]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Detail.c: fix memleak in Detail()
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
611d9529
MD
91#define IMSM_RESERVED_SECTORS 8192
92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
c2462068
PB
95#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
cdddbdbc 98
fbc42556
JR
99/*
100 * Internal Write-intent bitmap is stored in the same area where PPL.
101 * Both features are mutually exclusive, so it is not an issue.
102 * The first 8KiB of the area are reserved and shall not be used.
103 */
104#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
105
106#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
107#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
108
109#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
110#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
111#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
112
113#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
114#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
115
761e3bd9
N
116/*
117 * This macro let's us ensure that no-one accidentally
118 * changes the size of a struct
119 */
120#define ASSERT_SIZE(_struct, size) \
121static inline void __assert_size_##_struct(void) \
122{ \
123 switch (0) { \
124 case 0: break; \
125 case (sizeof(struct _struct) == size): break; \
126 } \
127}
128
cdddbdbc
DW
129/* Disk configuration info. */
130#define IMSM_MAX_DEVICES 255
131struct imsm_disk {
132 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 133 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 134 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
135#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
136#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
137#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 138#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 139 __u32 status; /* 0xF0 - 0xF3 */
1011e834 140 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
141 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
142#define IMSM_DISK_FILLERS 3
143 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 144};
761e3bd9 145ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 146
3b451610
AK
147/* map selector for map managment
148 */
238c0a71
AK
149#define MAP_0 0
150#define MAP_1 1
151#define MAP_X -1
3b451610 152
cdddbdbc
DW
153/* RAID map configuration infos. */
154struct imsm_map {
5551b113
CA
155 __u32 pba_of_lba0_lo; /* start address of partition */
156 __u32 blocks_per_member_lo;/* blocks per member */
157 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
158 __u16 blocks_per_strip;
159 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
160#define IMSM_T_STATE_NORMAL 0
161#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
162#define IMSM_T_STATE_DEGRADED 2
163#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
164 __u8 raid_level;
165#define IMSM_T_RAID0 0
166#define IMSM_T_RAID1 1
167#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
168 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
169 __u8 num_domains; /* number of parity domains */
170 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 171 __u8 ddf;
5551b113
CA
172 __u32 pba_of_lba0_hi;
173 __u32 blocks_per_member_hi;
174 __u32 num_data_stripes_hi;
175 __u32 filler[4]; /* expansion area */
7eef0453 176#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 177 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
178 * top byte contains some flags
179 */
761e3bd9
N
180};
181ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
182
183struct imsm_vol {
4036e7ee 184 __u32 curr_migr_unit_lo;
fe7ed8cb 185 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 186 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
187#define MIGR_INIT 0
188#define MIGR_REBUILD 1
189#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
190#define MIGR_GEN_MIGR 3
191#define MIGR_STATE_CHANGE 4
1484e727 192#define MIGR_REPAIR 5
cdddbdbc 193 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
194#define RAIDVOL_CLEAN 0
195#define RAIDVOL_DIRTY 1
196#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 197 __u8 dirty;
fe7ed8cb
DW
198 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
199 __u16 verify_errors; /* number of mismatches */
200 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
201 __u32 curr_migr_unit_hi;
202 __u32 filler[3];
cdddbdbc
DW
203 struct imsm_map map[1];
204 /* here comes another one if migr_state */
761e3bd9
N
205};
206ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
207
208struct imsm_dev {
fe7ed8cb 209 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
210 __u32 size_low;
211 __u32 size_high;
fe7ed8cb
DW
212#define DEV_BOOTABLE __cpu_to_le32(0x01)
213#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
214#define DEV_READ_COALESCING __cpu_to_le32(0x04)
215#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
216#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
217#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
218#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
219#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
220#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
221#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
222#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
223#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
224#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
225 __u32 status; /* Persistent RaidDev status */
226 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
227 __u8 migr_priority;
228 __u8 num_sub_vols;
229 __u8 tid;
230 __u8 cng_master_disk;
231 __u16 cache_policy;
232 __u8 cng_state;
233 __u8 cng_sub_state;
2432ce9b
AP
234 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
235
236 /* NVM_EN */
237 __u8 nv_cache_mode;
238 __u8 nv_cache_flags;
239
240 /* Unique Volume Id of the NvCache Volume associated with this volume */
241 __u32 nvc_vol_orig_family_num;
242 __u16 nvc_vol_raid_dev_num;
243
244#define RWH_OFF 0
245#define RWH_DISTRIBUTED 1
246#define RWH_JOURNALING_DRIVE 2
c2462068
PB
247#define RWH_MULTIPLE_DISTRIBUTED 3
248#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
249#define RWH_MULTIPLE_OFF 5
fbc42556 250#define RWH_BITMAP 6
2432ce9b
AP
251 __u8 rwh_policy; /* Raid Write Hole Policy */
252 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
253 __u8 filler1;
254
255#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
256 __u32 filler[IMSM_DEV_FILLERS];
257 struct imsm_vol vol;
761e3bd9
N
258};
259ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
260
261struct imsm_super {
262 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
263 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
264 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
265 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
266 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
267 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
268 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
269 __u8 num_disks; /* 0x38 Number of configured disks */
270 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
271 __u8 error_log_pos; /* 0x3A */
272 __u8 fill[1]; /* 0x3B */
273 __u32 cache_size; /* 0x3c - 0x40 in mb */
274 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
275 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
276 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
277 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
278 * volume IDs for raid_dev created in this array
279 * (starts at 1)
280 */
281 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
282 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
283#define IMSM_FILLERS 32
284 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
285 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
286 /* here comes imsm_dev[num_raid_devs] */
604b746f 287 /* here comes BBM logs */
761e3bd9
N
288};
289ASSERT_SIZE(imsm_super, 264)
cdddbdbc 290
604b746f 291#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
292#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
293#define BBM_LOG_SIGNATURE 0xabadb10c
294
295struct bbm_log_block_addr {
296 __u16 w1;
297 __u32 dw1;
298} __attribute__ ((__packed__));
604b746f
JD
299
300struct bbm_log_entry {
8d67477f
TM
301 __u8 marked_count; /* Number of blocks marked - 1 */
302 __u8 disk_ordinal; /* Disk entry within the imsm_super */
303 struct bbm_log_block_addr defective_block_start;
604b746f
JD
304} __attribute__ ((__packed__));
305
306struct bbm_log {
307 __u32 signature; /* 0xABADB10C */
308 __u32 entry_count;
8d67477f 309 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
310};
311ASSERT_SIZE(bbm_log, 2040)
604b746f 312
cdddbdbc 313static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 314
b53bfba6
TM
315#define BLOCKS_PER_KB (1024/512)
316
8e59f3d8
AK
317#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
318
319#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
320
de44e46f
PB
321#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
322#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
323 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
324 */
325
8e59f3d8
AK
326#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
327 * be recovered using srcMap */
328#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
329 * already been migrated and must
330 * be recovered from checkpoint area */
2432ce9b 331
c2462068 332#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 333
8e59f3d8
AK
334struct migr_record {
335 __u32 rec_status; /* Status used to determine how to restart
336 * migration in case it aborts
337 * in some fashion */
9f421827 338 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
339 __u32 family_num; /* Family number of MPB
340 * containing the RaidDev
341 * that is migrating */
342 __u32 ascending_migr; /* True if migrating in increasing
343 * order of lbas */
344 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
345 __u32 dest_depth_per_unit; /* Num member blocks each destMap
346 * member disk
347 * advances per unit-of-operation */
9f421827
PB
348 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
349 __u32 dest_1st_member_lba_lo; /* First member lba on first
350 * stripe of destination */
351 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
352 __u32 post_migr_vol_cap; /* Size of volume after
353 * migration completes */
354 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
355 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
356 * migration ckpt record was read from
357 * (for recovered migrations) */
9f421827
PB
358 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
359 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
360 * high order 32 bits */
361 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
362 * destination - high order 32 bits */
363 __u32 num_migr_units_hi; /* Total num migration units-of-op
364 * high order 32 bits */
4036e7ee 365 __u32 filler[16];
761e3bd9 366};
4036e7ee 367ASSERT_SIZE(migr_record, 128)
8e59f3d8 368
76c152ca
MT
369/**
370 * enum imsm_status - internal IMSM return values representation.
371 * @STATUS_OK: function succeeded.
372 * @STATUS_ERROR: General error ocurred (not specified).
373 *
374 * Typedefed to imsm_status_t.
375 */
376typedef enum imsm_status {
377 IMSM_STATUS_ERROR = -1,
378 IMSM_STATUS_OK = 0,
379} imsm_status_t;
380
ec50f7b6
LM
381struct md_list {
382 /* usage marker:
383 * 1: load metadata
384 * 2: metadata does not match
385 * 4: already checked
386 */
387 int used;
388 char *devname;
389 int found;
390 int container;
391 dev_t st_rdev;
392 struct md_list *next;
393};
394
e7b84f9d 395#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 396
1484e727
DW
397static __u8 migr_type(struct imsm_dev *dev)
398{
399 if (dev->vol.migr_type == MIGR_VERIFY &&
400 dev->status & DEV_VERIFY_AND_FIX)
401 return MIGR_REPAIR;
402 else
403 return dev->vol.migr_type;
404}
405
406static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
407{
408 /* for compatibility with older oroms convert MIGR_REPAIR, into
409 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
410 */
411 if (migr_type == MIGR_REPAIR) {
412 dev->vol.migr_type = MIGR_VERIFY;
413 dev->status |= DEV_VERIFY_AND_FIX;
414 } else {
415 dev->vol.migr_type = migr_type;
416 dev->status &= ~DEV_VERIFY_AND_FIX;
417 }
418}
419
f36a9ecd 420static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 421{
f36a9ecd 422 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 423}
cdddbdbc 424
f36a9ecd
PB
425static unsigned int mpb_sectors(struct imsm_super *mpb,
426 unsigned int sector_size)
87eb16df 427{
f36a9ecd 428 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
429}
430
ba2de7ba
DW
431struct intel_dev {
432 struct imsm_dev *dev;
433 struct intel_dev *next;
f21e18ca 434 unsigned index;
ba2de7ba
DW
435};
436
88654014
LM
437struct intel_hba {
438 enum sys_dev_type type;
439 char *path;
440 char *pci_id;
441 struct intel_hba *next;
442};
443
1a64be56
LM
444enum action {
445 DISK_REMOVE = 1,
446 DISK_ADD
447};
cdddbdbc
DW
448/* internal representation of IMSM metadata */
449struct intel_super {
450 union {
949c47a0
DW
451 void *buf; /* O_DIRECT buffer for reading/writing metadata */
452 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 453 };
8e59f3d8
AK
454 union {
455 void *migr_rec_buf; /* buffer for I/O operations */
456 struct migr_record *migr_rec; /* migration record */
457 };
51d83f5d
AK
458 int clean_migration_record_by_mdmon; /* when reshape is switched to next
459 array, it indicates that mdmon is allowed to clean migration
460 record */
949c47a0 461 size_t len; /* size of the 'buf' allocation */
bbab0940 462 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
463 void *next_buf; /* for realloc'ing buf from the manager */
464 size_t next_len;
c2c087e6 465 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 466 int current_vol; /* index of raid device undergoing creation */
5551b113 467 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 468 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 469 struct intel_dev *devlist;
fa7bb6f8 470 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
471 struct dl {
472 struct dl *next;
473 int index;
474 __u8 serial[MAX_RAID_SERIAL_LEN];
475 int major, minor;
476 char *devname;
b9f594fe 477 struct imsm_disk disk;
cdddbdbc 478 int fd;
0dcecb2e
DW
479 int extent_cnt;
480 struct extent *e; /* for determining freespace @ create */
efb30e7f 481 int raiddisk; /* slot to fill in autolayout */
1a64be56 482 enum action action;
ca0748fa 483 } *disks, *current_disk;
1a64be56
LM
484 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
485 active */
47ee5a45 486 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 487 struct bbm_log *bbm_log;
88654014 488 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 489 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 490 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 491 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
492};
493
494struct intel_disk {
495 struct imsm_disk disk;
496 #define IMSM_UNKNOWN_OWNER (-1)
497 int owner;
498 struct intel_disk *next;
cdddbdbc
DW
499};
500
c2c087e6
DW
501struct extent {
502 unsigned long long start, size;
503};
504
694575e7
KW
505/* definitions of reshape process types */
506enum imsm_reshape_type {
507 CH_TAKEOVER,
b5347799 508 CH_MIGRATION,
7abc9871 509 CH_ARRAY_SIZE,
694575e7
KW
510};
511
88758e9d
DW
512/* definition of messages passed to imsm_process_update */
513enum imsm_update_type {
514 update_activate_spare,
8273f55e 515 update_create_array,
33414a01 516 update_kill_array,
aa534678 517 update_rename_array,
1a64be56 518 update_add_remove_disk,
78b10e66 519 update_reshape_container_disks,
48c5303a 520 update_reshape_migration,
2d40f3a1
AK
521 update_takeover,
522 update_general_migration_checkpoint,
f3871fdc 523 update_size_change,
bbab0940 524 update_prealloc_badblocks_mem,
e6e9dd3f 525 update_rwh_policy,
88758e9d
DW
526};
527
528struct imsm_update_activate_spare {
529 enum imsm_update_type type;
d23fe947 530 struct dl *dl;
88758e9d
DW
531 int slot;
532 int array;
533 struct imsm_update_activate_spare *next;
534};
535
78b10e66 536struct geo_params {
4dd2df09 537 char devnm[32];
78b10e66 538 char *dev_name;
d04f65f4 539 unsigned long long size;
78b10e66
N
540 int level;
541 int layout;
542 int chunksize;
543 int raid_disks;
544};
545
bb025c2f
KW
546enum takeover_direction {
547 R10_TO_R0,
548 R0_TO_R10
549};
550struct imsm_update_takeover {
551 enum imsm_update_type type;
552 int subarray;
553 enum takeover_direction direction;
554};
78b10e66
N
555
556struct imsm_update_reshape {
557 enum imsm_update_type type;
558 int old_raid_disks;
559 int new_raid_disks;
48c5303a
PC
560
561 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
562};
563
564struct imsm_update_reshape_migration {
565 enum imsm_update_type type;
566 int old_raid_disks;
567 int new_raid_disks;
568 /* fields for array migration changes
569 */
570 int subdev;
571 int new_level;
572 int new_layout;
4bba0439 573 int new_chunksize;
48c5303a 574
d195167d 575 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
576};
577
f3871fdc
AK
578struct imsm_update_size_change {
579 enum imsm_update_type type;
580 int subdev;
581 long long new_size;
582};
583
2d40f3a1
AK
584struct imsm_update_general_migration_checkpoint {
585 enum imsm_update_type type;
4036e7ee 586 __u64 curr_migr_unit;
2d40f3a1
AK
587};
588
54c2c1ea
DW
589struct disk_info {
590 __u8 serial[MAX_RAID_SERIAL_LEN];
591};
592
8273f55e
DW
593struct imsm_update_create_array {
594 enum imsm_update_type type;
8273f55e 595 int dev_idx;
6a3e913e 596 struct imsm_dev dev;
8273f55e
DW
597};
598
33414a01
DW
599struct imsm_update_kill_array {
600 enum imsm_update_type type;
601 int dev_idx;
602};
603
aa534678
DW
604struct imsm_update_rename_array {
605 enum imsm_update_type type;
606 __u8 name[MAX_RAID_SERIAL_LEN];
607 int dev_idx;
608};
609
1a64be56 610struct imsm_update_add_remove_disk {
43dad3d6
DW
611 enum imsm_update_type type;
612};
613
bbab0940
TM
614struct imsm_update_prealloc_bb_mem {
615 enum imsm_update_type type;
616};
617
e6e9dd3f
AP
618struct imsm_update_rwh_policy {
619 enum imsm_update_type type;
620 int new_policy;
621 int dev_idx;
622};
623
88654014
LM
624static const char *_sys_dev_type[] = {
625 [SYS_DEV_UNKNOWN] = "Unknown",
626 [SYS_DEV_SAS] = "SAS",
614902f6 627 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
628 [SYS_DEV_NVME] = "NVMe",
629 [SYS_DEV_VMD] = "VMD"
88654014
LM
630};
631
632const char *get_sys_dev_type(enum sys_dev_type type)
633{
634 if (type >= SYS_DEV_MAX)
635 type = SYS_DEV_UNKNOWN;
636
637 return _sys_dev_type[type];
638}
639
640static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
641{
503975b9
N
642 struct intel_hba *result = xmalloc(sizeof(*result));
643
644 result->type = device->type;
645 result->path = xstrdup(device->path);
646 result->next = NULL;
647 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
648 result->pci_id++;
649
88654014
LM
650 return result;
651}
652
653static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
654{
594dc1b8
JS
655 struct intel_hba *result;
656
88654014
LM
657 for (result = hba; result; result = result->next) {
658 if (result->type == device->type && strcmp(result->path, device->path) == 0)
659 break;
660 }
661 return result;
662}
663
b4cf4cba 664static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
665{
666 struct intel_hba *hba;
667
668 /* check if disk attached to Intel HBA */
669 hba = find_intel_hba(super->hba, device);
670 if (hba != NULL)
671 return 1;
672 /* Check if HBA is already attached to super */
673 if (super->hba == NULL) {
674 super->hba = alloc_intel_hba(device);
675 return 1;
6b781d33
AP
676 }
677
678 hba = super->hba;
679 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 680 * Do not support HBA types mixing
6b781d33
AP
681 */
682 if (device->type != hba->type)
88654014 683 return 2;
6b781d33
AP
684
685 /* Multiple same type HBAs can be used if they share the same OROM */
686 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
687
688 if (device_orom != super->orom)
689 return 2;
690
691 while (hba->next)
692 hba = hba->next;
693
694 hba->next = alloc_intel_hba(device);
695 return 1;
88654014
LM
696}
697
698static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
699{
9bc4ae77 700 struct sys_dev *list, *elem;
88654014
LM
701 char *disk_path;
702
703 if ((list = find_intel_devices()) == NULL)
704 return 0;
705
4389ce73 706 if (!is_fd_valid(fd))
88654014
LM
707 disk_path = (char *) devname;
708 else
7c798f87 709 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 710
9bc4ae77 711 if (!disk_path)
88654014 712 return 0;
88654014 713
9bc4ae77
N
714 for (elem = list; elem; elem = elem->next)
715 if (path_attached_to_hba(disk_path, elem->path))
88654014 716 return elem;
9bc4ae77 717
88654014
LM
718 if (disk_path != devname)
719 free(disk_path);
88654014
LM
720
721 return NULL;
722}
723
d424212e
N
724static int find_intel_hba_capability(int fd, struct intel_super *super,
725 char *devname);
f2f5c343 726
cdddbdbc
DW
727static struct supertype *match_metadata_desc_imsm(char *arg)
728{
729 struct supertype *st;
730
731 if (strcmp(arg, "imsm") != 0 &&
732 strcmp(arg, "default") != 0
733 )
734 return NULL;
735
503975b9 736 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
737 st->ss = &super_imsm;
738 st->max_devs = IMSM_MAX_DEVICES;
739 st->minor_version = 0;
740 st->sb = NULL;
741 return st;
742}
743
cdddbdbc
DW
744static __u8 *get_imsm_version(struct imsm_super *mpb)
745{
746 return &mpb->sig[MPB_SIG_LEN];
747}
748
949c47a0
DW
749/* retrieve a disk directly from the anchor when the anchor is known to be
750 * up-to-date, currently only at load time
751 */
752static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 753{
949c47a0 754 if (index >= mpb->num_disks)
cdddbdbc
DW
755 return NULL;
756 return &mpb->disk[index];
757}
758
95d07a2c
LM
759/* retrieve the disk description based on a index of the disk
760 * in the sub-array
761 */
762static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 763{
b9f594fe
DW
764 struct dl *d;
765
766 for (d = super->disks; d; d = d->next)
767 if (d->index == index)
95d07a2c
LM
768 return d;
769
770 return NULL;
771}
772/* retrieve a disk from the parsed metadata */
773static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
774{
775 struct dl *dl;
776
777 dl = get_imsm_dl_disk(super, index);
778 if (dl)
779 return &dl->disk;
780
b9f594fe 781 return NULL;
949c47a0
DW
782}
783
784/* generate a checksum directly from the anchor when the anchor is known to be
785 * up-to-date, currently only at load or write_super after coalescing
786 */
787static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
788{
789 __u32 end = mpb->mpb_size / sizeof(end);
790 __u32 *p = (__u32 *) mpb;
791 __u32 sum = 0;
792
5d500228
N
793 while (end--) {
794 sum += __le32_to_cpu(*p);
97f734fd
N
795 p++;
796 }
cdddbdbc 797
5d500228 798 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
799}
800
a965f303
DW
801static size_t sizeof_imsm_map(struct imsm_map *map)
802{
803 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
804}
805
806struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 807{
5e7b0330
AK
808 /* A device can have 2 maps if it is in the middle of a migration.
809 * If second_map is:
238c0a71
AK
810 * MAP_0 - we return the first map
811 * MAP_1 - we return the second map if it exists, else NULL
812 * MAP_X - we return the second map if it exists, else the first
5e7b0330 813 */
a965f303 814 struct imsm_map *map = &dev->vol.map[0];
9535fc47 815 struct imsm_map *map2 = NULL;
a965f303 816
9535fc47
AK
817 if (dev->vol.migr_state)
818 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 819
9535fc47 820 switch (second_map) {
3b451610 821 case MAP_0:
9535fc47 822 break;
3b451610 823 case MAP_1:
9535fc47
AK
824 map = map2;
825 break;
238c0a71 826 case MAP_X:
9535fc47
AK
827 if (map2)
828 map = map2;
829 break;
9535fc47
AK
830 default:
831 map = NULL;
832 }
833 return map;
5e7b0330 834
a965f303 835}
cdddbdbc 836
3393c6af
DW
837/* return the size of the device.
838 * migr_state increases the returned size if map[0] were to be duplicated
839 */
840static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
841{
842 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 843 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
844
845 /* migrating means an additional map */
a965f303 846 if (dev->vol.migr_state)
238c0a71 847 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 848 else if (migr_state)
238c0a71 849 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
850
851 return size;
852}
853
54c2c1ea
DW
854/* retrieve disk serial number list from a metadata update */
855static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
856{
857 void *u = update;
858 struct disk_info *inf;
859
860 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
861 sizeof_imsm_dev(&update->dev, 0);
862
863 return inf;
864}
54c2c1ea 865
756a15f3
MG
866/**
867 * __get_imsm_dev() - Get device with index from imsm_super.
868 * @mpb: &imsm_super pointer, not NULL.
869 * @index: Device index.
870 *
871 * Function works as non-NULL, aborting in such a case,
872 * when NULL would be returned.
873 *
874 * Device index should be in range 0 up to num_raid_devs.
875 * Function assumes the index was already verified.
876 * Index must be valid, otherwise abort() is called.
877 *
878 * Return: Pointer to corresponding imsm_dev.
879 *
880 */
949c47a0 881static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
882{
883 int offset;
884 int i;
885 void *_mpb = mpb;
886
949c47a0 887 if (index >= mpb->num_raid_devs)
756a15f3 888 goto error;
cdddbdbc
DW
889
890 /* devices start after all disks */
891 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
892
756a15f3 893 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
cdddbdbc
DW
894 if (i == index)
895 return _mpb + offset;
756a15f3
MG
896error:
897 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
898 abort();
cdddbdbc
DW
899}
900
756a15f3
MG
901/**
902 * get_imsm_dev() - Get device with index from intel_super.
903 * @super: &intel_super pointer, not NULL.
904 * @index: Device index.
905 *
906 * Function works as non-NULL, aborting in such a case,
907 * when NULL would be returned.
908 *
909 * Device index should be in range 0 up to num_raid_devs.
910 * Function assumes the index was already verified.
911 * Index must be valid, otherwise abort() is called.
912 *
913 * Return: Pointer to corresponding imsm_dev.
914 *
915 */
949c47a0
DW
916static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
917{
ba2de7ba
DW
918 struct intel_dev *dv;
919
949c47a0 920 if (index >= super->anchor->num_raid_devs)
756a15f3
MG
921 goto error;
922
ba2de7ba
DW
923 for (dv = super->devlist; dv; dv = dv->next)
924 if (dv->index == index)
925 return dv->dev;
756a15f3
MG
926error:
927 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
928 abort();
949c47a0
DW
929}
930
8d67477f
TM
931static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
932 *addr)
933{
934 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
935 __le16_to_cpu(addr->w1));
936}
937
938static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
939{
940 struct bbm_log_block_addr addr;
941
942 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
943 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
944 return addr;
945}
946
8d67477f
TM
947/* get size of the bbm log */
948static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
949{
950 if (!log || log->entry_count == 0)
951 return 0;
952
953 return sizeof(log->signature) +
954 sizeof(log->entry_count) +
955 log->entry_count * sizeof(struct bbm_log_entry);
956}
6f50473f
TM
957
958/* check if bad block is not partially stored in bbm log */
959static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
960 long long sector, const int length, __u32 *pos)
961{
962 __u32 i;
963
964 for (i = *pos; i < log->entry_count; i++) {
965 struct bbm_log_entry *entry = &log->marked_block_entries[i];
966 unsigned long long bb_start;
967 unsigned long long bb_end;
968
969 bb_start = __le48_to_cpu(&entry->defective_block_start);
970 bb_end = bb_start + (entry->marked_count + 1);
971
972 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
973 (bb_end <= sector + length)) {
974 *pos = i;
975 return 1;
976 }
977 }
978 return 0;
979}
980
981/* record new bad block in bbm log */
982static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
983 long long sector, int length)
984{
985 int new_bb = 0;
986 __u32 pos = 0;
987 struct bbm_log_entry *entry = NULL;
988
989 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
990 struct bbm_log_entry *e = &log->marked_block_entries[pos];
991
992 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
993 (__le48_to_cpu(&e->defective_block_start) == sector)) {
994 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
995 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
996 pos = pos + 1;
997 continue;
998 }
999 entry = e;
1000 break;
1001 }
1002
1003 if (entry) {
1004 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1005 BBM_LOG_MAX_LBA_ENTRY_VAL;
1006 entry->defective_block_start = __cpu_to_le48(sector);
1007 entry->marked_count = cnt - 1;
1008 if (cnt == length)
1009 return 1;
1010 sector += cnt;
1011 length -= cnt;
1012 }
1013
1014 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1015 BBM_LOG_MAX_LBA_ENTRY_VAL;
1016 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1017 return 0;
1018
1019 while (length > 0) {
1020 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1021 BBM_LOG_MAX_LBA_ENTRY_VAL;
1022 struct bbm_log_entry *entry =
1023 &log->marked_block_entries[log->entry_count];
1024
1025 entry->defective_block_start = __cpu_to_le48(sector);
1026 entry->marked_count = cnt - 1;
1027 entry->disk_ordinal = idx;
1028
1029 sector += cnt;
1030 length -= cnt;
1031
1032 log->entry_count++;
1033 }
1034
1035 return new_bb;
1036}
c07a5a4f 1037
4c9e8c1e
TM
1038/* clear all bad blocks for given disk */
1039static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1040{
1041 __u32 i = 0;
1042
1043 while (i < log->entry_count) {
1044 struct bbm_log_entry *entries = log->marked_block_entries;
1045
1046 if (entries[i].disk_ordinal == idx) {
1047 if (i < log->entry_count - 1)
1048 entries[i] = entries[log->entry_count - 1];
1049 log->entry_count--;
1050 } else {
1051 i++;
1052 }
1053 }
1054}
1055
c07a5a4f
TM
1056/* clear given bad block */
1057static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1058 long long sector, const int length) {
1059 __u32 i = 0;
1060
1061 while (i < log->entry_count) {
1062 struct bbm_log_entry *entries = log->marked_block_entries;
1063
1064 if ((entries[i].disk_ordinal == idx) &&
1065 (__le48_to_cpu(&entries[i].defective_block_start) ==
1066 sector) && (entries[i].marked_count + 1 == length)) {
1067 if (i < log->entry_count - 1)
1068 entries[i] = entries[log->entry_count - 1];
1069 log->entry_count--;
1070 break;
1071 }
1072 i++;
1073 }
1074
1075 return 1;
1076}
8d67477f
TM
1077
1078/* allocate and load BBM log from metadata */
1079static int load_bbm_log(struct intel_super *super)
1080{
1081 struct imsm_super *mpb = super->anchor;
1082 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1083
1084 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1085 if (!super->bbm_log)
1086 return 1;
1087
1088 if (bbm_log_size) {
1089 struct bbm_log *log = (void *)mpb +
1090 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1091
1092 __u32 entry_count;
1093
1094 if (bbm_log_size < sizeof(log->signature) +
1095 sizeof(log->entry_count))
1096 return 2;
1097
1098 entry_count = __le32_to_cpu(log->entry_count);
1099 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1100 (entry_count > BBM_LOG_MAX_ENTRIES))
1101 return 3;
1102
1103 if (bbm_log_size !=
1104 sizeof(log->signature) + sizeof(log->entry_count) +
1105 entry_count * sizeof(struct bbm_log_entry))
1106 return 4;
1107
1108 memcpy(super->bbm_log, log, bbm_log_size);
1109 } else {
1110 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1111 super->bbm_log->entry_count = 0;
1112 }
1113
1114 return 0;
1115}
1116
b12796be
TM
1117/* checks if bad block is within volume boundaries */
1118static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1119 const unsigned long long start_sector,
1120 const unsigned long long size)
1121{
1122 unsigned long long bb_start;
1123 unsigned long long bb_end;
1124
1125 bb_start = __le48_to_cpu(&entry->defective_block_start);
1126 bb_end = bb_start + (entry->marked_count + 1);
1127
1128 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1129 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1130 return 1;
1131
1132 return 0;
1133}
1134
1135/* get list of bad blocks on a drive for a volume */
1136static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1137 const unsigned long long start_sector,
1138 const unsigned long long size,
1139 struct md_bb *bbs)
1140{
1141 __u32 count = 0;
1142 __u32 i;
1143
1144 for (i = 0; i < log->entry_count; i++) {
1145 const struct bbm_log_entry *ent =
1146 &log->marked_block_entries[i];
1147 struct md_bb_entry *bb;
1148
1149 if ((ent->disk_ordinal == idx) &&
1150 is_bad_block_in_volume(ent, start_sector, size)) {
1151
1152 if (!bbs->entries) {
1153 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1154 sizeof(*bb));
1155 if (!bbs->entries)
1156 break;
1157 }
1158
1159 bb = &bbs->entries[count++];
1160 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1161 bb->length = ent->marked_count + 1;
1162 }
1163 }
1164 bbs->count = count;
1165}
1166
98130f40
AK
1167/*
1168 * for second_map:
238c0a71
AK
1169 * == MAP_0 get first map
1170 * == MAP_1 get second map
1171 * == MAP_X than get map according to the current migr_state
98130f40
AK
1172 */
1173static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1174 int slot,
1175 int second_map)
7eef0453
DW
1176{
1177 struct imsm_map *map;
1178
5e7b0330 1179 map = get_imsm_map(dev, second_map);
7eef0453 1180
ff077194
DW
1181 /* top byte identifies disk under rebuild */
1182 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1183}
1184
1185#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1186static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1187{
98130f40 1188 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1189
1190 return ord_to_idx(ord);
7eef0453
DW
1191}
1192
be73972f
DW
1193static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1194{
1195 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1196}
1197
76c152ca 1198static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
620b1713
DW
1199{
1200 int slot;
1201 __u32 ord;
1202
1203 for (slot = 0; slot < map->num_members; slot++) {
1204 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1205 if (ord_to_idx(ord) == idx)
1206 return slot;
1207 }
1208
76c152ca 1209 return IMSM_STATUS_ERROR;
620b1713
DW
1210}
1211
cdddbdbc
DW
1212static int get_imsm_raid_level(struct imsm_map *map)
1213{
1214 if (map->raid_level == 1) {
1215 if (map->num_members == 2)
1216 return 1;
1217 else
1218 return 10;
1219 }
1220
1221 return map->raid_level;
1222}
1223
76c152ca
MT
1224/**
1225 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1226 * @super: &intel_super pointer, not NULL.
1227 * @dev_idx: imsm device index.
1228 * @idx: disk index.
1229 *
1230 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1231 */
1232static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1233 const unsigned int idx)
1234{
1235 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1236 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1237
1238 return get_imsm_disk_slot(map, idx);
1239}
1240
c2c087e6
DW
1241static int cmp_extent(const void *av, const void *bv)
1242{
1243 const struct extent *a = av;
1244 const struct extent *b = bv;
1245 if (a->start < b->start)
1246 return -1;
1247 if (a->start > b->start)
1248 return 1;
1249 return 0;
1250}
1251
0dcecb2e 1252static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1253{
c2c087e6 1254 int memberships = 0;
620b1713 1255 int i;
c2c087e6 1256
76c152ca
MT
1257 for (i = 0; i < super->anchor->num_raid_devs; i++)
1258 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
620b1713 1259 memberships++;
0dcecb2e
DW
1260
1261 return memberships;
1262}
1263
b81221b7
CA
1264static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1265
486720e0 1266static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1267{
1268 if (lo == 0 || hi == 0)
1269 return 1;
486720e0
JS
1270 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1271 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1272 return 0;
1273}
1274
1275static unsigned long long join_u32(__u32 lo, __u32 hi)
1276{
1277 return (unsigned long long)__le32_to_cpu(lo) |
1278 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1279}
1280
1281static unsigned long long total_blocks(struct imsm_disk *disk)
1282{
1283 if (disk == NULL)
1284 return 0;
1285 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1286}
1287
1c275381
MT
1288/**
1289 * imsm_num_data_members() - get data drives count for an array.
1290 * @map: Map to analyze.
1291 *
1292 * num_data_members value represents minimal count of drives for level.
1293 * The name of the property could be misleading for RAID5 with asymmetric layout
1294 * because some data required to be calculated from parity.
1295 * The property is extracted from level and num_members value.
1296 *
1297 * Return: num_data_members value on success, zero otherwise.
1298 */
1299static __u8 imsm_num_data_members(struct imsm_map *map)
1300{
1301 switch (get_imsm_raid_level(map)) {
1302 case 0:
1303 return map->num_members;
1304 case 1:
1305 case 10:
1306 return map->num_members / 2;
1307 case 5:
1308 return map->num_members - 1;
1309 default:
1310 dprintf("unsupported raid level\n");
1311 return 0;
1312 }
1313}
1314
5551b113
CA
1315static unsigned long long pba_of_lba0(struct imsm_map *map)
1316{
1317 if (map == NULL)
1318 return 0;
1319 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1320}
1321
1322static unsigned long long blocks_per_member(struct imsm_map *map)
1323{
1324 if (map == NULL)
1325 return 0;
1326 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1327}
1328
1329static unsigned long long num_data_stripes(struct imsm_map *map)
1330{
1331 if (map == NULL)
1332 return 0;
1333 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1334}
1335
4036e7ee
MT
1336static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1337{
1338 if (dev == NULL)
1339 return 0;
1340
1341 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1342}
1343
fcc2c9da
MD
1344static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1345{
1346 if (dev == NULL)
1347 return 0;
1348 return join_u32(dev->size_low, dev->size_high);
1349}
1350
9f421827
PB
1351static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1352{
1353 if (migr_rec == NULL)
1354 return 0;
1355 return join_u32(migr_rec->ckpt_area_pba_lo,
1356 migr_rec->ckpt_area_pba_hi);
1357}
1358
1359static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1360{
1361 if (migr_rec == NULL)
1362 return 0;
1363 return join_u32(migr_rec->curr_migr_unit_lo,
1364 migr_rec->curr_migr_unit_hi);
1365}
1366
1367static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1368{
1369 if (migr_rec == NULL)
1370 return 0;
1371 return join_u32(migr_rec->dest_1st_member_lba_lo,
1372 migr_rec->dest_1st_member_lba_hi);
1373}
1374
1375static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1376{
1377 if (migr_rec == NULL)
1378 return 0;
1379 return join_u32(migr_rec->num_migr_units_lo,
1380 migr_rec->num_migr_units_hi);
1381}
1382
5551b113
CA
1383static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1384{
1385 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1386}
1387
1c275381
MT
1388/**
1389 * set_num_domains() - Set number of domains for an array.
1390 * @map: Map to be updated.
1391 *
1392 * num_domains property represents copies count of each data drive, thus make
1393 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1394 * raid1 and raid10.
1395 */
1396static void set_num_domains(struct imsm_map *map)
1397{
1398 int level = get_imsm_raid_level(map);
1399
1400 if (level == 1 || level == 10)
1401 map->num_domains = 2;
1402 else
1403 map->num_domains = 1;
1404}
1405
5551b113
CA
1406static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1407{
1408 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1409}
1410
1411static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1412{
1413 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1414}
1415
1416static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1417{
1418 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1419}
1420
1c275381
MT
1421/**
1422 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1423 * @map: map to be updated.
1424 * @dev_size: size of volume.
1425 *
1426 * num_data_stripes value is addictionally divided by num_domains, therefore for
1427 * levels where num_domains is not 1, nds is a part of real value.
1428 */
1429static void update_num_data_stripes(struct imsm_map *map,
1430 unsigned long long dev_size)
1431{
1432 unsigned long long nds = dev_size / imsm_num_data_members(map);
1433
1434 nds /= map->num_domains;
1435 nds /= map->blocks_per_strip;
1436 set_num_data_stripes(map, nds);
1437}
1438
4036e7ee
MT
1439static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1440{
1441 if (dev == NULL)
1442 return;
1443
1444 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1445}
1446
fcc2c9da
MD
1447static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1448{
1449 split_ull(n, &dev->size_low, &dev->size_high);
1450}
1451
9f421827
PB
1452static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1453 unsigned long long n)
1454{
1455 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1456}
1457
1458static void set_current_migr_unit(struct migr_record *migr_rec,
1459 unsigned long long n)
1460{
1461 split_ull(n, &migr_rec->curr_migr_unit_lo,
1462 &migr_rec->curr_migr_unit_hi);
1463}
1464
1465static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1466 unsigned long long n)
1467{
1468 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1469 &migr_rec->dest_1st_member_lba_hi);
1470}
1471
1472static void set_num_migr_units(struct migr_record *migr_rec,
1473 unsigned long long n)
1474{
1475 split_ull(n, &migr_rec->num_migr_units_lo,
1476 &migr_rec->num_migr_units_hi);
1477}
1478
44490938
MD
1479static unsigned long long per_dev_array_size(struct imsm_map *map)
1480{
1481 unsigned long long array_size = 0;
1482
1483 if (map == NULL)
1484 return array_size;
1485
1486 array_size = num_data_stripes(map) * map->blocks_per_strip;
1487 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1488 array_size *= 2;
1489
1490 return array_size;
1491}
1492
05501181
PB
1493static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1494 int get_minimal_reservation)
0dcecb2e
DW
1495{
1496 /* find a list of used extents on the given physical device */
1497 struct extent *rv, *e;
620b1713 1498 int i;
0dcecb2e 1499 int memberships = count_memberships(dl, super);
b276dd33
DW
1500 __u32 reservation;
1501
1502 /* trim the reserved area for spares, so they can join any array
1503 * regardless of whether the OROM has assigned sectors from the
1504 * IMSM_RESERVED_SECTORS region
1505 */
05501181 1506 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1507 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1508 else
1509 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1510
503975b9 1511 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1512 e = rv;
1513
949c47a0
DW
1514 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1515 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1516 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1517
620b1713 1518 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1519 e->start = pba_of_lba0(map);
44490938 1520 e->size = per_dev_array_size(map);
620b1713 1521 e++;
c2c087e6
DW
1522 }
1523 }
1524 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1525
1011e834 1526 /* determine the start of the metadata
14e8215b
DW
1527 * when no raid devices are defined use the default
1528 * ...otherwise allow the metadata to truncate the value
1529 * as is the case with older versions of imsm
1530 */
1531 if (memberships) {
1532 struct extent *last = &rv[memberships - 1];
5551b113 1533 unsigned long long remainder;
14e8215b 1534
5551b113 1535 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1536 /* round down to 1k block to satisfy precision of the kernel
1537 * 'size' interface
1538 */
1539 remainder &= ~1UL;
1540 /* make sure remainder is still sane */
f21e18ca 1541 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1542 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1543 if (reservation > remainder)
1544 reservation = remainder;
1545 }
5551b113 1546 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1547 e->size = 0;
1548 return rv;
1549}
1550
14e8215b
DW
1551/* try to determine how much space is reserved for metadata from
1552 * the last get_extents() entry, otherwise fallback to the
1553 * default
1554 */
1555static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1556{
1557 struct extent *e;
1558 int i;
1559 __u32 rv;
1560
1561 /* for spares just return a minimal reservation which will grow
1562 * once the spare is picked up by an array
1563 */
1564 if (dl->index == -1)
1565 return MPB_SECTOR_CNT;
1566
05501181 1567 e = get_extents(super, dl, 0);
14e8215b
DW
1568 if (!e)
1569 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1570
1571 /* scroll to last entry */
1572 for (i = 0; e[i].size; i++)
1573 continue;
1574
5551b113 1575 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1576
1577 free(e);
1578
1579 return rv;
1580}
1581
25ed7e59
DW
1582static int is_spare(struct imsm_disk *disk)
1583{
1584 return (disk->status & SPARE_DISK) == SPARE_DISK;
1585}
1586
1587static int is_configured(struct imsm_disk *disk)
1588{
1589 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1590}
1591
1592static int is_failed(struct imsm_disk *disk)
1593{
1594 return (disk->status & FAILED_DISK) == FAILED_DISK;
1595}
1596
2432ce9b
AP
1597static int is_journal(struct imsm_disk *disk)
1598{
1599 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1600}
1601
b53bfba6
TM
1602/* round array size down to closest MB and ensure it splits evenly
1603 * between members
1604 */
1605static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1606 disk_count)
1607{
1608 size /= disk_count;
1609 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1610 size *= disk_count;
1611
1612 return size;
1613}
1614
8b9cd157
MK
1615static int able_to_resync(int raid_level, int missing_disks)
1616{
1617 int max_missing_disks = 0;
1618
1619 switch (raid_level) {
1620 case 10:
1621 max_missing_disks = 1;
1622 break;
1623 default:
1624 max_missing_disks = 0;
1625 }
1626 return missing_disks <= max_missing_disks;
1627}
1628
b81221b7
CA
1629/* try to determine how much space is reserved for metadata from
1630 * the last get_extents() entry on the smallest active disk,
1631 * otherwise fallback to the default
1632 */
1633static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1634{
1635 struct extent *e;
1636 int i;
5551b113
CA
1637 unsigned long long min_active;
1638 __u32 remainder;
b81221b7
CA
1639 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1640 struct dl *dl, *dl_min = NULL;
1641
1642 if (!super)
1643 return rv;
1644
1645 min_active = 0;
1646 for (dl = super->disks; dl; dl = dl->next) {
1647 if (dl->index < 0)
1648 continue;
5551b113
CA
1649 unsigned long long blocks = total_blocks(&dl->disk);
1650 if (blocks < min_active || min_active == 0) {
b81221b7 1651 dl_min = dl;
5551b113 1652 min_active = blocks;
b81221b7
CA
1653 }
1654 }
1655 if (!dl_min)
1656 return rv;
1657
1658 /* find last lba used by subarrays on the smallest active disk */
05501181 1659 e = get_extents(super, dl_min, 0);
b81221b7
CA
1660 if (!e)
1661 return rv;
1662 for (i = 0; e[i].size; i++)
1663 continue;
1664
1665 remainder = min_active - e[i].start;
1666 free(e);
1667
1668 /* to give priority to recovery we should not require full
1669 IMSM_RESERVED_SECTORS from the spare */
1670 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1671
1672 /* if real reservation is smaller use that value */
1673 return (remainder < rv) ? remainder : rv;
1674}
1675
fbfdcb06
AO
1676/*
1677 * Return minimum size of a spare and sector size
1678 * that can be used in this array
1679 */
1680int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1681{
1682 struct intel_super *super = st->sb;
1683 struct dl *dl;
1684 struct extent *e;
1685 int i;
fbfdcb06
AO
1686 unsigned long long size = 0;
1687
1688 c->min_size = 0;
4b57ecf6 1689 c->sector_size = 0;
80e7f8c3
AC
1690
1691 if (!super)
fbfdcb06 1692 return -EINVAL;
80e7f8c3
AC
1693 /* find first active disk in array */
1694 dl = super->disks;
1695 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1696 dl = dl->next;
1697 if (!dl)
fbfdcb06 1698 return -EINVAL;
80e7f8c3 1699 /* find last lba used by subarrays */
05501181 1700 e = get_extents(super, dl, 0);
80e7f8c3 1701 if (!e)
fbfdcb06 1702 return -EINVAL;
80e7f8c3
AC
1703 for (i = 0; e[i].size; i++)
1704 continue;
1705 if (i > 0)
fbfdcb06 1706 size = e[i-1].start + e[i-1].size;
80e7f8c3 1707 free(e);
b81221b7 1708
80e7f8c3 1709 /* add the amount of space needed for metadata */
fbfdcb06
AO
1710 size += imsm_min_reserved_sectors(super);
1711
1712 c->min_size = size * 512;
4b57ecf6 1713 c->sector_size = super->sector_size;
b81221b7 1714
fbfdcb06 1715 return 0;
80e7f8c3
AC
1716}
1717
195d1d76 1718static bool is_gen_migration(struct imsm_dev *dev);
d1e02575 1719
f36a9ecd
PB
1720#define IMSM_4K_DIV 8
1721
c47b0ff6
AK
1722static __u64 blocks_per_migr_unit(struct intel_super *super,
1723 struct imsm_dev *dev);
1e5c6983 1724
c47b0ff6
AK
1725static void print_imsm_dev(struct intel_super *super,
1726 struct imsm_dev *dev,
1727 char *uuid,
1728 int disk_idx)
cdddbdbc
DW
1729{
1730 __u64 sz;
0d80bb2f 1731 int slot, i;
238c0a71
AK
1732 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1733 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1734 __u32 ord;
cdddbdbc
DW
1735
1736 printf("\n");
1e7bc0ed 1737 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1738 printf(" Subarray : %d\n", super->current_vol);
44470971 1739 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1740 printf(" RAID Level : %d", get_imsm_raid_level(map));
1741 if (map2)
1742 printf(" <-- %d", get_imsm_raid_level(map2));
1743 printf("\n");
1744 printf(" Members : %d", map->num_members);
1745 if (map2)
1746 printf(" <-- %d", map2->num_members);
1747 printf("\n");
0d80bb2f
DW
1748 printf(" Slots : [");
1749 for (i = 0; i < map->num_members; i++) {
238c0a71 1750 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1751 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1752 }
dd8bcb3b
AK
1753 printf("]");
1754 if (map2) {
1755 printf(" <-- [");
1756 for (i = 0; i < map2->num_members; i++) {
238c0a71 1757 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1758 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1759 }
1760 printf("]");
1761 }
1762 printf("\n");
7095bccb
AK
1763 printf(" Failed disk : ");
1764 if (map->failed_disk_num == 0xff)
1765 printf("none");
1766 else
1767 printf("%i", map->failed_disk_num);
1768 printf("\n");
620b1713
DW
1769 slot = get_imsm_disk_slot(map, disk_idx);
1770 if (slot >= 0) {
238c0a71 1771 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1772 printf(" This Slot : %d%s\n", slot,
1773 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1774 } else
cdddbdbc 1775 printf(" This Slot : ?\n");
84918897 1776 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1777 sz = imsm_dev_size(dev);
84918897
MK
1778 printf(" Array Size : %llu%s\n",
1779 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1780 human_size(sz * 512));
5551b113 1781 sz = blocks_per_member(map);
84918897
MK
1782 printf(" Per Dev Size : %llu%s\n",
1783 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1784 human_size(sz * 512));
5551b113 1785 printf(" Sector Offset : %llu\n",
7d8935cb 1786 pba_of_lba0(map) * 512 / super->sector_size);
5551b113
CA
1787 printf(" Num Stripes : %llu\n",
1788 num_data_stripes(map));
dd8bcb3b 1789 printf(" Chunk Size : %u KiB",
cdddbdbc 1790 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1791 if (map2)
1792 printf(" <-- %u KiB",
1793 __le16_to_cpu(map2->blocks_per_strip) / 2);
1794 printf("\n");
cdddbdbc 1795 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1796 printf(" Migrate State : ");
1484e727
DW
1797 if (dev->vol.migr_state) {
1798 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1799 printf("initialize\n");
1484e727 1800 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1801 printf("rebuild\n");
1484e727 1802 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1803 printf("check\n");
1484e727 1804 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1805 printf("general migration\n");
1484e727 1806 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1807 printf("state change\n");
1484e727 1808 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1809 printf("repair\n");
1484e727 1810 else
8655a7b1
DW
1811 printf("<unknown:%d>\n", migr_type(dev));
1812 } else
1813 printf("idle\n");
3393c6af
DW
1814 printf(" Map State : %s", map_state_str[map->map_state]);
1815 if (dev->vol.migr_state) {
238c0a71 1816 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1817
b10b37b8 1818 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1819 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1820 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1821 printf("(N/A)");
1822 else
1823 printf("(%llu)", (unsigned long long)
1824 blocks_per_migr_unit(super, dev));
3393c6af
DW
1825 }
1826 printf("\n");
2432ce9b
AP
1827 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1828 "dirty" : "clean");
1829 printf(" RWH Policy : ");
c2462068 1830 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1831 printf("off\n");
1832 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1833 printf("PPL distributed\n");
1834 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1835 printf("PPL journaling drive\n");
c2462068
PB
1836 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1837 printf("Multiple distributed PPLs\n");
1838 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1839 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1840 else if (dev->rwh_policy == RWH_BITMAP)
1841 printf("Write-intent bitmap\n");
2432ce9b
AP
1842 else
1843 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1844
1845 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1846}
1847
ef5c214e
MK
1848static void print_imsm_disk(struct imsm_disk *disk,
1849 int index,
1850 __u32 reserved,
1851 unsigned int sector_size) {
1f24f035 1852 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1853 __u64 sz;
1854
0ec1f4e8 1855 if (index < -1 || !disk)
e9d82038
DW
1856 return;
1857
cdddbdbc 1858 printf("\n");
1f24f035 1859 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1860 if (index >= 0)
1861 printf(" Disk%02d Serial : %s\n", index, str);
1862 else
1863 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1864 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1865 is_configured(disk) ? " active" : "",
1866 is_failed(disk) ? " failed" : "",
1867 is_journal(disk) ? " journal" : "");
cdddbdbc 1868 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1869 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1870 printf(" Usable Size : %llu%s\n",
1871 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1872 human_size(sz * 512));
1873}
1874
de44e46f
PB
1875void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1876{
1877 struct migr_record *migr_rec = super->migr_rec;
1878
1879 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1880 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1881 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1882 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1883 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1884 set_migr_chkp_area_pba(migr_rec,
1885 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1886 set_migr_dest_1st_member_lba(migr_rec,
1887 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1888}
1889
f36a9ecd
PB
1890void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1891{
1892 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1893}
1894
1895void convert_to_4k(struct intel_super *super)
1896{
1897 struct imsm_super *mpb = super->anchor;
1898 struct imsm_disk *disk;
1899 int i;
e4467bc7 1900 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1901
1902 for (i = 0; i < mpb->num_disks ; i++) {
1903 disk = __get_imsm_disk(mpb, i);
1904 /* disk */
1905 convert_to_4k_imsm_disk(disk);
1906 }
1907 for (i = 0; i < mpb->num_raid_devs; i++) {
1908 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1909 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1910 /* dev */
fcc2c9da 1911 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1912 set_vol_curr_migr_unit(dev,
1913 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1914
1915 /* map0 */
1916 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1917 map->blocks_per_strip /= IMSM_4K_DIV;
1918 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1919
1920 if (dev->vol.migr_state) {
1921 /* map1 */
1922 map = get_imsm_map(dev, MAP_1);
1923 set_blocks_per_member(map,
1924 blocks_per_member(map)/IMSM_4K_DIV);
1925 map->blocks_per_strip /= IMSM_4K_DIV;
1926 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1927 }
1928 }
e4467bc7
TM
1929 if (bbm_log_size) {
1930 struct bbm_log *log = (void *)mpb +
1931 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1932 __u32 i;
1933
1934 for (i = 0; i < log->entry_count; i++) {
1935 struct bbm_log_entry *entry =
1936 &log->marked_block_entries[i];
1937
1938 __u8 count = entry->marked_count + 1;
1939 unsigned long long sector =
1940 __le48_to_cpu(&entry->defective_block_start);
1941
1942 entry->defective_block_start =
1943 __cpu_to_le48(sector/IMSM_4K_DIV);
1944 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1945 }
1946 }
f36a9ecd
PB
1947
1948 mpb->check_sum = __gen_imsm_checksum(mpb);
1949}
1950
520e69e2
AK
1951void examine_migr_rec_imsm(struct intel_super *super)
1952{
1953 struct migr_record *migr_rec = super->migr_rec;
1954 struct imsm_super *mpb = super->anchor;
1955 int i;
1956
1957 for (i = 0; i < mpb->num_raid_devs; i++) {
1958 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1959 struct imsm_map *map;
b4ab44d8 1960 int slot = -1;
3136abe5 1961
195d1d76 1962 if (is_gen_migration(dev) == false)
520e69e2
AK
1963 continue;
1964
1965 printf("\nMigration Record Information:");
3136abe5 1966
44bfe6df
AK
1967 /* first map under migration */
1968 map = get_imsm_map(dev, MAP_0);
76c152ca 1969
3136abe5
AK
1970 if (map)
1971 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1972 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1973 printf(" Empty\n ");
1974 printf("Examine one of first two disks in array\n");
1975 break;
1976 }
1977 printf("\n Status : ");
1978 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1979 printf("Normal\n");
1980 else
1981 printf("Contains Data\n");
9f421827
PB
1982 printf(" Current Unit : %llu\n",
1983 current_migr_unit(migr_rec));
520e69e2
AK
1984 printf(" Family : %u\n",
1985 __le32_to_cpu(migr_rec->family_num));
1986 printf(" Ascending : %u\n",
1987 __le32_to_cpu(migr_rec->ascending_migr));
1988 printf(" Blocks Per Unit : %u\n",
1989 __le32_to_cpu(migr_rec->blocks_per_unit));
1990 printf(" Dest. Depth Per Unit : %u\n",
1991 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
1992 printf(" Checkpoint Area pba : %llu\n",
1993 migr_chkp_area_pba(migr_rec));
1994 printf(" First member lba : %llu\n",
1995 migr_dest_1st_member_lba(migr_rec));
1996 printf(" Total Number of Units : %llu\n",
1997 get_num_migr_units(migr_rec));
1998 printf(" Size of volume : %llu\n",
1999 join_u32(migr_rec->post_migr_vol_cap,
2000 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
2001 printf(" Record was read from : %u\n",
2002 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2003
2004 break;
2005 }
2006}
f36a9ecd 2007
de44e46f
PB
2008void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2009{
2010 struct migr_record *migr_rec = super->migr_rec;
2011
2012 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
2013 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2014 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2015 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2016 &migr_rec->post_migr_vol_cap,
2017 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
2018 set_migr_chkp_area_pba(migr_rec,
2019 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2020 set_migr_dest_1st_member_lba(migr_rec,
2021 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
2022}
2023
f36a9ecd
PB
2024void convert_from_4k(struct intel_super *super)
2025{
2026 struct imsm_super *mpb = super->anchor;
2027 struct imsm_disk *disk;
2028 int i;
e4467bc7 2029 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
2030
2031 for (i = 0; i < mpb->num_disks ; i++) {
2032 disk = __get_imsm_disk(mpb, i);
2033 /* disk */
2034 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2035 }
2036
2037 for (i = 0; i < mpb->num_raid_devs; i++) {
2038 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2039 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2040 /* dev */
fcc2c9da 2041 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
2042 set_vol_curr_migr_unit(dev,
2043 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
2044
2045 /* map0 */
2046 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2047 map->blocks_per_strip *= IMSM_4K_DIV;
2048 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2049
2050 if (dev->vol.migr_state) {
2051 /* map1 */
2052 map = get_imsm_map(dev, MAP_1);
2053 set_blocks_per_member(map,
2054 blocks_per_member(map)*IMSM_4K_DIV);
2055 map->blocks_per_strip *= IMSM_4K_DIV;
2056 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2057 }
2058 }
e4467bc7
TM
2059 if (bbm_log_size) {
2060 struct bbm_log *log = (void *)mpb +
2061 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2062 __u32 i;
2063
2064 for (i = 0; i < log->entry_count; i++) {
2065 struct bbm_log_entry *entry =
2066 &log->marked_block_entries[i];
2067
2068 __u8 count = entry->marked_count + 1;
2069 unsigned long long sector =
2070 __le48_to_cpu(&entry->defective_block_start);
2071
2072 entry->defective_block_start =
2073 __cpu_to_le48(sector*IMSM_4K_DIV);
2074 entry->marked_count = count*IMSM_4K_DIV - 1;
2075 }
2076 }
f36a9ecd
PB
2077
2078 mpb->check_sum = __gen_imsm_checksum(mpb);
2079}
2080
19482bcc
AK
2081/*******************************************************************************
2082 * function: imsm_check_attributes
2083 * Description: Function checks if features represented by attributes flags
1011e834 2084 * are supported by mdadm.
