]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
super-intel: fix typo in error msg
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
420dafcd 23#include "dlink.h"
51006d85 24#include "sha1.h"
88c32bb1 25#include "platform-intel.h"
cdddbdbc
DW
26#include <values.h>
27#include <scsi/sg.h>
28#include <ctype.h>
d665cc31 29#include <dirent.h>
bf62ed5d 30#include "drive_encryption.h"
cdddbdbc
DW
31
32/* MPB == Metadata Parameter Block */
33#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
34#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
ec7e873b
MK
35
36/* Legacy IMSM versions:
37 * MPB_VERSION_RAID0 1.0.00
38 * MPB_VERSION_RAID1 1.1.00
39 * MPB_VERSION_MANY_VOLUMES_PER_ARRAY 1.2.00
40 * MPB_VERSION_3OR4_DISK_ARRAY 1.2.01
41 * MPB_VERSION_RAID5 1.2.02
42 * MPB_VERSION_5OR6_DISK_ARRAY 1.2.04
43 * MPB_VERSION_CNG 1.2.06
44 */
45
fe7ed8cb 46#define MPB_VERSION_ATTRIBS "1.3.00"
ec7e873b 47#define MPB_VERSION_ATTRIBS_JD "2.0.00"
cdddbdbc
DW
48#define MAX_SIGNATURE_LENGTH 32
49#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 50
19482bcc
AK
51/* supports RAID0 */
52#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
53/* supports RAID1 */
54#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
55/* supports RAID10 */
56#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
57/* supports RAID1E */
58#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
59/* supports RAID5 */
60#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
61/* supports RAID CNG */
62#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
63/* supports expanded stripe sizes of 256K, 512K and 1MB */
64#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
610fc2ee
MK
65/* supports RAID10 with more than 4 drives */
66#define MPB_ATTRIB_RAID10_EXT __cpu_to_le32(0x00000080)
19482bcc
AK
67
68/* The OROM Support RST Caching of Volumes */
69#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
70/* The OROM supports creating disks greater than 2TB */
71#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
72/* The OROM supports Bad Block Management */
73#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
74
75/* THe OROM Supports NVM Caching of Volumes */
76#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
77/* The OROM supports creating volumes greater than 2TB */
78#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
79/* originally for PMP, now it's wasted b/c. Never use this bit! */
80#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
81/* Verify MPB contents against checksum after reading MPB */
82#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
83
84/* Define all supported attributes that have to be accepted by mdadm
85 */
418f9b36 86#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
87 MPB_ATTRIB_2TB | \
88 MPB_ATTRIB_2TB_DISK | \
89 MPB_ATTRIB_RAID0 | \
90 MPB_ATTRIB_RAID1 | \
91 MPB_ATTRIB_RAID10 | \
92 MPB_ATTRIB_RAID5 | \
bbab0940 93 MPB_ATTRIB_EXP_STRIPE_SIZE | \
610fc2ee 94 MPB_ATTRIB_RAID10_EXT | \
bbab0940 95 MPB_ATTRIB_BBM)
418f9b36
N
96
97/* Define attributes that are unused but not harmful */
98#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 99
8e59f3d8 100#define MPB_SECTOR_CNT 2210
611d9529
MD
101#define IMSM_RESERVED_SECTORS 8192
102#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 103#define SECT_PER_MB_SHIFT 11
f36a9ecd 104#define MAX_SECTOR_SIZE 4096
c2462068
PB
105#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
106 * mutliple PPL area
107 */
cdddbdbc 108
fbc42556
JR
109/*
110 * Internal Write-intent bitmap is stored in the same area where PPL.
111 * Both features are mutually exclusive, so it is not an issue.
112 * The first 8KiB of the area are reserved and shall not be used.
113 */
114#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
115
116#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
117#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
118
119#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
120#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
121#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
122
123#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
124#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
125
761e3bd9
N
126/*
127 * This macro let's us ensure that no-one accidentally
128 * changes the size of a struct
129 */
130#define ASSERT_SIZE(_struct, size) \
131static inline void __assert_size_##_struct(void) \
132{ \
133 switch (0) { \
134 case 0: break; \
135 case (sizeof(struct _struct) == size): break; \
136 } \
137}
138
cdddbdbc
DW
139/* Disk configuration info. */
140#define IMSM_MAX_DEVICES 255
141struct imsm_disk {
142 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 143 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 144 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
145#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
146#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
147#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 148#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 149 __u32 status; /* 0xF0 - 0xF3 */
1011e834 150 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
151 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
152#define IMSM_DISK_FILLERS 3
153 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 154};
761e3bd9 155ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 156
3b451610
AK
157/* map selector for map managment
158 */
238c0a71
AK
159#define MAP_0 0
160#define MAP_1 1
161#define MAP_X -1
3b451610 162
cdddbdbc
DW
163/* RAID map configuration infos. */
164struct imsm_map {
5551b113
CA
165 __u32 pba_of_lba0_lo; /* start address of partition */
166 __u32 blocks_per_member_lo;/* blocks per member */
167 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
168 __u16 blocks_per_strip;
169 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
170#define IMSM_T_STATE_NORMAL 0
171#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
172#define IMSM_T_STATE_DEGRADED 2
173#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
174 __u8 raid_level;
175#define IMSM_T_RAID0 0
176#define IMSM_T_RAID1 1
27550b13
MK
177#define IMSM_T_RAID5 5
178#define IMSM_T_RAID10 10
cdddbdbc 179 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
180 __u8 num_domains; /* number of parity domains */
181 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 182 __u8 ddf;
5551b113
CA
183 __u32 pba_of_lba0_hi;
184 __u32 blocks_per_member_hi;
185 __u32 num_data_stripes_hi;
186 __u32 filler[4]; /* expansion area */
7eef0453 187#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 188 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
189 * top byte contains some flags
190 */
761e3bd9
N
191};
192ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
193
194struct imsm_vol {
4036e7ee 195 __u32 curr_migr_unit_lo;
fe7ed8cb 196 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 197 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
198#define MIGR_INIT 0
199#define MIGR_REBUILD 1
200#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
201#define MIGR_GEN_MIGR 3
202#define MIGR_STATE_CHANGE 4
1484e727 203#define MIGR_REPAIR 5
cdddbdbc 204 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
205#define RAIDVOL_CLEAN 0
206#define RAIDVOL_DIRTY 1
207#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 208 __u8 dirty;
fe7ed8cb
DW
209 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
210 __u16 verify_errors; /* number of mismatches */
211 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
212 __u32 curr_migr_unit_hi;
213 __u32 filler[3];
cdddbdbc
DW
214 struct imsm_map map[1];
215 /* here comes another one if migr_state */
761e3bd9
N
216};
217ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
218
219struct imsm_dev {
fe7ed8cb 220 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
221 __u32 size_low;
222 __u32 size_high;
fe7ed8cb
DW
223#define DEV_BOOTABLE __cpu_to_le32(0x01)
224#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
225#define DEV_READ_COALESCING __cpu_to_le32(0x04)
226#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
227#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
228#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
229#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
230#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
231#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
232#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
233#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
234#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
235#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
236 __u32 status; /* Persistent RaidDev status */
237 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
238 __u8 migr_priority;
239 __u8 num_sub_vols;
240 __u8 tid;
241 __u8 cng_master_disk;
242 __u16 cache_policy;
243 __u8 cng_state;
244 __u8 cng_sub_state;
2432ce9b
AP
245 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
246
247 /* NVM_EN */
248 __u8 nv_cache_mode;
249 __u8 nv_cache_flags;
250
251 /* Unique Volume Id of the NvCache Volume associated with this volume */
252 __u32 nvc_vol_orig_family_num;
253 __u16 nvc_vol_raid_dev_num;
254
255#define RWH_OFF 0
256#define RWH_DISTRIBUTED 1
257#define RWH_JOURNALING_DRIVE 2
c2462068
PB
258#define RWH_MULTIPLE_DISTRIBUTED 3
259#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
260#define RWH_MULTIPLE_OFF 5
fbc42556 261#define RWH_BITMAP 6
2432ce9b
AP
262 __u8 rwh_policy; /* Raid Write Hole Policy */
263 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
264 __u8 filler1;
265
266#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
267 __u32 filler[IMSM_DEV_FILLERS];
268 struct imsm_vol vol;
761e3bd9
N
269};
270ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
271
272struct imsm_super {
273 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
274 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
275 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
276 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
277 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
278 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
279 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
280 __u8 num_disks; /* 0x38 Number of configured disks */
281 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
282 __u8 error_log_pos; /* 0x3A */
283 __u8 fill[1]; /* 0x3B */
284 __u32 cache_size; /* 0x3c - 0x40 in mb */
285 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
286 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
287 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
288 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
289 * volume IDs for raid_dev created in this array
290 * (starts at 1)
291 */
292 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
293 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
294#define IMSM_FILLERS 32
295 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
296 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
297 /* here comes imsm_dev[num_raid_devs] */
604b746f 298 /* here comes BBM logs */
761e3bd9
N
299};
300ASSERT_SIZE(imsm_super, 264)
cdddbdbc 301
604b746f 302#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
303#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
304#define BBM_LOG_SIGNATURE 0xabadb10c
305
306struct bbm_log_block_addr {
307 __u16 w1;
308 __u32 dw1;
309} __attribute__ ((__packed__));
604b746f
JD
310
311struct bbm_log_entry {
8d67477f
TM
312 __u8 marked_count; /* Number of blocks marked - 1 */
313 __u8 disk_ordinal; /* Disk entry within the imsm_super */
314 struct bbm_log_block_addr defective_block_start;
604b746f
JD
315} __attribute__ ((__packed__));
316
317struct bbm_log {
318 __u32 signature; /* 0xABADB10C */
319 __u32 entry_count;
8d67477f 320 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
321};
322ASSERT_SIZE(bbm_log, 2040)
604b746f 323
cdddbdbc 324static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 325
b53bfba6
TM
326#define BLOCKS_PER_KB (1024/512)
327
8e59f3d8
AK
328#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
329
330#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
331
de44e46f
PB
332#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
333#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
334 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
335 */
336
8e59f3d8
AK
337#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
338 * be recovered using srcMap */
339#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
340 * already been migrated and must
341 * be recovered from checkpoint area */
2432ce9b 342
c2462068 343#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 344
8e59f3d8
AK
345struct migr_record {
346 __u32 rec_status; /* Status used to determine how to restart
347 * migration in case it aborts
348 * in some fashion */
9f421827 349 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
350 __u32 family_num; /* Family number of MPB
351 * containing the RaidDev
352 * that is migrating */
353 __u32 ascending_migr; /* True if migrating in increasing
354 * order of lbas */
355 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
356 __u32 dest_depth_per_unit; /* Num member blocks each destMap
357 * member disk
358 * advances per unit-of-operation */
9f421827
PB
359 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
360 __u32 dest_1st_member_lba_lo; /* First member lba on first
361 * stripe of destination */
362 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
363 __u32 post_migr_vol_cap; /* Size of volume after
364 * migration completes */
365 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
366 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
367 * migration ckpt record was read from
368 * (for recovered migrations) */
9f421827
PB
369 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
370 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
371 * high order 32 bits */
372 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
373 * destination - high order 32 bits */
374 __u32 num_migr_units_hi; /* Total num migration units-of-op
375 * high order 32 bits */
4036e7ee 376 __u32 filler[16];
761e3bd9 377};
4036e7ee 378ASSERT_SIZE(migr_record, 128)
8e59f3d8 379
76c152ca
MT
380/**
381 * enum imsm_status - internal IMSM return values representation.
382 * @STATUS_OK: function succeeded.
383 * @STATUS_ERROR: General error ocurred (not specified).
384 *
385 * Typedefed to imsm_status_t.
386 */
387typedef enum imsm_status {
388 IMSM_STATUS_ERROR = -1,
389 IMSM_STATUS_OK = 0,
390} imsm_status_t;
391
ec50f7b6
LM
392struct md_list {
393 /* usage marker:
394 * 1: load metadata
395 * 2: metadata does not match
396 * 4: already checked
397 */
398 int used;
399 char *devname;
400 int found;
401 int container;
402 dev_t st_rdev;
403 struct md_list *next;
404};
405
1484e727
DW
406static __u8 migr_type(struct imsm_dev *dev)
407{
408 if (dev->vol.migr_type == MIGR_VERIFY &&
409 dev->status & DEV_VERIFY_AND_FIX)
410 return MIGR_REPAIR;
411 else
412 return dev->vol.migr_type;
413}
414
415static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
416{
417 /* for compatibility with older oroms convert MIGR_REPAIR, into
418 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
419 */
420 if (migr_type == MIGR_REPAIR) {
421 dev->vol.migr_type = MIGR_VERIFY;
422 dev->status |= DEV_VERIFY_AND_FIX;
423 } else {
424 dev->vol.migr_type = migr_type;
425 dev->status &= ~DEV_VERIFY_AND_FIX;
426 }
427}
428
f36a9ecd 429static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 430{
f36a9ecd 431 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 432}
cdddbdbc 433
f36a9ecd
PB
434static unsigned int mpb_sectors(struct imsm_super *mpb,
435 unsigned int sector_size)
87eb16df 436{
f36a9ecd 437 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
438}
439
ba2de7ba
DW
440struct intel_dev {
441 struct imsm_dev *dev;
442 struct intel_dev *next;
f21e18ca 443 unsigned index;
ba2de7ba
DW
444};
445
88654014
LM
446struct intel_hba {
447 enum sys_dev_type type;
448 char *path;
449 char *pci_id;
450 struct intel_hba *next;
451};
452
1a64be56
LM
453enum action {
454 DISK_REMOVE = 1,
455 DISK_ADD
456};
cdddbdbc
DW
457/* internal representation of IMSM metadata */
458struct intel_super {
459 union {
949c47a0
DW
460 void *buf; /* O_DIRECT buffer for reading/writing metadata */
461 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 462 };
8e59f3d8
AK
463 union {
464 void *migr_rec_buf; /* buffer for I/O operations */
465 struct migr_record *migr_rec; /* migration record */
466 };
51d83f5d
AK
467 int clean_migration_record_by_mdmon; /* when reshape is switched to next
468 array, it indicates that mdmon is allowed to clean migration
469 record */
949c47a0 470 size_t len; /* size of the 'buf' allocation */
bbab0940 471 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
472 void *next_buf; /* for realloc'ing buf from the manager */
473 size_t next_len;
c2c087e6 474 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 475 int current_vol; /* index of raid device undergoing creation */
5551b113 476 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 477 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 478 struct intel_dev *devlist;
fa7bb6f8 479 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
480 struct dl {
481 struct dl *next;
482 int index;
483 __u8 serial[MAX_RAID_SERIAL_LEN];
484 int major, minor;
485 char *devname;
b9f594fe 486 struct imsm_disk disk;
cdddbdbc 487 int fd;
0dcecb2e
DW
488 int extent_cnt;
489 struct extent *e; /* for determining freespace @ create */
efb30e7f 490 int raiddisk; /* slot to fill in autolayout */
1a64be56 491 enum action action;
ca0748fa 492 } *disks, *current_disk;
1a64be56
LM
493 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
494 active */
47ee5a45 495 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 496 struct bbm_log *bbm_log;
88654014 497 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 498 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 499 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 500 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
501};
502
503struct intel_disk {
504 struct imsm_disk disk;
505 #define IMSM_UNKNOWN_OWNER (-1)
506 int owner;
507 struct intel_disk *next;
cdddbdbc
DW
508};
509
aa19fdd4
MT
510/**
511 * struct extent - reserved space details.
512 * @start: start offset.
513 * @size: size of reservation, set to 0 for metadata reservation.
514 * @vol: index of the volume, meaningful if &size is set.
515 */
c2c087e6
DW
516struct extent {
517 unsigned long long start, size;
aa19fdd4 518 int vol;
c2c087e6
DW
519};
520
694575e7
KW
521/* definitions of reshape process types */
522enum imsm_reshape_type {
523 CH_TAKEOVER,
b5347799 524 CH_MIGRATION,
7abc9871 525 CH_ARRAY_SIZE,
44463ede 526 CH_ABORT
694575e7
KW
527};
528
88758e9d
DW
529/* definition of messages passed to imsm_process_update */
530enum imsm_update_type {
531 update_activate_spare,
8273f55e 532 update_create_array,
33414a01 533 update_kill_array,
aa534678 534 update_rename_array,
1a64be56 535 update_add_remove_disk,
78b10e66 536 update_reshape_container_disks,
48c5303a 537 update_reshape_migration,
2d40f3a1
AK
538 update_takeover,
539 update_general_migration_checkpoint,
f3871fdc 540 update_size_change,
bbab0940 541 update_prealloc_badblocks_mem,
e6e9dd3f 542 update_rwh_policy,
88758e9d
DW
543};
544
545struct imsm_update_activate_spare {
546 enum imsm_update_type type;
d23fe947 547 struct dl *dl;
88758e9d
DW
548 int slot;
549 int array;
550 struct imsm_update_activate_spare *next;
551};
552
78b10e66 553struct geo_params {
4dd2df09 554 char devnm[32];
78b10e66 555 char *dev_name;
d04f65f4 556 unsigned long long size;
78b10e66
N
557 int level;
558 int layout;
559 int chunksize;
560 int raid_disks;
561};
562
bb025c2f
KW
563enum takeover_direction {
564 R10_TO_R0,
565 R0_TO_R10
566};
567struct imsm_update_takeover {
568 enum imsm_update_type type;
569 int subarray;
570 enum takeover_direction direction;
571};
78b10e66
N
572
573struct imsm_update_reshape {
574 enum imsm_update_type type;
575 int old_raid_disks;
576 int new_raid_disks;
48c5303a
PC
577
578 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
579};
580
581struct imsm_update_reshape_migration {
582 enum imsm_update_type type;
583 int old_raid_disks;
584 int new_raid_disks;
585 /* fields for array migration changes
586 */
587 int subdev;
588 int new_level;
589 int new_layout;
4bba0439 590 int new_chunksize;
48c5303a 591
d195167d 592 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
593};
594
f3871fdc
AK
595struct imsm_update_size_change {
596 enum imsm_update_type type;
597 int subdev;
598 long long new_size;
599};
600
2d40f3a1
AK
601struct imsm_update_general_migration_checkpoint {
602 enum imsm_update_type type;
4036e7ee 603 __u64 curr_migr_unit;
2d40f3a1
AK
604};
605
54c2c1ea
DW
606struct disk_info {
607 __u8 serial[MAX_RAID_SERIAL_LEN];
608};
609
8273f55e
DW
610struct imsm_update_create_array {
611 enum imsm_update_type type;
8273f55e 612 int dev_idx;
6a3e913e 613 struct imsm_dev dev;
8273f55e
DW
614};
615
33414a01
DW
616struct imsm_update_kill_array {
617 enum imsm_update_type type;
618 int dev_idx;
619};
620
aa534678
DW
621struct imsm_update_rename_array {
622 enum imsm_update_type type;
623 __u8 name[MAX_RAID_SERIAL_LEN];
624 int dev_idx;
625};
626
1a64be56 627struct imsm_update_add_remove_disk {
43dad3d6
DW
628 enum imsm_update_type type;
629};
630
bbab0940
TM
631struct imsm_update_prealloc_bb_mem {
632 enum imsm_update_type type;
633};
634
e6e9dd3f
AP
635struct imsm_update_rwh_policy {
636 enum imsm_update_type type;
637 int new_policy;
638 int dev_idx;
639};
640
88654014
LM
641static const char *_sys_dev_type[] = {
642 [SYS_DEV_UNKNOWN] = "Unknown",
643 [SYS_DEV_SAS] = "SAS",
614902f6 644 [SYS_DEV_SATA] = "SATA",
60f0f54d 645 [SYS_DEV_NVME] = "NVMe",
75350d87
KF
646 [SYS_DEV_VMD] = "VMD",
647 [SYS_DEV_SATA_VMD] = "SATA VMD"
88654014
LM
648};
649
420dafcd
N
650static int no_platform = -1;
651
652static int check_no_platform(void)
653{
654 static const char search[] = "mdadm.imsm.test=1";
655 FILE *fp;
656
657 if (no_platform >= 0)
658 return no_platform;
659
660 if (check_env("IMSM_NO_PLATFORM")) {
661 no_platform = 1;
662 return 1;
663 }
664 fp = fopen("/proc/cmdline", "r");
665 if (fp) {
666 char *l = conf_line(fp);
667 char *w = l;
668
cf1577bf
MG
669 if (l == NULL) {
670 fclose(fp);
671 return 0;
672 }
673
420dafcd
N
674 do {
675 if (strcmp(w, search) == 0)
676 no_platform = 1;
677 w = dl_next(w);
678 } while (w != l);
679 free_line(l);
680 fclose(fp);
681 if (no_platform >= 0)
682 return no_platform;
683 }
684 no_platform = 0;
685 return 0;
686}
687
688void imsm_set_no_platform(int v)
689{
690 no_platform = v;
691}
692
88654014
LM
693const char *get_sys_dev_type(enum sys_dev_type type)
694{
695 if (type >= SYS_DEV_MAX)
696 type = SYS_DEV_UNKNOWN;
697
698 return _sys_dev_type[type];
699}
700
701static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
702{
503975b9
N
703 struct intel_hba *result = xmalloc(sizeof(*result));
704
705 result->type = device->type;
706 result->path = xstrdup(device->path);
707 result->next = NULL;
708 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
709 result->pci_id++;
710
88654014
LM
711 return result;
712}
713
714static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
715{
594dc1b8
JS
716 struct intel_hba *result;
717
88654014
LM
718 for (result = hba; result; result = result->next) {
719 if (result->type == device->type && strcmp(result->path, device->path) == 0)
720 break;
721 }
722 return result;
723}
724
b4cf4cba 725static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
726{
727 struct intel_hba *hba;
728
729 /* check if disk attached to Intel HBA */
730 hba = find_intel_hba(super->hba, device);
731 if (hba != NULL)
732 return 1;
733 /* Check if HBA is already attached to super */
734 if (super->hba == NULL) {
735 super->hba = alloc_intel_hba(device);
736 return 1;
6b781d33
AP
737 }
738
739 hba = super->hba;
740 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 741 * Do not support HBA types mixing
6b781d33
AP
742 */
743 if (device->type != hba->type)
88654014 744 return 2;
6b781d33
AP
745
746 /* Multiple same type HBAs can be used if they share the same OROM */
747 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
748
749 if (device_orom != super->orom)
750 return 2;
751
752 while (hba->next)
753 hba = hba->next;
754
755 hba->next = alloc_intel_hba(device);
756 return 1;
88654014
LM
757}
758
759static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
760{
9bc4ae77 761 struct sys_dev *list, *elem;
88654014
LM
762 char *disk_path;
763
764 if ((list = find_intel_devices()) == NULL)
765 return 0;
766
4389ce73 767 if (!is_fd_valid(fd))
88654014
LM
768 disk_path = (char *) devname;
769 else
7c798f87 770 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 771
9bc4ae77 772 if (!disk_path)
88654014 773 return 0;
88654014 774
9bc4ae77
N
775 for (elem = list; elem; elem = elem->next)
776 if (path_attached_to_hba(disk_path, elem->path))
5d2434d1 777 break;
9bc4ae77 778
88654014
LM
779 if (disk_path != devname)
780 free(disk_path);
88654014 781
5d2434d1 782 return elem;
88654014
LM
783}
784
d424212e
N
785static int find_intel_hba_capability(int fd, struct intel_super *super,
786 char *devname);
f2f5c343 787
cdddbdbc
DW
788static struct supertype *match_metadata_desc_imsm(char *arg)
789{
790 struct supertype *st;
791
792 if (strcmp(arg, "imsm") != 0 &&
793 strcmp(arg, "default") != 0
794 )
795 return NULL;
796
503975b9 797 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
798 st->ss = &super_imsm;
799 st->max_devs = IMSM_MAX_DEVICES;
800 st->minor_version = 0;
801 st->sb = NULL;
802 return st;
803}
804
cdddbdbc
DW
805static __u8 *get_imsm_version(struct imsm_super *mpb)
806{
807 return &mpb->sig[MPB_SIG_LEN];
808}
809
949c47a0
DW
810/* retrieve a disk directly from the anchor when the anchor is known to be
811 * up-to-date, currently only at load time
812 */
813static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 814{
949c47a0 815 if (index >= mpb->num_disks)
cdddbdbc
DW
816 return NULL;
817 return &mpb->disk[index];
818}
819
95d07a2c
LM
820/* retrieve the disk description based on a index of the disk
821 * in the sub-array
822 */
823static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 824{
b9f594fe
DW
825 struct dl *d;
826
827 for (d = super->disks; d; d = d->next)
828 if (d->index == index)
95d07a2c
LM
829 return d;
830
831 return NULL;
832}
833/* retrieve a disk from the parsed metadata */
834static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
835{
836 struct dl *dl;
837
838 dl = get_imsm_dl_disk(super, index);
839 if (dl)
840 return &dl->disk;
841
b9f594fe 842 return NULL;
949c47a0
DW
843}
844
845/* generate a checksum directly from the anchor when the anchor is known to be
846 * up-to-date, currently only at load or write_super after coalescing
847 */
848static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
849{
850 __u32 end = mpb->mpb_size / sizeof(end);
851 __u32 *p = (__u32 *) mpb;
852 __u32 sum = 0;
853
5d500228
N
854 while (end--) {
855 sum += __le32_to_cpu(*p);
97f734fd
N
856 p++;
857 }
cdddbdbc 858
5d500228 859 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
860}
861
a965f303
DW
862static size_t sizeof_imsm_map(struct imsm_map *map)
863{
864 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
865}
866
867struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 868{
5e7b0330
AK
869 /* A device can have 2 maps if it is in the middle of a migration.
870 * If second_map is:
238c0a71
AK
871 * MAP_0 - we return the first map
872 * MAP_1 - we return the second map if it exists, else NULL
873 * MAP_X - we return the second map if it exists, else the first
5e7b0330 874 */
a965f303 875 struct imsm_map *map = &dev->vol.map[0];
9535fc47 876 struct imsm_map *map2 = NULL;
a965f303 877
9535fc47
AK
878 if (dev->vol.migr_state)
879 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 880
9535fc47 881 switch (second_map) {
3b451610 882 case MAP_0:
9535fc47 883 break;
3b451610 884 case MAP_1:
9535fc47
AK
885 map = map2;
886 break;
238c0a71 887 case MAP_X:
9535fc47
AK
888 if (map2)
889 map = map2;
890 break;
9535fc47
AK
891 default:
892 map = NULL;
893 }
894 return map;
5e7b0330 895
a965f303 896}
cdddbdbc 897
3393c6af
DW
898/* return the size of the device.
899 * migr_state increases the returned size if map[0] were to be duplicated
900 */
901static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
902{
903 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 904 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
905
906 /* migrating means an additional map */
a965f303 907 if (dev->vol.migr_state)
238c0a71 908 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 909 else if (migr_state)
238c0a71 910 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
911
912 return size;
913}
914
54c2c1ea
DW
915/* retrieve disk serial number list from a metadata update */
916static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
917{
918 void *u = update;
919 struct disk_info *inf;
920
921 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
922 sizeof_imsm_dev(&update->dev, 0);
923
924 return inf;
925}
54c2c1ea 926
756a15f3
MG
927/**
928 * __get_imsm_dev() - Get device with index from imsm_super.
929 * @mpb: &imsm_super pointer, not NULL.
930 * @index: Device index.
931 *
932 * Function works as non-NULL, aborting in such a case,
933 * when NULL would be returned.
934 *
935 * Device index should be in range 0 up to num_raid_devs.
936 * Function assumes the index was already verified.
937 * Index must be valid, otherwise abort() is called.
938 *
939 * Return: Pointer to corresponding imsm_dev.
940 *
941 */
949c47a0 942static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
943{
944 int offset;
945 int i;
946 void *_mpb = mpb;
947
949c47a0 948 if (index >= mpb->num_raid_devs)
756a15f3 949 goto error;
cdddbdbc
DW
950
951 /* devices start after all disks */
952 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
953
756a15f3 954 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
cdddbdbc
DW
955 if (i == index)
956 return _mpb + offset;
756a15f3
MG
957error:
958 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
959 abort();
cdddbdbc
DW
960}
961
756a15f3
MG
962/**
963 * get_imsm_dev() - Get device with index from intel_super.
964 * @super: &intel_super pointer, not NULL.
965 * @index: Device index.
966 *
967 * Function works as non-NULL, aborting in such a case,
968 * when NULL would be returned.
969 *
970 * Device index should be in range 0 up to num_raid_devs.
971 * Function assumes the index was already verified.
972 * Index must be valid, otherwise abort() is called.
973 *
974 * Return: Pointer to corresponding imsm_dev.
975 *
976 */
949c47a0
DW
977static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
978{
ba2de7ba
DW
979 struct intel_dev *dv;
980
949c47a0 981 if (index >= super->anchor->num_raid_devs)
756a15f3
MG
982 goto error;
983
ba2de7ba
DW
984 for (dv = super->devlist; dv; dv = dv->next)
985 if (dv->index == index)
986 return dv->dev;
756a15f3
MG
987error:
988 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
989 abort();
949c47a0
DW
990}
991
8d67477f
TM
992static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
993 *addr)
994{
995 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
996 __le16_to_cpu(addr->w1));
997}
998
999static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
1000{
1001 struct bbm_log_block_addr addr;
1002
1003 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
1004 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
1005 return addr;
1006}
1007
8d67477f
TM
1008/* get size of the bbm log */
1009static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
1010{
1011 if (!log || log->entry_count == 0)
1012 return 0;
1013
1014 return sizeof(log->signature) +
1015 sizeof(log->entry_count) +
1016 log->entry_count * sizeof(struct bbm_log_entry);
1017}
6f50473f
TM
1018
1019/* check if bad block is not partially stored in bbm log */
1020static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
1021 long long sector, const int length, __u32 *pos)
1022{
1023 __u32 i;
1024
1025 for (i = *pos; i < log->entry_count; i++) {
1026 struct bbm_log_entry *entry = &log->marked_block_entries[i];
1027 unsigned long long bb_start;
1028 unsigned long long bb_end;
1029
1030 bb_start = __le48_to_cpu(&entry->defective_block_start);
1031 bb_end = bb_start + (entry->marked_count + 1);
1032
1033 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
1034 (bb_end <= sector + length)) {
1035 *pos = i;
1036 return 1;
1037 }
1038 }
1039 return 0;
1040}
1041
1042/* record new bad block in bbm log */
1043static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
1044 long long sector, int length)
1045{
1046 int new_bb = 0;
1047 __u32 pos = 0;
1048 struct bbm_log_entry *entry = NULL;
1049
1050 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
1051 struct bbm_log_entry *e = &log->marked_block_entries[pos];
1052
1053 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
1054 (__le48_to_cpu(&e->defective_block_start) == sector)) {
1055 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
1056 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
1057 pos = pos + 1;
1058 continue;
1059 }
1060 entry = e;
1061 break;
1062 }
1063
1064 if (entry) {
1065 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1066 BBM_LOG_MAX_LBA_ENTRY_VAL;
1067 entry->defective_block_start = __cpu_to_le48(sector);
1068 entry->marked_count = cnt - 1;
1069 if (cnt == length)
1070 return 1;
1071 sector += cnt;
1072 length -= cnt;
1073 }
1074
1075 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1076 BBM_LOG_MAX_LBA_ENTRY_VAL;
1077 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1078 return 0;
1079
1080 while (length > 0) {
1081 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1082 BBM_LOG_MAX_LBA_ENTRY_VAL;
1083 struct bbm_log_entry *entry =
1084 &log->marked_block_entries[log->entry_count];
1085
1086 entry->defective_block_start = __cpu_to_le48(sector);
1087 entry->marked_count = cnt - 1;
1088 entry->disk_ordinal = idx;
1089
1090 sector += cnt;
1091 length -= cnt;
1092
1093 log->entry_count++;
1094 }
1095
1096 return new_bb;
1097}
c07a5a4f 1098
4c9e8c1e
TM
1099/* clear all bad blocks for given disk */
1100static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1101{
1102 __u32 i = 0;
1103
1104 while (i < log->entry_count) {
1105 struct bbm_log_entry *entries = log->marked_block_entries;
1106
1107 if (entries[i].disk_ordinal == idx) {
1108 if (i < log->entry_count - 1)
1109 entries[i] = entries[log->entry_count - 1];
1110 log->entry_count--;
1111 } else {
1112 i++;
1113 }
1114 }
1115}
1116
c07a5a4f
TM
1117/* clear given bad block */
1118static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1119 long long sector, const int length) {
1120 __u32 i = 0;
1121
1122 while (i < log->entry_count) {
1123 struct bbm_log_entry *entries = log->marked_block_entries;
1124
1125 if ((entries[i].disk_ordinal == idx) &&
1126 (__le48_to_cpu(&entries[i].defective_block_start) ==
1127 sector) && (entries[i].marked_count + 1 == length)) {
1128 if (i < log->entry_count - 1)
1129 entries[i] = entries[log->entry_count - 1];
1130 log->entry_count--;
1131 break;
1132 }
1133 i++;
1134 }
1135
1136 return 1;
1137}
8d67477f
TM
1138
1139/* allocate and load BBM log from metadata */
1140static int load_bbm_log(struct intel_super *super)
1141{
1142 struct imsm_super *mpb = super->anchor;
1143 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1144
1145 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1146 if (!super->bbm_log)
1147 return 1;
1148
1149 if (bbm_log_size) {
1150 struct bbm_log *log = (void *)mpb +
1151 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1152
1153 __u32 entry_count;
1154
1155 if (bbm_log_size < sizeof(log->signature) +
1156 sizeof(log->entry_count))
1157 return 2;
1158
1159 entry_count = __le32_to_cpu(log->entry_count);
1160 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1161 (entry_count > BBM_LOG_MAX_ENTRIES))
1162 return 3;
1163
1164 if (bbm_log_size !=
1165 sizeof(log->signature) + sizeof(log->entry_count) +
1166 entry_count * sizeof(struct bbm_log_entry))
1167 return 4;
1168
1169 memcpy(super->bbm_log, log, bbm_log_size);
1170 } else {
1171 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1172 super->bbm_log->entry_count = 0;
1173 }
1174
1175 return 0;
1176}
1177
b12796be
TM
1178/* checks if bad block is within volume boundaries */
1179static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1180 const unsigned long long start_sector,
1181 const unsigned long long size)
1182{
1183 unsigned long long bb_start;
1184 unsigned long long bb_end;
1185
1186 bb_start = __le48_to_cpu(&entry->defective_block_start);
1187 bb_end = bb_start + (entry->marked_count + 1);
1188
1189 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1190 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1191 return 1;
1192
1193 return 0;
1194}
1195
1196/* get list of bad blocks on a drive for a volume */
1197static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1198 const unsigned long long start_sector,
1199 const unsigned long long size,
1200 struct md_bb *bbs)
1201{
1202 __u32 count = 0;
1203 __u32 i;
1204
1205 for (i = 0; i < log->entry_count; i++) {
1206 const struct bbm_log_entry *ent =
1207 &log->marked_block_entries[i];
1208 struct md_bb_entry *bb;
1209
1210 if ((ent->disk_ordinal == idx) &&
1211 is_bad_block_in_volume(ent, start_sector, size)) {
1212
1213 if (!bbs->entries) {
1214 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1215 sizeof(*bb));
1216 if (!bbs->entries)
1217 break;
1218 }
1219
1220 bb = &bbs->entries[count++];
1221 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1222 bb->length = ent->marked_count + 1;
1223 }
1224 }
1225 bbs->count = count;
1226}
1227
98130f40
AK
1228/*
1229 * for second_map:
238c0a71
AK
1230 * == MAP_0 get first map
1231 * == MAP_1 get second map
1232 * == MAP_X than get map according to the current migr_state
98130f40
AK
1233 */
1234static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1235 int slot,
1236 int second_map)
7eef0453
DW
1237{
1238 struct imsm_map *map;
1239
5e7b0330 1240 map = get_imsm_map(dev, second_map);
7eef0453 1241
ff077194
DW
1242 /* top byte identifies disk under rebuild */
1243 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1244}
1245
1246#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1247static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1248{
98130f40 1249 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1250
1251 return ord_to_idx(ord);
7eef0453
DW
1252}
1253
be73972f
DW
1254static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1255{
1256 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1257}
1258
76c152ca 1259static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
620b1713
DW
1260{
1261 int slot;
1262 __u32 ord;
1263
1264 for (slot = 0; slot < map->num_members; slot++) {
1265 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1266 if (ord_to_idx(ord) == idx)
1267 return slot;
1268 }
1269
76c152ca 1270 return IMSM_STATUS_ERROR;
620b1713 1271}
27550b13
MK
1272/**
1273 * update_imsm_raid_level() - update raid level appropriately in &imsm_map.
1274 * @map: &imsm_map pointer.
1275 * @new_level: MD style level.
1276 *
1277 * For backward compatibility reasons we need to differentiate RAID10.
1278 * In the past IMSM RAID10 was presented as RAID1.
1279 * Keep compatibility unless it is not explicitly updated by UEFI driver.
1280 *
1281 * Routine needs num_members to be set and (optionally) raid_level.
1282 */
1283static void update_imsm_raid_level(struct imsm_map *map, int new_level)
1284{
1285 if (new_level != IMSM_T_RAID10) {
1286 map->raid_level = new_level;
1287 return;
1288 }
1289
1290 if (map->num_members == 4) {
1291 if (map->raid_level == IMSM_T_RAID10 || map->raid_level == IMSM_T_RAID1)
1292 return;
1293
1294 map->raid_level = IMSM_T_RAID1;
1295 return;
1296 }
1297
1298 map->raid_level = IMSM_T_RAID10;
1299}
620b1713 1300
cdddbdbc
DW
1301static int get_imsm_raid_level(struct imsm_map *map)
1302{
27550b13 1303 if (map->raid_level == IMSM_T_RAID1) {
cdddbdbc 1304 if (map->num_members == 2)
27550b13 1305 return IMSM_T_RAID1;
cdddbdbc 1306 else
27550b13 1307 return IMSM_T_RAID10;
cdddbdbc
DW
1308 }
1309
1310 return map->raid_level;
1311}
1312
76c152ca
MT
1313/**
1314 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1315 * @super: &intel_super pointer, not NULL.
1316 * @dev_idx: imsm device index.
1317 * @idx: disk index.
1318 *
1319 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1320 */
1321static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1322 const unsigned int idx)
1323{
1324 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1325 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1326
1327 return get_imsm_disk_slot(map, idx);
1328}
1329
c2c087e6
DW
1330static int cmp_extent(const void *av, const void *bv)
1331{
1332 const struct extent *a = av;
1333 const struct extent *b = bv;
1334 if (a->start < b->start)
1335 return -1;
1336 if (a->start > b->start)
1337 return 1;
1338 return 0;
1339}
1340
0dcecb2e 1341static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1342{
c2c087e6 1343 int memberships = 0;
620b1713 1344 int i;
c2c087e6 1345
76c152ca
MT
1346 for (i = 0; i < super->anchor->num_raid_devs; i++)
1347 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
620b1713 1348 memberships++;
0dcecb2e
DW
1349
1350 return memberships;
1351}
1352
b81221b7
CA
1353static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1354
486720e0 1355static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1356{
1357 if (lo == 0 || hi == 0)
1358 return 1;
486720e0
JS
1359 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1360 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1361 return 0;
1362}
1363
1364static unsigned long long join_u32(__u32 lo, __u32 hi)
1365{
1366 return (unsigned long long)__le32_to_cpu(lo) |
1367 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1368}
1369
1370static unsigned long long total_blocks(struct imsm_disk *disk)
1371{
1372 if (disk == NULL)
1373 return 0;
1374 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1375}
1376
1c275381
MT
1377/**
1378 * imsm_num_data_members() - get data drives count for an array.
1379 * @map: Map to analyze.
1380 *
1381 * num_data_members value represents minimal count of drives for level.
1382 * The name of the property could be misleading for RAID5 with asymmetric layout
1383 * because some data required to be calculated from parity.
1384 * The property is extracted from level and num_members value.
1385 *
1386 * Return: num_data_members value on success, zero otherwise.
1387 */
1388static __u8 imsm_num_data_members(struct imsm_map *map)
1389{
1390 switch (get_imsm_raid_level(map)) {
1391 case 0:
1392 return map->num_members;
1393 case 1:
1394 case 10:
1395 return map->num_members / 2;
1396 case 5:
1397 return map->num_members - 1;
1398 default:
1399 dprintf("unsupported raid level\n");
1400 return 0;
1401 }
1402}
1403
5551b113
CA
1404static unsigned long long pba_of_lba0(struct imsm_map *map)
1405{
1406 if (map == NULL)
1407 return 0;
1408 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1409}
1410
1411static unsigned long long blocks_per_member(struct imsm_map *map)
1412{
1413 if (map == NULL)
1414 return 0;
1415 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1416}
1417
1418static unsigned long long num_data_stripes(struct imsm_map *map)
1419{
1420 if (map == NULL)
1421 return 0;
1422 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1423}
1424
4036e7ee
MT
1425static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1426{
1427 if (dev == NULL)
1428 return 0;
1429
1430 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1431}
1432
fcc2c9da
MD
1433static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1434{
1435 if (dev == NULL)
1436 return 0;
1437 return join_u32(dev->size_low, dev->size_high);
1438}
1439
9f421827
PB
1440static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1441{
1442 if (migr_rec == NULL)
1443 return 0;
1444 return join_u32(migr_rec->ckpt_area_pba_lo,
1445 migr_rec->ckpt_area_pba_hi);
1446}
1447
1448static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1449{
1450 if (migr_rec == NULL)
1451 return 0;
1452 return join_u32(migr_rec->curr_migr_unit_lo,
1453 migr_rec->curr_migr_unit_hi);
1454}
1455
1456static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1457{
1458 if (migr_rec == NULL)
1459 return 0;
1460 return join_u32(migr_rec->dest_1st_member_lba_lo,
1461 migr_rec->dest_1st_member_lba_hi);
1462}
1463
1464static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1465{
1466 if (migr_rec == NULL)
1467 return 0;
1468 return join_u32(migr_rec->num_migr_units_lo,
1469 migr_rec->num_migr_units_hi);
1470}
1471
5551b113
CA
1472static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1473{
1474 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1475}
1476
1c275381
MT
1477/**
1478 * set_num_domains() - Set number of domains for an array.
1479 * @map: Map to be updated.
1480 *
1481 * num_domains property represents copies count of each data drive, thus make
1482 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1483 * raid1 and raid10.
1484 */
1485static void set_num_domains(struct imsm_map *map)
1486{
1487 int level = get_imsm_raid_level(map);
1488
1489 if (level == 1 || level == 10)
1490 map->num_domains = 2;
1491 else
1492 map->num_domains = 1;
1493}
1494
5551b113
CA
1495static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1496{
1497 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1498}
1499
1500static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1501{
1502 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1503}
1504
1505static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1506{
1507 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1508}
1509
1c275381
MT
1510/**
1511 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1512 * @map: map to be updated.
1513 * @dev_size: size of volume.
1514 *
1515 * num_data_stripes value is addictionally divided by num_domains, therefore for
1516 * levels where num_domains is not 1, nds is a part of real value.
1517 */
1518static void update_num_data_stripes(struct imsm_map *map,
1519 unsigned long long dev_size)
1520{
1521 unsigned long long nds = dev_size / imsm_num_data_members(map);
1522
1523 nds /= map->num_domains;
1524 nds /= map->blocks_per_strip;
1525 set_num_data_stripes(map, nds);
1526}
1527
4036e7ee
MT
1528static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1529{
1530 if (dev == NULL)
1531 return;
1532
1533 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1534}
1535
fcc2c9da
MD
1536static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1537{
1538 split_ull(n, &dev->size_low, &dev->size_high);
1539}
1540
9f421827
PB
1541static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1542 unsigned long long n)
1543{
1544 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1545}
1546
1547static void set_current_migr_unit(struct migr_record *migr_rec,
1548 unsigned long long n)
1549{
1550 split_ull(n, &migr_rec->curr_migr_unit_lo,
1551 &migr_rec->curr_migr_unit_hi);
1552}
1553
1554static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1555 unsigned long long n)
1556{
1557 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1558 &migr_rec->dest_1st_member_lba_hi);
1559}
1560
1561static void set_num_migr_units(struct migr_record *migr_rec,
1562 unsigned long long n)
1563{
1564 split_ull(n, &migr_rec->num_migr_units_lo,
1565 &migr_rec->num_migr_units_hi);
1566}
1567
44490938
MD
1568static unsigned long long per_dev_array_size(struct imsm_map *map)
1569{
1570 unsigned long long array_size = 0;
1571
1572 if (map == NULL)
1573 return array_size;
1574
1575 array_size = num_data_stripes(map) * map->blocks_per_strip;
1576 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1577 array_size *= 2;
1578
1579 return array_size;
1580}
1581
05501181
PB
1582static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1583 int get_minimal_reservation)
0dcecb2e
DW
1584{
1585 /* find a list of used extents on the given physical device */
0dcecb2e 1586 int memberships = count_memberships(dl, super);
aa19fdd4
MT
1587 struct extent *rv = xcalloc(memberships + 1, sizeof(struct extent));
1588 struct extent *e = rv;
1589 int i;
b276dd33
DW
1590 __u32 reservation;
1591
1592 /* trim the reserved area for spares, so they can join any array
1593 * regardless of whether the OROM has assigned sectors from the
1594 * IMSM_RESERVED_SECTORS region
1595 */
05501181 1596 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1597 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1598 else
1599 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1600
949c47a0
DW
1601 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1602 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1603 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1604
620b1713 1605 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1606 e->start = pba_of_lba0(map);
44490938 1607 e->size = per_dev_array_size(map);
aa19fdd4 1608 e->vol = i;
620b1713 1609 e++;
c2c087e6
DW
1610 }
1611 }
1612 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1613
1011e834 1614 /* determine the start of the metadata
14e8215b
DW
1615 * when no raid devices are defined use the default
1616 * ...otherwise allow the metadata to truncate the value
1617 * as is the case with older versions of imsm
1618 */
1619 if (memberships) {
1620 struct extent *last = &rv[memberships - 1];
5551b113 1621 unsigned long long remainder;
14e8215b 1622
5551b113 1623 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1624 /* round down to 1k block to satisfy precision of the kernel
1625 * 'size' interface
1626 */
1627 remainder &= ~1UL;
1628 /* make sure remainder is still sane */
f21e18ca 1629 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1630 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1631 if (reservation > remainder)
1632 reservation = remainder;
1633 }
5551b113 1634 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1635 e->size = 0;
1636 return rv;
1637}
1638
14e8215b
DW
1639/* try to determine how much space is reserved for metadata from
1640 * the last get_extents() entry, otherwise fallback to the
1641 * default
1642 */
1643static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1644{
1645 struct extent *e;
1646 int i;
1647 __u32 rv;
1648
1649 /* for spares just return a minimal reservation which will grow
1650 * once the spare is picked up by an array
1651 */
1652 if (dl->index == -1)
1653 return MPB_SECTOR_CNT;
1654
05501181 1655 e = get_extents(super, dl, 0);
14e8215b
DW
1656 if (!e)
1657 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1658
1659 /* scroll to last entry */
1660 for (i = 0; e[i].size; i++)
1661 continue;
1662
5551b113 1663 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1664
1665 free(e);
1666
1667 return rv;
1668}
1669
25ed7e59
DW
1670static int is_spare(struct imsm_disk *disk)
1671{
1672 return (disk->status & SPARE_DISK) == SPARE_DISK;
1673}
1674
1675static int is_configured(struct imsm_disk *disk)
1676{
1677 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1678}
1679
1680static int is_failed(struct imsm_disk *disk)
1681{
1682 return (disk->status & FAILED_DISK) == FAILED_DISK;
1683}
1684
2432ce9b
AP
1685static int is_journal(struct imsm_disk *disk)
1686{
1687 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1688}
1689
78c8028b
MT
1690/**
1691 * round_member_size_to_mb()- Round given size to closest MiB.
1692 * @size: size to round in sectors.
b53bfba6 1693 */
78c8028b 1694static inline unsigned long long round_member_size_to_mb(unsigned long long size)
b53bfba6 1695{
78c8028b
MT
1696 return (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1697}
b53bfba6 1698
78c8028b
MT
1699/**
1700 * round_size_to_mb()- Round given size.
1701 * @array_size: size to round in sectors.
1702 * @disk_count: count of data members.
1703 *
1704 * Get size per each data member and round it to closest MiB to ensure that data
1705 * splits evenly between members.
1706 *
1707 * Return: Array size, rounded down.
