]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
mdadm: Replace obsolete usleep with nanosleep
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
611d9529
MD
91#define IMSM_RESERVED_SECTORS 8192
92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
c2462068
PB
95#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
cdddbdbc 98
fbc42556
JR
99/*
100 * Internal Write-intent bitmap is stored in the same area where PPL.
101 * Both features are mutually exclusive, so it is not an issue.
102 * The first 8KiB of the area are reserved and shall not be used.
103 */
104#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
105
106#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
107#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
108
109#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
110#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
111#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
112
113#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
114#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
115
761e3bd9
N
116/*
117 * This macro let's us ensure that no-one accidentally
118 * changes the size of a struct
119 */
120#define ASSERT_SIZE(_struct, size) \
121static inline void __assert_size_##_struct(void) \
122{ \
123 switch (0) { \
124 case 0: break; \
125 case (sizeof(struct _struct) == size): break; \
126 } \
127}
128
cdddbdbc
DW
129/* Disk configuration info. */
130#define IMSM_MAX_DEVICES 255
131struct imsm_disk {
132 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 133 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 134 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
135#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
136#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
137#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 138#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 139 __u32 status; /* 0xF0 - 0xF3 */
1011e834 140 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
141 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
142#define IMSM_DISK_FILLERS 3
143 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 144};
761e3bd9 145ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 146
3b451610
AK
147/* map selector for map managment
148 */
238c0a71
AK
149#define MAP_0 0
150#define MAP_1 1
151#define MAP_X -1
3b451610 152
cdddbdbc
DW
153/* RAID map configuration infos. */
154struct imsm_map {
5551b113
CA
155 __u32 pba_of_lba0_lo; /* start address of partition */
156 __u32 blocks_per_member_lo;/* blocks per member */
157 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
158 __u16 blocks_per_strip;
159 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
160#define IMSM_T_STATE_NORMAL 0
161#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
162#define IMSM_T_STATE_DEGRADED 2
163#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
164 __u8 raid_level;
165#define IMSM_T_RAID0 0
166#define IMSM_T_RAID1 1
167#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
168 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
169 __u8 num_domains; /* number of parity domains */
170 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 171 __u8 ddf;
5551b113
CA
172 __u32 pba_of_lba0_hi;
173 __u32 blocks_per_member_hi;
174 __u32 num_data_stripes_hi;
175 __u32 filler[4]; /* expansion area */
7eef0453 176#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 177 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
178 * top byte contains some flags
179 */
761e3bd9
N
180};
181ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
182
183struct imsm_vol {
4036e7ee 184 __u32 curr_migr_unit_lo;
fe7ed8cb 185 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 186 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
187#define MIGR_INIT 0
188#define MIGR_REBUILD 1
189#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
190#define MIGR_GEN_MIGR 3
191#define MIGR_STATE_CHANGE 4
1484e727 192#define MIGR_REPAIR 5
cdddbdbc 193 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
194#define RAIDVOL_CLEAN 0
195#define RAIDVOL_DIRTY 1
196#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 197 __u8 dirty;
fe7ed8cb
DW
198 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
199 __u16 verify_errors; /* number of mismatches */
200 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
201 __u32 curr_migr_unit_hi;
202 __u32 filler[3];
cdddbdbc
DW
203 struct imsm_map map[1];
204 /* here comes another one if migr_state */
761e3bd9
N
205};
206ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
207
208struct imsm_dev {
fe7ed8cb 209 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
210 __u32 size_low;
211 __u32 size_high;
fe7ed8cb
DW
212#define DEV_BOOTABLE __cpu_to_le32(0x01)
213#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
214#define DEV_READ_COALESCING __cpu_to_le32(0x04)
215#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
216#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
217#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
218#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
219#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
220#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
221#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
222#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
223#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
224#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
225 __u32 status; /* Persistent RaidDev status */
226 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
227 __u8 migr_priority;
228 __u8 num_sub_vols;
229 __u8 tid;
230 __u8 cng_master_disk;
231 __u16 cache_policy;
232 __u8 cng_state;
233 __u8 cng_sub_state;
2432ce9b
AP
234 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
235
236 /* NVM_EN */
237 __u8 nv_cache_mode;
238 __u8 nv_cache_flags;
239
240 /* Unique Volume Id of the NvCache Volume associated with this volume */
241 __u32 nvc_vol_orig_family_num;
242 __u16 nvc_vol_raid_dev_num;
243
244#define RWH_OFF 0
245#define RWH_DISTRIBUTED 1
246#define RWH_JOURNALING_DRIVE 2
c2462068
PB
247#define RWH_MULTIPLE_DISTRIBUTED 3
248#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
249#define RWH_MULTIPLE_OFF 5
fbc42556 250#define RWH_BITMAP 6
2432ce9b
AP
251 __u8 rwh_policy; /* Raid Write Hole Policy */
252 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
253 __u8 filler1;
254
255#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
256 __u32 filler[IMSM_DEV_FILLERS];
257 struct imsm_vol vol;
761e3bd9
N
258};
259ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
260
261struct imsm_super {
262 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
263 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
264 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
265 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
266 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
267 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
268 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
269 __u8 num_disks; /* 0x38 Number of configured disks */
270 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
271 __u8 error_log_pos; /* 0x3A */
272 __u8 fill[1]; /* 0x3B */
273 __u32 cache_size; /* 0x3c - 0x40 in mb */
274 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
275 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
276 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
277 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
278 * volume IDs for raid_dev created in this array
279 * (starts at 1)
280 */
281 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
282 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
283#define IMSM_FILLERS 32
284 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
285 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
286 /* here comes imsm_dev[num_raid_devs] */
604b746f 287 /* here comes BBM logs */
761e3bd9
N
288};
289ASSERT_SIZE(imsm_super, 264)
cdddbdbc 290
604b746f 291#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
292#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
293#define BBM_LOG_SIGNATURE 0xabadb10c
294
295struct bbm_log_block_addr {
296 __u16 w1;
297 __u32 dw1;
298} __attribute__ ((__packed__));
604b746f
JD
299
300struct bbm_log_entry {
8d67477f
TM
301 __u8 marked_count; /* Number of blocks marked - 1 */
302 __u8 disk_ordinal; /* Disk entry within the imsm_super */
303 struct bbm_log_block_addr defective_block_start;
604b746f
JD
304} __attribute__ ((__packed__));
305
306struct bbm_log {
307 __u32 signature; /* 0xABADB10C */
308 __u32 entry_count;
8d67477f 309 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
310};
311ASSERT_SIZE(bbm_log, 2040)
604b746f 312
cdddbdbc 313static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 314
b53bfba6
TM
315#define BLOCKS_PER_KB (1024/512)
316
8e59f3d8
AK
317#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
318
319#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
320
de44e46f
PB
321#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
322#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
323 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
324 */
325
8e59f3d8
AK
326#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
327 * be recovered using srcMap */
328#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
329 * already been migrated and must
330 * be recovered from checkpoint area */
2432ce9b 331
c2462068 332#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 333
8e59f3d8
AK
334struct migr_record {
335 __u32 rec_status; /* Status used to determine how to restart
336 * migration in case it aborts
337 * in some fashion */
9f421827 338 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
339 __u32 family_num; /* Family number of MPB
340 * containing the RaidDev
341 * that is migrating */
342 __u32 ascending_migr; /* True if migrating in increasing
343 * order of lbas */
344 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
345 __u32 dest_depth_per_unit; /* Num member blocks each destMap
346 * member disk
347 * advances per unit-of-operation */
9f421827
PB
348 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
349 __u32 dest_1st_member_lba_lo; /* First member lba on first
350 * stripe of destination */
351 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
352 __u32 post_migr_vol_cap; /* Size of volume after
353 * migration completes */
354 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
355 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
356 * migration ckpt record was read from
357 * (for recovered migrations) */
9f421827
PB
358 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
359 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
360 * high order 32 bits */
361 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
362 * destination - high order 32 bits */
363 __u32 num_migr_units_hi; /* Total num migration units-of-op
364 * high order 32 bits */
4036e7ee 365 __u32 filler[16];
761e3bd9 366};
4036e7ee 367ASSERT_SIZE(migr_record, 128)
8e59f3d8 368
76c152ca
MT
369/**
370 * enum imsm_status - internal IMSM return values representation.
371 * @STATUS_OK: function succeeded.
372 * @STATUS_ERROR: General error ocurred (not specified).
373 *
374 * Typedefed to imsm_status_t.
375 */
376typedef enum imsm_status {
377 IMSM_STATUS_ERROR = -1,
378 IMSM_STATUS_OK = 0,
379} imsm_status_t;
380
ec50f7b6
LM
381struct md_list {
382 /* usage marker:
383 * 1: load metadata
384 * 2: metadata does not match
385 * 4: already checked
386 */
387 int used;
388 char *devname;
389 int found;
390 int container;
391 dev_t st_rdev;
392 struct md_list *next;
393};
394
e7b84f9d 395#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 396
1484e727
DW
397static __u8 migr_type(struct imsm_dev *dev)
398{
399 if (dev->vol.migr_type == MIGR_VERIFY &&
400 dev->status & DEV_VERIFY_AND_FIX)
401 return MIGR_REPAIR;
402 else
403 return dev->vol.migr_type;
404}
405
406static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
407{
408 /* for compatibility with older oroms convert MIGR_REPAIR, into
409 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
410 */
411 if (migr_type == MIGR_REPAIR) {
412 dev->vol.migr_type = MIGR_VERIFY;
413 dev->status |= DEV_VERIFY_AND_FIX;
414 } else {
415 dev->vol.migr_type = migr_type;
416 dev->status &= ~DEV_VERIFY_AND_FIX;
417 }
418}
419
f36a9ecd 420static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 421{
f36a9ecd 422 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 423}
cdddbdbc 424
f36a9ecd
PB
425static unsigned int mpb_sectors(struct imsm_super *mpb,
426 unsigned int sector_size)
87eb16df 427{
f36a9ecd 428 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
429}
430
ba2de7ba
DW
431struct intel_dev {
432 struct imsm_dev *dev;
433 struct intel_dev *next;
f21e18ca 434 unsigned index;
ba2de7ba
DW
435};
436
88654014
LM
437struct intel_hba {
438 enum sys_dev_type type;
439 char *path;
440 char *pci_id;
441 struct intel_hba *next;
442};
443
1a64be56
LM
444enum action {
445 DISK_REMOVE = 1,
446 DISK_ADD
447};
cdddbdbc
DW
448/* internal representation of IMSM metadata */
449struct intel_super {
450 union {
949c47a0
DW
451 void *buf; /* O_DIRECT buffer for reading/writing metadata */
452 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 453 };
8e59f3d8
AK
454 union {
455 void *migr_rec_buf; /* buffer for I/O operations */
456 struct migr_record *migr_rec; /* migration record */
457 };
51d83f5d
AK
458 int clean_migration_record_by_mdmon; /* when reshape is switched to next
459 array, it indicates that mdmon is allowed to clean migration
460 record */
949c47a0 461 size_t len; /* size of the 'buf' allocation */
bbab0940 462 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
463 void *next_buf; /* for realloc'ing buf from the manager */
464 size_t next_len;
c2c087e6 465 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 466 int current_vol; /* index of raid device undergoing creation */
5551b113 467 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 468 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 469 struct intel_dev *devlist;
fa7bb6f8 470 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
471 struct dl {
472 struct dl *next;
473 int index;
474 __u8 serial[MAX_RAID_SERIAL_LEN];
475 int major, minor;
476 char *devname;
b9f594fe 477 struct imsm_disk disk;
cdddbdbc 478 int fd;
0dcecb2e
DW
479 int extent_cnt;
480 struct extent *e; /* for determining freespace @ create */
efb30e7f 481 int raiddisk; /* slot to fill in autolayout */
1a64be56 482 enum action action;
ca0748fa 483 } *disks, *current_disk;
1a64be56
LM
484 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
485 active */
47ee5a45 486 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 487 struct bbm_log *bbm_log;
88654014 488 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 489 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 490 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 491 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
492};
493
494struct intel_disk {
495 struct imsm_disk disk;
496 #define IMSM_UNKNOWN_OWNER (-1)
497 int owner;
498 struct intel_disk *next;
cdddbdbc
DW
499};
500
c2c087e6
DW
501struct extent {
502 unsigned long long start, size;
503};
504
694575e7
KW
505/* definitions of reshape process types */
506enum imsm_reshape_type {
507 CH_TAKEOVER,
b5347799 508 CH_MIGRATION,
7abc9871 509 CH_ARRAY_SIZE,
694575e7
KW
510};
511
88758e9d
DW
512/* definition of messages passed to imsm_process_update */
513enum imsm_update_type {
514 update_activate_spare,
8273f55e 515 update_create_array,
33414a01 516 update_kill_array,
aa534678 517 update_rename_array,
1a64be56 518 update_add_remove_disk,
78b10e66 519 update_reshape_container_disks,
48c5303a 520 update_reshape_migration,
2d40f3a1
AK
521 update_takeover,
522 update_general_migration_checkpoint,
f3871fdc 523 update_size_change,
bbab0940 524 update_prealloc_badblocks_mem,
e6e9dd3f 525 update_rwh_policy,
88758e9d
DW
526};
527
528struct imsm_update_activate_spare {
529 enum imsm_update_type type;
d23fe947 530 struct dl *dl;
88758e9d
DW
531 int slot;
532 int array;
533 struct imsm_update_activate_spare *next;
534};
535
78b10e66 536struct geo_params {
4dd2df09 537 char devnm[32];
78b10e66 538 char *dev_name;
d04f65f4 539 unsigned long long size;
78b10e66
N
540 int level;
541 int layout;
542 int chunksize;
543 int raid_disks;
544};
545
bb025c2f
KW
546enum takeover_direction {
547 R10_TO_R0,
548 R0_TO_R10
549};
550struct imsm_update_takeover {
551 enum imsm_update_type type;
552 int subarray;
553 enum takeover_direction direction;
554};
78b10e66
N
555
556struct imsm_update_reshape {
557 enum imsm_update_type type;
558 int old_raid_disks;
559 int new_raid_disks;
48c5303a
PC
560
561 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
562};
563
564struct imsm_update_reshape_migration {
565 enum imsm_update_type type;
566 int old_raid_disks;
567 int new_raid_disks;
568 /* fields for array migration changes
569 */
570 int subdev;
571 int new_level;
572 int new_layout;
4bba0439 573 int new_chunksize;
48c5303a 574
d195167d 575 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
576};
577
f3871fdc
AK
578struct imsm_update_size_change {
579 enum imsm_update_type type;
580 int subdev;
581 long long new_size;
582};
583
2d40f3a1
AK
584struct imsm_update_general_migration_checkpoint {
585 enum imsm_update_type type;
4036e7ee 586 __u64 curr_migr_unit;
2d40f3a1
AK
587};
588
54c2c1ea
DW
589struct disk_info {
590 __u8 serial[MAX_RAID_SERIAL_LEN];
591};
592
8273f55e
DW
593struct imsm_update_create_array {
594 enum imsm_update_type type;
8273f55e 595 int dev_idx;
6a3e913e 596 struct imsm_dev dev;
8273f55e
DW
597};
598
33414a01
DW
599struct imsm_update_kill_array {
600 enum imsm_update_type type;
601 int dev_idx;
602};
603
aa534678
DW
604struct imsm_update_rename_array {
605 enum imsm_update_type type;
606 __u8 name[MAX_RAID_SERIAL_LEN];
607 int dev_idx;
608};
609
1a64be56 610struct imsm_update_add_remove_disk {
43dad3d6
DW
611 enum imsm_update_type type;
612};
613
bbab0940
TM
614struct imsm_update_prealloc_bb_mem {
615 enum imsm_update_type type;
616};
617
e6e9dd3f
AP
618struct imsm_update_rwh_policy {
619 enum imsm_update_type type;
620 int new_policy;
621 int dev_idx;
622};
623
88654014
LM
624static const char *_sys_dev_type[] = {
625 [SYS_DEV_UNKNOWN] = "Unknown",
626 [SYS_DEV_SAS] = "SAS",
614902f6 627 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
628 [SYS_DEV_NVME] = "NVMe",
629 [SYS_DEV_VMD] = "VMD"
88654014
LM
630};
631
632const char *get_sys_dev_type(enum sys_dev_type type)
633{
634 if (type >= SYS_DEV_MAX)
635 type = SYS_DEV_UNKNOWN;
636
637 return _sys_dev_type[type];
638}
639
640static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
641{
503975b9
N
642 struct intel_hba *result = xmalloc(sizeof(*result));
643
644 result->type = device->type;
645 result->path = xstrdup(device->path);
646 result->next = NULL;
647 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
648 result->pci_id++;
649
88654014
LM
650 return result;
651}
652
653static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
654{
594dc1b8
JS
655 struct intel_hba *result;
656
88654014
LM
657 for (result = hba; result; result = result->next) {
658 if (result->type == device->type && strcmp(result->path, device->path) == 0)
659 break;
660 }
661 return result;
662}
663
b4cf4cba 664static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
665{
666 struct intel_hba *hba;
667
668 /* check if disk attached to Intel HBA */
669 hba = find_intel_hba(super->hba, device);
670 if (hba != NULL)
671 return 1;
672 /* Check if HBA is already attached to super */
673 if (super->hba == NULL) {
674 super->hba = alloc_intel_hba(device);
675 return 1;
6b781d33
AP
676 }
677
678 hba = super->hba;
679 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 680 * Do not support HBA types mixing
6b781d33
AP
681 */
682 if (device->type != hba->type)
88654014 683 return 2;
6b781d33
AP
684
685 /* Multiple same type HBAs can be used if they share the same OROM */
686 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
687
688 if (device_orom != super->orom)
689 return 2;
690
691 while (hba->next)
692 hba = hba->next;
693
694 hba->next = alloc_intel_hba(device);
695 return 1;
88654014
LM
696}
697
698static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
699{
9bc4ae77 700 struct sys_dev *list, *elem;
88654014
LM
701 char *disk_path;
702
703 if ((list = find_intel_devices()) == NULL)
704 return 0;
705
4389ce73 706 if (!is_fd_valid(fd))
88654014
LM
707 disk_path = (char *) devname;
708 else
7c798f87 709 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 710
9bc4ae77 711 if (!disk_path)
88654014 712 return 0;
88654014 713
9bc4ae77
N
714 for (elem = list; elem; elem = elem->next)
715 if (path_attached_to_hba(disk_path, elem->path))
88654014 716 return elem;
9bc4ae77 717
88654014
LM
718 if (disk_path != devname)
719 free(disk_path);
88654014
LM
720
721 return NULL;
722}
723
d424212e
N
724static int find_intel_hba_capability(int fd, struct intel_super *super,
725 char *devname);
f2f5c343 726
cdddbdbc
DW
727static struct supertype *match_metadata_desc_imsm(char *arg)
728{
729 struct supertype *st;
730
731 if (strcmp(arg, "imsm") != 0 &&
732 strcmp(arg, "default") != 0
733 )
734 return NULL;
735
503975b9 736 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
737 st->ss = &super_imsm;
738 st->max_devs = IMSM_MAX_DEVICES;
739 st->minor_version = 0;
740 st->sb = NULL;
741 return st;
742}
743
cdddbdbc
DW
744static __u8 *get_imsm_version(struct imsm_super *mpb)
745{
746 return &mpb->sig[MPB_SIG_LEN];
747}
748
949c47a0
DW
749/* retrieve a disk directly from the anchor when the anchor is known to be
750 * up-to-date, currently only at load time
751 */
752static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 753{
949c47a0 754 if (index >= mpb->num_disks)
cdddbdbc
DW
755 return NULL;
756 return &mpb->disk[index];
757}
758
95d07a2c
LM
759/* retrieve the disk description based on a index of the disk
760 * in the sub-array
761 */
762static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 763{
b9f594fe
DW
764 struct dl *d;
765
766 for (d = super->disks; d; d = d->next)
767 if (d->index == index)
95d07a2c
LM
768 return d;
769
770 return NULL;
771}
772/* retrieve a disk from the parsed metadata */
773static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
774{
775 struct dl *dl;
776
777 dl = get_imsm_dl_disk(super, index);
778 if (dl)
779 return &dl->disk;
780
b9f594fe 781 return NULL;
949c47a0
DW
782}
783
784/* generate a checksum directly from the anchor when the anchor is known to be
785 * up-to-date, currently only at load or write_super after coalescing
786 */
787static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
788{
789 __u32 end = mpb->mpb_size / sizeof(end);
790 __u32 *p = (__u32 *) mpb;
791 __u32 sum = 0;
792
5d500228
N
793 while (end--) {
794 sum += __le32_to_cpu(*p);
97f734fd
N
795 p++;
796 }
cdddbdbc 797
5d500228 798 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
799}
800
a965f303
DW
801static size_t sizeof_imsm_map(struct imsm_map *map)
802{
803 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
804}
805
806struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 807{
5e7b0330
AK
808 /* A device can have 2 maps if it is in the middle of a migration.
809 * If second_map is:
238c0a71
AK
810 * MAP_0 - we return the first map
811 * MAP_1 - we return the second map if it exists, else NULL
812 * MAP_X - we return the second map if it exists, else the first
5e7b0330 813 */
a965f303 814 struct imsm_map *map = &dev->vol.map[0];
9535fc47 815 struct imsm_map *map2 = NULL;
a965f303 816
9535fc47
AK
817 if (dev->vol.migr_state)
818 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 819
9535fc47 820 switch (second_map) {
3b451610 821 case MAP_0:
9535fc47 822 break;
3b451610 823 case MAP_1:
9535fc47
AK
824 map = map2;
825 break;
238c0a71 826 case MAP_X:
9535fc47
AK
827 if (map2)
828 map = map2;
829 break;
9535fc47
AK
830 default:
831 map = NULL;
832 }
833 return map;
5e7b0330 834
a965f303 835}
cdddbdbc 836
3393c6af
DW
837/* return the size of the device.
838 * migr_state increases the returned size if map[0] were to be duplicated
839 */
840static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
841{
842 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 843 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
844
845 /* migrating means an additional map */
a965f303 846 if (dev->vol.migr_state)
238c0a71 847 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 848 else if (migr_state)
238c0a71 849 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
850
851 return size;
852}
853
54c2c1ea
DW
854/* retrieve disk serial number list from a metadata update */
855static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
856{
857 void *u = update;
858 struct disk_info *inf;
859
860 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
861 sizeof_imsm_dev(&update->dev, 0);
862
863 return inf;
864}
54c2c1ea 865
756a15f3
MG
866/**
867 * __get_imsm_dev() - Get device with index from imsm_super.
868 * @mpb: &imsm_super pointer, not NULL.
869 * @index: Device index.
870 *
871 * Function works as non-NULL, aborting in such a case,
872 * when NULL would be returned.
873 *
874 * Device index should be in range 0 up to num_raid_devs.
875 * Function assumes the index was already verified.
876 * Index must be valid, otherwise abort() is called.
877 *
878 * Return: Pointer to corresponding imsm_dev.
879 *
880 */
949c47a0 881static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
882{
883 int offset;
884 int i;
885 void *_mpb = mpb;
886
949c47a0 887 if (index >= mpb->num_raid_devs)
756a15f3 888 goto error;
cdddbdbc
DW
889
890 /* devices start after all disks */
891 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
892
756a15f3 893 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
cdddbdbc
DW
894 if (i == index)
895 return _mpb + offset;
756a15f3
MG
896error:
897 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
898 abort();
cdddbdbc
DW
899}
900
756a15f3
MG
901/**
902 * get_imsm_dev() - Get device with index from intel_super.
903 * @super: &intel_super pointer, not NULL.
904 * @index: Device index.
905 *
906 * Function works as non-NULL, aborting in such a case,
907 * when NULL would be returned.
908 *
909 * Device index should be in range 0 up to num_raid_devs.
910 * Function assumes the index was already verified.
911 * Index must be valid, otherwise abort() is called.
912 *
913 * Return: Pointer to corresponding imsm_dev.
914 *
915 */
949c47a0
DW
916static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
917{
ba2de7ba
DW
918 struct intel_dev *dv;
919
949c47a0 920 if (index >= super->anchor->num_raid_devs)
756a15f3
MG
921 goto error;
922
ba2de7ba
DW
923 for (dv = super->devlist; dv; dv = dv->next)
924 if (dv->index == index)
925 return dv->dev;
756a15f3
MG
926error:
927 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
928 abort();
949c47a0
DW
929}
930
8d67477f
TM
931static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
932 *addr)
933{
934 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
935 __le16_to_cpu(addr->w1));
936}
937
938static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
939{
940 struct bbm_log_block_addr addr;
941
942 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
943 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
944 return addr;
945}
946
8d67477f
TM
947/* get size of the bbm log */
948static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
949{
950 if (!log || log->entry_count == 0)
951 return 0;
952
953 return sizeof(log->signature) +
954 sizeof(log->entry_count) +
955 log->entry_count * sizeof(struct bbm_log_entry);
956}
6f50473f
TM
957
958/* check if bad block is not partially stored in bbm log */
959static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
960 long long sector, const int length, __u32 *pos)
961{
962 __u32 i;
963
964 for (i = *pos; i < log->entry_count; i++) {
965 struct bbm_log_entry *entry = &log->marked_block_entries[i];
966 unsigned long long bb_start;
967 unsigned long long bb_end;
968
969 bb_start = __le48_to_cpu(&entry->defective_block_start);
970 bb_end = bb_start + (entry->marked_count + 1);
971
972 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
973 (bb_end <= sector + length)) {
974 *pos = i;
975 return 1;
976 }
977 }
978 return 0;
979}
980
981/* record new bad block in bbm log */
982static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
983 long long sector, int length)
984{
985 int new_bb = 0;
986 __u32 pos = 0;
987 struct bbm_log_entry *entry = NULL;
988
989 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
990 struct bbm_log_entry *e = &log->marked_block_entries[pos];
991
992 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
993 (__le48_to_cpu(&e->defective_block_start) == sector)) {
994 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
995 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
996 pos = pos + 1;
997 continue;
998 }
999 entry = e;
1000 break;
1001 }
1002
1003 if (entry) {
1004 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1005 BBM_LOG_MAX_LBA_ENTRY_VAL;
1006 entry->defective_block_start = __cpu_to_le48(sector);
1007 entry->marked_count = cnt - 1;
1008 if (cnt == length)
1009 return 1;
1010 sector += cnt;
1011 length -= cnt;
1012 }
1013
1014 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1015 BBM_LOG_MAX_LBA_ENTRY_VAL;
1016 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1017 return 0;
1018
1019 while (length > 0) {
1020 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1021 BBM_LOG_MAX_LBA_ENTRY_VAL;
1022 struct bbm_log_entry *entry =
1023 &log->marked_block_entries[log->entry_count];
1024
1025 entry->defective_block_start = __cpu_to_le48(sector);
1026 entry->marked_count = cnt - 1;
1027 entry->disk_ordinal = idx;
1028
1029 sector += cnt;
1030 length -= cnt;
1031
1032 log->entry_count++;
1033 }
1034
1035 return new_bb;
1036}
c07a5a4f 1037
4c9e8c1e
TM
1038/* clear all bad blocks for given disk */
1039static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1040{
1041 __u32 i = 0;
1042
1043 while (i < log->entry_count) {
1044 struct bbm_log_entry *entries = log->marked_block_entries;
1045
1046 if (entries[i].disk_ordinal == idx) {
1047 if (i < log->entry_count - 1)
1048 entries[i] = entries[log->entry_count - 1];
1049 log->entry_count--;
1050 } else {
1051 i++;
1052 }
1053 }
1054}
1055
c07a5a4f
TM
1056/* clear given bad block */
1057static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1058 long long sector, const int length) {
1059 __u32 i = 0;
1060
1061 while (i < log->entry_count) {
1062 struct bbm_log_entry *entries = log->marked_block_entries;
1063
1064 if ((entries[i].disk_ordinal == idx) &&
1065 (__le48_to_cpu(&entries[i].defective_block_start) ==
1066 sector) && (entries[i].marked_count + 1 == length)) {
1067 if (i < log->entry_count - 1)
1068 entries[i] = entries[log->entry_count - 1];
1069 log->entry_count--;
1070 break;
1071 }
1072 i++;
1073 }
1074
1075 return 1;
1076}
8d67477f
TM
1077
1078/* allocate and load BBM log from metadata */
1079static int load_bbm_log(struct intel_super *super)
1080{
1081 struct imsm_super *mpb = super->anchor;
1082 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1083
1084 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1085 if (!super->bbm_log)
1086 return 1;
1087
1088 if (bbm_log_size) {
1089 struct bbm_log *log = (void *)mpb +
1090 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1091
1092 __u32 entry_count;
1093
1094 if (bbm_log_size < sizeof(log->signature) +
1095 sizeof(log->entry_count))
1096 return 2;
1097
1098 entry_count = __le32_to_cpu(log->entry_count);
1099 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1100 (entry_count > BBM_LOG_MAX_ENTRIES))
1101 return 3;
1102
1103 if (bbm_log_size !=
1104 sizeof(log->signature) + sizeof(log->entry_count) +
1105 entry_count * sizeof(struct bbm_log_entry))
1106 return 4;
1107
1108 memcpy(super->bbm_log, log, bbm_log_size);
1109 } else {
1110 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1111 super->bbm_log->entry_count = 0;
1112 }
1113
1114 return 0;
1115}
1116
b12796be
TM
1117/* checks if bad block is within volume boundaries */
1118static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1119 const unsigned long long start_sector,
1120 const unsigned long long size)
1121{
1122 unsigned long long bb_start;
1123 unsigned long long bb_end;
1124
1125 bb_start = __le48_to_cpu(&entry->defective_block_start);
1126 bb_end = bb_start + (entry->marked_count + 1);
1127
1128 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1129 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1130 return 1;
1131
1132 return 0;
1133}
1134
1135/* get list of bad blocks on a drive for a volume */
1136static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1137 const unsigned long long start_sector,
1138 const unsigned long long size,
1139 struct md_bb *bbs)
1140{
1141 __u32 count = 0;
1142 __u32 i;
1143
1144 for (i = 0; i < log->entry_count; i++) {
1145 const struct bbm_log_entry *ent =
1146 &log->marked_block_entries[i];
1147 struct md_bb_entry *bb;
1148
1149 if ((ent->disk_ordinal == idx) &&
1150 is_bad_block_in_volume(ent, start_sector, size)) {
1151
1152 if (!bbs->entries) {
1153 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1154 sizeof(*bb));
1155 if (!bbs->entries)
1156 break;
1157 }
1158
1159 bb = &bbs->entries[count++];
1160 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1161 bb->length = ent->marked_count + 1;
1162 }
1163 }
1164 bbs->count = count;
1165}
1166
98130f40
AK
1167/*
1168 * for second_map:
238c0a71
AK
1169 * == MAP_0 get first map
1170 * == MAP_1 get second map
1171 * == MAP_X than get map according to the current migr_state
98130f40
AK
1172 */
1173static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1174 int slot,
1175 int second_map)
7eef0453
DW
1176{
1177 struct imsm_map *map;
1178
5e7b0330 1179 map = get_imsm_map(dev, second_map);
7eef0453 1180
ff077194
DW
1181 /* top byte identifies disk under rebuild */
1182 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1183}
1184
1185#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1186static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1187{
98130f40 1188 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1189
1190 return ord_to_idx(ord);
7eef0453
DW
1191}
1192
be73972f
DW
1193static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1194{
1195 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1196}
1197
76c152ca 1198static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
620b1713
DW
1199{
1200 int slot;
1201 __u32 ord;
1202
1203 for (slot = 0; slot < map->num_members; slot++) {
1204 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1205 if (ord_to_idx(ord) == idx)
1206 return slot;
1207 }
1208
76c152ca 1209 return IMSM_STATUS_ERROR;
620b1713
DW
1210}
1211
cdddbdbc
DW
1212static int get_imsm_raid_level(struct imsm_map *map)
1213{
1214 if (map->raid_level == 1) {
1215 if (map->num_members == 2)
1216 return 1;
1217 else
1218 return 10;
1219 }
1220
1221 return map->raid_level;
1222}
1223
76c152ca
MT
1224/**
1225 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1226 * @super: &intel_super pointer, not NULL.
1227 * @dev_idx: imsm device index.
1228 * @idx: disk index.
1229 *
1230 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1231 */
1232static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1233 const unsigned int idx)
1234{
1235 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1236 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1237
1238 return get_imsm_disk_slot(map, idx);
1239}
1240
c2c087e6
DW
1241static int cmp_extent(const void *av, const void *bv)
1242{
1243 const struct extent *a = av;
1244 const struct extent *b = bv;
1245 if (a->start < b->start)
1246 return -1;
1247 if (a->start > b->start)
1248 return 1;
1249 return 0;
1250}
1251
0dcecb2e 1252static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1253{
c2c087e6 1254 int memberships = 0;
620b1713 1255 int i;
c2c087e6 1256
76c152ca
MT
1257 for (i = 0; i < super->anchor->num_raid_devs; i++)
1258 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
620b1713 1259 memberships++;
0dcecb2e
DW
1260
1261 return memberships;
1262}
1263
b81221b7
CA
1264static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1265
486720e0 1266static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1267{
1268 if (lo == 0 || hi == 0)
1269 return 1;
486720e0
JS
1270 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1271 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1272 return 0;
1273}
1274
1275static unsigned long long join_u32(__u32 lo, __u32 hi)
1276{
1277 return (unsigned long long)__le32_to_cpu(lo) |
1278 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1279}
1280
1281static unsigned long long total_blocks(struct imsm_disk *disk)
1282{
1283 if (disk == NULL)
1284 return 0;
1285 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1286}
1287
1c275381
MT
1288/**
1289 * imsm_num_data_members() - get data drives count for an array.
1290 * @map: Map to analyze.
1291 *
1292 * num_data_members value represents minimal count of drives for level.
1293 * The name of the property could be misleading for RAID5 with asymmetric layout
1294 * because some data required to be calculated from parity.
1295 * The property is extracted from level and num_members value.
1296 *
1297 * Return: num_data_members value on success, zero otherwise.
1298 */
1299static __u8 imsm_num_data_members(struct imsm_map *map)
1300{
1301 switch (get_imsm_raid_level(map)) {
1302 case 0:
1303 return map->num_members;
1304 case 1:
1305 case 10:
1306 return map->num_members / 2;
1307 case 5:
1308 return map->num_members - 1;
1309 default:
1310 dprintf("unsupported raid level\n");
1311 return 0;
1312 }
1313}
1314
5551b113
CA
1315static unsigned long long pba_of_lba0(struct imsm_map *map)
1316{
1317 if (map == NULL)
1318 return 0;
1319 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1320}
1321
1322static unsigned long long blocks_per_member(struct imsm_map *map)
1323{
1324 if (map == NULL)
1325 return 0;
1326 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1327}
1328
1329static unsigned long long num_data_stripes(struct imsm_map *map)
1330{
1331 if (map == NULL)
1332 return 0;
1333 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1334}
1335
4036e7ee
MT
1336static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1337{
1338 if (dev == NULL)
1339 return 0;
1340
1341 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1342}
1343
fcc2c9da
MD
1344static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1345{
1346 if (dev == NULL)
1347 return 0;
1348 return join_u32(dev->size_low, dev->size_high);
1349}
1350
9f421827
PB
1351static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1352{
1353 if (migr_rec == NULL)
1354 return 0;
1355 return join_u32(migr_rec->ckpt_area_pba_lo,
1356 migr_rec->ckpt_area_pba_hi);
1357}
1358
1359static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1360{
1361 if (migr_rec == NULL)
1362 return 0;
1363 return join_u32(migr_rec->curr_migr_unit_lo,
1364 migr_rec->curr_migr_unit_hi);
1365}
1366
1367static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1368{
1369 if (migr_rec == NULL)
1370 return 0;
1371 return join_u32(migr_rec->dest_1st_member_lba_lo,
1372 migr_rec->dest_1st_member_lba_hi);
1373}
1374
1375static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1376{
1377 if (migr_rec == NULL)
1378 return 0;
1379 return join_u32(migr_rec->num_migr_units_lo,
1380 migr_rec->num_migr_units_hi);
1381}
1382
5551b113
CA
1383static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1384{
1385 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1386}
1387
1c275381
MT
1388/**
1389 * set_num_domains() - Set number of domains for an array.
1390 * @map: Map to be updated.
1391 *
1392 * num_domains property represents copies count of each data drive, thus make
1393 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1394 * raid1 and raid10.
1395 */
1396static void set_num_domains(struct imsm_map *map)
1397{
1398 int level = get_imsm_raid_level(map);
1399
1400 if (level == 1 || level == 10)
1401 map->num_domains = 2;
1402 else
1403 map->num_domains = 1;
1404}
1405
5551b113
CA
1406static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1407{
1408 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1409}
1410
1411static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1412{
1413 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1414}
1415
1416static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1417{
1418 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1419}
1420
1c275381
MT
1421/**
1422 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1423 * @map: map to be updated.
1424 * @dev_size: size of volume.
1425 *
1426 * num_data_stripes value is addictionally divided by num_domains, therefore for
1427 * levels where num_domains is not 1, nds is a part of real value.
1428 */
1429static void update_num_data_stripes(struct imsm_map *map,
1430 unsigned long long dev_size)
1431{
1432 unsigned long long nds = dev_size / imsm_num_data_members(map);
1433
1434 nds /= map->num_domains;
1435 nds /= map->blocks_per_strip;
1436 set_num_data_stripes(map, nds);
1437}
1438
4036e7ee
MT
1439static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1440{
1441 if (dev == NULL)
1442 return;
1443
1444 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1445}
1446
fcc2c9da
MD
1447static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1448{
1449 split_ull(n, &dev->size_low, &dev->size_high);
1450}
1451
9f421827
PB
1452static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1453 unsigned long long n)
1454{
1455 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1456}
1457
1458static void set_current_migr_unit(struct migr_record *migr_rec,
1459 unsigned long long n)
1460{
1461 split_ull(n, &migr_rec->curr_migr_unit_lo,
1462 &migr_rec->curr_migr_unit_hi);
1463}
1464
1465static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1466 unsigned long long n)
1467{
1468 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1469 &migr_rec->dest_1st_member_lba_hi);
1470}
1471
1472static void set_num_migr_units(struct migr_record *migr_rec,
1473 unsigned long long n)
1474{
1475 split_ull(n, &migr_rec->num_migr_units_lo,
1476 &migr_rec->num_migr_units_hi);
1477}
1478
44490938
MD
1479static unsigned long long per_dev_array_size(struct imsm_map *map)
1480{
1481 unsigned long long array_size = 0;
1482
1483 if (map == NULL)
1484 return array_size;
1485
1486 array_size = num_data_stripes(map) * map->blocks_per_strip;
1487 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1488 array_size *= 2;
1489
1490 return array_size;
1491}
1492
05501181
PB
1493static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1494 int get_minimal_reservation)
0dcecb2e
DW
1495{
1496 /* find a list of used extents on the given physical device */
1497 struct extent *rv, *e;
620b1713 1498 int i;
0dcecb2e 1499 int memberships = count_memberships(dl, super);
b276dd33
DW
1500 __u32 reservation;
1501
1502 /* trim the reserved area for spares, so they can join any array
1503 * regardless of whether the OROM has assigned sectors from the
1504 * IMSM_RESERVED_SECTORS region
1505 */
05501181 1506 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1507 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1508 else
1509 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1510
503975b9 1511 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1512 e = rv;
1513
949c47a0
DW
1514 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1515 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1516 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1517
620b1713 1518 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1519 e->start = pba_of_lba0(map);
44490938 1520 e->size = per_dev_array_size(map);
620b1713 1521 e++;
c2c087e6
DW
1522 }
1523 }
1524 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1525
1011e834 1526 /* determine the start of the metadata
14e8215b
DW
1527 * when no raid devices are defined use the default
1528 * ...otherwise allow the metadata to truncate the value
1529 * as is the case with older versions of imsm
1530 */
1531 if (memberships) {
1532 struct extent *last = &rv[memberships - 1];
5551b113 1533 unsigned long long remainder;
14e8215b 1534
5551b113 1535 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1536 /* round down to 1k block to satisfy precision of the kernel
1537 * 'size' interface
1538 */
1539 remainder &= ~1UL;
1540 /* make sure remainder is still sane */
f21e18ca 1541 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1542 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1543 if (reservation > remainder)
1544 reservation = remainder;
1545 }
5551b113 1546 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1547 e->size = 0;
1548 return rv;
1549}
1550
14e8215b
DW
1551/* try to determine how much space is reserved for metadata from
1552 * the last get_extents() entry, otherwise fallback to the
1553 * default
1554 */
1555static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1556{
1557 struct extent *e;
1558 int i;
1559 __u32 rv;
1560
1561 /* for spares just return a minimal reservation which will grow
1562 * once the spare is picked up by an array
1563 */
1564 if (dl->index == -1)
1565 return MPB_SECTOR_CNT;
1566
05501181 1567 e = get_extents(super, dl, 0);
14e8215b
DW
1568 if (!e)
1569 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1570
1571 /* scroll to last entry */
1572 for (i = 0; e[i].size; i++)
1573 continue;
1574
5551b113 1575 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1576
1577 free(e);
1578
1579 return rv;
1580}
1581
25ed7e59
DW
1582static int is_spare(struct imsm_disk *disk)
1583{
1584 return (disk->status & SPARE_DISK) == SPARE_DISK;
1585}
1586
1587static int is_configured(struct imsm_disk *disk)
1588{
1589 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1590}
1591
1592static int is_failed(struct imsm_disk *disk)
1593{
1594 return (disk->status & FAILED_DISK) == FAILED_DISK;
1595}
1596
2432ce9b
AP
1597static int is_journal(struct imsm_disk *disk)
1598{
1599 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1600}
1601
b53bfba6
TM
1602/* round array size down to closest MB and ensure it splits evenly
1603 * between members
1604 */
1605static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1606 disk_count)
1607{
1608 size /= disk_count;
1609 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1610 size *= disk_count;
1611
1612 return size;
1613}
1614
8b9cd157
MK
1615static int able_to_resync(int raid_level, int missing_disks)
1616{
1617 int max_missing_disks = 0;
1618
1619 switch (raid_level) {
1620 case 10:
1621 max_missing_disks = 1;
1622 break;
1623 default:
1624 max_missing_disks = 0;
1625 }
1626 return missing_disks <= max_missing_disks;
1627}
1628
b81221b7
CA
1629/* try to determine how much space is reserved for metadata from
1630 * the last get_extents() entry on the smallest active disk,
1631 * otherwise fallback to the default
1632 */
1633static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1634{
1635 struct extent *e;
1636 int i;
5551b113
CA
1637 unsigned long long min_active;
1638 __u32 remainder;
b81221b7
CA
1639 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1640 struct dl *dl, *dl_min = NULL;
1641
1642 if (!super)
1643 return rv;
1644
1645 min_active = 0;
1646 for (dl = super->disks; dl; dl = dl->next) {
1647 if (dl->index < 0)
1648 continue;
5551b113
CA
1649 unsigned long long blocks = total_blocks(&dl->disk);
1650 if (blocks < min_active || min_active == 0) {
b81221b7 1651 dl_min = dl;
5551b113 1652 min_active = blocks;
b81221b7
CA
1653 }
1654 }
1655 if (!dl_min)
1656 return rv;
1657
1658 /* find last lba used by subarrays on the smallest active disk */
05501181 1659 e = get_extents(super, dl_min, 0);
b81221b7
CA
1660 if (!e)
1661 return rv;
1662 for (i = 0; e[i].size; i++)
1663 continue;
1664
1665 remainder = min_active - e[i].start;
1666 free(e);
1667
1668 /* to give priority to recovery we should not require full
1669 IMSM_RESERVED_SECTORS from the spare */
1670 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1671
1672 /* if real reservation is smaller use that value */
1673 return (remainder < rv) ? remainder : rv;
1674}
1675
fbfdcb06
AO
1676/*
1677 * Return minimum size of a spare and sector size
1678 * that can be used in this array
1679 */
1680int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1681{
1682 struct intel_super *super = st->sb;
1683 struct dl *dl;
1684 struct extent *e;
1685 int i;
fbfdcb06
AO
1686 unsigned long long size = 0;
1687
1688 c->min_size = 0;
4b57ecf6 1689 c->sector_size = 0;
80e7f8c3
AC
1690
1691 if (!super)
fbfdcb06 1692 return -EINVAL;
80e7f8c3
AC
1693 /* find first active disk in array */
1694 dl = super->disks;
1695 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1696 dl = dl->next;
1697 if (!dl)
fbfdcb06 1698 return -EINVAL;
80e7f8c3 1699 /* find last lba used by subarrays */
05501181 1700 e = get_extents(super, dl, 0);
80e7f8c3 1701 if (!e)
fbfdcb06 1702 return -EINVAL;
80e7f8c3
AC
1703 for (i = 0; e[i].size; i++)
1704 continue;
1705 if (i > 0)
fbfdcb06 1706 size = e[i-1].start + e[i-1].size;
80e7f8c3 1707 free(e);
b81221b7 1708
80e7f8c3 1709 /* add the amount of space needed for metadata */
fbfdcb06
AO
1710 size += imsm_min_reserved_sectors(super);
1711
1712 c->min_size = size * 512;
4b57ecf6 1713 c->sector_size = super->sector_size;
b81221b7 1714
fbfdcb06 1715 return 0;
80e7f8c3
AC
1716}
1717
195d1d76 1718static bool is_gen_migration(struct imsm_dev *dev);
d1e02575 1719
f36a9ecd
PB
1720#define IMSM_4K_DIV 8
1721
c47b0ff6
AK
1722static __u64 blocks_per_migr_unit(struct intel_super *super,
1723 struct imsm_dev *dev);
1e5c6983 1724
c47b0ff6
AK
1725static void print_imsm_dev(struct intel_super *super,
1726 struct imsm_dev *dev,
1727 char *uuid,
1728 int disk_idx)
cdddbdbc
DW
1729{
1730 __u64 sz;
0d80bb2f 1731 int slot, i;
238c0a71
AK
1732 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1733 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1734 __u32 ord;
cdddbdbc
DW
1735
1736 printf("\n");
1e7bc0ed 1737 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1738 printf(" Subarray : %d\n", super->current_vol);
44470971 1739 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1740 printf(" RAID Level : %d", get_imsm_raid_level(map));
1741 if (map2)
1742 printf(" <-- %d", get_imsm_raid_level(map2));
1743 printf("\n");
1744 printf(" Members : %d", map->num_members);
1745 if (map2)
1746 printf(" <-- %d", map2->num_members);
1747 printf("\n");
0d80bb2f
DW
1748 printf(" Slots : [");
1749 for (i = 0; i < map->num_members; i++) {
238c0a71 1750 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1751 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1752 }
dd8bcb3b
AK
1753 printf("]");
1754 if (map2) {
1755 printf(" <-- [");
1756 for (i = 0; i < map2->num_members; i++) {
238c0a71 1757 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1758 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1759 }
1760 printf("]");
1761 }
1762 printf("\n");
7095bccb
AK
1763 printf(" Failed disk : ");
1764 if (map->failed_disk_num == 0xff)
1765 printf("none");
1766 else
1767 printf("%i", map->failed_disk_num);
1768 printf("\n");
620b1713
DW
1769 slot = get_imsm_disk_slot(map, disk_idx);
1770 if (slot >= 0) {
238c0a71 1771 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1772 printf(" This Slot : %d%s\n", slot,
1773 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1774 } else
cdddbdbc 1775 printf(" This Slot : ?\n");
84918897 1776 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1777 sz = imsm_dev_size(dev);
84918897
MK
1778 printf(" Array Size : %llu%s\n",
1779 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1780 human_size(sz * 512));
5551b113 1781 sz = blocks_per_member(map);
84918897
MK
1782 printf(" Per Dev Size : %llu%s\n",
1783 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1784 human_size(sz * 512));
5551b113 1785 printf(" Sector Offset : %llu\n",
7d8935cb 1786 pba_of_lba0(map) * 512 / super->sector_size);
5551b113
CA
1787 printf(" Num Stripes : %llu\n",
1788 num_data_stripes(map));
dd8bcb3b 1789 printf(" Chunk Size : %u KiB",
cdddbdbc 1790 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1791 if (map2)
1792 printf(" <-- %u KiB",
1793 __le16_to_cpu(map2->blocks_per_strip) / 2);
1794 printf("\n");
cdddbdbc 1795 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1796 printf(" Migrate State : ");
1484e727
DW
1797 if (dev->vol.migr_state) {
1798 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1799 printf("initialize\n");
1484e727 1800 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1801 printf("rebuild\n");
1484e727 1802 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1803 printf("check\n");
1484e727 1804 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1805 printf("general migration\n");
1484e727 1806 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1807 printf("state change\n");
1484e727 1808 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1809 printf("repair\n");
1484e727 1810 else
8655a7b1
DW
1811 printf("<unknown:%d>\n", migr_type(dev));
1812 } else
1813 printf("idle\n");
3393c6af
DW
1814 printf(" Map State : %s", map_state_str[map->map_state]);
1815 if (dev->vol.migr_state) {
238c0a71 1816 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1817
b10b37b8 1818 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1819 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1820 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1821 printf("(N/A)");
1822 else
1823 printf("(%llu)", (unsigned long long)
1824 blocks_per_migr_unit(super, dev));
3393c6af
DW
1825 }
1826 printf("\n");
2432ce9b
AP
1827 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1828 "dirty" : "clean");
1829 printf(" RWH Policy : ");
c2462068 1830 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1831 printf("off\n");
1832 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1833 printf("PPL distributed\n");
1834 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1835 printf("PPL journaling drive\n");
c2462068
PB
1836 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1837 printf("Multiple distributed PPLs\n");
1838 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1839 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1840 else if (dev->rwh_policy == RWH_BITMAP)
1841 printf("Write-intent bitmap\n");
2432ce9b
AP
1842 else
1843 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1844
1845 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1846}
1847
ef5c214e
MK
1848static void print_imsm_disk(struct imsm_disk *disk,
1849 int index,
1850 __u32 reserved,
1851 unsigned int sector_size) {
1f24f035 1852 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1853 __u64 sz;
1854
0ec1f4e8 1855 if (index < -1 || !disk)
e9d82038
DW
1856 return;
1857
cdddbdbc 1858 printf("\n");
1f24f035 1859 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1860 if (index >= 0)
1861 printf(" Disk%02d Serial : %s\n", index, str);
1862 else
1863 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1864 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1865 is_configured(disk) ? " active" : "",
1866 is_failed(disk) ? " failed" : "",
1867 is_journal(disk) ? " journal" : "");
cdddbdbc 1868 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1869 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1870 printf(" Usable Size : %llu%s\n",
1871 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1872 human_size(sz * 512));
1873}
1874
de44e46f
PB
1875void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1876{
1877 struct migr_record *migr_rec = super->migr_rec;
1878
1879 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1880 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1881 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1882 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1883 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1884 set_migr_chkp_area_pba(migr_rec,
1885 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1886 set_migr_dest_1st_member_lba(migr_rec,
1887 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1888}
1889
f36a9ecd
PB
1890void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1891{
1892 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1893}
1894
1895void convert_to_4k(struct intel_super *super)
1896{
1897 struct imsm_super *mpb = super->anchor;
1898 struct imsm_disk *disk;
1899 int i;
e4467bc7 1900 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1901
1902 for (i = 0; i < mpb->num_disks ; i++) {
1903 disk = __get_imsm_disk(mpb, i);
1904 /* disk */
1905 convert_to_4k_imsm_disk(disk);
1906 }
1907 for (i = 0; i < mpb->num_raid_devs; i++) {
1908 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1909 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1910 /* dev */
fcc2c9da 1911 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1912 set_vol_curr_migr_unit(dev,
1913 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1914
1915 /* map0 */
1916 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1917 map->blocks_per_strip /= IMSM_4K_DIV;
1918 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1919
1920 if (dev->vol.migr_state) {
1921 /* map1 */
1922 map = get_imsm_map(dev, MAP_1);
1923 set_blocks_per_member(map,
1924 blocks_per_member(map)/IMSM_4K_DIV);
1925 map->blocks_per_strip /= IMSM_4K_DIV;
1926 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1927 }
1928 }
e4467bc7
TM
1929 if (bbm_log_size) {
1930 struct bbm_log *log = (void *)mpb +
1931 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1932 __u32 i;
1933
1934 for (i = 0; i < log->entry_count; i++) {
1935 struct bbm_log_entry *entry =
1936 &log->marked_block_entries[i];
1937
1938 __u8 count = entry->marked_count + 1;
1939 unsigned long long sector =
1940 __le48_to_cpu(&entry->defective_block_start);
1941
1942 entry->defective_block_start =
1943 __cpu_to_le48(sector/IMSM_4K_DIV);
1944 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1945 }
1946 }
f36a9ecd
PB
1947
1948 mpb->check_sum = __gen_imsm_checksum(mpb);
1949}
1950
520e69e2
AK
1951void examine_migr_rec_imsm(struct intel_super *super)
1952{
1953 struct migr_record *migr_rec = super->migr_rec;
1954 struct imsm_super *mpb = super->anchor;
1955 int i;
1956
1957 for (i = 0; i < mpb->num_raid_devs; i++) {
1958 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1959 struct imsm_map *map;
b4ab44d8 1960 int slot = -1;
3136abe5 1961
195d1d76 1962 if (is_gen_migration(dev) == false)
520e69e2
AK
1963 continue;
1964
1965 printf("\nMigration Record Information:");
3136abe5 1966
44bfe6df
AK
1967 /* first map under migration */
1968 map = get_imsm_map(dev, MAP_0);
76c152ca 1969
3136abe5
AK
1970 if (map)
1971 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1972 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1973 printf(" Empty\n ");
1974 printf("Examine one of first two disks in array\n");
1975 break;
1976 }
1977 printf("\n Status : ");
1978 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1979 printf("Normal\n");
1980 else
1981 printf("Contains Data\n");
9f421827
PB
1982 printf(" Current Unit : %llu\n",
1983 current_migr_unit(migr_rec));
520e69e2
AK
1984 printf(" Family : %u\n",
1985 __le32_to_cpu(migr_rec->family_num));
1986 printf(" Ascending : %u\n",
1987 __le32_to_cpu(migr_rec->ascending_migr));
1988 printf(" Blocks Per Unit : %u\n",
1989 __le32_to_cpu(migr_rec->blocks_per_unit));
1990 printf(" Dest. Depth Per Unit : %u\n",
1991 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
1992 printf(" Checkpoint Area pba : %llu\n",
1993 migr_chkp_area_pba(migr_rec));
1994 printf(" First member lba : %llu\n",
1995 migr_dest_1st_member_lba(migr_rec));
1996 printf(" Total Number of Units : %llu\n",
1997 get_num_migr_units(migr_rec));
1998 printf(" Size of volume : %llu\n",
1999 join_u32(migr_rec->post_migr_vol_cap,
2000 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
2001 printf(" Record was read from : %u\n",
2002 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2003
2004 break;
2005 }
2006}
f36a9ecd 2007
de44e46f
PB
2008void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2009{
2010 struct migr_record *migr_rec = super->migr_rec;
2011
2012 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
2013 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2014 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2015 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2016 &migr_rec->post_migr_vol_cap,
2017 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
2018 set_migr_chkp_area_pba(migr_rec,
2019 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2020 set_migr_dest_1st_member_lba(migr_rec,
2021 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
2022}
2023
f36a9ecd
PB
2024void convert_from_4k(struct intel_super *super)
2025{
2026 struct imsm_super *mpb = super->anchor;
2027 struct imsm_disk *disk;
2028 int i;
e4467bc7 2029 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
2030
2031 for (i = 0; i < mpb->num_disks ; i++) {
2032 disk = __get_imsm_disk(mpb, i);
2033 /* disk */
2034 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2035 }
2036
2037 for (i = 0; i < mpb->num_raid_devs; i++) {
2038 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2039 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2040 /* dev */
fcc2c9da 2041 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
2042 set_vol_curr_migr_unit(dev,
2043 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
2044
2045 /* map0 */
2046 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2047 map->blocks_per_strip *= IMSM_4K_DIV;
2048 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2049
2050 if (dev->vol.migr_state) {
2051 /* map1 */
2052 map = get_imsm_map(dev, MAP_1);
2053 set_blocks_per_member(map,
2054 blocks_per_member(map)*IMSM_4K_DIV);
2055 map->blocks_per_strip *= IMSM_4K_DIV;
2056 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2057 }
2058 }
e4467bc7
TM
2059 if (bbm_log_size) {
2060 struct bbm_log *log = (void *)mpb +
2061 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2062 __u32 i;
2063
2064 for (i = 0; i < log->entry_count; i++) {
2065 struct bbm_log_entry *entry =
2066 &log->marked_block_entries[i];
2067
2068 __u8 count = entry->marked_count + 1;
2069 unsigned long long sector =
2070 __le48_to_cpu(&entry->defective_block_start);
2071
2072 entry->defective_block_start =
2073 __cpu_to_le48(sector*IMSM_4K_DIV);
2074 entry->marked_count = count*IMSM_4K_DIV - 1;
2075 }
2076 }
f36a9ecd
PB
2077
2078 mpb->check_sum = __gen_imsm_checksum(mpb);
2079}
2080
19482bcc
AK
2081/*******************************************************************************
2082 * function: imsm_check_attributes
2083 * Description: Function checks if features represented by attributes flags
1011e834 2084 * are supported by mdadm.
