]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
mdadm: define DEV_MD_DIR
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
420dafcd 23#include "dlink.h"
51006d85 24#include "sha1.h"
88c32bb1 25#include "platform-intel.h"
cdddbdbc
DW
26#include <values.h>
27#include <scsi/sg.h>
28#include <ctype.h>
d665cc31 29#include <dirent.h>
cdddbdbc
DW
30
31/* MPB == Metadata Parameter Block */
32#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
33#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
34#define MPB_VERSION_RAID0 "1.0.00"
35#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
36#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
37#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 38#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
39#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
40#define MPB_VERSION_CNG "1.2.06"
41#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
42#define MAX_SIGNATURE_LENGTH 32
43#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 44
19482bcc
AK
45/* supports RAID0 */
46#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
47/* supports RAID1 */
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49/* supports RAID10 */
50#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
51/* supports RAID1E */
52#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
53/* supports RAID5 */
54#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
55/* supports RAID CNG */
56#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
57/* supports expanded stripe sizes of 256K, 512K and 1MB */
58#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
59
60/* The OROM Support RST Caching of Volumes */
61#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
62/* The OROM supports creating disks greater than 2TB */
63#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
64/* The OROM supports Bad Block Management */
65#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
66
67/* THe OROM Supports NVM Caching of Volumes */
68#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
69/* The OROM supports creating volumes greater than 2TB */
70#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
71/* originally for PMP, now it's wasted b/c. Never use this bit! */
72#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
73/* Verify MPB contents against checksum after reading MPB */
74#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
75
76/* Define all supported attributes that have to be accepted by mdadm
77 */
418f9b36 78#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
79 MPB_ATTRIB_2TB | \
80 MPB_ATTRIB_2TB_DISK | \
81 MPB_ATTRIB_RAID0 | \
82 MPB_ATTRIB_RAID1 | \
83 MPB_ATTRIB_RAID10 | \
84 MPB_ATTRIB_RAID5 | \
bbab0940
TM
85 MPB_ATTRIB_EXP_STRIPE_SIZE | \
86 MPB_ATTRIB_BBM)
418f9b36
N
87
88/* Define attributes that are unused but not harmful */
89#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 90
8e59f3d8 91#define MPB_SECTOR_CNT 2210
611d9529
MD
92#define IMSM_RESERVED_SECTORS 8192
93#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 94#define SECT_PER_MB_SHIFT 11
f36a9ecd 95#define MAX_SECTOR_SIZE 4096
c2462068
PB
96#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
97 * mutliple PPL area
98 */
cdddbdbc 99
fbc42556
JR
100/*
101 * Internal Write-intent bitmap is stored in the same area where PPL.
102 * Both features are mutually exclusive, so it is not an issue.
103 * The first 8KiB of the area are reserved and shall not be used.
104 */
105#define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
106
107#define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
108#define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
109
110#define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
111#define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
112#define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
113
114#define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
115#define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
116
761e3bd9
N
117/*
118 * This macro let's us ensure that no-one accidentally
119 * changes the size of a struct
120 */
121#define ASSERT_SIZE(_struct, size) \
122static inline void __assert_size_##_struct(void) \
123{ \
124 switch (0) { \
125 case 0: break; \
126 case (sizeof(struct _struct) == size): break; \
127 } \
128}
129
cdddbdbc
DW
130/* Disk configuration info. */
131#define IMSM_MAX_DEVICES 255
132struct imsm_disk {
133 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 134 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 135 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
136#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
137#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
138#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 139#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 140 __u32 status; /* 0xF0 - 0xF3 */
1011e834 141 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
142 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
143#define IMSM_DISK_FILLERS 3
144 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc 145};
761e3bd9 146ASSERT_SIZE(imsm_disk, 48)
cdddbdbc 147
3b451610
AK
148/* map selector for map managment
149 */
238c0a71
AK
150#define MAP_0 0
151#define MAP_1 1
152#define MAP_X -1
3b451610 153
cdddbdbc
DW
154/* RAID map configuration infos. */
155struct imsm_map {
5551b113
CA
156 __u32 pba_of_lba0_lo; /* start address of partition */
157 __u32 blocks_per_member_lo;/* blocks per member */
158 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
159 __u16 blocks_per_strip;
160 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
161#define IMSM_T_STATE_NORMAL 0
162#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
163#define IMSM_T_STATE_DEGRADED 2
164#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
165 __u8 raid_level;
166#define IMSM_T_RAID0 0
167#define IMSM_T_RAID1 1
168#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
169 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
170 __u8 num_domains; /* number of parity domains */
171 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 172 __u8 ddf;
5551b113
CA
173 __u32 pba_of_lba0_hi;
174 __u32 blocks_per_member_hi;
175 __u32 num_data_stripes_hi;
176 __u32 filler[4]; /* expansion area */
7eef0453 177#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 178 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
179 * top byte contains some flags
180 */
761e3bd9
N
181};
182ASSERT_SIZE(imsm_map, 52)
cdddbdbc
DW
183
184struct imsm_vol {
4036e7ee 185 __u32 curr_migr_unit_lo;
fe7ed8cb 186 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 187 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
188#define MIGR_INIT 0
189#define MIGR_REBUILD 1
190#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
191#define MIGR_GEN_MIGR 3
192#define MIGR_STATE_CHANGE 4
1484e727 193#define MIGR_REPAIR 5
cdddbdbc 194 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
195#define RAIDVOL_CLEAN 0
196#define RAIDVOL_DIRTY 1
197#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 198 __u8 dirty;
fe7ed8cb
DW
199 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
200 __u16 verify_errors; /* number of mismatches */
201 __u16 bad_blocks; /* number of bad blocks during verify */
4036e7ee
MT
202 __u32 curr_migr_unit_hi;
203 __u32 filler[3];
cdddbdbc
DW
204 struct imsm_map map[1];
205 /* here comes another one if migr_state */
761e3bd9
N
206};
207ASSERT_SIZE(imsm_vol, 84)
cdddbdbc
DW
208
209struct imsm_dev {
fe7ed8cb 210 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
211 __u32 size_low;
212 __u32 size_high;
fe7ed8cb
DW
213#define DEV_BOOTABLE __cpu_to_le32(0x01)
214#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
215#define DEV_READ_COALESCING __cpu_to_le32(0x04)
216#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
217#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
218#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
219#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
220#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
221#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
222#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
223#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
224#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
225#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
226 __u32 status; /* Persistent RaidDev status */
227 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
228 __u8 migr_priority;
229 __u8 num_sub_vols;
230 __u8 tid;
231 __u8 cng_master_disk;
232 __u16 cache_policy;
233 __u8 cng_state;
234 __u8 cng_sub_state;
2432ce9b
AP
235 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
236
237 /* NVM_EN */
238 __u8 nv_cache_mode;
239 __u8 nv_cache_flags;
240
241 /* Unique Volume Id of the NvCache Volume associated with this volume */
242 __u32 nvc_vol_orig_family_num;
243 __u16 nvc_vol_raid_dev_num;
244
245#define RWH_OFF 0
246#define RWH_DISTRIBUTED 1
247#define RWH_JOURNALING_DRIVE 2
c2462068
PB
248#define RWH_MULTIPLE_DISTRIBUTED 3
249#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
250#define RWH_MULTIPLE_OFF 5
fbc42556 251#define RWH_BITMAP 6
2432ce9b
AP
252 __u8 rwh_policy; /* Raid Write Hole Policy */
253 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
254 __u8 filler1;
255
256#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
257 __u32 filler[IMSM_DEV_FILLERS];
258 struct imsm_vol vol;
761e3bd9
N
259};
260ASSERT_SIZE(imsm_dev, 164)
cdddbdbc
DW
261
262struct imsm_super {
263 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
264 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
265 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
266 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
267 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
268 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
269 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
270 __u8 num_disks; /* 0x38 Number of configured disks */
271 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
272 __u8 error_log_pos; /* 0x3A */
273 __u8 fill[1]; /* 0x3B */
274 __u32 cache_size; /* 0x3c - 0x40 in mb */
275 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
276 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
277 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
278 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
279 * volume IDs for raid_dev created in this array
280 * (starts at 1)
281 */
282 __u16 filler1; /* 0x4E - 0x4F */
e48aed3c
AP
283 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
284#define IMSM_FILLERS 32
285 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
286 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
287 /* here comes imsm_dev[num_raid_devs] */
604b746f 288 /* here comes BBM logs */
761e3bd9
N
289};
290ASSERT_SIZE(imsm_super, 264)
cdddbdbc 291
604b746f 292#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
293#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
294#define BBM_LOG_SIGNATURE 0xabadb10c
295
296struct bbm_log_block_addr {
297 __u16 w1;
298 __u32 dw1;
299} __attribute__ ((__packed__));
604b746f
JD
300
301struct bbm_log_entry {
8d67477f
TM
302 __u8 marked_count; /* Number of blocks marked - 1 */
303 __u8 disk_ordinal; /* Disk entry within the imsm_super */
304 struct bbm_log_block_addr defective_block_start;
604b746f
JD
305} __attribute__ ((__packed__));
306
307struct bbm_log {
308 __u32 signature; /* 0xABADB10C */
309 __u32 entry_count;
8d67477f 310 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
761e3bd9
N
311};
312ASSERT_SIZE(bbm_log, 2040)
604b746f 313
cdddbdbc 314static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 315
b53bfba6
TM
316#define BLOCKS_PER_KB (1024/512)
317
8e59f3d8
AK
318#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
319
320#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
321
de44e46f
PB
322#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
323#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
324 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
325 */
326
8e59f3d8
AK
327#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
328 * be recovered using srcMap */
329#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
330 * already been migrated and must
331 * be recovered from checkpoint area */
2432ce9b 332
c2462068 333#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 334
8e59f3d8
AK
335struct migr_record {
336 __u32 rec_status; /* Status used to determine how to restart
337 * migration in case it aborts
338 * in some fashion */
9f421827 339 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
8e59f3d8
AK
340 __u32 family_num; /* Family number of MPB
341 * containing the RaidDev
342 * that is migrating */
343 __u32 ascending_migr; /* True if migrating in increasing
344 * order of lbas */
345 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
346 __u32 dest_depth_per_unit; /* Num member blocks each destMap
347 * member disk
348 * advances per unit-of-operation */
9f421827
PB
349 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
350 __u32 dest_1st_member_lba_lo; /* First member lba on first
351 * stripe of destination */
352 __u32 num_migr_units_lo; /* Total num migration units-of-op */
8e59f3d8
AK
353 __u32 post_migr_vol_cap; /* Size of volume after
354 * migration completes */
355 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
356 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
357 * migration ckpt record was read from
358 * (for recovered migrations) */
9f421827
PB
359 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
360 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
361 * high order 32 bits */
362 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
363 * destination - high order 32 bits */
364 __u32 num_migr_units_hi; /* Total num migration units-of-op
365 * high order 32 bits */
4036e7ee 366 __u32 filler[16];
761e3bd9 367};
4036e7ee 368ASSERT_SIZE(migr_record, 128)
8e59f3d8 369
76c152ca
MT
370/**
371 * enum imsm_status - internal IMSM return values representation.
372 * @STATUS_OK: function succeeded.
373 * @STATUS_ERROR: General error ocurred (not specified).
374 *
375 * Typedefed to imsm_status_t.
376 */
377typedef enum imsm_status {
378 IMSM_STATUS_ERROR = -1,
379 IMSM_STATUS_OK = 0,
380} imsm_status_t;
381
ec50f7b6
LM
382struct md_list {
383 /* usage marker:
384 * 1: load metadata
385 * 2: metadata does not match
386 * 4: already checked
387 */
388 int used;
389 char *devname;
390 int found;
391 int container;
392 dev_t st_rdev;
393 struct md_list *next;
394};
395
e7b84f9d 396#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 397
1484e727
DW
398static __u8 migr_type(struct imsm_dev *dev)
399{
400 if (dev->vol.migr_type == MIGR_VERIFY &&
401 dev->status & DEV_VERIFY_AND_FIX)
402 return MIGR_REPAIR;
403 else
404 return dev->vol.migr_type;
405}
406
407static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
408{
409 /* for compatibility with older oroms convert MIGR_REPAIR, into
410 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
411 */
412 if (migr_type == MIGR_REPAIR) {
413 dev->vol.migr_type = MIGR_VERIFY;
414 dev->status |= DEV_VERIFY_AND_FIX;
415 } else {
416 dev->vol.migr_type = migr_type;
417 dev->status &= ~DEV_VERIFY_AND_FIX;
418 }
419}
420
f36a9ecd 421static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 422{
f36a9ecd 423 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 424}
cdddbdbc 425
f36a9ecd
PB
426static unsigned int mpb_sectors(struct imsm_super *mpb,
427 unsigned int sector_size)
87eb16df 428{
f36a9ecd 429 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
430}
431
ba2de7ba
DW
432struct intel_dev {
433 struct imsm_dev *dev;
434 struct intel_dev *next;
f21e18ca 435 unsigned index;
ba2de7ba
DW
436};
437
88654014
LM
438struct intel_hba {
439 enum sys_dev_type type;
440 char *path;
441 char *pci_id;
442 struct intel_hba *next;
443};
444
1a64be56
LM
445enum action {
446 DISK_REMOVE = 1,
447 DISK_ADD
448};
cdddbdbc
DW
449/* internal representation of IMSM metadata */
450struct intel_super {
451 union {
949c47a0
DW
452 void *buf; /* O_DIRECT buffer for reading/writing metadata */
453 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 454 };
8e59f3d8
AK
455 union {
456 void *migr_rec_buf; /* buffer for I/O operations */
457 struct migr_record *migr_rec; /* migration record */
458 };
51d83f5d
AK
459 int clean_migration_record_by_mdmon; /* when reshape is switched to next
460 array, it indicates that mdmon is allowed to clean migration
461 record */
949c47a0 462 size_t len; /* size of the 'buf' allocation */
bbab0940 463 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
464 void *next_buf; /* for realloc'ing buf from the manager */
465 size_t next_len;
c2c087e6 466 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 467 int current_vol; /* index of raid device undergoing creation */
5551b113 468 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 469 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 470 struct intel_dev *devlist;
fa7bb6f8 471 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
472 struct dl {
473 struct dl *next;
474 int index;
475 __u8 serial[MAX_RAID_SERIAL_LEN];
476 int major, minor;
477 char *devname;
b9f594fe 478 struct imsm_disk disk;
cdddbdbc 479 int fd;
0dcecb2e
DW
480 int extent_cnt;
481 struct extent *e; /* for determining freespace @ create */
efb30e7f 482 int raiddisk; /* slot to fill in autolayout */
1a64be56 483 enum action action;
ca0748fa 484 } *disks, *current_disk;
1a64be56
LM
485 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
486 active */
47ee5a45 487 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 488 struct bbm_log *bbm_log;
88654014 489 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 490 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 491 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 492 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
493};
494
495struct intel_disk {
496 struct imsm_disk disk;
497 #define IMSM_UNKNOWN_OWNER (-1)
498 int owner;
499 struct intel_disk *next;
cdddbdbc
DW
500};
501
c2c087e6
DW
502struct extent {
503 unsigned long long start, size;
504};
505
694575e7
KW
506/* definitions of reshape process types */
507enum imsm_reshape_type {
508 CH_TAKEOVER,
b5347799 509 CH_MIGRATION,
7abc9871 510 CH_ARRAY_SIZE,
694575e7
KW
511};
512
88758e9d
DW
513/* definition of messages passed to imsm_process_update */
514enum imsm_update_type {
515 update_activate_spare,
8273f55e 516 update_create_array,
33414a01 517 update_kill_array,
aa534678 518 update_rename_array,
1a64be56 519 update_add_remove_disk,
78b10e66 520 update_reshape_container_disks,
48c5303a 521 update_reshape_migration,
2d40f3a1
AK
522 update_takeover,
523 update_general_migration_checkpoint,
f3871fdc 524 update_size_change,
bbab0940 525 update_prealloc_badblocks_mem,
e6e9dd3f 526 update_rwh_policy,
88758e9d
DW
527};
528
529struct imsm_update_activate_spare {
530 enum imsm_update_type type;
d23fe947 531 struct dl *dl;
88758e9d
DW
532 int slot;
533 int array;
534 struct imsm_update_activate_spare *next;
535};
536
78b10e66 537struct geo_params {
4dd2df09 538 char devnm[32];
78b10e66 539 char *dev_name;
d04f65f4 540 unsigned long long size;
78b10e66
N
541 int level;
542 int layout;
543 int chunksize;
544 int raid_disks;
545};
546
bb025c2f
KW
547enum takeover_direction {
548 R10_TO_R0,
549 R0_TO_R10
550};
551struct imsm_update_takeover {
552 enum imsm_update_type type;
553 int subarray;
554 enum takeover_direction direction;
555};
78b10e66
N
556
557struct imsm_update_reshape {
558 enum imsm_update_type type;
559 int old_raid_disks;
560 int new_raid_disks;
48c5303a
PC
561
562 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
563};
564
565struct imsm_update_reshape_migration {
566 enum imsm_update_type type;
567 int old_raid_disks;
568 int new_raid_disks;
569 /* fields for array migration changes
570 */
571 int subdev;
572 int new_level;
573 int new_layout;
4bba0439 574 int new_chunksize;
48c5303a 575
d195167d 576 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
577};
578
f3871fdc
AK
579struct imsm_update_size_change {
580 enum imsm_update_type type;
581 int subdev;
582 long long new_size;
583};
584
2d40f3a1
AK
585struct imsm_update_general_migration_checkpoint {
586 enum imsm_update_type type;
4036e7ee 587 __u64 curr_migr_unit;
2d40f3a1
AK
588};
589
54c2c1ea
DW
590struct disk_info {
591 __u8 serial[MAX_RAID_SERIAL_LEN];
592};
593
8273f55e
DW
594struct imsm_update_create_array {
595 enum imsm_update_type type;
8273f55e 596 int dev_idx;
6a3e913e 597 struct imsm_dev dev;
8273f55e
DW
598};
599
33414a01
DW
600struct imsm_update_kill_array {
601 enum imsm_update_type type;
602 int dev_idx;
603};
604
aa534678
DW
605struct imsm_update_rename_array {
606 enum imsm_update_type type;
607 __u8 name[MAX_RAID_SERIAL_LEN];
608 int dev_idx;
609};
610
1a64be56 611struct imsm_update_add_remove_disk {
43dad3d6
DW
612 enum imsm_update_type type;
613};
614
bbab0940
TM
615struct imsm_update_prealloc_bb_mem {
616 enum imsm_update_type type;
617};
618
e6e9dd3f
AP
619struct imsm_update_rwh_policy {
620 enum imsm_update_type type;
621 int new_policy;
622 int dev_idx;
623};
624
88654014
LM
625static const char *_sys_dev_type[] = {
626 [SYS_DEV_UNKNOWN] = "Unknown",
627 [SYS_DEV_SAS] = "SAS",
614902f6 628 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
629 [SYS_DEV_NVME] = "NVMe",
630 [SYS_DEV_VMD] = "VMD"
88654014
LM
631};
632
420dafcd
N
633static int no_platform = -1;
634
635static int check_no_platform(void)
636{
637 static const char search[] = "mdadm.imsm.test=1";
638 FILE *fp;
639
640 if (no_platform >= 0)
641 return no_platform;
642
643 if (check_env("IMSM_NO_PLATFORM")) {
644 no_platform = 1;
645 return 1;
646 }
647 fp = fopen("/proc/cmdline", "r");
648 if (fp) {
649 char *l = conf_line(fp);
650 char *w = l;
651
652 do {
653 if (strcmp(w, search) == 0)
654 no_platform = 1;
655 w = dl_next(w);
656 } while (w != l);
657 free_line(l);
658 fclose(fp);
659 if (no_platform >= 0)
660 return no_platform;
661 }
662 no_platform = 0;
663 return 0;
664}
665
666void imsm_set_no_platform(int v)
667{
668 no_platform = v;
669}
670
88654014
LM
671const char *get_sys_dev_type(enum sys_dev_type type)
672{
673 if (type >= SYS_DEV_MAX)
674 type = SYS_DEV_UNKNOWN;
675
676 return _sys_dev_type[type];
677}
678
679static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
680{
503975b9
N
681 struct intel_hba *result = xmalloc(sizeof(*result));
682
683 result->type = device->type;
684 result->path = xstrdup(device->path);
685 result->next = NULL;
686 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
687 result->pci_id++;
688
88654014
LM
689 return result;
690}
691
692static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
693{
594dc1b8
JS
694 struct intel_hba *result;
695
88654014
LM
696 for (result = hba; result; result = result->next) {
697 if (result->type == device->type && strcmp(result->path, device->path) == 0)
698 break;
699 }
700 return result;
701}
702
b4cf4cba 703static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
704{
705 struct intel_hba *hba;
706
707 /* check if disk attached to Intel HBA */
708 hba = find_intel_hba(super->hba, device);
709 if (hba != NULL)
710 return 1;
711 /* Check if HBA is already attached to super */
712 if (super->hba == NULL) {
713 super->hba = alloc_intel_hba(device);
714 return 1;
6b781d33
AP
715 }
716
717 hba = super->hba;
718 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 719 * Do not support HBA types mixing
6b781d33
AP
720 */
721 if (device->type != hba->type)
88654014 722 return 2;
6b781d33
AP
723
724 /* Multiple same type HBAs can be used if they share the same OROM */
725 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
726
727 if (device_orom != super->orom)
728 return 2;
729
730 while (hba->next)
731 hba = hba->next;
732
733 hba->next = alloc_intel_hba(device);
734 return 1;
88654014
LM
735}
736
737static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
738{
9bc4ae77 739 struct sys_dev *list, *elem;
88654014
LM
740 char *disk_path;
741
742 if ((list = find_intel_devices()) == NULL)
743 return 0;
744
4389ce73 745 if (!is_fd_valid(fd))
88654014
LM
746 disk_path = (char *) devname;
747 else
7c798f87 748 disk_path = diskfd_to_devpath(fd, 1, NULL);
88654014 749
9bc4ae77 750 if (!disk_path)
88654014 751 return 0;
88654014 752
9bc4ae77
N
753 for (elem = list; elem; elem = elem->next)
754 if (path_attached_to_hba(disk_path, elem->path))
5d2434d1 755 break;
9bc4ae77 756
88654014
LM
757 if (disk_path != devname)
758 free(disk_path);
88654014 759
5d2434d1 760 return elem;
88654014
LM
761}
762
d424212e
N
763static int find_intel_hba_capability(int fd, struct intel_super *super,
764 char *devname);
f2f5c343 765
cdddbdbc
DW
766static struct supertype *match_metadata_desc_imsm(char *arg)
767{
768 struct supertype *st;
769
770 if (strcmp(arg, "imsm") != 0 &&
771 strcmp(arg, "default") != 0
772 )
773 return NULL;
774
503975b9 775 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
776 st->ss = &super_imsm;
777 st->max_devs = IMSM_MAX_DEVICES;
778 st->minor_version = 0;
779 st->sb = NULL;
780 return st;
781}
782
cdddbdbc
DW
783static __u8 *get_imsm_version(struct imsm_super *mpb)
784{
785 return &mpb->sig[MPB_SIG_LEN];
786}
787
949c47a0
DW
788/* retrieve a disk directly from the anchor when the anchor is known to be
789 * up-to-date, currently only at load time
790 */
791static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 792{
949c47a0 793 if (index >= mpb->num_disks)
cdddbdbc
DW
794 return NULL;
795 return &mpb->disk[index];
796}
797
95d07a2c
LM
798/* retrieve the disk description based on a index of the disk
799 * in the sub-array
800 */
801static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 802{
b9f594fe
DW
803 struct dl *d;
804
805 for (d = super->disks; d; d = d->next)
806 if (d->index == index)
95d07a2c
LM
807 return d;
808
809 return NULL;
810}
811/* retrieve a disk from the parsed metadata */
812static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
813{
814 struct dl *dl;
815
816 dl = get_imsm_dl_disk(super, index);
817 if (dl)
818 return &dl->disk;
819
b9f594fe 820 return NULL;
949c47a0
DW
821}
822
823/* generate a checksum directly from the anchor when the anchor is known to be
824 * up-to-date, currently only at load or write_super after coalescing
825 */
826static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
827{
828 __u32 end = mpb->mpb_size / sizeof(end);
829 __u32 *p = (__u32 *) mpb;
830 __u32 sum = 0;
831
5d500228
N
832 while (end--) {
833 sum += __le32_to_cpu(*p);
97f734fd
N
834 p++;
835 }
cdddbdbc 836
5d500228 837 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
838}
839
a965f303
DW
840static size_t sizeof_imsm_map(struct imsm_map *map)
841{
842 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
843}
844
845struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 846{
5e7b0330
AK
847 /* A device can have 2 maps if it is in the middle of a migration.
848 * If second_map is:
238c0a71
AK
849 * MAP_0 - we return the first map
850 * MAP_1 - we return the second map if it exists, else NULL
851 * MAP_X - we return the second map if it exists, else the first
5e7b0330 852 */
a965f303 853 struct imsm_map *map = &dev->vol.map[0];
9535fc47 854 struct imsm_map *map2 = NULL;
a965f303 855
9535fc47
AK
856 if (dev->vol.migr_state)
857 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 858
9535fc47 859 switch (second_map) {
3b451610 860 case MAP_0:
9535fc47 861 break;
3b451610 862 case MAP_1:
9535fc47
AK
863 map = map2;
864 break;
238c0a71 865 case MAP_X:
9535fc47
AK
866 if (map2)
867 map = map2;
868 break;
9535fc47
AK
869 default:
870 map = NULL;
871 }
872 return map;
5e7b0330 873
a965f303 874}
cdddbdbc 875
3393c6af
DW
876/* return the size of the device.