1708 */
1709static inline unsigned long long round_size_to_mb(unsigned long long array_size,
1710 unsigned int disk_count)
1711{
1712 return round_member_size_to_mb(array_size / disk_count) * disk_count;
b53bfba6
TM
1713}
1714
8b9cd157
MK
1715static int able_to_resync(int raid_level, int missing_disks)
1716{
1717 int max_missing_disks = 0;
1718
1719 switch (raid_level) {
1720 case 10:
1721 max_missing_disks = 1;
1722 break;
1723 default:
1724 max_missing_disks = 0;
1725 }
1726 return missing_disks <= max_missing_disks;
1727}
1728
b81221b7
CA
1729/* try to determine how much space is reserved for metadata from
1730 * the last get_extents() entry on the smallest active disk,
1731 * otherwise fallback to the default
1732 */
1733static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1734{
1735 struct extent *e;
1736 int i;
5551b113
CA
1737 unsigned long long min_active;
1738 __u32 remainder;
b81221b7
CA
1739 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1740 struct dl *dl, *dl_min = NULL;
1741
1742 if (!super)
1743 return rv;
1744
1745 min_active = 0;
1746 for (dl = super->disks; dl; dl = dl->next) {
1747 if (dl->index < 0)
1748 continue;
5551b113
CA
1749 unsigned long long blocks = total_blocks(&dl->disk);
1750 if (blocks < min_active || min_active == 0) {
b81221b7 1751 dl_min = dl;
5551b113 1752 min_active = blocks;
b81221b7
CA
1753 }
1754 }
1755 if (!dl_min)
1756 return rv;
1757
1758 /* find last lba used by subarrays on the smallest active disk */
05501181 1759 e = get_extents(super, dl_min, 0);
b81221b7
CA
1760 if (!e)
1761 return rv;
1762 for (i = 0; e[i].size; i++)
1763 continue;
1764
1765 remainder = min_active - e[i].start;
1766 free(e);
1767
1768 /* to give priority to recovery we should not require full
1769 IMSM_RESERVED_SECTORS from the spare */
1770 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1771
1772 /* if real reservation is smaller use that value */
1773 return (remainder < rv) ? remainder : rv;
1774}
1775
195d1d76 1776static bool is_gen_migration(struct imsm_dev *dev);
d1e02575 1777
f36a9ecd
PB
1778#define IMSM_4K_DIV 8
1779
c47b0ff6
AK
1780static __u64 blocks_per_migr_unit(struct intel_super *super,
1781 struct imsm_dev *dev);
1e5c6983 1782
c47b0ff6
AK
1783static void print_imsm_dev(struct intel_super *super,
1784 struct imsm_dev *dev,
1785 char *uuid,
1786 int disk_idx)
cdddbdbc
DW
1787{
1788 __u64 sz;
0d80bb2f 1789 int slot, i;
238c0a71
AK
1790 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1791 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1792 __u32 ord;
cdddbdbc
DW
1793
1794 printf("\n");
1e7bc0ed 1795 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1796 printf(" Subarray : %d\n", super->current_vol);
44470971 1797 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1798 printf(" RAID Level : %d", get_imsm_raid_level(map));
1799 if (map2)
1800 printf(" <-- %d", get_imsm_raid_level(map2));
1801 printf("\n");
1802 printf(" Members : %d", map->num_members);
1803 if (map2)
1804 printf(" <-- %d", map2->num_members);
1805 printf("\n");
0d80bb2f
DW
1806 printf(" Slots : [");
1807 for (i = 0; i < map->num_members; i++) {
238c0a71 1808 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1809 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1810 }
dd8bcb3b
AK
1811 printf("]");
1812 if (map2) {
1813 printf(" <-- [");
1814 for (i = 0; i < map2->num_members; i++) {
238c0a71 1815 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1816 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1817 }
1818 printf("]");
1819 }
1820 printf("\n");
7095bccb
AK
1821 printf(" Failed disk : ");
1822 if (map->failed_disk_num == 0xff)
b823c8f9 1823 printf(STR_COMMON_NONE);
7095bccb
AK
1824 else
1825 printf("%i", map->failed_disk_num);
1826 printf("\n");
620b1713
DW
1827 slot = get_imsm_disk_slot(map, disk_idx);
1828 if (slot >= 0) {
238c0a71 1829 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1830 printf(" This Slot : %d%s\n", slot,
1831 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1832 } else
cdddbdbc 1833 printf(" This Slot : ?\n");
84918897 1834 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1835 sz = imsm_dev_size(dev);
84918897
MK
1836 printf(" Array Size : %llu%s\n",
1837 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1838 human_size(sz * 512));
5551b113 1839 sz = blocks_per_member(map);
84918897
MK
1840 printf(" Per Dev Size : %llu%s\n",
1841 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1842 human_size(sz * 512));
5551b113 1843 printf(" Sector Offset : %llu\n",
7d8935cb 1844 pba_of_lba0(map) * 512 / super->sector_size);
5551b113
CA
1845 printf(" Num Stripes : %llu\n",
1846 num_data_stripes(map));
dd8bcb3b 1847 printf(" Chunk Size : %u KiB",
cdddbdbc 1848 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1849 if (map2)
1850 printf(" <-- %u KiB",
1851 __le16_to_cpu(map2->blocks_per_strip) / 2);
1852 printf("\n");
cdddbdbc 1853 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1854 printf(" Migrate State : ");
1484e727
DW
1855 if (dev->vol.migr_state) {
1856 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1857 printf("initialize\n");
1484e727 1858 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1859 printf("rebuild\n");
1484e727 1860 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1861 printf("check\n");
1484e727 1862 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1863 printf("general migration\n");
1484e727 1864 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1865 printf("state change\n");
1484e727 1866 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1867 printf("repair\n");
1484e727 1868 else
8655a7b1
DW
1869 printf("<unknown:%d>\n", migr_type(dev));
1870 } else
1871 printf("idle\n");
3393c6af
DW
1872 printf(" Map State : %s", map_state_str[map->map_state]);
1873 if (dev->vol.migr_state) {
238c0a71 1874 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1875
b10b37b8 1876 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1877 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1878 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1879 printf("(N/A)");
1880 else
1881 printf("(%llu)", (unsigned long long)
1882 blocks_per_migr_unit(super, dev));
3393c6af
DW
1883 }
1884 printf("\n");
2432ce9b
AP
1885 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1886 "dirty" : "clean");
1887 printf(" RWH Policy : ");
c2462068 1888 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1889 printf("off\n");
1890 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1891 printf("PPL distributed\n");
1892 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1893 printf("PPL journaling drive\n");
c2462068
PB
1894 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1895 printf("Multiple distributed PPLs\n");
1896 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1897 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1898 else if (dev->rwh_policy == RWH_BITMAP)
1899 printf("Write-intent bitmap\n");
2432ce9b
AP
1900 else
1901 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1902
1903 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1904}
1905
ef5c214e
MK
1906static void print_imsm_disk(struct imsm_disk *disk,
1907 int index,
1908 __u32 reserved,
1909 unsigned int sector_size) {
1f24f035 1910 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1911 __u64 sz;
1912
0ec1f4e8 1913 if (index < -1 || !disk)
e9d82038
DW
1914 return;
1915
cdddbdbc 1916 printf("\n");
1f24f035 1917 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1918 if (index >= 0)
1919 printf(" Disk%02d Serial : %s\n", index, str);
1920 else
1921 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1922 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1923 is_configured(disk) ? " active" : "",
1924 is_failed(disk) ? " failed" : "",
1925 is_journal(disk) ? " journal" : "");
cdddbdbc 1926 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1927 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1928 printf(" Usable Size : %llu%s\n",
1929 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1930 human_size(sz * 512));
1931}
1932
de44e46f
PB
1933void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1934{
1935 struct migr_record *migr_rec = super->migr_rec;
1936
1937 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1938 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1939 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1940 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1941 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1942 set_migr_chkp_area_pba(migr_rec,
1943 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1944 set_migr_dest_1st_member_lba(migr_rec,
1945 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1946}
1947
f36a9ecd
PB
1948void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1949{
1950 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1951}
1952
1953void convert_to_4k(struct intel_super *super)
1954{
1955 struct imsm_super *mpb = super->anchor;
1956 struct imsm_disk *disk;
1957 int i;
e4467bc7 1958 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1959
1960 for (i = 0; i < mpb->num_disks ; i++) {
1961 disk = __get_imsm_disk(mpb, i);
1962 /* disk */
1963 convert_to_4k_imsm_disk(disk);
1964 }
1965 for (i = 0; i < mpb->num_raid_devs; i++) {
1966 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1967 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1968 /* dev */
fcc2c9da 1969 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1970 set_vol_curr_migr_unit(dev,
1971 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1972
1973 /* map0 */
1974 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1975 map->blocks_per_strip /= IMSM_4K_DIV;
1976 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1977
1978 if (dev->vol.migr_state) {
1979 /* map1 */
1980 map = get_imsm_map(dev, MAP_1);
1981 set_blocks_per_member(map,
1982 blocks_per_member(map)/IMSM_4K_DIV);
1983 map->blocks_per_strip /= IMSM_4K_DIV;
1984 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1985 }
1986 }
e4467bc7
TM
1987 if (bbm_log_size) {
1988 struct bbm_log *log = (void *)mpb +
1989 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1990 __u32 i;
1991
1992 for (i = 0; i < log->entry_count; i++) {
1993 struct bbm_log_entry *entry =
1994 &log->marked_block_entries[i];
1995
1996 __u8 count = entry->marked_count + 1;
1997 unsigned long long sector =
1998 __le48_to_cpu(&entry->defective_block_start);
1999
2000 entry->defective_block_start =
2001 __cpu_to_le48(sector/IMSM_4K_DIV);
2002 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
2003 }
2004 }
f36a9ecd
PB
2005
2006 mpb->check_sum = __gen_imsm_checksum(mpb);
2007}
2008
520e69e2
AK
2009void examine_migr_rec_imsm(struct intel_super *super)
2010{
2011 struct migr_record *migr_rec = super->migr_rec;
2012 struct imsm_super *mpb = super->anchor;
2013 int i;
2014
2015 for (i = 0; i < mpb->num_raid_devs; i++) {
2016 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 2017 struct imsm_map *map;
b4ab44d8 2018 int slot = -1;
3136abe5 2019
195d1d76 2020 if (is_gen_migration(dev) == false)
520e69e2
AK
2021 continue;
2022
2023 printf("\nMigration Record Information:");
3136abe5 2024
44bfe6df
AK
2025 /* first map under migration */
2026 map = get_imsm_map(dev, MAP_0);
76c152ca 2027
3136abe5
AK
2028 if (map)
2029 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 2030 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
2031 printf(" Empty\n ");
2032 printf("Examine one of first two disks in array\n");
2033 break;
2034 }
2035 printf("\n Status : ");
2036 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
2037 printf("Normal\n");
2038 else
2039 printf("Contains Data\n");
9f421827
PB
2040 printf(" Current Unit : %llu\n",
2041 current_migr_unit(migr_rec));
520e69e2
AK
2042 printf(" Family : %u\n",
2043 __le32_to_cpu(migr_rec->family_num));
2044 printf(" Ascending : %u\n",
2045 __le32_to_cpu(migr_rec->ascending_migr));
2046 printf(" Blocks Per Unit : %u\n",
2047 __le32_to_cpu(migr_rec->blocks_per_unit));
2048 printf(" Dest. Depth Per Unit : %u\n",
2049 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
2050 printf(" Checkpoint Area pba : %llu\n",
2051 migr_chkp_area_pba(migr_rec));
2052 printf(" First member lba : %llu\n",
2053 migr_dest_1st_member_lba(migr_rec));
2054 printf(" Total Number of Units : %llu\n",
2055 get_num_migr_units(migr_rec));
2056 printf(" Size of volume : %llu\n",
2057 join_u32(migr_rec->post_migr_vol_cap,
2058 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
2059 printf(" Record was read from : %u\n",
2060 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2061
2062 break;
2063 }
2064}
f36a9ecd 2065
de44e46f
PB
2066void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2067{
2068 struct migr_record *migr_rec = super->migr_rec;
2069
2070 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
2071 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2072 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2073 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2074 &migr_rec->post_migr_vol_cap,
2075 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
2076 set_migr_chkp_area_pba(migr_rec,
2077 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2078 set_migr_dest_1st_member_lba(migr_rec,
2079 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
2080}
2081
f36a9ecd
PB
2082void convert_from_4k(struct intel_super *super)
2083{
2084 struct imsm_super *mpb = super->anchor;
2085 struct imsm_disk *disk;
2086 int i;
e4467bc7 2087 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
2088
2089 for (i = 0; i < mpb->num_disks ; i++) {
2090 disk = __get_imsm_disk(mpb, i);
2091 /* disk */
2092 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2093 }
2094
2095 for (i = 0; i < mpb->num_raid_devs; i++) {
2096 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2097 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2098 /* dev */
fcc2c9da 2099 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
2100 set_vol_curr_migr_unit(dev,
2101 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
2102
2103 /* map0 */
2104 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2105 map->blocks_per_strip *= IMSM_4K_DIV;
2106 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2107
2108 if (dev->vol.migr_state) {
2109 /* map1 */
2110 map = get_imsm_map(dev, MAP_1);
2111 set_blocks_per_member(map,
2112 blocks_per_member(map)*IMSM_4K_DIV);
2113 map->blocks_per_strip *= IMSM_4K_DIV;
2114 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2115 }
2116 }
e4467bc7
TM
2117 if (bbm_log_size) {
2118 struct bbm_log *log = (void *)mpb +
2119 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2120 __u32 i;
2121
2122 for (i = 0; i < log->entry_count; i++) {
2123 struct bbm_log_entry *entry =
2124 &log->marked_block_entries[i];
2125
2126 __u8 count = entry->marked_count + 1;
2127 unsigned long long sector =
2128 __le48_to_cpu(&entry->defective_block_start);
2129
2130 entry->defective_block_start =
2131 __cpu_to_le48(sector*IMSM_4K_DIV);
2132 entry->marked_count = count*IMSM_4K_DIV - 1;
2133 }
2134 }
f36a9ecd
PB
2135
2136 mpb->check_sum = __gen_imsm_checksum(mpb);
2137}
2138
e0e56f4b
MK
2139/**
2140 * imsm_check_attributes() - Check if features represented by attributes flags are supported.
2141 *
2142 * @attributes: attributes read from metadata.
2143 * Returns: true if all features are supported, false otherwise.
2144 */
2145static bool imsm_check_attributes(__u32 attributes)
19482bcc 2146{
e0e56f4b
MK
2147 if ((attributes & (MPB_ATTRIB_SUPPORTED | MPB_ATTRIB_IGNORED)) == attributes)
2148 return true;
19482bcc 2149
e0e56f4b 2150 return false;
19482bcc
AK
2151}
2152
a5d85af7 2153static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2154
cdddbdbc
DW
2155static void examine_super_imsm(struct supertype *st, char *homehost)
2156{
2157 struct intel_super *super = st->sb;
949c47a0 2158 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2159 char str[MAX_SIGNATURE_LENGTH];
2160 int i;
27fd6274
DW
2161 struct mdinfo info;
2162 char nbuf[64];
cdddbdbc 2163 __u32 sum;
14e8215b 2164 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2165 struct dl *dl;
e48aed3c 2166 time_t creation_time;
27fd6274 2167
618f4e6d
XN
2168 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2169 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2170 printf(" Magic : %s\n", str);
cdddbdbc 2171 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2172 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2173 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2174 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2175 creation_time = __le64_to_cpu(mpb->creation_time);
2176 printf(" Creation Time : %.24s\n",
2177 creation_time ? ctime(&creation_time) : "Unknown");
e0e56f4b
MK
2178
2179 printf(" Attributes : %08x (%s)\n", mpb->attributes,
2180 imsm_check_attributes(mpb->attributes) ? "supported" : "not supported");
2181
a5d85af7 2182 getinfo_super_imsm(st, &info, NULL);
ba65d917 2183 fname_from_uuid(&info, nbuf);
27fd6274 2184 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2185 sum = __le32_to_cpu(mpb->check_sum);
2186 printf(" Checksum : %08x %s\n", sum,
949c47a0 2187 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2188 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2189 printf(" Disks : %d\n", mpb->num_disks);
2190 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2191 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2192 super->disks->index, reserved, super->sector_size);
8d67477f 2193 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2194 struct bbm_log *log = super->bbm_log;
2195
2196 printf("\n");
2197 printf("Bad Block Management Log:\n");
2198 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2199 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2200 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2201 }
44470971
DW
2202 for (i = 0; i < mpb->num_raid_devs; i++) {
2203 struct mdinfo info;
2204 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2205
2206 super->current_vol = i;
a5d85af7 2207 getinfo_super_imsm(st, &info, NULL);
ba65d917 2208 fname_from_uuid(&info, nbuf);
c47b0ff6 2209 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2210 }
cdddbdbc
DW
2211 for (i = 0; i < mpb->num_disks; i++) {
2212 if (i == super->disks->index)
2213 continue;
ef5c214e
MK
2214 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2215 super->sector_size);
cdddbdbc 2216 }
94827db3 2217
0ec1f4e8
DW
2218 for (dl = super->disks; dl; dl = dl->next)
2219 if (dl->index == -1)
ef5c214e
MK
2220 print_imsm_disk(&dl->disk, -1, reserved,
2221 super->sector_size);
520e69e2
AK
2222
2223 examine_migr_rec_imsm(super);
cdddbdbc
DW
2224}
2225
061f2c6a 2226static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2227{
27fd6274 2228 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2229 struct mdinfo info;
2230 char nbuf[64];
2231
a5d85af7 2232 getinfo_super_imsm(st, &info, NULL);
ba65d917 2233 fname_from_uuid(&info, nbuf);
4737ae25
N
2234 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2235}
2236
2237static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2238{
2239 /* We just write a generic IMSM ARRAY entry */
2240 struct mdinfo info;
2241 char nbuf[64];
2242 char nbuf1[64];
2243 struct intel_super *super = st->sb;
2244 int i;
2245
2246 if (!super->anchor->num_raid_devs)
2247 return;
2248
a5d85af7 2249 getinfo_super_imsm(st, &info, NULL);
ba65d917 2250 fname_from_uuid(&info, nbuf);
1e7bc0ed
DW
2251 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2252 struct imsm_dev *dev = get_imsm_dev(super, i);
2253
2254 super->current_vol = i;
a5d85af7 2255 getinfo_super_imsm(st, &info, NULL);
ba65d917 2256 fname_from_uuid(&info, nbuf1);
b9ce7ab0 2257 printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n",
cf8de691 2258 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2259 }
cdddbdbc
DW
2260}
2261
9d84c8ea
DW
2262static void export_examine_super_imsm(struct supertype *st)
2263{
2264 struct intel_super *super = st->sb;
2265 struct imsm_super *mpb = super->anchor;
2266 struct mdinfo info;
2267 char nbuf[64];
2268
a5d85af7 2269 getinfo_super_imsm(st, &info, NULL);
ba65d917 2270 fname_from_uuid(&info, nbuf);
9d84c8ea
DW
2271 printf("MD_METADATA=imsm\n");
2272 printf("MD_LEVEL=container\n");
2273 printf("MD_UUID=%s\n", nbuf+5);
2274 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2275 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2276}
2277
b771faef
BK
2278static void detail_super_imsm(struct supertype *st, char *homehost,
2279 char *subarray)
cdddbdbc 2280{
3ebe00a1
DW
2281 struct mdinfo info;
2282 char nbuf[64];
b771faef
BK
2283 struct intel_super *super = st->sb;
2284 int temp_vol = super->current_vol;
2285
2286 if (subarray)
2287 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2288
a5d85af7 2289 getinfo_super_imsm(st, &info, NULL);
ba65d917 2290 fname_from_uuid(&info, nbuf);
65884368 2291 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2292
2293 super->current_vol = temp_vol;
cdddbdbc
DW
2294}
2295
b771faef 2296static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2297{
ff54de6e
N
2298 struct mdinfo info;
2299 char nbuf[64];
b771faef
BK
2300 struct intel_super *super = st->sb;
2301 int temp_vol = super->current_vol;
2302
2303 if (subarray)
2304 super->current_vol = strtoul(subarray, NULL, 10);
2305
a5d85af7 2306 getinfo_super_imsm(st, &info, NULL);
ba65d917 2307 fname_from_uuid(&info, nbuf);
ff54de6e 2308 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2309
2310 super->current_vol = temp_vol;
cdddbdbc 2311}
d665cc31 2312
6da53c0e
BK
2313static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2314 size_t serial_buf_len);
d665cc31
DW
2315static void fd2devname(int fd, char *name);
2316
bf62ed5d
BK
2317void print_encryption_information(int disk_fd, enum sys_dev_type hba_type)
2318{
2319 struct encryption_information information = {0};
2320 mdadm_status_t status = MDADM_STATUS_SUCCESS;
2321 const char *indent = " ";
2322
2323 switch (hba_type) {
2324 case SYS_DEV_VMD:
2325 case SYS_DEV_NVME:
2326 status = get_nvme_opal_encryption_information(disk_fd, &information, 1);
2327 break;
2328 case SYS_DEV_SATA:
2329 case SYS_DEV_SATA_VMD:
2330 status = get_ata_encryption_information(disk_fd, &information, 1);
2331 break;
2332 default:
2333 return;
2334 }
2335
2336 if (status) {
2337 pr_err("Failed to get drive encryption information.\n");
2338 return;
2339 }
2340
2341 printf("%sEncryption(Ability|Status): %s|%s\n", indent,
2342 get_encryption_ability_string(information.ability),
2343 get_encryption_status_string(information.status));
2344}
2345
2346static int ahci_enumerate_ports(struct sys_dev *hba, int port_count, int host_base, int verbose)
d665cc31 2347{
120dc887
LM
2348 /* dump an unsorted list of devices attached to AHCI Intel storage
2349 * controller, as well as non-connected ports
d665cc31 2350 */
bf62ed5d 2351 int hba_len = strlen(hba->path) + 1;
d665cc31
DW
2352 struct dirent *ent;
2353 DIR *dir;
2354 char *path = NULL;
2355 int err = 0;
2356 unsigned long port_mask = (1 << port_count) - 1;
2357
f21e18ca 2358 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2359 if (verbose > 0)
e7b84f9d 2360 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2361 return 2;
2362 }
2363
2364 /* scroll through /sys/dev/block looking for devices attached to
2365 * this hba
2366 */
2367 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2368 if (!dir)
2369 return 1;
2370
2371 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2372 int fd;
2373 char model[64];
2374 char vendor[64];
2375 char buf[1024];
2376 int major, minor;
fcebeb77 2377 char device[PATH_MAX];
d665cc31
DW
2378 char *c;
2379 int port;
2380 int type;
2381
2382 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2383 continue;
7c798f87 2384 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2385 if (!path)
2386 continue;
bf62ed5d 2387 if (!path_attached_to_hba(path, hba->path)) {
d665cc31
DW
2388 free(path);
2389 path = NULL;
2390 continue;
2391 }
2392
fcebeb77
MT
2393 /* retrieve the scsi device */
2394 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2395 if (verbose > 0)
fcebeb77 2396 pr_err("failed to get device\n");
d665cc31
DW
2397 err = 2;
2398 break;
2399 }
fcebeb77 2400 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2401 err = 2;
d665cc31
DW
2402 break;
2403 }
2404 type = strtoul(buf, NULL, 10);
2405
2406 /* if it's not a disk print the vendor and model */
2407 if (!(type == 0 || type == 7 || type == 14)) {
2408 vendor[0] = '\0';
2409 model[0] = '\0';
fcebeb77
MT
2410
2411 if (devpath_to_char(device, "vendor", buf,
2412 sizeof(buf), 0) == 0) {
d665cc31
DW
2413 strncpy(vendor, buf, sizeof(vendor));
2414 vendor[sizeof(vendor) - 1] = '\0';
2415 c = (char *) &vendor[sizeof(vendor) - 1];
2416 while (isspace(*c) || *c == '\0')
2417 *c-- = '\0';
2418
2419 }
fcebeb77
MT
2420
2421 if (devpath_to_char(device, "model", buf,
2422 sizeof(buf), 0) == 0) {
d665cc31
DW
2423 strncpy(model, buf, sizeof(model));
2424 model[sizeof(model) - 1] = '\0';
2425 c = (char *) &model[sizeof(model) - 1];
2426 while (isspace(*c) || *c == '\0')
2427 *c-- = '\0';
2428 }
2429
2430 if (vendor[0] && model[0])
2431 sprintf(buf, "%.64s %.64s", vendor, model);
2432 else
2433 switch (type) { /* numbers from hald/linux/device.c */
2434 case 1: sprintf(buf, "tape"); break;
2435 case 2: sprintf(buf, "printer"); break;
2436 case 3: sprintf(buf, "processor"); break;
2437 case 4:
2438 case 5: sprintf(buf, "cdrom"); break;
2439 case 6: sprintf(buf, "scanner"); break;
2440 case 8: sprintf(buf, "media_changer"); break;
2441 case 9: sprintf(buf, "comm"); break;
2442 case 12: sprintf(buf, "raid"); break;
2443 default: sprintf(buf, "unknown");
2444 }
2445 } else
2446 buf[0] = '\0';
d665cc31
DW
2447
2448 /* chop device path to 'host%d' and calculate the port number */
2449 c = strchr(&path[hba_len], '/');
4e5e717d 2450 if (!c) {
ba728be7 2451 if (verbose > 0)
e7b84f9d 2452 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2453 err = 2;
2454 break;
2455 }
d665cc31 2456 *c = '\0';
0858eccf
AP
2457 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2458 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2459 port -= host_base;
2460 else {
ba728be7 2461 if (verbose > 0) {
d665cc31 2462 *c = '/'; /* repair the full string */
e7b84f9d 2463 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2464 path);
2465 }
2466 err = 2;
2467 break;
2468 }
2469
2470 /* mark this port as used */
2471 port_mask &= ~(1 << port);
2472
2473 /* print out the device information */
2474 if (buf[0]) {
2475 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2476 continue;
2477 }
2478
2479 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 2480 if (!is_fd_valid(fd))
d665cc31
DW
2481 printf(" Port%d : - disk info unavailable -\n", port);
2482 else {
2483 fd2devname(fd, buf);
2484 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2485 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2486 sizeof(buf)) == 0)
2487 printf(" (%s)\n", buf);
d665cc31 2488 else
664d5325 2489 printf(" ()\n");
bf62ed5d
BK
2490
2491 print_encryption_information(fd, hba->type);
4dab422a 2492 close(fd);
d665cc31 2493 }
d665cc31
DW
2494 free(path);
2495 path = NULL;
2496 }
2497 if (path)
2498 free(path);
2499 if (dir)
2500 closedir(dir);
2501 if (err == 0) {
2502 int i;
2503
2504 for (i = 0; i < port_count; i++)
2505 if (port_mask & (1 << i))
2506 printf(" Port%d : - no device attached -\n", i);
2507 }
2508
2509 return err;
2510}
2511
6da53c0e 2512static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2513{
2514 struct dirent *ent;
2515 DIR *dir;
60f0f54d 2516
6da53c0e 2517 dir = opendir("/sys/block/");
b9135011 2518 if (!dir)
b5eece69 2519 return 1;
b9135011
JS
2520
2521 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2522 char ns_path[PATH_MAX];
2523 char cntrl_path[PATH_MAX];
2524 char buf[PATH_MAX];
2525 int fd = -1;
60f0f54d 2526
8662f92d
MT
2527 if (!strstr(ent->d_name, "nvme"))
2528 goto skip;
d835518b 2529
8662f92d 2530 fd = open_dev(ent->d_name);
4389ce73 2531 if (!is_fd_valid(fd))
8662f92d 2532 goto skip;
d835518b 2533
8662f92d
MT
2534 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2535 !diskfd_to_devpath(fd, 1, cntrl_path))
2536 goto skip;
2537
2538 if (!path_attached_to_hba(cntrl_path, hba->path))
2539 goto skip;
2540
2541 if (!imsm_is_nvme_namespace_supported(fd, 0))
2542 goto skip;
2543
2544 fd2devname(fd, buf);
2545 if (hba->type == SYS_DEV_VMD)
2546 printf(" NVMe under VMD : %s", buf);
2547 else if (hba->type == SYS_DEV_NVME)
2548 printf(" NVMe Device : %s", buf);
2549
2550 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2551 sizeof(buf)))
2552 printf(" (%s)\n", buf);
2553 else
2554 printf("()\n");
2555
bf62ed5d
BK
2556 print_encryption_information(fd, hba->type);
2557
8662f92d 2558skip:
4389ce73 2559 close_fd(&fd);
60f0f54d
PB
2560 }
2561
b9135011 2562 closedir(dir);
b5eece69 2563 return 0;
60f0f54d
PB
2564}
2565
120dc887
LM
2566static void print_found_intel_controllers(struct sys_dev *elem)
2567{
2568 for (; elem; elem = elem->next) {
e7b84f9d 2569 pr_err("found Intel(R) ");
120dc887
LM
2570 if (elem->type == SYS_DEV_SATA)
2571 fprintf(stderr, "SATA ");
155cbb4c
LM
2572 else if (elem->type == SYS_DEV_SAS)
2573 fprintf(stderr, "SAS ");
0858eccf
AP
2574 else if (elem->type == SYS_DEV_NVME)
2575 fprintf(stderr, "NVMe ");
60f0f54d
PB
2576
2577 if (elem->type == SYS_DEV_VMD)
2578 fprintf(stderr, "VMD domain");
75350d87
KF
2579 else if (elem->type == SYS_DEV_SATA_VMD)
2580 fprintf(stderr, "SATA VMD domain");
60f0f54d
PB
2581 else
2582 fprintf(stderr, "RAID controller");
2583
120dc887
LM
2584 if (elem->pci_id)
2585 fprintf(stderr, " at %s", elem->pci_id);
2586 fprintf(stderr, ".\n");
2587 }
2588 fflush(stderr);
2589}
2590
120dc887
LM
2591static int ahci_get_port_count(const char *hba_path, int *port_count)
2592{
2593 struct dirent *ent;
2594 DIR *dir;
2595 int host_base = -1;
2596
2597 *port_count = 0;
2598 if ((dir = opendir(hba_path)) == NULL)
2599 return -1;
2600
2601 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2602 int host;
2603
0858eccf
AP
2604 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2605 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2606 continue;
2607 if (*port_count == 0)
2608 host_base = host;
2609 else if (host < host_base)
2610 host_base = host;
2611
2612 if (host + 1 > *port_count + host_base)
2613 *port_count = host + 1 - host_base;
2614 }
2615 closedir(dir);
2616 return host_base;
2617}
2618
191e6ddb
MK
2619static void print_imsm_level_capability(const struct imsm_orom *orom)
2620{
2621 int idx;
2622
2623 for (idx = 0; imsm_level_ops[idx].name; idx++)
2624 if (imsm_level_ops[idx].is_level_supported(orom))
2625 printf("%s ", imsm_level_ops[idx].name);
2626}
2627
a891a3c2
LM
2628static void print_imsm_capability(const struct imsm_orom *orom)
2629{
0858eccf
AP
2630 printf(" Platform : Intel(R) ");
2631 if (orom->capabilities == 0 && orom->driver_features == 0)
2632 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2633 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2634 printf("Virtual RAID on CPU\n");
0858eccf
AP
2635 else
2636 printf("Rapid Storage Technology%s\n",
2637 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
8d1114be
MG
2638 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build) {
2639 if (imsm_orom_is_vmd_without_efi(orom))
2640 printf(" Version : %d.%d\n", orom->major_ver,
2641 orom->minor_ver);
2642 else
2643 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2644 orom->minor_ver, orom->hotfix_ver, orom->build);
2645 }
191e6ddb
MK
2646
2647 printf(" RAID Levels : ");
2648 print_imsm_level_capability(orom);
2649 printf("\n");
2650
a891a3c2
LM
2651 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2652 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2653 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2654 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2655 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2656 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2657 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2658 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2659 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2660 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2661 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2662 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2663 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2664 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2665 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2666 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2667 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2668 printf(" 2TB volumes :%s supported\n",
2669 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2670 printf(" 2TB disks :%s supported\n",
2671 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2672 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2673 printf(" Max Volumes : %d per array, %d per %s\n",
2674 orom->vpa, orom->vphba,
2675 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2676 return;
2677}
2678
e50cf220
MN
2679static void print_imsm_capability_export(const struct imsm_orom *orom)
2680{
2681 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2682 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2683 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2684 orom->hotfix_ver, orom->build);
191e6ddb
MK
2685
2686 printf("IMSM_SUPPORTED_RAID_LEVELS=");
2687 print_imsm_level_capability(orom);
2688 printf("\n");
2689
e50cf220
MN
2690 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2691 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2692 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2693 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2694 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2695 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2696 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2697 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2698 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2699 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2700 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2701 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2702 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2703 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2704 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2705 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2706 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2707 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2708 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2709 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2710 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2711 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2712}
2713
9eafa1de 2714static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2715{
2716 /* There are two components to imsm platform support, the ahci SATA
2717 * controller and the option-rom. To find the SATA controller we
2718 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2719 * controller with the Intel vendor id is present. This approach
2720 * allows mdadm to leverage the kernel's ahci detection logic, with the
2721 * caveat that if ahci.ko is not loaded mdadm will not be able to
2722 * detect platform raid capabilities. The option-rom resides in a
2723 * platform "Adapter ROM". We scan for its signature to retrieve the
2724 * platform capabilities. If raid support is disabled in the BIOS the
2725 * option-rom capability structure will not be available.
2726 */
d665cc31 2727 struct sys_dev *list, *hba;
d665cc31
DW
2728 int host_base = 0;
2729 int port_count = 0;
9eafa1de 2730 int result=1;
d665cc31 2731
5615172f 2732 if (enumerate_only) {
420dafcd 2733 if (check_no_platform())
5615172f 2734 return 0;
a891a3c2
LM
2735 list = find_intel_devices();
2736 if (!list)
2737 return 2;
2738 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2739 if (find_imsm_capability(hba)) {
2740 result = 0;
a891a3c2
LM
2741 break;
2742 }
9eafa1de 2743 else
6b781d33 2744 result = 2;
a891a3c2 2745 }
a891a3c2 2746 return result;
5615172f
DW
2747 }
2748
155cbb4c
LM
2749 list = find_intel_devices();
2750 if (!list) {
ba728be7 2751 if (verbose > 0)
7a862a02 2752 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2753 return 2;
ba728be7 2754 } else if (verbose > 0)
155cbb4c 2755 print_found_intel_controllers(list);
d665cc31 2756
a891a3c2 2757 for (hba = list; hba; hba = hba->next) {
0858eccf 2758 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2759 continue;
0858eccf 2760 if (!find_imsm_capability(hba)) {
60f0f54d 2761 char buf[PATH_MAX];
e7b84f9d 2762 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
75350d87
KF
2763 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2764 vmd_domain_to_controller(hba, buf) :
2765 hba->path, get_sys_dev_type(hba->type));
0858eccf
AP
2766 continue;
2767 }
2768 result = 0;
2769 }
2770
2771 if (controller_path && result == 1) {
2772 pr_err("no active Intel(R) RAID controller found under %s\n",
2773 controller_path);
2774 return result;
2775 }
2776
5e1d6128 2777 const struct orom_entry *entry;
0858eccf 2778
5e1d6128 2779 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2780 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2781 print_imsm_capability(&entry->orom);
32716c51
PB
2782 printf(" 3rd party NVMe :%s supported\n",
2783 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2784 for (hba = list; hba; hba = hba->next) {
2785 if (hba->type == SYS_DEV_VMD) {
2786 char buf[PATH_MAX];
60f0f54d
PB
2787 printf(" I/O Controller : %s (%s)\n",
2788 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2789 if (print_nvme_info(hba)) {
b5eece69
PB
2790 if (verbose > 0)
2791 pr_err("failed to get devices attached to VMD domain.\n");
2792 result |= 2;
2793 }
60f0f54d
PB
2794 }
2795 }
07cb1e57 2796 printf("\n");
60f0f54d
PB
2797 continue;
2798 }
0858eccf 2799
60f0f54d
PB
2800 print_imsm_capability(&entry->orom);
2801 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2802 for (hba = list; hba; hba = hba->next) {
2803 if (hba->type == SYS_DEV_NVME)
6da53c0e 2804 print_nvme_info(hba);
0858eccf 2805 }
60f0f54d 2806 printf("\n");
0858eccf
AP
2807 continue;
2808 }
2809
2810 struct devid_list *devid;
5e1d6128 2811 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2812 hba = device_by_id(devid->devid);
2813 if (!hba)
2814 continue;
2815
9eafa1de
MN
2816 printf(" I/O Controller : %s (%s)\n",
2817 hba->path, get_sys_dev_type(hba->type));
75350d87 2818 if (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD) {
9eafa1de 2819 host_base = ahci_get_port_count(hba->path, &port_count);
bf62ed5d 2820 if (ahci_enumerate_ports(hba, port_count, host_base, verbose)) {
9eafa1de 2821 if (verbose > 0)
75350d87
KF
2822 pr_err("failed to enumerate ports on %s controller at %s.\n",
2823 get_sys_dev_type(hba->type), hba->pci_id);
9eafa1de
MN
2824 result |= 2;
2825 }
120dc887
LM
2826 }
2827 }
0858eccf 2828 printf("\n");
d665cc31 2829 }
155cbb4c 2830
120dc887 2831 return result;
d665cc31 2832}
e50cf220 2833
9eafa1de 2834static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2835{
e50cf220
MN
2836 struct sys_dev *list, *hba;
2837 int result=1;
2838
2839 list = find_intel_devices();
2840 if (!list) {
2841 if (verbose > 0)
2842 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2843 result = 2;
e50cf220
MN
2844 return result;
2845 }
2846
2847 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2848 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2849 continue;
60f0f54d
PB
2850 if (!find_imsm_capability(hba) && verbose > 0) {
2851 char buf[PATH_MAX];
2852 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
75350d87
KF
2853 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2854 vmd_domain_to_controller(hba, buf) : hba->path);
60f0f54d 2855 }
0858eccf 2856 else
e50cf220 2857 result = 0;
e50cf220
MN
2858 }
2859
5e1d6128 2860 const struct orom_entry *entry;
0858eccf 2861
60f0f54d 2862 for (entry = orom_entries; entry; entry = entry->next) {
75350d87 2863 if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_SATA_VMD) {
60f0f54d
PB
2864 for (hba = list; hba; hba = hba->next)
2865 print_imsm_capability_export(&entry->orom);
2866 continue;
2867 }
5e1d6128 2868 print_imsm_capability_export(&entry->orom);
60f0f54d 2869 }
0858eccf 2870
e50cf220
MN
2871 return result;
2872}
2873
cdddbdbc
DW
2874static int match_home_imsm(struct supertype *st, char *homehost)
2875{
5115ca67
DW
2876 /* the imsm metadata format does not specify any host
2877 * identification information. We return -1 since we can never
2878 * confirm nor deny whether a given array is "meant" for this
148acb7b 2879 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2880 * exclude member disks that do not belong, and we rely on
2881 * mdadm.conf to specify the arrays that should be assembled.
2882 * Auto-assembly may still pick up "foreign" arrays.
2883 */
cdddbdbc 2884
9362c1c8 2885 return -1;
cdddbdbc
DW
2886}
2887
2888static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2889{
51006d85
N
2890 /* The uuid returned here is used for:
2891 * uuid to put into bitmap file (Create, Grow)
2892 * uuid for backup header when saving critical section (Grow)
2893 * comparing uuids when re-adding a device into an array
2894 * In these cases the uuid required is that of the data-array,
2895 * not the device-set.
2896 * uuid to recognise same set when adding a missing device back
2897 * to an array. This is a uuid for the device-set.
1011e834 2898 *
51006d85
N
2899 * For each of these we can make do with a truncated
2900 * or hashed uuid rather than the original, as long as
2901 * everyone agrees.
2902 * In each case the uuid required is that of the data-array,
2903 * not the device-set.
43dad3d6 2904 */
51006d85
N
2905 /* imsm does not track uuid's so we synthesis one using sha1 on
2906 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2907 * - the orig_family_num of the container
51006d85
N
2908 * - the index number of the volume
2909 * - the 'serial' number of the volume.
2910 * Hopefully these are all constant.
2911 */
2912 struct intel_super *super = st->sb;
43dad3d6 2913
51006d85
N
2914 char buf[20];
2915 struct sha1_ctx ctx;
2916 struct imsm_dev *dev = NULL;
148acb7b 2917 __u32 family_num;
51006d85 2918
148acb7b
DW
2919 /* some mdadm versions failed to set ->orig_family_num, in which
2920 * case fall back to ->family_num. orig_family_num will be
2921 * fixed up with the first metadata update.
2922 */
2923 family_num = super->anchor->orig_family_num;
2924 if (family_num == 0)
2925 family_num = super->anchor->family_num;
51006d85 2926 sha1_init_ctx(&ctx);
92bd8f8d 2927 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2928 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2929 if (super->current_vol >= 0)
2930 dev = get_imsm_dev(super, super->current_vol);
2931 if (dev) {
2932 __u32 vol = super->current_vol;
2933 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2934 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2935 }
2936 sha1_finish_ctx(&ctx, buf);
2937 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2938}
2939
1e5c6983
DW
2940static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2941{
2942 /* migr_strip_size when repairing or initializing parity */
238c0a71 2943 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2945
2946 switch (get_imsm_raid_level(map)) {
2947 case 5:
2948 case 10:
2949 return chunk;
2950 default:
2951 return 128*1024 >> 9;
2952 }
2953}
2954
2955static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2956{
2957 /* migr_strip_size when rebuilding a degraded disk, no idea why
2958 * this is different than migr_strip_size_resync(), but it's good
2959 * to be compatible
2960 */
238c0a71 2961 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2962 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2963
2964 switch (get_imsm_raid_level(map)) {
2965 case 1:
2966 case 10:
2967 if (map->num_members % map->num_domains == 0)
2968 return 128*1024 >> 9;
2969 else
2970 return chunk;
2971 case 5:
2972 return max((__u32) 64*1024 >> 9, chunk);
2973 default:
2974 return 128*1024 >> 9;
2975 }
2976}
2977
2978static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2979{
238c0a71
AK
2980 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2981 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2982 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2983 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2984
2985 return max((__u32) 1, hi_chunk / lo_chunk);
2986}
2987
2988static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2989{
238c0a71 2990 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2991 int level = get_imsm_raid_level(lo);
2992
2993 if (level == 1 || level == 10) {
238c0a71 2994 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2995
2996 return hi->num_domains;
2997 } else
2998 return num_stripes_per_unit_resync(dev);
2999}
3000
44490938
MD
3001static unsigned long long calc_component_size(struct imsm_map *map,
3002 struct imsm_dev *dev)
3003{
3004 unsigned long long component_size;
3005 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 3006 long long calc_dev_size = 0;
44490938
MD
3007 unsigned int member_disks = imsm_num_data_members(map);
3008
3009 if (member_disks == 0)
3010 return 0;
3011
3012 component_size = per_dev_array_size(map);
3013 calc_dev_size = component_size * member_disks;
3014
3015 /* Component size is rounded to 1MB so difference between size from
3016 * metadata and size calculated from num_data_stripes equals up to
3017 * 2048 blocks per each device. If the difference is higher it means
3018 * that array size was expanded and num_data_stripes was not updated.
3019 */
a4f7290c 3020 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
3021 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3022 component_size = dev_size / member_disks;
3023 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3024 component_size / map->blocks_per_strip,
3025 num_data_stripes(map));
3026 }
3027
3028 return component_size;
3029}
3030
1e5c6983
DW
3031static __u32 parity_segment_depth(struct imsm_dev *dev)
3032{
238c0a71 3033 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3034 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3035
3036 switch(get_imsm_raid_level(map)) {
3037 case 1:
3038 case 10:
3039 return chunk * map->num_domains;
3040 case 5:
3041 return chunk * map->num_members;
3042 default:
3043 return chunk;
3044 }
3045}
3046
3047static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3048{
238c0a71 3049 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3050 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3051 __u32 strip = block / chunk;
3052
3053 switch (get_imsm_raid_level(map)) {
3054 case 1:
3055 case 10: {
3056 __u32 vol_strip = (strip * map->num_domains) + 1;
3057 __u32 vol_stripe = vol_strip / map->num_members;
3058
3059 return vol_stripe * chunk + block % chunk;
3060 } case 5: {
3061 __u32 stripe = strip / (map->num_members - 1);
3062
3063 return stripe * chunk + block % chunk;
3064 }
3065 default:
3066 return 0;
3067 }
3068}
3069
c47b0ff6
AK
3070static __u64 blocks_per_migr_unit(struct intel_super *super,
3071 struct imsm_dev *dev)
1e5c6983
DW
3072{
3073 /* calculate the conversion factor between per member 'blocks'
3074 * (md/{resync,rebuild}_start) and imsm migration units, return
3075 * 0 for the 'not migrating' and 'unsupported migration' cases
3076 */
3077 if (!dev->vol.migr_state)
3078 return 0;
3079
3080 switch (migr_type(dev)) {
c47b0ff6
AK
3081 case MIGR_GEN_MIGR: {
3082 struct migr_record *migr_rec = super->migr_rec;
3083 return __le32_to_cpu(migr_rec->blocks_per_unit);
3084 }
1e5c6983
DW
3085 case MIGR_VERIFY:
3086 case MIGR_REPAIR:
3087 case MIGR_INIT: {
238c0a71 3088 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3089 __u32 stripes_per_unit;
3090 __u32 blocks_per_unit;
3091 __u32 parity_depth;
3092 __u32 migr_chunk;
3093 __u32 block_map;
3094 __u32 block_rel;
3095 __u32 segment;
3096 __u32 stripe;
3097 __u8 disks;
3098
3099 /* yes, this is really the translation of migr_units to
3100 * per-member blocks in the 'resync' case
3101 */
3102 stripes_per_unit = num_stripes_per_unit_resync(dev);
3103 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3104 disks = imsm_num_data_members(map);
1e5c6983 3105 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3106 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3107 segment = blocks_per_unit / stripe;
3108 block_rel = blocks_per_unit - segment * stripe;
3109 parity_depth = parity_segment_depth(dev);
3110 block_map = map_migr_block(dev, block_rel);
3111 return block_map + parity_depth * segment;
3112 }
3113 case MIGR_REBUILD: {
3114 __u32 stripes_per_unit;
3115 __u32 migr_chunk;
3116
3117 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3118 migr_chunk = migr_strip_blocks_rebuild(dev);
3119 return migr_chunk * stripes_per_unit;
3120 }
1e5c6983
DW
3121 case MIGR_STATE_CHANGE:
3122 default:
3123 return 0;
3124 }
3125}
3126
c2c087e6
DW
3127static int imsm_level_to_layout(int level)
3128{
3129 switch (level) {
3130 case 0:
3131 case 1:
3132 return 0;
3133 case 5:
3134 case 6:
a380c027 3135 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3136 case 10:
c92a2527 3137 return 0x102;
c2c087e6 3138 }
a18a888e 3139 return UnSet;
c2c087e6
DW
3140}
3141
8e59f3d8
AK
3142/*******************************************************************************
3143 * Function: read_imsm_migr_rec
3144 * Description: Function reads imsm migration record from last sector of disk
3145 * Parameters:
3146 * fd : disk descriptor
3147 * super : metadata info
3148 * Returns:
3149 * 0 : success,
3150 * -1 : fail
3151 ******************************************************************************/
3152static int read_imsm_migr_rec(int fd, struct intel_super *super)
3153{
3154 int ret_val = -1;
de44e46f 3155 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3156 unsigned long long dsize;
3157
3158 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3159 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3160 SEEK_SET) < 0) {
e7b84f9d
N
3161 pr_err("Cannot seek to anchor block: %s\n",
3162 strerror(errno));
8e59f3d8
AK
3163 goto out;
3164 }
466070ad 3165 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3166 MIGR_REC_BUF_SECTORS*sector_size) !=
3167 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3168 pr_err("Cannot read migr record block: %s\n",
3169 strerror(errno));
8e59f3d8
AK
3170 goto out;
3171 }
3172 ret_val = 0;
de44e46f
PB
3173 if (sector_size == 4096)
3174 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3175
3176out:
3177 return ret_val;
3178}
3179
3136abe5
AK
3180static struct imsm_dev *imsm_get_device_during_migration(
3181 struct intel_super *super)
3182{
3183
3184 struct intel_dev *dv;
3185
3186 for (dv = super->devlist; dv; dv = dv->next) {
3187 if (is_gen_migration(dv->dev))
3188 return dv->dev;
3189 }
3190 return NULL;
3191}
3192
8e59f3d8
AK
3193/*******************************************************************************
3194 * Function: load_imsm_migr_rec
3195 * Description: Function reads imsm migration record (it is stored at the last
3196 * sector of disk)
3197 * Parameters:
3198 * super : imsm internal array info
8e59f3d8
AK
3199 * Returns:
3200 * 0 : success
3201 * -1 : fail
4c965cc9 3202 * -2 : no migration in progress
8e59f3d8 3203 ******************************************************************************/
2f86fda3 3204static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3205{
594dc1b8 3206 struct dl *dl;
8e59f3d8
AK
3207 char nm[30];
3208 int retval = -1;
3209 int fd = -1;
3136abe5 3210 struct imsm_dev *dev;
594dc1b8 3211 struct imsm_map *map;
b4ab44d8 3212 int slot = -1;
2f86fda3 3213 int keep_fd = 1;
3136abe5
AK
3214
3215 /* find map under migration */
3216 dev = imsm_get_device_during_migration(super);
3217 /* nothing to load,no migration in progress?
3218 */
3219 if (dev == NULL)
4c965cc9 3220 return -2;
8e59f3d8 3221
2f86fda3
MT
3222 map = get_imsm_map(dev, MAP_0);
3223 if (!map)
3224 return -1;
3136abe5 3225
2f86fda3
MT
3226 for (dl = super->disks; dl; dl = dl->next) {
3227 /* skip spare and failed disks
3228 */
3229 if (dl->index < 0)
3230 continue;
3231 /* read only from one of the first two slots
3232 */
3233 slot = get_imsm_disk_slot(map, dl->index);
3234 if (slot > 1 || slot < 0)
3235 continue;
3236
4389ce73 3237 if (!is_fd_valid(dl->fd)) {
8e59f3d8
AK
3238 sprintf(nm, "%d:%d", dl->major, dl->minor);
3239 fd = dev_open(nm, O_RDONLY);
4389ce73
MT
3240
3241 if (is_fd_valid(fd)) {
2f86fda3 3242 keep_fd = 0;
8e59f3d8 3243 break;
2f86fda3
MT
3244 }
3245 } else {
3246 fd = dl->fd;
3247 break;
8e59f3d8
AK
3248 }
3249 }
2f86fda3 3250
4389ce73 3251 if (!is_fd_valid(fd))
2f86fda3 3252 return retval;
8e59f3d8 3253 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3254 if (!keep_fd)
8e59f3d8 3255 close(fd);
2f86fda3 3256
8e59f3d8
AK
3257 return retval;
3258}
3259
c17608ea
AK
3260/*******************************************************************************
3261 * function: imsm_create_metadata_checkpoint_update
3262 * Description: It creates update for checkpoint change.
3263 * Parameters:
3264 * super : imsm internal array info
3265 * u : pointer to prepared update
3266 * Returns:
3267 * Uptate length.
3268 * If length is equal to 0, input pointer u contains no update
3269 ******************************************************************************/
3270static int imsm_create_metadata_checkpoint_update(
3271 struct intel_super *super,
3272 struct imsm_update_general_migration_checkpoint **u)
3273{
3274
3275 int update_memory_size = 0;
3276
1ade5cc1 3277 dprintf("(enter)\n");
c17608ea
AK
3278
3279 if (u == NULL)
3280 return 0;
3281 *u = NULL;
3282
3283 /* size of all update data without anchor */
3284 update_memory_size =
3285 sizeof(struct imsm_update_general_migration_checkpoint);
3286
503975b9 3287 *u = xcalloc(1, update_memory_size);
c17608ea 3288 if (*u == NULL) {
1ade5cc1 3289 dprintf("error: cannot get memory\n");
c17608ea
AK
3290 return 0;
3291 }
3292 (*u)->type = update_general_migration_checkpoint;
9f421827 3293 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3294 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3295
3296 return update_memory_size;
3297}
3298
c17608ea
AK
3299static void imsm_update_metadata_locally(struct supertype *st,
3300 void *buf, int len);
3301
687629c2
AK
3302/*******************************************************************************
3303 * Function: write_imsm_migr_rec
3304 * Description: Function writes imsm migration record
3305 * (at the last sector of disk)
3306 * Parameters:
3307 * super : imsm internal array info
3308 * Returns:
3309 * 0 : success
3310 * -1 : if fail
3311 ******************************************************************************/
3312static int write_imsm_migr_rec(struct supertype *st)
3313{
3314 struct intel_super *super = st->sb;
de44e46f 3315 unsigned int sector_size = super->sector_size;
687629c2 3316 unsigned long long dsize;
687629c2
AK
3317 int retval = -1;
3318 struct dl *sd;
c17608ea
AK
3319 int len;
3320 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3321 struct imsm_dev *dev;
594dc1b8 3322 struct imsm_map *map;
3136abe5
AK
3323
3324 /* find map under migration */
3325 dev = imsm_get_device_during_migration(super);
3326 /* if no migration, write buffer anyway to clear migr_record
3327 * on disk based on first available device
3328 */
3329 if (dev == NULL)
3330 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3331 super->current_vol);
3332
44bfe6df 3333 map = get_imsm_map(dev, MAP_0);
687629c2 3334
de44e46f
PB
3335 if (sector_size == 4096)
3336 convert_to_4k_imsm_migr_rec(super);
687629c2 3337 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3338 int slot = -1;
3136abe5
AK
3339
3340 /* skip failed and spare devices */
3341 if (sd->index < 0)
3342 continue;
687629c2 3343 /* write to 2 first slots only */
3136abe5
AK
3344 if (map)
3345 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3346 if (map == NULL || slot > 1 || slot < 0)
687629c2 3347 continue;
3136abe5 3348
2f86fda3
MT
3349 get_dev_size(sd->fd, NULL, &dsize);
3350 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3351 sector_size),
de44e46f 3352 SEEK_SET) < 0) {
e7b84f9d
N
3353 pr_err("Cannot seek to anchor block: %s\n",
3354 strerror(errno));
687629c2
AK
3355 goto out;
3356 }
2f86fda3 3357 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3358 MIGR_REC_BUF_SECTORS*sector_size) !=
3359 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3360 pr_err("Cannot write migr record block: %s\n",
3361 strerror(errno));
687629c2
AK
3362 goto out;
3363 }
687629c2 3364 }
de44e46f
PB
3365 if (sector_size == 4096)
3366 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3367 /* update checkpoint information in metadata */
3368 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3369 if (len <= 0) {
3370 dprintf("imsm: Cannot prepare update\n");
3371 goto out;
3372 }
3373 /* update metadata locally */
3374 imsm_update_metadata_locally(st, u, len);
3375 /* and possibly remotely */
3376 if (st->update_tail) {
3377 append_metadata_update(st, u, len);
3378 /* during reshape we do all work inside metadata handler
3379 * manage_reshape(), so metadata update has to be triggered
3380 * insida it
3381 */
3382 flush_metadata_updates(st);
3383 st->update_tail = &st->updates;
3384 } else
3385 free(u);
687629c2
AK
3386
3387 retval = 0;
3388 out:
687629c2
AK
3389 return retval;
3390}
3391
e2962bfc
AK
3392/* spare/missing disks activations are not allowe when
3393 * array/container performs reshape operation, because
3394 * all arrays in container works on the same disks set
3395 */
3396int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3397{
3398 int rv = 0;
3399 struct intel_dev *i_dev;
3400 struct imsm_dev *dev;
3401
3402 /* check whole container
3403 */
3404 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3405 dev = i_dev->dev;
3ad25638 3406 if (is_gen_migration(dev)) {
e2962bfc
AK
3407 /* No repair during any migration in container
3408 */
3409 rv = 1;
3410 break;
3411 }
3412 }
3413 return rv;
3414}
3e684231 3415static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3416 int chunk_size,
f36a9ecd 3417 unsigned int sector_size,
c41e00b2
AK
3418 unsigned long long component_size)
3419{
3e684231 3420 unsigned int component_size_alignment;
c41e00b2 3421
3e684231 3422 /* check component size alignment
c41e00b2 3423 */
3e684231 3424 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3425
3e684231 3426 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3427 level, chunk_size, component_size,
3e684231 3428 component_size_alignment);
c41e00b2 3429
3e684231
MZ
3430 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3431 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3432 component_size);
3e684231 3433 component_size -= component_size_alignment;
1ade5cc1 3434 dprintf_cont("to %llu (%i).\n",
3e684231 3435 component_size, component_size_alignment);
c41e00b2
AK
3436 }
3437
3438 return component_size;
3439}
e2962bfc 3440
fbc42556
JR
3441/*******************************************************************************
3442 * Function: get_bitmap_header_sector
3443 * Description: Returns the sector where the bitmap header is placed.
3444 * Parameters:
3445 * st : supertype information
3446 * dev_idx : index of the device with bitmap
3447 *
3448 * Returns:
3449 * The sector where the bitmap header is placed
3450 ******************************************************************************/
3451static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3452 int dev_idx)
3453{
3454 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3455 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3456
3457 if (!super->sector_size) {
3458 dprintf("sector size is not set\n");
3459 return 0;
3460 }
3461
3462 return pba_of_lba0(map) + calc_component_size(map, dev) +
3463 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3464}
3465
3466/*******************************************************************************
3467 * Function: get_bitmap_sector
3468 * Description: Returns the sector where the bitmap is placed.