19482bcc
AK
2085 * Parameters:
2086 * attributes - Attributes read from metadata
2087 * Returns:
1011e834
N
2088 * 0 - passed attributes contains unsupported features flags
2089 * 1 - all features are supported
19482bcc
AK
2090 ******************************************************************************/
2091static int imsm_check_attributes(__u32 attributes)
2092{
2093 int ret_val = 1;
418f9b36
N
2094 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2095
2096 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
2097
2098 not_supported &= attributes;
2099 if (not_supported) {
e7b84f9d 2100 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 2101 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
2102 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2103 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2104 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2105 }
2106 if (not_supported & MPB_ATTRIB_2TB) {
2107 dprintf("\t\tMPB_ATTRIB_2TB\n");
2108 not_supported ^= MPB_ATTRIB_2TB;
2109 }
2110 if (not_supported & MPB_ATTRIB_RAID0) {
2111 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2112 not_supported ^= MPB_ATTRIB_RAID0;
2113 }
2114 if (not_supported & MPB_ATTRIB_RAID1) {
2115 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2116 not_supported ^= MPB_ATTRIB_RAID1;
2117 }
2118 if (not_supported & MPB_ATTRIB_RAID10) {
2119 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2120 not_supported ^= MPB_ATTRIB_RAID10;
2121 }
2122 if (not_supported & MPB_ATTRIB_RAID1E) {
2123 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2124 not_supported ^= MPB_ATTRIB_RAID1E;
2125 }
2126 if (not_supported & MPB_ATTRIB_RAID5) {
2127 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2128 not_supported ^= MPB_ATTRIB_RAID5;
2129 }
2130 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2131 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2132 not_supported ^= MPB_ATTRIB_RAIDCNG;
2133 }
2134 if (not_supported & MPB_ATTRIB_BBM) {
2135 dprintf("\t\tMPB_ATTRIB_BBM\n");
2136 not_supported ^= MPB_ATTRIB_BBM;
2137 }
2138 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2139 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2140 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2141 }
2142 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2143 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2144 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2145 }
2146 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2147 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2148 not_supported ^= MPB_ATTRIB_2TB_DISK;
2149 }
2150 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2151 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2152 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2153 }
2154 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2155 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2156 not_supported ^= MPB_ATTRIB_NEVER_USE;
2157 }
2158
2159 if (not_supported)
1ade5cc1 2160 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
2161
2162 ret_val = 0;
2163 }
2164
2165 return ret_val;
2166}
2167
a5d85af7 2168static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2169
cdddbdbc
DW
2170static void examine_super_imsm(struct supertype *st, char *homehost)
2171{
2172 struct intel_super *super = st->sb;
949c47a0 2173 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2174 char str[MAX_SIGNATURE_LENGTH];
2175 int i;
27fd6274
DW
2176 struct mdinfo info;
2177 char nbuf[64];
cdddbdbc 2178 __u32 sum;
14e8215b 2179 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2180 struct dl *dl;
e48aed3c 2181 time_t creation_time;
27fd6274 2182
618f4e6d
XN
2183 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2184 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2185 printf(" Magic : %s\n", str);
cdddbdbc 2186 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2187 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2188 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2189 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2190 creation_time = __le64_to_cpu(mpb->creation_time);
2191 printf(" Creation Time : %.24s\n",
2192 creation_time ? ctime(&creation_time) : "Unknown");
19482bcc
AK
2193 printf(" Attributes : ");
2194 if (imsm_check_attributes(mpb->attributes))
2195 printf("All supported\n");
2196 else
2197 printf("not supported\n");
a5d85af7 2198 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2199 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 2200 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2201 sum = __le32_to_cpu(mpb->check_sum);
2202 printf(" Checksum : %08x %s\n", sum,
949c47a0 2203 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2204 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2205 printf(" Disks : %d\n", mpb->num_disks);
2206 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2207 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2208 super->disks->index, reserved, super->sector_size);
8d67477f 2209 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2210 struct bbm_log *log = super->bbm_log;
2211
2212 printf("\n");
2213 printf("Bad Block Management Log:\n");
2214 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2215 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2216 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2217 }
44470971
DW
2218 for (i = 0; i < mpb->num_raid_devs; i++) {
2219 struct mdinfo info;
2220 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2221
2222 super->current_vol = i;
a5d85af7 2223 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2224 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 2225 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2226 }
cdddbdbc
DW
2227 for (i = 0; i < mpb->num_disks; i++) {
2228 if (i == super->disks->index)
2229 continue;
ef5c214e
MK
2230 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2231 super->sector_size);
cdddbdbc 2232 }
94827db3 2233
0ec1f4e8
DW
2234 for (dl = super->disks; dl; dl = dl->next)
2235 if (dl->index == -1)
ef5c214e
MK
2236 print_imsm_disk(&dl->disk, -1, reserved,
2237 super->sector_size);
520e69e2
AK
2238
2239 examine_migr_rec_imsm(super);
cdddbdbc
DW
2240}
2241
061f2c6a 2242static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2243{
27fd6274 2244 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2245 struct mdinfo info;
2246 char nbuf[64];
2247
a5d85af7 2248 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
2249 fname_from_uuid(st, &info, nbuf, ':');
2250 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2251}
2252
2253static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2254{
2255 /* We just write a generic IMSM ARRAY entry */
2256 struct mdinfo info;
2257 char nbuf[64];
2258 char nbuf1[64];
2259 struct intel_super *super = st->sb;
2260 int i;
2261
2262 if (!super->anchor->num_raid_devs)
2263 return;
2264
a5d85af7 2265 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2266 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2267 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2268 struct imsm_dev *dev = get_imsm_dev(super, i);
2269
2270 super->current_vol = i;
a5d85af7 2271 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2272 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 2273 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 2274 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2275 }
cdddbdbc
DW
2276}
2277
9d84c8ea
DW
2278static void export_examine_super_imsm(struct supertype *st)
2279{
2280 struct intel_super *super = st->sb;
2281 struct imsm_super *mpb = super->anchor;
2282 struct mdinfo info;
2283 char nbuf[64];
2284
a5d85af7 2285 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2286 fname_from_uuid(st, &info, nbuf, ':');
2287 printf("MD_METADATA=imsm\n");
2288 printf("MD_LEVEL=container\n");
2289 printf("MD_UUID=%s\n", nbuf+5);
2290 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2291 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2292}
2293
b771faef
BK
2294static void detail_super_imsm(struct supertype *st, char *homehost,
2295 char *subarray)
cdddbdbc 2296{
3ebe00a1
DW
2297 struct mdinfo info;
2298 char nbuf[64];
b771faef
BK
2299 struct intel_super *super = st->sb;
2300 int temp_vol = super->current_vol;
2301
2302 if (subarray)
2303 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2304
a5d85af7 2305 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2306 fname_from_uuid(st, &info, nbuf, ':');
65884368 2307 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2308
2309 super->current_vol = temp_vol;
cdddbdbc
DW
2310}
2311
b771faef 2312static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2313{
ff54de6e
N
2314 struct mdinfo info;
2315 char nbuf[64];
b771faef
BK
2316 struct intel_super *super = st->sb;
2317 int temp_vol = super->current_vol;
2318
2319 if (subarray)
2320 super->current_vol = strtoul(subarray, NULL, 10);
2321
a5d85af7 2322 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2323 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2324 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2325
2326 super->current_vol = temp_vol;
cdddbdbc 2327}
d665cc31 2328
6da53c0e
BK
2329static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2330 size_t serial_buf_len);
d665cc31
DW
2331static void fd2devname(int fd, char *name);
2332
120dc887 2333static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2334{
120dc887
LM
2335 /* dump an unsorted list of devices attached to AHCI Intel storage
2336 * controller, as well as non-connected ports
d665cc31
DW
2337 */
2338 int hba_len = strlen(hba_path) + 1;
2339 struct dirent *ent;
2340 DIR *dir;
2341 char *path = NULL;
2342 int err = 0;
2343 unsigned long port_mask = (1 << port_count) - 1;
2344
f21e18ca 2345 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2346 if (verbose > 0)
e7b84f9d 2347 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2348 return 2;
2349 }
2350
2351 /* scroll through /sys/dev/block looking for devices attached to
2352 * this hba
2353 */
2354 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2355 if (!dir)
2356 return 1;
2357
2358 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2359 int fd;
2360 char model[64];
2361 char vendor[64];
2362 char buf[1024];
2363 int major, minor;
fcebeb77 2364 char device[PATH_MAX];
d665cc31
DW
2365 char *c;
2366 int port;
2367 int type;
2368
2369 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2370 continue;
7c798f87 2371 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2372 if (!path)
2373 continue;
2374 if (!path_attached_to_hba(path, hba_path)) {
2375 free(path);
2376 path = NULL;
2377 continue;
2378 }
2379
fcebeb77
MT
2380 /* retrieve the scsi device */
2381 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2382 if (verbose > 0)
fcebeb77 2383 pr_err("failed to get device\n");
d665cc31
DW
2384 err = 2;
2385 break;
2386 }
fcebeb77 2387 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2388 err = 2;
d665cc31
DW
2389 break;
2390 }
2391 type = strtoul(buf, NULL, 10);
2392
2393 /* if it's not a disk print the vendor and model */
2394 if (!(type == 0 || type == 7 || type == 14)) {
2395 vendor[0] = '\0';
2396 model[0] = '\0';
fcebeb77
MT
2397
2398 if (devpath_to_char(device, "vendor", buf,
2399 sizeof(buf), 0) == 0) {
d665cc31
DW
2400 strncpy(vendor, buf, sizeof(vendor));
2401 vendor[sizeof(vendor) - 1] = '\0';
2402 c = (char *) &vendor[sizeof(vendor) - 1];
2403 while (isspace(*c) || *c == '\0')
2404 *c-- = '\0';
2405
2406 }
fcebeb77
MT
2407
2408 if (devpath_to_char(device, "model", buf,
2409 sizeof(buf), 0) == 0) {
d665cc31
DW
2410 strncpy(model, buf, sizeof(model));
2411 model[sizeof(model) - 1] = '\0';
2412 c = (char *) &model[sizeof(model) - 1];
2413 while (isspace(*c) || *c == '\0')
2414 *c-- = '\0';
2415 }
2416
2417 if (vendor[0] && model[0])
2418 sprintf(buf, "%.64s %.64s", vendor, model);
2419 else
2420 switch (type) { /* numbers from hald/linux/device.c */
2421 case 1: sprintf(buf, "tape"); break;
2422 case 2: sprintf(buf, "printer"); break;
2423 case 3: sprintf(buf, "processor"); break;
2424 case 4:
2425 case 5: sprintf(buf, "cdrom"); break;
2426 case 6: sprintf(buf, "scanner"); break;
2427 case 8: sprintf(buf, "media_changer"); break;
2428 case 9: sprintf(buf, "comm"); break;
2429 case 12: sprintf(buf, "raid"); break;
2430 default: sprintf(buf, "unknown");
2431 }
2432 } else
2433 buf[0] = '\0';
d665cc31
DW
2434
2435 /* chop device path to 'host%d' and calculate the port number */
2436 c = strchr(&path[hba_len], '/');
4e5e717d 2437 if (!c) {
ba728be7 2438 if (verbose > 0)
e7b84f9d 2439 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2440 err = 2;
2441 break;
2442 }
d665cc31 2443 *c = '\0';
0858eccf
AP
2444 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2445 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2446 port -= host_base;
2447 else {
ba728be7 2448 if (verbose > 0) {
d665cc31 2449 *c = '/'; /* repair the full string */
e7b84f9d 2450 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2451 path);
2452 }
2453 err = 2;
2454 break;
2455 }
2456
2457 /* mark this port as used */
2458 port_mask &= ~(1 << port);
2459
2460 /* print out the device information */
2461 if (buf[0]) {
2462 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2463 continue;
2464 }
2465
2466 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 2467 if (!is_fd_valid(fd))
d665cc31
DW
2468 printf(" Port%d : - disk info unavailable -\n", port);
2469 else {
2470 fd2devname(fd, buf);
2471 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2472 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2473 sizeof(buf)) == 0)
2474 printf(" (%s)\n", buf);
d665cc31 2475 else
664d5325 2476 printf(" ()\n");
4dab422a 2477 close(fd);
d665cc31 2478 }
d665cc31
DW
2479 free(path);
2480 path = NULL;
2481 }
2482 if (path)
2483 free(path);
2484 if (dir)
2485 closedir(dir);
2486 if (err == 0) {
2487 int i;
2488
2489 for (i = 0; i < port_count; i++)
2490 if (port_mask & (1 << i))
2491 printf(" Port%d : - no device attached -\n", i);
2492 }
2493
2494 return err;
2495}
2496
6da53c0e 2497static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2498{
2499 struct dirent *ent;
2500 DIR *dir;
60f0f54d 2501
6da53c0e 2502 dir = opendir("/sys/block/");
b9135011 2503 if (!dir)
b5eece69 2504 return 1;
b9135011
JS
2505
2506 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2507 char ns_path[PATH_MAX];
2508 char cntrl_path[PATH_MAX];
2509 char buf[PATH_MAX];
2510 int fd = -1;
60f0f54d 2511
8662f92d
MT
2512 if (!strstr(ent->d_name, "nvme"))
2513 goto skip;
d835518b 2514
8662f92d 2515 fd = open_dev(ent->d_name);
4389ce73 2516 if (!is_fd_valid(fd))
8662f92d 2517 goto skip;
d835518b 2518
8662f92d
MT
2519 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2520 !diskfd_to_devpath(fd, 1, cntrl_path))
2521 goto skip;
2522
2523 if (!path_attached_to_hba(cntrl_path, hba->path))
2524 goto skip;
2525
2526 if (!imsm_is_nvme_namespace_supported(fd, 0))
2527 goto skip;
2528
2529 fd2devname(fd, buf);
2530 if (hba->type == SYS_DEV_VMD)
2531 printf(" NVMe under VMD : %s", buf);
2532 else if (hba->type == SYS_DEV_NVME)
2533 printf(" NVMe Device : %s", buf);
2534
2535 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2536 sizeof(buf)))
2537 printf(" (%s)\n", buf);
2538 else
2539 printf("()\n");
2540
2541skip:
4389ce73 2542 close_fd(&fd);
60f0f54d
PB
2543 }
2544
b9135011 2545 closedir(dir);
b5eece69 2546 return 0;
60f0f54d
PB
2547}
2548
120dc887
LM
2549static void print_found_intel_controllers(struct sys_dev *elem)
2550{
2551 for (; elem; elem = elem->next) {
e7b84f9d 2552 pr_err("found Intel(R) ");
120dc887
LM
2553 if (elem->type == SYS_DEV_SATA)
2554 fprintf(stderr, "SATA ");
155cbb4c
LM
2555 else if (elem->type == SYS_DEV_SAS)
2556 fprintf(stderr, "SAS ");
0858eccf
AP
2557 else if (elem->type == SYS_DEV_NVME)
2558 fprintf(stderr, "NVMe ");
60f0f54d
PB
2559
2560 if (elem->type == SYS_DEV_VMD)
2561 fprintf(stderr, "VMD domain");
2562 else
2563 fprintf(stderr, "RAID controller");
2564
120dc887
LM
2565 if (elem->pci_id)
2566 fprintf(stderr, " at %s", elem->pci_id);
2567 fprintf(stderr, ".\n");
2568 }
2569 fflush(stderr);
2570}
2571
120dc887
LM
2572static int ahci_get_port_count(const char *hba_path, int *port_count)
2573{
2574 struct dirent *ent;
2575 DIR *dir;
2576 int host_base = -1;
2577
2578 *port_count = 0;
2579 if ((dir = opendir(hba_path)) == NULL)
2580 return -1;
2581
2582 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2583 int host;
2584
0858eccf
AP
2585 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2586 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2587 continue;
2588 if (*port_count == 0)
2589 host_base = host;
2590 else if (host < host_base)
2591 host_base = host;
2592
2593 if (host + 1 > *port_count + host_base)
2594 *port_count = host + 1 - host_base;
2595 }
2596 closedir(dir);
2597 return host_base;
2598}
2599
a891a3c2
LM
2600static void print_imsm_capability(const struct imsm_orom *orom)
2601{
0858eccf
AP
2602 printf(" Platform : Intel(R) ");
2603 if (orom->capabilities == 0 && orom->driver_features == 0)
2604 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2605 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2606 printf("Virtual RAID on CPU\n");
0858eccf
AP
2607 else
2608 printf("Rapid Storage Technology%s\n",
2609 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2610 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2611 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2612 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2613 printf(" RAID Levels :%s%s%s%s%s\n",
2614 imsm_orom_has_raid0(orom) ? " raid0" : "",
2615 imsm_orom_has_raid1(orom) ? " raid1" : "",
2616 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2617 imsm_orom_has_raid10(orom) ? " raid10" : "",
2618 imsm_orom_has_raid5(orom) ? " raid5" : "");
2619 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2620 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2621 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2622 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2623 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2624 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2625 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2626 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2627 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2628 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2629 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2630 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2631 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2632 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2633 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2634 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2635 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2636 printf(" 2TB volumes :%s supported\n",
2637 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2638 printf(" 2TB disks :%s supported\n",
2639 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2640 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2641 printf(" Max Volumes : %d per array, %d per %s\n",
2642 orom->vpa, orom->vphba,
2643 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2644 return;
2645}
2646
e50cf220
MN
2647static void print_imsm_capability_export(const struct imsm_orom *orom)
2648{
2649 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2650 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2651 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2652 orom->hotfix_ver, orom->build);
e50cf220
MN
2653 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2654 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2655 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2656 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2657 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2658 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2659 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2660 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2661 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2662 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2663 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2664 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2665 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2666 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2667 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2668 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2669 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2670 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2671 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2672 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2673 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2674 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2675 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2676 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2677 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2678 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2679 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2680 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2681}
2682
9eafa1de 2683static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2684{
2685 /* There are two components to imsm platform support, the ahci SATA
2686 * controller and the option-rom. To find the SATA controller we
2687 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2688 * controller with the Intel vendor id is present. This approach
2689 * allows mdadm to leverage the kernel's ahci detection logic, with the
2690 * caveat that if ahci.ko is not loaded mdadm will not be able to
2691 * detect platform raid capabilities. The option-rom resides in a
2692 * platform "Adapter ROM". We scan for its signature to retrieve the
2693 * platform capabilities. If raid support is disabled in the BIOS the
2694 * option-rom capability structure will not be available.
2695 */
d665cc31 2696 struct sys_dev *list, *hba;
d665cc31
DW
2697 int host_base = 0;
2698 int port_count = 0;
9eafa1de 2699 int result=1;
d665cc31 2700
5615172f 2701 if (enumerate_only) {
a891a3c2 2702 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2703 return 0;
a891a3c2
LM
2704 list = find_intel_devices();
2705 if (!list)
2706 return 2;
2707 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2708 if (find_imsm_capability(hba)) {
2709 result = 0;
a891a3c2
LM
2710 break;
2711 }
9eafa1de 2712 else
6b781d33 2713 result = 2;
a891a3c2 2714 }
a891a3c2 2715 return result;
5615172f
DW
2716 }
2717
155cbb4c
LM
2718 list = find_intel_devices();
2719 if (!list) {
ba728be7 2720 if (verbose > 0)
7a862a02 2721 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2722 return 2;
ba728be7 2723 } else if (verbose > 0)
155cbb4c 2724 print_found_intel_controllers(list);
d665cc31 2725
a891a3c2 2726 for (hba = list; hba; hba = hba->next) {
0858eccf 2727 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2728 continue;
0858eccf 2729 if (!find_imsm_capability(hba)) {
60f0f54d 2730 char buf[PATH_MAX];
e7b84f9d 2731 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2732 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2733 get_sys_dev_type(hba->type));
0858eccf
AP
2734 continue;
2735 }
2736 result = 0;
2737 }
2738
2739 if (controller_path && result == 1) {
2740 pr_err("no active Intel(R) RAID controller found under %s\n",
2741 controller_path);
2742 return result;
2743 }
2744
5e1d6128 2745 const struct orom_entry *entry;
0858eccf 2746
5e1d6128 2747 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2748 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2749 print_imsm_capability(&entry->orom);
32716c51
PB
2750 printf(" 3rd party NVMe :%s supported\n",
2751 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2752 for (hba = list; hba; hba = hba->next) {
2753 if (hba->type == SYS_DEV_VMD) {
2754 char buf[PATH_MAX];
60f0f54d
PB
2755 printf(" I/O Controller : %s (%s)\n",
2756 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2757 if (print_nvme_info(hba)) {
b5eece69
PB
2758 if (verbose > 0)
2759 pr_err("failed to get devices attached to VMD domain.\n");
2760 result |= 2;
2761 }
60f0f54d
PB
2762 }
2763 }
07cb1e57 2764 printf("\n");
60f0f54d
PB
2765 continue;
2766 }
0858eccf 2767
60f0f54d
PB
2768 print_imsm_capability(&entry->orom);
2769 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2770 for (hba = list; hba; hba = hba->next) {
2771 if (hba->type == SYS_DEV_NVME)
6da53c0e 2772 print_nvme_info(hba);
0858eccf 2773 }
60f0f54d 2774 printf("\n");
0858eccf
AP
2775 continue;
2776 }
2777
2778 struct devid_list *devid;
5e1d6128 2779 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2780 hba = device_by_id(devid->devid);
2781 if (!hba)
2782 continue;
2783
9eafa1de
MN
2784 printf(" I/O Controller : %s (%s)\n",
2785 hba->path, get_sys_dev_type(hba->type));
2786 if (hba->type == SYS_DEV_SATA) {
2787 host_base = ahci_get_port_count(hba->path, &port_count);
2788 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2789 if (verbose > 0)
7a862a02 2790 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2791 result |= 2;
2792 }
120dc887
LM
2793 }
2794 }
0858eccf 2795 printf("\n");
d665cc31 2796 }
155cbb4c 2797
120dc887 2798 return result;
d665cc31 2799}
e50cf220 2800
9eafa1de 2801static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2802{
e50cf220
MN
2803 struct sys_dev *list, *hba;
2804 int result=1;
2805
2806 list = find_intel_devices();
2807 if (!list) {
2808 if (verbose > 0)
2809 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2810 result = 2;
e50cf220
MN
2811 return result;
2812 }
2813
2814 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2815 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2816 continue;
60f0f54d
PB
2817 if (!find_imsm_capability(hba) && verbose > 0) {
2818 char buf[PATH_MAX];
2819 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2820 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2821 }
0858eccf 2822 else
e50cf220 2823 result = 0;
e50cf220
MN
2824 }
2825
5e1d6128 2826 const struct orom_entry *entry;
0858eccf 2827
60f0f54d
PB
2828 for (entry = orom_entries; entry; entry = entry->next) {
2829 if (entry->type == SYS_DEV_VMD) {
2830 for (hba = list; hba; hba = hba->next)
2831 print_imsm_capability_export(&entry->orom);
2832 continue;
2833 }
5e1d6128 2834 print_imsm_capability_export(&entry->orom);
60f0f54d 2835 }
0858eccf 2836
e50cf220
MN
2837 return result;
2838}
2839
cdddbdbc
DW
2840static int match_home_imsm(struct supertype *st, char *homehost)
2841{
5115ca67
DW
2842 /* the imsm metadata format does not specify any host
2843 * identification information. We return -1 since we can never
2844 * confirm nor deny whether a given array is "meant" for this
148acb7b 2845 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2846 * exclude member disks that do not belong, and we rely on
2847 * mdadm.conf to specify the arrays that should be assembled.
2848 * Auto-assembly may still pick up "foreign" arrays.
2849 */
cdddbdbc 2850
9362c1c8 2851 return -1;
cdddbdbc
DW
2852}
2853
2854static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2855{
51006d85
N
2856 /* The uuid returned here is used for:
2857 * uuid to put into bitmap file (Create, Grow)
2858 * uuid for backup header when saving critical section (Grow)
2859 * comparing uuids when re-adding a device into an array
2860 * In these cases the uuid required is that of the data-array,
2861 * not the device-set.
2862 * uuid to recognise same set when adding a missing device back
2863 * to an array. This is a uuid for the device-set.
1011e834 2864 *
51006d85
N
2865 * For each of these we can make do with a truncated
2866 * or hashed uuid rather than the original, as long as
2867 * everyone agrees.
2868 * In each case the uuid required is that of the data-array,
2869 * not the device-set.
43dad3d6 2870 */
51006d85
N
2871 /* imsm does not track uuid's so we synthesis one using sha1 on
2872 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2873 * - the orig_family_num of the container
51006d85
N
2874 * - the index number of the volume
2875 * - the 'serial' number of the volume.
2876 * Hopefully these are all constant.
2877 */
2878 struct intel_super *super = st->sb;
43dad3d6 2879
51006d85
N
2880 char buf[20];
2881 struct sha1_ctx ctx;
2882 struct imsm_dev *dev = NULL;
148acb7b 2883 __u32 family_num;
51006d85 2884
148acb7b
DW
2885 /* some mdadm versions failed to set ->orig_family_num, in which
2886 * case fall back to ->family_num. orig_family_num will be
2887 * fixed up with the first metadata update.
2888 */
2889 family_num = super->anchor->orig_family_num;
2890 if (family_num == 0)
2891 family_num = super->anchor->family_num;
51006d85 2892 sha1_init_ctx(&ctx);
92bd8f8d 2893 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2894 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2895 if (super->current_vol >= 0)
2896 dev = get_imsm_dev(super, super->current_vol);
2897 if (dev) {
2898 __u32 vol = super->current_vol;
2899 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2900 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2901 }
2902 sha1_finish_ctx(&ctx, buf);
2903 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2904}
2905
0d481d37 2906#if 0
4f5bc454
DW
2907static void
2908get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2909{
cdddbdbc
DW
2910 __u8 *v = get_imsm_version(mpb);
2911 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2912 char major[] = { 0, 0, 0 };
2913 char minor[] = { 0 ,0, 0 };
2914 char patch[] = { 0, 0, 0 };
2915 char *ver_parse[] = { major, minor, patch };
2916 int i, j;
2917
2918 i = j = 0;
2919 while (*v != '\0' && v < end) {
2920 if (*v != '.' && j < 2)
2921 ver_parse[i][j++] = *v;
2922 else {
2923 i++;
2924 j = 0;
2925 }
2926 v++;
2927 }
2928
4f5bc454
DW
2929 *m = strtol(minor, NULL, 0);
2930 *p = strtol(patch, NULL, 0);
2931}
0d481d37 2932#endif
4f5bc454 2933
1e5c6983
DW
2934static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2935{
2936 /* migr_strip_size when repairing or initializing parity */
238c0a71 2937 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2938 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2939
2940 switch (get_imsm_raid_level(map)) {
2941 case 5:
2942 case 10:
2943 return chunk;
2944 default:
2945 return 128*1024 >> 9;
2946 }
2947}
2948
2949static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2950{
2951 /* migr_strip_size when rebuilding a degraded disk, no idea why
2952 * this is different than migr_strip_size_resync(), but it's good
2953 * to be compatible
2954 */
238c0a71 2955 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2956 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2957
2958 switch (get_imsm_raid_level(map)) {
2959 case 1:
2960 case 10:
2961 if (map->num_members % map->num_domains == 0)
2962 return 128*1024 >> 9;
2963 else
2964 return chunk;
2965 case 5:
2966 return max((__u32) 64*1024 >> 9, chunk);
2967 default:
2968 return 128*1024 >> 9;
2969 }
2970}
2971
2972static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2973{
238c0a71
AK
2974 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2975 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2976 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2977 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2978
2979 return max((__u32) 1, hi_chunk / lo_chunk);
2980}
2981
2982static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2983{
238c0a71 2984 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2985 int level = get_imsm_raid_level(lo);
2986
2987 if (level == 1 || level == 10) {
238c0a71 2988 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2989
2990 return hi->num_domains;
2991 } else
2992 return num_stripes_per_unit_resync(dev);
2993}
2994
44490938
MD
2995static unsigned long long calc_component_size(struct imsm_map *map,
2996 struct imsm_dev *dev)
2997{
2998 unsigned long long component_size;
2999 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 3000 long long calc_dev_size = 0;
44490938
MD
3001 unsigned int member_disks = imsm_num_data_members(map);
3002
3003 if (member_disks == 0)
3004 return 0;
3005
3006 component_size = per_dev_array_size(map);
3007 calc_dev_size = component_size * member_disks;
3008
3009 /* Component size is rounded to 1MB so difference between size from
3010 * metadata and size calculated from num_data_stripes equals up to
3011 * 2048 blocks per each device. If the difference is higher it means
3012 * that array size was expanded and num_data_stripes was not updated.
3013 */
a4f7290c 3014 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
3015 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3016 component_size = dev_size / member_disks;
3017 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3018 component_size / map->blocks_per_strip,
3019 num_data_stripes(map));
3020 }
3021
3022 return component_size;
3023}
3024
1e5c6983
DW
3025static __u32 parity_segment_depth(struct imsm_dev *dev)
3026{
238c0a71 3027 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3028 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3029
3030 switch(get_imsm_raid_level(map)) {
3031 case 1:
3032 case 10:
3033 return chunk * map->num_domains;
3034 case 5:
3035 return chunk * map->num_members;
3036 default:
3037 return chunk;
3038 }
3039}
3040
3041static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3042{
238c0a71 3043 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3044 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3045 __u32 strip = block / chunk;
3046
3047 switch (get_imsm_raid_level(map)) {
3048 case 1:
3049 case 10: {
3050 __u32 vol_strip = (strip * map->num_domains) + 1;
3051 __u32 vol_stripe = vol_strip / map->num_members;
3052
3053 return vol_stripe * chunk + block % chunk;
3054 } case 5: {
3055 __u32 stripe = strip / (map->num_members - 1);
3056
3057 return stripe * chunk + block % chunk;
3058 }
3059 default:
3060 return 0;
3061 }
3062}
3063
c47b0ff6
AK
3064static __u64 blocks_per_migr_unit(struct intel_super *super,
3065 struct imsm_dev *dev)
1e5c6983
DW
3066{
3067 /* calculate the conversion factor between per member 'blocks'
3068 * (md/{resync,rebuild}_start) and imsm migration units, return
3069 * 0 for the 'not migrating' and 'unsupported migration' cases
3070 */
3071 if (!dev->vol.migr_state)
3072 return 0;
3073
3074 switch (migr_type(dev)) {
c47b0ff6
AK
3075 case MIGR_GEN_MIGR: {
3076 struct migr_record *migr_rec = super->migr_rec;
3077 return __le32_to_cpu(migr_rec->blocks_per_unit);
3078 }
1e5c6983
DW
3079 case MIGR_VERIFY:
3080 case MIGR_REPAIR:
3081 case MIGR_INIT: {
238c0a71 3082 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3083 __u32 stripes_per_unit;
3084 __u32 blocks_per_unit;
3085 __u32 parity_depth;
3086 __u32 migr_chunk;
3087 __u32 block_map;
3088 __u32 block_rel;
3089 __u32 segment;
3090 __u32 stripe;
3091 __u8 disks;
3092
3093 /* yes, this is really the translation of migr_units to
3094 * per-member blocks in the 'resync' case
3095 */
3096 stripes_per_unit = num_stripes_per_unit_resync(dev);
3097 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3098 disks = imsm_num_data_members(map);
1e5c6983 3099 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3100 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3101 segment = blocks_per_unit / stripe;
3102 block_rel = blocks_per_unit - segment * stripe;
3103 parity_depth = parity_segment_depth(dev);
3104 block_map = map_migr_block(dev, block_rel);
3105 return block_map + parity_depth * segment;
3106 }
3107 case MIGR_REBUILD: {
3108 __u32 stripes_per_unit;
3109 __u32 migr_chunk;
3110
3111 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3112 migr_chunk = migr_strip_blocks_rebuild(dev);
3113 return migr_chunk * stripes_per_unit;
3114 }
1e5c6983
DW
3115 case MIGR_STATE_CHANGE:
3116 default:
3117 return 0;
3118 }
3119}
3120
c2c087e6
DW
3121static int imsm_level_to_layout(int level)
3122{
3123 switch (level) {
3124 case 0:
3125 case 1:
3126 return 0;
3127 case 5:
3128 case 6:
a380c027 3129 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3130 case 10:
c92a2527 3131 return 0x102;
c2c087e6 3132 }
a18a888e 3133 return UnSet;
c2c087e6
DW
3134}
3135
8e59f3d8
AK
3136/*******************************************************************************
3137 * Function: read_imsm_migr_rec
3138 * Description: Function reads imsm migration record from last sector of disk
3139 * Parameters:
3140 * fd : disk descriptor
3141 * super : metadata info
3142 * Returns:
3143 * 0 : success,
3144 * -1 : fail
3145 ******************************************************************************/
3146static int read_imsm_migr_rec(int fd, struct intel_super *super)
3147{
3148 int ret_val = -1;
de44e46f 3149 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3150 unsigned long long dsize;
3151
3152 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3153 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3154 SEEK_SET) < 0) {
e7b84f9d
N
3155 pr_err("Cannot seek to anchor block: %s\n",
3156 strerror(errno));
8e59f3d8
AK
3157 goto out;
3158 }
466070ad 3159 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3160 MIGR_REC_BUF_SECTORS*sector_size) !=
3161 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3162 pr_err("Cannot read migr record block: %s\n",
3163 strerror(errno));
8e59f3d8
AK
3164 goto out;
3165 }
3166 ret_val = 0;
de44e46f
PB
3167 if (sector_size == 4096)
3168 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3169
3170out:
3171 return ret_val;
3172}
3173
3136abe5
AK
3174static struct imsm_dev *imsm_get_device_during_migration(
3175 struct intel_super *super)
3176{
3177
3178 struct intel_dev *dv;
3179
3180 for (dv = super->devlist; dv; dv = dv->next) {
3181 if (is_gen_migration(dv->dev))
3182 return dv->dev;
3183 }
3184 return NULL;
3185}
3186
8e59f3d8
AK
3187/*******************************************************************************
3188 * Function: load_imsm_migr_rec
3189 * Description: Function reads imsm migration record (it is stored at the last
3190 * sector of disk)
3191 * Parameters:
3192 * super : imsm internal array info
8e59f3d8
AK
3193 * Returns:
3194 * 0 : success
3195 * -1 : fail
4c965cc9 3196 * -2 : no migration in progress
8e59f3d8 3197 ******************************************************************************/
2f86fda3 3198static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3199{
594dc1b8 3200 struct dl *dl;
8e59f3d8
AK
3201 char nm[30];
3202 int retval = -1;
3203 int fd = -1;
3136abe5 3204 struct imsm_dev *dev;
594dc1b8 3205 struct imsm_map *map;
b4ab44d8 3206 int slot = -1;
2f86fda3 3207 int keep_fd = 1;
3136abe5
AK
3208
3209 /* find map under migration */
3210 dev = imsm_get_device_during_migration(super);
3211 /* nothing to load,no migration in progress?
3212 */
3213 if (dev == NULL)
4c965cc9 3214 return -2;
8e59f3d8 3215
2f86fda3
MT
3216 map = get_imsm_map(dev, MAP_0);
3217 if (!map)
3218 return -1;
3136abe5 3219
2f86fda3
MT
3220 for (dl = super->disks; dl; dl = dl->next) {
3221 /* skip spare and failed disks
3222 */
3223 if (dl->index < 0)
3224 continue;
3225 /* read only from one of the first two slots
3226 */
3227 slot = get_imsm_disk_slot(map, dl->index);
3228 if (slot > 1 || slot < 0)
3229 continue;
3230
4389ce73 3231 if (!is_fd_valid(dl->fd)) {
8e59f3d8
AK
3232 sprintf(nm, "%d:%d", dl->major, dl->minor);
3233 fd = dev_open(nm, O_RDONLY);
4389ce73
MT
3234
3235 if (is_fd_valid(fd)) {
2f86fda3 3236 keep_fd = 0;
8e59f3d8 3237 break;
2f86fda3
MT
3238 }
3239 } else {
3240 fd = dl->fd;
3241 break;
8e59f3d8
AK
3242 }
3243 }
2f86fda3 3244
4389ce73 3245 if (!is_fd_valid(fd))
2f86fda3 3246 return retval;
8e59f3d8 3247 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3248 if (!keep_fd)
8e59f3d8 3249 close(fd);
2f86fda3 3250
8e59f3d8
AK
3251 return retval;
3252}
3253
c17608ea
AK
3254/*******************************************************************************
3255 * function: imsm_create_metadata_checkpoint_update
3256 * Description: It creates update for checkpoint change.
3257 * Parameters:
3258 * super : imsm internal array info
3259 * u : pointer to prepared update
3260 * Returns:
3261 * Uptate length.
3262 * If length is equal to 0, input pointer u contains no update
3263 ******************************************************************************/
3264static int imsm_create_metadata_checkpoint_update(
3265 struct intel_super *super,
3266 struct imsm_update_general_migration_checkpoint **u)
3267{
3268
3269 int update_memory_size = 0;
3270
1ade5cc1 3271 dprintf("(enter)\n");
c17608ea
AK
3272
3273 if (u == NULL)
3274 return 0;
3275 *u = NULL;
3276
3277 /* size of all update data without anchor */
3278 update_memory_size =
3279 sizeof(struct imsm_update_general_migration_checkpoint);
3280
503975b9 3281 *u = xcalloc(1, update_memory_size);
c17608ea 3282 if (*u == NULL) {
1ade5cc1 3283 dprintf("error: cannot get memory\n");
c17608ea
AK
3284 return 0;
3285 }
3286 (*u)->type = update_general_migration_checkpoint;
9f421827 3287 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3288 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3289
3290 return update_memory_size;
3291}
3292
c17608ea
AK
3293static void imsm_update_metadata_locally(struct supertype *st,
3294 void *buf, int len);
3295
687629c2
AK
3296/*******************************************************************************
3297 * Function: write_imsm_migr_rec
3298 * Description: Function writes imsm migration record
3299 * (at the last sector of disk)
3300 * Parameters:
3301 * super : imsm internal array info
3302 * Returns:
3303 * 0 : success
3304 * -1 : if fail
3305 ******************************************************************************/
3306static int write_imsm_migr_rec(struct supertype *st)
3307{
3308 struct intel_super *super = st->sb;
de44e46f 3309 unsigned int sector_size = super->sector_size;
687629c2 3310 unsigned long long dsize;
687629c2
AK
3311 int retval = -1;
3312 struct dl *sd;
c17608ea
AK
3313 int len;
3314 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3315 struct imsm_dev *dev;
594dc1b8 3316 struct imsm_map *map;
3136abe5
AK
3317
3318 /* find map under migration */
3319 dev = imsm_get_device_during_migration(super);
3320 /* if no migration, write buffer anyway to clear migr_record
3321 * on disk based on first available device
3322 */
3323 if (dev == NULL)
3324 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3325 super->current_vol);
3326
44bfe6df 3327 map = get_imsm_map(dev, MAP_0);
687629c2 3328
de44e46f
PB
3329 if (sector_size == 4096)
3330 convert_to_4k_imsm_migr_rec(super);
687629c2 3331 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3332 int slot = -1;
3136abe5
AK
3333
3334 /* skip failed and spare devices */
3335 if (sd->index < 0)
3336 continue;
687629c2 3337 /* write to 2 first slots only */
3136abe5
AK
3338 if (map)
3339 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3340 if (map == NULL || slot > 1 || slot < 0)
687629c2 3341 continue;
3136abe5 3342
2f86fda3
MT
3343 get_dev_size(sd->fd, NULL, &dsize);
3344 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3345 sector_size),
de44e46f 3346 SEEK_SET) < 0) {
e7b84f9d
N
3347 pr_err("Cannot seek to anchor block: %s\n",
3348 strerror(errno));
687629c2
AK
3349 goto out;
3350 }
2f86fda3 3351 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3352 MIGR_REC_BUF_SECTORS*sector_size) !=
3353 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3354 pr_err("Cannot write migr record block: %s\n",
3355 strerror(errno));
687629c2
AK
3356 goto out;
3357 }
687629c2 3358 }
de44e46f
PB
3359 if (sector_size == 4096)
3360 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3361 /* update checkpoint information in metadata */
3362 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3363 if (len <= 0) {
3364 dprintf("imsm: Cannot prepare update\n");
3365 goto out;
3366 }
3367 /* update metadata locally */
3368 imsm_update_metadata_locally(st, u, len);
3369 /* and possibly remotely */
3370 if (st->update_tail) {
3371 append_metadata_update(st, u, len);
3372 /* during reshape we do all work inside metadata handler
3373 * manage_reshape(), so metadata update has to be triggered
3374 * insida it
3375 */
3376 flush_metadata_updates(st);
3377 st->update_tail = &st->updates;
3378 } else
3379 free(u);
687629c2
AK
3380
3381 retval = 0;
3382 out:
687629c2
AK
3383 return retval;
3384}
3385
e2962bfc
AK
3386/* spare/missing disks activations are not allowe when
3387 * array/container performs reshape operation, because
3388 * all arrays in container works on the same disks set
3389 */
3390int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3391{
3392 int rv = 0;
3393 struct intel_dev *i_dev;
3394 struct imsm_dev *dev;
3395
3396 /* check whole container
3397 */
3398 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3399 dev = i_dev->dev;
3ad25638 3400 if (is_gen_migration(dev)) {
e2962bfc
AK
3401 /* No repair during any migration in container
3402 */
3403 rv = 1;
3404 break;
3405 }
3406 }
3407 return rv;
3408}
3e684231 3409static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3410 int chunk_size,
f36a9ecd 3411 unsigned int sector_size,
c41e00b2
AK
3412 unsigned long long component_size)
3413{
3e684231 3414 unsigned int component_size_alignment;
c41e00b2 3415
3e684231 3416 /* check component size alignment
c41e00b2 3417 */
3e684231 3418 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3419
3e684231 3420 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3421 level, chunk_size, component_size,
3e684231 3422 component_size_alignment);
c41e00b2 3423
3e684231
MZ
3424 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3425 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3426 component_size);
3e684231 3427 component_size -= component_size_alignment;
1ade5cc1 3428 dprintf_cont("to %llu (%i).\n",
3e684231 3429 component_size, component_size_alignment);
c41e00b2
AK
3430 }
3431
3432 return component_size;
3433}
e2962bfc 3434
fbc42556
JR
3435/*******************************************************************************
3436 * Function: get_bitmap_header_sector
3437 * Description: Returns the sector where the bitmap header is placed.
3438 * Parameters:
3439 * st : supertype information
3440 * dev_idx : index of the device with bitmap
3441 *
3442 * Returns:
3443 * The sector where the bitmap header is placed
3444 ******************************************************************************/
3445static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3446 int dev_idx)
3447{
3448 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3449 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3450
3451 if (!super->sector_size) {
3452 dprintf("sector size is not set\n");
3453 return 0;
3454 }
3455
3456 return pba_of_lba0(map) + calc_component_size(map, dev) +
3457 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3458}
3459
3460/*******************************************************************************
3461 * Function: get_bitmap_sector
3462 * Description: Returns the sector where the bitmap is placed.
3463 * Parameters:
3464 * st : supertype information
3465 * dev_idx : index of the device with bitmap
3466 *
3467 * Returns:
3468 * The sector where the bitmap is placed
3469 ******************************************************************************/
3470static unsigned long long get_bitmap_sector(struct intel_super *super,
3471 int dev_idx)
3472{
3473 if (!super->sector_size) {
3474 dprintf("sector size is not set\n");
3475 return 0;
3476 }
3477
3478 return get_bitmap_header_sector(super, dev_idx) +
3479 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3480}
3481
2432ce9b
AP
3482static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3483{
3484 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3485 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3486
3487 return pba_of_lba0(map) +
3488 (num_data_stripes(map) * map->blocks_per_strip);
3489}
3490
a5d85af7 3491static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3492{
3493 struct intel_super *super = st->sb;
c47b0ff6 3494 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3495 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3496 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3497 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3498 struct imsm_map *map_to_analyse = map;
efb30e7f 3499 struct dl *dl;
a5d85af7 3500 int map_disks = info->array.raid_disks;
bf5a934a 3501
95eeceeb 3502 memset(info, 0, sizeof(*info));
b335e593
AK
3503 if (prev_map)
3504 map_to_analyse = prev_map;
3505
ca0748fa 3506 dl = super->current_disk;
9894ec0d 3507
bf5a934a 3508 info->container_member = super->current_vol;
cd0430a1 3509 info->array.raid_disks = map->num_members;
b335e593 3510 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3511 info->array.layout = imsm_level_to_layout(info->array.level);
3512 info->array.md_minor = -1;
3513 info->array.ctime = 0;
3514 info->array.utime = 0;
b335e593
AK
3515 info->array.chunk_size =
3516 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3517 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3518 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3519 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3520
3f510843 3521 if (is_gen_migration(dev)) {
195d1d76
PP
3522 /*
3523 * device prev_map should be added if it is in the middle
3524 * of migration
3525 */
3526 assert(prev_map);
3527
3f83228a 3528 info->reshape_active = 1;
b335e593
AK
3529 info->new_level = get_imsm_raid_level(map);
3530 info->new_layout = imsm_level_to_layout(info->new_level);
3531 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3532 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3533 if (info->delta_disks) {
3534 /* this needs to be applied to every array
3535 * in the container.
