abc9871
AK
11164 goto analyse_change_exit;
11165 }
65d38cca
LD
11166 /* check the maximum available size
11167 */
11168 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11169 0, chunk, &free_size);
11170 if (rv == 0)
11171 /* Cannot find maximum available space
11172 */
11173 max_size = 0;
11174 else {
11175 max_size = free_size + current_size;
11176 /* align component size
11177 */
11178 max_size = imsm_component_size_aligment_check(
11179 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11180 chunk * 1024, super->sector_size,
65d38cca
LD
11181 max_size);
11182 }
d04f65f4 11183 if (geo->size == MAX_SIZE) {
b130333f
AK
11184 /* requested size change to the maximum available size
11185 */
65d38cca 11186 if (max_size == 0) {
7a862a02 11187 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11188 change = -1;
11189 goto analyse_change_exit;
65d38cca
LD
11190 } else
11191 geo->size = max_size;
c41e00b2 11192 }
b130333f 11193
681b7ae2 11194 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11195 /* accept size for rollback only
11196 */
11197 } else {
11198 /* round size due to metadata compatibility
11199 */
11200 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11201 << SECT_PER_MB_SHIFT;
11202 dprintf("Prepare update for size change to %llu\n",
11203 geo->size );
11204 if (current_size >= geo->size) {
7a862a02 11205 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11206 current_size, geo->size);
fbf3d202
AK
11207 goto analyse_change_exit;
11208 }
65d38cca 11209 if (max_size && geo->size > max_size) {
7a862a02 11210 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11211 max_size, geo->size);
65d38cca
LD
11212 goto analyse_change_exit;
11213 }
7abc9871
AK
11214 }
11215 geo->size *= data_disks;
11216 geo->raid_disks = dev->vol.map->num_members;
11217 change = CH_ARRAY_SIZE;
11218 }
471bceb6
KW
11219 if (!validate_geometry_imsm(st,
11220 geo->level,
67a2db32 11221 imsm_layout,
e91a3bad 11222 geo->raid_disks + devNumChange,
c21e737b 11223 &chunk,
af4348dd 11224 geo->size, INVALID_SECTORS,
5308f117 11225 0, 0, info.consistency_policy, 1))
471bceb6
KW
11226 change = -1;
11227
11228 if (check_devs) {
11229 struct intel_super *super = st->sb;
11230 struct imsm_super *mpb = super->anchor;
11231
11232 if (mpb->num_raid_devs > 1) {
7a862a02 11233 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 11234 geo->dev_name);
471bceb6
KW
11235 change = -1;
11236 }
11237 }
11238
11239analyse_change_exit:
089f9d79
JS
11240 if (direction == ROLLBACK_METADATA_CHANGES &&
11241 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11242 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11243 change = -1;
11244 }
471bceb6 11245 return change;
694575e7
KW
11246}
11247
bb025c2f
KW
11248int imsm_takeover(struct supertype *st, struct geo_params *geo)
11249{
11250 struct intel_super *super = st->sb;
11251 struct imsm_update_takeover *u;
11252
503975b9 11253 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11254
11255 u->type = update_takeover;
11256 u->subarray = super->current_vol;
11257
11258 /* 10->0 transition */
11259 if (geo->level == 0)
11260 u->direction = R10_TO_R0;
11261
0529c688
KW
11262 /* 0->10 transition */
11263 if (geo->level == 10)
11264 u->direction = R0_TO_R10;
11265
bb025c2f
KW
11266 /* update metadata locally */
11267 imsm_update_metadata_locally(st, u,
11268 sizeof(struct imsm_update_takeover));
11269 /* and possibly remotely */
11270 if (st->update_tail)
11271 append_metadata_update(st, u,
11272 sizeof(struct imsm_update_takeover));
11273 else
11274 free(u);
11275
11276 return 0;
11277}
11278
d04f65f4
N
11279static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11280 int level,
78b10e66 11281 int layout, int chunksize, int raid_disks,
41784c88 11282 int delta_disks, char *backup, char *dev,
016e00f5 11283 int direction, int verbose)
78b10e66 11284{
78b10e66
N
11285 int ret_val = 1;