3469 * Parameters:
3470 * st : supertype information
3471 * dev_idx : index of the device with bitmap
3472 *
3473 * Returns:
3474 * The sector where the bitmap is placed
3475 ******************************************************************************/
3476static unsigned long long get_bitmap_sector(struct intel_super *super,
3477 int dev_idx)
3478{
3479 if (!super->sector_size) {
3480 dprintf("sector size is not set\n");
3481 return 0;
3482 }
3483
3484 return get_bitmap_header_sector(super, dev_idx) +
3485 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3486}
3487
2432ce9b
AP
3488static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3489{
3490 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3491 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3492
3493 return pba_of_lba0(map) +
3494 (num_data_stripes(map) * map->blocks_per_strip);
3495}
3496
a5d85af7 3497static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3498{
3499 struct intel_super *super = st->sb;
c47b0ff6 3500 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3501 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3502 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3503 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3504 struct imsm_map *map_to_analyse = map;
efb30e7f 3505 struct dl *dl;
a5d85af7 3506 int map_disks = info->array.raid_disks;
bf5a934a 3507
95eeceeb 3508 memset(info, 0, sizeof(*info));
b335e593
AK
3509 if (prev_map)
3510 map_to_analyse = prev_map;
3511
ca0748fa 3512 dl = super->current_disk;
9894ec0d 3513
bf5a934a 3514 info->container_member = super->current_vol;
cd0430a1 3515 info->array.raid_disks = map->num_members;
b335e593 3516 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3517 info->array.layout = imsm_level_to_layout(info->array.level);
3518 info->array.md_minor = -1;
3519 info->array.ctime = 0;
3520 info->array.utime = 0;
b335e593
AK
3521 info->array.chunk_size =
3522 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3523 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3524 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3525 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3526
3f510843 3527 if (is_gen_migration(dev)) {
195d1d76
PP
3528 /*
3529 * device prev_map should be added if it is in the middle
3530 * of migration
3531 */
3532 assert(prev_map);
3533
3f83228a 3534 info->reshape_active = 1;
b335e593
AK
3535 info->new_level = get_imsm_raid_level(map);
3536 info->new_layout = imsm_level_to_layout(info->new_level);
3537 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3538 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3539 if (info->delta_disks) {
3540 /* this needs to be applied to every array
3541 * in the container.
3542 */
81219e70 3543 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3544 }
3f83228a
N
3545 /* We shape information that we give to md might have to be
3546 * modify to cope with md's requirement for reshaping arrays.
3547 * For example, when reshaping a RAID0, md requires it to be
3548 * presented as a degraded RAID4.
3549 * Also if a RAID0 is migrating to a RAID5 we need to specify
3550 * the array as already being RAID5, but the 'before' layout
3551 * is a RAID4-like layout.
3552 */
3553 switch (info->array.level) {
3554 case 0:
3555 switch(info->new_level) {
3556 case 0:
3557 /* conversion is happening as RAID4 */
3558 info->array.level = 4;
3559 info->array.raid_disks += 1;
3560 break;
3561 case 5:
3562 /* conversion is happening as RAID5 */
3563 info->array.level = 5;
3564 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3565 info->delta_disks -= 1;
3566 break;
3567 default:
3568 /* FIXME error message */
3569 info->array.level = UnSet;
3570 break;
3571 }
3572 break;
3573 }
b335e593
AK
3574 } else {
3575 info->new_level = UnSet;
3576 info->new_layout = UnSet;
3577 info->new_chunk = info->array.chunk_size;
3f83228a 3578 info->delta_disks = 0;
b335e593 3579 }
ca0748fa 3580
efb30e7f
DW
3581 if (dl) {
3582 info->disk.major = dl->major;
3583 info->disk.minor = dl->minor;
ca0748fa 3584 info->disk.number = dl->index;
656b6b5a
N
3585 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3586 dl->index);
efb30e7f 3587 }
bf5a934a 3588
5551b113 3589 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3590 info->component_size = calc_component_size(map, dev);
3e684231 3591 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3592 info->array.level,
3593 info->array.chunk_size,
f36a9ecd 3594 super->sector_size,
c41e00b2 3595 info->component_size);
5e46202e 3596 info->bb.supported = 1;
139dae11 3597
301406c9 3598 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3599 info->recovery_start = MaxSector;
bf5a934a 3600
c2462068
PB
3601 if (info->array.level == 5 &&
3602 (dev->rwh_policy == RWH_DISTRIBUTED ||
3603 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3604 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3605 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3606 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3607 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3608 else
3609 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3610 >> 9;
2432ce9b
AP
3611 } else if (info->array.level <= 0) {
3612 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3613 } else {
fbc42556
JR
3614 if (dev->rwh_policy == RWH_BITMAP) {
3615 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3616 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3617 } else {
3618 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3619 }
2432ce9b
AP
3620 }
3621
d2e6d5d6 3622 info->reshape_progress = 0;
b6796ce1 3623 info->resync_start = MaxSector;
b9172665 3624 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3625 !(info->array.state & 1)) &&
b9172665 3626 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3627 info->resync_start = 0;
b6796ce1
AK
3628 }
3629 if (dev->vol.migr_state) {
1e5c6983
DW
3630 switch (migr_type(dev)) {
3631 case MIGR_REPAIR:
3632 case MIGR_INIT: {
c47b0ff6
AK
3633 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3634 dev);
4036e7ee 3635 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3636
3637 info->resync_start = blocks_per_unit * units;
3638 break;
3639 }
d2e6d5d6 3640 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3641 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3642 dev);
9f421827 3643 __u64 units = current_migr_unit(migr_rec);
04fa9523 3644 int used_disks;
d2e6d5d6 3645
befb629b
AK
3646 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3647 (units <
9f421827 3648 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3649 (super->migr_rec->rec_status ==
3650 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3651 units++;
3652
d2e6d5d6 3653 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3654
7a862a02 3655 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3656 (unsigned long long)units,
3657 (unsigned long long)blocks_per_unit,
3658 info->reshape_progress);
75156c46 3659
9529d343 3660 used_disks = imsm_num_data_members(prev_map);
75156c46 3661 if (used_disks > 0) {
895ffd99 3662 info->custom_array_size = per_dev_array_size(map) *
75156c46 3663 used_disks;
75156c46 3664 }
d2e6d5d6 3665 }
1e5c6983
DW
3666 case MIGR_VERIFY:
3667 /* we could emulate the checkpointing of
3668 * 'sync_action=check' migrations, but for now
3669 * we just immediately complete them
3670 */
3671 case MIGR_REBUILD:
3672 /* this is handled by container_content_imsm() */
1e5c6983
DW
3673 case MIGR_STATE_CHANGE:
3674 /* FIXME handle other migrations */
3675 default:
3676 /* we are not dirty, so... */
3677 info->resync_start = MaxSector;
3678 }
b6796ce1 3679 }
301406c9
DW
3680
3681 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3682 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3683
f35f2525
N
3684 info->array.major_version = -1;
3685 info->array.minor_version = -2;
4dd2df09 3686 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3687 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3688 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3689
3690 if (dmap) {
3691 int i, j;
3692 for (i=0; i<map_disks; i++) {
3693 dmap[i] = 0;
3694 if (i < info->array.raid_disks) {
3695 struct imsm_disk *dsk;
238c0a71 3696 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3697 dsk = get_imsm_disk(super, j);
3698 if (dsk && (dsk->status & CONFIGURED_DISK))
3699 dmap[i] = 1;
3700 }
3701 }
3702 }
81ac8b4d 3703}
bf5a934a 3704
3b451610
AK
3705static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3706 int failed, int look_in_map);
3707
3708static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3709 int look_in_map);
3710
3711static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3712{
3713 if (is_gen_migration(dev)) {
3714 int failed;
3715 __u8 map_state;
3716 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3717
3718 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3719 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3720 if (map2->map_state != map_state) {
3721 map2->map_state = map_state;
3722 super->updates_pending++;
3723 }
3724 }
3725}
97b4d0e9
DW
3726
3727static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3728{
3729 struct dl *d;
3730
3731 for (d = super->missing; d; d = d->next)
3732 if (d->index == index)
3733 return &d->disk;
3734 return NULL;
3735}
3736
a5d85af7 3737static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3738{
3739 struct intel_super *super = st->sb;
4f5bc454 3740 struct imsm_disk *disk;
a5d85af7 3741 int map_disks = info->array.raid_disks;
476b00bd 3742 int max_enough = -1;
ab3cb6b3
N
3743 int i;
3744 struct imsm_super *mpb;
4f5bc454 3745
bf5a934a 3746 if (super->current_vol >= 0) {
a5d85af7 3747 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3748 return;
3749 }
95eeceeb 3750 memset(info, 0, sizeof(*info));
d23fe947
DW
3751
3752 /* Set raid_disks to zero so that Assemble will always pull in valid
3753 * spares
3754 */
3755 info->array.raid_disks = 0;
cdddbdbc
DW
3756 info->array.level = LEVEL_CONTAINER;
3757 info->array.layout = 0;
3758 info->array.md_minor = -1;
1011e834 3759 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3760 info->array.utime = 0;
3761 info->array.chunk_size = 0;
3762
3763 info->disk.major = 0;
3764 info->disk.minor = 0;
cdddbdbc 3765 info->disk.raid_disk = -1;
c2c087e6 3766 info->reshape_active = 0;
f35f2525
N
3767 info->array.major_version = -1;
3768 info->array.minor_version = -2;
c2c087e6 3769 strcpy(info->text_version, "imsm");
a67dd8cc 3770 info->safe_mode_delay = 0;
c2c087e6
DW
3771 info->disk.number = -1;
3772 info->disk.state = 0;
c5afc314 3773 info->name[0] = 0;
921d9e16 3774 info->recovery_start = MaxSector;
3ad25638 3775 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3776 info->bb.supported = 1;
c2c087e6 3777
97b4d0e9 3778 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3779 mpb = super->anchor;
b7d81a38 3780 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3781
ab3cb6b3
N
3782 for (i = 0; i < mpb->num_raid_devs; i++) {
3783 struct imsm_dev *dev = get_imsm_dev(super, i);
476b00bd 3784 int failed, enough, j, missing = 0;
ab3cb6b3 3785 struct imsm_map *map;
476b00bd 3786 __u8 state;
97b4d0e9 3787
476b00bd
MT
3788 failed = imsm_count_failed(super, dev, MAP_0);
3789 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3790 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3791
3792 /* any newly missing disks?
3793 * (catches single-degraded vs double-degraded)
3794 */
3795 for (j = 0; j < map->num_members; j++) {
238c0a71 3796 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3797 __u32 idx = ord_to_idx(ord);
3798
20dc76d1
MT
3799 if (super->disks && super->disks->index == (int)idx)
3800 info->disk.raid_disk = j;
3801
ab3cb6b3
N
3802 if (!(ord & IMSM_ORD_REBUILD) &&
3803 get_imsm_missing(super, idx)) {
476b00bd 3804 missing = 1;
ab3cb6b3
N
3805 break;
3806 }
97b4d0e9 3807 }
476b00bd
MT
3808
3809 if (state == IMSM_T_STATE_FAILED)
3810 enough = -1;
3811 else if (state == IMSM_T_STATE_DEGRADED &&
3812 (state != map->map_state || missing))
3813 enough = 0;
3814 else /* we're normal, or already degraded */
3815 enough = 1;
3816 if (is_gen_migration(dev) && missing) {
3817 /* during general migration we need all disks
3818 * that process is running on.
3819 * No new missing disk is allowed.
3820 */
3821 max_enough = -1;
3822 enough = -1;
3823 /* no more checks necessary
3824 */
3825 break;
3826 }
3827 /* in the missing/failed disk case check to see
3828 * if at least one array is runnable
3829 */
3830 max_enough = max(max_enough, enough);
ab3cb6b3 3831 }
97b4d0e9 3832
476b00bd
MT
3833 info->container_enough = max_enough;
3834
4a04ec6c 3835 if (super->disks) {
14e8215b
DW
3836 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3837
b9f594fe 3838 disk = &super->disks->disk;
5551b113 3839 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3840 info->component_size = reserved;
25ed7e59 3841 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3842 /* we don't change info->disk.raid_disk here because
3843 * this state will be finalized in mdmon after we have
3844 * found the 'most fresh' version of the metadata
3845 */
25ed7e59 3846 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3847 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3848 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3849 }
a575e2a7
DW
3850
3851 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3852 * ->compare_super may have updated the 'num_raid_devs' field for spares
3853 */
3854 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3855 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3856 else
3857 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3858
3859 /* I don't know how to compute 'map' on imsm, so use safe default */
3860 if (map) {
3861 int i;
3862 for (i = 0; i < map_disks; i++)
3863 map[i] = 1;
3864 }
3865
cdddbdbc
DW
3866}
3867
5c4cd5da
AC
3868/* allocates memory and fills disk in mdinfo structure
3869 * for each disk in array */
3870struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3871{
594dc1b8 3872 struct mdinfo *mddev;
5c4cd5da
AC
3873 struct intel_super *super = st->sb;
3874 struct imsm_disk *disk;
3875 int count = 0;
3876 struct dl *dl;
3877 if (!super || !super->disks)
3878 return NULL;
3879 dl = super->disks;
503975b9 3880 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3881 while (dl) {
3882 struct mdinfo *tmp;
3883 disk = &dl->disk;
503975b9 3884 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3885 if (mddev->devs)
3886 tmp->next = mddev->devs;
3887 mddev->devs = tmp;
3888 tmp->disk.number = count++;
3889 tmp->disk.major = dl->major;
3890 tmp->disk.minor = dl->minor;
3891 tmp->disk.state = is_configured(disk) ?
3892 (1 << MD_DISK_ACTIVE) : 0;
3893 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3894 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3895 tmp->disk.raid_disk = -1;
3896 dl = dl->next;
3897 }
3898 return mddev;
3899}
3900
cdddbdbc 3901static int update_super_imsm(struct supertype *st, struct mdinfo *info,
03312b52
MK
3902 enum update_opt update, char *devname,
3903 int verbose, int uuid_set, char *homehost)
cdddbdbc 3904{
f352c545
DW
3905 /* For 'assemble' and 'force' we need to return non-zero if any
3906 * change was made. For others, the return value is ignored.
3907 * Update options are:
3908 * force-one : This device looks a bit old but needs to be included,
3909 * update age info appropriately.
3910 * assemble: clear any 'faulty' flag to allow this device to
3911 * be assembled.
3912 * force-array: Array is degraded but being forced, mark it clean
3913 * if that will be needed to assemble it.
3914 *
3915 * newdev: not used ????
3916 * grow: Array has gained a new device - this is currently for
3917 * linear only
3918 * resync: mark as dirty so a resync will happen.
3919 * name: update the name - preserving the homehost
6e46bf34 3920 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3921 *
3922 * Following are not relevant for this imsm:
3923 * sparc2.2 : update from old dodgey metadata
3924 * super-minor: change the preferred_minor number
3925 * summaries: update redundant counters.
f352c545
DW
3926 * homehost: update the recorded homehost
3927 * _reshape_progress: record new reshape_progress position.
3928 */
6e46bf34
DW
3929 int rv = 1;
3930 struct intel_super *super = st->sb;
3931 struct imsm_super *mpb;
f352c545 3932
6e46bf34
DW
3933 /* we can only update container info */
3934 if (!super || super->current_vol >= 0 || !super->anchor)
3935 return 1;
3936
3937 mpb = super->anchor;
3938
03312b52 3939 switch (update) {
4345e135 3940 case UOPT_UUID:
81a5b4f5
N
3941 /* We take this to mean that the family_num should be updated.
3942 * However that is much smaller than the uuid so we cannot really
3943 * allow an explicit uuid to be given. And it is hard to reliably
3944 * know if one was.
3945 * So if !uuid_set we know the current uuid is random and just used
3946 * the first 'int' and copy it to the other 3 positions.
3947 * Otherwise we require the 4 'int's to be the same as would be the
3948 * case if we are using a random uuid. So an explicit uuid will be
3949 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3950 */
81a5b4f5
N
3951 if (!uuid_set) {
3952 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3953 rv = 0;
81a5b4f5
N
3954 } else {
3955 if (info->uuid[0] != info->uuid[1] ||
3956 info->uuid[1] != info->uuid[2] ||
3957 info->uuid[2] != info->uuid[3])
3958 rv = -1;
3959 else
3960 rv = 0;
6e46bf34 3961 }
81a5b4f5
N
3962 if (rv == 0)
3963 mpb->orig_family_num = info->uuid[0];
4345e135
MK
3964 break;
3965 case UOPT_SPEC_ASSEMBLE:
6e46bf34 3966 rv = 0;
4345e135
MK
3967 break;
3968 default:
1e2b2765 3969 rv = -1;
4345e135
MK
3970 break;
3971 }
f352c545 3972
6e46bf34
DW
3973 /* successful update? recompute checksum */
3974 if (rv == 0)
3975 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3976
3977 return rv;
cdddbdbc
DW
3978}
3979
c2c087e6 3980static size_t disks_to_mpb_size(int disks)
cdddbdbc 3981{
c2c087e6 3982 size_t size;
cdddbdbc 3983
c2c087e6
DW
3984 size = sizeof(struct imsm_super);
3985 size += (disks - 1) * sizeof(struct imsm_disk);
3986 size += 2 * sizeof(struct imsm_dev);
3987 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3988 size += (4 - 2) * sizeof(struct imsm_map);
3989 /* 4 possible disk_ord_tbl's */
3990 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3991 /* maximum bbm log */
3992 size += sizeof(struct bbm_log);
c2c087e6
DW
3993
3994 return size;
3995}
3996
387fcd59
N
3997static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3998 unsigned long long data_offset)
c2c087e6
DW
3999{
4000 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
4001 return 0;
4002
4003 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
4004}
4005
ba2de7ba
DW
4006static void free_devlist(struct intel_super *super)
4007{
4008 struct intel_dev *dv;
4009
4010 while (super->devlist) {
4011 dv = super->devlist->next;
4012 free(super->devlist->dev);
4013 free(super->devlist);
4014 super->devlist = dv;
4015 }
4016}
4017
4018static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4019{
4020 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4021}
4022
c7b8547c
MT
4023static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4024 int verbose)
cdddbdbc 4025{
601ffa78 4026 /* return:
cdddbdbc 4027 * 0 same, or first was empty, and second was copied
601ffa78 4028 * 1 sb are different
cdddbdbc
DW
4029 */
4030 struct intel_super *first = st->sb;
4031 struct intel_super *sec = tst->sb;
4032
5d500228
N
4033 if (!first) {
4034 st->sb = tst->sb;
4035 tst->sb = NULL;
4036 return 0;
4037 }
601ffa78 4038
8603ea6f
LM
4039 /* in platform dependent environment test if the disks
4040 * use the same Intel hba
601ffa78
OS
4041 * if not on Intel hba at all, allow anything.
4042 * doesn't check HBAs if num_raid_devs is not set, as it means
4043 * it is a free floating spare, and all spares regardless of HBA type
4044 * will fall into separate container during the assembly
8603ea6f 4045 */
601ffa78 4046 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
6b781d33 4047 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
4048 if (verbose)
4049 pr_err("HBAs of devices do not match %s != %s\n",
4050 get_sys_dev_type(first->hba->type),
4051 get_sys_dev_type(sec->hba->type));
601ffa78 4052 return 1;
6b781d33
AP
4053 }
4054 if (first->orom != sec->orom) {
c7b8547c
MT
4055 if (verbose)
4056 pr_err("HBAs of devices do not match %s != %s\n",
4057 first->hba->pci_id, sec->hba->pci_id);
601ffa78 4058 return 1;
8603ea6f
LM
4059 }
4060 }
cdddbdbc 4061
d23fe947
DW
4062 if (first->anchor->num_raid_devs > 0 &&
4063 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
4064 /* Determine if these disks might ever have been
4065 * related. Further disambiguation can only take place
4066 * in load_super_imsm_all
4067 */
4068 __u32 first_family = first->anchor->orig_family_num;
4069 __u32 sec_family = sec->anchor->orig_family_num;
4070
f796af5d
DW
4071 if (memcmp(first->anchor->sig, sec->anchor->sig,
4072 MAX_SIGNATURE_LENGTH) != 0)
601ffa78 4073 return 1;
f796af5d 4074
a2b97981
DW
4075 if (first_family == 0)
4076 first_family = first->anchor->family_num;
4077 if (sec_family == 0)
4078 sec_family = sec->anchor->family_num;
4079
4080 if (first_family != sec_family)
601ffa78 4081 return 1;
f796af5d 4082
d23fe947 4083 }
cdddbdbc 4084
601ffa78
OS
4085 /* if an anchor does not have num_raid_devs set then it is a free
4086 * floating spare. don't assosiate spare with any array, as during assembly
4087 * spares shall fall into separate container, from which they can be moved
4088 * when necessary
4089 */
4090 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4091 return 1;
3e372e5a 4092
cdddbdbc
DW
4093 return 0;
4094}
4095
0030e8d6
DW
4096static void fd2devname(int fd, char *name)
4097{
0030e8d6 4098 char *nm;
0030e8d6 4099
7c798f87
MT
4100 nm = fd2kname(fd);
4101 if (!nm)
0030e8d6 4102 return;
9587c373 4103
7c798f87 4104 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4105}
4106
21e9380b
AP
4107static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4108{
fcebeb77 4109 char path[PATH_MAX];
21e9380b
AP
4110 char *name = fd2kname(fd);
4111
4112 if (!name)
4113 return 1;
4114
4115 if (strncmp(name, "nvme", 4) != 0)
4116 return 1;
4117
fcebeb77
MT
4118 if (!diskfd_to_devpath(fd, 1, path))
4119 return 1;
21e9380b 4120
fcebeb77 4121 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4122}
4123
cdddbdbc
DW
4124extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4125
4126static int imsm_read_serial(int fd, char *devname,
6da53c0e 4127 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4128{
21e9380b 4129 char buf[50];
cdddbdbc 4130 int rv;
6da53c0e 4131 size_t len;
316e2bf4
DW
4132 char *dest;
4133 char *src;
21e9380b
AP
4134 unsigned int i;
4135
4136 memset(buf, 0, sizeof(buf));
cdddbdbc 4137
d1cd231a
KT
4138 if (check_env("IMSM_DEVNAME_AS_SERIAL")) {
4139 memset(serial, 0, serial_buf_len);
4140 fd2devname(fd, (char *) serial);
4141 return 0;
4142 }
4143
21e9380b 4144 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4145
21e9380b
AP
4146 if (rv)
4147 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4148
cdddbdbc
DW
4149 if (rv != 0) {
4150 if (devname)
e7b84f9d
N
4151 pr_err("Failed to retrieve serial for %s\n",
4152 devname);
cdddbdbc
DW
4153 return rv;
4154 }
4155
316e2bf4
DW
4156 /* trim all whitespace and non-printable characters and convert
4157 * ':' to ';'
4158 */
21e9380b
AP
4159 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4160 src = &buf[i];
316e2bf4
DW
4161 if (*src > 0x20) {
4162 /* ':' is reserved for use in placeholder serial
4163 * numbers for missing disks
4164 */
4165 if (*src == ':')
4166 *dest++ = ';';
4167 else
4168 *dest++ = *src;
4169 }
4170 }
21e9380b
AP
4171 len = dest - buf;
4172 dest = buf;
316e2bf4 4173
6da53c0e
BK
4174 if (len > serial_buf_len) {
4175 /* truncate leading characters */
4176 dest += len - serial_buf_len;
4177 len = serial_buf_len;
316e2bf4 4178 }
5c3db629 4179
6da53c0e 4180 memset(serial, 0, serial_buf_len);
316e2bf4 4181 memcpy(serial, dest, len);
cdddbdbc
DW
4182
4183 return 0;
4184}
4185
1f24f035
DW
4186static int serialcmp(__u8 *s1, __u8 *s2)
4187{
4188 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4189}
4190
4191static void serialcpy(__u8 *dest, __u8 *src)
4192{
4193 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4194}
4195
54c2c1ea
DW
4196static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4197{
4198 struct dl *dl;
4199
4200 for (dl = super->disks; dl; dl = dl->next)
4201 if (serialcmp(dl->serial, serial) == 0)
4202 break;
4203
4204 return dl;
4205}
4206
a2b97981
DW
4207static struct imsm_disk *
4208__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4209{
4210 int i;
4211
4212 for (i = 0; i < mpb->num_disks; i++) {
4213 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4214
4215 if (serialcmp(disk->serial, serial) == 0) {
4216 if (idx)
4217 *idx = i;
4218 return disk;
4219 }
4220 }
4221
4222 return NULL;
4223}
4224
cdddbdbc
DW
4225static int
4226load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4227{
a2b97981 4228 struct imsm_disk *disk;
cdddbdbc
DW
4229 struct dl *dl;
4230 struct stat stb;
cdddbdbc 4231 int rv;
a2b97981 4232 char name[40];
d23fe947
DW
4233 __u8 serial[MAX_RAID_SERIAL_LEN];
4234
6da53c0e 4235 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4236
4237 if (rv != 0)
4238 return 2;
4239
503975b9 4240 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4241
95673c7d
NC
4242 if (fstat(fd, &stb) != 0) {
4243 free(dl);
4244 return 1;
4245 }
a2b97981
DW
4246 dl->major = major(stb.st_rdev);
4247 dl->minor = minor(stb.st_rdev);
4248 dl->next = super->disks;
4249 dl->fd = keep_fd ? fd : -1;
4250 assert(super->disks == NULL);
4251 super->disks = dl;
4252 serialcpy(dl->serial, serial);
4253 dl->index = -2;
4254 dl->e = NULL;
4255 fd2devname(fd, name);
4256 if (devname)
503975b9 4257 dl->devname = xstrdup(devname);
a2b97981 4258 else
503975b9 4259 dl->devname = xstrdup(name);
cdddbdbc 4260
d23fe947 4261 /* look up this disk's index in the current anchor */
a2b97981
DW
4262 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4263 if (disk) {
4264 dl->disk = *disk;
4265 /* only set index on disks that are a member of a
4266 * populated contianer, i.e. one with raid_devs
4267 */
4268 if (is_failed(&dl->disk))
3f6efecc 4269 dl->index = -2;
2432ce9b 4270 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4271 dl->index = -1;
3f6efecc
DW
4272 }
4273
949c47a0
DW
4274 return 0;
4275}
4276
0c046afd
DW
4277/* When migrating map0 contains the 'destination' state while map1
4278 * contains the current state. When not migrating map0 contains the
4279 * current state. This routine assumes that map[0].map_state is set to
4280 * the current array state before being called.
4281 *
4282 * Migration is indicated by one of the following states
4283 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4284 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4285 * map1state=unitialized)
1484e727 4286 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4287 * map1state=normal)
e3bba0e0 4288 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4289 * map1state=degraded)
8e59f3d8
AK
4290 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4291 * map1state=normal)
0c046afd 4292 */
8e59f3d8
AK
4293static void migrate(struct imsm_dev *dev, struct intel_super *super,
4294 __u8 to_state, int migr_type)
3393c6af 4295{
0c046afd 4296 struct imsm_map *dest;
238c0a71 4297 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4298
0c046afd 4299 dev->vol.migr_state = 1;
1484e727 4300 set_migr_type(dev, migr_type);
4036e7ee 4301 set_vol_curr_migr_unit(dev, 0);
238c0a71 4302 dest = get_imsm_map(dev, MAP_1);
0c046afd 4303
0556e1a2 4304 /* duplicate and then set the target end state in map[0] */
3393c6af 4305 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4306 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4307 __u32 ord;
4308 int i;
4309
4310 for (i = 0; i < src->num_members; i++) {
4311 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4312 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4313 }
4314 }
4315
8e59f3d8
AK
4316 if (migr_type == MIGR_GEN_MIGR)
4317 /* Clear migration record */
4318 memset(super->migr_rec, 0, sizeof(struct migr_record));
4319
0c046afd 4320 src->map_state = to_state;
949c47a0 4321}
f8f603f1 4322
809da78e
AK
4323static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4324 __u8 map_state)
f8f603f1 4325{
238c0a71
AK
4326 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4327 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4328 MAP_0 : MAP_1);
28bce06f 4329 int i, j;
0556e1a2
DW
4330
4331 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4332 * completed in the last migration.
4333 *
28bce06f 4334 * FIXME add support for raid-level-migration
0556e1a2 4335 */
195d1d76 4336 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
089f9d79 4337 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4338 /* when final map state is other than expected
4339 * merge maps (not for migration)
4340 */
4341 int failed;
4342
4343 for (i = 0; i < prev->num_members; i++)
4344 for (j = 0; j < map->num_members; j++)
4345 /* during online capacity expansion
4346 * disks position can be changed
4347 * if takeover is used
4348 */
4349 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4350 ord_to_idx(prev->disk_ord_tbl[i])) {
4351 map->disk_ord_tbl[j] |=
4352 prev->disk_ord_tbl[i];
4353 break;
4354 }
4355 failed = imsm_count_failed(super, dev, MAP_0);
4356 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4357 }
f8f603f1
DW
4358
4359 dev->vol.migr_state = 0;
ea672ee1 4360 set_migr_type(dev, 0);
4036e7ee 4361 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4362 map->map_state = map_state;
4363}
949c47a0
DW
4364
4365static int parse_raid_devices(struct intel_super *super)
4366{
4367 int i;
4368 struct imsm_dev *dev_new;
4d7b1503 4369 size_t len, len_migr;
401d313b 4370 size_t max_len = 0;
4d7b1503
DW
4371 size_t space_needed = 0;
4372 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4373
4374 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4375 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4376 struct intel_dev *dv;
949c47a0 4377
4d7b1503
DW
4378 len = sizeof_imsm_dev(dev_iter, 0);
4379 len_migr = sizeof_imsm_dev(dev_iter, 1);
4380 if (len_migr > len)
4381 space_needed += len_migr - len;
ca9de185 4382
503975b9 4383 dv = xmalloc(sizeof(*dv));
401d313b
AK
4384 if (max_len < len_migr)
4385 max_len = len_migr;
4386 if (max_len > len_migr)
4387 space_needed += max_len - len_migr;
503975b9 4388 dev_new = xmalloc(max_len);
949c47a0 4389 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4390 dv->dev = dev_new;
4391 dv->index = i;
4392 dv->next = super->devlist;
4393 super->devlist = dv;
949c47a0 4394 }
cdddbdbc 4395
4d7b1503
DW
4396 /* ensure that super->buf is large enough when all raid devices
4397 * are migrating
4398 */
4399 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4400 void *buf;
4401
f36a9ecd
PB
4402 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4403 super->sector_size);
4404 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4405 return 1;
4406
1f45a8ad
DW
4407 memcpy(buf, super->buf, super->len);
4408 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4409 free(super->buf);
4410 super->buf = buf;
4411 super->len = len;
4412 }
ca9de185 4413
bbab0940
TM
4414 super->extra_space += space_needed;
4415
cdddbdbc
DW
4416 return 0;
4417}
4418
e2f41b2c
AK
4419/*******************************************************************************
4420 * Function: check_mpb_migr_compatibility
4421 * Description: Function checks for unsupported migration features:
4422 * - migration optimization area (pba_of_lba0)
4423 * - descending reshape (ascending_migr)
4424 * Parameters:
4425 * super : imsm metadata information
4426 * Returns:
4427 * 0 : migration is compatible
4428 * -1 : migration is not compatible
4429 ******************************************************************************/
4430int check_mpb_migr_compatibility(struct intel_super *super)
4431{
4432 struct imsm_map *map0, *map1;
4433 struct migr_record *migr_rec = super->migr_rec;
4434 int i;
4435
4436 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4437 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4438
756a15f3 4439 if (dev_iter->vol.migr_state == 1 &&
e2f41b2c
AK
4440 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4441 /* This device is migrating */
238c0a71
AK
4442 map0 = get_imsm_map(dev_iter, MAP_0);
4443 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4444 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4445 /* migration optimization area was used */
4446 return -1;
fc54fe7a
JS
4447 if (migr_rec->ascending_migr == 0 &&
4448 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4449 /* descending reshape not supported yet */
4450 return -1;
4451 }
4452 }
4453 return 0;
4454}
4455
d23fe947 4456static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4457
cdddbdbc 4458/* load_imsm_mpb - read matrix metadata
f2f5c343 4459 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4460 */
4461static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4462{
4463 unsigned long long dsize;
cdddbdbc 4464 unsigned long long sectors;
f36a9ecd 4465 unsigned int sector_size = super->sector_size;
cdddbdbc 4466 struct stat;
6416d527 4467 struct imsm_super *anchor;
cdddbdbc
DW
4468 __u32 check_sum;
4469
cdddbdbc 4470 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4471 if (dsize < 2*sector_size) {
64436f06 4472 if (devname)
e7b84f9d
N
4473 pr_err("%s: device to small for imsm\n",
4474 devname);
64436f06
N
4475 return 1;
4476 }
cdddbdbc 4477
f36a9ecd 4478 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4479 if (devname)
e7b84f9d
N
4480 pr_err("Cannot seek to anchor block on %s: %s\n",
4481 devname, strerror(errno));
cdddbdbc
DW
4482 return 1;
4483 }
4484
f36a9ecd 4485 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4486 if (devname)
7a862a02 4487 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4488 return 1;
4489 }
466070ad 4490 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4491 if (devname)
e7b84f9d
N
4492 pr_err("Cannot read anchor block on %s: %s\n",
4493 devname, strerror(errno));
6416d527 4494 free(anchor);
cdddbdbc
DW
4495 return 1;
4496 }
4497
6416d527 4498 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4499 if (devname)
e7b84f9d 4500 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4501 free(anchor);
cdddbdbc
DW
4502 return 2;
4503 }
4504
d23fe947 4505 __free_imsm(super, 0);
f2f5c343
LM
4506 /* reload capability and hba */
4507
4508 /* capability and hba must be updated with new super allocation */
d424212e 4509 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4510 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4511 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4512 if (devname)
e7b84f9d
N
4513 pr_err("unable to allocate %zu byte mpb buffer\n",
4514 super->len);
6416d527 4515 free(anchor);
cdddbdbc
DW
4516 return 2;
4517 }
f36a9ecd 4518 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4519
f36a9ecd 4520 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4521 free(anchor);
8e59f3d8 4522
85337573
AO
4523 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4524 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4525 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 4526 free(super->buf);
50cd06b4 4527 super->buf = NULL;
8e59f3d8
AK
4528 return 2;
4529 }
51d83f5d 4530 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4531
949c47a0 4532 if (!sectors) {
ecf45690
DW
4533 check_sum = __gen_imsm_checksum(super->anchor);
4534 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4535 if (devname)
e7b84f9d
N
4536 pr_err("IMSM checksum %x != %x on %s\n",
4537 check_sum,
4538 __le32_to_cpu(super->anchor->check_sum),
4539 devname);
ecf45690
DW
4540 return 2;
4541 }
4542
a2b97981 4543 return 0;
949c47a0 4544 }
cdddbdbc
DW
4545
4546 /* read the extended mpb */
f36a9ecd 4547 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4548 if (devname)
e7b84f9d
N
4549 pr_err("Cannot seek to extended mpb on %s: %s\n",
4550 devname, strerror(errno));
cdddbdbc
DW
4551 return 1;
4552 }
4553
f36a9ecd
PB
4554 if ((unsigned int)read(fd, super->buf + sector_size,
4555 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4556 if (devname)
e7b84f9d
N
4557 pr_err("Cannot read extended mpb on %s: %s\n",
4558 devname, strerror(errno));
cdddbdbc
DW
4559 return 2;
4560 }
4561
949c47a0
DW
4562 check_sum = __gen_imsm_checksum(super->anchor);
4563 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4564 if (devname)
e7b84f9d
N
4565 pr_err("IMSM checksum %x != %x on %s\n",
4566 check_sum, __le32_to_cpu(super->anchor->check_sum),
4567 devname);
db575f3b 4568 return 3;
cdddbdbc
DW
4569 }
4570
a2b97981
DW
4571 return 0;
4572}
4573
8e59f3d8
AK
4574static int read_imsm_migr_rec(int fd, struct intel_super *super);
4575
97f81ee2
CA
4576/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4577static void clear_hi(struct intel_super *super)
4578{
4579 struct imsm_super *mpb = super->anchor;
4580 int i, n;
4581 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4582 return;
4583 for (i = 0; i < mpb->num_disks; ++i) {
4584 struct imsm_disk *disk = &mpb->disk[i];
4585 disk->total_blocks_hi = 0;
4586 }
4587 for (i = 0; i < mpb->num_raid_devs; ++i) {
4588 struct imsm_dev *dev = get_imsm_dev(super, i);
97f81ee2
CA
4589 for (n = 0; n < 2; ++n) {
4590 struct imsm_map *map = get_imsm_map(dev, n);
4591 if (!map)
4592 continue;
4593 map->pba_of_lba0_hi = 0;
4594 map->blocks_per_member_hi = 0;
4595 map->num_data_stripes_hi = 0;
4596 }
4597 }
4598}
4599
a2b97981
DW
4600static int
4601load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4602{
4603 int err;
4604
4605 err = load_imsm_mpb(fd, super, devname);
4606 if (err)
4607 return err;
f36a9ecd
PB
4608 if (super->sector_size == 4096)
4609 convert_from_4k(super);
a2b97981
DW
4610 err = load_imsm_disk(fd, super, devname, keep_fd);
4611 if (err)
4612 return err;
4613 err = parse_raid_devices(super);
8d67477f
TM
4614 if (err)
4615 return err;
4616 err = load_bbm_log(super);
97f81ee2 4617 clear_hi(super);
a2b97981 4618 return err;
cdddbdbc
DW
4619}
4620
4389ce73 4621static void __free_imsm_disk(struct dl *d, int do_close)
ae6aad82 4622{
4389ce73
MT
4623 if (do_close)
4624 close_fd(&d->fd);
ae6aad82
DW
4625 if (d->devname)
4626 free(d->devname);
0dcecb2e
DW
4627 if (d->e)
4628 free(d->e);
ae6aad82
DW
4629 free(d);
4630
4631}
1a64be56 4632
cdddbdbc
DW
4633static void free_imsm_disks(struct intel_super *super)
4634{
47ee5a45 4635 struct dl *d;
cdddbdbc 4636
47ee5a45
DW
4637 while (super->disks) {
4638 d = super->disks;
cdddbdbc 4639 super->disks = d->next;
3a85bf0e 4640 __free_imsm_disk(d, 1);
cdddbdbc 4641 }
cb82edca
AK
4642 while (super->disk_mgmt_list) {
4643 d = super->disk_mgmt_list;
4644 super->disk_mgmt_list = d->next;
3a85bf0e 4645 __free_imsm_disk(d, 1);
cb82edca 4646 }
47ee5a45
DW
4647 while (super->missing) {
4648 d = super->missing;
4649 super->missing = d->next;
3a85bf0e 4650 __free_imsm_disk(d, 1);
47ee5a45
DW
4651 }
4652
cdddbdbc
DW
4653}
4654
9ca2c81c 4655/* free all the pieces hanging off of a super pointer */
d23fe947 4656static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4657{
88654014
LM
4658 struct intel_hba *elem, *next;
4659
9ca2c81c 4660 if (super->buf) {
949c47a0 4661 free(super->buf);
9ca2c81c
DW
4662 super->buf = NULL;
4663 }
f2f5c343
LM
4664 /* unlink capability description */
4665 super->orom = NULL;
8e59f3d8
AK
4666 if (super->migr_rec_buf) {
4667 free(super->migr_rec_buf);
4668 super->migr_rec_buf = NULL;
4669 }
d23fe947
DW
4670 if (free_disks)
4671 free_imsm_disks(super);
ba2de7ba 4672 free_devlist(super);
88654014
LM
4673 elem = super->hba;
4674 while (elem) {
4675 if (elem->path)
4676 free((void *)elem->path);
4677 next = elem->next;
4678 free(elem);
4679 elem = next;
88c32bb1 4680 }
8d67477f
TM
4681 if (super->bbm_log)
4682 free(super->bbm_log);
88654014 4683 super->hba = NULL;
cdddbdbc
DW
4684}
4685
9ca2c81c
DW
4686static void free_imsm(struct intel_super *super)
4687{
d23fe947 4688 __free_imsm(super, 1);
928f1424 4689 free(super->bb.entries);
9ca2c81c
DW
4690 free(super);
4691}
cdddbdbc
DW
4692
4693static void free_super_imsm(struct supertype *st)
4694{
4695 struct intel_super *super = st->sb;
4696
4697 if (!super)
4698 return;
4699
4700 free_imsm(super);
4701 st->sb = NULL;
4702}
4703
49133e57 4704static struct intel_super *alloc_super(void)
c2c087e6 4705{
503975b9 4706 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4707
503975b9
N
4708 super->current_vol = -1;
4709 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4710
4711 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4712 sizeof(struct md_bb_entry));
4713 if (!super->bb.entries) {
4714 free(super);
4715 return NULL;
4716 }
4717
c2c087e6
DW
4718 return super;
4719}
4720
f0f5a016
LM
4721/*
4722 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4723 */
d424212e 4724static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4725{
4726 struct sys_dev *hba_name;
4727 int rv = 0;
4728
4389ce73 4729 if (is_fd_valid(fd) && test_partition(fd)) {
3a30e28e
MT
4730 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4731 devname);
4732 return 1;
4733 }
420dafcd 4734 if (!is_fd_valid(fd) || check_no_platform()) {
f2f5c343 4735 super->orom = NULL;
f0f5a016
LM
4736 super->hba = NULL;
4737 return 0;
4738 }
4739 hba_name = find_disk_attached_hba(fd, NULL);
4740 if (!hba_name) {
d424212e 4741 if (devname)
e7b84f9d
N
4742 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4743 devname);
f0f5a016
LM
4744 return 1;
4745 }
4746 rv = attach_hba_to_super(super, hba_name);
4747 if (rv == 2) {
d424212e
N
4748 if (devname) {
4749 struct intel_hba *hba = super->hba;
f0f5a016 4750
60f0f54d
PB
4751 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4752 " but the container is assigned to Intel(R) %s %s (",
d424212e 4753 devname,
614902f6 4754 get_sys_dev_type(hba_name->type),
75350d87
KF
4755 hba_name->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4756 "domain" : "RAID controller",
f0f5a016 4757 hba_name->pci_id ? : "Err!",
60f0f54d 4758 get_sys_dev_type(super->hba->type),
75350d87
KF
4759 hba->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4760 "domain" : "RAID controller");
f0f5a016 4761
f0f5a016
LM
4762 while (hba) {
4763 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4764 if (hba->next)
4765 fprintf(stderr, ", ");
4766 hba = hba->next;
4767 }
6b781d33 4768 fprintf(stderr, ").\n"
cca67208 4769 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4770 }
f0f5a016
LM
4771 return 2;
4772 }
6b781d33 4773 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4774 if (!super->orom)
4775 return 3;
614902f6 4776
f0f5a016
LM
4777 return 0;
4778}
4779
47ee5a45
DW
4780/* find_missing - helper routine for load_super_imsm_all that identifies
4781 * disks that have disappeared from the system. This routine relies on
4782 * the mpb being uptodate, which it is at load time.
4783 */
4784static int find_missing(struct intel_super *super)
4785{
4786 int i;
4787 struct imsm_super *mpb = super->anchor;
4788 struct dl *dl;
4789 struct imsm_disk *disk;
47ee5a45
DW
4790
4791 for (i = 0; i < mpb->num_disks; i++) {
4792 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4793 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4794 if (dl)
4795 continue;
47ee5a45 4796
503975b9 4797 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4798 dl->major = 0;
4799 dl->minor = 0;
4800 dl->fd = -1;
503975b9 4801 dl->devname = xstrdup("missing");
47ee5a45
DW
4802 dl->index = i;
4803 serialcpy(dl->serial, disk->serial);
4804 dl->disk = *disk;
689c9bf3 4805 dl->e = NULL;
47ee5a45
DW
4806 dl->next = super->missing;
4807 super->missing = dl;
4808 }
4809
4810 return 0;
4811}
4812
a2b97981
DW
4813static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4814{
4815 struct intel_disk *idisk = disk_list;
4816
4817 while (idisk) {
4818 if (serialcmp(idisk->disk.serial, serial) == 0)
4819 break;
4820 idisk = idisk->next;
4821 }
4822
4823 return idisk;
4824}
4825
4826static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4827 struct intel_super *super,
4828 struct intel_disk **disk_list)
4829{
4830 struct imsm_disk *d = &super->disks->disk;
4831 struct imsm_super *mpb = super->anchor;
4832 int i, j;
4833
4834 for (i = 0; i < tbl_size; i++) {
4835 struct imsm_super *tbl_mpb = table[i]->anchor;
4836 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4837
4838 if (tbl_mpb->family_num == mpb->family_num) {
4839 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4840 dprintf("mpb from %d:%d matches %d:%d\n",
4841 super->disks->major,
a2b97981
DW
4842 super->disks->minor,
4843 table[i]->disks->major,
4844 table[i]->disks->minor);
4845 break;
4846 }
4847
4848 if (((is_configured(d) && !is_configured(tbl_d)) ||
4849 is_configured(d) == is_configured(tbl_d)) &&
4850 tbl_mpb->generation_num < mpb->generation_num) {
4851 /* current version of the mpb is a
4852 * better candidate than the one in
4853 * super_table, but copy over "cross
4854 * generational" status
4855 */
4856 struct intel_disk *idisk;
4857
1ade5cc1
N
4858 dprintf("mpb from %d:%d replaces %d:%d\n",
4859 super->disks->major,
a2b97981
DW
4860 super->disks->minor,
4861 table[i]->disks->major,
4862 table[i]->disks->minor);
4863
4864 idisk = disk_list_get(tbl_d->serial, *disk_list);
4865 if (idisk && is_failed(&idisk->disk))
4866 tbl_d->status |= FAILED_DISK;
4867 break;
4868 } else {
4869 struct intel_disk *idisk;
4870 struct imsm_disk *disk;
4871
4872 /* tbl_mpb is more up to date, but copy
4873 * over cross generational status before
4874 * returning
4875 */
4876 disk = __serial_to_disk(d->serial, mpb, NULL);
4877 if (disk && is_failed(disk))
4878 d->status |= FAILED_DISK;
4879
4880 idisk = disk_list_get(d->serial, *disk_list);
4881 if (idisk) {
4882 idisk->owner = i;
4883 if (disk && is_configured(disk))
4884 idisk->disk.status |= CONFIGURED_DISK;
4885 }
4886
1ade5cc1
N
4887 dprintf("mpb from %d:%d prefer %d:%d\n",
4888 super->disks->major,
a2b97981
DW
4889 super->disks->minor,
4890 table[i]->disks->major,
4891 table[i]->disks->minor);
4892
4893 return tbl_size;
4894 }
4895 }
4896 }
4897
4898 if (i >= tbl_size)
4899 table[tbl_size++] = super;
4900 else
4901 table[i] = super;
4902
4903 /* update/extend the merged list of imsm_disk records */
4904 for (j = 0; j < mpb->num_disks; j++) {
4905 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4906 struct intel_disk *idisk;
4907
4908 idisk = disk_list_get(disk->serial, *disk_list);
4909 if (idisk) {
4910 idisk->disk.status |= disk->status;
4911 if (is_configured(&idisk->disk) ||
4912 is_failed(&idisk->disk))
4913 idisk->disk.status &= ~(SPARE_DISK);
4914 } else {
503975b9 4915 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4916 idisk->owner = IMSM_UNKNOWN_OWNER;
4917 idisk->disk = *disk;
4918 idisk->next = *disk_list;
4919 *disk_list = idisk;
4920 }
4921
4922 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4923 idisk->owner = i;
4924 }
4925
4926 return tbl_size;
4927}
4928
4929static struct intel_super *
4930validate_members(struct intel_super *super, struct intel_disk *disk_list,
4931 const int owner)
4932{
4933 struct imsm_super *mpb = super->anchor;
4934 int ok_count = 0;
4935 int i;
4936
4937 for (i = 0; i < mpb->num_disks; i++) {
4938 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4939 struct intel_disk *idisk;
4940
4941 idisk = disk_list_get(disk->serial, disk_list);
4942 if (idisk) {
4943 if (idisk->owner == owner ||
4944 idisk->owner == IMSM_UNKNOWN_OWNER)
4945 ok_count++;
4946 else
1ade5cc1
N
4947 dprintf("'%.16s' owner %d != %d\n",
4948 disk->serial, idisk->owner,
a2b97981
DW
4949 owner);
4950 } else {
1ade5cc1
N
4951 dprintf("unknown disk %x [%d]: %.16s\n",
4952 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4953 disk->serial);
4954 break;
4955 }
4956 }
4957
4958 if (ok_count == mpb->num_disks)
4959 return super;
4960 return NULL;
4961}
4962
4963static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4964{
4965 struct intel_super *s;
4966
4967 for (s = super_list; s; s = s->next) {
4968 if (family_num != s->anchor->family_num)
4969 continue;
e12b3daa 4970 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4971 __le32_to_cpu(family_num), s->disks->devname);
4972 }
4973}
4974
4975static struct intel_super *
4976imsm_thunderdome(struct intel_super **super_list, int len)
4977{
4978 struct intel_super *super_table[len];
4979 struct intel_disk *disk_list = NULL;
4980 struct intel_super *champion, *spare;
4981 struct intel_super *s, **del;
4982 int tbl_size = 0;
4983 int conflict;
4984 int i;
4985
4986 memset(super_table, 0, sizeof(super_table));
4987 for (s = *super_list; s; s = s->next)
4988 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4989
4990 for (i = 0; i < tbl_size; i++) {
4991 struct imsm_disk *d;
4992 struct intel_disk *idisk;
4993 struct imsm_super *mpb = super_table[i]->anchor;
4994
4995 s = super_table[i];
4996 d = &s->disks->disk;
4997
4998 /* 'd' must appear in merged disk list for its
4999 * configuration to be valid
5000 */
5001 idisk = disk_list_get(d->serial, disk_list);
5002 if (idisk && idisk->owner == i)
5003 s = validate_members(s, disk_list, i);
5004 else
5005 s = NULL;
5006
5007 if (!s)
1ade5cc1
N
5008 dprintf("marking family: %#x from %d:%d offline\n",
5009 mpb->family_num,
a2b97981
DW
5010 super_table[i]->disks->major,
5011 super_table[i]->disks->minor);
5012 super_table[i] = s;
5013 }
5014
5015 /* This is where the mdadm implementation differs from the Windows
5016 * driver which has no strict concept of a container. We can only
5017 * assemble one family from a container, so when returning a prodigal
5018 * array member to this system the code will not be able to disambiguate
5019 * the container contents that should be assembled ("foreign" versus
5020 * "local"). It requires user intervention to set the orig_family_num
5021 * to a new value to establish a new container. The Windows driver in
5022 * this situation fixes up the volume name in place and manages the
5023 * foreign array as an independent entity.