3536 */
81219e70 3537 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3538 }
3f83228a
N
3539 /* We shape information that we give to md might have to be
3540 * modify to cope with md's requirement for reshaping arrays.
3541 * For example, when reshaping a RAID0, md requires it to be
3542 * presented as a degraded RAID4.
3543 * Also if a RAID0 is migrating to a RAID5 we need to specify
3544 * the array as already being RAID5, but the 'before' layout
3545 * is a RAID4-like layout.
3546 */
3547 switch (info->array.level) {
3548 case 0:
3549 switch(info->new_level) {
3550 case 0:
3551 /* conversion is happening as RAID4 */
3552 info->array.level = 4;
3553 info->array.raid_disks += 1;
3554 break;
3555 case 5:
3556 /* conversion is happening as RAID5 */
3557 info->array.level = 5;
3558 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3559 info->delta_disks -= 1;
3560 break;
3561 default:
3562 /* FIXME error message */
3563 info->array.level = UnSet;
3564 break;
3565 }
3566 break;
3567 }
b335e593
AK
3568 } else {
3569 info->new_level = UnSet;
3570 info->new_layout = UnSet;
3571 info->new_chunk = info->array.chunk_size;
3f83228a 3572 info->delta_disks = 0;
b335e593 3573 }
ca0748fa 3574
efb30e7f
DW
3575 if (dl) {
3576 info->disk.major = dl->major;
3577 info->disk.minor = dl->minor;
ca0748fa 3578 info->disk.number = dl->index;
656b6b5a
N
3579 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3580 dl->index);
efb30e7f 3581 }
bf5a934a 3582
5551b113 3583 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3584 info->component_size = calc_component_size(map, dev);
3e684231 3585 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3586 info->array.level,
3587 info->array.chunk_size,
f36a9ecd 3588 super->sector_size,
c41e00b2 3589 info->component_size);
5e46202e 3590 info->bb.supported = 1;
139dae11 3591
301406c9 3592 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3593 info->recovery_start = MaxSector;
bf5a934a 3594
c2462068
PB
3595 if (info->array.level == 5 &&
3596 (dev->rwh_policy == RWH_DISTRIBUTED ||
3597 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3598 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3599 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3600 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3601 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3602 else
3603 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3604 >> 9;
2432ce9b
AP
3605 } else if (info->array.level <= 0) {
3606 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3607 } else {
fbc42556
JR
3608 if (dev->rwh_policy == RWH_BITMAP) {
3609 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3610 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3611 } else {
3612 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3613 }
2432ce9b
AP
3614 }
3615
d2e6d5d6 3616 info->reshape_progress = 0;
b6796ce1 3617 info->resync_start = MaxSector;
b9172665 3618 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3619 !(info->array.state & 1)) &&
b9172665 3620 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3621 info->resync_start = 0;
b6796ce1
AK
3622 }
3623 if (dev->vol.migr_state) {
1e5c6983
DW
3624 switch (migr_type(dev)) {
3625 case MIGR_REPAIR:
3626 case MIGR_INIT: {
c47b0ff6
AK
3627 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3628 dev);
4036e7ee 3629 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3630
3631 info->resync_start = blocks_per_unit * units;
3632 break;
3633 }
d2e6d5d6 3634 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3635 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3636 dev);
9f421827 3637 __u64 units = current_migr_unit(migr_rec);
04fa9523 3638 int used_disks;
d2e6d5d6 3639
befb629b
AK
3640 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3641 (units <
9f421827 3642 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3643 (super->migr_rec->rec_status ==
3644 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3645 units++;
3646
d2e6d5d6 3647 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3648
7a862a02 3649 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3650 (unsigned long long)units,
3651 (unsigned long long)blocks_per_unit,
3652 info->reshape_progress);
75156c46 3653
9529d343 3654 used_disks = imsm_num_data_members(prev_map);
75156c46 3655 if (used_disks > 0) {
895ffd99 3656 info->custom_array_size = per_dev_array_size(map) *
75156c46 3657 used_disks;
75156c46 3658 }
d2e6d5d6 3659 }
1e5c6983
DW
3660 case MIGR_VERIFY:
3661 /* we could emulate the checkpointing of
3662 * 'sync_action=check' migrations, but for now
3663 * we just immediately complete them
3664 */
3665 case MIGR_REBUILD:
3666 /* this is handled by container_content_imsm() */
1e5c6983
DW
3667 case MIGR_STATE_CHANGE:
3668 /* FIXME handle other migrations */
3669 default:
3670 /* we are not dirty, so... */
3671 info->resync_start = MaxSector;
3672 }
b6796ce1 3673 }
301406c9
DW
3674
3675 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3676 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3677
f35f2525
N
3678 info->array.major_version = -1;
3679 info->array.minor_version = -2;
4dd2df09 3680 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3681 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3682 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3683
3684 if (dmap) {
3685 int i, j;
3686 for (i=0; i<map_disks; i++) {
3687 dmap[i] = 0;
3688 if (i < info->array.raid_disks) {
3689 struct imsm_disk *dsk;
238c0a71 3690 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3691 dsk = get_imsm_disk(super, j);
3692 if (dsk && (dsk->status & CONFIGURED_DISK))
3693 dmap[i] = 1;
3694 }
3695 }
3696 }
81ac8b4d 3697}
bf5a934a 3698
3b451610
AK
3699static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3700 int failed, int look_in_map);
3701
3702static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3703 int look_in_map);
3704
3705static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3706{
3707 if (is_gen_migration(dev)) {
3708 int failed;
3709 __u8 map_state;
3710 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3711
3712 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3713 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3714 if (map2->map_state != map_state) {
3715 map2->map_state = map_state;
3716 super->updates_pending++;
3717 }
3718 }
3719}
97b4d0e9
DW
3720
3721static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3722{
3723 struct dl *d;
3724
3725 for (d = super->missing; d; d = d->next)
3726 if (d->index == index)
3727 return &d->disk;
3728 return NULL;
3729}
3730
a5d85af7 3731static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3732{
3733 struct intel_super *super = st->sb;
4f5bc454 3734 struct imsm_disk *disk;
a5d85af7 3735 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3736 int max_enough = -1;
3737 int i;
3738 struct imsm_super *mpb;
4f5bc454 3739
bf5a934a 3740 if (super->current_vol >= 0) {
a5d85af7 3741 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3742 return;
3743 }
95eeceeb 3744 memset(info, 0, sizeof(*info));
d23fe947
DW
3745
3746 /* Set raid_disks to zero so that Assemble will always pull in valid
3747 * spares
3748 */
3749 info->array.raid_disks = 0;
cdddbdbc
DW
3750 info->array.level = LEVEL_CONTAINER;
3751 info->array.layout = 0;
3752 info->array.md_minor = -1;
1011e834 3753 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3754 info->array.utime = 0;
3755 info->array.chunk_size = 0;
3756
3757 info->disk.major = 0;
3758 info->disk.minor = 0;
cdddbdbc 3759 info->disk.raid_disk = -1;
c2c087e6 3760 info->reshape_active = 0;
f35f2525
N
3761 info->array.major_version = -1;
3762 info->array.minor_version = -2;
c2c087e6 3763 strcpy(info->text_version, "imsm");
a67dd8cc 3764 info->safe_mode_delay = 0;
c2c087e6
DW
3765 info->disk.number = -1;
3766 info->disk.state = 0;
c5afc314 3767 info->name[0] = 0;
921d9e16 3768 info->recovery_start = MaxSector;
3ad25638 3769 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3770 info->bb.supported = 1;
c2c087e6 3771
97b4d0e9 3772 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3773 mpb = super->anchor;
b7d81a38 3774 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3775
ab3cb6b3
N
3776 for (i = 0; i < mpb->num_raid_devs; i++) {
3777 struct imsm_dev *dev = get_imsm_dev(super, i);
3778 int failed, enough, j, missing = 0;
3779 struct imsm_map *map;
3780 __u8 state;
97b4d0e9 3781
3b451610
AK
3782 failed = imsm_count_failed(super, dev, MAP_0);
3783 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3784 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3785
3786 /* any newly missing disks?
3787 * (catches single-degraded vs double-degraded)
3788 */
3789 for (j = 0; j < map->num_members; j++) {
238c0a71 3790 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3791 __u32 idx = ord_to_idx(ord);
3792
20dc76d1
MT
3793 if (super->disks && super->disks->index == (int)idx)
3794 info->disk.raid_disk = j;
3795
ab3cb6b3
N
3796 if (!(ord & IMSM_ORD_REBUILD) &&
3797 get_imsm_missing(super, idx)) {
3798 missing = 1;
3799 break;
3800 }
97b4d0e9 3801 }
ab3cb6b3
N
3802
3803 if (state == IMSM_T_STATE_FAILED)
3804 enough = -1;
3805 else if (state == IMSM_T_STATE_DEGRADED &&
3806 (state != map->map_state || missing))
3807 enough = 0;
3808 else /* we're normal, or already degraded */
3809 enough = 1;
d2bde6d3
AK
3810 if (is_gen_migration(dev) && missing) {
3811 /* during general migration we need all disks
3812 * that process is running on.
3813 * No new missing disk is allowed.
3814 */
3815 max_enough = -1;
3816 enough = -1;
3817 /* no more checks necessary
3818 */
3819 break;
3820 }
ab3cb6b3
N
3821 /* in the missing/failed disk case check to see
3822 * if at least one array is runnable
3823 */
3824 max_enough = max(max_enough, enough);
3825 }
1ade5cc1 3826 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3827 info->container_enough = max_enough;
97b4d0e9 3828
4a04ec6c 3829 if (super->disks) {
14e8215b
DW
3830 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3831
b9f594fe 3832 disk = &super->disks->disk;
5551b113 3833 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3834 info->component_size = reserved;
25ed7e59 3835 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3836 /* we don't change info->disk.raid_disk here because
3837 * this state will be finalized in mdmon after we have
3838 * found the 'most fresh' version of the metadata
3839 */
25ed7e59 3840 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3841 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3842 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3843 }
a575e2a7
DW
3844
3845 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3846 * ->compare_super may have updated the 'num_raid_devs' field for spares
3847 */
3848 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3849 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3850 else
3851 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3852
3853 /* I don't know how to compute 'map' on imsm, so use safe default */
3854 if (map) {
3855 int i;
3856 for (i = 0; i < map_disks; i++)
3857 map[i] = 1;
3858 }
3859
cdddbdbc
DW
3860}
3861
5c4cd5da
AC
3862/* allocates memory and fills disk in mdinfo structure
3863 * for each disk in array */
3864struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3865{
594dc1b8 3866 struct mdinfo *mddev;
5c4cd5da
AC
3867 struct intel_super *super = st->sb;
3868 struct imsm_disk *disk;
3869 int count = 0;
3870 struct dl *dl;
3871 if (!super || !super->disks)
3872 return NULL;
3873 dl = super->disks;
503975b9 3874 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3875 while (dl) {
3876 struct mdinfo *tmp;
3877 disk = &dl->disk;
503975b9 3878 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3879 if (mddev->devs)
3880 tmp->next = mddev->devs;
3881 mddev->devs = tmp;
3882 tmp->disk.number = count++;
3883 tmp->disk.major = dl->major;
3884 tmp->disk.minor = dl->minor;
3885 tmp->disk.state = is_configured(disk) ?
3886 (1 << MD_DISK_ACTIVE) : 0;
3887 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3888 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3889 tmp->disk.raid_disk = -1;
3890 dl = dl->next;
3891 }
3892 return mddev;
3893}
3894
cdddbdbc
DW
3895static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3896 char *update, char *devname, int verbose,
3897 int uuid_set, char *homehost)
3898{
f352c545
DW
3899 /* For 'assemble' and 'force' we need to return non-zero if any
3900 * change was made. For others, the return value is ignored.
3901 * Update options are:
3902 * force-one : This device looks a bit old but needs to be included,
3903 * update age info appropriately.
3904 * assemble: clear any 'faulty' flag to allow this device to
3905 * be assembled.
3906 * force-array: Array is degraded but being forced, mark it clean
3907 * if that will be needed to assemble it.
3908 *
3909 * newdev: not used ????
3910 * grow: Array has gained a new device - this is currently for
3911 * linear only
3912 * resync: mark as dirty so a resync will happen.
3913 * name: update the name - preserving the homehost
6e46bf34 3914 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3915 *
3916 * Following are not relevant for this imsm:
3917 * sparc2.2 : update from old dodgey metadata
3918 * super-minor: change the preferred_minor number
3919 * summaries: update redundant counters.
f352c545
DW
3920 * homehost: update the recorded homehost
3921 * _reshape_progress: record new reshape_progress position.
3922 */
6e46bf34
DW
3923 int rv = 1;
3924 struct intel_super *super = st->sb;
3925 struct imsm_super *mpb;
f352c545 3926
6e46bf34
DW
3927 /* we can only update container info */
3928 if (!super || super->current_vol >= 0 || !super->anchor)
3929 return 1;
3930
3931 mpb = super->anchor;
3932
81a5b4f5
N
3933 if (strcmp(update, "uuid") == 0) {
3934 /* We take this to mean that the family_num should be updated.
3935 * However that is much smaller than the uuid so we cannot really
3936 * allow an explicit uuid to be given. And it is hard to reliably
3937 * know if one was.
3938 * So if !uuid_set we know the current uuid is random and just used
3939 * the first 'int' and copy it to the other 3 positions.
3940 * Otherwise we require the 4 'int's to be the same as would be the
3941 * case if we are using a random uuid. So an explicit uuid will be
3942 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3943 */
81a5b4f5
N
3944 if (!uuid_set) {
3945 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3946 rv = 0;
81a5b4f5
N
3947 } else {
3948 if (info->uuid[0] != info->uuid[1] ||
3949 info->uuid[1] != info->uuid[2] ||
3950 info->uuid[2] != info->uuid[3])
3951 rv = -1;
3952 else
3953 rv = 0;
6e46bf34 3954 }
81a5b4f5
N
3955 if (rv == 0)
3956 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3957 } else if (strcmp(update, "assemble") == 0)
3958 rv = 0;
3959 else
1e2b2765 3960 rv = -1;
f352c545 3961
6e46bf34
DW
3962 /* successful update? recompute checksum */
3963 if (rv == 0)
3964 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3965
3966 return rv;
cdddbdbc
DW
3967}
3968
c2c087e6 3969static size_t disks_to_mpb_size(int disks)
cdddbdbc 3970{
c2c087e6 3971 size_t size;
cdddbdbc 3972
c2c087e6
DW
3973 size = sizeof(struct imsm_super);
3974 size += (disks - 1) * sizeof(struct imsm_disk);
3975 size += 2 * sizeof(struct imsm_dev);
3976 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3977 size += (4 - 2) * sizeof(struct imsm_map);
3978 /* 4 possible disk_ord_tbl's */
3979 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3980 /* maximum bbm log */
3981 size += sizeof(struct bbm_log);
c2c087e6
DW
3982
3983 return size;
3984}
3985
387fcd59
N
3986static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3987 unsigned long long data_offset)
c2c087e6
DW
3988{
3989 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3990 return 0;
3991
3992 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3993}
3994
ba2de7ba
DW
3995static void free_devlist(struct intel_super *super)
3996{
3997 struct intel_dev *dv;
3998
3999 while (super->devlist) {
4000 dv = super->devlist->next;
4001 free(super->devlist->dev);
4002 free(super->devlist);
4003 super->devlist = dv;
4004 }
4005}
4006
4007static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4008{
4009 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4010}
4011
c7b8547c
MT
4012static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4013 int verbose)
cdddbdbc 4014{
601ffa78 4015 /* return:
cdddbdbc 4016 * 0 same, or first was empty, and second was copied
601ffa78 4017 * 1 sb are different
cdddbdbc
DW
4018 */
4019 struct intel_super *first = st->sb;
4020 struct intel_super *sec = tst->sb;
4021
5d500228
N
4022 if (!first) {
4023 st->sb = tst->sb;
4024 tst->sb = NULL;
4025 return 0;
4026 }
601ffa78 4027
8603ea6f
LM
4028 /* in platform dependent environment test if the disks
4029 * use the same Intel hba
601ffa78
OS
4030 * if not on Intel hba at all, allow anything.
4031 * doesn't check HBAs if num_raid_devs is not set, as it means
4032 * it is a free floating spare, and all spares regardless of HBA type
4033 * will fall into separate container during the assembly
8603ea6f 4034 */
601ffa78 4035 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
6b781d33 4036 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
4037 if (verbose)
4038 pr_err("HBAs of devices do not match %s != %s\n",
4039 get_sys_dev_type(first->hba->type),
4040 get_sys_dev_type(sec->hba->type));
601ffa78 4041 return 1;
6b781d33
AP
4042 }
4043 if (first->orom != sec->orom) {
c7b8547c
MT
4044 if (verbose)
4045 pr_err("HBAs of devices do not match %s != %s\n",
4046 first->hba->pci_id, sec->hba->pci_id);
601ffa78 4047 return 1;
8603ea6f
LM
4048 }
4049 }
cdddbdbc 4050
d23fe947
DW
4051 if (first->anchor->num_raid_devs > 0 &&
4052 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
4053 /* Determine if these disks might ever have been
4054 * related. Further disambiguation can only take place
4055 * in load_super_imsm_all
4056 */
4057 __u32 first_family = first->anchor->orig_family_num;
4058 __u32 sec_family = sec->anchor->orig_family_num;
4059
f796af5d
DW
4060 if (memcmp(first->anchor->sig, sec->anchor->sig,
4061 MAX_SIGNATURE_LENGTH) != 0)
601ffa78 4062 return 1;
f796af5d 4063
a2b97981
DW
4064 if (first_family == 0)
4065 first_family = first->anchor->family_num;
4066 if (sec_family == 0)
4067 sec_family = sec->anchor->family_num;
4068
4069 if (first_family != sec_family)
601ffa78 4070 return 1;
f796af5d 4071
d23fe947 4072 }
cdddbdbc 4073
601ffa78
OS
4074 /* if an anchor does not have num_raid_devs set then it is a free
4075 * floating spare. don't assosiate spare with any array, as during assembly
4076 * spares shall fall into separate container, from which they can be moved
4077 * when necessary
4078 */
4079 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4080 return 1;
3e372e5a 4081
cdddbdbc
DW
4082 return 0;
4083}
4084
0030e8d6
DW
4085static void fd2devname(int fd, char *name)
4086{
0030e8d6 4087 char *nm;
0030e8d6 4088
7c798f87
MT
4089 nm = fd2kname(fd);
4090 if (!nm)
0030e8d6 4091 return;
9587c373 4092
7c798f87 4093 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4094}
4095
21e9380b
AP
4096static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4097{
fcebeb77 4098 char path[PATH_MAX];
21e9380b
AP
4099 char *name = fd2kname(fd);
4100
4101 if (!name)
4102 return 1;
4103
4104 if (strncmp(name, "nvme", 4) != 0)
4105 return 1;
4106
fcebeb77
MT
4107 if (!diskfd_to_devpath(fd, 1, path))
4108 return 1;
21e9380b 4109
fcebeb77 4110 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4111}
4112
cdddbdbc
DW
4113extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4114
4115static int imsm_read_serial(int fd, char *devname,
6da53c0e 4116 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4117{
21e9380b 4118 char buf[50];
cdddbdbc 4119 int rv;
6da53c0e 4120 size_t len;
316e2bf4
DW
4121 char *dest;
4122 char *src;
21e9380b
AP
4123 unsigned int i;
4124
4125 memset(buf, 0, sizeof(buf));
cdddbdbc 4126
21e9380b 4127 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4128
21e9380b
AP
4129 if (rv)
4130 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4131
40ebbb9c 4132 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
4133 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4134 fd2devname(fd, (char *) serial);
0030e8d6
DW
4135 return 0;
4136 }
4137
cdddbdbc
DW
4138 if (rv != 0) {
4139 if (devname)
e7b84f9d
N
4140 pr_err("Failed to retrieve serial for %s\n",
4141 devname);
cdddbdbc
DW
4142 return rv;
4143 }
4144
316e2bf4
DW
4145 /* trim all whitespace and non-printable characters and convert
4146 * ':' to ';'
4147 */
21e9380b
AP
4148 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4149 src = &buf[i];
316e2bf4
DW
4150 if (*src > 0x20) {
4151 /* ':' is reserved for use in placeholder serial
4152 * numbers for missing disks
4153 */
4154 if (*src == ':')
4155 *dest++ = ';';
4156 else
4157 *dest++ = *src;
4158 }
4159 }
21e9380b
AP
4160 len = dest - buf;
4161 dest = buf;
316e2bf4 4162
6da53c0e
BK
4163 if (len > serial_buf_len) {
4164 /* truncate leading characters */
4165 dest += len - serial_buf_len;
4166 len = serial_buf_len;
316e2bf4 4167 }
5c3db629 4168
6da53c0e 4169 memset(serial, 0, serial_buf_len);
316e2bf4 4170 memcpy(serial, dest, len);
cdddbdbc
DW
4171
4172 return 0;
4173}
4174
1f24f035
DW
4175static int serialcmp(__u8 *s1, __u8 *s2)
4176{
4177 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4178}
4179
4180static void serialcpy(__u8 *dest, __u8 *src)
4181{
4182 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4183}
4184
54c2c1ea
DW
4185static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4186{
4187 struct dl *dl;
4188
4189 for (dl = super->disks; dl; dl = dl->next)
4190 if (serialcmp(dl->serial, serial) == 0)
4191 break;
4192
4193 return dl;
4194}
4195
a2b97981
DW
4196static struct imsm_disk *
4197__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4198{
4199 int i;
4200
4201 for (i = 0; i < mpb->num_disks; i++) {
4202 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4203
4204 if (serialcmp(disk->serial, serial) == 0) {
4205 if (idx)
4206 *idx = i;
4207 return disk;
4208 }
4209 }
4210
4211 return NULL;
4212}
4213
cdddbdbc
DW
4214static int
4215load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4216{
a2b97981 4217 struct imsm_disk *disk;
cdddbdbc
DW
4218 struct dl *dl;
4219 struct stat stb;
cdddbdbc 4220 int rv;
a2b97981 4221 char name[40];
d23fe947
DW
4222 __u8 serial[MAX_RAID_SERIAL_LEN];
4223
6da53c0e 4224 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4225
4226 if (rv != 0)
4227 return 2;
4228
503975b9 4229 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4230
a2b97981
DW
4231 fstat(fd, &stb);
4232 dl->major = major(stb.st_rdev);
4233 dl->minor = minor(stb.st_rdev);
4234 dl->next = super->disks;
4235 dl->fd = keep_fd ? fd : -1;
4236 assert(super->disks == NULL);
4237 super->disks = dl;
4238 serialcpy(dl->serial, serial);
4239 dl->index = -2;
4240 dl->e = NULL;
4241 fd2devname(fd, name);
4242 if (devname)
503975b9 4243 dl->devname = xstrdup(devname);
a2b97981 4244 else
503975b9 4245 dl->devname = xstrdup(name);
cdddbdbc 4246
d23fe947 4247 /* look up this disk's index in the current anchor */
a2b97981
DW
4248 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4249 if (disk) {
4250 dl->disk = *disk;
4251 /* only set index on disks that are a member of a
4252 * populated contianer, i.e. one with raid_devs
4253 */
4254 if (is_failed(&dl->disk))
3f6efecc 4255 dl->index = -2;
2432ce9b 4256 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4257 dl->index = -1;
3f6efecc
DW
4258 }
4259
949c47a0
DW
4260 return 0;
4261}
4262
0c046afd
DW
4263/* When migrating map0 contains the 'destination' state while map1
4264 * contains the current state. When not migrating map0 contains the
4265 * current state. This routine assumes that map[0].map_state is set to
4266 * the current array state before being called.
4267 *
4268 * Migration is indicated by one of the following states
4269 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4270 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4271 * map1state=unitialized)
1484e727 4272 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4273 * map1state=normal)
e3bba0e0 4274 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4275 * map1state=degraded)
8e59f3d8
AK
4276 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4277 * map1state=normal)
0c046afd 4278 */
8e59f3d8
AK
4279static void migrate(struct imsm_dev *dev, struct intel_super *super,
4280 __u8 to_state, int migr_type)
3393c6af 4281{
0c046afd 4282 struct imsm_map *dest;
238c0a71 4283 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4284
0c046afd 4285 dev->vol.migr_state = 1;
1484e727 4286 set_migr_type(dev, migr_type);
4036e7ee 4287 set_vol_curr_migr_unit(dev, 0);
238c0a71 4288 dest = get_imsm_map(dev, MAP_1);
0c046afd 4289
0556e1a2 4290 /* duplicate and then set the target end state in map[0] */
3393c6af 4291 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4292 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4293 __u32 ord;
4294 int i;
4295
4296 for (i = 0; i < src->num_members; i++) {
4297 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4298 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4299 }
4300 }
4301
8e59f3d8
AK
4302 if (migr_type == MIGR_GEN_MIGR)
4303 /* Clear migration record */
4304 memset(super->migr_rec, 0, sizeof(struct migr_record));
4305
0c046afd 4306 src->map_state = to_state;
949c47a0 4307}
f8f603f1 4308
809da78e
AK
4309static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4310 __u8 map_state)
f8f603f1 4311{
238c0a71
AK
4312 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4313 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4314 MAP_0 : MAP_1);
28bce06f 4315 int i, j;
0556e1a2
DW
4316
4317 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4318 * completed in the last migration.
4319 *
28bce06f 4320 * FIXME add support for raid-level-migration
0556e1a2 4321 */
195d1d76 4322 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
089f9d79 4323 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4324 /* when final map state is other than expected
4325 * merge maps (not for migration)
4326 */
4327 int failed;
4328
4329 for (i = 0; i < prev->num_members; i++)
4330 for (j = 0; j < map->num_members; j++)
4331 /* during online capacity expansion
4332 * disks position can be changed
4333 * if takeover is used
4334 */
4335 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4336 ord_to_idx(prev->disk_ord_tbl[i])) {
4337 map->disk_ord_tbl[j] |=
4338 prev->disk_ord_tbl[i];
4339 break;
4340 }
4341 failed = imsm_count_failed(super, dev, MAP_0);
4342 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4343 }
f8f603f1
DW
4344
4345 dev->vol.migr_state = 0;
ea672ee1 4346 set_migr_type(dev, 0);
4036e7ee 4347 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4348 map->map_state = map_state;
4349}
949c47a0
DW
4350
4351static int parse_raid_devices(struct intel_super *super)
4352{
4353 int i;
4354 struct imsm_dev *dev_new;
4d7b1503 4355 size_t len, len_migr;
401d313b 4356 size_t max_len = 0;
4d7b1503
DW
4357 size_t space_needed = 0;
4358 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4359
4360 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4361 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4362 struct intel_dev *dv;
949c47a0 4363
4d7b1503
DW
4364 len = sizeof_imsm_dev(dev_iter, 0);
4365 len_migr = sizeof_imsm_dev(dev_iter, 1);
4366 if (len_migr > len)
4367 space_needed += len_migr - len;
ca9de185 4368
503975b9 4369 dv = xmalloc(sizeof(*dv));
401d313b
AK
4370 if (max_len < len_migr)
4371 max_len = len_migr;
4372 if (max_len > len_migr)
4373 space_needed += max_len - len_migr;
503975b9 4374 dev_new = xmalloc(max_len);
949c47a0 4375 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4376 dv->dev = dev_new;
4377 dv->index = i;
4378 dv->next = super->devlist;
4379 super->devlist = dv;
949c47a0 4380 }
cdddbdbc 4381
4d7b1503
DW
4382 /* ensure that super->buf is large enough when all raid devices
4383 * are migrating
4384 */
4385 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4386 void *buf;
4387
f36a9ecd
PB
4388 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4389 super->sector_size);
4390 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4391 return 1;
4392
1f45a8ad
DW
4393 memcpy(buf, super->buf, super->len);
4394 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4395 free(super->buf);
4396 super->buf = buf;
4397 super->len = len;
4398 }
ca9de185 4399
bbab0940
TM
4400 super->extra_space += space_needed;
4401
cdddbdbc
DW
4402 return 0;
4403}
4404
e2f41b2c
AK
4405/*******************************************************************************
4406 * Function: check_mpb_migr_compatibility
4407 * Description: Function checks for unsupported migration features:
4408 * - migration optimization area (pba_of_lba0)
4409 * - descending reshape (ascending_migr)
4410 * Parameters:
4411 * super : imsm metadata information
4412 * Returns:
4413 * 0 : migration is compatible
4414 * -1 : migration is not compatible
4415 ******************************************************************************/
4416int check_mpb_migr_compatibility(struct intel_super *super)
4417{
4418 struct imsm_map *map0, *map1;
4419 struct migr_record *migr_rec = super->migr_rec;
4420 int i;
4421
4422 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4423 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4424
756a15f3 4425 if (dev_iter->vol.migr_state == 1 &&
e2f41b2c
AK
4426 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4427 /* This device is migrating */
238c0a71
AK
4428 map0 = get_imsm_map(dev_iter, MAP_0);
4429 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4430 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4431 /* migration optimization area was used */
4432 return -1;
fc54fe7a
JS
4433 if (migr_rec->ascending_migr == 0 &&
4434 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4435 /* descending reshape not supported yet */
4436 return -1;
4437 }
4438 }
4439 return 0;
4440}
4441
d23fe947 4442static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4443
cdddbdbc 4444/* load_imsm_mpb - read matrix metadata
f2f5c343 4445 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4446 */
4447static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4448{
4449 unsigned long long dsize;
cdddbdbc 4450 unsigned long long sectors;
f36a9ecd 4451 unsigned int sector_size = super->sector_size;
cdddbdbc 4452 struct stat;
6416d527 4453 struct imsm_super *anchor;
cdddbdbc
DW
4454 __u32 check_sum;
4455
cdddbdbc 4456 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4457 if (dsize < 2*sector_size) {
64436f06 4458 if (devname)
e7b84f9d
N
4459 pr_err("%s: device to small for imsm\n",
4460 devname);
64436f06
N
4461 return 1;
4462 }
cdddbdbc 4463
f36a9ecd 4464 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4465 if (devname)
e7b84f9d
N
4466 pr_err("Cannot seek to anchor block on %s: %s\n",
4467 devname, strerror(errno));
cdddbdbc
DW
4468 return 1;
4469 }
4470
f36a9ecd 4471 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4472 if (devname)
7a862a02 4473 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4474 return 1;
4475 }
466070ad 4476 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4477 if (devname)
e7b84f9d
N
4478 pr_err("Cannot read anchor block on %s: %s\n",
4479 devname, strerror(errno));
6416d527 4480 free(anchor);
cdddbdbc
DW
4481 return 1;
4482 }
4483
6416d527 4484 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4485 if (devname)
e7b84f9d 4486 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4487 free(anchor);
cdddbdbc
DW
4488 return 2;
4489 }
4490
d23fe947 4491 __free_imsm(super, 0);
f2f5c343
LM
4492 /* reload capability and hba */
4493
4494 /* capability and hba must be updated with new super allocation */
d424212e 4495 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4496 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4497 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4498 if (devname)
e7b84f9d
N
4499 pr_err("unable to allocate %zu byte mpb buffer\n",
4500 super->len);
6416d527 4501 free(anchor);
cdddbdbc
DW
4502 return 2;
4503 }
f36a9ecd 4504 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4505
f36a9ecd 4506 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4507 free(anchor);
8e59f3d8 4508
85337573
AO
4509 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4510 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4511 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4512 free(super->buf);
4513 return 2;
4514 }
51d83f5d 4515 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4516
949c47a0 4517 if (!sectors) {
ecf45690
DW
4518 check_sum = __gen_imsm_checksum(super->anchor);
4519 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4520 if (devname)
e7b84f9d
N
4521 pr_err("IMSM checksum %x != %x on %s\n",
4522 check_sum,
4523 __le32_to_cpu(super->anchor->check_sum),
4524 devname);
ecf45690
DW
4525 return 2;
4526 }
4527
a2b97981 4528 return 0;
949c47a0 4529 }
cdddbdbc
DW
4530
4531 /* read the extended mpb */
f36a9ecd 4532 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4533 if (devname)
e7b84f9d
N
4534 pr_err("Cannot seek to extended mpb on %s: %s\n",
4535 devname, strerror(errno));
cdddbdbc
DW
4536 return 1;
4537 }
4538
f36a9ecd
PB
4539 if ((unsigned int)read(fd, super->buf + sector_size,
4540 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4541 if (devname)
e7b84f9d
N
4542 pr_err("Cannot read extended mpb on %s: %s\n",
4543 devname, strerror(errno));
cdddbdbc
DW
4544 return 2;
4545 }
4546
949c47a0
DW
4547 check_sum = __gen_imsm_checksum(super->anchor);
4548 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4549 if (devname)
e7b84f9d
N
4550 pr_err("IMSM checksum %x != %x on %s\n",
4551 check_sum, __le32_to_cpu(super->anchor->check_sum),
4552 devname);
db575f3b 4553 return 3;
cdddbdbc
DW
4554 }
4555
a2b97981
DW
4556 return 0;
4557}
4558
8e59f3d8
AK
4559static int read_imsm_migr_rec(int fd, struct intel_super *super);
4560
97f81ee2
CA
4561/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4562static void clear_hi(struct intel_super *super)
4563{
4564 struct imsm_super *mpb = super->anchor;
4565 int i, n;
4566 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4567 return;
4568 for (i = 0; i < mpb->num_disks; ++i) {
4569 struct imsm_disk *disk = &mpb->disk[i];
4570 disk->total_blocks_hi = 0;
4571 }
4572 for (i = 0; i < mpb->num_raid_devs; ++i) {
4573 struct imsm_dev *dev = get_imsm_dev(super, i);
97f81ee2
CA
4574 for (n = 0; n < 2; ++n) {
4575 struct imsm_map *map = get_imsm_map(dev, n);
4576 if (!map)
4577 continue;
4578 map->pba_of_lba0_hi = 0;
4579 map->blocks_per_member_hi = 0;
4580 map->num_data_stripes_hi = 0;
4581 }
4582 }
4583}
4584
a2b97981
DW
4585static int
4586load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4587{
4588 int err;
4589
4590 err = load_imsm_mpb(fd, super, devname);
4591 if (err)
4592 return err;
f36a9ecd
PB
4593 if (super->sector_size == 4096)
4594 convert_from_4k(super);
a2b97981
DW
4595 err = load_imsm_disk(fd, super, devname, keep_fd);
4596 if (err)
4597 return err;
4598 err = parse_raid_devices(super);
8d67477f
TM
4599 if (err)
4600 return err;
4601 err = load_bbm_log(super);
97f81ee2 4602 clear_hi(super);
a2b97981 4603 return err;
cdddbdbc
DW
4604}
4605
4389ce73 4606static void __free_imsm_disk(struct dl *d, int do_close)
ae6aad82 4607{
4389ce73
MT
4608 if (do_close)
4609 close_fd(&d->fd);
ae6aad82
DW
4610 if (d->devname)
4611 free(d->devname);
0dcecb2e
DW
4612 if (d->e)
4613 free(d->e);
ae6aad82
DW
4614 free(d);
4615
4616}
1a64be56 4617
cdddbdbc
DW
4618static void free_imsm_disks(struct intel_super *super)
4619{
47ee5a45 4620 struct dl *d;
cdddbdbc 4621
47ee5a45
DW
4622 while (super->disks) {
4623 d = super->disks;
cdddbdbc 4624 super->disks = d->next;
3a85bf0e 4625 __free_imsm_disk(d, 1);
cdddbdbc 4626 }
cb82edca
AK
4627 while (super->disk_mgmt_list) {
4628 d = super->disk_mgmt_list;
4629 super->disk_mgmt_list = d->next;
3a85bf0e 4630 __free_imsm_disk(d, 1);
cb82edca 4631 }
47ee5a45
DW
4632 while (super->missing) {
4633 d = super->missing;
4634 super->missing = d->next;
3a85bf0e 4635 __free_imsm_disk(d, 1);
47ee5a45
DW
4636 }
4637
cdddbdbc
DW
4638}
4639
9ca2c81c 4640/* free all the pieces hanging off of a super pointer */
d23fe947 4641static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4642{
88654014
LM
4643 struct intel_hba *elem, *next;
4644
9ca2c81c 4645 if (super->buf) {
949c47a0 4646 free(super->buf);
9ca2c81c
DW
4647 super->buf = NULL;
4648 }
f2f5c343
LM
4649 /* unlink capability description */
4650 super->orom = NULL;
8e59f3d8
AK
4651 if (super->migr_rec_buf) {
4652 free(super->migr_rec_buf);
4653 super->migr_rec_buf = NULL;
4654 }
d23fe947
DW
4655 if (free_disks)
4656 free_imsm_disks(super);
ba2de7ba 4657 free_devlist(super);
88654014
LM
4658 elem = super->hba;
4659 while (elem) {
4660 if (elem->path)
4661 free((void *)elem->path);
4662 next = elem->next;
4663 free(elem);
4664 elem = next;
88c32bb1 4665 }
8d67477f
TM
4666 if (super->bbm_log)
4667 free(super->bbm_log);
88654014 4668 super->hba = NULL;
cdddbdbc
DW
4669}
4670
9ca2c81c
DW
4671static void free_imsm(struct intel_super *super)
4672{
d23fe947 4673 __free_imsm(super, 1);
928f1424 4674 free(super->bb.entries);
9ca2c81c
DW
4675 free(super);
4676}
cdddbdbc
DW
4677
4678static void free_super_imsm(struct supertype *st)
4679{
4680 struct intel_super *super = st->sb;
4681
4682 if (!super)
4683 return;
4684
4685 free_imsm(super);
4686 st->sb = NULL;
4687}
4688
49133e57 4689static struct intel_super *alloc_super(void)
c2c087e6 4690{
503975b9 4691 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4692
503975b9
N
4693 super->current_vol = -1;
4694 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4695
4696 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4697 sizeof(struct md_bb_entry));
4698 if (!super->bb.entries) {
4699 free(super);
4700 return NULL;
4701 }
4702
c2c087e6
DW
4703 return super;
4704}
4705
f0f5a016
LM
4706/*
4707 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4708 */
d424212e 4709static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4710{
4711 struct sys_dev *hba_name;
4712 int rv = 0;
4713
4389ce73 4714 if (is_fd_valid(fd) && test_partition(fd)) {
3a30e28e
MT
4715 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4716 devname);
4717 return 1;
4718 }
4389ce73 4719 if (!is_fd_valid(fd) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4720 super->orom = NULL;
f0f5a016
LM
4721 super->hba = NULL;
4722 return 0;
4723 }
4724 hba_name = find_disk_attached_hba(fd, NULL);
4725 if (!hba_name) {
d424212e 4726 if (devname)
e7b84f9d
N
4727 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4728 devname);
f0f5a016
LM
4729 return 1;
4730 }
4731 rv = attach_hba_to_super(super, hba_name);
4732 if (rv == 2) {
d424212e
N
4733 if (devname) {
4734 struct intel_hba *hba = super->hba;
f0f5a016 4735
60f0f54d
PB
4736 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4737 " but the container is assigned to Intel(R) %s %s (",
d424212e 4738 devname,
614902f6 4739 get_sys_dev_type(hba_name->type),
60f0f54d 4740 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4741 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4742 get_sys_dev_type(super->hba->type),
4743 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4744
f0f5a016
LM
4745 while (hba) {
4746 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4747 if (hba->next)
4748 fprintf(stderr, ", ");
4749 hba = hba->next;
4750 }
6b781d33 4751 fprintf(stderr, ").\n"
cca67208 4752 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4753 }
f0f5a016
LM
4754 return 2;
4755 }
6b781d33 4756 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4757 if (!super->orom)
4758 return 3;
614902f6 4759
f0f5a016
LM
4760 return 0;
4761}
4762
47ee5a45
DW
4763/* find_missing - helper routine for load_super_imsm_all that identifies
4764 * disks that have disappeared from the system. This routine relies on
4765 * the mpb being uptodate, which it is at load time.
4766 */
4767static int find_missing(struct intel_super *super)
4768{
4769 int i;
4770 struct imsm_super *mpb = super->anchor;
4771 struct dl *dl;
4772 struct imsm_disk *disk;
47ee5a45
DW
4773
4774 for (i = 0; i < mpb->num_disks; i++) {
4775 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4776 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4777 if (dl)
4778 continue;
47ee5a45 4779
503975b9 4780 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4781 dl->major = 0;
4782 dl->minor = 0;
4783 dl->fd = -1;
503975b9 4784 dl->devname = xstrdup("missing");
47ee5a45
DW
4785 dl->index = i;
4786 serialcpy(dl->serial, disk->serial);
4787 dl->disk = *disk;
689c9bf3 4788 dl->e = NULL;
47ee5a45
DW
4789 dl->next = super->missing;
4790 super->missing = dl;
4791 }
4792
4793 return 0;
4794}
4795
a2b97981
DW
4796static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4797{
4798 struct intel_disk *idisk = disk_list;
4799
4800 while (idisk) {
4801 if (serialcmp(idisk->disk.serial, serial) == 0)
4802 break;
4803 idisk = idisk->next;
4804 }
4805
4806 return idisk;
4807}
4808
4809static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4810 struct intel_super *super,
4811 struct intel_disk **disk_list)
4812{
4813 struct imsm_disk *d = &super->disks->disk;
4814 struct imsm_super *mpb = super->anchor;
4815 int i, j;
4816
4817 for (i = 0; i < tbl_size; i++) {
4818 struct imsm_super *tbl_mpb = table[i]->anchor;
4819 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4820
4821 if (tbl_mpb->family_num == mpb->family_num) {
4822 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4823 dprintf("mpb from %d:%d matches %d:%d\n",
4824 super->disks->major,
a2b97981
DW
4825 super->disks->minor,
4826 table[i]->disks->major,
4827 table[i]->disks->minor);
4828 break;
4829 }
4830
4831 if (((is_configured(d) && !is_configured(tbl_d)) ||
4832 is_configured(d) == is_configured(tbl_d)) &&
4833 tbl_mpb->generation_num < mpb->generation_num) {
4834 /* current version of the mpb is a
4835 * better candidate than the one in
4836 * super_table, but copy over "cross
4837 * generational" status
4838 */
4839 struct intel_disk *idisk;
4840
1ade5cc1
N
4841 dprintf("mpb from %d:%d replaces %d:%d\n",
4842 super->disks->major,
a2b97981
DW
4843 super->disks->minor,
4844 table[i]->disks->major,
4845 table[i]->disks->minor);
4846
4847 idisk = disk_list_get(tbl_d->serial, *disk_list);
4848 if (idisk && is_failed(&idisk->disk))
4849 tbl_d->status |= FAILED_DISK;
4850 break;
4851 } else {
4852 struct intel_disk *idisk;
4853 struct imsm_disk *disk;
4854
4855 /* tbl_mpb is more up to date, but copy
4856 * over cross generational status before
4857 * returning
4858 */
4859 disk = __serial_to_disk(d->serial, mpb, NULL);
4860 if (disk && is_failed(disk))
4861 d->status |= FAILED_DISK;
4862
4863 idisk = disk_list_get(d->serial, *disk_list);
4864 if (idisk) {
4865 idisk->owner = i;
4866 if (disk && is_configured(disk))
4867 idisk->disk.status |= CONFIGURED_DISK;
4868 }
4869
1ade5cc1
N
4870 dprintf("mpb from %d:%d prefer %d:%d\n",
4871 super->disks->major,
a2b97981
DW
4872 super->disks->minor,
4873 table[i]->disks->major,
4874 table[i]->disks->minor);
4875
4876 return tbl_size;
4877 }
4878 }
4879 }
4880
4881 if (i >= tbl_size)
4882 table[tbl_size++] = super;
4883 else
4884 table[i] = super;
4885
4886 /* update/extend the merged list of imsm_disk records */
4887 for (j = 0; j < mpb->num_disks; j++) {
4888 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4889 struct intel_disk *idisk;
4890
4891 idisk = disk_list_get(disk->serial, *disk_list);
4892 if (idisk) {
4893 idisk->disk.status |= disk->status;
4894 if (is_configured(&idisk->disk) ||
4895 is_failed(&idisk->disk))
4896 idisk->disk.status &= ~(SPARE_DISK);
4897 } else {
503975b9 4898 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4899 idisk->owner = IMSM_UNKNOWN_OWNER;
4900 idisk->disk = *disk;
4901 idisk->next = *disk_list;
4902 *disk_list = idisk;
4903 }
4904
4905 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4906 idisk->owner = i;
4907 }
4908
4909 return tbl_size;
4910}
4911
4912static struct intel_super *
4913validate_members(struct intel_super *super, struct intel_disk *disk_list,
4914 const int owner)
4915{
4916 struct imsm_super *mpb = super->anchor;
4917 int ok_count = 0;
4918 int i;
4919
4920 for (i = 0; i < mpb->num_disks; i++) {
4921 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4922 struct intel_disk *idisk;
4923
4924 idisk = disk_list_get(disk->serial, disk_list);
4925 if (idisk) {
4926 if (idisk->owner == owner ||
4927 idisk->owner == IMSM_UNKNOWN_OWNER)
4928 ok_count++;
4929 else
1ade5cc1
N
4930 dprintf("'%.16s' owner %d != %d\n",
4931 disk->serial, idisk->owner,
a2b97981
DW
4932 owner);
4933 } else {
1ade5cc1
N
4934 dprintf("unknown disk %x [%d]: %.16s\n",
4935 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4936 disk->serial);
4937 break;
4938 }
4939 }
4940
4941 if (ok_count == mpb->num_disks)
4942 return super;
4943 return NULL;
4944}
4945
4946static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4947{
4948 struct intel_super *s;
4949
4950 for (s = super_list; s; s = s->next) {
4951 if (family_num != s->anchor->family_num)
4952 continue;
e12b3daa 4953 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4954 __le32_to_cpu(family_num), s->disks->devname);
4955 }
4956}
4957
4958static struct intel_super *
4959imsm_thunderdome(struct intel_super **super_list, int len)
4960{
4961 struct intel_super *super_table[len];
4962 struct intel_disk *disk_list = NULL;
4963 struct intel_super *champion, *spare;
4964 struct intel_super *s, **del;
4965 int tbl_size = 0;
4966 int conflict;
4967 int i;
4968
4969 memset(super_table, 0, sizeof(super_table));
4970 for (s = *super_list; s; s = s->next)
4971 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4972
4973 for (i = 0; i < tbl_size; i++) {
4974 struct imsm_disk *d;
4975 struct intel_disk *idisk;
4976 struct imsm_super *mpb = super_table[i]->anchor;
4977
4978 s = super_table[i];
4979 d = &s->disks->disk;
4980
4981 /* 'd' must appear in merged disk list for its
4982 * configuration to be valid
4983 */
4984 idisk = disk_list_get(d->serial, disk_list);
4985 if (idisk && idisk->owner == i)
4986 s = validate_members(s, disk_list, i);
4987 else
4988 s = NULL;
4989
4990 if (!s)
1ade5cc1
N
4991 dprintf("marking family: %#x from %d:%d offline\n",
4992 mpb->family_num,
a2b97981
DW
4993 super_table[i]->disks->major,
4994 super_table[i]->disks->minor);
4995 super_table[i] = s;
4996 }
4997
4998 /* This is where the mdadm implementation differs from the Windows
4999 * driver which has no strict concept of a container. We can only
5000 * assemble one family from a container, so when returning a prodigal
5001 * array member to this system the code will not be able to disambiguate
5002 * the container contents that should be assembled ("foreign" versus
5003 * "local"). It requires user intervention to set the orig_family_num
5004 * to a new value to establish a new container. The Windows driver in
5005 * this situation fixes up the volume name in place and manages the
5006 * foreign array as an independent entity.