877 * migr_state increases the returned size if map[0] were to be duplicated
878 */
879static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
880{
881 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 882 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
883
884 /* migrating means an additional map */
a965f303 885 if (dev->vol.migr_state)
238c0a71 886 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 887 else if (migr_state)
238c0a71 888 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
889
890 return size;
891}
892
54c2c1ea
DW
893/* retrieve disk serial number list from a metadata update */
894static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
895{
896 void *u = update;
897 struct disk_info *inf;
898
899 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
900 sizeof_imsm_dev(&update->dev, 0);
901
902 return inf;
903}
54c2c1ea 904
756a15f3
MG
905/**
906 * __get_imsm_dev() - Get device with index from imsm_super.
907 * @mpb: &imsm_super pointer, not NULL.
908 * @index: Device index.
909 *
910 * Function works as non-NULL, aborting in such a case,
911 * when NULL would be returned.
912 *
913 * Device index should be in range 0 up to num_raid_devs.
914 * Function assumes the index was already verified.
915 * Index must be valid, otherwise abort() is called.
916 *
917 * Return: Pointer to corresponding imsm_dev.
918 *
919 */
949c47a0 920static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
921{
922 int offset;
923 int i;
924 void *_mpb = mpb;
925
949c47a0 926 if (index >= mpb->num_raid_devs)
756a15f3 927 goto error;
cdddbdbc
DW
928
929 /* devices start after all disks */
930 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
931
756a15f3 932 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
cdddbdbc
DW
933 if (i == index)
934 return _mpb + offset;
756a15f3
MG
935error:
936 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
937 abort();
cdddbdbc
DW
938}
939
756a15f3
MG
940/**
941 * get_imsm_dev() - Get device with index from intel_super.
942 * @super: &intel_super pointer, not NULL.
943 * @index: Device index.
944 *
945 * Function works as non-NULL, aborting in such a case,
946 * when NULL would be returned.
947 *
948 * Device index should be in range 0 up to num_raid_devs.
949 * Function assumes the index was already verified.
950 * Index must be valid, otherwise abort() is called.
951 *
952 * Return: Pointer to corresponding imsm_dev.
953 *
954 */
949c47a0
DW
955static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
956{
ba2de7ba
DW
957 struct intel_dev *dv;
958
949c47a0 959 if (index >= super->anchor->num_raid_devs)
756a15f3
MG
960 goto error;
961
ba2de7ba
DW
962 for (dv = super->devlist; dv; dv = dv->next)
963 if (dv->index == index)
964 return dv->dev;
756a15f3
MG
965error:
966 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
967 abort();
949c47a0
DW
968}
969
8d67477f
TM
970static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
971 *addr)
972{
973 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
974 __le16_to_cpu(addr->w1));
975}
976
977static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
978{
979 struct bbm_log_block_addr addr;
980
981 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
982 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
983 return addr;
984}
985
8d67477f
TM
986/* get size of the bbm log */
987static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
988{
989 if (!log || log->entry_count == 0)
990 return 0;
991
992 return sizeof(log->signature) +
993 sizeof(log->entry_count) +
994 log->entry_count * sizeof(struct bbm_log_entry);
995}
6f50473f
TM
996
997/* check if bad block is not partially stored in bbm log */
998static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
999 long long sector, const int length, __u32 *pos)
1000{
1001 __u32 i;
1002
1003 for (i = *pos; i < log->entry_count; i++) {
1004 struct bbm_log_entry *entry = &log->marked_block_entries[i];
1005 unsigned long long bb_start;
1006 unsigned long long bb_end;
1007
1008 bb_start = __le48_to_cpu(&entry->defective_block_start);
1009 bb_end = bb_start + (entry->marked_count + 1);
1010
1011 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
1012 (bb_end <= sector + length)) {
1013 *pos = i;
1014 return 1;
1015 }
1016 }
1017 return 0;
1018}
1019
1020/* record new bad block in bbm log */
1021static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
1022 long long sector, int length)
1023{
1024 int new_bb = 0;
1025 __u32 pos = 0;
1026 struct bbm_log_entry *entry = NULL;
1027
1028 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
1029 struct bbm_log_entry *e = &log->marked_block_entries[pos];
1030
1031 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
1032 (__le48_to_cpu(&e->defective_block_start) == sector)) {
1033 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
1034 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
1035 pos = pos + 1;
1036 continue;
1037 }
1038 entry = e;
1039 break;
1040 }
1041
1042 if (entry) {
1043 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1044 BBM_LOG_MAX_LBA_ENTRY_VAL;
1045 entry->defective_block_start = __cpu_to_le48(sector);
1046 entry->marked_count = cnt - 1;
1047 if (cnt == length)
1048 return 1;
1049 sector += cnt;
1050 length -= cnt;
1051 }
1052
1053 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1054 BBM_LOG_MAX_LBA_ENTRY_VAL;
1055 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1056 return 0;
1057
1058 while (length > 0) {
1059 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1060 BBM_LOG_MAX_LBA_ENTRY_VAL;
1061 struct bbm_log_entry *entry =
1062 &log->marked_block_entries[log->entry_count];
1063
1064 entry->defective_block_start = __cpu_to_le48(sector);
1065 entry->marked_count = cnt - 1;
1066 entry->disk_ordinal = idx;
1067
1068 sector += cnt;
1069 length -= cnt;
1070
1071 log->entry_count++;
1072 }
1073
1074 return new_bb;
1075}
c07a5a4f 1076
4c9e8c1e
TM
1077/* clear all bad blocks for given disk */
1078static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1079{
1080 __u32 i = 0;
1081
1082 while (i < log->entry_count) {
1083 struct bbm_log_entry *entries = log->marked_block_entries;
1084
1085 if (entries[i].disk_ordinal == idx) {
1086 if (i < log->entry_count - 1)
1087 entries[i] = entries[log->entry_count - 1];
1088 log->entry_count--;
1089 } else {
1090 i++;
1091 }
1092 }
1093}
1094
c07a5a4f
TM
1095/* clear given bad block */
1096static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1097 long long sector, const int length) {
1098 __u32 i = 0;
1099
1100 while (i < log->entry_count) {
1101 struct bbm_log_entry *entries = log->marked_block_entries;
1102
1103 if ((entries[i].disk_ordinal == idx) &&
1104 (__le48_to_cpu(&entries[i].defective_block_start) ==
1105 sector) && (entries[i].marked_count + 1 == length)) {
1106 if (i < log->entry_count - 1)
1107 entries[i] = entries[log->entry_count - 1];
1108 log->entry_count--;
1109 break;
1110 }
1111 i++;
1112 }
1113
1114 return 1;
1115}
8d67477f
TM
1116
1117/* allocate and load BBM log from metadata */
1118static int load_bbm_log(struct intel_super *super)
1119{
1120 struct imsm_super *mpb = super->anchor;
1121 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1122
1123 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1124 if (!super->bbm_log)
1125 return 1;
1126
1127 if (bbm_log_size) {
1128 struct bbm_log *log = (void *)mpb +
1129 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1130
1131 __u32 entry_count;
1132
1133 if (bbm_log_size < sizeof(log->signature) +
1134 sizeof(log->entry_count))
1135 return 2;
1136
1137 entry_count = __le32_to_cpu(log->entry_count);
1138 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1139 (entry_count > BBM_LOG_MAX_ENTRIES))
1140 return 3;
1141
1142 if (bbm_log_size !=
1143 sizeof(log->signature) + sizeof(log->entry_count) +
1144 entry_count * sizeof(struct bbm_log_entry))
1145 return 4;
1146
1147 memcpy(super->bbm_log, log, bbm_log_size);
1148 } else {
1149 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1150 super->bbm_log->entry_count = 0;
1151 }
1152
1153 return 0;
1154}
1155
b12796be
TM
1156/* checks if bad block is within volume boundaries */
1157static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1158 const unsigned long long start_sector,
1159 const unsigned long long size)
1160{
1161 unsigned long long bb_start;
1162 unsigned long long bb_end;
1163
1164 bb_start = __le48_to_cpu(&entry->defective_block_start);
1165 bb_end = bb_start + (entry->marked_count + 1);
1166
1167 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1168 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1169 return 1;
1170
1171 return 0;
1172}
1173
1174/* get list of bad blocks on a drive for a volume */
1175static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1176 const unsigned long long start_sector,
1177 const unsigned long long size,
1178 struct md_bb *bbs)
1179{
1180 __u32 count = 0;
1181 __u32 i;
1182
1183 for (i = 0; i < log->entry_count; i++) {
1184 const struct bbm_log_entry *ent =
1185 &log->marked_block_entries[i];
1186 struct md_bb_entry *bb;
1187
1188 if ((ent->disk_ordinal == idx) &&
1189 is_bad_block_in_volume(ent, start_sector, size)) {
1190
1191 if (!bbs->entries) {
1192 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1193 sizeof(*bb));
1194 if (!bbs->entries)
1195 break;
1196 }
1197
1198 bb = &bbs->entries[count++];
1199 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1200 bb->length = ent->marked_count + 1;
1201 }
1202 }
1203 bbs->count = count;
1204}
1205
98130f40
AK
1206/*
1207 * for second_map:
238c0a71
AK
1208 * == MAP_0 get first map
1209 * == MAP_1 get second map
1210 * == MAP_X than get map according to the current migr_state
98130f40
AK
1211 */
1212static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1213 int slot,
1214 int second_map)
7eef0453
DW
1215{
1216 struct imsm_map *map;
1217
5e7b0330 1218 map = get_imsm_map(dev, second_map);
7eef0453 1219
ff077194
DW
1220 /* top byte identifies disk under rebuild */
1221 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1222}
1223
1224#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1225static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1226{
98130f40 1227 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1228
1229 return ord_to_idx(ord);
7eef0453
DW
1230}
1231
be73972f
DW
1232static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1233{
1234 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1235}
1236
76c152ca 1237static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
620b1713
DW
1238{
1239 int slot;
1240 __u32 ord;
1241
1242 for (slot = 0; slot < map->num_members; slot++) {
1243 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1244 if (ord_to_idx(ord) == idx)
1245 return slot;
1246 }
1247
76c152ca 1248 return IMSM_STATUS_ERROR;
620b1713
DW
1249}
1250
cdddbdbc
DW
1251static int get_imsm_raid_level(struct imsm_map *map)
1252{
1253 if (map->raid_level == 1) {
1254 if (map->num_members == 2)
1255 return 1;
1256 else
1257 return 10;
1258 }
1259
1260 return map->raid_level;
1261}
1262
76c152ca
MT
1263/**
1264 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1265 * @super: &intel_super pointer, not NULL.
1266 * @dev_idx: imsm device index.
1267 * @idx: disk index.
1268 *
1269 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1270 */
1271static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1272 const unsigned int idx)
1273{
1274 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1275 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1276
1277 return get_imsm_disk_slot(map, idx);
1278}
1279
c2c087e6
DW
1280static int cmp_extent(const void *av, const void *bv)
1281{
1282 const struct extent *a = av;
1283 const struct extent *b = bv;
1284 if (a->start < b->start)
1285 return -1;
1286 if (a->start > b->start)
1287 return 1;
1288 return 0;
1289}
1290
0dcecb2e 1291static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1292{
c2c087e6 1293 int memberships = 0;
620b1713 1294 int i;
c2c087e6 1295
76c152ca
MT
1296 for (i = 0; i < super->anchor->num_raid_devs; i++)
1297 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
620b1713 1298 memberships++;
0dcecb2e
DW
1299
1300 return memberships;
1301}
1302
b81221b7
CA
1303static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1304
486720e0 1305static int split_ull(unsigned long long n, void *lo, void *hi)
5551b113
CA
1306{
1307 if (lo == 0 || hi == 0)
1308 return 1;
486720e0
JS
1309 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1310 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
5551b113
CA
1311 return 0;
1312}
1313
1314static unsigned long long join_u32(__u32 lo, __u32 hi)
1315{
1316 return (unsigned long long)__le32_to_cpu(lo) |
1317 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1318}
1319
1320static unsigned long long total_blocks(struct imsm_disk *disk)
1321{
1322 if (disk == NULL)
1323 return 0;
1324 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1325}
1326
1c275381
MT
1327/**
1328 * imsm_num_data_members() - get data drives count for an array.
1329 * @map: Map to analyze.
1330 *
1331 * num_data_members value represents minimal count of drives for level.
1332 * The name of the property could be misleading for RAID5 with asymmetric layout
1333 * because some data required to be calculated from parity.
1334 * The property is extracted from level and num_members value.
1335 *
1336 * Return: num_data_members value on success, zero otherwise.
1337 */
1338static __u8 imsm_num_data_members(struct imsm_map *map)
1339{
1340 switch (get_imsm_raid_level(map)) {
1341 case 0:
1342 return map->num_members;
1343 case 1:
1344 case 10:
1345 return map->num_members / 2;
1346 case 5:
1347 return map->num_members - 1;
1348 default:
1349 dprintf("unsupported raid level\n");
1350 return 0;
1351 }
1352}
1353
5551b113
CA
1354static unsigned long long pba_of_lba0(struct imsm_map *map)
1355{
1356 if (map == NULL)
1357 return 0;
1358 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1359}
1360
1361static unsigned long long blocks_per_member(struct imsm_map *map)
1362{
1363 if (map == NULL)
1364 return 0;
1365 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1366}
1367
1368static unsigned long long num_data_stripes(struct imsm_map *map)
1369{
1370 if (map == NULL)
1371 return 0;
1372 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1373}
1374
4036e7ee
MT
1375static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1376{
1377 if (dev == NULL)
1378 return 0;
1379
1380 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1381}
1382
fcc2c9da
MD
1383static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1384{
1385 if (dev == NULL)
1386 return 0;
1387 return join_u32(dev->size_low, dev->size_high);
1388}
1389
9f421827
PB
1390static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1391{
1392 if (migr_rec == NULL)
1393 return 0;
1394 return join_u32(migr_rec->ckpt_area_pba_lo,
1395 migr_rec->ckpt_area_pba_hi);
1396}
1397
1398static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1399{
1400 if (migr_rec == NULL)
1401 return 0;
1402 return join_u32(migr_rec->curr_migr_unit_lo,
1403 migr_rec->curr_migr_unit_hi);
1404}
1405
1406static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1407{
1408 if (migr_rec == NULL)
1409 return 0;
1410 return join_u32(migr_rec->dest_1st_member_lba_lo,
1411 migr_rec->dest_1st_member_lba_hi);
1412}
1413
1414static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1415{
1416 if (migr_rec == NULL)
1417 return 0;
1418 return join_u32(migr_rec->num_migr_units_lo,
1419 migr_rec->num_migr_units_hi);
1420}
1421
5551b113
CA
1422static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1423{
1424 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1425}
1426
1c275381
MT
1427/**
1428 * set_num_domains() - Set number of domains for an array.
1429 * @map: Map to be updated.
1430 *
1431 * num_domains property represents copies count of each data drive, thus make
1432 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1433 * raid1 and raid10.
1434 */
1435static void set_num_domains(struct imsm_map *map)
1436{
1437 int level = get_imsm_raid_level(map);
1438
1439 if (level == 1 || level == 10)
1440 map->num_domains = 2;
1441 else
1442 map->num_domains = 1;
1443}
1444
5551b113
CA
1445static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1446{
1447 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1448}
1449
1450static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1451{
1452 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1453}
1454
1455static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1456{
1457 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1458}
1459
1c275381
MT
1460/**
1461 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1462 * @map: map to be updated.
1463 * @dev_size: size of volume.
1464 *
1465 * num_data_stripes value is addictionally divided by num_domains, therefore for
1466 * levels where num_domains is not 1, nds is a part of real value.
1467 */
1468static void update_num_data_stripes(struct imsm_map *map,
1469 unsigned long long dev_size)
1470{
1471 unsigned long long nds = dev_size / imsm_num_data_members(map);
1472
1473 nds /= map->num_domains;
1474 nds /= map->blocks_per_strip;
1475 set_num_data_stripes(map, nds);
1476}
1477
4036e7ee
MT
1478static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1479{
1480 if (dev == NULL)
1481 return;
1482
1483 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1484}
1485
fcc2c9da
MD
1486static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1487{
1488 split_ull(n, &dev->size_low, &dev->size_high);
1489}
1490
9f421827
PB
1491static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1492 unsigned long long n)
1493{
1494 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1495}
1496
1497static void set_current_migr_unit(struct migr_record *migr_rec,
1498 unsigned long long n)
1499{
1500 split_ull(n, &migr_rec->curr_migr_unit_lo,
1501 &migr_rec->curr_migr_unit_hi);
1502}
1503
1504static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1505 unsigned long long n)
1506{
1507 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1508 &migr_rec->dest_1st_member_lba_hi);
1509}
1510
1511static void set_num_migr_units(struct migr_record *migr_rec,
1512 unsigned long long n)
1513{
1514 split_ull(n, &migr_rec->num_migr_units_lo,
1515 &migr_rec->num_migr_units_hi);
1516}
1517
44490938
MD
1518static unsigned long long per_dev_array_size(struct imsm_map *map)
1519{
1520 unsigned long long array_size = 0;
1521
1522 if (map == NULL)
1523 return array_size;
1524
1525 array_size = num_data_stripes(map) * map->blocks_per_strip;
1526 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1527 array_size *= 2;
1528
1529 return array_size;
1530}
1531
05501181
PB
1532static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1533 int get_minimal_reservation)
0dcecb2e
DW
1534{
1535 /* find a list of used extents on the given physical device */
1536 struct extent *rv, *e;
620b1713 1537 int i;
0dcecb2e 1538 int memberships = count_memberships(dl, super);
b276dd33
DW
1539 __u32 reservation;
1540
1541 /* trim the reserved area for spares, so they can join any array
1542 * regardless of whether the OROM has assigned sectors from the
1543 * IMSM_RESERVED_SECTORS region
1544 */
05501181 1545 if (dl->index == -1 || get_minimal_reservation)
b81221b7 1546 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1547 else
1548 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1549
503975b9 1550 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1551 e = rv;
1552
949c47a0
DW
1553 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1554 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1555 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1556
620b1713 1557 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113 1558 e->start = pba_of_lba0(map);
44490938 1559 e->size = per_dev_array_size(map);
620b1713 1560 e++;
c2c087e6
DW
1561 }
1562 }
1563 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1564
1011e834 1565 /* determine the start of the metadata
14e8215b
DW
1566 * when no raid devices are defined use the default
1567 * ...otherwise allow the metadata to truncate the value
1568 * as is the case with older versions of imsm
1569 */
1570 if (memberships) {
1571 struct extent *last = &rv[memberships - 1];
5551b113 1572 unsigned long long remainder;
14e8215b 1573
5551b113 1574 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1575 /* round down to 1k block to satisfy precision of the kernel
1576 * 'size' interface
1577 */
1578 remainder &= ~1UL;
1579 /* make sure remainder is still sane */
f21e18ca 1580 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1581 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1582 if (reservation > remainder)
1583 reservation = remainder;
1584 }
5551b113 1585 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1586 e->size = 0;
1587 return rv;
1588}
1589
14e8215b
DW
1590/* try to determine how much space is reserved for metadata from
1591 * the last get_extents() entry, otherwise fallback to the
1592 * default
1593 */
1594static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1595{
1596 struct extent *e;
1597 int i;
1598 __u32 rv;
1599
1600 /* for spares just return a minimal reservation which will grow
1601 * once the spare is picked up by an array
1602 */
1603 if (dl->index == -1)
1604 return MPB_SECTOR_CNT;
1605
05501181 1606 e = get_extents(super, dl, 0);
14e8215b
DW
1607 if (!e)
1608 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1609
1610 /* scroll to last entry */
1611 for (i = 0; e[i].size; i++)
1612 continue;
1613
5551b113 1614 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1615
1616 free(e);
1617
1618 return rv;
1619}
1620
25ed7e59
DW
1621static int is_spare(struct imsm_disk *disk)
1622{
1623 return (disk->status & SPARE_DISK) == SPARE_DISK;
1624}
1625
1626static int is_configured(struct imsm_disk *disk)
1627{
1628 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1629}
1630
1631static int is_failed(struct imsm_disk *disk)
1632{
1633 return (disk->status & FAILED_DISK) == FAILED_DISK;
1634}
1635
2432ce9b
AP
1636static int is_journal(struct imsm_disk *disk)
1637{
1638 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1639}
1640
b53bfba6
TM
1641/* round array size down to closest MB and ensure it splits evenly
1642 * between members
1643 */
1644static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1645 disk_count)
1646{
1647 size /= disk_count;
1648 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1649 size *= disk_count;
1650
1651 return size;
1652}
1653
8b9cd157
MK
1654static int able_to_resync(int raid_level, int missing_disks)
1655{
1656 int max_missing_disks = 0;
1657
1658 switch (raid_level) {
1659 case 10:
1660 max_missing_disks = 1;
1661 break;
1662 default:
1663 max_missing_disks = 0;
1664 }
1665 return missing_disks <= max_missing_disks;
1666}
1667
b81221b7
CA
1668/* try to determine how much space is reserved for metadata from
1669 * the last get_extents() entry on the smallest active disk,
1670 * otherwise fallback to the default
1671 */
1672static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1673{
1674 struct extent *e;
1675 int i;
5551b113
CA
1676 unsigned long long min_active;
1677 __u32 remainder;
b81221b7
CA
1678 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1679 struct dl *dl, *dl_min = NULL;
1680
1681 if (!super)
1682 return rv;
1683
1684 min_active = 0;
1685 for (dl = super->disks; dl; dl = dl->next) {
1686 if (dl->index < 0)
1687 continue;
5551b113
CA
1688 unsigned long long blocks = total_blocks(&dl->disk);
1689 if (blocks < min_active || min_active == 0) {
b81221b7 1690 dl_min = dl;
5551b113 1691 min_active = blocks;
b81221b7
CA
1692 }
1693 }
1694 if (!dl_min)
1695 return rv;
1696
1697 /* find last lba used by subarrays on the smallest active disk */
05501181 1698 e = get_extents(super, dl_min, 0);
b81221b7
CA
1699 if (!e)
1700 return rv;
1701 for (i = 0; e[i].size; i++)
1702 continue;
1703
1704 remainder = min_active - e[i].start;
1705 free(e);
1706
1707 /* to give priority to recovery we should not require full
1708 IMSM_RESERVED_SECTORS from the spare */
1709 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1710
1711 /* if real reservation is smaller use that value */
1712 return (remainder < rv) ? remainder : rv;
1713}
1714
fbfdcb06
AO
1715/*
1716 * Return minimum size of a spare and sector size
1717 * that can be used in this array
1718 */
1719int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1720{
1721 struct intel_super *super = st->sb;
1722 struct dl *dl;
1723 struct extent *e;
1724 int i;
fbfdcb06
AO
1725 unsigned long long size = 0;
1726
1727 c->min_size = 0;
4b57ecf6 1728 c->sector_size = 0;
80e7f8c3
AC
1729
1730 if (!super)
fbfdcb06 1731 return -EINVAL;
80e7f8c3
AC
1732 /* find first active disk in array */
1733 dl = super->disks;
1734 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1735 dl = dl->next;
1736 if (!dl)
fbfdcb06 1737 return -EINVAL;
80e7f8c3 1738 /* find last lba used by subarrays */
05501181 1739 e = get_extents(super, dl, 0);
80e7f8c3 1740 if (!e)
fbfdcb06 1741 return -EINVAL;
80e7f8c3
AC
1742 for (i = 0; e[i].size; i++)
1743 continue;
1744 if (i > 0)
fbfdcb06 1745 size = e[i-1].start + e[i-1].size;
80e7f8c3 1746 free(e);
b81221b7 1747
80e7f8c3 1748 /* add the amount of space needed for metadata */
fbfdcb06
AO
1749 size += imsm_min_reserved_sectors(super);
1750
1751 c->min_size = size * 512;
4b57ecf6 1752 c->sector_size = super->sector_size;
b81221b7 1753
fbfdcb06 1754 return 0;
80e7f8c3
AC
1755}
1756
195d1d76 1757static bool is_gen_migration(struct imsm_dev *dev);
d1e02575 1758
f36a9ecd
PB
1759#define IMSM_4K_DIV 8
1760
c47b0ff6
AK
1761static __u64 blocks_per_migr_unit(struct intel_super *super,
1762 struct imsm_dev *dev);
1e5c6983 1763
c47b0ff6
AK
1764static void print_imsm_dev(struct intel_super *super,
1765 struct imsm_dev *dev,
1766 char *uuid,
1767 int disk_idx)
cdddbdbc
DW
1768{
1769 __u64 sz;
0d80bb2f 1770 int slot, i;
238c0a71
AK
1771 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1772 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1773 __u32 ord;
cdddbdbc
DW
1774
1775 printf("\n");
1e7bc0ed 1776 printf("[%.16s]:\n", dev->volume);
ba1b3bc8 1777 printf(" Subarray : %d\n", super->current_vol);
44470971 1778 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1779 printf(" RAID Level : %d", get_imsm_raid_level(map));
1780 if (map2)
1781 printf(" <-- %d", get_imsm_raid_level(map2));
1782 printf("\n");
1783 printf(" Members : %d", map->num_members);
1784 if (map2)
1785 printf(" <-- %d", map2->num_members);
1786 printf("\n");
0d80bb2f
DW
1787 printf(" Slots : [");
1788 for (i = 0; i < map->num_members; i++) {
238c0a71 1789 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1790 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1791 }
dd8bcb3b
AK
1792 printf("]");
1793 if (map2) {
1794 printf(" <-- [");
1795 for (i = 0; i < map2->num_members; i++) {
238c0a71 1796 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1797 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1798 }
1799 printf("]");
1800 }
1801 printf("\n");
7095bccb
AK
1802 printf(" Failed disk : ");
1803 if (map->failed_disk_num == 0xff)
1804 printf("none");
1805 else
1806 printf("%i", map->failed_disk_num);
1807 printf("\n");
620b1713
DW
1808 slot = get_imsm_disk_slot(map, disk_idx);
1809 if (slot >= 0) {
238c0a71 1810 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1811 printf(" This Slot : %d%s\n", slot,
1812 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1813 } else
cdddbdbc 1814 printf(" This Slot : ?\n");
84918897 1815 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1816 sz = imsm_dev_size(dev);
84918897
MK
1817 printf(" Array Size : %llu%s\n",
1818 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1819 human_size(sz * 512));
5551b113 1820 sz = blocks_per_member(map);
84918897
MK
1821 printf(" Per Dev Size : %llu%s\n",
1822 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1823 human_size(sz * 512));
5551b113 1824 printf(" Sector Offset : %llu\n",
7d8935cb 1825 pba_of_lba0(map) * 512 / super->sector_size);
5551b113
CA
1826 printf(" Num Stripes : %llu\n",
1827 num_data_stripes(map));
dd8bcb3b 1828 printf(" Chunk Size : %u KiB",
cdddbdbc 1829 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1830 if (map2)
1831 printf(" <-- %u KiB",
1832 __le16_to_cpu(map2->blocks_per_strip) / 2);
1833 printf("\n");
cdddbdbc 1834 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1835 printf(" Migrate State : ");
1484e727
DW
1836 if (dev->vol.migr_state) {
1837 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1838 printf("initialize\n");
1484e727 1839 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1840 printf("rebuild\n");
1484e727 1841 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1842 printf("check\n");
1484e727 1843 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1844 printf("general migration\n");
1484e727 1845 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1846 printf("state change\n");
1484e727 1847 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1848 printf("repair\n");
1484e727 1849 else
8655a7b1
DW
1850 printf("<unknown:%d>\n", migr_type(dev));
1851 } else
1852 printf("idle\n");
3393c6af
DW
1853 printf(" Map State : %s", map_state_str[map->map_state]);
1854 if (dev->vol.migr_state) {
238c0a71 1855 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1856
b10b37b8 1857 printf(" <-- %s", map_state_str[map->map_state]);
4036e7ee 1858 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
089f9d79 1859 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1860 printf("(N/A)");
1861 else
1862 printf("(%llu)", (unsigned long long)
1863 blocks_per_migr_unit(super, dev));
3393c6af
DW
1864 }
1865 printf("\n");
2432ce9b
AP
1866 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1867 "dirty" : "clean");
1868 printf(" RWH Policy : ");
c2462068 1869 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1870 printf("off\n");
1871 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1872 printf("PPL distributed\n");
1873 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1874 printf("PPL journaling drive\n");
c2462068
PB
1875 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1876 printf("Multiple distributed PPLs\n");
1877 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1878 printf("Multiple PPLs on journaling drive\n");
fbc42556
JR
1879 else if (dev->rwh_policy == RWH_BITMAP)
1880 printf("Write-intent bitmap\n");
2432ce9b
AP
1881 else