11286 struct geo_params geo;
11287
1ade5cc1 11288 dprintf("(enter)\n");
78b10e66 11289
71204a50 11290 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11291
11292 geo.dev_name = dev;
4dd2df09 11293 strcpy(geo.devnm, st->devnm);
78b10e66
N
11294 geo.size = size;
11295 geo.level = level;
11296 geo.layout = layout;
11297 geo.chunksize = chunksize;
11298 geo.raid_disks = raid_disks;
41784c88
AK
11299 if (delta_disks != UnSet)
11300 geo.raid_disks += delta_disks;
78b10e66 11301
1ade5cc1
N
11302 dprintf("for level : %i\n", geo.level);
11303 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
11304
11305 if (experimental() == 0)
11306 return ret_val;
11307
4dd2df09 11308 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11309 /* On container level we can only increase number of devices. */
11310 dprintf("imsm: info: Container operation\n");
78b10e66 11311 int old_raid_disks = 0;
6dc0be30 11312
78b10e66 11313 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11314 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11315 struct imsm_update_reshape *u = NULL;
11316 int len;
11317
11318 len = imsm_create_metadata_update_for_reshape(
11319 st, &geo, old_raid_disks, &u);
11320
ed08d51c
AK
11321 if (len <= 0) {
11322 dprintf("imsm: Cannot prepare update\n");
11323 goto exit_imsm_reshape_super;
11324 }
11325
8dd70bce
AK
11326 ret_val = 0;
11327 /* update metadata locally */
11328 imsm_update_metadata_locally(st, u, len);
11329 /* and possibly remotely */
11330 if (st->update_tail)
11331 append_metadata_update(st, u, len);
11332 else
ed08d51c 11333 free(u);
8dd70bce 11334
694575e7 11335 } else {
7a862a02 11336 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11337 }
11338 } else {
11339 /* On volume level we support following operations
471bceb6
KW
11340 * - takeover: raid10 -> raid0; raid0 -> raid10
11341 * - chunk size migration
11342 * - migration: raid5 -> raid0; raid0 -> raid5
11343 */
11344 struct intel_super *super = st->sb;
11345 struct intel_dev *dev = super->devlist;
4dd2df09 11346 int change;
694575e7 11347 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11348 /* find requested device */
11349 while (dev) {
1011e834 11350 char *devnm =
4dd2df09
N
11351 imsm_find_array_devnm_by_subdev(
11352 dev->index, st->container_devnm);
11353 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11354 break;
11355 dev = dev->next;
11356 }
11357 if (dev == NULL) {
4dd2df09
N
11358 pr_err("Cannot find %s (%s) subarray\n",
11359 geo.dev_name, geo.devnm);
471bceb6
KW
11360 goto exit_imsm_reshape_super;
11361 }
11362 super->current_vol = dev->index;
fbf3d202 11363 change = imsm_analyze_change(st, &geo, direction);
694575e7 11364 switch (change) {
471bceb6 11365 case CH_TAKEOVER:
bb025c2f 11366 ret_val = imsm_takeover(st, &geo);
694575e7 11367 break;
48c5303a
PC
11368 case CH_MIGRATION: {
11369 struct imsm_update_reshape_migration *u = NULL;
11370 int len =
11371 imsm_create_metadata_update_for_migration(
11372 st, &geo, &u);
11373 if (len < 1) {
7a862a02 11374 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11375 break;
11376 }
471bceb6 11377 ret_val = 0;
48c5303a
PC
11378 /* update metadata locally */
11379 imsm_update_metadata_locally(st, u, len);
11380 /* and possibly remotely */
11381 if (st->update_tail)
11382 append_metadata_update(st, u, len);
11383 else
11384 free(u);
11385 }
11386 break;
7abc9871 11387 case CH_ARRAY_SIZE: {
f3871fdc
AK
11388 struct imsm_update_size_change *u = NULL;
11389 int len =
11390 imsm_create_metadata_update_for_size_change(
11391 st, &geo, &u);
11392 if (len < 1) {
7a862a02 11393 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11394 break;
11395 }
11396 ret_val = 0;
11397 /* update metadata locally */
11398 imsm_update_metadata_locally(st, u, len);
11399 /* and possibly remotely */
11400 if (st->update_tail)
11401 append_metadata_update(st, u, len);
11402 else
11403 free(u);