5007 */
5008 s = NULL;
5009 spare = NULL;
5010 conflict = 0;
5011 for (i = 0; i < tbl_size; i++) {
5012 struct intel_super *tbl_ent = super_table[i];
5013 int is_spare = 0;
5014
5015 if (!tbl_ent)
5016 continue;
5017
5018 if (tbl_ent->anchor->num_raid_devs == 0) {
5019 spare = tbl_ent;
5020 is_spare = 1;
5021 }
5022
5023 if (s && !is_spare) {
5024 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5025 conflict++;
5026 } else if (!s && !is_spare)
5027 s = tbl_ent;
5028 }
5029
5030 if (!s)
5031 s = spare;
5032 if (!s) {
5033 champion = NULL;
5034 goto out;
5035 }
5036 champion = s;
5037
5038 if (conflict)
7a862a02 5039 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
5040 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5041
5042 /* collect all dl's onto 'champion', and update them to
5043 * champion's version of the status
5044 */
5045 for (s = *super_list; s; s = s->next) {
5046 struct imsm_super *mpb = champion->anchor;
5047 struct dl *dl = s->disks;
5048
5049 if (s == champion)
5050 continue;
5051
5d7b407a
CA
5052 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5053
a2b97981
DW
5054 for (i = 0; i < mpb->num_disks; i++) {
5055 struct imsm_disk *disk;
5056
5057 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5058 if (disk) {
5059 dl->disk = *disk;
5060 /* only set index on disks that are a member of
5061 * a populated contianer, i.e. one with
5062 * raid_devs
5063 */
5064 if (is_failed(&dl->disk))
5065 dl->index = -2;
5066 else if (is_spare(&dl->disk))
5067 dl->index = -1;
5068 break;
5069 }
5070 }
5071
5072 if (i >= mpb->num_disks) {
5073 struct intel_disk *idisk;
5074
5075 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5076 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5077 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5078 dl->index = -1;
5079 else {
5080 dl->index = -2;
5081 continue;
5082 }
5083 }
5084
5085 dl->next = champion->disks;
5086 champion->disks = dl;
5087 s->disks = NULL;
5088 }
5089
5090 /* delete 'champion' from super_list */
5091 for (del = super_list; *del; ) {
5092 if (*del == champion) {
5093 *del = (*del)->next;
5094 break;
5095 } else
5096 del = &(*del)->next;
5097 }
5098 champion->next = NULL;
5099
5100 out:
5101 while (disk_list) {
5102 struct intel_disk *idisk = disk_list;
5103
5104 disk_list = disk_list->next;
5105 free(idisk);
5106 }
5107
5108 return champion;
5109}
5110
9587c373
LM
5111static int
5112get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5113static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5114 int major, int minor, int keep_fd);
ec50f7b6
LM
5115static int
5116get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5117 int *max, int keep_fd);
5118
cdddbdbc 5119static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5120 char *devname, struct md_list *devlist,
5121 int keep_fd)
cdddbdbc 5122{
a2b97981
DW
5123 struct intel_super *super_list = NULL;
5124 struct intel_super *super = NULL;
a2b97981 5125 int err = 0;
9587c373 5126 int i = 0;
dab4a513 5127
4389ce73 5128 if (is_fd_valid(fd))
9587c373
LM
5129 /* 'fd' is an opened container */
5130 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5131 else
ec50f7b6
LM
5132 /* get super block from devlist devices */
5133 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5134 if (err)
1602d52c 5135 goto error;
a2b97981
DW
5136 /* all mpbs enter, maybe one leaves */
5137 super = imsm_thunderdome(&super_list, i);
5138 if (!super) {
5139 err = 1;
5140 goto error;
cdddbdbc
DW
5141 }
5142
47ee5a45
DW
5143 if (find_missing(super) != 0) {
5144 free_imsm(super);
a2b97981
DW
5145 err = 2;
5146 goto error;
47ee5a45 5147 }
8e59f3d8
AK
5148
5149 /* load migration record */
2f86fda3 5150 err = load_imsm_migr_rec(super);
4c965cc9
AK
5151 if (err == -1) {
5152 /* migration is in progress,
5153 * but migr_rec cannot be loaded,
5154 */
8e59f3d8
AK
5155 err = 4;
5156 goto error;
5157 }
e2f41b2c
AK
5158
5159 /* Check migration compatibility */
089f9d79 5160 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5161 pr_err("Unsupported migration detected");
e2f41b2c
AK
5162 if (devname)
5163 fprintf(stderr, " on %s\n", devname);
5164 else
5165 fprintf(stderr, " (IMSM).\n");
5166
5167 err = 5;
5168 goto error;
5169 }
5170
a2b97981
DW
5171 err = 0;
5172
5173 error:
5174 while (super_list) {
5175 struct intel_super *s = super_list;
5176
5177 super_list = super_list->next;
5178 free_imsm(s);
5179 }
9587c373 5180
a2b97981
DW
5181 if (err)
5182 return err;
f7e7067b 5183
cdddbdbc 5184 *sbp = super;
4389ce73 5185 if (is_fd_valid(fd))
4dd2df09 5186 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5187 else
4dd2df09 5188 st->container_devnm[0] = 0;
a2b97981 5189 if (err == 0 && st->ss == NULL) {
bf5a934a 5190 st->ss = &super_imsm;
cdddbdbc
DW
5191 st->minor_version = 0;
5192 st->max_devs = IMSM_MAX_DEVICES;
5193 }
cdddbdbc
DW
5194 return 0;
5195}
2b959fbf 5196
ec50f7b6
LM
5197static int
5198get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5199 int *max, int keep_fd)
5200{
5201 struct md_list *tmpdev;
5202 int err = 0;
5203 int i = 0;
9587c373 5204
ec50f7b6
LM
5205 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5206 if (tmpdev->used != 1)
5207 continue;
5208 if (tmpdev->container == 1) {
ca9de185 5209 int lmax = 0;
ec50f7b6 5210 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4389ce73 5211 if (!is_fd_valid(fd)) {
e7b84f9d 5212 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5213 tmpdev->devname, strerror(errno));
5214 err = 8;
5215 goto error;
5216 }
5217 err = get_sra_super_block(fd, super_list,
5218 tmpdev->devname, &lmax,
5219 keep_fd);
5220 i += lmax;
5221 close(fd);
5222 if (err) {
5223 err = 7;
5224 goto error;
5225 }
5226 } else {
5227 int major = major(tmpdev->st_rdev);
5228 int minor = minor(tmpdev->st_rdev);
5229 err = get_super_block(super_list,
4dd2df09 5230 NULL,
ec50f7b6
LM
5231 tmpdev->devname,
5232 major, minor,
5233 keep_fd);
5234 i++;
5235 if (err) {
5236 err = 6;
5237 goto error;
5238 }
5239 }
5240 }
5241 error:
5242 *max = i;
5243 return err;
5244}
9587c373 5245
4dd2df09 5246static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5247 int major, int minor, int keep_fd)
5248{
594dc1b8 5249 struct intel_super *s;
9587c373
LM
5250 char nm[32];
5251 int dfd = -1;
9587c373
LM
5252 int err = 0;
5253 int retry;
5254
5255 s = alloc_super();
5256 if (!s) {
5257 err = 1;
5258 goto error;
5259 }
5260
5261 sprintf(nm, "%d:%d", major, minor);
5262 dfd = dev_open(nm, O_RDWR);
4389ce73 5263 if (!is_fd_valid(dfd)) {
9587c373
LM
5264 err = 2;
5265 goto error;
5266 }
5267
aec01630
JS
5268 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5269 err = 2;
5270 goto error;
5271 }
cb8f6859 5272 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5273 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5274
5275 /* retry the load if we might have raced against mdmon */
4dd2df09 5276 if (err == 3 && devnm && mdmon_running(devnm))
9587c373 5277 for (retry = 0; retry < 3; retry++) {
239b3cc0 5278 sleep_for(0, MSEC_TO_NSEC(3), true);
9587c373
LM
5279 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5280 if (err != 3)
5281 break;
5282 }
5283 error:
5284 if (!err) {
5285 s->next = *super_list;
5286 *super_list = s;
5287 } else {
5288 if (s)
8d67477f 5289 free_imsm(s);
4389ce73 5290 close_fd(&dfd);
9587c373 5291 }
4389ce73
MT
5292 if (!keep_fd)
5293 close_fd(&dfd);
9587c373
LM
5294 return err;
5295
5296}
5297
5298static int
5299get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5300{
5301 struct mdinfo *sra;
4dd2df09 5302 char *devnm;
9587c373
LM
5303 struct mdinfo *sd;
5304 int err = 0;
5305 int i = 0;
4dd2df09 5306 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5307 if (!sra)
5308 return 1;
5309
5310 if (sra->array.major_version != -1 ||
5311 sra->array.minor_version != -2 ||
5312 strcmp(sra->text_version, "imsm") != 0) {
5313 err = 1;
5314 goto error;
5315 }
5316 /* load all mpbs */
4dd2df09 5317 devnm = fd2devnm(fd);
9587c373 5318 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5319 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5320 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5321 err = 7;
5322 goto error;
5323 }
5324 }
5325 error:
5326 sysfs_free(sra);
5327 *max = i;
5328 return err;
5329}
5330
2b959fbf
N
5331static int load_container_imsm(struct supertype *st, int fd, char *devname)
5332{
ec50f7b6 5333 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5334}
cdddbdbc
DW
5335
5336static int load_super_imsm(struct supertype *st, int fd, char *devname)
5337{
5338 struct intel_super *super;
5339 int rv;
8a3544f8 5340 int retry;
cdddbdbc 5341
357ac106 5342 if (test_partition(fd))
691c6ee1
N
5343 /* IMSM not allowed on partitions */
5344 return 1;
5345
37424f13
DW
5346 free_super_imsm(st);
5347
49133e57 5348 super = alloc_super();
8d67477f
TM
5349 if (!super)
5350 return 1;
3a85bf0e
MG
5351
5352 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5353 free_imsm(super);
5354 return 1;
5355 }
ea2bc72b
LM
5356 /* Load hba and capabilities if they exist.
5357 * But do not preclude loading metadata in case capabilities or hba are
5358 * non-compliant and ignore_hw_compat is set.
5359 */
d424212e 5360 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5361 /* no orom/efi or non-intel hba of the disk */
089f9d79 5362 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5363 if (devname)
e7b84f9d 5364 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5365 free_imsm(super);
5366 return 2;
5367 }
a2b97981 5368 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5369
8a3544f8
AP
5370 /* retry the load if we might have raced against mdmon */
5371 if (rv == 3) {
f96b1302
AP
5372 struct mdstat_ent *mdstat = NULL;
5373 char *name = fd2kname(fd);
5374
5375 if (name)
5376 mdstat = mdstat_by_component(name);
8a3544f8
AP
5377
5378 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5379 for (retry = 0; retry < 3; retry++) {
239b3cc0 5380 sleep_for(0, MSEC_TO_NSEC(3), true);
8a3544f8
AP
5381 rv = load_and_parse_mpb(fd, super, devname, 0);
5382 if (rv != 3)
5383 break;
5384 }
5385 }
5386
5387 free_mdstat(mdstat);
5388 }
5389
cdddbdbc
DW
5390 if (rv) {
5391 if (devname)
7a862a02 5392 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5393 free_imsm(super);
5394 return rv;
5395 }
5396
5397 st->sb = super;
5398 if (st->ss == NULL) {
5399 st->ss = &super_imsm;
5400 st->minor_version = 0;
5401 st->max_devs = IMSM_MAX_DEVICES;
5402 }
8e59f3d8
AK
5403
5404 /* load migration record */
2f86fda3 5405 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5406 /* Check for unsupported migration features */
5407 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5408 pr_err("Unsupported migration detected");
2e062e82
AK
5409 if (devname)
5410 fprintf(stderr, " on %s\n", devname);
5411 else
5412 fprintf(stderr, " (IMSM).\n");
5413 return 3;
5414 }
e2f41b2c
AK
5415 }
5416
cdddbdbc
DW
5417 return 0;
5418}
5419
ef6ffade
DW
5420static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5421{
5422 if (info->level == 1)
5423 return 128;
5424 return info->chunk_size >> 9;
5425}
5426
5551b113
CA
5427static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5428 unsigned long long size)
fcfd9599 5429{
4025c288 5430 if (info->level == 1)
5551b113 5431 return size * 2;
4025c288 5432 else
5551b113 5433 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5434}
5435
4d1313e9
DW
5436static void imsm_update_version_info(struct intel_super *super)
5437{
5438 /* update the version and attributes */
5439 struct imsm_super *mpb = super->anchor;
5440 char *version;
5441 struct imsm_dev *dev;
5442 struct imsm_map *map;
5443 int i;
5444
5445 for (i = 0; i < mpb->num_raid_devs; i++) {
5446 dev = get_imsm_dev(super, i);
238c0a71 5447 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5448 if (__le32_to_cpu(dev->size_high) > 0)
5449 mpb->attributes |= MPB_ATTRIB_2TB;
5450
5451 /* FIXME detect when an array spans a port multiplier */
5452 #if 0
5453 mpb->attributes |= MPB_ATTRIB_PM;
5454 #endif
5455
5456 if (mpb->num_raid_devs > 1 ||
5457 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5458 version = MPB_VERSION_ATTRIBS;
5459 switch (get_imsm_raid_level(map)) {
5460 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5461 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5462 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5463 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5464 }
5465 } else {
5466 if (map->num_members >= 5)
5467 version = MPB_VERSION_5OR6_DISK_ARRAY;
5468 else if (dev->status == DEV_CLONE_N_GO)
5469 version = MPB_VERSION_CNG;
5470 else if (get_imsm_raid_level(map) == 5)
5471 version = MPB_VERSION_RAID5;
5472 else if (map->num_members >= 3)
5473 version = MPB_VERSION_3OR4_DISK_ARRAY;
5474 else if (get_imsm_raid_level(map) == 1)
5475 version = MPB_VERSION_RAID1;
5476 else
5477 version = MPB_VERSION_RAID0;
5478 }
5479 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5480 }
5481}
5482
aa534678
DW
5483static int check_name(struct intel_super *super, char *name, int quiet)
5484{
5485 struct imsm_super *mpb = super->anchor;
5486 char *reason = NULL;
9bd99a90
RS
5487 char *start = name;
5488 size_t len = strlen(name);
aa534678
DW
5489 int i;
5490
9bd99a90
RS
5491 if (len > 0) {
5492 while (isspace(start[len - 1]))
5493 start[--len] = 0;
5494 while (*start && isspace(*start))
5495 ++start, --len;
5496 memmove(name, start, len + 1);
5497 }
5498
5499 if (len > MAX_RAID_SERIAL_LEN)
aa534678 5500 reason = "must be 16 characters or less";
9bd99a90
RS
5501 else if (len == 0)
5502 reason = "must be a non-empty string";
aa534678
DW
5503
5504 for (i = 0; i < mpb->num_raid_devs; i++) {
5505 struct imsm_dev *dev = get_imsm_dev(super, i);
5506
5507 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5508 reason = "already exists";
5509 break;
5510 }
5511 }
5512
5513 if (reason && !quiet)
e7b84f9d 5514 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5515
5516 return !reason;
5517}
5518
8b353278 5519static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5520 struct shape *s, char *name,
83cd1e97
N
5521 char *homehost, int *uuid,
5522 long long data_offset)
cdddbdbc 5523{
c2c087e6
DW
5524 /* We are creating a volume inside a pre-existing container.
5525 * so st->sb is already set.
5526 */
5527 struct intel_super *super = st->sb;
f36a9ecd 5528 unsigned int sector_size = super->sector_size;
949c47a0 5529 struct imsm_super *mpb = super->anchor;
ba2de7ba 5530 struct intel_dev *dv;
c2c087e6
DW
5531 struct imsm_dev *dev;
5532 struct imsm_vol *vol;
5533 struct imsm_map *map;
5534 int idx = mpb->num_raid_devs;
5535 int i;
760365f9 5536 int namelen;
c2c087e6 5537 unsigned long long array_blocks;
2c092cad 5538 size_t size_old, size_new;
b53bfba6
TM
5539 unsigned int data_disks;
5540 unsigned long long size_per_member;
cdddbdbc 5541
88c32bb1 5542 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5543 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5544 return 0;
5545 }
5546
2c092cad
DW
5547 /* ensure the mpb is large enough for the new data */
5548 size_old = __le32_to_cpu(mpb->mpb_size);
5549 size_new = disks_to_mpb_size(info->nr_disks);
5550 if (size_new > size_old) {
5551 void *mpb_new;
f36a9ecd 5552 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5553
f36a9ecd 5554 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5555 pr_err("could not allocate new mpb\n");
2c092cad
DW
5556 return 0;
5557 }
85337573
AO
5558 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5559 MIGR_REC_BUF_SECTORS*
5560 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5561 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5562 free(super->buf);
5563 free(super);
ea944c8f 5564 free(mpb_new);
8e59f3d8
AK
5565 return 0;
5566 }
2c092cad
DW
5567 memcpy(mpb_new, mpb, size_old);
5568 free(mpb);
5569 mpb = mpb_new;
949c47a0 5570 super->anchor = mpb_new;
2c092cad
DW
5571 mpb->mpb_size = __cpu_to_le32(size_new);
5572 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5573 super->len = size_round;
2c092cad 5574 }
bf5a934a 5575 super->current_vol = idx;
3960e579
DW
5576
5577 /* handle 'failed_disks' by either:
5578 * a) create dummy disk entries in the table if this the first
5579 * volume in the array. We add them here as this is the only
5580 * opportunity to add them. add_to_super_imsm_volume()
5581 * handles the non-failed disks and continues incrementing
5582 * mpb->num_disks.
5583 * b) validate that 'failed_disks' matches the current number
5584 * of missing disks if the container is populated
d23fe947 5585 */
3960e579 5586 if (super->current_vol == 0) {
d23fe947 5587 mpb->num_disks = 0;
3960e579
DW
5588 for (i = 0; i < info->failed_disks; i++) {
5589 struct imsm_disk *disk;
5590
5591 mpb->num_disks++;
5592 disk = __get_imsm_disk(mpb, i);
5593 disk->status = CONFIGURED_DISK | FAILED_DISK;
5594 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5595 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5596 "missing:%d", (__u8)i);
3960e579
DW
5597 }
5598 find_missing(super);
5599 } else {
5600 int missing = 0;
5601 struct dl *d;
5602
5603 for (d = super->missing; d; d = d->next)
5604 missing++;
5605 if (info->failed_disks > missing) {
e7b84f9d 5606 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5607 return 0;
5608 }
5609 }
5a038140 5610
aa534678
DW
5611 if (!check_name(super, name, 0))
5612 return 0;
503975b9
N
5613 dv = xmalloc(sizeof(*dv));
5614 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5615 /*
5616 * Explicitly allow truncating to not confuse gcc's
5617 * -Werror=stringop-truncation
5618 */
5619 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5620 memcpy(dev->volume, name, namelen);
e03640bd 5621 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5622 info->layout, info->chunk_size,
b53bfba6
TM
5623 s->size * BLOCKS_PER_KB);
5624 data_disks = get_data_disks(info->level, info->layout,
5625 info->raid_disks);
5626 array_blocks = round_size_to_mb(array_blocks, data_disks);
5627 size_per_member = array_blocks / data_disks;
979d38be 5628
fcc2c9da 5629 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5630 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5631 vol = &dev->vol;
5632 vol->migr_state = 0;
1484e727 5633 set_migr_type(dev, MIGR_INIT);
3960e579 5634 vol->dirty = !info->state;
4036e7ee 5635 set_vol_curr_migr_unit(dev, 0);
238c0a71 5636 map = get_imsm_map(dev, MAP_0);
5551b113 5637 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5638 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5639 map->failed_disk_num = ~0;
bf4442ab 5640 if (info->level > 0)
fffaf1ff
N
5641 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5642 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5643 else
5644 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5645 IMSM_T_STATE_NORMAL;
252d23c0 5646 map->ddf = 1;
ef6ffade
DW
5647
5648 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5649 free(dev);
5650 free(dv);
7a862a02 5651 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5652 return 0;
5653 }
81062a36
DW
5654
5655 map->raid_level = info->level;
1c275381 5656 if (info->level == 10)
c2c087e6 5657 map->raid_level = 1;
1c275381 5658 set_num_domains(map);
ef6ffade 5659
44490938
MD
5660 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5661 set_blocks_per_member(map, info_to_blocks_per_member(info,
5662 size_per_member /
5663 BLOCKS_PER_KB));
5664
c2c087e6 5665 map->num_members = info->raid_disks;
1c275381 5666 update_num_data_stripes(map, array_blocks);
c2c087e6
DW
5667 for (i = 0; i < map->num_members; i++) {
5668 /* initialized in add_to_super */
4eb26970 5669 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5670 }
949c47a0 5671 mpb->num_raid_devs++;
2a24dc1b
PB
5672 mpb->num_raid_devs_created++;
5673 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5674
b7580566 5675 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5676 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5677 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5678 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5679 } else {
5680 free(dev);
5681 free(dv);
5682 pr_err("imsm does not support consistency policy %s\n",
5f21d674 5683 map_num_s(consistency_policies, s->consistency_policy));
2432ce9b
AP
5684 return 0;
5685 }
5686
ba2de7ba
DW
5687 dv->dev = dev;
5688 dv->index = super->current_vol;
5689 dv->next = super->devlist;
5690 super->devlist = dv;
c2c087e6 5691
4d1313e9
DW
5692 imsm_update_version_info(super);
5693
c2c087e6 5694 return 1;
cdddbdbc
DW
5695}
5696
bf5a934a 5697static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5698 struct shape *s, char *name,
83cd1e97
N
5699 char *homehost, int *uuid,
5700 unsigned long long data_offset)
bf5a934a
DW
5701{
5702 /* This is primarily called by Create when creating a new array.
5703 * We will then get add_to_super called for each component, and then
5704 * write_init_super called to write it out to each device.
5705 * For IMSM, Create can create on fresh devices or on a pre-existing
5706 * array.
5707 * To create on a pre-existing array a different method will be called.
5708 * This one is just for fresh drives.
5709 */
5710 struct intel_super *super;
5711 struct imsm_super *mpb;
5712 size_t mpb_size;
4d1313e9 5713 char *version;
bf5a934a 5714
83cd1e97 5715 if (data_offset != INVALID_SECTORS) {
ed503f89 5716 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5717 return 0;
5718 }
5719
bf5a934a 5720 if (st->sb)
5308f117 5721 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5722 data_offset);
e683ca88
DW
5723
5724 if (info)
5725 mpb_size = disks_to_mpb_size(info->nr_disks);
5726 else
f36a9ecd 5727 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5728
49133e57 5729 super = alloc_super();
f36a9ecd
PB
5730 if (super &&
5731 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5732 free_imsm(super);
e683ca88
DW
5733 super = NULL;
5734 }
5735 if (!super) {
1ade5cc1 5736 pr_err("could not allocate superblock\n");
bf5a934a
DW
5737 return 0;
5738 }
de44e46f
PB
5739 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5740 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5741 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5742 free(super->buf);
8d67477f 5743 free_imsm(super);
8e59f3d8
AK
5744 return 0;
5745 }
e683ca88 5746 memset(super->buf, 0, mpb_size);
ef649044 5747 mpb = super->buf;
e683ca88
DW
5748 mpb->mpb_size = __cpu_to_le32(mpb_size);
5749 st->sb = super;
5750
5751 if (info == NULL) {
5752 /* zeroing superblock */
5753 return 0;
5754 }
bf5a934a 5755
4d1313e9
DW
5756 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5757
5758 version = (char *) mpb->sig;
5759 strcpy(version, MPB_SIGNATURE);
5760 version += strlen(MPB_SIGNATURE);
5761 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5762
bf5a934a
DW
5763 return 1;
5764}
5765
f2cc4f7d
AO
5766static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5767{
5768 unsigned int member_sector_size;
5769
4389ce73 5770 if (!is_fd_valid(dl->fd)) {
f2cc4f7d
AO
5771 pr_err("Invalid file descriptor for %s\n", dl->devname);
5772 return 0;
5773 }
5774
5775 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5776 return 0;
5777 if (member_sector_size != super->sector_size)
5778 return 0;
5779 return 1;
5780}
5781
f20c3968 5782static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5783 int fd, char *devname)
5784{
5785 struct intel_super *super = st->sb;
d23fe947 5786 struct imsm_super *mpb = super->anchor;
3960e579 5787 struct imsm_disk *_disk;
bf5a934a
DW
5788 struct imsm_dev *dev;
5789 struct imsm_map *map;
3960e579 5790 struct dl *dl, *df;
4eb26970 5791 int slot;
9a7df595
MT
5792 int autolayout = 0;
5793
5794 if (!is_fd_valid(fd))
5795 autolayout = 1;
bf5a934a 5796
949c47a0 5797 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5798 map = get_imsm_map(dev, MAP_0);
bf5a934a 5799
208933a7 5800 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5801 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5802 devname);
5803 return 1;
5804 }
5805
9a7df595
MT
5806 for (dl = super->disks; dl ; dl = dl->next) {
5807 if (autolayout) {
efb30e7f
DW
5808 if (dl->raiddisk == dk->raid_disk)
5809 break;
9a7df595
MT
5810 } else if (dl->major == dk->major && dl->minor == dk->minor)
5811 break;
efb30e7f 5812 }
d23fe947 5813
208933a7 5814 if (!dl) {
9a7df595
MT
5815 if (!autolayout)
5816 pr_err("%s is not a member of the same container.\n",
5817 devname);
f20c3968 5818 return 1;
208933a7 5819 }
bf5a934a 5820
9a7df595
MT
5821 if (!autolayout && super->current_vol > 0) {
5822 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5823
5824 if (_slot != dk->raid_disk) {
5825 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5826 dl->devname, _slot, dk->raid_disk);
5827 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5828 return 1;
5829 }
5830 }
5831
59632db9
MZ
5832 if (mpb->num_disks == 0)
5833 if (!get_dev_sector_size(dl->fd, dl->devname,
5834 &super->sector_size))
5835 return 1;
5836
f2cc4f7d
AO
5837 if (!drive_validate_sector_size(super, dl)) {
5838 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5839 return 1;
5840 }
5841
d23fe947
DW
5842 /* add a pristine spare to the metadata */
5843 if (dl->index < 0) {
5844 dl->index = super->anchor->num_disks;
5845 super->anchor->num_disks++;
5846 }
4eb26970
DW
5847 /* Check the device has not already been added */
5848 slot = get_imsm_disk_slot(map, dl->index);
5849 if (slot >= 0 &&
238c0a71 5850 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5851 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5852 devname);
5853 return 1;
5854 }
656b6b5a 5855 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5856 dl->disk.status = CONFIGURED_DISK;
d23fe947 5857
3960e579
DW
5858 /* update size of 'missing' disks to be at least as large as the
5859 * largest acitve member (we only have dummy missing disks when
5860 * creating the first volume)
5861 */
5862 if (super->current_vol == 0) {
5863 for (df = super->missing; df; df = df->next) {
5551b113
CA
5864 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5865 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5866 _disk = __get_imsm_disk(mpb, df->index);
5867 *_disk = df->disk;
5868 }
5869 }
5870
5871 /* refresh unset/failed slots to point to valid 'missing' entries */
5872 for (df = super->missing; df; df = df->next)
5873 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5874 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5875
5876 if ((ord & IMSM_ORD_REBUILD) == 0)
5877 continue;
5878 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5879 if (is_gen_migration(dev)) {
238c0a71
AK
5880 struct imsm_map *map2 = get_imsm_map(dev,
5881 MAP_1);
0a108d63 5882 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5883 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5884 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5885 slot2,
5886 MAP_1);
1ace8403
AK
5887 if ((unsigned)df->index ==
5888 ord_to_idx(ord2))
5889 set_imsm_ord_tbl_ent(map2,
0a108d63 5890 slot2,
1ace8403
AK
5891 df->index |
5892 IMSM_ORD_REBUILD);
5893 }
5894 }
3960e579
DW
5895 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5896 break;
5897 }
5898
d23fe947
DW
5899 /* if we are creating the first raid device update the family number */
5900 if (super->current_vol == 0) {
5901 __u32 sum;
5902 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5903
3960e579 5904 _disk = __get_imsm_disk(mpb, dl->index);
756a15f3 5905 if (!_disk) {
e7b84f9d 5906 pr_err("BUG mpb setup error\n");
791b666a
AW
5907 return 1;
5908 }
d23fe947
DW
5909 *_dev = *dev;
5910 *_disk = dl->disk;
148acb7b
DW
5911 sum = random32();
5912 sum += __gen_imsm_checksum(mpb);
d23fe947 5913 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5914 mpb->orig_family_num = mpb->family_num;
e48aed3c 5915 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5916 }
ca0748fa 5917 super->current_disk = dl;
f20c3968 5918 return 0;
bf5a934a
DW
5919}
5920
a8619d23
AK
5921/* mark_spare()
5922 * Function marks disk as spare and restores disk serial
5923 * in case it was previously marked as failed by takeover operation
5924 * reruns:
5925 * -1 : critical error
5926 * 0 : disk is marked as spare but serial is not set
5927 * 1 : success
5928 */
5929int mark_spare(struct dl *disk)
5930{
5931 __u8 serial[MAX_RAID_SERIAL_LEN];
5932 int ret_val = -1;
5933
5934 if (!disk)
5935 return ret_val;
5936
5937 ret_val = 0;
6da53c0e 5938 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
5939 /* Restore disk serial number, because takeover marks disk
5940 * as failed and adds to serial ':0' before it becomes
5941 * a spare disk.
5942 */
5943 serialcpy(disk->serial, serial);
5944 serialcpy(disk->disk.serial, serial);
5945 ret_val = 1;
5946 }
5947 disk->disk.status = SPARE_DISK;
5948 disk->index = -1;
5949
5950 return ret_val;
5951}
88654014 5952
12724c01
TM
5953
5954static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5955
f20c3968 5956static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5957 int fd, char *devname,
5958 unsigned long long data_offset)
cdddbdbc 5959{
c2c087e6 5960 struct intel_super *super = st->sb;
c2c087e6
DW
5961 struct dl *dd;
5962 unsigned long long size;
fa7bb6f8 5963 unsigned int member_sector_size;
f2f27e63 5964 __u32 id;
c2c087e6
DW
5965 int rv;
5966 struct stat stb;
5967
88654014
LM
5968 /* If we are on an RAID enabled platform check that the disk is
5969 * attached to the raid controller.
5970 * We do not need to test disks attachment for container based additions,
5971 * they shall be already tested when container was created/assembled.
88c32bb1 5972 */
d424212e 5973 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5974 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5975 if (rv != 0) {
5976 dprintf("capability: %p fd: %d ret: %d\n",
5977 super->orom, fd, rv);
5978 return 1;
88c32bb1
DW
5979 }
5980
f20c3968
DW
5981 if (super->current_vol >= 0)
5982 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5983
c2c087e6 5984 fstat(fd, &stb);
503975b9 5985 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5986 dd->major = major(stb.st_rdev);
5987 dd->minor = minor(stb.st_rdev);
503975b9 5988 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5989 dd->fd = fd;
689c9bf3 5990 dd->e = NULL;
1a64be56 5991 dd->action = DISK_ADD;
6da53c0e 5992 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 5993 if (rv) {
e7b84f9d 5994 pr_err("failed to retrieve scsi serial, aborting\n");
3a85bf0e 5995 __free_imsm_disk(dd, 0);
0030e8d6 5996 abort();
c2c087e6 5997 }
7c798f87 5998
20bee0f8
PB
5999 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6000 (super->hba->type == SYS_DEV_VMD))) {
6001 int i;
7c798f87
MT
6002 char cntrl_path[PATH_MAX];
6003 char *cntrl_name;
6004 char pci_dev_path[PATH_MAX];
20bee0f8 6005
7c798f87
MT
6006 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6007 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 6008 pr_err("failed to get dev paths, aborting\n");
3a85bf0e 6009 __free_imsm_disk(dd, 0);
a8f3cfd5
MT
6010 return 1;
6011 }
6012
7c798f87
MT
6013 cntrl_name = basename(cntrl_path);
6014 if (is_multipath_nvme(fd))
6015 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6016 cntrl_name);
6017
6018 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
6019 /*
6020 * If Intel's NVMe drive has serial ended with
6021 * "-A","-B","-1" or "-2" it means that this is "x8"
6022 * device (double drive on single PCIe card).
6023 * User should be warned about potential data loss.
6024 */
6025 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6026 /* Skip empty character at the end */
6027 if (dd->serial[i] == 0)
6028 continue;
6029
6030 if (((dd->serial[i] == 'A') ||
6031 (dd->serial[i] == 'B') ||
6032 (dd->serial[i] == '1') ||
6033 (dd->serial[i] == '2')) &&
6034 (dd->serial[i-1] == '-'))
6035 pr_err("\tThe action you are about to take may put your data at risk.\n"
6036 "\tPlease note that x8 devices may consist of two separate x4 devices "
6037 "located on a single PCIe port.\n"
6038 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6039 break;
6040 }
32716c51
PB
6041 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6042 !imsm_orom_has_tpv_support(super->orom)) {
6043 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 6044 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
3a85bf0e 6045 __free_imsm_disk(dd, 0);
32716c51 6046 return 1;
20bee0f8
PB
6047 }
6048 }
c2c087e6 6049
c2c087e6 6050 get_dev_size(fd, NULL, &size);
3a85bf0e
MG
6051 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6052 __free_imsm_disk(dd, 0);
aec01630 6053 return 1;
3a85bf0e 6054 }
fa7bb6f8
PB
6055
6056 if (super->sector_size == 0) {
6057 /* this a first device, so sector_size is not set yet */
6058 super->sector_size = member_sector_size;
fa7bb6f8
PB
6059 }
6060
71e5411e 6061 /* clear migr_rec when adding disk to container */
85337573
AO
6062 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6063 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 6064 SEEK_SET) >= 0) {
466070ad 6065 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
6066 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6067 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
6068 perror("Write migr_rec failed");
6069 }
6070
c2c087e6 6071 size /= 512;
1f24f035 6072 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6073 set_total_blocks(&dd->disk, size);
6074 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6075 struct imsm_super *mpb = super->anchor;
6076 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6077 }
a8619d23 6078 mark_spare(dd);
c2c087e6 6079 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6080 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6081 else
b9f594fe 6082 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6083
6084 if (st->update_tail) {
1a64be56
LM
6085 dd->next = super->disk_mgmt_list;
6086 super->disk_mgmt_list = dd;
43dad3d6 6087 } else {
12724c01
TM
6088 /* this is called outside of mdmon
6089 * write initial spare metadata
6090 * mdmon will overwrite it.
6091 */
43dad3d6
DW
6092 dd->next = super->disks;
6093 super->disks = dd;
12724c01 6094 write_super_imsm_spare(super, dd);
43dad3d6 6095 }
f20c3968
DW
6096
6097 return 0;
cdddbdbc
DW
6098}
6099
1a64be56
LM
6100static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6101{
6102 struct intel_super *super = st->sb;
6103 struct dl *dd;
6104
6105 /* remove from super works only in mdmon - for communication
6106 * manager - monitor. Check if communication memory buffer
6107 * is prepared.
6108 */
6109 if (!st->update_tail) {
1ade5cc1 6110 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6111 return 1;
6112 }
503975b9 6113 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6114 dd->major = dk->major;
6115 dd->minor = dk->minor;
1a64be56 6116 dd->fd = -1;
a8619d23 6117 mark_spare(dd);
1a64be56
LM
6118 dd->action = DISK_REMOVE;
6119
6120 dd->next = super->disk_mgmt_list;
6121 super->disk_mgmt_list = dd;
6122
1a64be56
LM
6123 return 0;
6124}
6125
f796af5d
DW
6126static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6127
6128static union {
f36a9ecd 6129 char buf[MAX_SECTOR_SIZE];
f796af5d 6130 struct imsm_super anchor;
f36a9ecd 6131} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6132
12724c01
TM
6133
6134static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6135{
d23fe947 6136 struct imsm_super *mpb = super->anchor;
f796af5d 6137 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6138 __u32 sum;
12724c01
TM
6139
6140 if (d->index != -1)
6141 return 1;
d23fe947 6142
68641cdb
JS
6143 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6144 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 6145 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
6146 spare->num_disks = 1;
6147 spare->num_raid_devs = 0;
6148 spare->cache_size = mpb->cache_size;
6149 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
6150
6151 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6152 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947 6153
12724c01
TM
6154 spare->disk[0] = d->disk;
6155 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6156 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6157
6158 if (super->sector_size == 4096)
6159 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6160
12724c01
TM
6161 sum = __gen_imsm_checksum(spare);
6162 spare->family_num = __cpu_to_le32(sum);
6163 spare->orig_family_num = 0;
6164 sum = __gen_imsm_checksum(spare);
6165 spare->check_sum = __cpu_to_le32(sum);
027c374f 6166
12724c01
TM
6167 if (store_imsm_mpb(d->fd, spare)) {
6168 pr_err("failed for device %d:%d %s\n",
6169 d->major, d->minor, strerror(errno));
6170 return 1;
6171 }
6172
6173 return 0;
6174}
6175/* spare records have their own family number and do not have any defined raid
6176 * devices
6177 */
6178static int write_super_imsm_spares(struct intel_super *super, int doclose)
6179{
6180 struct dl *d;
f36a9ecd 6181
12724c01
TM
6182 for (d = super->disks; d; d = d->next) {
6183 if (d->index != -1)
6184 continue;
d23fe947 6185
12724c01 6186 if (write_super_imsm_spare(super, d))
e74255d9 6187 return 1;
12724c01 6188
4389ce73
MT
6189 if (doclose)
6190 close_fd(&d->fd);
d23fe947
DW
6191 }
6192
e74255d9 6193 return 0;
d23fe947
DW
6194}
6195
36988a3d 6196static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6197{
36988a3d 6198 struct intel_super *super = st->sb;
f36a9ecd 6199 unsigned int sector_size = super->sector_size;
949c47a0 6200 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6201 struct dl *d;
6202 __u32 generation;
6203 __u32 sum;
d23fe947 6204 int spares = 0;
949c47a0 6205 int i;
a48ac0a8 6206 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6207 int num_disks = 0;
146c6260 6208 int clear_migration_record = 1;
bbab0940 6209 __u32 bbm_log_size;
cdddbdbc 6210
c2c087e6
DW
6211 /* 'generation' is incremented everytime the metadata is written */
6212 generation = __le32_to_cpu(mpb->generation_num);
6213 generation++;
6214 mpb->generation_num = __cpu_to_le32(generation);
6215
148acb7b
DW
6216 /* fix up cases where previous mdadm releases failed to set
6217 * orig_family_num
6218 */
6219 if (mpb->orig_family_num == 0)
6220 mpb->orig_family_num = mpb->family_num;
6221
d23fe947 6222 for (d = super->disks; d; d = d->next) {
8796fdc4 6223 if (d->index == -1)
d23fe947 6224 spares++;
36988a3d 6225 else {
d23fe947 6226 mpb->disk[d->index] = d->disk;
36988a3d
AK
6227 num_disks++;
6228 }
d23fe947 6229 }
36988a3d 6230 for (d = super->missing; d; d = d->next) {
47ee5a45 6231 mpb->disk[d->index] = d->disk;
36988a3d
AK
6232 num_disks++;
6233 }
6234 mpb->num_disks = num_disks;
6235 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6236
949c47a0
DW
6237 for (i = 0; i < mpb->num_raid_devs; i++) {
6238 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d 6239 struct imsm_dev *dev2 = get_imsm_dev(super, i);
756a15f3
MG
6240
6241 imsm_copy_dev(dev, dev2);
6242 mpb_size += sizeof_imsm_dev(dev, 0);
6243
146c6260
AK
6244 if (is_gen_migration(dev2))
6245 clear_migration_record = 0;
949c47a0 6246 }
bbab0940
TM
6247
6248 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6249
6250 if (bbm_log_size) {
6251 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6252 mpb->attributes |= MPB_ATTRIB_BBM;
6253 } else
6254 mpb->attributes &= ~MPB_ATTRIB_BBM;
6255
6256 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6257 mpb_size += bbm_log_size;
a48ac0a8 6258 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6259
bbab0940
TM
6260#ifdef DEBUG
6261 assert(super->len == 0 || mpb_size <= super->len);
6262#endif
6263
c2c087e6 6264 /* recalculate checksum */
949c47a0 6265 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6266 mpb->check_sum = __cpu_to_le32(sum);
6267
51d83f5d
AK
6268 if (super->clean_migration_record_by_mdmon) {
6269 clear_migration_record = 1;
6270 super->clean_migration_record_by_mdmon = 0;
6271 }
146c6260 6272 if (clear_migration_record)
de44e46f 6273 memset(super->migr_rec_buf, 0,
85337573 6274 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6275
f36a9ecd
PB
6276 if (sector_size == 4096)
6277 convert_to_4k(super);
6278
d23fe947 6279 /* write the mpb for disks that compose raid devices */
c2c087e6 6280 for (d = super->disks; d ; d = d->next) {
86c54047 6281 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6282 continue;
30602f53 6283
146c6260
AK
6284 if (clear_migration_record) {
6285 unsigned long long dsize;
6286
6287 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6288 if (lseek64(d->fd, dsize - sector_size,
6289 SEEK_SET) >= 0) {
466070ad
PB
6290 if ((unsigned int)write(d->fd,
6291 super->migr_rec_buf,
de44e46f
PB
6292 MIGR_REC_BUF_SECTORS*sector_size) !=
6293 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6294 perror("Write migr_rec failed");
146c6260
AK
6295 }
6296 }
51d83f5d
AK
6297
6298 if (store_imsm_mpb(d->fd, mpb))
6299 fprintf(stderr,
1ade5cc1
N
6300 "failed for device %d:%d (fd: %d)%s\n",
6301 d->major, d->minor,
51d83f5d
AK
6302 d->fd, strerror(errno));
6303
4389ce73
MT
6304 if (doclose)
6305 close_fd(&d->fd);
c2c087e6
DW
6306 }
6307
d23fe947
DW
6308 if (spares)
6309 return write_super_imsm_spares(super, doclose);
6310
e74255d9 6311 return 0;
c2c087e6
DW
6312}
6313
9b1fb677 6314static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6315{
6316 size_t len;
6317 struct imsm_update_create_array *u;
6318 struct intel_super *super = st->sb;
9b1fb677 6319 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6320 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6321 struct disk_info *inf;
6322 struct imsm_disk *disk;
6323 int i;
43dad3d6 6324
54c2c1ea
DW
6325 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6326 sizeof(*inf) * map->num_members;
503975b9 6327 u = xmalloc(len);
43dad3d6 6328 u->type = update_create_array;
9b1fb677 6329 u->dev_idx = dev_idx;
43dad3d6 6330 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6331 inf = get_disk_info(u);
6332 for (i = 0; i < map->num_members; i++) {
238c0a71 6333 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6334
54c2c1ea 6335 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6336 if (!disk)
6337 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6338 serialcpy(inf[i].serial, disk->serial);
6339 }
43dad3d6
DW
6340 append_metadata_update(st, u, len);
6341
6342 return 0;
6343}
6344
1a64be56 6345static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6346{
6347 struct intel_super *super = st->sb;
6348 size_t len;
1a64be56 6349 struct imsm_update_add_remove_disk *u;
43dad3d6 6350
1a64be56 6351 if (!super->disk_mgmt_list)
43dad3d6
DW
6352 return 0;
6353
6354 len = sizeof(*u);
503975b9 6355 u = xmalloc(len);
1a64be56 6356 u->type = update_add_remove_disk;
43dad3d6
DW
6357 append_metadata_update(st, u, len);
6358
6359 return 0;
6360}
2432ce9b
AP
6361
6362__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6363
e397cefe
AP
6364static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6365{
6366 struct ppl_header *ppl_hdr = buf;
6367 int ret;
6368
6369 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6370
6371 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6372 ret = -errno;
6373 perror("Failed to seek to PPL header location");
6374 return ret;
6375 }
6376
6377 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6378 ret = -errno;
6379 perror("Write PPL header failed");
6380 return ret;
6381 }
6382
6383 fsync(fd);
6384
6385 return 0;
6386}
6387
2432ce9b
AP
6388static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6389{
6390 struct intel_super *super = st->sb;
6391 void *buf;
6392 struct ppl_header *ppl_hdr;
6393 int ret;
6394
b2514242
PB
6395 /* first clear entire ppl space */
6396 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6397 if (ret)
6398 return ret;
6399
6400 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6401 if (ret) {
6402 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6403 return -ret;
2432ce9b
AP
6404 }
6405
6406 memset(buf, 0, PPL_HEADER_SIZE);
6407 ppl_hdr = buf;
6408 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6409 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6410
6411 if (info->mismatch_cnt) {
6412 /*
6413 * We are overwriting an invalid ppl. Make one entry with wrong
6414 * checksum to prevent the kernel from skipping resync.
6415 */
6416 ppl_hdr->entries_count = __cpu_to_le32(1);
6417 ppl_hdr->entries[0].checksum = ~0;
6418 }
6419
e397cefe 6420 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6421
6422 free(buf);
6423 return ret;
6424}
6425
e397cefe
AP
6426static int is_rebuilding(struct imsm_dev *dev);
6427
2432ce9b
AP
6428static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6429 struct mdinfo *disk)
6430{
6431 struct intel_super *super = st->sb;
6432 struct dl *d;
e397cefe 6433 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6434 int ret = 0;
e397cefe 6435 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6436 __u32 crc;
6437 struct imsm_dev *dev;
2432ce9b 6438 __u32 idx;
44b6b876
PB
6439 unsigned int i;
6440 unsigned long long ppl_offset = 0;
6441 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6442
6443 if (disk->disk.raid_disk < 0)
6444 return 0;
6445
2432ce9b 6446 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6447 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6448 d = get_imsm_dl_disk(super, idx);
6449
6450 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6451 return 0;
6452
6453 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6454 pr_err("Failed to allocate PPL header buffer\n");
6455 return -1;
6456 }
6457 buf = buf_orig;
2432ce9b 6458
44b6b876
PB
6459 ret = 1;
6460 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6461 void *tmp;
6462
44b6b876 6463 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6464
44b6b876
PB
6465 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6466 SEEK_SET) < 0) {
6467 perror("Failed to seek to PPL header location");
6468 ret = -1;
e397cefe 6469 break;
44b6b876 6470 }
2432ce9b 6471
44b6b876
PB
6472 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6473 perror("Read PPL header failed");
6474 ret = -1;
e397cefe 6475 break;
44b6b876 6476 }
2432ce9b 6477
44b6b876 6478 ppl_hdr = buf;
2432ce9b 6479
44b6b876
PB
6480 crc = __le32_to_cpu(ppl_hdr->checksum);
6481 ppl_hdr->checksum = 0;
6482
6483 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6484 dprintf("Wrong PPL header checksum on %s\n",
6485 d->devname);
e397cefe 6486 break;
44b6b876
PB
6487 }
6488
6489 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6490 /* previous was newest, it was already checked */
e397cefe 6491 break;
44b6b876
PB
6492 }
6493
6494 if ((__le32_to_cpu(ppl_hdr->signature) !=
6495 super->anchor->orig_family_num)) {
6496 dprintf("Wrong PPL header signature on %s\n",
6497 d->devname);
6498 ret = 1;
e397cefe 6499 break;
44b6b876
PB
6500 }
6501
6502 ret = 0;
6503 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6504
44b6b876
PB
6505 ppl_offset += PPL_HEADER_SIZE;
6506 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6507 ppl_offset +=
6508 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6509
6510 if (!buf_prev)
6511 buf_prev = buf + PPL_HEADER_SIZE;
6512 tmp = buf_prev;
6513 buf_prev = buf;
6514 buf = tmp;
2432ce9b
AP
6515 }
6516
e397cefe
AP
6517 if (buf_prev) {
6518 buf = buf_prev;
6519 ppl_hdr = buf_prev;
6520 }
2432ce9b 6521
54148aba
PB
6522 /*
6523 * Update metadata to use mutliple PPLs area (1MB).
6524 * This is done once for all RAID members
6525 */
6526 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6527 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6528 char subarray[20];
6529 struct mdinfo *member_dev;
6530
6531 sprintf(subarray, "%d", info->container_member);
6532
6533 if (mdmon_running(st->container_devnm))
6534 st->update_tail = &st->updates;
6535
6536 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6537 pr_err("Failed to update subarray %s\n",
6538 subarray);
6539 } else {
6540 if (st->update_tail)
6541 flush_metadata_updates(st);
6542 else
6543 st->ss->sync_metadata(st);
6544 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6545 for (member_dev = info->devs; member_dev;
6546 member_dev = member_dev->next)
6547 member_dev->ppl_size =
6548 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6549 }
6550 }
6551
b23d0750 6552 if (ret == 1) {
2fc0fc63
AP
6553 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6554
50b9c10d
PB
6555 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6556 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6557 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6558 (is_rebuilding(dev) &&
4036e7ee 6559 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6560 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6561 ret = st->ss->write_init_ppl(st, info, d->fd);
6562 else
6563 info->mismatch_cnt++;
e397cefe
AP
6564 } else if (ret == 0 &&
6565 ppl_hdr->entries_count == 0 &&
6566 is_rebuilding(dev) &&
6567 info->resync_start == 0) {
6568 /*
6569 * The header has no entries - add a single empty entry and
6570 * rewrite the header to prevent the kernel from going into
6571 * resync after an interrupted rebuild.
6572 */
6573 ppl_hdr->entries_count = __cpu_to_le32(1);
6574 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6575 }
2432ce9b 6576
e397cefe
AP
6577 free(buf_orig);
6578
2432ce9b
AP
6579 return ret;
6580}
6581
2432ce9b
AP
6582static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6583{
6584 struct intel_super *super = st->sb;
6585 struct dl *d;
6586 int ret = 0;
6587
6588 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6589 info->array.level != 5)
6590 return 0;
6591
6592 for (d = super->disks; d ; d = d->next) {
6593 if (d->index < 0 || is_failed(&d->disk))
6594 continue;
6595
6596 ret = st->ss->write_init_ppl(st, info, d->fd);
6597 if (ret)
6598 break;
6599 }
6600
6601 return ret;
6602}
43dad3d6 6603
fbc42556
JR
6604/*******************************************************************************
6605 * Function: write_init_bitmap_imsm_vol
6606 * Description: Write a bitmap header and prepares the area for the bitmap.
6607 * Parameters:
6608 * st : supertype information
6609 * vol_idx : the volume index to use
6610 *
6611 * Returns:
6612 * 0 : success
6613 * -1 : fail
6614 ******************************************************************************/
6615static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6616{
6617 struct intel_super *super = st->sb;
6618 int prev_current_vol = super->current_vol;
6619 struct dl *d;
6620 int ret = 0;
6621
6622 super->current_vol = vol_idx;
6623 for (d = super->disks; d; d = d->next) {
6624 if (d->index < 0 || is_failed(&d->disk))
6625 continue;
6626 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6627 if (ret)
6628 break;
6629 }
6630 super->current_vol = prev_current_vol;
6631 return ret;
6632}
6633
6634/*******************************************************************************
6635 * Function: write_init_bitmap_imsm_all
6636 * Description: Write a bitmap header and prepares the area for the bitmap.
6637 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6638 * Parameters:
6639 * st : supertype information
6640 * info : info about the volume where the bitmap should be written
6641 * vol_idx : the volume index to use
6642 *
6643 * Returns:
6644 * 0 : success
6645 * -1 : fail
6646 ******************************************************************************/
6647static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6648 int vol_idx)
6649{
6650 int ret = 0;
6651
6652 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6653 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6654
6655 return ret;
6656}
6657
c2c087e6
DW
6658static int write_init_super_imsm(struct supertype *st)
6659{
9b1fb677
DW
6660 struct intel_super *super = st->sb;
6661 int current_vol = super->current_vol;
2432ce9b
AP
6662 int rv = 0;
6663 struct mdinfo info;
6664
6665 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6666
6667 /* we are done with current_vol reset it to point st at the container */
6668 super->current_vol = -1;
6669
8273f55e 6670 if (st->update_tail) {
43dad3d6
DW
6671 /* queue the recently created array / added disk
6672 * as a metadata update */
8273f55e 6673
43dad3d6 6674 /* determine if we are creating a volume or adding a disk */
9b1fb677 6675 if (current_vol < 0) {
1a64be56
LM
6676 /* in the mgmt (add/remove) disk case we are running
6677 * in mdmon context, so don't close fd's
43dad3d6 6678 */
2432ce9b
AP
6679 rv = mgmt_disk(st);
6680 } else {
fbc42556 6681 /* adding the second volume to the array */
2432ce9b 6682 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6683 if (!rv)
6684 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6685 if (!rv)
6686 rv = create_array(st, current_vol);
6687 }
d682f344
N
6688 } else {
6689 struct dl *d;
6690 for (d = super->disks; d; d = d->next)
ba728be7 6691 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6692 if (current_vol >= 0) {
2432ce9b 6693 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6694 if (!rv)
6695 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6696 }
6697
2432ce9b
AP
6698 if (!rv)
6699 rv = write_super_imsm(st, 1);
d682f344 6700 }
2432ce9b
AP
6701
6702 return rv;
cdddbdbc
DW
6703}
6704
e683ca88 6705static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6706{
e683ca88
DW
6707 struct intel_super *super = st->sb;
6708 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6709
e683ca88 6710 if (!mpb)
ad97895e
DW
6711 return 1;
6712
f36a9ecd
PB
6713 if (super->sector_size == 4096)
6714 convert_to_4k(super);
e683ca88 6715 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6716}
6717
cdddbdbc 6718static int validate_geometry_imsm_container(struct supertype *st, int level,
1f5d54a0 6719 int raiddisks,
af4348dd
N
6720 unsigned long long data_offset,
6721 char *dev,
2c514b71
NB
6722 unsigned long long *freesize,
6723 int verbose)
cdddbdbc 6724{
c2c087e6
DW
6725 int fd;
6726 unsigned long long ldsize;
8662f92d 6727 struct intel_super *super = NULL;
f2f5c343 6728 int rv = 0;
cdddbdbc 6729
c2c087e6
DW
6730 if (level != LEVEL_CONTAINER)
6731 return 0;
6732 if (!dev)
6733 return 1;
6734
dca80fcd 6735 fd = dev_open(dev, O_RDONLY|O_EXCL);
4389ce73
MT
6736 if (!is_fd_valid(fd)) {
6737 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
c2c087e6
DW
6738 return 0;
6739 }
8662f92d
MT
6740 if (!get_dev_size(fd, dev, &ldsize))
6741 goto exit;
f2f5c343
LM
6742
6743 /* capabilities retrieve could be possible
6744 * note that there is no fd for the disks in array.