5024 */
5025 s = NULL;
5026 spare = NULL;
5027 conflict = 0;
5028 for (i = 0; i < tbl_size; i++) {
5029 struct intel_super *tbl_ent = super_table[i];
5030 int is_spare = 0;
5031
5032 if (!tbl_ent)
5033 continue;
5034
5035 if (tbl_ent->anchor->num_raid_devs == 0) {
5036 spare = tbl_ent;
5037 is_spare = 1;
5038 }
5039
5040 if (s && !is_spare) {
5041 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5042 conflict++;
5043 } else if (!s && !is_spare)
5044 s = tbl_ent;
5045 }
5046
5047 if (!s)
5048 s = spare;
5049 if (!s) {
5050 champion = NULL;
5051 goto out;
5052 }
5053 champion = s;
5054
5055 if (conflict)
7a862a02 5056 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
5057 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5058
5059 /* collect all dl's onto 'champion', and update them to
5060 * champion's version of the status
5061 */
5062 for (s = *super_list; s; s = s->next) {
5063 struct imsm_super *mpb = champion->anchor;
5064 struct dl *dl = s->disks;
5065
5066 if (s == champion)
5067 continue;
5068
5d7b407a
CA
5069 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5070
a2b97981
DW
5071 for (i = 0; i < mpb->num_disks; i++) {
5072 struct imsm_disk *disk;
5073
5074 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5075 if (disk) {
5076 dl->disk = *disk;
5077 /* only set index on disks that are a member of
5078 * a populated contianer, i.e. one with
5079 * raid_devs
5080 */
5081 if (is_failed(&dl->disk))
5082 dl->index = -2;
5083 else if (is_spare(&dl->disk))
5084 dl->index = -1;
5085 break;
5086 }
5087 }
5088
5089 if (i >= mpb->num_disks) {
5090 struct intel_disk *idisk;
5091
5092 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5093 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5094 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5095 dl->index = -1;
5096 else {
5097 dl->index = -2;
5098 continue;
5099 }
5100 }
5101
5102 dl->next = champion->disks;
5103 champion->disks = dl;
5104 s->disks = NULL;
5105 }
5106
5107 /* delete 'champion' from super_list */
5108 for (del = super_list; *del; ) {
5109 if (*del == champion) {
5110 *del = (*del)->next;
5111 break;
5112 } else
5113 del = &(*del)->next;
5114 }
5115 champion->next = NULL;
5116
5117 out:
5118 while (disk_list) {
5119 struct intel_disk *idisk = disk_list;
5120
5121 disk_list = disk_list->next;
5122 free(idisk);
5123 }
5124
5125 return champion;
5126}
5127
9587c373
LM
5128static int
5129get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5130static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5131 int major, int minor, int keep_fd);
ec50f7b6
LM
5132static int
5133get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5134 int *max, int keep_fd);
5135
cdddbdbc 5136static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5137 char *devname, struct md_list *devlist,
5138 int keep_fd)
cdddbdbc 5139{
a2b97981
DW
5140 struct intel_super *super_list = NULL;
5141 struct intel_super *super = NULL;
a2b97981 5142 int err = 0;
9587c373 5143 int i = 0;
dab4a513 5144
4389ce73 5145 if (is_fd_valid(fd))
9587c373
LM
5146 /* 'fd' is an opened container */
5147 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5148 else
ec50f7b6
LM
5149 /* get super block from devlist devices */
5150 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5151 if (err)
1602d52c 5152 goto error;
a2b97981
DW
5153 /* all mpbs enter, maybe one leaves */
5154 super = imsm_thunderdome(&super_list, i);
5155 if (!super) {
5156 err = 1;
5157 goto error;
cdddbdbc
DW
5158 }
5159
47ee5a45
DW
5160 if (find_missing(super) != 0) {
5161 free_imsm(super);
a2b97981
DW
5162 err = 2;
5163 goto error;
47ee5a45 5164 }
8e59f3d8
AK
5165
5166 /* load migration record */
2f86fda3 5167 err = load_imsm_migr_rec(super);
4c965cc9
AK
5168 if (err == -1) {
5169 /* migration is in progress,
5170 * but migr_rec cannot be loaded,
5171 */
8e59f3d8
AK
5172 err = 4;
5173 goto error;
5174 }
e2f41b2c
AK
5175
5176 /* Check migration compatibility */
089f9d79 5177 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5178 pr_err("Unsupported migration detected");
e2f41b2c
AK
5179 if (devname)
5180 fprintf(stderr, " on %s\n", devname);
5181 else
5182 fprintf(stderr, " (IMSM).\n");
5183
5184 err = 5;
5185 goto error;
5186 }
5187
a2b97981
DW
5188 err = 0;
5189
5190 error:
5191 while (super_list) {
5192 struct intel_super *s = super_list;
5193
5194 super_list = super_list->next;
5195 free_imsm(s);
5196 }
9587c373 5197
a2b97981
DW
5198 if (err)
5199 return err;
f7e7067b 5200
cdddbdbc 5201 *sbp = super;
4389ce73 5202 if (is_fd_valid(fd))
4dd2df09 5203 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5204 else
4dd2df09 5205 st->container_devnm[0] = 0;
a2b97981 5206 if (err == 0 && st->ss == NULL) {
bf5a934a 5207 st->ss = &super_imsm;
cdddbdbc
DW
5208 st->minor_version = 0;
5209 st->max_devs = IMSM_MAX_DEVICES;
5210 }
cdddbdbc
DW
5211 return 0;
5212}
2b959fbf 5213
ec50f7b6
LM
5214static int
5215get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5216 int *max, int keep_fd)
5217{
5218 struct md_list *tmpdev;
5219 int err = 0;
5220 int i = 0;
9587c373 5221
ec50f7b6
LM
5222 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5223 if (tmpdev->used != 1)
5224 continue;
5225 if (tmpdev->container == 1) {
ca9de185 5226 int lmax = 0;
ec50f7b6 5227 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4389ce73 5228 if (!is_fd_valid(fd)) {
e7b84f9d 5229 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5230 tmpdev->devname, strerror(errno));
5231 err = 8;
5232 goto error;
5233 }
5234 err = get_sra_super_block(fd, super_list,
5235 tmpdev->devname, &lmax,
5236 keep_fd);
5237 i += lmax;
5238 close(fd);
5239 if (err) {
5240 err = 7;
5241 goto error;
5242 }
5243 } else {
5244 int major = major(tmpdev->st_rdev);
5245 int minor = minor(tmpdev->st_rdev);
5246 err = get_super_block(super_list,
4dd2df09 5247 NULL,
ec50f7b6
LM
5248 tmpdev->devname,
5249 major, minor,
5250 keep_fd);
5251 i++;
5252 if (err) {
5253 err = 6;
5254 goto error;
5255 }
5256 }
5257 }
5258 error:
5259 *max = i;
5260 return err;
5261}
9587c373 5262
4dd2df09 5263static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5264 int major, int minor, int keep_fd)
5265{
594dc1b8 5266 struct intel_super *s;
9587c373
LM
5267 char nm[32];
5268 int dfd = -1;
9587c373
LM
5269 int err = 0;
5270 int retry;
5271
5272 s = alloc_super();
5273 if (!s) {
5274 err = 1;
5275 goto error;
5276 }
5277
5278 sprintf(nm, "%d:%d", major, minor);
5279 dfd = dev_open(nm, O_RDWR);
4389ce73 5280 if (!is_fd_valid(dfd)) {
9587c373
LM
5281 err = 2;
5282 goto error;
5283 }
5284
aec01630
JS
5285 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5286 err = 2;
5287 goto error;
5288 }
cb8f6859 5289 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5290 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5291
5292 /* retry the load if we might have raced against mdmon */
4dd2df09 5293 if (err == 3 && devnm && mdmon_running(devnm))
9587c373 5294 for (retry = 0; retry < 3; retry++) {
239b3cc0 5295 sleep_for(0, MSEC_TO_NSEC(3), true);
9587c373
LM
5296 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5297 if (err != 3)
5298 break;
5299 }
5300 error:
5301 if (!err) {
5302 s->next = *super_list;
5303 *super_list = s;
5304 } else {
5305 if (s)
8d67477f 5306 free_imsm(s);
4389ce73 5307 close_fd(&dfd);
9587c373 5308 }
4389ce73
MT
5309 if (!keep_fd)
5310 close_fd(&dfd);
9587c373
LM
5311 return err;
5312
5313}
5314
5315static int
5316get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5317{
5318 struct mdinfo *sra;
4dd2df09 5319 char *devnm;
9587c373
LM
5320 struct mdinfo *sd;
5321 int err = 0;
5322 int i = 0;
4dd2df09 5323 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5324 if (!sra)
5325 return 1;
5326
5327 if (sra->array.major_version != -1 ||
5328 sra->array.minor_version != -2 ||
5329 strcmp(sra->text_version, "imsm") != 0) {
5330 err = 1;
5331 goto error;
5332 }
5333 /* load all mpbs */
4dd2df09 5334 devnm = fd2devnm(fd);
9587c373 5335 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5336 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5337 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5338 err = 7;
5339 goto error;
5340 }
5341 }
5342 error:
5343 sysfs_free(sra);
5344 *max = i;
5345 return err;
5346}
5347
2b959fbf
N
5348static int load_container_imsm(struct supertype *st, int fd, char *devname)
5349{
ec50f7b6 5350 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5351}
cdddbdbc
DW
5352
5353static int load_super_imsm(struct supertype *st, int fd, char *devname)
5354{
5355 struct intel_super *super;
5356 int rv;
8a3544f8 5357 int retry;
cdddbdbc 5358
357ac106 5359 if (test_partition(fd))
691c6ee1
N
5360 /* IMSM not allowed on partitions */
5361 return 1;
5362
37424f13
DW
5363 free_super_imsm(st);
5364
49133e57 5365 super = alloc_super();
8d67477f
TM
5366 if (!super)
5367 return 1;
3a85bf0e
MG
5368
5369 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5370 free_imsm(super);
5371 return 1;
5372 }
ea2bc72b
LM
5373 /* Load hba and capabilities if they exist.
5374 * But do not preclude loading metadata in case capabilities or hba are
5375 * non-compliant and ignore_hw_compat is set.
5376 */
d424212e 5377 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5378 /* no orom/efi or non-intel hba of the disk */
089f9d79 5379 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5380 if (devname)
e7b84f9d 5381 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5382 free_imsm(super);
5383 return 2;
5384 }
a2b97981 5385 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5386
8a3544f8
AP
5387 /* retry the load if we might have raced against mdmon */
5388 if (rv == 3) {
f96b1302
AP
5389 struct mdstat_ent *mdstat = NULL;
5390 char *name = fd2kname(fd);
5391
5392 if (name)
5393 mdstat = mdstat_by_component(name);
8a3544f8
AP
5394
5395 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5396 for (retry = 0; retry < 3; retry++) {
239b3cc0 5397 sleep_for(0, MSEC_TO_NSEC(3), true);
8a3544f8
AP
5398 rv = load_and_parse_mpb(fd, super, devname, 0);
5399 if (rv != 3)
5400 break;
5401 }
5402 }
5403
5404 free_mdstat(mdstat);
5405 }
5406
cdddbdbc
DW
5407 if (rv) {
5408 if (devname)
7a862a02 5409 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5410 free_imsm(super);
5411 return rv;
5412 }
5413
5414 st->sb = super;
5415 if (st->ss == NULL) {
5416 st->ss = &super_imsm;
5417 st->minor_version = 0;
5418 st->max_devs = IMSM_MAX_DEVICES;
5419 }
8e59f3d8
AK
5420
5421 /* load migration record */
2f86fda3 5422 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5423 /* Check for unsupported migration features */
5424 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5425 pr_err("Unsupported migration detected");
2e062e82
AK
5426 if (devname)
5427 fprintf(stderr, " on %s\n", devname);
5428 else
5429 fprintf(stderr, " (IMSM).\n");
5430 return 3;
5431 }
e2f41b2c
AK
5432 }
5433
cdddbdbc
DW
5434 return 0;
5435}
5436
ef6ffade
DW
5437static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5438{
5439 if (info->level == 1)
5440 return 128;
5441 return info->chunk_size >> 9;
5442}
5443
5551b113
CA
5444static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5445 unsigned long long size)
fcfd9599 5446{
4025c288 5447 if (info->level == 1)
5551b113 5448 return size * 2;
4025c288 5449 else
5551b113 5450 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5451}
5452
ec7e873b
MK
5453static void imsm_write_signature(struct imsm_super *mpb)
5454{
5455 /* It is safer to eventually truncate version rather than left it not NULL ended */
5456 snprintf((char *) mpb->sig, MAX_SIGNATURE_LENGTH, MPB_SIGNATURE MPB_VERSION_ATTRIBS);
5457}
5458
4d1313e9
DW
5459static void imsm_update_version_info(struct intel_super *super)
5460{
5461 /* update the version and attributes */
5462 struct imsm_super *mpb = super->anchor;
4d1313e9
DW
5463 struct imsm_dev *dev;
5464 struct imsm_map *map;
5465 int i;
5466
ec7e873b
MK
5467 mpb->attributes |= MPB_ATTRIB_CHECKSUM_VERIFY;
5468
4d1313e9
DW
5469 for (i = 0; i < mpb->num_raid_devs; i++) {
5470 dev = get_imsm_dev(super, i);
238c0a71 5471 map = get_imsm_map(dev, MAP_0);
ec7e873b 5472
4d1313e9
DW
5473 if (__le32_to_cpu(dev->size_high) > 0)
5474 mpb->attributes |= MPB_ATTRIB_2TB;
5475
ec7e873b
MK
5476 switch (get_imsm_raid_level(map)) {
5477 case IMSM_T_RAID0:
5478 mpb->attributes |= MPB_ATTRIB_RAID0;
5479 break;
5480 case IMSM_T_RAID1:
5481 mpb->attributes |= MPB_ATTRIB_RAID1;
5482 break;
5483 case IMSM_T_RAID5:
5484 mpb->attributes |= MPB_ATTRIB_RAID5;
5485 break;
5486 case IMSM_T_RAID10:
5487 mpb->attributes |= MPB_ATTRIB_RAID10;
610fc2ee
MK
5488 if (map->num_members > 4)
5489 mpb->attributes |= MPB_ATTRIB_RAID10_EXT;
ec7e873b 5490 break;
4d1313e9 5491 }
4d1313e9 5492 }
ec7e873b
MK
5493
5494 imsm_write_signature(mpb);
4d1313e9
DW
5495}
5496
e2eb503b
MT
5497/**
5498 * imsm_check_name() - check imsm naming criteria.
5499 * @super: &intel_super pointer, not NULL.
5500 * @name: name to check.
5501 * @verbose: verbose level.
5502 *
5503 * Name must be no longer than &MAX_RAID_SERIAL_LEN and must be unique across volumes.
5504 *
5505 * Returns: &true if @name matches, &false otherwise.
5506 */
5507static bool imsm_is_name_allowed(struct intel_super *super, const char * const name,
5508 const int verbose)
aa534678
DW
5509{
5510 struct imsm_super *mpb = super->anchor;
aa534678
DW
5511 int i;
5512
e2eb503b
MT
5513 if (is_string_lq(name, MAX_RAID_SERIAL_LEN + 1) == false) {
5514 pr_vrb("imsm: Name \"%s\" is too long\n", name);
5515 return false;
9bd99a90
RS
5516 }
5517
aa534678
DW
5518 for (i = 0; i < mpb->num_raid_devs; i++) {
5519 struct imsm_dev *dev = get_imsm_dev(super, i);
5520
5521 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
e2eb503b
MT
5522 pr_vrb("imsm: Name \"%s\" already exists\n", name);
5523 return false;
aa534678
DW
5524 }
5525 }
5526
e2eb503b 5527 return true;
aa534678
DW
5528}
5529
8b353278 5530static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5531 struct shape *s, char *name,
83cd1e97
N
5532 char *homehost, int *uuid,
5533 long long data_offset)
cdddbdbc 5534{
c2c087e6
DW
5535 /* We are creating a volume inside a pre-existing container.
5536 * so st->sb is already set.
5537 */
5538 struct intel_super *super = st->sb;
f36a9ecd 5539 unsigned int sector_size = super->sector_size;
949c47a0 5540 struct imsm_super *mpb = super->anchor;
ba2de7ba 5541 struct intel_dev *dv;
c2c087e6
DW
5542 struct imsm_dev *dev;
5543 struct imsm_vol *vol;
5544 struct imsm_map *map;
5545 int idx = mpb->num_raid_devs;
5546 int i;
760365f9 5547 int namelen;
c2c087e6 5548 unsigned long long array_blocks;
2c092cad 5549 size_t size_old, size_new;
b53bfba6
TM
5550 unsigned int data_disks;
5551 unsigned long long size_per_member;
cdddbdbc 5552
88c32bb1 5553 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5554 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5555 return 0;
5556 }
5557
2c092cad
DW
5558 /* ensure the mpb is large enough for the new data */
5559 size_old = __le32_to_cpu(mpb->mpb_size);
5560 size_new = disks_to_mpb_size(info->nr_disks);
5561 if (size_new > size_old) {
5562 void *mpb_new;
f36a9ecd 5563 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5564
f36a9ecd 5565 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5566 pr_err("could not allocate new mpb\n");
2c092cad
DW
5567 return 0;
5568 }
85337573
AO
5569 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5570 MIGR_REC_BUF_SECTORS*
5571 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5572 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5573 free(super->buf);
5574 free(super);
ea944c8f 5575 free(mpb_new);
8e59f3d8
AK
5576 return 0;
5577 }
2c092cad
DW
5578 memcpy(mpb_new, mpb, size_old);
5579 free(mpb);
5580 mpb = mpb_new;
949c47a0 5581 super->anchor = mpb_new;
2c092cad
DW
5582 mpb->mpb_size = __cpu_to_le32(size_new);
5583 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5584 super->len = size_round;
2c092cad 5585 }
bf5a934a 5586 super->current_vol = idx;
3960e579
DW
5587
5588 /* handle 'failed_disks' by either:
5589 * a) create dummy disk entries in the table if this the first
5590 * volume in the array. We add them here as this is the only
5591 * opportunity to add them. add_to_super_imsm_volume()
5592 * handles the non-failed disks and continues incrementing
5593 * mpb->num_disks.
5594 * b) validate that 'failed_disks' matches the current number
5595 * of missing disks if the container is populated
d23fe947 5596 */
3960e579 5597 if (super->current_vol == 0) {
d23fe947 5598 mpb->num_disks = 0;
3960e579
DW
5599 for (i = 0; i < info->failed_disks; i++) {
5600 struct imsm_disk *disk;
5601
5602 mpb->num_disks++;
5603 disk = __get_imsm_disk(mpb, i);
5604 disk->status = CONFIGURED_DISK | FAILED_DISK;
5605 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5606 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5607 "missing:%d", (__u8)i);
3960e579
DW
5608 }
5609 find_missing(super);
5610 } else {
5611 int missing = 0;
5612 struct dl *d;
5613
5614 for (d = super->missing; d; d = d->next)
5615 missing++;
5616 if (info->failed_disks > missing) {
e7b84f9d 5617 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5618 return 0;
5619 }
5620 }
5a038140 5621
e2eb503b 5622 if (imsm_is_name_allowed(super, name, 1) == false)
aa534678 5623 return 0;
e2eb503b 5624
503975b9
N
5625 dv = xmalloc(sizeof(*dv));
5626 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5627 /*
5628 * Explicitly allow truncating to not confuse gcc's
5629 * -Werror=stringop-truncation
5630 */
5631 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5632 memcpy(dev->volume, name, namelen);
e03640bd 5633 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5634 info->layout, info->chunk_size,
b53bfba6
TM
5635 s->size * BLOCKS_PER_KB);
5636 data_disks = get_data_disks(info->level, info->layout,
5637 info->raid_disks);
5638 array_blocks = round_size_to_mb(array_blocks, data_disks);
5639 size_per_member = array_blocks / data_disks;
979d38be 5640
fcc2c9da 5641 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5642 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5643 vol = &dev->vol;
5644 vol->migr_state = 0;
1484e727 5645 set_migr_type(dev, MIGR_INIT);
3960e579 5646 vol->dirty = !info->state;
4036e7ee 5647 set_vol_curr_migr_unit(dev, 0);
238c0a71 5648 map = get_imsm_map(dev, MAP_0);
5551b113 5649 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5650 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5651 map->failed_disk_num = ~0;
27550b13 5652 if (info->level > IMSM_T_RAID0)
fffaf1ff
N
5653 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5654 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5655 else
5656 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5657 IMSM_T_STATE_NORMAL;
252d23c0 5658 map->ddf = 1;
ef6ffade 5659
27550b13 5660 if (info->level == IMSM_T_RAID1 && info->raid_disks > 2) {
38950822
AW
5661 free(dev);
5662 free(dv);
27550b13 5663 pr_err("imsm does not support more than 2 disks in a raid1 volume\n");
ef6ffade
DW
5664 return 0;
5665 }
27550b13 5666 map->num_members = info->raid_disks;
81062a36 5667
27550b13 5668 update_imsm_raid_level(map, info->level);
1c275381 5669 set_num_domains(map);
ef6ffade 5670
44490938
MD
5671 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5672 set_blocks_per_member(map, info_to_blocks_per_member(info,
5673 size_per_member /
5674 BLOCKS_PER_KB));
5675
1c275381 5676 update_num_data_stripes(map, array_blocks);
c2c087e6
DW
5677 for (i = 0; i < map->num_members; i++) {
5678 /* initialized in add_to_super */
4eb26970 5679 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5680 }
949c47a0 5681 mpb->num_raid_devs++;
2a24dc1b
PB
5682 mpb->num_raid_devs_created++;
5683 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5684
b7580566 5685 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5686 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5687 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5688 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5689 } else {
5690 free(dev);
5691 free(dv);
5692 pr_err("imsm does not support consistency policy %s\n",
5f21d674 5693 map_num_s(consistency_policies, s->consistency_policy));
2432ce9b
AP
5694 return 0;
5695 }
5696
ba2de7ba
DW
5697 dv->dev = dev;
5698 dv->index = super->current_vol;
5699 dv->next = super->devlist;
5700 super->devlist = dv;
c2c087e6 5701
4d1313e9
DW
5702 imsm_update_version_info(super);
5703
c2c087e6 5704 return 1;
cdddbdbc
DW
5705}
5706
bf5a934a 5707static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5708 struct shape *s, char *name,
83cd1e97
N
5709 char *homehost, int *uuid,
5710 unsigned long long data_offset)
bf5a934a
DW
5711{
5712 /* This is primarily called by Create when creating a new array.
5713 * We will then get add_to_super called for each component, and then
5714 * write_init_super called to write it out to each device.
5715 * For IMSM, Create can create on fresh devices or on a pre-existing
5716 * array.
5717 * To create on a pre-existing array a different method will be called.
5718 * This one is just for fresh drives.
5719 */
5720 struct intel_super *super;
5721 struct imsm_super *mpb;
5722 size_t mpb_size;
5723
83cd1e97 5724 if (data_offset != INVALID_SECTORS) {
ed503f89 5725 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5726 return 0;
5727 }
5728
bf5a934a 5729 if (st->sb)
5308f117 5730 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5731 data_offset);
e683ca88
DW
5732
5733 if (info)
5734 mpb_size = disks_to_mpb_size(info->nr_disks);
5735 else
f36a9ecd 5736 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5737
49133e57 5738 super = alloc_super();
f36a9ecd
PB
5739 if (super &&
5740 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5741 free_imsm(super);
e683ca88
DW
5742 super = NULL;
5743 }
5744 if (!super) {
1ade5cc1 5745 pr_err("could not allocate superblock\n");
bf5a934a
DW
5746 return 0;
5747 }
de44e46f
PB
5748 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5749 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5750 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5751 free(super->buf);
8d67477f 5752 free_imsm(super);
8e59f3d8
AK
5753 return 0;
5754 }
e683ca88 5755 memset(super->buf, 0, mpb_size);
ef649044 5756 mpb = super->buf;
e683ca88
DW
5757 mpb->mpb_size = __cpu_to_le32(mpb_size);
5758 st->sb = super;
5759
5760 if (info == NULL) {
5761 /* zeroing superblock */
5762 return 0;
5763 }
bf5a934a 5764
ec7e873b 5765 imsm_update_version_info(super);
bf5a934a
DW
5766 return 1;
5767}
5768
f2cc4f7d
AO
5769static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5770{
5771 unsigned int member_sector_size;
5772
4389ce73 5773 if (!is_fd_valid(dl->fd)) {
f2cc4f7d
AO
5774 pr_err("Invalid file descriptor for %s\n", dl->devname);
5775 return 0;
5776 }
5777
5778 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5779 return 0;
5780 if (member_sector_size != super->sector_size)
5781 return 0;
5782 return 1;
5783}
5784
f20c3968 5785static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5786 int fd, char *devname)
5787{
5788 struct intel_super *super = st->sb;
d23fe947 5789 struct imsm_super *mpb = super->anchor;
3960e579 5790 struct imsm_disk *_disk;
bf5a934a
DW
5791 struct imsm_dev *dev;
5792 struct imsm_map *map;
3960e579 5793 struct dl *dl, *df;
4eb26970 5794 int slot;
9a7df595
MT
5795 int autolayout = 0;
5796
5797 if (!is_fd_valid(fd))
5798 autolayout = 1;
bf5a934a 5799
949c47a0 5800 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5801 map = get_imsm_map(dev, MAP_0);
bf5a934a 5802
208933a7 5803 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5804 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5805 devname);
5806 return 1;
5807 }
5808
9a7df595
MT
5809 for (dl = super->disks; dl ; dl = dl->next) {
5810 if (autolayout) {
efb30e7f
DW
5811 if (dl->raiddisk == dk->raid_disk)
5812 break;
9a7df595
MT
5813 } else if (dl->major == dk->major && dl->minor == dk->minor)
5814 break;
efb30e7f 5815 }
d23fe947 5816
208933a7 5817 if (!dl) {
9a7df595
MT
5818 if (!autolayout)
5819 pr_err("%s is not a member of the same container.\n",
5820 devname);
f20c3968 5821 return 1;
208933a7 5822 }
bf5a934a 5823
9a7df595
MT
5824 if (!autolayout && super->current_vol > 0) {
5825 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5826
5827 if (_slot != dk->raid_disk) {
5828 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5829 dl->devname, _slot, dk->raid_disk);
5830 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5831 return 1;
5832 }
5833 }
5834
59632db9
MZ
5835 if (mpb->num_disks == 0)
5836 if (!get_dev_sector_size(dl->fd, dl->devname,
5837 &super->sector_size))
5838 return 1;
5839
f2cc4f7d
AO
5840 if (!drive_validate_sector_size(super, dl)) {
5841 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5842 return 1;
5843 }
5844
d23fe947
DW
5845 /* add a pristine spare to the metadata */
5846 if (dl->index < 0) {
5847 dl->index = super->anchor->num_disks;
5848 super->anchor->num_disks++;
5849 }
4eb26970
DW
5850 /* Check the device has not already been added */
5851 slot = get_imsm_disk_slot(map, dl->index);
5852 if (slot >= 0 &&
238c0a71 5853 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5854 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5855 devname);
5856 return 1;
5857 }
656b6b5a 5858 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5859 dl->disk.status = CONFIGURED_DISK;
d23fe947 5860
3960e579
DW
5861 /* update size of 'missing' disks to be at least as large as the
5862 * largest acitve member (we only have dummy missing disks when
5863 * creating the first volume)
5864 */
5865 if (super->current_vol == 0) {
5866 for (df = super->missing; df; df = df->next) {
5551b113
CA
5867 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5868 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5869 _disk = __get_imsm_disk(mpb, df->index);
5870 *_disk = df->disk;
5871 }
5872 }
5873
5874 /* refresh unset/failed slots to point to valid 'missing' entries */
5875 for (df = super->missing; df; df = df->next)
5876 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5877 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5878
5879 if ((ord & IMSM_ORD_REBUILD) == 0)
5880 continue;
5881 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5882 if (is_gen_migration(dev)) {
238c0a71
AK
5883 struct imsm_map *map2 = get_imsm_map(dev,
5884 MAP_1);
0a108d63 5885 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5886 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5887 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5888 slot2,
5889 MAP_1);
1ace8403
AK
5890 if ((unsigned)df->index ==
5891 ord_to_idx(ord2))
5892 set_imsm_ord_tbl_ent(map2,
0a108d63 5893 slot2,
1ace8403
AK
5894 df->index |
5895 IMSM_ORD_REBUILD);
5896 }
5897 }
3960e579
DW
5898 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5899 break;
5900 }
5901
d23fe947
DW
5902 /* if we are creating the first raid device update the family number */
5903 if (super->current_vol == 0) {
5904 __u32 sum;
5905 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5906
3960e579 5907 _disk = __get_imsm_disk(mpb, dl->index);
756a15f3 5908 if (!_disk) {
e7b84f9d 5909 pr_err("BUG mpb setup error\n");
791b666a
AW
5910 return 1;
5911 }
d23fe947
DW
5912 *_dev = *dev;
5913 *_disk = dl->disk;
148acb7b
DW
5914 sum = random32();
5915 sum += __gen_imsm_checksum(mpb);
d23fe947 5916 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5917 mpb->orig_family_num = mpb->family_num;
e48aed3c 5918 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5919 }
ca0748fa 5920 super->current_disk = dl;
f20c3968 5921 return 0;
bf5a934a
DW
5922}
5923
a8619d23
AK
5924/* mark_spare()
5925 * Function marks disk as spare and restores disk serial
5926 * in case it was previously marked as failed by takeover operation
5927 * reruns:
5928 * -1 : critical error
5929 * 0 : disk is marked as spare but serial is not set
5930 * 1 : success
5931 */
5932int mark_spare(struct dl *disk)
5933{
5934 __u8 serial[MAX_RAID_SERIAL_LEN];
5935 int ret_val = -1;
5936
5937 if (!disk)
5938 return ret_val;
5939
5940 ret_val = 0;
6da53c0e 5941 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
5942 /* Restore disk serial number, because takeover marks disk
5943 * as failed and adds to serial ':0' before it becomes
5944 * a spare disk.
5945 */
5946 serialcpy(disk->serial, serial);
5947 serialcpy(disk->disk.serial, serial);
5948 ret_val = 1;
5949 }
5950 disk->disk.status = SPARE_DISK;
5951 disk->index = -1;
5952
5953 return ret_val;
5954}
88654014 5955
12724c01
TM
5956
5957static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5958
f20c3968 5959static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5960 int fd, char *devname,
5961 unsigned long long data_offset)
cdddbdbc 5962{
c2c087e6 5963 struct intel_super *super = st->sb;
c2c087e6
DW
5964 struct dl *dd;
5965 unsigned long long size;
fa7bb6f8 5966 unsigned int member_sector_size;
f2f27e63 5967 __u32 id;
c2c087e6
DW
5968 int rv;
5969 struct stat stb;
5970
88654014
LM
5971 /* If we are on an RAID enabled platform check that the disk is
5972 * attached to the raid controller.
5973 * We do not need to test disks attachment for container based additions,
5974 * they shall be already tested when container was created/assembled.
88c32bb1 5975 */
d424212e 5976 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5977 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5978 if (rv != 0) {
5979 dprintf("capability: %p fd: %d ret: %d\n",
5980 super->orom, fd, rv);
5981 return 1;
88c32bb1
DW
5982 }
5983
f20c3968
DW
5984 if (super->current_vol >= 0)
5985 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5986
95673c7d
NC
5987 if (fstat(fd, &stb) != 0)
5988 return 1;
503975b9 5989 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5990 dd->major = major(stb.st_rdev);
5991 dd->minor = minor(stb.st_rdev);
503975b9 5992 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5993 dd->fd = fd;
689c9bf3 5994 dd->e = NULL;
1a64be56 5995 dd->action = DISK_ADD;
6da53c0e 5996 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 5997 if (rv) {
e7b84f9d 5998 pr_err("failed to retrieve scsi serial, aborting\n");
3a85bf0e 5999 __free_imsm_disk(dd, 0);
0030e8d6 6000 abort();
c2c087e6 6001 }
7c798f87 6002
20bee0f8
PB
6003 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6004 (super->hba->type == SYS_DEV_VMD))) {
6005 int i;
7c798f87
MT
6006 char cntrl_path[PATH_MAX];
6007 char *cntrl_name;
6008 char pci_dev_path[PATH_MAX];
20bee0f8 6009
7c798f87
MT
6010 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6011 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 6012 pr_err("failed to get dev paths, aborting\n");
3a85bf0e 6013 __free_imsm_disk(dd, 0);
a8f3cfd5
MT
6014 return 1;
6015 }
6016
7c798f87
MT
6017 cntrl_name = basename(cntrl_path);
6018 if (is_multipath_nvme(fd))
6019 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6020 cntrl_name);
6021
6022 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
6023 /*
6024 * If Intel's NVMe drive has serial ended with
6025 * "-A","-B","-1" or "-2" it means that this is "x8"
6026 * device (double drive on single PCIe card).
6027 * User should be warned about potential data loss.
6028 */
6029 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6030 /* Skip empty character at the end */
6031 if (dd->serial[i] == 0)
6032 continue;
6033
6034 if (((dd->serial[i] == 'A') ||
6035 (dd->serial[i] == 'B') ||
6036 (dd->serial[i] == '1') ||
6037 (dd->serial[i] == '2')) &&
6038 (dd->serial[i-1] == '-'))
6039 pr_err("\tThe action you are about to take may put your data at risk.\n"
6040 "\tPlease note that x8 devices may consist of two separate x4 devices "
6041 "located on a single PCIe port.\n"
6042 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6043 break;
6044 }
32716c51
PB
6045 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6046 !imsm_orom_has_tpv_support(super->orom)) {
6047 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 6048 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
3a85bf0e 6049 __free_imsm_disk(dd, 0);
32716c51 6050 return 1;
20bee0f8
PB
6051 }
6052 }
c2c087e6 6053
c2c087e6 6054 get_dev_size(fd, NULL, &size);
3a85bf0e
MG
6055 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6056 __free_imsm_disk(dd, 0);
aec01630 6057 return 1;
3a85bf0e 6058 }
fa7bb6f8
PB
6059
6060 if (super->sector_size == 0) {
6061 /* this a first device, so sector_size is not set yet */
6062 super->sector_size = member_sector_size;
fa7bb6f8
PB
6063 }
6064
71e5411e 6065 /* clear migr_rec when adding disk to container */
85337573
AO
6066 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6067 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 6068 SEEK_SET) >= 0) {
466070ad 6069 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
6070 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6071 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
6072 perror("Write migr_rec failed");
6073 }
6074
c2c087e6 6075 size /= 512;
1f24f035 6076 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6077 set_total_blocks(&dd->disk, size);
6078 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6079 struct imsm_super *mpb = super->anchor;
6080 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6081 }
a8619d23 6082 mark_spare(dd);
c2c087e6 6083 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6084 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6085 else
b9f594fe 6086 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6087
6088 if (st->update_tail) {
1a64be56
LM
6089 dd->next = super->disk_mgmt_list;
6090 super->disk_mgmt_list = dd;
43dad3d6 6091 } else {
12724c01
TM
6092 /* this is called outside of mdmon
6093 * write initial spare metadata
6094 * mdmon will overwrite it.
6095 */
43dad3d6
DW
6096 dd->next = super->disks;
6097 super->disks = dd;
12724c01 6098 write_super_imsm_spare(super, dd);
43dad3d6 6099 }
f20c3968
DW
6100
6101 return 0;
cdddbdbc
DW
6102}
6103
1a64be56
LM
6104static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6105{
6106 struct intel_super *super = st->sb;
6107 struct dl *dd;
6108
6109 /* remove from super works only in mdmon - for communication
6110 * manager - monitor. Check if communication memory buffer
6111 * is prepared.
6112 */
6113 if (!st->update_tail) {
1ade5cc1 6114 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6115 return 1;
6116 }
503975b9 6117 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6118 dd->major = dk->major;
6119 dd->minor = dk->minor;
1a64be56 6120 dd->fd = -1;
a8619d23 6121 mark_spare(dd);
1a64be56
LM
6122 dd->action = DISK_REMOVE;
6123
6124 dd->next = super->disk_mgmt_list;
6125 super->disk_mgmt_list = dd;
6126
1a64be56
LM
6127 return 0;
6128}
6129
f796af5d
DW
6130static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6131
6132static union {
f36a9ecd 6133 char buf[MAX_SECTOR_SIZE];
f796af5d 6134 struct imsm_super anchor;
f36a9ecd 6135} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6136
12724c01
TM
6137
6138static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6139{
f796af5d 6140 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6141 __u32 sum;
12724c01
TM
6142
6143 if (d->index != -1)
6144 return 1;
d23fe947 6145
68641cdb
JS
6146 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6147 spare->generation_num = __cpu_to_le32(1UL);
68641cdb
JS
6148 spare->num_disks = 1;
6149 spare->num_raid_devs = 0;
68641cdb 6150 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d 6151
ec7e873b 6152 imsm_write_signature(spare);
d23fe947 6153
12724c01
TM
6154 spare->disk[0] = d->disk;
6155 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6156 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6157
6158 if (super->sector_size == 4096)
6159 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6160
12724c01
TM
6161 sum = __gen_imsm_checksum(spare);
6162 spare->family_num = __cpu_to_le32(sum);
6163 spare->orig_family_num = 0;
6164 sum = __gen_imsm_checksum(spare);
6165 spare->check_sum = __cpu_to_le32(sum);
027c374f 6166
12724c01
TM
6167 if (store_imsm_mpb(d->fd, spare)) {
6168 pr_err("failed for device %d:%d %s\n",
6169 d->major, d->minor, strerror(errno));
6170 return 1;
6171 }
6172
6173 return 0;
6174}
6175/* spare records have their own family number and do not have any defined raid
6176 * devices
6177 */
6178static int write_super_imsm_spares(struct intel_super *super, int doclose)
6179{
6180 struct dl *d;
f36a9ecd 6181
12724c01
TM
6182 for (d = super->disks; d; d = d->next) {
6183 if (d->index != -1)
6184 continue;
d23fe947 6185
12724c01 6186 if (write_super_imsm_spare(super, d))
e74255d9 6187 return 1;
12724c01 6188
4389ce73
MT
6189 if (doclose)
6190 close_fd(&d->fd);
d23fe947
DW
6191 }
6192
e74255d9 6193 return 0;
d23fe947
DW
6194}
6195
36988a3d 6196static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6197{
36988a3d 6198 struct intel_super *super = st->sb;
f36a9ecd 6199 unsigned int sector_size = super->sector_size;
949c47a0 6200 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6201 struct dl *d;
6202 __u32 generation;
6203 __u32 sum;
d23fe947 6204 int spares = 0;
949c47a0 6205 int i;
a48ac0a8 6206 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6207 int num_disks = 0;
146c6260 6208 int clear_migration_record = 1;
bbab0940 6209 __u32 bbm_log_size;
cdddbdbc 6210
c2c087e6
DW
6211 /* 'generation' is incremented everytime the metadata is written */
6212 generation = __le32_to_cpu(mpb->generation_num);
6213 generation++;
6214 mpb->generation_num = __cpu_to_le32(generation);
6215
148acb7b
DW
6216 /* fix up cases where previous mdadm releases failed to set
6217 * orig_family_num
6218 */
6219 if (mpb->orig_family_num == 0)
6220 mpb->orig_family_num = mpb->family_num;
6221
d23fe947 6222 for (d = super->disks; d; d = d->next) {
8796fdc4 6223 if (d->index == -1)
d23fe947 6224 spares++;
36988a3d 6225 else {
d23fe947 6226 mpb->disk[d->index] = d->disk;
36988a3d
AK
6227 num_disks++;
6228 }
d23fe947 6229 }
36988a3d 6230 for (d = super->missing; d; d = d->next) {
47ee5a45 6231 mpb->disk[d->index] = d->disk;
36988a3d
AK
6232 num_disks++;
6233 }
6234 mpb->num_disks = num_disks;
6235 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6236
949c47a0
DW
6237 for (i = 0; i < mpb->num_raid_devs; i++) {
6238 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d 6239 struct imsm_dev *dev2 = get_imsm_dev(super, i);
756a15f3
MG
6240
6241 imsm_copy_dev(dev, dev2);
6242 mpb_size += sizeof_imsm_dev(dev, 0);
6243
146c6260
AK
6244 if (is_gen_migration(dev2))
6245 clear_migration_record = 0;
949c47a0 6246 }
bbab0940
TM
6247
6248 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6249
6250 if (bbm_log_size) {
6251 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6252 mpb->attributes |= MPB_ATTRIB_BBM;
6253 } else
6254 mpb->attributes &= ~MPB_ATTRIB_BBM;
6255
6256 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6257 mpb_size += bbm_log_size;
a48ac0a8 6258 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6259
bbab0940
TM
6260#ifdef DEBUG
6261 assert(super->len == 0 || mpb_size <= super->len);
6262#endif
6263
c2c087e6 6264 /* recalculate checksum */
949c47a0 6265 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6266 mpb->check_sum = __cpu_to_le32(sum);
6267
51d83f5d
AK
6268 if (super->clean_migration_record_by_mdmon) {
6269 clear_migration_record = 1;
6270 super->clean_migration_record_by_mdmon = 0;
6271 }
146c6260 6272 if (clear_migration_record)
de44e46f 6273 memset(super->migr_rec_buf, 0,
85337573 6274 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6275
f36a9ecd
PB
6276 if (sector_size == 4096)
6277 convert_to_4k(super);
6278
d23fe947 6279 /* write the mpb for disks that compose raid devices */
c2c087e6 6280 for (d = super->disks; d ; d = d->next) {
86c54047 6281 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6282 continue;
30602f53 6283
146c6260
AK
6284 if (clear_migration_record) {
6285 unsigned long long dsize;
6286
6287 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6288 if (lseek64(d->fd, dsize - sector_size,
6289 SEEK_SET) >= 0) {
466070ad
PB
6290 if ((unsigned int)write(d->fd,
6291 super->migr_rec_buf,
de44e46f
PB
6292 MIGR_REC_BUF_SECTORS*sector_size) !=
6293 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6294 perror("Write migr_rec failed");
146c6260
AK
6295 }
6296 }
51d83f5d
AK
6297
6298 if (store_imsm_mpb(d->fd, mpb))
6299 fprintf(stderr,
1ade5cc1
N
6300 "failed for device %d:%d (fd: %d)%s\n",
6301 d->major, d->minor,
51d83f5d
AK
6302 d->fd, strerror(errno));
6303
4389ce73
MT
6304 if (doclose)
6305 close_fd(&d->fd);
c2c087e6
DW
6306 }
6307
d23fe947
DW
6308 if (spares)
6309 return write_super_imsm_spares(super, doclose);
6310
e74255d9 6311 return 0;
c2c087e6
DW
6312}
6313
9b1fb677 6314static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6315{
6316 size_t len;
6317 struct imsm_update_create_array *u;
6318 struct intel_super *super = st->sb;
9b1fb677 6319 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6320 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6321 struct disk_info *inf;
6322 struct imsm_disk *disk;
6323 int i;
43dad3d6 6324
54c2c1ea
DW
6325 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6326 sizeof(*inf) * map->num_members;
503975b9 6327 u = xmalloc(len);
43dad3d6 6328 u->type = update_create_array;
9b1fb677 6329 u->dev_idx = dev_idx;
43dad3d6 6330 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6331 inf = get_disk_info(u);
6332 for (i = 0; i < map->num_members; i++) {
238c0a71 6333 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6334
54c2c1ea 6335 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6336 if (!disk)
6337 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6338 serialcpy(inf[i].serial, disk->serial);
6339 }
43dad3d6
DW
6340 append_metadata_update(st, u, len);
6341
6342 return 0;
6343}
6344
1a64be56 6345static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6346{
6347 struct intel_super *super = st->sb;
6348 size_t len;
1a64be56 6349 struct imsm_update_add_remove_disk *u;
43dad3d6 6350
1a64be56 6351 if (!super->disk_mgmt_list)
43dad3d6
DW
6352 return 0;
6353
6354 len = sizeof(*u);
503975b9 6355 u = xmalloc(len);
1a64be56 6356 u->type = update_add_remove_disk;
43dad3d6
DW
6357 append_metadata_update(st, u, len);
6358
6359 return 0;
6360}
2432ce9b
AP
6361
6362__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6363
e397cefe
AP
6364static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6365{
6366 struct ppl_header *ppl_hdr = buf;
6367 int ret;
6368
6369 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6370
6371 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6372 ret = -errno;
6373 perror("Failed to seek to PPL header location");
6374 return ret;
6375 }
6376
6377 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6378 ret = -errno;
6379 perror("Write PPL header failed");
6380 return ret;
6381 }
6382
6383 fsync(fd);
6384
6385 return 0;
6386}
6387
2432ce9b
AP
6388static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6389{
6390 struct intel_super *super = st->sb;
6391 void *buf;
6392 struct ppl_header *ppl_hdr;
6393 int ret;
6394
b2514242
PB
6395 /* first clear entire ppl space */
6396 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6397 if (ret)
6398 return ret;
6399
6400 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6401 if (ret) {
6402 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6403 return -ret;
2432ce9b
AP
6404 }
6405
6406 memset(buf, 0, PPL_HEADER_SIZE);
6407 ppl_hdr = buf;
6408 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6409 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6410
6411 if (info->mismatch_cnt) {
6412 /*
6413 * We are overwriting an invalid ppl. Make one entry with wrong
6414 * checksum to prevent the kernel from skipping resync.
6415 */
6416 ppl_hdr->entries_count = __cpu_to_le32(1);
6417 ppl_hdr->entries[0].checksum = ~0;
6418 }
6419
e397cefe 6420 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6421
6422 free(buf);
6423 return ret;
6424}
6425
e397cefe
AP
6426static int is_rebuilding(struct imsm_dev *dev);
6427
2432ce9b
AP
6428static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6429 struct mdinfo *disk)
6430{
6431 struct intel_super *super = st->sb;
6432 struct dl *d;
e397cefe 6433 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6434 int ret = 0;
e397cefe 6435 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6436 __u32 crc;
6437 struct imsm_dev *dev;
2432ce9b 6438 __u32 idx;
44b6b876
PB
6439 unsigned int i;
6440 unsigned long long ppl_offset = 0;
6441 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6442
6443 if (disk->disk.raid_disk < 0)
6444 return 0;
6445
2432ce9b 6446 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6447 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6448 d = get_imsm_dl_disk(super, idx);
6449
6450 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6451 return 0;
6452
6453 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6454 pr_err("Failed to allocate PPL header buffer\n");
6455 return -1;
6456 }
6457 buf = buf_orig;
2432ce9b 6458
44b6b876
PB
6459 ret = 1;
6460 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6461 void *tmp;
6462
44b6b876 6463 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6464
44b6b876
PB
6465 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6466 SEEK_SET) < 0) {
6467 perror("Failed to seek to PPL header location");
6468 ret = -1;
e397cefe 6469 break;
44b6b876 6470 }
2432ce9b 6471
44b6b876
PB
6472 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6473 perror("Read PPL header failed");
6474 ret = -1;
e397cefe 6475 break;
44b6b876 6476 }
2432ce9b 6477
44b6b876 6478 ppl_hdr = buf;
2432ce9b 6479
44b6b876
PB
6480 crc = __le32_to_cpu(ppl_hdr->checksum);
6481 ppl_hdr->checksum = 0;
6482
6483 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6484 dprintf("Wrong PPL header checksum on %s\n",
6485 d->devname);
e397cefe 6486 break;
44b6b876
PB
6487 }
6488
6489 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6490 /* previous was newest, it was already checked */
e397cefe 6491 break;
44b6b876
PB
6492 }
6493
6494 if ((__le32_to_cpu(ppl_hdr->signature) !=
6495 super->anchor->orig_family_num)) {
6496 dprintf("Wrong PPL header signature on %s\n",
6497 d->devname);
6498 ret = 1;
e397cefe 6499 break;
44b6b876
PB
6500 }
6501
6502 ret = 0;
6503 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6504
44b6b876
PB
6505 ppl_offset += PPL_HEADER_SIZE;
6506 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6507 ppl_offset +=
6508 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6509
6510 if (!buf_prev)
6511 buf_prev = buf + PPL_HEADER_SIZE;
6512 tmp = buf_prev;
6513 buf_prev = buf;
6514 buf = tmp;
2432ce9b
AP
6515 }
6516
e397cefe
AP
6517 if (buf_prev) {
6518 buf = buf_prev;
6519 ppl_hdr = buf_prev;
6520 }
2432ce9b 6521
54148aba
PB
6522 /*
6523 * Update metadata to use mutliple PPLs area (1MB).
6524 * This is done once for all RAID members
6525 */
6526 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6527 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6528 char subarray[20];
6529 struct mdinfo *member_dev;
6530
6531 sprintf(subarray, "%d", info->container_member);
6532
6533 if (mdmon_running(st->container_devnm))
6534 st->update_tail = &st->updates;
6535
03312b52 6536 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
54148aba
PB
6537 pr_err("Failed to update subarray %s\n",
6538 subarray);
6539 } else {
6540 if (st->update_tail)
6541 flush_metadata_updates(st);
6542 else
6543 st->ss->sync_metadata(st);
6544 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6545 for (member_dev = info->devs; member_dev;
6546 member_dev = member_dev->next)
6547 member_dev->ppl_size =
6548 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6549 }
6550 }
6551
b23d0750 6552 if (ret == 1) {
2fc0fc63
AP
6553 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6554
50b9c10d
PB
6555 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6556 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6557 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6558 (is_rebuilding(dev) &&
4036e7ee 6559 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6560 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6561 ret = st->ss->write_init_ppl(st, info, d->fd);
6562 else
6563 info->mismatch_cnt++;
e397cefe
AP
6564 } else if (ret == 0 &&
6565 ppl_hdr->entries_count == 0 &&
6566 is_rebuilding(dev) &&
6567 info->resync_start == 0) {
6568 /*
6569 * The header has no entries - add a single empty entry and
6570 * rewrite the header to prevent the kernel from going into
6571 * resync after an interrupted rebuild.
6572 */
6573 ppl_hdr->entries_count = __cpu_to_le32(1);
6574 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6575 }
2432ce9b 6576
e397cefe
AP
6577 free(buf_orig);
6578
2432ce9b
AP
6579 return ret;
6580}
6581
2432ce9b
AP
6582static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6583{
6584 struct intel_super *super = st->sb;
6585 struct dl *d;
6586 int ret = 0;
6587
6588 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6589 info->array.level != 5)
6590 return 0;
6591
6592 for (d = super->disks; d ; d = d->next) {
6593 if (d->index < 0 || is_failed(&d->disk))
6594 continue;
6595
6596 ret = st->ss->write_init_ppl(st, info, d->fd);
6597 if (ret)
6598 break;
6599 }
6600
6601 return ret;
6602}
43dad3d6 6603
fbc42556
JR
6604/*******************************************************************************
6605 * Function: write_init_bitmap_imsm_vol
6606 * Description: Write a bitmap header and prepares the area for the bitmap.
6607 * Parameters:
6608 * st : supertype information
6609 * vol_idx : the volume index to use
6610 *
6611 * Returns:
6612 * 0 : success
6613 * -1 : fail
6614 ******************************************************************************/
6615static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6616{
6617 struct intel_super *super = st->sb;
6618 int prev_current_vol = super->current_vol;
6619 struct dl *d;
6620 int ret = 0;
6621
6622 super->current_vol = vol_idx;
6623 for (d = super->disks; d; d = d->next) {
6624 if (d->index < 0 || is_failed(&d->disk))
6625 continue;
6626 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6627 if (ret)
6628 break;
6629 }
6630 super->current_vol = prev_current_vol;
6631 return ret;
6632}
6633
6634/*******************************************************************************
6635 * Function: write_init_bitmap_imsm_all
6636 * Description: Write a bitmap header and prepares the area for the bitmap.
6637 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6638 * Parameters:
6639 * st : supertype information
6640 * info : info about the volume where the bitmap should be written
6641 * vol_idx : the volume index to use
6642 *
6643 * Returns:
6644 * 0 : success
6645 * -1 : fail
6646 ******************************************************************************/
6647static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6648 int vol_idx)
6649{
6650 int ret = 0;
6651
6652 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6653 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6654
6655 return ret;
6656}
6657
c2c087e6
DW
6658static int write_init_super_imsm(struct supertype *st)
6659{
9b1fb677
DW
6660 struct intel_super *super = st->sb;
6661 int current_vol = super->current_vol;
2432ce9b
AP
6662 int rv = 0;
6663 struct mdinfo info;
6664
6665 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6666
6667 /* we are done with current_vol reset it to point st at the container */
6668 super->current_vol = -1;
6669
8273f55e 6670 if (st->update_tail) {
43dad3d6
DW
6671 /* queue the recently created array / added disk
6672 * as a metadata update */
8273f55e 6673
43dad3d6 6674 /* determine if we are creating a volume or adding a disk */
9b1fb677 6675 if (current_vol < 0) {
1a64be56
LM
6676 /* in the mgmt (add/remove) disk case we are running
6677 * in mdmon context, so don't close fd's
43dad3d6 6678 */
2432ce9b
AP
6679 rv = mgmt_disk(st);
6680 } else {
fbc42556 6681 /* adding the second volume to the array */
2432ce9b 6682 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6683 if (!rv)
6684 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6685 if (!rv)
6686 rv = create_array(st, current_vol);
6687 }
d682f344
N
6688 } else {
6689 struct dl *d;
6690 for (d = super->disks; d; d = d->next)
ba728be7 6691 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6692 if (current_vol >= 0) {
2432ce9b 6693 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6694 if (!rv)
6695 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6696 }
6697
2432ce9b
AP
6698 if (!rv)
6699 rv = write_super_imsm(st, 1);
d682f344 6700 }
2432ce9b
AP
6701
6702 return rv;
cdddbdbc
DW
6703}
6704
e683ca88 6705static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6706{
e683ca88
DW
6707 struct intel_super *super = st->sb;
6708 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6709
e683ca88 6710 if (!mpb)
ad97895e
DW
6711 return 1;
6712
f36a9ecd
PB
6713 if (super->sector_size == 4096)
6714 convert_to_4k(super);
e683ca88 6715 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6716}
6717
cdddbdbc 6718static int validate_geometry_imsm_container(struct supertype *st, int level,
1f5d54a0 6719 int raiddisks,
af4348dd
N
6720 unsigned long long data_offset,
6721 char *dev,
2c514b71
NB
6722 unsigned long long *freesize,
6723 int verbose)
cdddbdbc 6724{
c2c087e6
DW
6725 int fd;
6726 unsigned long long ldsize;
8662f92d 6727 struct intel_super *super = NULL;
f2f5c343 6728 int rv = 0;
cdddbdbc 6729
6f2af6a4 6730 if (!is_container(level))
c2c087e6
DW
6731 return 0;
6732 if (!dev)
6733 return 1;
6734
dca80fcd 6735 fd = dev_open(dev, O_RDONLY|O_EXCL);
4389ce73
MT
6736 if (!is_fd_valid(fd)) {
6737 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
c2c087e6
DW
6738 return 0;
6739 }
8662f92d
MT
6740 if (!get_dev_size(fd, dev, &ldsize))
6741 goto exit;
f2f5c343
LM
6742
6743 /* capabilities retrieve could be possible
6744 * note that there is no fd for the disks in array.
6745 */
6746 super = alloc_super();
8662f92d
MT
6747 if (!super)
6748 goto exit;
6749
6750 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6751 goto exit;
fa7bb6f8 6752
ba728be7 6753 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6754 if (rv != 0) {
6755#if DEBUG
6756 char str[256];
6757 fd2devname(fd, str);
1ade5cc1 6758 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6759 fd, str, super->orom, rv, raiddisks);
6760#endif
6761 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6762 rv = 0;
6763 goto exit;
f2f5c343 6764 }
9126b9a8
CA
6765 if (super->orom) {
6766 if (raiddisks > super->orom->tds) {
6767 if (verbose)
7a862a02 6768 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6769 raiddisks, super->orom->tds);
8662f92d 6770 goto exit;
9126b9a8
CA
6771 }
6772 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6773 (ldsize >> 9) >> 32 > 0) {
6774 if (verbose)
e7b84f9d 6775 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6776 goto exit;
6777 }
6778
6779 if (super->hba->type == SYS_DEV_VMD ||
6780 super->hba->type == SYS_DEV_NVME) {
6781 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6782 if (verbose)
6783 pr_err("NVMe namespace %s is not supported by IMSM\n",
6784 basename(dev));
6785 goto exit;
6786 }
9126b9a8 6787 }
f2f5c343 6788 }
1f5d54a0
MT
6789 if (freesize)
6790 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6791 rv = 1;
6792exit:
6793 if (super)
6794 free_imsm(super);
6795 close(fd);
c2c087e6 6796
8662f92d 6797 return rv;
cdddbdbc
DW
6798}
6799
0dcecb2e
DW
6800static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6801{
6802 const unsigned long long base_start = e[*idx].start;
6803 unsigned long long end = base_start + e[*idx].size;
6804 int i;
6805
6806 if (base_start == end)
6807 return 0;
6808
6809 *idx = *idx + 1;
6810 for (i = *idx; i < num_extents; i++) {
6811 /* extend overlapping extents */
6812 if (e[i].start >= base_start &&
6813 e[i].start <= end) {
6814 if (e[i].size == 0)
6815 return 0;
6816 if (e[i].start + e[i].size > end)
6817 end = e[i].start + e[i].size;
6818 } else if (e[i].start > end) {
6819 *idx = i;
6820 break;
6821 }
6822 }
6823
6824 return end - base_start;
6825}
6826
aa19fdd4 6827/** merge_extents() - analyze extents and get free size.