19482bcc
AK
2085 * Parameters:
2086 * attributes - Attributes read from metadata
2087 * Returns:
1011e834
N
2088 * 0 - passed attributes contains unsupported features flags
2089 * 1 - all features are supported
19482bcc
AK
2090 ******************************************************************************/
2091static int imsm_check_attributes(__u32 attributes)
2092{
2093 int ret_val = 1;
418f9b36
N
2094 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2095
2096 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
2097
2098 not_supported &= attributes;
2099 if (not_supported) {
e7b84f9d 2100 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 2101 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
2102 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2103 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2104 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2105 }
2106 if (not_supported & MPB_ATTRIB_2TB) {
2107 dprintf("\t\tMPB_ATTRIB_2TB\n");
2108 not_supported ^= MPB_ATTRIB_2TB;
2109 }
2110 if (not_supported & MPB_ATTRIB_RAID0) {
2111 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2112 not_supported ^= MPB_ATTRIB_RAID0;
2113 }
2114 if (not_supported & MPB_ATTRIB_RAID1) {
2115 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2116 not_supported ^= MPB_ATTRIB_RAID1;
2117 }
2118 if (not_supported & MPB_ATTRIB_RAID10) {
2119 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2120 not_supported ^= MPB_ATTRIB_RAID10;
2121 }
2122 if (not_supported & MPB_ATTRIB_RAID1E) {
2123 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2124 not_supported ^= MPB_ATTRIB_RAID1E;
2125 }
2126 if (not_supported & MPB_ATTRIB_RAID5) {
2127 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2128 not_supported ^= MPB_ATTRIB_RAID5;
2129 }
2130 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2131 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2132 not_supported ^= MPB_ATTRIB_RAIDCNG;
2133 }
2134 if (not_supported & MPB_ATTRIB_BBM) {
2135 dprintf("\t\tMPB_ATTRIB_BBM\n");
2136 not_supported ^= MPB_ATTRIB_BBM;
2137 }
2138 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2139 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2140 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2141 }
2142 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2143 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2144 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2145 }
2146 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2147 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2148 not_supported ^= MPB_ATTRIB_2TB_DISK;
2149 }
2150 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2151 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2152 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2153 }
2154 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2155 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2156 not_supported ^= MPB_ATTRIB_NEVER_USE;
2157 }
2158
2159 if (not_supported)
1ade5cc1 2160 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
2161
2162 ret_val = 0;
2163 }
2164
2165 return ret_val;
2166}
2167
a5d85af7 2168static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2169
cdddbdbc
DW
2170static void examine_super_imsm(struct supertype *st, char *homehost)
2171{
2172 struct intel_super *super = st->sb;
949c47a0 2173 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2174 char str[MAX_SIGNATURE_LENGTH];
2175 int i;
27fd6274
DW
2176 struct mdinfo info;
2177 char nbuf[64];
cdddbdbc 2178 __u32 sum;
14e8215b 2179 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2180 struct dl *dl;
e48aed3c 2181 time_t creation_time;
27fd6274 2182
618f4e6d
XN
2183 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2184 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2185 printf(" Magic : %s\n", str);
cdddbdbc 2186 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2187 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2188 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2189 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2190 creation_time = __le64_to_cpu(mpb->creation_time);
2191 printf(" Creation Time : %.24s\n",
2192 creation_time ? ctime(&creation_time) : "Unknown");
19482bcc
AK
2193 printf(" Attributes : ");
2194 if (imsm_check_attributes(mpb->attributes))
2195 printf("All supported\n");
2196 else
2197 printf("not supported\n");
a5d85af7 2198 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2199 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 2200 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2201 sum = __le32_to_cpu(mpb->check_sum);
2202 printf(" Checksum : %08x %s\n", sum,
949c47a0 2203 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2204 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2205 printf(" Disks : %d\n", mpb->num_disks);
2206 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2207 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2208 super->disks->index, reserved, super->sector_size);
8d67477f 2209 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2210 struct bbm_log *log = super->bbm_log;
2211
2212 printf("\n");
2213 printf("Bad Block Management Log:\n");
2214 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2215 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2216 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2217 }
44470971
DW
2218 for (i = 0; i < mpb->num_raid_devs; i++) {
2219 struct mdinfo info;
2220 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2221
2222 super->current_vol = i;
a5d85af7 2223 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2224 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 2225 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2226 }
cdddbdbc
DW
2227 for (i = 0; i < mpb->num_disks; i++) {
2228 if (i == super->disks->index)
2229 continue;
ef5c214e
MK
2230 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2231 super->sector_size);
cdddbdbc 2232 }
94827db3 2233
0ec1f4e8
DW
2234 for (dl = super->disks; dl; dl = dl->next)
2235 if (dl->index == -1)
ef5c214e
MK
2236 print_imsm_disk(&dl->disk, -1, reserved,
2237 super->sector_size);
520e69e2
AK
2238
2239 examine_migr_rec_imsm(super);
cdddbdbc
DW
2240}
2241
061f2c6a 2242static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2243{
27fd6274 2244 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2245 struct mdinfo info;
2246 char nbuf[64];
2247
a5d85af7 2248 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
2249 fname_from_uuid(st, &info, nbuf, ':');
2250 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2251}
2252
2253static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2254{
2255 /* We just write a generic IMSM ARRAY entry */
2256 struct mdinfo info;
2257 char nbuf[64];
2258 char nbuf1[64];
2259 struct intel_super *super = st->sb;
2260 int i;
2261
2262 if (!super->anchor->num_raid_devs)
2263 return;
2264
a5d85af7 2265 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2266 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2267 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2268 struct imsm_dev *dev = get_imsm_dev(super, i);
2269
2270 super->current_vol = i;
a5d85af7 2271 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2272 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 2273 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 2274 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2275 }
cdddbdbc
DW
2276}
2277
9d84c8ea
DW
2278static void export_examine_super_imsm(struct supertype *st)
2279{
2280 struct intel_super *super = st->sb;
2281 struct imsm_super *mpb = super->anchor;
2282 struct mdinfo info;
2283 char nbuf[64];
2284
a5d85af7 2285 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2286 fname_from_uuid(st, &info, nbuf, ':');
2287 printf("MD_METADATA=imsm\n");
2288 printf("MD_LEVEL=container\n");
2289 printf("MD_UUID=%s\n", nbuf+5);
2290 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2291 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2292}
2293
b771faef
BK
2294static void detail_super_imsm(struct supertype *st, char *homehost,
2295 char *subarray)
cdddbdbc 2296{
3ebe00a1
DW
2297 struct mdinfo info;
2298 char nbuf[64];
b771faef
BK
2299 struct intel_super *super = st->sb;
2300 int temp_vol = super->current_vol;
2301
2302 if (subarray)
2303 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2304
a5d85af7 2305 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2306 fname_from_uuid(st, &info, nbuf, ':');
65884368 2307 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2308
2309 super->current_vol = temp_vol;
cdddbdbc
DW
2310}
2311
b771faef 2312static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2313{
ff54de6e
N
2314 struct mdinfo info;
2315 char nbuf[64];
b771faef
BK
2316 struct intel_super *super = st->sb;
2317 int temp_vol = super->current_vol;
2318
2319 if (subarray)
2320 super->current_vol = strtoul(subarray, NULL, 10);
2321
a5d85af7 2322 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2323 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2324 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2325
2326 super->current_vol = temp_vol;
cdddbdbc 2327}
d665cc31 2328
6da53c0e
BK
2329static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2330 size_t serial_buf_len);
d665cc31
DW
2331static void fd2devname(int fd, char *name);
2332
120dc887 2333static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2334{
120dc887
LM
2335 /* dump an unsorted list of devices attached to AHCI Intel storage
2336 * controller, as well as non-connected ports
d665cc31
DW
2337 */
2338 int hba_len = strlen(hba_path) + 1;
2339 struct dirent *ent;
2340 DIR *dir;
2341 char *path = NULL;
2342 int err = 0;
2343 unsigned long port_mask = (1 << port_count) - 1;
2344
f21e18ca 2345 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2346 if (verbose > 0)
e7b84f9d 2347 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2348 return 2;
2349 }
2350
2351 /* scroll through /sys/dev/block looking for devices attached to
2352 * this hba
2353 */
2354 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2355 if (!dir)
2356 return 1;
2357
2358 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2359 int fd;
2360 char model[64];
2361 char vendor[64];
2362 char buf[1024];
2363 int major, minor;
fcebeb77 2364 char device[PATH_MAX];
d665cc31
DW
2365 char *c;
2366 int port;
2367 int type;
2368
2369 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2370 continue;
7c798f87 2371 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2372 if (!path)
2373 continue;
2374 if (!path_attached_to_hba(path, hba_path)) {
2375 free(path);
2376 path = NULL;
2377 continue;
2378 }
2379
fcebeb77
MT
2380 /* retrieve the scsi device */
2381 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2382 if (verbose > 0)
fcebeb77 2383 pr_err("failed to get device\n");
d665cc31
DW
2384 err = 2;
2385 break;
2386 }
fcebeb77 2387 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2388 err = 2;
d665cc31
DW
2389 break;
2390 }
2391 type = strtoul(buf, NULL, 10);
2392
2393 /* if it's not a disk print the vendor and model */
2394 if (!(type == 0 || type == 7 || type == 14)) {
2395 vendor[0] = '\0';
2396 model[0] = '\0';
fcebeb77
MT
2397
2398 if (devpath_to_char(device, "vendor", buf,
2399 sizeof(buf), 0) == 0) {
d665cc31
DW
2400 strncpy(vendor, buf, sizeof(vendor));
2401 vendor[sizeof(vendor) - 1] = '\0';
2402 c = (char *) &vendor[sizeof(vendor) - 1];
2403 while (isspace(*c) || *c == '\0')
2404 *c-- = '\0';
2405
2406 }
fcebeb77
MT
2407
2408 if (devpath_to_char(device, "model", buf,
2409 sizeof(buf), 0) == 0) {
d665cc31
DW
2410 strncpy(model, buf, sizeof(model));
2411 model[sizeof(model) - 1] = '\0';
2412 c = (char *) &model[sizeof(model) - 1];
2413 while (isspace(*c) || *c == '\0')
2414 *c-- = '\0';
2415 }
2416
2417 if (vendor[0] && model[0])
2418 sprintf(buf, "%.64s %.64s", vendor, model);
2419 else
2420 switch (type) { /* numbers from hald/linux/device.c */
2421 case 1: sprintf(buf, "tape"); break;
2422 case 2: sprintf(buf, "printer"); break;
2423 case 3: sprintf(buf, "processor"); break;
2424 case 4:
2425 case 5: sprintf(buf, "cdrom"); break;
2426 case 6: sprintf(buf, "scanner"); break;
2427 case 8: sprintf(buf, "media_changer"); break;
2428 case 9: sprintf(buf, "comm"); break;
2429 case 12: sprintf(buf, "raid"); break;
2430 default: sprintf(buf, "unknown");
2431 }
2432 } else
2433 buf[0] = '\0';
d665cc31
DW
2434
2435 /* chop device path to 'host%d' and calculate the port number */
2436 c = strchr(&path[hba_len], '/');
4e5e717d 2437 if (!c) {
ba728be7 2438 if (verbose > 0)
e7b84f9d 2439 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2440 err = 2;
2441 break;
2442 }
d665cc31 2443 *c = '\0';
0858eccf
AP
2444 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2445 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2446 port -= host_base;
2447 else {
ba728be7 2448 if (verbose > 0) {
d665cc31 2449 *c = '/'; /* repair the full string */
e7b84f9d 2450 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2451 path);
2452 }
2453 err = 2;
2454 break;
2455 }
2456
2457 /* mark this port as used */
2458 port_mask &= ~(1 << port);
2459
2460 /* print out the device information */
2461 if (buf[0]) {
2462 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2463 continue;
2464 }
2465
2466 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 2467 if (!is_fd_valid(fd))
d665cc31
DW
2468 printf(" Port%d : - disk info unavailable -\n", port);
2469 else {
2470 fd2devname(fd, buf);
2471 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2472 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2473 sizeof(buf)) == 0)
2474 printf(" (%s)\n", buf);
d665cc31 2475 else
664d5325 2476 printf(" ()\n");
4dab422a 2477 close(fd);
d665cc31 2478 }
d665cc31
DW
2479 free(path);
2480 path = NULL;
2481 }
2482 if (path)
2483 free(path);
2484 if (dir)
2485 closedir(dir);
2486 if (err == 0) {
2487 int i;
2488
2489 for (i = 0; i < port_count; i++)
2490 if (port_mask & (1 << i))
2491 printf(" Port%d : - no device attached -\n", i);
2492 }
2493
2494 return err;
2495}
2496
6da53c0e 2497static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2498{
2499 struct dirent *ent;
2500 DIR *dir;
60f0f54d 2501
6da53c0e 2502 dir = opendir("/sys/block/");
b9135011 2503 if (!dir)
b5eece69 2504 return 1;
b9135011
JS
2505
2506 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2507 char ns_path[PATH_MAX];
2508 char cntrl_path[PATH_MAX];
2509 char buf[PATH_MAX];
2510 int fd = -1;
60f0f54d 2511
8662f92d
MT
2512 if (!strstr(ent->d_name, "nvme"))
2513 goto skip;
d835518b 2514
8662f92d 2515 fd = open_dev(ent->d_name);
4389ce73 2516 if (!is_fd_valid(fd))
8662f92d 2517 goto skip;
d835518b 2518
8662f92d
MT
2519 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2520 !diskfd_to_devpath(fd, 1, cntrl_path))
2521 goto skip;
2522
2523 if (!path_attached_to_hba(cntrl_path, hba->path))
2524 goto skip;
2525
2526 if (!imsm_is_nvme_namespace_supported(fd, 0))
2527 goto skip;
2528
2529 fd2devname(fd, buf);
2530 if (hba->type == SYS_DEV_VMD)
2531 printf(" NVMe under VMD : %s", buf);
2532 else if (hba->type == SYS_DEV_NVME)
2533 printf(" NVMe Device : %s", buf);
2534
2535 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2536 sizeof(buf)))
2537 printf(" (%s)\n", buf);
2538 else
2539 printf("()\n");
2540
2541skip:
4389ce73 2542 close_fd(&fd);
60f0f54d
PB
2543 }
2544
b9135011 2545 closedir(dir);
b5eece69 2546 return 0;
60f0f54d
PB
2547}
2548
120dc887
LM
2549static void print_found_intel_controllers(struct sys_dev *elem)
2550{
2551 for (; elem; elem = elem->next) {
e7b84f9d 2552 pr_err("found Intel(R) ");
120dc887
LM
2553 if (elem->type == SYS_DEV_SATA)
2554 fprintf(stderr, "SATA ");
155cbb4c
LM
2555 else if (elem->type == SYS_DEV_SAS)
2556 fprintf(stderr, "SAS ");
0858eccf
AP
2557 else if (elem->type == SYS_DEV_NVME)
2558 fprintf(stderr, "NVMe ");
60f0f54d
PB
2559
2560 if (elem->type == SYS_DEV_VMD)
2561 fprintf(stderr, "VMD domain");
2562 else
2563 fprintf(stderr, "RAID controller");
2564
120dc887
LM
2565 if (elem->pci_id)
2566 fprintf(stderr, " at %s", elem->pci_id);
2567 fprintf(stderr, ".\n");
2568 }
2569 fflush(stderr);
2570}
2571
120dc887
LM
2572static int ahci_get_port_count(const char *hba_path, int *port_count)
2573{
2574 struct dirent *ent;
2575 DIR *dir;
2576 int host_base = -1;
2577
2578 *port_count = 0;
2579 if ((dir = opendir(hba_path)) == NULL)
2580 return -1;
2581
2582 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2583 int host;
2584
0858eccf
AP
2585 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2586 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2587 continue;
2588 if (*port_count == 0)
2589 host_base = host;
2590 else if (host < host_base)
2591 host_base = host;
2592
2593 if (host + 1 > *port_count + host_base)
2594 *port_count = host + 1 - host_base;
2595 }
2596 closedir(dir);
2597 return host_base;
2598}
2599
a891a3c2
LM
2600static void print_imsm_capability(const struct imsm_orom *orom)
2601{
0858eccf
AP
2602 printf(" Platform : Intel(R) ");
2603 if (orom->capabilities == 0 && orom->driver_features == 0)
2604 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2605 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2606 printf("Virtual RAID on CPU\n");
0858eccf
AP
2607 else
2608 printf("Rapid Storage Technology%s\n",
2609 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2610 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2611 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2612 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2613 printf(" RAID Levels :%s%s%s%s%s\n",
2614 imsm_orom_has_raid0(orom) ? " raid0" : "",
2615 imsm_orom_has_raid1(orom) ? " raid1" : "",
2616 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2617 imsm_orom_has_raid10(orom) ? " raid10" : "",
2618 imsm_orom_has_raid5(orom) ? " raid5" : "");
2619 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2620 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2621 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2622 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2623 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2624 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2625 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2626 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2627 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2628 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2629 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2630 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2631 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2632 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2633 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2634 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2635 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2636 printf(" 2TB volumes :%s supported\n",
2637 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2638 printf(" 2TB disks :%s supported\n",
2639 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2640 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2641 printf(" Max Volumes : %d per array, %d per %s\n",
2642 orom->vpa, orom->vphba,
2643 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2644 return;
2645}
2646
e50cf220
MN
2647static void print_imsm_capability_export(const struct imsm_orom *orom)
2648{
2649 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2650 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2651 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2652 orom->hotfix_ver, orom->build);
e50cf220
MN
2653 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2654 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2655 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2656 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2657 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2658 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2659 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2660 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2661 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2662 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2663 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2664 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2665 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2666 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2667 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2668 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2669 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2670 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2671 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2672 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2673 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2674 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2675 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2676 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2677 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2678 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2679 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2680 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2681}
2682
9eafa1de 2683static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2684{
2685 /* There are two components to imsm platform support, the ahci SATA
2686 * controller and the option-rom. To find the SATA controller we
2687 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2688 * controller with the Intel vendor id is present. This approach
2689 * allows mdadm to leverage the kernel's ahci detection logic, with the
2690 * caveat that if ahci.ko is not loaded mdadm will not be able to
2691 * detect platform raid capabilities. The option-rom resides in a
2692 * platform "Adapter ROM". We scan for its signature to retrieve the
2693 * platform capabilities. If raid support is disabled in the BIOS the
2694 * option-rom capability structure will not be available.
2695 */
d665cc31 2696 struct sys_dev *list, *hba;
d665cc31
DW
2697 int host_base = 0;
2698 int port_count = 0;
9eafa1de 2699 int result=1;
d665cc31 2700
5615172f 2701 if (enumerate_only) {
a891a3c2 2702 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2703 return 0;
a891a3c2
LM
2704 list = find_intel_devices();
2705 if (!list)
2706 return 2;
2707 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2708 if (find_imsm_capability(hba)) {
2709 result = 0;
a891a3c2
LM
2710 break;
2711 }
9eafa1de 2712 else
6b781d33 2713 result = 2;
a891a3c2 2714 }
a891a3c2 2715 return result;
5615172f
DW
2716 }
2717
155cbb4c
LM
2718 list = find_intel_devices();
2719 if (!list) {
ba728be7 2720 if (verbose > 0)
7a862a02 2721 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2722 return 2;
ba728be7 2723 } else if (verbose > 0)
155cbb4c 2724 print_found_intel_controllers(list);
d665cc31 2725
a891a3c2 2726 for (hba = list; hba; hba = hba->next) {
0858eccf 2727 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2728 continue;
0858eccf 2729 if (!find_imsm_capability(hba)) {
60f0f54d 2730 char buf[PATH_MAX];
e7b84f9d 2731 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2732 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2733 get_sys_dev_type(hba->type));
0858eccf
AP
2734 continue;
2735 }
2736 result = 0;
2737 }
2738
2739 if (controller_path && result == 1) {
2740 pr_err("no active Intel(R) RAID controller found under %s\n",
2741 controller_path);
2742 return result;
2743 }
2744
5e1d6128 2745 const struct orom_entry *entry;
0858eccf 2746
5e1d6128 2747 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2748 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2749 print_imsm_capability(&entry->orom);
32716c51
PB
2750 printf(" 3rd party NVMe :%s supported\n",
2751 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2752 for (hba = list; hba; hba = hba->next) {
2753 if (hba->type == SYS_DEV_VMD) {
2754 char buf[PATH_MAX];
60f0f54d
PB
2755 printf(" I/O Controller : %s (%s)\n",
2756 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2757 if (print_nvme_info(hba)) {
b5eece69
PB
2758 if (verbose > 0)
2759 pr_err("failed to get devices attached to VMD domain.\n");
2760 result |= 2;
2761 }
60f0f54d
PB
2762 }
2763 }
07cb1e57 2764 printf("\n");
60f0f54d
PB
2765 continue;
2766 }
0858eccf 2767
60f0f54d
PB
2768 print_imsm_capability(&entry->orom);
2769 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2770 for (hba = list; hba; hba = hba->next) {
2771 if (hba->type == SYS_DEV_NVME)
6da53c0e 2772 print_nvme_info(hba);
0858eccf 2773 }
60f0f54d 2774 printf("\n");
0858eccf
AP
2775 continue;
2776 }
2777
2778 struct devid_list *devid;
5e1d6128 2779 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2780 hba = device_by_id(devid->devid);
2781 if (!hba)
2782 continue;
2783
9eafa1de
MN
2784 printf(" I/O Controller : %s (%s)\n",
2785 hba->path, get_sys_dev_type(hba->type));
2786 if (hba->type == SYS_DEV_SATA) {
2787 host_base = ahci_get_port_count(hba->path, &port_count);
2788 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2789 if (verbose > 0)
7a862a02 2790 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2791 result |= 2;
2792 }
120dc887
LM
2793 }
2794 }
0858eccf 2795 printf("\n");
d665cc31 2796 }
155cbb4c 2797
120dc887 2798 return result;
d665cc31 2799}
e50cf220 2800
9eafa1de 2801static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2802{
e50cf220
MN
2803 struct sys_dev *list, *hba;
2804 int result=1;
2805
2806 list = find_intel_devices();
2807 if (!list) {
2808 if (verbose > 0)
2809 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2810 result = 2;
e50cf220
MN
2811 return result;
2812 }
2813
2814 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2815 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2816 continue;
60f0f54d
PB
2817 if (!find_imsm_capability(hba) && verbose > 0) {
2818 char buf[PATH_MAX];
2819 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2820 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2821 }
0858eccf 2822 else
e50cf220 2823 result = 0;
e50cf220
MN
2824 }
2825
5e1d6128 2826 const struct orom_entry *entry;
0858eccf 2827
60f0f54d
PB
2828 for (entry = orom_entries; entry; entry = entry->next) {
2829 if (entry->type == SYS_DEV_VMD) {
2830 for (hba = list; hba; hba = hba->next)
2831 print_imsm_capability_export(&entry->orom);
2832 continue;
2833 }
5e1d6128 2834 print_imsm_capability_export(&entry->orom);
60f0f54d 2835 }
0858eccf 2836
e50cf220
MN
2837 return result;
2838}
2839
cdddbdbc
DW
2840static int match_home_imsm(struct supertype *st, char *homehost)
2841{
5115ca67
DW
2842 /* the imsm metadata format does not specify any host
2843 * identification information. We return -1 since we can never
2844 * confirm nor deny whether a given array is "meant" for this
148acb7b 2845 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2846 * exclude member disks that do not belong, and we rely on
2847 * mdadm.conf to specify the arrays that should be assembled.
2848 * Auto-assembly may still pick up "foreign" arrays.
2849 */
cdddbdbc 2850
9362c1c8 2851 return -1;
cdddbdbc
DW
2852}
2853
2854static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2855{
51006d85
N
2856 /* The uuid returned here is used for:
2857 * uuid to put into bitmap file (Create, Grow)
2858 * uuid for backup header when saving critical section (Grow)
2859 * comparing uuids when re-adding a device into an array
2860 * In these cases the uuid required is that of the data-array,
2861 * not the device-set.
2862 * uuid to recognise same set when adding a missing device back
2863 * to an array. This is a uuid for the device-set.
1011e834 2864 *
51006d85
N
2865 * For each of these we can make do with a truncated
2866 * or hashed uuid rather than the original, as long as
2867 * everyone agrees.
2868 * In each case the uuid required is that of the data-array,
2869 * not the device-set.
43dad3d6 2870 */
51006d85
N
2871 /* imsm does not track uuid's so we synthesis one using sha1 on
2872 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2873 * - the orig_family_num of the container
51006d85
N
2874 * - the index number of the volume
2875 * - the 'serial' number of the volume.
2876 * Hopefully these are all constant.
2877 */
2878 struct intel_super *super = st->sb;
43dad3d6 2879
51006d85
N
2880 char buf[20];
2881 struct sha1_ctx ctx;
2882 struct imsm_dev *dev = NULL;
148acb7b 2883 __u32 family_num;
51006d85 2884
148acb7b
DW
2885 /* some mdadm versions failed to set ->orig_family_num, in which
2886 * case fall back to ->family_num. orig_family_num will be
2887 * fixed up with the first metadata update.
2888 */
2889 family_num = super->anchor->orig_family_num;
2890 if (family_num == 0)
2891 family_num = super->anchor->family_num;
51006d85 2892 sha1_init_ctx(&ctx);
92bd8f8d 2893 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2894 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2895 if (super->current_vol >= 0)
2896 dev = get_imsm_dev(super, super->current_vol);
2897 if (dev) {
2898 __u32 vol = super->current_vol;
2899 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2900 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2901 }
2902 sha1_finish_ctx(&ctx, buf);
2903 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2904}
2905
0d481d37 2906#if 0
4f5bc454
DW
2907static void
2908get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2909{
cdddbdbc
DW
2910 __u8 *v = get_imsm_version(mpb);
2911 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2912 char major[] = { 0, 0, 0 };
2913 char minor[] = { 0 ,0, 0 };
2914 char patch[] = { 0, 0, 0 };
2915 char *ver_parse[] = { major, minor, patch };
2916 int i, j;
2917
2918 i = j = 0;
2919 while (*v != '\0' && v < end) {
2920 if (*v != '.' && j < 2)
2921 ver_parse[i][j++] = *v;
2922 else {
2923 i++;
2924 j = 0;
2925 }
2926 v++;
2927 }
2928
4f5bc454
DW
2929 *m = strtol(minor, NULL, 0);
2930 *p = strtol(patch, NULL, 0);
2931}
0d481d37 2932#endif
4f5bc454 2933
1e5c6983
DW
2934static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2935{
2936 /* migr_strip_size when repairing or initializing parity */
238c0a71 2937 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2938 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2939
2940 switch (get_imsm_raid_level(map)) {
2941 case 5:
2942 case 10:
2943 return chunk;
2944 default:
2945 return 128*1024 >> 9;
2946 }
2947}
2948
2949static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2950{
2951 /* migr_strip_size when rebuilding a degraded disk, no idea why
2952 * this is different than migr_strip_size_resync(), but it's good
2953 * to be compatible
2954 */
238c0a71 2955 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2956 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2957
2958 switch (get_imsm_raid_level(map)) {
2959 case 1:
2960 case 10:
2961 if (map->num_members % map->num_domains == 0)
2962 return 128*1024 >> 9;
2963 else
2964 return chunk;
2965 case 5:
2966 return max((__u32) 64*1024 >> 9, chunk);
2967 default:
2968 return 128*1024 >> 9;
2969 }
2970}
2971
2972static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2973{
238c0a71
AK
2974 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2975 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2976 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2977 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2978
2979 return max((__u32) 1, hi_chunk / lo_chunk);
2980}
2981
2982static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2983{
238c0a71 2984 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2985 int level = get_imsm_raid_level(lo);
2986
2987 if (level == 1 || level == 10) {
238c0a71 2988 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2989
2990 return hi->num_domains;
2991 } else
2992 return num_stripes_per_unit_resync(dev);
2993}
2994
44490938
MD
2995static unsigned long long calc_component_size(struct imsm_map *map,
2996 struct imsm_dev *dev)
2997{
2998 unsigned long long component_size;
2999 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 3000 long long calc_dev_size = 0;
44490938
MD
3001 unsigned int member_disks = imsm_num_data_members(map);
3002
3003 if (member_disks == 0)
3004 return 0;
3005
3006 component_size = per_dev_array_size(map);
3007 calc_dev_size = component_size * member_disks;
3008
3009 /* Component size is rounded to 1MB so difference between size from
3010 * metadata and size calculated from num_data_stripes equals up to
3011 * 2048 blocks per each device. If the difference is higher it means
3012 * that array size was expanded and num_data_stripes was not updated.
3013 */
a4f7290c 3014 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
3015 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3016 component_size = dev_size / member_disks;
3017 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3018 component_size / map->blocks_per_strip,
3019 num_data_stripes(map));
3020 }
3021
3022 return component_size;
3023}
3024
1e5c6983
DW
3025static __u32 parity_segment_depth(struct imsm_dev *dev)
3026{
238c0a71 3027 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3028 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3029
3030 switch(get_imsm_raid_level(map)) {
3031 case 1:
3032 case 10:
3033 return chunk * map->num_domains;
3034 case 5:
3035 return chunk * map->num_members;
3036 default:
3037 return chunk;
3038 }
3039}
3040
3041static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3042{
238c0a71 3043 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3044 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3045 __u32 strip = block / chunk;
3046
3047 switch (get_imsm_raid_level(map)) {
3048 case 1:
3049 case 10: {
3050 __u32 vol_strip = (strip * map->num_domains) + 1;
3051 __u32 vol_stripe = vol_strip / map->num_members;
3052
3053 return vol_stripe * chunk + block % chunk;
3054 } case 5: {
3055 __u32 stripe = strip / (map->num_members - 1);
3056
3057 return stripe * chunk + block % chunk;
3058 }
3059 default:
3060 return 0;
3061 }
3062}
3063
c47b0ff6
AK
3064static __u64 blocks_per_migr_unit(struct intel_super *super,
3065 struct imsm_dev *dev)
1e5c6983
DW
3066{
3067 /* calculate the conversion factor between per member 'blocks'
3068 * (md/{resync,rebuild}_start) and imsm migration units, return
3069 * 0 for the 'not migrating' and 'unsupported migration' cases
3070 */
3071 if (!dev->vol.migr_state)
3072 return 0;
3073
3074 switch (migr_type(dev)) {
c47b0ff6
AK
3075 case MIGR_GEN_MIGR: {
3076 struct migr_record *migr_rec = super->migr_rec;
3077 return __le32_to_cpu(migr_rec->blocks_per_unit);
3078 }
1e5c6983
DW
3079 case MIGR_VERIFY:
3080 case MIGR_REPAIR:
3081 case MIGR_INIT: {
238c0a71 3082 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3083 __u32 stripes_per_unit;
3084 __u32 blocks_per_unit;
3085 __u32 parity_depth;
3086 __u32 migr_chunk;
3087 __u32 block_map;
3088 __u32 block_rel;
3089 __u32 segment;
3090 __u32 stripe;
3091 __u8 disks;
3092
3093 /* yes, this is really the translation of migr_units to
3094 * per-member blocks in the 'resync' case
3095 */
3096 stripes_per_unit = num_stripes_per_unit_resync(dev);
3097 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3098 disks = imsm_num_data_members(map);
1e5c6983 3099 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3100 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3101 segment = blocks_per_unit / stripe;
3102 block_rel = blocks_per_unit - segment * stripe;
3103 parity_depth = parity_segment_depth(dev);
3104 block_map = map_migr_block(dev, block_rel);
3105 return block_map + parity_depth * segment;
3106 }
3107 case MIGR_REBUILD: {
3108 __u32 stripes_per_unit;
3109 __u32 migr_chunk;
3110
3111 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3112 migr_chunk = migr_strip_blocks_rebuild(dev);
3113 return migr_chunk * stripes_per_unit;
3114 }
1e5c6983
DW
3115 case MIGR_STATE_CHANGE:
3116 default:
3117 return 0;
3118 }
3119}
3120
c2c087e6
DW
3121static int imsm_level_to_layout(int level)
3122{
3123 switch (level) {
3124 case 0:
3125 case 1:
3126 return 0;
3127 case 5:
3128 case 6:
a380c027 3129 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3130 case 10:
c92a2527 3131 return 0x102;
c2c087e6 3132 }
a18a888e 3133 return UnSet;
c2c087e6
DW
3134}
3135
8e59f3d8
AK
3136/*******************************************************************************
3137 * Function: read_imsm_migr_rec
3138 * Description: Function reads imsm migration record from last sector of disk
3139 * Parameters:
3140 * fd : disk descriptor
3141 * super : metadata info
3142 * Returns:
3143 * 0 : success,
3144 * -1 : fail
3145 ******************************************************************************/
3146static int read_imsm_migr_rec(int fd, struct intel_super *super)
3147{
3148 int ret_val = -1;
de44e46f 3149 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3150 unsigned long long dsize;
3151
3152 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3153 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3154 SEEK_SET) < 0) {
e7b84f9d
N
3155 pr_err("Cannot seek to anchor block: %s\n",
3156 strerror(errno));
8e59f3d8
AK
3157 goto out;
3158 }
466070ad 3159 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3160 MIGR_REC_BUF_SECTORS*sector_size) !=
3161 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3162 pr_err("Cannot read migr record block: %s\n",
3163 strerror(errno));
8e59f3d8
AK
3164 goto out;
3165 }
3166 ret_val = 0;
de44e46f
PB
3167 if (sector_size == 4096)
3168 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3169
3170out:
3171 return ret_val;
3172}
3173
3136abe5
AK
3174static struct imsm_dev *imsm_get_device_during_migration(
3175 struct intel_super *super)
3176{
3177
3178 struct intel_dev *dv;
3179
3180 for (dv = super->devlist; dv; dv = dv->next) {
3181 if (is_gen_migration(dv->dev))
3182 return dv->dev;
3183 }
3184 return NULL;
3185}
3186
8e59f3d8
AK
3187/*******************************************************************************
3188 * Function: load_imsm_migr_rec
3189 * Description: Function reads imsm migration record (it is stored at the last
3190 * sector of disk)
3191 * Parameters:
3192 * super : imsm internal array info
8e59f3d8
AK
3193 * Returns:
3194 * 0 : success
3195 * -1 : fail
4c965cc9 3196 * -2 : no migration in progress
8e59f3d8 3197 ******************************************************************************/
2f86fda3 3198static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3199{
594dc1b8 3200 struct dl *dl;
8e59f3d8
AK
3201 char nm[30];
3202 int retval = -1;
3203 int fd = -1;
3136abe5 3204 struct imsm_dev *dev;
594dc1b8 3205 struct imsm_map *map;
b4ab44d8 3206 int slot = -1;
2f86fda3 3207 int keep_fd = 1;
3136abe5
AK
3208
3209 /* find map under migration */
3210 dev = imsm_get_device_during_migration(super);
3211 /* nothing to load,no migration in progress?
3212 */
3213 if (dev == NULL)
4c965cc9 3214 return -2;
8e59f3d8 3215
2f86fda3
MT
3216 map = get_imsm_map(dev, MAP_0);
3217 if (!map)
3218 return -1;
3136abe5 3219
2f86fda3
MT
3220 for (dl = super->disks; dl; dl = dl->next) {
3221 /* skip spare and failed disks
3222 */
3223 if (dl->index < 0)
3224 continue;
3225 /* read only from one of the first two slots
3226 */
3227 slot = get_imsm_disk_slot(map, dl->index);
3228 if (slot > 1 || slot < 0)
3229 continue;
3230
4389ce73 3231 if (!is_fd_valid(dl->fd)) {
8e59f3d8
AK
3232 sprintf(nm, "%d:%d", dl->major, dl->minor);
3233 fd = dev_open(nm, O_RDONLY);
4389ce73
MT
3234
3235 if (is_fd_valid(fd)) {
2f86fda3 3236 keep_fd = 0;
8e59f3d8 3237 break;
2f86fda3
MT
3238 }
3239 } else {
3240 fd = dl->fd;
3241 break;
8e59f3d8
AK
3242 }
3243 }
2f86fda3 3244
4389ce73 3245 if (!is_fd_valid(fd))
2f86fda3 3246 return retval;
8e59f3d8 3247 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3248 if (!keep_fd)
8e59f3d8 3249 close(fd);
2f86fda3 3250
8e59f3d8
AK
3251 return retval;
3252}
3253
c17608ea
AK
3254/*******************************************************************************
3255 * function: imsm_create_metadata_checkpoint_update
3256 * Description: It creates update for checkpoint change.
3257 * Parameters:
3258 * super : imsm internal array info
3259 * u : pointer to prepared update
3260 * Returns:
3261 * Uptate length.
3262 * If length is equal to 0, input pointer u contains no update
3263 ******************************************************************************/
3264static int imsm_create_metadata_checkpoint_update(
3265 struct intel_super *super,
3266 struct imsm_update_general_migration_checkpoint **u)
3267{
3268
3269 int update_memory_size = 0;
3270
1ade5cc1 3271 dprintf("(enter)\n");
c17608ea
AK
3272
3273 if (u == NULL)
3274 return 0;
3275 *u = NULL;
3276
3277 /* size of all update data without anchor */
3278 update_memory_size =
3279 sizeof(struct imsm_update_general_migration_checkpoint);
3280
503975b9 3281 *u = xcalloc(1, update_memory_size);
c17608ea 3282 if (*u == NULL) {
1ade5cc1 3283 dprintf("error: cannot get memory\n");
c17608ea
AK
3284 return 0;
3285 }
3286 (*u)->type = update_general_migration_checkpoint;
9f421827 3287 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3288 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3289
3290 return update_memory_size;
3291}
3292
c17608ea
AK
3293static void imsm_update_metadata_locally(struct supertype *st,
3294 void *buf, int len);
3295
687629c2
AK
3296/*******************************************************************************
3297 * Function: write_imsm_migr_rec
3298 * Description: Function writes imsm migration record
3299 * (at the last sector of disk)
3300 * Parameters:
3301 * super : imsm internal array info
3302 * Returns:
3303 * 0 : success
3304 * -1 : if fail
3305 ******************************************************************************/
3306static int write_imsm_migr_rec(struct supertype *st)
3307{
3308 struct intel_super *super = st->sb;
de44e46f 3309 unsigned int sector_size = super->sector_size;
687629c2 3310 unsigned long long dsize;
687629c2
AK
3311 int retval = -1;
3312 struct dl *sd;
c17608ea
AK
3313 int len;
3314 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3315 struct imsm_dev *dev;
594dc1b8 3316 struct imsm_map *map;
3136abe5
AK
3317
3318 /* find map under migration */
3319 dev = imsm_get_device_during_migration(super);
3320 /* if no migration, write buffer anyway to clear migr_record
3321 * on disk based on first available device
3322 */
3323 if (dev == NULL)
3324 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3325 super->current_vol);
3326
44bfe6df 3327 map = get_imsm_map(dev, MAP_0);
687629c2 3328
de44e46f
PB
3329 if (sector_size == 4096)
3330 convert_to_4k_imsm_migr_rec(super);
687629c2 3331 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3332 int slot = -1;
3136abe5
AK
3333
3334 /* skip failed and spare devices */
3335 if (sd->index < 0)
3336 continue;
687629c2 3337 /* write to 2 first slots only */
3136abe5
AK
3338 if (map)
3339 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3340 if (map == NULL || slot > 1 || slot < 0)
687629c2 3341 continue;
3136abe5 3342
2f86fda3
MT
3343 get_dev_size(sd->fd, NULL, &dsize);
3344 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3345 sector_size),
de44e46f 3346 SEEK_SET) < 0) {
e7b84f9d
N
3347 pr_err("Cannot seek to anchor block: %s\n",
3348 strerror(errno));
687629c2
AK
3349 goto out;
3350 }
2f86fda3 3351 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3352 MIGR_REC_BUF_SECTORS*sector_size) !=
3353 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3354 pr_err("Cannot write migr record block: %s\n",
3355 strerror(errno));
687629c2
AK
3356 goto out;
3357 }
687629c2 3358 }
de44e46f
PB
3359 if (sector_size == 4096)
3360 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3361 /* update checkpoint information in metadata */
3362 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3363 if (len <= 0) {
3364 dprintf("imsm: Cannot prepare update\n");
3365 goto out;
3366 }
3367 /* update metadata locally */
3368 imsm_update_metadata_locally(st, u, len);
3369 /* and possibly remotely */
3370 if (st->update_tail) {
3371 append_metadata_update(st, u, len);
3372 /* during reshape we do all work inside metadata handler
3373 * manage_reshape(), so metadata update has to be triggered
3374 * insida it
3375 */
3376 flush_metadata_updates(st);
3377 st->update_tail = &st->updates;
3378 } else
3379 free(u);
687629c2
AK
3380
3381 retval = 0;
3382 out:
687629c2
AK
3383 return retval;
3384}
3385
e2962bfc
AK
3386/* spare/missing disks activations are not allowe when
3387 * array/container performs reshape operation, because
3388 * all arrays in container works on the same disks set
3389 */
3390int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3391{
3392 int rv = 0;
3393 struct intel_dev *i_dev;
3394 struct imsm_dev *dev;
3395
3396 /* check whole container
3397 */
3398 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3399 dev = i_dev->dev;
3ad25638 3400 if (is_gen_migration(dev)) {
e2962bfc
AK
3401 /* No repair during any migration in container
3402 */
3403 rv = 1;
3404 break;
3405 }
3406 }
3407 return rv;
3408}
3e684231 3409static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3410 int chunk_size,
f36a9ecd 3411 unsigned int sector_size,
c41e00b2
AK
3412 unsigned long long component_size)
3413{
3e684231 3414 unsigned int component_size_alignment;
c41e00b2 3415
3e684231 3416 /* check component size alignment
c41e00b2 3417 */
3e684231 3418 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3419
3e684231 3420 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3421 level, chunk_size, component_size,
3e684231 3422 component_size_alignment);
c41e00b2 3423
3e684231
MZ
3424 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3425 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3426 component_size);
3e684231 3427 component_size -= component_size_alignment;
1ade5cc1 3428 dprintf_cont("to %llu (%i).\n",
3e684231 3429 component_size, component_size_alignment);
c41e00b2
AK
3430 }
3431
3432 return component_size;
3433}
e2962bfc 3434
fbc42556
JR
3435/*******************************************************************************
3436 * Function: get_bitmap_header_sector
3437 * Description: Returns the sector where the bitmap header is placed.
3438 * Parameters:
3439 * st : supertype information
3440 * dev_idx : index of the device with bitmap
3441 *
3442 * Returns:
3443 * The sector where the bitmap header is placed
3444 ******************************************************************************/
3445static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3446 int dev_idx)
3447{
3448 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3449 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3450
3451 if (!super->sector_size) {
3452 dprintf("sector size is not set\n");
3453 return 0;
3454 }
3455
3456 return pba_of_lba0(map) + calc_component_size(map, dev) +
3457 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3458}
3459
3460/*******************************************************************************
3461 * Function: get_bitmap_sector
3462 * Description: Returns the sector where the bitmap is placed.
3463 * Parameters:
3464 * st : supertype information
3465 * dev_idx : index of the device with bitmap
3466 *
3467 * Returns:
3468 * The sector where the bitmap is placed
3469 ******************************************************************************/
3470static unsigned long long get_bitmap_sector(struct intel_super *super,
3471 int dev_idx)
3472{
3473 if (!super->sector_size) {
3474 dprintf("sector size is not set\n");
3475 return 0;
3476 }
3477
3478 return get_bitmap_header_sector(super, dev_idx) +
3479 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3480}
3481
2432ce9b
AP
3482static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3483{
3484 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3485 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3486
3487 return pba_of_lba0(map) +
3488 (num_data_stripes(map) * map->blocks_per_strip);
3489}
3490
a5d85af7 3491static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3492{
3493 struct intel_super *super = st->sb;
c47b0ff6 3494 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3495 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3496 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3497 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3498 struct imsm_map *map_to_analyse = map;
efb30e7f 3499 struct dl *dl;
a5d85af7 3500 int map_disks = info->array.raid_disks;
bf5a934a 3501
95eeceeb 3502 memset(info, 0, sizeof(*info));
b335e593
AK
3503 if (prev_map)
3504 map_to_analyse = prev_map;
3505
ca0748fa 3506 dl = super->current_disk;
9894ec0d 3507
bf5a934a 3508 info->container_member = super->current_vol;
cd0430a1 3509 info->array.raid_disks = map->num_members;
b335e593 3510 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3511 info->array.layout = imsm_level_to_layout(info->array.level);
3512 info->array.md_minor = -1;
3513 info->array.ctime = 0;
3514 info->array.utime = 0;
b335e593
AK
3515 info->array.chunk_size =
3516 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3517 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3518 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3519 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3520
3f510843 3521 if (is_gen_migration(dev)) {
195d1d76
PP
3522 /*
3523 * device prev_map should be added if it is in the middle
3524 * of migration
3525 */
3526 assert(prev_map);
3527
3f83228a 3528 info->reshape_active = 1;
b335e593
AK
3529 info->new_level = get_imsm_raid_level(map);
3530 info->new_layout = imsm_level_to_layout(info->new_level);
3531 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3532 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3533 if (info->delta_disks) {
3534 /* this needs to be applied to every array
3535 * in the container.