1882 printf("<unknown:%d>\n", dev->rwh_policy);
ba1b3bc8
AP
1883
1884 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
cdddbdbc
DW
1885}
1886
ef5c214e
MK
1887static void print_imsm_disk(struct imsm_disk *disk,
1888 int index,
1889 __u32 reserved,
1890 unsigned int sector_size) {
1f24f035 1891 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1892 __u64 sz;
1893
0ec1f4e8 1894 if (index < -1 || !disk)
e9d82038
DW
1895 return;
1896
cdddbdbc 1897 printf("\n");
1f24f035 1898 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1899 if (index >= 0)
1900 printf(" Disk%02d Serial : %s\n", index, str);
1901 else
1902 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1903 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1904 is_configured(disk) ? " active" : "",
1905 is_failed(disk) ? " failed" : "",
1906 is_journal(disk) ? " journal" : "");
cdddbdbc 1907 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1908 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1909 printf(" Usable Size : %llu%s\n",
1910 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1911 human_size(sz * 512));
1912}
1913
de44e46f
PB
1914void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1915{
1916 struct migr_record *migr_rec = super->migr_rec;
1917
1918 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
de44e46f
PB
1919 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1920 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1921 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1922 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
1923 set_migr_chkp_area_pba(migr_rec,
1924 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1925 set_migr_dest_1st_member_lba(migr_rec,
1926 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
de44e46f
PB
1927}
1928
f36a9ecd
PB
1929void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1930{
1931 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1932}
1933
1934void convert_to_4k(struct intel_super *super)
1935{
1936 struct imsm_super *mpb = super->anchor;
1937 struct imsm_disk *disk;
1938 int i;
e4467bc7 1939 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1940
1941 for (i = 0; i < mpb->num_disks ; i++) {
1942 disk = __get_imsm_disk(mpb, i);
1943 /* disk */
1944 convert_to_4k_imsm_disk(disk);
1945 }
1946 for (i = 0; i < mpb->num_raid_devs; i++) {
1947 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1948 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1949 /* dev */
fcc2c9da 1950 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
4036e7ee
MT
1951 set_vol_curr_migr_unit(dev,
1952 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
f36a9ecd
PB
1953
1954 /* map0 */
1955 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1956 map->blocks_per_strip /= IMSM_4K_DIV;
1957 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1958
1959 if (dev->vol.migr_state) {
1960 /* map1 */
1961 map = get_imsm_map(dev, MAP_1);
1962 set_blocks_per_member(map,
1963 blocks_per_member(map)/IMSM_4K_DIV);
1964 map->blocks_per_strip /= IMSM_4K_DIV;
1965 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1966 }
1967 }
e4467bc7
TM
1968 if (bbm_log_size) {
1969 struct bbm_log *log = (void *)mpb +
1970 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1971 __u32 i;
1972
1973 for (i = 0; i < log->entry_count; i++) {
1974 struct bbm_log_entry *entry =
1975 &log->marked_block_entries[i];
1976
1977 __u8 count = entry->marked_count + 1;
1978 unsigned long long sector =
1979 __le48_to_cpu(&entry->defective_block_start);
1980
1981 entry->defective_block_start =
1982 __cpu_to_le48(sector/IMSM_4K_DIV);
1983 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1984 }
1985 }
f36a9ecd
PB
1986
1987 mpb->check_sum = __gen_imsm_checksum(mpb);
1988}
1989
520e69e2
AK
1990void examine_migr_rec_imsm(struct intel_super *super)
1991{
1992 struct migr_record *migr_rec = super->migr_rec;
1993 struct imsm_super *mpb = super->anchor;
1994 int i;
1995
1996 for (i = 0; i < mpb->num_raid_devs; i++) {
1997 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1998 struct imsm_map *map;
b4ab44d8 1999 int slot = -1;
3136abe5 2000
195d1d76 2001 if (is_gen_migration(dev) == false)
520e69e2
AK
2002 continue;
2003
2004 printf("\nMigration Record Information:");
3136abe5 2005
44bfe6df
AK
2006 /* first map under migration */
2007 map = get_imsm_map(dev, MAP_0);
76c152ca 2008
3136abe5
AK
2009 if (map)
2010 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 2011 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
2012 printf(" Empty\n ");
2013 printf("Examine one of first two disks in array\n");
2014 break;
2015 }
2016 printf("\n Status : ");
2017 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
2018 printf("Normal\n");
2019 else
2020 printf("Contains Data\n");
9f421827
PB
2021 printf(" Current Unit : %llu\n",
2022 current_migr_unit(migr_rec));
520e69e2
AK
2023 printf(" Family : %u\n",
2024 __le32_to_cpu(migr_rec->family_num));
2025 printf(" Ascending : %u\n",
2026 __le32_to_cpu(migr_rec->ascending_migr));
2027 printf(" Blocks Per Unit : %u\n",
2028 __le32_to_cpu(migr_rec->blocks_per_unit));
2029 printf(" Dest. Depth Per Unit : %u\n",
2030 __le32_to_cpu(migr_rec->dest_depth_per_unit));
9f421827
PB
2031 printf(" Checkpoint Area pba : %llu\n",
2032 migr_chkp_area_pba(migr_rec));
2033 printf(" First member lba : %llu\n",
2034 migr_dest_1st_member_lba(migr_rec));
2035 printf(" Total Number of Units : %llu\n",
2036 get_num_migr_units(migr_rec));
2037 printf(" Size of volume : %llu\n",
2038 join_u32(migr_rec->post_migr_vol_cap,
2039 migr_rec->post_migr_vol_cap_hi));
520e69e2
AK
2040 printf(" Record was read from : %u\n",
2041 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2042
2043 break;
2044 }
2045}
f36a9ecd 2046
de44e46f
PB
2047void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2048{
2049 struct migr_record *migr_rec = super->migr_rec;
2050
2051 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
de44e46f
PB
2052 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2053 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2054 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2055 &migr_rec->post_migr_vol_cap,
2056 &migr_rec->post_migr_vol_cap_hi);
9f421827
PB
2057 set_migr_chkp_area_pba(migr_rec,
2058 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2059 set_migr_dest_1st_member_lba(migr_rec,
2060 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
de44e46f
PB
2061}
2062
f36a9ecd
PB
2063void convert_from_4k(struct intel_super *super)
2064{
2065 struct imsm_super *mpb = super->anchor;
2066 struct imsm_disk *disk;
2067 int i;
e4467bc7 2068 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
2069
2070 for (i = 0; i < mpb->num_disks ; i++) {
2071 disk = __get_imsm_disk(mpb, i);
2072 /* disk */
2073 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2074 }
2075
2076 for (i = 0; i < mpb->num_raid_devs; i++) {
2077 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2078 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2079 /* dev */
fcc2c9da 2080 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
4036e7ee
MT
2081 set_vol_curr_migr_unit(dev,
2082 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
f36a9ecd
PB
2083
2084 /* map0 */
2085 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2086 map->blocks_per_strip *= IMSM_4K_DIV;
2087 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2088
2089 if (dev->vol.migr_state) {
2090 /* map1 */
2091 map = get_imsm_map(dev, MAP_1);
2092 set_blocks_per_member(map,
2093 blocks_per_member(map)*IMSM_4K_DIV);
2094 map->blocks_per_strip *= IMSM_4K_DIV;
2095 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2096 }
2097 }
e4467bc7
TM
2098 if (bbm_log_size) {
2099 struct bbm_log *log = (void *)mpb +
2100 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2101 __u32 i;
2102
2103 for (i = 0; i < log->entry_count; i++) {
2104 struct bbm_log_entry *entry =
2105 &log->marked_block_entries[i];
2106
2107 __u8 count = entry->marked_count + 1;
2108 unsigned long long sector =
2109 __le48_to_cpu(&entry->defective_block_start);
2110
2111 entry->defective_block_start =
2112 __cpu_to_le48(sector*IMSM_4K_DIV);
2113 entry->marked_count = count*IMSM_4K_DIV - 1;
2114 }
2115 }
f36a9ecd
PB
2116
2117 mpb->check_sum = __gen_imsm_checksum(mpb);
2118}
2119
19482bcc
AK
2120/*******************************************************************************
2121 * function: imsm_check_attributes
2122 * Description: Function checks if features represented by attributes flags
1011e834 2123 * are supported by mdadm.
19482bcc
AK
2124 * Parameters:
2125 * attributes - Attributes read from metadata
2126 * Returns:
1011e834
N
2127 * 0 - passed attributes contains unsupported features flags
2128 * 1 - all features are supported
19482bcc
AK
2129 ******************************************************************************/
2130static int imsm_check_attributes(__u32 attributes)
2131{
2132 int ret_val = 1;
418f9b36
N
2133 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2134
2135 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
2136
2137 not_supported &= attributes;
2138 if (not_supported) {
e7b84f9d 2139 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 2140 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
2141 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2142 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2143 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2144 }
2145 if (not_supported & MPB_ATTRIB_2TB) {
2146 dprintf("\t\tMPB_ATTRIB_2TB\n");
2147 not_supported ^= MPB_ATTRIB_2TB;
2148 }
2149 if (not_supported & MPB_ATTRIB_RAID0) {
2150 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2151 not_supported ^= MPB_ATTRIB_RAID0;
2152 }
2153 if (not_supported & MPB_ATTRIB_RAID1) {
2154 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2155 not_supported ^= MPB_ATTRIB_RAID1;
2156 }
2157 if (not_supported & MPB_ATTRIB_RAID10) {
2158 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2159 not_supported ^= MPB_ATTRIB_RAID10;
2160 }
2161 if (not_supported & MPB_ATTRIB_RAID1E) {
2162 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2163 not_supported ^= MPB_ATTRIB_RAID1E;
2164 }
2165 if (not_supported & MPB_ATTRIB_RAID5) {
2166 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2167 not_supported ^= MPB_ATTRIB_RAID5;
2168 }
2169 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2170 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2171 not_supported ^= MPB_ATTRIB_RAIDCNG;
2172 }
2173 if (not_supported & MPB_ATTRIB_BBM) {
2174 dprintf("\t\tMPB_ATTRIB_BBM\n");
2175 not_supported ^= MPB_ATTRIB_BBM;
2176 }
2177 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2178 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2179 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2180 }
2181 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2182 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2183 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2184 }
2185 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2186 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2187 not_supported ^= MPB_ATTRIB_2TB_DISK;
2188 }
2189 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2190 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2191 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2192 }
2193 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2194 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2195 not_supported ^= MPB_ATTRIB_NEVER_USE;
2196 }
2197
2198 if (not_supported)
1ade5cc1 2199 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
2200
2201 ret_val = 0;
2202 }
2203
2204 return ret_val;
2205}
2206
a5d85af7 2207static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 2208
cdddbdbc
DW
2209static void examine_super_imsm(struct supertype *st, char *homehost)
2210{
2211 struct intel_super *super = st->sb;
949c47a0 2212 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
2213 char str[MAX_SIGNATURE_LENGTH];
2214 int i;
27fd6274
DW
2215 struct mdinfo info;
2216 char nbuf[64];
cdddbdbc 2217 __u32 sum;
14e8215b 2218 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 2219 struct dl *dl;
e48aed3c 2220 time_t creation_time;
27fd6274 2221
618f4e6d
XN
2222 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2223 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc 2224 printf(" Magic : %s\n", str);
cdddbdbc 2225 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 2226 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
2227 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2228 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
e48aed3c
AP
2229 creation_time = __le64_to_cpu(mpb->creation_time);
2230 printf(" Creation Time : %.24s\n",
2231 creation_time ? ctime(&creation_time) : "Unknown");
19482bcc
AK
2232 printf(" Attributes : ");
2233 if (imsm_check_attributes(mpb->attributes))
2234 printf("All supported\n");
2235 else
2236 printf("not supported\n");
a5d85af7 2237 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2238 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 2239 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2240 sum = __le32_to_cpu(mpb->check_sum);
2241 printf(" Checksum : %08x %s\n", sum,
949c47a0 2242 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 2243 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
2244 printf(" Disks : %d\n", mpb->num_disks);
2245 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
2246 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2247 super->disks->index, reserved, super->sector_size);
8d67477f 2248 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
2249 struct bbm_log *log = super->bbm_log;
2250
2251 printf("\n");
2252 printf("Bad Block Management Log:\n");
2253 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2254 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2255 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 2256 }
44470971
DW
2257 for (i = 0; i < mpb->num_raid_devs; i++) {
2258 struct mdinfo info;
2259 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2260
2261 super->current_vol = i;
a5d85af7 2262 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2263 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 2264 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 2265 }
cdddbdbc
DW
2266 for (i = 0; i < mpb->num_disks; i++) {
2267 if (i == super->disks->index)
2268 continue;
ef5c214e
MK
2269 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2270 super->sector_size);
cdddbdbc 2271 }
94827db3 2272
0ec1f4e8
DW
2273 for (dl = super->disks; dl; dl = dl->next)
2274 if (dl->index == -1)
ef5c214e
MK
2275 print_imsm_disk(&dl->disk, -1, reserved,
2276 super->sector_size);
520e69e2
AK
2277
2278 examine_migr_rec_imsm(super);
cdddbdbc
DW
2279}
2280
061f2c6a 2281static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 2282{
27fd6274 2283 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
2284 struct mdinfo info;
2285 char nbuf[64];
2286
a5d85af7 2287 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
2288 fname_from_uuid(st, &info, nbuf, ':');
2289 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2290}
2291
2292static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2293{
2294 /* We just write a generic IMSM ARRAY entry */
2295 struct mdinfo info;
2296 char nbuf[64];
2297 char nbuf1[64];
2298 struct intel_super *super = st->sb;
2299 int i;
2300
2301 if (!super->anchor->num_raid_devs)
2302 return;
2303
a5d85af7 2304 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2305 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2306 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2307 struct imsm_dev *dev = get_imsm_dev(super, i);
2308
2309 super->current_vol = i;
a5d85af7 2310 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2311 fname_from_uuid(st, &info, nbuf1, ':');
b9ce7ab0 2312 printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n",
cf8de691 2313 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2314 }
cdddbdbc
DW
2315}
2316
9d84c8ea
DW
2317static void export_examine_super_imsm(struct supertype *st)
2318{
2319 struct intel_super *super = st->sb;
2320 struct imsm_super *mpb = super->anchor;
2321 struct mdinfo info;
2322 char nbuf[64];
2323
a5d85af7 2324 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2325 fname_from_uuid(st, &info, nbuf, ':');
2326 printf("MD_METADATA=imsm\n");
2327 printf("MD_LEVEL=container\n");
2328 printf("MD_UUID=%s\n", nbuf+5);
2329 printf("MD_DEVICES=%u\n", mpb->num_disks);
e48aed3c 2330 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
9d84c8ea
DW
2331}
2332
b771faef
BK
2333static void detail_super_imsm(struct supertype *st, char *homehost,
2334 char *subarray)
cdddbdbc 2335{
3ebe00a1
DW
2336 struct mdinfo info;
2337 char nbuf[64];
b771faef
BK
2338 struct intel_super *super = st->sb;
2339 int temp_vol = super->current_vol;
2340
2341 if (subarray)
2342 super->current_vol = strtoul(subarray, NULL, 10);
3ebe00a1 2343
a5d85af7 2344 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2345 fname_from_uuid(st, &info, nbuf, ':');
65884368 2346 printf("\n UUID : %s\n", nbuf + 5);
b771faef
BK
2347
2348 super->current_vol = temp_vol;
cdddbdbc
DW
2349}
2350
b771faef 2351static void brief_detail_super_imsm(struct supertype *st, char *subarray)
cdddbdbc 2352{
ff54de6e
N
2353 struct mdinfo info;
2354 char nbuf[64];
b771faef
BK
2355 struct intel_super *super = st->sb;
2356 int temp_vol = super->current_vol;
2357
2358 if (subarray)
2359 super->current_vol = strtoul(subarray, NULL, 10);
2360
a5d85af7 2361 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2362 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2363 printf(" UUID=%s", nbuf + 5);
b771faef
BK
2364
2365 super->current_vol = temp_vol;
cdddbdbc 2366}
d665cc31 2367
6da53c0e
BK
2368static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2369 size_t serial_buf_len);
d665cc31
DW
2370static void fd2devname(int fd, char *name);
2371
120dc887 2372static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2373{
120dc887
LM
2374 /* dump an unsorted list of devices attached to AHCI Intel storage
2375 * controller, as well as non-connected ports
d665cc31
DW
2376 */
2377 int hba_len = strlen(hba_path) + 1;
2378 struct dirent *ent;
2379 DIR *dir;
2380 char *path = NULL;
2381 int err = 0;
2382 unsigned long port_mask = (1 << port_count) - 1;
2383
f21e18ca 2384 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2385 if (verbose > 0)
e7b84f9d 2386 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2387 return 2;
2388 }
2389
2390 /* scroll through /sys/dev/block looking for devices attached to
2391 * this hba
2392 */
2393 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2394 if (!dir)
2395 return 1;
2396
2397 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2398 int fd;
2399 char model[64];
2400 char vendor[64];
2401 char buf[1024];
2402 int major, minor;
fcebeb77 2403 char device[PATH_MAX];
d665cc31
DW
2404 char *c;
2405 int port;
2406 int type;
2407
2408 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2409 continue;
7c798f87 2410 path = devt_to_devpath(makedev(major, minor), 1, NULL);
d665cc31
DW
2411 if (!path)
2412 continue;
2413 if (!path_attached_to_hba(path, hba_path)) {
2414 free(path);
2415 path = NULL;
2416 continue;
2417 }
2418
fcebeb77
MT
2419 /* retrieve the scsi device */
2420 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
ba728be7 2421 if (verbose > 0)
fcebeb77 2422 pr_err("failed to get device\n");
d665cc31
DW
2423 err = 2;
2424 break;
2425 }
fcebeb77 2426 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
d665cc31 2427 err = 2;
d665cc31
DW
2428 break;
2429 }
2430 type = strtoul(buf, NULL, 10);
2431
2432 /* if it's not a disk print the vendor and model */
2433 if (!(type == 0 || type == 7 || type == 14)) {
2434 vendor[0] = '\0';
2435 model[0] = '\0';
fcebeb77
MT
2436
2437 if (devpath_to_char(device, "vendor", buf,
2438 sizeof(buf), 0) == 0) {
d665cc31
DW
2439 strncpy(vendor, buf, sizeof(vendor));
2440 vendor[sizeof(vendor) - 1] = '\0';
2441 c = (char *) &vendor[sizeof(vendor) - 1];
2442 while (isspace(*c) || *c == '\0')
2443 *c-- = '\0';
2444
2445 }
fcebeb77
MT
2446
2447 if (devpath_to_char(device, "model", buf,
2448 sizeof(buf), 0) == 0) {
d665cc31
DW
2449 strncpy(model, buf, sizeof(model));
2450 model[sizeof(model) - 1] = '\0';
2451 c = (char *) &model[sizeof(model) - 1];
2452 while (isspace(*c) || *c == '\0')
2453 *c-- = '\0';
2454 }
2455
2456 if (vendor[0] && model[0])
2457 sprintf(buf, "%.64s %.64s", vendor, model);
2458 else
2459 switch (type) { /* numbers from hald/linux/device.c */
2460 case 1: sprintf(buf, "tape"); break;
2461 case 2: sprintf(buf, "printer"); break;
2462 case 3: sprintf(buf, "processor"); break;
2463 case 4:
2464 case 5: sprintf(buf, "cdrom"); break;
2465 case 6: sprintf(buf, "scanner"); break;
2466 case 8: sprintf(buf, "media_changer"); break;
2467 case 9: sprintf(buf, "comm"); break;
2468 case 12: sprintf(buf, "raid"); break;
2469 default: sprintf(buf, "unknown");
2470 }
2471 } else
2472 buf[0] = '\0';
d665cc31
DW
2473
2474 /* chop device path to 'host%d' and calculate the port number */
2475 c = strchr(&path[hba_len], '/');
4e5e717d 2476 if (!c) {
ba728be7 2477 if (verbose > 0)
e7b84f9d 2478 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2479 err = 2;
2480 break;
2481 }
d665cc31 2482 *c = '\0';
0858eccf
AP
2483 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2484 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2485 port -= host_base;
2486 else {
ba728be7 2487 if (verbose > 0) {
d665cc31 2488 *c = '/'; /* repair the full string */
e7b84f9d 2489 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2490 path);
2491 }
2492 err = 2;
2493 break;
2494 }
2495
2496 /* mark this port as used */
2497 port_mask &= ~(1 << port);
2498
2499 /* print out the device information */
2500 if (buf[0]) {
2501 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2502 continue;
2503 }
2504
2505 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 2506 if (!is_fd_valid(fd))
d665cc31
DW
2507 printf(" Port%d : - disk info unavailable -\n", port);
2508 else {
2509 fd2devname(fd, buf);
2510 printf(" Port%d : %s", port, buf);
6da53c0e
BK
2511 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2512 sizeof(buf)) == 0)
2513 printf(" (%s)\n", buf);
d665cc31 2514 else
664d5325 2515 printf(" ()\n");
4dab422a 2516 close(fd);
d665cc31 2517 }
d665cc31
DW
2518 free(path);
2519 path = NULL;
2520 }
2521 if (path)
2522 free(path);
2523 if (dir)
2524 closedir(dir);
2525 if (err == 0) {
2526 int i;
2527
2528 for (i = 0; i < port_count; i++)
2529 if (port_mask & (1 << i))
2530 printf(" Port%d : - no device attached -\n", i);
2531 }
2532
2533 return err;
2534}
2535
6da53c0e 2536static int print_nvme_info(struct sys_dev *hba)
60f0f54d
PB
2537{
2538 struct dirent *ent;
2539 DIR *dir;
60f0f54d 2540
6da53c0e 2541 dir = opendir("/sys/block/");
b9135011 2542 if (!dir)
b5eece69 2543 return 1;
b9135011
JS
2544
2545 for (ent = readdir(dir); ent; ent = readdir(dir)) {
8662f92d
MT
2546 char ns_path[PATH_MAX];
2547 char cntrl_path[PATH_MAX];
2548 char buf[PATH_MAX];
2549 int fd = -1;
60f0f54d 2550
8662f92d
MT
2551 if (!strstr(ent->d_name, "nvme"))
2552 goto skip;
d835518b 2553
8662f92d 2554 fd = open_dev(ent->d_name);
4389ce73 2555 if (!is_fd_valid(fd))
8662f92d 2556 goto skip;
d835518b 2557
8662f92d
MT
2558 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2559 !diskfd_to_devpath(fd, 1, cntrl_path))
2560 goto skip;
2561
2562 if (!path_attached_to_hba(cntrl_path, hba->path))
2563 goto skip;
2564
2565 if (!imsm_is_nvme_namespace_supported(fd, 0))
2566 goto skip;
2567
2568 fd2devname(fd, buf);
2569 if (hba->type == SYS_DEV_VMD)
2570 printf(" NVMe under VMD : %s", buf);
2571 else if (hba->type == SYS_DEV_NVME)
2572 printf(" NVMe Device : %s", buf);
2573
2574 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2575 sizeof(buf)))
2576 printf(" (%s)\n", buf);
2577 else
2578 printf("()\n");
2579
2580skip:
4389ce73 2581 close_fd(&fd);
60f0f54d
PB
2582 }
2583
b9135011 2584 closedir(dir);
b5eece69 2585 return 0;
60f0f54d
PB
2586}
2587
120dc887
LM
2588static void print_found_intel_controllers(struct sys_dev *elem)
2589{
2590 for (; elem; elem = elem->next) {
e7b84f9d 2591 pr_err("found Intel(R) ");
120dc887
LM
2592 if (elem->type == SYS_DEV_SATA)
2593 fprintf(stderr, "SATA ");
155cbb4c
LM
2594 else if (elem->type == SYS_DEV_SAS)
2595 fprintf(stderr, "SAS ");
0858eccf
AP
2596 else if (elem->type == SYS_DEV_NVME)
2597 fprintf(stderr, "NVMe ");
60f0f54d
PB
2598
2599 if (elem->type == SYS_DEV_VMD)
2600 fprintf(stderr, "VMD domain");
2601 else
2602 fprintf(stderr, "RAID controller");
2603
120dc887
LM
2604 if (elem->pci_id)
2605 fprintf(stderr, " at %s", elem->pci_id);
2606 fprintf(stderr, ".\n");
2607 }
2608 fflush(stderr);
2609}
2610
120dc887
LM
2611static int ahci_get_port_count(const char *hba_path, int *port_count)
2612{
2613 struct dirent *ent;
2614 DIR *dir;
2615 int host_base = -1;
2616
2617 *port_count = 0;
2618 if ((dir = opendir(hba_path)) == NULL)
2619 return -1;
2620
2621 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2622 int host;
2623
0858eccf
AP
2624 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2625 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2626 continue;
2627 if (*port_count == 0)
2628 host_base = host;
2629 else if (host < host_base)
2630 host_base = host;
2631
2632 if (host + 1 > *port_count + host_base)
2633 *port_count = host + 1 - host_base;
2634 }
2635 closedir(dir);
2636 return host_base;
2637}
2638
a891a3c2
LM
2639static void print_imsm_capability(const struct imsm_orom *orom)
2640{
0858eccf
AP
2641 printf(" Platform : Intel(R) ");
2642 if (orom->capabilities == 0 && orom->driver_features == 0)
2643 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2644 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2645 printf("Virtual RAID on CPU\n");
0858eccf
AP
2646 else
2647 printf("Rapid Storage Technology%s\n",
2648 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2649 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2650 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2651 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2652 printf(" RAID Levels :%s%s%s%s%s\n",
2653 imsm_orom_has_raid0(orom) ? " raid0" : "",
2654 imsm_orom_has_raid1(orom) ? " raid1" : "",
2655 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2656 imsm_orom_has_raid10(orom) ? " raid10" : "",
2657 imsm_orom_has_raid5(orom) ? " raid5" : "");
2658 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2659 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2660 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2661 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2662 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2663 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2664 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2665 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2666 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2667 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2668 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2669 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2670 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2671 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2672 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2673 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2674 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2675 printf(" 2TB volumes :%s supported\n",
2676 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2677 printf(" 2TB disks :%s supported\n",
2678 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2679 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2680 printf(" Max Volumes : %d per array, %d per %s\n",
2681 orom->vpa, orom->vphba,
2682 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2683 return;
2684}
2685
e50cf220
MN
2686static void print_imsm_capability_export(const struct imsm_orom *orom)
2687{
2688 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2689 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2690 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2691 orom->hotfix_ver, orom->build);
e50cf220
MN
2692 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2693 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2694 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2695 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2696 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2697 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2698 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2699 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2700 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2701 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2702 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2703 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2704 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2705 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2706 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2707 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2708 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2709 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2710 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2711 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2712 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2713 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2714 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2715 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2716 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2717 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2718 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2719 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2720}
2721
9eafa1de 2722static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2723{
2724 /* There are two components to imsm platform support, the ahci SATA
2725 * controller and the option-rom. To find the SATA controller we
2726 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2727 * controller with the Intel vendor id is present. This approach
2728 * allows mdadm to leverage the kernel's ahci detection logic, with the
2729 * caveat that if ahci.ko is not loaded mdadm will not be able to
2730 * detect platform raid capabilities. The option-rom resides in a
2731 * platform "Adapter ROM". We scan for its signature to retrieve the
2732 * platform capabilities. If raid support is disabled in the BIOS the
2733 * option-rom capability structure will not be available.