6745 */
6746 super = alloc_super();
8662f92d
MT
6747 if (!super)
6748 goto exit;
6749
6750 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6751 goto exit;
fa7bb6f8 6752
ba728be7 6753 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6754 if (rv != 0) {
6755#if DEBUG
6756 char str[256];
6757 fd2devname(fd, str);
1ade5cc1 6758 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6759 fd, str, super->orom, rv, raiddisks);
6760#endif
6761 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6762 rv = 0;
6763 goto exit;
f2f5c343 6764 }
9126b9a8
CA
6765 if (super->orom) {
6766 if (raiddisks > super->orom->tds) {
6767 if (verbose)
7a862a02 6768 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6769 raiddisks, super->orom->tds);
8662f92d 6770 goto exit;
9126b9a8
CA
6771 }
6772 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6773 (ldsize >> 9) >> 32 > 0) {
6774 if (verbose)
e7b84f9d 6775 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6776 goto exit;
6777 }
6778
6779 if (super->hba->type == SYS_DEV_VMD ||
6780 super->hba->type == SYS_DEV_NVME) {
6781 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6782 if (verbose)
6783 pr_err("NVMe namespace %s is not supported by IMSM\n",
6784 basename(dev));
6785 goto exit;
6786 }
9126b9a8 6787 }
f2f5c343 6788 }
1f5d54a0
MT
6789 if (freesize)
6790 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6791 rv = 1;
6792exit:
6793 if (super)
6794 free_imsm(super);
6795 close(fd);
c2c087e6 6796
8662f92d 6797 return rv;
cdddbdbc
DW
6798}
6799
0dcecb2e
DW
6800static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6801{
6802 const unsigned long long base_start = e[*idx].start;
6803 unsigned long long end = base_start + e[*idx].size;
6804 int i;
6805
6806 if (base_start == end)
6807 return 0;
6808
6809 *idx = *idx + 1;
6810 for (i = *idx; i < num_extents; i++) {
6811 /* extend overlapping extents */
6812 if (e[i].start >= base_start &&
6813 e[i].start <= end) {
6814 if (e[i].size == 0)
6815 return 0;
6816 if (e[i].start + e[i].size > end)
6817 end = e[i].start + e[i].size;
6818 } else if (e[i].start > end) {
6819 *idx = i;
6820 break;
6821 }
6822 }
6823
6824 return end - base_start;
6825}
6826
6827static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6828{
6829 /* build a composite disk with all known extents and generate a new
6830 * 'maxsize' given the "all disks in an array must share a common start
6831 * offset" constraint
6832 */
503975b9 6833 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6834 struct dl *dl;
6835 int i, j;
6836 int start_extent;
6837 unsigned long long pos;
b9d77223 6838 unsigned long long start = 0;
0dcecb2e
DW
6839 unsigned long long maxsize;
6840 unsigned long reserve;
6841
0dcecb2e
DW
6842 /* coalesce and sort all extents. also, check to see if we need to
6843 * reserve space between member arrays
6844 */
6845 j = 0;
6846 for (dl = super->disks; dl; dl = dl->next) {
6847 if (!dl->e)
6848 continue;
6849 for (i = 0; i < dl->extent_cnt; i++)
6850 e[j++] = dl->e[i];
6851 }
6852 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6853
6854 /* merge extents */
6855 i = 0;
6856 j = 0;
6857 while (i < sum_extents) {
6858 e[j].start = e[i].start;
6859 e[j].size = find_size(e, &i, sum_extents);
6860 j++;
6861 if (e[j-1].size == 0)
6862 break;
6863 }
6864
6865 pos = 0;
6866 maxsize = 0;
6867 start_extent = 0;
6868 i = 0;
6869 do {
6870 unsigned long long esize;
6871
6872 esize = e[i].start - pos;
6873 if (esize >= maxsize) {
6874 maxsize = esize;
6875 start = pos;
6876 start_extent = i;
6877 }
6878 pos = e[i].start + e[i].size;
6879 i++;
6880 } while (e[i-1].size);
6881 free(e);
6882
a7dd165b
DW
6883 if (maxsize == 0)
6884 return 0;
6885
6886 /* FIXME assumes volume at offset 0 is the first volume in a
6887 * container
6888 */
0dcecb2e
DW
6889 if (start_extent > 0)
6890 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6891 else
6892 reserve = 0;
6893
6894 if (maxsize < reserve)
a7dd165b 6895 return 0;
0dcecb2e 6896
5551b113 6897 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6898 if (start + reserve > super->create_offset)
a7dd165b 6899 return 0; /* start overflows create_offset */
0dcecb2e
DW
6900 super->create_offset = start + reserve;
6901
6902 return maxsize - reserve;
6903}
6904
88c32bb1
DW
6905static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6906{
6907 if (level < 0 || level == 6 || level == 4)
6908 return 0;
6909
6910 /* if we have an orom prevent invalid raid levels */
6911 if (orom)
6912 switch (level) {
6913 case 0: return imsm_orom_has_raid0(orom);
6914 case 1:
6915 if (raiddisks > 2)
6916 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6917 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6918 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6919 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6920 }
6921 else
6922 return 1; /* not on an Intel RAID platform so anything goes */
6923
6924 return 0;
6925}
6926
ca9de185
LM
6927static int
6928active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6929 int dpa, int verbose)
6930{
6931 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6932 struct mdstat_ent *memb;
ca9de185
LM
6933 int count = 0;
6934 int num = 0;
594dc1b8 6935 struct md_list *dv;
ca9de185
LM
6936 int found;
6937
6938 for (memb = mdstat ; memb ; memb = memb->next) {
6939 if (memb->metadata_version &&
fc54fe7a 6940 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6941 (strcmp(&memb->metadata_version[9], name) == 0) &&
6942 !is_subarray(memb->metadata_version+9) &&
6943 memb->members) {
6944 struct dev_member *dev = memb->members;
6945 int fd = -1;
4389ce73 6946 while (dev && !is_fd_valid(fd)) {
503975b9
N
6947 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6948 num = sprintf(path, "%s%s", "/dev/", dev->name);
6949 if (num > 0)
6950 fd = open(path, O_RDONLY, 0);
4389ce73 6951 if (num <= 0 || !is_fd_valid(fd)) {
676e87a8 6952 pr_vrb("Cannot open %s: %s\n",
503975b9 6953 dev->name, strerror(errno));
ca9de185 6954 }
503975b9 6955 free(path);
ca9de185
LM
6956 dev = dev->next;
6957 }
6958 found = 0;
4389ce73 6959 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6960 struct mdstat_ent *vol;
6961 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6962 if (vol->active > 0 &&
ca9de185 6963 vol->metadata_version &&
9581efb1 6964 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6965 found++;
6966 count++;
6967 }
6968 }
6969 if (*devlist && (found < dpa)) {
503975b9 6970 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6971 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6972 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6973 dv->found = found;
6974 dv->used = 0;
6975 dv->next = *devlist;
6976 *devlist = dv;
ca9de185
LM
6977 }
6978 }
4389ce73 6979 close_fd(&fd);
ca9de185
LM
6980 }
6981 }
6982 free_mdstat(mdstat);
6983 return count;
6984}
6985
6986#ifdef DEBUG_LOOP
6987static struct md_list*
6988get_loop_devices(void)
6989{
6990 int i;
6991 struct md_list *devlist = NULL;
594dc1b8 6992 struct md_list *dv;
ca9de185
LM
6993
6994 for(i = 0; i < 12; i++) {
503975b9
N
6995 dv = xcalloc(1, sizeof(*dv));
6996 dv->devname = xmalloc(40);
ca9de185
LM
6997 sprintf(dv->devname, "/dev/loop%d", i);
6998 dv->next = devlist;
6999 devlist = dv;
7000 }
7001 return devlist;
7002}
7003#endif
7004
7005static struct md_list*
7006get_devices(const char *hba_path)
7007{
7008 struct md_list *devlist = NULL;
594dc1b8 7009 struct md_list *dv;
ca9de185
LM
7010 struct dirent *ent;
7011 DIR *dir;
7012 int err = 0;
7013
7014#if DEBUG_LOOP
7015 devlist = get_loop_devices();
7016 return devlist;
7017#endif
7018 /* scroll through /sys/dev/block looking for devices attached to
7019 * this hba
7020 */
7021 dir = opendir("/sys/dev/block");
7022 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7023 int fd;
7024 char buf[1024];
7025 int major, minor;
7026 char *path = NULL;
7027 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7028 continue;
7c798f87 7029 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
7030 if (!path)
7031 continue;
7032 if (!path_attached_to_hba(path, hba_path)) {
7033 free(path);
7034 path = NULL;
7035 continue;
7036 }
7037 free(path);
7038 path = NULL;
7039 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 7040 if (is_fd_valid(fd)) {
ca9de185
LM
7041 fd2devname(fd, buf);
7042 close(fd);
7043 } else {
e7b84f9d 7044 pr_err("cannot open device: %s\n",
ca9de185
LM
7045 ent->d_name);
7046 continue;
7047 }
7048
503975b9
N
7049 dv = xcalloc(1, sizeof(*dv));
7050 dv->devname = xstrdup(buf);
ca9de185
LM
7051 dv->next = devlist;
7052 devlist = dv;
7053 }
7054 if (err) {
7055 while(devlist) {
7056 dv = devlist;
7057 devlist = devlist->next;
7058 free(dv->devname);
7059 free(dv);
7060 }
7061 }
562aa102 7062 closedir(dir);
ca9de185
LM
7063 return devlist;
7064}
7065
7066static int
7067count_volumes_list(struct md_list *devlist, char *homehost,
7068 int verbose, int *found)
7069{
7070 struct md_list *tmpdev;
7071 int count = 0;
594dc1b8 7072 struct supertype *st;
ca9de185
LM
7073
7074 /* first walk the list of devices to find a consistent set
7075 * that match the criterea, if that is possible.
7076 * We flag the ones we like with 'used'.
7077 */
7078 *found = 0;
7079 st = match_metadata_desc_imsm("imsm");
7080 if (st == NULL) {
676e87a8 7081 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7082 return 0;
7083 }
7084
7085 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7086 char *devname = tmpdev->devname;
0a6bff09 7087 dev_t rdev;
ca9de185
LM
7088 struct supertype *tst;
7089 int dfd;
7090 if (tmpdev->used > 1)
7091 continue;
7092 tst = dup_super(st);
7093 if (tst == NULL) {
676e87a8 7094 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7095 goto err_1;
7096 }
7097 tmpdev->container = 0;
7098 dfd = dev_open(devname, O_RDONLY|O_EXCL);
4389ce73 7099 if (!is_fd_valid(dfd)) {
1ade5cc1 7100 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7101 devname, strerror(errno));
7102 tmpdev->used = 2;
0a6bff09 7103 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7104 tmpdev->used = 2;
7105 } else if (must_be_container(dfd)) {
7106 struct supertype *cst;
7107 cst = super_by_fd(dfd, NULL);
7108 if (cst == NULL) {
1ade5cc1 7109 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7110 devname);
7111 tmpdev->used = 2;
7112 } else if (tst->ss != st->ss) {
1ade5cc1 7113 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7114 devname);
7115 tmpdev->used = 2;
7116 } else if (!tst->ss->load_container ||
7117 tst->ss->load_container(tst, dfd, NULL))
7118 tmpdev->used = 2;
7119 else {
7120 tmpdev->container = 1;
7121 }
7122 if (cst)
7123 cst->ss->free_super(cst);
7124 } else {
0a6bff09 7125 tmpdev->st_rdev = rdev;
ca9de185 7126 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7127 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7128 devname);
7129 tmpdev->used = 2;
7130 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7131 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7132 tst->ss->name, devname);
7133 tmpdev->used = 2;
7134 }
7135 }
4389ce73
MT
7136 close_fd(&dfd);
7137
ca9de185
LM
7138 if (tmpdev->used == 2 || tmpdev->used == 4) {
7139 /* Ignore unrecognised devices during auto-assembly */
7140 goto loop;
7141 }
7142 else {
7143 struct mdinfo info;
7144 tst->ss->getinfo_super(tst, &info, NULL);
7145
7146 if (st->minor_version == -1)
7147 st->minor_version = tst->minor_version;
7148
7149 if (memcmp(info.uuid, uuid_zero,
7150 sizeof(int[4])) == 0) {
7151 /* this is a floating spare. It cannot define
7152 * an array unless there are no more arrays of
7153 * this type to be found. It can be included
7154 * in an array of this type though.
7155 */
7156 tmpdev->used = 3;
7157 goto loop;
7158 }
7159
7160 if (st->ss != tst->ss ||
7161 st->minor_version != tst->minor_version ||
c7b8547c 7162 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7163 /* Some mismatch. If exactly one array matches this host,
7164 * we can resolve on that one.
7165 * Or, if we are auto assembling, we just ignore the second
7166 * for now.
7167 */
1ade5cc1 7168 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7169 devname);
7170 goto loop;
7171 }
7172 tmpdev->used = 1;
7173 *found = 1;
7174 dprintf("found: devname: %s\n", devname);
7175 }
7176 loop:
7177 if (tst)
7178 tst->ss->free_super(tst);
7179 }
7180 if (*found != 0) {
7181 int err;
7182 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7183 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7184 for (iter = head; iter; iter = iter->next) {
7185 dprintf("content->text_version: %s vol\n",
7186 iter->text_version);
7187 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7188 /* do not assemble arrays with unsupported
7189 configurations */
1ade5cc1 7190 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7191 iter->text_version);
7192 } else
7193 count++;
7194 }
7195 sysfs_free(head);
7196
7197 } else {
1ade5cc1 7198 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7199 err, st->sb);
7200 }
7201 } else {
1ade5cc1 7202 dprintf("no more devices to examine\n");
ca9de185
LM
7203 }
7204
7205 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7206 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7207 if (count) {
7208 if (count < tmpdev->found)
7209 count = 0;
7210 else
7211 count -= tmpdev->found;
7212 }
7213 }
7214 if (tmpdev->used == 1)
7215 tmpdev->used = 4;
7216 }
7217 err_1:
7218 if (st)
7219 st->ss->free_super(st);
7220 return count;
7221}
7222
d3c11416
AO
7223static int __count_volumes(char *hba_path, int dpa, int verbose,
7224 int cmp_hba_path)
ca9de185 7225{
72a45777 7226 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7227 int count = 0;
72a45777
PB
7228 const struct orom_entry *entry;
7229 struct devid_list *dv, *devid_list;
ca9de185 7230
d3c11416 7231 if (!hba_path)
ca9de185
LM
7232 return 0;
7233
72a45777 7234 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7235 if (strstr(idev->path, hba_path))
7236 break;
72a45777
PB
7237 }
7238
7239 if (!idev || !idev->dev_id)
ca9de185 7240 return 0;
72a45777
PB
7241
7242 entry = get_orom_entry_by_device_id(idev->dev_id);
7243
7244 if (!entry || !entry->devid_list)
7245 return 0;
7246
7247 devid_list = entry->devid_list;
7248 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7249 struct md_list *devlist;
d3c11416
AO
7250 struct sys_dev *device = NULL;
7251 char *hpath;
72a45777
PB
7252 int found = 0;
7253
d3c11416
AO
7254 if (cmp_hba_path)
7255 device = device_by_id_and_path(dv->devid, hba_path);
7256 else
7257 device = device_by_id(dv->devid);
7258
72a45777 7259 if (device)
d3c11416 7260 hpath = device->path;
72a45777
PB
7261 else
7262 return 0;
7263
d3c11416 7264 devlist = get_devices(hpath);
72a45777
PB
7265 /* if no intel devices return zero volumes */
7266 if (devlist == NULL)
7267 return 0;
7268
d3c11416
AO
7269 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7270 verbose);
7271 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7272 if (devlist == NULL)
7273 return 0;
7274 do {
7275 found = 0;
7276 count += count_volumes_list(devlist,
7277 NULL,
7278 verbose,
7279 &found);
7280 dprintf("found %d count: %d\n", found, count);
7281 } while (found);
7282
d3c11416 7283 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7284
7285 while (devlist) {
7286 struct md_list *dv = devlist;
7287 devlist = devlist->next;
7288 free(dv->devname);
7289 free(dv);
7290 }
ca9de185
LM
7291 }
7292 return count;
7293}
7294
d3c11416
AO
7295static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7296{
7297 if (!hba)
7298 return 0;
7299 if (hba->type == SYS_DEV_VMD) {
7300 struct sys_dev *dev;
7301 int count = 0;
7302
7303 for (dev = find_intel_devices(); dev; dev = dev->next) {
7304 if (dev->type == SYS_DEV_VMD)
7305 count += __count_volumes(dev->path, dpa,
7306 verbose, 1);
7307 }
7308 return count;
7309 }
7310 return __count_volumes(hba->path, dpa, verbose, 0);
7311}
7312
cd9d1ac7
DW
7313static int imsm_default_chunk(const struct imsm_orom *orom)
7314{
7315 /* up to 512 if the plaform supports it, otherwise the platform max.
7316 * 128 if no platform detected
7317 */
7318 int fs = max(7, orom ? fls(orom->sss) : 0);
7319
7320 return min(512, (1 << fs));
7321}
73408129 7322
6592ce37
DW
7323static int
7324validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7325 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7326{
660260d0
DW
7327 /* check/set platform and metadata limits/defaults */
7328 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7329 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7330 super->orom->dpa);
73408129
LM
7331 return 0;
7332 }
7333
5d500228 7334 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7335 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7336 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7337 level, raiddisks, raiddisks > 1 ? "s" : "");
7338 return 0;
7339 }
cd9d1ac7 7340
7ccc4cc4 7341 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7342 *chunk = imsm_default_chunk(super->orom);
7343
7ccc4cc4 7344 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7345 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7346 return 0;
6592ce37 7347 }
cd9d1ac7 7348
6592ce37
DW
7349 if (layout != imsm_level_to_layout(level)) {
7350 if (level == 5)
676e87a8 7351 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7352 else if (level == 10)
676e87a8 7353 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7354 else
676e87a8 7355 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7356 layout, level);
7357 return 0;
7358 }
2cc699af 7359
7ccc4cc4 7360 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7361 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7362 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7363 return 0;
7364 }
614902f6 7365
6592ce37
DW
7366 return 1;
7367}
7368
1011e834 7369/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7370 * FIX ME add ahci details
7371 */
8b353278 7372static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7373 int layout, int raiddisks, int *chunk,
af4348dd
N
7374 unsigned long long size,
7375 unsigned long long data_offset,
7376 char *dev,
2c514b71
NB
7377 unsigned long long *freesize,
7378 int verbose)
cdddbdbc 7379{
9e04ac1c 7380 dev_t rdev;
c2c087e6 7381 struct intel_super *super = st->sb;
b2916f25 7382 struct imsm_super *mpb;
c2c087e6
DW
7383 struct dl *dl;
7384 unsigned long long pos = 0;
7385 unsigned long long maxsize;
7386 struct extent *e;
7387 int i;
cdddbdbc 7388
88c32bb1
DW
7389 /* We must have the container info already read in. */
7390 if (!super)
c2c087e6
DW
7391 return 0;
7392
b2916f25
JS
7393 mpb = super->anchor;
7394
2cc699af 7395 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7396 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7397 return 0;
d54559f0 7398 }
c2c087e6
DW
7399 if (!dev) {
7400 /* General test: make sure there is space for
2da8544a
DW
7401 * 'raiddisks' device extents of size 'size' at a given
7402 * offset
c2c087e6 7403 */
e46273eb 7404 unsigned long long minsize = size;
b7528a20 7405 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7406 int dcnt = 0;
7407 if (minsize == 0)
7408 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7409 for (dl = super->disks; dl ; dl = dl->next) {
7410 int found = 0;
7411
bf5a934a 7412 pos = 0;
c2c087e6 7413 i = 0;
05501181 7414 e = get_extents(super, dl, 0);
c2c087e6
DW
7415 if (!e) continue;
7416 do {
7417 unsigned long long esize;
7418 esize = e[i].start - pos;
7419 if (esize >= minsize)
7420 found = 1;
b7528a20 7421 if (found && start_offset == MaxSector) {
2da8544a
DW
7422 start_offset = pos;
7423 break;
7424 } else if (found && pos != start_offset) {
7425 found = 0;
7426 break;
7427 }
c2c087e6
DW
7428 pos = e[i].start + e[i].size;
7429 i++;
7430 } while (e[i-1].size);
7431 if (found)
7432 dcnt++;
7433 free(e);
7434 }
7435 if (dcnt < raiddisks) {
2c514b71 7436 if (verbose)
7a862a02 7437 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7438 dcnt, raiddisks);
c2c087e6
DW
7439 return 0;
7440 }
7441 return 1;
7442 }
0dcecb2e 7443
c2c087e6 7444 /* This device must be a member of the set */
9e04ac1c 7445 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7446 return 0;
7447 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7448 if (dl->major == (int)major(rdev) &&
7449 dl->minor == (int)minor(rdev))
c2c087e6
DW
7450 break;
7451 }
7452 if (!dl) {
2c514b71 7453 if (verbose)
7a862a02 7454 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7455 return 0;
a20d2ba5
DW
7456 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7457 /* If a volume is present then the current creation attempt
7458 * cannot incorporate new spares because the orom may not
7459 * understand this configuration (all member disks must be
7460 * members of each array in the container).
7461 */
7a862a02
N
7462 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7463 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7464 return 0;
5fe62b94
WD
7465 } else if (super->orom && mpb->num_raid_devs > 0 &&
7466 mpb->num_disks != raiddisks) {
7a862a02 7467 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7468 return 0;
c2c087e6 7469 }
0dcecb2e
DW
7470
7471 /* retrieve the largest free space block */
05501181 7472 e = get_extents(super, dl, 0);
c2c087e6
DW
7473 maxsize = 0;
7474 i = 0;
0dcecb2e
DW
7475 if (e) {
7476 do {
7477 unsigned long long esize;
7478
7479 esize = e[i].start - pos;
7480 if (esize >= maxsize)
7481 maxsize = esize;
7482 pos = e[i].start + e[i].size;
7483 i++;
7484 } while (e[i-1].size);
7485 dl->e = e;
7486 dl->extent_cnt = i;
7487 } else {
7488 if (verbose)
e7b84f9d 7489 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7490 dev);
7491 return 0;
7492 }
7493 if (maxsize < size) {
7494 if (verbose)
e7b84f9d 7495 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7496 dev, maxsize, size);
7497 return 0;
7498 }
7499
7500 /* count total number of extents for merge */
7501 i = 0;
7502 for (dl = super->disks; dl; dl = dl->next)
7503 if (dl->e)
7504 i += dl->extent_cnt;
7505
7506 maxsize = merge_extents(super, i);
3baa56ab 7507
1a1ced1e
KS
7508 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7509 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7510
a7dd165b 7511 if (maxsize < size || maxsize == 0) {
b3071342
LD
7512 if (verbose) {
7513 if (maxsize == 0)
7a862a02 7514 pr_err("no free space left on device. Aborting...\n");
b3071342 7515 else
7a862a02 7516 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7517 maxsize, size);
7518 }
0dcecb2e 7519 return 0;
0dcecb2e
DW
7520 }
7521
c2c087e6
DW
7522 *freesize = maxsize;
7523
ca9de185 7524 if (super->orom) {
72a45777 7525 int count = count_volumes(super->hba,
ca9de185
LM
7526 super->orom->dpa, verbose);
7527 if (super->orom->vphba <= count) {
676e87a8 7528 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7529 super->orom->vphba);
7530 return 0;
7531 }
7532 }
c2c087e6 7533 return 1;
cdddbdbc
DW
7534}
7535
6d4d9ab2
MT
7536/**
7537 * imsm_get_free_size() - get the biggest, common free space from members.
7538 * @super: &intel_super pointer, not NULL.
7539 * @raiddisks: number of raid disks.
7540 * @size: requested size, could be 0 (means max size).
7541 * @chunk: requested chunk.
7542 * @freesize: pointer for returned size value.
7543 *
7544 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7545 *
7546 * @freesize is set to meaningful value, this can be @size, or calculated
7547 * max free size.
7548 * super->create_offset value is modified and set appropriately in
7549 * merge_extends() for further creation.
7550 */
7551static imsm_status_t imsm_get_free_size(struct intel_super *super,
7552 const int raiddisks,
7553 unsigned long long size,
7554 const int chunk,
7555 unsigned long long *freesize)
efb30e7f 7556{
efb30e7f
DW
7557 struct imsm_super *mpb = super->anchor;
7558 struct dl *dl;
7559 int i;
7560 int extent_cnt;
7561 struct extent *e;
7562 unsigned long long maxsize;
7563 unsigned long long minsize;
7564 int cnt;
7565 int used;
7566
7567 /* find the largest common start free region of the possible disks */
7568 used = 0;
7569 extent_cnt = 0;
7570 cnt = 0;
7571 for (dl = super->disks; dl; dl = dl->next) {
7572 dl->raiddisk = -1;
7573
7574 if (dl->index >= 0)
7575 used++;
7576
7577 /* don't activate new spares if we are orom constrained
7578 * and there is already a volume active in the container
7579 */
7580 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7581 continue;
7582
05501181 7583 e = get_extents(super, dl, 0);
efb30e7f
DW
7584 if (!e)
7585 continue;
7586 for (i = 1; e[i-1].size; i++)
7587 ;
7588 dl->e = e;
7589 dl->extent_cnt = i;
7590 extent_cnt += i;
7591 cnt++;
7592 }
7593
7594 maxsize = merge_extents(super, extent_cnt);
7595 minsize = size;
7596 if (size == 0)
612e59d8
CA
7597 /* chunk is in K */
7598 minsize = chunk * 2;
efb30e7f 7599
6d4d9ab2
MT
7600 if (cnt < raiddisks || (super->orom && used && used != raiddisks) ||
7601 maxsize < minsize || maxsize == 0) {
e7b84f9d 7602 pr_err("not enough devices with space to create array.\n");
6d4d9ab2 7603 return IMSM_STATUS_ERROR;
efb30e7f
DW
7604 }
7605
7606 if (size == 0) {
7607 size = maxsize;
7608 if (chunk) {
612e59d8
CA
7609 size /= 2 * chunk;
7610 size *= 2 * chunk;
efb30e7f 7611 }
f878b242
LM
7612 maxsize = size;
7613 }
1a1ced1e
KS
7614 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7615 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7616 *freesize = size;
7617
13bcac90
AK
7618 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7619
6d4d9ab2 7620 return IMSM_STATUS_OK;
efb30e7f
DW
7621}
7622
6d4d9ab2
MT
7623/**
7624 * autolayout_imsm() - automatically layout a new volume.
7625 * @super: &intel_super pointer, not NULL.
7626 * @raiddisks: number of raid disks.
7627 * @size: requested size, could be 0 (means max size).
7628 * @chunk: requested chunk.
7629 * @freesize: pointer for returned size value.
7630 *
7631 * We are being asked to automatically layout a new volume based on the current
7632 * contents of the container. If the parameters can be satisfied autolayout_imsm
7633 * will record the disks, start offset, and will return size of the volume to
7634 * be created. See imsm_get_free_size() for details.
7635 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7636 * If first volume exists, slots are set consistently to it.
7637 *
7638 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7639 *
7640 * Disks are marked for creation via dl->raiddisk.
7641 */
7642static imsm_status_t autolayout_imsm(struct intel_super *super,
7643 const int raiddisks,
7644 unsigned long long size, const int chunk,
7645 unsigned long long *freesize)
13bcac90 7646{
6d4d9ab2
MT
7647 int curr_slot = 0;
7648 struct dl *disk;
7649 int vol_cnt = super->anchor->num_raid_devs;
7650 imsm_status_t rv;
13bcac90 7651
6d4d9ab2
MT
7652 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize);
7653 if (rv != IMSM_STATUS_OK)
7654 return IMSM_STATUS_ERROR;
7655
7656 for (disk = super->disks; disk; disk = disk->next) {
7657 if (!disk->e)
7658 continue;
7659
7660 if (curr_slot == raiddisks)
7661 break;
7662
7663 if (vol_cnt == 0) {
7664 disk->raiddisk = curr_slot;
7665 } else {
7666 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7667
7668 if (_slot == -1) {
7669 pr_err("Disk %s is not used in first volume, aborting\n",
7670 disk->devname);
7671 return IMSM_STATUS_ERROR;
7672 }
7673 disk->raiddisk = _slot;
7674 }
7675 curr_slot++;
13bcac90
AK
7676 }
7677
6d4d9ab2 7678 return IMSM_STATUS_OK;
13bcac90
AK
7679}
7680
bf5a934a 7681static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7682 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7683 unsigned long long data_offset,
bf5a934a 7684 char *dev, unsigned long long *freesize,
5308f117 7685 int consistency_policy, int verbose)
bf5a934a
DW
7686{
7687 int fd, cfd;
7688 struct mdinfo *sra;
20cbe8d2 7689 int is_member = 0;
bf5a934a 7690
d54559f0
LM
7691 /* load capability
7692 * if given unused devices create a container
bf5a934a
DW
7693 * if given given devices in a container create a member volume
7694 */
1f5d54a0 7695 if (level == LEVEL_CONTAINER)
bf5a934a 7696 /* Must be a fresh device to add to a container */
1f5d54a0
MT
7697 return validate_geometry_imsm_container(st, level, raiddisks,
7698 data_offset, dev,
7699 freesize, verbose);
9587c373 7700
06a6101c
BK
7701 /*
7702 * Size is given in sectors.
7703 */
7704 if (size && (size < 2048)) {
22dc741f 7705 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7706 /* Depends on algorithm in Create.c :
7707 * if container was given (dev == NULL) return -1,
7708 * if block device was given ( dev != NULL) return 0.
7709 */
7710 return dev ? -1 : 0;
7711 }
7712
8592f29d 7713 if (!dev) {
6d4d9ab2
MT
7714 struct intel_super *super = st->sb;
7715
7716 /*
7717 * Autolayout mode, st->sb and freesize must be set.
7718 */
7719 if (!super || !freesize) {
7720 pr_vrb("freesize and superblock must be set for autolayout, aborting\n");
7721 return 1;
7722 }
7723
7724 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7725 raiddisks, chunk, size,
7726 verbose))
7727 return 0;
7728
7729 if (super->orom) {
7730 imsm_status_t rv;
7731 int count = count_volumes(super->hba, super->orom->dpa,
7732 verbose);
7733 if (super->orom->vphba <= count) {
7734 pr_vrb("platform does not support more than %d raid volumes.\n",
7735 super->orom->vphba);
e91a3bad 7736 return 0;
ca9de185 7737 }
6d4d9ab2
MT
7738
7739 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7740 freesize);
7741 if (rv != IMSM_STATUS_OK)
7742 return 0;
8592f29d
N
7743 }
7744 return 1;
7745 }
bf5a934a
DW
7746 if (st->sb) {
7747 /* creating in a given container */
7748 return validate_geometry_imsm_volume(st, level, layout,
7749 raiddisks, chunk, size,
af4348dd 7750 data_offset,
bf5a934a
DW
7751 dev, freesize, verbose);
7752 }
7753
bf5a934a
DW
7754 /* This device needs to be a device in an 'imsm' container */
7755 fd = open(dev, O_RDONLY|O_EXCL, 0);
4389ce73
MT
7756
7757 if (is_fd_valid(fd)) {
7758 pr_vrb("Cannot create this array on device %s\n", dev);
bf5a934a
DW
7759 close(fd);
7760 return 0;
7761 }
4389ce73
MT
7762 if (errno == EBUSY)
7763 fd = open(dev, O_RDONLY, 0);
7764
7765 if (!is_fd_valid(fd)) {
7766 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
bf5a934a
DW
7767 return 0;
7768 }
4389ce73 7769
bf5a934a
DW
7770 /* Well, it is in use by someone, maybe an 'imsm' container. */
7771 cfd = open_container(fd);
4389ce73
MT
7772 close_fd(&fd);
7773
7774 if (!is_fd_valid(cfd)) {
7775 pr_vrb("Cannot use %s: It is busy\n", dev);
bf5a934a
DW
7776 return 0;
7777 }
4dd2df09 7778 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7779 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7780 strcmp(sra->text_version, "imsm") == 0)
7781 is_member = 1;
7782 sysfs_free(sra);
7783 if (is_member) {
bf5a934a
DW
7784 /* This is a member of a imsm container. Load the container
7785 * and try to create a volume
7786 */
7787 struct intel_super *super;
7788
ec50f7b6 7789 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7790 st->sb = super;
4dd2df09 7791 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7792 close(cfd);
7793 return validate_geometry_imsm_volume(st, level, layout,
7794 raiddisks, chunk,
af4348dd 7795 size, data_offset, dev,
ecbd9e81
N
7796 freesize, 1)
7797 ? 1 : -1;
bf5a934a 7798 }
20cbe8d2 7799 }
bf5a934a 7800
20cbe8d2 7801 if (verbose)
e7b84f9d 7802 pr_err("failed container membership check\n");
20cbe8d2
AW
7803
7804 close(cfd);
7805 return 0;
bf5a934a 7806}
0bd16cf2 7807
30f58b22 7808static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7809{
7810 struct intel_super *super = st->sb;
7811
30f58b22
DW
7812 if (level && *level == UnSet)
7813 *level = LEVEL_CONTAINER;
7814
7815 if (level && layout && *layout == UnSet)
7816 *layout = imsm_level_to_layout(*level);
0bd16cf2 7817
cd9d1ac7
DW
7818 if (chunk && (*chunk == UnSet || *chunk == 0))
7819 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7820}
7821
33414a01
DW
7822static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7823
3364781b 7824static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7825{
3364781b 7826 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7827 __u8 i;
7828 struct intel_dev **dp;
7829 struct intel_super *super = st->sb;
3364781b 7830 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7831 struct imsm_super *mpb = super->anchor;
7832
3364781b 7833 if (mpb->num_raid_devs == 0)
33414a01 7834 return 2;
33414a01
DW
7835
7836 /* block deletions that would change the uuid of active subarrays
7837 *
7838 * FIXME when immutable ids are available, but note that we'll
7839 * also need to fixup the invalidated/active subarray indexes in
7840 * mdstat
7841 */
7842 for (i = 0; i < mpb->num_raid_devs; i++) {
7843 char subarray[4];
7844
7845 if (i < current_vol)
7846 continue;
7847 sprintf(subarray, "%u", i);
4dd2df09 7848 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7849 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7850 current_vol, i);
33414a01
DW
7851
7852 return 2;
7853 }
7854 }
7855
7856 if (st->update_tail) {
503975b9 7857 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7858
33414a01
DW
7859 u->type = update_kill_array;
7860 u->dev_idx = current_vol;
7861 append_metadata_update(st, u, sizeof(*u));
7862
7863 return 0;
7864 }
7865
7866 for (dp = &super->devlist; *dp;)
7867 if ((*dp)->index == current_vol) {
7868 *dp = (*dp)->next;
7869 } else {
7870 handle_missing(super, (*dp)->dev);
7871 if ((*dp)->index > current_vol)
7872 (*dp)->index--;
7873 dp = &(*dp)->next;
7874 }
7875
7876 /* no more raid devices, all active components are now spares,
7877 * but of course failed are still failed
7878 */
7879 if (--mpb->num_raid_devs == 0) {
7880 struct dl *d;
7881
7882 for (d = super->disks; d; d = d->next)
a8619d23
AK
7883 if (d->index > -2)
7884 mark_spare(d);
33414a01
DW
7885 }
7886
7887 super->updates_pending++;
7888
7889 return 0;
7890}
aa534678 7891
19ad203e
JR
7892static int get_rwh_policy_from_update(char *update)
7893{
7894 if (strcmp(update, "ppl") == 0)
7895 return RWH_MULTIPLE_DISTRIBUTED;
7896 else if (strcmp(update, "no-ppl") == 0)
7897 return RWH_MULTIPLE_OFF;
7898 else if (strcmp(update, "bitmap") == 0)
7899 return RWH_BITMAP;
7900 else if (strcmp(update, "no-bitmap") == 0)
7901 return RWH_OFF;
7902 return -1;
7903}
7904
a951a4f7 7905static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7906 char *update, struct mddev_ident *ident)
aa534678
DW
7907{
7908 /* update the subarray currently referenced by ->current_vol */
7909 struct intel_super *super = st->sb;
7910 struct imsm_super *mpb = super->anchor;
7911
aa534678
DW
7912 if (strcmp(update, "name") == 0) {
7913 char *name = ident->name;
a951a4f7
N
7914 char *ep;
7915 int vol;
aa534678 7916
4dd2df09 7917 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7918 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7919 return 2;
7920 }
7921
7922 if (!check_name(super, name, 0))
7923 return 2;
7924
a951a4f7
N
7925 vol = strtoul(subarray, &ep, 10);
7926 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7927 return 2;
7928
aa534678 7929 if (st->update_tail) {
503975b9 7930 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7931
aa534678 7932 u->type = update_rename_array;
a951a4f7 7933 u->dev_idx = vol;
618f4e6d
XN
7934 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7935 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7936 append_metadata_update(st, u, sizeof(*u));
7937 } else {
7938 struct imsm_dev *dev;
ebad3af2 7939 int i, namelen;
aa534678 7940
a951a4f7 7941 dev = get_imsm_dev(super, vol);
ebad3af2
JS
7942 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7943 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7944 memcpy(dev->volume, name, namelen);
aa534678
DW
7945 for (i = 0; i < mpb->num_raid_devs; i++) {
7946 dev = get_imsm_dev(super, i);
7947 handle_missing(super, dev);
7948 }
7949 super->updates_pending++;
7950 }
19ad203e 7951 } else if (get_rwh_policy_from_update(update) != -1) {
e6e9dd3f
AP
7952 int new_policy;
7953 char *ep;
7954 int vol = strtoul(subarray, &ep, 10);
7955
7956 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7957 return 2;
7958
19ad203e 7959 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
7960
7961 if (st->update_tail) {
7962 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7963
7964 u->type = update_rwh_policy;
7965 u->dev_idx = vol;
7966 u->new_policy = new_policy;
7967 append_metadata_update(st, u, sizeof(*u));
7968 } else {
7969 struct imsm_dev *dev;
7970
7971 dev = get_imsm_dev(super, vol);
7972 dev->rwh_policy = new_policy;
7973 super->updates_pending++;
7974 }
19ad203e
JR
7975 if (new_policy == RWH_BITMAP)
7976 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
7977 } else
7978 return 2;
7979
7980 return 0;
7981}
bf5a934a 7982
195d1d76 7983static bool is_gen_migration(struct imsm_dev *dev)
28bce06f 7984{
195d1d76
PP
7985 if (dev && dev->vol.migr_state &&
7986 migr_type(dev) == MIGR_GEN_MIGR)
7987 return true;
28bce06f 7988
195d1d76 7989 return false;
28bce06f
AK
7990}
7991
1e5c6983
DW
7992static int is_rebuilding(struct imsm_dev *dev)
7993{
7994 struct imsm_map *migr_map;
7995
7996 if (!dev->vol.migr_state)
7997 return 0;
7998
7999 if (migr_type(dev) != MIGR_REBUILD)
8000 return 0;
8001
238c0a71 8002 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
8003
8004 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8005 return 1;
8006 else
8007 return 0;
8008}
8009
6ce1fbf1
AK
8010static int is_initializing(struct imsm_dev *dev)
8011{
8012 struct imsm_map *migr_map;
8013
8014 if (!dev->vol.migr_state)
8015 return 0;
8016
8017 if (migr_type(dev) != MIGR_INIT)
8018 return 0;
8019
238c0a71 8020 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
8021
8022 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8023 return 1;
8024
8025 return 0;
6ce1fbf1
AK
8026}
8027
c47b0ff6
AK
8028static void update_recovery_start(struct intel_super *super,
8029 struct imsm_dev *dev,
8030 struct mdinfo *array)
1e5c6983
DW
8031{
8032 struct mdinfo *rebuild = NULL;
8033 struct mdinfo *d;
8034 __u32 units;
8035
8036 if (!is_rebuilding(dev))
8037 return;
8038
8039 /* Find the rebuild target, but punt on the dual rebuild case */
8040 for (d = array->devs; d; d = d->next)
8041 if (d->recovery_start == 0) {
8042 if (rebuild)
8043 return;
8044 rebuild = d;
8045 }
8046
4363fd80
DW
8047 if (!rebuild) {
8048 /* (?) none of the disks are marked with
8049 * IMSM_ORD_REBUILD, so assume they are missing and the
8050 * disk_ord_tbl was not correctly updated
8051 */
1ade5cc1 8052 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
8053 return;
8054 }
8055
4036e7ee 8056 units = vol_curr_migr_unit(dev);
c47b0ff6 8057 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
8058}
8059
276d77db 8060static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 8061
00bbdbda 8062static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 8063{
4f5bc454
DW
8064 /* Given a container loaded by load_super_imsm_all,
8065 * extract information about all the arrays into
8066 * an mdinfo tree.
00bbdbda 8067 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
8068 *
8069 * For each imsm_dev create an mdinfo, fill it in,
8070 * then look for matching devices in super->disks
8071 * and create appropriate device mdinfo.
8072 */
8073 struct intel_super *super = st->sb;
949c47a0 8074 struct imsm_super *mpb = super->anchor;
4f5bc454 8075 struct mdinfo *rest = NULL;
00bbdbda 8076 unsigned int i;
81219e70 8077 int sb_errors = 0;
abef11a3
AK
8078 struct dl *d;
8079 int spare_disks = 0;
b6180160 8080 int current_vol = super->current_vol;
cdddbdbc 8081
19482bcc
AK
8082 /* do not assemble arrays when not all attributes are supported */
8083 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 8084 sb_errors = 1;
7a862a02 8085 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
8086 }
8087
abef11a3
AK
8088 /* count spare devices, not used in maps
8089 */
8090 for (d = super->disks; d; d = d->next)
8091 if (d->index == -1)
8092 spare_disks++;
8093
4f5bc454 8094 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
8095 struct imsm_dev *dev;
8096 struct imsm_map *map;
86e3692b 8097 struct imsm_map *map2;
4f5bc454 8098 struct mdinfo *this;
a6482415 8099 int slot;
a6482415 8100 int chunk;
00bbdbda 8101 char *ep;
8b9cd157 8102 int level;
00bbdbda
N
8103
8104 if (subarray &&
8105 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8106 continue;
8107
8108 dev = get_imsm_dev(super, i);
238c0a71
AK
8109 map = get_imsm_map(dev, MAP_0);
8110 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8111 level = get_imsm_raid_level(map);
4f5bc454 8112
1ce0101c
DW
8113 /* do not publish arrays that are in the middle of an
8114 * unsupported migration
8115 */
8116 if (dev->vol.migr_state &&
28bce06f 8117 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8118 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8119 dev->volume);
8120 continue;
8121 }
2db86302
LM
8122 /* do not publish arrays that are not support by controller's
8123 * OROM/EFI
8124 */
1ce0101c 8125
503975b9 8126 this = xmalloc(sizeof(*this));
4f5bc454 8127
301406c9 8128 super->current_vol = i;
a5d85af7 8129 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8130 this->next = rest;
a6482415 8131 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8132 /* mdadm does not support all metadata features- set the bit in all arrays state */
8133 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8134 level, /* RAID level */
8135 imsm_level_to_layout(level),
81219e70 8136 map->num_members, /* raid disks */
fcc2c9da 8137 &chunk, imsm_dev_size(dev),
81219e70 8138 1 /* verbose */)) {
7a862a02 8139 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8140 dev->volume);
8141 this->array.state |=
8142 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8143 (1<<MD_SB_BLOCK_VOLUME);
8144 }
81219e70
LM
8145
8146 /* if array has bad blocks, set suitable bit in all arrays state */
8147 if (sb_errors)
8148 this->array.state |=
8149 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8150 (1<<MD_SB_BLOCK_VOLUME);
8151
4f5bc454 8152 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8153 unsigned long long recovery_start;
4f5bc454
DW
8154 struct mdinfo *info_d;
8155 struct dl *d;
8156 int idx;
9a1608e5 8157 int skip;
7eef0453 8158 __u32 ord;
8b9cd157 8159 int missing = 0;
4f5bc454 8160
9a1608e5 8161 skip = 0;
238c0a71
AK
8162 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8163 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8164 for (d = super->disks; d ; d = d->next)
8165 if (d->index == idx)
0fbd635c 8166 break;
4f5bc454 8167
1e5c6983 8168 recovery_start = MaxSector;
4f5bc454 8169 if (d == NULL)
9a1608e5 8170 skip = 1;
25ed7e59 8171 if (d && is_failed(&d->disk))
9a1608e5 8172 skip = 1;
8b9cd157 8173 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8174 recovery_start = 0;
1e93d0d1
BK
8175 if (!(ord & IMSM_ORD_REBUILD))
8176 this->array.working_disks++;
1011e834 8177 /*
9a1608e5 8178 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8179 * reset resync start to avoid a dirty-degraded
8180 * situation when performing the intial sync
9a1608e5 8181 */
8b9cd157
MK
8182 if (skip)
8183 missing++;
8184
8185 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8186 if ((!able_to_resync(level, missing) ||
8187 recovery_start == 0))
8188 this->resync_start = MaxSector;
8b9cd157
MK
8189 }
8190
9a1608e5
DW
8191 if (skip)
8192 continue;
4f5bc454 8193
503975b9 8194 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8195 info_d->next = this->devs;
8196 this->devs = info_d;
8197
4f5bc454
DW
8198 info_d->disk.number = d->index;
8199 info_d->disk.major = d->major;
8200 info_d->disk.minor = d->minor;
8201 info_d->disk.raid_disk = slot;
1e5c6983 8202 info_d->recovery_start = recovery_start;
86e3692b
AK
8203 if (map2) {
8204 if (slot < map2->num_members)
8205 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8206 else
8207 this->array.spare_disks++;
86e3692b
AK
8208 } else {
8209 if (slot < map->num_members)
8210 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8211 else
8212 this->array.spare_disks++;
86e3692b 8213 }
4f5bc454
DW
8214
8215 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8216 info_d->data_offset = pba_of_lba0(map);
44490938 8217 info_d->component_size = calc_component_size(map, dev);
06fb291a
PB
8218
8219 if (map->raid_level == 5) {
2432ce9b
AP
8220 info_d->ppl_sector = this->ppl_sector;
8221 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8222 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8223 recovery_start == 0)
8224 this->resync_start = 0;
06fb291a 8225 }
b12796be 8226
5e46202e 8227 info_d->bb.supported = 1;
b12796be
TM
8228 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8229 info_d->data_offset,
8230 info_d->component_size,
8231 &info_d->bb);
4f5bc454 8232 }
1e5c6983 8233 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8234 update_recovery_start(super, dev, this);
abef11a3 8235 this->array.spare_disks += spare_disks;
276d77db
AK
8236
8237 /* check for reshape */
8238 if (this->reshape_active == 1)
8239 recover_backup_imsm(st, this);
9a1608e5 8240 rest = this;
4f5bc454
DW
8241 }
8242
b6180160 8243 super->current_vol = current_vol;
4f5bc454 8244 return rest;
cdddbdbc
DW
8245}
8246
3b451610
AK
8247static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8248 int failed, int look_in_map)
c2a1e7da 8249{
3b451610
AK
8250 struct imsm_map *map;
8251
8252 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8253
8254 if (!failed)
1011e834 8255 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8256 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8257
8258 switch (get_imsm_raid_level(map)) {
8259 case 0:
8260 return IMSM_T_STATE_FAILED;
8261 break;
8262 case 1:
8263 if (failed < map->num_members)
8264 return IMSM_T_STATE_DEGRADED;
8265 else
8266 return IMSM_T_STATE_FAILED;
8267 break;
8268 case 10:
8269 {
8270 /**
c92a2527
DW
8271 * check to see if any mirrors have failed, otherwise we
8272 * are degraded. Even numbered slots are mirrored on
8273 * slot+1
c2a1e7da 8274 */
c2a1e7da 8275 int i;
d9b420a5
N
8276 /* gcc -Os complains that this is unused */
8277 int insync = insync;
c2a1e7da
DW
8278
8279 for (i = 0; i < map->num_members; i++) {
238c0a71 8280 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8281 int idx = ord_to_idx(ord);
8282 struct imsm_disk *disk;
c2a1e7da 8283
c92a2527 8284 /* reset the potential in-sync count on even-numbered
1011e834 8285 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8286 */
8287 if ((i & 1) == 0)
8288 insync = 2;
c2a1e7da 8289
c92a2527 8290 disk = get_imsm_disk(super, idx);
25ed7e59 8291 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8292 insync--;
c2a1e7da 8293
c92a2527
DW
8294 /* no in-sync disks left in this mirror the
8295 * array has failed
8296 */
8297 if (insync == 0)
8298 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8299 }
8300
8301 return IMSM_T_STATE_DEGRADED;
8302 }
8303 case 5:
8304 if (failed < 2)
8305 return IMSM_T_STATE_DEGRADED;
8306 else
8307 return IMSM_T_STATE_FAILED;
8308 break;
8309 default:
8310 break;
8311 }
8312
8313 return map->map_state;
8314}
8315
3b451610
AK
8316static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8317 int look_in_map)
c2a1e7da
DW
8318{
8319 int i;
8320 int failed = 0;
8321 struct imsm_disk *disk;
d5985138
AK
8322 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8323 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8324 struct imsm_map *map_for_loop;
0556e1a2
DW
8325 __u32 ord;
8326 int idx;
d5985138 8327 int idx_1;
c2a1e7da 8328
0556e1a2
DW
8329 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8330 * disks that are being rebuilt. New failures are recorded to
8331 * map[0]. So we look through all the disks we started with and
8332 * see if any failures are still present, or if any new ones
8333 * have arrived
0556e1a2 8334 */
d5985138
AK
8335 map_for_loop = map;
8336 if (prev && (map->num_members < prev->num_members))
8337 map_for_loop = prev;
68fe4598
LD
8338
8339 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8340 idx_1 = -255;
238c0a71
AK
8341 /* when MAP_X is passed both maps failures are counted
8342 */
d5985138 8343 if (prev &&
089f9d79
JS
8344 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8345 i < prev->num_members) {
d5985138
AK
8346 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8347 idx_1 = ord_to_idx(ord);
c2a1e7da 8348
d5985138
AK
8349 disk = get_imsm_disk(super, idx_1);
8350 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8351 failed++;
8352 }
089f9d79
JS
8353 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8354 i < map->num_members) {
d5985138
AK
8355 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8356 idx = ord_to_idx(ord);
8357
8358 if (idx != idx_1) {
8359 disk = get_imsm_disk(super, idx);
8360 if (!disk || is_failed(disk) ||
8361 ord & IMSM_ORD_REBUILD)
8362 failed++;
8363 }
8364 }
c2a1e7da
DW
8365 }
8366
8367 return failed;
845dea95
NB
8368}
8369
97b4d0e9 8370static int imsm_open_new(struct supertype *c, struct active_array *a,
60815698 8371 int inst)
97b4d0e9
DW
8372{
8373 struct intel_super *super = c->sb;
8374 struct imsm_super *mpb = super->anchor;
bbab0940 8375 struct imsm_update_prealloc_bb_mem u;
9587c373 8376
60815698
MG
8377 if (inst >= mpb->num_raid_devs) {
8378 pr_err("subarry index %d, out of range\n", inst);
97b4d0e9
DW
8379 return -ENODEV;
8380 }
8381
60815698
MG
8382 dprintf("imsm: open_new %d\n", inst);
8383 a->info.container_member = inst;
bbab0940
TM
8384
8385 u.type = update_prealloc_badblocks_mem;
8386 imsm_update_metadata_locally(c, &u, sizeof(u));
8387
97b4d0e9
DW
8388 return 0;
8389}
8390
0c046afd
DW
8391static int is_resyncing(struct imsm_dev *dev)
8392{
8393 struct imsm_map *migr_map;
8394
8395 if (!dev->vol.migr_state)
8396 return 0;
8397
1484e727
DW
8398 if (migr_type(dev) == MIGR_INIT ||
8399 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8400 return 1;
8401
4c9bc37b
AK
8402 if (migr_type(dev) == MIGR_GEN_MIGR)
8403 return 0;
8404
238c0a71 8405 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8406
089f9d79
JS
8407 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8408 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8409 return 1;
8410 else
8411 return 0;
8412}
8413
0556e1a2 8414/* return true if we recorded new information */
4c9e8c1e
TM
8415static int mark_failure(struct intel_super *super,
8416 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8417{
0556e1a2
DW
8418 __u32 ord;
8419 int slot;
8420 struct imsm_map *map;
86c54047
DW
8421 char buf[MAX_RAID_SERIAL_LEN+3];
8422 unsigned int len, shift = 0;
0556e1a2
DW
8423
8424 /* new failures are always set in map[0] */
238c0a71 8425 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8426
8427 slot = get_imsm_disk_slot(map, idx);
8428 if (slot < 0)
8429 return 0;
8430
8431 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8432 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8433 return 0;
8434
7d0c5e24
LD
8435 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8436 buf[MAX_RAID_SERIAL_LEN] = '\000';
8437 strcat(buf, ":0");
86c54047
DW
8438 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8439 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8440 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8441
f2f27e63 8442 disk->status |= FAILED_DISK;
0556e1a2 8443 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8444 /* mark failures in second map if second map exists and this disk
8445 * in this slot.