3536 */
81219e70 3537 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3538 }
3f83228a
N
3539 /* We shape information that we give to md might have to be
3540 * modify to cope with md's requirement for reshaping arrays.
3541 * For example, when reshaping a RAID0, md requires it to be
3542 * presented as a degraded RAID4.
3543 * Also if a RAID0 is migrating to a RAID5 we need to specify
3544 * the array as already being RAID5, but the 'before' layout
3545 * is a RAID4-like layout.
3546 */
3547 switch (info->array.level) {
3548 case 0:
3549 switch(info->new_level) {
3550 case 0:
3551 /* conversion is happening as RAID4 */
3552 info->array.level = 4;
3553 info->array.raid_disks += 1;
3554 break;
3555 case 5:
3556 /* conversion is happening as RAID5 */
3557 info->array.level = 5;
3558 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3559 info->delta_disks -= 1;
3560 break;
3561 default:
3562 /* FIXME error message */
3563 info->array.level = UnSet;
3564 break;
3565 }
3566 break;
3567 }
b335e593
AK
3568 } else {
3569 info->new_level = UnSet;
3570 info->new_layout = UnSet;
3571 info->new_chunk = info->array.chunk_size;
3f83228a 3572 info->delta_disks = 0;
b335e593 3573 }
ca0748fa 3574
efb30e7f
DW
3575 if (dl) {
3576 info->disk.major = dl->major;
3577 info->disk.minor = dl->minor;
ca0748fa 3578 info->disk.number = dl->index;
656b6b5a
N
3579 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3580 dl->index);
efb30e7f 3581 }
bf5a934a 3582
5551b113 3583 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3584 info->component_size = calc_component_size(map, dev);
3e684231 3585 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3586 info->array.level,
3587 info->array.chunk_size,
f36a9ecd 3588 super->sector_size,
c41e00b2 3589 info->component_size);
5e46202e 3590 info->bb.supported = 1;
139dae11 3591
301406c9 3592 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3593 info->recovery_start = MaxSector;
bf5a934a 3594
c2462068
PB
3595 if (info->array.level == 5 &&
3596 (dev->rwh_policy == RWH_DISTRIBUTED ||
3597 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3598 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3599 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3600 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3601 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3602 else
3603 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3604 >> 9;
2432ce9b
AP
3605 } else if (info->array.level <= 0) {
3606 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3607 } else {
fbc42556
JR
3608 if (dev->rwh_policy == RWH_BITMAP) {
3609 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3610 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3611 } else {
3612 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3613 }
2432ce9b
AP
3614 }
3615
d2e6d5d6 3616 info->reshape_progress = 0;
b6796ce1 3617 info->resync_start = MaxSector;
b9172665 3618 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3619 !(info->array.state & 1)) &&
b9172665 3620 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3621 info->resync_start = 0;
b6796ce1
AK
3622 }
3623 if (dev->vol.migr_state) {
1e5c6983
DW
3624 switch (migr_type(dev)) {
3625 case MIGR_REPAIR:
3626 case MIGR_INIT: {
c47b0ff6
AK
3627 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3628 dev);
4036e7ee 3629 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3630
3631 info->resync_start = blocks_per_unit * units;
3632 break;
3633 }
d2e6d5d6 3634 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3635 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3636 dev);
9f421827 3637 __u64 units = current_migr_unit(migr_rec);
04fa9523 3638 int used_disks;
d2e6d5d6 3639
befb629b
AK
3640 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3641 (units <
9f421827 3642 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3643 (super->migr_rec->rec_status ==
3644 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3645 units++;
3646
d2e6d5d6 3647 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3648
7a862a02 3649 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3650 (unsigned long long)units,
3651 (unsigned long long)blocks_per_unit,
3652 info->reshape_progress);
75156c46 3653
9529d343 3654 used_disks = imsm_num_data_members(prev_map);
75156c46 3655 if (used_disks > 0) {
895ffd99 3656 info->custom_array_size = per_dev_array_size(map) *
75156c46 3657 used_disks;
75156c46 3658 }
d2e6d5d6 3659 }
1e5c6983
DW
3660 case MIGR_VERIFY:
3661 /* we could emulate the checkpointing of
3662 * 'sync_action=check' migrations, but for now
3663 * we just immediately complete them
3664 */
3665 case MIGR_REBUILD:
3666 /* this is handled by container_content_imsm() */
1e5c6983
DW
3667 case MIGR_STATE_CHANGE:
3668 /* FIXME handle other migrations */
3669 default:
3670 /* we are not dirty, so... */
3671 info->resync_start = MaxSector;
3672 }
b6796ce1 3673 }
301406c9
DW
3674
3675 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3676 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3677
f35f2525
N
3678 info->array.major_version = -1;
3679 info->array.minor_version = -2;
4dd2df09 3680 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3681 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3682 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3683
3684 if (dmap) {
3685 int i, j;
3686 for (i=0; i<map_disks; i++) {
3687 dmap[i] = 0;
3688 if (i < info->array.raid_disks) {
3689 struct imsm_disk *dsk;
238c0a71 3690 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3691 dsk = get_imsm_disk(super, j);
3692 if (dsk && (dsk->status & CONFIGURED_DISK))
3693 dmap[i] = 1;
3694 }
3695 }
3696 }
81ac8b4d 3697}
bf5a934a 3698
3b451610
AK
3699static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3700 int failed, int look_in_map);
3701
3702static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3703 int look_in_map);
3704
3705static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3706{
3707 if (is_gen_migration(dev)) {
3708 int failed;
3709 __u8 map_state;
3710 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3711
3712 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3713 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3714 if (map2->map_state != map_state) {
3715 map2->map_state = map_state;
3716 super->updates_pending++;
3717 }
3718 }
3719}
97b4d0e9
DW
3720
3721static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3722{
3723 struct dl *d;
3724
3725 for (d = super->missing; d; d = d->next)
3726 if (d->index == index)
3727 return &d->disk;
3728 return NULL;
3729}
3730
a5d85af7 3731static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3732{
3733 struct intel_super *super = st->sb;
4f5bc454 3734 struct imsm_disk *disk;
a5d85af7 3735 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3736 int max_enough = -1;
3737 int i;
3738 struct imsm_super *mpb;
4f5bc454 3739
bf5a934a 3740 if (super->current_vol >= 0) {
a5d85af7 3741 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3742 return;
3743 }
95eeceeb 3744 memset(info, 0, sizeof(*info));
d23fe947
DW
3745
3746 /* Set raid_disks to zero so that Assemble will always pull in valid
3747 * spares
3748 */
3749 info->array.raid_disks = 0;
cdddbdbc
DW
3750 info->array.level = LEVEL_CONTAINER;
3751 info->array.layout = 0;
3752 info->array.md_minor = -1;
1011e834 3753 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3754 info->array.utime = 0;
3755 info->array.chunk_size = 0;
3756
3757 info->disk.major = 0;
3758 info->disk.minor = 0;
cdddbdbc 3759 info->disk.raid_disk = -1;
c2c087e6 3760 info->reshape_active = 0;
f35f2525
N
3761 info->array.major_version = -1;
3762 info->array.minor_version = -2;
c2c087e6 3763 strcpy(info->text_version, "imsm");
a67dd8cc 3764 info->safe_mode_delay = 0;
c2c087e6
DW
3765 info->disk.number = -1;
3766 info->disk.state = 0;
c5afc314 3767 info->name[0] = 0;
921d9e16 3768 info->recovery_start = MaxSector;
3ad25638 3769 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3770 info->bb.supported = 1;
c2c087e6 3771
97b4d0e9 3772 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3773 mpb = super->anchor;
b7d81a38 3774 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3775
ab3cb6b3
N
3776 for (i = 0; i < mpb->num_raid_devs; i++) {
3777 struct imsm_dev *dev = get_imsm_dev(super, i);
3778 int failed, enough, j, missing = 0;
3779 struct imsm_map *map;
3780 __u8 state;
97b4d0e9 3781
3b451610
AK
3782 failed = imsm_count_failed(super, dev, MAP_0);
3783 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3784 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3785
3786 /* any newly missing disks?
3787 * (catches single-degraded vs double-degraded)
3788 */
3789 for (j = 0; j < map->num_members; j++) {
238c0a71 3790 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3791 __u32 idx = ord_to_idx(ord);
3792
20dc76d1
MT
3793 if (super->disks && super->disks->index == (int)idx)
3794 info->disk.raid_disk = j;
3795
ab3cb6b3
N
3796 if (!(ord & IMSM_ORD_REBUILD) &&
3797 get_imsm_missing(super, idx)) {
3798 missing = 1;
3799 break;
3800 }
97b4d0e9 3801 }
ab3cb6b3
N
3802
3803 if (state == IMSM_T_STATE_FAILED)
3804 enough = -1;
3805 else if (state == IMSM_T_STATE_DEGRADED &&
3806 (state != map->map_state || missing))
3807 enough = 0;
3808 else /* we're normal, or already degraded */
3809 enough = 1;
d2bde6d3
AK
3810 if (is_gen_migration(dev) && missing) {
3811 /* during general migration we need all disks
3812 * that process is running on.
3813 * No new missing disk is allowed.
3814 */
3815 max_enough = -1;
3816 enough = -1;
3817 /* no more checks necessary
3818 */
3819 break;
3820 }
ab3cb6b3
N
3821 /* in the missing/failed disk case check to see
3822 * if at least one array is runnable
3823 */
3824 max_enough = max(max_enough, enough);
3825 }
1ade5cc1 3826 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3827 info->container_enough = max_enough;
97b4d0e9 3828
4a04ec6c 3829 if (super->disks) {
14e8215b
DW
3830 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3831
b9f594fe 3832 disk = &super->disks->disk;
5551b113 3833 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3834 info->component_size = reserved;
25ed7e59 3835 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3836 /* we don't change info->disk.raid_disk here because
3837 * this state will be finalized in mdmon after we have
3838 * found the 'most fresh' version of the metadata
3839 */
25ed7e59 3840 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3841 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3842 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3843 }
a575e2a7
DW
3844
3845 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3846 * ->compare_super may have updated the 'num_raid_devs' field for spares
3847 */
3848 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3849 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3850 else
3851 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3852
3853 /* I don't know how to compute 'map' on imsm, so use safe default */
3854 if (map) {
3855 int i;
3856 for (i = 0; i < map_disks; i++)
3857 map[i] = 1;
3858 }
3859
cdddbdbc
DW
3860}
3861
5c4cd5da
AC
3862/* allocates memory and fills disk in mdinfo structure
3863 * for each disk in array */
3864struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3865{
594dc1b8 3866 struct mdinfo *mddev;
5c4cd5da
AC
3867 struct intel_super *super = st->sb;
3868 struct imsm_disk *disk;
3869 int count = 0;
3870 struct dl *dl;
3871 if (!super || !super->disks)
3872 return NULL;
3873 dl = super->disks;
503975b9 3874 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3875 while (dl) {
3876 struct mdinfo *tmp;
3877 disk = &dl->disk;
503975b9 3878 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3879 if (mddev->devs)
3880 tmp->next = mddev->devs;
3881 mddev->devs = tmp;
3882 tmp->disk.number = count++;
3883 tmp->disk.major = dl->major;
3884 tmp->disk.minor = dl->minor;
3885 tmp->disk.state = is_configured(disk) ?
3886 (1 << MD_DISK_ACTIVE) : 0;
3887 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3888 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3889 tmp->disk.raid_disk = -1;
3890 dl = dl->next;
3891 }
3892 return mddev;
3893}
3894
cdddbdbc 3895static int update_super_imsm(struct supertype *st, struct mdinfo *info,
03312b52
MK
3896 enum update_opt update, char *devname,
3897 int verbose, int uuid_set, char *homehost)
cdddbdbc 3898{
f352c545
DW
3899 /* For 'assemble' and 'force' we need to return non-zero if any
3900 * change was made. For others, the return value is ignored.
3901 * Update options are:
3902 * force-one : This device looks a bit old but needs to be included,
3903 * update age info appropriately.
3904 * assemble: clear any 'faulty' flag to allow this device to
3905 * be assembled.
3906 * force-array: Array is degraded but being forced, mark it clean
3907 * if that will be needed to assemble it.
3908 *
3909 * newdev: not used ????
3910 * grow: Array has gained a new device - this is currently for
3911 * linear only
3912 * resync: mark as dirty so a resync will happen.
3913 * name: update the name - preserving the homehost
6e46bf34 3914 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3915 *
3916 * Following are not relevant for this imsm:
3917 * sparc2.2 : update from old dodgey metadata
3918 * super-minor: change the preferred_minor number
3919 * summaries: update redundant counters.
f352c545
DW
3920 * homehost: update the recorded homehost
3921 * _reshape_progress: record new reshape_progress position.
3922 */
6e46bf34
DW
3923 int rv = 1;
3924 struct intel_super *super = st->sb;
3925 struct imsm_super *mpb;
f352c545 3926
6e46bf34
DW
3927 /* we can only update container info */
3928 if (!super || super->current_vol >= 0 || !super->anchor)
3929 return 1;
3930
3931 mpb = super->anchor;
3932
03312b52 3933 switch (update) {
4345e135 3934 case UOPT_UUID:
81a5b4f5
N
3935 /* We take this to mean that the family_num should be updated.
3936 * However that is much smaller than the uuid so we cannot really
3937 * allow an explicit uuid to be given. And it is hard to reliably
3938 * know if one was.
3939 * So if !uuid_set we know the current uuid is random and just used
3940 * the first 'int' and copy it to the other 3 positions.
3941 * Otherwise we require the 4 'int's to be the same as would be the
3942 * case if we are using a random uuid. So an explicit uuid will be
3943 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3944 */
81a5b4f5
N
3945 if (!uuid_set) {
3946 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3947 rv = 0;
81a5b4f5
N
3948 } else {
3949 if (info->uuid[0] != info->uuid[1] ||
3950 info->uuid[1] != info->uuid[2] ||
3951 info->uuid[2] != info->uuid[3])
3952 rv = -1;
3953 else
3954 rv = 0;
6e46bf34 3955 }
81a5b4f5
N
3956 if (rv == 0)
3957 mpb->orig_family_num = info->uuid[0];
4345e135
MK
3958 break;
3959 case UOPT_SPEC_ASSEMBLE:
6e46bf34 3960 rv = 0;
4345e135
MK
3961 break;
3962 default:
1e2b2765 3963 rv = -1;
4345e135
MK
3964 break;
3965 }
f352c545 3966
6e46bf34
DW
3967 /* successful update? recompute checksum */
3968 if (rv == 0)
3969 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3970
3971 return rv;
cdddbdbc
DW
3972}
3973
c2c087e6 3974static size_t disks_to_mpb_size(int disks)
cdddbdbc 3975{
c2c087e6 3976 size_t size;
cdddbdbc 3977
c2c087e6
DW
3978 size = sizeof(struct imsm_super);
3979 size += (disks - 1) * sizeof(struct imsm_disk);
3980 size += 2 * sizeof(struct imsm_dev);
3981 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3982 size += (4 - 2) * sizeof(struct imsm_map);
3983 /* 4 possible disk_ord_tbl's */
3984 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3985 /* maximum bbm log */
3986 size += sizeof(struct bbm_log);
c2c087e6
DW
3987
3988 return size;
3989}
3990
387fcd59
N
3991static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3992 unsigned long long data_offset)
c2c087e6
DW
3993{
3994 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3995 return 0;
3996
3997 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3998}
3999
ba2de7ba
DW
4000static void free_devlist(struct intel_super *super)
4001{
4002 struct intel_dev *dv;
4003
4004 while (super->devlist) {
4005 dv = super->devlist->next;
4006 free(super->devlist->dev);
4007 free(super->devlist);
4008 super->devlist = dv;
4009 }
4010}
4011
4012static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4013{
4014 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4015}
4016
c7b8547c
MT
4017static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4018 int verbose)
cdddbdbc 4019{
601ffa78 4020 /* return:
cdddbdbc 4021 * 0 same, or first was empty, and second was copied
601ffa78 4022 * 1 sb are different
cdddbdbc
DW
4023 */
4024 struct intel_super *first = st->sb;
4025 struct intel_super *sec = tst->sb;
4026
5d500228
N
4027 if (!first) {
4028 st->sb = tst->sb;
4029 tst->sb = NULL;
4030 return 0;
4031 }
601ffa78 4032
8603ea6f
LM
4033 /* in platform dependent environment test if the disks
4034 * use the same Intel hba
601ffa78
OS
4035 * if not on Intel hba at all, allow anything.
4036 * doesn't check HBAs if num_raid_devs is not set, as it means
4037 * it is a free floating spare, and all spares regardless of HBA type
4038 * will fall into separate container during the assembly
8603ea6f 4039 */
601ffa78 4040 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
6b781d33 4041 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
4042 if (verbose)
4043 pr_err("HBAs of devices do not match %s != %s\n",
4044 get_sys_dev_type(first->hba->type),
4045 get_sys_dev_type(sec->hba->type));
601ffa78 4046 return 1;
6b781d33
AP
4047 }
4048 if (first->orom != sec->orom) {
c7b8547c
MT
4049 if (verbose)
4050 pr_err("HBAs of devices do not match %s != %s\n",
4051 first->hba->pci_id, sec->hba->pci_id);
601ffa78 4052 return 1;
8603ea6f
LM
4053 }
4054 }
cdddbdbc 4055
d23fe947
DW
4056 if (first->anchor->num_raid_devs > 0 &&
4057 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
4058 /* Determine if these disks might ever have been
4059 * related. Further disambiguation can only take place
4060 * in load_super_imsm_all
4061 */
4062 __u32 first_family = first->anchor->orig_family_num;
4063 __u32 sec_family = sec->anchor->orig_family_num;
4064
f796af5d
DW
4065 if (memcmp(first->anchor->sig, sec->anchor->sig,
4066 MAX_SIGNATURE_LENGTH) != 0)
601ffa78 4067 return 1;
f796af5d 4068
a2b97981
DW
4069 if (first_family == 0)
4070 first_family = first->anchor->family_num;
4071 if (sec_family == 0)
4072 sec_family = sec->anchor->family_num;
4073
4074 if (first_family != sec_family)
601ffa78 4075 return 1;
f796af5d 4076
d23fe947 4077 }
cdddbdbc 4078
601ffa78
OS
4079 /* if an anchor does not have num_raid_devs set then it is a free
4080 * floating spare. don't assosiate spare with any array, as during assembly
4081 * spares shall fall into separate container, from which they can be moved
4082 * when necessary
4083 */
4084 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4085 return 1;
3e372e5a 4086
cdddbdbc
DW
4087 return 0;
4088}
4089
0030e8d6
DW
4090static void fd2devname(int fd, char *name)
4091{
0030e8d6 4092 char *nm;
0030e8d6 4093
7c798f87
MT
4094 nm = fd2kname(fd);
4095 if (!nm)
0030e8d6 4096 return;
9587c373 4097
7c798f87 4098 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4099}
4100
21e9380b
AP
4101static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4102{
fcebeb77 4103 char path[PATH_MAX];
21e9380b
AP
4104 char *name = fd2kname(fd);
4105
4106 if (!name)
4107 return 1;
4108
4109 if (strncmp(name, "nvme", 4) != 0)
4110 return 1;
4111
fcebeb77
MT
4112 if (!diskfd_to_devpath(fd, 1, path))
4113 return 1;
21e9380b 4114
fcebeb77 4115 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4116}
4117
cdddbdbc
DW
4118extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4119
4120static int imsm_read_serial(int fd, char *devname,
6da53c0e 4121 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4122{
21e9380b 4123 char buf[50];
cdddbdbc 4124 int rv;
6da53c0e 4125 size_t len;
316e2bf4
DW
4126 char *dest;
4127 char *src;
21e9380b
AP
4128 unsigned int i;
4129
4130 memset(buf, 0, sizeof(buf));
cdddbdbc 4131
21e9380b 4132 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4133
21e9380b
AP
4134 if (rv)
4135 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4136
40ebbb9c 4137 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
4138 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4139 fd2devname(fd, (char *) serial);
0030e8d6
DW
4140 return 0;
4141 }
4142
cdddbdbc
DW
4143 if (rv != 0) {
4144 if (devname)
e7b84f9d
N
4145 pr_err("Failed to retrieve serial for %s\n",
4146 devname);
cdddbdbc
DW
4147 return rv;
4148 }
4149
316e2bf4
DW
4150 /* trim all whitespace and non-printable characters and convert
4151 * ':' to ';'
4152 */
21e9380b
AP
4153 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4154 src = &buf[i];
316e2bf4
DW
4155 if (*src > 0x20) {
4156 /* ':' is reserved for use in placeholder serial
4157 * numbers for missing disks
4158 */
4159 if (*src == ':')
4160 *dest++ = ';';
4161 else
4162 *dest++ = *src;
4163 }
4164 }
21e9380b
AP
4165 len = dest - buf;
4166 dest = buf;
316e2bf4 4167
6da53c0e
BK
4168 if (len > serial_buf_len) {
4169 /* truncate leading characters */
4170 dest += len - serial_buf_len;
4171 len = serial_buf_len;
316e2bf4 4172 }
5c3db629 4173
6da53c0e 4174 memset(serial, 0, serial_buf_len);
316e2bf4 4175 memcpy(serial, dest, len);
cdddbdbc
DW
4176
4177 return 0;
4178}
4179
1f24f035
DW
4180static int serialcmp(__u8 *s1, __u8 *s2)
4181{
4182 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4183}
4184
4185static void serialcpy(__u8 *dest, __u8 *src)
4186{
4187 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4188}
4189
54c2c1ea
DW
4190static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4191{
4192 struct dl *dl;
4193
4194 for (dl = super->disks; dl; dl = dl->next)
4195 if (serialcmp(dl->serial, serial) == 0)
4196 break;
4197
4198 return dl;
4199}
4200
a2b97981
DW
4201static struct imsm_disk *
4202__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4203{
4204 int i;
4205
4206 for (i = 0; i < mpb->num_disks; i++) {
4207 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4208
4209 if (serialcmp(disk->serial, serial) == 0) {
4210 if (idx)
4211 *idx = i;
4212 return disk;
4213 }
4214 }
4215
4216 return NULL;
4217}
4218
cdddbdbc
DW
4219static int
4220load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4221{
a2b97981 4222 struct imsm_disk *disk;
cdddbdbc
DW
4223 struct dl *dl;
4224 struct stat stb;
cdddbdbc 4225 int rv;
a2b97981 4226 char name[40];
d23fe947
DW
4227 __u8 serial[MAX_RAID_SERIAL_LEN];
4228
6da53c0e 4229 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4230
4231 if (rv != 0)
4232 return 2;
4233
503975b9 4234 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4235
a2b97981
DW
4236 fstat(fd, &stb);
4237 dl->major = major(stb.st_rdev);
4238 dl->minor = minor(stb.st_rdev);
4239 dl->next = super->disks;
4240 dl->fd = keep_fd ? fd : -1;
4241 assert(super->disks == NULL);
4242 super->disks = dl;
4243 serialcpy(dl->serial, serial);
4244 dl->index = -2;
4245 dl->e = NULL;
4246 fd2devname(fd, name);
4247 if (devname)
503975b9 4248 dl->devname = xstrdup(devname);
a2b97981 4249 else
503975b9 4250 dl->devname = xstrdup(name);
cdddbdbc 4251
d23fe947 4252 /* look up this disk's index in the current anchor */
a2b97981
DW
4253 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4254 if (disk) {
4255 dl->disk = *disk;
4256 /* only set index on disks that are a member of a
4257 * populated contianer, i.e. one with raid_devs
4258 */
4259 if (is_failed(&dl->disk))
3f6efecc 4260 dl->index = -2;
2432ce9b 4261 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4262 dl->index = -1;
3f6efecc
DW
4263 }
4264
949c47a0
DW
4265 return 0;
4266}
4267
0c046afd
DW
4268/* When migrating map0 contains the 'destination' state while map1
4269 * contains the current state. When not migrating map0 contains the
4270 * current state. This routine assumes that map[0].map_state is set to
4271 * the current array state before being called.
4272 *
4273 * Migration is indicated by one of the following states
4274 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4275 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4276 * map1state=unitialized)
1484e727 4277 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4278 * map1state=normal)
e3bba0e0 4279 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4280 * map1state=degraded)
8e59f3d8
AK
4281 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4282 * map1state=normal)
0c046afd 4283 */
8e59f3d8
AK
4284static void migrate(struct imsm_dev *dev, struct intel_super *super,
4285 __u8 to_state, int migr_type)
3393c6af 4286{
0c046afd 4287 struct imsm_map *dest;
238c0a71 4288 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4289
0c046afd 4290 dev->vol.migr_state = 1;
1484e727 4291 set_migr_type(dev, migr_type);
4036e7ee 4292 set_vol_curr_migr_unit(dev, 0);
238c0a71 4293 dest = get_imsm_map(dev, MAP_1);
0c046afd 4294
0556e1a2 4295 /* duplicate and then set the target end state in map[0] */
3393c6af 4296 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4297 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4298 __u32 ord;
4299 int i;
4300
4301 for (i = 0; i < src->num_members; i++) {
4302 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4303 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4304 }
4305 }
4306
8e59f3d8
AK
4307 if (migr_type == MIGR_GEN_MIGR)
4308 /* Clear migration record */
4309 memset(super->migr_rec, 0, sizeof(struct migr_record));
4310
0c046afd 4311 src->map_state = to_state;
949c47a0 4312}
f8f603f1 4313
809da78e
AK
4314static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4315 __u8 map_state)
f8f603f1 4316{
238c0a71
AK
4317 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4318 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4319 MAP_0 : MAP_1);
28bce06f 4320 int i, j;
0556e1a2
DW
4321
4322 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4323 * completed in the last migration.
4324 *
28bce06f 4325 * FIXME add support for raid-level-migration
0556e1a2 4326 */
195d1d76 4327 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
089f9d79 4328 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4329 /* when final map state is other than expected
4330 * merge maps (not for migration)
4331 */
4332 int failed;
4333
4334 for (i = 0; i < prev->num_members; i++)
4335 for (j = 0; j < map->num_members; j++)
4336 /* during online capacity expansion
4337 * disks position can be changed
4338 * if takeover is used
4339 */
4340 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4341 ord_to_idx(prev->disk_ord_tbl[i])) {
4342 map->disk_ord_tbl[j] |=
4343 prev->disk_ord_tbl[i];
4344 break;
4345 }
4346 failed = imsm_count_failed(super, dev, MAP_0);
4347 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4348 }
f8f603f1
DW
4349
4350 dev->vol.migr_state = 0;
ea672ee1 4351 set_migr_type(dev, 0);
4036e7ee 4352 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4353 map->map_state = map_state;
4354}
949c47a0
DW
4355
4356static int parse_raid_devices(struct intel_super *super)
4357{
4358 int i;
4359 struct imsm_dev *dev_new;
4d7b1503 4360 size_t len, len_migr;
401d313b 4361 size_t max_len = 0;
4d7b1503
DW
4362 size_t space_needed = 0;
4363 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4364
4365 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4366 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4367 struct intel_dev *dv;
949c47a0 4368
4d7b1503
DW
4369 len = sizeof_imsm_dev(dev_iter, 0);
4370 len_migr = sizeof_imsm_dev(dev_iter, 1);
4371 if (len_migr > len)
4372 space_needed += len_migr - len;
ca9de185 4373
503975b9 4374 dv = xmalloc(sizeof(*dv));
401d313b
AK
4375 if (max_len < len_migr)
4376 max_len = len_migr;
4377 if (max_len > len_migr)
4378 space_needed += max_len - len_migr;
503975b9 4379 dev_new = xmalloc(max_len);
949c47a0 4380 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4381 dv->dev = dev_new;
4382 dv->index = i;
4383 dv->next = super->devlist;
4384 super->devlist = dv;
949c47a0 4385 }
cdddbdbc 4386
4d7b1503
DW
4387 /* ensure that super->buf is large enough when all raid devices
4388 * are migrating
4389 */
4390 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4391 void *buf;
4392
f36a9ecd
PB
4393 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4394 super->sector_size);
4395 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4396 return 1;
4397
1f45a8ad
DW
4398 memcpy(buf, super->buf, super->len);
4399 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4400 free(super->buf);
4401 super->buf = buf;
4402 super->len = len;
4403 }
ca9de185 4404
bbab0940
TM
4405 super->extra_space += space_needed;
4406
cdddbdbc
DW
4407 return 0;
4408}
4409
e2f41b2c
AK
4410/*******************************************************************************
4411 * Function: check_mpb_migr_compatibility
4412 * Description: Function checks for unsupported migration features:
4413 * - migration optimization area (pba_of_lba0)
4414 * - descending reshape (ascending_migr)
4415 * Parameters:
4416 * super : imsm metadata information
4417 * Returns:
4418 * 0 : migration is compatible
4419 * -1 : migration is not compatible
4420 ******************************************************************************/
4421int check_mpb_migr_compatibility(struct intel_super *super)
4422{
4423 struct imsm_map *map0, *map1;
4424 struct migr_record *migr_rec = super->migr_rec;
4425 int i;
4426
4427 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4428 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4429
756a15f3 4430 if (dev_iter->vol.migr_state == 1 &&
e2f41b2c
AK
4431 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4432 /* This device is migrating */
238c0a71
AK
4433 map0 = get_imsm_map(dev_iter, MAP_0);
4434 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4435 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4436 /* migration optimization area was used */
4437 return -1;
fc54fe7a
JS
4438 if (migr_rec->ascending_migr == 0 &&
4439 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4440 /* descending reshape not supported yet */
4441 return -1;
4442 }
4443 }
4444 return 0;
4445}
4446
d23fe947 4447static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4448
cdddbdbc 4449/* load_imsm_mpb - read matrix metadata
f2f5c343 4450 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4451 */
4452static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4453{
4454 unsigned long long dsize;
cdddbdbc 4455 unsigned long long sectors;
f36a9ecd 4456 unsigned int sector_size = super->sector_size;
cdddbdbc 4457 struct stat;
6416d527 4458 struct imsm_super *anchor;
cdddbdbc
DW
4459 __u32 check_sum;
4460
cdddbdbc 4461 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4462 if (dsize < 2*sector_size) {
64436f06 4463 if (devname)
e7b84f9d
N
4464 pr_err("%s: device to small for imsm\n",
4465 devname);
64436f06
N
4466 return 1;
4467 }
cdddbdbc 4468
f36a9ecd 4469 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4470 if (devname)
e7b84f9d
N
4471 pr_err("Cannot seek to anchor block on %s: %s\n",
4472 devname, strerror(errno));
cdddbdbc
DW
4473 return 1;
4474 }
4475
f36a9ecd 4476 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4477 if (devname)
7a862a02 4478 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4479 return 1;
4480 }
466070ad 4481 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4482 if (devname)
e7b84f9d
N
4483 pr_err("Cannot read anchor block on %s: %s\n",
4484 devname, strerror(errno));
6416d527 4485 free(anchor);
cdddbdbc
DW
4486 return 1;
4487 }
4488
6416d527 4489 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4490 if (devname)
e7b84f9d 4491 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4492 free(anchor);
cdddbdbc
DW
4493 return 2;
4494 }
4495
d23fe947 4496 __free_imsm(super, 0);
f2f5c343
LM
4497 /* reload capability and hba */
4498
4499 /* capability and hba must be updated with new super allocation */
d424212e 4500 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4501 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4502 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4503 if (devname)
e7b84f9d
N
4504 pr_err("unable to allocate %zu byte mpb buffer\n",
4505 super->len);
6416d527 4506 free(anchor);
cdddbdbc
DW
4507 return 2;
4508 }
f36a9ecd 4509 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4510
f36a9ecd 4511 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4512 free(anchor);
8e59f3d8 4513
85337573
AO
4514 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4515 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4516 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4517 free(super->buf);
4518 return 2;
4519 }
51d83f5d 4520 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4521
949c47a0 4522 if (!sectors) {
ecf45690
DW
4523 check_sum = __gen_imsm_checksum(super->anchor);
4524 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4525 if (devname)
e7b84f9d
N
4526 pr_err("IMSM checksum %x != %x on %s\n",
4527 check_sum,
4528 __le32_to_cpu(super->anchor->check_sum),
4529 devname);
ecf45690
DW
4530 return 2;
4531 }
4532
a2b97981 4533 return 0;
949c47a0 4534 }
cdddbdbc
DW
4535
4536 /* read the extended mpb */
f36a9ecd 4537 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4538 if (devname)
e7b84f9d
N
4539 pr_err("Cannot seek to extended mpb on %s: %s\n",
4540 devname, strerror(errno));
cdddbdbc
DW
4541 return 1;
4542 }
4543
f36a9ecd
PB
4544 if ((unsigned int)read(fd, super->buf + sector_size,
4545 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4546 if (devname)
e7b84f9d
N
4547 pr_err("Cannot read extended mpb on %s: %s\n",
4548 devname, strerror(errno));
cdddbdbc
DW
4549 return 2;
4550 }
4551
949c47a0
DW
4552 check_sum = __gen_imsm_checksum(super->anchor);
4553 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4554 if (devname)
e7b84f9d
N
4555 pr_err("IMSM checksum %x != %x on %s\n",
4556 check_sum, __le32_to_cpu(super->anchor->check_sum),
4557 devname);
db575f3b 4558 return 3;
cdddbdbc
DW
4559 }
4560
a2b97981
DW
4561 return 0;
4562}
4563
8e59f3d8
AK
4564static int read_imsm_migr_rec(int fd, struct intel_super *super);
4565
97f81ee2
CA
4566/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4567static void clear_hi(struct intel_super *super)
4568{
4569 struct imsm_super *mpb = super->anchor;
4570 int i, n;
4571 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4572 return;
4573 for (i = 0; i < mpb->num_disks; ++i) {
4574 struct imsm_disk *disk = &mpb->disk[i];
4575 disk->total_blocks_hi = 0;
4576 }
4577 for (i = 0; i < mpb->num_raid_devs; ++i) {
4578 struct imsm_dev *dev = get_imsm_dev(super, i);
97f81ee2
CA
4579 for (n = 0; n < 2; ++n) {
4580 struct imsm_map *map = get_imsm_map(dev, n);
4581 if (!map)
4582 continue;
4583 map->pba_of_lba0_hi = 0;
4584 map->blocks_per_member_hi = 0;
4585 map->num_data_stripes_hi = 0;
4586 }
4587 }
4588}
4589
a2b97981
DW
4590static int
4591load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4592{
4593 int err;
4594
4595 err = load_imsm_mpb(fd, super, devname);
4596 if (err)
4597 return err;
f36a9ecd
PB
4598 if (super->sector_size == 4096)
4599 convert_from_4k(super);
a2b97981
DW
4600 err = load_imsm_disk(fd, super, devname, keep_fd);
4601 if (err)
4602 return err;
4603 err = parse_raid_devices(super);
8d67477f
TM
4604 if (err)
4605 return err;
4606 err = load_bbm_log(super);
97f81ee2 4607 clear_hi(super);
a2b97981 4608 return err;
cdddbdbc
DW
4609}
4610
4389ce73 4611static void __free_imsm_disk(struct dl *d, int do_close)
ae6aad82 4612{
4389ce73
MT
4613 if (do_close)
4614 close_fd(&d->fd);
ae6aad82
DW
4615 if (d->devname)
4616 free(d->devname);
0dcecb2e
DW
4617 if (d->e)
4618 free(d->e);
ae6aad82
DW
4619 free(d);
4620
4621}
1a64be56 4622
cdddbdbc
DW
4623static void free_imsm_disks(struct intel_super *super)
4624{
47ee5a45 4625 struct dl *d;
cdddbdbc 4626
47ee5a45
DW
4627 while (super->disks) {
4628 d = super->disks;
cdddbdbc 4629 super->disks = d->next;
3a85bf0e 4630 __free_imsm_disk(d, 1);
cdddbdbc 4631 }
cb82edca
AK
4632 while (super->disk_mgmt_list) {
4633 d = super->disk_mgmt_list;
4634 super->disk_mgmt_list = d->next;
3a85bf0e 4635 __free_imsm_disk(d, 1);
cb82edca 4636 }
47ee5a45
DW
4637 while (super->missing) {
4638 d = super->missing;
4639 super->missing = d->next;
3a85bf0e 4640 __free_imsm_disk(d, 1);
47ee5a45
DW
4641 }
4642
cdddbdbc
DW
4643}
4644
9ca2c81c 4645/* free all the pieces hanging off of a super pointer */
d23fe947 4646static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4647{
88654014
LM
4648 struct intel_hba *elem, *next;
4649
9ca2c81c 4650 if (super->buf) {
949c47a0 4651 free(super->buf);
9ca2c81c
DW
4652 super->buf = NULL;
4653 }
f2f5c343
LM
4654 /* unlink capability description */
4655 super->orom = NULL;
8e59f3d8
AK
4656 if (super->migr_rec_buf) {
4657 free(super->migr_rec_buf);
4658 super->migr_rec_buf = NULL;
4659 }
d23fe947
DW
4660 if (free_disks)
4661 free_imsm_disks(super);
ba2de7ba 4662 free_devlist(super);
88654014
LM
4663 elem = super->hba;
4664 while (elem) {
4665 if (elem->path)
4666 free((void *)elem->path);
4667 next = elem->next;
4668 free(elem);
4669 elem = next;
88c32bb1 4670 }
8d67477f
TM
4671 if (super->bbm_log)
4672 free(super->bbm_log);
88654014 4673 super->hba = NULL;
cdddbdbc
DW
4674}
4675
9ca2c81c
DW
4676static void free_imsm(struct intel_super *super)
4677{
d23fe947 4678 __free_imsm(super, 1);
928f1424 4679 free(super->bb.entries);
9ca2c81c
DW
4680 free(super);
4681}
cdddbdbc
DW
4682
4683static void free_super_imsm(struct supertype *st)
4684{
4685 struct intel_super *super = st->sb;
4686
4687 if (!super)
4688 return;
4689
4690 free_imsm(super);
4691 st->sb = NULL;
4692}
4693
49133e57 4694static struct intel_super *alloc_super(void)
c2c087e6 4695{
503975b9 4696 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4697
503975b9
N
4698 super->current_vol = -1;
4699 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4700
4701 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4702 sizeof(struct md_bb_entry));
4703 if (!super->bb.entries) {
4704 free(super);
4705 return NULL;
4706 }
4707
c2c087e6
DW
4708 return super;
4709}
4710
f0f5a016
LM
4711/*
4712 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4713 */
d424212e 4714static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4715{
4716 struct sys_dev *hba_name;
4717 int rv = 0;
4718
4389ce73 4719 if (is_fd_valid(fd) && test_partition(fd)) {
3a30e28e
MT
4720 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4721 devname);
4722 return 1;
4723 }
4389ce73 4724 if (!is_fd_valid(fd) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4725 super->orom = NULL;
f0f5a016
LM
4726 super->hba = NULL;
4727 return 0;
4728 }
4729 hba_name = find_disk_attached_hba(fd, NULL);
4730 if (!hba_name) {
d424212e 4731 if (devname)
e7b84f9d
N
4732 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4733 devname);
f0f5a016
LM
4734 return 1;
4735 }
4736 rv = attach_hba_to_super(super, hba_name);
4737 if (rv == 2) {
d424212e
N
4738 if (devname) {
4739 struct intel_hba *hba = super->hba;
f0f5a016 4740
60f0f54d
PB
4741 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4742 " but the container is assigned to Intel(R) %s %s (",
d424212e 4743 devname,
614902f6 4744 get_sys_dev_type(hba_name->type),
60f0f54d 4745 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4746 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4747 get_sys_dev_type(super->hba->type),
4748 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4749
f0f5a016
LM
4750 while (hba) {
4751 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4752 if (hba->next)
4753 fprintf(stderr, ", ");
4754 hba = hba->next;
4755 }
6b781d33 4756 fprintf(stderr, ").\n"
cca67208 4757 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4758 }
f0f5a016
LM
4759 return 2;
4760 }
6b781d33 4761 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4762 if (!super->orom)
4763 return 3;
614902f6 4764
f0f5a016
LM
4765 return 0;
4766}
4767
47ee5a45
DW
4768/* find_missing - helper routine for load_super_imsm_all that identifies
4769 * disks that have disappeared from the system. This routine relies on
4770 * the mpb being uptodate, which it is at load time.
4771 */
4772static int find_missing(struct intel_super *super)
4773{
4774 int i;
4775 struct imsm_super *mpb = super->anchor;
4776 struct dl *dl;
4777 struct imsm_disk *disk;
47ee5a45
DW
4778
4779 for (i = 0; i < mpb->num_disks; i++) {
4780 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4781 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4782 if (dl)
4783 continue;
47ee5a45 4784
503975b9 4785 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4786 dl->major = 0;
4787 dl->minor = 0;
4788 dl->fd = -1;
503975b9 4789 dl->devname = xstrdup("missing");
47ee5a45
DW
4790 dl->index = i;
4791 serialcpy(dl->serial, disk->serial);
4792 dl->disk = *disk;
689c9bf3 4793 dl->e = NULL;
47ee5a45
DW
4794 dl->next = super->missing;
4795 super->missing = dl;
4796 }
4797
4798 return 0;
4799}
4800
a2b97981
DW
4801static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4802{
4803 struct intel_disk *idisk = disk_list;
4804
4805 while (idisk) {
4806 if (serialcmp(idisk->disk.serial, serial) == 0)
4807 break;
4808 idisk = idisk->next;
4809 }
4810
4811 return idisk;
4812}
4813
4814static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4815 struct intel_super *super,
4816 struct intel_disk **disk_list)
4817{
4818 struct imsm_disk *d = &super->disks->disk;
4819 struct imsm_super *mpb = super->anchor;
4820 int i, j;
4821
4822 for (i = 0; i < tbl_size; i++) {
4823 struct imsm_super *tbl_mpb = table[i]->anchor;
4824 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4825
4826 if (tbl_mpb->family_num == mpb->family_num) {
4827 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4828 dprintf("mpb from %d:%d matches %d:%d\n",
4829 super->disks->major,
a2b97981
DW
4830 super->disks->minor,
4831 table[i]->disks->major,
4832 table[i]->disks->minor);
4833 break;
4834 }
4835
4836 if (((is_configured(d) && !is_configured(tbl_d)) ||
4837 is_configured(d) == is_configured(tbl_d)) &&
4838 tbl_mpb->generation_num < mpb->generation_num) {
4839 /* current version of the mpb is a
4840 * better candidate than the one in
4841 * super_table, but copy over "cross
4842 * generational" status
4843 */
4844 struct intel_disk *idisk;
4845
1ade5cc1
N
4846 dprintf("mpb from %d:%d replaces %d:%d\n",
4847 super->disks->major,
a2b97981
DW
4848 super->disks->minor,
4849 table[i]->disks->major,
4850 table[i]->disks->minor);
4851
4852 idisk = disk_list_get(tbl_d->serial, *disk_list);
4853 if (idisk && is_failed(&idisk->disk))
4854 tbl_d->status |= FAILED_DISK;
4855 break;
4856 } else {
4857 struct intel_disk *idisk;
4858 struct imsm_disk *disk;
4859
4860 /* tbl_mpb is more up to date, but copy
4861 * over cross generational status before
4862 * returning
4863 */
4864 disk = __serial_to_disk(d->serial, mpb, NULL);
4865 if (disk && is_failed(disk))
4866 d->status |= FAILED_DISK;
4867
4868 idisk = disk_list_get(d->serial, *disk_list);
4869 if (idisk) {
4870 idisk->owner = i;
4871 if (disk && is_configured(disk))
4872 idisk->disk.status |= CONFIGURED_DISK;
4873 }
4874
1ade5cc1
N
4875 dprintf("mpb from %d:%d prefer %d:%d\n",
4876 super->disks->major,
a2b97981
DW
4877 super->disks->minor,
4878 table[i]->disks->major,
4879 table[i]->disks->minor);
4880
4881 return tbl_size;
4882 }
4883 }
4884 }
4885
4886 if (i >= tbl_size)
4887 table[tbl_size++] = super;
4888 else
4889 table[i] = super;
4890
4891 /* update/extend the merged list of imsm_disk records */
4892 for (j = 0; j < mpb->num_disks; j++) {
4893 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4894 struct intel_disk *idisk;
4895
4896 idisk = disk_list_get(disk->serial, *disk_list);
4897 if (idisk) {
4898 idisk->disk.status |= disk->status;
4899 if (is_configured(&idisk->disk) ||
4900 is_failed(&idisk->disk))
4901 idisk->disk.status &= ~(SPARE_DISK);
4902 } else {
503975b9 4903 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4904 idisk->owner = IMSM_UNKNOWN_OWNER;
4905 idisk->disk = *disk;
4906 idisk->next = *disk_list;
4907 *disk_list = idisk;
4908 }
4909
4910 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4911 idisk->owner = i;
4912 }
4913
4914 return tbl_size;
4915}
4916
4917static struct intel_super *
4918validate_members(struct intel_super *super, struct intel_disk *disk_list,
4919 const int owner)
4920{
4921 struct imsm_super *mpb = super->anchor;
4922 int ok_count = 0;
4923 int i;
4924
4925 for (i = 0; i < mpb->num_disks; i++) {
4926 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4927 struct intel_disk *idisk;
4928
4929 idisk = disk_list_get(disk->serial, disk_list);
4930 if (idisk) {
4931 if (idisk->owner == owner ||
4932 idisk->owner == IMSM_UNKNOWN_OWNER)
4933 ok_count++;
4934 else
1ade5cc1
N
4935 dprintf("'%.16s' owner %d != %d\n",
4936 disk->serial, idisk->owner,
a2b97981
DW
4937 owner);
4938 } else {
1ade5cc1
N
4939 dprintf("unknown disk %x [%d]: %.16s\n",
4940 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4941 disk->serial);
4942 break;
4943 }
4944 }
4945
4946 if (ok_count == mpb->num_disks)
4947 return super;
4948 return NULL;
4949}
4950
4951static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4952{
4953 struct intel_super *s;
4954
4955 for (s = super_list; s; s = s->next) {
4956 if (family_num != s->anchor->family_num)
4957 continue;
e12b3daa 4958 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4959 __le32_to_cpu(family_num), s->disks->devname);
4960 }
4961}
4962
4963static struct intel_super *
4964imsm_thunderdome(struct intel_super **super_list, int len)
4965{
4966 struct intel_super *super_table[len];
4967 struct intel_disk *disk_list = NULL;
4968 struct intel_super *champion, *spare;
4969 struct intel_super *s, **del;
4970 int tbl_size = 0;
4971 int conflict;
4972 int i;
4973
4974 memset(super_table, 0, sizeof(super_table));
4975 for (s = *super_list; s; s = s->next)
4976 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4977
4978 for (i = 0; i < tbl_size; i++) {
4979 struct imsm_disk *d;
4980 struct intel_disk *idisk;
4981 struct imsm_super *mpb = super_table[i]->anchor;
4982
4983 s = super_table[i];
4984 d = &s->disks->disk;
4985
4986 /* 'd' must appear in merged disk list for its
4987 * configuration to be valid
4988 */
4989 idisk = disk_list_get(d->serial, disk_list);
4990 if (idisk && idisk->owner == i)
4991 s = validate_members(s, disk_list, i);
4992 else
4993 s = NULL;
4994
4995 if (!s)
1ade5cc1
N
4996 dprintf("marking family: %#x from %d:%d offline\n",
4997 mpb->family_num,
a2b97981
DW
4998 super_table[i]->disks->major,
4999 super_table[i]->disks->minor);
5000 super_table[i] = s;
5001 }
5002
5003 /* This is where the mdadm implementation differs from the Windows
5004 * driver which has no strict concept of a container. We can only
5005 * assemble one family from a container, so when returning a prodigal
5006 * array member to this system the code will not be able to disambiguate
5007 * the container contents that should be assembled ("foreign" versus
5008 * "local"). It requires user intervention to set the orig_family_num
5009 * to a new value to establish a new container. The Windows driver in
5010 * this situation fixes up the volume name in place and manages the
5011 * foreign array as an independent entity.