2734 */
d665cc31 2735 struct sys_dev *list, *hba;
d665cc31
DW
2736 int host_base = 0;
2737 int port_count = 0;
9eafa1de 2738 int result=1;
d665cc31 2739
5615172f 2740 if (enumerate_only) {
420dafcd 2741 if (check_no_platform())
5615172f 2742 return 0;
a891a3c2
LM
2743 list = find_intel_devices();
2744 if (!list)
2745 return 2;
2746 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2747 if (find_imsm_capability(hba)) {
2748 result = 0;
a891a3c2
LM
2749 break;
2750 }
9eafa1de 2751 else
6b781d33 2752 result = 2;
a891a3c2 2753 }
a891a3c2 2754 return result;
5615172f
DW
2755 }
2756
155cbb4c
LM
2757 list = find_intel_devices();
2758 if (!list) {
ba728be7 2759 if (verbose > 0)
7a862a02 2760 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2761 return 2;
ba728be7 2762 } else if (verbose > 0)
155cbb4c 2763 print_found_intel_controllers(list);
d665cc31 2764
a891a3c2 2765 for (hba = list; hba; hba = hba->next) {
0858eccf 2766 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2767 continue;
0858eccf 2768 if (!find_imsm_capability(hba)) {
60f0f54d 2769 char buf[PATH_MAX];
e7b84f9d 2770 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2771 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2772 get_sys_dev_type(hba->type));
0858eccf
AP
2773 continue;
2774 }
2775 result = 0;
2776 }
2777
2778 if (controller_path && result == 1) {
2779 pr_err("no active Intel(R) RAID controller found under %s\n",
2780 controller_path);
2781 return result;
2782 }
2783
5e1d6128 2784 const struct orom_entry *entry;
0858eccf 2785
5e1d6128 2786 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2787 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2788 print_imsm_capability(&entry->orom);
32716c51
PB
2789 printf(" 3rd party NVMe :%s supported\n",
2790 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2791 for (hba = list; hba; hba = hba->next) {
2792 if (hba->type == SYS_DEV_VMD) {
2793 char buf[PATH_MAX];
60f0f54d
PB
2794 printf(" I/O Controller : %s (%s)\n",
2795 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
6da53c0e 2796 if (print_nvme_info(hba)) {
b5eece69
PB
2797 if (verbose > 0)
2798 pr_err("failed to get devices attached to VMD domain.\n");
2799 result |= 2;
2800 }
60f0f54d
PB
2801 }
2802 }
07cb1e57 2803 printf("\n");
60f0f54d
PB
2804 continue;
2805 }
0858eccf 2806
60f0f54d
PB
2807 print_imsm_capability(&entry->orom);
2808 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2809 for (hba = list; hba; hba = hba->next) {
2810 if (hba->type == SYS_DEV_NVME)
6da53c0e 2811 print_nvme_info(hba);
0858eccf 2812 }
60f0f54d 2813 printf("\n");
0858eccf
AP
2814 continue;
2815 }
2816
2817 struct devid_list *devid;
5e1d6128 2818 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2819 hba = device_by_id(devid->devid);
2820 if (!hba)
2821 continue;
2822
9eafa1de
MN
2823 printf(" I/O Controller : %s (%s)\n",
2824 hba->path, get_sys_dev_type(hba->type));
2825 if (hba->type == SYS_DEV_SATA) {
2826 host_base = ahci_get_port_count(hba->path, &port_count);
2827 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2828 if (verbose > 0)
7a862a02 2829 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2830 result |= 2;
2831 }
120dc887
LM
2832 }
2833 }
0858eccf 2834 printf("\n");
d665cc31 2835 }
155cbb4c 2836
120dc887 2837 return result;
d665cc31 2838}
e50cf220 2839
9eafa1de 2840static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2841{
e50cf220
MN
2842 struct sys_dev *list, *hba;
2843 int result=1;
2844
2845 list = find_intel_devices();
2846 if (!list) {
2847 if (verbose > 0)
2848 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2849 result = 2;
e50cf220
MN
2850 return result;
2851 }
2852
2853 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2854 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2855 continue;
60f0f54d
PB
2856 if (!find_imsm_capability(hba) && verbose > 0) {
2857 char buf[PATH_MAX];
2858 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2859 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2860 }
0858eccf 2861 else
e50cf220 2862 result = 0;
e50cf220
MN
2863 }
2864
5e1d6128 2865 const struct orom_entry *entry;
0858eccf 2866
60f0f54d
PB
2867 for (entry = orom_entries; entry; entry = entry->next) {
2868 if (entry->type == SYS_DEV_VMD) {
2869 for (hba = list; hba; hba = hba->next)
2870 print_imsm_capability_export(&entry->orom);
2871 continue;
2872 }
5e1d6128 2873 print_imsm_capability_export(&entry->orom);
60f0f54d 2874 }
0858eccf 2875
e50cf220
MN
2876 return result;
2877}
2878
cdddbdbc
DW
2879static int match_home_imsm(struct supertype *st, char *homehost)
2880{
5115ca67
DW
2881 /* the imsm metadata format does not specify any host
2882 * identification information. We return -1 since we can never
2883 * confirm nor deny whether a given array is "meant" for this
148acb7b 2884 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2885 * exclude member disks that do not belong, and we rely on
2886 * mdadm.conf to specify the arrays that should be assembled.
2887 * Auto-assembly may still pick up "foreign" arrays.
2888 */
cdddbdbc 2889
9362c1c8 2890 return -1;
cdddbdbc
DW
2891}
2892
2893static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2894{
51006d85
N
2895 /* The uuid returned here is used for:
2896 * uuid to put into bitmap file (Create, Grow)
2897 * uuid for backup header when saving critical section (Grow)
2898 * comparing uuids when re-adding a device into an array
2899 * In these cases the uuid required is that of the data-array,
2900 * not the device-set.
2901 * uuid to recognise same set when adding a missing device back
2902 * to an array. This is a uuid for the device-set.
1011e834 2903 *
51006d85
N
2904 * For each of these we can make do with a truncated
2905 * or hashed uuid rather than the original, as long as
2906 * everyone agrees.
2907 * In each case the uuid required is that of the data-array,
2908 * not the device-set.
43dad3d6 2909 */
51006d85
N
2910 /* imsm does not track uuid's so we synthesis one using sha1 on
2911 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2912 * - the orig_family_num of the container
51006d85
N
2913 * - the index number of the volume
2914 * - the 'serial' number of the volume.
2915 * Hopefully these are all constant.
2916 */
2917 struct intel_super *super = st->sb;
43dad3d6 2918
51006d85
N
2919 char buf[20];
2920 struct sha1_ctx ctx;
2921 struct imsm_dev *dev = NULL;
148acb7b 2922 __u32 family_num;
51006d85 2923
148acb7b
DW
2924 /* some mdadm versions failed to set ->orig_family_num, in which
2925 * case fall back to ->family_num. orig_family_num will be
2926 * fixed up with the first metadata update.
2927 */
2928 family_num = super->anchor->orig_family_num;
2929 if (family_num == 0)
2930 family_num = super->anchor->family_num;
51006d85 2931 sha1_init_ctx(&ctx);
92bd8f8d 2932 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2933 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2934 if (super->current_vol >= 0)
2935 dev = get_imsm_dev(super, super->current_vol);
2936 if (dev) {
2937 __u32 vol = super->current_vol;
2938 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2939 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2940 }
2941 sha1_finish_ctx(&ctx, buf);
2942 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2943}
2944
0d481d37 2945#if 0
4f5bc454
DW
2946static void
2947get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2948{
cdddbdbc
DW
2949 __u8 *v = get_imsm_version(mpb);
2950 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2951 char major[] = { 0, 0, 0 };
2952 char minor[] = { 0 ,0, 0 };
2953 char patch[] = { 0, 0, 0 };
2954 char *ver_parse[] = { major, minor, patch };
2955 int i, j;
2956
2957 i = j = 0;
2958 while (*v != '\0' && v < end) {
2959 if (*v != '.' && j < 2)
2960 ver_parse[i][j++] = *v;
2961 else {
2962 i++;
2963 j = 0;
2964 }
2965 v++;
2966 }
2967
4f5bc454
DW
2968 *m = strtol(minor, NULL, 0);
2969 *p = strtol(patch, NULL, 0);
2970}
0d481d37 2971#endif
4f5bc454 2972
1e5c6983
DW
2973static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2974{
2975 /* migr_strip_size when repairing or initializing parity */
238c0a71 2976 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2977 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2978
2979 switch (get_imsm_raid_level(map)) {
2980 case 5:
2981 case 10:
2982 return chunk;
2983 default:
2984 return 128*1024 >> 9;
2985 }
2986}
2987
2988static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2989{
2990 /* migr_strip_size when rebuilding a degraded disk, no idea why
2991 * this is different than migr_strip_size_resync(), but it's good
2992 * to be compatible
2993 */
238c0a71 2994 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2995 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2996
2997 switch (get_imsm_raid_level(map)) {
2998 case 1:
2999 case 10:
3000 if (map->num_members % map->num_domains == 0)
3001 return 128*1024 >> 9;
3002 else
3003 return chunk;
3004 case 5:
3005 return max((__u32) 64*1024 >> 9, chunk);
3006 default:
3007 return 128*1024 >> 9;
3008 }
3009}
3010
3011static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
3012{
238c0a71
AK
3013 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
3014 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3015 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
3016 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
3017
3018 return max((__u32) 1, hi_chunk / lo_chunk);
3019}
3020
3021static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
3022{
238c0a71 3023 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3024 int level = get_imsm_raid_level(lo);
3025
3026 if (level == 1 || level == 10) {
238c0a71 3027 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3028
3029 return hi->num_domains;
3030 } else
3031 return num_stripes_per_unit_resync(dev);
3032}
3033
44490938
MD
3034static unsigned long long calc_component_size(struct imsm_map *map,
3035 struct imsm_dev *dev)
3036{
3037 unsigned long long component_size;
3038 unsigned long long dev_size = imsm_dev_size(dev);
a4f7290c 3039 long long calc_dev_size = 0;
44490938
MD
3040 unsigned int member_disks = imsm_num_data_members(map);
3041
3042 if (member_disks == 0)
3043 return 0;
3044
3045 component_size = per_dev_array_size(map);
3046 calc_dev_size = component_size * member_disks;
3047
3048 /* Component size is rounded to 1MB so difference between size from
3049 * metadata and size calculated from num_data_stripes equals up to
3050 * 2048 blocks per each device. If the difference is higher it means
3051 * that array size was expanded and num_data_stripes was not updated.
3052 */
a4f7290c 3053 if (llabs(calc_dev_size - (long long)dev_size) >
44490938
MD
3054 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3055 component_size = dev_size / member_disks;
3056 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3057 component_size / map->blocks_per_strip,
3058 num_data_stripes(map));
3059 }
3060
3061 return component_size;
3062}
3063
1e5c6983
DW
3064static __u32 parity_segment_depth(struct imsm_dev *dev)
3065{
238c0a71 3066 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3067 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3068
3069 switch(get_imsm_raid_level(map)) {
3070 case 1:
3071 case 10:
3072 return chunk * map->num_domains;
3073 case 5:
3074 return chunk * map->num_members;
3075 default:
3076 return chunk;
3077 }
3078}
3079
3080static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3081{
238c0a71 3082 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
3083 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3084 __u32 strip = block / chunk;
3085
3086 switch (get_imsm_raid_level(map)) {
3087 case 1:
3088 case 10: {
3089 __u32 vol_strip = (strip * map->num_domains) + 1;
3090 __u32 vol_stripe = vol_strip / map->num_members;
3091
3092 return vol_stripe * chunk + block % chunk;
3093 } case 5: {
3094 __u32 stripe = strip / (map->num_members - 1);
3095
3096 return stripe * chunk + block % chunk;
3097 }
3098 default:
3099 return 0;
3100 }
3101}
3102
c47b0ff6
AK
3103static __u64 blocks_per_migr_unit(struct intel_super *super,
3104 struct imsm_dev *dev)
1e5c6983
DW
3105{
3106 /* calculate the conversion factor between per member 'blocks'
3107 * (md/{resync,rebuild}_start) and imsm migration units, return
3108 * 0 for the 'not migrating' and 'unsupported migration' cases
3109 */
3110 if (!dev->vol.migr_state)
3111 return 0;
3112
3113 switch (migr_type(dev)) {
c47b0ff6
AK
3114 case MIGR_GEN_MIGR: {
3115 struct migr_record *migr_rec = super->migr_rec;
3116 return __le32_to_cpu(migr_rec->blocks_per_unit);
3117 }
1e5c6983
DW
3118 case MIGR_VERIFY:
3119 case MIGR_REPAIR:
3120 case MIGR_INIT: {
238c0a71 3121 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
3122 __u32 stripes_per_unit;
3123 __u32 blocks_per_unit;
3124 __u32 parity_depth;
3125 __u32 migr_chunk;
3126 __u32 block_map;
3127 __u32 block_rel;
3128 __u32 segment;
3129 __u32 stripe;
3130 __u8 disks;
3131
3132 /* yes, this is really the translation of migr_units to
3133 * per-member blocks in the 'resync' case
3134 */
3135 stripes_per_unit = num_stripes_per_unit_resync(dev);
3136 migr_chunk = migr_strip_blocks_resync(dev);
9529d343 3137 disks = imsm_num_data_members(map);
1e5c6983 3138 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 3139 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
3140 segment = blocks_per_unit / stripe;
3141 block_rel = blocks_per_unit - segment * stripe;
3142 parity_depth = parity_segment_depth(dev);
3143 block_map = map_migr_block(dev, block_rel);
3144 return block_map + parity_depth * segment;
3145 }
3146 case MIGR_REBUILD: {
3147 __u32 stripes_per_unit;
3148 __u32 migr_chunk;
3149
3150 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3151 migr_chunk = migr_strip_blocks_rebuild(dev);
3152 return migr_chunk * stripes_per_unit;
3153 }
1e5c6983
DW
3154 case MIGR_STATE_CHANGE:
3155 default:
3156 return 0;
3157 }
3158}
3159
c2c087e6
DW
3160static int imsm_level_to_layout(int level)
3161{
3162 switch (level) {
3163 case 0:
3164 case 1:
3165 return 0;
3166 case 5:
3167 case 6:
a380c027 3168 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 3169 case 10:
c92a2527 3170 return 0x102;
c2c087e6 3171 }
a18a888e 3172 return UnSet;
c2c087e6
DW
3173}
3174
8e59f3d8
AK
3175/*******************************************************************************
3176 * Function: read_imsm_migr_rec
3177 * Description: Function reads imsm migration record from last sector of disk
3178 * Parameters:
3179 * fd : disk descriptor
3180 * super : metadata info
3181 * Returns:
3182 * 0 : success,
3183 * -1 : fail
3184 ******************************************************************************/
3185static int read_imsm_migr_rec(int fd, struct intel_super *super)
3186{
3187 int ret_val = -1;
de44e46f 3188 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
3189 unsigned long long dsize;
3190
3191 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3192 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3193 SEEK_SET) < 0) {
e7b84f9d
N
3194 pr_err("Cannot seek to anchor block: %s\n",
3195 strerror(errno));
8e59f3d8
AK
3196 goto out;
3197 }
466070ad 3198 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
3199 MIGR_REC_BUF_SECTORS*sector_size) !=
3200 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3201 pr_err("Cannot read migr record block: %s\n",
3202 strerror(errno));
8e59f3d8
AK
3203 goto out;
3204 }
3205 ret_val = 0;
de44e46f
PB
3206 if (sector_size == 4096)
3207 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
3208
3209out:
3210 return ret_val;
3211}
3212
3136abe5
AK
3213static struct imsm_dev *imsm_get_device_during_migration(
3214 struct intel_super *super)
3215{
3216
3217 struct intel_dev *dv;
3218
3219 for (dv = super->devlist; dv; dv = dv->next) {
3220 if (is_gen_migration(dv->dev))
3221 return dv->dev;
3222 }
3223 return NULL;
3224}
3225
8e59f3d8
AK
3226/*******************************************************************************
3227 * Function: load_imsm_migr_rec
3228 * Description: Function reads imsm migration record (it is stored at the last
3229 * sector of disk)
3230 * Parameters:
3231 * super : imsm internal array info
8e59f3d8
AK
3232 * Returns:
3233 * 0 : success
3234 * -1 : fail
4c965cc9 3235 * -2 : no migration in progress
8e59f3d8 3236 ******************************************************************************/
2f86fda3 3237static int load_imsm_migr_rec(struct intel_super *super)
8e59f3d8 3238{
594dc1b8 3239 struct dl *dl;
8e59f3d8
AK
3240 char nm[30];
3241 int retval = -1;
3242 int fd = -1;
3136abe5 3243 struct imsm_dev *dev;
594dc1b8 3244 struct imsm_map *map;
b4ab44d8 3245 int slot = -1;
2f86fda3 3246 int keep_fd = 1;
3136abe5
AK
3247
3248 /* find map under migration */
3249 dev = imsm_get_device_during_migration(super);
3250 /* nothing to load,no migration in progress?
3251 */
3252 if (dev == NULL)
4c965cc9 3253 return -2;
8e59f3d8 3254
2f86fda3
MT
3255 map = get_imsm_map(dev, MAP_0);
3256 if (!map)
3257 return -1;
3136abe5 3258
2f86fda3
MT
3259 for (dl = super->disks; dl; dl = dl->next) {
3260 /* skip spare and failed disks
3261 */
3262 if (dl->index < 0)
3263 continue;
3264 /* read only from one of the first two slots
3265 */
3266 slot = get_imsm_disk_slot(map, dl->index);
3267 if (slot > 1 || slot < 0)
3268 continue;
3269
4389ce73 3270 if (!is_fd_valid(dl->fd)) {
8e59f3d8
AK
3271 sprintf(nm, "%d:%d", dl->major, dl->minor);
3272 fd = dev_open(nm, O_RDONLY);
4389ce73
MT
3273
3274 if (is_fd_valid(fd)) {
2f86fda3 3275 keep_fd = 0;
8e59f3d8 3276 break;
2f86fda3
MT
3277 }
3278 } else {
3279 fd = dl->fd;
3280 break;
8e59f3d8
AK
3281 }
3282 }
2f86fda3 3283
4389ce73 3284 if (!is_fd_valid(fd))
2f86fda3 3285 return retval;
8e59f3d8 3286 retval = read_imsm_migr_rec(fd, super);
2f86fda3 3287 if (!keep_fd)
8e59f3d8 3288 close(fd);
2f86fda3 3289
8e59f3d8
AK
3290 return retval;
3291}
3292
c17608ea
AK
3293/*******************************************************************************
3294 * function: imsm_create_metadata_checkpoint_update
3295 * Description: It creates update for checkpoint change.
3296 * Parameters:
3297 * super : imsm internal array info
3298 * u : pointer to prepared update
3299 * Returns:
3300 * Uptate length.