7abc9871
AK
11404 }
11405 break;
471bceb6
KW
11406 default:
11407 ret_val = 1;
694575e7 11408 }
694575e7 11409 }
78b10e66 11410
ed08d51c 11411exit_imsm_reshape_super:
78b10e66
N
11412 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11413 return ret_val;
11414}
2cda7640 11415
0febb20c
AO
11416#define COMPLETED_OK 0
11417#define COMPLETED_NONE 1
11418#define COMPLETED_DELAYED 2
11419
11420static int read_completed(int fd, unsigned long long *val)
11421{
11422 int ret;
11423 char buf[50];
11424
11425 ret = sysfs_fd_get_str(fd, buf, 50);
11426 if (ret < 0)
11427 return ret;
11428
11429 ret = COMPLETED_OK;
11430 if (strncmp(buf, "none", 4) == 0) {
11431 ret = COMPLETED_NONE;
11432 } else if (strncmp(buf, "delayed", 7) == 0) {
11433 ret = COMPLETED_DELAYED;
11434 } else {
11435 char *ep;
11436 *val = strtoull(buf, &ep, 0);
11437 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11438 ret = -1;
11439 }
11440 return ret;
11441}
11442
eee67a47
AK
11443/*******************************************************************************
11444 * Function: wait_for_reshape_imsm
11445 * Description: Function writes new sync_max value and waits until
11446 * reshape process reach new position
11447 * Parameters:
11448 * sra : general array info
eee67a47
AK
11449 * ndata : number of disks in new array's layout
11450 * Returns:
11451 * 0 : success,
11452 * 1 : there is no reshape in progress,
11453 * -1 : fail
11454 ******************************************************************************/
ae9f01f8 11455int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 11456{
85ca499c 11457 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 11458 int retry = 3;
eee67a47 11459 unsigned long long completed;
ae9f01f8
AK
11460 /* to_complete : new sync_max position */
11461 unsigned long long to_complete = sra->reshape_progress;
11462 unsigned long long position_to_set = to_complete / ndata;
eee67a47 11463
ae9f01f8 11464 if (fd < 0) {
1ade5cc1 11465 dprintf("cannot open reshape_position\n");
eee67a47 11466 return 1;
ae9f01f8 11467 }
eee67a47 11468
df2647fa
PB
11469 do {
11470 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11471 if (!retry) {
11472 dprintf("cannot read reshape_position (no reshape in progres)\n");
11473 close(fd);
11474 return 1;
11475 }
11476 usleep(30000);
11477 } else
11478 break;
11479 } while (retry--);
eee67a47 11480
85ca499c 11481 if (completed > position_to_set) {
1ade5cc1 11482 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 11483 to_complete, position_to_set);
ae9f01f8
AK
11484 close(fd);
11485 return -1;
11486 }
11487 dprintf("Position set: %llu\n", position_to_set);
11488 if (sysfs_set_num(sra, NULL, "sync_max",
11489 position_to_set) != 0) {
1ade5cc1 11490 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
11491 position_to_set);
11492 close(fd);
11493 return -1;
eee67a47
AK
11494 }
11495
eee67a47 11496 do {
0febb20c 11497 int rc;
eee67a47 11498 char action[20];
5ff3a780 11499 int timeout = 3000;
0febb20c 11500
5ff3a780 11501 sysfs_wait(fd, &timeout);
a47e44fb
AK
11502 if (sysfs_get_str(sra, NULL, "sync_action",
11503 action, 20) > 0 &&
d7d3809a 11504 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
11505 if (strncmp(action, "idle", 4) == 0)
11506 break;
d7d3809a
AP
11507 close(fd);
11508 return -1;
11509 }
0febb20c
AO
11510
11511 rc = read_completed(fd, &completed);
11512 if (rc < 0) {
1ade5cc1 11513 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
11514 close(fd);
11515 return 1;
0febb20c
AO
11516 } else if (rc == COMPLETED_NONE)
11517 break;
85ca499c 11518 } while (completed < position_to_set);
b2be2b62 11519
eee67a47
AK
11520 close(fd);
11521 return 0;
eee67a47
AK
11522}
11523
b915c95f
AK
11524/*******************************************************************************
11525 * Function: check_degradation_change
11526 * Description: Check that array hasn't become failed.