5012 */
5013 s = NULL;
5014 spare = NULL;
5015 conflict = 0;
5016 for (i = 0; i < tbl_size; i++) {
5017 struct intel_super *tbl_ent = super_table[i];
5018 int is_spare = 0;
5019
5020 if (!tbl_ent)
5021 continue;
5022
5023 if (tbl_ent->anchor->num_raid_devs == 0) {
5024 spare = tbl_ent;
5025 is_spare = 1;
5026 }
5027
5028 if (s && !is_spare) {
5029 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5030 conflict++;
5031 } else if (!s && !is_spare)
5032 s = tbl_ent;
5033 }
5034
5035 if (!s)
5036 s = spare;
5037 if (!s) {
5038 champion = NULL;
5039 goto out;
5040 }
5041 champion = s;
5042
5043 if (conflict)
7a862a02 5044 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
5045 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5046
5047 /* collect all dl's onto 'champion', and update them to
5048 * champion's version of the status
5049 */
5050 for (s = *super_list; s; s = s->next) {
5051 struct imsm_super *mpb = champion->anchor;
5052 struct dl *dl = s->disks;
5053
5054 if (s == champion)
5055 continue;
5056
5d7b407a
CA
5057 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5058
a2b97981
DW
5059 for (i = 0; i < mpb->num_disks; i++) {
5060 struct imsm_disk *disk;
5061
5062 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5063 if (disk) {
5064 dl->disk = *disk;
5065 /* only set index on disks that are a member of
5066 * a populated contianer, i.e. one with
5067 * raid_devs
5068 */
5069 if (is_failed(&dl->disk))
5070 dl->index = -2;
5071 else if (is_spare(&dl->disk))
5072 dl->index = -1;
5073 break;
5074 }
5075 }
5076
5077 if (i >= mpb->num_disks) {
5078 struct intel_disk *idisk;
5079
5080 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5081 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5082 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5083 dl->index = -1;
5084 else {
5085 dl->index = -2;
5086 continue;
5087 }
5088 }
5089
5090 dl->next = champion->disks;
5091 champion->disks = dl;
5092 s->disks = NULL;
5093 }
5094
5095 /* delete 'champion' from super_list */
5096 for (del = super_list; *del; ) {
5097 if (*del == champion) {
5098 *del = (*del)->next;
5099 break;
5100 } else
5101 del = &(*del)->next;
5102 }
5103 champion->next = NULL;
5104
5105 out:
5106 while (disk_list) {
5107 struct intel_disk *idisk = disk_list;
5108
5109 disk_list = disk_list->next;
5110 free(idisk);
5111 }
5112
5113 return champion;
5114}
5115
9587c373
LM
5116static int
5117get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5118static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5119 int major, int minor, int keep_fd);
ec50f7b6
LM
5120static int
5121get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5122 int *max, int keep_fd);
5123
cdddbdbc 5124static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5125 char *devname, struct md_list *devlist,
5126 int keep_fd)
cdddbdbc 5127{
a2b97981
DW
5128 struct intel_super *super_list = NULL;
5129 struct intel_super *super = NULL;
a2b97981 5130 int err = 0;
9587c373 5131 int i = 0;
dab4a513 5132
4389ce73 5133 if (is_fd_valid(fd))
9587c373
LM
5134 /* 'fd' is an opened container */
5135 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5136 else
ec50f7b6
LM
5137 /* get super block from devlist devices */
5138 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5139 if (err)
1602d52c 5140 goto error;
a2b97981
DW
5141 /* all mpbs enter, maybe one leaves */
5142 super = imsm_thunderdome(&super_list, i);
5143 if (!super) {
5144 err = 1;
5145 goto error;
cdddbdbc
DW
5146 }
5147
47ee5a45
DW
5148 if (find_missing(super) != 0) {
5149 free_imsm(super);
a2b97981
DW
5150 err = 2;
5151 goto error;
47ee5a45 5152 }
8e59f3d8
AK
5153
5154 /* load migration record */
2f86fda3 5155 err = load_imsm_migr_rec(super);
4c965cc9
AK
5156 if (err == -1) {
5157 /* migration is in progress,
5158 * but migr_rec cannot be loaded,
5159 */
8e59f3d8
AK
5160 err = 4;
5161 goto error;
5162 }
e2f41b2c
AK
5163
5164 /* Check migration compatibility */
089f9d79 5165 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5166 pr_err("Unsupported migration detected");
e2f41b2c
AK
5167 if (devname)
5168 fprintf(stderr, " on %s\n", devname);
5169 else
5170 fprintf(stderr, " (IMSM).\n");
5171
5172 err = 5;
5173 goto error;
5174 }
5175
a2b97981
DW
5176 err = 0;
5177
5178 error:
5179 while (super_list) {
5180 struct intel_super *s = super_list;
5181
5182 super_list = super_list->next;
5183 free_imsm(s);
5184 }
9587c373 5185
a2b97981
DW
5186 if (err)
5187 return err;
f7e7067b 5188
cdddbdbc 5189 *sbp = super;
4389ce73 5190 if (is_fd_valid(fd))
4dd2df09 5191 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5192 else
4dd2df09 5193 st->container_devnm[0] = 0;
a2b97981 5194 if (err == 0 && st->ss == NULL) {
bf5a934a 5195 st->ss = &super_imsm;
cdddbdbc
DW
5196 st->minor_version = 0;
5197 st->max_devs = IMSM_MAX_DEVICES;
5198 }
cdddbdbc
DW
5199 return 0;
5200}
2b959fbf 5201
ec50f7b6
LM
5202static int
5203get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5204 int *max, int keep_fd)
5205{
5206 struct md_list *tmpdev;
5207 int err = 0;
5208 int i = 0;
9587c373 5209
ec50f7b6
LM
5210 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5211 if (tmpdev->used != 1)
5212 continue;
5213 if (tmpdev->container == 1) {
ca9de185 5214 int lmax = 0;
ec50f7b6 5215 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4389ce73 5216 if (!is_fd_valid(fd)) {
e7b84f9d 5217 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5218 tmpdev->devname, strerror(errno));
5219 err = 8;
5220 goto error;
5221 }
5222 err = get_sra_super_block(fd, super_list,
5223 tmpdev->devname, &lmax,
5224 keep_fd);
5225 i += lmax;
5226 close(fd);
5227 if (err) {
5228 err = 7;
5229 goto error;
5230 }
5231 } else {
5232 int major = major(tmpdev->st_rdev);
5233 int minor = minor(tmpdev->st_rdev);
5234 err = get_super_block(super_list,
4dd2df09 5235 NULL,
ec50f7b6
LM
5236 tmpdev->devname,
5237 major, minor,
5238 keep_fd);
5239 i++;
5240 if (err) {
5241 err = 6;
5242 goto error;
5243 }
5244 }
5245 }
5246 error:
5247 *max = i;
5248 return err;
5249}
9587c373 5250
4dd2df09 5251static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5252 int major, int minor, int keep_fd)
5253{
594dc1b8 5254 struct intel_super *s;
9587c373
LM
5255 char nm[32];
5256 int dfd = -1;
9587c373
LM
5257 int err = 0;
5258 int retry;
5259
5260 s = alloc_super();
5261 if (!s) {
5262 err = 1;
5263 goto error;
5264 }
5265
5266 sprintf(nm, "%d:%d", major, minor);
5267 dfd = dev_open(nm, O_RDWR);
4389ce73 5268 if (!is_fd_valid(dfd)) {
9587c373
LM
5269 err = 2;
5270 goto error;
5271 }
5272
aec01630
JS
5273 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5274 err = 2;
5275 goto error;
5276 }
cb8f6859 5277 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5278 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5279
5280 /* retry the load if we might have raced against mdmon */
4dd2df09 5281 if (err == 3 && devnm && mdmon_running(devnm))
9587c373 5282 for (retry = 0; retry < 3; retry++) {
239b3cc0 5283 sleep_for(0, MSEC_TO_NSEC(3), true);
9587c373
LM
5284 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5285 if (err != 3)
5286 break;
5287 }
5288 error:
5289 if (!err) {
5290 s->next = *super_list;
5291 *super_list = s;
5292 } else {
5293 if (s)
8d67477f 5294 free_imsm(s);
4389ce73 5295 close_fd(&dfd);
9587c373 5296 }
4389ce73
MT
5297 if (!keep_fd)
5298 close_fd(&dfd);
9587c373
LM
5299 return err;
5300
5301}
5302
5303static int
5304get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5305{
5306 struct mdinfo *sra;
4dd2df09 5307 char *devnm;
9587c373
LM
5308 struct mdinfo *sd;
5309 int err = 0;
5310 int i = 0;
4dd2df09 5311 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5312 if (!sra)
5313 return 1;
5314
5315 if (sra->array.major_version != -1 ||
5316 sra->array.minor_version != -2 ||
5317 strcmp(sra->text_version, "imsm") != 0) {
5318 err = 1;
5319 goto error;
5320 }
5321 /* load all mpbs */
4dd2df09 5322 devnm = fd2devnm(fd);
9587c373 5323 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5324 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5325 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5326 err = 7;
5327 goto error;
5328 }
5329 }
5330 error:
5331 sysfs_free(sra);
5332 *max = i;
5333 return err;
5334}
5335
2b959fbf
N
5336static int load_container_imsm(struct supertype *st, int fd, char *devname)
5337{
ec50f7b6 5338 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5339}
cdddbdbc
DW
5340
5341static int load_super_imsm(struct supertype *st, int fd, char *devname)
5342{
5343 struct intel_super *super;
5344 int rv;
8a3544f8 5345 int retry;
cdddbdbc 5346
357ac106 5347 if (test_partition(fd))
691c6ee1
N
5348 /* IMSM not allowed on partitions */
5349 return 1;
5350
37424f13
DW
5351 free_super_imsm(st);
5352
49133e57 5353 super = alloc_super();
8d67477f
TM
5354 if (!super)
5355 return 1;
3a85bf0e
MG
5356
5357 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5358 free_imsm(super);
5359 return 1;
5360 }
ea2bc72b
LM
5361 /* Load hba and capabilities if they exist.
5362 * But do not preclude loading metadata in case capabilities or hba are
5363 * non-compliant and ignore_hw_compat is set.
5364 */
d424212e 5365 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5366 /* no orom/efi or non-intel hba of the disk */
089f9d79 5367 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5368 if (devname)
e7b84f9d 5369 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5370 free_imsm(super);
5371 return 2;
5372 }
a2b97981 5373 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5374
8a3544f8
AP
5375 /* retry the load if we might have raced against mdmon */
5376 if (rv == 3) {
f96b1302
AP
5377 struct mdstat_ent *mdstat = NULL;
5378 char *name = fd2kname(fd);
5379
5380 if (name)
5381 mdstat = mdstat_by_component(name);
8a3544f8
AP
5382
5383 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5384 for (retry = 0; retry < 3; retry++) {
239b3cc0 5385 sleep_for(0, MSEC_TO_NSEC(3), true);
8a3544f8
AP
5386 rv = load_and_parse_mpb(fd, super, devname, 0);
5387 if (rv != 3)
5388 break;
5389 }
5390 }
5391
5392 free_mdstat(mdstat);
5393 }
5394
cdddbdbc
DW
5395 if (rv) {
5396 if (devname)
7a862a02 5397 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5398 free_imsm(super);
5399 return rv;
5400 }
5401
5402 st->sb = super;
5403 if (st->ss == NULL) {
5404 st->ss = &super_imsm;
5405 st->minor_version = 0;
5406 st->max_devs = IMSM_MAX_DEVICES;
5407 }
8e59f3d8
AK
5408
5409 /* load migration record */
2f86fda3 5410 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5411 /* Check for unsupported migration features */
5412 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5413 pr_err("Unsupported migration detected");
2e062e82
AK
5414 if (devname)
5415 fprintf(stderr, " on %s\n", devname);
5416 else
5417 fprintf(stderr, " (IMSM).\n");
5418 return 3;
5419 }
e2f41b2c
AK
5420 }
5421
cdddbdbc
DW
5422 return 0;
5423}
5424
ef6ffade
DW
5425static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5426{
5427 if (info->level == 1)
5428 return 128;
5429 return info->chunk_size >> 9;
5430}
5431
5551b113
CA
5432static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5433 unsigned long long size)
fcfd9599 5434{
4025c288 5435 if (info->level == 1)
5551b113 5436 return size * 2;
4025c288 5437 else
5551b113 5438 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5439}
5440
4d1313e9
DW
5441static void imsm_update_version_info(struct intel_super *super)
5442{
5443 /* update the version and attributes */
5444 struct imsm_super *mpb = super->anchor;
5445 char *version;
5446 struct imsm_dev *dev;
5447 struct imsm_map *map;
5448 int i;
5449
5450 for (i = 0; i < mpb->num_raid_devs; i++) {
5451 dev = get_imsm_dev(super, i);
238c0a71 5452 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5453 if (__le32_to_cpu(dev->size_high) > 0)
5454 mpb->attributes |= MPB_ATTRIB_2TB;
5455
5456 /* FIXME detect when an array spans a port multiplier */
5457 #if 0
5458 mpb->attributes |= MPB_ATTRIB_PM;
5459 #endif
5460
5461 if (mpb->num_raid_devs > 1 ||
5462 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5463 version = MPB_VERSION_ATTRIBS;
5464 switch (get_imsm_raid_level(map)) {
5465 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5466 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5467 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5468 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5469 }
5470 } else {
5471 if (map->num_members >= 5)
5472 version = MPB_VERSION_5OR6_DISK_ARRAY;
5473 else if (dev->status == DEV_CLONE_N_GO)
5474 version = MPB_VERSION_CNG;
5475 else if (get_imsm_raid_level(map) == 5)
5476 version = MPB_VERSION_RAID5;
5477 else if (map->num_members >= 3)
5478 version = MPB_VERSION_3OR4_DISK_ARRAY;
5479 else if (get_imsm_raid_level(map) == 1)
5480 version = MPB_VERSION_RAID1;
5481 else
5482 version = MPB_VERSION_RAID0;
5483 }
5484 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5485 }
5486}
5487
aa534678
DW
5488static int check_name(struct intel_super *super, char *name, int quiet)
5489{
5490 struct imsm_super *mpb = super->anchor;
5491 char *reason = NULL;
9bd99a90
RS
5492 char *start = name;
5493 size_t len = strlen(name);
aa534678
DW
5494 int i;
5495
9bd99a90
RS
5496 if (len > 0) {
5497 while (isspace(start[len - 1]))
5498 start[--len] = 0;
5499 while (*start && isspace(*start))
5500 ++start, --len;
5501 memmove(name, start, len + 1);
5502 }
5503
5504 if (len > MAX_RAID_SERIAL_LEN)
aa534678 5505 reason = "must be 16 characters or less";
9bd99a90
RS
5506 else if (len == 0)
5507 reason = "must be a non-empty string";
aa534678
DW
5508
5509 for (i = 0; i < mpb->num_raid_devs; i++) {
5510 struct imsm_dev *dev = get_imsm_dev(super, i);
5511
5512 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5513 reason = "already exists";
5514 break;
5515 }
5516 }
5517
5518 if (reason && !quiet)
e7b84f9d 5519 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5520
5521 return !reason;
5522}
5523
8b353278 5524static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5525 struct shape *s, char *name,
83cd1e97
N
5526 char *homehost, int *uuid,
5527 long long data_offset)
cdddbdbc 5528{
c2c087e6
DW
5529 /* We are creating a volume inside a pre-existing container.
5530 * so st->sb is already set.
5531 */
5532 struct intel_super *super = st->sb;
f36a9ecd 5533 unsigned int sector_size = super->sector_size;
949c47a0 5534 struct imsm_super *mpb = super->anchor;
ba2de7ba 5535 struct intel_dev *dv;
c2c087e6
DW
5536 struct imsm_dev *dev;
5537 struct imsm_vol *vol;
5538 struct imsm_map *map;
5539 int idx = mpb->num_raid_devs;
5540 int i;
760365f9 5541 int namelen;
c2c087e6 5542 unsigned long long array_blocks;
2c092cad 5543 size_t size_old, size_new;
b53bfba6
TM
5544 unsigned int data_disks;
5545 unsigned long long size_per_member;
cdddbdbc 5546
88c32bb1 5547 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5548 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5549 return 0;
5550 }
5551
2c092cad
DW
5552 /* ensure the mpb is large enough for the new data */
5553 size_old = __le32_to_cpu(mpb->mpb_size);
5554 size_new = disks_to_mpb_size(info->nr_disks);
5555 if (size_new > size_old) {
5556 void *mpb_new;
f36a9ecd 5557 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5558
f36a9ecd 5559 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5560 pr_err("could not allocate new mpb\n");
2c092cad
DW
5561 return 0;
5562 }
85337573
AO
5563 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5564 MIGR_REC_BUF_SECTORS*
5565 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5566 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5567 free(super->buf);
5568 free(super);
ea944c8f 5569 free(mpb_new);
8e59f3d8
AK
5570 return 0;
5571 }
2c092cad
DW
5572 memcpy(mpb_new, mpb, size_old);
5573 free(mpb);
5574 mpb = mpb_new;
949c47a0 5575 super->anchor = mpb_new;
2c092cad
DW
5576 mpb->mpb_size = __cpu_to_le32(size_new);
5577 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5578 super->len = size_round;
2c092cad 5579 }
bf5a934a 5580 super->current_vol = idx;
3960e579
DW
5581
5582 /* handle 'failed_disks' by either:
5583 * a) create dummy disk entries in the table if this the first
5584 * volume in the array. We add them here as this is the only
5585 * opportunity to add them. add_to_super_imsm_volume()
5586 * handles the non-failed disks and continues incrementing
5587 * mpb->num_disks.
5588 * b) validate that 'failed_disks' matches the current number
5589 * of missing disks if the container is populated
d23fe947 5590 */
3960e579 5591 if (super->current_vol == 0) {
d23fe947 5592 mpb->num_disks = 0;
3960e579
DW
5593 for (i = 0; i < info->failed_disks; i++) {
5594 struct imsm_disk *disk;
5595
5596 mpb->num_disks++;
5597 disk = __get_imsm_disk(mpb, i);
5598 disk->status = CONFIGURED_DISK | FAILED_DISK;
5599 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5600 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5601 "missing:%d", (__u8)i);
3960e579
DW
5602 }
5603 find_missing(super);
5604 } else {
5605 int missing = 0;
5606 struct dl *d;
5607
5608 for (d = super->missing; d; d = d->next)
5609 missing++;
5610 if (info->failed_disks > missing) {
e7b84f9d 5611 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5612 return 0;
5613 }
5614 }
5a038140 5615
aa534678
DW
5616 if (!check_name(super, name, 0))
5617 return 0;
503975b9
N
5618 dv = xmalloc(sizeof(*dv));
5619 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5620 /*
5621 * Explicitly allow truncating to not confuse gcc's
5622 * -Werror=stringop-truncation
5623 */
5624 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5625 memcpy(dev->volume, name, namelen);
e03640bd 5626 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5627 info->layout, info->chunk_size,
b53bfba6
TM
5628 s->size * BLOCKS_PER_KB);
5629 data_disks = get_data_disks(info->level, info->layout,
5630 info->raid_disks);
5631 array_blocks = round_size_to_mb(array_blocks, data_disks);
5632 size_per_member = array_blocks / data_disks;
979d38be 5633
fcc2c9da 5634 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5635 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5636 vol = &dev->vol;
5637 vol->migr_state = 0;
1484e727 5638 set_migr_type(dev, MIGR_INIT);
3960e579 5639 vol->dirty = !info->state;
4036e7ee 5640 set_vol_curr_migr_unit(dev, 0);
238c0a71 5641 map = get_imsm_map(dev, MAP_0);
5551b113 5642 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5643 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5644 map->failed_disk_num = ~0;
bf4442ab 5645 if (info->level > 0)
fffaf1ff
N
5646 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5647 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5648 else
5649 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5650 IMSM_T_STATE_NORMAL;
252d23c0 5651 map->ddf = 1;
ef6ffade
DW
5652
5653 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5654 free(dev);
5655 free(dv);
7a862a02 5656 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5657 return 0;
5658 }
81062a36
DW
5659
5660 map->raid_level = info->level;
1c275381 5661 if (info->level == 10)
c2c087e6 5662 map->raid_level = 1;
1c275381 5663 set_num_domains(map);
ef6ffade 5664
44490938
MD
5665 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5666 set_blocks_per_member(map, info_to_blocks_per_member(info,
5667 size_per_member /
5668 BLOCKS_PER_KB));
5669
c2c087e6 5670 map->num_members = info->raid_disks;
1c275381 5671 update_num_data_stripes(map, array_blocks);
c2c087e6
DW
5672 for (i = 0; i < map->num_members; i++) {
5673 /* initialized in add_to_super */
4eb26970 5674 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5675 }
949c47a0 5676 mpb->num_raid_devs++;
2a24dc1b
PB
5677 mpb->num_raid_devs_created++;
5678 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5679
b7580566 5680 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5681 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5682 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5683 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5684 } else {
5685 free(dev);
5686 free(dv);
5687 pr_err("imsm does not support consistency policy %s\n",
5f21d674 5688 map_num_s(consistency_policies, s->consistency_policy));
2432ce9b
AP
5689 return 0;
5690 }
5691
ba2de7ba
DW
5692 dv->dev = dev;
5693 dv->index = super->current_vol;
5694 dv->next = super->devlist;
5695 super->devlist = dv;
c2c087e6 5696
4d1313e9
DW
5697 imsm_update_version_info(super);
5698
c2c087e6 5699 return 1;
cdddbdbc
DW
5700}
5701
bf5a934a 5702static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5703 struct shape *s, char *name,
83cd1e97
N
5704 char *homehost, int *uuid,
5705 unsigned long long data_offset)
bf5a934a
DW
5706{
5707 /* This is primarily called by Create when creating a new array.
5708 * We will then get add_to_super called for each component, and then
5709 * write_init_super called to write it out to each device.
5710 * For IMSM, Create can create on fresh devices or on a pre-existing
5711 * array.
5712 * To create on a pre-existing array a different method will be called.
5713 * This one is just for fresh drives.
5714 */
5715 struct intel_super *super;
5716 struct imsm_super *mpb;
5717 size_t mpb_size;
4d1313e9 5718 char *version;
bf5a934a 5719
83cd1e97 5720 if (data_offset != INVALID_SECTORS) {
ed503f89 5721 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5722 return 0;
5723 }
5724
bf5a934a 5725 if (st->sb)
5308f117 5726 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5727 data_offset);
e683ca88
DW
5728
5729 if (info)
5730 mpb_size = disks_to_mpb_size(info->nr_disks);
5731 else
f36a9ecd 5732 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5733
49133e57 5734 super = alloc_super();
f36a9ecd
PB
5735 if (super &&
5736 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5737 free_imsm(super);
e683ca88
DW
5738 super = NULL;
5739 }
5740 if (!super) {
1ade5cc1 5741 pr_err("could not allocate superblock\n");
bf5a934a
DW
5742 return 0;
5743 }
de44e46f
PB
5744 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5745 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5746 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5747 free(super->buf);
8d67477f 5748 free_imsm(super);
8e59f3d8
AK
5749 return 0;
5750 }
e683ca88 5751 memset(super->buf, 0, mpb_size);
ef649044 5752 mpb = super->buf;
e683ca88
DW
5753 mpb->mpb_size = __cpu_to_le32(mpb_size);
5754 st->sb = super;
5755
5756 if (info == NULL) {
5757 /* zeroing superblock */
5758 return 0;
5759 }
bf5a934a 5760
4d1313e9
DW
5761 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5762
5763 version = (char *) mpb->sig;
5764 strcpy(version, MPB_SIGNATURE);
5765 version += strlen(MPB_SIGNATURE);
5766 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5767
bf5a934a
DW
5768 return 1;
5769}
5770
f2cc4f7d
AO
5771static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5772{
5773 unsigned int member_sector_size;
5774
4389ce73 5775 if (!is_fd_valid(dl->fd)) {
f2cc4f7d
AO
5776 pr_err("Invalid file descriptor for %s\n", dl->devname);
5777 return 0;
5778 }
5779
5780 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5781 return 0;
5782 if (member_sector_size != super->sector_size)
5783 return 0;
5784 return 1;
5785}
5786
f20c3968 5787static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5788 int fd, char *devname)
5789{
5790 struct intel_super *super = st->sb;
d23fe947 5791 struct imsm_super *mpb = super->anchor;
3960e579 5792 struct imsm_disk *_disk;
bf5a934a
DW
5793 struct imsm_dev *dev;
5794 struct imsm_map *map;
3960e579 5795 struct dl *dl, *df;
4eb26970 5796 int slot;
9a7df595
MT
5797 int autolayout = 0;
5798
5799 if (!is_fd_valid(fd))
5800 autolayout = 1;
bf5a934a 5801
949c47a0 5802 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5803 map = get_imsm_map(dev, MAP_0);
bf5a934a 5804
208933a7 5805 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5806 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5807 devname);
5808 return 1;
5809 }
5810
9a7df595
MT
5811 for (dl = super->disks; dl ; dl = dl->next) {
5812 if (autolayout) {
efb30e7f
DW
5813 if (dl->raiddisk == dk->raid_disk)
5814 break;
9a7df595
MT
5815 } else if (dl->major == dk->major && dl->minor == dk->minor)
5816 break;
efb30e7f 5817 }
d23fe947 5818
208933a7 5819 if (!dl) {
9a7df595
MT
5820 if (!autolayout)
5821 pr_err("%s is not a member of the same container.\n",
5822 devname);
f20c3968 5823 return 1;
208933a7 5824 }
bf5a934a 5825
9a7df595
MT
5826 if (!autolayout && super->current_vol > 0) {
5827 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5828
5829 if (_slot != dk->raid_disk) {
5830 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5831 dl->devname, _slot, dk->raid_disk);
5832 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5833 return 1;
5834 }
5835 }
5836
59632db9
MZ
5837 if (mpb->num_disks == 0)
5838 if (!get_dev_sector_size(dl->fd, dl->devname,
5839 &super->sector_size))
5840 return 1;
5841
f2cc4f7d
AO
5842 if (!drive_validate_sector_size(super, dl)) {
5843 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5844 return 1;
5845 }
5846
d23fe947
DW
5847 /* add a pristine spare to the metadata */
5848 if (dl->index < 0) {
5849 dl->index = super->anchor->num_disks;
5850 super->anchor->num_disks++;
5851 }
4eb26970
DW
5852 /* Check the device has not already been added */
5853 slot = get_imsm_disk_slot(map, dl->index);
5854 if (slot >= 0 &&
238c0a71 5855 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5856 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5857 devname);
5858 return 1;
5859 }
656b6b5a 5860 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5861 dl->disk.status = CONFIGURED_DISK;
d23fe947 5862
3960e579
DW
5863 /* update size of 'missing' disks to be at least as large as the
5864 * largest acitve member (we only have dummy missing disks when
5865 * creating the first volume)
5866 */
5867 if (super->current_vol == 0) {
5868 for (df = super->missing; df; df = df->next) {
5551b113
CA
5869 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5870 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5871 _disk = __get_imsm_disk(mpb, df->index);
5872 *_disk = df->disk;
5873 }
5874 }
5875
5876 /* refresh unset/failed slots to point to valid 'missing' entries */
5877 for (df = super->missing; df; df = df->next)
5878 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5879 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5880
5881 if ((ord & IMSM_ORD_REBUILD) == 0)
5882 continue;
5883 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5884 if (is_gen_migration(dev)) {
238c0a71
AK
5885 struct imsm_map *map2 = get_imsm_map(dev,
5886 MAP_1);
0a108d63 5887 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5888 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5889 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5890 slot2,
5891 MAP_1);
1ace8403
AK
5892 if ((unsigned)df->index ==
5893 ord_to_idx(ord2))
5894 set_imsm_ord_tbl_ent(map2,
0a108d63 5895 slot2,
1ace8403
AK
5896 df->index |
5897 IMSM_ORD_REBUILD);
5898 }
5899 }
3960e579
DW
5900 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5901 break;
5902 }
5903
d23fe947
DW
5904 /* if we are creating the first raid device update the family number */
5905 if (super->current_vol == 0) {
5906 __u32 sum;
5907 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5908
3960e579 5909 _disk = __get_imsm_disk(mpb, dl->index);
756a15f3 5910 if (!_disk) {
e7b84f9d 5911 pr_err("BUG mpb setup error\n");
791b666a
AW
5912 return 1;
5913 }
d23fe947
DW
5914 *_dev = *dev;
5915 *_disk = dl->disk;
148acb7b
DW
5916 sum = random32();
5917 sum += __gen_imsm_checksum(mpb);
d23fe947 5918 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5919 mpb->orig_family_num = mpb->family_num;
e48aed3c 5920 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5921 }
ca0748fa 5922 super->current_disk = dl;
f20c3968 5923 return 0;
bf5a934a
DW
5924}
5925
a8619d23
AK
5926/* mark_spare()
5927 * Function marks disk as spare and restores disk serial
5928 * in case it was previously marked as failed by takeover operation
5929 * reruns:
5930 * -1 : critical error
5931 * 0 : disk is marked as spare but serial is not set
5932 * 1 : success
5933 */
5934int mark_spare(struct dl *disk)
5935{
5936 __u8 serial[MAX_RAID_SERIAL_LEN];
5937 int ret_val = -1;
5938
5939 if (!disk)
5940 return ret_val;
5941
5942 ret_val = 0;
6da53c0e 5943 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
5944 /* Restore disk serial number, because takeover marks disk
5945 * as failed and adds to serial ':0' before it becomes
5946 * a spare disk.
5947 */
5948 serialcpy(disk->serial, serial);
5949 serialcpy(disk->disk.serial, serial);
5950 ret_val = 1;
5951 }
5952 disk->disk.status = SPARE_DISK;
5953 disk->index = -1;
5954
5955 return ret_val;
5956}
88654014 5957
12724c01
TM
5958
5959static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5960
f20c3968 5961static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5962 int fd, char *devname,
5963 unsigned long long data_offset)
cdddbdbc 5964{
c2c087e6 5965 struct intel_super *super = st->sb;
c2c087e6
DW
5966 struct dl *dd;
5967 unsigned long long size;
fa7bb6f8 5968 unsigned int member_sector_size;
f2f27e63 5969 __u32 id;
c2c087e6
DW
5970 int rv;
5971 struct stat stb;
5972
88654014
LM
5973 /* If we are on an RAID enabled platform check that the disk is
5974 * attached to the raid controller.
5975 * We do not need to test disks attachment for container based additions,
5976 * they shall be already tested when container was created/assembled.
88c32bb1 5977 */
d424212e 5978 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5979 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5980 if (rv != 0) {
5981 dprintf("capability: %p fd: %d ret: %d\n",
5982 super->orom, fd, rv);
5983 return 1;
88c32bb1
DW
5984 }
5985
f20c3968
DW
5986 if (super->current_vol >= 0)
5987 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5988
c2c087e6 5989 fstat(fd, &stb);
503975b9 5990 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5991 dd->major = major(stb.st_rdev);
5992 dd->minor = minor(stb.st_rdev);
503975b9 5993 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5994 dd->fd = fd;
689c9bf3 5995 dd->e = NULL;
1a64be56 5996 dd->action = DISK_ADD;
6da53c0e 5997 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 5998 if (rv) {
e7b84f9d 5999 pr_err("failed to retrieve scsi serial, aborting\n");
3a85bf0e 6000 __free_imsm_disk(dd, 0);
0030e8d6 6001 abort();
c2c087e6 6002 }
7c798f87 6003
20bee0f8
PB
6004 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6005 (super->hba->type == SYS_DEV_VMD))) {
6006 int i;
7c798f87
MT
6007 char cntrl_path[PATH_MAX];
6008 char *cntrl_name;
6009 char pci_dev_path[PATH_MAX];
20bee0f8 6010
7c798f87
MT
6011 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6012 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 6013 pr_err("failed to get dev paths, aborting\n");
3a85bf0e 6014 __free_imsm_disk(dd, 0);
a8f3cfd5
MT
6015 return 1;
6016 }
6017
7c798f87
MT
6018 cntrl_name = basename(cntrl_path);
6019 if (is_multipath_nvme(fd))
6020 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6021 cntrl_name);
6022
6023 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
6024 /*
6025 * If Intel's NVMe drive has serial ended with
6026 * "-A","-B","-1" or "-2" it means that this is "x8"
6027 * device (double drive on single PCIe card).
6028 * User should be warned about potential data loss.
6029 */
6030 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6031 /* Skip empty character at the end */
6032 if (dd->serial[i] == 0)
6033 continue;
6034
6035 if (((dd->serial[i] == 'A') ||
6036 (dd->serial[i] == 'B') ||
6037 (dd->serial[i] == '1') ||
6038 (dd->serial[i] == '2')) &&
6039 (dd->serial[i-1] == '-'))
6040 pr_err("\tThe action you are about to take may put your data at risk.\n"
6041 "\tPlease note that x8 devices may consist of two separate x4 devices "
6042 "located on a single PCIe port.\n"
6043 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6044 break;
6045 }
32716c51
PB
6046 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6047 !imsm_orom_has_tpv_support(super->orom)) {
6048 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 6049 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
3a85bf0e 6050 __free_imsm_disk(dd, 0);
32716c51 6051 return 1;
20bee0f8
PB
6052 }
6053 }
c2c087e6 6054
c2c087e6 6055 get_dev_size(fd, NULL, &size);
3a85bf0e
MG
6056 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6057 __free_imsm_disk(dd, 0);
aec01630 6058 return 1;
3a85bf0e 6059 }
fa7bb6f8
PB
6060
6061 if (super->sector_size == 0) {
6062 /* this a first device, so sector_size is not set yet */
6063 super->sector_size = member_sector_size;
fa7bb6f8
PB
6064 }
6065
71e5411e 6066 /* clear migr_rec when adding disk to container */
85337573
AO
6067 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6068 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 6069 SEEK_SET) >= 0) {
466070ad 6070 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
6071 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6072 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
6073 perror("Write migr_rec failed");
6074 }
6075
c2c087e6 6076 size /= 512;
1f24f035 6077 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6078 set_total_blocks(&dd->disk, size);
6079 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6080 struct imsm_super *mpb = super->anchor;
6081 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6082 }
a8619d23 6083 mark_spare(dd);
c2c087e6 6084 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6085 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6086 else
b9f594fe 6087 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6088
6089 if (st->update_tail) {
1a64be56
LM
6090 dd->next = super->disk_mgmt_list;
6091 super->disk_mgmt_list = dd;
43dad3d6 6092 } else {
12724c01
TM
6093 /* this is called outside of mdmon
6094 * write initial spare metadata
6095 * mdmon will overwrite it.
6096 */
43dad3d6
DW
6097 dd->next = super->disks;
6098 super->disks = dd;
12724c01 6099 write_super_imsm_spare(super, dd);
43dad3d6 6100 }
f20c3968
DW
6101
6102 return 0;
cdddbdbc
DW
6103}
6104
1a64be56
LM
6105static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6106{
6107 struct intel_super *super = st->sb;
6108 struct dl *dd;
6109
6110 /* remove from super works only in mdmon - for communication
6111 * manager - monitor. Check if communication memory buffer
6112 * is prepared.
6113 */
6114 if (!st->update_tail) {
1ade5cc1 6115 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6116 return 1;
6117 }
503975b9 6118 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6119 dd->major = dk->major;
6120 dd->minor = dk->minor;
1a64be56 6121 dd->fd = -1;
a8619d23 6122 mark_spare(dd);
1a64be56
LM
6123 dd->action = DISK_REMOVE;
6124
6125 dd->next = super->disk_mgmt_list;
6126 super->disk_mgmt_list = dd;
6127
1a64be56
LM
6128 return 0;
6129}
6130
f796af5d
DW
6131static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6132
6133static union {
f36a9ecd 6134 char buf[MAX_SECTOR_SIZE];
f796af5d 6135 struct imsm_super anchor;
f36a9ecd 6136} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6137
12724c01
TM
6138
6139static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6140{
d23fe947 6141 struct imsm_super *mpb = super->anchor;
f796af5d 6142 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6143 __u32 sum;
12724c01
TM
6144
6145 if (d->index != -1)
6146 return 1;
d23fe947 6147
68641cdb
JS
6148 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6149 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 6150 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
6151 spare->num_disks = 1;
6152 spare->num_raid_devs = 0;
6153 spare->cache_size = mpb->cache_size;
6154 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
6155
6156 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6157 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947 6158
12724c01
TM
6159 spare->disk[0] = d->disk;
6160 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6161 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6162
6163 if (super->sector_size == 4096)
6164 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6165
12724c01
TM
6166 sum = __gen_imsm_checksum(spare);
6167 spare->family_num = __cpu_to_le32(sum);
6168 spare->orig_family_num = 0;
6169 sum = __gen_imsm_checksum(spare);
6170 spare->check_sum = __cpu_to_le32(sum);
027c374f 6171
12724c01
TM
6172 if (store_imsm_mpb(d->fd, spare)) {
6173 pr_err("failed for device %d:%d %s\n",
6174 d->major, d->minor, strerror(errno));
6175 return 1;
6176 }
6177
6178 return 0;
6179}
6180/* spare records have their own family number and do not have any defined raid
6181 * devices
6182 */
6183static int write_super_imsm_spares(struct intel_super *super, int doclose)
6184{
6185 struct dl *d;
f36a9ecd 6186
12724c01
TM
6187 for (d = super->disks; d; d = d->next) {
6188 if (d->index != -1)
6189 continue;
d23fe947 6190
12724c01 6191 if (write_super_imsm_spare(super, d))
e74255d9 6192 return 1;
12724c01 6193
4389ce73
MT
6194 if (doclose)
6195 close_fd(&d->fd);
d23fe947
DW
6196 }
6197
e74255d9 6198 return 0;
d23fe947
DW
6199}
6200
36988a3d 6201static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6202{
36988a3d 6203 struct intel_super *super = st->sb;
f36a9ecd 6204 unsigned int sector_size = super->sector_size;
949c47a0 6205 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6206 struct dl *d;
6207 __u32 generation;
6208 __u32 sum;
d23fe947 6209 int spares = 0;
949c47a0 6210 int i;
a48ac0a8 6211 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6212 int num_disks = 0;
146c6260 6213 int clear_migration_record = 1;
bbab0940 6214 __u32 bbm_log_size;
cdddbdbc 6215
c2c087e6
DW
6216 /* 'generation' is incremented everytime the metadata is written */
6217 generation = __le32_to_cpu(mpb->generation_num);
6218 generation++;
6219 mpb->generation_num = __cpu_to_le32(generation);
6220
148acb7b
DW
6221 /* fix up cases where previous mdadm releases failed to set
6222 * orig_family_num
6223 */
6224 if (mpb->orig_family_num == 0)
6225 mpb->orig_family_num = mpb->family_num;
6226
d23fe947 6227 for (d = super->disks; d; d = d->next) {
8796fdc4 6228 if (d->index == -1)
d23fe947 6229 spares++;
36988a3d 6230 else {
d23fe947 6231 mpb->disk[d->index] = d->disk;
36988a3d
AK
6232 num_disks++;
6233 }
d23fe947 6234 }
36988a3d 6235 for (d = super->missing; d; d = d->next) {
47ee5a45 6236 mpb->disk[d->index] = d->disk;
36988a3d
AK
6237 num_disks++;
6238 }
6239 mpb->num_disks = num_disks;
6240 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6241
949c47a0
DW
6242 for (i = 0; i < mpb->num_raid_devs; i++) {
6243 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d 6244 struct imsm_dev *dev2 = get_imsm_dev(super, i);
756a15f3
MG
6245
6246 imsm_copy_dev(dev, dev2);
6247 mpb_size += sizeof_imsm_dev(dev, 0);
6248
146c6260
AK
6249 if (is_gen_migration(dev2))
6250 clear_migration_record = 0;
949c47a0 6251 }
bbab0940
TM
6252
6253 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6254
6255 if (bbm_log_size) {
6256 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6257 mpb->attributes |= MPB_ATTRIB_BBM;
6258 } else
6259 mpb->attributes &= ~MPB_ATTRIB_BBM;
6260
6261 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6262 mpb_size += bbm_log_size;
a48ac0a8 6263 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6264
bbab0940
TM
6265#ifdef DEBUG
6266 assert(super->len == 0 || mpb_size <= super->len);
6267#endif
6268
c2c087e6 6269 /* recalculate checksum */
949c47a0 6270 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6271 mpb->check_sum = __cpu_to_le32(sum);
6272
51d83f5d
AK
6273 if (super->clean_migration_record_by_mdmon) {
6274 clear_migration_record = 1;
6275 super->clean_migration_record_by_mdmon = 0;
6276 }
146c6260 6277 if (clear_migration_record)
de44e46f 6278 memset(super->migr_rec_buf, 0,
85337573 6279 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6280
f36a9ecd
PB
6281 if (sector_size == 4096)
6282 convert_to_4k(super);
6283
d23fe947 6284 /* write the mpb for disks that compose raid devices */
c2c087e6 6285 for (d = super->disks; d ; d = d->next) {
86c54047 6286 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6287 continue;
30602f53 6288
146c6260
AK
6289 if (clear_migration_record) {
6290 unsigned long long dsize;
6291
6292 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6293 if (lseek64(d->fd, dsize - sector_size,
6294 SEEK_SET) >= 0) {
466070ad
PB
6295 if ((unsigned int)write(d->fd,
6296 super->migr_rec_buf,
de44e46f
PB
6297 MIGR_REC_BUF_SECTORS*sector_size) !=
6298 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6299 perror("Write migr_rec failed");
146c6260
AK
6300 }
6301 }
51d83f5d
AK
6302
6303 if (store_imsm_mpb(d->fd, mpb))
6304 fprintf(stderr,
1ade5cc1
N
6305 "failed for device %d:%d (fd: %d)%s\n",
6306 d->major, d->minor,
51d83f5d
AK
6307 d->fd, strerror(errno));
6308
4389ce73
MT
6309 if (doclose)
6310 close_fd(&d->fd);
c2c087e6
DW
6311 }
6312
d23fe947
DW
6313 if (spares)
6314 return write_super_imsm_spares(super, doclose);
6315
e74255d9 6316 return 0;
c2c087e6
DW
6317}
6318
9b1fb677 6319static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6320{
6321 size_t len;
6322 struct imsm_update_create_array *u;
6323 struct intel_super *super = st->sb;
9b1fb677 6324 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6325 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6326 struct disk_info *inf;
6327 struct imsm_disk *disk;
6328 int i;
43dad3d6 6329
54c2c1ea
DW
6330 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6331 sizeof(*inf) * map->num_members;
503975b9 6332 u = xmalloc(len);
43dad3d6 6333 u->type = update_create_array;
9b1fb677 6334 u->dev_idx = dev_idx;
43dad3d6 6335 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6336 inf = get_disk_info(u);
6337 for (i = 0; i < map->num_members; i++) {
238c0a71 6338 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6339
54c2c1ea 6340 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6341 if (!disk)
6342 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6343 serialcpy(inf[i].serial, disk->serial);
6344 }
43dad3d6
DW
6345 append_metadata_update(st, u, len);
6346
6347 return 0;
6348}
6349
1a64be56 6350static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6351{
6352 struct intel_super *super = st->sb;
6353 size_t len;
1a64be56 6354 struct imsm_update_add_remove_disk *u;
43dad3d6 6355
1a64be56 6356 if (!super->disk_mgmt_list)
43dad3d6
DW
6357 return 0;
6358
6359 len = sizeof(*u);
503975b9 6360 u = xmalloc(len);
1a64be56 6361 u->type = update_add_remove_disk;
43dad3d6
DW
6362 append_metadata_update(st, u, len);
6363
6364 return 0;
6365}
2432ce9b
AP
6366
6367__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6368
e397cefe
AP
6369static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6370{
6371 struct ppl_header *ppl_hdr = buf;
6372 int ret;
6373
6374 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6375
6376 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6377 ret = -errno;
6378 perror("Failed to seek to PPL header location");
6379 return ret;
6380 }
6381
6382 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6383 ret = -errno;
6384 perror("Write PPL header failed");
6385 return ret;
6386 }
6387
6388 fsync(fd);
6389
6390 return 0;
6391}
6392
2432ce9b
AP
6393static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6394{
6395 struct intel_super *super = st->sb;
6396 void *buf;
6397 struct ppl_header *ppl_hdr;
6398 int ret;
6399
b2514242
PB
6400 /* first clear entire ppl space */
6401 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6402 if (ret)
6403 return ret;
6404
6405 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6406 if (ret) {
6407 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6408 return -ret;
2432ce9b
AP
6409 }
6410
6411 memset(buf, 0, PPL_HEADER_SIZE);
6412 ppl_hdr = buf;
6413 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6414 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6415
6416 if (info->mismatch_cnt) {
6417 /*
6418 * We are overwriting an invalid ppl. Make one entry with wrong
6419 * checksum to prevent the kernel from skipping resync.
6420 */
6421 ppl_hdr->entries_count = __cpu_to_le32(1);
6422 ppl_hdr->entries[0].checksum = ~0;
6423 }
6424
e397cefe 6425 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6426
6427 free(buf);
6428 return ret;
6429}
6430
e397cefe
AP
6431static int is_rebuilding(struct imsm_dev *dev);
6432
2432ce9b
AP
6433static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6434 struct mdinfo *disk)
6435{
6436 struct intel_super *super = st->sb;
6437 struct dl *d;
e397cefe 6438 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6439 int ret = 0;
e397cefe 6440 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6441 __u32 crc;
6442 struct imsm_dev *dev;
2432ce9b 6443 __u32 idx;
44b6b876
PB
6444 unsigned int i;
6445 unsigned long long ppl_offset = 0;
6446 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6447
6448 if (disk->disk.raid_disk < 0)
6449 return 0;
6450
2432ce9b 6451 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6452 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6453 d = get_imsm_dl_disk(super, idx);
6454
6455 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6456 return 0;
6457
6458 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6459 pr_err("Failed to allocate PPL header buffer\n");
6460 return -1;
6461 }
6462 buf = buf_orig;
2432ce9b 6463
44b6b876
PB
6464 ret = 1;
6465 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6466 void *tmp;
6467
44b6b876 6468 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6469
44b6b876
PB
6470 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6471 SEEK_SET) < 0) {
6472 perror("Failed to seek to PPL header location");
6473 ret = -1;
e397cefe 6474 break;
44b6b876 6475 }
2432ce9b 6476
44b6b876
PB
6477 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6478 perror("Read PPL header failed");
6479 ret = -1;
e397cefe 6480 break;
44b6b876 6481 }
2432ce9b 6482
44b6b876 6483 ppl_hdr = buf;
2432ce9b 6484
44b6b876
PB
6485 crc = __le32_to_cpu(ppl_hdr->checksum);
6486 ppl_hdr->checksum = 0;
6487
6488 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6489 dprintf("Wrong PPL header checksum on %s\n",
6490 d->devname);
e397cefe 6491 break;
44b6b876
PB
6492 }
6493
6494 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6495 /* previous was newest, it was already checked */
e397cefe 6496 break;
44b6b876
PB
6497 }
6498
6499 if ((__le32_to_cpu(ppl_hdr->signature) !=
6500 super->anchor->orig_family_num)) {
6501 dprintf("Wrong PPL header signature on %s\n",
6502 d->devname);
6503 ret = 1;
e397cefe 6504 break;
44b6b876
PB
6505 }
6506
6507 ret = 0;
6508 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6509
44b6b876
PB
6510 ppl_offset += PPL_HEADER_SIZE;
6511 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6512 ppl_offset +=
6513 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6514
6515 if (!buf_prev)
6516 buf_prev = buf + PPL_HEADER_SIZE;
6517 tmp = buf_prev;
6518 buf_prev = buf;
6519 buf = tmp;
2432ce9b
AP
6520 }
6521
e397cefe
AP
6522 if (buf_prev) {
6523 buf = buf_prev;
6524 ppl_hdr = buf_prev;
6525 }
2432ce9b 6526
54148aba
PB
6527 /*
6528 * Update metadata to use mutliple PPLs area (1MB).
6529 * This is done once for all RAID members
6530 */
6531 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6532 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6533 char subarray[20];
6534 struct mdinfo *member_dev;
6535
6536 sprintf(subarray, "%d", info->container_member);
6537
6538 if (mdmon_running(st->container_devnm))
6539 st->update_tail = &st->updates;
6540
03312b52 6541 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
54148aba
PB
6542 pr_err("Failed to update subarray %s\n",
6543 subarray);
6544 } else {
6545 if (st->update_tail)
6546 flush_metadata_updates(st);
6547 else
6548 st->ss->sync_metadata(st);
6549 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6550 for (member_dev = info->devs; member_dev;
6551 member_dev = member_dev->next)
6552 member_dev->ppl_size =
6553 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6554 }
6555 }
6556
b23d0750 6557 if (ret == 1) {
2fc0fc63
AP
6558 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6559
50b9c10d
PB
6560 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6561 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6562 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6563 (is_rebuilding(dev) &&
4036e7ee 6564 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6565 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6566 ret = st->ss->write_init_ppl(st, info, d->fd);
6567 else
6568 info->mismatch_cnt++;
e397cefe
AP
6569 } else if (ret == 0 &&
6570 ppl_hdr->entries_count == 0 &&
6571 is_rebuilding(dev) &&
6572 info->resync_start == 0) {
6573 /*
6574 * The header has no entries - add a single empty entry and
6575 * rewrite the header to prevent the kernel from going into
6576 * resync after an interrupted rebuild.
6577 */
6578 ppl_hdr->entries_count = __cpu_to_le32(1);
6579 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6580 }
2432ce9b 6581
e397cefe
AP
6582 free(buf_orig);
6583
2432ce9b
AP
6584 return ret;
6585}
6586
2432ce9b
AP
6587static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6588{
6589 struct intel_super *super = st->sb;
6590 struct dl *d;
6591 int ret = 0;
6592
6593 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6594 info->array.level != 5)
6595 return 0;
6596
6597 for (d = super->disks; d ; d = d->next) {
6598 if (d->index < 0 || is_failed(&d->disk))
6599 continue;
6600
6601 ret = st->ss->write_init_ppl(st, info, d->fd);
6602 if (ret)
6603 break;
6604 }
6605
6606 return ret;
6607}
43dad3d6 6608
fbc42556
JR
6609/*******************************************************************************
6610 * Function: write_init_bitmap_imsm_vol
6611 * Description: Write a bitmap header and prepares the area for the bitmap.
6612 * Parameters:
6613 * st : supertype information
6614 * vol_idx : the volume index to use
6615 *
6616 * Returns:
6617 * 0 : success
6618 * -1 : fail
6619 ******************************************************************************/
6620static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6621{
6622 struct intel_super *super = st->sb;
6623 int prev_current_vol = super->current_vol;
6624 struct dl *d;
6625 int ret = 0;
6626
6627 super->current_vol = vol_idx;
6628 for (d = super->disks; d; d = d->next) {
6629 if (d->index < 0 || is_failed(&d->disk))
6630 continue;
6631 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6632 if (ret)
6633 break;
6634 }
6635 super->current_vol = prev_current_vol;
6636 return ret;
6637}
6638
6639/*******************************************************************************
6640 * Function: write_init_bitmap_imsm_all
6641 * Description: Write a bitmap header and prepares the area for the bitmap.
6642 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6643 * Parameters:
6644 * st : supertype information
6645 * info : info about the volume where the bitmap should be written
6646 * vol_idx : the volume index to use
6647 *
6648 * Returns:
6649 * 0 : success
6650 * -1 : fail
6651 ******************************************************************************/
6652static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6653 int vol_idx)
6654{
6655 int ret = 0;
6656
6657 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6658 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6659
6660 return ret;
6661}
6662
c2c087e6
DW
6663static int write_init_super_imsm(struct supertype *st)
6664{
9b1fb677
DW
6665 struct intel_super *super = st->sb;
6666 int current_vol = super->current_vol;
2432ce9b
AP
6667 int rv = 0;
6668 struct mdinfo info;
6669
6670 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6671
6672 /* we are done with current_vol reset it to point st at the container */
6673 super->current_vol = -1;
6674
8273f55e 6675 if (st->update_tail) {
43dad3d6
DW
6676 /* queue the recently created array / added disk
6677 * as a metadata update */
8273f55e 6678
43dad3d6 6679 /* determine if we are creating a volume or adding a disk */
9b1fb677 6680 if (current_vol < 0) {
1a64be56
LM
6681 /* in the mgmt (add/remove) disk case we are running
6682 * in mdmon context, so don't close fd's
43dad3d6 6683 */
2432ce9b
AP
6684 rv = mgmt_disk(st);
6685 } else {
fbc42556 6686 /* adding the second volume to the array */
2432ce9b 6687 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6688 if (!rv)
6689 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6690 if (!rv)
6691 rv = create_array(st, current_vol);
6692 }
d682f344
N
6693 } else {
6694 struct dl *d;
6695 for (d = super->disks; d; d = d->next)
ba728be7 6696 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6697 if (current_vol >= 0) {
2432ce9b 6698 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6699 if (!rv)
6700 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6701 }
6702
2432ce9b
AP
6703 if (!rv)
6704 rv = write_super_imsm(st, 1);
d682f344 6705 }
2432ce9b
AP
6706
6707 return rv;
cdddbdbc
DW
6708}
6709
e683ca88 6710static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6711{
e683ca88
DW
6712 struct intel_super *super = st->sb;
6713 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6714
e683ca88 6715 if (!mpb)
ad97895e
DW
6716 return 1;
6717
f36a9ecd
PB
6718 if (super->sector_size == 4096)
6719 convert_to_4k(super);
e683ca88 6720 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6721}
6722
cdddbdbc 6723static int validate_geometry_imsm_container(struct supertype *st, int level,
1f5d54a0 6724 int raiddisks,
af4348dd
N
6725 unsigned long long data_offset,
6726 char *dev,
2c514b71
NB
6727 unsigned long long *freesize,
6728 int verbose)
cdddbdbc 6729{
c2c087e6
DW
6730 int fd;
6731 unsigned long long ldsize;
8662f92d 6732 struct intel_super *super = NULL;
f2f5c343 6733 int rv = 0;
cdddbdbc 6734
6f2af6a4 6735 if (!is_container(level))
c2c087e6
DW
6736 return 0;
6737 if (!dev)
6738 return 1;
6739
dca80fcd 6740 fd = dev_open(dev, O_RDONLY|O_EXCL);
4389ce73
MT
6741 if (!is_fd_valid(fd)) {
6742 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
c2c087e6
DW
6743 return 0;
6744 }
8662f92d
MT
6745 if (!get_dev_size(fd, dev, &ldsize))
6746 goto exit;
f2f5c343
LM
6747
6748 /* capabilities retrieve could be possible
6749 * note that there is no fd for the disks in array.