3301 * If length is equal to 0, input pointer u contains no update
3302 ******************************************************************************/
3303static int imsm_create_metadata_checkpoint_update(
3304 struct intel_super *super,
3305 struct imsm_update_general_migration_checkpoint **u)
3306{
3307
3308 int update_memory_size = 0;
3309
1ade5cc1 3310 dprintf("(enter)\n");
c17608ea
AK
3311
3312 if (u == NULL)
3313 return 0;
3314 *u = NULL;
3315
3316 /* size of all update data without anchor */
3317 update_memory_size =
3318 sizeof(struct imsm_update_general_migration_checkpoint);
3319
503975b9 3320 *u = xcalloc(1, update_memory_size);
c17608ea 3321 if (*u == NULL) {
1ade5cc1 3322 dprintf("error: cannot get memory\n");
c17608ea
AK
3323 return 0;
3324 }
3325 (*u)->type = update_general_migration_checkpoint;
9f421827 3326 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
83b3de77 3327 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
c17608ea
AK
3328
3329 return update_memory_size;
3330}
3331
c17608ea
AK
3332static void imsm_update_metadata_locally(struct supertype *st,
3333 void *buf, int len);
3334
687629c2
AK
3335/*******************************************************************************
3336 * Function: write_imsm_migr_rec
3337 * Description: Function writes imsm migration record
3338 * (at the last sector of disk)
3339 * Parameters:
3340 * super : imsm internal array info
3341 * Returns:
3342 * 0 : success
3343 * -1 : if fail
3344 ******************************************************************************/
3345static int write_imsm_migr_rec(struct supertype *st)
3346{
3347 struct intel_super *super = st->sb;
de44e46f 3348 unsigned int sector_size = super->sector_size;
687629c2 3349 unsigned long long dsize;
687629c2
AK
3350 int retval = -1;
3351 struct dl *sd;
c17608ea
AK
3352 int len;
3353 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3354 struct imsm_dev *dev;
594dc1b8 3355 struct imsm_map *map;
3136abe5
AK
3356
3357 /* find map under migration */
3358 dev = imsm_get_device_during_migration(super);
3359 /* if no migration, write buffer anyway to clear migr_record
3360 * on disk based on first available device
3361 */
3362 if (dev == NULL)
3363 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3364 super->current_vol);
3365
44bfe6df 3366 map = get_imsm_map(dev, MAP_0);
687629c2 3367
de44e46f
PB
3368 if (sector_size == 4096)
3369 convert_to_4k_imsm_migr_rec(super);
687629c2 3370 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3371 int slot = -1;
3136abe5
AK
3372
3373 /* skip failed and spare devices */
3374 if (sd->index < 0)
3375 continue;
687629c2 3376 /* write to 2 first slots only */
3136abe5
AK
3377 if (map)
3378 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3379 if (map == NULL || slot > 1 || slot < 0)
687629c2 3380 continue;
3136abe5 3381
2f86fda3
MT
3382 get_dev_size(sd->fd, NULL, &dsize);
3383 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3384 sector_size),
de44e46f 3385 SEEK_SET) < 0) {
e7b84f9d
N
3386 pr_err("Cannot seek to anchor block: %s\n",
3387 strerror(errno));
687629c2
AK
3388 goto out;
3389 }
2f86fda3 3390 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
de44e46f
PB
3391 MIGR_REC_BUF_SECTORS*sector_size) !=
3392 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3393 pr_err("Cannot write migr record block: %s\n",
3394 strerror(errno));
687629c2
AK
3395 goto out;
3396 }
687629c2 3397 }
de44e46f
PB
3398 if (sector_size == 4096)
3399 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3400 /* update checkpoint information in metadata */
3401 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3402 if (len <= 0) {
3403 dprintf("imsm: Cannot prepare update\n");
3404 goto out;
3405 }
3406 /* update metadata locally */
3407 imsm_update_metadata_locally(st, u, len);
3408 /* and possibly remotely */
3409 if (st->update_tail) {
3410 append_metadata_update(st, u, len);
3411 /* during reshape we do all work inside metadata handler
3412 * manage_reshape(), so metadata update has to be triggered
3413 * insida it
3414 */
3415 flush_metadata_updates(st);
3416 st->update_tail = &st->updates;
3417 } else
3418 free(u);
687629c2
AK
3419
3420 retval = 0;
3421 out:
687629c2
AK
3422 return retval;
3423}
3424
e2962bfc
AK
3425/* spare/missing disks activations are not allowe when
3426 * array/container performs reshape operation, because
3427 * all arrays in container works on the same disks set
3428 */
3429int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3430{
3431 int rv = 0;
3432 struct intel_dev *i_dev;
3433 struct imsm_dev *dev;
3434
3435 /* check whole container
3436 */
3437 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3438 dev = i_dev->dev;
3ad25638 3439 if (is_gen_migration(dev)) {
e2962bfc
AK
3440 /* No repair during any migration in container
3441 */
3442 rv = 1;
3443 break;
3444 }
3445 }
3446 return rv;
3447}
3e684231 3448static unsigned long long imsm_component_size_alignment_check(int level,
c41e00b2 3449 int chunk_size,
f36a9ecd 3450 unsigned int sector_size,
c41e00b2
AK
3451 unsigned long long component_size)
3452{
3e684231 3453 unsigned int component_size_alignment;
c41e00b2 3454
3e684231 3455 /* check component size alignment
c41e00b2 3456 */
3e684231 3457 component_size_alignment = component_size % (chunk_size/sector_size);
c41e00b2 3458
3e684231 3459 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
c41e00b2 3460 level, chunk_size, component_size,
3e684231 3461 component_size_alignment);
c41e00b2 3462
3e684231
MZ
3463 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3464 dprintf("imsm: reported component size aligned from %llu ",
c41e00b2 3465 component_size);
3e684231 3466 component_size -= component_size_alignment;
1ade5cc1 3467 dprintf_cont("to %llu (%i).\n",
3e684231 3468 component_size, component_size_alignment);
c41e00b2
AK
3469 }
3470
3471 return component_size;
3472}
e2962bfc 3473
fbc42556
JR
3474/*******************************************************************************
3475 * Function: get_bitmap_header_sector
3476 * Description: Returns the sector where the bitmap header is placed.
3477 * Parameters:
3478 * st : supertype information
3479 * dev_idx : index of the device with bitmap
3480 *
3481 * Returns:
3482 * The sector where the bitmap header is placed
3483 ******************************************************************************/
3484static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3485 int dev_idx)
3486{
3487 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3488 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3489
3490 if (!super->sector_size) {
3491 dprintf("sector size is not set\n");
3492 return 0;
3493 }
3494
3495 return pba_of_lba0(map) + calc_component_size(map, dev) +
3496 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3497}
3498
3499/*******************************************************************************
3500 * Function: get_bitmap_sector
3501 * Description: Returns the sector where the bitmap is placed.
3502 * Parameters:
3503 * st : supertype information
3504 * dev_idx : index of the device with bitmap
3505 *
3506 * Returns:
3507 * The sector where the bitmap is placed
3508 ******************************************************************************/
3509static unsigned long long get_bitmap_sector(struct intel_super *super,
3510 int dev_idx)
3511{
3512 if (!super->sector_size) {
3513 dprintf("sector size is not set\n");
3514 return 0;
3515 }
3516
3517 return get_bitmap_header_sector(super, dev_idx) +
3518 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3519}
3520
2432ce9b
AP
3521static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3522{
3523 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3524 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3525
3526 return pba_of_lba0(map) +
3527 (num_data_stripes(map) * map->blocks_per_strip);
3528}
3529
a5d85af7 3530static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3531{
3532 struct intel_super *super = st->sb;
c47b0ff6 3533 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3534 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3535 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3536 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3537 struct imsm_map *map_to_analyse = map;
efb30e7f 3538 struct dl *dl;
a5d85af7 3539 int map_disks = info->array.raid_disks;
bf5a934a 3540
95eeceeb 3541 memset(info, 0, sizeof(*info));
b335e593
AK
3542 if (prev_map)
3543 map_to_analyse = prev_map;
3544
ca0748fa 3545 dl = super->current_disk;
9894ec0d 3546
bf5a934a 3547 info->container_member = super->current_vol;
cd0430a1 3548 info->array.raid_disks = map->num_members;
b335e593 3549 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3550 info->array.layout = imsm_level_to_layout(info->array.level);
3551 info->array.md_minor = -1;
3552 info->array.ctime = 0;
3553 info->array.utime = 0;
b335e593
AK
3554 info->array.chunk_size =
3555 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3556 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3557 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3558 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3559
3f510843 3560 if (is_gen_migration(dev)) {
195d1d76
PP
3561 /*
3562 * device prev_map should be added if it is in the middle
3563 * of migration
3564 */
3565 assert(prev_map);
3566
3f83228a 3567 info->reshape_active = 1;
b335e593
AK
3568 info->new_level = get_imsm_raid_level(map);
3569 info->new_layout = imsm_level_to_layout(info->new_level);
3570 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3571 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3572 if (info->delta_disks) {
3573 /* this needs to be applied to every array
3574 * in the container.
3575 */
81219e70 3576 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3577 }
3f83228a
N
3578 /* We shape information that we give to md might have to be
3579 * modify to cope with md's requirement for reshaping arrays.
3580 * For example, when reshaping a RAID0, md requires it to be
3581 * presented as a degraded RAID4.
3582 * Also if a RAID0 is migrating to a RAID5 we need to specify
3583 * the array as already being RAID5, but the 'before' layout
3584 * is a RAID4-like layout.
3585 */
3586 switch (info->array.level) {
3587 case 0:
3588 switch(info->new_level) {
3589 case 0:
3590 /* conversion is happening as RAID4 */
3591 info->array.level = 4;
3592 info->array.raid_disks += 1;
3593 break;
3594 case 5:
3595 /* conversion is happening as RAID5 */
3596 info->array.level = 5;
3597 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3598 info->delta_disks -= 1;
3599 break;
3600 default:
3601 /* FIXME error message */
3602 info->array.level = UnSet;
3603 break;
3604 }
3605 break;
3606 }
b335e593
AK
3607 } else {
3608 info->new_level = UnSet;
3609 info->new_layout = UnSet;
3610 info->new_chunk = info->array.chunk_size;
3f83228a 3611 info->delta_disks = 0;
b335e593 3612 }
ca0748fa 3613
efb30e7f
DW
3614 if (dl) {
3615 info->disk.major = dl->major;
3616 info->disk.minor = dl->minor;
ca0748fa 3617 info->disk.number = dl->index;
656b6b5a
N
3618 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3619 dl->index);
efb30e7f 3620 }
bf5a934a 3621
5551b113 3622 info->data_offset = pba_of_lba0(map_to_analyse);
44490938 3623 info->component_size = calc_component_size(map, dev);
3e684231 3624 info->component_size = imsm_component_size_alignment_check(
c41e00b2
AK
3625 info->array.level,
3626 info->array.chunk_size,
f36a9ecd 3627 super->sector_size,
c41e00b2 3628 info->component_size);
5e46202e 3629 info->bb.supported = 1;
139dae11 3630
301406c9 3631 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3632 info->recovery_start = MaxSector;
bf5a934a 3633
c2462068
PB
3634 if (info->array.level == 5 &&
3635 (dev->rwh_policy == RWH_DISTRIBUTED ||
3636 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3637 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3638 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3639 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3640 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3641 else
3642 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3643 >> 9;
2432ce9b
AP
3644 } else if (info->array.level <= 0) {
3645 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3646 } else {
fbc42556
JR
3647 if (dev->rwh_policy == RWH_BITMAP) {
3648 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3649 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3650 } else {
3651 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3652 }
2432ce9b
AP
3653 }
3654
d2e6d5d6 3655 info->reshape_progress = 0;
b6796ce1 3656 info->resync_start = MaxSector;
b9172665 3657 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3658 !(info->array.state & 1)) &&
b9172665 3659 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3660 info->resync_start = 0;
b6796ce1
AK
3661 }
3662 if (dev->vol.migr_state) {
1e5c6983
DW
3663 switch (migr_type(dev)) {
3664 case MIGR_REPAIR:
3665 case MIGR_INIT: {
c47b0ff6
AK
3666 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3667 dev);
4036e7ee 3668 __u64 units = vol_curr_migr_unit(dev);
1e5c6983
DW
3669
3670 info->resync_start = blocks_per_unit * units;
3671 break;
3672 }
d2e6d5d6 3673 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3674 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3675 dev);
9f421827 3676 __u64 units = current_migr_unit(migr_rec);
04fa9523 3677 int used_disks;
d2e6d5d6 3678
befb629b
AK
3679 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3680 (units <
9f421827 3681 (get_num_migr_units(migr_rec)-1)) &&
befb629b
AK
3682 (super->migr_rec->rec_status ==
3683 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3684 units++;
3685
d2e6d5d6 3686 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3687
7a862a02 3688 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3689 (unsigned long long)units,
3690 (unsigned long long)blocks_per_unit,
3691 info->reshape_progress);
75156c46 3692
9529d343 3693 used_disks = imsm_num_data_members(prev_map);
75156c46 3694 if (used_disks > 0) {
895ffd99 3695 info->custom_array_size = per_dev_array_size(map) *
75156c46 3696 used_disks;
75156c46 3697 }
d2e6d5d6 3698 }
1e5c6983
DW
3699 case MIGR_VERIFY:
3700 /* we could emulate the checkpointing of
3701 * 'sync_action=check' migrations, but for now
3702 * we just immediately complete them
3703 */
3704 case MIGR_REBUILD:
3705 /* this is handled by container_content_imsm() */
1e5c6983
DW
3706 case MIGR_STATE_CHANGE:
3707 /* FIXME handle other migrations */
3708 default:
3709 /* we are not dirty, so... */
3710 info->resync_start = MaxSector;
3711 }
b6796ce1 3712 }
301406c9
DW
3713
3714 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3715 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3716
f35f2525
N
3717 info->array.major_version = -1;
3718 info->array.minor_version = -2;
4dd2df09 3719 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3720 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3721 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3722
3723 if (dmap) {
3724 int i, j;
3725 for (i=0; i<map_disks; i++) {
3726 dmap[i] = 0;
3727 if (i < info->array.raid_disks) {
3728 struct imsm_disk *dsk;
238c0a71 3729 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3730 dsk = get_imsm_disk(super, j);
3731 if (dsk && (dsk->status & CONFIGURED_DISK))
3732 dmap[i] = 1;
3733 }
3734 }
3735 }
81ac8b4d 3736}
bf5a934a 3737
3b451610
AK
3738static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3739 int failed, int look_in_map);
3740
3741static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3742 int look_in_map);
3743
3744static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3745{
3746 if (is_gen_migration(dev)) {
3747 int failed;
3748 __u8 map_state;
3749 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3750
3751 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3752 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3753 if (map2->map_state != map_state) {
3754 map2->map_state = map_state;
3755 super->updates_pending++;
3756 }
3757 }
3758}
97b4d0e9
DW
3759
3760static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3761{
3762 struct dl *d;
3763
3764 for (d = super->missing; d; d = d->next)
3765 if (d->index == index)
3766 return &d->disk;
3767 return NULL;
3768}
3769
a5d85af7 3770static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3771{
3772 struct intel_super *super = st->sb;
4f5bc454 3773 struct imsm_disk *disk;
a5d85af7 3774 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3775 int max_enough = -1;
3776 int i;
3777 struct imsm_super *mpb;
4f5bc454 3778
bf5a934a 3779 if (super->current_vol >= 0) {
a5d85af7 3780 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3781 return;
3782 }
95eeceeb 3783 memset(info, 0, sizeof(*info));
d23fe947
DW
3784
3785 /* Set raid_disks to zero so that Assemble will always pull in valid
3786 * spares
3787 */
3788 info->array.raid_disks = 0;
cdddbdbc
DW
3789 info->array.level = LEVEL_CONTAINER;
3790 info->array.layout = 0;
3791 info->array.md_minor = -1;
1011e834 3792 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3793 info->array.utime = 0;
3794 info->array.chunk_size = 0;
3795
3796 info->disk.major = 0;
3797 info->disk.minor = 0;
cdddbdbc 3798 info->disk.raid_disk = -1;
c2c087e6 3799 info->reshape_active = 0;
f35f2525
N
3800 info->array.major_version = -1;
3801 info->array.minor_version = -2;
c2c087e6 3802 strcpy(info->text_version, "imsm");
a67dd8cc 3803 info->safe_mode_delay = 0;
c2c087e6
DW
3804 info->disk.number = -1;
3805 info->disk.state = 0;
c5afc314 3806 info->name[0] = 0;
921d9e16 3807 info->recovery_start = MaxSector;
3ad25638 3808 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3809 info->bb.supported = 1;
c2c087e6 3810
97b4d0e9 3811 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3812 mpb = super->anchor;
b7d81a38 3813 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3814
ab3cb6b3
N
3815 for (i = 0; i < mpb->num_raid_devs; i++) {
3816 struct imsm_dev *dev = get_imsm_dev(super, i);
3817 int failed, enough, j, missing = 0;
3818 struct imsm_map *map;
3819 __u8 state;
97b4d0e9 3820
3b451610
AK
3821 failed = imsm_count_failed(super, dev, MAP_0);
3822 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3823 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3824
3825 /* any newly missing disks?
3826 * (catches single-degraded vs double-degraded)
3827 */
3828 for (j = 0; j < map->num_members; j++) {
238c0a71 3829 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3830 __u32 idx = ord_to_idx(ord);
3831
20dc76d1
MT
3832 if (super->disks && super->disks->index == (int)idx)
3833 info->disk.raid_disk = j;
3834
ab3cb6b3
N
3835 if (!(ord & IMSM_ORD_REBUILD) &&
3836 get_imsm_missing(super, idx)) {
3837 missing = 1;
3838 break;
3839 }
97b4d0e9 3840 }
ab3cb6b3
N
3841
3842 if (state == IMSM_T_STATE_FAILED)
3843 enough = -1;
3844 else if (state == IMSM_T_STATE_DEGRADED &&
3845 (state != map->map_state || missing))
3846 enough = 0;
3847 else /* we're normal, or already degraded */
3848 enough = 1;
d2bde6d3
AK
3849 if (is_gen_migration(dev) && missing) {
3850 /* during general migration we need all disks
3851 * that process is running on.
3852 * No new missing disk is allowed.
3853 */
3854 max_enough = -1;
3855 enough = -1;
3856 /* no more checks necessary
3857 */
3858 break;
3859 }
ab3cb6b3
N
3860 /* in the missing/failed disk case check to see
3861 * if at least one array is runnable
3862 */
3863 max_enough = max(max_enough, enough);
3864 }
1ade5cc1 3865 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3866 info->container_enough = max_enough;
97b4d0e9 3867
4a04ec6c 3868 if (super->disks) {
14e8215b
DW
3869 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3870
b9f594fe 3871 disk = &super->disks->disk;
5551b113 3872 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3873 info->component_size = reserved;
25ed7e59 3874 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3875 /* we don't change info->disk.raid_disk here because
3876 * this state will be finalized in mdmon after we have
3877 * found the 'most fresh' version of the metadata
3878 */
25ed7e59 3879 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3880 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3881 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3882 }
a575e2a7
DW
3883
3884 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3885 * ->compare_super may have updated the 'num_raid_devs' field for spares
3886 */
3887 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3888 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3889 else
3890 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3891
3892 /* I don't know how to compute 'map' on imsm, so use safe default */
3893 if (map) {
3894 int i;
3895 for (i = 0; i < map_disks; i++)
3896 map[i] = 1;
3897 }
3898
cdddbdbc
DW
3899}
3900
5c4cd5da
AC
3901/* allocates memory and fills disk in mdinfo structure
3902 * for each disk in array */
3903struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3904{
594dc1b8 3905 struct mdinfo *mddev;
5c4cd5da
AC
3906 struct intel_super *super = st->sb;
3907 struct imsm_disk *disk;
3908 int count = 0;
3909 struct dl *dl;
3910 if (!super || !super->disks)
3911 return NULL;
3912 dl = super->disks;
503975b9 3913 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3914 while (dl) {
3915 struct mdinfo *tmp;
3916 disk = &dl->disk;
503975b9 3917 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3918 if (mddev->devs)
3919 tmp->next = mddev->devs;
3920 mddev->devs = tmp;
3921 tmp->disk.number = count++;
3922 tmp->disk.major = dl->major;
3923 tmp->disk.minor = dl->minor;
3924 tmp->disk.state = is_configured(disk) ?
3925 (1 << MD_DISK_ACTIVE) : 0;
3926 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3927 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3928 tmp->disk.raid_disk = -1;
3929 dl = dl->next;
3930 }
3931 return mddev;
3932}
3933
cdddbdbc 3934static int update_super_imsm(struct supertype *st, struct mdinfo *info,
03312b52
MK
3935 enum update_opt update, char *devname,
3936 int verbose, int uuid_set, char *homehost)
cdddbdbc 3937{
f352c545
DW
3938 /* For 'assemble' and 'force' we need to return non-zero if any
3939 * change was made. For others, the return value is ignored.
3940 * Update options are:
3941 * force-one : This device looks a bit old but needs to be included,
3942 * update age info appropriately.
3943 * assemble: clear any 'faulty' flag to allow this device to
3944 * be assembled.
3945 * force-array: Array is degraded but being forced, mark it clean
3946 * if that will be needed to assemble it.
3947 *
3948 * newdev: not used ????
3949 * grow: Array has gained a new device - this is currently for
3950 * linear only
3951 * resync: mark as dirty so a resync will happen.
3952 * name: update the name - preserving the homehost
6e46bf34 3953 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3954 *
3955 * Following are not relevant for this imsm:
3956 * sparc2.2 : update from old dodgey metadata
3957 * super-minor: change the preferred_minor number
3958 * summaries: update redundant counters.
f352c545
DW
3959 * homehost: update the recorded homehost
3960 * _reshape_progress: record new reshape_progress position.
3961 */
6e46bf34
DW
3962 int rv = 1;
3963 struct intel_super *super = st->sb;
3964 struct imsm_super *mpb;
f352c545 3965
6e46bf34
DW
3966 /* we can only update container info */
3967 if (!super || super->current_vol >= 0 || !super->anchor)
3968 return 1;
3969
3970 mpb = super->anchor;
3971
03312b52 3972 switch (update) {
4345e135 3973 case UOPT_UUID:
81a5b4f5
N
3974 /* We take this to mean that the family_num should be updated.
3975 * However that is much smaller than the uuid so we cannot really
3976 * allow an explicit uuid to be given. And it is hard to reliably
3977 * know if one was.
3978 * So if !uuid_set we know the current uuid is random and just used
3979 * the first 'int' and copy it to the other 3 positions.
3980 * Otherwise we require the 4 'int's to be the same as would be the
3981 * case if we are using a random uuid. So an explicit uuid will be
3982 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3983 */
81a5b4f5
N
3984 if (!uuid_set) {
3985 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3986 rv = 0;
81a5b4f5
N
3987 } else {
3988 if (info->uuid[0] != info->uuid[1] ||
3989 info->uuid[1] != info->uuid[2] ||
3990 info->uuid[2] != info->uuid[3])
3991 rv = -1;
3992 else
3993 rv = 0;
6e46bf34 3994 }
81a5b4f5
N
3995 if (rv == 0)
3996 mpb->orig_family_num = info->uuid[0];
4345e135
MK
3997 break;
3998 case UOPT_SPEC_ASSEMBLE:
6e46bf34 3999 rv = 0;
4345e135
MK
4000 break;
4001 default:
1e2b2765 4002 rv = -1;
4345e135
MK
4003 break;
4004 }
f352c545 4005
6e46bf34
DW
4006 /* successful update? recompute checksum */
4007 if (rv == 0)
4008 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
4009
4010 return rv;
cdddbdbc
DW
4011}
4012
c2c087e6 4013static size_t disks_to_mpb_size(int disks)
cdddbdbc 4014{
c2c087e6 4015 size_t size;
cdddbdbc 4016
c2c087e6
DW
4017 size = sizeof(struct imsm_super);
4018 size += (disks - 1) * sizeof(struct imsm_disk);
4019 size += 2 * sizeof(struct imsm_dev);
4020 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
4021 size += (4 - 2) * sizeof(struct imsm_map);
4022 /* 4 possible disk_ord_tbl's */
4023 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
4024 /* maximum bbm log */
4025 size += sizeof(struct bbm_log);
c2c087e6
DW
4026
4027 return size;
4028}
4029
387fcd59
N
4030static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
4031 unsigned long long data_offset)
c2c087e6
DW
4032{
4033 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
4034 return 0;
4035
4036 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
4037}
4038
ba2de7ba
DW
4039static void free_devlist(struct intel_super *super)
4040{
4041 struct intel_dev *dv;
4042
4043 while (super->devlist) {
4044 dv = super->devlist->next;
4045 free(super->devlist->dev);
4046 free(super->devlist);
4047 super->devlist = dv;
4048 }
4049}
4050
4051static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4052{
4053 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4054}
4055
c7b8547c
MT
4056static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4057 int verbose)
cdddbdbc 4058{
601ffa78 4059 /* return:
cdddbdbc 4060 * 0 same, or first was empty, and second was copied
601ffa78 4061 * 1 sb are different
cdddbdbc
DW
4062 */
4063 struct intel_super *first = st->sb;
4064 struct intel_super *sec = tst->sb;
4065
5d500228
N
4066 if (!first) {
4067 st->sb = tst->sb;
4068 tst->sb = NULL;
4069 return 0;
4070 }
601ffa78 4071
8603ea6f
LM
4072 /* in platform dependent environment test if the disks
4073 * use the same Intel hba
601ffa78
OS
4074 * if not on Intel hba at all, allow anything.