11527 * Parameters:
11528 * info : for sysfs access
11529 * sources : source disks descriptors
11530 * degraded: previous degradation level
11531 * Returns:
11532 * degradation level
11533 ******************************************************************************/
11534int check_degradation_change(struct mdinfo *info,
11535 int *sources,
11536 int degraded)
11537{
11538 unsigned long long new_degraded;
e1993023
LD
11539 int rv;
11540
11541 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 11542 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
11543 /* check each device to ensure it is still working */
11544 struct mdinfo *sd;
11545 new_degraded = 0;
11546 for (sd = info->devs ; sd ; sd = sd->next) {
11547 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11548 continue;
11549 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
11550 char sbuf[100];
11551
b915c95f 11552 if (sysfs_get_str(info,
cf52eff5 11553 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
11554 strstr(sbuf, "faulty") ||
11555 strstr(sbuf, "in_sync") == NULL) {
11556 /* this device is dead */
11557 sd->disk.state = (1<<MD_DISK_FAULTY);
11558 if (sd->disk.raid_disk >= 0 &&
11559 sources[sd->disk.raid_disk] >= 0) {
11560 close(sources[
11561 sd->disk.raid_disk]);
11562 sources[sd->disk.raid_disk] =
11563 -1;
11564 }
11565 new_degraded++;
11566 }
11567 }
11568 }
11569 }
11570
11571 return new_degraded;
11572}
11573
10f22854
AK
11574/*******************************************************************************
11575 * Function: imsm_manage_reshape
11576 * Description: Function finds array under reshape and it manages reshape
11577 * process. It creates stripes backups (if required) and sets
942e1cdb 11578 * checkpoints.
10f22854
AK
11579 * Parameters:
11580 * afd : Backup handle (nattive) - not used
11581 * sra : general array info
11582 * reshape : reshape parameters - not used
11583 * st : supertype structure
11584 * blocks : size of critical section [blocks]
11585 * fds : table of source device descriptor
11586 * offsets : start of array (offest per devices)
11587 * dests : not used
11588 * destfd : table of destination device descriptor
11589 * destoffsets : table of destination offsets (per device)
11590 * Returns:
11591 * 1 : success, reshape is done
11592 * 0 : fail
11593 ******************************************************************************/
999b4972
N
11594static int imsm_manage_reshape(
11595 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 11596 struct supertype *st, unsigned long backup_blocks,
999b4972
N
11597 int *fds, unsigned long long *offsets,
11598 int dests, int *destfd, unsigned long long *destoffsets)
11599{
10f22854
AK
11600 int ret_val = 0;
11601 struct intel_super *super = st->sb;
594dc1b8 11602 struct intel_dev *dv;
de44e46f 11603 unsigned int sector_size = super->sector_size;
10f22854 11604 struct imsm_dev *dev = NULL;
a6b6d984 11605 struct imsm_map *map_src;
10f22854
AK
11606 int migr_vol_qan = 0;
11607 int ndata, odata; /* [bytes] */
11608 int chunk; /* [bytes] */
11609 struct migr_record *migr_rec;
11610 char *buf = NULL;
11611 unsigned int buf_size; /* [bytes] */
11612 unsigned long long max_position; /* array size [bytes] */
11613 unsigned long long next_step; /* [blocks]/[bytes] */
11614 unsigned long long old_data_stripe_length;
10f22854
AK
11615 unsigned long long start_src; /* [bytes] */
11616 unsigned long long start; /* [bytes] */
11617 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 11618 int degraded = 0;
ab724b98 11619 int source_layout = 0;
10f22854 11620
79a16a9b
JS
11621 if (!sra)
11622 return ret_val;
11623
11624 if (!fds || !offsets)
10f22854
AK
11625 goto abort;
11626
11627 /* Find volume during the reshape */
11628 for (dv = super->devlist; dv; dv = dv->next) {
11629 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11630 && dv->dev->vol.migr_state == 1) {
11631 dev = dv->dev;
11632 migr_vol_qan++;
11633 }
11634 }
11635 /* Only one volume can migrate at the same time */
11636 if (migr_vol_qan != 1) {
676e87a8 11637 pr_err("%s", migr_vol_qan ?