9bc426fa 6828 * @super: Intel metadata, not NULL.
aa19fdd4 6829 * @expanding: if set, we are expanding &super->current_vol.
9bc426fa 6830 *
aa19fdd4
MT
6831 * Build a composite disk with all known extents and generate a size given the
6832 * "all disks in an array must share a common start offset" constraint.
6833 * If a volume is expanded, then return free space after the volume.
9bc426fa 6834 *
aa19fdd4 6835 * Return: Free space or 0 on failure.
9bc426fa 6836 */
aa19fdd4 6837static unsigned long long merge_extents(struct intel_super *super, const bool expanding)
0dcecb2e 6838{
9bc426fa 6839 struct extent *e;
0dcecb2e 6840 struct dl *dl;
aa19fdd4
MT
6841 int i, j, pos_vol_idx = -1;
6842 int extent_idx = 0;
6843 int sum_extents = 0;
6844 unsigned long long pos = 0;
b9d77223 6845 unsigned long long start = 0;
1dea84ae
MT
6846 unsigned long long free_size = 0;
6847
6848 unsigned long pre_reservation = 0;
6849 unsigned long post_reservation = IMSM_RESERVED_SECTORS;
6850 unsigned long reservation_size;
0dcecb2e 6851
9bc426fa
MT
6852 for (dl = super->disks; dl; dl = dl->next)
6853 if (dl->e)
6854 sum_extents += dl->extent_cnt;
6855 e = xcalloc(sum_extents, sizeof(struct extent));
6856
0dcecb2e
DW
6857 /* coalesce and sort all extents. also, check to see if we need to
6858 * reserve space between member arrays
6859 */
6860 j = 0;
6861 for (dl = super->disks; dl; dl = dl->next) {
6862 if (!dl->e)
6863 continue;
6864 for (i = 0; i < dl->extent_cnt; i++)
6865 e[j++] = dl->e[i];
6866 }
6867 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6868
6869 /* merge extents */
6870 i = 0;
6871 j = 0;
6872 while (i < sum_extents) {
6873 e[j].start = e[i].start;
aa19fdd4 6874 e[j].vol = e[i].vol;
0dcecb2e
DW
6875 e[j].size = find_size(e, &i, sum_extents);
6876 j++;
6877 if (e[j-1].size == 0)
6878 break;
6879 }
6880
0dcecb2e
DW
6881 i = 0;
6882 do {
aa19fdd4 6883 unsigned long long esize = e[i].start - pos;
0dcecb2e 6884
1dea84ae
MT
6885 if (expanding ? pos_vol_idx == super->current_vol : esize >= free_size) {
6886 free_size = esize;
0dcecb2e 6887 start = pos;
aa19fdd4 6888 extent_idx = i;
0dcecb2e 6889 }
aa19fdd4 6890
0dcecb2e 6891 pos = e[i].start + e[i].size;
aa19fdd4
MT
6892 pos_vol_idx = e[i].vol;
6893
0dcecb2e
DW
6894 i++;
6895 } while (e[i-1].size);
0dcecb2e 6896
1dea84ae
MT
6897 if (free_size == 0) {
6898 dprintf("imsm: Cannot find free size.\n");
6899 free(e);
a7dd165b 6900 return 0;
1dea84ae 6901 }
a7dd165b 6902
1dea84ae
MT
6903 if (!expanding && extent_idx != 0)
6904 /*
6905 * Not a real first volume in a container is created, pre_reservation is needed.
6906 */
6907 pre_reservation = IMSM_RESERVED_SECTORS;
0dcecb2e 6908
1dea84ae
MT
6909 if (e[extent_idx].size == 0)
6910 /*
6911 * extent_idx points to the metadata, post_reservation is allready done.
6912 */
6913 post_reservation = 0;
6914 free(e);
0dcecb2e 6915
1dea84ae
MT
6916 reservation_size = pre_reservation + post_reservation;
6917
6918 if (free_size < reservation_size) {
6919 dprintf("imsm: Reservation size is greater than free space.\n");
6920 return 0;
6921 }
0dcecb2e 6922
1dea84ae
MT
6923 super->create_offset = start + pre_reservation;
6924 return free_size - reservation_size;
0dcecb2e
DW
6925}
6926
191e6ddb
MK
6927/**
6928 * is_raid_level_supported() - check if this count of drives and level is supported by platform.
6929 * @orom: hardware properties, could be NULL.
6930 * @level: requested raid level.
6931 * @raiddisks: requested disk count.
6932 *
6933 * IMSM UEFI/OROM does not provide information about supported count of raid disks
6934 * for particular level. That is why it is hardcoded.
6935 * It is recommended to not allow of usage other levels than supported,
6936 * IMSM code is not tested against different level implementations.
6937 *
6938 * Return: true if supported, false otherwise.
6939 */
6940static bool is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
88c32bb1 6941{
191e6ddb 6942 int idx;
88c32bb1 6943
191e6ddb
MK
6944 for (idx = 0; imsm_level_ops[idx].name; idx++) {
6945 if (imsm_level_ops[idx].level == level)
6946 break;
6947 }
88c32bb1 6948
191e6ddb
MK
6949 if (!imsm_level_ops[idx].name)
6950 return false;
6951
6952 if (!imsm_level_ops[idx].is_raiddisks_count_supported(raiddisks))
6953 return false;
6954
6955 if (!orom)
6956 return true;
6957
6958 if (imsm_level_ops[idx].is_level_supported(orom))
6959 return true;
6960
6961 return false;
88c32bb1
DW
6962}
6963
ca9de185
LM
6964static int
6965active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6966 int dpa, int verbose)
6967{
6968 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6969 struct mdstat_ent *memb;
ca9de185
LM
6970 int count = 0;
6971 int num = 0;
594dc1b8 6972 struct md_list *dv;
ca9de185
LM
6973 int found;
6974
6975 for (memb = mdstat ; memb ; memb = memb->next) {
6976 if (memb->metadata_version &&
fc54fe7a 6977 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6978 (strcmp(&memb->metadata_version[9], name) == 0) &&
6979 !is_subarray(memb->metadata_version+9) &&
6980 memb->members) {
6981 struct dev_member *dev = memb->members;
6982 int fd = -1;
4389ce73 6983 while (dev && !is_fd_valid(fd)) {
503975b9 6984 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
dd5ab402 6985 num = snprintf(path, PATH_MAX, "%s%s", "/dev/", dev->name);
503975b9
N
6986 if (num > 0)
6987 fd = open(path, O_RDONLY, 0);
4389ce73 6988 if (num <= 0 || !is_fd_valid(fd)) {
676e87a8 6989 pr_vrb("Cannot open %s: %s\n",
503975b9 6990 dev->name, strerror(errno));
ca9de185 6991 }
503975b9 6992 free(path);
ca9de185
LM
6993 dev = dev->next;
6994 }
6995 found = 0;
4389ce73 6996 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6997 struct mdstat_ent *vol;
6998 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6999 if (vol->active > 0 &&
ca9de185 7000 vol->metadata_version &&
9581efb1 7001 is_container_member(vol, memb->devnm)) {
ca9de185
LM
7002 found++;
7003 count++;
7004 }
7005 }
7006 if (*devlist && (found < dpa)) {
503975b9 7007 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
7008 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
7009 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
7010 dv->found = found;
7011 dv->used = 0;
7012 dv->next = *devlist;
7013 *devlist = dv;
ca9de185
LM
7014 }
7015 }
4389ce73 7016 close_fd(&fd);
ca9de185
LM
7017 }
7018 }
7019 free_mdstat(mdstat);
7020 return count;
7021}
7022
7023#ifdef DEBUG_LOOP
7024static struct md_list*
7025get_loop_devices(void)
7026{
7027 int i;
7028 struct md_list *devlist = NULL;
594dc1b8 7029 struct md_list *dv;
ca9de185
LM
7030
7031 for(i = 0; i < 12; i++) {
503975b9
N
7032 dv = xcalloc(1, sizeof(*dv));
7033 dv->devname = xmalloc(40);
ca9de185
LM
7034 sprintf(dv->devname, "/dev/loop%d", i);
7035 dv->next = devlist;
7036 devlist = dv;
7037 }
7038 return devlist;
7039}
7040#endif
7041
7042static struct md_list*
7043get_devices(const char *hba_path)
7044{
7045 struct md_list *devlist = NULL;
594dc1b8 7046 struct md_list *dv;
ca9de185
LM
7047 struct dirent *ent;
7048 DIR *dir;
7049 int err = 0;
7050
7051#if DEBUG_LOOP
7052 devlist = get_loop_devices();
7053 return devlist;
7054#endif
7055 /* scroll through /sys/dev/block looking for devices attached to
7056 * this hba
7057 */
7058 dir = opendir("/sys/dev/block");
7059 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7060 int fd;
7061 char buf[1024];
7062 int major, minor;
7063 char *path = NULL;
7064 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7065 continue;
7c798f87 7066 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
7067 if (!path)
7068 continue;
7069 if (!path_attached_to_hba(path, hba_path)) {
7070 free(path);
7071 path = NULL;
7072 continue;
7073 }
7074 free(path);
7075 path = NULL;
7076 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 7077 if (is_fd_valid(fd)) {
ca9de185
LM
7078 fd2devname(fd, buf);
7079 close(fd);
7080 } else {
e7b84f9d 7081 pr_err("cannot open device: %s\n",
ca9de185
LM
7082 ent->d_name);
7083 continue;
7084 }
7085
503975b9
N
7086 dv = xcalloc(1, sizeof(*dv));
7087 dv->devname = xstrdup(buf);
ca9de185
LM
7088 dv->next = devlist;
7089 devlist = dv;
7090 }
7091 if (err) {
7092 while(devlist) {
7093 dv = devlist;
7094 devlist = devlist->next;
7095 free(dv->devname);
7096 free(dv);
7097 }
7098 }
562aa102 7099 closedir(dir);
ca9de185
LM
7100 return devlist;
7101}
7102
7103static int
7104count_volumes_list(struct md_list *devlist, char *homehost,
7105 int verbose, int *found)
7106{
7107 struct md_list *tmpdev;
7108 int count = 0;
594dc1b8 7109 struct supertype *st;
ca9de185
LM
7110
7111 /* first walk the list of devices to find a consistent set
7112 * that match the criterea, if that is possible.
7113 * We flag the ones we like with 'used'.
7114 */
7115 *found = 0;
7116 st = match_metadata_desc_imsm("imsm");
7117 if (st == NULL) {
676e87a8 7118 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7119 return 0;
7120 }
7121
7122 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7123 char *devname = tmpdev->devname;
0a6bff09 7124 dev_t rdev;
ca9de185
LM
7125 struct supertype *tst;
7126 int dfd;
7127 if (tmpdev->used > 1)
7128 continue;
7129 tst = dup_super(st);
7130 if (tst == NULL) {
676e87a8 7131 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7132 goto err_1;
7133 }
7134 tmpdev->container = 0;
7135 dfd = dev_open(devname, O_RDONLY|O_EXCL);
4389ce73 7136 if (!is_fd_valid(dfd)) {
1ade5cc1 7137 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7138 devname, strerror(errno));
7139 tmpdev->used = 2;
0a6bff09 7140 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7141 tmpdev->used = 2;
7142 } else if (must_be_container(dfd)) {
7143 struct supertype *cst;
7144 cst = super_by_fd(dfd, NULL);
7145 if (cst == NULL) {
1ade5cc1 7146 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7147 devname);
7148 tmpdev->used = 2;
7149 } else if (tst->ss != st->ss) {
1ade5cc1 7150 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7151 devname);
7152 tmpdev->used = 2;
7153 } else if (!tst->ss->load_container ||
7154 tst->ss->load_container(tst, dfd, NULL))
7155 tmpdev->used = 2;
7156 else {
7157 tmpdev->container = 1;
7158 }
7159 if (cst)
7160 cst->ss->free_super(cst);
7161 } else {
0a6bff09 7162 tmpdev->st_rdev = rdev;
ca9de185 7163 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7164 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7165 devname);
7166 tmpdev->used = 2;
7167 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7168 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7169 tst->ss->name, devname);
7170 tmpdev->used = 2;
7171 }
7172 }
4389ce73
MT
7173 close_fd(&dfd);
7174
ca9de185
LM
7175 if (tmpdev->used == 2 || tmpdev->used == 4) {
7176 /* Ignore unrecognised devices during auto-assembly */
7177 goto loop;
7178 }
7179 else {
7180 struct mdinfo info;
7181 tst->ss->getinfo_super(tst, &info, NULL);
7182
7183 if (st->minor_version == -1)
7184 st->minor_version = tst->minor_version;
7185
7186 if (memcmp(info.uuid, uuid_zero,
7187 sizeof(int[4])) == 0) {
7188 /* this is a floating spare. It cannot define
7189 * an array unless there are no more arrays of
7190 * this type to be found. It can be included
7191 * in an array of this type though.
7192 */
7193 tmpdev->used = 3;
7194 goto loop;
7195 }
7196
7197 if (st->ss != tst->ss ||
7198 st->minor_version != tst->minor_version ||
c7b8547c 7199 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7200 /* Some mismatch. If exactly one array matches this host,
7201 * we can resolve on that one.
7202 * Or, if we are auto assembling, we just ignore the second
7203 * for now.
7204 */
1ade5cc1 7205 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7206 devname);
7207 goto loop;
7208 }
7209 tmpdev->used = 1;
7210 *found = 1;
7211 dprintf("found: devname: %s\n", devname);
7212 }
7213 loop:
7214 if (tst)
7215 tst->ss->free_super(tst);
7216 }
7217 if (*found != 0) {
7218 int err;
7219 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7220 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7221 for (iter = head; iter; iter = iter->next) {
7222 dprintf("content->text_version: %s vol\n",
7223 iter->text_version);
7224 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7225 /* do not assemble arrays with unsupported
7226 configurations */
1ade5cc1 7227 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7228 iter->text_version);
7229 } else
7230 count++;
7231 }
7232 sysfs_free(head);
7233
7234 } else {
1ade5cc1 7235 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7236 err, st->sb);
7237 }
7238 } else {
1ade5cc1 7239 dprintf("no more devices to examine\n");
ca9de185
LM
7240 }
7241
7242 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7243 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7244 if (count) {
7245 if (count < tmpdev->found)
7246 count = 0;
7247 else
7248 count -= tmpdev->found;
7249 }
7250 }
7251 if (tmpdev->used == 1)
7252 tmpdev->used = 4;
7253 }
7254 err_1:
7255 if (st)
7256 st->ss->free_super(st);
7257 return count;
7258}
7259
d3c11416
AO
7260static int __count_volumes(char *hba_path, int dpa, int verbose,
7261 int cmp_hba_path)
ca9de185 7262{
72a45777 7263 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7264 int count = 0;
72a45777
PB
7265 const struct orom_entry *entry;
7266 struct devid_list *dv, *devid_list;
ca9de185 7267
d3c11416 7268 if (!hba_path)
ca9de185
LM
7269 return 0;
7270
72a45777 7271 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7272 if (strstr(idev->path, hba_path))
7273 break;
72a45777
PB
7274 }
7275
7276 if (!idev || !idev->dev_id)
ca9de185 7277 return 0;
72a45777
PB
7278
7279 entry = get_orom_entry_by_device_id(idev->dev_id);
7280
7281 if (!entry || !entry->devid_list)
7282 return 0;
7283
7284 devid_list = entry->devid_list;
7285 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7286 struct md_list *devlist;
d3c11416
AO
7287 struct sys_dev *device = NULL;
7288 char *hpath;
72a45777
PB
7289 int found = 0;
7290
d3c11416
AO
7291 if (cmp_hba_path)
7292 device = device_by_id_and_path(dv->devid, hba_path);
7293 else
7294 device = device_by_id(dv->devid);
7295
72a45777 7296 if (device)
d3c11416 7297 hpath = device->path;
72a45777
PB
7298 else
7299 return 0;
7300
d3c11416 7301 devlist = get_devices(hpath);
72a45777
PB
7302 /* if no intel devices return zero volumes */
7303 if (devlist == NULL)
7304 return 0;
7305
d3c11416
AO
7306 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7307 verbose);
7308 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7309 if (devlist == NULL)
7310 return 0;
7311 do {
7312 found = 0;
7313 count += count_volumes_list(devlist,
7314 NULL,
7315 verbose,
7316 &found);
7317 dprintf("found %d count: %d\n", found, count);
7318 } while (found);
7319
d3c11416 7320 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7321
7322 while (devlist) {
7323 struct md_list *dv = devlist;
7324 devlist = devlist->next;
7325 free(dv->devname);
7326 free(dv);
7327 }
ca9de185
LM
7328 }
7329 return count;
7330}
7331
d3c11416
AO
7332static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7333{
7334 if (!hba)
7335 return 0;
7336 if (hba->type == SYS_DEV_VMD) {
7337 struct sys_dev *dev;
7338 int count = 0;
7339
7340 for (dev = find_intel_devices(); dev; dev = dev->next) {
7341 if (dev->type == SYS_DEV_VMD)
7342 count += __count_volumes(dev->path, dpa,
7343 verbose, 1);
7344 }
7345 return count;
7346 }
7347 return __count_volumes(hba->path, dpa, verbose, 0);
7348}
7349
cd9d1ac7
DW
7350static int imsm_default_chunk(const struct imsm_orom *orom)
7351{
7352 /* up to 512 if the plaform supports it, otherwise the platform max.
7353 * 128 if no platform detected
7354 */
7355 int fs = max(7, orom ? fls(orom->sss) : 0);
7356
7357 return min(512, (1 << fs));
7358}
73408129 7359
6592ce37
DW
7360static int
7361validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7362 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7363{
660260d0
DW
7364 /* check/set platform and metadata limits/defaults */
7365 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7366 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7367 super->orom->dpa);
73408129
LM
7368 return 0;
7369 }
7370
5d500228 7371 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7372 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7373 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7374 level, raiddisks, raiddisks > 1 ? "s" : "");
7375 return 0;
7376 }
cd9d1ac7 7377
7ccc4cc4 7378 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7379 *chunk = imsm_default_chunk(super->orom);
7380
7ccc4cc4 7381 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7382 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7383 return 0;
6592ce37 7384 }
cd9d1ac7 7385
6592ce37
DW
7386 if (layout != imsm_level_to_layout(level)) {
7387 if (level == 5)
676e87a8 7388 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7389 else if (level == 10)
676e87a8 7390 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7391 else
676e87a8 7392 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7393 layout, level);
7394 return 0;
7395 }
2cc699af 7396
7ccc4cc4 7397 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7398 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7399 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7400 return 0;
7401 }
614902f6 7402
6592ce37
DW
7403 return 1;
7404}
7405
1011e834 7406/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7407 * FIX ME add ahci details
7408 */
8b353278 7409static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7410 int layout, int raiddisks, int *chunk,
af4348dd
N
7411 unsigned long long size,
7412 unsigned long long data_offset,
7413 char *dev,
2c514b71
NB
7414 unsigned long long *freesize,
7415 int verbose)
cdddbdbc 7416{
9e04ac1c 7417 dev_t rdev;
c2c087e6 7418 struct intel_super *super = st->sb;
b2916f25 7419 struct imsm_super *mpb;
c2c087e6
DW
7420 struct dl *dl;
7421 unsigned long long pos = 0;
7422 unsigned long long maxsize;
7423 struct extent *e;
7424 int i;
cdddbdbc 7425
88c32bb1
DW
7426 /* We must have the container info already read in. */
7427 if (!super)
c2c087e6
DW
7428 return 0;
7429
b2916f25
JS
7430 mpb = super->anchor;
7431
2cc699af 7432 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7433 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7434 return 0;
d54559f0 7435 }
c2c087e6
DW
7436 if (!dev) {
7437 /* General test: make sure there is space for
2da8544a
DW
7438 * 'raiddisks' device extents of size 'size' at a given
7439 * offset
c2c087e6 7440 */
e46273eb 7441 unsigned long long minsize = size;
b7528a20 7442 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7443 int dcnt = 0;
7444 if (minsize == 0)
7445 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7446 for (dl = super->disks; dl ; dl = dl->next) {
7447 int found = 0;
7448
bf5a934a 7449 pos = 0;
c2c087e6 7450 i = 0;
05501181 7451 e = get_extents(super, dl, 0);
c2c087e6
DW
7452 if (!e) continue;
7453 do {
7454 unsigned long long esize;
7455 esize = e[i].start - pos;
7456 if (esize >= minsize)
7457 found = 1;
b7528a20 7458 if (found && start_offset == MaxSector) {
2da8544a
DW
7459 start_offset = pos;
7460 break;
7461 } else if (found && pos != start_offset) {
7462 found = 0;
7463 break;
7464 }
c2c087e6
DW
7465 pos = e[i].start + e[i].size;
7466 i++;
7467 } while (e[i-1].size);
7468 if (found)
7469 dcnt++;
7470 free(e);
7471 }
7472 if (dcnt < raiddisks) {
2c514b71 7473 if (verbose)
7a862a02 7474 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7475 dcnt, raiddisks);
c2c087e6
DW
7476 return 0;
7477 }
7478 return 1;
7479 }
0dcecb2e 7480
c2c087e6 7481 /* This device must be a member of the set */
9e04ac1c 7482 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7483 return 0;
7484 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7485 if (dl->major == (int)major(rdev) &&
7486 dl->minor == (int)minor(rdev))
c2c087e6
DW
7487 break;
7488 }
7489 if (!dl) {
2c514b71 7490 if (verbose)
7a862a02 7491 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7492 return 0;
a20d2ba5
DW
7493 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7494 /* If a volume is present then the current creation attempt
7495 * cannot incorporate new spares because the orom may not
7496 * understand this configuration (all member disks must be
7497 * members of each array in the container).
7498 */
7a862a02
N
7499 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7500 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7501 return 0;
5fe62b94
WD
7502 } else if (super->orom && mpb->num_raid_devs > 0 &&
7503 mpb->num_disks != raiddisks) {
7a862a02 7504 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7505 return 0;
c2c087e6 7506 }
0dcecb2e
DW
7507
7508 /* retrieve the largest free space block */
05501181 7509 e = get_extents(super, dl, 0);
c2c087e6
DW
7510 maxsize = 0;
7511 i = 0;
0dcecb2e
DW
7512 if (e) {
7513 do {
7514 unsigned long long esize;
7515
7516 esize = e[i].start - pos;
7517 if (esize >= maxsize)
7518 maxsize = esize;
7519 pos = e[i].start + e[i].size;
7520 i++;
7521 } while (e[i-1].size);
7522 dl->e = e;
7523 dl->extent_cnt = i;
7524 } else {
7525 if (verbose)
e7b84f9d 7526 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7527 dev);
7528 return 0;
7529 }
7530 if (maxsize < size) {
7531 if (verbose)
e7b84f9d 7532 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7533 dev, maxsize, size);
7534 return 0;
7535 }
7536
aa19fdd4 7537 maxsize = merge_extents(super, false);
3baa56ab 7538
1a1ced1e
KS
7539 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7540 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7541
a7dd165b 7542 if (maxsize < size || maxsize == 0) {
b3071342
LD
7543 if (verbose) {
7544 if (maxsize == 0)
7a862a02 7545 pr_err("no free space left on device. Aborting...\n");
b3071342 7546 else
7a862a02 7547 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7548 maxsize, size);
7549 }
0dcecb2e 7550 return 0;
0dcecb2e
DW
7551 }
7552
c2c087e6
DW
7553 *freesize = maxsize;
7554
ca9de185 7555 if (super->orom) {
72a45777 7556 int count = count_volumes(super->hba,
ca9de185
LM
7557 super->orom->dpa, verbose);
7558 if (super->orom->vphba <= count) {
676e87a8 7559 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7560 super->orom->vphba);
7561 return 0;
7562 }
7563 }
c2c087e6 7564 return 1;
cdddbdbc
DW
7565}
7566
6d4d9ab2
MT
7567/**
7568 * imsm_get_free_size() - get the biggest, common free space from members.
7569 * @super: &intel_super pointer, not NULL.
7570 * @raiddisks: number of raid disks.
7571 * @size: requested size, could be 0 (means max size).
5f027b93 7572 * @chunk: requested chunk size in KiB.
6d4d9ab2
MT
7573 * @freesize: pointer for returned size value.
7574 *
7575 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7576 *
7577 * @freesize is set to meaningful value, this can be @size, or calculated
7578 * max free size.
7579 * super->create_offset value is modified and set appropriately in
7580 * merge_extends() for further creation.
7581 */
7582static imsm_status_t imsm_get_free_size(struct intel_super *super,
7583 const int raiddisks,
7584 unsigned long long size,
7585 const int chunk,
aa19fdd4
MT
7586 unsigned long long *freesize,
7587 bool expanding)
efb30e7f 7588{
efb30e7f
DW
7589 struct imsm_super *mpb = super->anchor;
7590 struct dl *dl;
7591 int i;
efb30e7f 7592 struct extent *e;
5f027b93
MT
7593 int cnt = 0;
7594 int used = 0;
efb30e7f 7595 unsigned long long maxsize;
5f027b93
MT
7596 unsigned long long minsize = size;
7597
7598 if (minsize == 0)
7599 minsize = chunk * 2;
efb30e7f
DW
7600
7601 /* find the largest common start free region of the possible disks */
efb30e7f
DW
7602 for (dl = super->disks; dl; dl = dl->next) {
7603 dl->raiddisk = -1;
7604
7605 if (dl->index >= 0)
7606 used++;
7607
7608 /* don't activate new spares if we are orom constrained
7609 * and there is already a volume active in the container
7610 */
7611 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7612 continue;
7613
05501181 7614 e = get_extents(super, dl, 0);
efb30e7f
DW
7615 if (!e)
7616 continue;
7617 for (i = 1; e[i-1].size; i++)
7618 ;
7619 dl->e = e;
7620 dl->extent_cnt = i;
efb30e7f
DW
7621 cnt++;
7622 }
7623
aa19fdd4 7624 maxsize = merge_extents(super, expanding);
5f027b93
MT
7625 if (maxsize < minsize) {
7626 pr_err("imsm: Free space is %llu but must be equal or larger than %llu.\n",
7627 maxsize, minsize);
7628 return IMSM_STATUS_ERROR;
7629 }
efb30e7f 7630
5f027b93
MT
7631 if (cnt < raiddisks || (super->orom && used && used != raiddisks)) {
7632 pr_err("imsm: Not enough devices with space to create array.\n");
6d4d9ab2 7633 return IMSM_STATUS_ERROR;
efb30e7f
DW
7634 }
7635
7636 if (size == 0) {
7637 size = maxsize;
7638 if (chunk) {
612e59d8
CA
7639 size /= 2 * chunk;
7640 size *= 2 * chunk;
efb30e7f 7641 }
f878b242
LM
7642 maxsize = size;
7643 }
1a1ced1e
KS
7644 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7645 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7646 *freesize = size;
7647
13bcac90
AK
7648 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7649
6d4d9ab2 7650 return IMSM_STATUS_OK;
efb30e7f
DW
7651}
7652
6d4d9ab2
MT
7653/**
7654 * autolayout_imsm() - automatically layout a new volume.
7655 * @super: &intel_super pointer, not NULL.
7656 * @raiddisks: number of raid disks.
7657 * @size: requested size, could be 0 (means max size).
7658 * @chunk: requested chunk.
7659 * @freesize: pointer for returned size value.
7660 *
7661 * We are being asked to automatically layout a new volume based on the current
7662 * contents of the container. If the parameters can be satisfied autolayout_imsm
7663 * will record the disks, start offset, and will return size of the volume to
7664 * be created. See imsm_get_free_size() for details.
7665 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7666 * If first volume exists, slots are set consistently to it.
7667 *
7668 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7669 *
7670 * Disks are marked for creation via dl->raiddisk.
7671 */
7672static imsm_status_t autolayout_imsm(struct intel_super *super,
7673 const int raiddisks,
7674 unsigned long long size, const int chunk,
7675 unsigned long long *freesize)
13bcac90 7676{
6d4d9ab2
MT
7677 int curr_slot = 0;
7678 struct dl *disk;
7679 int vol_cnt = super->anchor->num_raid_devs;
7680 imsm_status_t rv;
13bcac90 7681
aa19fdd4 7682 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize, false);
6d4d9ab2
MT
7683 if (rv != IMSM_STATUS_OK)
7684 return IMSM_STATUS_ERROR;
7685
7686 for (disk = super->disks; disk; disk = disk->next) {
7687 if (!disk->e)
7688 continue;
7689
7690 if (curr_slot == raiddisks)
7691 break;
7692
7693 if (vol_cnt == 0) {
7694 disk->raiddisk = curr_slot;
7695 } else {
7696 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7697
7698 if (_slot == -1) {
7699 pr_err("Disk %s is not used in first volume, aborting\n",
7700 disk->devname);
7701 return IMSM_STATUS_ERROR;
7702 }
7703 disk->raiddisk = _slot;
7704 }
7705 curr_slot++;
13bcac90
AK
7706 }
7707
6d4d9ab2 7708 return IMSM_STATUS_OK;
13bcac90
AK
7709}
7710
bf5a934a 7711static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7712 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7713 unsigned long long data_offset,
bf5a934a 7714 char *dev, unsigned long long *freesize,
5308f117 7715 int consistency_policy, int verbose)
bf5a934a
DW
7716{
7717 int fd, cfd;
7718 struct mdinfo *sra;
20cbe8d2 7719 int is_member = 0;
bf5a934a 7720
d54559f0
LM
7721 /* load capability
7722 * if given unused devices create a container
bf5a934a
DW
7723 * if given given devices in a container create a member volume
7724 */
6f2af6a4 7725 if (is_container(level))
bf5a934a 7726 /* Must be a fresh device to add to a container */
1f5d54a0
MT
7727 return validate_geometry_imsm_container(st, level, raiddisks,
7728 data_offset, dev,
7729 freesize, verbose);
9587c373 7730
06a6101c
BK
7731 /*
7732 * Size is given in sectors.
7733 */
7734 if (size && (size < 2048)) {
22dc741f 7735 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7736 /* Depends on algorithm in Create.c :
7737 * if container was given (dev == NULL) return -1,
7738 * if block device was given ( dev != NULL) return 0.
7739 */
7740 return dev ? -1 : 0;
7741 }
7742
8592f29d 7743 if (!dev) {
6d4d9ab2
MT
7744 struct intel_super *super = st->sb;
7745
7746 /*
071f839e 7747 * Autolayout mode, st->sb must be set.
6d4d9ab2 7748 */
071f839e
KT
7749 if (!super) {
7750 pr_vrb("superblock must be set for autolayout, aborting\n");
7751 return 0;
6d4d9ab2
MT
7752 }
7753
7754 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7755 raiddisks, chunk, size,
7756 verbose))
7757 return 0;
7758
071f839e 7759 if (super->orom && freesize) {
6d4d9ab2
MT
7760 imsm_status_t rv;
7761 int count = count_volumes(super->hba, super->orom->dpa,
7762 verbose);
7763 if (super->orom->vphba <= count) {
7764 pr_vrb("platform does not support more than %d raid volumes.\n",
7765 super->orom->vphba);
e91a3bad 7766 return 0;
ca9de185 7767 }
6d4d9ab2
MT
7768
7769 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7770 freesize);
7771 if (rv != IMSM_STATUS_OK)
7772 return 0;
8592f29d
N
7773 }
7774 return 1;
7775 }
bf5a934a
DW
7776 if (st->sb) {
7777 /* creating in a given container */
7778 return validate_geometry_imsm_volume(st, level, layout,
7779 raiddisks, chunk, size,
af4348dd 7780 data_offset,
bf5a934a
DW
7781 dev, freesize, verbose);
7782 }
7783
bf5a934a
DW
7784 /* This device needs to be a device in an 'imsm' container */
7785 fd = open(dev, O_RDONLY|O_EXCL, 0);
4389ce73
MT
7786
7787 if (is_fd_valid(fd)) {
7788 pr_vrb("Cannot create this array on device %s\n", dev);
bf5a934a
DW
7789 close(fd);
7790 return 0;
7791 }
4389ce73
MT
7792 if (errno == EBUSY)
7793 fd = open(dev, O_RDONLY, 0);
7794
7795 if (!is_fd_valid(fd)) {
7796 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
bf5a934a
DW
7797 return 0;
7798 }
4389ce73 7799
bf5a934a
DW
7800 /* Well, it is in use by someone, maybe an 'imsm' container. */
7801 cfd = open_container(fd);
4389ce73
MT
7802 close_fd(&fd);
7803
7804 if (!is_fd_valid(cfd)) {
7805 pr_vrb("Cannot use %s: It is busy\n", dev);
bf5a934a
DW
7806 return 0;
7807 }
4dd2df09 7808 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7809 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7810 strcmp(sra->text_version, "imsm") == 0)
7811 is_member = 1;
7812 sysfs_free(sra);
7813 if (is_member) {
bf5a934a
DW
7814 /* This is a member of a imsm container. Load the container
7815 * and try to create a volume
7816 */
7817 struct intel_super *super;
7818
ec50f7b6 7819 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7820 st->sb = super;
4dd2df09 7821 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7822 close(cfd);
7823 return validate_geometry_imsm_volume(st, level, layout,
7824 raiddisks, chunk,
af4348dd 7825 size, data_offset, dev,
ecbd9e81
N
7826 freesize, 1)
7827 ? 1 : -1;
bf5a934a 7828 }
20cbe8d2 7829 }
bf5a934a 7830
20cbe8d2 7831 if (verbose)
e7b84f9d 7832 pr_err("failed container membership check\n");
20cbe8d2
AW
7833
7834 close(cfd);
7835 return 0;
bf5a934a 7836}
0bd16cf2 7837
30f58b22 7838static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7839{
7840 struct intel_super *super = st->sb;
7841
30f58b22
DW
7842 if (level && *level == UnSet)
7843 *level = LEVEL_CONTAINER;
7844
7845 if (level && layout && *layout == UnSet)
7846 *layout = imsm_level_to_layout(*level);
0bd16cf2 7847
cd9d1ac7
DW
7848 if (chunk && (*chunk == UnSet || *chunk == 0))
7849 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7850}
7851
33414a01
DW
7852static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7853
3364781b 7854static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7855{
3364781b 7856 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7857 __u8 i;
7858 struct intel_dev **dp;
7859 struct intel_super *super = st->sb;
3364781b 7860 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7861 struct imsm_super *mpb = super->anchor;
7862
3364781b 7863 if (mpb->num_raid_devs == 0)
33414a01 7864 return 2;
33414a01
DW
7865
7866 /* block deletions that would change the uuid of active subarrays
7867 *
7868 * FIXME when immutable ids are available, but note that we'll
7869 * also need to fixup the invalidated/active subarray indexes in
7870 * mdstat
7871 */
7872 for (i = 0; i < mpb->num_raid_devs; i++) {
7873 char subarray[4];
7874
7875 if (i < current_vol)
7876 continue;
dd5ab402 7877 snprintf(subarray, sizeof(subarray), "%u", i);
4dd2df09 7878 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7879 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7880 current_vol, i);
33414a01
DW
7881
7882 return 2;
7883 }
7884 }
7885
7886 if (st->update_tail) {
503975b9 7887 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7888
33414a01
DW
7889 u->type = update_kill_array;
7890 u->dev_idx = current_vol;
7891 append_metadata_update(st, u, sizeof(*u));
7892
7893 return 0;
7894 }
7895
7896 for (dp = &super->devlist; *dp;)
7897 if ((*dp)->index == current_vol) {
7898 *dp = (*dp)->next;
7899 } else {
7900 handle_missing(super, (*dp)->dev);
7901 if ((*dp)->index > current_vol)
7902 (*dp)->index--;
7903 dp = &(*dp)->next;
7904 }
7905
7906 /* no more raid devices, all active components are now spares,
7907 * but of course failed are still failed
7908 */
7909 if (--mpb->num_raid_devs == 0) {
7910 struct dl *d;
7911
7912 for (d = super->disks; d; d = d->next)
a8619d23
AK
7913 if (d->index > -2)
7914 mark_spare(d);
33414a01
DW
7915 }
7916
7917 super->updates_pending++;
7918
7919 return 0;
7920}
aa534678 7921
4345e135
MK
7922/**
7923 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7924 * @update: Update option.
7925 */
7926static int get_rwh_policy_from_update(enum update_opt update)
19ad203e 7927{
4345e135
MK
7928 switch (update) {
7929 case UOPT_PPL:
19ad203e 7930 return RWH_MULTIPLE_DISTRIBUTED;
4345e135 7931 case UOPT_NO_PPL:
19ad203e 7932 return RWH_MULTIPLE_OFF;
4345e135 7933 case UOPT_BITMAP:
19ad203e 7934 return RWH_BITMAP;
4345e135 7935 case UOPT_NO_BITMAP:
19ad203e 7936 return RWH_OFF;
4345e135
MK
7937 default:
7938 break;
7939 }
7940 return UOPT_UNDEFINED;
19ad203e
JR
7941}
7942
a951a4f7 7943static int update_subarray_imsm(struct supertype *st, char *subarray,
03312b52 7944 enum update_opt update, struct mddev_ident *ident)
aa534678
DW
7945{
7946 /* update the subarray currently referenced by ->current_vol */
7947 struct intel_super *super = st->sb;
7948 struct imsm_super *mpb = super->anchor;
7949
03312b52 7950 if (update == UOPT_NAME) {
aa534678 7951 char *name = ident->name;
a951a4f7
N
7952 char *ep;
7953 int vol;
aa534678 7954
e2eb503b 7955 if (imsm_is_name_allowed(super, name, 1) == false)
aa534678
DW
7956 return 2;
7957
a951a4f7
N
7958 vol = strtoul(subarray, &ep, 10);
7959 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7960 return 2;
7961
aa534678 7962 if (st->update_tail) {
503975b9 7963 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7964
aa534678 7965 u->type = update_rename_array;
a951a4f7 7966 u->dev_idx = vol;
618f4e6d
XN
7967 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7968 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7969 append_metadata_update(st, u, sizeof(*u));
7970 } else {
7971 struct imsm_dev *dev;
ebad3af2 7972 int i, namelen;
aa534678 7973
a951a4f7 7974 dev = get_imsm_dev(super, vol);
ebad3af2
JS
7975 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7976 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7977 memcpy(dev->volume, name, namelen);
aa534678
DW
7978 for (i = 0; i < mpb->num_raid_devs; i++) {
7979 dev = get_imsm_dev(super, i);
7980 handle_missing(super, dev);
7981 }
7982 super->updates_pending++;
7983 }
03312b52 7984 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
e6e9dd3f
AP
7985 int new_policy;
7986 char *ep;
7987 int vol = strtoul(subarray, &ep, 10);
7988
7989 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7990 return 2;
7991
03312b52 7992 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
7993
7994 if (st->update_tail) {
7995 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7996
7997 u->type = update_rwh_policy;
7998 u->dev_idx = vol;
7999 u->new_policy = new_policy;
8000 append_metadata_update(st, u, sizeof(*u));
8001 } else {
8002 struct imsm_dev *dev;
8003
8004 dev = get_imsm_dev(super, vol);
8005 dev->rwh_policy = new_policy;
8006 super->updates_pending++;
8007 }
19ad203e
JR
8008 if (new_policy == RWH_BITMAP)
8009 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
8010 } else
8011 return 2;
8012
8013 return 0;
8014}
bf5a934a 8015
195d1d76 8016static bool is_gen_migration(struct imsm_dev *dev)
28bce06f 8017{
195d1d76
PP
8018 if (dev && dev->vol.migr_state &&
8019 migr_type(dev) == MIGR_GEN_MIGR)
8020 return true;
28bce06f 8021
195d1d76 8022 return false;
28bce06f
AK
8023}
8024
1e5c6983
DW
8025static int is_rebuilding(struct imsm_dev *dev)
8026{
8027 struct imsm_map *migr_map;
8028
8029 if (!dev->vol.migr_state)
8030 return 0;
8031
8032 if (migr_type(dev) != MIGR_REBUILD)
8033 return 0;
8034
238c0a71 8035 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
8036
8037 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8038 return 1;
8039 else
8040 return 0;
8041}
8042
6ce1fbf1
AK
8043static int is_initializing(struct imsm_dev *dev)
8044{
8045 struct imsm_map *migr_map;
8046
8047 if (!dev->vol.migr_state)
8048 return 0;
8049
8050 if (migr_type(dev) != MIGR_INIT)
8051 return 0;
8052
238c0a71 8053 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
8054
8055 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8056 return 1;
8057
8058 return 0;
6ce1fbf1
AK
8059}
8060
c47b0ff6
AK
8061static void update_recovery_start(struct intel_super *super,
8062 struct imsm_dev *dev,
8063 struct mdinfo *array)
1e5c6983
DW
8064{
8065 struct mdinfo *rebuild = NULL;
8066 struct mdinfo *d;
8067 __u32 units;
8068
8069 if (!is_rebuilding(dev))
8070 return;
8071
8072 /* Find the rebuild target, but punt on the dual rebuild case */
8073 for (d = array->devs; d; d = d->next)
8074 if (d->recovery_start == 0) {
8075 if (rebuild)
8076 return;
8077 rebuild = d;
8078 }
8079
4363fd80
DW
8080 if (!rebuild) {
8081 /* (?) none of the disks are marked with
8082 * IMSM_ORD_REBUILD, so assume they are missing and the
8083 * disk_ord_tbl was not correctly updated
8084 */
1ade5cc1 8085 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
8086 return;
8087 }
8088
4036e7ee 8089 units = vol_curr_migr_unit(dev);
c47b0ff6 8090 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
8091}
8092
276d77db 8093static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 8094
00bbdbda 8095static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 8096{
4f5bc454
DW
8097 /* Given a container loaded by load_super_imsm_all,
8098 * extract information about all the arrays into
8099 * an mdinfo tree.
00bbdbda 8100 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
8101 *
8102 * For each imsm_dev create an mdinfo, fill it in,
8103 * then look for matching devices in super->disks
8104 * and create appropriate device mdinfo.
8105 */
8106 struct intel_super *super = st->sb;
949c47a0 8107 struct imsm_super *mpb = super->anchor;
4f5bc454 8108 struct mdinfo *rest = NULL;
00bbdbda 8109 unsigned int i;
81219e70 8110 int sb_errors = 0;
abef11a3
AK
8111 struct dl *d;
8112 int spare_disks = 0;
b6180160 8113 int current_vol = super->current_vol;
cdddbdbc 8114
19482bcc 8115 /* do not assemble arrays when not all attributes are supported */
e0e56f4b 8116 if (imsm_check_attributes(mpb->attributes) == false) {
81219e70 8117 sb_errors = 1;
e0e56f4b 8118 pr_err("Unsupported attributes in IMSM metadata. Arrays activation is blocked.\n");
19482bcc
AK
8119 }
8120
abef11a3
AK
8121 /* count spare devices, not used in maps
8122 */
8123 for (d = super->disks; d; d = d->next)
8124 if (d->index == -1)
8125 spare_disks++;
8126
4f5bc454 8127 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
8128 struct imsm_dev *dev;
8129 struct imsm_map *map;
86e3692b 8130 struct imsm_map *map2;
4f5bc454 8131 struct mdinfo *this;
a6482415 8132 int slot;
a6482415 8133 int chunk;
00bbdbda 8134 char *ep;
8b9cd157 8135 int level;
00bbdbda
N
8136
8137 if (subarray &&
8138 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8139 continue;
8140
8141 dev = get_imsm_dev(super, i);
238c0a71
AK
8142 map = get_imsm_map(dev, MAP_0);
8143 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8144 level = get_imsm_raid_level(map);
4f5bc454 8145
1ce0101c
DW
8146 /* do not publish arrays that are in the middle of an
8147 * unsupported migration
8148 */
8149 if (dev->vol.migr_state &&
28bce06f 8150 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8151 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8152 dev->volume);
8153 continue;
8154 }
2db86302
LM
8155 /* do not publish arrays that are not support by controller's
8156 * OROM/EFI
8157 */
1ce0101c 8158
503975b9 8159 this = xmalloc(sizeof(*this));
4f5bc454 8160
301406c9 8161 super->current_vol = i;
a5d85af7 8162 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8163 this->next = rest;
a6482415 8164 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8165 /* mdadm does not support all metadata features- set the bit in all arrays state */
8166 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8167 level, /* RAID level */
8168 imsm_level_to_layout(level),
81219e70 8169 map->num_members, /* raid disks */
fcc2c9da 8170 &chunk, imsm_dev_size(dev),
81219e70 8171 1 /* verbose */)) {
7a862a02 8172 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8173 dev->volume);
8174 this->array.state |=
8175 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8176 (1<<MD_SB_BLOCK_VOLUME);
8177 }
81219e70
LM
8178
8179 /* if array has bad blocks, set suitable bit in all arrays state */
8180 if (sb_errors)
8181 this->array.state |=
8182 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8183 (1<<MD_SB_BLOCK_VOLUME);
8184
4f5bc454 8185 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8186 unsigned long long recovery_start;
4f5bc454
DW
8187 struct mdinfo *info_d;
8188 struct dl *d;
8189 int idx;
9a1608e5 8190 int skip;
7eef0453 8191 __u32 ord;
8b9cd157 8192 int missing = 0;
4f5bc454 8193
9a1608e5 8194 skip = 0;
238c0a71
AK
8195 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8196 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8197 for (d = super->disks; d ; d = d->next)
8198 if (d->index == idx)
0fbd635c 8199 break;
4f5bc454 8200
1e5c6983 8201 recovery_start = MaxSector;
4f5bc454 8202 if (d == NULL)
9a1608e5 8203 skip = 1;
25ed7e59 8204 if (d && is_failed(&d->disk))
9a1608e5 8205 skip = 1;
8b9cd157 8206 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8207 recovery_start = 0;
1e93d0d1
BK
8208 if (!(ord & IMSM_ORD_REBUILD))
8209 this->array.working_disks++;
1011e834 8210 /*
9a1608e5 8211 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8212 * reset resync start to avoid a dirty-degraded
8213 * situation when performing the intial sync
9a1608e5 8214 */
8b9cd157
MK
8215 if (skip)
8216 missing++;
8217
8218 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8219 if ((!able_to_resync(level, missing) ||
8220 recovery_start == 0))
8221 this->resync_start = MaxSector;
8b9cd157
MK
8222 }
8223
9a1608e5
DW
8224 if (skip)
8225 continue;
4f5bc454 8226
503975b9 8227 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8228 info_d->next = this->devs;
8229 this->devs = info_d;
8230
4f5bc454
DW
8231 info_d->disk.number = d->index;
8232 info_d->disk.major = d->major;
8233 info_d->disk.minor = d->minor;
8234 info_d->disk.raid_disk = slot;
1e5c6983 8235 info_d->recovery_start = recovery_start;
86e3692b
AK
8236 if (map2) {
8237 if (slot < map2->num_members)
8238 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8239 else
8240 this->array.spare_disks++;
86e3692b
AK
8241 } else {
8242 if (slot < map->num_members)
8243 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8244 else
8245 this->array.spare_disks++;
86e3692b 8246 }
4f5bc454
DW
8247
8248 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8249 info_d->data_offset = pba_of_lba0(map);
44490938 8250 info_d->component_size = calc_component_size(map, dev);
06fb291a 8251
27550b13 8252 if (map->raid_level == IMSM_T_RAID5) {
2432ce9b
AP
8253 info_d->ppl_sector = this->ppl_sector;
8254 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8255 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8256 recovery_start == 0)
8257 this->resync_start = 0;
06fb291a 8258 }
b12796be 8259
5e46202e 8260 info_d->bb.supported = 1;
b12796be
TM
8261 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8262 info_d->data_offset,
8263 info_d->component_size,
8264 &info_d->bb);
4f5bc454 8265 }
1e5c6983 8266 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8267 update_recovery_start(super, dev, this);
abef11a3 8268 this->array.spare_disks += spare_disks;
276d77db
AK
8269
8270 /* check for reshape */
8271 if (this->reshape_active == 1)
8272 recover_backup_imsm(st, this);
9a1608e5 8273 rest = this;
4f5bc454
DW
8274 }
8275
b6180160 8276 super->current_vol = current_vol;
4f5bc454 8277 return rest;
cdddbdbc
DW
8278}
8279
3b451610
AK
8280static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8281 int failed, int look_in_map)
c2a1e7da 8282{
3b451610
AK
8283 struct imsm_map *map;
8284
8285 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8286
8287 if (!failed)
1011e834 8288 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8289 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8290
8291 switch (get_imsm_raid_level(map)) {
8292 case 0:
8293 return IMSM_T_STATE_FAILED;
8294 break;
8295 case 1:
8296 if (failed < map->num_members)
8297 return IMSM_T_STATE_DEGRADED;
8298 else
8299 return IMSM_T_STATE_FAILED;
8300 break;
8301 case 10:
8302 {
8303 /**
c92a2527
DW
8304 * check to see if any mirrors have failed, otherwise we
8305 * are degraded. Even numbered slots are mirrored on
8306 * slot+1
c2a1e7da 8307 */
c2a1e7da 8308 int i;
d9b420a5
N
8309 /* gcc -Os complains that this is unused */
8310 int insync = insync;
c2a1e7da
DW
8311
8312 for (i = 0; i < map->num_members; i++) {
238c0a71 8313 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8314 int idx = ord_to_idx(ord);
8315 struct imsm_disk *disk;
c2a1e7da 8316
c92a2527 8317 /* reset the potential in-sync count on even-numbered
1011e834 8318 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8319 */
8320 if ((i & 1) == 0)
8321 insync = 2;
c2a1e7da 8322
c92a2527 8323 disk = get_imsm_disk(super, idx);
25ed7e59 8324 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8325 insync--;
c2a1e7da 8326
c92a2527
DW
8327 /* no in-sync disks left in this mirror the
8328 * array has failed
8329 */
8330 if (insync == 0)
8331 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8332 }
8333
8334 return IMSM_T_STATE_DEGRADED;
8335 }
8336 case 5:
8337 if (failed < 2)
8338 return IMSM_T_STATE_DEGRADED;
8339 else
8340 return IMSM_T_STATE_FAILED;
8341 break;
8342 default:
8343 break;
8344 }
8345
8346 return map->map_state;
8347}
8348
3b451610
AK
8349static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8350 int look_in_map)
c2a1e7da
DW
8351{
8352 int i;
8353 int failed = 0;
8354 struct imsm_disk *disk;
d5985138
AK
8355 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8356 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8357 struct imsm_map *map_for_loop;
0556e1a2
DW
8358 __u32 ord;
8359 int idx;
d5985138 8360 int idx_1;
c2a1e7da 8361
0556e1a2
DW
8362 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8363 * disks that are being rebuilt. New failures are recorded to
8364 * map[0]. So we look through all the disks we started with and
8365 * see if any failures are still present, or if any new ones
8366 * have arrived
0556e1a2 8367 */
d5985138
AK
8368 map_for_loop = map;
8369 if (prev && (map->num_members < prev->num_members))
8370 map_for_loop = prev;
68fe4598
LD
8371
8372 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8373 idx_1 = -255;
238c0a71
AK
8374 /* when MAP_X is passed both maps failures are counted
8375 */
d5985138 8376 if (prev &&
089f9d79
JS
8377 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8378 i < prev->num_members) {
d5985138
AK
8379 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8380 idx_1 = ord_to_idx(ord);
c2a1e7da 8381
d5985138
AK
8382 disk = get_imsm_disk(super, idx_1);
8383 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8384 failed++;
8385 }
089f9d79
JS
8386 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8387 i < map->num_members) {
d5985138
AK
8388 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8389 idx = ord_to_idx(ord);
8390
8391 if (idx != idx_1) {
8392 disk = get_imsm_disk(super, idx);
8393 if (!disk || is_failed(disk) ||
8394 ord & IMSM_ORD_REBUILD)
8395 failed++;
8396 }
8397 }
c2a1e7da
DW
8398 }
8399
8400 return failed;
845dea95
NB
8401}
8402
97b4d0e9 8403static int imsm_open_new(struct supertype *c, struct active_array *a,
60815698 8404 int inst)
97b4d0e9
DW
8405{
8406 struct intel_super *super = c->sb;
8407 struct imsm_super *mpb = super->anchor;
bbab0940 8408 struct imsm_update_prealloc_bb_mem u;
9587c373 8409
60815698
MG
8410 if (inst >= mpb->num_raid_devs) {
8411 pr_err("subarry index %d, out of range\n", inst);
97b4d0e9
DW
8412 return -ENODEV;
8413 }
8414
60815698
MG
8415 dprintf("imsm: open_new %d\n", inst);
8416 a->info.container_member = inst;
bbab0940
TM
8417
8418 u.type = update_prealloc_badblocks_mem;
8419 imsm_update_metadata_locally(c, &u, sizeof(u));
8420
97b4d0e9
DW
8421 return 0;
8422}
8423
0c046afd
DW
8424static int is_resyncing(struct imsm_dev *dev)
8425{
8426 struct imsm_map *migr_map;
8427
8428 if (!dev->vol.migr_state)
8429 return 0;
8430
1484e727
DW
8431 if (migr_type(dev) == MIGR_INIT ||
8432 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8433 return 1;
8434
4c9bc37b
AK
8435 if (migr_type(dev) == MIGR_GEN_MIGR)
8436 return 0;
8437
238c0a71 8438 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8439
089f9d79
JS
8440 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8441 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8442 return 1;
8443 else
8444 return 0;
8445}
8446
0556e1a2 8447/* return true if we recorded new information */
4c9e8c1e
TM
8448static int mark_failure(struct intel_super *super,
8449 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8450{
0556e1a2
DW
8451 __u32 ord;
8452 int slot;
8453 struct imsm_map *map;
86c54047
DW
8454 char buf[MAX_RAID_SERIAL_LEN+3];
8455 unsigned int len, shift = 0;
0556e1a2
DW
8456
8457 /* new failures are always set in map[0] */
238c0a71 8458 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8459
8460 slot = get_imsm_disk_slot(map, idx);
8461 if (slot < 0)
8462 return 0;
8463
8464 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8465 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8466 return 0;
8467
7d0c5e24
LD
8468 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8469 buf[MAX_RAID_SERIAL_LEN] = '\000';
8470 strcat(buf, ":0");
86c54047
DW
8471 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8472 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8473 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8474
f2f27e63 8475 disk->status |= FAILED_DISK;
0556e1a2 8476 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8477 /* mark failures in second map if second map exists and this disk
8478 * in this slot.