4075 * doesn't check HBAs if num_raid_devs is not set, as it means
4076 * it is a free floating spare, and all spares regardless of HBA type
4077 * will fall into separate container during the assembly
8603ea6f 4078 */
601ffa78 4079 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
6b781d33 4080 if (first->hba->type != sec->hba->type) {
c7b8547c
MT
4081 if (verbose)
4082 pr_err("HBAs of devices do not match %s != %s\n",
4083 get_sys_dev_type(first->hba->type),
4084 get_sys_dev_type(sec->hba->type));
601ffa78 4085 return 1;
6b781d33
AP
4086 }
4087 if (first->orom != sec->orom) {
c7b8547c
MT
4088 if (verbose)
4089 pr_err("HBAs of devices do not match %s != %s\n",
4090 first->hba->pci_id, sec->hba->pci_id);
601ffa78 4091 return 1;
8603ea6f
LM
4092 }
4093 }
cdddbdbc 4094
d23fe947
DW
4095 if (first->anchor->num_raid_devs > 0 &&
4096 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
4097 /* Determine if these disks might ever have been
4098 * related. Further disambiguation can only take place
4099 * in load_super_imsm_all
4100 */
4101 __u32 first_family = first->anchor->orig_family_num;
4102 __u32 sec_family = sec->anchor->orig_family_num;
4103
f796af5d
DW
4104 if (memcmp(first->anchor->sig, sec->anchor->sig,
4105 MAX_SIGNATURE_LENGTH) != 0)
601ffa78 4106 return 1;
f796af5d 4107
a2b97981
DW
4108 if (first_family == 0)
4109 first_family = first->anchor->family_num;
4110 if (sec_family == 0)
4111 sec_family = sec->anchor->family_num;
4112
4113 if (first_family != sec_family)
601ffa78 4114 return 1;
f796af5d 4115
d23fe947 4116 }
cdddbdbc 4117
601ffa78
OS
4118 /* if an anchor does not have num_raid_devs set then it is a free
4119 * floating spare. don't assosiate spare with any array, as during assembly
4120 * spares shall fall into separate container, from which they can be moved
4121 * when necessary
4122 */
4123 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4124 return 1;
3e372e5a 4125
cdddbdbc
DW
4126 return 0;
4127}
4128
0030e8d6
DW
4129static void fd2devname(int fd, char *name)
4130{
0030e8d6 4131 char *nm;
0030e8d6 4132
7c798f87
MT
4133 nm = fd2kname(fd);
4134 if (!nm)
0030e8d6 4135 return;
9587c373 4136
7c798f87 4137 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
0030e8d6
DW
4138}
4139
21e9380b
AP
4140static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4141{
fcebeb77 4142 char path[PATH_MAX];
21e9380b
AP
4143 char *name = fd2kname(fd);
4144
4145 if (!name)
4146 return 1;
4147
4148 if (strncmp(name, "nvme", 4) != 0)
4149 return 1;
4150
fcebeb77
MT
4151 if (!diskfd_to_devpath(fd, 1, path))
4152 return 1;
21e9380b 4153
fcebeb77 4154 return devpath_to_char(path, "serial", buf, buf_len, 0);
21e9380b
AP
4155}
4156
cdddbdbc
DW
4157extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4158
4159static int imsm_read_serial(int fd, char *devname,
6da53c0e 4160 __u8 *serial, size_t serial_buf_len)
cdddbdbc 4161{
21e9380b 4162 char buf[50];
cdddbdbc 4163 int rv;
6da53c0e 4164 size_t len;
316e2bf4
DW
4165 char *dest;
4166 char *src;
21e9380b
AP
4167 unsigned int i;
4168
4169 memset(buf, 0, sizeof(buf));
cdddbdbc 4170
21e9380b 4171 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 4172
21e9380b
AP
4173 if (rv)
4174 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 4175
40ebbb9c 4176 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
4177 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4178 fd2devname(fd, (char *) serial);
0030e8d6
DW
4179 return 0;
4180 }
4181
cdddbdbc
DW
4182 if (rv != 0) {
4183 if (devname)
e7b84f9d
N
4184 pr_err("Failed to retrieve serial for %s\n",
4185 devname);
cdddbdbc
DW
4186 return rv;
4187 }
4188
316e2bf4
DW
4189 /* trim all whitespace and non-printable characters and convert
4190 * ':' to ';'
4191 */
21e9380b
AP
4192 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4193 src = &buf[i];
316e2bf4
DW
4194 if (*src > 0x20) {
4195 /* ':' is reserved for use in placeholder serial
4196 * numbers for missing disks
4197 */
4198 if (*src == ':')
4199 *dest++ = ';';
4200 else
4201 *dest++ = *src;
4202 }
4203 }
21e9380b
AP
4204 len = dest - buf;
4205 dest = buf;
316e2bf4 4206
6da53c0e
BK
4207 if (len > serial_buf_len) {
4208 /* truncate leading characters */
4209 dest += len - serial_buf_len;
4210 len = serial_buf_len;
316e2bf4 4211 }
5c3db629 4212
6da53c0e 4213 memset(serial, 0, serial_buf_len);
316e2bf4 4214 memcpy(serial, dest, len);
cdddbdbc
DW
4215
4216 return 0;
4217}
4218
1f24f035
DW
4219static int serialcmp(__u8 *s1, __u8 *s2)
4220{
4221 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4222}
4223
4224static void serialcpy(__u8 *dest, __u8 *src)
4225{
4226 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4227}
4228
54c2c1ea
DW
4229static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4230{
4231 struct dl *dl;
4232
4233 for (dl = super->disks; dl; dl = dl->next)
4234 if (serialcmp(dl->serial, serial) == 0)
4235 break;
4236
4237 return dl;
4238}
4239
a2b97981
DW
4240static struct imsm_disk *
4241__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4242{
4243 int i;
4244
4245 for (i = 0; i < mpb->num_disks; i++) {
4246 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4247
4248 if (serialcmp(disk->serial, serial) == 0) {
4249 if (idx)
4250 *idx = i;
4251 return disk;
4252 }
4253 }
4254
4255 return NULL;
4256}
4257
cdddbdbc
DW
4258static int
4259load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4260{
a2b97981 4261 struct imsm_disk *disk;
cdddbdbc
DW
4262 struct dl *dl;
4263 struct stat stb;
cdddbdbc 4264 int rv;
a2b97981 4265 char name[40];
d23fe947
DW
4266 __u8 serial[MAX_RAID_SERIAL_LEN];
4267
6da53c0e 4268 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
d23fe947
DW
4269
4270 if (rv != 0)
4271 return 2;
4272
503975b9 4273 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4274
a2b97981
DW
4275 fstat(fd, &stb);
4276 dl->major = major(stb.st_rdev);
4277 dl->minor = minor(stb.st_rdev);
4278 dl->next = super->disks;
4279 dl->fd = keep_fd ? fd : -1;
4280 assert(super->disks == NULL);
4281 super->disks = dl;
4282 serialcpy(dl->serial, serial);
4283 dl->index = -2;
4284 dl->e = NULL;
4285 fd2devname(fd, name);
4286 if (devname)
503975b9 4287 dl->devname = xstrdup(devname);
a2b97981 4288 else
503975b9 4289 dl->devname = xstrdup(name);
cdddbdbc 4290
d23fe947 4291 /* look up this disk's index in the current anchor */
a2b97981
DW
4292 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4293 if (disk) {
4294 dl->disk = *disk;
4295 /* only set index on disks that are a member of a
4296 * populated contianer, i.e. one with raid_devs
4297 */
4298 if (is_failed(&dl->disk))
3f6efecc 4299 dl->index = -2;
2432ce9b 4300 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4301 dl->index = -1;
3f6efecc
DW
4302 }
4303
949c47a0
DW
4304 return 0;
4305}
4306
0c046afd
DW
4307/* When migrating map0 contains the 'destination' state while map1
4308 * contains the current state. When not migrating map0 contains the
4309 * current state. This routine assumes that map[0].map_state is set to
4310 * the current array state before being called.
4311 *
4312 * Migration is indicated by one of the following states
4313 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4314 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4315 * map1state=unitialized)
1484e727 4316 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4317 * map1state=normal)
e3bba0e0 4318 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4319 * map1state=degraded)
8e59f3d8
AK
4320 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4321 * map1state=normal)
0c046afd 4322 */
8e59f3d8
AK
4323static void migrate(struct imsm_dev *dev, struct intel_super *super,
4324 __u8 to_state, int migr_type)
3393c6af 4325{
0c046afd 4326 struct imsm_map *dest;
238c0a71 4327 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4328
0c046afd 4329 dev->vol.migr_state = 1;
1484e727 4330 set_migr_type(dev, migr_type);
4036e7ee 4331 set_vol_curr_migr_unit(dev, 0);
238c0a71 4332 dest = get_imsm_map(dev, MAP_1);
0c046afd 4333
0556e1a2 4334 /* duplicate and then set the target end state in map[0] */
3393c6af 4335 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4336 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4337 __u32 ord;
4338 int i;
4339
4340 for (i = 0; i < src->num_members; i++) {
4341 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4342 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4343 }
4344 }
4345
8e59f3d8
AK
4346 if (migr_type == MIGR_GEN_MIGR)
4347 /* Clear migration record */
4348 memset(super->migr_rec, 0, sizeof(struct migr_record));
4349
0c046afd 4350 src->map_state = to_state;
949c47a0 4351}
f8f603f1 4352
809da78e
AK
4353static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4354 __u8 map_state)
f8f603f1 4355{
238c0a71
AK
4356 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4357 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4358 MAP_0 : MAP_1);
28bce06f 4359 int i, j;
0556e1a2
DW
4360
4361 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4362 * completed in the last migration.
4363 *
28bce06f 4364 * FIXME add support for raid-level-migration
0556e1a2 4365 */
195d1d76 4366 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
089f9d79 4367 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4368 /* when final map state is other than expected
4369 * merge maps (not for migration)
4370 */
4371 int failed;
4372
4373 for (i = 0; i < prev->num_members; i++)
4374 for (j = 0; j < map->num_members; j++)
4375 /* during online capacity expansion
4376 * disks position can be changed
4377 * if takeover is used
4378 */
4379 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4380 ord_to_idx(prev->disk_ord_tbl[i])) {
4381 map->disk_ord_tbl[j] |=
4382 prev->disk_ord_tbl[i];
4383 break;
4384 }
4385 failed = imsm_count_failed(super, dev, MAP_0);
4386 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4387 }
f8f603f1
DW
4388
4389 dev->vol.migr_state = 0;
ea672ee1 4390 set_migr_type(dev, 0);
4036e7ee 4391 set_vol_curr_migr_unit(dev, 0);
f8f603f1
DW
4392 map->map_state = map_state;
4393}
949c47a0
DW
4394
4395static int parse_raid_devices(struct intel_super *super)
4396{
4397 int i;
4398 struct imsm_dev *dev_new;
4d7b1503 4399 size_t len, len_migr;
401d313b 4400 size_t max_len = 0;
4d7b1503
DW
4401 size_t space_needed = 0;
4402 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4403
4404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4405 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4406 struct intel_dev *dv;
949c47a0 4407
4d7b1503
DW
4408 len = sizeof_imsm_dev(dev_iter, 0);
4409 len_migr = sizeof_imsm_dev(dev_iter, 1);
4410 if (len_migr > len)
4411 space_needed += len_migr - len;
ca9de185 4412
503975b9 4413 dv = xmalloc(sizeof(*dv));
401d313b
AK
4414 if (max_len < len_migr)
4415 max_len = len_migr;
4416 if (max_len > len_migr)
4417 space_needed += max_len - len_migr;
503975b9 4418 dev_new = xmalloc(max_len);
949c47a0 4419 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4420 dv->dev = dev_new;
4421 dv->index = i;
4422 dv->next = super->devlist;
4423 super->devlist = dv;
949c47a0 4424 }
cdddbdbc 4425
4d7b1503
DW
4426 /* ensure that super->buf is large enough when all raid devices
4427 * are migrating
4428 */
4429 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4430 void *buf;
4431
f36a9ecd
PB
4432 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4433 super->sector_size);
4434 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4435 return 1;
4436
1f45a8ad
DW
4437 memcpy(buf, super->buf, super->len);
4438 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4439 free(super->buf);
4440 super->buf = buf;
4441 super->len = len;
4442 }
ca9de185 4443
bbab0940
TM
4444 super->extra_space += space_needed;
4445
cdddbdbc
DW
4446 return 0;
4447}
4448
e2f41b2c
AK
4449/*******************************************************************************
4450 * Function: check_mpb_migr_compatibility
4451 * Description: Function checks for unsupported migration features:
4452 * - migration optimization area (pba_of_lba0)
4453 * - descending reshape (ascending_migr)
4454 * Parameters:
4455 * super : imsm metadata information
4456 * Returns:
4457 * 0 : migration is compatible
4458 * -1 : migration is not compatible
4459 ******************************************************************************/
4460int check_mpb_migr_compatibility(struct intel_super *super)
4461{
4462 struct imsm_map *map0, *map1;
4463 struct migr_record *migr_rec = super->migr_rec;
4464 int i;
4465
4466 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4467 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4468
756a15f3 4469 if (dev_iter->vol.migr_state == 1 &&
e2f41b2c
AK
4470 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4471 /* This device is migrating */
238c0a71
AK
4472 map0 = get_imsm_map(dev_iter, MAP_0);
4473 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4474 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4475 /* migration optimization area was used */
4476 return -1;
fc54fe7a
JS
4477 if (migr_rec->ascending_migr == 0 &&
4478 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4479 /* descending reshape not supported yet */
4480 return -1;
4481 }
4482 }
4483 return 0;
4484}
4485
d23fe947 4486static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4487
cdddbdbc 4488/* load_imsm_mpb - read matrix metadata
f2f5c343 4489 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4490 */
4491static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4492{
4493 unsigned long long dsize;
cdddbdbc 4494 unsigned long long sectors;
f36a9ecd 4495 unsigned int sector_size = super->sector_size;
cdddbdbc 4496 struct stat;
6416d527 4497 struct imsm_super *anchor;
cdddbdbc
DW
4498 __u32 check_sum;
4499
cdddbdbc 4500 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4501 if (dsize < 2*sector_size) {
64436f06 4502 if (devname)
e7b84f9d
N
4503 pr_err("%s: device to small for imsm\n",
4504 devname);
64436f06
N
4505 return 1;
4506 }
cdddbdbc 4507
f36a9ecd 4508 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4509 if (devname)
e7b84f9d
N
4510 pr_err("Cannot seek to anchor block on %s: %s\n",
4511 devname, strerror(errno));
cdddbdbc
DW
4512 return 1;
4513 }
4514
f36a9ecd 4515 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4516 if (devname)
7a862a02 4517 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4518 return 1;
4519 }
466070ad 4520 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4521 if (devname)
e7b84f9d
N
4522 pr_err("Cannot read anchor block on %s: %s\n",
4523 devname, strerror(errno));
6416d527 4524 free(anchor);
cdddbdbc
DW
4525 return 1;
4526 }
4527
6416d527 4528 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4529 if (devname)
e7b84f9d 4530 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4531 free(anchor);
cdddbdbc
DW
4532 return 2;
4533 }
4534
d23fe947 4535 __free_imsm(super, 0);
f2f5c343
LM
4536 /* reload capability and hba */
4537
4538 /* capability and hba must be updated with new super allocation */
d424212e 4539 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4540 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4541 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4542 if (devname)
e7b84f9d
N
4543 pr_err("unable to allocate %zu byte mpb buffer\n",
4544 super->len);
6416d527 4545 free(anchor);
cdddbdbc
DW
4546 return 2;
4547 }
f36a9ecd 4548 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4549
f36a9ecd 4550 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4551 free(anchor);
8e59f3d8 4552
85337573
AO
4553 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4554 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4555 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 4556 free(super->buf);
50cd06b4 4557 super->buf = NULL;
8e59f3d8
AK
4558 return 2;
4559 }
51d83f5d 4560 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4561
949c47a0 4562 if (!sectors) {
ecf45690
DW
4563 check_sum = __gen_imsm_checksum(super->anchor);
4564 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4565 if (devname)
e7b84f9d
N
4566 pr_err("IMSM checksum %x != %x on %s\n",
4567 check_sum,
4568 __le32_to_cpu(super->anchor->check_sum),
4569 devname);
ecf45690
DW
4570 return 2;
4571 }
4572
a2b97981 4573 return 0;
949c47a0 4574 }
cdddbdbc
DW
4575
4576 /* read the extended mpb */
f36a9ecd 4577 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4578 if (devname)
e7b84f9d
N
4579 pr_err("Cannot seek to extended mpb on %s: %s\n",
4580 devname, strerror(errno));
cdddbdbc
DW
4581 return 1;
4582 }
4583
f36a9ecd
PB
4584 if ((unsigned int)read(fd, super->buf + sector_size,
4585 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4586 if (devname)
e7b84f9d
N
4587 pr_err("Cannot read extended mpb on %s: %s\n",
4588 devname, strerror(errno));
cdddbdbc
DW
4589 return 2;
4590 }
4591
949c47a0
DW
4592 check_sum = __gen_imsm_checksum(super->anchor);
4593 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4594 if (devname)
e7b84f9d
N
4595 pr_err("IMSM checksum %x != %x on %s\n",
4596 check_sum, __le32_to_cpu(super->anchor->check_sum),
4597 devname);
db575f3b 4598 return 3;
cdddbdbc
DW
4599 }
4600
a2b97981
DW
4601 return 0;
4602}
4603
8e59f3d8
AK
4604static int read_imsm_migr_rec(int fd, struct intel_super *super);
4605
97f81ee2
CA
4606/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4607static void clear_hi(struct intel_super *super)
4608{
4609 struct imsm_super *mpb = super->anchor;
4610 int i, n;
4611 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4612 return;
4613 for (i = 0; i < mpb->num_disks; ++i) {
4614 struct imsm_disk *disk = &mpb->disk[i];
4615 disk->total_blocks_hi = 0;
4616 }
4617 for (i = 0; i < mpb->num_raid_devs; ++i) {
4618 struct imsm_dev *dev = get_imsm_dev(super, i);
97f81ee2
CA
4619 for (n = 0; n < 2; ++n) {
4620 struct imsm_map *map = get_imsm_map(dev, n);
4621 if (!map)
4622 continue;
4623 map->pba_of_lba0_hi = 0;
4624 map->blocks_per_member_hi = 0;
4625 map->num_data_stripes_hi = 0;
4626 }
4627 }
4628}
4629
a2b97981
DW
4630static int
4631load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4632{
4633 int err;
4634
4635 err = load_imsm_mpb(fd, super, devname);
4636 if (err)
4637 return err;
f36a9ecd
PB
4638 if (super->sector_size == 4096)
4639 convert_from_4k(super);
a2b97981
DW
4640 err = load_imsm_disk(fd, super, devname, keep_fd);
4641 if (err)
4642 return err;
4643 err = parse_raid_devices(super);
8d67477f
TM
4644 if (err)
4645 return err;
4646 err = load_bbm_log(super);
97f81ee2 4647 clear_hi(super);
a2b97981 4648 return err;
cdddbdbc
DW
4649}
4650
4389ce73 4651static void __free_imsm_disk(struct dl *d, int do_close)
ae6aad82 4652{
4389ce73
MT
4653 if (do_close)
4654 close_fd(&d->fd);
ae6aad82
DW
4655 if (d->devname)
4656 free(d->devname);
0dcecb2e
DW
4657 if (d->e)
4658 free(d->e);
ae6aad82
DW
4659 free(d);
4660
4661}
1a64be56 4662
cdddbdbc
DW
4663static void free_imsm_disks(struct intel_super *super)
4664{
47ee5a45 4665 struct dl *d;
cdddbdbc 4666
47ee5a45
DW
4667 while (super->disks) {
4668 d = super->disks;
cdddbdbc 4669 super->disks = d->next;
3a85bf0e 4670 __free_imsm_disk(d, 1);
cdddbdbc 4671 }
cb82edca
AK
4672 while (super->disk_mgmt_list) {
4673 d = super->disk_mgmt_list;
4674 super->disk_mgmt_list = d->next;
3a85bf0e 4675 __free_imsm_disk(d, 1);
cb82edca 4676 }
47ee5a45
DW
4677 while (super->missing) {
4678 d = super->missing;
4679 super->missing = d->next;
3a85bf0e 4680 __free_imsm_disk(d, 1);
47ee5a45
DW
4681 }
4682
cdddbdbc
DW
4683}
4684
9ca2c81c 4685/* free all the pieces hanging off of a super pointer */
d23fe947 4686static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4687{
88654014
LM
4688 struct intel_hba *elem, *next;
4689
9ca2c81c 4690 if (super->buf) {
949c47a0 4691 free(super->buf);
9ca2c81c
DW
4692 super->buf = NULL;
4693 }
f2f5c343
LM
4694 /* unlink capability description */
4695 super->orom = NULL;
8e59f3d8
AK
4696 if (super->migr_rec_buf) {
4697 free(super->migr_rec_buf);
4698 super->migr_rec_buf = NULL;
4699 }
d23fe947
DW
4700 if (free_disks)
4701 free_imsm_disks(super);
ba2de7ba 4702 free_devlist(super);
88654014
LM
4703 elem = super->hba;
4704 while (elem) {
4705 if (elem->path)
4706 free((void *)elem->path);
4707 next = elem->next;
4708 free(elem);
4709 elem = next;
88c32bb1 4710 }
8d67477f
TM
4711 if (super->bbm_log)
4712 free(super->bbm_log);
88654014 4713 super->hba = NULL;
cdddbdbc
DW
4714}
4715
9ca2c81c
DW
4716static void free_imsm(struct intel_super *super)
4717{
d23fe947 4718 __free_imsm(super, 1);
928f1424 4719 free(super->bb.entries);
9ca2c81c
DW
4720 free(super);
4721}
cdddbdbc
DW
4722
4723static void free_super_imsm(struct supertype *st)
4724{
4725 struct intel_super *super = st->sb;
4726
4727 if (!super)
4728 return;
4729
4730 free_imsm(super);
4731 st->sb = NULL;
4732}
4733
49133e57 4734static struct intel_super *alloc_super(void)
c2c087e6 4735{
503975b9 4736 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4737
503975b9
N
4738 super->current_vol = -1;
4739 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4740
4741 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4742 sizeof(struct md_bb_entry));
4743 if (!super->bb.entries) {
4744 free(super);
4745 return NULL;
4746 }
4747
c2c087e6
DW
4748 return super;
4749}
4750
f0f5a016
LM
4751/*
4752 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4753 */
d424212e 4754static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4755{
4756 struct sys_dev *hba_name;
4757 int rv = 0;
4758
4389ce73 4759 if (is_fd_valid(fd) && test_partition(fd)) {
3a30e28e
MT
4760 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4761 devname);
4762 return 1;
4763 }
420dafcd 4764 if (!is_fd_valid(fd) || check_no_platform()) {
f2f5c343 4765 super->orom = NULL;
f0f5a016
LM
4766 super->hba = NULL;
4767 return 0;
4768 }
4769 hba_name = find_disk_attached_hba(fd, NULL);
4770 if (!hba_name) {
d424212e 4771 if (devname)
e7b84f9d
N
4772 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4773 devname);
f0f5a016
LM
4774 return 1;
4775 }
4776 rv = attach_hba_to_super(super, hba_name);
4777 if (rv == 2) {
d424212e
N
4778 if (devname) {
4779 struct intel_hba *hba = super->hba;
f0f5a016 4780
60f0f54d
PB
4781 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4782 " but the container is assigned to Intel(R) %s %s (",
d424212e 4783 devname,
614902f6 4784 get_sys_dev_type(hba_name->type),
60f0f54d 4785 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4786 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4787 get_sys_dev_type(super->hba->type),
4788 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4789
f0f5a016
LM
4790 while (hba) {
4791 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4792 if (hba->next)
4793 fprintf(stderr, ", ");
4794 hba = hba->next;
4795 }
6b781d33 4796 fprintf(stderr, ").\n"
cca67208 4797 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4798 }
f0f5a016
LM
4799 return 2;
4800 }
6b781d33 4801 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4802 if (!super->orom)
4803 return 3;
614902f6 4804
f0f5a016
LM
4805 return 0;
4806}
4807
47ee5a45
DW
4808/* find_missing - helper routine for load_super_imsm_all that identifies
4809 * disks that have disappeared from the system. This routine relies on
4810 * the mpb being uptodate, which it is at load time.
4811 */
4812static int find_missing(struct intel_super *super)
4813{
4814 int i;
4815 struct imsm_super *mpb = super->anchor;
4816 struct dl *dl;
4817 struct imsm_disk *disk;
47ee5a45
DW
4818
4819 for (i = 0; i < mpb->num_disks; i++) {
4820 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4821 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4822 if (dl)
4823 continue;
47ee5a45 4824
503975b9 4825 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4826 dl->major = 0;
4827 dl->minor = 0;
4828 dl->fd = -1;
503975b9 4829 dl->devname = xstrdup("missing");
47ee5a45
DW
4830 dl->index = i;
4831 serialcpy(dl->serial, disk->serial);
4832 dl->disk = *disk;
689c9bf3 4833 dl->e = NULL;
47ee5a45
DW
4834 dl->next = super->missing;
4835 super->missing = dl;
4836 }
4837
4838 return 0;
4839}
4840
a2b97981
DW
4841static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4842{
4843 struct intel_disk *idisk = disk_list;
4844
4845 while (idisk) {
4846 if (serialcmp(idisk->disk.serial, serial) == 0)
4847 break;
4848 idisk = idisk->next;
4849 }
4850
4851 return idisk;
4852}
4853
4854static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4855 struct intel_super *super,
4856 struct intel_disk **disk_list)
4857{
4858 struct imsm_disk *d = &super->disks->disk;
4859 struct imsm_super *mpb = super->anchor;
4860 int i, j;
4861
4862 for (i = 0; i < tbl_size; i++) {
4863 struct imsm_super *tbl_mpb = table[i]->anchor;
4864 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4865
4866 if (tbl_mpb->family_num == mpb->family_num) {
4867 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4868 dprintf("mpb from %d:%d matches %d:%d\n",
4869 super->disks->major,
a2b97981
DW
4870 super->disks->minor,
4871 table[i]->disks->major,
4872 table[i]->disks->minor);
4873 break;
4874 }
4875
4876 if (((is_configured(d) && !is_configured(tbl_d)) ||
4877 is_configured(d) == is_configured(tbl_d)) &&
4878 tbl_mpb->generation_num < mpb->generation_num) {
4879 /* current version of the mpb is a
4880 * better candidate than the one in
4881 * super_table, but copy over "cross
4882 * generational" status
4883 */
4884 struct intel_disk *idisk;
4885
1ade5cc1
N
4886 dprintf("mpb from %d:%d replaces %d:%d\n",
4887 super->disks->major,
a2b97981
DW
4888 super->disks->minor,
4889 table[i]->disks->major,
4890 table[i]->disks->minor);
4891
4892 idisk = disk_list_get(tbl_d->serial, *disk_list);
4893 if (idisk && is_failed(&idisk->disk))
4894 tbl_d->status |= FAILED_DISK;
4895 break;
4896 } else {
4897 struct intel_disk *idisk;
4898 struct imsm_disk *disk;
4899
4900 /* tbl_mpb is more up to date, but copy
4901 * over cross generational status before
4902 * returning
4903 */
4904 disk = __serial_to_disk(d->serial, mpb, NULL);
4905 if (disk && is_failed(disk))
4906 d->status |= FAILED_DISK;
4907
4908 idisk = disk_list_get(d->serial, *disk_list);
4909 if (idisk) {
4910 idisk->owner = i;
4911 if (disk && is_configured(disk))
4912 idisk->disk.status |= CONFIGURED_DISK;
4913 }
4914
1ade5cc1
N
4915 dprintf("mpb from %d:%d prefer %d:%d\n",
4916 super->disks->major,
a2b97981
DW
4917 super->disks->minor,
4918 table[i]->disks->major,
4919 table[i]->disks->minor);
4920
4921 return tbl_size;
4922 }
4923 }
4924 }
4925
4926 if (i >= tbl_size)
4927 table[tbl_size++] = super;
4928 else
4929 table[i] = super;
4930
4931 /* update/extend the merged list of imsm_disk records */
4932 for (j = 0; j < mpb->num_disks; j++) {
4933 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4934 struct intel_disk *idisk;
4935
4936 idisk = disk_list_get(disk->serial, *disk_list);
4937 if (idisk) {
4938 idisk->disk.status |= disk->status;
4939 if (is_configured(&idisk->disk) ||
4940 is_failed(&idisk->disk))
4941 idisk->disk.status &= ~(SPARE_DISK);
4942 } else {
503975b9 4943 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4944 idisk->owner = IMSM_UNKNOWN_OWNER;
4945 idisk->disk = *disk;
4946 idisk->next = *disk_list;
4947 *disk_list = idisk;
4948 }
4949
4950 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4951 idisk->owner = i;
4952 }
4953
4954 return tbl_size;
4955}
4956
4957static struct intel_super *
4958validate_members(struct intel_super *super, struct intel_disk *disk_list,
4959 const int owner)
4960{
4961 struct imsm_super *mpb = super->anchor;
4962 int ok_count = 0;
4963 int i;
4964
4965 for (i = 0; i < mpb->num_disks; i++) {
4966 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4967 struct intel_disk *idisk;
4968
4969 idisk = disk_list_get(disk->serial, disk_list);
4970 if (idisk) {
4971 if (idisk->owner == owner ||
4972 idisk->owner == IMSM_UNKNOWN_OWNER)
4973 ok_count++;
4974 else
1ade5cc1
N
4975 dprintf("'%.16s' owner %d != %d\n",
4976 disk->serial, idisk->owner,
a2b97981
DW
4977 owner);
4978 } else {
1ade5cc1
N
4979 dprintf("unknown disk %x [%d]: %.16s\n",
4980 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4981 disk->serial);
4982 break;
4983 }
4984 }
4985
4986 if (ok_count == mpb->num_disks)
4987 return super;
4988 return NULL;
4989}
4990
4991static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4992{
4993 struct intel_super *s;
4994
4995 for (s = super_list; s; s = s->next) {
4996 if (family_num != s->anchor->family_num)
4997 continue;
e12b3daa 4998 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4999 __le32_to_cpu(family_num), s->disks->devname);
5000 }
5001}
5002
5003static struct intel_super *
5004imsm_thunderdome(struct intel_super **super_list, int len)
5005{
5006 struct intel_super *super_table[len];
5007 struct intel_disk *disk_list = NULL;
5008 struct intel_super *champion, *spare;
5009 struct intel_super *s, **del;
5010 int tbl_size = 0;
5011 int conflict;
5012 int i;
5013
5014 memset(super_table, 0, sizeof(super_table));
5015 for (s = *super_list; s; s = s->next)
5016 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
5017
5018 for (i = 0; i < tbl_size; i++) {
5019 struct imsm_disk *d;
5020 struct intel_disk *idisk;
5021 struct imsm_super *mpb = super_table[i]->anchor;
5022
5023 s = super_table[i];
5024 d = &s->disks->disk;
5025
5026 /* 'd' must appear in merged disk list for its
5027 * configuration to be valid
5028 */
5029 idisk = disk_list_get(d->serial, disk_list);
5030 if (idisk && idisk->owner == i)
5031 s = validate_members(s, disk_list, i);
5032 else
5033 s = NULL;
5034
5035 if (!s)
1ade5cc1
N
5036 dprintf("marking family: %#x from %d:%d offline\n",
5037 mpb->family_num,
a2b97981
DW
5038 super_table[i]->disks->major,
5039 super_table[i]->disks->minor);
5040 super_table[i] = s;
5041 }
5042
5043 /* This is where the mdadm implementation differs from the Windows
5044 * driver which has no strict concept of a container. We can only
5045 * assemble one family from a container, so when returning a prodigal
5046 * array member to this system the code will not be able to disambiguate
5047 * the container contents that should be assembled ("foreign" versus
5048 * "local"). It requires user intervention to set the orig_family_num
5049 * to a new value to establish a new container. The Windows driver in
5050 * this situation fixes up the volume name in place and manages the
5051 * foreign array as an independent entity.