8446 * This is valid for migration, initialization and rebuild
8447 */
8448 if (dev->vol.migr_state) {
238c0a71 8449 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8450 int slot2 = get_imsm_disk_slot(map2, idx);
8451
089f9d79 8452 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8453 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8454 idx | IMSM_ORD_REBUILD);
8455 }
d7a1fda2
MT
8456 if (map->failed_disk_num == 0xff ||
8457 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8458 map->failed_disk_num = slot;
4c9e8c1e
TM
8459
8460 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8461
0556e1a2
DW
8462 return 1;
8463}
8464
4c9e8c1e
TM
8465static void mark_missing(struct intel_super *super,
8466 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8467{
4c9e8c1e 8468 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8469
8470 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8471 return;
8472
47ee5a45
DW
8473 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8474 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8475}
8476
33414a01
DW
8477static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8478{
33414a01 8479 struct dl *dl;
33414a01
DW
8480
8481 if (!super->missing)
8482 return;
33414a01 8483
79b68f1b
PC
8484 /* When orom adds replacement for missing disk it does
8485 * not remove entry of missing disk, but just updates map with
8486 * new added disk. So it is not enough just to test if there is
8487 * any missing disk, we have to look if there are any failed disks
8488 * in map to stop migration */
8489
33414a01 8490 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8491 /* end process for initialization and rebuild only
8492 */
195d1d76 8493 if (is_gen_migration(dev) == false) {
fb12a745 8494 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8495
fb12a745
TM
8496 if (failed) {
8497 __u8 map_state;
8498 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8499 struct imsm_map *map1;
8500 int i, ord, ord_map1;
8501 int rebuilt = 1;
3d59f0c0 8502
fb12a745
TM
8503 for (i = 0; i < map->num_members; i++) {
8504 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8505 if (!(ord & IMSM_ORD_REBUILD))
8506 continue;
8507
8508 map1 = get_imsm_map(dev, MAP_1);
8509 if (!map1)
8510 continue;
8511
8512 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8513 if (ord_map1 & IMSM_ORD_REBUILD)
8514 rebuilt = 0;
8515 }
8516
8517 if (rebuilt) {
8518 map_state = imsm_check_degraded(super, dev,
8519 failed, MAP_0);
8520 end_migration(dev, super, map_state);
8521 }
8522 }
3d59f0c0 8523 }
33414a01 8524 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8525 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8526 super->updates_pending++;
8527}
8528
f3871fdc
AK
8529static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8530 long long new_size)
70bdf0dc 8531{
70bdf0dc 8532 unsigned long long array_blocks;
9529d343
MD
8533 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8534 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8535
8536 if (used_disks == 0) {
8537 /* when problems occures
8538 * return current array_blocks value
8539 */
fcc2c9da 8540 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8541
8542 return array_blocks;
8543 }
8544
8545 /* set array size in metadata
8546 */
9529d343 8547 if (new_size <= 0)
f3871fdc
AK
8548 /* OLCE size change is caused by added disks
8549 */
44490938 8550 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8551 else
f3871fdc
AK
8552 /* Online Volume Size Change
8553 * Using available free space
8554 */
8555 array_blocks = new_size;
70bdf0dc 8556
b53bfba6 8557 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8558 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8559
8560 return array_blocks;
8561}
8562
28bce06f
AK
8563static void imsm_set_disk(struct active_array *a, int n, int state);
8564
0e2d1a4e
AK
8565static void imsm_progress_container_reshape(struct intel_super *super)
8566{
8567 /* if no device has a migr_state, but some device has a
8568 * different number of members than the previous device, start
8569 * changing the number of devices in this device to match
8570 * previous.
8571 */
8572 struct imsm_super *mpb = super->anchor;
8573 int prev_disks = -1;
8574 int i;
1dfaa380 8575 int copy_map_size;
0e2d1a4e
AK
8576
8577 for (i = 0; i < mpb->num_raid_devs; i++) {
8578 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8579 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8580 struct imsm_map *map2;
8581 int prev_num_members;
0e2d1a4e
AK
8582
8583 if (dev->vol.migr_state)
8584 return;
8585
8586 if (prev_disks == -1)
8587 prev_disks = map->num_members;
8588 if (prev_disks == map->num_members)
8589 continue;
8590
8591 /* OK, this array needs to enter reshape mode.
8592 * i.e it needs a migr_state
8593 */
8594
1dfaa380 8595 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8596 prev_num_members = map->num_members;
8597 map->num_members = prev_disks;
8598 dev->vol.migr_state = 1;
4036e7ee 8599 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8600 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8601 for (i = prev_num_members;
8602 i < map->num_members; i++)
8603 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8604 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8605 /* Copy the current map */
1dfaa380 8606 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8607 map2->num_members = prev_num_members;
8608
f3871fdc 8609 imsm_set_array_size(dev, -1);
51d83f5d 8610 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8611 super->updates_pending++;
8612 }
8613}
8614
aad6f216 8615/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8616 * states are handled in imsm_set_disk() with one exception, when a
8617 * resync is stopped due to a new failure this routine will set the
8618 * 'degraded' state for the array.
8619 */
01f157d7 8620static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8621{
8622 int inst = a->info.container_member;
8623 struct intel_super *super = a->container->sb;
949c47a0 8624 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8625 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8626 int failed = imsm_count_failed(super, dev, MAP_0);
8627 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8628 __u32 blocks_per_unit;
a862209d 8629
1af97990
AK
8630 if (dev->vol.migr_state &&
8631 dev->vol.migr_type == MIGR_GEN_MIGR) {
8632 /* array state change is blocked due to reshape action
aad6f216
N
8633 * We might need to
8634 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8635 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8636 * - update vol_curr_migr_unit
1af97990 8637 */
aad6f216 8638 if (a->curr_action == reshape) {
4036e7ee 8639 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8640 goto mark_checkpoint;
aad6f216
N
8641 } else {
8642 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8643 /* for some reason we aborted the reshape.
b66e591b
AK
8644 *
8645 * disable automatic metadata rollback
8646 * user action is required to recover process
aad6f216 8647 */
b66e591b 8648 if (0) {
238c0a71
AK
8649 struct imsm_map *map2 =
8650 get_imsm_map(dev, MAP_1);
8651 dev->vol.migr_state = 0;
8652 set_migr_type(dev, 0);
4036e7ee 8653 set_vol_curr_migr_unit(dev, 0);
238c0a71
AK
8654 memcpy(map, map2,
8655 sizeof_imsm_map(map2));
8656 super->updates_pending++;
b66e591b 8657 }
aad6f216
N
8658 }
8659 if (a->last_checkpoint >= a->info.component_size) {
8660 unsigned long long array_blocks;
8661 int used_disks;
e154ced3 8662 struct mdinfo *mdi;
aad6f216 8663
9529d343 8664 used_disks = imsm_num_data_members(map);
d55adef9
AK
8665 if (used_disks > 0) {
8666 array_blocks =
44490938 8667 per_dev_array_size(map) *
d55adef9 8668 used_disks;
b53bfba6
TM
8669 array_blocks =
8670 round_size_to_mb(array_blocks,
8671 used_disks);
d55adef9
AK
8672 a->info.custom_array_size = array_blocks;
8673 /* encourage manager to update array
8674 * size
8675 */
e154ced3 8676
d55adef9 8677 a->check_reshape = 1;
633b5610 8678 }
e154ced3
AK
8679 /* finalize online capacity expansion/reshape */
8680 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8681 imsm_set_disk(a,
8682 mdi->disk.raid_disk,
8683 mdi->curr_state);
8684
0e2d1a4e 8685 imsm_progress_container_reshape(super);
e154ced3 8686 }
aad6f216 8687 }
1af97990
AK
8688 }
8689
47ee5a45 8690 /* before we activate this array handle any missing disks */
33414a01
DW
8691 if (consistent == 2)
8692 handle_missing(super, dev);
1e5c6983 8693
0c046afd 8694 if (consistent == 2 &&
b7941fd6 8695 (!is_resync_complete(&a->info) ||
0c046afd
DW
8696 map_state != IMSM_T_STATE_NORMAL ||
8697 dev->vol.migr_state))
01f157d7 8698 consistent = 0;
272906ef 8699
b7941fd6 8700 if (is_resync_complete(&a->info)) {
0c046afd 8701 /* complete intialization / resync,
0556e1a2
DW
8702 * recovery and interrupted recovery is completed in
8703 * ->set_disk
0c046afd
DW
8704 */
8705 if (is_resyncing(dev)) {
8706 dprintf("imsm: mark resync done\n");
809da78e 8707 end_migration(dev, super, map_state);
115c3803 8708 super->updates_pending++;
484240d8 8709 a->last_checkpoint = 0;
115c3803 8710 }
b9172665
AK
8711 } else if ((!is_resyncing(dev) && !failed) &&
8712 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8713 /* mark the start of the init process if nothing is failed */
b7941fd6 8714 dprintf("imsm: mark resync start\n");
1484e727 8715 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8716 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8717 else
8e59f3d8 8718 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8719 super->updates_pending++;
115c3803 8720 }
a862209d 8721
633b5610 8722mark_checkpoint:
5b83bacf
AK
8723 /* skip checkpointing for general migration,
8724 * it is controlled in mdadm
8725 */
8726 if (is_gen_migration(dev))
8727 goto skip_mark_checkpoint;
8728
4036e7ee
MT
8729 /* check if we can update vol_curr_migr_unit from resync_start,
8730 * recovery_start
8731 */
c47b0ff6 8732 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8733 if (blocks_per_unit) {
4036e7ee
MT
8734 set_vol_curr_migr_unit(dev,
8735 a->last_checkpoint / blocks_per_unit);
8736 dprintf("imsm: mark checkpoint (%llu)\n",
8737 vol_curr_migr_unit(dev));
8738 super->updates_pending++;
1e5c6983 8739 }
f8f603f1 8740
5b83bacf 8741skip_mark_checkpoint:
3393c6af 8742 /* mark dirty / clean */
2432ce9b
AP
8743 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8744 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8745 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8746 if (consistent) {
8747 dev->vol.dirty = RAIDVOL_CLEAN;
8748 } else {
8749 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8750 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8751 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8752 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8753 }
a862209d
DW
8754 super->updates_pending++;
8755 }
28bce06f 8756
01f157d7 8757 return consistent;
a862209d
DW
8758}
8759
6f50473f
TM
8760static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8761{
8762 int inst = a->info.container_member;
8763 struct intel_super *super = a->container->sb;
8764 struct imsm_dev *dev = get_imsm_dev(super, inst);
8765 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8766
8767 if (slot > map->num_members) {
8768 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8769 slot, map->num_members - 1);
8770 return -1;
8771 }
8772
8773 if (slot < 0)
8774 return -1;
8775
8776 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8777}
8778
8d45d196 8779static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8780{
8d45d196
DW
8781 int inst = a->info.container_member;
8782 struct intel_super *super = a->container->sb;
949c47a0 8783 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8784 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8785 struct imsm_disk *disk;
7ce05701
LD
8786 struct mdinfo *mdi;
8787 int recovery_not_finished = 0;
0c046afd 8788 int failed;
6f50473f 8789 int ord;
0c046afd 8790 __u8 map_state;
fb12a745
TM
8791 int rebuild_done = 0;
8792 int i;
8d45d196 8793
fb12a745 8794 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8795 if (ord < 0)
8d45d196
DW
8796 return;
8797
4e6e574a 8798 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8799 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8800
5802a811 8801 /* check for new failures */
ae7d61e3 8802 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8803 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8804 super->updates_pending++;
8d45d196 8805 }
47ee5a45 8806
19859edc 8807 /* check if in_sync */
0556e1a2 8808 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8809 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8810
8811 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8812 rebuild_done = 1;
19859edc
DW
8813 super->updates_pending++;
8814 }
8d45d196 8815
3b451610
AK
8816 failed = imsm_count_failed(super, dev, MAP_0);
8817 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8818
0c046afd 8819 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8820 dprintf("imsm: Detected transition to state ");
8821 switch (map_state) {
8822 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8823 dprintf("normal: ");
8824 if (is_rebuilding(dev)) {
1ade5cc1 8825 dprintf_cont("while rebuilding");
7ce05701
LD
8826 /* check if recovery is really finished */
8827 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8828 if (mdi->recovery_start != MaxSector) {
8829 recovery_not_finished = 1;
8830 break;
8831 }
8832 if (recovery_not_finished) {
1ade5cc1
N
8833 dprintf_cont("\n");
8834 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8835 if (a->last_checkpoint < mdi->recovery_start) {
8836 a->last_checkpoint = mdi->recovery_start;
8837 super->updates_pending++;
8838 }
8839 break;
8840 }
94002678 8841 end_migration(dev, super, map_state);
94002678
AK
8842 map->failed_disk_num = ~0;
8843 super->updates_pending++;
8844 a->last_checkpoint = 0;
8845 break;
8846 }
8847 if (is_gen_migration(dev)) {
1ade5cc1 8848 dprintf_cont("while general migration");
bf2f0071 8849 if (a->last_checkpoint >= a->info.component_size)
809da78e 8850 end_migration(dev, super, map_state);
94002678
AK
8851 else
8852 map->map_state = map_state;
28bce06f 8853 map->failed_disk_num = ~0;
94002678 8854 super->updates_pending++;
bf2f0071 8855 break;
94002678
AK
8856 }
8857 break;
8858 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8859 dprintf_cont("degraded: ");
089f9d79 8860 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8861 dprintf_cont("mark degraded");
94002678
AK
8862 map->map_state = map_state;
8863 super->updates_pending++;
8864 a->last_checkpoint = 0;
8865 break;
8866 }
8867 if (is_rebuilding(dev)) {
d7a1fda2 8868 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8869 if (state & DS_FAULTY) {
8870 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8871 if (n == map->failed_disk_num) {
8872 dprintf_cont("end migration");
8873 end_migration(dev, super, map_state);
a4e96fd8 8874 a->last_checkpoint = 0;
d7a1fda2 8875 } else {
a4e96fd8 8876 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8877 map->map_state = map_state;
8878 }
94002678 8879 super->updates_pending++;
fb12a745
TM
8880 }
8881
a4e96fd8
MT
8882 if (!rebuild_done)
8883 break;
8884
fb12a745
TM
8885 /* check if recovery is really finished */
8886 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8887 if (mdi->recovery_start != MaxSector) {
8888 recovery_not_finished = 1;
8889 break;
8890 }
8891 if (recovery_not_finished) {
8892 dprintf_cont("\n");
a4e96fd8 8893 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8894 if (a->last_checkpoint < mdi->recovery_start) {
8895 a->last_checkpoint =
8896 mdi->recovery_start;
8897 super->updates_pending++;
8898 }
8899 break;
94002678 8900 }
fb12a745
TM
8901
8902 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8903 end_migration(dev, super, map_state);
8904 a->last_checkpoint = 0;
8905 super->updates_pending++;
fb12a745
TM
8906
8907 for (i = 0; i < map->num_members; i++) {
8908 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8909
8910 if (idx & IMSM_ORD_REBUILD)
8911 map->failed_disk_num = i;
8912 }
8913 super->updates_pending++;
94002678
AK
8914 break;
8915 }
8916 if (is_gen_migration(dev)) {
1ade5cc1 8917 dprintf_cont("while general migration");
bf2f0071 8918 if (a->last_checkpoint >= a->info.component_size)
809da78e 8919 end_migration(dev, super, map_state);
94002678
AK
8920 else {
8921 map->map_state = map_state;
3b451610 8922 manage_second_map(super, dev);
94002678
AK
8923 }
8924 super->updates_pending++;
bf2f0071 8925 break;
28bce06f 8926 }
6ce1fbf1 8927 if (is_initializing(dev)) {
1ade5cc1 8928 dprintf_cont("while initialization.");
6ce1fbf1
AK
8929 map->map_state = map_state;
8930 super->updates_pending++;
8931 break;
8932 }
94002678
AK
8933 break;
8934 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8935 dprintf_cont("failed: ");
94002678 8936 if (is_gen_migration(dev)) {
1ade5cc1 8937 dprintf_cont("while general migration");
94002678
AK
8938 map->map_state = map_state;
8939 super->updates_pending++;
8940 break;
8941 }
8942 if (map->map_state != map_state) {
1ade5cc1 8943 dprintf_cont("mark failed");
94002678
AK
8944 end_migration(dev, super, map_state);
8945 super->updates_pending++;
8946 a->last_checkpoint = 0;
8947 break;
8948 }
8949 break;
8950 default:
1ade5cc1 8951 dprintf_cont("state %i\n", map_state);
5802a811 8952 }
1ade5cc1 8953 dprintf_cont("\n");
845dea95
NB
8954}
8955
f796af5d 8956static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8957{
f796af5d 8958 void *buf = mpb;
c2a1e7da
DW
8959 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8960 unsigned long long dsize;
8961 unsigned long long sectors;
f36a9ecd 8962 unsigned int sector_size;
c2a1e7da 8963
aec01630
JS
8964 if (!get_dev_sector_size(fd, NULL, &sector_size))
8965 return 1;
c2a1e7da
DW
8966 get_dev_size(fd, NULL, &dsize);
8967
f36a9ecd 8968 if (mpb_size > sector_size) {
272f648f 8969 /* -1 to account for anchor */
f36a9ecd 8970 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8971
272f648f 8972 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8973 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8974 SEEK_SET) < 0)
272f648f 8975 return 1;
c2a1e7da 8976
f36a9ecd
PB
8977 if ((unsigned long long)write(fd, buf + sector_size,
8978 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8979 return 1;
8980 }
c2a1e7da 8981
272f648f 8982 /* first block is stored on second to last sector of the disk */
f36a9ecd 8983 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8984 return 1;
8985
466070ad 8986 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8987 return 1;
8988
c2a1e7da
DW
8989 return 0;
8990}
8991
2e735d19 8992static void imsm_sync_metadata(struct supertype *container)
845dea95 8993{
2e735d19 8994 struct intel_super *super = container->sb;
c2a1e7da 8995
1a64be56 8996 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8997 if (!super->updates_pending)
8998 return;
8999
36988a3d 9000 write_super_imsm(container, 0);
c2a1e7da
DW
9001
9002 super->updates_pending = 0;
845dea95
NB
9003}
9004
272906ef
DW
9005static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9006{
9007 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9008 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
9009 struct dl *dl;
9010
9011 for (dl = super->disks; dl; dl = dl->next)
9012 if (dl->index == i)
9013 break;
9014
25ed7e59 9015 if (dl && is_failed(&dl->disk))
272906ef
DW
9016 dl = NULL;
9017
9018 if (dl)
1ade5cc1 9019 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
9020
9021 return dl;
9022}
9023
a20d2ba5 9024static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
9025 struct active_array *a, int activate_new,
9026 struct mdinfo *additional_test_list)
272906ef
DW
9027{
9028 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9029 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
9030 struct imsm_super *mpb = super->anchor;
9031 struct imsm_map *map;
272906ef
DW
9032 unsigned long long pos;
9033 struct mdinfo *d;
9034 struct extent *ex;
a20d2ba5 9035 int i, j;
272906ef 9036 int found;
569cc43f
DW
9037 __u32 array_start = 0;
9038 __u32 array_end = 0;
272906ef 9039 struct dl *dl;
6c932028 9040 struct mdinfo *test_list;
272906ef
DW
9041
9042 for (dl = super->disks; dl; dl = dl->next) {
9043 /* If in this array, skip */
9044 for (d = a->info.devs ; d ; d = d->next)
4389ce73 9045 if (is_fd_valid(d->state_fd) &&
e553d2a4 9046 d->disk.major == dl->major &&
272906ef 9047 d->disk.minor == dl->minor) {
8ba77d32
AK
9048 dprintf("%x:%x already in array\n",
9049 dl->major, dl->minor);
272906ef
DW
9050 break;
9051 }
9052 if (d)
9053 continue;
6c932028
AK
9054 test_list = additional_test_list;
9055 while (test_list) {
9056 if (test_list->disk.major == dl->major &&
9057 test_list->disk.minor == dl->minor) {
8ba77d32
AK
9058 dprintf("%x:%x already in additional test list\n",
9059 dl->major, dl->minor);
9060 break;
9061 }
6c932028 9062 test_list = test_list->next;
8ba77d32 9063 }
6c932028 9064 if (test_list)
8ba77d32 9065 continue;
272906ef 9066
e553d2a4 9067 /* skip in use or failed drives */
25ed7e59 9068 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
9069 dl->index == -2) {
9070 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 9071 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
9072 continue;
9073 }
9074
a20d2ba5
DW
9075 /* skip pure spares when we are looking for partially
9076 * assimilated drives
9077 */
9078 if (dl->index == -1 && !activate_new)
9079 continue;
9080
f2cc4f7d
AO
9081 if (!drive_validate_sector_size(super, dl))
9082 continue;
9083
272906ef 9084 /* Does this unused device have the requisite free space?
a20d2ba5 9085 * It needs to be able to cover all member volumes
272906ef 9086 */
05501181 9087 ex = get_extents(super, dl, 1);
272906ef
DW
9088 if (!ex) {
9089 dprintf("cannot get extents\n");
9090 continue;
9091 }
a20d2ba5
DW
9092 for (i = 0; i < mpb->num_raid_devs; i++) {
9093 dev = get_imsm_dev(super, i);
238c0a71 9094 map = get_imsm_map(dev, MAP_0);
272906ef 9095
a20d2ba5
DW
9096 /* check if this disk is already a member of
9097 * this array
272906ef 9098 */
620b1713 9099 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
9100 continue;
9101
9102 found = 0;
9103 j = 0;
9104 pos = 0;
5551b113 9105 array_start = pba_of_lba0(map);
329c8278 9106 array_end = array_start +
44490938 9107 per_dev_array_size(map) - 1;
a20d2ba5
DW
9108
9109 do {
9110 /* check that we can start at pba_of_lba0 with
44490938 9111 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9112 */
329c8278 9113 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9114 found = 1;
9115 break;
9116 }
9117 pos = ex[j].start + ex[j].size;
9118 j++;
9119 } while (ex[j-1].size);
9120
9121 if (!found)
272906ef 9122 break;
a20d2ba5 9123 }
272906ef
DW
9124
9125 free(ex);
a20d2ba5 9126 if (i < mpb->num_raid_devs) {
329c8278
DW
9127 dprintf("%x:%x does not have %u to %u available\n",
9128 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9129 /* No room */
9130 continue;
a20d2ba5
DW
9131 }
9132 return dl;
272906ef
DW
9133 }
9134
9135 return dl;
9136}
9137
95d07a2c
LM
9138static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9139{
9140 struct imsm_dev *dev2;
9141 struct imsm_map *map;
9142 struct dl *idisk;
9143 int slot;
9144 int idx;
9145 __u8 state;
9146
9147 dev2 = get_imsm_dev(cont->sb, dev_idx);
756a15f3
MG
9148
9149 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9150 if (state == IMSM_T_STATE_FAILED) {
9151 map = get_imsm_map(dev2, MAP_0);
9152 for (slot = 0; slot < map->num_members; slot++) {
9153 /*
9154 * Check if failed disks are deleted from intel
9155 * disk list or are marked to be deleted
9156 */
9157 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9158 idisk = get_imsm_dl_disk(cont->sb, idx);
9159 /*
9160 * Do not rebuild the array if failed disks
9161 * from failed sub-array are not removed from
9162 * container.
9163 */
9164 if (idisk &&
9165 is_failed(&idisk->disk) &&
9166 (idisk->action != DISK_REMOVE))
9167 return 0;
95d07a2c
LM
9168 }
9169 }
9170 return 1;
9171}
9172
88758e9d
DW
9173static struct mdinfo *imsm_activate_spare(struct active_array *a,
9174 struct metadata_update **updates)
9175{
9176 /**
d23fe947
DW
9177 * Find a device with unused free space and use it to replace a
9178 * failed/vacant region in an array. We replace failed regions one a
9179 * array at a time. The result is that a new spare disk will be added
9180 * to the first failed array and after the monitor has finished
9181 * propagating failures the remainder will be consumed.
88758e9d 9182 *
d23fe947
DW
9183 * FIXME add a capability for mdmon to request spares from another
9184 * container.
88758e9d
DW
9185 */
9186
9187 struct intel_super *super = a->container->sb;
88758e9d 9188 int inst = a->info.container_member;
949c47a0 9189 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9190 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9191 int failed = a->info.array.raid_disks;
9192 struct mdinfo *rv = NULL;
9193 struct mdinfo *d;
9194 struct mdinfo *di;
9195 struct metadata_update *mu;
9196 struct dl *dl;
9197 struct imsm_update_activate_spare *u;
9198 int num_spares = 0;
9199 int i;
95d07a2c 9200 int allowed;
88758e9d 9201
4389ce73
MT
9202 for (d = a->info.devs ; d; d = d->next) {
9203 if (!is_fd_valid(d->state_fd))
9204 continue;
9205
9206 if (d->curr_state & DS_FAULTY)
88758e9d
DW
9207 /* wait for Removal to happen */
9208 return NULL;
4389ce73
MT
9209
9210 failed--;
88758e9d
DW
9211 }
9212
9213 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9214 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9215
e2962bfc
AK
9216 if (imsm_reshape_blocks_arrays_changes(super))
9217 return NULL;
1af97990 9218
fc8ca064
AK
9219 /* Cannot activate another spare if rebuild is in progress already
9220 */
9221 if (is_rebuilding(dev)) {
7a862a02 9222 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9223 return NULL;
9224 }
9225
89c67882
AK
9226 if (a->info.array.level == 4)
9227 /* No repair for takeovered array
9228 * imsm doesn't support raid4
9229 */
9230 return NULL;
9231
3b451610
AK
9232 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9233 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9234 return NULL;
9235
83ca7d45
AP
9236 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9237 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9238 return NULL;
9239 }
9240
95d07a2c
LM
9241 /*
9242 * If there are any failed disks check state of the other volume.
9243 * Block rebuild if the another one is failed until failed disks
9244 * are removed from container.
9245 */
9246 if (failed) {
7a862a02 9247 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9248 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9249 /* check if states of the other volumes allow for rebuild */
9250 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9251 if (i != inst) {
9252 allowed = imsm_rebuild_allowed(a->container,
9253 i, failed);
9254 if (!allowed)
9255 return NULL;
9256 }
9257 }
9258 }
9259
88758e9d 9260 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9261 for (i = 0; i < a->info.array.raid_disks; i++) {
9262 for (d = a->info.devs ; d ; d = d->next)
9263 if (d->disk.raid_disk == i)
9264 break;
9265 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4389ce73 9266 if (d && is_fd_valid(d->state_fd))
88758e9d
DW
9267 continue;
9268
272906ef 9269 /*
a20d2ba5
DW
9270 * OK, this device needs recovery. Try to re-add the
9271 * previous occupant of this slot, if this fails see if
9272 * we can continue the assimilation of a spare that was
9273 * partially assimilated, finally try to activate a new
9274 * spare.
272906ef
DW
9275 */
9276 dl = imsm_readd(super, i, a);
9277 if (!dl)
b303fe21 9278 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9279 if (!dl)
b303fe21 9280 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9281 if (!dl)
9282 continue;
1011e834 9283
272906ef 9284 /* found a usable disk with enough space */
503975b9 9285 di = xcalloc(1, sizeof(*di));
272906ef
DW
9286
9287 /* dl->index will be -1 in the case we are activating a
9288 * pristine spare. imsm_process_update() will create a
9289 * new index in this case. Once a disk is found to be
9290 * failed in all member arrays it is kicked from the
9291 * metadata
9292 */
9293 di->disk.number = dl->index;
d23fe947 9294
272906ef
DW
9295 /* (ab)use di->devs to store a pointer to the device
9296 * we chose
9297 */
9298 di->devs = (struct mdinfo *) dl;
9299
9300 di->disk.raid_disk = i;
9301 di->disk.major = dl->major;
9302 di->disk.minor = dl->minor;
9303 di->disk.state = 0;
d23534e4 9304 di->recovery_start = 0;
5551b113 9305 di->data_offset = pba_of_lba0(map);
272906ef
DW
9306 di->component_size = a->info.component_size;
9307 di->container_member = inst;
5e46202e 9308 di->bb.supported = 1;
2c8890e9 9309 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9310 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9311 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9312 }
148acb7b 9313 super->random = random32();
272906ef
DW
9314 di->next = rv;
9315 rv = di;
9316 num_spares++;
9317 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9318 i, di->data_offset);
88758e9d
DW
9319 }
9320
9321 if (!rv)
9322 /* No spares found */
9323 return rv;
9324 /* Now 'rv' has a list of devices to return.
9325 * Create a metadata_update record to update the
9326 * disk_ord_tbl for the array
9327 */
503975b9 9328 mu = xmalloc(sizeof(*mu));
1011e834 9329 mu->buf = xcalloc(num_spares,
503975b9 9330 sizeof(struct imsm_update_activate_spare));
88758e9d 9331 mu->space = NULL;
cb23f1f4 9332 mu->space_list = NULL;
88758e9d
DW
9333 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9334 mu->next = *updates;
9335 u = (struct imsm_update_activate_spare *) mu->buf;
9336
9337 for (di = rv ; di ; di = di->next) {
9338 u->type = update_activate_spare;
d23fe947
DW
9339 u->dl = (struct dl *) di->devs;
9340 di->devs = NULL;
88758e9d
DW
9341 u->slot = di->disk.raid_disk;
9342 u->array = inst;
9343 u->next = u + 1;
9344 u++;
9345 }
9346 (u-1)->next = NULL;
9347 *updates = mu;
9348
9349 return rv;
9350}
9351
54c2c1ea 9352static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9353{
54c2c1ea 9354 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9355 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9356 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9357 struct disk_info *inf = get_disk_info(u);
9358 struct imsm_disk *disk;
8273f55e
DW
9359 int i;
9360 int j;
8273f55e 9361
54c2c1ea 9362 for (i = 0; i < map->num_members; i++) {
238c0a71 9363 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9364 for (j = 0; j < new_map->num_members; j++)
9365 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9366 return 1;
9367 }
9368
9369 return 0;
9370}
9371
1a64be56
LM
9372static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9373{
594dc1b8
JS
9374 struct dl *dl;
9375
1a64be56 9376 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9377 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9378 return dl;
9379 return NULL;
9380}
9381
9382static int remove_disk_super(struct intel_super *super, int major, int minor)
9383{
594dc1b8 9384 struct dl *prev;
1a64be56
LM
9385 struct dl *dl;
9386
9387 prev = NULL;
9388 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9389 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9390 /* remove */
9391 if (prev)
9392 prev->next = dl->next;
9393 else
9394 super->disks = dl->next;
9395 dl->next = NULL;
3a85bf0e 9396 __free_imsm_disk(dl, 1);
1ade5cc1 9397 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9398 break;
9399 }
9400 prev = dl;
9401 }
9402 return 0;
9403}
9404
f21e18ca 9405static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9406
1a64be56
LM
9407static int add_remove_disk_update(struct intel_super *super)
9408{
9409 int check_degraded = 0;
594dc1b8
JS
9410 struct dl *disk;
9411
1a64be56
LM
9412 /* add/remove some spares to/from the metadata/contrainer */
9413 while (super->disk_mgmt_list) {
9414 struct dl *disk_cfg;
9415
9416 disk_cfg = super->disk_mgmt_list;
9417 super->disk_mgmt_list = disk_cfg->next;
9418 disk_cfg->next = NULL;
9419
9420 if (disk_cfg->action == DISK_ADD) {
9421 disk_cfg->next = super->disks;
9422 super->disks = disk_cfg;
9423 check_degraded = 1;
1ade5cc1
N
9424 dprintf("added %x:%x\n",
9425 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9426 } else if (disk_cfg->action == DISK_REMOVE) {
9427 dprintf("Disk remove action processed: %x.%x\n",
9428 disk_cfg->major, disk_cfg->minor);
9429 disk = get_disk_super(super,
9430 disk_cfg->major,
9431 disk_cfg->minor);
9432 if (disk) {
9433 /* store action status */
9434 disk->action = DISK_REMOVE;
9435 /* remove spare disks only */
9436 if (disk->index == -1) {
9437 remove_disk_super(super,
9438 disk_cfg->major,
9439 disk_cfg->minor);
91c97c54
MT
9440 } else {
9441 disk_cfg->fd = disk->fd;
9442 disk->fd = -1;
1a64be56
LM
9443 }
9444 }
9445 /* release allocate disk structure */
3a85bf0e 9446 __free_imsm_disk(disk_cfg, 1);
1a64be56
LM
9447 }
9448 }
9449 return check_degraded;
9450}
9451
a29911da
PC
9452static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9453 struct intel_super *super,
9454 void ***space_list)
9455{
9456 struct intel_dev *id;
9457 void **tofree = NULL;
9458 int ret_val = 0;
9459
1ade5cc1 9460 dprintf("(enter)\n");
089f9d79 9461 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9462 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9463 return ret_val;
9464 }
089f9d79 9465 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9466 dprintf("imsm: Error: Memory is not allocated\n");
9467 return ret_val;
9468 }
9469
9470 for (id = super->devlist ; id; id = id->next) {
9471 if (id->index == (unsigned)u->subdev) {
9472 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9473 struct imsm_map *map;
9474 struct imsm_dev *new_dev =
9475 (struct imsm_dev *)*space_list;
238c0a71 9476 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9477 int to_state;
9478 struct dl *new_disk;
9479
9480 if (new_dev == NULL)
9481 return ret_val;
9482 *space_list = **space_list;
9483 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9484 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9485 if (migr_map) {
9486 dprintf("imsm: Error: migration in progress");
9487 return ret_val;
9488 }
9489
9490 to_state = map->map_state;
9491 if ((u->new_level == 5) && (map->raid_level == 0)) {
9492 map->num_members++;
9493 /* this should not happen */
9494 if (u->new_disks[0] < 0) {
9495 map->failed_disk_num =
9496 map->num_members - 1;
9497 to_state = IMSM_T_STATE_DEGRADED;
9498 } else
9499 to_state = IMSM_T_STATE_NORMAL;
9500 }
8e59f3d8 9501 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9502 if (u->new_level > -1)
9503 map->raid_level = u->new_level;
238c0a71 9504 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9505 if ((u->new_level == 5) &&
9506 (migr_map->raid_level == 0)) {
9507 int ord = map->num_members - 1;
9508 migr_map->num_members--;
9509 if (u->new_disks[0] < 0)
9510 ord |= IMSM_ORD_REBUILD;
9511 set_imsm_ord_tbl_ent(map,
9512 map->num_members - 1,
9513 ord);
9514 }
9515 id->dev = new_dev;
9516 tofree = (void **)dev;
9517
4bba0439
PC
9518 /* update chunk size
9519 */
06fb291a 9520 if (u->new_chunksize > 0) {
9529d343
MD
9521 struct imsm_map *dest_map =
9522 get_imsm_map(dev, MAP_0);
06fb291a 9523 int used_disks =
9529d343 9524 imsm_num_data_members(dest_map);
06fb291a
PB
9525
9526 if (used_disks == 0)
9527 return ret_val;
9528
4bba0439
PC
9529 map->blocks_per_strip =
9530 __cpu_to_le16(u->new_chunksize * 2);
1c275381 9531 update_num_data_stripes(map, imsm_dev_size(dev));
06fb291a 9532 }
4bba0439 9533
44490938
MD
9534 /* ensure blocks_per_member has valid value
9535 */
9536 set_blocks_per_member(map,
9537 per_dev_array_size(map) +
9538 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9539
a29911da
PC
9540 /* add disk
9541 */
089f9d79
JS
9542 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9543 migr_map->raid_level == map->raid_level)
a29911da
PC
9544 goto skip_disk_add;
9545
9546 if (u->new_disks[0] >= 0) {
9547 /* use passes spare
9548 */
9549 new_disk = get_disk_super(super,
9550 major(u->new_disks[0]),
9551 minor(u->new_disks[0]));
7a862a02 9552 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9553 major(u->new_disks[0]),
9554 minor(u->new_disks[0]),
9555 new_disk, new_disk->index);
9556 if (new_disk == NULL)
9557 goto error_disk_add;
9558
9559 new_disk->index = map->num_members - 1;
9560 /* slot to fill in autolayout
9561 */
9562 new_disk->raiddisk = new_disk->index;
9563 new_disk->disk.status |= CONFIGURED_DISK;
9564 new_disk->disk.status &= ~SPARE_DISK;
9565 } else
9566 goto error_disk_add;
9567
9568skip_disk_add:
9569 *tofree = *space_list;
9570 /* calculate new size
9571 */
f3871fdc 9572 imsm_set_array_size(new_dev, -1);
a29911da
PC
9573
9574 ret_val = 1;
9575 }
9576 }
9577
9578 if (tofree)
9579 *space_list = tofree;
9580 return ret_val;
9581
9582error_disk_add:
9583 dprintf("Error: imsm: Cannot find disk.\n");
9584 return ret_val;
9585}
9586
f3871fdc
AK
9587static int apply_size_change_update(struct imsm_update_size_change *u,
9588 struct intel_super *super)
9589{
9590 struct intel_dev *id;
9591 int ret_val = 0;
9592
1ade5cc1 9593 dprintf("(enter)\n");
089f9d79 9594 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9595 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9596 return ret_val;
9597 }
9598
9599 for (id = super->devlist ; id; id = id->next) {
9600 if (id->index == (unsigned)u->subdev) {
9601 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9602 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9603 int used_disks = imsm_num_data_members(map);
f3871fdc 9604 unsigned long long blocks_per_member;
44490938
MD
9605 unsigned long long new_size_per_disk;
9606
9607 if (used_disks == 0)
9608 return 0;
f3871fdc
AK
9609
9610 /* calculate new size
9611 */
44490938
MD
9612 new_size_per_disk = u->new_size / used_disks;
9613 blocks_per_member = new_size_per_disk +
9614 NUM_BLOCKS_DIRTY_STRIPE_REGION;
f3871fdc 9615
1c275381
MT
9616 imsm_set_array_size(dev, u->new_size);
9617 set_blocks_per_member(map, blocks_per_member);
9618 update_num_data_stripes(map, u->new_size);
f3871fdc
AK
9619 ret_val = 1;
9620 break;
9621 }
9622 }
9623
9624 return ret_val;
9625}
9626
69d40de4
JR
9627static int prepare_spare_to_activate(struct supertype *st,
9628 struct imsm_update_activate_spare *u)
9629{
9630 struct intel_super *super = st->sb;
9631 int prev_current_vol = super->current_vol;
9632 struct active_array *a;
9633 int ret = 1;
9634
9635 for (a = st->arrays; a; a = a->next)
9636 /*
9637 * Additional initialization (adding bitmap header, filling
9638 * the bitmap area with '1's to force initial rebuild for a whole
9639 * data-area) is required when adding the spare to the volume
9640 * with write-intent bitmap.
9641 */
9642 if (a->info.container_member == u->array &&
9643 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9644 struct dl *dl;
9645
9646 for (dl = super->disks; dl; dl = dl->next)
9647 if (dl == u->dl)
9648 break;
9649 if (!dl)
9650 break;
9651
9652 super->current_vol = u->array;
9653 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9654 ret = 0;
9655 super->current_vol = prev_current_vol;
9656 }
9657 return ret;
9658}
9659
061d7da3 9660static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9661 struct intel_super *super,
061d7da3
LO
9662 struct active_array *active_array)
9663{
9664 struct imsm_super *mpb = super->anchor;
9665 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9666 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9667 struct imsm_map *migr_map;
9668 struct active_array *a;
9669 struct imsm_disk *disk;
9670 __u8 to_state;
9671 struct dl *dl;
9672 unsigned int found;
9673 int failed;
5961eeec 9674 int victim;
061d7da3 9675 int i;
5961eeec 9676 int second_map_created = 0;
061d7da3 9677
5961eeec 9678 for (; u; u = u->next) {
238c0a71 9679 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9680
5961eeec 9681 if (victim < 0)
9682 return 0;
061d7da3 9683
5961eeec 9684 for (dl = super->disks; dl; dl = dl->next)
9685 if (dl == u->dl)
9686 break;
061d7da3 9687
5961eeec 9688 if (!dl) {
7a862a02 9689 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9690 u->dl->index);
9691 return 0;
9692 }
061d7da3 9693
5961eeec 9694 /* count failures (excluding rebuilds and the victim)
9695 * to determine map[0] state
9696 */
9697 failed = 0;
9698 for (i = 0; i < map->num_members; i++) {
9699 if (i == u->slot)
9700 continue;
9701 disk = get_imsm_disk(super,
238c0a71 9702 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9703 if (!disk || is_failed(disk))
9704 failed++;
9705 }
061d7da3 9706
5961eeec 9707 /* adding a pristine spare, assign a new index */
9708 if (dl->index < 0) {
9709 dl->index = super->anchor->num_disks;
9710 super->anchor->num_disks++;
9711 }
9712 disk = &dl->disk;
9713 disk->status |= CONFIGURED_DISK;
9714 disk->status &= ~SPARE_DISK;
9715
9716 /* mark rebuild */
238c0a71 9717 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9718 if (!second_map_created) {
9719 second_map_created = 1;
9720 map->map_state = IMSM_T_STATE_DEGRADED;
9721 migrate(dev, super, to_state, MIGR_REBUILD);
9722 } else
9723 map->map_state = to_state;
238c0a71 9724 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9725 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9726 set_imsm_ord_tbl_ent(migr_map, u->slot,
9727 dl->index | IMSM_ORD_REBUILD);
9728
9729 /* update the family_num to mark a new container
9730 * generation, being careful to record the existing
9731 * family_num in orig_family_num to clean up after
9732 * earlier mdadm versions that neglected to set it.
9733 */
9734 if (mpb->orig_family_num == 0)
9735 mpb->orig_family_num = mpb->family_num;
9736 mpb->family_num += super->random;
9737
9738 /* count arrays using the victim in the metadata */
9739 found = 0;
9740 for (a = active_array; a ; a = a->next) {
76c152ca 9741 int dev_idx = a->info.container_member;
061d7da3 9742
76c152ca 9743 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
5961eeec 9744 found++;
9745 }
061d7da3 9746
5961eeec 9747 /* delete the victim if it is no longer being
9748 * utilized anywhere
061d7da3 9749 */
5961eeec 9750 if (!found) {
9751 struct dl **dlp;
061d7da3 9752
5961eeec 9753 /* We know that 'manager' isn't touching anything,
9754 * so it is safe to delete
9755 */
9756 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9757 if ((*dlp)->index == victim)
9758 break;
5961eeec 9759
9760 /* victim may be on the missing list */
9761 if (!*dlp)
9762 for (dlp = &super->missing; *dlp;
9763 dlp = &(*dlp)->next)
9764 if ((*dlp)->index == victim)
9765 break;
9766 imsm_delete(super, dlp, victim);
9767 }
061d7da3
LO
9768 }
9769
9770 return 1;
9771}
a29911da 9772
2e5dc010
N
9773static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9774 struct intel_super *super,
9775 void ***space_list)
9776{
9777 struct dl *new_disk;
9778 struct intel_dev *id;
9779 int i;
9780 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9781 int disk_count = u->old_raid_disks;
2e5dc010
N
9782 void **tofree = NULL;
9783 int devices_to_reshape = 1;
9784 struct imsm_super *mpb = super->anchor;
9785 int ret_val = 0;
d098291a 9786 unsigned int dev_id;
2e5dc010 9787
1ade5cc1 9788 dprintf("(enter)\n");
2e5dc010
N
9789
9790 /* enable spares to use in array */
9791 for (i = 0; i < delta_disks; i++) {
9792 new_disk = get_disk_super(super,
9793 major(u->new_disks[i]),
9794 minor(u->new_disks[i]));
7a862a02 9795 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9796 major(u->new_disks[i]), minor(u->new_disks[i]),
9797 new_disk, new_disk->index);
089f9d79
JS
9798 if (new_disk == NULL ||
9799 (new_disk->index >= 0 &&
9800 new_disk->index < u->old_raid_disks))
2e5dc010 9801 goto update_reshape_exit;
ee4beede 9802 new_disk->index = disk_count++;
2e5dc010
N
9803 /* slot to fill in autolayout
9804 */
9805 new_disk->raiddisk = new_disk->index;
9806 new_disk->disk.status |=
9807 CONFIGURED_DISK;
9808 new_disk->disk.status &= ~SPARE_DISK;
9809 }
9810
ed7333bd
AK
9811 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9812 mpb->num_raid_devs);
2e5dc010
N
9813 /* manage changes in volume
9814 */
d098291a 9815 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9816 void **sp = *space_list;
9817 struct imsm_dev *newdev;
9818 struct imsm_map *newmap, *oldmap;
9819
d098291a
AK
9820 for (id = super->devlist ; id; id = id->next) {
9821 if (id->index == dev_id)
9822 break;
9823 }
9824 if (id == NULL)
9825 break;
2e5dc010
N
9826 if (!sp)
9827 continue;
9828 *space_list = *sp;
9829 newdev = (void*)sp;
9830 /* Copy the dev, but not (all of) the map */
9831 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9832 oldmap = get_imsm_map(id->dev, MAP_0);
9833 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9834 /* Copy the current map */
9835 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9836 /* update one device only
9837 */
9838 if (devices_to_reshape) {
ed7333bd
AK
9839 dprintf("imsm: modifying subdev: %i\n",
9840 id->index);
2e5dc010
N
9841 devices_to_reshape--;
9842 newdev->vol.migr_state = 1;
4036e7ee 9843 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9844 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9845 newmap->num_members = u->new_raid_disks;
9846 for (i = 0; i < delta_disks; i++) {
9847 set_imsm_ord_tbl_ent(newmap,
9848 u->old_raid_disks + i,
9849 u->old_raid_disks + i);
9850 }
9851 /* New map is correct, now need to save old map
9852 */
238c0a71 9853 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9854 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9855
f3871fdc 9856 imsm_set_array_size(newdev, -1);
2e5dc010
N
9857 }
9858
9859 sp = (void **)id->dev;
9860 id->dev = newdev;
9861 *sp = tofree;
9862 tofree = sp;
8e59f3d8
AK
9863
9864 /* Clear migration record */
9865 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9866 }
819bc634
AK
9867 if (tofree)
9868 *space_list = tofree;
2e5dc010
N
9869 ret_val = 1;
9870
9871update_reshape_exit:
9872
9873 return ret_val;
9874}
9875
bb025c2f 9876static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9877 struct intel_super *super,
9878 void ***space_list)
bb025c2f
KW
9879{
9880 struct imsm_dev *dev = NULL;
8ca6df95
KW
9881 struct intel_dev *dv;
9882 struct imsm_dev *dev_new;
bb025c2f
KW
9883 struct imsm_map *map;
9884 struct dl *dm, *du;
8ca6df95 9885 int i;
bb025c2f
KW
9886
9887 for (dv = super->devlist; dv; dv = dv->next)
9888 if (dv->index == (unsigned int)u->subarray) {
9889 dev = dv->dev;
9890 break;
9891 }
9892
9893 if (dev == NULL)
9894 return 0;
9895
238c0a71 9896 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9897
9898 if (u->direction == R10_TO_R0) {
43d5ec18 9899 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9900 if (imsm_count_failed(super, dev, MAP_0) !=
9901 (map->num_members / 2))
43d5ec18
KW
9902 return 0;
9903
bb025c2f
KW
9904 /* iterate through devices to mark removed disks as spare */
9905 for (dm = super->disks; dm; dm = dm->next) {
9906 if (dm->disk.status & FAILED_DISK) {
9907 int idx = dm->index;
9908 /* update indexes on the disk list */
9909/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9910 the index values will end up being correct.... NB */
9911 for (du = super->disks; du; du = du->next)
9912 if (du->index > idx)
9913 du->index--;
9914 /* mark as spare disk */
a8619d23 9915 mark_spare(dm);
bb025c2f
KW
9916 }
9917 }
bb025c2f 9918 /* update map */
1c275381 9919 map->num_members /= map->num_domains;
bb025c2f 9920 map->map_state = IMSM_T_STATE_NORMAL;
bb025c2f 9921 map->raid_level = 0;
1c275381
MT
9922 set_num_domains(map);
9923 update_num_data_stripes(map, imsm_dev_size(dev));
bb025c2f
KW
9924 map->failed_disk_num = -1;
9925 }
9926
8ca6df95
KW
9927 if (u->direction == R0_TO_R10) {
9928 void **space;
4a353e6e 9929
8ca6df95
KW
9930 /* update slots in current disk list */
9931 for (dm = super->disks; dm; dm = dm->next) {
9932 if (dm->index >= 0)
9933 dm->index *= 2;
9934 }
9935 /* create new *missing* disks */
9936 for (i = 0; i < map->num_members; i++) {
9937 space = *space_list;
9938 if (!space)
9939 continue;
9940 *space_list = *space;
9941 du = (void *)space;
9942 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9943 du->fd = -1;
9944 du->minor = 0;
9945 du->major = 0;
9946 du->index = (i * 2) + 1;
9947 sprintf((char *)du->disk.serial,
9948 " MISSING_%d", du->index);
9949 sprintf((char *)du->serial,
9950 "MISSING_%d", du->index);
9951 du->next = super->missing;
9952 super->missing = du;
9953 }
9954 /* create new dev and map */
9955 space = *space_list;
9956 if (!space)
9957 return 0;
9958 *space_list = *space;
9959 dev_new = (void *)space;
9960 memcpy(dev_new, dev, sizeof(*dev));
9961 /* update new map */
238c0a71 9962 map = get_imsm_map(dev_new, MAP_0);
1c275381 9963
1a2487c2 9964 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95 9965 map->raid_level = 1;
1c275381
MT
9966 set_num_domains(map);
9967 map->num_members = map->num_members * map->num_domains;
9968 update_num_data_stripes(map, imsm_dev_size(dev));
4a353e6e 9969
8ca6df95
KW
9970 /* replace dev<->dev_new */
9971 dv->dev = dev_new;
9972 }
bb025c2f
KW
9973 /* update disk order table */
9974 for (du = super->disks; du; du = du->next)
9975 if (du->index >= 0)
9976 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9977 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9978 if (du->index >= 0) {
9979 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9980 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9981 }
bb025c2f
KW
9982
9983 return 1;
9984}
9985
e8319a19
DW
9986static void imsm_process_update(struct supertype *st,
9987 struct metadata_update *update)
9988{
9989 /**
9990 * crack open the metadata_update envelope to find the update record
9991 * update can be one of:
d195167d
AK
9992 * update_reshape_container_disks - all the arrays in the container
9993 * are being reshaped to have more devices. We need to mark
9994 * the arrays for general migration and convert selected spares
9995 * into active devices.