6750 */
6751 super = alloc_super();
8662f92d
MT
6752 if (!super)
6753 goto exit;
6754
6755 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6756 goto exit;
fa7bb6f8 6757
ba728be7 6758 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6759 if (rv != 0) {
6760#if DEBUG
6761 char str[256];
6762 fd2devname(fd, str);
1ade5cc1 6763 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6764 fd, str, super->orom, rv, raiddisks);
6765#endif
6766 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6767 rv = 0;
6768 goto exit;
f2f5c343 6769 }
9126b9a8
CA
6770 if (super->orom) {
6771 if (raiddisks > super->orom->tds) {
6772 if (verbose)
7a862a02 6773 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6774 raiddisks, super->orom->tds);
8662f92d 6775 goto exit;
9126b9a8
CA
6776 }
6777 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6778 (ldsize >> 9) >> 32 > 0) {
6779 if (verbose)
e7b84f9d 6780 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6781 goto exit;
6782 }
6783
6784 if (super->hba->type == SYS_DEV_VMD ||
6785 super->hba->type == SYS_DEV_NVME) {
6786 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6787 if (verbose)
6788 pr_err("NVMe namespace %s is not supported by IMSM\n",
6789 basename(dev));
6790 goto exit;
6791 }
9126b9a8 6792 }
f2f5c343 6793 }
1f5d54a0
MT
6794 if (freesize)
6795 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6796 rv = 1;
6797exit:
6798 if (super)
6799 free_imsm(super);
6800 close(fd);
c2c087e6 6801
8662f92d 6802 return rv;
cdddbdbc
DW
6803}
6804
0dcecb2e
DW
6805static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6806{
6807 const unsigned long long base_start = e[*idx].start;
6808 unsigned long long end = base_start + e[*idx].size;
6809 int i;
6810
6811 if (base_start == end)
6812 return 0;
6813
6814 *idx = *idx + 1;
6815 for (i = *idx; i < num_extents; i++) {
6816 /* extend overlapping extents */
6817 if (e[i].start >= base_start &&
6818 e[i].start <= end) {
6819 if (e[i].size == 0)
6820 return 0;
6821 if (e[i].start + e[i].size > end)
6822 end = e[i].start + e[i].size;
6823 } else if (e[i].start > end) {
6824 *idx = i;
6825 break;
6826 }
6827 }
6828
6829 return end - base_start;
6830}
6831
6832static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6833{
6834 /* build a composite disk with all known extents and generate a new
6835 * 'maxsize' given the "all disks in an array must share a common start
6836 * offset" constraint
6837 */
503975b9 6838 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6839 struct dl *dl;
6840 int i, j;
6841 int start_extent;
6842 unsigned long long pos;
b9d77223 6843 unsigned long long start = 0;
0dcecb2e
DW
6844 unsigned long long maxsize;
6845 unsigned long reserve;
6846
0dcecb2e
DW
6847 /* coalesce and sort all extents. also, check to see if we need to
6848 * reserve space between member arrays
6849 */
6850 j = 0;
6851 for (dl = super->disks; dl; dl = dl->next) {
6852 if (!dl->e)
6853 continue;
6854 for (i = 0; i < dl->extent_cnt; i++)
6855 e[j++] = dl->e[i];
6856 }
6857 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6858
6859 /* merge extents */
6860 i = 0;
6861 j = 0;
6862 while (i < sum_extents) {
6863 e[j].start = e[i].start;
6864 e[j].size = find_size(e, &i, sum_extents);
6865 j++;
6866 if (e[j-1].size == 0)
6867 break;
6868 }
6869
6870 pos = 0;
6871 maxsize = 0;
6872 start_extent = 0;
6873 i = 0;
6874 do {
6875 unsigned long long esize;
6876
6877 esize = e[i].start - pos;
6878 if (esize >= maxsize) {
6879 maxsize = esize;
6880 start = pos;
6881 start_extent = i;
6882 }
6883 pos = e[i].start + e[i].size;
6884 i++;
6885 } while (e[i-1].size);
6886 free(e);
6887
a7dd165b
DW
6888 if (maxsize == 0)
6889 return 0;
6890
6891 /* FIXME assumes volume at offset 0 is the first volume in a
6892 * container
6893 */
0dcecb2e
DW
6894 if (start_extent > 0)
6895 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6896 else
6897 reserve = 0;
6898
6899 if (maxsize < reserve)
a7dd165b 6900 return 0;
0dcecb2e 6901
5551b113 6902 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6903 if (start + reserve > super->create_offset)
a7dd165b 6904 return 0; /* start overflows create_offset */
0dcecb2e
DW
6905 super->create_offset = start + reserve;
6906
6907 return maxsize - reserve;
6908}
6909
88c32bb1
DW
6910static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6911{
6912 if (level < 0 || level == 6 || level == 4)
6913 return 0;
6914
6915 /* if we have an orom prevent invalid raid levels */
6916 if (orom)
6917 switch (level) {
6918 case 0: return imsm_orom_has_raid0(orom);
6919 case 1:
6920 if (raiddisks > 2)
6921 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6922 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6923 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6924 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6925 }
6926 else
6927 return 1; /* not on an Intel RAID platform so anything goes */
6928
6929 return 0;
6930}
6931
ca9de185
LM
6932static int
6933active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6934 int dpa, int verbose)
6935{
6936 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6937 struct mdstat_ent *memb;
ca9de185
LM
6938 int count = 0;
6939 int num = 0;
594dc1b8 6940 struct md_list *dv;
ca9de185
LM
6941 int found;
6942
6943 for (memb = mdstat ; memb ; memb = memb->next) {
6944 if (memb->metadata_version &&
fc54fe7a 6945 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6946 (strcmp(&memb->metadata_version[9], name) == 0) &&
6947 !is_subarray(memb->metadata_version+9) &&
6948 memb->members) {
6949 struct dev_member *dev = memb->members;
6950 int fd = -1;
4389ce73 6951 while (dev && !is_fd_valid(fd)) {
503975b9
N
6952 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6953 num = sprintf(path, "%s%s", "/dev/", dev->name);
6954 if (num > 0)
6955 fd = open(path, O_RDONLY, 0);
4389ce73 6956 if (num <= 0 || !is_fd_valid(fd)) {
676e87a8 6957 pr_vrb("Cannot open %s: %s\n",
503975b9 6958 dev->name, strerror(errno));
ca9de185 6959 }
503975b9 6960 free(path);
ca9de185
LM
6961 dev = dev->next;
6962 }
6963 found = 0;
4389ce73 6964 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6965 struct mdstat_ent *vol;
6966 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6967 if (vol->active > 0 &&
ca9de185 6968 vol->metadata_version &&
9581efb1 6969 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6970 found++;
6971 count++;
6972 }
6973 }
6974 if (*devlist && (found < dpa)) {
503975b9 6975 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6976 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6977 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6978 dv->found = found;
6979 dv->used = 0;
6980 dv->next = *devlist;
6981 *devlist = dv;
ca9de185
LM
6982 }
6983 }
4389ce73 6984 close_fd(&fd);
ca9de185
LM
6985 }
6986 }
6987 free_mdstat(mdstat);
6988 return count;
6989}
6990
6991#ifdef DEBUG_LOOP
6992static struct md_list*
6993get_loop_devices(void)
6994{
6995 int i;
6996 struct md_list *devlist = NULL;
594dc1b8 6997 struct md_list *dv;
ca9de185
LM
6998
6999 for(i = 0; i < 12; i++) {
503975b9
N
7000 dv = xcalloc(1, sizeof(*dv));
7001 dv->devname = xmalloc(40);
ca9de185
LM
7002 sprintf(dv->devname, "/dev/loop%d", i);
7003 dv->next = devlist;
7004 devlist = dv;
7005 }
7006 return devlist;
7007}
7008#endif
7009
7010static struct md_list*
7011get_devices(const char *hba_path)
7012{
7013 struct md_list *devlist = NULL;
594dc1b8 7014 struct md_list *dv;
ca9de185
LM
7015 struct dirent *ent;
7016 DIR *dir;
7017 int err = 0;
7018
7019#if DEBUG_LOOP
7020 devlist = get_loop_devices();
7021 return devlist;
7022#endif
7023 /* scroll through /sys/dev/block looking for devices attached to
7024 * this hba
7025 */
7026 dir = opendir("/sys/dev/block");
7027 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7028 int fd;
7029 char buf[1024];
7030 int major, minor;
7031 char *path = NULL;
7032 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7033 continue;
7c798f87 7034 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
7035 if (!path)
7036 continue;
7037 if (!path_attached_to_hba(path, hba_path)) {
7038 free(path);
7039 path = NULL;
7040 continue;
7041 }
7042 free(path);
7043 path = NULL;
7044 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 7045 if (is_fd_valid(fd)) {
ca9de185
LM
7046 fd2devname(fd, buf);
7047 close(fd);
7048 } else {
e7b84f9d 7049 pr_err("cannot open device: %s\n",
ca9de185
LM
7050 ent->d_name);
7051 continue;
7052 }
7053
503975b9
N
7054 dv = xcalloc(1, sizeof(*dv));
7055 dv->devname = xstrdup(buf);
ca9de185
LM
7056 dv->next = devlist;
7057 devlist = dv;
7058 }
7059 if (err) {
7060 while(devlist) {
7061 dv = devlist;
7062 devlist = devlist->next;
7063 free(dv->devname);
7064 free(dv);
7065 }
7066 }
562aa102 7067 closedir(dir);
ca9de185
LM
7068 return devlist;
7069}
7070
7071static int
7072count_volumes_list(struct md_list *devlist, char *homehost,
7073 int verbose, int *found)
7074{
7075 struct md_list *tmpdev;
7076 int count = 0;
594dc1b8 7077 struct supertype *st;
ca9de185
LM
7078
7079 /* first walk the list of devices to find a consistent set
7080 * that match the criterea, if that is possible.
7081 * We flag the ones we like with 'used'.
7082 */
7083 *found = 0;
7084 st = match_metadata_desc_imsm("imsm");
7085 if (st == NULL) {
676e87a8 7086 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7087 return 0;
7088 }
7089
7090 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7091 char *devname = tmpdev->devname;
0a6bff09 7092 dev_t rdev;
ca9de185
LM
7093 struct supertype *tst;
7094 int dfd;
7095 if (tmpdev->used > 1)
7096 continue;
7097 tst = dup_super(st);
7098 if (tst == NULL) {
676e87a8 7099 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7100 goto err_1;
7101 }
7102 tmpdev->container = 0;
7103 dfd = dev_open(devname, O_RDONLY|O_EXCL);
4389ce73 7104 if (!is_fd_valid(dfd)) {
1ade5cc1 7105 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7106 devname, strerror(errno));
7107 tmpdev->used = 2;
0a6bff09 7108 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7109 tmpdev->used = 2;
7110 } else if (must_be_container(dfd)) {
7111 struct supertype *cst;
7112 cst = super_by_fd(dfd, NULL);
7113 if (cst == NULL) {
1ade5cc1 7114 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7115 devname);
7116 tmpdev->used = 2;
7117 } else if (tst->ss != st->ss) {
1ade5cc1 7118 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7119 devname);
7120 tmpdev->used = 2;
7121 } else if (!tst->ss->load_container ||
7122 tst->ss->load_container(tst, dfd, NULL))
7123 tmpdev->used = 2;
7124 else {
7125 tmpdev->container = 1;
7126 }
7127 if (cst)
7128 cst->ss->free_super(cst);
7129 } else {
0a6bff09 7130 tmpdev->st_rdev = rdev;
ca9de185 7131 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7132 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7133 devname);
7134 tmpdev->used = 2;
7135 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7136 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7137 tst->ss->name, devname);
7138 tmpdev->used = 2;
7139 }
7140 }
4389ce73
MT
7141 close_fd(&dfd);
7142
ca9de185
LM
7143 if (tmpdev->used == 2 || tmpdev->used == 4) {
7144 /* Ignore unrecognised devices during auto-assembly */
7145 goto loop;
7146 }
7147 else {
7148 struct mdinfo info;
7149 tst->ss->getinfo_super(tst, &info, NULL);
7150
7151 if (st->minor_version == -1)
7152 st->minor_version = tst->minor_version;
7153
7154 if (memcmp(info.uuid, uuid_zero,
7155 sizeof(int[4])) == 0) {
7156 /* this is a floating spare. It cannot define
7157 * an array unless there are no more arrays of
7158 * this type to be found. It can be included
7159 * in an array of this type though.
7160 */
7161 tmpdev->used = 3;
7162 goto loop;
7163 }
7164
7165 if (st->ss != tst->ss ||
7166 st->minor_version != tst->minor_version ||
c7b8547c 7167 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7168 /* Some mismatch. If exactly one array matches this host,
7169 * we can resolve on that one.
7170 * Or, if we are auto assembling, we just ignore the second
7171 * for now.
7172 */
1ade5cc1 7173 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7174 devname);
7175 goto loop;
7176 }
7177 tmpdev->used = 1;
7178 *found = 1;
7179 dprintf("found: devname: %s\n", devname);
7180 }
7181 loop:
7182 if (tst)
7183 tst->ss->free_super(tst);
7184 }
7185 if (*found != 0) {
7186 int err;
7187 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7188 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7189 for (iter = head; iter; iter = iter->next) {
7190 dprintf("content->text_version: %s vol\n",
7191 iter->text_version);
7192 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7193 /* do not assemble arrays with unsupported
7194 configurations */
1ade5cc1 7195 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7196 iter->text_version);
7197 } else
7198 count++;
7199 }
7200 sysfs_free(head);
7201
7202 } else {
1ade5cc1 7203 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7204 err, st->sb);
7205 }
7206 } else {
1ade5cc1 7207 dprintf("no more devices to examine\n");
ca9de185
LM
7208 }
7209
7210 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7211 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7212 if (count) {
7213 if (count < tmpdev->found)
7214 count = 0;
7215 else
7216 count -= tmpdev->found;
7217 }
7218 }
7219 if (tmpdev->used == 1)
7220 tmpdev->used = 4;
7221 }
7222 err_1:
7223 if (st)
7224 st->ss->free_super(st);
7225 return count;
7226}
7227
d3c11416
AO
7228static int __count_volumes(char *hba_path, int dpa, int verbose,
7229 int cmp_hba_path)
ca9de185 7230{
72a45777 7231 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7232 int count = 0;
72a45777
PB
7233 const struct orom_entry *entry;
7234 struct devid_list *dv, *devid_list;
ca9de185 7235
d3c11416 7236 if (!hba_path)
ca9de185
LM
7237 return 0;
7238
72a45777 7239 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7240 if (strstr(idev->path, hba_path))
7241 break;
72a45777
PB
7242 }
7243
7244 if (!idev || !idev->dev_id)
ca9de185 7245 return 0;
72a45777
PB
7246
7247 entry = get_orom_entry_by_device_id(idev->dev_id);
7248
7249 if (!entry || !entry->devid_list)
7250 return 0;
7251
7252 devid_list = entry->devid_list;
7253 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7254 struct md_list *devlist;
d3c11416
AO
7255 struct sys_dev *device = NULL;
7256 char *hpath;
72a45777
PB
7257 int found = 0;
7258
d3c11416
AO
7259 if (cmp_hba_path)
7260 device = device_by_id_and_path(dv->devid, hba_path);
7261 else
7262 device = device_by_id(dv->devid);
7263
72a45777 7264 if (device)
d3c11416 7265 hpath = device->path;
72a45777
PB
7266 else
7267 return 0;
7268
d3c11416 7269 devlist = get_devices(hpath);
72a45777
PB
7270 /* if no intel devices return zero volumes */
7271 if (devlist == NULL)
7272 return 0;
7273
d3c11416
AO
7274 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7275 verbose);
7276 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7277 if (devlist == NULL)
7278 return 0;
7279 do {
7280 found = 0;
7281 count += count_volumes_list(devlist,
7282 NULL,
7283 verbose,
7284 &found);
7285 dprintf("found %d count: %d\n", found, count);
7286 } while (found);
7287
d3c11416 7288 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7289
7290 while (devlist) {
7291 struct md_list *dv = devlist;
7292 devlist = devlist->next;
7293 free(dv->devname);
7294 free(dv);
7295 }
ca9de185
LM
7296 }
7297 return count;
7298}
7299
d3c11416
AO
7300static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7301{
7302 if (!hba)
7303 return 0;
7304 if (hba->type == SYS_DEV_VMD) {
7305 struct sys_dev *dev;
7306 int count = 0;
7307
7308 for (dev = find_intel_devices(); dev; dev = dev->next) {
7309 if (dev->type == SYS_DEV_VMD)
7310 count += __count_volumes(dev->path, dpa,
7311 verbose, 1);
7312 }
7313 return count;
7314 }
7315 return __count_volumes(hba->path, dpa, verbose, 0);
7316}
7317
cd9d1ac7
DW
7318static int imsm_default_chunk(const struct imsm_orom *orom)
7319{
7320 /* up to 512 if the plaform supports it, otherwise the platform max.
7321 * 128 if no platform detected
7322 */
7323 int fs = max(7, orom ? fls(orom->sss) : 0);
7324
7325 return min(512, (1 << fs));
7326}
73408129 7327
6592ce37
DW
7328static int
7329validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7330 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7331{
660260d0
DW
7332 /* check/set platform and metadata limits/defaults */
7333 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7334 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7335 super->orom->dpa);
73408129
LM
7336 return 0;
7337 }
7338
5d500228 7339 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7340 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7341 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7342 level, raiddisks, raiddisks > 1 ? "s" : "");
7343 return 0;
7344 }
cd9d1ac7 7345
7ccc4cc4 7346 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7347 *chunk = imsm_default_chunk(super->orom);
7348
7ccc4cc4 7349 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7350 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7351 return 0;
6592ce37 7352 }
cd9d1ac7 7353
6592ce37
DW
7354 if (layout != imsm_level_to_layout(level)) {
7355 if (level == 5)
676e87a8 7356 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7357 else if (level == 10)
676e87a8 7358 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7359 else
676e87a8 7360 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7361 layout, level);
7362 return 0;
7363 }
2cc699af 7364
7ccc4cc4 7365 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7366 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7367 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7368 return 0;
7369 }
614902f6 7370
6592ce37
DW
7371 return 1;
7372}
7373
1011e834 7374/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7375 * FIX ME add ahci details
7376 */
8b353278 7377static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7378 int layout, int raiddisks, int *chunk,
af4348dd
N
7379 unsigned long long size,
7380 unsigned long long data_offset,
7381 char *dev,
2c514b71
NB
7382 unsigned long long *freesize,
7383 int verbose)
cdddbdbc 7384{
9e04ac1c 7385 dev_t rdev;
c2c087e6 7386 struct intel_super *super = st->sb;
b2916f25 7387 struct imsm_super *mpb;
c2c087e6
DW
7388 struct dl *dl;
7389 unsigned long long pos = 0;
7390 unsigned long long maxsize;
7391 struct extent *e;
7392 int i;
cdddbdbc 7393
88c32bb1
DW
7394 /* We must have the container info already read in. */
7395 if (!super)
c2c087e6
DW
7396 return 0;
7397
b2916f25
JS
7398 mpb = super->anchor;
7399
2cc699af 7400 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7401 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7402 return 0;
d54559f0 7403 }
c2c087e6
DW
7404 if (!dev) {
7405 /* General test: make sure there is space for
2da8544a
DW
7406 * 'raiddisks' device extents of size 'size' at a given
7407 * offset
c2c087e6 7408 */
e46273eb 7409 unsigned long long minsize = size;
b7528a20 7410 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7411 int dcnt = 0;
7412 if (minsize == 0)
7413 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7414 for (dl = super->disks; dl ; dl = dl->next) {
7415 int found = 0;
7416
bf5a934a 7417 pos = 0;
c2c087e6 7418 i = 0;
05501181 7419 e = get_extents(super, dl, 0);
c2c087e6
DW
7420 if (!e) continue;
7421 do {
7422 unsigned long long esize;
7423 esize = e[i].start - pos;
7424 if (esize >= minsize)
7425 found = 1;
b7528a20 7426 if (found && start_offset == MaxSector) {
2da8544a
DW
7427 start_offset = pos;
7428 break;
7429 } else if (found && pos != start_offset) {
7430 found = 0;
7431 break;
7432 }
c2c087e6
DW
7433 pos = e[i].start + e[i].size;
7434 i++;
7435 } while (e[i-1].size);
7436 if (found)
7437 dcnt++;
7438 free(e);
7439 }
7440 if (dcnt < raiddisks) {
2c514b71 7441 if (verbose)
7a862a02 7442 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7443 dcnt, raiddisks);
c2c087e6
DW
7444 return 0;
7445 }
7446 return 1;
7447 }
0dcecb2e 7448
c2c087e6 7449 /* This device must be a member of the set */
9e04ac1c 7450 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7451 return 0;
7452 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7453 if (dl->major == (int)major(rdev) &&
7454 dl->minor == (int)minor(rdev))
c2c087e6
DW
7455 break;
7456 }
7457 if (!dl) {
2c514b71 7458 if (verbose)
7a862a02 7459 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7460 return 0;
a20d2ba5
DW
7461 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7462 /* If a volume is present then the current creation attempt
7463 * cannot incorporate new spares because the orom may not
7464 * understand this configuration (all member disks must be
7465 * members of each array in the container).
7466 */
7a862a02
N
7467 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7468 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7469 return 0;
5fe62b94
WD
7470 } else if (super->orom && mpb->num_raid_devs > 0 &&
7471 mpb->num_disks != raiddisks) {
7a862a02 7472 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7473 return 0;
c2c087e6 7474 }
0dcecb2e
DW
7475
7476 /* retrieve the largest free space block */
05501181 7477 e = get_extents(super, dl, 0);
c2c087e6
DW
7478 maxsize = 0;
7479 i = 0;
0dcecb2e
DW
7480 if (e) {
7481 do {
7482 unsigned long long esize;
7483
7484 esize = e[i].start - pos;
7485 if (esize >= maxsize)
7486 maxsize = esize;
7487 pos = e[i].start + e[i].size;
7488 i++;
7489 } while (e[i-1].size);
7490 dl->e = e;
7491 dl->extent_cnt = i;
7492 } else {
7493 if (verbose)
e7b84f9d 7494 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7495 dev);
7496 return 0;
7497 }
7498 if (maxsize < size) {
7499 if (verbose)
e7b84f9d 7500 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7501 dev, maxsize, size);
7502 return 0;
7503 }
7504
7505 /* count total number of extents for merge */
7506 i = 0;
7507 for (dl = super->disks; dl; dl = dl->next)
7508 if (dl->e)
7509 i += dl->extent_cnt;
7510
7511 maxsize = merge_extents(super, i);
3baa56ab 7512
1a1ced1e
KS
7513 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7514 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7515
a7dd165b 7516 if (maxsize < size || maxsize == 0) {
b3071342
LD
7517 if (verbose) {
7518 if (maxsize == 0)
7a862a02 7519 pr_err("no free space left on device. Aborting...\n");
b3071342 7520 else
7a862a02 7521 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7522 maxsize, size);
7523 }
0dcecb2e 7524 return 0;
0dcecb2e
DW
7525 }
7526
c2c087e6
DW
7527 *freesize = maxsize;
7528
ca9de185 7529 if (super->orom) {
72a45777 7530 int count = count_volumes(super->hba,
ca9de185
LM
7531 super->orom->dpa, verbose);
7532 if (super->orom->vphba <= count) {
676e87a8 7533 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7534 super->orom->vphba);
7535 return 0;
7536 }
7537 }
c2c087e6 7538 return 1;
cdddbdbc
DW
7539}
7540
6d4d9ab2
MT
7541/**
7542 * imsm_get_free_size() - get the biggest, common free space from members.
7543 * @super: &intel_super pointer, not NULL.
7544 * @raiddisks: number of raid disks.
7545 * @size: requested size, could be 0 (means max size).
7546 * @chunk: requested chunk.
7547 * @freesize: pointer for returned size value.
7548 *
7549 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7550 *
7551 * @freesize is set to meaningful value, this can be @size, or calculated
7552 * max free size.
7553 * super->create_offset value is modified and set appropriately in
7554 * merge_extends() for further creation.
7555 */
7556static imsm_status_t imsm_get_free_size(struct intel_super *super,
7557 const int raiddisks,
7558 unsigned long long size,
7559 const int chunk,
7560 unsigned long long *freesize)
efb30e7f 7561{
efb30e7f
DW
7562 struct imsm_super *mpb = super->anchor;
7563 struct dl *dl;
7564 int i;
7565 int extent_cnt;
7566 struct extent *e;
7567 unsigned long long maxsize;
7568 unsigned long long minsize;
7569 int cnt;
7570 int used;
7571
7572 /* find the largest common start free region of the possible disks */
7573 used = 0;
7574 extent_cnt = 0;
7575 cnt = 0;
7576 for (dl = super->disks; dl; dl = dl->next) {
7577 dl->raiddisk = -1;
7578
7579 if (dl->index >= 0)
7580 used++;
7581
7582 /* don't activate new spares if we are orom constrained
7583 * and there is already a volume active in the container
7584 */
7585 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7586 continue;
7587
05501181 7588 e = get_extents(super, dl, 0);
efb30e7f
DW
7589 if (!e)
7590 continue;
7591 for (i = 1; e[i-1].size; i++)
7592 ;
7593 dl->e = e;
7594 dl->extent_cnt = i;
7595 extent_cnt += i;
7596 cnt++;
7597 }
7598
7599 maxsize = merge_extents(super, extent_cnt);
7600 minsize = size;
7601 if (size == 0)
612e59d8
CA
7602 /* chunk is in K */
7603 minsize = chunk * 2;
efb30e7f 7604
6d4d9ab2
MT
7605 if (cnt < raiddisks || (super->orom && used && used != raiddisks) ||
7606 maxsize < minsize || maxsize == 0) {
e7b84f9d 7607 pr_err("not enough devices with space to create array.\n");
6d4d9ab2 7608 return IMSM_STATUS_ERROR;
efb30e7f
DW
7609 }
7610
7611 if (size == 0) {
7612 size = maxsize;
7613 if (chunk) {
612e59d8
CA
7614 size /= 2 * chunk;
7615 size *= 2 * chunk;
efb30e7f 7616 }
f878b242
LM
7617 maxsize = size;
7618 }
1a1ced1e
KS
7619 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7620 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7621 *freesize = size;
7622
13bcac90
AK
7623 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7624
6d4d9ab2 7625 return IMSM_STATUS_OK;
efb30e7f
DW
7626}
7627
6d4d9ab2
MT
7628/**
7629 * autolayout_imsm() - automatically layout a new volume.
7630 * @super: &intel_super pointer, not NULL.
7631 * @raiddisks: number of raid disks.
7632 * @size: requested size, could be 0 (means max size).
7633 * @chunk: requested chunk.
7634 * @freesize: pointer for returned size value.
7635 *
7636 * We are being asked to automatically layout a new volume based on the current
7637 * contents of the container. If the parameters can be satisfied autolayout_imsm
7638 * will record the disks, start offset, and will return size of the volume to
7639 * be created. See imsm_get_free_size() for details.
7640 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7641 * If first volume exists, slots are set consistently to it.
7642 *
7643 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7644 *
7645 * Disks are marked for creation via dl->raiddisk.
7646 */
7647static imsm_status_t autolayout_imsm(struct intel_super *super,
7648 const int raiddisks,
7649 unsigned long long size, const int chunk,
7650 unsigned long long *freesize)
13bcac90 7651{
6d4d9ab2
MT
7652 int curr_slot = 0;
7653 struct dl *disk;
7654 int vol_cnt = super->anchor->num_raid_devs;
7655 imsm_status_t rv;
13bcac90 7656
6d4d9ab2
MT
7657 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize);
7658 if (rv != IMSM_STATUS_OK)
7659 return IMSM_STATUS_ERROR;
7660
7661 for (disk = super->disks; disk; disk = disk->next) {
7662 if (!disk->e)
7663 continue;
7664
7665 if (curr_slot == raiddisks)
7666 break;
7667
7668 if (vol_cnt == 0) {
7669 disk->raiddisk = curr_slot;
7670 } else {
7671 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7672
7673 if (_slot == -1) {
7674 pr_err("Disk %s is not used in first volume, aborting\n",
7675 disk->devname);
7676 return IMSM_STATUS_ERROR;
7677 }
7678 disk->raiddisk = _slot;
7679 }
7680 curr_slot++;
13bcac90
AK
7681 }
7682
6d4d9ab2 7683 return IMSM_STATUS_OK;
13bcac90
AK
7684}
7685
bf5a934a 7686static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7687 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7688 unsigned long long data_offset,
bf5a934a 7689 char *dev, unsigned long long *freesize,
5308f117 7690 int consistency_policy, int verbose)
bf5a934a
DW
7691{
7692 int fd, cfd;
7693 struct mdinfo *sra;
20cbe8d2 7694 int is_member = 0;
bf5a934a 7695
d54559f0
LM
7696 /* load capability
7697 * if given unused devices create a container
bf5a934a
DW
7698 * if given given devices in a container create a member volume
7699 */
6f2af6a4 7700 if (is_container(level))
bf5a934a 7701 /* Must be a fresh device to add to a container */
1f5d54a0
MT
7702 return validate_geometry_imsm_container(st, level, raiddisks,
7703 data_offset, dev,
7704 freesize, verbose);
9587c373 7705
06a6101c
BK
7706 /*
7707 * Size is given in sectors.
7708 */
7709 if (size && (size < 2048)) {
22dc741f 7710 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7711 /* Depends on algorithm in Create.c :
7712 * if container was given (dev == NULL) return -1,
7713 * if block device was given ( dev != NULL) return 0.
7714 */
7715 return dev ? -1 : 0;
7716 }
7717
8592f29d 7718 if (!dev) {
6d4d9ab2
MT
7719 struct intel_super *super = st->sb;
7720
7721 /*
071f839e 7722 * Autolayout mode, st->sb must be set.
6d4d9ab2 7723 */
071f839e
KT
7724 if (!super) {
7725 pr_vrb("superblock must be set for autolayout, aborting\n");
7726 return 0;
6d4d9ab2
MT
7727 }
7728
7729 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7730 raiddisks, chunk, size,
7731 verbose))
7732 return 0;
7733
071f839e 7734 if (super->orom && freesize) {
6d4d9ab2
MT
7735 imsm_status_t rv;
7736 int count = count_volumes(super->hba, super->orom->dpa,
7737 verbose);
7738 if (super->orom->vphba <= count) {
7739 pr_vrb("platform does not support more than %d raid volumes.\n",
7740 super->orom->vphba);
e91a3bad 7741 return 0;
ca9de185 7742 }
6d4d9ab2
MT
7743
7744 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7745 freesize);
7746 if (rv != IMSM_STATUS_OK)
7747 return 0;
8592f29d
N
7748 }
7749 return 1;
7750 }
bf5a934a
DW
7751 if (st->sb) {
7752 /* creating in a given container */
7753 return validate_geometry_imsm_volume(st, level, layout,
7754 raiddisks, chunk, size,
af4348dd 7755 data_offset,
bf5a934a
DW
7756 dev, freesize, verbose);
7757 }
7758
bf5a934a
DW
7759 /* This device needs to be a device in an 'imsm' container */
7760 fd = open(dev, O_RDONLY|O_EXCL, 0);
4389ce73
MT
7761
7762 if (is_fd_valid(fd)) {
7763 pr_vrb("Cannot create this array on device %s\n", dev);
bf5a934a
DW
7764 close(fd);
7765 return 0;
7766 }
4389ce73
MT
7767 if (errno == EBUSY)
7768 fd = open(dev, O_RDONLY, 0);
7769
7770 if (!is_fd_valid(fd)) {
7771 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
bf5a934a
DW
7772 return 0;
7773 }
4389ce73 7774
bf5a934a
DW
7775 /* Well, it is in use by someone, maybe an 'imsm' container. */
7776 cfd = open_container(fd);
4389ce73
MT
7777 close_fd(&fd);
7778
7779 if (!is_fd_valid(cfd)) {
7780 pr_vrb("Cannot use %s: It is busy\n", dev);
bf5a934a
DW
7781 return 0;
7782 }
4dd2df09 7783 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7784 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7785 strcmp(sra->text_version, "imsm") == 0)
7786 is_member = 1;
7787 sysfs_free(sra);
7788 if (is_member) {
bf5a934a
DW
7789 /* This is a member of a imsm container. Load the container
7790 * and try to create a volume
7791 */
7792 struct intel_super *super;
7793
ec50f7b6 7794 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7795 st->sb = super;
4dd2df09 7796 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7797 close(cfd);
7798 return validate_geometry_imsm_volume(st, level, layout,
7799 raiddisks, chunk,
af4348dd 7800 size, data_offset, dev,
ecbd9e81
N
7801 freesize, 1)
7802 ? 1 : -1;
bf5a934a 7803 }
20cbe8d2 7804 }
bf5a934a 7805
20cbe8d2 7806 if (verbose)
e7b84f9d 7807 pr_err("failed container membership check\n");
20cbe8d2
AW
7808
7809 close(cfd);
7810 return 0;
bf5a934a 7811}
0bd16cf2 7812
30f58b22 7813static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7814{
7815 struct intel_super *super = st->sb;
7816
30f58b22
DW
7817 if (level && *level == UnSet)
7818 *level = LEVEL_CONTAINER;
7819
7820 if (level && layout && *layout == UnSet)
7821 *layout = imsm_level_to_layout(*level);
0bd16cf2 7822
cd9d1ac7
DW
7823 if (chunk && (*chunk == UnSet || *chunk == 0))
7824 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7825}
7826
33414a01
DW
7827static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7828
3364781b 7829static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7830{
3364781b 7831 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7832 __u8 i;
7833 struct intel_dev **dp;
7834 struct intel_super *super = st->sb;
3364781b 7835 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7836 struct imsm_super *mpb = super->anchor;
7837
3364781b 7838 if (mpb->num_raid_devs == 0)
33414a01 7839 return 2;
33414a01
DW
7840
7841 /* block deletions that would change the uuid of active subarrays
7842 *
7843 * FIXME when immutable ids are available, but note that we'll
7844 * also need to fixup the invalidated/active subarray indexes in
7845 * mdstat
7846 */
7847 for (i = 0; i < mpb->num_raid_devs; i++) {
7848 char subarray[4];
7849
7850 if (i < current_vol)
7851 continue;
7852 sprintf(subarray, "%u", i);
4dd2df09 7853 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7854 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7855 current_vol, i);
33414a01
DW
7856
7857 return 2;
7858 }
7859 }
7860
7861 if (st->update_tail) {
503975b9 7862 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7863
33414a01
DW
7864 u->type = update_kill_array;
7865 u->dev_idx = current_vol;
7866 append_metadata_update(st, u, sizeof(*u));
7867
7868 return 0;
7869 }
7870
7871 for (dp = &super->devlist; *dp;)
7872 if ((*dp)->index == current_vol) {
7873 *dp = (*dp)->next;
7874 } else {
7875 handle_missing(super, (*dp)->dev);
7876 if ((*dp)->index > current_vol)
7877 (*dp)->index--;
7878 dp = &(*dp)->next;
7879 }
7880
7881 /* no more raid devices, all active components are now spares,
7882 * but of course failed are still failed
7883 */
7884 if (--mpb->num_raid_devs == 0) {
7885 struct dl *d;
7886
7887 for (d = super->disks; d; d = d->next)
a8619d23
AK
7888 if (d->index > -2)
7889 mark_spare(d);
33414a01
DW
7890 }
7891
7892 super->updates_pending++;
7893
7894 return 0;
7895}
aa534678 7896
4345e135
MK
7897/**
7898 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7899 * @update: Update option.
7900 */
7901static int get_rwh_policy_from_update(enum update_opt update)
19ad203e 7902{
4345e135
MK
7903 switch (update) {
7904 case UOPT_PPL:
19ad203e 7905 return RWH_MULTIPLE_DISTRIBUTED;
4345e135 7906 case UOPT_NO_PPL:
19ad203e 7907 return RWH_MULTIPLE_OFF;
4345e135 7908 case UOPT_BITMAP:
19ad203e 7909 return RWH_BITMAP;
4345e135 7910 case UOPT_NO_BITMAP:
19ad203e 7911 return RWH_OFF;
4345e135
MK
7912 default:
7913 break;
7914 }
7915 return UOPT_UNDEFINED;
19ad203e
JR
7916}
7917
a951a4f7 7918static int update_subarray_imsm(struct supertype *st, char *subarray,
03312b52 7919 enum update_opt update, struct mddev_ident *ident)
aa534678
DW
7920{
7921 /* update the subarray currently referenced by ->current_vol */
7922 struct intel_super *super = st->sb;
7923 struct imsm_super *mpb = super->anchor;
7924
03312b52 7925 if (update == UOPT_NAME) {
aa534678 7926 char *name = ident->name;
a951a4f7
N
7927 char *ep;
7928 int vol;
aa534678 7929
aa534678
DW
7930 if (!check_name(super, name, 0))
7931 return 2;
7932
a951a4f7
N
7933 vol = strtoul(subarray, &ep, 10);
7934 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7935 return 2;
7936
aa534678 7937 if (st->update_tail) {
503975b9 7938 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7939
aa534678 7940 u->type = update_rename_array;
a951a4f7 7941 u->dev_idx = vol;
618f4e6d
XN
7942 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7943 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7944 append_metadata_update(st, u, sizeof(*u));
7945 } else {
7946 struct imsm_dev *dev;
ebad3af2 7947 int i, namelen;
aa534678 7948
a951a4f7 7949 dev = get_imsm_dev(super, vol);
ebad3af2
JS
7950 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7951 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7952 memcpy(dev->volume, name, namelen);
aa534678
DW
7953 for (i = 0; i < mpb->num_raid_devs; i++) {
7954 dev = get_imsm_dev(super, i);
7955 handle_missing(super, dev);
7956 }
7957 super->updates_pending++;
7958 }
03312b52 7959 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
e6e9dd3f
AP
7960 int new_policy;
7961 char *ep;
7962 int vol = strtoul(subarray, &ep, 10);
7963
7964 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7965 return 2;
7966
03312b52 7967 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
7968
7969 if (st->update_tail) {
7970 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7971
7972 u->type = update_rwh_policy;
7973 u->dev_idx = vol;
7974 u->new_policy = new_policy;
7975 append_metadata_update(st, u, sizeof(*u));
7976 } else {
7977 struct imsm_dev *dev;
7978
7979 dev = get_imsm_dev(super, vol);
7980 dev->rwh_policy = new_policy;
7981 super->updates_pending++;
7982 }
19ad203e
JR
7983 if (new_policy == RWH_BITMAP)
7984 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
7985 } else
7986 return 2;
7987
7988 return 0;
7989}
bf5a934a 7990
195d1d76 7991static bool is_gen_migration(struct imsm_dev *dev)
28bce06f 7992{
195d1d76
PP
7993 if (dev && dev->vol.migr_state &&
7994 migr_type(dev) == MIGR_GEN_MIGR)
7995 return true;
28bce06f 7996
195d1d76 7997 return false;
28bce06f
AK
7998}
7999
1e5c6983
DW
8000static int is_rebuilding(struct imsm_dev *dev)
8001{
8002 struct imsm_map *migr_map;
8003
8004 if (!dev->vol.migr_state)
8005 return 0;
8006
8007 if (migr_type(dev) != MIGR_REBUILD)
8008 return 0;
8009
238c0a71 8010 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
8011
8012 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8013 return 1;
8014 else
8015 return 0;
8016}
8017
6ce1fbf1
AK
8018static int is_initializing(struct imsm_dev *dev)
8019{
8020 struct imsm_map *migr_map;
8021
8022 if (!dev->vol.migr_state)
8023 return 0;
8024
8025 if (migr_type(dev) != MIGR_INIT)
8026 return 0;
8027
238c0a71 8028 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
8029
8030 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8031 return 1;
8032
8033 return 0;
6ce1fbf1
AK
8034}
8035
c47b0ff6
AK
8036static void update_recovery_start(struct intel_super *super,
8037 struct imsm_dev *dev,
8038 struct mdinfo *array)
1e5c6983
DW
8039{
8040 struct mdinfo *rebuild = NULL;
8041 struct mdinfo *d;
8042 __u32 units;
8043
8044 if (!is_rebuilding(dev))
8045 return;
8046
8047 /* Find the rebuild target, but punt on the dual rebuild case */
8048 for (d = array->devs; d; d = d->next)
8049 if (d->recovery_start == 0) {
8050 if (rebuild)
8051 return;
8052 rebuild = d;
8053 }
8054
4363fd80
DW
8055 if (!rebuild) {
8056 /* (?) none of the disks are marked with
8057 * IMSM_ORD_REBUILD, so assume they are missing and the
8058 * disk_ord_tbl was not correctly updated
8059 */
1ade5cc1 8060 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
8061 return;
8062 }
8063
4036e7ee 8064 units = vol_curr_migr_unit(dev);
c47b0ff6 8065 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
8066}
8067
276d77db 8068static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 8069
00bbdbda 8070static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 8071{
4f5bc454
DW
8072 /* Given a container loaded by load_super_imsm_all,
8073 * extract information about all the arrays into
8074 * an mdinfo tree.
00bbdbda 8075 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
8076 *
8077 * For each imsm_dev create an mdinfo, fill it in,
8078 * then look for matching devices in super->disks
8079 * and create appropriate device mdinfo.
8080 */
8081 struct intel_super *super = st->sb;
949c47a0 8082 struct imsm_super *mpb = super->anchor;
4f5bc454 8083 struct mdinfo *rest = NULL;
00bbdbda 8084 unsigned int i;
81219e70 8085 int sb_errors = 0;
abef11a3
AK
8086 struct dl *d;
8087 int spare_disks = 0;
b6180160 8088 int current_vol = super->current_vol;
cdddbdbc 8089
19482bcc
AK
8090 /* do not assemble arrays when not all attributes are supported */
8091 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 8092 sb_errors = 1;
7a862a02 8093 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
8094 }
8095
abef11a3
AK
8096 /* count spare devices, not used in maps
8097 */
8098 for (d = super->disks; d; d = d->next)
8099 if (d->index == -1)
8100 spare_disks++;
8101
4f5bc454 8102 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
8103 struct imsm_dev *dev;
8104 struct imsm_map *map;
86e3692b 8105 struct imsm_map *map2;
4f5bc454 8106 struct mdinfo *this;
a6482415 8107 int slot;
a6482415 8108 int chunk;
00bbdbda 8109 char *ep;
8b9cd157 8110 int level;
00bbdbda
N
8111
8112 if (subarray &&
8113 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8114 continue;
8115
8116 dev = get_imsm_dev(super, i);
238c0a71
AK
8117 map = get_imsm_map(dev, MAP_0);
8118 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8119 level = get_imsm_raid_level(map);
4f5bc454 8120
1ce0101c
DW
8121 /* do not publish arrays that are in the middle of an
8122 * unsupported migration
8123 */
8124 if (dev->vol.migr_state &&
28bce06f 8125 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8126 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8127 dev->volume);
8128 continue;
8129 }
2db86302
LM
8130 /* do not publish arrays that are not support by controller's
8131 * OROM/EFI
8132 */
1ce0101c 8133
503975b9 8134 this = xmalloc(sizeof(*this));
4f5bc454 8135
301406c9 8136 super->current_vol = i;
a5d85af7 8137 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8138 this->next = rest;
a6482415 8139 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8140 /* mdadm does not support all metadata features- set the bit in all arrays state */
8141 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8142 level, /* RAID level */
8143 imsm_level_to_layout(level),
81219e70 8144 map->num_members, /* raid disks */
fcc2c9da 8145 &chunk, imsm_dev_size(dev),
81219e70 8146 1 /* verbose */)) {
7a862a02 8147 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8148 dev->volume);
8149 this->array.state |=
8150 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8151 (1<<MD_SB_BLOCK_VOLUME);
8152 }
81219e70
LM
8153
8154 /* if array has bad blocks, set suitable bit in all arrays state */
8155 if (sb_errors)
8156 this->array.state |=
8157 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8158 (1<<MD_SB_BLOCK_VOLUME);
8159
4f5bc454 8160 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8161 unsigned long long recovery_start;
4f5bc454
DW
8162 struct mdinfo *info_d;
8163 struct dl *d;
8164 int idx;
9a1608e5 8165 int skip;
7eef0453 8166 __u32 ord;
8b9cd157 8167 int missing = 0;
4f5bc454 8168
9a1608e5 8169 skip = 0;
238c0a71
AK
8170 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8171 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8172 for (d = super->disks; d ; d = d->next)
8173 if (d->index == idx)
0fbd635c 8174 break;
4f5bc454 8175
1e5c6983 8176 recovery_start = MaxSector;
4f5bc454 8177 if (d == NULL)
9a1608e5 8178 skip = 1;
25ed7e59 8179 if (d && is_failed(&d->disk))
9a1608e5 8180 skip = 1;
8b9cd157 8181 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8182 recovery_start = 0;
1e93d0d1
BK
8183 if (!(ord & IMSM_ORD_REBUILD))
8184 this->array.working_disks++;
1011e834 8185 /*
9a1608e5 8186 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8187 * reset resync start to avoid a dirty-degraded
8188 * situation when performing the intial sync
9a1608e5 8189 */
8b9cd157
MK
8190 if (skip)
8191 missing++;
8192
8193 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8194 if ((!able_to_resync(level, missing) ||
8195 recovery_start == 0))
8196 this->resync_start = MaxSector;
8b9cd157
MK
8197 }
8198
9a1608e5
DW
8199 if (skip)
8200 continue;
4f5bc454 8201
503975b9 8202 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8203 info_d->next = this->devs;
8204 this->devs = info_d;
8205
4f5bc454
DW
8206 info_d->disk.number = d->index;
8207 info_d->disk.major = d->major;
8208 info_d->disk.minor = d->minor;
8209 info_d->disk.raid_disk = slot;
1e5c6983 8210 info_d->recovery_start = recovery_start;
86e3692b
AK
8211 if (map2) {
8212 if (slot < map2->num_members)
8213 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8214 else
8215 this->array.spare_disks++;
86e3692b
AK
8216 } else {
8217 if (slot < map->num_members)
8218 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8219 else
8220 this->array.spare_disks++;
86e3692b 8221 }
4f5bc454
DW
8222
8223 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8224 info_d->data_offset = pba_of_lba0(map);
44490938 8225 info_d->component_size = calc_component_size(map, dev);
06fb291a
PB
8226
8227 if (map->raid_level == 5) {
2432ce9b
AP
8228 info_d->ppl_sector = this->ppl_sector;
8229 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8230 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8231 recovery_start == 0)
8232 this->resync_start = 0;
06fb291a 8233 }
b12796be 8234
5e46202e 8235 info_d->bb.supported = 1;
b12796be
TM
8236 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8237 info_d->data_offset,
8238 info_d->component_size,
8239 &info_d->bb);
4f5bc454 8240 }
1e5c6983 8241 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8242 update_recovery_start(super, dev, this);
abef11a3 8243 this->array.spare_disks += spare_disks;
276d77db
AK
8244
8245 /* check for reshape */
8246 if (this->reshape_active == 1)
8247 recover_backup_imsm(st, this);
9a1608e5 8248 rest = this;
4f5bc454
DW
8249 }
8250
b6180160 8251 super->current_vol = current_vol;
4f5bc454 8252 return rest;
cdddbdbc
DW
8253}
8254
3b451610
AK
8255static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8256 int failed, int look_in_map)
c2a1e7da 8257{
3b451610
AK
8258 struct imsm_map *map;
8259
8260 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8261
8262 if (!failed)
1011e834 8263 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8264 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8265
8266 switch (get_imsm_raid_level(map)) {
8267 case 0:
8268 return IMSM_T_STATE_FAILED;
8269 break;
8270 case 1:
8271 if (failed < map->num_members)
8272 return IMSM_T_STATE_DEGRADED;
8273 else
8274 return IMSM_T_STATE_FAILED;
8275 break;
8276 case 10:
8277 {
8278 /**
c92a2527
DW
8279 * check to see if any mirrors have failed, otherwise we
8280 * are degraded. Even numbered slots are mirrored on
8281 * slot+1
c2a1e7da 8282 */
c2a1e7da 8283 int i;
d9b420a5
N
8284 /* gcc -Os complains that this is unused */
8285 int insync = insync;
c2a1e7da
DW
8286
8287 for (i = 0; i < map->num_members; i++) {
238c0a71 8288 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8289 int idx = ord_to_idx(ord);
8290 struct imsm_disk *disk;
c2a1e7da 8291
c92a2527 8292 /* reset the potential in-sync count on even-numbered
1011e834 8293 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8294 */
8295 if ((i & 1) == 0)
8296 insync = 2;
c2a1e7da 8297
c92a2527 8298 disk = get_imsm_disk(super, idx);
25ed7e59 8299 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8300 insync--;
c2a1e7da 8301
c92a2527
DW
8302 /* no in-sync disks left in this mirror the
8303 * array has failed
8304 */
8305 if (insync == 0)
8306 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8307 }
8308
8309 return IMSM_T_STATE_DEGRADED;
8310 }
8311 case 5:
8312 if (failed < 2)
8313 return IMSM_T_STATE_DEGRADED;
8314 else
8315 return IMSM_T_STATE_FAILED;
8316 break;
8317 default:
8318 break;
8319 }
8320
8321 return map->map_state;
8322}
8323
3b451610
AK
8324static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8325 int look_in_map)
c2a1e7da
DW
8326{
8327 int i;
8328 int failed = 0;
8329 struct imsm_disk *disk;
d5985138
AK
8330 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8331 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8332 struct imsm_map *map_for_loop;
0556e1a2
DW
8333 __u32 ord;
8334 int idx;
d5985138 8335 int idx_1;
c2a1e7da 8336
0556e1a2
DW
8337 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8338 * disks that are being rebuilt. New failures are recorded to
8339 * map[0]. So we look through all the disks we started with and
8340 * see if any failures are still present, or if any new ones
8341 * have arrived
0556e1a2 8342 */
d5985138
AK
8343 map_for_loop = map;
8344 if (prev && (map->num_members < prev->num_members))
8345 map_for_loop = prev;
68fe4598
LD
8346
8347 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8348 idx_1 = -255;
238c0a71
AK
8349 /* when MAP_X is passed both maps failures are counted
8350 */
d5985138 8351 if (prev &&
089f9d79
JS
8352 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8353 i < prev->num_members) {
d5985138
AK
8354 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8355 idx_1 = ord_to_idx(ord);
c2a1e7da 8356
d5985138
AK
8357 disk = get_imsm_disk(super, idx_1);
8358 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8359 failed++;
8360 }
089f9d79
JS
8361 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8362 i < map->num_members) {
d5985138
AK
8363 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8364 idx = ord_to_idx(ord);
8365
8366 if (idx != idx_1) {
8367 disk = get_imsm_disk(super, idx);
8368 if (!disk || is_failed(disk) ||
8369 ord & IMSM_ORD_REBUILD)
8370 failed++;
8371 }
8372 }
c2a1e7da
DW
8373 }
8374
8375 return failed;
845dea95
NB
8376}
8377
97b4d0e9 8378static int imsm_open_new(struct supertype *c, struct active_array *a,
60815698 8379 int inst)
97b4d0e9
DW
8380{
8381 struct intel_super *super = c->sb;
8382 struct imsm_super *mpb = super->anchor;
bbab0940 8383 struct imsm_update_prealloc_bb_mem u;
9587c373 8384
60815698
MG
8385 if (inst >= mpb->num_raid_devs) {
8386 pr_err("subarry index %d, out of range\n", inst);
97b4d0e9
DW
8387 return -ENODEV;
8388 }
8389
60815698
MG
8390 dprintf("imsm: open_new %d\n", inst);
8391 a->info.container_member = inst;
bbab0940
TM
8392
8393 u.type = update_prealloc_badblocks_mem;
8394 imsm_update_metadata_locally(c, &u, sizeof(u));
8395
97b4d0e9
DW
8396 return 0;
8397}
8398
0c046afd
DW
8399static int is_resyncing(struct imsm_dev *dev)
8400{
8401 struct imsm_map *migr_map;
8402
8403 if (!dev->vol.migr_state)
8404 return 0;
8405
1484e727
DW
8406 if (migr_type(dev) == MIGR_INIT ||
8407 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8408 return 1;
8409
4c9bc37b
AK
8410 if (migr_type(dev) == MIGR_GEN_MIGR)
8411 return 0;
8412
238c0a71 8413 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8414
089f9d79
JS
8415 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8416 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8417 return 1;
8418 else
8419 return 0;
8420}
8421
0556e1a2 8422/* return true if we recorded new information */
4c9e8c1e
TM
8423static int mark_failure(struct intel_super *super,
8424 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8425{
0556e1a2
DW
8426 __u32 ord;
8427 int slot;
8428 struct imsm_map *map;
86c54047
DW
8429 char buf[MAX_RAID_SERIAL_LEN+3];
8430 unsigned int len, shift = 0;
0556e1a2
DW
8431
8432 /* new failures are always set in map[0] */
238c0a71 8433 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8434
8435 slot = get_imsm_disk_slot(map, idx);
8436 if (slot < 0)
8437 return 0;
8438
8439 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8440 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8441 return 0;
8442
7d0c5e24
LD
8443 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8444 buf[MAX_RAID_SERIAL_LEN] = '\000';
8445 strcat(buf, ":0");
86c54047
DW
8446 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8447 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8448 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8449
f2f27e63 8450 disk->status |= FAILED_DISK;
0556e1a2 8451 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8452 /* mark failures in second map if second map exists and this disk
8453 * in this slot.