8479 * This is valid for migration, initialization and rebuild
8480 */
8481 if (dev->vol.migr_state) {
238c0a71 8482 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8483 int slot2 = get_imsm_disk_slot(map2, idx);
8484
089f9d79 8485 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8486 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8487 idx | IMSM_ORD_REBUILD);
8488 }
d7a1fda2
MT
8489 if (map->failed_disk_num == 0xff ||
8490 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8491 map->failed_disk_num = slot;
4c9e8c1e
TM
8492
8493 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8494
0556e1a2
DW
8495 return 1;
8496}
8497
4c9e8c1e
TM
8498static void mark_missing(struct intel_super *super,
8499 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8500{
4c9e8c1e 8501 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8502
8503 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8504 return;
8505
47ee5a45
DW
8506 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8507 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8508}
8509
33414a01
DW
8510static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8511{
33414a01 8512 struct dl *dl;
33414a01
DW
8513
8514 if (!super->missing)
8515 return;
33414a01 8516
79b68f1b
PC
8517 /* When orom adds replacement for missing disk it does
8518 * not remove entry of missing disk, but just updates map with
8519 * new added disk. So it is not enough just to test if there is
8520 * any missing disk, we have to look if there are any failed disks
8521 * in map to stop migration */
8522
33414a01 8523 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8524 /* end process for initialization and rebuild only
8525 */
195d1d76 8526 if (is_gen_migration(dev) == false) {
fb12a745 8527 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8528
fb12a745
TM
8529 if (failed) {
8530 __u8 map_state;
8531 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8532 struct imsm_map *map1;
8533 int i, ord, ord_map1;
8534 int rebuilt = 1;
3d59f0c0 8535
fb12a745
TM
8536 for (i = 0; i < map->num_members; i++) {
8537 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8538 if (!(ord & IMSM_ORD_REBUILD))
8539 continue;
8540
8541 map1 = get_imsm_map(dev, MAP_1);
8542 if (!map1)
8543 continue;
8544
8545 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8546 if (ord_map1 & IMSM_ORD_REBUILD)
8547 rebuilt = 0;
8548 }
8549
8550 if (rebuilt) {
8551 map_state = imsm_check_degraded(super, dev,
8552 failed, MAP_0);
8553 end_migration(dev, super, map_state);
8554 }
8555 }
3d59f0c0 8556 }
33414a01 8557 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8558 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8559 super->updates_pending++;
8560}
8561
f3871fdc
AK
8562static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8563 long long new_size)
70bdf0dc 8564{
70bdf0dc 8565 unsigned long long array_blocks;
9529d343
MD
8566 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8567 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8568
8569 if (used_disks == 0) {
8570 /* when problems occures
8571 * return current array_blocks value
8572 */
fcc2c9da 8573 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8574
8575 return array_blocks;
8576 }
8577
8578 /* set array size in metadata
8579 */
9529d343 8580 if (new_size <= 0)
f3871fdc
AK
8581 /* OLCE size change is caused by added disks
8582 */
44490938 8583 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8584 else
f3871fdc
AK
8585 /* Online Volume Size Change
8586 * Using available free space
8587 */
8588 array_blocks = new_size;
70bdf0dc 8589
b53bfba6 8590 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8591 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8592
8593 return array_blocks;
8594}
8595
28bce06f
AK
8596static void imsm_set_disk(struct active_array *a, int n, int state);
8597
0e2d1a4e
AK
8598static void imsm_progress_container_reshape(struct intel_super *super)
8599{
8600 /* if no device has a migr_state, but some device has a
8601 * different number of members than the previous device, start
8602 * changing the number of devices in this device to match
8603 * previous.
8604 */
8605 struct imsm_super *mpb = super->anchor;
8606 int prev_disks = -1;
8607 int i;
1dfaa380 8608 int copy_map_size;
0e2d1a4e
AK
8609
8610 for (i = 0; i < mpb->num_raid_devs; i++) {
8611 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8612 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8613 struct imsm_map *map2;
8614 int prev_num_members;
0e2d1a4e
AK
8615
8616 if (dev->vol.migr_state)
8617 return;
8618
8619 if (prev_disks == -1)
8620 prev_disks = map->num_members;
8621 if (prev_disks == map->num_members)
8622 continue;
8623
8624 /* OK, this array needs to enter reshape mode.
8625 * i.e it needs a migr_state
8626 */
8627
1dfaa380 8628 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8629 prev_num_members = map->num_members;
8630 map->num_members = prev_disks;
8631 dev->vol.migr_state = 1;
4036e7ee 8632 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8633 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8634 for (i = prev_num_members;
8635 i < map->num_members; i++)
8636 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8637 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8638 /* Copy the current map */
1dfaa380 8639 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8640 map2->num_members = prev_num_members;
8641
f3871fdc 8642 imsm_set_array_size(dev, -1);
51d83f5d 8643 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8644 super->updates_pending++;
8645 }
8646}
8647
aad6f216 8648/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8649 * states are handled in imsm_set_disk() with one exception, when a
8650 * resync is stopped due to a new failure this routine will set the
8651 * 'degraded' state for the array.
8652 */
01f157d7 8653static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8654{
8655 int inst = a->info.container_member;
8656 struct intel_super *super = a->container->sb;
949c47a0 8657 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8658 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8659 int failed = imsm_count_failed(super, dev, MAP_0);
8660 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8661 __u32 blocks_per_unit;
a862209d 8662
1af97990
AK
8663 if (dev->vol.migr_state &&
8664 dev->vol.migr_type == MIGR_GEN_MIGR) {
8665 /* array state change is blocked due to reshape action
aad6f216
N
8666 * We might need to
8667 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8668 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8669 * - update vol_curr_migr_unit
1af97990 8670 */
aad6f216 8671 if (a->curr_action == reshape) {
4036e7ee 8672 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8673 goto mark_checkpoint;
aad6f216 8674 } else {
aad6f216
N
8675 if (a->last_checkpoint >= a->info.component_size) {
8676 unsigned long long array_blocks;
8677 int used_disks;
e154ced3 8678 struct mdinfo *mdi;
aad6f216 8679
9529d343 8680 used_disks = imsm_num_data_members(map);
d55adef9
AK
8681 if (used_disks > 0) {
8682 array_blocks =
44490938 8683 per_dev_array_size(map) *
d55adef9 8684 used_disks;
b53bfba6
TM
8685 array_blocks =
8686 round_size_to_mb(array_blocks,
8687 used_disks);
d55adef9
AK
8688 a->info.custom_array_size = array_blocks;
8689 /* encourage manager to update array
8690 * size
8691 */
e154ced3 8692
d55adef9 8693 a->check_reshape = 1;
633b5610 8694 }
e154ced3
AK
8695 /* finalize online capacity expansion/reshape */
8696 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8697 imsm_set_disk(a,
8698 mdi->disk.raid_disk,
8699 mdi->curr_state);
8700
0e2d1a4e 8701 imsm_progress_container_reshape(super);
e154ced3 8702 }
aad6f216 8703 }
1af97990
AK
8704 }
8705
47ee5a45 8706 /* before we activate this array handle any missing disks */
33414a01
DW
8707 if (consistent == 2)
8708 handle_missing(super, dev);
1e5c6983 8709
0c046afd 8710 if (consistent == 2 &&
b7941fd6 8711 (!is_resync_complete(&a->info) ||
0c046afd
DW
8712 map_state != IMSM_T_STATE_NORMAL ||
8713 dev->vol.migr_state))
01f157d7 8714 consistent = 0;
272906ef 8715
b7941fd6 8716 if (is_resync_complete(&a->info)) {
0c046afd 8717 /* complete intialization / resync,
0556e1a2
DW
8718 * recovery and interrupted recovery is completed in
8719 * ->set_disk
0c046afd
DW
8720 */
8721 if (is_resyncing(dev)) {
8722 dprintf("imsm: mark resync done\n");
809da78e 8723 end_migration(dev, super, map_state);
115c3803 8724 super->updates_pending++;
484240d8 8725 a->last_checkpoint = 0;
115c3803 8726 }
b9172665
AK
8727 } else if ((!is_resyncing(dev) && !failed) &&
8728 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8729 /* mark the start of the init process if nothing is failed */
b7941fd6 8730 dprintf("imsm: mark resync start\n");
1484e727 8731 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8732 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8733 else
8e59f3d8 8734 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8735 super->updates_pending++;
115c3803 8736 }
a862209d 8737
fdb7e802
MK
8738 if (a->prev_action == idle)
8739 goto skip_mark_checkpoint;
8740
633b5610 8741mark_checkpoint:
5b83bacf
AK
8742 /* skip checkpointing for general migration,
8743 * it is controlled in mdadm
8744 */
8745 if (is_gen_migration(dev))
8746 goto skip_mark_checkpoint;
8747
4036e7ee
MT
8748 /* check if we can update vol_curr_migr_unit from resync_start,
8749 * recovery_start
8750 */
c47b0ff6 8751 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8752 if (blocks_per_unit) {
4036e7ee
MT
8753 set_vol_curr_migr_unit(dev,
8754 a->last_checkpoint / blocks_per_unit);
8755 dprintf("imsm: mark checkpoint (%llu)\n",
8756 vol_curr_migr_unit(dev));
8757 super->updates_pending++;
1e5c6983 8758 }
f8f603f1 8759
5b83bacf 8760skip_mark_checkpoint:
3393c6af 8761 /* mark dirty / clean */
2432ce9b
AP
8762 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8763 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8764 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8765 if (consistent) {
8766 dev->vol.dirty = RAIDVOL_CLEAN;
8767 } else {
8768 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8769 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8770 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8771 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8772 }
a862209d
DW
8773 super->updates_pending++;
8774 }
28bce06f 8775
01f157d7 8776 return consistent;
a862209d
DW
8777}
8778
6f50473f
TM
8779static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8780{
8781 int inst = a->info.container_member;
8782 struct intel_super *super = a->container->sb;
8783 struct imsm_dev *dev = get_imsm_dev(super, inst);
8784 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8785
8786 if (slot > map->num_members) {
8787 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8788 slot, map->num_members - 1);
8789 return -1;
8790 }
8791
8792 if (slot < 0)
8793 return -1;
8794
8795 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8796}
8797
8d45d196 8798static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8799{
8d45d196
DW
8800 int inst = a->info.container_member;
8801 struct intel_super *super = a->container->sb;
949c47a0 8802 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8803 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8804 struct imsm_disk *disk;
7ce05701
LD
8805 struct mdinfo *mdi;
8806 int recovery_not_finished = 0;
0c046afd 8807 int failed;
6f50473f 8808 int ord;
0c046afd 8809 __u8 map_state;
fb12a745
TM
8810 int rebuild_done = 0;
8811 int i;
8d45d196 8812
fb12a745 8813 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8814 if (ord < 0)
8d45d196
DW
8815 return;
8816
4e6e574a 8817 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8818 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8819
5802a811 8820 /* check for new failures */
ae7d61e3 8821 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8822 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8823 super->updates_pending++;
8d45d196 8824 }
47ee5a45 8825
19859edc 8826 /* check if in_sync */
0556e1a2 8827 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8828 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8829
8830 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8831 rebuild_done = 1;
19859edc
DW
8832 super->updates_pending++;
8833 }
8d45d196 8834
3b451610
AK
8835 failed = imsm_count_failed(super, dev, MAP_0);
8836 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8837
0c046afd 8838 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8839 dprintf("imsm: Detected transition to state ");
8840 switch (map_state) {
8841 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8842 dprintf("normal: ");
8843 if (is_rebuilding(dev)) {
1ade5cc1 8844 dprintf_cont("while rebuilding");
7ce05701
LD
8845 /* check if recovery is really finished */
8846 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8847 if (mdi->recovery_start != MaxSector) {
8848 recovery_not_finished = 1;
8849 break;
8850 }
8851 if (recovery_not_finished) {
1ade5cc1
N
8852 dprintf_cont("\n");
8853 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8854 if (a->last_checkpoint < mdi->recovery_start) {
8855 a->last_checkpoint = mdi->recovery_start;
8856 super->updates_pending++;
8857 }
8858 break;
8859 }
94002678 8860 end_migration(dev, super, map_state);
94002678
AK
8861 map->failed_disk_num = ~0;
8862 super->updates_pending++;
8863 a->last_checkpoint = 0;
8864 break;
8865 }
8866 if (is_gen_migration(dev)) {
1ade5cc1 8867 dprintf_cont("while general migration");
bf2f0071 8868 if (a->last_checkpoint >= a->info.component_size)
809da78e 8869 end_migration(dev, super, map_state);
94002678
AK
8870 else
8871 map->map_state = map_state;
28bce06f 8872 map->failed_disk_num = ~0;
94002678 8873 super->updates_pending++;
bf2f0071 8874 break;
94002678
AK
8875 }
8876 break;
8877 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8878 dprintf_cont("degraded: ");
089f9d79 8879 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8880 dprintf_cont("mark degraded");
94002678
AK
8881 map->map_state = map_state;
8882 super->updates_pending++;
8883 a->last_checkpoint = 0;
8884 break;
8885 }
8886 if (is_rebuilding(dev)) {
d7a1fda2 8887 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8888 if (state & DS_FAULTY) {
8889 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8890 if (n == map->failed_disk_num) {
8891 dprintf_cont("end migration");
8892 end_migration(dev, super, map_state);
a4e96fd8 8893 a->last_checkpoint = 0;
d7a1fda2 8894 } else {
a4e96fd8 8895 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8896 map->map_state = map_state;
8897 }
94002678 8898 super->updates_pending++;
fb12a745
TM
8899 }
8900
a4e96fd8
MT
8901 if (!rebuild_done)
8902 break;
8903
fb12a745
TM
8904 /* check if recovery is really finished */
8905 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8906 if (mdi->recovery_start != MaxSector) {
8907 recovery_not_finished = 1;
8908 break;
8909 }
8910 if (recovery_not_finished) {
8911 dprintf_cont("\n");
a4e96fd8 8912 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8913 if (a->last_checkpoint < mdi->recovery_start) {
8914 a->last_checkpoint =
8915 mdi->recovery_start;
8916 super->updates_pending++;
8917 }
8918 break;
94002678 8919 }
fb12a745
TM
8920
8921 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8922 end_migration(dev, super, map_state);
8923 a->last_checkpoint = 0;
8924 super->updates_pending++;
fb12a745
TM
8925
8926 for (i = 0; i < map->num_members; i++) {
8927 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8928
8929 if (idx & IMSM_ORD_REBUILD)
8930 map->failed_disk_num = i;
8931 }
8932 super->updates_pending++;
94002678
AK
8933 break;
8934 }
8935 if (is_gen_migration(dev)) {
1ade5cc1 8936 dprintf_cont("while general migration");
bf2f0071 8937 if (a->last_checkpoint >= a->info.component_size)
809da78e 8938 end_migration(dev, super, map_state);
94002678
AK
8939 else {
8940 map->map_state = map_state;
3b451610 8941 manage_second_map(super, dev);
94002678
AK
8942 }
8943 super->updates_pending++;
bf2f0071 8944 break;
28bce06f 8945 }
6ce1fbf1 8946 if (is_initializing(dev)) {
1ade5cc1 8947 dprintf_cont("while initialization.");
6ce1fbf1
AK
8948 map->map_state = map_state;
8949 super->updates_pending++;
8950 break;
8951 }
94002678
AK
8952 break;
8953 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8954 dprintf_cont("failed: ");
94002678 8955 if (is_gen_migration(dev)) {
1ade5cc1 8956 dprintf_cont("while general migration");
94002678
AK
8957 map->map_state = map_state;
8958 super->updates_pending++;
8959 break;
8960 }
8961 if (map->map_state != map_state) {
1ade5cc1 8962 dprintf_cont("mark failed");
94002678
AK
8963 end_migration(dev, super, map_state);
8964 super->updates_pending++;
8965 a->last_checkpoint = 0;
8966 break;
8967 }
8968 break;
8969 default:
1ade5cc1 8970 dprintf_cont("state %i\n", map_state);
5802a811 8971 }
1ade5cc1 8972 dprintf_cont("\n");
845dea95
NB
8973}
8974
f796af5d 8975static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8976{
f796af5d 8977 void *buf = mpb;
c2a1e7da
DW
8978 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8979 unsigned long long dsize;
8980 unsigned long long sectors;
f36a9ecd 8981 unsigned int sector_size;
c2a1e7da 8982
aec01630
JS
8983 if (!get_dev_sector_size(fd, NULL, &sector_size))
8984 return 1;
c2a1e7da
DW
8985 get_dev_size(fd, NULL, &dsize);
8986
f36a9ecd 8987 if (mpb_size > sector_size) {
272f648f 8988 /* -1 to account for anchor */
f36a9ecd 8989 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8990
272f648f 8991 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8992 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8993 SEEK_SET) < 0)
272f648f 8994 return 1;
c2a1e7da 8995
f36a9ecd
PB
8996 if ((unsigned long long)write(fd, buf + sector_size,
8997 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8998 return 1;
8999 }
c2a1e7da 9000
272f648f 9001 /* first block is stored on second to last sector of the disk */
f36a9ecd 9002 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
9003 return 1;
9004
466070ad 9005 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
9006 return 1;
9007
c2a1e7da
DW
9008 return 0;
9009}
9010
2e735d19 9011static void imsm_sync_metadata(struct supertype *container)
845dea95 9012{
2e735d19 9013 struct intel_super *super = container->sb;
c2a1e7da 9014
1a64be56 9015 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
9016 if (!super->updates_pending)
9017 return;
9018
36988a3d 9019 write_super_imsm(container, 0);
c2a1e7da
DW
9020
9021 super->updates_pending = 0;
845dea95
NB
9022}
9023
272906ef
DW
9024static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9025{
9026 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9027 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
9028 struct dl *dl;
9029
9030 for (dl = super->disks; dl; dl = dl->next)
9031 if (dl->index == i)
9032 break;
9033
25ed7e59 9034 if (dl && is_failed(&dl->disk))
272906ef
DW
9035 dl = NULL;
9036
9037 if (dl)
1ade5cc1 9038 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
9039
9040 return dl;
9041}
9042
a20d2ba5 9043static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
9044 struct active_array *a, int activate_new,
9045 struct mdinfo *additional_test_list)
272906ef
DW
9046{
9047 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9048 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
9049 struct imsm_super *mpb = super->anchor;
9050 struct imsm_map *map;
272906ef
DW
9051 unsigned long long pos;
9052 struct mdinfo *d;
9053 struct extent *ex;
a20d2ba5 9054 int i, j;
272906ef 9055 int found;
569cc43f
DW
9056 __u32 array_start = 0;
9057 __u32 array_end = 0;
272906ef 9058 struct dl *dl;
6c932028 9059 struct mdinfo *test_list;
272906ef
DW
9060
9061 for (dl = super->disks; dl; dl = dl->next) {
9062 /* If in this array, skip */
9063 for (d = a->info.devs ; d ; d = d->next)
4389ce73 9064 if (is_fd_valid(d->state_fd) &&
e553d2a4 9065 d->disk.major == dl->major &&
272906ef 9066 d->disk.minor == dl->minor) {
8ba77d32
AK
9067 dprintf("%x:%x already in array\n",
9068 dl->major, dl->minor);
272906ef
DW
9069 break;
9070 }
9071 if (d)
9072 continue;
6c932028
AK
9073 test_list = additional_test_list;
9074 while (test_list) {
9075 if (test_list->disk.major == dl->major &&
9076 test_list->disk.minor == dl->minor) {
8ba77d32
AK
9077 dprintf("%x:%x already in additional test list\n",
9078 dl->major, dl->minor);
9079 break;
9080 }
6c932028 9081 test_list = test_list->next;
8ba77d32 9082 }
6c932028 9083 if (test_list)
8ba77d32 9084 continue;
272906ef 9085
e553d2a4 9086 /* skip in use or failed drives */
25ed7e59 9087 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
9088 dl->index == -2) {
9089 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 9090 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
9091 continue;
9092 }
9093
a20d2ba5
DW
9094 /* skip pure spares when we are looking for partially
9095 * assimilated drives
9096 */
9097 if (dl->index == -1 && !activate_new)
9098 continue;
9099
f2cc4f7d
AO
9100 if (!drive_validate_sector_size(super, dl))
9101 continue;
9102
272906ef 9103 /* Does this unused device have the requisite free space?
a20d2ba5 9104 * It needs to be able to cover all member volumes
272906ef 9105 */
05501181 9106 ex = get_extents(super, dl, 1);
272906ef
DW
9107 if (!ex) {
9108 dprintf("cannot get extents\n");
9109 continue;
9110 }
a20d2ba5
DW
9111 for (i = 0; i < mpb->num_raid_devs; i++) {
9112 dev = get_imsm_dev(super, i);
238c0a71 9113 map = get_imsm_map(dev, MAP_0);
272906ef 9114
a20d2ba5
DW
9115 /* check if this disk is already a member of
9116 * this array
272906ef 9117 */
620b1713 9118 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
9119 continue;
9120
9121 found = 0;
9122 j = 0;
9123 pos = 0;
5551b113 9124 array_start = pba_of_lba0(map);
329c8278 9125 array_end = array_start +
44490938 9126 per_dev_array_size(map) - 1;
a20d2ba5
DW
9127
9128 do {
9129 /* check that we can start at pba_of_lba0 with
44490938 9130 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9131 */
329c8278 9132 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9133 found = 1;
9134 break;
9135 }
9136 pos = ex[j].start + ex[j].size;
9137 j++;
9138 } while (ex[j-1].size);
9139
9140 if (!found)
272906ef 9141 break;
a20d2ba5 9142 }
272906ef
DW
9143
9144 free(ex);
a20d2ba5 9145 if (i < mpb->num_raid_devs) {
329c8278
DW
9146 dprintf("%x:%x does not have %u to %u available\n",
9147 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9148 /* No room */
9149 continue;
a20d2ba5
DW
9150 }
9151 return dl;
272906ef
DW
9152 }
9153
9154 return dl;
9155}
9156
95d07a2c
LM
9157static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9158{
9159 struct imsm_dev *dev2;
9160 struct imsm_map *map;
9161 struct dl *idisk;
9162 int slot;
9163 int idx;
9164 __u8 state;
9165
9166 dev2 = get_imsm_dev(cont->sb, dev_idx);
756a15f3
MG
9167
9168 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9169 if (state == IMSM_T_STATE_FAILED) {
9170 map = get_imsm_map(dev2, MAP_0);
9171 for (slot = 0; slot < map->num_members; slot++) {
9172 /*
9173 * Check if failed disks are deleted from intel
9174 * disk list or are marked to be deleted
9175 */
9176 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9177 idisk = get_imsm_dl_disk(cont->sb, idx);
9178 /*
9179 * Do not rebuild the array if failed disks
9180 * from failed sub-array are not removed from
9181 * container.
9182 */
9183 if (idisk &&
9184 is_failed(&idisk->disk) &&
9185 (idisk->action != DISK_REMOVE))
9186 return 0;
95d07a2c
LM
9187 }
9188 }
9189 return 1;
9190}
9191
88758e9d
DW
9192static struct mdinfo *imsm_activate_spare(struct active_array *a,
9193 struct metadata_update **updates)
9194{
9195 /**
d23fe947
DW
9196 * Find a device with unused free space and use it to replace a
9197 * failed/vacant region in an array. We replace failed regions one a
9198 * array at a time. The result is that a new spare disk will be added
9199 * to the first failed array and after the monitor has finished
9200 * propagating failures the remainder will be consumed.
88758e9d 9201 *
d23fe947
DW
9202 * FIXME add a capability for mdmon to request spares from another
9203 * container.
88758e9d
DW
9204 */
9205
9206 struct intel_super *super = a->container->sb;
88758e9d 9207 int inst = a->info.container_member;
949c47a0 9208 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9209 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9210 int failed = a->info.array.raid_disks;
9211 struct mdinfo *rv = NULL;
9212 struct mdinfo *d;
9213 struct mdinfo *di;
9214 struct metadata_update *mu;
9215 struct dl *dl;
9216 struct imsm_update_activate_spare *u;
9217 int num_spares = 0;
9218 int i;
95d07a2c 9219 int allowed;
88758e9d 9220
4389ce73
MT
9221 for (d = a->info.devs ; d; d = d->next) {
9222 if (!is_fd_valid(d->state_fd))
9223 continue;
9224
9225 if (d->curr_state & DS_FAULTY)
88758e9d
DW
9226 /* wait for Removal to happen */
9227 return NULL;
4389ce73
MT
9228
9229 failed--;
88758e9d
DW
9230 }
9231
9232 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9233 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9234
e2962bfc
AK
9235 if (imsm_reshape_blocks_arrays_changes(super))
9236 return NULL;
1af97990 9237
fc8ca064
AK
9238 /* Cannot activate another spare if rebuild is in progress already
9239 */
9240 if (is_rebuilding(dev)) {
7a862a02 9241 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9242 return NULL;
9243 }
9244
89c67882
AK
9245 if (a->info.array.level == 4)
9246 /* No repair for takeovered array
9247 * imsm doesn't support raid4
9248 */
9249 return NULL;
9250
3b451610
AK
9251 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9252 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9253 return NULL;
9254
83ca7d45
AP
9255 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9256 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9257 return NULL;
9258 }
9259
95d07a2c
LM
9260 /*
9261 * If there are any failed disks check state of the other volume.
9262 * Block rebuild if the another one is failed until failed disks
9263 * are removed from container.
9264 */
9265 if (failed) {
7a862a02 9266 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9267 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9268 /* check if states of the other volumes allow for rebuild */
9269 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9270 if (i != inst) {
9271 allowed = imsm_rebuild_allowed(a->container,
9272 i, failed);
9273 if (!allowed)
9274 return NULL;
9275 }
9276 }
9277 }
9278
88758e9d 9279 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9280 for (i = 0; i < a->info.array.raid_disks; i++) {
9281 for (d = a->info.devs ; d ; d = d->next)
9282 if (d->disk.raid_disk == i)
9283 break;
9284 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4389ce73 9285 if (d && is_fd_valid(d->state_fd))
88758e9d
DW
9286 continue;
9287
272906ef 9288 /*
a20d2ba5
DW
9289 * OK, this device needs recovery. Try to re-add the
9290 * previous occupant of this slot, if this fails see if
9291 * we can continue the assimilation of a spare that was
9292 * partially assimilated, finally try to activate a new
9293 * spare.
272906ef
DW
9294 */
9295 dl = imsm_readd(super, i, a);
9296 if (!dl)
b303fe21 9297 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9298 if (!dl)
b303fe21 9299 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9300 if (!dl)
9301 continue;
1011e834 9302
272906ef 9303 /* found a usable disk with enough space */
503975b9 9304 di = xcalloc(1, sizeof(*di));
272906ef
DW
9305
9306 /* dl->index will be -1 in the case we are activating a
9307 * pristine spare. imsm_process_update() will create a
9308 * new index in this case. Once a disk is found to be
9309 * failed in all member arrays it is kicked from the
9310 * metadata
9311 */
9312 di->disk.number = dl->index;
d23fe947 9313
272906ef
DW
9314 /* (ab)use di->devs to store a pointer to the device
9315 * we chose
9316 */
9317 di->devs = (struct mdinfo *) dl;
9318
9319 di->disk.raid_disk = i;
9320 di->disk.major = dl->major;
9321 di->disk.minor = dl->minor;
9322 di->disk.state = 0;
d23534e4 9323 di->recovery_start = 0;
5551b113 9324 di->data_offset = pba_of_lba0(map);
272906ef
DW
9325 di->component_size = a->info.component_size;
9326 di->container_member = inst;
5e46202e 9327 di->bb.supported = 1;
2c8890e9 9328 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9329 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9330 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9331 }
148acb7b 9332 super->random = random32();
272906ef
DW
9333 di->next = rv;
9334 rv = di;
9335 num_spares++;
9336 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9337 i, di->data_offset);
88758e9d
DW
9338 }
9339
9340 if (!rv)
9341 /* No spares found */
9342 return rv;
9343 /* Now 'rv' has a list of devices to return.
9344 * Create a metadata_update record to update the
9345 * disk_ord_tbl for the array
9346 */
503975b9 9347 mu = xmalloc(sizeof(*mu));
1011e834 9348 mu->buf = xcalloc(num_spares,
503975b9 9349 sizeof(struct imsm_update_activate_spare));
88758e9d 9350 mu->space = NULL;
cb23f1f4 9351 mu->space_list = NULL;
88758e9d
DW
9352 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9353 mu->next = *updates;
9354 u = (struct imsm_update_activate_spare *) mu->buf;
9355
9356 for (di = rv ; di ; di = di->next) {
9357 u->type = update_activate_spare;
d23fe947
DW
9358 u->dl = (struct dl *) di->devs;
9359 di->devs = NULL;
88758e9d
DW
9360 u->slot = di->disk.raid_disk;
9361 u->array = inst;
9362 u->next = u + 1;
9363 u++;
9364 }
9365 (u-1)->next = NULL;
9366 *updates = mu;
9367
9368 return rv;
9369}
9370
54c2c1ea 9371static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9372{
54c2c1ea 9373 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9374 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9375 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9376 struct disk_info *inf = get_disk_info(u);
9377 struct imsm_disk *disk;
8273f55e
DW
9378 int i;
9379 int j;
8273f55e 9380
54c2c1ea 9381 for (i = 0; i < map->num_members; i++) {
238c0a71 9382 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9383 for (j = 0; j < new_map->num_members; j++)
9384 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9385 return 1;
9386 }
9387
9388 return 0;
9389}
9390
1a64be56
LM
9391static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9392{
594dc1b8
JS
9393 struct dl *dl;
9394
1a64be56 9395 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9396 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9397 return dl;
9398 return NULL;
9399}
9400
9401static int remove_disk_super(struct intel_super *super, int major, int minor)
9402{
594dc1b8 9403 struct dl *prev;
1a64be56
LM
9404 struct dl *dl;
9405
9406 prev = NULL;
9407 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9408 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9409 /* remove */
9410 if (prev)
9411 prev->next = dl->next;
9412 else
9413 super->disks = dl->next;
9414 dl->next = NULL;
3a85bf0e 9415 __free_imsm_disk(dl, 1);
1ade5cc1 9416 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9417 break;
9418 }
9419 prev = dl;
9420 }
9421 return 0;
9422}
9423
f21e18ca 9424static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9425
1a64be56
LM
9426static int add_remove_disk_update(struct intel_super *super)
9427{
9428 int check_degraded = 0;
594dc1b8
JS
9429 struct dl *disk;
9430
1a64be56
LM
9431 /* add/remove some spares to/from the metadata/contrainer */
9432 while (super->disk_mgmt_list) {
9433 struct dl *disk_cfg;
9434
9435 disk_cfg = super->disk_mgmt_list;
9436 super->disk_mgmt_list = disk_cfg->next;
9437 disk_cfg->next = NULL;
9438
9439 if (disk_cfg->action == DISK_ADD) {
9440 disk_cfg->next = super->disks;
9441 super->disks = disk_cfg;
9442 check_degraded = 1;
1ade5cc1
N
9443 dprintf("added %x:%x\n",
9444 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9445 } else if (disk_cfg->action == DISK_REMOVE) {
9446 dprintf("Disk remove action processed: %x.%x\n",
9447 disk_cfg->major, disk_cfg->minor);
9448 disk = get_disk_super(super,
9449 disk_cfg->major,
9450 disk_cfg->minor);
9451 if (disk) {
9452 /* store action status */
9453 disk->action = DISK_REMOVE;
9454 /* remove spare disks only */
9455 if (disk->index == -1) {
9456 remove_disk_super(super,
9457 disk_cfg->major,
9458 disk_cfg->minor);
91c97c54
MT
9459 } else {
9460 disk_cfg->fd = disk->fd;
9461 disk->fd = -1;
1a64be56
LM
9462 }
9463 }
9464 /* release allocate disk structure */
3a85bf0e 9465 __free_imsm_disk(disk_cfg, 1);
1a64be56
LM
9466 }
9467 }
9468 return check_degraded;
9469}
9470
a29911da
PC
9471static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9472 struct intel_super *super,
9473 void ***space_list)
9474{
9475 struct intel_dev *id;
9476 void **tofree = NULL;
9477 int ret_val = 0;
9478
1ade5cc1 9479 dprintf("(enter)\n");
089f9d79 9480 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9481 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9482 return ret_val;
9483 }
089f9d79 9484 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9485 dprintf("imsm: Error: Memory is not allocated\n");
9486 return ret_val;
9487 }
9488
9489 for (id = super->devlist ; id; id = id->next) {
9490 if (id->index == (unsigned)u->subdev) {
9491 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9492 struct imsm_map *map;
9493 struct imsm_dev *new_dev =
9494 (struct imsm_dev *)*space_list;
238c0a71 9495 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9496 int to_state;
9497 struct dl *new_disk;
9498
9499 if (new_dev == NULL)
9500 return ret_val;
9501 *space_list = **space_list;
9502 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9503 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9504 if (migr_map) {
9505 dprintf("imsm: Error: migration in progress");
9506 return ret_val;
9507 }
9508
9509 to_state = map->map_state;
27550b13 9510 if ((u->new_level == IMSM_T_RAID5) && (map->raid_level == IMSM_T_RAID0)) {
a29911da
PC
9511 map->num_members++;
9512 /* this should not happen */
9513 if (u->new_disks[0] < 0) {
9514 map->failed_disk_num =
9515 map->num_members - 1;
9516 to_state = IMSM_T_STATE_DEGRADED;
9517 } else
9518 to_state = IMSM_T_STATE_NORMAL;
9519 }
8e59f3d8 9520 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
27550b13 9521
a29911da 9522 if (u->new_level > -1)
27550b13
MK
9523 update_imsm_raid_level(map, u->new_level);
9524
238c0a71 9525 migr_map = get_imsm_map(new_dev, MAP_1);
27550b13
MK
9526 if ((u->new_level == IMSM_T_RAID5) &&
9527 (migr_map->raid_level == IMSM_T_RAID0)) {
a29911da
PC
9528 int ord = map->num_members - 1;
9529 migr_map->num_members--;
9530 if (u->new_disks[0] < 0)
9531 ord |= IMSM_ORD_REBUILD;
9532 set_imsm_ord_tbl_ent(map,
9533 map->num_members - 1,
9534 ord);
9535 }
9536 id->dev = new_dev;
9537 tofree = (void **)dev;
9538
4bba0439
PC
9539 /* update chunk size
9540 */
06fb291a 9541 if (u->new_chunksize > 0) {
9529d343
MD
9542 struct imsm_map *dest_map =
9543 get_imsm_map(dev, MAP_0);
06fb291a 9544 int used_disks =
9529d343 9545 imsm_num_data_members(dest_map);
06fb291a
PB
9546
9547 if (used_disks == 0)
9548 return ret_val;
9549
4bba0439
PC
9550 map->blocks_per_strip =
9551 __cpu_to_le16(u->new_chunksize * 2);
1c275381 9552 update_num_data_stripes(map, imsm_dev_size(dev));
06fb291a 9553 }
4bba0439 9554
44490938
MD
9555 /* ensure blocks_per_member has valid value
9556 */
9557 set_blocks_per_member(map,
9558 per_dev_array_size(map) +
9559 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9560
a29911da
PC
9561 /* add disk
9562 */
27550b13 9563 if (u->new_level != IMSM_T_RAID5 || migr_map->raid_level != IMSM_T_RAID0 ||
089f9d79 9564 migr_map->raid_level == map->raid_level)
a29911da
PC
9565 goto skip_disk_add;
9566
9567 if (u->new_disks[0] >= 0) {
9568 /* use passes spare
9569 */
9570 new_disk = get_disk_super(super,
9571 major(u->new_disks[0]),
9572 minor(u->new_disks[0]));
7a862a02 9573 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9574 major(u->new_disks[0]),
9575 minor(u->new_disks[0]),
9576 new_disk, new_disk->index);
9577 if (new_disk == NULL)
9578 goto error_disk_add;
9579
9580 new_disk->index = map->num_members - 1;
9581 /* slot to fill in autolayout
9582 */
9583 new_disk->raiddisk = new_disk->index;
9584 new_disk->disk.status |= CONFIGURED_DISK;
9585 new_disk->disk.status &= ~SPARE_DISK;
9586 } else
9587 goto error_disk_add;
9588
9589skip_disk_add:
9590 *tofree = *space_list;
9591 /* calculate new size
9592 */
f3871fdc 9593 imsm_set_array_size(new_dev, -1);
a29911da
PC
9594
9595 ret_val = 1;
9596 }
9597 }
9598
9599 if (tofree)
9600 *space_list = tofree;
9601 return ret_val;
9602
9603error_disk_add:
9604 dprintf("Error: imsm: Cannot find disk.\n");
9605 return ret_val;
9606}
9607
f3871fdc
AK
9608static int apply_size_change_update(struct imsm_update_size_change *u,
9609 struct intel_super *super)
9610{
9611 struct intel_dev *id;
9612 int ret_val = 0;
9613
1ade5cc1 9614 dprintf("(enter)\n");
089f9d79 9615 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9616 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9617 return ret_val;
9618 }
9619
9620 for (id = super->devlist ; id; id = id->next) {
9621 if (id->index == (unsigned)u->subdev) {
9622 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9623 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9624 int used_disks = imsm_num_data_members(map);
f3871fdc 9625 unsigned long long blocks_per_member;
44490938
MD
9626 unsigned long long new_size_per_disk;
9627
9628 if (used_disks == 0)
9629 return 0;
f3871fdc
AK
9630
9631 /* calculate new size
9632 */
44490938
MD
9633 new_size_per_disk = u->new_size / used_disks;
9634 blocks_per_member = new_size_per_disk +
9635 NUM_BLOCKS_DIRTY_STRIPE_REGION;
f3871fdc 9636
1c275381
MT
9637 imsm_set_array_size(dev, u->new_size);
9638 set_blocks_per_member(map, blocks_per_member);
9639 update_num_data_stripes(map, u->new_size);
f3871fdc
AK
9640 ret_val = 1;
9641 break;
9642 }
9643 }
9644
9645 return ret_val;
9646}
9647
69d40de4
JR
9648static int prepare_spare_to_activate(struct supertype *st,
9649 struct imsm_update_activate_spare *u)
9650{
9651 struct intel_super *super = st->sb;
9652 int prev_current_vol = super->current_vol;
9653 struct active_array *a;
9654 int ret = 1;
9655
9656 for (a = st->arrays; a; a = a->next)
9657 /*
9658 * Additional initialization (adding bitmap header, filling
9659 * the bitmap area with '1's to force initial rebuild for a whole
9660 * data-area) is required when adding the spare to the volume
9661 * with write-intent bitmap.
9662 */
9663 if (a->info.container_member == u->array &&
9664 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9665 struct dl *dl;
9666
9667 for (dl = super->disks; dl; dl = dl->next)
9668 if (dl == u->dl)
9669 break;
9670 if (!dl)
9671 break;
9672
9673 super->current_vol = u->array;
9674 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9675 ret = 0;
9676 super->current_vol = prev_current_vol;
9677 }
9678 return ret;
9679}
9680
061d7da3 9681static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9682 struct intel_super *super,
061d7da3
LO
9683 struct active_array *active_array)
9684{
9685 struct imsm_super *mpb = super->anchor;
9686 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9687 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9688 struct imsm_map *migr_map;
9689 struct active_array *a;
9690 struct imsm_disk *disk;
9691 __u8 to_state;
9692 struct dl *dl;
9693 unsigned int found;
9694 int failed;
5961eeec 9695 int victim;
061d7da3 9696 int i;
5961eeec 9697 int second_map_created = 0;
061d7da3 9698
5961eeec 9699 for (; u; u = u->next) {
238c0a71 9700 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9701
5961eeec 9702 if (victim < 0)
9703 return 0;
061d7da3 9704
5961eeec 9705 for (dl = super->disks; dl; dl = dl->next)
9706 if (dl == u->dl)
9707 break;
061d7da3 9708
5961eeec 9709 if (!dl) {
7a862a02 9710 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9711 u->dl->index);
9712 return 0;
9713 }
061d7da3 9714
5961eeec 9715 /* count failures (excluding rebuilds and the victim)
9716 * to determine map[0] state
9717 */
9718 failed = 0;
9719 for (i = 0; i < map->num_members; i++) {
9720 if (i == u->slot)
9721 continue;
9722 disk = get_imsm_disk(super,
238c0a71 9723 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9724 if (!disk || is_failed(disk))
9725 failed++;
9726 }
061d7da3 9727
5961eeec 9728 /* adding a pristine spare, assign a new index */
9729 if (dl->index < 0) {
9730 dl->index = super->anchor->num_disks;
9731 super->anchor->num_disks++;
9732 }
9733 disk = &dl->disk;
9734 disk->status |= CONFIGURED_DISK;
9735 disk->status &= ~SPARE_DISK;
9736
9737 /* mark rebuild */
238c0a71 9738 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9739 if (!second_map_created) {
9740 second_map_created = 1;
9741 map->map_state = IMSM_T_STATE_DEGRADED;
9742 migrate(dev, super, to_state, MIGR_REBUILD);
9743 } else
9744 map->map_state = to_state;
238c0a71 9745 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9746 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9747 set_imsm_ord_tbl_ent(migr_map, u->slot,
9748 dl->index | IMSM_ORD_REBUILD);
9749
9750 /* update the family_num to mark a new container
9751 * generation, being careful to record the existing
9752 * family_num in orig_family_num to clean up after
9753 * earlier mdadm versions that neglected to set it.
9754 */
9755 if (mpb->orig_family_num == 0)
9756 mpb->orig_family_num = mpb->family_num;
9757 mpb->family_num += super->random;
9758
9759 /* count arrays using the victim in the metadata */
9760 found = 0;
9761 for (a = active_array; a ; a = a->next) {
76c152ca 9762 int dev_idx = a->info.container_member;
061d7da3 9763
76c152ca 9764 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
5961eeec 9765 found++;
9766 }
061d7da3 9767
5961eeec 9768 /* delete the victim if it is no longer being
9769 * utilized anywhere
061d7da3 9770 */
5961eeec 9771 if (!found) {
9772 struct dl **dlp;
061d7da3 9773
5961eeec 9774 /* We know that 'manager' isn't touching anything,
9775 * so it is safe to delete
9776 */
9777 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9778 if ((*dlp)->index == victim)
9779 break;
5961eeec 9780
9781 /* victim may be on the missing list */
9782 if (!*dlp)
9783 for (dlp = &super->missing; *dlp;
9784 dlp = &(*dlp)->next)
9785 if ((*dlp)->index == victim)
9786 break;
9787 imsm_delete(super, dlp, victim);
9788 }
061d7da3
LO
9789 }
9790
9791 return 1;
9792}
a29911da 9793
2e5dc010
N
9794static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9795 struct intel_super *super,
9796 void ***space_list)
9797{
9798 struct dl *new_disk;
9799 struct intel_dev *id;
9800 int i;
9801 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9802 int disk_count = u->old_raid_disks;
2e5dc010
N
9803 void **tofree = NULL;
9804 int devices_to_reshape = 1;
9805 struct imsm_super *mpb = super->anchor;
9806 int ret_val = 0;
d098291a 9807 unsigned int dev_id;
2e5dc010 9808
1ade5cc1 9809 dprintf("(enter)\n");
2e5dc010
N
9810
9811 /* enable spares to use in array */
9812 for (i = 0; i < delta_disks; i++) {
9813 new_disk = get_disk_super(super,
9814 major(u->new_disks[i]),
9815 minor(u->new_disks[i]));
7a862a02 9816 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9817 major(u->new_disks[i]), minor(u->new_disks[i]),
9818 new_disk, new_disk->index);
089f9d79
JS
9819 if (new_disk == NULL ||
9820 (new_disk->index >= 0 &&
9821 new_disk->index < u->old_raid_disks))
2e5dc010 9822 goto update_reshape_exit;
ee4beede 9823 new_disk->index = disk_count++;
2e5dc010
N
9824 /* slot to fill in autolayout
9825 */
9826 new_disk->raiddisk = new_disk->index;
9827 new_disk->disk.status |=
9828 CONFIGURED_DISK;
9829 new_disk->disk.status &= ~SPARE_DISK;
9830 }
9831
ed7333bd
AK
9832 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9833 mpb->num_raid_devs);
2e5dc010
N
9834 /* manage changes in volume
9835 */
d098291a 9836 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9837 void **sp = *space_list;
9838 struct imsm_dev *newdev;
9839 struct imsm_map *newmap, *oldmap;
9840
d098291a
AK
9841 for (id = super->devlist ; id; id = id->next) {
9842 if (id->index == dev_id)
9843 break;
9844 }
9845 if (id == NULL)
9846 break;
2e5dc010
N
9847 if (!sp)
9848 continue;
9849 *space_list = *sp;
9850 newdev = (void*)sp;
9851 /* Copy the dev, but not (all of) the map */
9852 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9853 oldmap = get_imsm_map(id->dev, MAP_0);
9854 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9855 /* Copy the current map */
9856 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9857 /* update one device only
9858 */
9859 if (devices_to_reshape) {
ed7333bd
AK
9860 dprintf("imsm: modifying subdev: %i\n",
9861 id->index);
2e5dc010
N
9862 devices_to_reshape--;
9863 newdev->vol.migr_state = 1;
4036e7ee 9864 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9865 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9866 newmap->num_members = u->new_raid_disks;
9867 for (i = 0; i < delta_disks; i++) {
9868 set_imsm_ord_tbl_ent(newmap,
9869 u->old_raid_disks + i,
9870 u->old_raid_disks + i);
9871 }
9872 /* New map is correct, now need to save old map
9873 */
238c0a71 9874 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9875 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9876
f3871fdc 9877 imsm_set_array_size(newdev, -1);
2e5dc010
N
9878 }
9879
9880 sp = (void **)id->dev;
9881 id->dev = newdev;
9882 *sp = tofree;
9883 tofree = sp;
8e59f3d8
AK
9884
9885 /* Clear migration record */
9886 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9887 }
819bc634
AK
9888 if (tofree)
9889 *space_list = tofree;
2e5dc010
N
9890 ret_val = 1;
9891
9892update_reshape_exit:
9893
9894 return ret_val;
9895}
9896
bb025c2f 9897static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9898 struct intel_super *super,
9899 void ***space_list)
bb025c2f
KW
9900{
9901 struct imsm_dev *dev = NULL;
8ca6df95
KW
9902 struct intel_dev *dv;
9903 struct imsm_dev *dev_new;
bb025c2f
KW
9904 struct imsm_map *map;
9905 struct dl *dm, *du;
8ca6df95 9906 int i;
bb025c2f
KW
9907
9908 for (dv = super->devlist; dv; dv = dv->next)
9909 if (dv->index == (unsigned int)u->subarray) {
9910 dev = dv->dev;
9911 break;
9912 }
9913
9914 if (dev == NULL)
9915 return 0;
9916
238c0a71 9917 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9918
9919 if (u->direction == R10_TO_R0) {
43d5ec18 9920 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9921 if (imsm_count_failed(super, dev, MAP_0) !=
9922 (map->num_members / 2))
43d5ec18
KW
9923 return 0;
9924
bb025c2f
KW
9925 /* iterate through devices to mark removed disks as spare */
9926 for (dm = super->disks; dm; dm = dm->next) {
9927 if (dm->disk.status & FAILED_DISK) {
9928 int idx = dm->index;
9929 /* update indexes on the disk list */
9930/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9931 the index values will end up being correct.... NB */
9932 for (du = super->disks; du; du = du->next)
9933 if (du->index > idx)
9934 du->index--;
9935 /* mark as spare disk */
a8619d23 9936 mark_spare(dm);
bb025c2f
KW
9937 }
9938 }
bb025c2f 9939 /* update map */
1c275381 9940 map->num_members /= map->num_domains;
bb025c2f 9941 map->map_state = IMSM_T_STATE_NORMAL;
27550b13 9942 update_imsm_raid_level(map, IMSM_T_RAID0);
1c275381
MT
9943 set_num_domains(map);
9944 update_num_data_stripes(map, imsm_dev_size(dev));
bb025c2f
KW
9945 map->failed_disk_num = -1;
9946 }
9947
8ca6df95
KW
9948 if (u->direction == R0_TO_R10) {
9949 void **space;
4a353e6e 9950
8ca6df95
KW
9951 /* update slots in current disk list */
9952 for (dm = super->disks; dm; dm = dm->next) {
9953 if (dm->index >= 0)
9954 dm->index *= 2;
9955 }
9956 /* create new *missing* disks */
9957 for (i = 0; i < map->num_members; i++) {
9958 space = *space_list;
9959 if (!space)
9960 continue;
9961 *space_list = *space;
9962 du = (void *)space;
9963 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9964 du->fd = -1;
9965 du->minor = 0;
9966 du->major = 0;
9967 du->index = (i * 2) + 1;
9968 sprintf((char *)du->disk.serial,
9969 " MISSING_%d", du->index);
9970 sprintf((char *)du->serial,
9971 "MISSING_%d", du->index);
9972 du->next = super->missing;
9973 super->missing = du;
9974 }
9975 /* create new dev and map */
9976 space = *space_list;
9977 if (!space)
9978 return 0;
9979 *space_list = *space;
9980 dev_new = (void *)space;
9981 memcpy(dev_new, dev, sizeof(*dev));
9982 /* update new map */
238c0a71 9983 map = get_imsm_map(dev_new, MAP_0);
1c275381 9984
1a2487c2 9985 map->map_state = IMSM_T_STATE_DEGRADED;
27550b13 9986 update_imsm_raid_level(map, IMSM_T_RAID10);
1c275381
MT
9987 set_num_domains(map);
9988 map->num_members = map->num_members * map->num_domains;
9989 update_num_data_stripes(map, imsm_dev_size(dev));
4a353e6e 9990
8ca6df95
KW
9991 /* replace dev<->dev_new */
9992 dv->dev = dev_new;
9993 }
bb025c2f
KW
9994 /* update disk order table */
9995 for (du = super->disks; du; du = du->next)
9996 if (du->index >= 0)
9997 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9998 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9999 if (du->index >= 0) {
10000 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 10001 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 10002 }
bb025c2f
KW
10003
10004 return 1;
10005}
10006
e8319a19
DW
10007static void imsm_process_update(struct supertype *st,
10008 struct metadata_update *update)
10009{
10010 /**
10011 * crack open the metadata_update envelope to find the update record
10012 * update can be one of:
d195167d
AK
10013 * update_reshape_container_disks - all the arrays in the container
10014 * are being reshaped to have more devices. We need to mark
10015 * the arrays for general migration and convert selected spares
10016 * into active devices.
10017 * update_activate_spare - a spare device has replaced a failed
1011e834
N
10018 * device in an array, update the disk_ord_tbl. If this disk is
10019 * present in all member arrays then also clear the SPARE_DISK
10020 * flag
d195167d
AK
10021 * update_create_array
10022 * update_kill_array
10023 * update_rename_array
10024 * update_add_remove_disk
e8319a19
DW
10025 */
10026 struct intel_super *super = st->sb;
4d7b1503 10027 struct imsm_super *mpb;
e8319a19
DW
10028 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10029
4d7b1503
DW
10030 /* update requires a larger buf but the allocation failed */
10031 if (super->next_len && !super->next_buf) {
10032 super->next_len = 0;
10033 return;
10034 }
10035
10036 if (super->next_buf) {
10037 memcpy(super->next_buf, super->buf, super->len);
10038 free(super->buf);
10039 super->len = super->next_len;
10040 super->buf = super->next_buf;
10041
10042 super->next_len = 0;
10043 super->next_buf = NULL;
10044 }
10045
10046 mpb = super->anchor;
10047
e8319a19 10048 switch (type) {
0ec5d470
AK
10049 case update_general_migration_checkpoint: {
10050 struct intel_dev *id;
10051 struct imsm_update_general_migration_checkpoint *u =
10052 (void *)update->buf;
10053
1ade5cc1 10054 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
10055
10056 /* find device under general migration */
10057 for (id = super->devlist ; id; id = id->next) {
10058 if (is_gen_migration(id->dev)) {
4036e7ee
MT
10059 set_vol_curr_migr_unit(id->dev,
10060 u->curr_migr_unit);
0ec5d470
AK
10061 super->updates_pending++;
10062 }
10063 }
10064 break;
10065 }
bb025c2f
KW
10066 case update_takeover: {
10067 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
10068 if (apply_takeover_update(u, super, &update->space_list)) {
10069 imsm_update_version_info(super);
bb025c2f 10070 super->updates_pending++;
1a2487c2 10071 }
bb025c2f
KW
10072 break;
10073 }
10074
78b10e66 10075 case update_reshape_container_disks: {
d195167d 10076 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
10077 if (apply_reshape_container_disks_update(
10078 u, super, &update->space_list))
10079 super->updates_pending++;
78b10e66
N
10080 break;
10081 }
48c5303a 10082 case update_reshape_migration: {
a29911da
PC
10083 struct imsm_update_reshape_migration *u = (void *)update->buf;
10084 if (apply_reshape_migration_update(
10085 u, super, &update->space_list))
10086 super->updates_pending++;
48c5303a
PC
10087 break;
10088 }
f3871fdc
AK
10089 case update_size_change: {
10090 struct imsm_update_size_change *u = (void *)update->buf;
10091 if (apply_size_change_update(u, super))
10092 super->updates_pending++;
10093 break;
10094 }
e8319a19 10095 case update_activate_spare: {
1011e834 10096 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
10097
10098 if (prepare_spare_to_activate(st, u) &&
10099 apply_update_activate_spare(u, super, st->arrays))
061d7da3 10100 super->updates_pending++;
8273f55e
DW
10101 break;
10102 }
10103 case update_create_array: {
10104 /* someone wants to create a new array, we need to be aware of
10105 * a few races/collisions:
10106 * 1/ 'Create' called by two separate instances of mdadm
10107 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10108 * devices that have since been assimilated via
10109 * activate_spare.