9996 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9997 * device in an array, update the disk_ord_tbl. If this disk is
9998 * present in all member arrays then also clear the SPARE_DISK
9999 * flag
d195167d
AK
10000 * update_create_array
10001 * update_kill_array
10002 * update_rename_array
10003 * update_add_remove_disk
e8319a19
DW
10004 */
10005 struct intel_super *super = st->sb;
4d7b1503 10006 struct imsm_super *mpb;
e8319a19
DW
10007 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10008
4d7b1503
DW
10009 /* update requires a larger buf but the allocation failed */
10010 if (super->next_len && !super->next_buf) {
10011 super->next_len = 0;
10012 return;
10013 }
10014
10015 if (super->next_buf) {
10016 memcpy(super->next_buf, super->buf, super->len);
10017 free(super->buf);
10018 super->len = super->next_len;
10019 super->buf = super->next_buf;
10020
10021 super->next_len = 0;
10022 super->next_buf = NULL;
10023 }
10024
10025 mpb = super->anchor;
10026
e8319a19 10027 switch (type) {
0ec5d470
AK
10028 case update_general_migration_checkpoint: {
10029 struct intel_dev *id;
10030 struct imsm_update_general_migration_checkpoint *u =
10031 (void *)update->buf;
10032
1ade5cc1 10033 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
10034
10035 /* find device under general migration */
10036 for (id = super->devlist ; id; id = id->next) {
10037 if (is_gen_migration(id->dev)) {
4036e7ee
MT
10038 set_vol_curr_migr_unit(id->dev,
10039 u->curr_migr_unit);
0ec5d470
AK
10040 super->updates_pending++;
10041 }
10042 }
10043 break;
10044 }
bb025c2f
KW
10045 case update_takeover: {
10046 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
10047 if (apply_takeover_update(u, super, &update->space_list)) {
10048 imsm_update_version_info(super);
bb025c2f 10049 super->updates_pending++;
1a2487c2 10050 }
bb025c2f
KW
10051 break;
10052 }
10053
78b10e66 10054 case update_reshape_container_disks: {
d195167d 10055 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
10056 if (apply_reshape_container_disks_update(
10057 u, super, &update->space_list))
10058 super->updates_pending++;
78b10e66
N
10059 break;
10060 }
48c5303a 10061 case update_reshape_migration: {
a29911da
PC
10062 struct imsm_update_reshape_migration *u = (void *)update->buf;
10063 if (apply_reshape_migration_update(
10064 u, super, &update->space_list))
10065 super->updates_pending++;
48c5303a
PC
10066 break;
10067 }
f3871fdc
AK
10068 case update_size_change: {
10069 struct imsm_update_size_change *u = (void *)update->buf;
10070 if (apply_size_change_update(u, super))
10071 super->updates_pending++;
10072 break;
10073 }
e8319a19 10074 case update_activate_spare: {
1011e834 10075 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
10076
10077 if (prepare_spare_to_activate(st, u) &&
10078 apply_update_activate_spare(u, super, st->arrays))
061d7da3 10079 super->updates_pending++;
8273f55e
DW
10080 break;
10081 }
10082 case update_create_array: {
10083 /* someone wants to create a new array, we need to be aware of
10084 * a few races/collisions:
10085 * 1/ 'Create' called by two separate instances of mdadm
10086 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10087 * devices that have since been assimilated via
10088 * activate_spare.
10089 * In the event this update can not be carried out mdadm will
10090 * (FIX ME) notice that its update did not take hold.
10091 */
10092 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10093 struct intel_dev *dv;
8273f55e
DW
10094 struct imsm_dev *dev;
10095 struct imsm_map *map, *new_map;
10096 unsigned long long start, end;
10097 unsigned long long new_start, new_end;
10098 int i;
54c2c1ea
DW
10099 struct disk_info *inf;
10100 struct dl *dl;
8273f55e
DW
10101
10102 /* handle racing creates: first come first serve */
10103 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10104 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10105 goto create_error;
8273f55e
DW
10106 }
10107
10108 /* check update is next in sequence */
10109 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10110 dprintf("can not create array %d expected index %d\n",
10111 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10112 goto create_error;
8273f55e
DW
10113 }
10114
238c0a71 10115 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10116 new_start = pba_of_lba0(new_map);
44490938 10117 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10118 inf = get_disk_info(u);
8273f55e
DW
10119
10120 /* handle activate_spare versus create race:
10121 * check to make sure that overlapping arrays do not include
10122 * overalpping disks
10123 */
10124 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10125 dev = get_imsm_dev(super, i);
238c0a71 10126 map = get_imsm_map(dev, MAP_0);
5551b113 10127 start = pba_of_lba0(map);
44490938 10128 end = start + per_dev_array_size(map);
8273f55e
DW
10129 if ((new_start >= start && new_start <= end) ||
10130 (start >= new_start && start <= new_end))
54c2c1ea
DW
10131 /* overlap */;
10132 else
10133 continue;
10134
10135 if (disks_overlap(super, i, u)) {
1ade5cc1 10136 dprintf("arrays overlap\n");
ba2de7ba 10137 goto create_error;
8273f55e
DW
10138 }
10139 }
8273f55e 10140
949c47a0
DW
10141 /* check that prepare update was successful */
10142 if (!update->space) {
1ade5cc1 10143 dprintf("prepare update failed\n");
ba2de7ba 10144 goto create_error;
949c47a0
DW
10145 }
10146
54c2c1ea
DW
10147 /* check that all disks are still active before committing
10148 * changes. FIXME: could we instead handle this by creating a
10149 * degraded array? That's probably not what the user expects,
10150 * so better to drop this update on the floor.
10151 */
10152 for (i = 0; i < new_map->num_members; i++) {
10153 dl = serial_to_dl(inf[i].serial, super);
10154 if (!dl) {
1ade5cc1 10155 dprintf("disk disappeared\n");
ba2de7ba 10156 goto create_error;
54c2c1ea 10157 }
949c47a0
DW
10158 }
10159
8273f55e 10160 super->updates_pending++;
54c2c1ea
DW
10161
10162 /* convert spares to members and fixup ord_tbl */
10163 for (i = 0; i < new_map->num_members; i++) {
10164 dl = serial_to_dl(inf[i].serial, super);
10165 if (dl->index == -1) {
10166 dl->index = mpb->num_disks;
10167 mpb->num_disks++;
10168 dl->disk.status |= CONFIGURED_DISK;
10169 dl->disk.status &= ~SPARE_DISK;
10170 }
10171 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10172 }
10173
ba2de7ba
DW
10174 dv = update->space;
10175 dev = dv->dev;
949c47a0
DW
10176 update->space = NULL;
10177 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10178 dv->index = u->dev_idx;
10179 dv->next = super->devlist;
10180 super->devlist = dv;
8273f55e 10181 mpb->num_raid_devs++;
8273f55e 10182
4d1313e9 10183 imsm_update_version_info(super);
8273f55e 10184 break;
ba2de7ba
DW
10185 create_error:
10186 /* mdmon knows how to release update->space, but not
10187 * ((struct intel_dev *) update->space)->dev
10188 */
10189 if (update->space) {
10190 dv = update->space;
10191 free(dv->dev);
10192 }
8273f55e 10193 break;
e8319a19 10194 }
33414a01
DW
10195 case update_kill_array: {
10196 struct imsm_update_kill_array *u = (void *) update->buf;
10197 int victim = u->dev_idx;
10198 struct active_array *a;
10199 struct intel_dev **dp;
33414a01
DW
10200
10201 /* sanity check that we are not affecting the uuid of
10202 * active arrays, or deleting an active array
10203 *
10204 * FIXME when immutable ids are available, but note that
10205 * we'll also need to fixup the invalidated/active
10206 * subarray indexes in mdstat
10207 */
10208 for (a = st->arrays; a; a = a->next)
10209 if (a->info.container_member >= victim)
10210 break;
10211 /* by definition if mdmon is running at least one array
10212 * is active in the container, so checking
10213 * mpb->num_raid_devs is just extra paranoia
10214 */
756a15f3 10215 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
33414a01
DW
10216 dprintf("failed to delete subarray-%d\n", victim);
10217 break;
10218 }
10219
10220 for (dp = &super->devlist; *dp;)
f21e18ca 10221 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10222 *dp = (*dp)->next;
10223 } else {
f21e18ca 10224 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10225 (*dp)->index--;
10226 dp = &(*dp)->next;
10227 }
10228 mpb->num_raid_devs--;
10229 super->updates_pending++;
10230 break;
10231 }
aa534678
DW
10232 case update_rename_array: {
10233 struct imsm_update_rename_array *u = (void *) update->buf;
10234 char name[MAX_RAID_SERIAL_LEN+1];
10235 int target = u->dev_idx;
10236 struct active_array *a;
10237 struct imsm_dev *dev;
10238
10239 /* sanity check that we are not affecting the uuid of
10240 * an active array
10241 */
40659392 10242 memset(name, 0, sizeof(name));
aa534678
DW
10243 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10244 name[MAX_RAID_SERIAL_LEN] = '\0';
10245 for (a = st->arrays; a; a = a->next)
10246 if (a->info.container_member == target)
10247 break;
10248 dev = get_imsm_dev(super, u->dev_idx);
756a15f3 10249 if (a || !check_name(super, name, 1)) {
aa534678
DW
10250 dprintf("failed to rename subarray-%d\n", target);
10251 break;
10252 }
10253
40659392 10254 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10255 super->updates_pending++;
10256 break;
10257 }
1a64be56 10258 case update_add_remove_disk: {
43dad3d6 10259 /* we may be able to repair some arrays if disks are
095b8088 10260 * being added, check the status of add_remove_disk
1a64be56
LM
10261 * if discs has been added.
10262 */
10263 if (add_remove_disk_update(super)) {
43dad3d6 10264 struct active_array *a;
072b727f
DW
10265
10266 super->updates_pending++;
1a64be56 10267 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10268 a->check_degraded = 1;
10269 }
43dad3d6 10270 break;
e8319a19 10271 }
bbab0940
TM
10272 case update_prealloc_badblocks_mem:
10273 break;
e6e9dd3f
AP
10274 case update_rwh_policy: {
10275 struct imsm_update_rwh_policy *u = (void *)update->buf;
10276 int target = u->dev_idx;
10277 struct imsm_dev *dev = get_imsm_dev(super, target);
e6e9dd3f
AP
10278
10279 if (dev->rwh_policy != u->new_policy) {
10280 dev->rwh_policy = u->new_policy;
10281 super->updates_pending++;
10282 }
10283 break;
10284 }
1a64be56 10285 default:
ebf3be99 10286 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10287 }
e8319a19 10288}
88758e9d 10289
bc0b9d34
PC
10290static struct mdinfo *get_spares_for_grow(struct supertype *st);
10291
5fe6f031
N
10292static int imsm_prepare_update(struct supertype *st,
10293 struct metadata_update *update)
8273f55e 10294{
949c47a0 10295 /**
4d7b1503
DW
10296 * Allocate space to hold new disk entries, raid-device entries or a new
10297 * mpb if necessary. The manager synchronously waits for updates to
10298 * complete in the monitor, so new mpb buffers allocated here can be
10299 * integrated by the monitor thread without worrying about live pointers
10300 * in the manager thread.
8273f55e 10301 */
095b8088 10302 enum imsm_update_type type;
4d7b1503 10303 struct intel_super *super = st->sb;
f36a9ecd 10304 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10305 struct imsm_super *mpb = super->anchor;
10306 size_t buf_len;
10307 size_t len = 0;
949c47a0 10308
095b8088
N
10309 if (update->len < (int)sizeof(type))
10310 return 0;
10311
10312 type = *(enum imsm_update_type *) update->buf;
10313
949c47a0 10314 switch (type) {
0ec5d470 10315 case update_general_migration_checkpoint:
095b8088
N
10316 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10317 return 0;
1ade5cc1 10318 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10319 break;
abedf5fc
KW
10320 case update_takeover: {
10321 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10322 if (update->len < (int)sizeof(*u))
10323 return 0;
abedf5fc
KW
10324 if (u->direction == R0_TO_R10) {
10325 void **tail = (void **)&update->space_list;
10326 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10327 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10328 int num_members = map->num_members;
10329 void *space;
10330 int size, i;
abedf5fc
KW
10331 /* allocate memory for added disks */
10332 for (i = 0; i < num_members; i++) {
10333 size = sizeof(struct dl);
503975b9 10334 space = xmalloc(size);
abedf5fc
KW
10335 *tail = space;
10336 tail = space;
10337 *tail = NULL;
10338 }
10339 /* allocate memory for new device */
10340 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10341 (num_members * sizeof(__u32));
503975b9
N
10342 space = xmalloc(size);
10343 *tail = space;
10344 tail = space;
10345 *tail = NULL;
10346 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10347 }
10348
10349 break;
10350 }
78b10e66 10351 case update_reshape_container_disks: {
d195167d
AK
10352 /* Every raid device in the container is about to
10353 * gain some more devices, and we will enter a
10354 * reconfiguration.
10355 * So each 'imsm_map' will be bigger, and the imsm_vol
10356 * will now hold 2 of them.
10357 * Thus we need new 'struct imsm_dev' allocations sized
10358 * as sizeof_imsm_dev but with more devices in both maps.
10359 */
10360 struct imsm_update_reshape *u = (void *)update->buf;
10361 struct intel_dev *dl;
10362 void **space_tail = (void**)&update->space_list;
10363
095b8088
N
10364 if (update->len < (int)sizeof(*u))
10365 return 0;
10366
1ade5cc1 10367 dprintf("for update_reshape\n");
d195167d
AK
10368
10369 for (dl = super->devlist; dl; dl = dl->next) {
10370 int size = sizeof_imsm_dev(dl->dev, 1);
10371 void *s;
d677e0b8
AK
10372 if (u->new_raid_disks > u->old_raid_disks)
10373 size += sizeof(__u32)*2*
10374 (u->new_raid_disks - u->old_raid_disks);
503975b9 10375 s = xmalloc(size);
d195167d
AK
10376 *space_tail = s;
10377 space_tail = s;
10378 *space_tail = NULL;
10379 }
10380
10381 len = disks_to_mpb_size(u->new_raid_disks);
10382 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10383 break;
10384 }
48c5303a 10385 case update_reshape_migration: {
bc0b9d34
PC
10386 /* for migration level 0->5 we need to add disks
10387 * so the same as for container operation we will copy
10388 * device to the bigger location.
10389 * in memory prepared device and new disk area are prepared
10390 * for usage in process update
10391 */
10392 struct imsm_update_reshape_migration *u = (void *)update->buf;
10393 struct intel_dev *id;
10394 void **space_tail = (void **)&update->space_list;
10395 int size;
10396 void *s;
10397 int current_level = -1;
10398
095b8088
N
10399 if (update->len < (int)sizeof(*u))
10400 return 0;
10401
1ade5cc1 10402 dprintf("for update_reshape\n");
bc0b9d34
PC
10403
10404 /* add space for bigger array in update
10405 */
10406 for (id = super->devlist; id; id = id->next) {
10407 if (id->index == (unsigned)u->subdev) {
10408 size = sizeof_imsm_dev(id->dev, 1);
10409 if (u->new_raid_disks > u->old_raid_disks)
10410 size += sizeof(__u32)*2*
10411 (u->new_raid_disks - u->old_raid_disks);
503975b9 10412 s = xmalloc(size);
bc0b9d34
PC
10413 *space_tail = s;
10414 space_tail = s;
10415 *space_tail = NULL;
10416 break;
10417 }
10418 }
10419 if (update->space_list == NULL)
10420 break;
10421
10422 /* add space for disk in update
10423 */
10424 size = sizeof(struct dl);
503975b9 10425 s = xmalloc(size);
bc0b9d34
PC
10426 *space_tail = s;
10427 space_tail = s;
10428 *space_tail = NULL;
10429
10430 /* add spare device to update
10431 */
10432 for (id = super->devlist ; id; id = id->next)
10433 if (id->index == (unsigned)u->subdev) {
10434 struct imsm_dev *dev;
10435 struct imsm_map *map;
10436
10437 dev = get_imsm_dev(super, u->subdev);
238c0a71 10438 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10439 current_level = map->raid_level;
10440 break;
10441 }
089f9d79 10442 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10443 struct mdinfo *spares;
10444
10445 spares = get_spares_for_grow(st);
10446 if (spares) {
10447 struct dl *dl;
10448 struct mdinfo *dev;
10449
10450 dev = spares->devs;
10451 if (dev) {
10452 u->new_disks[0] =
10453 makedev(dev->disk.major,
10454 dev->disk.minor);
10455 dl = get_disk_super(super,
10456 dev->disk.major,
10457 dev->disk.minor);
10458 dl->index = u->old_raid_disks;
10459 dev = dev->next;
10460 }
10461 sysfs_free(spares);
10462 }
10463 }
10464 len = disks_to_mpb_size(u->new_raid_disks);
10465 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10466 break;
10467 }
f3871fdc 10468 case update_size_change: {
095b8088
N
10469 if (update->len < (int)sizeof(struct imsm_update_size_change))
10470 return 0;
10471 break;
10472 }
10473 case update_activate_spare: {
10474 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10475 return 0;
f3871fdc
AK
10476 break;
10477 }
949c47a0
DW
10478 case update_create_array: {
10479 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10480 struct intel_dev *dv;
54c2c1ea 10481 struct imsm_dev *dev = &u->dev;
238c0a71 10482 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10483 struct dl *dl;
10484 struct disk_info *inf;
10485 int i;
10486 int activate = 0;
949c47a0 10487
095b8088
N
10488 if (update->len < (int)sizeof(*u))
10489 return 0;
10490
54c2c1ea
DW
10491 inf = get_disk_info(u);
10492 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10493 /* allocate a new super->devlist entry */
503975b9
N
10494 dv = xmalloc(sizeof(*dv));
10495 dv->dev = xmalloc(len);
10496 update->space = dv;
949c47a0 10497
54c2c1ea
DW
10498 /* count how many spares will be converted to members */
10499 for (i = 0; i < map->num_members; i++) {
10500 dl = serial_to_dl(inf[i].serial, super);
10501 if (!dl) {
10502 /* hmm maybe it failed?, nothing we can do about
10503 * it here
10504 */
10505 continue;
10506 }
10507 if (count_memberships(dl, super) == 0)
10508 activate++;
10509 }
10510 len += activate * sizeof(struct imsm_disk);
949c47a0 10511 break;
095b8088
N
10512 }
10513 case update_kill_array: {
10514 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10515 return 0;
949c47a0
DW
10516 break;
10517 }
095b8088
N
10518 case update_rename_array: {
10519 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10520 return 0;
10521 break;
10522 }
10523 case update_add_remove_disk:
10524 /* no update->len needed */
10525 break;
bbab0940
TM
10526 case update_prealloc_badblocks_mem:
10527 super->extra_space += sizeof(struct bbm_log) -
10528 get_imsm_bbm_log_size(super->bbm_log);
10529 break;
e6e9dd3f
AP
10530 case update_rwh_policy: {
10531 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10532 return 0;
10533 break;
10534 }
095b8088
N
10535 default:
10536 return 0;
949c47a0 10537 }
8273f55e 10538
4d7b1503
DW
10539 /* check if we need a larger metadata buffer */
10540 if (super->next_buf)
10541 buf_len = super->next_len;
10542 else
10543 buf_len = super->len;
10544
bbab0940 10545 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10546 /* ok we need a larger buf than what is currently allocated
10547 * if this allocation fails process_update will notice that
10548 * ->next_len is set and ->next_buf is NULL
10549 */
bbab0940
TM
10550 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10551 super->extra_space + len, sector_size);
4d7b1503
DW
10552 if (super->next_buf)
10553 free(super->next_buf);
10554
10555 super->next_len = buf_len;
f36a9ecd 10556 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10557 memset(super->next_buf, 0, buf_len);
10558 else
4d7b1503
DW
10559 super->next_buf = NULL;
10560 }
5fe6f031 10561 return 1;
8273f55e
DW
10562}
10563
ae6aad82 10564/* must be called while manager is quiesced */
f21e18ca 10565static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10566{
10567 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10568 struct dl *iter;
10569 struct imsm_dev *dev;
10570 struct imsm_map *map;
4c9e8c1e 10571 unsigned int i, j, num_members;
fb12a745 10572 __u32 ord, ord_map0;
4c9e8c1e 10573 struct bbm_log *log = super->bbm_log;
ae6aad82 10574
1ade5cc1 10575 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10576
10577 /* shift all indexes down one */
10578 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10579 if (iter->index > (int)index)
ae6aad82 10580 iter->index--;
47ee5a45 10581 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10582 if (iter->index > (int)index)
47ee5a45 10583 iter->index--;
ae6aad82
DW
10584
10585 for (i = 0; i < mpb->num_raid_devs; i++) {
10586 dev = get_imsm_dev(super, i);
238c0a71 10587 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10588 num_members = map->num_members;
10589 for (j = 0; j < num_members; j++) {
10590 /* update ord entries being careful not to propagate
10591 * ord-flags to the first map
10592 */
238c0a71 10593 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10594 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10595
24565c9a
DW
10596 if (ord_to_idx(ord) <= index)
10597 continue;
ae6aad82 10598
238c0a71 10599 map = get_imsm_map(dev, MAP_0);
fb12a745 10600 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10601 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10602 if (map)
10603 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10604 }
10605 }
10606
4c9e8c1e
TM
10607 for (i = 0; i < log->entry_count; i++) {
10608 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10609
10610 if (entry->disk_ordinal <= index)
10611 continue;
10612 entry->disk_ordinal--;
10613 }
10614
ae6aad82
DW
10615 mpb->num_disks--;
10616 super->updates_pending++;
24565c9a
DW
10617 if (*dlp) {
10618 struct dl *dl = *dlp;
10619
10620 *dlp = (*dlp)->next;
3a85bf0e 10621 __free_imsm_disk(dl, 1);
24565c9a 10622 }
ae6aad82 10623}
9a717282 10624
9a717282
AK
10625static int imsm_get_allowed_degradation(int level, int raid_disks,
10626 struct intel_super *super,
10627 struct imsm_dev *dev)
10628{
10629 switch (level) {
bf5cf7c7 10630 case 1:
9a717282
AK
10631 case 10:{
10632 int ret_val = 0;
10633 struct imsm_map *map;
10634 int i;
10635
10636 ret_val = raid_disks/2;
10637 /* check map if all disks pairs not failed
10638 * in both maps
10639 */
238c0a71 10640 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10641 for (i = 0; i < ret_val; i++) {
10642 int degradation = 0;
10643 if (get_imsm_disk(super, i) == NULL)
10644 degradation++;
10645 if (get_imsm_disk(super, i + 1) == NULL)
10646 degradation++;
10647 if (degradation == 2)
10648 return 0;
10649 }
238c0a71 10650 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10651 /* if there is no second map
10652 * result can be returned
10653 */
10654 if (map == NULL)
10655 return ret_val;
10656 /* check degradation in second map
10657 */
10658 for (i = 0; i < ret_val; i++) {
10659 int degradation = 0;
10660 if (get_imsm_disk(super, i) == NULL)
10661 degradation++;
10662 if (get_imsm_disk(super, i + 1) == NULL)
10663 degradation++;
10664 if (degradation == 2)
10665 return 0;
10666 }
10667 return ret_val;
10668 }
10669 case 5:
10670 return 1;
10671 case 6:
10672 return 2;
10673 default:
10674 return 0;
10675 }
10676}
10677
d31ad643
PB
10678/*******************************************************************************
10679 * Function: validate_container_imsm
10680 * Description: This routine validates container after assemble,
10681 * eg. if devices in container are under the same controller.
10682 *
10683 * Parameters:
10684 * info : linked list with info about devices used in array
10685 * Returns:
10686 * 1 : HBA mismatch
10687 * 0 : Success
10688 ******************************************************************************/
10689int validate_container_imsm(struct mdinfo *info)
10690{
6b781d33
AP
10691 if (check_env("IMSM_NO_PLATFORM"))
10692 return 0;
d31ad643 10693
6b781d33
AP
10694 struct sys_dev *idev;
10695 struct sys_dev *hba = NULL;
10696 struct sys_dev *intel_devices = find_intel_devices();
10697 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10698 info->disk.minor), 1, NULL);
6b781d33
AP
10699
10700 for (idev = intel_devices; idev; idev = idev->next) {
10701 if (dev_path && strstr(dev_path, idev->path)) {
10702 hba = idev;
10703 break;
d31ad643 10704 }
6b781d33
AP
10705 }
10706 if (dev_path)
d31ad643
PB
10707 free(dev_path);
10708
6b781d33
AP
10709 if (!hba) {
10710 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10711 devid2kname(makedev(info->disk.major, info->disk.minor)));
10712 return 1;
10713 }
10714
10715 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10716 struct mdinfo *dev;
10717
10718 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10719 dev_path = devt_to_devpath(makedev(dev->disk.major,
10720 dev->disk.minor), 1, NULL);
6b781d33
AP
10721
10722 struct sys_dev *hba2 = NULL;
10723 for (idev = intel_devices; idev; idev = idev->next) {
10724 if (dev_path && strstr(dev_path, idev->path)) {
10725 hba2 = idev;
10726 break;
d31ad643
PB
10727 }
10728 }
6b781d33
AP
10729 if (dev_path)
10730 free(dev_path);
10731
10732 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10733 get_orom_by_device_id(hba2->dev_id);
10734
10735 if (hba2 && hba->type != hba2->type) {
10736 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10737 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10738 return 1;
10739 }
10740
07cb1e57 10741 if (orom != orom2) {
6b781d33
AP
10742 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10743 " This operation is not supported and can lead to data loss.\n");
10744 return 1;
10745 }
10746
10747 if (!orom) {
10748 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10749 " This operation is not supported and can lead to data loss.\n");
10750 return 1;
10751 }
d31ad643 10752 }
6b781d33 10753
d31ad643
PB
10754 return 0;
10755}
32141c17 10756
6f50473f
TM
10757/*******************************************************************************
10758* Function: imsm_record_badblock
10759* Description: This routine stores new bad block record in BBM log
10760*
10761* Parameters:
10762* a : array containing a bad block
10763* slot : disk number containing a bad block
10764* sector : bad block sector
10765* length : bad block sectors range
10766* Returns:
10767* 1 : Success
10768* 0 : Error
10769******************************************************************************/
10770static int imsm_record_badblock(struct active_array *a, int slot,
10771 unsigned long long sector, int length)
10772{
10773 struct intel_super *super = a->container->sb;
10774 int ord;
10775 int ret;
10776
10777 ord = imsm_disk_slot_to_ord(a, slot);
10778 if (ord < 0)
10779 return 0;
10780
10781 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10782 length);
10783 if (ret)
10784 super->updates_pending++;
10785
10786 return ret;
10787}
c07a5a4f
TM
10788/*******************************************************************************
10789* Function: imsm_clear_badblock
10790* Description: This routine clears bad block record from BBM log
10791*
10792* Parameters:
10793* a : array containing a bad block
10794* slot : disk number containing a bad block
10795* sector : bad block sector
10796* length : bad block sectors range
10797* Returns:
10798* 1 : Success
10799* 0 : Error
10800******************************************************************************/
10801static int imsm_clear_badblock(struct active_array *a, int slot,
10802 unsigned long long sector, int length)
10803{
10804 struct intel_super *super = a->container->sb;
10805 int ord;
10806 int ret;
10807
10808 ord = imsm_disk_slot_to_ord(a, slot);
10809 if (ord < 0)
10810 return 0;
10811
10812 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10813 if (ret)
10814 super->updates_pending++;
10815
10816 return ret;
10817}
928f1424
TM
10818/*******************************************************************************
10819* Function: imsm_get_badblocks
10820* Description: This routine get list of bad blocks for an array
10821*
10822* Parameters:
10823* a : array
10824* slot : disk number
10825* Returns:
10826* bb : structure containing bad blocks
10827* NULL : error
10828******************************************************************************/
10829static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10830{
10831 int inst = a->info.container_member;
10832 struct intel_super *super = a->container->sb;
10833 struct imsm_dev *dev = get_imsm_dev(super, inst);
10834 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10835 int ord;
10836
10837 ord = imsm_disk_slot_to_ord(a, slot);
10838 if (ord < 0)
10839 return NULL;
10840
10841 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10842 per_dev_array_size(map), &super->bb);
928f1424
TM
10843
10844 return &super->bb;
10845}
27156a57
TM
10846/*******************************************************************************
10847* Function: examine_badblocks_imsm
10848* Description: Prints list of bad blocks on a disk to the standard output
10849*
10850* Parameters:
10851* st : metadata handler
10852* fd : open file descriptor for device
10853* devname : device name
10854* Returns:
10855* 0 : Success
10856* 1 : Error
10857******************************************************************************/
10858static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10859{
10860 struct intel_super *super = st->sb;
10861 struct bbm_log *log = super->bbm_log;
10862 struct dl *d = NULL;
10863 int any = 0;
10864
10865 for (d = super->disks; d ; d = d->next) {
10866 if (strcmp(d->devname, devname) == 0)
10867 break;
10868 }
10869
10870 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10871 pr_err("%s doesn't appear to be part of a raid array\n",
10872 devname);
10873 return 1;
10874 }
10875
10876 if (log != NULL) {
10877 unsigned int i;
10878 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10879
10880 for (i = 0; i < log->entry_count; i++) {
10881 if (entry[i].disk_ordinal == d->index) {
10882 unsigned long long sector = __le48_to_cpu(
10883 &entry[i].defective_block_start);
10884 int cnt = entry[i].marked_count + 1;
10885
10886 if (!any) {
10887 printf("Bad-blocks on %s:\n", devname);
10888 any = 1;
10889 }
10890
10891 printf("%20llu for %d sectors\n", sector, cnt);
10892 }
10893 }
10894 }
10895
10896 if (!any)
10897 printf("No bad-blocks list configured on %s\n", devname);
10898
10899 return 0;
10900}
687629c2
AK
10901/*******************************************************************************
10902 * Function: init_migr_record_imsm
10903 * Description: Function inits imsm migration record
10904 * Parameters:
10905 * super : imsm internal array info
10906 * dev : device under migration
10907 * info : general array info to find the smallest device
10908 * Returns:
10909 * none
10910 ******************************************************************************/
10911void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10912 struct mdinfo *info)
10913{
10914 struct intel_super *super = st->sb;
10915 struct migr_record *migr_rec = super->migr_rec;
10916 int new_data_disks;
10917 unsigned long long dsize, dev_sectors;
10918 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
10919 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10920 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10921 unsigned long long num_migr_units;
3ef4403c 10922 unsigned long long array_blocks;
2f86fda3 10923 struct dl *dl_disk = NULL;
687629c2
AK
10924
10925 memset(migr_rec, 0, sizeof(struct migr_record));
10926 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10927
10928 /* only ascending reshape supported now */
10929 migr_rec->ascending_migr = __cpu_to_le32(1);
10930
10931 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10932 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10933 migr_rec->dest_depth_per_unit *=
10934 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 10935 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
10936 migr_rec->blocks_per_unit =
10937 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10938 migr_rec->dest_depth_per_unit =
10939 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10940 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10941 num_migr_units =
10942 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10943
10944 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10945 num_migr_units++;
9f421827 10946 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
10947
10948 migr_rec->post_migr_vol_cap = dev->size_low;
10949 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10950
687629c2 10951 /* Find the smallest dev */
2f86fda3
MT
10952 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10953 /* ignore spares in container */
10954 if (dl_disk->index < 0)
687629c2 10955 continue;
2f86fda3 10956 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
10957 dev_sectors = dsize / 512;
10958 if (dev_sectors < min_dev_sectors)
10959 min_dev_sectors = dev_sectors;
687629c2 10960 }
9f421827 10961 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
10962 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10963
10964 write_imsm_migr_rec(st);
10965
10966 return;
10967}
10968
10969/*******************************************************************************
10970 * Function: save_backup_imsm
10971 * Description: Function saves critical data stripes to Migration Copy Area
10972 * and updates the current migration unit status.
10973 * Use restore_stripes() to form a destination stripe,
10974 * and to write it to the Copy Area.
10975 * Parameters:
10976 * st : supertype information
aea93171 10977 * dev : imsm device that backup is saved for
687629c2
AK
10978 * info : general array info
10979 * buf : input buffer
687629c2
AK
10980 * length : length of data to backup (blocks_per_unit)
10981 * Returns:
10982 * 0 : success
10983 *, -1 : fail
10984 ******************************************************************************/
10985int save_backup_imsm(struct supertype *st,
10986 struct imsm_dev *dev,
10987 struct mdinfo *info,
10988 void *buf,
687629c2
AK
10989 int length)
10990{
10991 int rv = -1;
10992 struct intel_super *super = st->sb;
687629c2 10993 int i;
238c0a71 10994 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10995 int new_disks = map_dest->num_members;
ab724b98 10996 int dest_layout = 0;
4389ce73
MT
10997 int dest_chunk, targets[new_disks];
10998 unsigned long long start, target_offsets[new_disks];
9529d343 10999 int data_disks = imsm_num_data_members(map_dest);
687629c2 11000
2f86fda3
MT
11001 for (i = 0; i < new_disks; i++) {
11002 struct dl *dl_disk = get_imsm_dl_disk(super, i);
4389ce73
MT
11003 if (dl_disk && is_fd_valid(dl_disk->fd))
11004 targets[i] = dl_disk->fd;
11005 else
11006 goto abort;
2f86fda3 11007 }
7e45b550 11008
d1877f69 11009 start = info->reshape_progress * 512;
687629c2 11010 for (i = 0; i < new_disks; i++) {
9f421827 11011 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
11012 /* move back copy area adderss, it will be moved forward
11013 * in restore_stripes() using start input variable
11014 */
11015 target_offsets[i] -= start/data_disks;
687629c2
AK
11016 }
11017
68eb8bc6 11018 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
11019 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11020
687629c2
AK
11021 if (restore_stripes(targets, /* list of dest devices */
11022 target_offsets, /* migration record offsets */
11023 new_disks,
ab724b98
AK
11024 dest_chunk,
11025 map_dest->raid_level,
11026 dest_layout,
11027 -1, /* source backup file descriptor */
11028 0, /* input buf offset
11029 * always 0 buf is already offseted */
d1877f69 11030 start,
687629c2
AK
11031 length,
11032 buf) != 0) {
e7b84f9d 11033 pr_err("Error restoring stripes\n");
687629c2
AK
11034 goto abort;
11035 }
11036
11037 rv = 0;
11038
11039abort:
687629c2
AK
11040 return rv;
11041}
11042
11043/*******************************************************************************
11044 * Function: save_checkpoint_imsm
11045 * Description: Function called for current unit status update
11046 * in the migration record. It writes it to disk.
11047 * Parameters:
11048 * super : imsm internal array info
11049 * info : general array info
11050 * Returns:
11051 * 0: success
11052 * 1: failure
0228d92c
AK
11053 * 2: failure, means no valid migration record
11054 * / no general migration in progress /
687629c2
AK
11055 ******************************************************************************/
11056int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11057{
11058 struct intel_super *super = st->sb;
f8b72ef5
AK
11059 unsigned long long blocks_per_unit;
11060 unsigned long long curr_migr_unit;
11061
2f86fda3 11062 if (load_imsm_migr_rec(super) != 0) {
7a862a02 11063 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
11064 return 1;
11065 }
11066
f8b72ef5
AK
11067 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11068 if (blocks_per_unit == 0) {
0228d92c
AK
11069 dprintf("imsm: no migration in progress.\n");
11070 return 2;
687629c2 11071 }
f8b72ef5
AK
11072 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11073 /* check if array is alligned to copy area
11074 * if it is not alligned, add one to current migration unit value
11075 * this can happend on array reshape finish only
11076 */
11077 if (info->reshape_progress % blocks_per_unit)
11078 curr_migr_unit++;
687629c2 11079
9f421827 11080 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 11081 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
11082 set_migr_dest_1st_member_lba(super->migr_rec,
11083 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11084
687629c2 11085 if (write_imsm_migr_rec(st) < 0) {
7a862a02 11086 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
11087 return 1;
11088 }
11089
11090 return 0;
11091}
11092
276d77db
AK
11093/*******************************************************************************
11094 * Function: recover_backup_imsm
11095 * Description: Function recovers critical data from the Migration Copy Area
11096 * while assembling an array.
11097 * Parameters:
11098 * super : imsm internal array info
11099 * info : general array info
11100 * Returns:
11101 * 0 : success (or there is no data to recover)
11102 * 1 : fail
11103 ******************************************************************************/
11104int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11105{
11106 struct intel_super *super = st->sb;
11107 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11108 struct imsm_map *map_dest;
276d77db
AK
11109 struct intel_dev *id = NULL;
11110 unsigned long long read_offset;
11111 unsigned long long write_offset;
11112 unsigned unit_len;
2f86fda3 11113 int new_disks, err;
276d77db
AK
11114 char *buf = NULL;
11115 int retval = 1;
f36a9ecd 11116 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11117 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11118 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
276d77db 11119 char buffer[20];
6c3560c0 11120 int skipped_disks = 0;
2f86fda3 11121 struct dl *dl_disk;
276d77db
AK
11122
11123 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
11124 if (err < 1)
11125 return 1;
11126
11127 /* recover data only during assemblation */
11128 if (strncmp(buffer, "inactive", 8) != 0)
11129 return 0;
11130 /* no data to recover */
11131 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11132 return 0;
11133 if (curr_migr_unit >= num_migr_units)
11134 return 1;
11135
11136 /* find device during reshape */
11137 for (id = super->devlist; id; id = id->next)
11138 if (is_gen_migration(id->dev))
11139 break;
11140 if (id == NULL)
11141 return 1;
11142
238c0a71 11143 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11144 new_disks = map_dest->num_members;
11145
9f421827 11146 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11147
9f421827 11148 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11149 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11150
11151 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11152 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11153 goto abort;
276d77db 11154
2f86fda3
MT
11155 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11156 if (dl_disk->index < 0)
11157 continue;
276d77db 11158
4389ce73 11159 if (!is_fd_valid(dl_disk->fd)) {
6c3560c0
AK
11160 skipped_disks++;
11161 continue;
11162 }
2f86fda3 11163 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11164 pr_err("Cannot seek to block: %s\n",
11165 strerror(errno));
137debce
AK
11166 skipped_disks++;
11167 continue;
276d77db 11168 }
83b3de77 11169 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11170 pr_err("Cannot read copy area block: %s\n",
11171 strerror(errno));
137debce
AK
11172 skipped_disks++;
11173 continue;
276d77db 11174 }
2f86fda3 11175 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11176 pr_err("Cannot seek to block: %s\n",
11177 strerror(errno));
137debce
AK
11178 skipped_disks++;
11179 continue;
276d77db 11180 }
83b3de77 11181 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11182 pr_err("Cannot restore block: %s\n",
11183 strerror(errno));
137debce
AK
11184 skipped_disks++;
11185 continue;
276d77db
AK
11186 }
11187 }
11188
137debce
AK
11189 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11190 new_disks,
11191 super,
11192 id->dev)) {
7a862a02 11193 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11194 goto abort;
11195 }
11196
befb629b
AK
11197 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11198 /* ignore error == 2, this can mean end of reshape here
11199 */
7a862a02 11200 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11201 } else
276d77db 11202 retval = 0;
276d77db
AK
11203
11204abort:
276d77db
AK
11205 free(buf);
11206 return retval;
11207}
11208
2cda7640
ML
11209static char disk_by_path[] = "/dev/disk/by-path/";
11210
11211static const char *imsm_get_disk_controller_domain(const char *path)
11212{
2cda7640 11213 char disk_path[PATH_MAX];
96234762
LM
11214 char *drv=NULL;
11215 struct stat st;
2cda7640 11216
6d8d290a 11217 strcpy(disk_path, disk_by_path);
96234762
LM
11218 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11219 if (stat(disk_path, &st) == 0) {
11220 struct sys_dev* hba;
594dc1b8 11221 char *path;
96234762 11222
7c798f87 11223 path = devt_to_devpath(st.st_rdev, 1, NULL);
96234762
LM
11224 if (path == NULL)
11225 return "unknown";
11226 hba = find_disk_attached_hba(-1, path);
11227 if (hba && hba->type == SYS_DEV_SAS)
11228 drv = "isci";
11229 else if (hba && hba->type == SYS_DEV_SATA)
11230 drv = "ahci";
c6839718
MT
11231 else if (hba && hba->type == SYS_DEV_VMD)
11232 drv = "vmd";
11233 else if (hba && hba->type == SYS_DEV_NVME)
11234 drv = "nvme";
1011e834 11235 else
96234762
LM
11236 drv = "unknown";
11237 dprintf("path: %s hba: %s attached: %s\n",
11238 path, (hba) ? hba->path : "NULL", drv);
11239 free(path);
2cda7640 11240 }
96234762 11241 return drv;
2cda7640
ML
11242}
11243
4dd2df09 11244static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11245{
4dd2df09 11246 static char devnm[32];
78b10e66
N
11247 char subdev_name[20];
11248 struct mdstat_ent *mdstat;
11249
11250 sprintf(subdev_name, "%d", subdev);
11251 mdstat = mdstat_by_subdev(subdev_name, container);
11252 if (!mdstat)
4dd2df09 11253 return NULL;
78b10e66 11254
4dd2df09 11255 strcpy(devnm, mdstat->devnm);
78b10e66 11256 free_mdstat(mdstat);
4dd2df09 11257 return devnm;
78b10e66
N
11258}
11259
11260static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11261 struct geo_params *geo,
fbf3d202
AK
11262 int *old_raid_disks,
11263 int direction)
78b10e66 11264{
694575e7
KW
11265 /* currently we only support increasing the number of devices
11266 * for a container. This increases the number of device for each
11267 * member array. They must all be RAID0 or RAID5.
11268 */
78b10e66
N
11269 int ret_val = 0;
11270 struct mdinfo *info, *member;
11271 int devices_that_can_grow = 0;
11272
7a862a02 11273 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11274
d04f65f4 11275 if (geo->size > 0 ||
78b10e66
N
11276 geo->level != UnSet ||
11277 geo->layout != UnSet ||
11278 geo->chunksize != 0 ||
11279 geo->raid_disks == UnSet) {
7a862a02 11280 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11281 return ret_val;
11282 }
11283
fbf3d202 11284 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11285 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11286 return ret_val;
11287 }
11288
78b10e66
N
11289 info = container_content_imsm(st, NULL);
11290 for (member = info; member; member = member->next) {
4dd2df09 11291 char *result;
78b10e66
N
11292
11293 dprintf("imsm: checking device_num: %i\n",
11294 member->container_member);
11295
d7d205bd 11296 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11297 /* we work on container for Online Capacity Expansion
11298 * only so raid_disks has to grow
11299 */
7a862a02 11300 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11301 break;
11302 }
11303
089f9d79 11304 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11305 /* we cannot use this container with other raid level
11306 */
7a862a02 11307 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11308 info->array.level);
11309 break;
11310 } else {
11311 /* check for platform support
11312 * for this raid level configuration
11313 */
11314 struct intel_super *super = st->sb;
11315 if (!is_raid_level_supported(super->orom,
11316 member->array.level,
11317 geo->raid_disks)) {
7a862a02 11318 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11319 info->array.level,
11320 geo->raid_disks,
11321 geo->raid_disks > 1 ? "s" : "");
11322 break;
11323 }
2a4a08e7
AK
11324 /* check if component size is aligned to chunk size
11325 */
11326 if (info->component_size %
11327 (info->array.chunk_size/512)) {
7a862a02 11328 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11329 break;
11330 }
78b10e66
N
11331 }
11332
11333 if (*old_raid_disks &&
11334 info->array.raid_disks != *old_raid_disks)
11335 break;
11336 *old_raid_disks = info->array.raid_disks;
11337
11338 /* All raid5 and raid0 volumes in container
11339 * have to be ready for Online Capacity Expansion
11340 * so they need to be assembled. We have already
11341 * checked that no recovery etc is happening.
11342 */
4dd2df09
N
11343 result = imsm_find_array_devnm_by_subdev(member->container_member,
11344 st->container_devnm);
11345 if (result == NULL) {
78b10e66
N
11346 dprintf("imsm: cannot find array\n");
11347 break;
11348 }
11349 devices_that_can_grow++;
11350 }
11351 sysfs_free(info);
11352 if (!member && devices_that_can_grow)
11353 ret_val = 1;
11354
11355 if (ret_val)
1ade5cc1 11356 dprintf("Container operation allowed\n");
78b10e66 11357 else
1ade5cc1 11358 dprintf("Error: %i\n", ret_val);
78b10e66
N
11359
11360 return ret_val;
11361}
11362
11363/* Function: get_spares_for_grow
11364 * Description: Allocates memory and creates list of spare devices
1011e834 11365 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11366 * Parameters: Pointer to the supertype structure
11367 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11368 * NULL if fail
78b10e66
N
11369 */
11370static struct mdinfo *get_spares_for_grow(struct supertype *st)
11371{
fbfdcb06
AO
11372 struct spare_criteria sc;
11373
11374 get_spare_criteria_imsm(st, &sc);
11375 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11376}
11377
11378/******************************************************************************
11379 * function: imsm_create_metadata_update_for_reshape
11380 * Function creates update for whole IMSM container.
11381 *
11382 ******************************************************************************/
11383static int imsm_create_metadata_update_for_reshape(
11384 struct supertype *st,
11385 struct geo_params *geo,
11386 int old_raid_disks,
11387 struct imsm_update_reshape **updatep)
11388{
11389 struct intel_super *super = st->sb;
11390 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11391 int update_memory_size;
11392 struct imsm_update_reshape *u;
11393 struct mdinfo *spares;
78b10e66 11394 int i;
594dc1b8 11395 int delta_disks;
bbd24d86 11396 struct mdinfo *dev;
78b10e66 11397
1ade5cc1 11398 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11399
11400 delta_disks = geo->raid_disks - old_raid_disks;
11401
11402 /* size of all update data without anchor */
11403 update_memory_size = sizeof(struct imsm_update_reshape);
11404
11405 /* now add space for spare disks that we need to add. */
11406 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11407
503975b9 11408 u = xcalloc(1, update_memory_size);
78b10e66
N
11409 u->type = update_reshape_container_disks;
11410 u->old_raid_disks = old_raid_disks;
11411 u->new_raid_disks = geo->raid_disks;
11412
11413 /* now get spare disks list
11414 */
11415 spares = get_spares_for_grow(st);
11416
d7be7d87 11417 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11418 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11419 i = -1;
78b10e66
N
11420 goto abort;
11421 }
11422
11423 /* we have got spares
11424 * update disk list in imsm_disk list table in anchor
11425 */
11426 dprintf("imsm: %i spares are available.\n\n",
11427 spares->array.spare_disks);
11428
bbd24d86 11429 dev = spares->devs;
78b10e66 11430 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11431 struct dl *dl;
11432
bbd24d86
AK
11433 if (dev == NULL)
11434 break;
78b10e66
N
11435 u->new_disks[i] = makedev(dev->disk.major,
11436 dev->disk.minor);
11437 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11438 dl->index = mpb->num_disks;
11439 mpb->num_disks++;
bbd24d86 11440 dev = dev->next;
78b10e66 11441 }
78b10e66
N
11442
11443abort:
11444 /* free spares
11445 */
11446 sysfs_free(spares);
11447
d677e0b8 11448 dprintf("imsm: reshape update preparation :");
78b10e66 11449 if (i == delta_disks) {
1ade5cc1 11450 dprintf_cont(" OK\n");
78b10e66
N
11451 *updatep = u;
11452 return update_memory_size;
11453 }
11454 free(u);
1ade5cc1 11455 dprintf_cont(" Error\n");
78b10e66
N
11456
11457 return 0;
11458}
11459
f3871fdc
AK
11460/******************************************************************************
11461 * function: imsm_create_metadata_update_for_size_change()
11462 * Creates update for IMSM array for array size change.