8454 * This is valid for migration, initialization and rebuild
8455 */
8456 if (dev->vol.migr_state) {
238c0a71 8457 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8458 int slot2 = get_imsm_disk_slot(map2, idx);
8459
089f9d79 8460 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8461 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8462 idx | IMSM_ORD_REBUILD);
8463 }
d7a1fda2
MT
8464 if (map->failed_disk_num == 0xff ||
8465 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8466 map->failed_disk_num = slot;
4c9e8c1e
TM
8467
8468 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8469
0556e1a2
DW
8470 return 1;
8471}
8472
4c9e8c1e
TM
8473static void mark_missing(struct intel_super *super,
8474 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8475{
4c9e8c1e 8476 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8477
8478 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8479 return;
8480
47ee5a45
DW
8481 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8482 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8483}
8484
33414a01
DW
8485static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8486{
33414a01 8487 struct dl *dl;
33414a01
DW
8488
8489 if (!super->missing)
8490 return;
33414a01 8491
79b68f1b
PC
8492 /* When orom adds replacement for missing disk it does
8493 * not remove entry of missing disk, but just updates map with
8494 * new added disk. So it is not enough just to test if there is
8495 * any missing disk, we have to look if there are any failed disks
8496 * in map to stop migration */
8497
33414a01 8498 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8499 /* end process for initialization and rebuild only
8500 */
195d1d76 8501 if (is_gen_migration(dev) == false) {
fb12a745 8502 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8503
fb12a745
TM
8504 if (failed) {
8505 __u8 map_state;
8506 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8507 struct imsm_map *map1;
8508 int i, ord, ord_map1;
8509 int rebuilt = 1;
3d59f0c0 8510
fb12a745
TM
8511 for (i = 0; i < map->num_members; i++) {
8512 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8513 if (!(ord & IMSM_ORD_REBUILD))
8514 continue;
8515
8516 map1 = get_imsm_map(dev, MAP_1);
8517 if (!map1)
8518 continue;
8519
8520 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8521 if (ord_map1 & IMSM_ORD_REBUILD)
8522 rebuilt = 0;
8523 }
8524
8525 if (rebuilt) {
8526 map_state = imsm_check_degraded(super, dev,
8527 failed, MAP_0);
8528 end_migration(dev, super, map_state);
8529 }
8530 }
3d59f0c0 8531 }
33414a01 8532 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8533 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8534 super->updates_pending++;
8535}
8536
f3871fdc
AK
8537static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8538 long long new_size)
70bdf0dc 8539{
70bdf0dc 8540 unsigned long long array_blocks;
9529d343
MD
8541 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8542 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8543
8544 if (used_disks == 0) {
8545 /* when problems occures
8546 * return current array_blocks value
8547 */
fcc2c9da 8548 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8549
8550 return array_blocks;
8551 }
8552
8553 /* set array size in metadata
8554 */
9529d343 8555 if (new_size <= 0)
f3871fdc
AK
8556 /* OLCE size change is caused by added disks
8557 */
44490938 8558 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8559 else
f3871fdc
AK
8560 /* Online Volume Size Change
8561 * Using available free space
8562 */
8563 array_blocks = new_size;
70bdf0dc 8564
b53bfba6 8565 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8566 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8567
8568 return array_blocks;
8569}
8570
28bce06f
AK
8571static void imsm_set_disk(struct active_array *a, int n, int state);
8572
0e2d1a4e
AK
8573static void imsm_progress_container_reshape(struct intel_super *super)
8574{
8575 /* if no device has a migr_state, but some device has a
8576 * different number of members than the previous device, start
8577 * changing the number of devices in this device to match
8578 * previous.
8579 */
8580 struct imsm_super *mpb = super->anchor;
8581 int prev_disks = -1;
8582 int i;
1dfaa380 8583 int copy_map_size;
0e2d1a4e
AK
8584
8585 for (i = 0; i < mpb->num_raid_devs; i++) {
8586 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8587 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8588 struct imsm_map *map2;
8589 int prev_num_members;
0e2d1a4e
AK
8590
8591 if (dev->vol.migr_state)
8592 return;
8593
8594 if (prev_disks == -1)
8595 prev_disks = map->num_members;
8596 if (prev_disks == map->num_members)
8597 continue;
8598
8599 /* OK, this array needs to enter reshape mode.
8600 * i.e it needs a migr_state
8601 */
8602
1dfaa380 8603 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8604 prev_num_members = map->num_members;
8605 map->num_members = prev_disks;
8606 dev->vol.migr_state = 1;
4036e7ee 8607 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8608 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8609 for (i = prev_num_members;
8610 i < map->num_members; i++)
8611 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8612 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8613 /* Copy the current map */
1dfaa380 8614 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8615 map2->num_members = prev_num_members;
8616
f3871fdc 8617 imsm_set_array_size(dev, -1);
51d83f5d 8618 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8619 super->updates_pending++;
8620 }
8621}
8622
aad6f216 8623/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8624 * states are handled in imsm_set_disk() with one exception, when a
8625 * resync is stopped due to a new failure this routine will set the
8626 * 'degraded' state for the array.
8627 */
01f157d7 8628static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8629{
8630 int inst = a->info.container_member;
8631 struct intel_super *super = a->container->sb;
949c47a0 8632 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8633 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8634 int failed = imsm_count_failed(super, dev, MAP_0);
8635 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8636 __u32 blocks_per_unit;
a862209d 8637
1af97990
AK
8638 if (dev->vol.migr_state &&
8639 dev->vol.migr_type == MIGR_GEN_MIGR) {
8640 /* array state change is blocked due to reshape action
aad6f216
N
8641 * We might need to
8642 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8643 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8644 * - update vol_curr_migr_unit
1af97990 8645 */
aad6f216 8646 if (a->curr_action == reshape) {
4036e7ee 8647 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8648 goto mark_checkpoint;
aad6f216
N
8649 } else {
8650 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8651 /* for some reason we aborted the reshape.
b66e591b
AK
8652 *
8653 * disable automatic metadata rollback
8654 * user action is required to recover process
aad6f216 8655 */
b66e591b 8656 if (0) {
238c0a71
AK
8657 struct imsm_map *map2 =
8658 get_imsm_map(dev, MAP_1);
8659 dev->vol.migr_state = 0;
8660 set_migr_type(dev, 0);
4036e7ee 8661 set_vol_curr_migr_unit(dev, 0);
238c0a71
AK
8662 memcpy(map, map2,
8663 sizeof_imsm_map(map2));
8664 super->updates_pending++;
b66e591b 8665 }
aad6f216
N
8666 }
8667 if (a->last_checkpoint >= a->info.component_size) {
8668 unsigned long long array_blocks;
8669 int used_disks;
e154ced3 8670 struct mdinfo *mdi;
aad6f216 8671
9529d343 8672 used_disks = imsm_num_data_members(map);
d55adef9
AK
8673 if (used_disks > 0) {
8674 array_blocks =
44490938 8675 per_dev_array_size(map) *
d55adef9 8676 used_disks;
b53bfba6
TM
8677 array_blocks =
8678 round_size_to_mb(array_blocks,
8679 used_disks);
d55adef9
AK
8680 a->info.custom_array_size = array_blocks;
8681 /* encourage manager to update array
8682 * size
8683 */
e154ced3 8684
d55adef9 8685 a->check_reshape = 1;
633b5610 8686 }
e154ced3
AK
8687 /* finalize online capacity expansion/reshape */
8688 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8689 imsm_set_disk(a,
8690 mdi->disk.raid_disk,
8691 mdi->curr_state);
8692
0e2d1a4e 8693 imsm_progress_container_reshape(super);
e154ced3 8694 }
aad6f216 8695 }
1af97990
AK
8696 }
8697
47ee5a45 8698 /* before we activate this array handle any missing disks */
33414a01
DW
8699 if (consistent == 2)
8700 handle_missing(super, dev);
1e5c6983 8701
0c046afd 8702 if (consistent == 2 &&
b7941fd6 8703 (!is_resync_complete(&a->info) ||
0c046afd
DW
8704 map_state != IMSM_T_STATE_NORMAL ||
8705 dev->vol.migr_state))
01f157d7 8706 consistent = 0;
272906ef 8707
b7941fd6 8708 if (is_resync_complete(&a->info)) {
0c046afd 8709 /* complete intialization / resync,
0556e1a2
DW
8710 * recovery and interrupted recovery is completed in
8711 * ->set_disk
0c046afd
DW
8712 */
8713 if (is_resyncing(dev)) {
8714 dprintf("imsm: mark resync done\n");
809da78e 8715 end_migration(dev, super, map_state);
115c3803 8716 super->updates_pending++;
484240d8 8717 a->last_checkpoint = 0;
115c3803 8718 }
b9172665
AK
8719 } else if ((!is_resyncing(dev) && !failed) &&
8720 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8721 /* mark the start of the init process if nothing is failed */
b7941fd6 8722 dprintf("imsm: mark resync start\n");
1484e727 8723 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8724 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8725 else
8e59f3d8 8726 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8727 super->updates_pending++;
115c3803 8728 }
a862209d 8729
633b5610 8730mark_checkpoint:
5b83bacf
AK
8731 /* skip checkpointing for general migration,
8732 * it is controlled in mdadm
8733 */
8734 if (is_gen_migration(dev))
8735 goto skip_mark_checkpoint;
8736
4036e7ee
MT
8737 /* check if we can update vol_curr_migr_unit from resync_start,
8738 * recovery_start
8739 */
c47b0ff6 8740 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8741 if (blocks_per_unit) {
4036e7ee
MT
8742 set_vol_curr_migr_unit(dev,
8743 a->last_checkpoint / blocks_per_unit);
8744 dprintf("imsm: mark checkpoint (%llu)\n",
8745 vol_curr_migr_unit(dev));
8746 super->updates_pending++;
1e5c6983 8747 }
f8f603f1 8748
5b83bacf 8749skip_mark_checkpoint:
3393c6af 8750 /* mark dirty / clean */
2432ce9b
AP
8751 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8752 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8753 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8754 if (consistent) {
8755 dev->vol.dirty = RAIDVOL_CLEAN;
8756 } else {
8757 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8758 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8759 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8760 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8761 }
a862209d
DW
8762 super->updates_pending++;
8763 }
28bce06f 8764
01f157d7 8765 return consistent;
a862209d
DW
8766}
8767
6f50473f
TM
8768static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8769{
8770 int inst = a->info.container_member;
8771 struct intel_super *super = a->container->sb;
8772 struct imsm_dev *dev = get_imsm_dev(super, inst);
8773 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8774
8775 if (slot > map->num_members) {
8776 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8777 slot, map->num_members - 1);
8778 return -1;
8779 }
8780
8781 if (slot < 0)
8782 return -1;
8783
8784 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8785}
8786
8d45d196 8787static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8788{
8d45d196
DW
8789 int inst = a->info.container_member;
8790 struct intel_super *super = a->container->sb;
949c47a0 8791 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8792 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8793 struct imsm_disk *disk;
7ce05701
LD
8794 struct mdinfo *mdi;
8795 int recovery_not_finished = 0;
0c046afd 8796 int failed;
6f50473f 8797 int ord;
0c046afd 8798 __u8 map_state;
fb12a745
TM
8799 int rebuild_done = 0;
8800 int i;
8d45d196 8801
fb12a745 8802 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8803 if (ord < 0)
8d45d196
DW
8804 return;
8805
4e6e574a 8806 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8807 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8808
5802a811 8809 /* check for new failures */
ae7d61e3 8810 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8811 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8812 super->updates_pending++;
8d45d196 8813 }
47ee5a45 8814
19859edc 8815 /* check if in_sync */
0556e1a2 8816 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8817 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8818
8819 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8820 rebuild_done = 1;
19859edc
DW
8821 super->updates_pending++;
8822 }
8d45d196 8823
3b451610
AK
8824 failed = imsm_count_failed(super, dev, MAP_0);
8825 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8826
0c046afd 8827 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8828 dprintf("imsm: Detected transition to state ");
8829 switch (map_state) {
8830 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8831 dprintf("normal: ");
8832 if (is_rebuilding(dev)) {
1ade5cc1 8833 dprintf_cont("while rebuilding");
7ce05701
LD
8834 /* check if recovery is really finished */
8835 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8836 if (mdi->recovery_start != MaxSector) {
8837 recovery_not_finished = 1;
8838 break;
8839 }
8840 if (recovery_not_finished) {
1ade5cc1
N
8841 dprintf_cont("\n");
8842 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8843 if (a->last_checkpoint < mdi->recovery_start) {
8844 a->last_checkpoint = mdi->recovery_start;
8845 super->updates_pending++;
8846 }
8847 break;
8848 }
94002678 8849 end_migration(dev, super, map_state);
94002678
AK
8850 map->failed_disk_num = ~0;
8851 super->updates_pending++;
8852 a->last_checkpoint = 0;
8853 break;
8854 }
8855 if (is_gen_migration(dev)) {
1ade5cc1 8856 dprintf_cont("while general migration");
bf2f0071 8857 if (a->last_checkpoint >= a->info.component_size)
809da78e 8858 end_migration(dev, super, map_state);
94002678
AK
8859 else
8860 map->map_state = map_state;
28bce06f 8861 map->failed_disk_num = ~0;
94002678 8862 super->updates_pending++;
bf2f0071 8863 break;
94002678
AK
8864 }
8865 break;
8866 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8867 dprintf_cont("degraded: ");
089f9d79 8868 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8869 dprintf_cont("mark degraded");
94002678
AK
8870 map->map_state = map_state;
8871 super->updates_pending++;
8872 a->last_checkpoint = 0;
8873 break;
8874 }
8875 if (is_rebuilding(dev)) {
d7a1fda2 8876 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8877 if (state & DS_FAULTY) {
8878 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8879 if (n == map->failed_disk_num) {
8880 dprintf_cont("end migration");
8881 end_migration(dev, super, map_state);
a4e96fd8 8882 a->last_checkpoint = 0;
d7a1fda2 8883 } else {
a4e96fd8 8884 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8885 map->map_state = map_state;
8886 }
94002678 8887 super->updates_pending++;
fb12a745
TM
8888 }
8889
a4e96fd8
MT
8890 if (!rebuild_done)
8891 break;
8892
fb12a745
TM
8893 /* check if recovery is really finished */
8894 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8895 if (mdi->recovery_start != MaxSector) {
8896 recovery_not_finished = 1;
8897 break;
8898 }
8899 if (recovery_not_finished) {
8900 dprintf_cont("\n");
a4e96fd8 8901 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8902 if (a->last_checkpoint < mdi->recovery_start) {
8903 a->last_checkpoint =
8904 mdi->recovery_start;
8905 super->updates_pending++;
8906 }
8907 break;
94002678 8908 }
fb12a745
TM
8909
8910 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8911 end_migration(dev, super, map_state);
8912 a->last_checkpoint = 0;
8913 super->updates_pending++;
fb12a745
TM
8914
8915 for (i = 0; i < map->num_members; i++) {
8916 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8917
8918 if (idx & IMSM_ORD_REBUILD)
8919 map->failed_disk_num = i;
8920 }
8921 super->updates_pending++;
94002678
AK
8922 break;
8923 }
8924 if (is_gen_migration(dev)) {
1ade5cc1 8925 dprintf_cont("while general migration");
bf2f0071 8926 if (a->last_checkpoint >= a->info.component_size)
809da78e 8927 end_migration(dev, super, map_state);
94002678
AK
8928 else {
8929 map->map_state = map_state;
3b451610 8930 manage_second_map(super, dev);
94002678
AK
8931 }
8932 super->updates_pending++;
bf2f0071 8933 break;
28bce06f 8934 }
6ce1fbf1 8935 if (is_initializing(dev)) {
1ade5cc1 8936 dprintf_cont("while initialization.");
6ce1fbf1
AK
8937 map->map_state = map_state;
8938 super->updates_pending++;
8939 break;
8940 }
94002678
AK
8941 break;
8942 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8943 dprintf_cont("failed: ");
94002678 8944 if (is_gen_migration(dev)) {
1ade5cc1 8945 dprintf_cont("while general migration");
94002678
AK
8946 map->map_state = map_state;
8947 super->updates_pending++;
8948 break;
8949 }
8950 if (map->map_state != map_state) {
1ade5cc1 8951 dprintf_cont("mark failed");
94002678
AK
8952 end_migration(dev, super, map_state);
8953 super->updates_pending++;
8954 a->last_checkpoint = 0;
8955 break;
8956 }
8957 break;
8958 default:
1ade5cc1 8959 dprintf_cont("state %i\n", map_state);
5802a811 8960 }
1ade5cc1 8961 dprintf_cont("\n");
845dea95
NB
8962}
8963
f796af5d 8964static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8965{
f796af5d 8966 void *buf = mpb;
c2a1e7da
DW
8967 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8968 unsigned long long dsize;
8969 unsigned long long sectors;
f36a9ecd 8970 unsigned int sector_size;
c2a1e7da 8971
aec01630
JS
8972 if (!get_dev_sector_size(fd, NULL, &sector_size))
8973 return 1;
c2a1e7da
DW
8974 get_dev_size(fd, NULL, &dsize);
8975
f36a9ecd 8976 if (mpb_size > sector_size) {
272f648f 8977 /* -1 to account for anchor */
f36a9ecd 8978 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8979
272f648f 8980 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8981 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8982 SEEK_SET) < 0)
272f648f 8983 return 1;
c2a1e7da 8984
f36a9ecd
PB
8985 if ((unsigned long long)write(fd, buf + sector_size,
8986 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8987 return 1;
8988 }
c2a1e7da 8989
272f648f 8990 /* first block is stored on second to last sector of the disk */
f36a9ecd 8991 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8992 return 1;
8993
466070ad 8994 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8995 return 1;
8996
c2a1e7da
DW
8997 return 0;
8998}
8999
2e735d19 9000static void imsm_sync_metadata(struct supertype *container)
845dea95 9001{
2e735d19 9002 struct intel_super *super = container->sb;
c2a1e7da 9003
1a64be56 9004 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
9005 if (!super->updates_pending)
9006 return;
9007
36988a3d 9008 write_super_imsm(container, 0);
c2a1e7da
DW
9009
9010 super->updates_pending = 0;
845dea95
NB
9011}
9012
272906ef
DW
9013static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9014{
9015 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9016 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
9017 struct dl *dl;
9018
9019 for (dl = super->disks; dl; dl = dl->next)
9020 if (dl->index == i)
9021 break;
9022
25ed7e59 9023 if (dl && is_failed(&dl->disk))
272906ef
DW
9024 dl = NULL;
9025
9026 if (dl)
1ade5cc1 9027 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
9028
9029 return dl;
9030}
9031
a20d2ba5 9032static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
9033 struct active_array *a, int activate_new,
9034 struct mdinfo *additional_test_list)
272906ef
DW
9035{
9036 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9037 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
9038 struct imsm_super *mpb = super->anchor;
9039 struct imsm_map *map;
272906ef
DW
9040 unsigned long long pos;
9041 struct mdinfo *d;
9042 struct extent *ex;
a20d2ba5 9043 int i, j;
272906ef 9044 int found;
569cc43f
DW
9045 __u32 array_start = 0;
9046 __u32 array_end = 0;
272906ef 9047 struct dl *dl;
6c932028 9048 struct mdinfo *test_list;
272906ef
DW
9049
9050 for (dl = super->disks; dl; dl = dl->next) {
9051 /* If in this array, skip */
9052 for (d = a->info.devs ; d ; d = d->next)
4389ce73 9053 if (is_fd_valid(d->state_fd) &&
e553d2a4 9054 d->disk.major == dl->major &&
272906ef 9055 d->disk.minor == dl->minor) {
8ba77d32
AK
9056 dprintf("%x:%x already in array\n",
9057 dl->major, dl->minor);
272906ef
DW
9058 break;
9059 }
9060 if (d)
9061 continue;
6c932028
AK
9062 test_list = additional_test_list;
9063 while (test_list) {
9064 if (test_list->disk.major == dl->major &&
9065 test_list->disk.minor == dl->minor) {
8ba77d32
AK
9066 dprintf("%x:%x already in additional test list\n",
9067 dl->major, dl->minor);
9068 break;
9069 }
6c932028 9070 test_list = test_list->next;
8ba77d32 9071 }
6c932028 9072 if (test_list)
8ba77d32 9073 continue;
272906ef 9074
e553d2a4 9075 /* skip in use or failed drives */
25ed7e59 9076 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
9077 dl->index == -2) {
9078 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 9079 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
9080 continue;
9081 }
9082
a20d2ba5
DW
9083 /* skip pure spares when we are looking for partially
9084 * assimilated drives
9085 */
9086 if (dl->index == -1 && !activate_new)
9087 continue;
9088
f2cc4f7d
AO
9089 if (!drive_validate_sector_size(super, dl))
9090 continue;
9091
272906ef 9092 /* Does this unused device have the requisite free space?
a20d2ba5 9093 * It needs to be able to cover all member volumes
272906ef 9094 */
05501181 9095 ex = get_extents(super, dl, 1);
272906ef
DW
9096 if (!ex) {
9097 dprintf("cannot get extents\n");
9098 continue;
9099 }
a20d2ba5
DW
9100 for (i = 0; i < mpb->num_raid_devs; i++) {
9101 dev = get_imsm_dev(super, i);
238c0a71 9102 map = get_imsm_map(dev, MAP_0);
272906ef 9103
a20d2ba5
DW
9104 /* check if this disk is already a member of
9105 * this array
272906ef 9106 */
620b1713 9107 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
9108 continue;
9109
9110 found = 0;
9111 j = 0;
9112 pos = 0;
5551b113 9113 array_start = pba_of_lba0(map);
329c8278 9114 array_end = array_start +
44490938 9115 per_dev_array_size(map) - 1;
a20d2ba5
DW
9116
9117 do {
9118 /* check that we can start at pba_of_lba0 with
44490938 9119 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9120 */
329c8278 9121 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9122 found = 1;
9123 break;
9124 }
9125 pos = ex[j].start + ex[j].size;
9126 j++;
9127 } while (ex[j-1].size);
9128
9129 if (!found)
272906ef 9130 break;
a20d2ba5 9131 }
272906ef
DW
9132
9133 free(ex);
a20d2ba5 9134 if (i < mpb->num_raid_devs) {
329c8278
DW
9135 dprintf("%x:%x does not have %u to %u available\n",
9136 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9137 /* No room */
9138 continue;
a20d2ba5
DW
9139 }
9140 return dl;
272906ef
DW
9141 }
9142
9143 return dl;
9144}
9145
95d07a2c
LM
9146static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9147{
9148 struct imsm_dev *dev2;
9149 struct imsm_map *map;
9150 struct dl *idisk;
9151 int slot;
9152 int idx;
9153 __u8 state;
9154
9155 dev2 = get_imsm_dev(cont->sb, dev_idx);
756a15f3
MG
9156
9157 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9158 if (state == IMSM_T_STATE_FAILED) {
9159 map = get_imsm_map(dev2, MAP_0);
9160 for (slot = 0; slot < map->num_members; slot++) {
9161 /*
9162 * Check if failed disks are deleted from intel
9163 * disk list or are marked to be deleted
9164 */
9165 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9166 idisk = get_imsm_dl_disk(cont->sb, idx);
9167 /*
9168 * Do not rebuild the array if failed disks
9169 * from failed sub-array are not removed from
9170 * container.
9171 */
9172 if (idisk &&
9173 is_failed(&idisk->disk) &&
9174 (idisk->action != DISK_REMOVE))
9175 return 0;
95d07a2c
LM
9176 }
9177 }
9178 return 1;
9179}
9180
88758e9d
DW
9181static struct mdinfo *imsm_activate_spare(struct active_array *a,
9182 struct metadata_update **updates)
9183{
9184 /**
d23fe947
DW
9185 * Find a device with unused free space and use it to replace a
9186 * failed/vacant region in an array. We replace failed regions one a
9187 * array at a time. The result is that a new spare disk will be added
9188 * to the first failed array and after the monitor has finished
9189 * propagating failures the remainder will be consumed.
88758e9d 9190 *
d23fe947
DW
9191 * FIXME add a capability for mdmon to request spares from another
9192 * container.
88758e9d
DW
9193 */
9194
9195 struct intel_super *super = a->container->sb;
88758e9d 9196 int inst = a->info.container_member;
949c47a0 9197 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9198 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9199 int failed = a->info.array.raid_disks;
9200 struct mdinfo *rv = NULL;
9201 struct mdinfo *d;
9202 struct mdinfo *di;
9203 struct metadata_update *mu;
9204 struct dl *dl;
9205 struct imsm_update_activate_spare *u;
9206 int num_spares = 0;
9207 int i;
95d07a2c 9208 int allowed;
88758e9d 9209
4389ce73
MT
9210 for (d = a->info.devs ; d; d = d->next) {
9211 if (!is_fd_valid(d->state_fd))
9212 continue;
9213
9214 if (d->curr_state & DS_FAULTY)
88758e9d
DW
9215 /* wait for Removal to happen */
9216 return NULL;
4389ce73
MT
9217
9218 failed--;
88758e9d
DW
9219 }
9220
9221 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9222 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9223
e2962bfc
AK
9224 if (imsm_reshape_blocks_arrays_changes(super))
9225 return NULL;
1af97990 9226
fc8ca064
AK
9227 /* Cannot activate another spare if rebuild is in progress already
9228 */
9229 if (is_rebuilding(dev)) {
7a862a02 9230 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9231 return NULL;
9232 }
9233
89c67882
AK
9234 if (a->info.array.level == 4)
9235 /* No repair for takeovered array
9236 * imsm doesn't support raid4
9237 */
9238 return NULL;
9239
3b451610
AK
9240 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9241 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9242 return NULL;
9243
83ca7d45
AP
9244 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9245 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9246 return NULL;
9247 }
9248
95d07a2c
LM
9249 /*
9250 * If there are any failed disks check state of the other volume.
9251 * Block rebuild if the another one is failed until failed disks
9252 * are removed from container.
9253 */
9254 if (failed) {
7a862a02 9255 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9256 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9257 /* check if states of the other volumes allow for rebuild */
9258 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9259 if (i != inst) {
9260 allowed = imsm_rebuild_allowed(a->container,
9261 i, failed);
9262 if (!allowed)
9263 return NULL;
9264 }
9265 }
9266 }
9267
88758e9d 9268 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9269 for (i = 0; i < a->info.array.raid_disks; i++) {
9270 for (d = a->info.devs ; d ; d = d->next)
9271 if (d->disk.raid_disk == i)
9272 break;
9273 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4389ce73 9274 if (d && is_fd_valid(d->state_fd))
88758e9d
DW
9275 continue;
9276
272906ef 9277 /*
a20d2ba5
DW
9278 * OK, this device needs recovery. Try to re-add the
9279 * previous occupant of this slot, if this fails see if
9280 * we can continue the assimilation of a spare that was
9281 * partially assimilated, finally try to activate a new
9282 * spare.
272906ef
DW
9283 */
9284 dl = imsm_readd(super, i, a);
9285 if (!dl)
b303fe21 9286 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9287 if (!dl)
b303fe21 9288 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9289 if (!dl)
9290 continue;
1011e834 9291
272906ef 9292 /* found a usable disk with enough space */
503975b9 9293 di = xcalloc(1, sizeof(*di));
272906ef
DW
9294
9295 /* dl->index will be -1 in the case we are activating a
9296 * pristine spare. imsm_process_update() will create a
9297 * new index in this case. Once a disk is found to be
9298 * failed in all member arrays it is kicked from the
9299 * metadata
9300 */
9301 di->disk.number = dl->index;
d23fe947 9302
272906ef
DW
9303 /* (ab)use di->devs to store a pointer to the device
9304 * we chose
9305 */
9306 di->devs = (struct mdinfo *) dl;
9307
9308 di->disk.raid_disk = i;
9309 di->disk.major = dl->major;
9310 di->disk.minor = dl->minor;
9311 di->disk.state = 0;
d23534e4 9312 di->recovery_start = 0;
5551b113 9313 di->data_offset = pba_of_lba0(map);
272906ef
DW
9314 di->component_size = a->info.component_size;
9315 di->container_member = inst;
5e46202e 9316 di->bb.supported = 1;
2c8890e9 9317 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9318 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9319 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9320 }
148acb7b 9321 super->random = random32();
272906ef
DW
9322 di->next = rv;
9323 rv = di;
9324 num_spares++;
9325 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9326 i, di->data_offset);
88758e9d
DW
9327 }
9328
9329 if (!rv)
9330 /* No spares found */
9331 return rv;
9332 /* Now 'rv' has a list of devices to return.
9333 * Create a metadata_update record to update the
9334 * disk_ord_tbl for the array
9335 */
503975b9 9336 mu = xmalloc(sizeof(*mu));
1011e834 9337 mu->buf = xcalloc(num_spares,
503975b9 9338 sizeof(struct imsm_update_activate_spare));
88758e9d 9339 mu->space = NULL;
cb23f1f4 9340 mu->space_list = NULL;
88758e9d
DW
9341 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9342 mu->next = *updates;
9343 u = (struct imsm_update_activate_spare *) mu->buf;
9344
9345 for (di = rv ; di ; di = di->next) {
9346 u->type = update_activate_spare;
d23fe947
DW
9347 u->dl = (struct dl *) di->devs;
9348 di->devs = NULL;
88758e9d
DW
9349 u->slot = di->disk.raid_disk;
9350 u->array = inst;
9351 u->next = u + 1;
9352 u++;
9353 }
9354 (u-1)->next = NULL;
9355 *updates = mu;
9356
9357 return rv;
9358}
9359
54c2c1ea 9360static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9361{
54c2c1ea 9362 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9363 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9364 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9365 struct disk_info *inf = get_disk_info(u);
9366 struct imsm_disk *disk;
8273f55e
DW
9367 int i;
9368 int j;
8273f55e 9369
54c2c1ea 9370 for (i = 0; i < map->num_members; i++) {
238c0a71 9371 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9372 for (j = 0; j < new_map->num_members; j++)
9373 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9374 return 1;
9375 }
9376
9377 return 0;
9378}
9379
1a64be56
LM
9380static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9381{
594dc1b8
JS
9382 struct dl *dl;
9383
1a64be56 9384 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9385 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9386 return dl;
9387 return NULL;
9388}
9389
9390static int remove_disk_super(struct intel_super *super, int major, int minor)
9391{
594dc1b8 9392 struct dl *prev;
1a64be56
LM
9393 struct dl *dl;
9394
9395 prev = NULL;
9396 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9397 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9398 /* remove */
9399 if (prev)
9400 prev->next = dl->next;
9401 else
9402 super->disks = dl->next;
9403 dl->next = NULL;
3a85bf0e 9404 __free_imsm_disk(dl, 1);
1ade5cc1 9405 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9406 break;
9407 }
9408 prev = dl;
9409 }
9410 return 0;
9411}
9412
f21e18ca 9413static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9414
1a64be56
LM
9415static int add_remove_disk_update(struct intel_super *super)
9416{
9417 int check_degraded = 0;
594dc1b8
JS
9418 struct dl *disk;
9419
1a64be56
LM
9420 /* add/remove some spares to/from the metadata/contrainer */
9421 while (super->disk_mgmt_list) {
9422 struct dl *disk_cfg;
9423
9424 disk_cfg = super->disk_mgmt_list;
9425 super->disk_mgmt_list = disk_cfg->next;
9426 disk_cfg->next = NULL;
9427
9428 if (disk_cfg->action == DISK_ADD) {
9429 disk_cfg->next = super->disks;
9430 super->disks = disk_cfg;
9431 check_degraded = 1;
1ade5cc1
N
9432 dprintf("added %x:%x\n",
9433 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9434 } else if (disk_cfg->action == DISK_REMOVE) {
9435 dprintf("Disk remove action processed: %x.%x\n",
9436 disk_cfg->major, disk_cfg->minor);
9437 disk = get_disk_super(super,
9438 disk_cfg->major,
9439 disk_cfg->minor);
9440 if (disk) {
9441 /* store action status */
9442 disk->action = DISK_REMOVE;
9443 /* remove spare disks only */
9444 if (disk->index == -1) {
9445 remove_disk_super(super,
9446 disk_cfg->major,
9447 disk_cfg->minor);
91c97c54
MT
9448 } else {
9449 disk_cfg->fd = disk->fd;
9450 disk->fd = -1;
1a64be56
LM
9451 }
9452 }
9453 /* release allocate disk structure */
3a85bf0e 9454 __free_imsm_disk(disk_cfg, 1);
1a64be56
LM
9455 }
9456 }
9457 return check_degraded;
9458}
9459
a29911da
PC
9460static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9461 struct intel_super *super,
9462 void ***space_list)
9463{
9464 struct intel_dev *id;
9465 void **tofree = NULL;
9466 int ret_val = 0;
9467
1ade5cc1 9468 dprintf("(enter)\n");
089f9d79 9469 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9470 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9471 return ret_val;
9472 }
089f9d79 9473 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9474 dprintf("imsm: Error: Memory is not allocated\n");
9475 return ret_val;
9476 }
9477
9478 for (id = super->devlist ; id; id = id->next) {
9479 if (id->index == (unsigned)u->subdev) {
9480 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9481 struct imsm_map *map;
9482 struct imsm_dev *new_dev =
9483 (struct imsm_dev *)*space_list;
238c0a71 9484 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9485 int to_state;
9486 struct dl *new_disk;
9487
9488 if (new_dev == NULL)
9489 return ret_val;
9490 *space_list = **space_list;
9491 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9492 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9493 if (migr_map) {
9494 dprintf("imsm: Error: migration in progress");
9495 return ret_val;
9496 }
9497
9498 to_state = map->map_state;
9499 if ((u->new_level == 5) && (map->raid_level == 0)) {
9500 map->num_members++;
9501 /* this should not happen */
9502 if (u->new_disks[0] < 0) {
9503 map->failed_disk_num =
9504 map->num_members - 1;
9505 to_state = IMSM_T_STATE_DEGRADED;
9506 } else
9507 to_state = IMSM_T_STATE_NORMAL;
9508 }
8e59f3d8 9509 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9510 if (u->new_level > -1)
9511 map->raid_level = u->new_level;
238c0a71 9512 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9513 if ((u->new_level == 5) &&
9514 (migr_map->raid_level == 0)) {
9515 int ord = map->num_members - 1;
9516 migr_map->num_members--;
9517 if (u->new_disks[0] < 0)
9518 ord |= IMSM_ORD_REBUILD;
9519 set_imsm_ord_tbl_ent(map,
9520 map->num_members - 1,
9521 ord);
9522 }
9523 id->dev = new_dev;
9524 tofree = (void **)dev;
9525
4bba0439
PC
9526 /* update chunk size
9527 */
06fb291a 9528 if (u->new_chunksize > 0) {
9529d343
MD
9529 struct imsm_map *dest_map =
9530 get_imsm_map(dev, MAP_0);
06fb291a 9531 int used_disks =
9529d343 9532 imsm_num_data_members(dest_map);
06fb291a
PB
9533
9534 if (used_disks == 0)
9535 return ret_val;
9536
4bba0439
PC
9537 map->blocks_per_strip =
9538 __cpu_to_le16(u->new_chunksize * 2);
1c275381 9539 update_num_data_stripes(map, imsm_dev_size(dev));
06fb291a 9540 }
4bba0439 9541
44490938
MD
9542 /* ensure blocks_per_member has valid value
9543 */
9544 set_blocks_per_member(map,
9545 per_dev_array_size(map) +
9546 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9547
a29911da
PC
9548 /* add disk
9549 */
089f9d79
JS
9550 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9551 migr_map->raid_level == map->raid_level)
a29911da
PC
9552 goto skip_disk_add;
9553
9554 if (u->new_disks[0] >= 0) {
9555 /* use passes spare
9556 */
9557 new_disk = get_disk_super(super,
9558 major(u->new_disks[0]),
9559 minor(u->new_disks[0]));
7a862a02 9560 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9561 major(u->new_disks[0]),
9562 minor(u->new_disks[0]),
9563 new_disk, new_disk->index);
9564 if (new_disk == NULL)
9565 goto error_disk_add;
9566
9567 new_disk->index = map->num_members - 1;
9568 /* slot to fill in autolayout
9569 */
9570 new_disk->raiddisk = new_disk->index;
9571 new_disk->disk.status |= CONFIGURED_DISK;
9572 new_disk->disk.status &= ~SPARE_DISK;
9573 } else
9574 goto error_disk_add;
9575
9576skip_disk_add:
9577 *tofree = *space_list;
9578 /* calculate new size
9579 */
f3871fdc 9580 imsm_set_array_size(new_dev, -1);
a29911da
PC
9581
9582 ret_val = 1;
9583 }
9584 }
9585
9586 if (tofree)
9587 *space_list = tofree;
9588 return ret_val;
9589
9590error_disk_add:
9591 dprintf("Error: imsm: Cannot find disk.\n");
9592 return ret_val;
9593}
9594
f3871fdc
AK
9595static int apply_size_change_update(struct imsm_update_size_change *u,
9596 struct intel_super *super)
9597{
9598 struct intel_dev *id;
9599 int ret_val = 0;
9600
1ade5cc1 9601 dprintf("(enter)\n");
089f9d79 9602 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9603 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9604 return ret_val;
9605 }
9606
9607 for (id = super->devlist ; id; id = id->next) {
9608 if (id->index == (unsigned)u->subdev) {
9609 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9610 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9611 int used_disks = imsm_num_data_members(map);
f3871fdc 9612 unsigned long long blocks_per_member;
44490938
MD
9613 unsigned long long new_size_per_disk;
9614
9615 if (used_disks == 0)
9616 return 0;
f3871fdc
AK
9617
9618 /* calculate new size
9619 */
44490938
MD
9620 new_size_per_disk = u->new_size / used_disks;
9621 blocks_per_member = new_size_per_disk +
9622 NUM_BLOCKS_DIRTY_STRIPE_REGION;
f3871fdc 9623
1c275381
MT
9624 imsm_set_array_size(dev, u->new_size);
9625 set_blocks_per_member(map, blocks_per_member);
9626 update_num_data_stripes(map, u->new_size);
f3871fdc
AK
9627 ret_val = 1;
9628 break;
9629 }
9630 }
9631
9632 return ret_val;
9633}
9634
69d40de4
JR
9635static int prepare_spare_to_activate(struct supertype *st,
9636 struct imsm_update_activate_spare *u)
9637{
9638 struct intel_super *super = st->sb;
9639 int prev_current_vol = super->current_vol;
9640 struct active_array *a;
9641 int ret = 1;
9642
9643 for (a = st->arrays; a; a = a->next)
9644 /*
9645 * Additional initialization (adding bitmap header, filling
9646 * the bitmap area with '1's to force initial rebuild for a whole
9647 * data-area) is required when adding the spare to the volume
9648 * with write-intent bitmap.
9649 */
9650 if (a->info.container_member == u->array &&
9651 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9652 struct dl *dl;
9653
9654 for (dl = super->disks; dl; dl = dl->next)
9655 if (dl == u->dl)
9656 break;
9657 if (!dl)
9658 break;
9659
9660 super->current_vol = u->array;
9661 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9662 ret = 0;
9663 super->current_vol = prev_current_vol;
9664 }
9665 return ret;
9666}
9667
061d7da3 9668static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9669 struct intel_super *super,
061d7da3
LO
9670 struct active_array *active_array)
9671{
9672 struct imsm_super *mpb = super->anchor;
9673 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9674 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9675 struct imsm_map *migr_map;
9676 struct active_array *a;
9677 struct imsm_disk *disk;
9678 __u8 to_state;
9679 struct dl *dl;
9680 unsigned int found;
9681 int failed;
5961eeec 9682 int victim;
061d7da3 9683 int i;
5961eeec 9684 int second_map_created = 0;
061d7da3 9685
5961eeec 9686 for (; u; u = u->next) {
238c0a71 9687 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9688
5961eeec 9689 if (victim < 0)
9690 return 0;
061d7da3 9691
5961eeec 9692 for (dl = super->disks; dl; dl = dl->next)
9693 if (dl == u->dl)
9694 break;
061d7da3 9695
5961eeec 9696 if (!dl) {
7a862a02 9697 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9698 u->dl->index);
9699 return 0;
9700 }
061d7da3 9701
5961eeec 9702 /* count failures (excluding rebuilds and the victim)
9703 * to determine map[0] state
9704 */
9705 failed = 0;
9706 for (i = 0; i < map->num_members; i++) {
9707 if (i == u->slot)
9708 continue;
9709 disk = get_imsm_disk(super,
238c0a71 9710 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9711 if (!disk || is_failed(disk))
9712 failed++;
9713 }
061d7da3 9714
5961eeec 9715 /* adding a pristine spare, assign a new index */
9716 if (dl->index < 0) {
9717 dl->index = super->anchor->num_disks;
9718 super->anchor->num_disks++;
9719 }
9720 disk = &dl->disk;
9721 disk->status |= CONFIGURED_DISK;
9722 disk->status &= ~SPARE_DISK;
9723
9724 /* mark rebuild */
238c0a71 9725 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9726 if (!second_map_created) {
9727 second_map_created = 1;
9728 map->map_state = IMSM_T_STATE_DEGRADED;
9729 migrate(dev, super, to_state, MIGR_REBUILD);
9730 } else
9731 map->map_state = to_state;
238c0a71 9732 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9733 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9734 set_imsm_ord_tbl_ent(migr_map, u->slot,
9735 dl->index | IMSM_ORD_REBUILD);
9736
9737 /* update the family_num to mark a new container
9738 * generation, being careful to record the existing
9739 * family_num in orig_family_num to clean up after
9740 * earlier mdadm versions that neglected to set it.
9741 */
9742 if (mpb->orig_family_num == 0)
9743 mpb->orig_family_num = mpb->family_num;
9744 mpb->family_num += super->random;
9745
9746 /* count arrays using the victim in the metadata */
9747 found = 0;
9748 for (a = active_array; a ; a = a->next) {
76c152ca 9749 int dev_idx = a->info.container_member;
061d7da3 9750
76c152ca 9751 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
5961eeec 9752 found++;
9753 }
061d7da3 9754
5961eeec 9755 /* delete the victim if it is no longer being
9756 * utilized anywhere
061d7da3 9757 */
5961eeec 9758 if (!found) {
9759 struct dl **dlp;
061d7da3 9760
5961eeec 9761 /* We know that 'manager' isn't touching anything,
9762 * so it is safe to delete
9763 */
9764 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9765 if ((*dlp)->index == victim)
9766 break;
5961eeec 9767
9768 /* victim may be on the missing list */
9769 if (!*dlp)
9770 for (dlp = &super->missing; *dlp;
9771 dlp = &(*dlp)->next)
9772 if ((*dlp)->index == victim)
9773 break;
9774 imsm_delete(super, dlp, victim);
9775 }
061d7da3
LO
9776 }
9777
9778 return 1;
9779}
a29911da 9780
2e5dc010
N
9781static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9782 struct intel_super *super,
9783 void ***space_list)
9784{
9785 struct dl *new_disk;
9786 struct intel_dev *id;
9787 int i;
9788 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9789 int disk_count = u->old_raid_disks;
2e5dc010
N
9790 void **tofree = NULL;
9791 int devices_to_reshape = 1;
9792 struct imsm_super *mpb = super->anchor;
9793 int ret_val = 0;
d098291a 9794 unsigned int dev_id;
2e5dc010 9795
1ade5cc1 9796 dprintf("(enter)\n");
2e5dc010
N
9797
9798 /* enable spares to use in array */
9799 for (i = 0; i < delta_disks; i++) {
9800 new_disk = get_disk_super(super,
9801 major(u->new_disks[i]),
9802 minor(u->new_disks[i]));
7a862a02 9803 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9804 major(u->new_disks[i]), minor(u->new_disks[i]),
9805 new_disk, new_disk->index);
089f9d79
JS
9806 if (new_disk == NULL ||
9807 (new_disk->index >= 0 &&
9808 new_disk->index < u->old_raid_disks))
2e5dc010 9809 goto update_reshape_exit;
ee4beede 9810 new_disk->index = disk_count++;
2e5dc010
N
9811 /* slot to fill in autolayout
9812 */
9813 new_disk->raiddisk = new_disk->index;
9814 new_disk->disk.status |=
9815 CONFIGURED_DISK;
9816 new_disk->disk.status &= ~SPARE_DISK;
9817 }
9818
ed7333bd
AK
9819 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9820 mpb->num_raid_devs);
2e5dc010
N
9821 /* manage changes in volume
9822 */
d098291a 9823 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9824 void **sp = *space_list;
9825 struct imsm_dev *newdev;
9826 struct imsm_map *newmap, *oldmap;
9827
d098291a
AK
9828 for (id = super->devlist ; id; id = id->next) {
9829 if (id->index == dev_id)
9830 break;
9831 }
9832 if (id == NULL)
9833 break;
2e5dc010
N
9834 if (!sp)
9835 continue;
9836 *space_list = *sp;
9837 newdev = (void*)sp;
9838 /* Copy the dev, but not (all of) the map */
9839 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9840 oldmap = get_imsm_map(id->dev, MAP_0);
9841 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9842 /* Copy the current map */
9843 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9844 /* update one device only
9845 */
9846 if (devices_to_reshape) {
ed7333bd
AK
9847 dprintf("imsm: modifying subdev: %i\n",
9848 id->index);
2e5dc010
N
9849 devices_to_reshape--;
9850 newdev->vol.migr_state = 1;
4036e7ee 9851 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9852 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9853 newmap->num_members = u->new_raid_disks;
9854 for (i = 0; i < delta_disks; i++) {
9855 set_imsm_ord_tbl_ent(newmap,
9856 u->old_raid_disks + i,
9857 u->old_raid_disks + i);
9858 }
9859 /* New map is correct, now need to save old map
9860 */
238c0a71 9861 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9862 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9863
f3871fdc 9864 imsm_set_array_size(newdev, -1);
2e5dc010
N
9865 }
9866
9867 sp = (void **)id->dev;
9868 id->dev = newdev;
9869 *sp = tofree;
9870 tofree = sp;
8e59f3d8
AK
9871
9872 /* Clear migration record */
9873 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9874 }
819bc634
AK
9875 if (tofree)
9876 *space_list = tofree;
2e5dc010
N
9877 ret_val = 1;
9878
9879update_reshape_exit:
9880
9881 return ret_val;
9882}
9883
bb025c2f 9884static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9885 struct intel_super *super,
9886 void ***space_list)
bb025c2f
KW
9887{
9888 struct imsm_dev *dev = NULL;
8ca6df95
KW
9889 struct intel_dev *dv;
9890 struct imsm_dev *dev_new;
bb025c2f
KW
9891 struct imsm_map *map;
9892 struct dl *dm, *du;
8ca6df95 9893 int i;
bb025c2f
KW
9894
9895 for (dv = super->devlist; dv; dv = dv->next)
9896 if (dv->index == (unsigned int)u->subarray) {
9897 dev = dv->dev;
9898 break;
9899 }
9900
9901 if (dev == NULL)
9902 return 0;
9903
238c0a71 9904 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9905
9906 if (u->direction == R10_TO_R0) {
43d5ec18 9907 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9908 if (imsm_count_failed(super, dev, MAP_0) !=
9909 (map->num_members / 2))
43d5ec18
KW
9910 return 0;
9911
bb025c2f
KW
9912 /* iterate through devices to mark removed disks as spare */
9913 for (dm = super->disks; dm; dm = dm->next) {
9914 if (dm->disk.status & FAILED_DISK) {
9915 int idx = dm->index;
9916 /* update indexes on the disk list */
9917/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9918 the index values will end up being correct.... NB */
9919 for (du = super->disks; du; du = du->next)
9920 if (du->index > idx)
9921 du->index--;
9922 /* mark as spare disk */
a8619d23 9923 mark_spare(dm);
bb025c2f
KW
9924 }
9925 }
bb025c2f 9926 /* update map */
1c275381 9927 map->num_members /= map->num_domains;
bb025c2f 9928 map->map_state = IMSM_T_STATE_NORMAL;
bb025c2f 9929 map->raid_level = 0;
1c275381
MT
9930 set_num_domains(map);
9931 update_num_data_stripes(map, imsm_dev_size(dev));
bb025c2f
KW
9932 map->failed_disk_num = -1;
9933 }
9934
8ca6df95
KW
9935 if (u->direction == R0_TO_R10) {
9936 void **space;
4a353e6e 9937
8ca6df95
KW
9938 /* update slots in current disk list */
9939 for (dm = super->disks; dm; dm = dm->next) {
9940 if (dm->index >= 0)
9941 dm->index *= 2;
9942 }
9943 /* create new *missing* disks */
9944 for (i = 0; i < map->num_members; i++) {
9945 space = *space_list;
9946 if (!space)
9947 continue;
9948 *space_list = *space;
9949 du = (void *)space;
9950 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9951 du->fd = -1;
9952 du->minor = 0;
9953 du->major = 0;
9954 du->index = (i * 2) + 1;
9955 sprintf((char *)du->disk.serial,
9956 " MISSING_%d", du->index);
9957 sprintf((char *)du->serial,
9958 "MISSING_%d", du->index);
9959 du->next = super->missing;
9960 super->missing = du;
9961 }
9962 /* create new dev and map */
9963 space = *space_list;
9964 if (!space)
9965 return 0;
9966 *space_list = *space;
9967 dev_new = (void *)space;
9968 memcpy(dev_new, dev, sizeof(*dev));
9969 /* update new map */
238c0a71 9970 map = get_imsm_map(dev_new, MAP_0);
1c275381 9971
1a2487c2 9972 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95 9973 map->raid_level = 1;
1c275381
MT
9974 set_num_domains(map);
9975 map->num_members = map->num_members * map->num_domains;
9976 update_num_data_stripes(map, imsm_dev_size(dev));
4a353e6e 9977
8ca6df95
KW
9978 /* replace dev<->dev_new */
9979 dv->dev = dev_new;
9980 }
bb025c2f
KW
9981 /* update disk order table */
9982 for (du = super->disks; du; du = du->next)
9983 if (du->index >= 0)
9984 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9985 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9986 if (du->index >= 0) {
9987 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9988 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9989 }
bb025c2f
KW
9990
9991 return 1;
9992}
9993
e8319a19
DW
9994static void imsm_process_update(struct supertype *st,
9995 struct metadata_update *update)
9996{
9997 /**
9998 * crack open the metadata_update envelope to find the update record
9999 * update can be one of:
d195167d
AK
10000 * update_reshape_container_disks - all the arrays in the container
10001 * are being reshaped to have more devices. We need to mark
10002 * the arrays for general migration and convert selected spares
10003 * into active devices.