10110 * In the event this update can not be carried out mdadm will
10111 * (FIX ME) notice that its update did not take hold.
10112 */
10113 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10114 struct intel_dev *dv;
8273f55e
DW
10115 struct imsm_dev *dev;
10116 struct imsm_map *map, *new_map;
10117 unsigned long long start, end;
10118 unsigned long long new_start, new_end;
10119 int i;
54c2c1ea
DW
10120 struct disk_info *inf;
10121 struct dl *dl;
8273f55e
DW
10122
10123 /* handle racing creates: first come first serve */
10124 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10125 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10126 goto create_error;
8273f55e
DW
10127 }
10128
10129 /* check update is next in sequence */
10130 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10131 dprintf("can not create array %d expected index %d\n",
10132 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10133 goto create_error;
8273f55e
DW
10134 }
10135
238c0a71 10136 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10137 new_start = pba_of_lba0(new_map);
44490938 10138 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10139 inf = get_disk_info(u);
8273f55e
DW
10140
10141 /* handle activate_spare versus create race:
10142 * check to make sure that overlapping arrays do not include
10143 * overalpping disks
10144 */
10145 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10146 dev = get_imsm_dev(super, i);
238c0a71 10147 map = get_imsm_map(dev, MAP_0);
5551b113 10148 start = pba_of_lba0(map);
44490938 10149 end = start + per_dev_array_size(map);
8273f55e
DW
10150 if ((new_start >= start && new_start <= end) ||
10151 (start >= new_start && start <= new_end))
54c2c1ea
DW
10152 /* overlap */;
10153 else
10154 continue;
10155
10156 if (disks_overlap(super, i, u)) {
1ade5cc1 10157 dprintf("arrays overlap\n");
ba2de7ba 10158 goto create_error;
8273f55e
DW
10159 }
10160 }
8273f55e 10161
949c47a0
DW
10162 /* check that prepare update was successful */
10163 if (!update->space) {
1ade5cc1 10164 dprintf("prepare update failed\n");
ba2de7ba 10165 goto create_error;
949c47a0
DW
10166 }
10167
54c2c1ea
DW
10168 /* check that all disks are still active before committing
10169 * changes. FIXME: could we instead handle this by creating a
10170 * degraded array? That's probably not what the user expects,
10171 * so better to drop this update on the floor.
10172 */
10173 for (i = 0; i < new_map->num_members; i++) {
10174 dl = serial_to_dl(inf[i].serial, super);
10175 if (!dl) {
1ade5cc1 10176 dprintf("disk disappeared\n");
ba2de7ba 10177 goto create_error;
54c2c1ea 10178 }
949c47a0
DW
10179 }
10180
8273f55e 10181 super->updates_pending++;
54c2c1ea
DW
10182
10183 /* convert spares to members and fixup ord_tbl */
10184 for (i = 0; i < new_map->num_members; i++) {
10185 dl = serial_to_dl(inf[i].serial, super);
10186 if (dl->index == -1) {
10187 dl->index = mpb->num_disks;
10188 mpb->num_disks++;
10189 dl->disk.status |= CONFIGURED_DISK;
10190 dl->disk.status &= ~SPARE_DISK;
10191 }
10192 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10193 }
10194
ba2de7ba
DW
10195 dv = update->space;
10196 dev = dv->dev;
949c47a0
DW
10197 update->space = NULL;
10198 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10199 dv->index = u->dev_idx;
10200 dv->next = super->devlist;
10201 super->devlist = dv;
8273f55e 10202 mpb->num_raid_devs++;
8273f55e 10203
4d1313e9 10204 imsm_update_version_info(super);
8273f55e 10205 break;
ba2de7ba
DW
10206 create_error:
10207 /* mdmon knows how to release update->space, but not
10208 * ((struct intel_dev *) update->space)->dev
10209 */
10210 if (update->space) {
10211 dv = update->space;
10212 free(dv->dev);
10213 }
8273f55e 10214 break;
e8319a19 10215 }
33414a01
DW
10216 case update_kill_array: {
10217 struct imsm_update_kill_array *u = (void *) update->buf;
10218 int victim = u->dev_idx;
10219 struct active_array *a;
10220 struct intel_dev **dp;
33414a01
DW
10221
10222 /* sanity check that we are not affecting the uuid of
10223 * active arrays, or deleting an active array
10224 *
10225 * FIXME when immutable ids are available, but note that
10226 * we'll also need to fixup the invalidated/active
10227 * subarray indexes in mdstat
10228 */
10229 for (a = st->arrays; a; a = a->next)
10230 if (a->info.container_member >= victim)
10231 break;
10232 /* by definition if mdmon is running at least one array
10233 * is active in the container, so checking
10234 * mpb->num_raid_devs is just extra paranoia
10235 */
756a15f3 10236 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
33414a01
DW
10237 dprintf("failed to delete subarray-%d\n", victim);
10238 break;
10239 }
10240
10241 for (dp = &super->devlist; *dp;)
f21e18ca 10242 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10243 *dp = (*dp)->next;
10244 } else {
f21e18ca 10245 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10246 (*dp)->index--;
10247 dp = &(*dp)->next;
10248 }
10249 mpb->num_raid_devs--;
10250 super->updates_pending++;
10251 break;
10252 }
aa534678
DW
10253 case update_rename_array: {
10254 struct imsm_update_rename_array *u = (void *) update->buf;
10255 char name[MAX_RAID_SERIAL_LEN+1];
10256 int target = u->dev_idx;
10257 struct active_array *a;
10258 struct imsm_dev *dev;
10259
10260 /* sanity check that we are not affecting the uuid of
10261 * an active array
10262 */
40659392 10263 memset(name, 0, sizeof(name));
aa534678
DW
10264 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10265 name[MAX_RAID_SERIAL_LEN] = '\0';
10266 for (a = st->arrays; a; a = a->next)
10267 if (a->info.container_member == target)
10268 break;
10269 dev = get_imsm_dev(super, u->dev_idx);
e2eb503b
MT
10270
10271 if (a || !dev || imsm_is_name_allowed(super, name, 0) == false) {
aa534678
DW
10272 dprintf("failed to rename subarray-%d\n", target);
10273 break;
10274 }
10275
40659392 10276 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10277 super->updates_pending++;
10278 break;
10279 }
1a64be56 10280 case update_add_remove_disk: {
43dad3d6 10281 /* we may be able to repair some arrays if disks are
095b8088 10282 * being added, check the status of add_remove_disk
1a64be56
LM
10283 * if discs has been added.
10284 */
10285 if (add_remove_disk_update(super)) {
43dad3d6 10286 struct active_array *a;
072b727f
DW
10287
10288 super->updates_pending++;
1a64be56 10289 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10290 a->check_degraded = 1;
10291 }
43dad3d6 10292 break;
e8319a19 10293 }
bbab0940
TM
10294 case update_prealloc_badblocks_mem:
10295 break;
e6e9dd3f
AP
10296 case update_rwh_policy: {
10297 struct imsm_update_rwh_policy *u = (void *)update->buf;
10298 int target = u->dev_idx;
10299 struct imsm_dev *dev = get_imsm_dev(super, target);
e6e9dd3f
AP
10300
10301 if (dev->rwh_policy != u->new_policy) {
10302 dev->rwh_policy = u->new_policy;
10303 super->updates_pending++;
10304 }
10305 break;
10306 }
1a64be56 10307 default:
ebf3be99 10308 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10309 }
e8319a19 10310}
88758e9d 10311
bc0b9d34
PC
10312static struct mdinfo *get_spares_for_grow(struct supertype *st);
10313
5fe6f031
N
10314static int imsm_prepare_update(struct supertype *st,
10315 struct metadata_update *update)
8273f55e 10316{
949c47a0 10317 /**
4d7b1503
DW
10318 * Allocate space to hold new disk entries, raid-device entries or a new
10319 * mpb if necessary. The manager synchronously waits for updates to
10320 * complete in the monitor, so new mpb buffers allocated here can be
10321 * integrated by the monitor thread without worrying about live pointers
10322 * in the manager thread.
8273f55e 10323 */
095b8088 10324 enum imsm_update_type type;
4d7b1503 10325 struct intel_super *super = st->sb;
f36a9ecd 10326 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10327 struct imsm_super *mpb = super->anchor;
10328 size_t buf_len;
10329 size_t len = 0;
949c47a0 10330
095b8088
N
10331 if (update->len < (int)sizeof(type))
10332 return 0;
10333
10334 type = *(enum imsm_update_type *) update->buf;
10335
949c47a0 10336 switch (type) {
0ec5d470 10337 case update_general_migration_checkpoint:
095b8088
N
10338 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10339 return 0;
1ade5cc1 10340 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10341 break;
abedf5fc
KW
10342 case update_takeover: {
10343 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10344 if (update->len < (int)sizeof(*u))
10345 return 0;
abedf5fc
KW
10346 if (u->direction == R0_TO_R10) {
10347 void **tail = (void **)&update->space_list;
10348 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10349 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10350 int num_members = map->num_members;
10351 void *space;
10352 int size, i;
abedf5fc
KW
10353 /* allocate memory for added disks */
10354 for (i = 0; i < num_members; i++) {
10355 size = sizeof(struct dl);
503975b9 10356 space = xmalloc(size);
abedf5fc
KW
10357 *tail = space;
10358 tail = space;
10359 *tail = NULL;
10360 }
10361 /* allocate memory for new device */
10362 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10363 (num_members * sizeof(__u32));
503975b9
N
10364 space = xmalloc(size);
10365 *tail = space;
10366 tail = space;
10367 *tail = NULL;
10368 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10369 }
10370
10371 break;
10372 }
78b10e66 10373 case update_reshape_container_disks: {
d195167d
AK
10374 /* Every raid device in the container is about to
10375 * gain some more devices, and we will enter a
10376 * reconfiguration.
10377 * So each 'imsm_map' will be bigger, and the imsm_vol
10378 * will now hold 2 of them.
10379 * Thus we need new 'struct imsm_dev' allocations sized
10380 * as sizeof_imsm_dev but with more devices in both maps.
10381 */
10382 struct imsm_update_reshape *u = (void *)update->buf;
10383 struct intel_dev *dl;
10384 void **space_tail = (void**)&update->space_list;
10385
095b8088
N
10386 if (update->len < (int)sizeof(*u))
10387 return 0;
10388
1ade5cc1 10389 dprintf("for update_reshape\n");
d195167d
AK
10390
10391 for (dl = super->devlist; dl; dl = dl->next) {
10392 int size = sizeof_imsm_dev(dl->dev, 1);
10393 void *s;
d677e0b8
AK
10394 if (u->new_raid_disks > u->old_raid_disks)
10395 size += sizeof(__u32)*2*
10396 (u->new_raid_disks - u->old_raid_disks);
503975b9 10397 s = xmalloc(size);
d195167d
AK
10398 *space_tail = s;
10399 space_tail = s;
10400 *space_tail = NULL;
10401 }
10402
10403 len = disks_to_mpb_size(u->new_raid_disks);
10404 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10405 break;
10406 }
48c5303a 10407 case update_reshape_migration: {
bc0b9d34
PC
10408 /* for migration level 0->5 we need to add disks
10409 * so the same as for container operation we will copy
10410 * device to the bigger location.
10411 * in memory prepared device and new disk area are prepared
10412 * for usage in process update
10413 */
10414 struct imsm_update_reshape_migration *u = (void *)update->buf;
10415 struct intel_dev *id;
10416 void **space_tail = (void **)&update->space_list;
10417 int size;
10418 void *s;
10419 int current_level = -1;
10420
095b8088
N
10421 if (update->len < (int)sizeof(*u))
10422 return 0;
10423
1ade5cc1 10424 dprintf("for update_reshape\n");
bc0b9d34
PC
10425
10426 /* add space for bigger array in update
10427 */
10428 for (id = super->devlist; id; id = id->next) {
10429 if (id->index == (unsigned)u->subdev) {
10430 size = sizeof_imsm_dev(id->dev, 1);
10431 if (u->new_raid_disks > u->old_raid_disks)
10432 size += sizeof(__u32)*2*
10433 (u->new_raid_disks - u->old_raid_disks);
503975b9 10434 s = xmalloc(size);
bc0b9d34
PC
10435 *space_tail = s;
10436 space_tail = s;
10437 *space_tail = NULL;
10438 break;
10439 }
10440 }
10441 if (update->space_list == NULL)
10442 break;
10443
10444 /* add space for disk in update
10445 */
10446 size = sizeof(struct dl);
503975b9 10447 s = xmalloc(size);
bc0b9d34
PC
10448 *space_tail = s;
10449 space_tail = s;
10450 *space_tail = NULL;
10451
10452 /* add spare device to update
10453 */
10454 for (id = super->devlist ; id; id = id->next)
10455 if (id->index == (unsigned)u->subdev) {
10456 struct imsm_dev *dev;
10457 struct imsm_map *map;
10458
10459 dev = get_imsm_dev(super, u->subdev);
238c0a71 10460 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10461 current_level = map->raid_level;
10462 break;
10463 }
089f9d79 10464 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10465 struct mdinfo *spares;
10466
10467 spares = get_spares_for_grow(st);
10468 if (spares) {
10469 struct dl *dl;
10470 struct mdinfo *dev;
10471
10472 dev = spares->devs;
10473 if (dev) {
10474 u->new_disks[0] =
10475 makedev(dev->disk.major,
10476 dev->disk.minor);
10477 dl = get_disk_super(super,
10478 dev->disk.major,
10479 dev->disk.minor);
10480 dl->index = u->old_raid_disks;
10481 dev = dev->next;
10482 }
10483 sysfs_free(spares);
10484 }
10485 }
10486 len = disks_to_mpb_size(u->new_raid_disks);
10487 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10488 break;
10489 }
f3871fdc 10490 case update_size_change: {
095b8088
N
10491 if (update->len < (int)sizeof(struct imsm_update_size_change))
10492 return 0;
10493 break;
10494 }
10495 case update_activate_spare: {
10496 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10497 return 0;
f3871fdc
AK
10498 break;
10499 }
949c47a0
DW
10500 case update_create_array: {
10501 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10502 struct intel_dev *dv;
54c2c1ea 10503 struct imsm_dev *dev = &u->dev;
238c0a71 10504 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10505 struct dl *dl;
10506 struct disk_info *inf;
10507 int i;
10508 int activate = 0;
949c47a0 10509
095b8088
N
10510 if (update->len < (int)sizeof(*u))
10511 return 0;
10512
54c2c1ea
DW
10513 inf = get_disk_info(u);
10514 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10515 /* allocate a new super->devlist entry */
503975b9
N
10516 dv = xmalloc(sizeof(*dv));
10517 dv->dev = xmalloc(len);
10518 update->space = dv;
949c47a0 10519
54c2c1ea
DW
10520 /* count how many spares will be converted to members */
10521 for (i = 0; i < map->num_members; i++) {
10522 dl = serial_to_dl(inf[i].serial, super);
10523 if (!dl) {
10524 /* hmm maybe it failed?, nothing we can do about
10525 * it here
10526 */
10527 continue;
10528 }
10529 if (count_memberships(dl, super) == 0)
10530 activate++;
10531 }
10532 len += activate * sizeof(struct imsm_disk);
949c47a0 10533 break;
095b8088
N
10534 }
10535 case update_kill_array: {
10536 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10537 return 0;
949c47a0
DW
10538 break;
10539 }
095b8088
N
10540 case update_rename_array: {
10541 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10542 return 0;
10543 break;
10544 }
10545 case update_add_remove_disk:
10546 /* no update->len needed */
10547 break;
bbab0940
TM
10548 case update_prealloc_badblocks_mem:
10549 super->extra_space += sizeof(struct bbm_log) -
10550 get_imsm_bbm_log_size(super->bbm_log);
10551 break;
e6e9dd3f
AP
10552 case update_rwh_policy: {
10553 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10554 return 0;
10555 break;
10556 }
095b8088
N
10557 default:
10558 return 0;
949c47a0 10559 }
8273f55e 10560
4d7b1503
DW
10561 /* check if we need a larger metadata buffer */
10562 if (super->next_buf)
10563 buf_len = super->next_len;
10564 else
10565 buf_len = super->len;
10566
bbab0940 10567 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10568 /* ok we need a larger buf than what is currently allocated
10569 * if this allocation fails process_update will notice that
10570 * ->next_len is set and ->next_buf is NULL
10571 */
bbab0940
TM
10572 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10573 super->extra_space + len, sector_size);
4d7b1503
DW
10574 if (super->next_buf)
10575 free(super->next_buf);
10576
10577 super->next_len = buf_len;
f36a9ecd 10578 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10579 memset(super->next_buf, 0, buf_len);
10580 else
4d7b1503
DW
10581 super->next_buf = NULL;
10582 }
5fe6f031 10583 return 1;
8273f55e
DW
10584}
10585
ae6aad82 10586/* must be called while manager is quiesced */
f21e18ca 10587static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10588{
10589 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10590 struct dl *iter;
10591 struct imsm_dev *dev;
10592 struct imsm_map *map;
4c9e8c1e 10593 unsigned int i, j, num_members;
fb12a745 10594 __u32 ord, ord_map0;
4c9e8c1e 10595 struct bbm_log *log = super->bbm_log;
ae6aad82 10596
1ade5cc1 10597 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10598
10599 /* shift all indexes down one */
10600 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10601 if (iter->index > (int)index)
ae6aad82 10602 iter->index--;
47ee5a45 10603 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10604 if (iter->index > (int)index)
47ee5a45 10605 iter->index--;
ae6aad82
DW
10606
10607 for (i = 0; i < mpb->num_raid_devs; i++) {
10608 dev = get_imsm_dev(super, i);
238c0a71 10609 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10610 num_members = map->num_members;
10611 for (j = 0; j < num_members; j++) {
10612 /* update ord entries being careful not to propagate
10613 * ord-flags to the first map
10614 */
238c0a71 10615 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10616 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10617
24565c9a
DW
10618 if (ord_to_idx(ord) <= index)
10619 continue;
ae6aad82 10620
238c0a71 10621 map = get_imsm_map(dev, MAP_0);
fb12a745 10622 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10623 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10624 if (map)
10625 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10626 }
10627 }
10628
4c9e8c1e
TM
10629 for (i = 0; i < log->entry_count; i++) {
10630 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10631
10632 if (entry->disk_ordinal <= index)
10633 continue;
10634 entry->disk_ordinal--;
10635 }
10636
ae6aad82
DW
10637 mpb->num_disks--;
10638 super->updates_pending++;
24565c9a
DW
10639 if (*dlp) {
10640 struct dl *dl = *dlp;
10641
10642 *dlp = (*dlp)->next;
3a85bf0e 10643 __free_imsm_disk(dl, 1);
24565c9a 10644 }
ae6aad82 10645}
9a717282 10646
9a717282
AK
10647static int imsm_get_allowed_degradation(int level, int raid_disks,
10648 struct intel_super *super,
10649 struct imsm_dev *dev)
10650{
10651 switch (level) {
bf5cf7c7 10652 case 1:
9a717282
AK
10653 case 10:{
10654 int ret_val = 0;
10655 struct imsm_map *map;
10656 int i;
10657
10658 ret_val = raid_disks/2;
10659 /* check map if all disks pairs not failed
10660 * in both maps
10661 */
238c0a71 10662 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10663 for (i = 0; i < ret_val; i++) {
10664 int degradation = 0;
10665 if (get_imsm_disk(super, i) == NULL)
10666 degradation++;
10667 if (get_imsm_disk(super, i + 1) == NULL)
10668 degradation++;
10669 if (degradation == 2)
10670 return 0;
10671 }
238c0a71 10672 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10673 /* if there is no second map
10674 * result can be returned
10675 */
10676 if (map == NULL)
10677 return ret_val;
10678 /* check degradation in second map
10679 */
10680 for (i = 0; i < ret_val; i++) {
10681 int degradation = 0;
10682 if (get_imsm_disk(super, i) == NULL)
10683 degradation++;
10684 if (get_imsm_disk(super, i + 1) == NULL)
10685 degradation++;
10686 if (degradation == 2)
10687 return 0;
10688 }
10689 return ret_val;
10690 }
10691 case 5:
10692 return 1;
10693 case 6:
10694 return 2;
10695 default:
10696 return 0;
10697 }
10698}
10699
d31ad643
PB
10700/*******************************************************************************
10701 * Function: validate_container_imsm
10702 * Description: This routine validates container after assemble,
10703 * eg. if devices in container are under the same controller.
10704 *
10705 * Parameters:
10706 * info : linked list with info about devices used in array
10707 * Returns:
10708 * 1 : HBA mismatch
10709 * 0 : Success
10710 ******************************************************************************/
10711int validate_container_imsm(struct mdinfo *info)
10712{
420dafcd 10713 if (check_no_platform())
6b781d33 10714 return 0;
d31ad643 10715
6b781d33
AP
10716 struct sys_dev *idev;
10717 struct sys_dev *hba = NULL;
10718 struct sys_dev *intel_devices = find_intel_devices();
10719 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10720 info->disk.minor), 1, NULL);
6b781d33
AP
10721
10722 for (idev = intel_devices; idev; idev = idev->next) {
10723 if (dev_path && strstr(dev_path, idev->path)) {
10724 hba = idev;
10725 break;
d31ad643 10726 }
6b781d33
AP
10727 }
10728 if (dev_path)
d31ad643
PB
10729 free(dev_path);
10730
6b781d33
AP
10731 if (!hba) {
10732 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10733 devid2kname(makedev(info->disk.major, info->disk.minor)));
10734 return 1;
10735 }
10736
10737 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10738 struct mdinfo *dev;
10739
10740 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10741 dev_path = devt_to_devpath(makedev(dev->disk.major,
10742 dev->disk.minor), 1, NULL);
6b781d33
AP
10743
10744 struct sys_dev *hba2 = NULL;
10745 for (idev = intel_devices; idev; idev = idev->next) {
10746 if (dev_path && strstr(dev_path, idev->path)) {
10747 hba2 = idev;
10748 break;
d31ad643
PB
10749 }
10750 }
6b781d33
AP
10751 if (dev_path)
10752 free(dev_path);
10753
10754 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10755 get_orom_by_device_id(hba2->dev_id);
10756
10757 if (hba2 && hba->type != hba2->type) {
10758 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10759 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10760 return 1;
10761 }
10762
07cb1e57 10763 if (orom != orom2) {
6b781d33
AP
10764 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10765 " This operation is not supported and can lead to data loss.\n");
10766 return 1;
10767 }
10768
10769 if (!orom) {
10770 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10771 " This operation is not supported and can lead to data loss.\n");
10772 return 1;
10773 }
d31ad643 10774 }
6b781d33 10775
d31ad643
PB
10776 return 0;
10777}
32141c17 10778
6f50473f
TM
10779/*******************************************************************************
10780* Function: imsm_record_badblock
10781* Description: This routine stores new bad block record in BBM log
10782*
10783* Parameters:
10784* a : array containing a bad block
10785* slot : disk number containing a bad block
10786* sector : bad block sector
10787* length : bad block sectors range
10788* Returns:
10789* 1 : Success
10790* 0 : Error
10791******************************************************************************/
10792static int imsm_record_badblock(struct active_array *a, int slot,
10793 unsigned long long sector, int length)
10794{
10795 struct intel_super *super = a->container->sb;
10796 int ord;
10797 int ret;
10798
10799 ord = imsm_disk_slot_to_ord(a, slot);
10800 if (ord < 0)
10801 return 0;
10802
10803 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10804 length);
10805 if (ret)
10806 super->updates_pending++;
10807
10808 return ret;
10809}
c07a5a4f
TM
10810/*******************************************************************************
10811* Function: imsm_clear_badblock
10812* Description: This routine clears bad block record from BBM log
10813*
10814* Parameters:
10815* a : array containing a bad block
10816* slot : disk number containing a bad block
10817* sector : bad block sector
10818* length : bad block sectors range
10819* Returns:
10820* 1 : Success
10821* 0 : Error
10822******************************************************************************/
10823static int imsm_clear_badblock(struct active_array *a, int slot,
10824 unsigned long long sector, int length)
10825{
10826 struct intel_super *super = a->container->sb;
10827 int ord;
10828 int ret;
10829
10830 ord = imsm_disk_slot_to_ord(a, slot);
10831 if (ord < 0)
10832 return 0;
10833
10834 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10835 if (ret)
10836 super->updates_pending++;
10837
10838 return ret;
10839}
928f1424
TM
10840/*******************************************************************************
10841* Function: imsm_get_badblocks
10842* Description: This routine get list of bad blocks for an array
10843*
10844* Parameters:
10845* a : array
10846* slot : disk number
10847* Returns:
10848* bb : structure containing bad blocks
10849* NULL : error
10850******************************************************************************/
10851static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10852{
10853 int inst = a->info.container_member;
10854 struct intel_super *super = a->container->sb;
10855 struct imsm_dev *dev = get_imsm_dev(super, inst);
10856 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10857 int ord;
10858
10859 ord = imsm_disk_slot_to_ord(a, slot);
10860 if (ord < 0)
10861 return NULL;
10862
10863 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10864 per_dev_array_size(map), &super->bb);
928f1424
TM
10865
10866 return &super->bb;
10867}
27156a57
TM
10868/*******************************************************************************
10869* Function: examine_badblocks_imsm
10870* Description: Prints list of bad blocks on a disk to the standard output
10871*
10872* Parameters:
10873* st : metadata handler
10874* fd : open file descriptor for device
10875* devname : device name
10876* Returns:
10877* 0 : Success
10878* 1 : Error
10879******************************************************************************/
10880static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10881{
10882 struct intel_super *super = st->sb;
10883 struct bbm_log *log = super->bbm_log;
10884 struct dl *d = NULL;
10885 int any = 0;
10886
10887 for (d = super->disks; d ; d = d->next) {
10888 if (strcmp(d->devname, devname) == 0)
10889 break;
10890 }
10891
10892 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10893 pr_err("%s doesn't appear to be part of a raid array\n",
10894 devname);
10895 return 1;
10896 }
10897
10898 if (log != NULL) {
10899 unsigned int i;
10900 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10901
10902 for (i = 0; i < log->entry_count; i++) {
10903 if (entry[i].disk_ordinal == d->index) {
10904 unsigned long long sector = __le48_to_cpu(
10905 &entry[i].defective_block_start);
10906 int cnt = entry[i].marked_count + 1;
10907
10908 if (!any) {
10909 printf("Bad-blocks on %s:\n", devname);
10910 any = 1;
10911 }
10912
10913 printf("%20llu for %d sectors\n", sector, cnt);
10914 }
10915 }
10916 }
10917
10918 if (!any)
10919 printf("No bad-blocks list configured on %s\n", devname);
10920
10921 return 0;
10922}
687629c2
AK
10923/*******************************************************************************
10924 * Function: init_migr_record_imsm
10925 * Description: Function inits imsm migration record
10926 * Parameters:
10927 * super : imsm internal array info
10928 * dev : device under migration
10929 * info : general array info to find the smallest device
10930 * Returns:
10931 * none
10932 ******************************************************************************/
10933void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10934 struct mdinfo *info)
10935{
10936 struct intel_super *super = st->sb;
10937 struct migr_record *migr_rec = super->migr_rec;
10938 int new_data_disks;
10939 unsigned long long dsize, dev_sectors;
10940 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
10941 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10942 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10943 unsigned long long num_migr_units;
3ef4403c 10944 unsigned long long array_blocks;
2f86fda3 10945 struct dl *dl_disk = NULL;
687629c2
AK
10946
10947 memset(migr_rec, 0, sizeof(struct migr_record));
10948 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10949
10950 /* only ascending reshape supported now */
10951 migr_rec->ascending_migr = __cpu_to_le32(1);
10952
10953 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10954 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10955 migr_rec->dest_depth_per_unit *=
10956 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 10957 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
10958 migr_rec->blocks_per_unit =
10959 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10960 migr_rec->dest_depth_per_unit =
10961 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10962 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10963 num_migr_units =
10964 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10965
10966 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10967 num_migr_units++;
9f421827 10968 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
10969
10970 migr_rec->post_migr_vol_cap = dev->size_low;
10971 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10972
687629c2 10973 /* Find the smallest dev */
2f86fda3
MT
10974 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10975 /* ignore spares in container */
10976 if (dl_disk->index < 0)
687629c2 10977 continue;
2f86fda3 10978 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
10979 dev_sectors = dsize / 512;
10980 if (dev_sectors < min_dev_sectors)
10981 min_dev_sectors = dev_sectors;
687629c2 10982 }
9f421827 10983 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
10984 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10985
10986 write_imsm_migr_rec(st);
10987
10988 return;
10989}
10990
10991/*******************************************************************************
10992 * Function: save_backup_imsm
10993 * Description: Function saves critical data stripes to Migration Copy Area
10994 * and updates the current migration unit status.
10995 * Use restore_stripes() to form a destination stripe,
10996 * and to write it to the Copy Area.
10997 * Parameters:
10998 * st : supertype information
aea93171 10999 * dev : imsm device that backup is saved for
687629c2
AK
11000 * info : general array info
11001 * buf : input buffer
687629c2
AK
11002 * length : length of data to backup (blocks_per_unit)
11003 * Returns:
11004 * 0 : success
11005 *, -1 : fail
11006 ******************************************************************************/
11007int save_backup_imsm(struct supertype *st,
11008 struct imsm_dev *dev,
11009 struct mdinfo *info,
11010 void *buf,
687629c2
AK
11011 int length)
11012{
11013 int rv = -1;
11014 struct intel_super *super = st->sb;
687629c2 11015 int i;
238c0a71 11016 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 11017 int new_disks = map_dest->num_members;
ab724b98 11018 int dest_layout = 0;
4389ce73
MT
11019 int dest_chunk, targets[new_disks];
11020 unsigned long long start, target_offsets[new_disks];
9529d343 11021 int data_disks = imsm_num_data_members(map_dest);
687629c2 11022
2f86fda3
MT
11023 for (i = 0; i < new_disks; i++) {
11024 struct dl *dl_disk = get_imsm_dl_disk(super, i);
4389ce73
MT
11025 if (dl_disk && is_fd_valid(dl_disk->fd))
11026 targets[i] = dl_disk->fd;
11027 else
11028 goto abort;
2f86fda3 11029 }
7e45b550 11030
d1877f69 11031 start = info->reshape_progress * 512;
687629c2 11032 for (i = 0; i < new_disks; i++) {
9f421827 11033 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
11034 /* move back copy area adderss, it will be moved forward
11035 * in restore_stripes() using start input variable
11036 */
11037 target_offsets[i] -= start/data_disks;
687629c2
AK
11038 }
11039
68eb8bc6 11040 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
11041 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11042
687629c2
AK
11043 if (restore_stripes(targets, /* list of dest devices */
11044 target_offsets, /* migration record offsets */
11045 new_disks,
ab724b98
AK
11046 dest_chunk,
11047 map_dest->raid_level,
11048 dest_layout,
11049 -1, /* source backup file descriptor */
11050 0, /* input buf offset
11051 * always 0 buf is already offseted */
d1877f69 11052 start,
687629c2
AK
11053 length,
11054 buf) != 0) {
e7b84f9d 11055 pr_err("Error restoring stripes\n");
687629c2
AK
11056 goto abort;
11057 }
11058
11059 rv = 0;
11060
11061abort:
687629c2
AK
11062 return rv;
11063}
11064
11065/*******************************************************************************
11066 * Function: save_checkpoint_imsm
11067 * Description: Function called for current unit status update
11068 * in the migration record. It writes it to disk.
11069 * Parameters:
11070 * super : imsm internal array info
11071 * info : general array info
11072 * Returns:
11073 * 0: success
11074 * 1: failure
0228d92c
AK
11075 * 2: failure, means no valid migration record
11076 * / no general migration in progress /
687629c2
AK
11077 ******************************************************************************/
11078int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11079{
11080 struct intel_super *super = st->sb;
f8b72ef5
AK
11081 unsigned long long blocks_per_unit;
11082 unsigned long long curr_migr_unit;
11083
2f86fda3 11084 if (load_imsm_migr_rec(super) != 0) {
7a862a02 11085 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
11086 return 1;
11087 }
11088
f8b72ef5
AK
11089 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11090 if (blocks_per_unit == 0) {
0228d92c
AK
11091 dprintf("imsm: no migration in progress.\n");
11092 return 2;
687629c2 11093 }
f8b72ef5
AK
11094 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11095 /* check if array is alligned to copy area
11096 * if it is not alligned, add one to current migration unit value
11097 * this can happend on array reshape finish only
11098 */
11099 if (info->reshape_progress % blocks_per_unit)
11100 curr_migr_unit++;
687629c2 11101
9f421827 11102 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 11103 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
11104 set_migr_dest_1st_member_lba(super->migr_rec,
11105 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11106
687629c2 11107 if (write_imsm_migr_rec(st) < 0) {
7a862a02 11108 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
11109 return 1;
11110 }
11111
11112 return 0;
11113}
11114
276d77db
AK
11115/*******************************************************************************
11116 * Function: recover_backup_imsm
11117 * Description: Function recovers critical data from the Migration Copy Area
11118 * while assembling an array.
11119 * Parameters:
11120 * super : imsm internal array info
11121 * info : general array info
11122 * Returns:
11123 * 0 : success (or there is no data to recover)
11124 * 1 : fail
11125 ******************************************************************************/
11126int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11127{
11128 struct intel_super *super = st->sb;
11129 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11130 struct imsm_map *map_dest;
276d77db
AK
11131 struct intel_dev *id = NULL;
11132 unsigned long long read_offset;
11133 unsigned long long write_offset;
11134 unsigned unit_len;
2f86fda3 11135 int new_disks, err;
276d77db
AK
11136 char *buf = NULL;
11137 int retval = 1;
f36a9ecd 11138 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11139 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11140 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
90fd7001 11141 char buffer[SYSFS_MAX_BUF_SIZE];
6c3560c0 11142 int skipped_disks = 0;
2f86fda3 11143 struct dl *dl_disk;
276d77db 11144
90fd7001 11145 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, sizeof(buffer));
276d77db
AK
11146 if (err < 1)
11147 return 1;
11148
11149 /* recover data only during assemblation */
11150 if (strncmp(buffer, "inactive", 8) != 0)
11151 return 0;
11152 /* no data to recover */
11153 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11154 return 0;
11155 if (curr_migr_unit >= num_migr_units)
11156 return 1;
11157
11158 /* find device during reshape */
11159 for (id = super->devlist; id; id = id->next)
11160 if (is_gen_migration(id->dev))
11161 break;
11162 if (id == NULL)
11163 return 1;
11164
238c0a71 11165 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11166 new_disks = map_dest->num_members;
11167
9f421827 11168 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11169
9f421827 11170 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11171 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11172
11173 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11174 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11175 goto abort;
276d77db 11176
2f86fda3
MT
11177 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11178 if (dl_disk->index < 0)
11179 continue;
276d77db 11180
4389ce73 11181 if (!is_fd_valid(dl_disk->fd)) {
6c3560c0
AK
11182 skipped_disks++;
11183 continue;
11184 }
2f86fda3 11185 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11186 pr_err("Cannot seek to block: %s\n",
11187 strerror(errno));
137debce
AK
11188 skipped_disks++;
11189 continue;
276d77db 11190 }
83b3de77 11191 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11192 pr_err("Cannot read copy area block: %s\n",
11193 strerror(errno));
137debce
AK
11194 skipped_disks++;
11195 continue;
276d77db 11196 }
2f86fda3 11197 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11198 pr_err("Cannot seek to block: %s\n",
11199 strerror(errno));
137debce
AK
11200 skipped_disks++;
11201 continue;
276d77db 11202 }
83b3de77 11203 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11204 pr_err("Cannot restore block: %s\n",
11205 strerror(errno));
137debce
AK
11206 skipped_disks++;
11207 continue;
276d77db
AK
11208 }
11209 }
11210
137debce
AK
11211 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11212 new_disks,
11213 super,
11214 id->dev)) {
7a862a02 11215 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11216 goto abort;
11217 }
11218
befb629b
AK
11219 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11220 /* ignore error == 2, this can mean end of reshape here
11221 */
7a862a02 11222 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11223 } else
276d77db 11224 retval = 0;
276d77db
AK
11225
11226abort:
276d77db
AK
11227 free(buf);
11228 return retval;
11229}
11230
e21aea08
MT
11231/**
11232 * test_and_add_drive_controller_policy_imsm() - add disk controller to policies list.
11233 * @type: Policy type to search on list.
11234 * @pols: List of currently recorded policies.
11235 * @disk_fd: File descriptor of the device to check.
11236 * @hba: The hba disk is attached, could be NULL if verification is disabled.
11237 * @verbose: verbose flag.
11238 *
11239 * IMSM cares about drive physical placement. If @hba is not set, it adds unknown policy.
11240 * If there is no controller policy on pols we are free to add first one. If there is a policy then,
11241 * new must be the same - no controller mixing allowed.
11242 */
11243static mdadm_status_t
11244test_and_add_drive_controller_policy_imsm(const char * const type, dev_policy_t **pols, int disk_fd,
11245 struct sys_dev *hba, const int verbose)
11246{
11247 const char *controller_policy = get_sys_dev_type(SYS_DEV_UNKNOWN);
11248 struct dev_policy *pol = pol_find(*pols, (char *)type);
11249 char devname[MAX_RAID_SERIAL_LEN];
11250
11251 if (hba)
11252 controller_policy = get_sys_dev_type(hba->type);
11253
11254 if (!pol) {
11255 pol_add(pols, (char *)type, (char *)controller_policy, "imsm");
11256 return MDADM_STATUS_SUCCESS;
2cda7640 11257 }
e21aea08
MT
11258
11259 if (strcmp(pol->value, controller_policy) == 0)
11260 return MDADM_STATUS_SUCCESS;
11261
11262 fd2devname(disk_fd, devname);
11263 pr_vrb("Intel(R) raid controller \"%s\" found for %s, but \"%s\" was detected earlier\n",
11264 controller_policy, devname, pol->value);
11265 pr_vrb("Disks under different controllers cannot be used, aborting\n");
11266
11267 return MDADM_STATUS_ERROR;
11268}
11269
acb8f13b
BK
11270/**
11271 * test_and_add_drive_encryption_policy_imsm() - add disk encryption to policies list.
11272 * @type: policy type to search in the list.
11273 * @pols: list of currently recorded policies.
11274 * @disk_fd: file descriptor of the device to check.
11275 * @hba: The hba to which the drive is attached, could be NULL if verification is disabled.
11276 * @verbose: verbose flag.
11277 *
11278 * IMSM cares about drive encryption state. It is not allowed to mix disks with different
11279 * encryption state within one md device.
11280 * If there is no encryption policy on pols we are free to add first one.
11281 * If there is a policy then, new must be the same.
11282 */
11283static mdadm_status_t
11284test_and_add_drive_encryption_policy_imsm(const char * const type, dev_policy_t **pols, int disk_fd,
11285 struct sys_dev *hba, const int verbose)
11286{
11287 struct dev_policy *expected_policy = pol_find(*pols, (char *)type);
11288 struct encryption_information information = {0};
11289 char *encryption_state = "Unknown";
11290 int status = MDADM_STATUS_SUCCESS;
11291 bool encryption_checked = true;
11292 char devname[PATH_MAX];
11293
11294 if (!hba)
11295 goto check_policy;
11296
11297 switch (hba->type) {
11298 case SYS_DEV_NVME:
11299 case SYS_DEV_VMD:
11300 status = get_nvme_opal_encryption_information(disk_fd, &information, verbose);
11301 break;
11302 case SYS_DEV_SATA:
11303 case SYS_DEV_SATA_VMD:
11304 status = get_ata_encryption_information(disk_fd, &information, verbose);
11305 break;
11306 default:
11307 encryption_checked = false;
11308 }
11309
11310 if (status) {
11311 fd2devname(disk_fd, devname);
11312 pr_vrb("Failed to read encryption information of device %s\n", devname);
11313 return MDADM_STATUS_ERROR;
11314 }
11315
11316 if (encryption_checked) {
11317 if (information.status == ENC_STATUS_LOCKED) {
11318 fd2devname(disk_fd, devname);
11319 pr_vrb("Device %s is in Locked state, cannot use. Aborting.\n", devname);
11320 return MDADM_STATUS_ERROR;
11321 }
11322 encryption_state = (char *)get_encryption_status_string(information.status);
11323 }
11324
11325check_policy:
11326 if (expected_policy) {
11327 if (strcmp(expected_policy->value, encryption_state) == 0)
11328 return MDADM_STATUS_SUCCESS;
11329
11330 fd2devname(disk_fd, devname);
c7790592 11331 pr_vrb("Encryption status \"%s\" detected for disk %s, but \"%s\" status was detected earlier.\n",
acb8f13b
BK
11332 encryption_state, devname, expected_policy->value);
11333 pr_vrb("Disks with different encryption status cannot be used.\n");
11334 return MDADM_STATUS_ERROR;
11335 }
11336
11337 pol_add(pols, (char *)type, encryption_state, "imsm");
11338
11339 return MDADM_STATUS_SUCCESS;
11340}
11341
e21aea08
MT
11342struct imsm_drive_policy {
11343 char *type;
11344 mdadm_status_t (*test_and_add_drive_policy)(const char * const type,
11345 struct dev_policy **pols, int disk_fd,
11346 struct sys_dev *hba, const int verbose);
11347};
11348
11349struct imsm_drive_policy imsm_policies[] = {
11350 {"controller", test_and_add_drive_controller_policy_imsm},
acb8f13b 11351 {"encryption", test_and_add_drive_encryption_policy_imsm}
e21aea08
MT
11352};
11353
11354mdadm_status_t test_and_add_drive_policies_imsm(struct dev_policy **pols, int disk_fd,
11355 const int verbose)
11356{
11357 struct imsm_drive_policy *imsm_pol;
11358 struct sys_dev *hba = NULL;
11359 char path[PATH_MAX];
11360 mdadm_status_t ret;
11361 unsigned int i;
11362
11363 /* If imsm platform verification is disabled, do not search for hba. */
11364 if (check_no_platform() != 1) {
11365 if (!diskfd_to_devpath(disk_fd, 1, path)) {
11366 pr_vrb("IMSM: Failed to retrieve device path by file descriptor.\n");
11367 return MDADM_STATUS_ERROR;
11368 }
11369
11370 hba = find_disk_attached_hba(disk_fd, path);
11371 if (!hba) {
11372 pr_vrb("IMSM: Failed to find hba for %s\n", path);
11373 return MDADM_STATUS_ERROR;
11374 }
11375 }
11376
11377 for (i = 0; i < ARRAY_SIZE(imsm_policies); i++) {
11378 imsm_pol = &imsm_policies[i];
11379
11380 ret = imsm_pol->test_and_add_drive_policy(imsm_pol->type, pols, disk_fd, hba,
11381 verbose);
11382 if (ret != MDADM_STATUS_SUCCESS)
11383 /* Inherit error code */
11384 return ret;
11385 }
11386
11387 return MDADM_STATUS_SUCCESS;
2cda7640
ML
11388}
11389
f6562011
MT
11390/**
11391 * get_spare_criteria_imsm() - set spare criteria.
11392 * @st: supertype.
11393 * @mddev_path: path to md device devnode, it must be container.
11394 * @c: spare_criteria struct to fill, not NULL.
11395 *
11396 * If superblock is not loaded, use mddev_path to load_container. It must be given in this case.
11397 * Filles size and sector size accordingly to superblock.
11398 */
11399mdadm_status_t get_spare_criteria_imsm(struct supertype *st, char *mddev_path,
11400 struct spare_criteria *c)
11401{
11402 mdadm_status_t ret = MDADM_STATUS_ERROR;
11403 bool free_superblock = false;
11404 unsigned long long size = 0;
11405 struct intel_super *super;
11406 struct extent *e;
11407 struct dl *dl;
11408 int i;
11409
11410 /* If no superblock and no mddev_path, we cannot load superblock. */
11411 assert(st->sb || mddev_path);
11412
11413 if (mddev_path) {
11414 int fd = open(mddev_path, O_RDONLY);
e21aea08 11415 mdadm_status_t rv;
f6562011
MT
11416
11417 if (!is_fd_valid(fd))
11418 return MDADM_STATUS_ERROR;
11419
11420 if (!st->sb) {
11421 if (load_container_imsm(st, fd, st->devnm)) {
11422 close(fd);
11423 return MDADM_STATUS_ERROR;
11424 }
11425 free_superblock = true;
11426 }
e21aea08
MT
11427
11428 rv = mddev_test_and_add_drive_policies(st, &c->pols, fd, 0);
f6562011 11429 close(fd);
e21aea08
MT
11430
11431 if (rv != MDADM_STATUS_SUCCESS)
11432 goto out;
f6562011
MT
11433 }
11434
11435 super = st->sb;
11436
11437 /* find first active disk in array */
11438 dl = super->disks;
11439 while (dl && (is_failed(&dl->disk) || dl->index == -1))
11440 dl = dl->next;
11441
11442 if (!dl)
11443 goto out;
11444
11445 /* find last lba used by subarrays */
11446 e = get_extents(super, dl, 0);
11447 if (!e)
11448 goto out;
11449
11450 for (i = 0; e[i].size; i++)
11451 continue;
11452 if (i > 0)
11453 size = e[i - 1].start + e[i - 1].size;
11454 free(e);
11455
11456 /* add the amount of space needed for metadata */
11457 size += imsm_min_reserved_sectors(super);
11458
11459 c->min_size = size * 512;
11460 c->sector_size = super->sector_size;
11461 c->criteria_set = true;
11462 ret = MDADM_STATUS_SUCCESS;
11463
11464out:
11465 if (free_superblock)
11466 free_super_imsm(st);
11467
11468 if (ret != MDADM_STATUS_SUCCESS)
11469 c->criteria_set = false;
11470
11471 return ret;
11472}
11473
4dd2df09 11474static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11475{
4dd2df09 11476 static char devnm[32];
78b10e66
N
11477 char subdev_name[20];
11478 struct mdstat_ent *mdstat;
11479
11480 sprintf(subdev_name, "%d", subdev);
11481 mdstat = mdstat_by_subdev(subdev_name, container);
11482 if (!mdstat)
4dd2df09 11483 return NULL;
78b10e66 11484
4dd2df09 11485 strcpy(devnm, mdstat->devnm);
78b10e66 11486 free_mdstat(mdstat);
4dd2df09 11487 return devnm;
78b10e66
N
11488}
11489
11490static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11491 struct geo_params *geo,
fbf3d202
AK
11492 int *old_raid_disks,
11493 int direction)
78b10e66 11494{
694575e7
KW
11495 /* currently we only support increasing the number of devices
11496 * for a container. This increases the number of device for each
11497 * member array. They must all be RAID0 or RAID5.
11498 */
78b10e66
N
11499 int ret_val = 0;
11500 struct mdinfo *info, *member;
11501 int devices_that_can_grow = 0;
11502
7a862a02 11503 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11504
d04f65f4 11505 if (geo->size > 0 ||
78b10e66
N
11506 geo->level != UnSet ||
11507 geo->layout != UnSet ||
11508 geo->chunksize != 0 ||
11509 geo->raid_disks == UnSet) {
7a862a02 11510 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11511 return ret_val;
11512 }
11513
fbf3d202 11514 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11515 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11516 return ret_val;
11517 }
11518
78b10e66
N
11519 info = container_content_imsm(st, NULL);
11520 for (member = info; member; member = member->next) {
4dd2df09 11521 char *result;
78b10e66
N
11522
11523 dprintf("imsm: checking device_num: %i\n",
11524 member->container_member);
11525
d7d205bd 11526 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11527 /* we work on container for Online Capacity Expansion
11528 * only so raid_disks has to grow
11529 */
7a862a02 11530 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11531 break;
11532 }
11533
089f9d79 11534 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11535 /* we cannot use this container with other raid level
11536 */
7a862a02 11537 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11538 info->array.level);
11539 break;
11540 } else {
11541 /* check for platform support
11542 * for this raid level configuration
11543 */
11544 struct intel_super *super = st->sb;
11545 if (!is_raid_level_supported(super->orom,
11546 member->array.level,
11547 geo->raid_disks)) {
7a862a02 11548 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11549 info->array.level,
11550 geo->raid_disks,
11551 geo->raid_disks > 1 ? "s" : "");
11552 break;
11553 }
2a4a08e7
AK
11554 /* check if component size is aligned to chunk size
11555 */
11556 if (info->component_size %
11557 (info->array.chunk_size/512)) {
7a862a02 11558 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11559 break;
11560 }
78b10e66
N
11561 }
11562
11563 if (*old_raid_disks &&
11564 info->array.raid_disks != *old_raid_disks)
11565 break;
11566 *old_raid_disks = info->array.raid_disks;
11567
11568 /* All raid5 and raid0 volumes in container
11569 * have to be ready for Online Capacity Expansion
11570 * so they need to be assembled. We have already
11571 * checked that no recovery etc is happening.
11572 */
4dd2df09
N
11573 result = imsm_find_array_devnm_by_subdev(member->container_member,
11574 st->container_devnm);
11575 if (result == NULL) {
78b10e66
N
11576 dprintf("imsm: cannot find array\n");
11577 break;
11578 }
11579 devices_that_can_grow++;
11580 }
11581 sysfs_free(info);
11582 if (!member && devices_that_can_grow)
11583 ret_val = 1;
11584
11585 if (ret_val)
1ade5cc1 11586 dprintf("Container operation allowed\n");
78b10e66 11587 else
1ade5cc1 11588 dprintf("Error: %i\n", ret_val);
78b10e66
N
11589
11590 return ret_val;
11591}
11592
11593/* Function: get_spares_for_grow
11594 * Description: Allocates memory and creates list of spare devices
1011e834 11595 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11596 * Parameters: Pointer to the supertype structure
11597 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11598 * NULL if fail
78b10e66
N
11599 */
11600static struct mdinfo *get_spares_for_grow(struct supertype *st)
11601{
ae996e81
MT
11602 struct spare_criteria sc = {0};
11603 struct mdinfo *spares;
fbfdcb06 11604
f6562011 11605 get_spare_criteria_imsm(st, NULL, &sc);
ae996e81
MT
11606 spares = container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
11607
11608 dev_policy_free(sc.pols);
11609
11610 return spares;
78b10e66
N
11611}
11612
11613/******************************************************************************
11614 * function: imsm_create_metadata_update_for_reshape
11615 * Function creates update for whole IMSM container.
11616 *
11617 ******************************************************************************/
11618static int imsm_create_metadata_update_for_reshape(
11619 struct supertype *st,
11620 struct geo_params *geo,
11621 int old_raid_disks,
11622 struct imsm_update_reshape **updatep)
11623{
11624 struct intel_super *super = st->sb;
11625 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11626 int update_memory_size;
11627 struct imsm_update_reshape *u;
11628 struct mdinfo *spares;
78b10e66 11629 int i;
594dc1b8 11630 int delta_disks;
bbd24d86 11631 struct mdinfo *dev;
78b10e66 11632
1ade5cc1 11633 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11634
11635 delta_disks = geo->raid_disks - old_raid_disks;
11636
11637 /* size of all update data without anchor */
11638 update_memory_size = sizeof(struct imsm_update_reshape);
11639
11640 /* now add space for spare disks that we need to add. */
11641 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11642
503975b9 11643 u = xcalloc(1, update_memory_size);
78b10e66
N
11644 u->type = update_reshape_container_disks;
11645 u->old_raid_disks = old_raid_disks;
11646 u->new_raid_disks = geo->raid_disks;
11647
11648 /* now get spare disks list
11649 */
11650 spares = get_spares_for_grow(st);
11651
d7be7d87 11652 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11653 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11654 i = -1;
78b10e66
N
11655 goto abort;
11656 }
11657
11658 /* we have got spares
11659 * update disk list in imsm_disk list table in anchor
11660 */
11661 dprintf("imsm: %i spares are available.\n\n",
11662 spares->array.spare_disks);
11663
bbd24d86 11664 dev = spares->devs;
78b10e66 11665 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11666 struct dl *dl;
11667
bbd24d86
AK
11668 if (dev == NULL)
11669 break;
78b10e66
N
11670 u->new_disks[i] = makedev(dev->disk.major,
11671 dev->disk.minor);
11672 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11673 dl->index = mpb->num_disks;
11674 mpb->num_disks++;
bbd24d86 11675 dev = dev->next;
78b10e66 11676 }
78b10e66
N
11677
11678abort:
11679 /* free spares
11680 */
11681 sysfs_free(spares);
11682
d677e0b8 11683 dprintf("imsm: reshape update preparation :");
78b10e66 11684 if (i == delta_disks) {
1ade5cc1 11685 dprintf_cont(" OK\n");
78b10e66
N
11686 *updatep = u;
11687 return update_memory_size;
11688 }
11689 free(u);
1ade5cc1 11690 dprintf_cont(" Error\n");
78b10e66
N
11691
11692 return 0;
11693}
11694
f3871fdc
AK
11695/******************************************************************************
11696 * function: imsm_create_metadata_update_for_size_change()
11697 * Creates update for IMSM array for array size change.