11463 *
11464 ******************************************************************************/
11465static int imsm_create_metadata_update_for_size_change(
11466 struct supertype *st,
11467 struct geo_params *geo,
11468 struct imsm_update_size_change **updatep)
11469{
11470 struct intel_super *super = st->sb;
594dc1b8
JS
11471 int update_memory_size;
11472 struct imsm_update_size_change *u;
f3871fdc 11473
1ade5cc1 11474 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11475
11476 /* size of all update data without anchor */
11477 update_memory_size = sizeof(struct imsm_update_size_change);
11478
503975b9 11479 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11480 u->type = update_size_change;
11481 u->subdev = super->current_vol;
11482 u->new_size = geo->size;
11483
11484 dprintf("imsm: reshape update preparation : OK\n");
11485 *updatep = u;
11486
11487 return update_memory_size;
11488}
11489
48c5303a
PC
11490/******************************************************************************
11491 * function: imsm_create_metadata_update_for_migration()
11492 * Creates update for IMSM array.
11493 *
11494 ******************************************************************************/
11495static int imsm_create_metadata_update_for_migration(
11496 struct supertype *st,
11497 struct geo_params *geo,
11498 struct imsm_update_reshape_migration **updatep)
11499{
11500 struct intel_super *super = st->sb;
594dc1b8 11501 int update_memory_size;
756a15f3 11502 int current_chunk_size;
594dc1b8 11503 struct imsm_update_reshape_migration *u;
756a15f3
MG
11504 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11505 struct imsm_map *map = get_imsm_map(dev, MAP_0);
48c5303a
PC
11506 int previous_level = -1;
11507
1ade5cc1 11508 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11509
11510 /* size of all update data without anchor */
11511 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11512
503975b9 11513 u = xcalloc(1, update_memory_size);
48c5303a
PC
11514 u->type = update_reshape_migration;
11515 u->subdev = super->current_vol;
11516 u->new_level = geo->level;
11517 u->new_layout = geo->layout;
11518 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11519 u->new_disks[0] = -1;
4bba0439 11520 u->new_chunksize = -1;
48c5303a 11521
756a15f3 11522 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
48c5303a 11523
756a15f3
MG
11524 if (geo->chunksize != current_chunk_size) {
11525 u->new_chunksize = geo->chunksize / 1024;
11526 dprintf("imsm: chunk size change from %i to %i\n",
11527 current_chunk_size, u->new_chunksize);
48c5303a 11528 }
756a15f3
MG
11529 previous_level = map->raid_level;
11530
089f9d79 11531 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11532 struct mdinfo *spares = NULL;
11533
11534 u->new_raid_disks++;
11535 spares = get_spares_for_grow(st);
089f9d79 11536 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11537 free(u);
11538 sysfs_free(spares);
11539 update_memory_size = 0;
565cc99e 11540 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11541 return 0;
11542 }
11543 sysfs_free(spares);
11544 }
11545 dprintf("imsm: reshape update preparation : OK\n");
11546 *updatep = u;
11547
11548 return update_memory_size;
11549}
11550
8dd70bce
AK
11551static void imsm_update_metadata_locally(struct supertype *st,
11552 void *buf, int len)
11553{
11554 struct metadata_update mu;
11555
11556 mu.buf = buf;
11557 mu.len = len;
11558 mu.space = NULL;
11559 mu.space_list = NULL;
11560 mu.next = NULL;
5fe6f031
N
11561 if (imsm_prepare_update(st, &mu))
11562 imsm_process_update(st, &mu);
8dd70bce
AK
11563
11564 while (mu.space_list) {
11565 void **space = mu.space_list;
11566 mu.space_list = *space;
11567 free(space);
11568 }
11569}
78b10e66 11570
471bceb6 11571/***************************************************************************
694575e7 11572* Function: imsm_analyze_change
471bceb6 11573* Description: Function analyze change for single volume
1011e834 11574* and validate if transition is supported
fbf3d202
AK
11575* Parameters: Geometry parameters, supertype structure,
11576* metadata change direction (apply/rollback)
694575e7 11577* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11578****************************************************************************/
11579enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11580 struct geo_params *geo,
11581 int direction)
694575e7 11582{
471bceb6
KW
11583 struct mdinfo info;
11584 int change = -1;
11585 int check_devs = 0;
c21e737b 11586 int chunk;
67a2db32
AK
11587 /* number of added/removed disks in operation result */
11588 int devNumChange = 0;
11589 /* imsm compatible layout value for array geometry verification */
11590 int imsm_layout = -1;
7abc9871
AK
11591 int data_disks;
11592 struct imsm_dev *dev;
9529d343 11593 struct imsm_map *map;
7abc9871 11594 struct intel_super *super;
d04f65f4 11595 unsigned long long current_size;
65d38cca 11596 unsigned long long free_size;
d04f65f4 11597 unsigned long long max_size;
6d4d9ab2 11598 imsm_status_t rv;
471bceb6
KW
11599
11600 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11601 if (geo->level != info.array.level && geo->level >= 0 &&
11602 geo->level != UnSet) {
471bceb6
KW
11603 switch (info.array.level) {
11604 case 0:
11605 if (geo->level == 5) {
b5347799 11606 change = CH_MIGRATION;
e13ce846 11607 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11608 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11609 change = -1;
11610 goto analyse_change_exit;
11611 }
67a2db32 11612 imsm_layout = geo->layout;
471bceb6 11613 check_devs = 1;
e91a3bad
LM
11614 devNumChange = 1; /* parity disk added */
11615 } else if (geo->level == 10) {
471bceb6
KW
11616 change = CH_TAKEOVER;
11617 check_devs = 1;
e91a3bad 11618 devNumChange = 2; /* two mirrors added */
67a2db32 11619 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11620 }
dfe77a9e
KW
11621 break;
11622 case 1:
471bceb6
KW
11623 case 10:
11624 if (geo->level == 0) {
11625 change = CH_TAKEOVER;
11626 check_devs = 1;
e91a3bad 11627 devNumChange = -(geo->raid_disks/2);
67a2db32 11628 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11629 }
11630 break;
11631 }
11632 if (change == -1) {
7a862a02 11633 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11634 info.array.level, geo->level);
471bceb6
KW
11635 goto analyse_change_exit;
11636 }
11637 } else
11638 geo->level = info.array.level;
11639
089f9d79
JS
11640 if (geo->layout != info.array.layout &&
11641 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11642 change = CH_MIGRATION;
089f9d79
JS
11643 if (info.array.layout == 0 && info.array.level == 5 &&
11644 geo->layout == 5) {
471bceb6 11645 /* reshape 5 -> 4 */
089f9d79
JS
11646 } else if (info.array.layout == 5 && info.array.level == 5 &&
11647 geo->layout == 0) {
471bceb6
KW
11648 /* reshape 4 -> 5 */
11649 geo->layout = 0;
11650 geo->level = 5;
11651 } else {
7a862a02 11652 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11653 info.array.layout, geo->layout);
471bceb6
KW
11654 change = -1;
11655 goto analyse_change_exit;
11656 }
67a2db32 11657 } else {
471bceb6 11658 geo->layout = info.array.layout;
67a2db32
AK
11659 if (imsm_layout == -1)
11660 imsm_layout = info.array.layout;
11661 }
471bceb6 11662
089f9d79
JS
11663 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11664 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11665 if (info.array.level == 10) {
11666 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11667 change = -1;
11668 goto analyse_change_exit;
1e9b2c3f
PB
11669 } else if (info.component_size % (geo->chunksize/512)) {
11670 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11671 geo->chunksize/1024, info.component_size/2);
11672 change = -1;
11673 goto analyse_change_exit;
2d2b0eb7 11674 }
b5347799 11675 change = CH_MIGRATION;
2d2b0eb7 11676 } else {
471bceb6 11677 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11678 }
471bceb6 11679
c21e737b 11680 chunk = geo->chunksize / 1024;
7abc9871
AK
11681
11682 super = st->sb;
11683 dev = get_imsm_dev(super, super->current_vol);
9529d343
MD
11684 map = get_imsm_map(dev, MAP_0);
11685 data_disks = imsm_num_data_members(map);
c41e00b2 11686 /* compute current size per disk member
7abc9871 11687 */
c41e00b2
AK
11688 current_size = info.custom_array_size / data_disks;
11689
089f9d79 11690 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11691 /* align component size
11692 */
3e684231 11693 geo->size = imsm_component_size_alignment_check(
c41e00b2 11694 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11695 chunk * 1024, super->sector_size,
c41e00b2 11696 geo->size * 2);
65d0b4ce 11697 if (geo->size == 0) {
7a862a02 11698 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11699 current_size);
11700 goto analyse_change_exit;
11701 }
c41e00b2 11702 }
7abc9871 11703
089f9d79 11704 if (current_size != geo->size && geo->size > 0) {
7abc9871 11705 if (change != -1) {
7a862a02 11706 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11707 change = -1;
11708 goto analyse_change_exit;
11709 }
11710 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11711 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11712 super->current_vol, st->devnm);
7abc9871
AK
11713 goto analyse_change_exit;
11714 }
65d38cca
LD
11715 /* check the maximum available size
11716 */
6d4d9ab2
MT
11717 rv = imsm_get_free_size(super, dev->vol.map->num_members,
11718 0, chunk, &free_size);
11719
11720 if (rv != IMSM_STATUS_OK)
65d38cca
LD
11721 /* Cannot find maximum available space
11722 */
11723 max_size = 0;
11724 else {
11725 max_size = free_size + current_size;
11726 /* align component size
11727 */
3e684231 11728 max_size = imsm_component_size_alignment_check(
65d38cca 11729 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11730 chunk * 1024, super->sector_size,
65d38cca
LD
11731 max_size);
11732 }
d04f65f4 11733 if (geo->size == MAX_SIZE) {
b130333f
AK
11734 /* requested size change to the maximum available size
11735 */
65d38cca 11736 if (max_size == 0) {
7a862a02 11737 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11738 change = -1;
11739 goto analyse_change_exit;
65d38cca
LD
11740 } else
11741 geo->size = max_size;
c41e00b2 11742 }
b130333f 11743
681b7ae2 11744 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11745 /* accept size for rollback only
11746 */
11747 } else {
11748 /* round size due to metadata compatibility
11749 */
11750 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11751 << SECT_PER_MB_SHIFT;
11752 dprintf("Prepare update for size change to %llu\n",
11753 geo->size );
11754 if (current_size >= geo->size) {
7a862a02 11755 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11756 current_size, geo->size);
fbf3d202
AK
11757 goto analyse_change_exit;
11758 }
65d38cca 11759 if (max_size && geo->size > max_size) {
7a862a02 11760 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11761 max_size, geo->size);
65d38cca
LD
11762 goto analyse_change_exit;
11763 }
7abc9871
AK
11764 }
11765 geo->size *= data_disks;
11766 geo->raid_disks = dev->vol.map->num_members;
11767 change = CH_ARRAY_SIZE;
11768 }
471bceb6
KW
11769 if (!validate_geometry_imsm(st,
11770 geo->level,
67a2db32 11771 imsm_layout,
e91a3bad 11772 geo->raid_disks + devNumChange,
c21e737b 11773 &chunk,
af4348dd 11774 geo->size, INVALID_SECTORS,
5308f117 11775 0, 0, info.consistency_policy, 1))
471bceb6
KW
11776 change = -1;
11777
11778 if (check_devs) {
11779 struct intel_super *super = st->sb;
11780 struct imsm_super *mpb = super->anchor;
11781
11782 if (mpb->num_raid_devs > 1) {
f1cc8ab9
LF
11783 pr_err("Error. Cannot perform operation on %s- for this operation "
11784 "it MUST be single array in container\n", geo->dev_name);
471bceb6
KW
11785 change = -1;
11786 }
11787 }
11788
11789analyse_change_exit:
089f9d79
JS
11790 if (direction == ROLLBACK_METADATA_CHANGES &&
11791 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11792 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11793 change = -1;
11794 }
471bceb6 11795 return change;
694575e7
KW
11796}
11797
bb025c2f
KW
11798int imsm_takeover(struct supertype *st, struct geo_params *geo)
11799{
11800 struct intel_super *super = st->sb;
11801 struct imsm_update_takeover *u;
11802
503975b9 11803 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11804
11805 u->type = update_takeover;
11806 u->subarray = super->current_vol;
11807
11808 /* 10->0 transition */
11809 if (geo->level == 0)
11810 u->direction = R10_TO_R0;
11811
0529c688
KW
11812 /* 0->10 transition */
11813 if (geo->level == 10)
11814 u->direction = R0_TO_R10;
11815
bb025c2f
KW
11816 /* update metadata locally */
11817 imsm_update_metadata_locally(st, u,
11818 sizeof(struct imsm_update_takeover));
11819 /* and possibly remotely */
11820 if (st->update_tail)
11821 append_metadata_update(st, u,
11822 sizeof(struct imsm_update_takeover));
11823 else
11824 free(u);
11825
11826 return 0;
11827}
11828
895ffd99
MT
11829/* Flush size update if size calculated by num_data_stripes is higher than
11830 * imsm_dev_size to eliminate differences during reshape.
11831 * Mdmon will recalculate them correctly.
11832 * If subarray index is not set then check whole container.
11833 * Returns:
11834 * 0 - no error occurred
11835 * 1 - error detected
11836 */
11837static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11838{
11839 struct intel_super *super = st->sb;
11840 int tmp = super->current_vol;
11841 int ret_val = 1;
11842 int i;
11843
11844 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11845 if (subarray_index >= 0 && i != subarray_index)
11846 continue;
11847 super->current_vol = i;
11848 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11849 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11850 unsigned int disc_count = imsm_num_data_members(map);
11851 struct geo_params geo;
11852 struct imsm_update_size_change *update;
11853 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11854 unsigned long long d_size = imsm_dev_size(dev);
11855 int u_size;
11856
42e02e61 11857 if (calc_size == d_size)
895ffd99
MT
11858 continue;
11859
ff904202
MT
11860 /* There is a difference, confirm that imsm_dev_size is
11861 * smaller and push update.
895ffd99 11862 */
ff904202
MT
11863 if (d_size > calc_size) {
11864 pr_err("imsm: dev size of subarray %d is incorrect\n",
11865 i);
895ffd99
MT
11866 goto exit;
11867 }
11868 memset(&geo, 0, sizeof(struct geo_params));
11869 geo.size = d_size;
11870 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11871 &update);
895ffd99
MT
11872 imsm_update_metadata_locally(st, update, u_size);
11873 if (st->update_tail) {
11874 append_metadata_update(st, update, u_size);
11875 flush_metadata_updates(st);
11876 st->update_tail = &st->updates;
11877 } else {
11878 imsm_sync_metadata(st);
5ce5a15f 11879 free(update);
895ffd99
MT
11880 }
11881 }
11882 ret_val = 0;
11883exit:
11884 super->current_vol = tmp;
11885 return ret_val;
11886}
11887
d04f65f4
N
11888static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11889 int level,
78b10e66 11890 int layout, int chunksize, int raid_disks,
41784c88 11891 int delta_disks, char *backup, char *dev,
016e00f5 11892 int direction, int verbose)
78b10e66 11893{
78b10e66
N
11894 int ret_val = 1;
11895 struct geo_params geo;
11896
1ade5cc1 11897 dprintf("(enter)\n");
78b10e66 11898
71204a50 11899 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11900
11901 geo.dev_name = dev;
4dd2df09 11902 strcpy(geo.devnm, st->devnm);
78b10e66
N
11903 geo.size = size;
11904 geo.level = level;
11905 geo.layout = layout;
11906 geo.chunksize = chunksize;
11907 geo.raid_disks = raid_disks;
41784c88
AK
11908 if (delta_disks != UnSet)
11909 geo.raid_disks += delta_disks;
78b10e66 11910
1ade5cc1
N
11911 dprintf("for level : %i\n", geo.level);
11912 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 11913
4dd2df09 11914 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11915 /* On container level we can only increase number of devices. */
11916 dprintf("imsm: info: Container operation\n");
78b10e66 11917 int old_raid_disks = 0;
6dc0be30 11918
78b10e66 11919 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11920 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11921 struct imsm_update_reshape *u = NULL;
11922 int len;
11923
895ffd99
MT
11924 if (imsm_fix_size_mismatch(st, -1)) {
11925 dprintf("imsm: Cannot fix size mismatch\n");
11926 goto exit_imsm_reshape_super;
11927 }
11928
78b10e66
N
11929 len = imsm_create_metadata_update_for_reshape(
11930 st, &geo, old_raid_disks, &u);
11931
ed08d51c
AK
11932 if (len <= 0) {
11933 dprintf("imsm: Cannot prepare update\n");
11934 goto exit_imsm_reshape_super;
11935 }
11936
8dd70bce
AK
11937 ret_val = 0;
11938 /* update metadata locally */
11939 imsm_update_metadata_locally(st, u, len);
11940 /* and possibly remotely */
11941 if (st->update_tail)
11942 append_metadata_update(st, u, len);
11943 else
ed08d51c 11944 free(u);
8dd70bce 11945
694575e7 11946 } else {
7a862a02 11947 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11948 }
11949 } else {
11950 /* On volume level we support following operations
471bceb6
KW
11951 * - takeover: raid10 -> raid0; raid0 -> raid10
11952 * - chunk size migration
11953 * - migration: raid5 -> raid0; raid0 -> raid5
11954 */
11955 struct intel_super *super = st->sb;
11956 struct intel_dev *dev = super->devlist;
4dd2df09 11957 int change;
694575e7 11958 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11959 /* find requested device */
11960 while (dev) {
1011e834 11961 char *devnm =
4dd2df09
N
11962 imsm_find_array_devnm_by_subdev(
11963 dev->index, st->container_devnm);
11964 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11965 break;
11966 dev = dev->next;
11967 }
11968 if (dev == NULL) {
4dd2df09
N
11969 pr_err("Cannot find %s (%s) subarray\n",
11970 geo.dev_name, geo.devnm);
471bceb6
KW
11971 goto exit_imsm_reshape_super;
11972 }
11973 super->current_vol = dev->index;
fbf3d202 11974 change = imsm_analyze_change(st, &geo, direction);
694575e7 11975 switch (change) {
471bceb6 11976 case CH_TAKEOVER:
bb025c2f 11977 ret_val = imsm_takeover(st, &geo);
694575e7 11978 break;
48c5303a
PC
11979 case CH_MIGRATION: {
11980 struct imsm_update_reshape_migration *u = NULL;
11981 int len =
11982 imsm_create_metadata_update_for_migration(
11983 st, &geo, &u);
11984 if (len < 1) {
7a862a02 11985 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11986 break;
11987 }
471bceb6 11988 ret_val = 0;
48c5303a
PC
11989 /* update metadata locally */
11990 imsm_update_metadata_locally(st, u, len);
11991 /* and possibly remotely */
11992 if (st->update_tail)
11993 append_metadata_update(st, u, len);
11994 else
11995 free(u);
11996 }
11997 break;
7abc9871 11998 case CH_ARRAY_SIZE: {
f3871fdc
AK
11999 struct imsm_update_size_change *u = NULL;
12000 int len =
12001 imsm_create_metadata_update_for_size_change(
12002 st, &geo, &u);
12003 if (len < 1) {
7a862a02 12004 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
12005 break;
12006 }
12007 ret_val = 0;
12008 /* update metadata locally */
12009 imsm_update_metadata_locally(st, u, len);
12010 /* and possibly remotely */
12011 if (st->update_tail)
12012 append_metadata_update(st, u, len);
12013 else
12014 free(u);
7abc9871
AK
12015 }
12016 break;
471bceb6
KW
12017 default:
12018 ret_val = 1;
694575e7 12019 }
694575e7 12020 }
78b10e66 12021
ed08d51c 12022exit_imsm_reshape_super:
78b10e66
N
12023 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12024 return ret_val;
12025}
2cda7640 12026
0febb20c
AO
12027#define COMPLETED_OK 0
12028#define COMPLETED_NONE 1
12029#define COMPLETED_DELAYED 2
12030
12031static int read_completed(int fd, unsigned long long *val)
12032{
12033 int ret;
12034 char buf[50];
12035
12036 ret = sysfs_fd_get_str(fd, buf, 50);
12037 if (ret < 0)
12038 return ret;
12039
12040 ret = COMPLETED_OK;
12041 if (strncmp(buf, "none", 4) == 0) {
12042 ret = COMPLETED_NONE;
12043 } else if (strncmp(buf, "delayed", 7) == 0) {
12044 ret = COMPLETED_DELAYED;
12045 } else {
12046 char *ep;
12047 *val = strtoull(buf, &ep, 0);
12048 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12049 ret = -1;
12050 }
12051 return ret;
12052}
12053
eee67a47
AK
12054/*******************************************************************************
12055 * Function: wait_for_reshape_imsm
12056 * Description: Function writes new sync_max value and waits until
12057 * reshape process reach new position
12058 * Parameters:
12059 * sra : general array info
eee67a47
AK
12060 * ndata : number of disks in new array's layout
12061 * Returns:
12062 * 0 : success,
12063 * 1 : there is no reshape in progress,
12064 * -1 : fail
12065 ******************************************************************************/
ae9f01f8 12066int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 12067{
85ca499c 12068 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 12069 int retry = 3;
eee67a47 12070 unsigned long long completed;
ae9f01f8
AK
12071 /* to_complete : new sync_max position */
12072 unsigned long long to_complete = sra->reshape_progress;
12073 unsigned long long position_to_set = to_complete / ndata;
eee67a47 12074
4389ce73 12075 if (!is_fd_valid(fd)) {
1ade5cc1 12076 dprintf("cannot open reshape_position\n");
eee67a47 12077 return 1;
ae9f01f8 12078 }
eee67a47 12079
df2647fa
PB
12080 do {
12081 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12082 if (!retry) {
12083 dprintf("cannot read reshape_position (no reshape in progres)\n");
12084 close(fd);
12085 return 1;
12086 }
239b3cc0 12087 sleep_for(0, MSEC_TO_NSEC(30), true);
df2647fa
PB
12088 } else
12089 break;
12090 } while (retry--);
eee67a47 12091
85ca499c 12092 if (completed > position_to_set) {
1ade5cc1 12093 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12094 to_complete, position_to_set);
ae9f01f8
AK
12095 close(fd);
12096 return -1;
12097 }
12098 dprintf("Position set: %llu\n", position_to_set);
12099 if (sysfs_set_num(sra, NULL, "sync_max",
12100 position_to_set) != 0) {
1ade5cc1 12101 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12102 position_to_set);
12103 close(fd);
12104 return -1;
eee67a47
AK
12105 }
12106
eee67a47 12107 do {
0febb20c 12108 int rc;
eee67a47 12109 char action[20];
5ff3a780 12110 int timeout = 3000;
0febb20c 12111
5ff3a780 12112 sysfs_wait(fd, &timeout);
a47e44fb
AK
12113 if (sysfs_get_str(sra, NULL, "sync_action",
12114 action, 20) > 0 &&
d7d3809a 12115 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12116 if (strncmp(action, "idle", 4) == 0)
12117 break;
d7d3809a
AP
12118 close(fd);
12119 return -1;
12120 }
0febb20c
AO
12121
12122 rc = read_completed(fd, &completed);
12123 if (rc < 0) {
1ade5cc1 12124 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12125 close(fd);
12126 return 1;
0febb20c
AO
12127 } else if (rc == COMPLETED_NONE)
12128 break;
85ca499c 12129 } while (completed < position_to_set);
b2be2b62 12130
eee67a47
AK
12131 close(fd);
12132 return 0;
eee67a47
AK
12133}
12134
b915c95f
AK
12135/*******************************************************************************
12136 * Function: check_degradation_change
12137 * Description: Check that array hasn't become failed.
12138 * Parameters:
12139 * info : for sysfs access
12140 * sources : source disks descriptors
12141 * degraded: previous degradation level
12142 * Returns:
12143 * degradation level
12144 ******************************************************************************/
12145int check_degradation_change(struct mdinfo *info,
12146 int *sources,
12147 int degraded)
12148{
12149 unsigned long long new_degraded;
e1993023
LD
12150 int rv;
12151
12152 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12153 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12154 /* check each device to ensure it is still working */
12155 struct mdinfo *sd;
12156 new_degraded = 0;
12157 for (sd = info->devs ; sd ; sd = sd->next) {
12158 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12159 continue;
12160 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5 12161 char sbuf[100];
4389ce73 12162 int raid_disk = sd->disk.raid_disk;
cf52eff5 12163
b915c95f 12164 if (sysfs_get_str(info,
cf52eff5 12165 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12166 strstr(sbuf, "faulty") ||
12167 strstr(sbuf, "in_sync") == NULL) {
12168 /* this device is dead */
12169 sd->disk.state = (1<<MD_DISK_FAULTY);
4389ce73
MT
12170 if (raid_disk >= 0)
12171 close_fd(&sources[raid_disk]);
b915c95f
AK
12172 new_degraded++;
12173 }
12174 }
12175 }
12176 }
12177
12178 return new_degraded;
12179}
12180
10f22854
AK
12181/*******************************************************************************
12182 * Function: imsm_manage_reshape
12183 * Description: Function finds array under reshape and it manages reshape
12184 * process. It creates stripes backups (if required) and sets
942e1cdb 12185 * checkpoints.
10f22854
AK
12186 * Parameters:
12187 * afd : Backup handle (nattive) - not used
12188 * sra : general array info
12189 * reshape : reshape parameters - not used
12190 * st : supertype structure
12191 * blocks : size of critical section [blocks]
12192 * fds : table of source device descriptor
12193 * offsets : start of array (offest per devices)
12194 * dests : not used
12195 * destfd : table of destination device descriptor
12196 * destoffsets : table of destination offsets (per device)
12197 * Returns:
12198 * 1 : success, reshape is done
12199 * 0 : fail
12200 ******************************************************************************/
999b4972
N
12201static int imsm_manage_reshape(
12202 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12203 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12204 int *fds, unsigned long long *offsets,
12205 int dests, int *destfd, unsigned long long *destoffsets)
12206{
10f22854
AK
12207 int ret_val = 0;
12208 struct intel_super *super = st->sb;
594dc1b8 12209 struct intel_dev *dv;
de44e46f 12210 unsigned int sector_size = super->sector_size;
10f22854 12211 struct imsm_dev *dev = NULL;
9529d343 12212 struct imsm_map *map_src, *map_dest;
10f22854
AK
12213 int migr_vol_qan = 0;
12214 int ndata, odata; /* [bytes] */
12215 int chunk; /* [bytes] */
12216 struct migr_record *migr_rec;
12217 char *buf = NULL;
12218 unsigned int buf_size; /* [bytes] */
12219 unsigned long long max_position; /* array size [bytes] */
12220 unsigned long long next_step; /* [blocks]/[bytes] */
12221 unsigned long long old_data_stripe_length;
10f22854
AK
12222 unsigned long long start_src; /* [bytes] */
12223 unsigned long long start; /* [bytes] */
12224 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12225 int degraded = 0;
ab724b98 12226 int source_layout = 0;
895ffd99 12227 int subarray_index = -1;
10f22854 12228
79a16a9b
JS
12229 if (!sra)
12230 return ret_val;
12231
12232 if (!fds || !offsets)
10f22854
AK
12233 goto abort;
12234
12235 /* Find volume during the reshape */
12236 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12237 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12238 dv->dev->vol.migr_state == 1) {
10f22854
AK
12239 dev = dv->dev;
12240 migr_vol_qan++;
895ffd99 12241 subarray_index = dv->index;
10f22854
AK
12242 }
12243 }
12244 /* Only one volume can migrate at the same time */
12245 if (migr_vol_qan != 1) {
676e87a8 12246 pr_err("%s", migr_vol_qan ?
10f22854
AK
12247 "Number of migrating volumes greater than 1\n" :
12248 "There is no volume during migrationg\n");
12249 goto abort;
12250 }
12251
9529d343 12252 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12253 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12254 if (map_src == NULL)
12255 goto abort;
10f22854 12256
9529d343
MD
12257 ndata = imsm_num_data_members(map_dest);
12258 odata = imsm_num_data_members(map_src);
10f22854 12259
7b1ab482 12260 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12261 old_data_stripe_length = odata * chunk;
12262
12263 migr_rec = super->migr_rec;
12264
10f22854
AK
12265 /* initialize migration record for start condition */
12266 if (sra->reshape_progress == 0)
12267 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12268 else {
12269 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12270 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12271 goto abort;
12272 }
6a75c8ca
AK
12273 /* Save checkpoint to update migration record for current
12274 * reshape position (in md). It can be farther than current
12275 * reshape position in metadata.
12276 */
12277 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12278 /* ignore error == 2, this can mean end of reshape here
12279 */
7a862a02 12280 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12281 goto abort;
12282 }
b2c59438 12283 }
10f22854
AK
12284
12285 /* size for data */
12286 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12287 /* extend buffer size for parity disk */
12288 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12289 /* add space for stripe alignment */
10f22854 12290 buf_size += old_data_stripe_length;
de44e46f
PB
12291 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12292 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12293 goto abort;
12294 }
12295
3ef4403c 12296 max_position = sra->component_size * ndata;
68eb8bc6 12297 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12298
9f421827
PB
12299 while (current_migr_unit(migr_rec) <
12300 get_num_migr_units(migr_rec)) {
10f22854
AK
12301 /* current reshape position [blocks] */
12302 unsigned long long current_position =
12303 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12304 * current_migr_unit(migr_rec);
10f22854
AK
12305 unsigned long long border;
12306
b915c95f
AK
12307 /* Check that array hasn't become failed.
12308 */
12309 degraded = check_degradation_change(sra, fds, degraded);
12310 if (degraded > 1) {
7a862a02 12311 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12312 goto abort;
12313 }
12314
10f22854
AK
12315 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12316
12317 if ((current_position + next_step) > max_position)
12318 next_step = max_position - current_position;
12319
92144abf 12320 start = current_position * 512;
10f22854 12321
942e1cdb 12322 /* align reading start to old geometry */
10f22854
AK
12323 start_buf_shift = start % old_data_stripe_length;
12324 start_src = start - start_buf_shift;
12325
12326 border = (start_src / odata) - (start / ndata);
12327 border /= 512;
12328 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12329 /* save critical stripes to buf
12330 * start - start address of current unit
12331 * to backup [bytes]
12332 * start_src - start address of current unit
12333 * to backup alligned to source array
12334 * [bytes]
12335 */
594dc1b8 12336 unsigned long long next_step_filler;
10f22854
AK
12337 unsigned long long copy_length = next_step * 512;
12338
12339 /* allign copy area length to stripe in old geometry */
12340 next_step_filler = ((copy_length + start_buf_shift)
12341 % old_data_stripe_length);
12342 if (next_step_filler)
12343 next_step_filler = (old_data_stripe_length
12344 - next_step_filler);
7a862a02 12345 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12346 start, start_src, copy_length,
12347 start_buf_shift, next_step_filler);
12348
12349 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12350 chunk, map_src->raid_level,
12351 source_layout, 0, NULL, start_src,
10f22854
AK
12352 copy_length +
12353 next_step_filler + start_buf_shift,
12354 buf)) {
7a862a02 12355 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12356 goto abort;
12357 }
12358 /* Convert data to destination format and store it
12359 * in backup general migration area
12360 */
12361 if (save_backup_imsm(st, dev, sra,
aea93171 12362 buf + start_buf_shift, copy_length)) {
7a862a02 12363 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12364 goto abort;
12365 }
12366 if (save_checkpoint_imsm(st, sra,
12367 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12368 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12369 goto abort;
12370 }
8016a6d4
AK
12371 } else {
12372 /* set next step to use whole border area */
12373 border /= next_step;
12374 if (border > 1)
12375 next_step *= border;
10f22854
AK
12376 }
12377 /* When data backed up, checkpoint stored,
12378 * kick the kernel to reshape unit of data
12379 */
12380 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12381 /* limit next step to array max position */
12382 if (next_step > max_position)
12383 next_step = max_position;
10f22854
AK
12384 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12385 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12386 sra->reshape_progress = next_step;
10f22854
AK
12387
12388 /* wait until reshape finish */
c85338c6 12389 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12390 dprintf("wait_for_reshape_imsm returned error!\n");
12391 goto abort;
12392 }
84d11e6c
N
12393 if (sigterm)
12394 goto abort;
10f22854 12395
0228d92c
AK
12396 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12397 /* ignore error == 2, this can mean end of reshape here
12398 */
7a862a02 12399 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12400 goto abort;
12401 }
12402
12403 }
12404
71e5411e
PB
12405 /* clear migr_rec on disks after successful migration */
12406 struct dl *d;
12407
85337573 12408 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12409 for (d = super->disks; d; d = d->next) {
12410 if (d->index < 0 || is_failed(&d->disk))
12411 continue;
12412 unsigned long long dsize;
12413
12414 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12415 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12416 SEEK_SET) >= 0) {
466070ad 12417 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12418 MIGR_REC_BUF_SECTORS*sector_size) !=
12419 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12420 perror("Write migr_rec failed");
12421 }
12422 }
12423
10f22854
AK
12424 /* return '1' if done */
12425 ret_val = 1;
895ffd99
MT
12426
12427 /* After the reshape eliminate size mismatch in metadata.
12428 * Don't update md/component_size here, volume hasn't
12429 * to take whole space. It is allowed by kernel.
12430 * md/component_size will be set propoperly after next assembly.
12431 */
12432 imsm_fix_size_mismatch(st, subarray_index);
12433
10f22854
AK
12434abort:
12435 free(buf);
942e1cdb
N
12436 /* See Grow.c: abort_reshape() for further explanation */
12437 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12438 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12439 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12440
12441 return ret_val;
999b4972 12442}
0c21b485 12443
fbc42556
JR
12444/*******************************************************************************
12445 * Function: calculate_bitmap_min_chunksize
12446 * Description: Calculates the minimal valid bitmap chunk size
12447 * Parameters:
12448 * max_bits : indicate how many bits can be used for the bitmap
12449 * data_area_size : the size of the data area covered by the bitmap
12450 *
12451 * Returns:
12452 * The bitmap chunk size
12453 ******************************************************************************/
12454static unsigned long long
12455calculate_bitmap_min_chunksize(unsigned long long max_bits,
12456 unsigned long long data_area_size)
12457{
12458 unsigned long long min_chunk =
12459 4096; /* sub-page chunks don't work yet.. */
12460 unsigned long long bits = data_area_size / min_chunk + 1;
12461
12462 while (bits > max_bits) {
12463 min_chunk *= 2;
12464 bits = (bits + 1) / 2;
12465 }
12466 return min_chunk;
12467}
12468
12469/*******************************************************************************
12470 * Function: calculate_bitmap_chunksize
12471 * Description: Calculates the bitmap chunk size for the given device
12472 * Parameters:
12473 * st : supertype information
12474 * dev : device for the bitmap
12475 *
12476 * Returns:
12477 * The bitmap chunk size
12478 ******************************************************************************/
12479static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12480 struct imsm_dev *dev)
12481{
12482 struct intel_super *super = st->sb;
12483 unsigned long long min_chunksize;
12484 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12485 size_t dev_size = imsm_dev_size(dev);
12486
12487 min_chunksize = calculate_bitmap_min_chunksize(
12488 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12489
12490 if (result < min_chunksize)
12491 result = min_chunksize;
12492
12493 return result;
12494}
12495
12496/*******************************************************************************
12497 * Function: init_bitmap_header
12498 * Description: Initialize the bitmap header structure
12499 * Parameters:
12500 * st : supertype information
12501 * bms : bitmap header struct to initialize
12502 * dev : device for the bitmap
12503 *
12504 * Returns:
12505 * 0 : success
12506 * -1 : fail
12507 ******************************************************************************/
12508static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12509 struct imsm_dev *dev)
12510{
12511 int vol_uuid[4];
12512
12513 if (!bms || !dev)
12514 return -1;
12515
12516 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12517 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12518 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12519 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12520 bms->write_behind = __cpu_to_le32(0);
12521
12522 uuid_from_super_imsm(st, vol_uuid);
12523 memcpy(bms->uuid, vol_uuid, 16);
12524
12525 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12526
12527 return 0;
12528}
12529
12530/*******************************************************************************
12531 * Function: validate_internal_bitmap_for_drive
12532 * Description: Verify if the bitmap header for a given drive.
12533 * Parameters:
12534 * st : supertype information
12535 * offset : The offset from the beginning of the drive where to look for
12536 * the bitmap header.
12537 * d : the drive info
12538 *
12539 * Returns:
12540 * 0 : success
12541 * -1 : fail
12542 ******************************************************************************/
12543static int validate_internal_bitmap_for_drive(struct supertype *st,
12544 unsigned long long offset,
12545 struct dl *d)
12546{
12547 struct intel_super *super = st->sb;
12548 int ret = -1;
12549 int vol_uuid[4];
12550 bitmap_super_t *bms;
12551 int fd;
12552
12553 if (!d)
12554 return -1;
12555
12556 void *read_buf;
12557
12558 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12559 return -1;
12560
12561 fd = d->fd;
4389ce73 12562 if (!is_fd_valid(fd)) {
fbc42556 12563 fd = open(d->devname, O_RDONLY, 0);
4389ce73
MT
12564
12565 if (!is_fd_valid(fd)) {
fbc42556
JR
12566 dprintf("cannot open the device %s\n", d->devname);
12567 goto abort;
12568 }
12569 }
12570
12571 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12572 goto abort;
12573 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12574 IMSM_BITMAP_HEADER_SIZE)
12575 goto abort;
12576
12577 uuid_from_super_imsm(st, vol_uuid);
12578
12579 bms = read_buf;
12580 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12581 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12582 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12583 dprintf("wrong bitmap header detected\n");
12584 goto abort;
12585 }
12586
12587 ret = 0;
12588abort:
4389ce73
MT
12589 if (!is_fd_valid(d->fd))
12590 close_fd(&fd);
12591
fbc42556
JR
12592 if (read_buf)
12593 free(read_buf);
12594
12595 return ret;
12596}
12597
12598/*******************************************************************************
12599 * Function: validate_internal_bitmap_imsm
12600 * Description: Verify if the bitmap header is in place and with proper data.
12601 * Parameters:
12602 * st : supertype information
12603 *
12604 * Returns:
12605 * 0 : success or device w/o RWH_BITMAP
12606 * -1 : fail
12607 ******************************************************************************/
12608static int validate_internal_bitmap_imsm(struct supertype *st)
12609{
12610 struct intel_super *super = st->sb;
12611 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12612 unsigned long long offset;
12613 struct dl *d;
12614
fbc42556
JR
12615 if (dev->rwh_policy != RWH_BITMAP)
12616 return 0;
12617
12618 offset = get_bitmap_header_sector(super, super->current_vol);
12619 for (d = super->disks; d; d = d->next) {
12620 if (d->index < 0 || is_failed(&d->disk))
12621 continue;
12622
12623 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12624 pr_err("imsm: bitmap validation failed\n");
12625 return -1;
12626 }
12627 }
12628 return 0;
12629}
12630
12631/*******************************************************************************
12632 * Function: add_internal_bitmap_imsm
12633 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12634 * Parameters:
12635 * st : supertype information
12636 * chunkp : bitmap chunk size
12637 * delay : not used for imsm
12638 * write_behind : not used for imsm
12639 * size : not used for imsm
12640 * may_change : not used for imsm
12641 * amajor : not used for imsm
12642 *
12643 * Returns:
12644 * 0 : success
12645 * -1 : fail
12646 ******************************************************************************/
12647static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12648 int delay, int write_behind,
12649 unsigned long long size, int may_change,
12650 int amajor)
12651{
12652 struct intel_super *super = st->sb;
12653 int vol_idx = super->current_vol;
12654 struct imsm_dev *dev;
12655
12656 if (!super->devlist || vol_idx == -1 || !chunkp)
12657 return -1;
12658
12659 dev = get_imsm_dev(super, vol_idx);
fbc42556 12660 dev->rwh_policy = RWH_BITMAP;
fbc42556 12661 *chunkp = calculate_bitmap_chunksize(st, dev);
fbc42556
JR
12662 return 0;
12663}
12664
12665/*******************************************************************************
12666 * Function: locate_bitmap_imsm
12667 * Description: Seek 'fd' to start of write-intent-bitmap.
12668 * Parameters:
12669 * st : supertype information
12670 * fd : file descriptor for the device
12671 * node_num : not used for imsm
12672 *
12673 * Returns:
12674 * 0 : success
12675 * -1 : fail
12676 ******************************************************************************/
12677static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12678{
12679 struct intel_super *super = st->sb;
12680 unsigned long long offset;
12681 int vol_idx = super->current_vol;
12682
12683 if (!super->devlist || vol_idx == -1)
12684 return -1;
12685
12686 offset = get_bitmap_header_sector(super, super->current_vol);
12687 dprintf("bitmap header offset is %llu\n", offset);
12688
12689 lseek64(fd, offset << 9, 0);
12690
12691 return 0;
12692}
12693
12694/*******************************************************************************
12695 * Function: write_init_bitmap_imsm
12696 * Description: Write a bitmap header and prepares the area for the bitmap.
12697 * Parameters:
12698 * st : supertype information
12699 * fd : file descriptor for the device
12700 * update : not used for imsm
12701 *
12702 * Returns:
12703 * 0 : success
12704 * -1 : fail
12705 ******************************************************************************/
12706static int write_init_bitmap_imsm(struct supertype *st, int fd,
12707 enum bitmap_update update)
12708{
12709 struct intel_super *super = st->sb;
12710 int vol_idx = super->current_vol;
12711 int ret = 0;
12712 unsigned long long offset;
12713 bitmap_super_t bms = { 0 };
12714 size_t written = 0;
12715 size_t to_write;
12716 ssize_t rv_num;
12717 void *buf;
12718
12719 if (!super->devlist || !super->sector_size || vol_idx == -1)
12720 return -1;
12721
12722 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12723
12724 /* first clear the space for bitmap header */
12725 unsigned long long bitmap_area_start =
12726 get_bitmap_header_sector(super, vol_idx);
12727
12728 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12729 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12730 if (zero_disk_range(fd, bitmap_area_start,
12731 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12732 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12733 return -1;
12734 }
12735
12736 /* The bitmap area should be filled with "1"s to perform initial
12737 * synchronization.
12738 */
12739 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12740 return -1;
12741 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12742 offset = get_bitmap_sector(super, vol_idx);
12743 lseek64(fd, offset << 9, 0);
12744 while (written < IMSM_BITMAP_AREA_SIZE) {
12745 to_write = IMSM_BITMAP_AREA_SIZE - written;
12746 if (to_write > MAX_SECTOR_SIZE)
12747 to_write = MAX_SECTOR_SIZE;
12748 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12749 if (rv_num != MAX_SECTOR_SIZE) {
12750 ret = -1;
12751 dprintf("cannot initialize bitmap area\n");
12752 goto abort;
12753 }
12754 written += rv_num;
12755 }
12756
12757 /* write a bitmap header */
12758 init_bitmap_header(st, &bms, dev);
12759 memset(buf, 0, MAX_SECTOR_SIZE);
12760 memcpy(buf, &bms, sizeof(bitmap_super_t));
12761 if (locate_bitmap_imsm(st, fd, 0)) {
12762 ret = -1;
12763 dprintf("cannot locate the bitmap\n");
12764 goto abort;
12765 }
12766 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12767 ret = -1;
12768 dprintf("cannot write the bitmap header\n");
12769 goto abort;
12770 }
12771 fsync(fd);
12772
12773abort:
12774 free(buf);
12775
12776 return ret;
12777}
12778
12779/*******************************************************************************
12780 * Function: is_vol_to_setup_bitmap
12781 * Description: Checks if a bitmap should be activated on the dev.
12782 * Parameters:
12783 * info : info about the volume to setup the bitmap
12784 * dev : the device to check against bitmap creation
12785 *
12786 * Returns:
12787 * 0 : bitmap should be set up on the device
12788 * -1 : otherwise
12789 ******************************************************************************/
12790static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12791{
12792 if (!dev || !info)
12793 return -1;
12794
12795 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12796 (dev->rwh_policy == RWH_BITMAP))
12797 return -1;
12798
12799 return 0;
12800}
12801
12802/*******************************************************************************
12803 * Function: set_bitmap_sysfs
12804 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12805 * Parameters:
12806 * info : info about the volume where the bitmap should be setup
12807 * chunksize : bitmap chunk size
12808 * location : location of the bitmap
12809 *
12810 * Returns:
12811 * 0 : success
12812 * -1 : fail
12813 ******************************************************************************/
12814static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12815 char *location)
12816{
12817 /* The bitmap/metadata is set to external to allow changing of value for
12818 * bitmap/location. When external is used, the kernel will treat an offset
12819 * related to the device's first lba (in opposition to the "internal" case
12820 * when this value is related to the beginning of the superblock).
12821 */
12822 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12823 dprintf("failed to set bitmap/metadata\n");
12824 return -1;
12825 }
12826
12827 /* It can only be changed when no bitmap is active.
12828 * Should be bigger than 512 and must be power of 2.
12829 * It is expecting the value in bytes.
12830 */
12831 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12832 __cpu_to_le32(chunksize))) {
12833 dprintf("failed to set bitmap/chunksize\n");
12834 return -1;
12835 }
12836
12837 /* It is expecting the value in sectors. */
12838 if (sysfs_set_num(info, NULL, "bitmap/space",
12839 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12840 dprintf("failed to set bitmap/space\n");
12841 return -1;
12842 }
12843
12844 /* Determines the delay between the bitmap updates.
12845 * It is expecting the value in seconds.
12846 */
12847 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12848 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12849 dprintf("failed to set bitmap/time_base\n");
12850 return -1;
12851 }
12852
12853 /* It is expecting the value in sectors with a sign at the beginning. */
12854 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12855 dprintf("failed to set bitmap/location\n");
12856 return -1;
12857 }
12858
12859 return 0;
12860}
12861
12862/*******************************************************************************
12863 * Function: set_bitmap_imsm
12864 * Description: Setup the bitmap for the given volume
12865 * Parameters:
12866 * st : supertype information
12867 * info : info about the volume where the bitmap should be setup
12868 *
12869 * Returns:
12870 * 0 : success
12871 * -1 : fail
12872 ******************************************************************************/
12873static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12874{
12875 struct intel_super *super = st->sb;
12876 int prev_current_vol = super->current_vol;
12877 struct imsm_dev *dev;
12878 int ret = -1;
12879 char location[16] = "";
12880 unsigned long long chunksize;
12881 struct intel_dev *dev_it;
12882
12883 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12884 super->current_vol = dev_it->index;
12885 dev = get_imsm_dev(super, super->current_vol);
12886
12887 if (is_vol_to_setup_bitmap(info, dev)) {
12888 if (validate_internal_bitmap_imsm(st)) {
12889 dprintf("bitmap header validation failed\n");
12890 goto abort;
12891 }
12892
12893 chunksize = calculate_bitmap_chunksize(st, dev);
12894 dprintf("chunk size is %llu\n", chunksize);
12895
12896 snprintf(location, sizeof(location), "+%llu",
12897 get_bitmap_sector(super, super->current_vol));
12898 dprintf("bitmap offset is %s\n", location);
12899
12900 if (set_bitmap_sysfs(info, chunksize, location)) {
12901 dprintf("cannot setup the bitmap\n");
12902 goto abort;
12903 }
12904 }
12905 }
12906 ret = 0;
12907abort:
12908 super->current_vol = prev_current_vol;
12909 return ret;
12910}
12911
cdddbdbc 12912struct superswitch super_imsm = {
cdddbdbc
DW
12913 .examine_super = examine_super_imsm,
12914 .brief_examine_super = brief_examine_super_imsm,
4737ae25 12915 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 12916 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
12917 .detail_super = detail_super_imsm,
12918 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 12919 .write_init_super = write_init_super_imsm,
0e600426
N
12920 .validate_geometry = validate_geometry_imsm,
12921 .add_to_super = add_to_super_imsm,
1a64be56 12922 .remove_from_super = remove_from_super_imsm,
d665cc31 12923 .detail_platform = detail_platform_imsm,
e50cf220 12924 .export_detail_platform = export_detail_platform_imsm,
33414a01 12925 .kill_subarray = kill_subarray_imsm,
aa534678 12926 .update_subarray = update_subarray_imsm,
2b959fbf 12927 .load_container = load_container_imsm,
71204a50
N
12928 .default_geometry = default_geometry_imsm,
12929 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12930 .reshape_super = imsm_reshape_super,
12931 .manage_reshape = imsm_manage_reshape,
9e2d750d 12932 .recover_backup = recover_backup_imsm,
27156a57 12933 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12934 .match_home = match_home_imsm,
12935 .uuid_from_super= uuid_from_super_imsm,
12936 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12937 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12938 .update_super = update_super_imsm,
12939
12940 .avail_size = avail_size_imsm,
fbfdcb06 12941 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12942
12943 .compare_super = compare_super_imsm,
12944
12945 .load_super = load_super_imsm,
bf5a934a 12946 .init_super = init_super_imsm,
e683ca88 12947 .store_super = store_super_imsm,
cdddbdbc
DW
12948 .free_super = free_super_imsm,
12949 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12950 .container_content = container_content_imsm,
0c21b485 12951 .validate_container = validate_container_imsm,
cdddbdbc 12952
fbc42556
JR
12953 .add_internal_bitmap = add_internal_bitmap_imsm,
12954 .locate_bitmap = locate_bitmap_imsm,
12955 .write_bitmap = write_init_bitmap_imsm,
12956 .set_bitmap = set_bitmap_imsm,
12957
2432ce9b
AP
12958 .write_init_ppl = write_init_ppl_imsm,
12959 .validate_ppl = validate_ppl_imsm,
12960
cdddbdbc 12961 .external = 1,
4cce4069 12962 .name = "imsm",
845dea95
NB
12963
12964/* for mdmon */
12965 .open_new = imsm_open_new,
ed9d66aa 12966 .set_array_state= imsm_set_array_state,
845dea95
NB
12967 .set_disk = imsm_set_disk,
12968 .sync_metadata = imsm_sync_metadata,
88758e9d 12969 .activate_spare = imsm_activate_spare,
e8319a19 12970 .process_update = imsm_process_update,
8273f55e 12971 .prepare_update = imsm_prepare_update,
6f50473f 12972 .record_bad_block = imsm_record_badblock,
c07a5a4f 12973 .clear_bad_block = imsm_clear_badblock,
928f1424 12974 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 12975};