10f22854
AK
11638 "Number of migrating volumes greater than 1\n" :
11639 "There is no volume during migrationg\n");
11640 goto abort;
11641 }
11642
238c0a71 11643 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
11644 if (map_src == NULL)
11645 goto abort;
10f22854 11646
238c0a71
AK
11647 ndata = imsm_num_data_members(dev, MAP_0);
11648 odata = imsm_num_data_members(dev, MAP_1);
10f22854 11649
7b1ab482 11650 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
11651 old_data_stripe_length = odata * chunk;
11652
11653 migr_rec = super->migr_rec;
11654
10f22854
AK
11655 /* initialize migration record for start condition */
11656 if (sra->reshape_progress == 0)
11657 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
11658 else {
11659 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 11660 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
11661 goto abort;
11662 }
6a75c8ca
AK
11663 /* Save checkpoint to update migration record for current
11664 * reshape position (in md). It can be farther than current
11665 * reshape position in metadata.
11666 */
11667 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11668 /* ignore error == 2, this can mean end of reshape here
11669 */
7a862a02 11670 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
11671 goto abort;
11672 }
b2c59438 11673 }
10f22854
AK
11674
11675 /* size for data */
11676 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11677 /* extend buffer size for parity disk */
11678 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11679 /* add space for stripe aligment */
11680 buf_size += old_data_stripe_length;
de44e46f
PB
11681 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11682 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
11683 goto abort;
11684 }
11685
3ef4403c 11686 max_position = sra->component_size * ndata;
68eb8bc6 11687 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
11688
11689 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11690 __le32_to_cpu(migr_rec->num_migr_units)) {
11691 /* current reshape position [blocks] */
11692 unsigned long long current_position =
11693 __le32_to_cpu(migr_rec->blocks_per_unit)
11694 * __le32_to_cpu(migr_rec->curr_migr_unit);
11695 unsigned long long border;
11696
b915c95f
AK
11697 /* Check that array hasn't become failed.
11698 */
11699 degraded = check_degradation_change(sra, fds, degraded);
11700 if (degraded > 1) {
7a862a02 11701 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
11702 goto abort;
11703 }
11704
10f22854
AK
11705 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11706
11707 if ((current_position + next_step) > max_position)
11708 next_step = max_position - current_position;
11709
92144abf 11710 start = current_position * 512;
10f22854 11711
942e1cdb 11712 /* align reading start to old geometry */
10f22854
AK
11713 start_buf_shift = start % old_data_stripe_length;
11714 start_src = start - start_buf_shift;
11715
11716 border = (start_src / odata) - (start / ndata);
11717 border /= 512;
11718 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11719 /* save critical stripes to buf
11720 * start - start address of current unit
11721 * to backup [bytes]
11722 * start_src - start address of current unit
11723 * to backup alligned to source array
11724 * [bytes]
11725 */
594dc1b8 11726 unsigned long long next_step_filler;
10f22854
AK
11727 unsigned long long copy_length = next_step * 512;
11728
11729 /* allign copy area length to stripe in old geometry */
11730 next_step_filler = ((copy_length + start_buf_shift)
11731 % old_data_stripe_length);
11732 if (next_step_filler)
11733 next_step_filler = (old_data_stripe_length
11734 - next_step_filler);
7a862a02 11735 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
11736 start, start_src, copy_length,
11737 start_buf_shift, next_step_filler);
11738
11739 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
11740 chunk, map_src->raid_level,
11741 source_layout, 0, NULL, start_src,
10f22854
AK
11742 copy_length +
11743 next_step_filler + start_buf_shift,
11744 buf)) {
7a862a02 11745 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
11746 goto abort;
11747 }
11748 /* Convert data to destination format and store it
11749 * in backup general migration area
11750 */
11751 if (save_backup_imsm(st, dev, sra,
aea93171 11752 buf + start_buf_shift, copy_length)) {
7a862a02 11753 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
11754 goto abort;
11755 }
11756 if (save_checkpoint_imsm(st, sra,
11757 UNIT_SRC_IN_CP_AREA)) {
7a862a02 11758 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
11759 goto abort;
11760 }
8016a6d4
AK
11761 } else {
11762 /* set next step to use whole border area */
11763 border /= next_step;
11764 if (border > 1)
11765 next_step *= border;
10f22854
AK
11766 }
11767 /* When data backed up, checkpoint stored,