5052 */
5053 s = NULL;
5054 spare = NULL;
5055 conflict = 0;
5056 for (i = 0; i < tbl_size; i++) {
5057 struct intel_super *tbl_ent = super_table[i];
5058 int is_spare = 0;
5059
5060 if (!tbl_ent)
5061 continue;
5062
5063 if (tbl_ent->anchor->num_raid_devs == 0) {
5064 spare = tbl_ent;
5065 is_spare = 1;
5066 }
5067
5068 if (s && !is_spare) {
5069 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5070 conflict++;
5071 } else if (!s && !is_spare)
5072 s = tbl_ent;
5073 }
5074
5075 if (!s)
5076 s = spare;
5077 if (!s) {
5078 champion = NULL;
5079 goto out;
5080 }
5081 champion = s;
5082
5083 if (conflict)
7a862a02 5084 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
5085 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5086
5087 /* collect all dl's onto 'champion', and update them to
5088 * champion's version of the status
5089 */
5090 for (s = *super_list; s; s = s->next) {
5091 struct imsm_super *mpb = champion->anchor;
5092 struct dl *dl = s->disks;
5093
5094 if (s == champion)
5095 continue;
5096
5d7b407a
CA
5097 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5098
a2b97981
DW
5099 for (i = 0; i < mpb->num_disks; i++) {
5100 struct imsm_disk *disk;
5101
5102 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5103 if (disk) {
5104 dl->disk = *disk;
5105 /* only set index on disks that are a member of
5106 * a populated contianer, i.e. one with
5107 * raid_devs
5108 */
5109 if (is_failed(&dl->disk))
5110 dl->index = -2;
5111 else if (is_spare(&dl->disk))
5112 dl->index = -1;
5113 break;
5114 }
5115 }
5116
5117 if (i >= mpb->num_disks) {
5118 struct intel_disk *idisk;
5119
5120 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 5121 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
5122 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5123 dl->index = -1;
5124 else {
5125 dl->index = -2;
5126 continue;
5127 }
5128 }
5129
5130 dl->next = champion->disks;
5131 champion->disks = dl;
5132 s->disks = NULL;
5133 }
5134
5135 /* delete 'champion' from super_list */
5136 for (del = super_list; *del; ) {
5137 if (*del == champion) {
5138 *del = (*del)->next;
5139 break;
5140 } else
5141 del = &(*del)->next;
5142 }
5143 champion->next = NULL;
5144
5145 out:
5146 while (disk_list) {
5147 struct intel_disk *idisk = disk_list;
5148
5149 disk_list = disk_list->next;
5150 free(idisk);
5151 }
5152
5153 return champion;
5154}
5155
9587c373
LM
5156static int
5157get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 5158static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 5159 int major, int minor, int keep_fd);
ec50f7b6
LM
5160static int
5161get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5162 int *max, int keep_fd);
5163
cdddbdbc 5164static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
5165 char *devname, struct md_list *devlist,
5166 int keep_fd)
cdddbdbc 5167{
a2b97981
DW
5168 struct intel_super *super_list = NULL;
5169 struct intel_super *super = NULL;
a2b97981 5170 int err = 0;
9587c373 5171 int i = 0;
dab4a513 5172
4389ce73 5173 if (is_fd_valid(fd))
9587c373
LM
5174 /* 'fd' is an opened container */
5175 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5176 else
ec50f7b6
LM
5177 /* get super block from devlist devices */
5178 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 5179 if (err)
1602d52c 5180 goto error;
a2b97981
DW
5181 /* all mpbs enter, maybe one leaves */
5182 super = imsm_thunderdome(&super_list, i);
5183 if (!super) {
5184 err = 1;
5185 goto error;
cdddbdbc
DW
5186 }
5187
47ee5a45
DW
5188 if (find_missing(super) != 0) {
5189 free_imsm(super);
a2b97981
DW
5190 err = 2;
5191 goto error;
47ee5a45 5192 }
8e59f3d8
AK
5193
5194 /* load migration record */
2f86fda3 5195 err = load_imsm_migr_rec(super);
4c965cc9
AK
5196 if (err == -1) {
5197 /* migration is in progress,
5198 * but migr_rec cannot be loaded,
5199 */
8e59f3d8
AK
5200 err = 4;
5201 goto error;
5202 }
e2f41b2c
AK
5203
5204 /* Check migration compatibility */
089f9d79 5205 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5206 pr_err("Unsupported migration detected");
e2f41b2c
AK
5207 if (devname)
5208 fprintf(stderr, " on %s\n", devname);
5209 else
5210 fprintf(stderr, " (IMSM).\n");
5211
5212 err = 5;
5213 goto error;
5214 }
5215
a2b97981
DW
5216 err = 0;
5217
5218 error:
5219 while (super_list) {
5220 struct intel_super *s = super_list;
5221
5222 super_list = super_list->next;
5223 free_imsm(s);
5224 }
9587c373 5225
a2b97981
DW
5226 if (err)
5227 return err;
f7e7067b 5228
cdddbdbc 5229 *sbp = super;
4389ce73 5230 if (is_fd_valid(fd))
4dd2df09 5231 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 5232 else
4dd2df09 5233 st->container_devnm[0] = 0;
a2b97981 5234 if (err == 0 && st->ss == NULL) {
bf5a934a 5235 st->ss = &super_imsm;
cdddbdbc
DW
5236 st->minor_version = 0;
5237 st->max_devs = IMSM_MAX_DEVICES;
5238 }
cdddbdbc
DW
5239 return 0;
5240}
2b959fbf 5241
ec50f7b6
LM
5242static int
5243get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5244 int *max, int keep_fd)
5245{
5246 struct md_list *tmpdev;
5247 int err = 0;
5248 int i = 0;
9587c373 5249
ec50f7b6
LM
5250 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5251 if (tmpdev->used != 1)
5252 continue;
5253 if (tmpdev->container == 1) {
ca9de185 5254 int lmax = 0;
ec50f7b6 5255 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4389ce73 5256 if (!is_fd_valid(fd)) {
e7b84f9d 5257 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
5258 tmpdev->devname, strerror(errno));
5259 err = 8;
5260 goto error;
5261 }
5262 err = get_sra_super_block(fd, super_list,
5263 tmpdev->devname, &lmax,
5264 keep_fd);
5265 i += lmax;
5266 close(fd);
5267 if (err) {
5268 err = 7;
5269 goto error;
5270 }
5271 } else {
5272 int major = major(tmpdev->st_rdev);
5273 int minor = minor(tmpdev->st_rdev);
5274 err = get_super_block(super_list,
4dd2df09 5275 NULL,
ec50f7b6
LM
5276 tmpdev->devname,
5277 major, minor,
5278 keep_fd);
5279 i++;
5280 if (err) {
5281 err = 6;
5282 goto error;
5283 }
5284 }
5285 }
5286 error:
5287 *max = i;
5288 return err;
5289}
9587c373 5290
4dd2df09 5291static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5292 int major, int minor, int keep_fd)
5293{
594dc1b8 5294 struct intel_super *s;
9587c373
LM
5295 char nm[32];
5296 int dfd = -1;
9587c373
LM
5297 int err = 0;
5298 int retry;
5299
5300 s = alloc_super();
5301 if (!s) {
5302 err = 1;
5303 goto error;
5304 }
5305
5306 sprintf(nm, "%d:%d", major, minor);
5307 dfd = dev_open(nm, O_RDWR);
4389ce73 5308 if (!is_fd_valid(dfd)) {
9587c373
LM
5309 err = 2;
5310 goto error;
5311 }
5312
aec01630
JS
5313 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5314 err = 2;
5315 goto error;
5316 }
cb8f6859 5317 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5318 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5319
5320 /* retry the load if we might have raced against mdmon */
4dd2df09 5321 if (err == 3 && devnm && mdmon_running(devnm))
9587c373 5322 for (retry = 0; retry < 3; retry++) {
239b3cc0 5323 sleep_for(0, MSEC_TO_NSEC(3), true);
9587c373
LM
5324 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5325 if (err != 3)
5326 break;
5327 }
5328 error:
5329 if (!err) {
5330 s->next = *super_list;
5331 *super_list = s;
5332 } else {
5333 if (s)
8d67477f 5334 free_imsm(s);
4389ce73 5335 close_fd(&dfd);
9587c373 5336 }
4389ce73
MT
5337 if (!keep_fd)
5338 close_fd(&dfd);
9587c373
LM
5339 return err;
5340
5341}
5342
5343static int
5344get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5345{
5346 struct mdinfo *sra;
4dd2df09 5347 char *devnm;
9587c373
LM
5348 struct mdinfo *sd;
5349 int err = 0;
5350 int i = 0;
4dd2df09 5351 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5352 if (!sra)
5353 return 1;
5354
5355 if (sra->array.major_version != -1 ||
5356 sra->array.minor_version != -2 ||
5357 strcmp(sra->text_version, "imsm") != 0) {
5358 err = 1;
5359 goto error;
5360 }
5361 /* load all mpbs */
4dd2df09 5362 devnm = fd2devnm(fd);
9587c373 5363 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5364 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5365 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5366 err = 7;
5367 goto error;
5368 }
5369 }
5370 error:
5371 sysfs_free(sra);
5372 *max = i;
5373 return err;
5374}
5375
2b959fbf
N
5376static int load_container_imsm(struct supertype *st, int fd, char *devname)
5377{
ec50f7b6 5378 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5379}
cdddbdbc
DW
5380
5381static int load_super_imsm(struct supertype *st, int fd, char *devname)
5382{
5383 struct intel_super *super;
5384 int rv;
8a3544f8 5385 int retry;
cdddbdbc 5386
357ac106 5387 if (test_partition(fd))
691c6ee1
N
5388 /* IMSM not allowed on partitions */
5389 return 1;
5390
37424f13
DW
5391 free_super_imsm(st);
5392
49133e57 5393 super = alloc_super();
8d67477f
TM
5394 if (!super)
5395 return 1;
3a85bf0e
MG
5396
5397 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5398 free_imsm(super);
5399 return 1;
5400 }
ea2bc72b
LM
5401 /* Load hba and capabilities if they exist.
5402 * But do not preclude loading metadata in case capabilities or hba are
5403 * non-compliant and ignore_hw_compat is set.
5404 */
d424212e 5405 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5406 /* no orom/efi or non-intel hba of the disk */
089f9d79 5407 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5408 if (devname)
e7b84f9d 5409 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5410 free_imsm(super);
5411 return 2;
5412 }
a2b97981 5413 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5414
8a3544f8
AP
5415 /* retry the load if we might have raced against mdmon */
5416 if (rv == 3) {
f96b1302
AP
5417 struct mdstat_ent *mdstat = NULL;
5418 char *name = fd2kname(fd);
5419
5420 if (name)
5421 mdstat = mdstat_by_component(name);
8a3544f8
AP
5422
5423 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5424 for (retry = 0; retry < 3; retry++) {
239b3cc0 5425 sleep_for(0, MSEC_TO_NSEC(3), true);
8a3544f8
AP
5426 rv = load_and_parse_mpb(fd, super, devname, 0);
5427 if (rv != 3)
5428 break;
5429 }
5430 }
5431
5432 free_mdstat(mdstat);
5433 }
5434
cdddbdbc
DW
5435 if (rv) {
5436 if (devname)
7a862a02 5437 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5438 free_imsm(super);
5439 return rv;
5440 }
5441
5442 st->sb = super;
5443 if (st->ss == NULL) {
5444 st->ss = &super_imsm;
5445 st->minor_version = 0;
5446 st->max_devs = IMSM_MAX_DEVICES;
5447 }
8e59f3d8
AK
5448
5449 /* load migration record */
2f86fda3 5450 if (load_imsm_migr_rec(super) == 0) {
2e062e82
AK
5451 /* Check for unsupported migration features */
5452 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5453 pr_err("Unsupported migration detected");
2e062e82
AK
5454 if (devname)
5455 fprintf(stderr, " on %s\n", devname);
5456 else
5457 fprintf(stderr, " (IMSM).\n");
5458 return 3;
5459 }
e2f41b2c
AK
5460 }
5461
cdddbdbc
DW
5462 return 0;
5463}
5464
ef6ffade
DW
5465static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5466{
5467 if (info->level == 1)
5468 return 128;
5469 return info->chunk_size >> 9;
5470}
5471
5551b113
CA
5472static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5473 unsigned long long size)
fcfd9599 5474{
4025c288 5475 if (info->level == 1)
5551b113 5476 return size * 2;
4025c288 5477 else
5551b113 5478 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5479}
5480
4d1313e9
DW
5481static void imsm_update_version_info(struct intel_super *super)
5482{
5483 /* update the version and attributes */
5484 struct imsm_super *mpb = super->anchor;
5485 char *version;
5486 struct imsm_dev *dev;
5487 struct imsm_map *map;
5488 int i;
5489
5490 for (i = 0; i < mpb->num_raid_devs; i++) {
5491 dev = get_imsm_dev(super, i);
238c0a71 5492 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5493 if (__le32_to_cpu(dev->size_high) > 0)
5494 mpb->attributes |= MPB_ATTRIB_2TB;
5495
5496 /* FIXME detect when an array spans a port multiplier */
5497 #if 0
5498 mpb->attributes |= MPB_ATTRIB_PM;
5499 #endif
5500
5501 if (mpb->num_raid_devs > 1 ||
5502 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5503 version = MPB_VERSION_ATTRIBS;
5504 switch (get_imsm_raid_level(map)) {
5505 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5506 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5507 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5508 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5509 }
5510 } else {
5511 if (map->num_members >= 5)
5512 version = MPB_VERSION_5OR6_DISK_ARRAY;
5513 else if (dev->status == DEV_CLONE_N_GO)
5514 version = MPB_VERSION_CNG;
5515 else if (get_imsm_raid_level(map) == 5)
5516 version = MPB_VERSION_RAID5;
5517 else if (map->num_members >= 3)
5518 version = MPB_VERSION_3OR4_DISK_ARRAY;
5519 else if (get_imsm_raid_level(map) == 1)
5520 version = MPB_VERSION_RAID1;
5521 else
5522 version = MPB_VERSION_RAID0;
5523 }
5524 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5525 }
5526}
5527
aa534678
DW
5528static int check_name(struct intel_super *super, char *name, int quiet)
5529{
5530 struct imsm_super *mpb = super->anchor;
5531 char *reason = NULL;
9bd99a90
RS
5532 char *start = name;
5533 size_t len = strlen(name);
aa534678
DW
5534 int i;
5535
9bd99a90
RS
5536 if (len > 0) {
5537 while (isspace(start[len - 1]))
5538 start[--len] = 0;
5539 while (*start && isspace(*start))
5540 ++start, --len;
5541 memmove(name, start, len + 1);
5542 }
5543
5544 if (len > MAX_RAID_SERIAL_LEN)
aa534678 5545 reason = "must be 16 characters or less";
9bd99a90
RS
5546 else if (len == 0)
5547 reason = "must be a non-empty string";
aa534678
DW
5548
5549 for (i = 0; i < mpb->num_raid_devs; i++) {
5550 struct imsm_dev *dev = get_imsm_dev(super, i);
5551
5552 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5553 reason = "already exists";
5554 break;
5555 }
5556 }
5557
5558 if (reason && !quiet)
e7b84f9d 5559 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5560
5561 return !reason;
5562}
5563
8b353278 5564static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5565 struct shape *s, char *name,
83cd1e97
N
5566 char *homehost, int *uuid,
5567 long long data_offset)
cdddbdbc 5568{
c2c087e6
DW
5569 /* We are creating a volume inside a pre-existing container.
5570 * so st->sb is already set.
5571 */
5572 struct intel_super *super = st->sb;
f36a9ecd 5573 unsigned int sector_size = super->sector_size;
949c47a0 5574 struct imsm_super *mpb = super->anchor;
ba2de7ba 5575 struct intel_dev *dv;
c2c087e6
DW
5576 struct imsm_dev *dev;
5577 struct imsm_vol *vol;
5578 struct imsm_map *map;
5579 int idx = mpb->num_raid_devs;
5580 int i;
760365f9 5581 int namelen;
c2c087e6 5582 unsigned long long array_blocks;
2c092cad 5583 size_t size_old, size_new;
b53bfba6
TM
5584 unsigned int data_disks;
5585 unsigned long long size_per_member;
cdddbdbc 5586
88c32bb1 5587 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5588 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5589 return 0;
5590 }
5591
2c092cad
DW
5592 /* ensure the mpb is large enough for the new data */
5593 size_old = __le32_to_cpu(mpb->mpb_size);
5594 size_new = disks_to_mpb_size(info->nr_disks);
5595 if (size_new > size_old) {
5596 void *mpb_new;
f36a9ecd 5597 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5598
f36a9ecd 5599 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5600 pr_err("could not allocate new mpb\n");
2c092cad
DW
5601 return 0;
5602 }
85337573
AO
5603 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5604 MIGR_REC_BUF_SECTORS*
5605 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5606 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5607 free(super->buf);
5608 free(super);
ea944c8f 5609 free(mpb_new);
8e59f3d8
AK
5610 return 0;
5611 }
2c092cad
DW
5612 memcpy(mpb_new, mpb, size_old);
5613 free(mpb);
5614 mpb = mpb_new;
949c47a0 5615 super->anchor = mpb_new;
2c092cad
DW
5616 mpb->mpb_size = __cpu_to_le32(size_new);
5617 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5618 super->len = size_round;
2c092cad 5619 }
bf5a934a 5620 super->current_vol = idx;
3960e579
DW
5621
5622 /* handle 'failed_disks' by either:
5623 * a) create dummy disk entries in the table if this the first
5624 * volume in the array. We add them here as this is the only
5625 * opportunity to add them. add_to_super_imsm_volume()
5626 * handles the non-failed disks and continues incrementing
5627 * mpb->num_disks.
5628 * b) validate that 'failed_disks' matches the current number
5629 * of missing disks if the container is populated
d23fe947 5630 */
3960e579 5631 if (super->current_vol == 0) {
d23fe947 5632 mpb->num_disks = 0;
3960e579
DW
5633 for (i = 0; i < info->failed_disks; i++) {
5634 struct imsm_disk *disk;
5635
5636 mpb->num_disks++;
5637 disk = __get_imsm_disk(mpb, i);
5638 disk->status = CONFIGURED_DISK | FAILED_DISK;
5639 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5640 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5641 "missing:%d", (__u8)i);
3960e579
DW
5642 }
5643 find_missing(super);
5644 } else {
5645 int missing = 0;
5646 struct dl *d;
5647
5648 for (d = super->missing; d; d = d->next)
5649 missing++;
5650 if (info->failed_disks > missing) {
e7b84f9d 5651 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5652 return 0;
5653 }
5654 }
5a038140 5655
aa534678
DW
5656 if (!check_name(super, name, 0))
5657 return 0;
503975b9
N
5658 dv = xmalloc(sizeof(*dv));
5659 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
760365f9
JS
5660 /*
5661 * Explicitly allow truncating to not confuse gcc's
5662 * -Werror=stringop-truncation
5663 */
5664 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5665 memcpy(dev->volume, name, namelen);
e03640bd 5666 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5667 info->layout, info->chunk_size,
b53bfba6
TM
5668 s->size * BLOCKS_PER_KB);
5669 data_disks = get_data_disks(info->level, info->layout,
5670 info->raid_disks);
5671 array_blocks = round_size_to_mb(array_blocks, data_disks);
5672 size_per_member = array_blocks / data_disks;
979d38be 5673
fcc2c9da 5674 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5675 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5676 vol = &dev->vol;
5677 vol->migr_state = 0;
1484e727 5678 set_migr_type(dev, MIGR_INIT);
3960e579 5679 vol->dirty = !info->state;
4036e7ee 5680 set_vol_curr_migr_unit(dev, 0);
238c0a71 5681 map = get_imsm_map(dev, MAP_0);
5551b113 5682 set_pba_of_lba0(map, super->create_offset);
ef6ffade 5683 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5684 map->failed_disk_num = ~0;
bf4442ab 5685 if (info->level > 0)
fffaf1ff
N
5686 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5687 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5688 else
5689 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5690 IMSM_T_STATE_NORMAL;
252d23c0 5691 map->ddf = 1;
ef6ffade
DW
5692
5693 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5694 free(dev);
5695 free(dv);
7a862a02 5696 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5697 return 0;
5698 }
81062a36
DW
5699
5700 map->raid_level = info->level;
1c275381 5701 if (info->level == 10)
c2c087e6 5702 map->raid_level = 1;
1c275381 5703 set_num_domains(map);
ef6ffade 5704
44490938
MD
5705 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5706 set_blocks_per_member(map, info_to_blocks_per_member(info,
5707 size_per_member /
5708 BLOCKS_PER_KB));
5709
c2c087e6 5710 map->num_members = info->raid_disks;
1c275381 5711 update_num_data_stripes(map, array_blocks);
c2c087e6
DW
5712 for (i = 0; i < map->num_members; i++) {
5713 /* initialized in add_to_super */
4eb26970 5714 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5715 }
949c47a0 5716 mpb->num_raid_devs++;
2a24dc1b
PB
5717 mpb->num_raid_devs_created++;
5718 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5719
b7580566 5720 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5721 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5722 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5723 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5724 } else {
5725 free(dev);
5726 free(dv);
5727 pr_err("imsm does not support consistency policy %s\n",
5f21d674 5728 map_num_s(consistency_policies, s->consistency_policy));
2432ce9b
AP
5729 return 0;
5730 }
5731
ba2de7ba
DW
5732 dv->dev = dev;
5733 dv->index = super->current_vol;
5734 dv->next = super->devlist;
5735 super->devlist = dv;
c2c087e6 5736
4d1313e9
DW
5737 imsm_update_version_info(super);
5738
c2c087e6 5739 return 1;
cdddbdbc
DW
5740}
5741
bf5a934a 5742static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5743 struct shape *s, char *name,
83cd1e97
N
5744 char *homehost, int *uuid,
5745 unsigned long long data_offset)
bf5a934a
DW
5746{
5747 /* This is primarily called by Create when creating a new array.
5748 * We will then get add_to_super called for each component, and then
5749 * write_init_super called to write it out to each device.
5750 * For IMSM, Create can create on fresh devices or on a pre-existing
5751 * array.
5752 * To create on a pre-existing array a different method will be called.
5753 * This one is just for fresh drives.