10004 * update_activate_spare - a spare device has replaced a failed
1011e834
N
10005 * device in an array, update the disk_ord_tbl. If this disk is
10006 * present in all member arrays then also clear the SPARE_DISK
10007 * flag
d195167d
AK
10008 * update_create_array
10009 * update_kill_array
10010 * update_rename_array
10011 * update_add_remove_disk
e8319a19
DW
10012 */
10013 struct intel_super *super = st->sb;
4d7b1503 10014 struct imsm_super *mpb;
e8319a19
DW
10015 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10016
4d7b1503
DW
10017 /* update requires a larger buf but the allocation failed */
10018 if (super->next_len && !super->next_buf) {
10019 super->next_len = 0;
10020 return;
10021 }
10022
10023 if (super->next_buf) {
10024 memcpy(super->next_buf, super->buf, super->len);
10025 free(super->buf);
10026 super->len = super->next_len;
10027 super->buf = super->next_buf;
10028
10029 super->next_len = 0;
10030 super->next_buf = NULL;
10031 }
10032
10033 mpb = super->anchor;
10034
e8319a19 10035 switch (type) {
0ec5d470
AK
10036 case update_general_migration_checkpoint: {
10037 struct intel_dev *id;
10038 struct imsm_update_general_migration_checkpoint *u =
10039 (void *)update->buf;
10040
1ade5cc1 10041 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
10042
10043 /* find device under general migration */
10044 for (id = super->devlist ; id; id = id->next) {
10045 if (is_gen_migration(id->dev)) {
4036e7ee
MT
10046 set_vol_curr_migr_unit(id->dev,
10047 u->curr_migr_unit);
0ec5d470
AK
10048 super->updates_pending++;
10049 }
10050 }
10051 break;
10052 }
bb025c2f
KW
10053 case update_takeover: {
10054 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
10055 if (apply_takeover_update(u, super, &update->space_list)) {
10056 imsm_update_version_info(super);
bb025c2f 10057 super->updates_pending++;
1a2487c2 10058 }
bb025c2f
KW
10059 break;
10060 }
10061
78b10e66 10062 case update_reshape_container_disks: {
d195167d 10063 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
10064 if (apply_reshape_container_disks_update(
10065 u, super, &update->space_list))
10066 super->updates_pending++;
78b10e66
N
10067 break;
10068 }
48c5303a 10069 case update_reshape_migration: {
a29911da
PC
10070 struct imsm_update_reshape_migration *u = (void *)update->buf;
10071 if (apply_reshape_migration_update(
10072 u, super, &update->space_list))
10073 super->updates_pending++;
48c5303a
PC
10074 break;
10075 }
f3871fdc
AK
10076 case update_size_change: {
10077 struct imsm_update_size_change *u = (void *)update->buf;
10078 if (apply_size_change_update(u, super))
10079 super->updates_pending++;
10080 break;
10081 }
e8319a19 10082 case update_activate_spare: {
1011e834 10083 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
10084
10085 if (prepare_spare_to_activate(st, u) &&
10086 apply_update_activate_spare(u, super, st->arrays))
061d7da3 10087 super->updates_pending++;
8273f55e
DW
10088 break;
10089 }
10090 case update_create_array: {
10091 /* someone wants to create a new array, we need to be aware of
10092 * a few races/collisions:
10093 * 1/ 'Create' called by two separate instances of mdadm
10094 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10095 * devices that have since been assimilated via
10096 * activate_spare.
10097 * In the event this update can not be carried out mdadm will
10098 * (FIX ME) notice that its update did not take hold.
10099 */
10100 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10101 struct intel_dev *dv;
8273f55e
DW
10102 struct imsm_dev *dev;
10103 struct imsm_map *map, *new_map;
10104 unsigned long long start, end;
10105 unsigned long long new_start, new_end;
10106 int i;
54c2c1ea
DW
10107 struct disk_info *inf;
10108 struct dl *dl;
8273f55e
DW
10109
10110 /* handle racing creates: first come first serve */
10111 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10112 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10113 goto create_error;
8273f55e
DW
10114 }
10115
10116 /* check update is next in sequence */
10117 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10118 dprintf("can not create array %d expected index %d\n",
10119 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10120 goto create_error;
8273f55e
DW
10121 }
10122
238c0a71 10123 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10124 new_start = pba_of_lba0(new_map);
44490938 10125 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10126 inf = get_disk_info(u);
8273f55e
DW
10127
10128 /* handle activate_spare versus create race:
10129 * check to make sure that overlapping arrays do not include
10130 * overalpping disks
10131 */
10132 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10133 dev = get_imsm_dev(super, i);
238c0a71 10134 map = get_imsm_map(dev, MAP_0);
5551b113 10135 start = pba_of_lba0(map);
44490938 10136 end = start + per_dev_array_size(map);
8273f55e
DW
10137 if ((new_start >= start && new_start <= end) ||
10138 (start >= new_start && start <= new_end))
54c2c1ea
DW
10139 /* overlap */;
10140 else
10141 continue;
10142
10143 if (disks_overlap(super, i, u)) {
1ade5cc1 10144 dprintf("arrays overlap\n");
ba2de7ba 10145 goto create_error;
8273f55e
DW
10146 }
10147 }
8273f55e 10148
949c47a0
DW
10149 /* check that prepare update was successful */
10150 if (!update->space) {
1ade5cc1 10151 dprintf("prepare update failed\n");
ba2de7ba 10152 goto create_error;
949c47a0
DW
10153 }
10154
54c2c1ea
DW
10155 /* check that all disks are still active before committing
10156 * changes. FIXME: could we instead handle this by creating a
10157 * degraded array? That's probably not what the user expects,
10158 * so better to drop this update on the floor.
10159 */
10160 for (i = 0; i < new_map->num_members; i++) {
10161 dl = serial_to_dl(inf[i].serial, super);
10162 if (!dl) {
1ade5cc1 10163 dprintf("disk disappeared\n");
ba2de7ba 10164 goto create_error;
54c2c1ea 10165 }
949c47a0
DW
10166 }
10167
8273f55e 10168 super->updates_pending++;
54c2c1ea
DW
10169
10170 /* convert spares to members and fixup ord_tbl */
10171 for (i = 0; i < new_map->num_members; i++) {
10172 dl = serial_to_dl(inf[i].serial, super);
10173 if (dl->index == -1) {
10174 dl->index = mpb->num_disks;
10175 mpb->num_disks++;
10176 dl->disk.status |= CONFIGURED_DISK;
10177 dl->disk.status &= ~SPARE_DISK;
10178 }
10179 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10180 }
10181
ba2de7ba
DW
10182 dv = update->space;
10183 dev = dv->dev;
949c47a0
DW
10184 update->space = NULL;
10185 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10186 dv->index = u->dev_idx;
10187 dv->next = super->devlist;
10188 super->devlist = dv;
8273f55e 10189 mpb->num_raid_devs++;
8273f55e 10190
4d1313e9 10191 imsm_update_version_info(super);
8273f55e 10192 break;
ba2de7ba
DW
10193 create_error:
10194 /* mdmon knows how to release update->space, but not
10195 * ((struct intel_dev *) update->space)->dev
10196 */
10197 if (update->space) {
10198 dv = update->space;
10199 free(dv->dev);
10200 }
8273f55e 10201 break;
e8319a19 10202 }
33414a01
DW
10203 case update_kill_array: {
10204 struct imsm_update_kill_array *u = (void *) update->buf;
10205 int victim = u->dev_idx;
10206 struct active_array *a;
10207 struct intel_dev **dp;
33414a01
DW
10208
10209 /* sanity check that we are not affecting the uuid of
10210 * active arrays, or deleting an active array
10211 *
10212 * FIXME when immutable ids are available, but note that
10213 * we'll also need to fixup the invalidated/active
10214 * subarray indexes in mdstat
10215 */
10216 for (a = st->arrays; a; a = a->next)
10217 if (a->info.container_member >= victim)
10218 break;
10219 /* by definition if mdmon is running at least one array
10220 * is active in the container, so checking
10221 * mpb->num_raid_devs is just extra paranoia
10222 */
756a15f3 10223 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
33414a01
DW
10224 dprintf("failed to delete subarray-%d\n", victim);
10225 break;
10226 }
10227
10228 for (dp = &super->devlist; *dp;)
f21e18ca 10229 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10230 *dp = (*dp)->next;
10231 } else {
f21e18ca 10232 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10233 (*dp)->index--;
10234 dp = &(*dp)->next;
10235 }
10236 mpb->num_raid_devs--;
10237 super->updates_pending++;
10238 break;
10239 }
aa534678
DW
10240 case update_rename_array: {
10241 struct imsm_update_rename_array *u = (void *) update->buf;
10242 char name[MAX_RAID_SERIAL_LEN+1];
10243 int target = u->dev_idx;
10244 struct active_array *a;
10245 struct imsm_dev *dev;
10246
10247 /* sanity check that we are not affecting the uuid of
10248 * an active array
10249 */
40659392 10250 memset(name, 0, sizeof(name));
aa534678
DW
10251 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10252 name[MAX_RAID_SERIAL_LEN] = '\0';
10253 for (a = st->arrays; a; a = a->next)
10254 if (a->info.container_member == target)
10255 break;
10256 dev = get_imsm_dev(super, u->dev_idx);
756a15f3 10257 if (a || !check_name(super, name, 1)) {
aa534678
DW
10258 dprintf("failed to rename subarray-%d\n", target);
10259 break;
10260 }
10261
40659392 10262 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10263 super->updates_pending++;
10264 break;
10265 }
1a64be56 10266 case update_add_remove_disk: {
43dad3d6 10267 /* we may be able to repair some arrays if disks are
095b8088 10268 * being added, check the status of add_remove_disk
1a64be56
LM
10269 * if discs has been added.
10270 */
10271 if (add_remove_disk_update(super)) {
43dad3d6 10272 struct active_array *a;
072b727f
DW
10273
10274 super->updates_pending++;
1a64be56 10275 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10276 a->check_degraded = 1;
10277 }
43dad3d6 10278 break;
e8319a19 10279 }
bbab0940
TM
10280 case update_prealloc_badblocks_mem:
10281 break;
e6e9dd3f
AP
10282 case update_rwh_policy: {
10283 struct imsm_update_rwh_policy *u = (void *)update->buf;
10284 int target = u->dev_idx;
10285 struct imsm_dev *dev = get_imsm_dev(super, target);
e6e9dd3f
AP
10286
10287 if (dev->rwh_policy != u->new_policy) {
10288 dev->rwh_policy = u->new_policy;
10289 super->updates_pending++;
10290 }
10291 break;
10292 }
1a64be56 10293 default:
ebf3be99 10294 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10295 }
e8319a19 10296}
88758e9d 10297
bc0b9d34
PC
10298static struct mdinfo *get_spares_for_grow(struct supertype *st);
10299
5fe6f031
N
10300static int imsm_prepare_update(struct supertype *st,
10301 struct metadata_update *update)
8273f55e 10302{
949c47a0 10303 /**
4d7b1503
DW
10304 * Allocate space to hold new disk entries, raid-device entries or a new
10305 * mpb if necessary. The manager synchronously waits for updates to
10306 * complete in the monitor, so new mpb buffers allocated here can be
10307 * integrated by the monitor thread without worrying about live pointers
10308 * in the manager thread.
8273f55e 10309 */
095b8088 10310 enum imsm_update_type type;
4d7b1503 10311 struct intel_super *super = st->sb;
f36a9ecd 10312 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10313 struct imsm_super *mpb = super->anchor;
10314 size_t buf_len;
10315 size_t len = 0;
949c47a0 10316
095b8088
N
10317 if (update->len < (int)sizeof(type))
10318 return 0;
10319
10320 type = *(enum imsm_update_type *) update->buf;
10321
949c47a0 10322 switch (type) {
0ec5d470 10323 case update_general_migration_checkpoint:
095b8088
N
10324 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10325 return 0;
1ade5cc1 10326 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10327 break;
abedf5fc
KW
10328 case update_takeover: {
10329 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10330 if (update->len < (int)sizeof(*u))
10331 return 0;
abedf5fc
KW
10332 if (u->direction == R0_TO_R10) {
10333 void **tail = (void **)&update->space_list;
10334 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10335 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10336 int num_members = map->num_members;
10337 void *space;
10338 int size, i;
abedf5fc
KW
10339 /* allocate memory for added disks */
10340 for (i = 0; i < num_members; i++) {
10341 size = sizeof(struct dl);
503975b9 10342 space = xmalloc(size);
abedf5fc
KW
10343 *tail = space;
10344 tail = space;
10345 *tail = NULL;
10346 }
10347 /* allocate memory for new device */
10348 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10349 (num_members * sizeof(__u32));
503975b9
N
10350 space = xmalloc(size);
10351 *tail = space;
10352 tail = space;
10353 *tail = NULL;
10354 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10355 }
10356
10357 break;
10358 }
78b10e66 10359 case update_reshape_container_disks: {
d195167d
AK
10360 /* Every raid device in the container is about to
10361 * gain some more devices, and we will enter a
10362 * reconfiguration.
10363 * So each 'imsm_map' will be bigger, and the imsm_vol
10364 * will now hold 2 of them.
10365 * Thus we need new 'struct imsm_dev' allocations sized
10366 * as sizeof_imsm_dev but with more devices in both maps.
10367 */
10368 struct imsm_update_reshape *u = (void *)update->buf;
10369 struct intel_dev *dl;
10370 void **space_tail = (void**)&update->space_list;
10371
095b8088
N
10372 if (update->len < (int)sizeof(*u))
10373 return 0;
10374
1ade5cc1 10375 dprintf("for update_reshape\n");
d195167d
AK
10376
10377 for (dl = super->devlist; dl; dl = dl->next) {
10378 int size = sizeof_imsm_dev(dl->dev, 1);
10379 void *s;
d677e0b8
AK
10380 if (u->new_raid_disks > u->old_raid_disks)
10381 size += sizeof(__u32)*2*
10382 (u->new_raid_disks - u->old_raid_disks);
503975b9 10383 s = xmalloc(size);
d195167d
AK
10384 *space_tail = s;
10385 space_tail = s;
10386 *space_tail = NULL;
10387 }
10388
10389 len = disks_to_mpb_size(u->new_raid_disks);
10390 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10391 break;
10392 }
48c5303a 10393 case update_reshape_migration: {
bc0b9d34
PC
10394 /* for migration level 0->5 we need to add disks
10395 * so the same as for container operation we will copy
10396 * device to the bigger location.
10397 * in memory prepared device and new disk area are prepared
10398 * for usage in process update
10399 */
10400 struct imsm_update_reshape_migration *u = (void *)update->buf;
10401 struct intel_dev *id;
10402 void **space_tail = (void **)&update->space_list;
10403 int size;
10404 void *s;
10405 int current_level = -1;
10406
095b8088
N
10407 if (update->len < (int)sizeof(*u))
10408 return 0;
10409
1ade5cc1 10410 dprintf("for update_reshape\n");
bc0b9d34
PC
10411
10412 /* add space for bigger array in update
10413 */
10414 for (id = super->devlist; id; id = id->next) {
10415 if (id->index == (unsigned)u->subdev) {
10416 size = sizeof_imsm_dev(id->dev, 1);
10417 if (u->new_raid_disks > u->old_raid_disks)
10418 size += sizeof(__u32)*2*
10419 (u->new_raid_disks - u->old_raid_disks);
503975b9 10420 s = xmalloc(size);
bc0b9d34
PC
10421 *space_tail = s;
10422 space_tail = s;
10423 *space_tail = NULL;
10424 break;
10425 }
10426 }
10427 if (update->space_list == NULL)
10428 break;
10429
10430 /* add space for disk in update
10431 */
10432 size = sizeof(struct dl);
503975b9 10433 s = xmalloc(size);
bc0b9d34
PC
10434 *space_tail = s;
10435 space_tail = s;
10436 *space_tail = NULL;
10437
10438 /* add spare device to update
10439 */
10440 for (id = super->devlist ; id; id = id->next)
10441 if (id->index == (unsigned)u->subdev) {
10442 struct imsm_dev *dev;
10443 struct imsm_map *map;
10444
10445 dev = get_imsm_dev(super, u->subdev);
238c0a71 10446 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10447 current_level = map->raid_level;
10448 break;
10449 }
089f9d79 10450 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10451 struct mdinfo *spares;
10452
10453 spares = get_spares_for_grow(st);
10454 if (spares) {
10455 struct dl *dl;
10456 struct mdinfo *dev;
10457
10458 dev = spares->devs;
10459 if (dev) {
10460 u->new_disks[0] =
10461 makedev(dev->disk.major,
10462 dev->disk.minor);
10463 dl = get_disk_super(super,
10464 dev->disk.major,
10465 dev->disk.minor);
10466 dl->index = u->old_raid_disks;
10467 dev = dev->next;
10468 }
10469 sysfs_free(spares);
10470 }
10471 }
10472 len = disks_to_mpb_size(u->new_raid_disks);
10473 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10474 break;
10475 }
f3871fdc 10476 case update_size_change: {
095b8088
N
10477 if (update->len < (int)sizeof(struct imsm_update_size_change))
10478 return 0;
10479 break;
10480 }
10481 case update_activate_spare: {
10482 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10483 return 0;
f3871fdc
AK
10484 break;
10485 }
949c47a0
DW
10486 case update_create_array: {
10487 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10488 struct intel_dev *dv;
54c2c1ea 10489 struct imsm_dev *dev = &u->dev;
238c0a71 10490 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10491 struct dl *dl;
10492 struct disk_info *inf;
10493 int i;
10494 int activate = 0;
949c47a0 10495
095b8088
N
10496 if (update->len < (int)sizeof(*u))
10497 return 0;
10498
54c2c1ea
DW
10499 inf = get_disk_info(u);
10500 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10501 /* allocate a new super->devlist entry */
503975b9
N
10502 dv = xmalloc(sizeof(*dv));
10503 dv->dev = xmalloc(len);
10504 update->space = dv;
949c47a0 10505
54c2c1ea
DW
10506 /* count how many spares will be converted to members */
10507 for (i = 0; i < map->num_members; i++) {
10508 dl = serial_to_dl(inf[i].serial, super);
10509 if (!dl) {
10510 /* hmm maybe it failed?, nothing we can do about
10511 * it here
10512 */
10513 continue;
10514 }
10515 if (count_memberships(dl, super) == 0)
10516 activate++;
10517 }
10518 len += activate * sizeof(struct imsm_disk);
949c47a0 10519 break;
095b8088
N
10520 }
10521 case update_kill_array: {
10522 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10523 return 0;
949c47a0
DW
10524 break;
10525 }
095b8088
N
10526 case update_rename_array: {
10527 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10528 return 0;
10529 break;
10530 }
10531 case update_add_remove_disk:
10532 /* no update->len needed */
10533 break;
bbab0940
TM
10534 case update_prealloc_badblocks_mem:
10535 super->extra_space += sizeof(struct bbm_log) -
10536 get_imsm_bbm_log_size(super->bbm_log);
10537 break;
e6e9dd3f
AP
10538 case update_rwh_policy: {
10539 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10540 return 0;
10541 break;
10542 }
095b8088
N
10543 default:
10544 return 0;
949c47a0 10545 }
8273f55e 10546
4d7b1503
DW
10547 /* check if we need a larger metadata buffer */
10548 if (super->next_buf)
10549 buf_len = super->next_len;
10550 else
10551 buf_len = super->len;
10552
bbab0940 10553 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10554 /* ok we need a larger buf than what is currently allocated
10555 * if this allocation fails process_update will notice that
10556 * ->next_len is set and ->next_buf is NULL
10557 */
bbab0940
TM
10558 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10559 super->extra_space + len, sector_size);
4d7b1503
DW
10560 if (super->next_buf)
10561 free(super->next_buf);
10562
10563 super->next_len = buf_len;
f36a9ecd 10564 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10565 memset(super->next_buf, 0, buf_len);
10566 else
4d7b1503
DW
10567 super->next_buf = NULL;
10568 }
5fe6f031 10569 return 1;
8273f55e
DW
10570}
10571
ae6aad82 10572/* must be called while manager is quiesced */
f21e18ca 10573static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10574{
10575 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10576 struct dl *iter;
10577 struct imsm_dev *dev;
10578 struct imsm_map *map;
4c9e8c1e 10579 unsigned int i, j, num_members;
fb12a745 10580 __u32 ord, ord_map0;
4c9e8c1e 10581 struct bbm_log *log = super->bbm_log;
ae6aad82 10582
1ade5cc1 10583 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10584
10585 /* shift all indexes down one */
10586 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10587 if (iter->index > (int)index)
ae6aad82 10588 iter->index--;
47ee5a45 10589 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10590 if (iter->index > (int)index)
47ee5a45 10591 iter->index--;
ae6aad82
DW
10592
10593 for (i = 0; i < mpb->num_raid_devs; i++) {
10594 dev = get_imsm_dev(super, i);
238c0a71 10595 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10596 num_members = map->num_members;
10597 for (j = 0; j < num_members; j++) {
10598 /* update ord entries being careful not to propagate
10599 * ord-flags to the first map
10600 */
238c0a71 10601 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10602 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10603
24565c9a
DW
10604 if (ord_to_idx(ord) <= index)
10605 continue;
ae6aad82 10606
238c0a71 10607 map = get_imsm_map(dev, MAP_0);
fb12a745 10608 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10609 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10610 if (map)
10611 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10612 }
10613 }
10614
4c9e8c1e
TM
10615 for (i = 0; i < log->entry_count; i++) {
10616 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10617
10618 if (entry->disk_ordinal <= index)
10619 continue;
10620 entry->disk_ordinal--;
10621 }
10622
ae6aad82
DW
10623 mpb->num_disks--;
10624 super->updates_pending++;
24565c9a
DW
10625 if (*dlp) {
10626 struct dl *dl = *dlp;
10627
10628 *dlp = (*dlp)->next;
3a85bf0e 10629 __free_imsm_disk(dl, 1);
24565c9a 10630 }
ae6aad82 10631}
9a717282 10632
9a717282
AK
10633static int imsm_get_allowed_degradation(int level, int raid_disks,
10634 struct intel_super *super,
10635 struct imsm_dev *dev)
10636{
10637 switch (level) {
bf5cf7c7 10638 case 1:
9a717282
AK
10639 case 10:{
10640 int ret_val = 0;
10641 struct imsm_map *map;
10642 int i;
10643
10644 ret_val = raid_disks/2;
10645 /* check map if all disks pairs not failed
10646 * in both maps
10647 */
238c0a71 10648 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10649 for (i = 0; i < ret_val; i++) {
10650 int degradation = 0;
10651 if (get_imsm_disk(super, i) == NULL)
10652 degradation++;
10653 if (get_imsm_disk(super, i + 1) == NULL)
10654 degradation++;
10655 if (degradation == 2)
10656 return 0;
10657 }
238c0a71 10658 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10659 /* if there is no second map
10660 * result can be returned
10661 */
10662 if (map == NULL)
10663 return ret_val;
10664 /* check degradation in second map
10665 */
10666 for (i = 0; i < ret_val; i++) {
10667 int degradation = 0;
10668 if (get_imsm_disk(super, i) == NULL)
10669 degradation++;
10670 if (get_imsm_disk(super, i + 1) == NULL)
10671 degradation++;
10672 if (degradation == 2)
10673 return 0;
10674 }
10675 return ret_val;
10676 }
10677 case 5:
10678 return 1;
10679 case 6:
10680 return 2;
10681 default:
10682 return 0;
10683 }
10684}
10685
d31ad643
PB
10686/*******************************************************************************
10687 * Function: validate_container_imsm
10688 * Description: This routine validates container after assemble,
10689 * eg. if devices in container are under the same controller.
10690 *
10691 * Parameters:
10692 * info : linked list with info about devices used in array
10693 * Returns:
10694 * 1 : HBA mismatch
10695 * 0 : Success
10696 ******************************************************************************/
10697int validate_container_imsm(struct mdinfo *info)
10698{
6b781d33
AP
10699 if (check_env("IMSM_NO_PLATFORM"))
10700 return 0;
d31ad643 10701
6b781d33
AP
10702 struct sys_dev *idev;
10703 struct sys_dev *hba = NULL;
10704 struct sys_dev *intel_devices = find_intel_devices();
10705 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10706 info->disk.minor), 1, NULL);
6b781d33
AP
10707
10708 for (idev = intel_devices; idev; idev = idev->next) {
10709 if (dev_path && strstr(dev_path, idev->path)) {
10710 hba = idev;
10711 break;
d31ad643 10712 }
6b781d33
AP
10713 }
10714 if (dev_path)
d31ad643
PB
10715 free(dev_path);
10716
6b781d33
AP
10717 if (!hba) {
10718 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10719 devid2kname(makedev(info->disk.major, info->disk.minor)));
10720 return 1;
10721 }
10722
10723 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10724 struct mdinfo *dev;
10725
10726 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10727 dev_path = devt_to_devpath(makedev(dev->disk.major,
10728 dev->disk.minor), 1, NULL);
6b781d33
AP
10729
10730 struct sys_dev *hba2 = NULL;
10731 for (idev = intel_devices; idev; idev = idev->next) {
10732 if (dev_path && strstr(dev_path, idev->path)) {
10733 hba2 = idev;
10734 break;
d31ad643
PB
10735 }
10736 }
6b781d33
AP
10737 if (dev_path)
10738 free(dev_path);
10739
10740 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10741 get_orom_by_device_id(hba2->dev_id);
10742
10743 if (hba2 && hba->type != hba2->type) {
10744 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10745 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10746 return 1;
10747 }
10748
07cb1e57 10749 if (orom != orom2) {
6b781d33
AP
10750 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10751 " This operation is not supported and can lead to data loss.\n");
10752 return 1;
10753 }
10754
10755 if (!orom) {
10756 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10757 " This operation is not supported and can lead to data loss.\n");
10758 return 1;
10759 }
d31ad643 10760 }
6b781d33 10761
d31ad643
PB
10762 return 0;
10763}
32141c17 10764
6f50473f
TM
10765/*******************************************************************************
10766* Function: imsm_record_badblock
10767* Description: This routine stores new bad block record in BBM log
10768*
10769* Parameters:
10770* a : array containing a bad block
10771* slot : disk number containing a bad block
10772* sector : bad block sector
10773* length : bad block sectors range
10774* Returns:
10775* 1 : Success
10776* 0 : Error
10777******************************************************************************/
10778static int imsm_record_badblock(struct active_array *a, int slot,
10779 unsigned long long sector, int length)
10780{
10781 struct intel_super *super = a->container->sb;
10782 int ord;
10783 int ret;
10784
10785 ord = imsm_disk_slot_to_ord(a, slot);
10786 if (ord < 0)
10787 return 0;
10788
10789 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10790 length);
10791 if (ret)
10792 super->updates_pending++;
10793
10794 return ret;
10795}
c07a5a4f
TM
10796/*******************************************************************************
10797* Function: imsm_clear_badblock
10798* Description: This routine clears bad block record from BBM log
10799*
10800* Parameters:
10801* a : array containing a bad block
10802* slot : disk number containing a bad block
10803* sector : bad block sector
10804* length : bad block sectors range
10805* Returns:
10806* 1 : Success
10807* 0 : Error
10808******************************************************************************/
10809static int imsm_clear_badblock(struct active_array *a, int slot,
10810 unsigned long long sector, int length)
10811{
10812 struct intel_super *super = a->container->sb;
10813 int ord;
10814 int ret;
10815
10816 ord = imsm_disk_slot_to_ord(a, slot);
10817 if (ord < 0)
10818 return 0;
10819
10820 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10821 if (ret)
10822 super->updates_pending++;
10823
10824 return ret;
10825}
928f1424
TM
10826/*******************************************************************************
10827* Function: imsm_get_badblocks
10828* Description: This routine get list of bad blocks for an array
10829*
10830* Parameters:
10831* a : array
10832* slot : disk number
10833* Returns:
10834* bb : structure containing bad blocks
10835* NULL : error
10836******************************************************************************/
10837static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10838{
10839 int inst = a->info.container_member;
10840 struct intel_super *super = a->container->sb;
10841 struct imsm_dev *dev = get_imsm_dev(super, inst);
10842 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10843 int ord;
10844
10845 ord = imsm_disk_slot_to_ord(a, slot);
10846 if (ord < 0)
10847 return NULL;
10848
10849 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10850 per_dev_array_size(map), &super->bb);
928f1424
TM
10851
10852 return &super->bb;
10853}
27156a57
TM
10854/*******************************************************************************
10855* Function: examine_badblocks_imsm
10856* Description: Prints list of bad blocks on a disk to the standard output
10857*
10858* Parameters:
10859* st : metadata handler
10860* fd : open file descriptor for device
10861* devname : device name
10862* Returns:
10863* 0 : Success
10864* 1 : Error
10865******************************************************************************/
10866static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10867{
10868 struct intel_super *super = st->sb;
10869 struct bbm_log *log = super->bbm_log;
10870 struct dl *d = NULL;
10871 int any = 0;
10872
10873 for (d = super->disks; d ; d = d->next) {
10874 if (strcmp(d->devname, devname) == 0)
10875 break;
10876 }
10877
10878 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10879 pr_err("%s doesn't appear to be part of a raid array\n",
10880 devname);
10881 return 1;
10882 }
10883
10884 if (log != NULL) {
10885 unsigned int i;
10886 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10887
10888 for (i = 0; i < log->entry_count; i++) {
10889 if (entry[i].disk_ordinal == d->index) {
10890 unsigned long long sector = __le48_to_cpu(
10891 &entry[i].defective_block_start);
10892 int cnt = entry[i].marked_count + 1;
10893
10894 if (!any) {
10895 printf("Bad-blocks on %s:\n", devname);
10896 any = 1;
10897 }
10898
10899 printf("%20llu for %d sectors\n", sector, cnt);
10900 }
10901 }
10902 }
10903
10904 if (!any)
10905 printf("No bad-blocks list configured on %s\n", devname);
10906
10907 return 0;
10908}
687629c2
AK
10909/*******************************************************************************
10910 * Function: init_migr_record_imsm
10911 * Description: Function inits imsm migration record
10912 * Parameters:
10913 * super : imsm internal array info
10914 * dev : device under migration
10915 * info : general array info to find the smallest device
10916 * Returns:
10917 * none
10918 ******************************************************************************/
10919void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10920 struct mdinfo *info)
10921{
10922 struct intel_super *super = st->sb;
10923 struct migr_record *migr_rec = super->migr_rec;
10924 int new_data_disks;
10925 unsigned long long dsize, dev_sectors;
10926 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
10927 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10928 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10929 unsigned long long num_migr_units;
3ef4403c 10930 unsigned long long array_blocks;
2f86fda3 10931 struct dl *dl_disk = NULL;
687629c2
AK
10932
10933 memset(migr_rec, 0, sizeof(struct migr_record));
10934 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10935
10936 /* only ascending reshape supported now */
10937 migr_rec->ascending_migr = __cpu_to_le32(1);
10938
10939 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10940 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10941 migr_rec->dest_depth_per_unit *=
10942 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 10943 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
10944 migr_rec->blocks_per_unit =
10945 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10946 migr_rec->dest_depth_per_unit =
10947 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10948 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10949 num_migr_units =
10950 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10951
10952 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10953 num_migr_units++;
9f421827 10954 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
10955
10956 migr_rec->post_migr_vol_cap = dev->size_low;
10957 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10958
687629c2 10959 /* Find the smallest dev */
2f86fda3
MT
10960 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10961 /* ignore spares in container */
10962 if (dl_disk->index < 0)
687629c2 10963 continue;
2f86fda3 10964 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
10965 dev_sectors = dsize / 512;
10966 if (dev_sectors < min_dev_sectors)
10967 min_dev_sectors = dev_sectors;
687629c2 10968 }
9f421827 10969 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
10970 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10971
10972 write_imsm_migr_rec(st);
10973
10974 return;
10975}
10976
10977/*******************************************************************************
10978 * Function: save_backup_imsm
10979 * Description: Function saves critical data stripes to Migration Copy Area
10980 * and updates the current migration unit status.
10981 * Use restore_stripes() to form a destination stripe,
10982 * and to write it to the Copy Area.
10983 * Parameters:
10984 * st : supertype information
aea93171 10985 * dev : imsm device that backup is saved for
687629c2
AK
10986 * info : general array info
10987 * buf : input buffer
687629c2
AK
10988 * length : length of data to backup (blocks_per_unit)
10989 * Returns:
10990 * 0 : success
10991 *, -1 : fail
10992 ******************************************************************************/
10993int save_backup_imsm(struct supertype *st,
10994 struct imsm_dev *dev,
10995 struct mdinfo *info,
10996 void *buf,
687629c2
AK
10997 int length)
10998{
10999 int rv = -1;
11000 struct intel_super *super = st->sb;
687629c2 11001 int i;
238c0a71 11002 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 11003 int new_disks = map_dest->num_members;
ab724b98 11004 int dest_layout = 0;
4389ce73
MT
11005 int dest_chunk, targets[new_disks];
11006 unsigned long long start, target_offsets[new_disks];
9529d343 11007 int data_disks = imsm_num_data_members(map_dest);
687629c2 11008
2f86fda3
MT
11009 for (i = 0; i < new_disks; i++) {
11010 struct dl *dl_disk = get_imsm_dl_disk(super, i);
4389ce73
MT
11011 if (dl_disk && is_fd_valid(dl_disk->fd))
11012 targets[i] = dl_disk->fd;
11013 else
11014 goto abort;
2f86fda3 11015 }
7e45b550 11016
d1877f69 11017 start = info->reshape_progress * 512;
687629c2 11018 for (i = 0; i < new_disks; i++) {
9f421827 11019 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
11020 /* move back copy area adderss, it will be moved forward
11021 * in restore_stripes() using start input variable
11022 */
11023 target_offsets[i] -= start/data_disks;
687629c2
AK
11024 }
11025
68eb8bc6 11026 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
11027 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11028
687629c2
AK
11029 if (restore_stripes(targets, /* list of dest devices */
11030 target_offsets, /* migration record offsets */
11031 new_disks,
ab724b98
AK
11032 dest_chunk,
11033 map_dest->raid_level,
11034 dest_layout,
11035 -1, /* source backup file descriptor */
11036 0, /* input buf offset
11037 * always 0 buf is already offseted */
d1877f69 11038 start,
687629c2
AK
11039 length,
11040 buf) != 0) {
e7b84f9d 11041 pr_err("Error restoring stripes\n");
687629c2
AK
11042 goto abort;
11043 }
11044
11045 rv = 0;
11046
11047abort:
687629c2
AK
11048 return rv;
11049}
11050
11051/*******************************************************************************
11052 * Function: save_checkpoint_imsm
11053 * Description: Function called for current unit status update
11054 * in the migration record. It writes it to disk.
11055 * Parameters:
11056 * super : imsm internal array info
11057 * info : general array info
11058 * Returns:
11059 * 0: success
11060 * 1: failure
0228d92c
AK
11061 * 2: failure, means no valid migration record
11062 * / no general migration in progress /
687629c2
AK
11063 ******************************************************************************/
11064int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11065{
11066 struct intel_super *super = st->sb;
f8b72ef5
AK
11067 unsigned long long blocks_per_unit;
11068 unsigned long long curr_migr_unit;
11069
2f86fda3 11070 if (load_imsm_migr_rec(super) != 0) {
7a862a02 11071 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
11072 return 1;
11073 }
11074
f8b72ef5
AK
11075 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11076 if (blocks_per_unit == 0) {
0228d92c
AK
11077 dprintf("imsm: no migration in progress.\n");
11078 return 2;
687629c2 11079 }
f8b72ef5
AK
11080 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11081 /* check if array is alligned to copy area
11082 * if it is not alligned, add one to current migration unit value
11083 * this can happend on array reshape finish only
11084 */
11085 if (info->reshape_progress % blocks_per_unit)
11086 curr_migr_unit++;
687629c2 11087
9f421827 11088 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 11089 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
11090 set_migr_dest_1st_member_lba(super->migr_rec,
11091 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11092
687629c2 11093 if (write_imsm_migr_rec(st) < 0) {
7a862a02 11094 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
11095 return 1;
11096 }
11097
11098 return 0;
11099}
11100
276d77db
AK
11101/*******************************************************************************
11102 * Function: recover_backup_imsm
11103 * Description: Function recovers critical data from the Migration Copy Area
11104 * while assembling an array.
11105 * Parameters:
11106 * super : imsm internal array info
11107 * info : general array info
11108 * Returns:
11109 * 0 : success (or there is no data to recover)
11110 * 1 : fail
11111 ******************************************************************************/
11112int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11113{
11114 struct intel_super *super = st->sb;
11115 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11116 struct imsm_map *map_dest;
276d77db
AK
11117 struct intel_dev *id = NULL;
11118 unsigned long long read_offset;
11119 unsigned long long write_offset;
11120 unsigned unit_len;
2f86fda3 11121 int new_disks, err;
276d77db
AK
11122 char *buf = NULL;
11123 int retval = 1;
f36a9ecd 11124 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11125 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11126 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
276d77db 11127 char buffer[20];
6c3560c0 11128 int skipped_disks = 0;
2f86fda3 11129 struct dl *dl_disk;
276d77db
AK
11130
11131 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
11132 if (err < 1)
11133 return 1;
11134
11135 /* recover data only during assemblation */
11136 if (strncmp(buffer, "inactive", 8) != 0)
11137 return 0;
11138 /* no data to recover */
11139 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11140 return 0;
11141 if (curr_migr_unit >= num_migr_units)
11142 return 1;
11143
11144 /* find device during reshape */
11145 for (id = super->devlist; id; id = id->next)
11146 if (is_gen_migration(id->dev))
11147 break;
11148 if (id == NULL)
11149 return 1;
11150
238c0a71 11151 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11152 new_disks = map_dest->num_members;
11153
9f421827 11154 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11155
9f421827 11156 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11157 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11158
11159 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11160 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11161 goto abort;
276d77db 11162
2f86fda3
MT
11163 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11164 if (dl_disk->index < 0)
11165 continue;
276d77db 11166
4389ce73 11167 if (!is_fd_valid(dl_disk->fd)) {
6c3560c0
AK
11168 skipped_disks++;
11169 continue;
11170 }
2f86fda3 11171 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11172 pr_err("Cannot seek to block: %s\n",
11173 strerror(errno));
137debce
AK
11174 skipped_disks++;
11175 continue;
276d77db 11176 }
83b3de77 11177 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11178 pr_err("Cannot read copy area block: %s\n",
11179 strerror(errno));
137debce
AK
11180 skipped_disks++;
11181 continue;
276d77db 11182 }
2f86fda3 11183 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11184 pr_err("Cannot seek to block: %s\n",
11185 strerror(errno));
137debce
AK
11186 skipped_disks++;
11187 continue;
276d77db 11188 }
83b3de77 11189 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11190 pr_err("Cannot restore block: %s\n",
11191 strerror(errno));
137debce
AK
11192 skipped_disks++;
11193 continue;
276d77db
AK
11194 }
11195 }
11196
137debce
AK
11197 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11198 new_disks,
11199 super,
11200 id->dev)) {
7a862a02 11201 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11202 goto abort;
11203 }
11204
befb629b
AK
11205 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11206 /* ignore error == 2, this can mean end of reshape here
11207 */
7a862a02 11208 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11209 } else
276d77db 11210 retval = 0;
276d77db
AK
11211
11212abort:
276d77db
AK
11213 free(buf);
11214 return retval;
11215}
11216
2cda7640
ML
11217static char disk_by_path[] = "/dev/disk/by-path/";
11218
11219static const char *imsm_get_disk_controller_domain(const char *path)
11220{
2cda7640 11221 char disk_path[PATH_MAX];
96234762
LM
11222 char *drv=NULL;
11223 struct stat st;
2cda7640 11224
6d8d290a 11225 strcpy(disk_path, disk_by_path);
96234762
LM
11226 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11227 if (stat(disk_path, &st) == 0) {
11228 struct sys_dev* hba;
594dc1b8 11229 char *path;
96234762 11230
7c798f87 11231 path = devt_to_devpath(st.st_rdev, 1, NULL);
96234762
LM
11232 if (path == NULL)
11233 return "unknown";
11234 hba = find_disk_attached_hba(-1, path);
11235 if (hba && hba->type == SYS_DEV_SAS)
11236 drv = "isci";
11237 else if (hba && hba->type == SYS_DEV_SATA)
11238 drv = "ahci";
c6839718
MT
11239 else if (hba && hba->type == SYS_DEV_VMD)
11240 drv = "vmd";
11241 else if (hba && hba->type == SYS_DEV_NVME)
11242 drv = "nvme";
1011e834 11243 else
96234762
LM
11244 drv = "unknown";
11245 dprintf("path: %s hba: %s attached: %s\n",
11246 path, (hba) ? hba->path : "NULL", drv);
11247 free(path);
2cda7640 11248 }
96234762 11249 return drv;
2cda7640
ML
11250}
11251
4dd2df09 11252static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11253{
4dd2df09 11254 static char devnm[32];
78b10e66
N
11255 char subdev_name[20];
11256 struct mdstat_ent *mdstat;
11257
11258 sprintf(subdev_name, "%d", subdev);
11259 mdstat = mdstat_by_subdev(subdev_name, container);
11260 if (!mdstat)
4dd2df09 11261 return NULL;
78b10e66 11262
4dd2df09 11263 strcpy(devnm, mdstat->devnm);
78b10e66 11264 free_mdstat(mdstat);
4dd2df09 11265 return devnm;
78b10e66
N
11266}
11267
11268static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11269 struct geo_params *geo,
fbf3d202
AK
11270 int *old_raid_disks,
11271 int direction)
78b10e66 11272{
694575e7
KW
11273 /* currently we only support increasing the number of devices
11274 * for a container. This increases the number of device for each
11275 * member array. They must all be RAID0 or RAID5.
11276 */
78b10e66
N
11277 int ret_val = 0;
11278 struct mdinfo *info, *member;
11279 int devices_that_can_grow = 0;
11280
7a862a02 11281 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11282
d04f65f4 11283 if (geo->size > 0 ||
78b10e66
N
11284 geo->level != UnSet ||
11285 geo->layout != UnSet ||
11286 geo->chunksize != 0 ||
11287 geo->raid_disks == UnSet) {
7a862a02 11288 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11289 return ret_val;
11290 }
11291
fbf3d202 11292 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11293 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11294 return ret_val;
11295 }
11296
78b10e66
N
11297 info = container_content_imsm(st, NULL);
11298 for (member = info; member; member = member->next) {
4dd2df09 11299 char *result;
78b10e66
N
11300
11301 dprintf("imsm: checking device_num: %i\n",
11302 member->container_member);
11303
d7d205bd 11304 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11305 /* we work on container for Online Capacity Expansion
11306 * only so raid_disks has to grow
11307 */
7a862a02 11308 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11309 break;
11310 }
11311
089f9d79 11312 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11313 /* we cannot use this container with other raid level
11314 */
7a862a02 11315 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11316 info->array.level);
11317 break;
11318 } else {
11319 /* check for platform support
11320 * for this raid level configuration
11321 */
11322 struct intel_super *super = st->sb;
11323 if (!is_raid_level_supported(super->orom,
11324 member->array.level,
11325 geo->raid_disks)) {
7a862a02 11326 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11327 info->array.level,
11328 geo->raid_disks,
11329 geo->raid_disks > 1 ? "s" : "");
11330 break;
11331 }
2a4a08e7
AK
11332 /* check if component size is aligned to chunk size
11333 */
11334 if (info->component_size %
11335 (info->array.chunk_size/512)) {
7a862a02 11336 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11337 break;
11338 }
78b10e66
N
11339 }
11340
11341 if (*old_raid_disks &&
11342 info->array.raid_disks != *old_raid_disks)
11343 break;
11344 *old_raid_disks = info->array.raid_disks;
11345
11346 /* All raid5 and raid0 volumes in container
11347 * have to be ready for Online Capacity Expansion
11348 * so they need to be assembled. We have already
11349 * checked that no recovery etc is happening.
11350 */
4dd2df09
N
11351 result = imsm_find_array_devnm_by_subdev(member->container_member,
11352 st->container_devnm);
11353 if (result == NULL) {
78b10e66
N
11354 dprintf("imsm: cannot find array\n");
11355 break;
11356 }
11357 devices_that_can_grow++;
11358 }
11359 sysfs_free(info);
11360 if (!member && devices_that_can_grow)
11361 ret_val = 1;
11362
11363 if (ret_val)
1ade5cc1 11364 dprintf("Container operation allowed\n");
78b10e66 11365 else
1ade5cc1 11366 dprintf("Error: %i\n", ret_val);
78b10e66
N
11367
11368 return ret_val;
11369}
11370
11371/* Function: get_spares_for_grow
11372 * Description: Allocates memory and creates list of spare devices
1011e834 11373 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11374 * Parameters: Pointer to the supertype structure
11375 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11376 * NULL if fail
78b10e66
N
11377 */
11378static struct mdinfo *get_spares_for_grow(struct supertype *st)
11379{
fbfdcb06
AO
11380 struct spare_criteria sc;
11381
11382 get_spare_criteria_imsm(st, &sc);
11383 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11384}
11385
11386/******************************************************************************
11387 * function: imsm_create_metadata_update_for_reshape
11388 * Function creates update for whole IMSM container.
11389 *
11390 ******************************************************************************/
11391static int imsm_create_metadata_update_for_reshape(
11392 struct supertype *st,
11393 struct geo_params *geo,
11394 int old_raid_disks,
11395 struct imsm_update_reshape **updatep)
11396{
11397 struct intel_super *super = st->sb;
11398 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11399 int update_memory_size;
11400 struct imsm_update_reshape *u;
11401 struct mdinfo *spares;
78b10e66 11402 int i;
594dc1b8 11403 int delta_disks;
bbd24d86 11404 struct mdinfo *dev;
78b10e66 11405
1ade5cc1 11406 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11407
11408 delta_disks = geo->raid_disks - old_raid_disks;
11409
11410 /* size of all update data without anchor */
11411 update_memory_size = sizeof(struct imsm_update_reshape);
11412
11413 /* now add space for spare disks that we need to add. */
11414 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11415
503975b9 11416 u = xcalloc(1, update_memory_size);
78b10e66
N
11417 u->type = update_reshape_container_disks;
11418 u->old_raid_disks = old_raid_disks;
11419 u->new_raid_disks = geo->raid_disks;
11420
11421 /* now get spare disks list
11422 */
11423 spares = get_spares_for_grow(st);
11424
d7be7d87 11425 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11426 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11427 i = -1;
78b10e66
N
11428 goto abort;
11429 }
11430
11431 /* we have got spares
11432 * update disk list in imsm_disk list table in anchor
11433 */
11434 dprintf("imsm: %i spares are available.\n\n",
11435 spares->array.spare_disks);
11436
bbd24d86 11437 dev = spares->devs;
78b10e66 11438 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11439 struct dl *dl;
11440
bbd24d86
AK
11441 if (dev == NULL)
11442 break;
78b10e66
N
11443 u->new_disks[i] = makedev(dev->disk.major,
11444 dev->disk.minor);
11445 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11446 dl->index = mpb->num_disks;
11447 mpb->num_disks++;
bbd24d86 11448 dev = dev->next;
78b10e66 11449 }
78b10e66
N
11450
11451abort:
11452 /* free spares
11453 */
11454 sysfs_free(spares);
11455
d677e0b8 11456 dprintf("imsm: reshape update preparation :");
78b10e66 11457 if (i == delta_disks) {
1ade5cc1 11458 dprintf_cont(" OK\n");
78b10e66
N
11459 *updatep = u;
11460 return update_memory_size;
11461 }
11462 free(u);
1ade5cc1 11463 dprintf_cont(" Error\n");
78b10e66
N
11464
11465 return 0;
11466}
11467
f3871fdc
AK
11468/******************************************************************************
11469 * function: imsm_create_metadata_update_for_size_change()
11470 * Creates update for IMSM array for array size change.