11698 *
11699 ******************************************************************************/
11700static int imsm_create_metadata_update_for_size_change(
11701 struct supertype *st,
11702 struct geo_params *geo,
11703 struct imsm_update_size_change **updatep)
11704{
11705 struct intel_super *super = st->sb;
594dc1b8
JS
11706 int update_memory_size;
11707 struct imsm_update_size_change *u;
f3871fdc 11708
1ade5cc1 11709 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11710
11711 /* size of all update data without anchor */
11712 update_memory_size = sizeof(struct imsm_update_size_change);
11713
503975b9 11714 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11715 u->type = update_size_change;
11716 u->subdev = super->current_vol;
11717 u->new_size = geo->size;
11718
11719 dprintf("imsm: reshape update preparation : OK\n");
11720 *updatep = u;
11721
11722 return update_memory_size;
11723}
11724
48c5303a
PC
11725/******************************************************************************
11726 * function: imsm_create_metadata_update_for_migration()
11727 * Creates update for IMSM array.
11728 *
11729 ******************************************************************************/
11730static int imsm_create_metadata_update_for_migration(
11731 struct supertype *st,
11732 struct geo_params *geo,
11733 struct imsm_update_reshape_migration **updatep)
11734{
11735 struct intel_super *super = st->sb;
594dc1b8 11736 int update_memory_size;
756a15f3 11737 int current_chunk_size;
594dc1b8 11738 struct imsm_update_reshape_migration *u;
756a15f3
MG
11739 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11740 struct imsm_map *map = get_imsm_map(dev, MAP_0);
48c5303a
PC
11741 int previous_level = -1;
11742
1ade5cc1 11743 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11744
11745 /* size of all update data without anchor */
11746 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11747
503975b9 11748 u = xcalloc(1, update_memory_size);
48c5303a
PC
11749 u->type = update_reshape_migration;
11750 u->subdev = super->current_vol;
11751 u->new_level = geo->level;
11752 u->new_layout = geo->layout;
11753 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11754 u->new_disks[0] = -1;
4bba0439 11755 u->new_chunksize = -1;
48c5303a 11756
756a15f3 11757 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
48c5303a 11758
756a15f3
MG
11759 if (geo->chunksize != current_chunk_size) {
11760 u->new_chunksize = geo->chunksize / 1024;
11761 dprintf("imsm: chunk size change from %i to %i\n",
11762 current_chunk_size, u->new_chunksize);
48c5303a 11763 }
756a15f3
MG
11764 previous_level = map->raid_level;
11765
089f9d79 11766 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11767 struct mdinfo *spares = NULL;
11768
11769 u->new_raid_disks++;
11770 spares = get_spares_for_grow(st);
089f9d79 11771 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11772 free(u);
11773 sysfs_free(spares);
11774 update_memory_size = 0;
565cc99e 11775 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11776 return 0;
11777 }
11778 sysfs_free(spares);
11779 }
11780 dprintf("imsm: reshape update preparation : OK\n");
11781 *updatep = u;
11782
11783 return update_memory_size;
11784}
11785
8dd70bce
AK
11786static void imsm_update_metadata_locally(struct supertype *st,
11787 void *buf, int len)
11788{
11789 struct metadata_update mu;
11790
11791 mu.buf = buf;
11792 mu.len = len;
11793 mu.space = NULL;
11794 mu.space_list = NULL;
11795 mu.next = NULL;
5fe6f031
N
11796 if (imsm_prepare_update(st, &mu))
11797 imsm_process_update(st, &mu);
8dd70bce
AK
11798
11799 while (mu.space_list) {
11800 void **space = mu.space_list;
11801 mu.space_list = *space;
11802 free(space);
11803 }
11804}
78b10e66 11805
cbaa7904
MT
11806/**
11807 * imsm_analyze_expand() - check expand properties and calculate new size.
11808 * @st: imsm supertype.
11809 * @geo: new geometry params.
11810 * @array: array info.
11811 * @direction: reshape direction.
11812 *
11813 * Obtain free space after the &array and verify if expand to requested size is
11814 * possible. If geo->size is set to %MAX_SIZE, assume that max free size is
11815 * requested.
11816 *
11817 * Return:
11818 * On success %IMSM_STATUS_OK is returned, geo->size and geo->raid_disks are
11819 * updated.
11820 * On error, %IMSM_STATUS_ERROR is returned.
11821 */
11822static imsm_status_t imsm_analyze_expand(struct supertype *st,
11823 struct geo_params *geo,
11824 struct mdinfo *array,
11825 int direction)
11826{
11827 struct intel_super *super = st->sb;
11828 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11829 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11830 int data_disks = imsm_num_data_members(map);
11831
11832 unsigned long long current_size;
11833 unsigned long long free_size;
11834 unsigned long long new_size;
11835 unsigned long long max_size;
11836
11837 const int chunk_kib = geo->chunksize / 1024;
11838 imsm_status_t rv;
11839
11840 if (direction == ROLLBACK_METADATA_CHANGES) {
11841 /**
11842 * Accept size for rollback only.
11843 */
11844 new_size = geo->size * 2;
11845 goto success;
11846 }
11847
cbaa7904
MT
11848 if (data_disks == 0) {
11849 pr_err("imsm: Cannot retrieve data disks.\n");
11850 return IMSM_STATUS_ERROR;
11851 }
11852 current_size = array->custom_array_size / data_disks;
11853
aa19fdd4 11854 rv = imsm_get_free_size(super, dev->vol.map->num_members, 0, chunk_kib, &free_size, true);
cbaa7904
MT
11855 if (rv != IMSM_STATUS_OK) {
11856 pr_err("imsm: Cannot find free space for expand.\n");
11857 return IMSM_STATUS_ERROR;
11858 }
11859 max_size = round_member_size_to_mb(free_size + current_size);
11860
11861 if (geo->size == MAX_SIZE)
11862 new_size = max_size;
11863 else
11864 new_size = round_member_size_to_mb(geo->size * 2);
11865
11866 if (new_size == 0) {
11867 pr_err("imsm: Rounded requested size is 0.\n");
11868 return IMSM_STATUS_ERROR;
11869 }
11870
11871 if (new_size > max_size) {
11872 pr_err("imsm: Rounded requested size (%llu) is larger than free space available (%llu).\n",
11873 new_size, max_size);
11874 return IMSM_STATUS_ERROR;
11875 }
11876
11877 if (new_size == current_size) {
11878 pr_err("imsm: Rounded requested size (%llu) is same as current size (%llu).\n",
11879 new_size, current_size);
11880 return IMSM_STATUS_ERROR;
11881 }
11882
11883 if (new_size < current_size) {
11884 pr_err("imsm: Size reduction is not supported, rounded requested size (%llu) is smaller than current (%llu).\n",
11885 new_size, current_size);
11886 return IMSM_STATUS_ERROR;
11887 }
11888
11889success:
11890 dprintf("imsm: New size per member is %llu.\n", new_size);
11891 geo->size = data_disks * new_size;
11892 geo->raid_disks = dev->vol.map->num_members;
11893 return IMSM_STATUS_OK;
11894}
11895
471bceb6 11896/***************************************************************************
694575e7 11897* Function: imsm_analyze_change
471bceb6 11898* Description: Function analyze change for single volume
1011e834 11899* and validate if transition is supported
fbf3d202
AK
11900* Parameters: Geometry parameters, supertype structure,
11901* metadata change direction (apply/rollback)
694575e7 11902* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11903****************************************************************************/
11904enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202 11905 struct geo_params *geo,
44463ede 11906 int direction, struct context *c)
694575e7 11907{
471bceb6
KW
11908 struct mdinfo info;
11909 int change = -1;
11910 int check_devs = 0;
c21e737b 11911 int chunk;
67a2db32
AK
11912 /* imsm compatible layout value for array geometry verification */
11913 int imsm_layout = -1;
191e6ddb 11914 int raid_disks = geo->raid_disks;
6d4d9ab2 11915 imsm_status_t rv;
471bceb6
KW
11916
11917 getinfo_super_imsm_volume(st, &info, NULL);
191e6ddb 11918 if (geo->level != info.array.level && geo->level >= IMSM_T_RAID0 &&
089f9d79 11919 geo->level != UnSet) {
471bceb6 11920 switch (info.array.level) {
191e6ddb
MK
11921 case IMSM_T_RAID0:
11922 if (geo->level == IMSM_T_RAID5) {
b5347799 11923 change = CH_MIGRATION;
e13ce846 11924 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11925 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11926 change = -1;
11927 goto analyse_change_exit;
11928 }
67a2db32 11929 imsm_layout = geo->layout;
471bceb6 11930 check_devs = 1;
191e6ddb
MK
11931 raid_disks += 1; /* parity disk added */
11932 } else if (geo->level == IMSM_T_RAID10) {
44463ede
MK
11933 if (geo->level == IMSM_T_RAID10 && geo->raid_disks > 2 &&
11934 !c->force) {
11935 pr_err("Warning! VROC UEFI driver does not support RAID10 in requested layout.\n");
11936 pr_err("Array won't be suitable as boot device.\n");
11937 pr_err("Note: You can omit this check with \"--force\"\n");
11938 if (ask("Do you want to continue") < 1)
11939 return CH_ABORT;
11940 }
471bceb6
KW
11941 change = CH_TAKEOVER;
11942 check_devs = 1;
191e6ddb 11943 raid_disks *= 2; /* mirrors added */
67a2db32 11944 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11945 }
dfe77a9e 11946 break;
191e6ddb
MK
11947 case IMSM_T_RAID1:
11948 case IMSM_T_RAID10:
471bceb6
KW
11949 if (geo->level == 0) {
11950 change = CH_TAKEOVER;
11951 check_devs = 1;
191e6ddb 11952 raid_disks /= 2;
67a2db32 11953 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11954 }
11955 break;
11956 }
11957 if (change == -1) {
7a862a02 11958 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11959 info.array.level, geo->level);
471bceb6
KW
11960 goto analyse_change_exit;
11961 }
11962 } else
11963 geo->level = info.array.level;
11964
089f9d79
JS
11965 if (geo->layout != info.array.layout &&
11966 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11967 change = CH_MIGRATION;
191e6ddb 11968 if (info.array.layout == 0 && info.array.level == IMSM_T_RAID5 &&
089f9d79 11969 geo->layout == 5) {
471bceb6 11970 /* reshape 5 -> 4 */
191e6ddb 11971 } else if (info.array.layout == 5 && info.array.level == IMSM_T_RAID5 &&
089f9d79 11972 geo->layout == 0) {
471bceb6
KW
11973 /* reshape 4 -> 5 */
11974 geo->layout = 0;
11975 geo->level = 5;
11976 } else {
7a862a02 11977 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11978 info.array.layout, geo->layout);
471bceb6
KW
11979 change = -1;
11980 goto analyse_change_exit;
11981 }
67a2db32 11982 } else {
471bceb6 11983 geo->layout = info.array.layout;
67a2db32
AK
11984 if (imsm_layout == -1)
11985 imsm_layout = info.array.layout;
11986 }
471bceb6 11987
089f9d79
JS
11988 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11989 geo->chunksize != info.array.chunk_size) {
191e6ddb 11990 if (info.array.level == IMSM_T_RAID10) {
2d2b0eb7
MD
11991 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11992 change = -1;
11993 goto analyse_change_exit;
1e9b2c3f
PB
11994 } else if (info.component_size % (geo->chunksize/512)) {
11995 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11996 geo->chunksize/1024, info.component_size/2);
11997 change = -1;
11998 goto analyse_change_exit;
2d2b0eb7 11999 }
b5347799 12000 change = CH_MIGRATION;
2d2b0eb7 12001 } else {
471bceb6 12002 geo->chunksize = info.array.chunk_size;
2d2b0eb7 12003 }
471bceb6 12004
cbaa7904 12005 if (geo->size > 0) {
7abc9871 12006 if (change != -1) {
7a862a02 12007 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
12008 change = -1;
12009 goto analyse_change_exit;
12010 }
6d4d9ab2 12011
cbaa7904 12012 rv = imsm_analyze_expand(st, geo, &info, direction);
6d4d9ab2 12013 if (rv != IMSM_STATUS_OK)
cbaa7904 12014 goto analyse_change_exit;
191e6ddb 12015 raid_disks = geo->raid_disks;
7abc9871
AK
12016 change = CH_ARRAY_SIZE;
12017 }
cbaa7904
MT
12018
12019 chunk = geo->chunksize / 1024;
191e6ddb 12020
471bceb6
KW
12021 if (!validate_geometry_imsm(st,
12022 geo->level,
67a2db32 12023 imsm_layout,
191e6ddb 12024 raid_disks,
c21e737b 12025 &chunk,
af4348dd 12026 geo->size, INVALID_SECTORS,
5308f117 12027 0, 0, info.consistency_policy, 1))
471bceb6
KW
12028 change = -1;
12029
12030 if (check_devs) {
12031 struct intel_super *super = st->sb;
12032 struct imsm_super *mpb = super->anchor;
12033
12034 if (mpb->num_raid_devs > 1) {
f1cc8ab9
LF
12035 pr_err("Error. Cannot perform operation on %s- for this operation "
12036 "it MUST be single array in container\n", geo->dev_name);
471bceb6
KW
12037 change = -1;
12038 }
12039 }
12040
12041analyse_change_exit:
089f9d79
JS
12042 if (direction == ROLLBACK_METADATA_CHANGES &&
12043 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 12044 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
12045 change = -1;
12046 }
471bceb6 12047 return change;
694575e7
KW
12048}
12049
bb025c2f
KW
12050int imsm_takeover(struct supertype *st, struct geo_params *geo)
12051{
12052 struct intel_super *super = st->sb;
12053 struct imsm_update_takeover *u;
12054
503975b9 12055 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
12056
12057 u->type = update_takeover;
12058 u->subarray = super->current_vol;
12059
12060 /* 10->0 transition */
12061 if (geo->level == 0)
12062 u->direction = R10_TO_R0;
12063
0529c688
KW
12064 /* 0->10 transition */
12065 if (geo->level == 10)
12066 u->direction = R0_TO_R10;
12067
bb025c2f
KW
12068 /* update metadata locally */
12069 imsm_update_metadata_locally(st, u,
12070 sizeof(struct imsm_update_takeover));
12071 /* and possibly remotely */
12072 if (st->update_tail)
12073 append_metadata_update(st, u,
12074 sizeof(struct imsm_update_takeover));
12075 else
12076 free(u);
12077
12078 return 0;
12079}
12080
895ffd99
MT
12081/* Flush size update if size calculated by num_data_stripes is higher than
12082 * imsm_dev_size to eliminate differences during reshape.
12083 * Mdmon will recalculate them correctly.
12084 * If subarray index is not set then check whole container.
12085 * Returns:
12086 * 0 - no error occurred
12087 * 1 - error detected
12088 */
12089static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
12090{
12091 struct intel_super *super = st->sb;
12092 int tmp = super->current_vol;
12093 int ret_val = 1;
12094 int i;
12095
12096 for (i = 0; i < super->anchor->num_raid_devs; i++) {
12097 if (subarray_index >= 0 && i != subarray_index)
12098 continue;
12099 super->current_vol = i;
12100 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12101 struct imsm_map *map = get_imsm_map(dev, MAP_0);
12102 unsigned int disc_count = imsm_num_data_members(map);
12103 struct geo_params geo;
12104 struct imsm_update_size_change *update;
12105 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
12106 unsigned long long d_size = imsm_dev_size(dev);
12107 int u_size;
12108
42e02e61 12109 if (calc_size == d_size)
895ffd99
MT
12110 continue;
12111
ff904202
MT
12112 /* There is a difference, confirm that imsm_dev_size is
12113 * smaller and push update.
895ffd99 12114 */
ff904202
MT
12115 if (d_size > calc_size) {
12116 pr_err("imsm: dev size of subarray %d is incorrect\n",
12117 i);
895ffd99
MT
12118 goto exit;
12119 }
12120 memset(&geo, 0, sizeof(struct geo_params));
12121 geo.size = d_size;
12122 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
12123 &update);
895ffd99
MT
12124 imsm_update_metadata_locally(st, update, u_size);
12125 if (st->update_tail) {
12126 append_metadata_update(st, update, u_size);
12127 flush_metadata_updates(st);
12128 st->update_tail = &st->updates;
12129 } else {
12130 imsm_sync_metadata(st);
5ce5a15f 12131 free(update);
895ffd99
MT
12132 }
12133 }
12134 ret_val = 0;
12135exit:
12136 super->current_vol = tmp;
12137 return ret_val;
12138}
12139
0acda705
MK
12140/**
12141 * shape_to_geo() - fill geo_params from shape.
12142 *
12143 * @shape: array details.
12144 * @geo: new geometry params.
12145 * Returns: 0 on success, 1 otherwise.
12146 */
12147static void shape_to_geo(struct shape *shape, struct geo_params *geo)
12148{
12149 assert(shape);
12150 assert(geo);
12151
12152 geo->dev_name = shape->dev;
12153 geo->size = shape->size;
12154 geo->level = shape->level;
12155 geo->layout = shape->layout;
12156 geo->chunksize = shape->chunk;
12157 geo->raid_disks = shape->raiddisks;
12158}
12159
12160static int imsm_reshape_super(struct supertype *st, struct shape *shape, struct context *c)
78b10e66 12161{
78b10e66 12162 int ret_val = 1;
0acda705 12163 struct geo_params geo = {0};
78b10e66 12164
1ade5cc1 12165 dprintf("(enter)\n");
78b10e66 12166
0acda705 12167 shape_to_geo(shape, &geo);
4dd2df09 12168 strcpy(geo.devnm, st->devnm);
0acda705
MK
12169 if (shape->delta_disks != UnSet)
12170 geo.raid_disks += shape->delta_disks;
78b10e66 12171
1ade5cc1
N
12172 dprintf("for level : %i\n", geo.level);
12173 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 12174
4dd2df09 12175 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
12176 /* On container level we can only increase number of devices. */
12177 dprintf("imsm: info: Container operation\n");
78b10e66 12178 int old_raid_disks = 0;
6dc0be30 12179
78b10e66 12180 if (imsm_reshape_is_allowed_on_container(
0acda705 12181 st, &geo, &old_raid_disks, shape->direction)) {
78b10e66
N
12182 struct imsm_update_reshape *u = NULL;
12183 int len;
12184
895ffd99
MT
12185 if (imsm_fix_size_mismatch(st, -1)) {
12186 dprintf("imsm: Cannot fix size mismatch\n");
12187 goto exit_imsm_reshape_super;
12188 }
12189
78b10e66
N
12190 len = imsm_create_metadata_update_for_reshape(
12191 st, &geo, old_raid_disks, &u);
12192
ed08d51c
AK
12193 if (len <= 0) {
12194 dprintf("imsm: Cannot prepare update\n");
12195 goto exit_imsm_reshape_super;
12196 }
12197
8dd70bce
AK
12198 ret_val = 0;
12199 /* update metadata locally */
12200 imsm_update_metadata_locally(st, u, len);
12201 /* and possibly remotely */
12202 if (st->update_tail)
12203 append_metadata_update(st, u, len);
12204 else
ed08d51c 12205 free(u);
8dd70bce 12206
694575e7 12207 } else {
7a862a02 12208 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
12209 }
12210 } else {
12211 /* On volume level we support following operations
471bceb6
KW
12212 * - takeover: raid10 -> raid0; raid0 -> raid10
12213 * - chunk size migration
12214 * - migration: raid5 -> raid0; raid0 -> raid5
12215 */
12216 struct intel_super *super = st->sb;
12217 struct intel_dev *dev = super->devlist;
4dd2df09 12218 int change;
694575e7 12219 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
12220 /* find requested device */
12221 while (dev) {
1011e834 12222 char *devnm =
4dd2df09
N
12223 imsm_find_array_devnm_by_subdev(
12224 dev->index, st->container_devnm);
12225 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
12226 break;
12227 dev = dev->next;
12228 }
12229 if (dev == NULL) {
4dd2df09
N
12230 pr_err("Cannot find %s (%s) subarray\n",
12231 geo.dev_name, geo.devnm);
471bceb6
KW
12232 goto exit_imsm_reshape_super;
12233 }
12234 super->current_vol = dev->index;
44463ede 12235 change = imsm_analyze_change(st, &geo, shape->direction, c);
694575e7 12236 switch (change) {
471bceb6 12237 case CH_TAKEOVER:
bb025c2f 12238 ret_val = imsm_takeover(st, &geo);
694575e7 12239 break;
48c5303a
PC
12240 case CH_MIGRATION: {
12241 struct imsm_update_reshape_migration *u = NULL;
12242 int len =
12243 imsm_create_metadata_update_for_migration(
12244 st, &geo, &u);
12245 if (len < 1) {
7a862a02 12246 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
12247 break;
12248 }
471bceb6 12249 ret_val = 0;
48c5303a
PC
12250 /* update metadata locally */
12251 imsm_update_metadata_locally(st, u, len);
12252 /* and possibly remotely */
12253 if (st->update_tail)
12254 append_metadata_update(st, u, len);
12255 else
12256 free(u);
12257 }
12258 break;
7abc9871 12259 case CH_ARRAY_SIZE: {
f3871fdc
AK
12260 struct imsm_update_size_change *u = NULL;
12261 int len =
12262 imsm_create_metadata_update_for_size_change(
12263 st, &geo, &u);
12264 if (len < 1) {
7a862a02 12265 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
12266 break;
12267 }
12268 ret_val = 0;
12269 /* update metadata locally */
12270 imsm_update_metadata_locally(st, u, len);
12271 /* and possibly remotely */
12272 if (st->update_tail)
12273 append_metadata_update(st, u, len);
12274 else
12275 free(u);
7abc9871
AK
12276 }
12277 break;
44463ede 12278 case CH_ABORT:
471bceb6
KW
12279 default:
12280 ret_val = 1;
694575e7 12281 }
694575e7 12282 }
78b10e66 12283
ed08d51c 12284exit_imsm_reshape_super:
78b10e66
N
12285 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12286 return ret_val;
12287}
2cda7640 12288
0febb20c
AO
12289#define COMPLETED_OK 0
12290#define COMPLETED_NONE 1
12291#define COMPLETED_DELAYED 2
12292
12293static int read_completed(int fd, unsigned long long *val)
12294{
12295 int ret;
90fd7001 12296 char buf[SYSFS_MAX_BUF_SIZE];
0febb20c 12297
90fd7001 12298 ret = sysfs_fd_get_str(fd, buf, sizeof(buf));
0febb20c
AO
12299 if (ret < 0)
12300 return ret;
12301
12302 ret = COMPLETED_OK;
b823c8f9 12303 if (str_is_none(buf) == true) {
0febb20c
AO
12304 ret = COMPLETED_NONE;
12305 } else if (strncmp(buf, "delayed", 7) == 0) {
12306 ret = COMPLETED_DELAYED;
12307 } else {
12308 char *ep;
12309 *val = strtoull(buf, &ep, 0);
12310 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12311 ret = -1;
12312 }
12313 return ret;
12314}
12315
eee67a47
AK
12316/*******************************************************************************
12317 * Function: wait_for_reshape_imsm
12318 * Description: Function writes new sync_max value and waits until
12319 * reshape process reach new position
12320 * Parameters:
12321 * sra : general array info
eee67a47
AK
12322 * ndata : number of disks in new array's layout
12323 * Returns:
12324 * 0 : success,
12325 * 1 : there is no reshape in progress,
12326 * -1 : fail
12327 ******************************************************************************/
ae9f01f8 12328int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 12329{
85ca499c 12330 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 12331 int retry = 3;
eee67a47 12332 unsigned long long completed;
ae9f01f8
AK
12333 /* to_complete : new sync_max position */
12334 unsigned long long to_complete = sra->reshape_progress;
12335 unsigned long long position_to_set = to_complete / ndata;
eee67a47 12336
4389ce73 12337 if (!is_fd_valid(fd)) {
1ade5cc1 12338 dprintf("cannot open reshape_position\n");
eee67a47 12339 return 1;
ae9f01f8 12340 }
eee67a47 12341
df2647fa
PB
12342 do {
12343 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12344 if (!retry) {
12345 dprintf("cannot read reshape_position (no reshape in progres)\n");
12346 close(fd);
12347 return 1;
12348 }
239b3cc0 12349 sleep_for(0, MSEC_TO_NSEC(30), true);
df2647fa
PB
12350 } else
12351 break;
12352 } while (retry--);
eee67a47 12353
85ca499c 12354 if (completed > position_to_set) {
1ade5cc1 12355 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12356 to_complete, position_to_set);
ae9f01f8
AK
12357 close(fd);
12358 return -1;
12359 }
12360 dprintf("Position set: %llu\n", position_to_set);
12361 if (sysfs_set_num(sra, NULL, "sync_max",
12362 position_to_set) != 0) {
1ade5cc1 12363 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12364 position_to_set);
12365 close(fd);
12366 return -1;
eee67a47
AK
12367 }
12368
eee67a47 12369 do {
0febb20c 12370 int rc;
90fd7001 12371 char action[SYSFS_MAX_BUF_SIZE];
5ff3a780 12372 int timeout = 3000;
0febb20c 12373
5ff3a780 12374 sysfs_wait(fd, &timeout);
a47e44fb 12375 if (sysfs_get_str(sra, NULL, "sync_action",
90fd7001 12376 action, sizeof(action)) > 0 &&
d7d3809a 12377 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12378 if (strncmp(action, "idle", 4) == 0)
12379 break;
d7d3809a
AP
12380 close(fd);
12381 return -1;
12382 }
0febb20c
AO
12383
12384 rc = read_completed(fd, &completed);
12385 if (rc < 0) {
1ade5cc1 12386 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12387 close(fd);
12388 return 1;
0febb20c
AO
12389 } else if (rc == COMPLETED_NONE)
12390 break;
85ca499c 12391 } while (completed < position_to_set);
b2be2b62 12392
eee67a47
AK
12393 close(fd);
12394 return 0;
eee67a47
AK
12395}
12396
b915c95f
AK
12397/*******************************************************************************
12398 * Function: check_degradation_change
12399 * Description: Check that array hasn't become failed.
12400 * Parameters:
12401 * info : for sysfs access
12402 * sources : source disks descriptors
12403 * degraded: previous degradation level
12404 * Returns:
12405 * degradation level
12406 ******************************************************************************/
12407int check_degradation_change(struct mdinfo *info,
12408 int *sources,
12409 int degraded)
12410{
12411 unsigned long long new_degraded;
e1993023
LD
12412 int rv;
12413
12414 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12415 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12416 /* check each device to ensure it is still working */
12417 struct mdinfo *sd;
12418 new_degraded = 0;
12419 for (sd = info->devs ; sd ; sd = sd->next) {
12420 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12421 continue;
12422 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
90fd7001 12423 char sbuf[SYSFS_MAX_BUF_SIZE];
4389ce73 12424 int raid_disk = sd->disk.raid_disk;
cf52eff5 12425
b915c95f 12426 if (sysfs_get_str(info,
cf52eff5 12427 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12428 strstr(sbuf, "faulty") ||
12429 strstr(sbuf, "in_sync") == NULL) {
12430 /* this device is dead */
12431 sd->disk.state = (1<<MD_DISK_FAULTY);
4389ce73
MT
12432 if (raid_disk >= 0)
12433 close_fd(&sources[raid_disk]);
b915c95f
AK
12434 new_degraded++;
12435 }
12436 }
12437 }
12438 }
12439
12440 return new_degraded;
12441}
12442
10f22854
AK
12443/*******************************************************************************
12444 * Function: imsm_manage_reshape
12445 * Description: Function finds array under reshape and it manages reshape
12446 * process. It creates stripes backups (if required) and sets
942e1cdb 12447 * checkpoints.
10f22854
AK
12448 * Parameters:
12449 * afd : Backup handle (nattive) - not used
12450 * sra : general array info
12451 * reshape : reshape parameters - not used
12452 * st : supertype structure
12453 * blocks : size of critical section [blocks]
12454 * fds : table of source device descriptor
12455 * offsets : start of array (offest per devices)
12456 * dests : not used
12457 * destfd : table of destination device descriptor
12458 * destoffsets : table of destination offsets (per device)
12459 * Returns:
12460 * 1 : success, reshape is done
12461 * 0 : fail
12462 ******************************************************************************/
999b4972
N
12463static int imsm_manage_reshape(
12464 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12465 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12466 int *fds, unsigned long long *offsets,
12467 int dests, int *destfd, unsigned long long *destoffsets)
12468{
10f22854
AK
12469 int ret_val = 0;
12470 struct intel_super *super = st->sb;
594dc1b8 12471 struct intel_dev *dv;
de44e46f 12472 unsigned int sector_size = super->sector_size;
10f22854 12473 struct imsm_dev *dev = NULL;
9529d343 12474 struct imsm_map *map_src, *map_dest;
10f22854
AK
12475 int migr_vol_qan = 0;
12476 int ndata, odata; /* [bytes] */
12477 int chunk; /* [bytes] */
12478 struct migr_record *migr_rec;
12479 char *buf = NULL;
12480 unsigned int buf_size; /* [bytes] */
12481 unsigned long long max_position; /* array size [bytes] */
12482 unsigned long long next_step; /* [blocks]/[bytes] */
12483 unsigned long long old_data_stripe_length;
10f22854
AK
12484 unsigned long long start_src; /* [bytes] */
12485 unsigned long long start; /* [bytes] */
12486 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12487 int degraded = 0;
ab724b98 12488 int source_layout = 0;
895ffd99 12489 int subarray_index = -1;
10f22854 12490
79a16a9b
JS
12491 if (!sra)
12492 return ret_val;
12493
12494 if (!fds || !offsets)
10f22854
AK
12495 goto abort;
12496
12497 /* Find volume during the reshape */
12498 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12499 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12500 dv->dev->vol.migr_state == 1) {
10f22854
AK
12501 dev = dv->dev;
12502 migr_vol_qan++;
895ffd99 12503 subarray_index = dv->index;
10f22854
AK
12504 }
12505 }
12506 /* Only one volume can migrate at the same time */
12507 if (migr_vol_qan != 1) {
676e87a8 12508 pr_err("%s", migr_vol_qan ?
10f22854
AK
12509 "Number of migrating volumes greater than 1\n" :
12510 "There is no volume during migrationg\n");
12511 goto abort;
12512 }
12513
9529d343 12514 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12515 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12516 if (map_src == NULL)
12517 goto abort;
10f22854 12518
9529d343
MD
12519 ndata = imsm_num_data_members(map_dest);
12520 odata = imsm_num_data_members(map_src);
10f22854 12521
7b1ab482 12522 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12523 old_data_stripe_length = odata * chunk;
12524
12525 migr_rec = super->migr_rec;
12526
10f22854
AK
12527 /* initialize migration record for start condition */
12528 if (sra->reshape_progress == 0)
12529 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12530 else {
12531 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12532 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12533 goto abort;
12534 }
6a75c8ca
AK
12535 /* Save checkpoint to update migration record for current
12536 * reshape position (in md). It can be farther than current
12537 * reshape position in metadata.
12538 */
12539 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12540 /* ignore error == 2, this can mean end of reshape here
12541 */
7a862a02 12542 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12543 goto abort;
12544 }
b2c59438 12545 }
10f22854
AK
12546
12547 /* size for data */
12548 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12549 /* extend buffer size for parity disk */
12550 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12551 /* add space for stripe alignment */
10f22854 12552 buf_size += old_data_stripe_length;
de44e46f
PB
12553 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12554 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12555 goto abort;
12556 }
12557
3ef4403c 12558 max_position = sra->component_size * ndata;
68eb8bc6 12559 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12560
9f421827
PB
12561 while (current_migr_unit(migr_rec) <
12562 get_num_migr_units(migr_rec)) {
10f22854
AK
12563 /* current reshape position [blocks] */
12564 unsigned long long current_position =
12565 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12566 * current_migr_unit(migr_rec);
10f22854
AK
12567 unsigned long long border;
12568
b915c95f
AK
12569 /* Check that array hasn't become failed.
12570 */
12571 degraded = check_degradation_change(sra, fds, degraded);
12572 if (degraded > 1) {
7a862a02 12573 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12574 goto abort;
12575 }
12576
10f22854
AK
12577 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12578
12579 if ((current_position + next_step) > max_position)
12580 next_step = max_position - current_position;
12581
92144abf 12582 start = current_position * 512;
10f22854 12583
942e1cdb 12584 /* align reading start to old geometry */
10f22854
AK
12585 start_buf_shift = start % old_data_stripe_length;
12586 start_src = start - start_buf_shift;
12587
12588 border = (start_src / odata) - (start / ndata);
12589 border /= 512;
12590 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12591 /* save critical stripes to buf
12592 * start - start address of current unit
12593 * to backup [bytes]
12594 * start_src - start address of current unit
12595 * to backup alligned to source array
12596 * [bytes]
12597 */
594dc1b8 12598 unsigned long long next_step_filler;
10f22854
AK
12599 unsigned long long copy_length = next_step * 512;
12600
12601 /* allign copy area length to stripe in old geometry */
12602 next_step_filler = ((copy_length + start_buf_shift)
12603 % old_data_stripe_length);
12604 if (next_step_filler)
12605 next_step_filler = (old_data_stripe_length
12606 - next_step_filler);
7a862a02 12607 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12608 start, start_src, copy_length,
12609 start_buf_shift, next_step_filler);
12610
12611 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12612 chunk, map_src->raid_level,
12613 source_layout, 0, NULL, start_src,
10f22854
AK
12614 copy_length +
12615 next_step_filler + start_buf_shift,
12616 buf)) {
7a862a02 12617 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12618 goto abort;
12619 }
12620 /* Convert data to destination format and store it
12621 * in backup general migration area
12622 */
12623 if (save_backup_imsm(st, dev, sra,
aea93171 12624 buf + start_buf_shift, copy_length)) {
7a862a02 12625 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12626 goto abort;
12627 }
12628 if (save_checkpoint_imsm(st, sra,
12629 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12630 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12631 goto abort;
12632 }
8016a6d4
AK
12633 } else {
12634 /* set next step to use whole border area */
12635 border /= next_step;
12636 if (border > 1)
12637 next_step *= border;
10f22854
AK
12638 }
12639 /* When data backed up, checkpoint stored,
12640 * kick the kernel to reshape unit of data
12641 */
12642 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12643 /* limit next step to array max position */
12644 if (next_step > max_position)
12645 next_step = max_position;
10f22854
AK
12646 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12647 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12648 sra->reshape_progress = next_step;
10f22854
AK
12649
12650 /* wait until reshape finish */
c85338c6 12651 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12652 dprintf("wait_for_reshape_imsm returned error!\n");
12653 goto abort;
12654 }
84d11e6c
N
12655 if (sigterm)
12656 goto abort;
10f22854 12657
0228d92c
AK
12658 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12659 /* ignore error == 2, this can mean end of reshape here
12660 */
7a862a02 12661 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12662 goto abort;
12663 }
12664
12665 }
12666
71e5411e
PB
12667 /* clear migr_rec on disks after successful migration */
12668 struct dl *d;
12669
85337573 12670 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12671 for (d = super->disks; d; d = d->next) {
12672 if (d->index < 0 || is_failed(&d->disk))
12673 continue;
12674 unsigned long long dsize;
12675
12676 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12677 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12678 SEEK_SET) >= 0) {
466070ad 12679 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12680 MIGR_REC_BUF_SECTORS*sector_size) !=
12681 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12682 perror("Write migr_rec failed");
12683 }
12684 }
12685
10f22854
AK
12686 /* return '1' if done */
12687 ret_val = 1;
895ffd99
MT
12688
12689 /* After the reshape eliminate size mismatch in metadata.
12690 * Don't update md/component_size here, volume hasn't
12691 * to take whole space. It is allowed by kernel.
12692 * md/component_size will be set propoperly after next assembly.
12693 */
12694 imsm_fix_size_mismatch(st, subarray_index);
12695
10f22854
AK
12696abort:
12697 free(buf);
942e1cdb
N
12698 /* See Grow.c: abort_reshape() for further explanation */
12699 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12700 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12701 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12702
12703 return ret_val;
999b4972 12704}
0c21b485 12705
fbc42556
JR
12706/*******************************************************************************
12707 * Function: calculate_bitmap_min_chunksize
12708 * Description: Calculates the minimal valid bitmap chunk size
12709 * Parameters:
12710 * max_bits : indicate how many bits can be used for the bitmap
12711 * data_area_size : the size of the data area covered by the bitmap
12712 *
12713 * Returns:
12714 * The bitmap chunk size
12715 ******************************************************************************/
12716static unsigned long long
12717calculate_bitmap_min_chunksize(unsigned long long max_bits,
12718 unsigned long long data_area_size)
12719{
12720 unsigned long long min_chunk =
12721 4096; /* sub-page chunks don't work yet.. */
12722 unsigned long long bits = data_area_size / min_chunk + 1;
12723
12724 while (bits > max_bits) {
12725 min_chunk *= 2;
12726 bits = (bits + 1) / 2;
12727 }
12728 return min_chunk;
12729}
12730
12731/*******************************************************************************
12732 * Function: calculate_bitmap_chunksize
12733 * Description: Calculates the bitmap chunk size for the given device
12734 * Parameters:
12735 * st : supertype information
12736 * dev : device for the bitmap
12737 *
12738 * Returns:
12739 * The bitmap chunk size
12740 ******************************************************************************/
12741static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12742 struct imsm_dev *dev)
12743{
12744 struct intel_super *super = st->sb;
12745 unsigned long long min_chunksize;
12746 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12747 size_t dev_size = imsm_dev_size(dev);
12748
12749 min_chunksize = calculate_bitmap_min_chunksize(
12750 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12751
12752 if (result < min_chunksize)
12753 result = min_chunksize;
12754
12755 return result;
12756}
12757
12758/*******************************************************************************
12759 * Function: init_bitmap_header
12760 * Description: Initialize the bitmap header structure
12761 * Parameters:
12762 * st : supertype information
12763 * bms : bitmap header struct to initialize
12764 * dev : device for the bitmap
12765 *
12766 * Returns:
12767 * 0 : success
12768 * -1 : fail
12769 ******************************************************************************/
12770static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12771 struct imsm_dev *dev)
12772{
12773 int vol_uuid[4];
12774
12775 if (!bms || !dev)
12776 return -1;
12777
12778 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12779 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12780 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12781 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12782 bms->write_behind = __cpu_to_le32(0);
12783
12784 uuid_from_super_imsm(st, vol_uuid);
12785 memcpy(bms->uuid, vol_uuid, 16);
12786
12787 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12788
12789 return 0;
12790}
12791
12792/*******************************************************************************
12793 * Function: validate_internal_bitmap_for_drive
12794 * Description: Verify if the bitmap header for a given drive.
12795 * Parameters:
12796 * st : supertype information
12797 * offset : The offset from the beginning of the drive where to look for
12798 * the bitmap header.
12799 * d : the drive info
12800 *
12801 * Returns:
12802 * 0 : success
12803 * -1 : fail
12804 ******************************************************************************/
12805static int validate_internal_bitmap_for_drive(struct supertype *st,
12806 unsigned long long offset,
12807 struct dl *d)
12808{
12809 struct intel_super *super = st->sb;
12810 int ret = -1;
12811 int vol_uuid[4];
12812 bitmap_super_t *bms;
12813 int fd;
12814
12815 if (!d)
12816 return -1;
12817
12818 void *read_buf;
12819
12820 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12821 return -1;
12822
12823 fd = d->fd;
4389ce73 12824 if (!is_fd_valid(fd)) {
fbc42556 12825 fd = open(d->devname, O_RDONLY, 0);
4389ce73
MT
12826
12827 if (!is_fd_valid(fd)) {
fbc42556
JR
12828 dprintf("cannot open the device %s\n", d->devname);
12829 goto abort;
12830 }
12831 }
12832
12833 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12834 goto abort;
12835 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12836 IMSM_BITMAP_HEADER_SIZE)
12837 goto abort;
12838
12839 uuid_from_super_imsm(st, vol_uuid);
12840
12841 bms = read_buf;
12842 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12843 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12844 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12845 dprintf("wrong bitmap header detected\n");
12846 goto abort;
12847 }
12848
12849 ret = 0;
12850abort:
4389ce73
MT
12851 if (!is_fd_valid(d->fd))
12852 close_fd(&fd);
12853
fbc42556
JR
12854 if (read_buf)
12855 free(read_buf);
12856
12857 return ret;
12858}
12859
12860/*******************************************************************************
12861 * Function: validate_internal_bitmap_imsm
12862 * Description: Verify if the bitmap header is in place and with proper data.
12863 * Parameters:
12864 * st : supertype information
12865 *
12866 * Returns:
12867 * 0 : success or device w/o RWH_BITMAP
12868 * -1 : fail
12869 ******************************************************************************/
12870static int validate_internal_bitmap_imsm(struct supertype *st)
12871{
12872 struct intel_super *super = st->sb;
12873 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12874 unsigned long long offset;
12875 struct dl *d;
12876
fbc42556
JR
12877 if (dev->rwh_policy != RWH_BITMAP)
12878 return 0;
12879
12880 offset = get_bitmap_header_sector(super, super->current_vol);
12881 for (d = super->disks; d; d = d->next) {
12882 if (d->index < 0 || is_failed(&d->disk))
12883 continue;
12884
12885 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12886 pr_err("imsm: bitmap validation failed\n");
12887 return -1;
12888 }
12889 }
12890 return 0;
12891}
12892
12893/*******************************************************************************
12894 * Function: add_internal_bitmap_imsm
12895 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12896 * Parameters:
12897 * st : supertype information
12898 * chunkp : bitmap chunk size
12899 * delay : not used for imsm
12900 * write_behind : not used for imsm
12901 * size : not used for imsm
12902 * may_change : not used for imsm
12903 * amajor : not used for imsm
12904 *
12905 * Returns:
12906 * 0 : success
12907 * -1 : fail
12908 ******************************************************************************/
12909static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12910 int delay, int write_behind,
12911 unsigned long long size, int may_change,
12912 int amajor)
12913{
12914 struct intel_super *super = st->sb;
12915 int vol_idx = super->current_vol;
12916 struct imsm_dev *dev;
12917
12918 if (!super->devlist || vol_idx == -1 || !chunkp)
12919 return -1;
12920
12921 dev = get_imsm_dev(super, vol_idx);
fbc42556 12922 dev->rwh_policy = RWH_BITMAP;
fbc42556 12923 *chunkp = calculate_bitmap_chunksize(st, dev);
fbc42556
JR
12924 return 0;
12925}
12926
12927/*******************************************************************************
12928 * Function: locate_bitmap_imsm
12929 * Description: Seek 'fd' to start of write-intent-bitmap.
12930 * Parameters:
12931 * st : supertype information
12932 * fd : file descriptor for the device
12933 * node_num : not used for imsm
12934 *
12935 * Returns:
12936 * 0 : success
12937 * -1 : fail
12938 ******************************************************************************/
12939static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12940{
12941 struct intel_super *super = st->sb;
12942 unsigned long long offset;
12943 int vol_idx = super->current_vol;
12944
12945 if (!super->devlist || vol_idx == -1)
12946 return -1;
12947
12948 offset = get_bitmap_header_sector(super, super->current_vol);
12949 dprintf("bitmap header offset is %llu\n", offset);
12950
12951 lseek64(fd, offset << 9, 0);
12952
12953 return 0;
12954}
12955
12956/*******************************************************************************
12957 * Function: write_init_bitmap_imsm
12958 * Description: Write a bitmap header and prepares the area for the bitmap.
12959 * Parameters:
12960 * st : supertype information
12961 * fd : file descriptor for the device
12962 * update : not used for imsm
12963 *
12964 * Returns:
12965 * 0 : success
12966 * -1 : fail
12967 ******************************************************************************/
12968static int write_init_bitmap_imsm(struct supertype *st, int fd,
12969 enum bitmap_update update)
12970{
12971 struct intel_super *super = st->sb;
12972 int vol_idx = super->current_vol;
12973 int ret = 0;
12974 unsigned long long offset;
12975 bitmap_super_t bms = { 0 };
12976 size_t written = 0;
12977 size_t to_write;
12978 ssize_t rv_num;
12979 void *buf;
12980
12981 if (!super->devlist || !super->sector_size || vol_idx == -1)
12982 return -1;
12983
12984 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12985
12986 /* first clear the space for bitmap header */
12987 unsigned long long bitmap_area_start =
12988 get_bitmap_header_sector(super, vol_idx);
12989
12990 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12991 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12992 if (zero_disk_range(fd, bitmap_area_start,
12993 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12994 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12995 return -1;
12996 }
12997
12998 /* The bitmap area should be filled with "1"s to perform initial
12999 * synchronization.
13000 */
13001 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
13002 return -1;
13003 memset(buf, 0xFF, MAX_SECTOR_SIZE);
13004 offset = get_bitmap_sector(super, vol_idx);
13005 lseek64(fd, offset << 9, 0);
13006 while (written < IMSM_BITMAP_AREA_SIZE) {
13007 to_write = IMSM_BITMAP_AREA_SIZE - written;
13008 if (to_write > MAX_SECTOR_SIZE)
13009 to_write = MAX_SECTOR_SIZE;
13010 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
13011 if (rv_num != MAX_SECTOR_SIZE) {
13012 ret = -1;
13013 dprintf("cannot initialize bitmap area\n");
13014 goto abort;
13015 }
13016 written += rv_num;
13017 }
13018
13019 /* write a bitmap header */
13020 init_bitmap_header(st, &bms, dev);
13021 memset(buf, 0, MAX_SECTOR_SIZE);
13022 memcpy(buf, &bms, sizeof(bitmap_super_t));
13023 if (locate_bitmap_imsm(st, fd, 0)) {
13024 ret = -1;
13025 dprintf("cannot locate the bitmap\n");
13026 goto abort;
13027 }
13028 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
13029 ret = -1;
13030 dprintf("cannot write the bitmap header\n");
13031 goto abort;
13032 }
13033 fsync(fd);
13034
13035abort:
13036 free(buf);
13037
13038 return ret;
13039}
13040
13041/*******************************************************************************
13042 * Function: is_vol_to_setup_bitmap
13043 * Description: Checks if a bitmap should be activated on the dev.
13044 * Parameters:
13045 * info : info about the volume to setup the bitmap
13046 * dev : the device to check against bitmap creation
13047 *
13048 * Returns:
13049 * 0 : bitmap should be set up on the device
13050 * -1 : otherwise
13051 ******************************************************************************/
13052static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
13053{
13054 if (!dev || !info)
13055 return -1;
13056
13057 if ((strcmp((char *)dev->volume, info->name) == 0) &&
13058 (dev->rwh_policy == RWH_BITMAP))
13059 return -1;
13060
13061 return 0;
13062}
13063
13064/*******************************************************************************
13065 * Function: set_bitmap_sysfs
13066 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
13067 * Parameters:
13068 * info : info about the volume where the bitmap should be setup
13069 * chunksize : bitmap chunk size
13070 * location : location of the bitmap
13071 *
13072 * Returns:
13073 * 0 : success
13074 * -1 : fail
13075 ******************************************************************************/
13076static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
13077 char *location)
13078{
13079 /* The bitmap/metadata is set to external to allow changing of value for
13080 * bitmap/location. When external is used, the kernel will treat an offset
13081 * related to the device's first lba (in opposition to the "internal" case
13082 * when this value is related to the beginning of the superblock).
13083 */
13084 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
13085 dprintf("failed to set bitmap/metadata\n");
13086 return -1;
13087 }
13088
13089 /* It can only be changed when no bitmap is active.
13090 * Should be bigger than 512 and must be power of 2.
13091 * It is expecting the value in bytes.
13092 */
13093 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
13094 __cpu_to_le32(chunksize))) {
13095 dprintf("failed to set bitmap/chunksize\n");
13096 return -1;
13097 }
13098
13099 /* It is expecting the value in sectors. */
13100 if (sysfs_set_num(info, NULL, "bitmap/space",
13101 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
13102 dprintf("failed to set bitmap/space\n");
13103 return -1;
13104 }
13105
13106 /* Determines the delay between the bitmap updates.
13107 * It is expecting the value in seconds.
13108 */
13109 if (sysfs_set_num(info, NULL, "bitmap/time_base",
13110 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
13111 dprintf("failed to set bitmap/time_base\n");
13112 return -1;
13113 }
13114
13115 /* It is expecting the value in sectors with a sign at the beginning. */
13116 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
13117 dprintf("failed to set bitmap/location\n");
13118 return -1;
13119 }
13120
13121 return 0;
13122}
13123
13124/*******************************************************************************
13125 * Function: set_bitmap_imsm
13126 * Description: Setup the bitmap for the given volume
13127 * Parameters:
13128 * st : supertype information
13129 * info : info about the volume where the bitmap should be setup
13130 *
13131 * Returns:
13132 * 0 : success
13133 * -1 : fail
13134 ******************************************************************************/
13135static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
13136{
13137 struct intel_super *super = st->sb;
13138 int prev_current_vol = super->current_vol;
13139 struct imsm_dev *dev;
13140 int ret = -1;
13141 char location[16] = "";
13142 unsigned long long chunksize;
13143 struct intel_dev *dev_it;
13144
13145 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
13146 super->current_vol = dev_it->index;
13147 dev = get_imsm_dev(super, super->current_vol);
13148
13149 if (is_vol_to_setup_bitmap(info, dev)) {
13150 if (validate_internal_bitmap_imsm(st)) {
13151 dprintf("bitmap header validation failed\n");
13152 goto abort;
13153 }
13154
13155 chunksize = calculate_bitmap_chunksize(st, dev);
13156 dprintf("chunk size is %llu\n", chunksize);
13157
13158 snprintf(location, sizeof(location), "+%llu",
13159 get_bitmap_sector(super, super->current_vol));
13160 dprintf("bitmap offset is %s\n", location);
13161
13162 if (set_bitmap_sysfs(info, chunksize, location)) {
13163 dprintf("cannot setup the bitmap\n");
13164 goto abort;
13165 }
13166 }
13167 }
13168 ret = 0;
13169abort:
13170 super->current_vol = prev_current_vol;
13171 return ret;
13172}
13173
cdddbdbc 13174struct superswitch super_imsm = {
cdddbdbc
DW
13175 .examine_super = examine_super_imsm,
13176 .brief_examine_super = brief_examine_super_imsm,
4737ae25 13177 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 13178 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
13179 .detail_super = detail_super_imsm,
13180 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 13181 .write_init_super = write_init_super_imsm,
0e600426
N
13182 .validate_geometry = validate_geometry_imsm,
13183 .add_to_super = add_to_super_imsm,
1a64be56 13184 .remove_from_super = remove_from_super_imsm,
d665cc31 13185 .detail_platform = detail_platform_imsm,
e50cf220 13186 .export_detail_platform = export_detail_platform_imsm,
33414a01 13187 .kill_subarray = kill_subarray_imsm,
aa534678 13188 .update_subarray = update_subarray_imsm,
2b959fbf 13189 .load_container = load_container_imsm,
71204a50 13190 .default_geometry = default_geometry_imsm,
e21aea08 13191 .test_and_add_drive_policies = test_and_add_drive_policies_imsm,
71204a50
N
13192 .reshape_super = imsm_reshape_super,
13193 .manage_reshape = imsm_manage_reshape,
9e2d750d 13194 .recover_backup = recover_backup_imsm,
27156a57 13195 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
13196 .match_home = match_home_imsm,
13197 .uuid_from_super= uuid_from_super_imsm,
13198 .getinfo_super = getinfo_super_imsm,
5c4cd5da 13199 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
13200 .update_super = update_super_imsm,
13201
13202 .avail_size = avail_size_imsm,
fbfdcb06 13203 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
13204
13205 .compare_super = compare_super_imsm,
13206
13207 .load_super = load_super_imsm,
bf5a934a 13208 .init_super = init_super_imsm,
e683ca88 13209 .store_super = store_super_imsm,
cdddbdbc
DW
13210 .free_super = free_super_imsm,
13211 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 13212 .container_content = container_content_imsm,
0c21b485 13213 .validate_container = validate_container_imsm,
cdddbdbc 13214
fbc42556
JR
13215 .add_internal_bitmap = add_internal_bitmap_imsm,
13216 .locate_bitmap = locate_bitmap_imsm,
13217 .write_bitmap = write_init_bitmap_imsm,
13218 .set_bitmap = set_bitmap_imsm,
13219
2432ce9b
AP
13220 .write_init_ppl = write_init_ppl_imsm,
13221 .validate_ppl = validate_ppl_imsm,
13222
cdddbdbc 13223 .external = 1,
1c832795 13224 .swapuuid = 0,
4cce4069 13225 .name = "imsm",
845dea95
NB
13226
13227/* for mdmon */
13228 .open_new = imsm_open_new,
ed9d66aa 13229 .set_array_state= imsm_set_array_state,
845dea95
NB
13230 .set_disk = imsm_set_disk,
13231 .sync_metadata = imsm_sync_metadata,
88758e9d 13232 .activate_spare = imsm_activate_spare,
e8319a19 13233 .process_update = imsm_process_update,
8273f55e 13234 .prepare_update = imsm_prepare_update,
6f50473f 13235 .record_bad_block = imsm_record_badblock,
c07a5a4f 13236 .clear_bad_block = imsm_clear_badblock,
928f1424 13237 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 13238};