11768 * kick the kernel to reshape unit of data
11769 */
11770 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
11771 /* limit next step to array max position */
11772 if (next_step > max_position)
11773 next_step = max_position;
10f22854
AK
11774 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11775 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 11776 sra->reshape_progress = next_step;
10f22854
AK
11777
11778 /* wait until reshape finish */
c85338c6 11779 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
11780 dprintf("wait_for_reshape_imsm returned error!\n");
11781 goto abort;
11782 }
84d11e6c
N
11783 if (sigterm)
11784 goto abort;
10f22854 11785
0228d92c
AK
11786 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11787 /* ignore error == 2, this can mean end of reshape here
11788 */
7a862a02 11789 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
11790 goto abort;
11791 }
11792
11793 }
11794
71e5411e
PB
11795 /* clear migr_rec on disks after successful migration */
11796 struct dl *d;
11797
85337573 11798 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
11799 for (d = super->disks; d; d = d->next) {
11800 if (d->index < 0 || is_failed(&d->disk))
11801 continue;
11802 unsigned long long dsize;
11803
11804 get_dev_size(d->fd, NULL, &dsize);
de44e46f 11805 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 11806 SEEK_SET) >= 0) {
466070ad 11807 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
11808 MIGR_REC_BUF_SECTORS*sector_size) !=
11809 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
11810 perror("Write migr_rec failed");
11811 }
11812 }
11813
10f22854
AK
11814 /* return '1' if done */
11815 ret_val = 1;
11816abort:
11817 free(buf);
942e1cdb
N
11818 /* See Grow.c: abort_reshape() for further explanation */
11819 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11820 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11821 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
11822
11823 return ret_val;
999b4972 11824}
0c21b485 11825
cdddbdbc 11826struct superswitch super_imsm = {
cdddbdbc
DW
11827 .examine_super = examine_super_imsm,
11828 .brief_examine_super = brief_examine_super_imsm,
4737ae25 11829 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 11830 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
11831 .detail_super = detail_super_imsm,
11832 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 11833 .write_init_super = write_init_super_imsm,
0e600426
N
11834 .validate_geometry = validate_geometry_imsm,
11835 .add_to_super = add_to_super_imsm,
1a64be56 11836 .remove_from_super = remove_from_super_imsm,
d665cc31 11837 .detail_platform = detail_platform_imsm,
e50cf220 11838 .export_detail_platform = export_detail_platform_imsm,
33414a01 11839 .kill_subarray = kill_subarray_imsm,
aa534678 11840 .update_subarray = update_subarray_imsm,
2b959fbf 11841 .load_container = load_container_imsm,
71204a50
N
11842 .default_geometry = default_geometry_imsm,
11843 .get_disk_controller_domain = imsm_get_disk_controller_domain,
11844 .reshape_super = imsm_reshape_super,
11845 .manage_reshape = imsm_manage_reshape,
9e2d750d 11846 .recover_backup = recover_backup_imsm,
74db60b0 11847 .copy_metadata = copy_metadata_imsm,
27156a57 11848 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
11849 .match_home = match_home_imsm,
11850 .uuid_from_super= uuid_from_super_imsm,
11851 .getinfo_super = getinfo_super_imsm,
5c4cd5da 11852 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
11853 .update_super = update_super_imsm,
11854
11855 .avail_size = avail_size_imsm,
80e7f8c3 11856 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
11857
11858 .compare_super = compare_super_imsm,
11859
11860 .load_super = load_super_imsm,
bf5a934a 11861 .init_super = init_super_imsm,
e683ca88 11862 .store_super = store_super_imsm,
cdddbdbc
DW
11863 .free_super = free_super_imsm,
11864 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 11865 .container_content = container_content_imsm,
0c21b485 11866 .validate_container = validate_container_imsm,
cdddbdbc 11867
2432ce9b
AP
11868 .write_init_ppl = write_init_ppl_imsm,
11869 .validate_ppl = validate_ppl_imsm,
11870
cdddbdbc 11871 .external = 1,
4cce4069 11872 .name = "imsm",
845dea95
NB
11873
11874/* for mdmon */
11875 .open_new = imsm_open_new,
ed9d66aa 11876 .set_array_state= imsm_set_array_state,
845dea95
NB
11877 .set_disk = imsm_set_disk,
11878 .sync_metadata = imsm_sync_metadata,
88758e9d 11879 .activate_spare = imsm_activate_spare,
e8319a19 11880 .process_update = imsm_process_update,
8273f55e 11881 .prepare_update = imsm_prepare_update,
6f50473f 11882 .record_bad_block = imsm_record_badblock,
c07a5a4f 11883 .clear_bad_block = imsm_clear_badblock,
928f1424 11884 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 11885};