11471 *
11472 ******************************************************************************/
11473static int imsm_create_metadata_update_for_size_change(
11474 struct supertype *st,
11475 struct geo_params *geo,
11476 struct imsm_update_size_change **updatep)
11477{
11478 struct intel_super *super = st->sb;
594dc1b8
JS
11479 int update_memory_size;
11480 struct imsm_update_size_change *u;
f3871fdc 11481
1ade5cc1 11482 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11483
11484 /* size of all update data without anchor */
11485 update_memory_size = sizeof(struct imsm_update_size_change);
11486
503975b9 11487 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11488 u->type = update_size_change;
11489 u->subdev = super->current_vol;
11490 u->new_size = geo->size;
11491
11492 dprintf("imsm: reshape update preparation : OK\n");
11493 *updatep = u;
11494
11495 return update_memory_size;
11496}
11497
48c5303a
PC
11498/******************************************************************************
11499 * function: imsm_create_metadata_update_for_migration()
11500 * Creates update for IMSM array.
11501 *
11502 ******************************************************************************/
11503static int imsm_create_metadata_update_for_migration(
11504 struct supertype *st,
11505 struct geo_params *geo,
11506 struct imsm_update_reshape_migration **updatep)
11507{
11508 struct intel_super *super = st->sb;
594dc1b8 11509 int update_memory_size;
756a15f3 11510 int current_chunk_size;
594dc1b8 11511 struct imsm_update_reshape_migration *u;
756a15f3
MG
11512 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11513 struct imsm_map *map = get_imsm_map(dev, MAP_0);
48c5303a
PC
11514 int previous_level = -1;
11515
1ade5cc1 11516 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11517
11518 /* size of all update data without anchor */
11519 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11520
503975b9 11521 u = xcalloc(1, update_memory_size);
48c5303a
PC
11522 u->type = update_reshape_migration;
11523 u->subdev = super->current_vol;
11524 u->new_level = geo->level;
11525 u->new_layout = geo->layout;
11526 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11527 u->new_disks[0] = -1;
4bba0439 11528 u->new_chunksize = -1;
48c5303a 11529
756a15f3 11530 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
48c5303a 11531
756a15f3
MG
11532 if (geo->chunksize != current_chunk_size) {
11533 u->new_chunksize = geo->chunksize / 1024;
11534 dprintf("imsm: chunk size change from %i to %i\n",
11535 current_chunk_size, u->new_chunksize);
48c5303a 11536 }
756a15f3
MG
11537 previous_level = map->raid_level;
11538
089f9d79 11539 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11540 struct mdinfo *spares = NULL;
11541
11542 u->new_raid_disks++;
11543 spares = get_spares_for_grow(st);
089f9d79 11544 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11545 free(u);
11546 sysfs_free(spares);
11547 update_memory_size = 0;
565cc99e 11548 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11549 return 0;
11550 }
11551 sysfs_free(spares);
11552 }
11553 dprintf("imsm: reshape update preparation : OK\n");
11554 *updatep = u;
11555
11556 return update_memory_size;
11557}
11558
8dd70bce
AK
11559static void imsm_update_metadata_locally(struct supertype *st,
11560 void *buf, int len)
11561{
11562 struct metadata_update mu;
11563
11564 mu.buf = buf;
11565 mu.len = len;
11566 mu.space = NULL;
11567 mu.space_list = NULL;
11568 mu.next = NULL;
5fe6f031
N
11569 if (imsm_prepare_update(st, &mu))
11570 imsm_process_update(st, &mu);
8dd70bce
AK
11571
11572 while (mu.space_list) {
11573 void **space = mu.space_list;
11574 mu.space_list = *space;
11575 free(space);
11576 }
11577}
78b10e66 11578
471bceb6 11579/***************************************************************************
694575e7 11580* Function: imsm_analyze_change
471bceb6 11581* Description: Function analyze change for single volume
1011e834 11582* and validate if transition is supported
fbf3d202
AK
11583* Parameters: Geometry parameters, supertype structure,
11584* metadata change direction (apply/rollback)
694575e7 11585* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11586****************************************************************************/
11587enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11588 struct geo_params *geo,
11589 int direction)
694575e7 11590{
471bceb6
KW
11591 struct mdinfo info;
11592 int change = -1;
11593 int check_devs = 0;
c21e737b 11594 int chunk;
67a2db32
AK
11595 /* number of added/removed disks in operation result */
11596 int devNumChange = 0;
11597 /* imsm compatible layout value for array geometry verification */
11598 int imsm_layout = -1;
7abc9871
AK
11599 int data_disks;
11600 struct imsm_dev *dev;
9529d343 11601 struct imsm_map *map;
7abc9871 11602 struct intel_super *super;
d04f65f4 11603 unsigned long long current_size;
65d38cca 11604 unsigned long long free_size;
d04f65f4 11605 unsigned long long max_size;
6d4d9ab2 11606 imsm_status_t rv;
471bceb6
KW
11607
11608 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11609 if (geo->level != info.array.level && geo->level >= 0 &&
11610 geo->level != UnSet) {
471bceb6
KW
11611 switch (info.array.level) {
11612 case 0:
11613 if (geo->level == 5) {
b5347799 11614 change = CH_MIGRATION;
e13ce846 11615 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11616 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11617 change = -1;
11618 goto analyse_change_exit;
11619 }
67a2db32 11620 imsm_layout = geo->layout;
471bceb6 11621 check_devs = 1;
e91a3bad
LM
11622 devNumChange = 1; /* parity disk added */
11623 } else if (geo->level == 10) {
471bceb6
KW
11624 change = CH_TAKEOVER;
11625 check_devs = 1;
e91a3bad 11626 devNumChange = 2; /* two mirrors added */
67a2db32 11627 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11628 }
dfe77a9e
KW
11629 break;
11630 case 1:
471bceb6
KW
11631 case 10:
11632 if (geo->level == 0) {
11633 change = CH_TAKEOVER;
11634 check_devs = 1;
e91a3bad 11635 devNumChange = -(geo->raid_disks/2);
67a2db32 11636 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11637 }
11638 break;
11639 }
11640 if (change == -1) {
7a862a02 11641 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11642 info.array.level, geo->level);
471bceb6
KW
11643 goto analyse_change_exit;
11644 }
11645 } else
11646 geo->level = info.array.level;
11647
089f9d79
JS
11648 if (geo->layout != info.array.layout &&
11649 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11650 change = CH_MIGRATION;
089f9d79
JS
11651 if (info.array.layout == 0 && info.array.level == 5 &&
11652 geo->layout == 5) {
471bceb6 11653 /* reshape 5 -> 4 */
089f9d79
JS
11654 } else if (info.array.layout == 5 && info.array.level == 5 &&
11655 geo->layout == 0) {
471bceb6
KW
11656 /* reshape 4 -> 5 */
11657 geo->layout = 0;
11658 geo->level = 5;
11659 } else {
7a862a02 11660 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11661 info.array.layout, geo->layout);
471bceb6
KW
11662 change = -1;
11663 goto analyse_change_exit;
11664 }
67a2db32 11665 } else {
471bceb6 11666 geo->layout = info.array.layout;
67a2db32
AK
11667 if (imsm_layout == -1)
11668 imsm_layout = info.array.layout;
11669 }
471bceb6 11670
089f9d79
JS
11671 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11672 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11673 if (info.array.level == 10) {
11674 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11675 change = -1;
11676 goto analyse_change_exit;
1e9b2c3f
PB
11677 } else if (info.component_size % (geo->chunksize/512)) {
11678 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11679 geo->chunksize/1024, info.component_size/2);
11680 change = -1;
11681 goto analyse_change_exit;
2d2b0eb7 11682 }
b5347799 11683 change = CH_MIGRATION;
2d2b0eb7 11684 } else {
471bceb6 11685 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11686 }
471bceb6 11687
c21e737b 11688 chunk = geo->chunksize / 1024;
7abc9871
AK
11689
11690 super = st->sb;
11691 dev = get_imsm_dev(super, super->current_vol);
9529d343
MD
11692 map = get_imsm_map(dev, MAP_0);
11693 data_disks = imsm_num_data_members(map);
c41e00b2 11694 /* compute current size per disk member
7abc9871 11695 */
c41e00b2
AK
11696 current_size = info.custom_array_size / data_disks;
11697
089f9d79 11698 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11699 /* align component size
11700 */
3e684231 11701 geo->size = imsm_component_size_alignment_check(
c41e00b2 11702 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11703 chunk * 1024, super->sector_size,
c41e00b2 11704 geo->size * 2);
65d0b4ce 11705 if (geo->size == 0) {
7a862a02 11706 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11707 current_size);
11708 goto analyse_change_exit;
11709 }
c41e00b2 11710 }
7abc9871 11711
089f9d79 11712 if (current_size != geo->size && geo->size > 0) {
7abc9871 11713 if (change != -1) {
7a862a02 11714 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11715 change = -1;
11716 goto analyse_change_exit;
11717 }
11718 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11719 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11720 super->current_vol, st->devnm);
7abc9871
AK
11721 goto analyse_change_exit;
11722 }
65d38cca
LD
11723 /* check the maximum available size
11724 */
6d4d9ab2
MT
11725 rv = imsm_get_free_size(super, dev->vol.map->num_members,
11726 0, chunk, &free_size);
11727
11728 if (rv != IMSM_STATUS_OK)
65d38cca
LD
11729 /* Cannot find maximum available space
11730 */
11731 max_size = 0;
11732 else {
11733 max_size = free_size + current_size;
11734 /* align component size
11735 */
3e684231 11736 max_size = imsm_component_size_alignment_check(
65d38cca 11737 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11738 chunk * 1024, super->sector_size,
65d38cca
LD
11739 max_size);
11740 }
d04f65f4 11741 if (geo->size == MAX_SIZE) {
b130333f
AK
11742 /* requested size change to the maximum available size
11743 */
65d38cca 11744 if (max_size == 0) {
7a862a02 11745 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11746 change = -1;
11747 goto analyse_change_exit;
65d38cca
LD
11748 } else
11749 geo->size = max_size;
c41e00b2 11750 }
b130333f 11751
681b7ae2 11752 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11753 /* accept size for rollback only
11754 */
11755 } else {
11756 /* round size due to metadata compatibility
11757 */
11758 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11759 << SECT_PER_MB_SHIFT;
11760 dprintf("Prepare update for size change to %llu\n",
11761 geo->size );
11762 if (current_size >= geo->size) {
7a862a02 11763 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11764 current_size, geo->size);
fbf3d202
AK
11765 goto analyse_change_exit;
11766 }
65d38cca 11767 if (max_size && geo->size > max_size) {
7a862a02 11768 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11769 max_size, geo->size);
65d38cca
LD
11770 goto analyse_change_exit;
11771 }
7abc9871
AK
11772 }
11773 geo->size *= data_disks;
11774 geo->raid_disks = dev->vol.map->num_members;
11775 change = CH_ARRAY_SIZE;
11776 }
471bceb6
KW
11777 if (!validate_geometry_imsm(st,
11778 geo->level,
67a2db32 11779 imsm_layout,
e91a3bad 11780 geo->raid_disks + devNumChange,
c21e737b 11781 &chunk,
af4348dd 11782 geo->size, INVALID_SECTORS,
5308f117 11783 0, 0, info.consistency_policy, 1))
471bceb6
KW
11784 change = -1;
11785
11786 if (check_devs) {
11787 struct intel_super *super = st->sb;
11788 struct imsm_super *mpb = super->anchor;
11789
11790 if (mpb->num_raid_devs > 1) {
f1cc8ab9
LF
11791 pr_err("Error. Cannot perform operation on %s- for this operation "
11792 "it MUST be single array in container\n", geo->dev_name);
471bceb6
KW
11793 change = -1;
11794 }
11795 }
11796
11797analyse_change_exit:
089f9d79
JS
11798 if (direction == ROLLBACK_METADATA_CHANGES &&
11799 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11800 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11801 change = -1;
11802 }
471bceb6 11803 return change;
694575e7
KW
11804}
11805
bb025c2f
KW
11806int imsm_takeover(struct supertype *st, struct geo_params *geo)
11807{
11808 struct intel_super *super = st->sb;
11809 struct imsm_update_takeover *u;
11810
503975b9 11811 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11812
11813 u->type = update_takeover;
11814 u->subarray = super->current_vol;
11815
11816 /* 10->0 transition */
11817 if (geo->level == 0)
11818 u->direction = R10_TO_R0;
11819
0529c688
KW
11820 /* 0->10 transition */
11821 if (geo->level == 10)
11822 u->direction = R0_TO_R10;
11823
bb025c2f
KW
11824 /* update metadata locally */
11825 imsm_update_metadata_locally(st, u,
11826 sizeof(struct imsm_update_takeover));
11827 /* and possibly remotely */
11828 if (st->update_tail)
11829 append_metadata_update(st, u,
11830 sizeof(struct imsm_update_takeover));
11831 else
11832 free(u);
11833
11834 return 0;
11835}
11836
895ffd99
MT
11837/* Flush size update if size calculated by num_data_stripes is higher than
11838 * imsm_dev_size to eliminate differences during reshape.
11839 * Mdmon will recalculate them correctly.
11840 * If subarray index is not set then check whole container.
11841 * Returns:
11842 * 0 - no error occurred
11843 * 1 - error detected
11844 */
11845static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11846{
11847 struct intel_super *super = st->sb;
11848 int tmp = super->current_vol;
11849 int ret_val = 1;
11850 int i;
11851
11852 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11853 if (subarray_index >= 0 && i != subarray_index)
11854 continue;
11855 super->current_vol = i;
11856 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11857 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11858 unsigned int disc_count = imsm_num_data_members(map);
11859 struct geo_params geo;
11860 struct imsm_update_size_change *update;
11861 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11862 unsigned long long d_size = imsm_dev_size(dev);
11863 int u_size;
11864
42e02e61 11865 if (calc_size == d_size)
895ffd99
MT
11866 continue;
11867
ff904202
MT
11868 /* There is a difference, confirm that imsm_dev_size is
11869 * smaller and push update.
895ffd99 11870 */
ff904202
MT
11871 if (d_size > calc_size) {
11872 pr_err("imsm: dev size of subarray %d is incorrect\n",
11873 i);
895ffd99
MT
11874 goto exit;
11875 }
11876 memset(&geo, 0, sizeof(struct geo_params));
11877 geo.size = d_size;
11878 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11879 &update);
895ffd99
MT
11880 imsm_update_metadata_locally(st, update, u_size);
11881 if (st->update_tail) {
11882 append_metadata_update(st, update, u_size);
11883 flush_metadata_updates(st);
11884 st->update_tail = &st->updates;
11885 } else {
11886 imsm_sync_metadata(st);
5ce5a15f 11887 free(update);
895ffd99
MT
11888 }
11889 }
11890 ret_val = 0;
11891exit:
11892 super->current_vol = tmp;
11893 return ret_val;
11894}
11895
d04f65f4
N
11896static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11897 int level,
78b10e66 11898 int layout, int chunksize, int raid_disks,
41784c88 11899 int delta_disks, char *backup, char *dev,
016e00f5 11900 int direction, int verbose)
78b10e66 11901{
78b10e66
N
11902 int ret_val = 1;
11903 struct geo_params geo;
11904
1ade5cc1 11905 dprintf("(enter)\n");
78b10e66 11906
71204a50 11907 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11908
11909 geo.dev_name = dev;
4dd2df09 11910 strcpy(geo.devnm, st->devnm);
78b10e66
N
11911 geo.size = size;
11912 geo.level = level;
11913 geo.layout = layout;
11914 geo.chunksize = chunksize;
11915 geo.raid_disks = raid_disks;
41784c88
AK
11916 if (delta_disks != UnSet)
11917 geo.raid_disks += delta_disks;
78b10e66 11918
1ade5cc1
N
11919 dprintf("for level : %i\n", geo.level);
11920 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 11921
4dd2df09 11922 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11923 /* On container level we can only increase number of devices. */
11924 dprintf("imsm: info: Container operation\n");
78b10e66 11925 int old_raid_disks = 0;
6dc0be30 11926
78b10e66 11927 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11928 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11929 struct imsm_update_reshape *u = NULL;
11930 int len;
11931
895ffd99
MT
11932 if (imsm_fix_size_mismatch(st, -1)) {
11933 dprintf("imsm: Cannot fix size mismatch\n");
11934 goto exit_imsm_reshape_super;
11935 }
11936
78b10e66
N
11937 len = imsm_create_metadata_update_for_reshape(
11938 st, &geo, old_raid_disks, &u);
11939
ed08d51c
AK
11940 if (len <= 0) {
11941 dprintf("imsm: Cannot prepare update\n");
11942 goto exit_imsm_reshape_super;
11943 }
11944
8dd70bce
AK
11945 ret_val = 0;
11946 /* update metadata locally */
11947 imsm_update_metadata_locally(st, u, len);
11948 /* and possibly remotely */
11949 if (st->update_tail)
11950 append_metadata_update(st, u, len);
11951 else
ed08d51c 11952 free(u);
8dd70bce 11953
694575e7 11954 } else {
7a862a02 11955 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11956 }
11957 } else {
11958 /* On volume level we support following operations
471bceb6
KW
11959 * - takeover: raid10 -> raid0; raid0 -> raid10
11960 * - chunk size migration
11961 * - migration: raid5 -> raid0; raid0 -> raid5
11962 */
11963 struct intel_super *super = st->sb;
11964 struct intel_dev *dev = super->devlist;
4dd2df09 11965 int change;
694575e7 11966 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11967 /* find requested device */
11968 while (dev) {
1011e834 11969 char *devnm =
4dd2df09
N
11970 imsm_find_array_devnm_by_subdev(
11971 dev->index, st->container_devnm);
11972 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11973 break;
11974 dev = dev->next;
11975 }
11976 if (dev == NULL) {
4dd2df09
N
11977 pr_err("Cannot find %s (%s) subarray\n",
11978 geo.dev_name, geo.devnm);
471bceb6
KW
11979 goto exit_imsm_reshape_super;
11980 }
11981 super->current_vol = dev->index;
fbf3d202 11982 change = imsm_analyze_change(st, &geo, direction);
694575e7 11983 switch (change) {
471bceb6 11984 case CH_TAKEOVER:
bb025c2f 11985 ret_val = imsm_takeover(st, &geo);
694575e7 11986 break;
48c5303a
PC
11987 case CH_MIGRATION: {
11988 struct imsm_update_reshape_migration *u = NULL;
11989 int len =
11990 imsm_create_metadata_update_for_migration(
11991 st, &geo, &u);
11992 if (len < 1) {
7a862a02 11993 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11994 break;
11995 }
471bceb6 11996 ret_val = 0;
48c5303a
PC
11997 /* update metadata locally */
11998 imsm_update_metadata_locally(st, u, len);
11999 /* and possibly remotely */
12000 if (st->update_tail)
12001 append_metadata_update(st, u, len);
12002 else
12003 free(u);
12004 }
12005 break;
7abc9871 12006 case CH_ARRAY_SIZE: {
f3871fdc
AK
12007 struct imsm_update_size_change *u = NULL;
12008 int len =
12009 imsm_create_metadata_update_for_size_change(
12010 st, &geo, &u);
12011 if (len < 1) {
7a862a02 12012 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
12013 break;
12014 }
12015 ret_val = 0;
12016 /* update metadata locally */
12017 imsm_update_metadata_locally(st, u, len);
12018 /* and possibly remotely */
12019 if (st->update_tail)
12020 append_metadata_update(st, u, len);
12021 else
12022 free(u);
7abc9871
AK
12023 }
12024 break;
471bceb6
KW
12025 default:
12026 ret_val = 1;
694575e7 12027 }
694575e7 12028 }
78b10e66 12029
ed08d51c 12030exit_imsm_reshape_super:
78b10e66
N
12031 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12032 return ret_val;
12033}
2cda7640 12034
0febb20c
AO
12035#define COMPLETED_OK 0
12036#define COMPLETED_NONE 1
12037#define COMPLETED_DELAYED 2
12038
12039static int read_completed(int fd, unsigned long long *val)
12040{
12041 int ret;
12042 char buf[50];
12043
12044 ret = sysfs_fd_get_str(fd, buf, 50);
12045 if (ret < 0)
12046 return ret;
12047
12048 ret = COMPLETED_OK;
12049 if (strncmp(buf, "none", 4) == 0) {
12050 ret = COMPLETED_NONE;
12051 } else if (strncmp(buf, "delayed", 7) == 0) {
12052 ret = COMPLETED_DELAYED;
12053 } else {
12054 char *ep;
12055 *val = strtoull(buf, &ep, 0);
12056 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12057 ret = -1;
12058 }
12059 return ret;
12060}
12061
eee67a47
AK
12062/*******************************************************************************
12063 * Function: wait_for_reshape_imsm
12064 * Description: Function writes new sync_max value and waits until
12065 * reshape process reach new position
12066 * Parameters:
12067 * sra : general array info
eee67a47
AK
12068 * ndata : number of disks in new array's layout
12069 * Returns:
12070 * 0 : success,
12071 * 1 : there is no reshape in progress,
12072 * -1 : fail
12073 ******************************************************************************/
ae9f01f8 12074int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 12075{
85ca499c 12076 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 12077 int retry = 3;
eee67a47 12078 unsigned long long completed;
ae9f01f8
AK
12079 /* to_complete : new sync_max position */
12080 unsigned long long to_complete = sra->reshape_progress;
12081 unsigned long long position_to_set = to_complete / ndata;
eee67a47 12082
4389ce73 12083 if (!is_fd_valid(fd)) {
1ade5cc1 12084 dprintf("cannot open reshape_position\n");
eee67a47 12085 return 1;
ae9f01f8 12086 }
eee67a47 12087
df2647fa
PB
12088 do {
12089 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12090 if (!retry) {
12091 dprintf("cannot read reshape_position (no reshape in progres)\n");
12092 close(fd);
12093 return 1;
12094 }
239b3cc0 12095 sleep_for(0, MSEC_TO_NSEC(30), true);
df2647fa
PB
12096 } else
12097 break;
12098 } while (retry--);
eee67a47 12099
85ca499c 12100 if (completed > position_to_set) {
1ade5cc1 12101 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12102 to_complete, position_to_set);
ae9f01f8
AK
12103 close(fd);
12104 return -1;
12105 }
12106 dprintf("Position set: %llu\n", position_to_set);
12107 if (sysfs_set_num(sra, NULL, "sync_max",
12108 position_to_set) != 0) {
1ade5cc1 12109 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12110 position_to_set);
12111 close(fd);
12112 return -1;
eee67a47
AK
12113 }
12114
eee67a47 12115 do {
0febb20c 12116 int rc;
eee67a47 12117 char action[20];
5ff3a780 12118 int timeout = 3000;
0febb20c 12119
5ff3a780 12120 sysfs_wait(fd, &timeout);
a47e44fb
AK
12121 if (sysfs_get_str(sra, NULL, "sync_action",
12122 action, 20) > 0 &&
d7d3809a 12123 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12124 if (strncmp(action, "idle", 4) == 0)
12125 break;
d7d3809a
AP
12126 close(fd);
12127 return -1;
12128 }
0febb20c
AO
12129
12130 rc = read_completed(fd, &completed);
12131 if (rc < 0) {
1ade5cc1 12132 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12133 close(fd);
12134 return 1;
0febb20c
AO
12135 } else if (rc == COMPLETED_NONE)
12136 break;
85ca499c 12137 } while (completed < position_to_set);
b2be2b62 12138
eee67a47
AK
12139 close(fd);
12140 return 0;
eee67a47
AK
12141}
12142
b915c95f
AK
12143/*******************************************************************************
12144 * Function: check_degradation_change
12145 * Description: Check that array hasn't become failed.
12146 * Parameters:
12147 * info : for sysfs access
12148 * sources : source disks descriptors
12149 * degraded: previous degradation level
12150 * Returns:
12151 * degradation level
12152 ******************************************************************************/
12153int check_degradation_change(struct mdinfo *info,
12154 int *sources,
12155 int degraded)
12156{
12157 unsigned long long new_degraded;
e1993023
LD
12158 int rv;
12159
12160 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12161 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12162 /* check each device to ensure it is still working */
12163 struct mdinfo *sd;
12164 new_degraded = 0;
12165 for (sd = info->devs ; sd ; sd = sd->next) {
12166 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12167 continue;
12168 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5 12169 char sbuf[100];
4389ce73 12170 int raid_disk = sd->disk.raid_disk;
cf52eff5 12171
b915c95f 12172 if (sysfs_get_str(info,
cf52eff5 12173 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12174 strstr(sbuf, "faulty") ||
12175 strstr(sbuf, "in_sync") == NULL) {
12176 /* this device is dead */
12177 sd->disk.state = (1<<MD_DISK_FAULTY);
4389ce73
MT
12178 if (raid_disk >= 0)
12179 close_fd(&sources[raid_disk]);
b915c95f
AK
12180 new_degraded++;
12181 }
12182 }
12183 }
12184 }
12185
12186 return new_degraded;
12187}
12188
10f22854
AK
12189/*******************************************************************************
12190 * Function: imsm_manage_reshape
12191 * Description: Function finds array under reshape and it manages reshape
12192 * process. It creates stripes backups (if required) and sets
942e1cdb 12193 * checkpoints.
10f22854
AK
12194 * Parameters:
12195 * afd : Backup handle (nattive) - not used
12196 * sra : general array info
12197 * reshape : reshape parameters - not used
12198 * st : supertype structure
12199 * blocks : size of critical section [blocks]
12200 * fds : table of source device descriptor
12201 * offsets : start of array (offest per devices)
12202 * dests : not used
12203 * destfd : table of destination device descriptor
12204 * destoffsets : table of destination offsets (per device)
12205 * Returns:
12206 * 1 : success, reshape is done
12207 * 0 : fail
12208 ******************************************************************************/
999b4972
N
12209static int imsm_manage_reshape(
12210 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12211 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12212 int *fds, unsigned long long *offsets,
12213 int dests, int *destfd, unsigned long long *destoffsets)
12214{
10f22854
AK
12215 int ret_val = 0;
12216 struct intel_super *super = st->sb;
594dc1b8 12217 struct intel_dev *dv;
de44e46f 12218 unsigned int sector_size = super->sector_size;
10f22854 12219 struct imsm_dev *dev = NULL;
9529d343 12220 struct imsm_map *map_src, *map_dest;
10f22854
AK
12221 int migr_vol_qan = 0;
12222 int ndata, odata; /* [bytes] */
12223 int chunk; /* [bytes] */
12224 struct migr_record *migr_rec;
12225 char *buf = NULL;
12226 unsigned int buf_size; /* [bytes] */
12227 unsigned long long max_position; /* array size [bytes] */
12228 unsigned long long next_step; /* [blocks]/[bytes] */
12229 unsigned long long old_data_stripe_length;
10f22854
AK
12230 unsigned long long start_src; /* [bytes] */
12231 unsigned long long start; /* [bytes] */
12232 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12233 int degraded = 0;
ab724b98 12234 int source_layout = 0;
895ffd99 12235 int subarray_index = -1;
10f22854 12236
79a16a9b
JS
12237 if (!sra)
12238 return ret_val;
12239
12240 if (!fds || !offsets)
10f22854
AK
12241 goto abort;
12242
12243 /* Find volume during the reshape */
12244 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12245 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12246 dv->dev->vol.migr_state == 1) {
10f22854
AK
12247 dev = dv->dev;
12248 migr_vol_qan++;
895ffd99 12249 subarray_index = dv->index;
10f22854
AK
12250 }
12251 }
12252 /* Only one volume can migrate at the same time */
12253 if (migr_vol_qan != 1) {
676e87a8 12254 pr_err("%s", migr_vol_qan ?
10f22854
AK
12255 "Number of migrating volumes greater than 1\n" :
12256 "There is no volume during migrationg\n");
12257 goto abort;
12258 }
12259
9529d343 12260 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12261 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12262 if (map_src == NULL)
12263 goto abort;
10f22854 12264
9529d343
MD
12265 ndata = imsm_num_data_members(map_dest);
12266 odata = imsm_num_data_members(map_src);
10f22854 12267
7b1ab482 12268 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12269 old_data_stripe_length = odata * chunk;
12270
12271 migr_rec = super->migr_rec;
12272
10f22854
AK
12273 /* initialize migration record for start condition */
12274 if (sra->reshape_progress == 0)
12275 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12276 else {
12277 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12278 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12279 goto abort;
12280 }
6a75c8ca
AK
12281 /* Save checkpoint to update migration record for current
12282 * reshape position (in md). It can be farther than current
12283 * reshape position in metadata.
12284 */
12285 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12286 /* ignore error == 2, this can mean end of reshape here
12287 */
7a862a02 12288 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12289 goto abort;
12290 }
b2c59438 12291 }
10f22854
AK
12292
12293 /* size for data */
12294 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12295 /* extend buffer size for parity disk */
12296 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12297 /* add space for stripe alignment */
10f22854 12298 buf_size += old_data_stripe_length;
de44e46f
PB
12299 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12300 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12301 goto abort;
12302 }
12303
3ef4403c 12304 max_position = sra->component_size * ndata;
68eb8bc6 12305 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12306
9f421827
PB
12307 while (current_migr_unit(migr_rec) <
12308 get_num_migr_units(migr_rec)) {
10f22854
AK
12309 /* current reshape position [blocks] */
12310 unsigned long long current_position =
12311 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12312 * current_migr_unit(migr_rec);
10f22854
AK
12313 unsigned long long border;
12314
b915c95f
AK
12315 /* Check that array hasn't become failed.
12316 */
12317 degraded = check_degradation_change(sra, fds, degraded);
12318 if (degraded > 1) {
7a862a02 12319 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12320 goto abort;
12321 }
12322
10f22854
AK
12323 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12324
12325 if ((current_position + next_step) > max_position)
12326 next_step = max_position - current_position;
12327
92144abf 12328 start = current_position * 512;
10f22854 12329
942e1cdb 12330 /* align reading start to old geometry */
10f22854
AK
12331 start_buf_shift = start % old_data_stripe_length;
12332 start_src = start - start_buf_shift;
12333
12334 border = (start_src / odata) - (start / ndata);
12335 border /= 512;
12336 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12337 /* save critical stripes to buf
12338 * start - start address of current unit
12339 * to backup [bytes]
12340 * start_src - start address of current unit
12341 * to backup alligned to source array
12342 * [bytes]
12343 */
594dc1b8 12344 unsigned long long next_step_filler;
10f22854
AK
12345 unsigned long long copy_length = next_step * 512;
12346
12347 /* allign copy area length to stripe in old geometry */
12348 next_step_filler = ((copy_length + start_buf_shift)
12349 % old_data_stripe_length);
12350 if (next_step_filler)
12351 next_step_filler = (old_data_stripe_length
12352 - next_step_filler);
7a862a02 12353 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12354 start, start_src, copy_length,
12355 start_buf_shift, next_step_filler);
12356
12357 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12358 chunk, map_src->raid_level,
12359 source_layout, 0, NULL, start_src,
10f22854
AK
12360 copy_length +
12361 next_step_filler + start_buf_shift,
12362 buf)) {
7a862a02 12363 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12364 goto abort;
12365 }
12366 /* Convert data to destination format and store it
12367 * in backup general migration area
12368 */
12369 if (save_backup_imsm(st, dev, sra,
aea93171 12370 buf + start_buf_shift, copy_length)) {
7a862a02 12371 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12372 goto abort;
12373 }
12374 if (save_checkpoint_imsm(st, sra,
12375 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12376 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12377 goto abort;
12378 }
8016a6d4
AK
12379 } else {
12380 /* set next step to use whole border area */
12381 border /= next_step;
12382 if (border > 1)
12383 next_step *= border;
10f22854
AK
12384 }
12385 /* When data backed up, checkpoint stored,
12386 * kick the kernel to reshape unit of data
12387 */
12388 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12389 /* limit next step to array max position */
12390 if (next_step > max_position)
12391 next_step = max_position;
10f22854
AK
12392 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12393 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12394 sra->reshape_progress = next_step;
10f22854
AK
12395
12396 /* wait until reshape finish */
c85338c6 12397 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12398 dprintf("wait_for_reshape_imsm returned error!\n");
12399 goto abort;
12400 }
84d11e6c
N
12401 if (sigterm)
12402 goto abort;
10f22854 12403
0228d92c
AK
12404 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12405 /* ignore error == 2, this can mean end of reshape here
12406 */
7a862a02 12407 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12408 goto abort;
12409 }
12410
12411 }
12412
71e5411e
PB
12413 /* clear migr_rec on disks after successful migration */
12414 struct dl *d;
12415
85337573 12416 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12417 for (d = super->disks; d; d = d->next) {
12418 if (d->index < 0 || is_failed(&d->disk))
12419 continue;
12420 unsigned long long dsize;
12421
12422 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12423 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12424 SEEK_SET) >= 0) {
466070ad 12425 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12426 MIGR_REC_BUF_SECTORS*sector_size) !=
12427 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12428 perror("Write migr_rec failed");
12429 }
12430 }
12431
10f22854
AK
12432 /* return '1' if done */
12433 ret_val = 1;
895ffd99
MT
12434
12435 /* After the reshape eliminate size mismatch in metadata.
12436 * Don't update md/component_size here, volume hasn't
12437 * to take whole space. It is allowed by kernel.
12438 * md/component_size will be set propoperly after next assembly.
12439 */
12440 imsm_fix_size_mismatch(st, subarray_index);
12441
10f22854
AK
12442abort:
12443 free(buf);
942e1cdb
N
12444 /* See Grow.c: abort_reshape() for further explanation */
12445 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12446 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12447 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12448
12449 return ret_val;
999b4972 12450}
0c21b485 12451
fbc42556
JR
12452/*******************************************************************************
12453 * Function: calculate_bitmap_min_chunksize
12454 * Description: Calculates the minimal valid bitmap chunk size
12455 * Parameters:
12456 * max_bits : indicate how many bits can be used for the bitmap
12457 * data_area_size : the size of the data area covered by the bitmap
12458 *
12459 * Returns:
12460 * The bitmap chunk size
12461 ******************************************************************************/
12462static unsigned long long
12463calculate_bitmap_min_chunksize(unsigned long long max_bits,
12464 unsigned long long data_area_size)
12465{
12466 unsigned long long min_chunk =
12467 4096; /* sub-page chunks don't work yet.. */
12468 unsigned long long bits = data_area_size / min_chunk + 1;
12469
12470 while (bits > max_bits) {
12471 min_chunk *= 2;
12472 bits = (bits + 1) / 2;
12473 }
12474 return min_chunk;
12475}
12476
12477/*******************************************************************************
12478 * Function: calculate_bitmap_chunksize
12479 * Description: Calculates the bitmap chunk size for the given device
12480 * Parameters:
12481 * st : supertype information
12482 * dev : device for the bitmap
12483 *
12484 * Returns:
12485 * The bitmap chunk size
12486 ******************************************************************************/
12487static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12488 struct imsm_dev *dev)
12489{
12490 struct intel_super *super = st->sb;
12491 unsigned long long min_chunksize;
12492 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12493 size_t dev_size = imsm_dev_size(dev);
12494
12495 min_chunksize = calculate_bitmap_min_chunksize(
12496 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12497
12498 if (result < min_chunksize)
12499 result = min_chunksize;
12500
12501 return result;
12502}
12503
12504/*******************************************************************************
12505 * Function: init_bitmap_header
12506 * Description: Initialize the bitmap header structure
12507 * Parameters:
12508 * st : supertype information
12509 * bms : bitmap header struct to initialize
12510 * dev : device for the bitmap
12511 *
12512 * Returns:
12513 * 0 : success
12514 * -1 : fail
12515 ******************************************************************************/
12516static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12517 struct imsm_dev *dev)
12518{
12519 int vol_uuid[4];
12520
12521 if (!bms || !dev)
12522 return -1;
12523
12524 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12525 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12526 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12527 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12528 bms->write_behind = __cpu_to_le32(0);
12529
12530 uuid_from_super_imsm(st, vol_uuid);
12531 memcpy(bms->uuid, vol_uuid, 16);
12532
12533 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12534
12535 return 0;
12536}
12537
12538/*******************************************************************************
12539 * Function: validate_internal_bitmap_for_drive
12540 * Description: Verify if the bitmap header for a given drive.
12541 * Parameters:
12542 * st : supertype information
12543 * offset : The offset from the beginning of the drive where to look for
12544 * the bitmap header.
12545 * d : the drive info
12546 *
12547 * Returns:
12548 * 0 : success
12549 * -1 : fail
12550 ******************************************************************************/
12551static int validate_internal_bitmap_for_drive(struct supertype *st,
12552 unsigned long long offset,
12553 struct dl *d)
12554{
12555 struct intel_super *super = st->sb;
12556 int ret = -1;
12557 int vol_uuid[4];
12558 bitmap_super_t *bms;
12559 int fd;
12560
12561 if (!d)
12562 return -1;
12563
12564 void *read_buf;
12565
12566 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12567 return -1;
12568
12569 fd = d->fd;
4389ce73 12570 if (!is_fd_valid(fd)) {
fbc42556 12571 fd = open(d->devname, O_RDONLY, 0);
4389ce73
MT
12572
12573 if (!is_fd_valid(fd)) {
fbc42556
JR
12574 dprintf("cannot open the device %s\n", d->devname);
12575 goto abort;
12576 }
12577 }
12578
12579 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12580 goto abort;
12581 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12582 IMSM_BITMAP_HEADER_SIZE)
12583 goto abort;
12584
12585 uuid_from_super_imsm(st, vol_uuid);
12586
12587 bms = read_buf;
12588 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12589 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12590 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12591 dprintf("wrong bitmap header detected\n");
12592 goto abort;
12593 }
12594
12595 ret = 0;
12596abort:
4389ce73
MT
12597 if (!is_fd_valid(d->fd))
12598 close_fd(&fd);
12599
fbc42556
JR
12600 if (read_buf)
12601 free(read_buf);
12602
12603 return ret;
12604}
12605
12606/*******************************************************************************
12607 * Function: validate_internal_bitmap_imsm
12608 * Description: Verify if the bitmap header is in place and with proper data.
12609 * Parameters:
12610 * st : supertype information
12611 *
12612 * Returns:
12613 * 0 : success or device w/o RWH_BITMAP
12614 * -1 : fail
12615 ******************************************************************************/
12616static int validate_internal_bitmap_imsm(struct supertype *st)
12617{
12618 struct intel_super *super = st->sb;
12619 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12620 unsigned long long offset;
12621 struct dl *d;
12622
fbc42556
JR
12623 if (dev->rwh_policy != RWH_BITMAP)
12624 return 0;
12625
12626 offset = get_bitmap_header_sector(super, super->current_vol);
12627 for (d = super->disks; d; d = d->next) {
12628 if (d->index < 0 || is_failed(&d->disk))
12629 continue;
12630
12631 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12632 pr_err("imsm: bitmap validation failed\n");
12633 return -1;
12634 }
12635 }
12636 return 0;
12637}
12638
12639/*******************************************************************************
12640 * Function: add_internal_bitmap_imsm
12641 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12642 * Parameters:
12643 * st : supertype information
12644 * chunkp : bitmap chunk size
12645 * delay : not used for imsm
12646 * write_behind : not used for imsm
12647 * size : not used for imsm
12648 * may_change : not used for imsm
12649 * amajor : not used for imsm
12650 *
12651 * Returns:
12652 * 0 : success
12653 * -1 : fail
12654 ******************************************************************************/
12655static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12656 int delay, int write_behind,
12657 unsigned long long size, int may_change,
12658 int amajor)
12659{
12660 struct intel_super *super = st->sb;
12661 int vol_idx = super->current_vol;
12662 struct imsm_dev *dev;
12663
12664 if (!super->devlist || vol_idx == -1 || !chunkp)
12665 return -1;
12666
12667 dev = get_imsm_dev(super, vol_idx);
fbc42556 12668 dev->rwh_policy = RWH_BITMAP;
fbc42556 12669 *chunkp = calculate_bitmap_chunksize(st, dev);
fbc42556
JR
12670 return 0;
12671}
12672
12673/*******************************************************************************
12674 * Function: locate_bitmap_imsm
12675 * Description: Seek 'fd' to start of write-intent-bitmap.
12676 * Parameters:
12677 * st : supertype information
12678 * fd : file descriptor for the device
12679 * node_num : not used for imsm
12680 *
12681 * Returns:
12682 * 0 : success
12683 * -1 : fail
12684 ******************************************************************************/
12685static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12686{
12687 struct intel_super *super = st->sb;
12688 unsigned long long offset;
12689 int vol_idx = super->current_vol;
12690
12691 if (!super->devlist || vol_idx == -1)
12692 return -1;
12693
12694 offset = get_bitmap_header_sector(super, super->current_vol);
12695 dprintf("bitmap header offset is %llu\n", offset);
12696
12697 lseek64(fd, offset << 9, 0);
12698
12699 return 0;
12700}
12701
12702/*******************************************************************************
12703 * Function: write_init_bitmap_imsm
12704 * Description: Write a bitmap header and prepares the area for the bitmap.
12705 * Parameters:
12706 * st : supertype information
12707 * fd : file descriptor for the device
12708 * update : not used for imsm
12709 *
12710 * Returns:
12711 * 0 : success
12712 * -1 : fail
12713 ******************************************************************************/
12714static int write_init_bitmap_imsm(struct supertype *st, int fd,
12715 enum bitmap_update update)
12716{
12717 struct intel_super *super = st->sb;
12718 int vol_idx = super->current_vol;
12719 int ret = 0;
12720 unsigned long long offset;
12721 bitmap_super_t bms = { 0 };
12722 size_t written = 0;
12723 size_t to_write;
12724 ssize_t rv_num;
12725 void *buf;
12726
12727 if (!super->devlist || !super->sector_size || vol_idx == -1)
12728 return -1;
12729
12730 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12731
12732 /* first clear the space for bitmap header */
12733 unsigned long long bitmap_area_start =
12734 get_bitmap_header_sector(super, vol_idx);
12735
12736 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12737 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12738 if (zero_disk_range(fd, bitmap_area_start,
12739 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12740 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12741 return -1;
12742 }
12743
12744 /* The bitmap area should be filled with "1"s to perform initial
12745 * synchronization.
12746 */
12747 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12748 return -1;
12749 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12750 offset = get_bitmap_sector(super, vol_idx);
12751 lseek64(fd, offset << 9, 0);
12752 while (written < IMSM_BITMAP_AREA_SIZE) {
12753 to_write = IMSM_BITMAP_AREA_SIZE - written;
12754 if (to_write > MAX_SECTOR_SIZE)
12755 to_write = MAX_SECTOR_SIZE;
12756 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12757 if (rv_num != MAX_SECTOR_SIZE) {
12758 ret = -1;
12759 dprintf("cannot initialize bitmap area\n");
12760 goto abort;
12761 }
12762 written += rv_num;
12763 }
12764
12765 /* write a bitmap header */
12766 init_bitmap_header(st, &bms, dev);
12767 memset(buf, 0, MAX_SECTOR_SIZE);
12768 memcpy(buf, &bms, sizeof(bitmap_super_t));
12769 if (locate_bitmap_imsm(st, fd, 0)) {
12770 ret = -1;
12771 dprintf("cannot locate the bitmap\n");
12772 goto abort;
12773 }
12774 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12775 ret = -1;
12776 dprintf("cannot write the bitmap header\n");
12777 goto abort;
12778 }
12779 fsync(fd);
12780
12781abort:
12782 free(buf);
12783
12784 return ret;
12785}
12786
12787/*******************************************************************************
12788 * Function: is_vol_to_setup_bitmap
12789 * Description: Checks if a bitmap should be activated on the dev.
12790 * Parameters:
12791 * info : info about the volume to setup the bitmap
12792 * dev : the device to check against bitmap creation
12793 *
12794 * Returns:
12795 * 0 : bitmap should be set up on the device
12796 * -1 : otherwise
12797 ******************************************************************************/
12798static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12799{
12800 if (!dev || !info)
12801 return -1;
12802
12803 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12804 (dev->rwh_policy == RWH_BITMAP))
12805 return -1;
12806
12807 return 0;
12808}
12809
12810/*******************************************************************************
12811 * Function: set_bitmap_sysfs
12812 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12813 * Parameters:
12814 * info : info about the volume where the bitmap should be setup
12815 * chunksize : bitmap chunk size
12816 * location : location of the bitmap
12817 *
12818 * Returns:
12819 * 0 : success
12820 * -1 : fail
12821 ******************************************************************************/
12822static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12823 char *location)
12824{
12825 /* The bitmap/metadata is set to external to allow changing of value for
12826 * bitmap/location. When external is used, the kernel will treat an offset
12827 * related to the device's first lba (in opposition to the "internal" case
12828 * when this value is related to the beginning of the superblock).
12829 */
12830 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12831 dprintf("failed to set bitmap/metadata\n");
12832 return -1;
12833 }
12834
12835 /* It can only be changed when no bitmap is active.
12836 * Should be bigger than 512 and must be power of 2.
12837 * It is expecting the value in bytes.
12838 */
12839 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12840 __cpu_to_le32(chunksize))) {
12841 dprintf("failed to set bitmap/chunksize\n");
12842 return -1;
12843 }
12844
12845 /* It is expecting the value in sectors. */
12846 if (sysfs_set_num(info, NULL, "bitmap/space",
12847 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12848 dprintf("failed to set bitmap/space\n");
12849 return -1;
12850 }
12851
12852 /* Determines the delay between the bitmap updates.
12853 * It is expecting the value in seconds.
12854 */
12855 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12856 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12857 dprintf("failed to set bitmap/time_base\n");
12858 return -1;
12859 }
12860
12861 /* It is expecting the value in sectors with a sign at the beginning. */
12862 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12863 dprintf("failed to set bitmap/location\n");
12864 return -1;
12865 }
12866
12867 return 0;
12868}
12869
12870/*******************************************************************************
12871 * Function: set_bitmap_imsm
12872 * Description: Setup the bitmap for the given volume
12873 * Parameters:
12874 * st : supertype information
12875 * info : info about the volume where the bitmap should be setup
12876 *
12877 * Returns:
12878 * 0 : success
12879 * -1 : fail
12880 ******************************************************************************/
12881static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12882{
12883 struct intel_super *super = st->sb;
12884 int prev_current_vol = super->current_vol;
12885 struct imsm_dev *dev;
12886 int ret = -1;
12887 char location[16] = "";
12888 unsigned long long chunksize;
12889 struct intel_dev *dev_it;
12890
12891 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12892 super->current_vol = dev_it->index;
12893 dev = get_imsm_dev(super, super->current_vol);
12894
12895 if (is_vol_to_setup_bitmap(info, dev)) {
12896 if (validate_internal_bitmap_imsm(st)) {
12897 dprintf("bitmap header validation failed\n");
12898 goto abort;
12899 }
12900
12901 chunksize = calculate_bitmap_chunksize(st, dev);
12902 dprintf("chunk size is %llu\n", chunksize);
12903
12904 snprintf(location, sizeof(location), "+%llu",
12905 get_bitmap_sector(super, super->current_vol));
12906 dprintf("bitmap offset is %s\n", location);
12907
12908 if (set_bitmap_sysfs(info, chunksize, location)) {
12909 dprintf("cannot setup the bitmap\n");
12910 goto abort;
12911 }
12912 }
12913 }
12914 ret = 0;
12915abort:
12916 super->current_vol = prev_current_vol;
12917 return ret;
12918}
12919
cdddbdbc 12920struct superswitch super_imsm = {
cdddbdbc
DW
12921 .examine_super = examine_super_imsm,
12922 .brief_examine_super = brief_examine_super_imsm,
4737ae25 12923 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 12924 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
12925 .detail_super = detail_super_imsm,
12926 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 12927 .write_init_super = write_init_super_imsm,
0e600426
N
12928 .validate_geometry = validate_geometry_imsm,
12929 .add_to_super = add_to_super_imsm,
1a64be56 12930 .remove_from_super = remove_from_super_imsm,
d665cc31 12931 .detail_platform = detail_platform_imsm,
e50cf220 12932 .export_detail_platform = export_detail_platform_imsm,
33414a01 12933 .kill_subarray = kill_subarray_imsm,
aa534678 12934 .update_subarray = update_subarray_imsm,
2b959fbf 12935 .load_container = load_container_imsm,
71204a50
N
12936 .default_geometry = default_geometry_imsm,
12937 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12938 .reshape_super = imsm_reshape_super,
12939 .manage_reshape = imsm_manage_reshape,
9e2d750d 12940 .recover_backup = recover_backup_imsm,
27156a57 12941 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12942 .match_home = match_home_imsm,
12943 .uuid_from_super= uuid_from_super_imsm,
12944 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12945 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12946 .update_super = update_super_imsm,
12947
12948 .avail_size = avail_size_imsm,
fbfdcb06 12949 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12950
12951 .compare_super = compare_super_imsm,
12952
12953 .load_super = load_super_imsm,
bf5a934a 12954 .init_super = init_super_imsm,
e683ca88 12955 .store_super = store_super_imsm,
cdddbdbc
DW
12956 .free_super = free_super_imsm,
12957 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12958 .container_content = container_content_imsm,
0c21b485 12959 .validate_container = validate_container_imsm,
cdddbdbc 12960
fbc42556
JR
12961 .add_internal_bitmap = add_internal_bitmap_imsm,
12962 .locate_bitmap = locate_bitmap_imsm,
12963 .write_bitmap = write_init_bitmap_imsm,
12964 .set_bitmap = set_bitmap_imsm,
12965
2432ce9b
AP
12966 .write_init_ppl = write_init_ppl_imsm,
12967 .validate_ppl = validate_ppl_imsm,
12968
cdddbdbc 12969 .external = 1,
4cce4069 12970 .name = "imsm",
845dea95
NB
12971
12972/* for mdmon */
12973 .open_new = imsm_open_new,
ed9d66aa 12974 .set_array_state= imsm_set_array_state,
845dea95
NB
12975 .set_disk = imsm_set_disk,
12976 .sync_metadata = imsm_sync_metadata,
88758e9d 12977 .activate_spare = imsm_activate_spare,
e8319a19 12978 .process_update = imsm_process_update,
8273f55e 12979 .prepare_update = imsm_prepare_update,
6f50473f 12980 .record_bad_block = imsm_record_badblock,
c07a5a4f 12981 .clear_bad_block = imsm_clear_badblock,
928f1424 12982 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 12983};