5754 */
5755 struct intel_super *super;
5756 struct imsm_super *mpb;
5757 size_t mpb_size;
4d1313e9 5758 char *version;
bf5a934a 5759
83cd1e97 5760 if (data_offset != INVALID_SECTORS) {
ed503f89 5761 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5762 return 0;
5763 }
5764
bf5a934a 5765 if (st->sb)
5308f117 5766 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5767 data_offset);
e683ca88
DW
5768
5769 if (info)
5770 mpb_size = disks_to_mpb_size(info->nr_disks);
5771 else
f36a9ecd 5772 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5773
49133e57 5774 super = alloc_super();
f36a9ecd
PB
5775 if (super &&
5776 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5777 free_imsm(super);
e683ca88
DW
5778 super = NULL;
5779 }
5780 if (!super) {
1ade5cc1 5781 pr_err("could not allocate superblock\n");
bf5a934a
DW
5782 return 0;
5783 }
de44e46f
PB
5784 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5785 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5786 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5787 free(super->buf);
8d67477f 5788 free_imsm(super);
8e59f3d8
AK
5789 return 0;
5790 }
e683ca88 5791 memset(super->buf, 0, mpb_size);
ef649044 5792 mpb = super->buf;
e683ca88
DW
5793 mpb->mpb_size = __cpu_to_le32(mpb_size);
5794 st->sb = super;
5795
5796 if (info == NULL) {
5797 /* zeroing superblock */
5798 return 0;
5799 }
bf5a934a 5800
4d1313e9
DW
5801 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5802
5803 version = (char *) mpb->sig;
5804 strcpy(version, MPB_SIGNATURE);
5805 version += strlen(MPB_SIGNATURE);
5806 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5807
bf5a934a
DW
5808 return 1;
5809}
5810
f2cc4f7d
AO
5811static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5812{
5813 unsigned int member_sector_size;
5814
4389ce73 5815 if (!is_fd_valid(dl->fd)) {
f2cc4f7d
AO
5816 pr_err("Invalid file descriptor for %s\n", dl->devname);
5817 return 0;
5818 }
5819
5820 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5821 return 0;
5822 if (member_sector_size != super->sector_size)
5823 return 0;
5824 return 1;
5825}
5826
f20c3968 5827static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5828 int fd, char *devname)
5829{
5830 struct intel_super *super = st->sb;
d23fe947 5831 struct imsm_super *mpb = super->anchor;
3960e579 5832 struct imsm_disk *_disk;
bf5a934a
DW
5833 struct imsm_dev *dev;
5834 struct imsm_map *map;
3960e579 5835 struct dl *dl, *df;
4eb26970 5836 int slot;
9a7df595
MT
5837 int autolayout = 0;
5838
5839 if (!is_fd_valid(fd))
5840 autolayout = 1;
bf5a934a 5841
949c47a0 5842 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5843 map = get_imsm_map(dev, MAP_0);
bf5a934a 5844
208933a7 5845 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5846 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5847 devname);
5848 return 1;
5849 }
5850
9a7df595
MT
5851 for (dl = super->disks; dl ; dl = dl->next) {
5852 if (autolayout) {
efb30e7f
DW
5853 if (dl->raiddisk == dk->raid_disk)
5854 break;
9a7df595
MT
5855 } else if (dl->major == dk->major && dl->minor == dk->minor)
5856 break;
efb30e7f 5857 }
d23fe947 5858
208933a7 5859 if (!dl) {
9a7df595
MT
5860 if (!autolayout)
5861 pr_err("%s is not a member of the same container.\n",
5862 devname);
f20c3968 5863 return 1;
208933a7 5864 }
bf5a934a 5865
9a7df595
MT
5866 if (!autolayout && super->current_vol > 0) {
5867 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5868
5869 if (_slot != dk->raid_disk) {
5870 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5871 dl->devname, _slot, dk->raid_disk);
5872 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5873 return 1;
5874 }
5875 }
5876
59632db9
MZ
5877 if (mpb->num_disks == 0)
5878 if (!get_dev_sector_size(dl->fd, dl->devname,
5879 &super->sector_size))
5880 return 1;
5881
f2cc4f7d
AO
5882 if (!drive_validate_sector_size(super, dl)) {
5883 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5884 return 1;
5885 }
5886
d23fe947
DW
5887 /* add a pristine spare to the metadata */
5888 if (dl->index < 0) {
5889 dl->index = super->anchor->num_disks;
5890 super->anchor->num_disks++;
5891 }
4eb26970
DW
5892 /* Check the device has not already been added */
5893 slot = get_imsm_disk_slot(map, dl->index);
5894 if (slot >= 0 &&
238c0a71 5895 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5896 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5897 devname);
5898 return 1;
5899 }
656b6b5a 5900 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5901 dl->disk.status = CONFIGURED_DISK;
d23fe947 5902
3960e579
DW
5903 /* update size of 'missing' disks to be at least as large as the
5904 * largest acitve member (we only have dummy missing disks when
5905 * creating the first volume)
5906 */
5907 if (super->current_vol == 0) {
5908 for (df = super->missing; df; df = df->next) {
5551b113
CA
5909 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5910 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5911 _disk = __get_imsm_disk(mpb, df->index);
5912 *_disk = df->disk;
5913 }
5914 }
5915
5916 /* refresh unset/failed slots to point to valid 'missing' entries */
5917 for (df = super->missing; df; df = df->next)
5918 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5919 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5920
5921 if ((ord & IMSM_ORD_REBUILD) == 0)
5922 continue;
5923 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5924 if (is_gen_migration(dev)) {
238c0a71
AK
5925 struct imsm_map *map2 = get_imsm_map(dev,
5926 MAP_1);
0a108d63 5927 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5928 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5929 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5930 slot2,
5931 MAP_1);
1ace8403
AK
5932 if ((unsigned)df->index ==
5933 ord_to_idx(ord2))
5934 set_imsm_ord_tbl_ent(map2,
0a108d63 5935 slot2,
1ace8403
AK
5936 df->index |
5937 IMSM_ORD_REBUILD);
5938 }
5939 }
3960e579
DW
5940 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5941 break;
5942 }
5943
d23fe947
DW
5944 /* if we are creating the first raid device update the family number */
5945 if (super->current_vol == 0) {
5946 __u32 sum;
5947 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5948
3960e579 5949 _disk = __get_imsm_disk(mpb, dl->index);
756a15f3 5950 if (!_disk) {
e7b84f9d 5951 pr_err("BUG mpb setup error\n");
791b666a
AW
5952 return 1;
5953 }
d23fe947
DW
5954 *_dev = *dev;
5955 *_disk = dl->disk;
148acb7b
DW
5956 sum = random32();
5957 sum += __gen_imsm_checksum(mpb);
d23fe947 5958 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5959 mpb->orig_family_num = mpb->family_num;
e48aed3c 5960 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
d23fe947 5961 }
ca0748fa 5962 super->current_disk = dl;
f20c3968 5963 return 0;
bf5a934a
DW
5964}
5965
a8619d23
AK
5966/* mark_spare()
5967 * Function marks disk as spare and restores disk serial
5968 * in case it was previously marked as failed by takeover operation
5969 * reruns:
5970 * -1 : critical error
5971 * 0 : disk is marked as spare but serial is not set
5972 * 1 : success
5973 */
5974int mark_spare(struct dl *disk)
5975{
5976 __u8 serial[MAX_RAID_SERIAL_LEN];
5977 int ret_val = -1;
5978
5979 if (!disk)
5980 return ret_val;
5981
5982 ret_val = 0;
6da53c0e 5983 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
a8619d23
AK
5984 /* Restore disk serial number, because takeover marks disk
5985 * as failed and adds to serial ':0' before it becomes
5986 * a spare disk.
5987 */
5988 serialcpy(disk->serial, serial);
5989 serialcpy(disk->disk.serial, serial);
5990 ret_val = 1;
5991 }
5992 disk->disk.status = SPARE_DISK;
5993 disk->index = -1;
5994
5995 return ret_val;
5996}
88654014 5997
12724c01
TM
5998
5999static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
6000
f20c3968 6001static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
6002 int fd, char *devname,
6003 unsigned long long data_offset)
cdddbdbc 6004{
c2c087e6 6005 struct intel_super *super = st->sb;
c2c087e6
DW
6006 struct dl *dd;
6007 unsigned long long size;
fa7bb6f8 6008 unsigned int member_sector_size;
f2f27e63 6009 __u32 id;
c2c087e6
DW
6010 int rv;
6011 struct stat stb;
6012
88654014
LM
6013 /* If we are on an RAID enabled platform check that the disk is
6014 * attached to the raid controller.
6015 * We do not need to test disks attachment for container based additions,
6016 * they shall be already tested when container was created/assembled.
88c32bb1 6017 */
d424212e 6018 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 6019 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
6020 if (rv != 0) {
6021 dprintf("capability: %p fd: %d ret: %d\n",
6022 super->orom, fd, rv);
6023 return 1;
88c32bb1
DW
6024 }
6025
f20c3968
DW
6026 if (super->current_vol >= 0)
6027 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 6028
c2c087e6 6029 fstat(fd, &stb);
503975b9 6030 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
6031 dd->major = major(stb.st_rdev);
6032 dd->minor = minor(stb.st_rdev);
503975b9 6033 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 6034 dd->fd = fd;
689c9bf3 6035 dd->e = NULL;
1a64be56 6036 dd->action = DISK_ADD;
6da53c0e 6037 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
32ba9157 6038 if (rv) {
e7b84f9d 6039 pr_err("failed to retrieve scsi serial, aborting\n");
3a85bf0e 6040 __free_imsm_disk(dd, 0);
0030e8d6 6041 abort();
c2c087e6 6042 }
7c798f87 6043
20bee0f8
PB
6044 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6045 (super->hba->type == SYS_DEV_VMD))) {
6046 int i;
7c798f87
MT
6047 char cntrl_path[PATH_MAX];
6048 char *cntrl_name;
6049 char pci_dev_path[PATH_MAX];
20bee0f8 6050
7c798f87
MT
6051 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6052 !diskfd_to_devpath(fd, 1, cntrl_path)) {
8662f92d 6053 pr_err("failed to get dev paths, aborting\n");
3a85bf0e 6054 __free_imsm_disk(dd, 0);
a8f3cfd5
MT
6055 return 1;
6056 }
6057
7c798f87
MT
6058 cntrl_name = basename(cntrl_path);
6059 if (is_multipath_nvme(fd))
6060 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6061 cntrl_name);
6062
6063 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
20bee0f8
PB
6064 /*
6065 * If Intel's NVMe drive has serial ended with
6066 * "-A","-B","-1" or "-2" it means that this is "x8"
6067 * device (double drive on single PCIe card).
6068 * User should be warned about potential data loss.
6069 */
6070 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6071 /* Skip empty character at the end */
6072 if (dd->serial[i] == 0)
6073 continue;
6074
6075 if (((dd->serial[i] == 'A') ||
6076 (dd->serial[i] == 'B') ||
6077 (dd->serial[i] == '1') ||
6078 (dd->serial[i] == '2')) &&
6079 (dd->serial[i-1] == '-'))
6080 pr_err("\tThe action you are about to take may put your data at risk.\n"
6081 "\tPlease note that x8 devices may consist of two separate x4 devices "
6082 "located on a single PCIe port.\n"
6083 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6084 break;
6085 }
32716c51
PB
6086 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6087 !imsm_orom_has_tpv_support(super->orom)) {
6088 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 6089 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
3a85bf0e 6090 __free_imsm_disk(dd, 0);
32716c51 6091 return 1;
20bee0f8
PB
6092 }
6093 }
c2c087e6 6094
c2c087e6 6095 get_dev_size(fd, NULL, &size);
3a85bf0e
MG
6096 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6097 __free_imsm_disk(dd, 0);
aec01630 6098 return 1;
3a85bf0e 6099 }
fa7bb6f8
PB
6100
6101 if (super->sector_size == 0) {
6102 /* this a first device, so sector_size is not set yet */
6103 super->sector_size = member_sector_size;
fa7bb6f8
PB
6104 }
6105
71e5411e 6106 /* clear migr_rec when adding disk to container */
85337573
AO
6107 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6108 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 6109 SEEK_SET) >= 0) {
466070ad 6110 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
6111 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6112 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
6113 perror("Write migr_rec failed");
6114 }
6115
c2c087e6 6116 size /= 512;
1f24f035 6117 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
6118 set_total_blocks(&dd->disk, size);
6119 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6120 struct imsm_super *mpb = super->anchor;
6121 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6122 }
a8619d23 6123 mark_spare(dd);
c2c087e6 6124 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 6125 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 6126 else
b9f594fe 6127 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
6128
6129 if (st->update_tail) {
1a64be56
LM
6130 dd->next = super->disk_mgmt_list;
6131 super->disk_mgmt_list = dd;
43dad3d6 6132 } else {
12724c01
TM
6133 /* this is called outside of mdmon
6134 * write initial spare metadata
6135 * mdmon will overwrite it.
6136 */
43dad3d6
DW
6137 dd->next = super->disks;
6138 super->disks = dd;
12724c01 6139 write_super_imsm_spare(super, dd);
43dad3d6 6140 }
f20c3968
DW
6141
6142 return 0;
cdddbdbc
DW
6143}
6144
1a64be56
LM
6145static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6146{
6147 struct intel_super *super = st->sb;
6148 struct dl *dd;
6149
6150 /* remove from super works only in mdmon - for communication
6151 * manager - monitor. Check if communication memory buffer
6152 * is prepared.
6153 */
6154 if (!st->update_tail) {
1ade5cc1 6155 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
6156 return 1;
6157 }
503975b9 6158 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
6159 dd->major = dk->major;
6160 dd->minor = dk->minor;
1a64be56 6161 dd->fd = -1;
a8619d23 6162 mark_spare(dd);
1a64be56
LM
6163 dd->action = DISK_REMOVE;
6164
6165 dd->next = super->disk_mgmt_list;
6166 super->disk_mgmt_list = dd;
6167
1a64be56
LM
6168 return 0;
6169}
6170
f796af5d
DW
6171static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6172
6173static union {
f36a9ecd 6174 char buf[MAX_SECTOR_SIZE];
f796af5d 6175 struct imsm_super anchor;
f36a9ecd 6176} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 6177
12724c01
TM
6178
6179static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
d23fe947 6180{
d23fe947 6181 struct imsm_super *mpb = super->anchor;
f796af5d 6182 struct imsm_super *spare = &spare_record.anchor;
d23fe947 6183 __u32 sum;
12724c01
TM
6184
6185 if (d->index != -1)
6186 return 1;
d23fe947 6187
68641cdb
JS
6188 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6189 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 6190 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
6191 spare->num_disks = 1;
6192 spare->num_raid_devs = 0;
6193 spare->cache_size = mpb->cache_size;
6194 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
6195
6196 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6197 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947 6198
12724c01
TM
6199 spare->disk[0] = d->disk;
6200 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6201 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6202
6203 if (super->sector_size == 4096)
6204 convert_to_4k_imsm_disk(&spare->disk[0]);
d23fe947 6205
12724c01
TM
6206 sum = __gen_imsm_checksum(spare);
6207 spare->family_num = __cpu_to_le32(sum);
6208 spare->orig_family_num = 0;
6209 sum = __gen_imsm_checksum(spare);
6210 spare->check_sum = __cpu_to_le32(sum);
027c374f 6211
12724c01
TM
6212 if (store_imsm_mpb(d->fd, spare)) {
6213 pr_err("failed for device %d:%d %s\n",
6214 d->major, d->minor, strerror(errno));
6215 return 1;
6216 }
6217
6218 return 0;
6219}
6220/* spare records have their own family number and do not have any defined raid
6221 * devices
6222 */
6223static int write_super_imsm_spares(struct intel_super *super, int doclose)
6224{
6225 struct dl *d;
f36a9ecd 6226
12724c01
TM
6227 for (d = super->disks; d; d = d->next) {
6228 if (d->index != -1)
6229 continue;
d23fe947 6230
12724c01 6231 if (write_super_imsm_spare(super, d))
e74255d9 6232 return 1;
12724c01 6233
4389ce73
MT
6234 if (doclose)
6235 close_fd(&d->fd);
d23fe947
DW
6236 }
6237
e74255d9 6238 return 0;
d23fe947
DW
6239}
6240
36988a3d 6241static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 6242{
36988a3d 6243 struct intel_super *super = st->sb;
f36a9ecd 6244 unsigned int sector_size = super->sector_size;
949c47a0 6245 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
6246 struct dl *d;
6247 __u32 generation;
6248 __u32 sum;
d23fe947 6249 int spares = 0;
949c47a0 6250 int i;
a48ac0a8 6251 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 6252 int num_disks = 0;
146c6260 6253 int clear_migration_record = 1;
bbab0940 6254 __u32 bbm_log_size;
cdddbdbc 6255
c2c087e6
DW
6256 /* 'generation' is incremented everytime the metadata is written */
6257 generation = __le32_to_cpu(mpb->generation_num);
6258 generation++;
6259 mpb->generation_num = __cpu_to_le32(generation);
6260
148acb7b
DW
6261 /* fix up cases where previous mdadm releases failed to set
6262 * orig_family_num
6263 */
6264 if (mpb->orig_family_num == 0)
6265 mpb->orig_family_num = mpb->family_num;
6266
d23fe947 6267 for (d = super->disks; d; d = d->next) {
8796fdc4 6268 if (d->index == -1)
d23fe947 6269 spares++;
36988a3d 6270 else {
d23fe947 6271 mpb->disk[d->index] = d->disk;
36988a3d
AK
6272 num_disks++;
6273 }
d23fe947 6274 }
36988a3d 6275 for (d = super->missing; d; d = d->next) {
47ee5a45 6276 mpb->disk[d->index] = d->disk;
36988a3d
AK
6277 num_disks++;
6278 }
6279 mpb->num_disks = num_disks;
6280 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 6281
949c47a0
DW
6282 for (i = 0; i < mpb->num_raid_devs; i++) {
6283 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d 6284 struct imsm_dev *dev2 = get_imsm_dev(super, i);
756a15f3
MG
6285
6286 imsm_copy_dev(dev, dev2);
6287 mpb_size += sizeof_imsm_dev(dev, 0);
6288
146c6260
AK
6289 if (is_gen_migration(dev2))
6290 clear_migration_record = 0;
949c47a0 6291 }
bbab0940
TM
6292
6293 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6294
6295 if (bbm_log_size) {
6296 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6297 mpb->attributes |= MPB_ATTRIB_BBM;
6298 } else
6299 mpb->attributes &= ~MPB_ATTRIB_BBM;
6300
6301 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6302 mpb_size += bbm_log_size;
a48ac0a8 6303 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 6304
bbab0940
TM
6305#ifdef DEBUG
6306 assert(super->len == 0 || mpb_size <= super->len);
6307#endif
6308
c2c087e6 6309 /* recalculate checksum */
949c47a0 6310 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
6311 mpb->check_sum = __cpu_to_le32(sum);
6312
51d83f5d
AK
6313 if (super->clean_migration_record_by_mdmon) {
6314 clear_migration_record = 1;
6315 super->clean_migration_record_by_mdmon = 0;
6316 }
146c6260 6317 if (clear_migration_record)
de44e46f 6318 memset(super->migr_rec_buf, 0,
85337573 6319 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 6320
f36a9ecd
PB
6321 if (sector_size == 4096)
6322 convert_to_4k(super);
6323
d23fe947 6324 /* write the mpb for disks that compose raid devices */
c2c087e6 6325 for (d = super->disks; d ; d = d->next) {
86c54047 6326 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6327 continue;
30602f53 6328
146c6260
AK
6329 if (clear_migration_record) {
6330 unsigned long long dsize;
6331
6332 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6333 if (lseek64(d->fd, dsize - sector_size,
6334 SEEK_SET) >= 0) {
466070ad
PB
6335 if ((unsigned int)write(d->fd,
6336 super->migr_rec_buf,
de44e46f
PB
6337 MIGR_REC_BUF_SECTORS*sector_size) !=
6338 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6339 perror("Write migr_rec failed");
146c6260
AK
6340 }
6341 }
51d83f5d
AK
6342
6343 if (store_imsm_mpb(d->fd, mpb))
6344 fprintf(stderr,
1ade5cc1
N
6345 "failed for device %d:%d (fd: %d)%s\n",
6346 d->major, d->minor,
51d83f5d
AK
6347 d->fd, strerror(errno));
6348
4389ce73
MT
6349 if (doclose)
6350 close_fd(&d->fd);
c2c087e6
DW
6351 }
6352
d23fe947
DW
6353 if (spares)
6354 return write_super_imsm_spares(super, doclose);
6355
e74255d9 6356 return 0;
c2c087e6
DW
6357}
6358
9b1fb677 6359static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6360{
6361 size_t len;
6362 struct imsm_update_create_array *u;
6363 struct intel_super *super = st->sb;
9b1fb677 6364 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6365 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6366 struct disk_info *inf;
6367 struct imsm_disk *disk;
6368 int i;
43dad3d6 6369
54c2c1ea
DW
6370 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6371 sizeof(*inf) * map->num_members;
503975b9 6372 u = xmalloc(len);
43dad3d6 6373 u->type = update_create_array;
9b1fb677 6374 u->dev_idx = dev_idx;
43dad3d6 6375 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6376 inf = get_disk_info(u);
6377 for (i = 0; i < map->num_members; i++) {
238c0a71 6378 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6379
54c2c1ea 6380 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6381 if (!disk)
6382 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6383 serialcpy(inf[i].serial, disk->serial);
6384 }
43dad3d6
DW
6385 append_metadata_update(st, u, len);
6386
6387 return 0;
6388}
6389
1a64be56 6390static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6391{
6392 struct intel_super *super = st->sb;
6393 size_t len;
1a64be56 6394 struct imsm_update_add_remove_disk *u;
43dad3d6 6395
1a64be56 6396 if (!super->disk_mgmt_list)
43dad3d6
DW
6397 return 0;
6398
6399 len = sizeof(*u);
503975b9 6400 u = xmalloc(len);
1a64be56 6401 u->type = update_add_remove_disk;
43dad3d6
DW
6402 append_metadata_update(st, u, len);
6403
6404 return 0;
6405}
2432ce9b
AP
6406
6407__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6408
e397cefe
AP
6409static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6410{
6411 struct ppl_header *ppl_hdr = buf;
6412 int ret;
6413
6414 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6415
6416 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6417 ret = -errno;
6418 perror("Failed to seek to PPL header location");
6419 return ret;
6420 }
6421
6422 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6423 ret = -errno;
6424 perror("Write PPL header failed");
6425 return ret;
6426 }
6427
6428 fsync(fd);
6429
6430 return 0;
6431}
6432
2432ce9b
AP
6433static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6434{
6435 struct intel_super *super = st->sb;
6436 void *buf;
6437 struct ppl_header *ppl_hdr;
6438 int ret;
6439
b2514242
PB
6440 /* first clear entire ppl space */
6441 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6442 if (ret)
6443 return ret;
6444
6445 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6446 if (ret) {
6447 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6448 return -ret;
2432ce9b
AP
6449 }
6450
6451 memset(buf, 0, PPL_HEADER_SIZE);
6452 ppl_hdr = buf;
6453 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6454 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6455
6456 if (info->mismatch_cnt) {
6457 /*
6458 * We are overwriting an invalid ppl. Make one entry with wrong
6459 * checksum to prevent the kernel from skipping resync.
6460 */
6461 ppl_hdr->entries_count = __cpu_to_le32(1);
6462 ppl_hdr->entries[0].checksum = ~0;
6463 }
6464
e397cefe 6465 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6466
6467 free(buf);
6468 return ret;
6469}
6470
e397cefe
AP
6471static int is_rebuilding(struct imsm_dev *dev);
6472
2432ce9b
AP
6473static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6474 struct mdinfo *disk)
6475{
6476 struct intel_super *super = st->sb;
6477 struct dl *d;
e397cefe 6478 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6479 int ret = 0;
e397cefe 6480 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6481 __u32 crc;
6482 struct imsm_dev *dev;
2432ce9b 6483 __u32 idx;
44b6b876
PB
6484 unsigned int i;
6485 unsigned long long ppl_offset = 0;
6486 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6487
6488 if (disk->disk.raid_disk < 0)
6489 return 0;
6490
2432ce9b 6491 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6492 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6493 d = get_imsm_dl_disk(super, idx);
6494
6495 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6496 return 0;
6497
6498 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6499 pr_err("Failed to allocate PPL header buffer\n");
6500 return -1;
6501 }
6502 buf = buf_orig;
2432ce9b 6503
44b6b876
PB
6504 ret = 1;
6505 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6506 void *tmp;
6507
44b6b876 6508 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6509
44b6b876
PB
6510 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6511 SEEK_SET) < 0) {
6512 perror("Failed to seek to PPL header location");
6513 ret = -1;
e397cefe 6514 break;
44b6b876 6515 }
2432ce9b 6516
44b6b876
PB
6517 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6518 perror("Read PPL header failed");
6519 ret = -1;
e397cefe 6520 break;
44b6b876 6521 }
2432ce9b 6522
44b6b876 6523 ppl_hdr = buf;
2432ce9b 6524
44b6b876
PB
6525 crc = __le32_to_cpu(ppl_hdr->checksum);
6526 ppl_hdr->checksum = 0;
6527
6528 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6529 dprintf("Wrong PPL header checksum on %s\n",
6530 d->devname);
e397cefe 6531 break;
44b6b876
PB
6532 }
6533
6534 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6535 /* previous was newest, it was already checked */
e397cefe 6536 break;
44b6b876
PB
6537 }
6538
6539 if ((__le32_to_cpu(ppl_hdr->signature) !=
6540 super->anchor->orig_family_num)) {
6541 dprintf("Wrong PPL header signature on %s\n",
6542 d->devname);
6543 ret = 1;
e397cefe 6544 break;
44b6b876
PB
6545 }
6546
6547 ret = 0;
6548 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6549
44b6b876
PB
6550 ppl_offset += PPL_HEADER_SIZE;
6551 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6552 ppl_offset +=
6553 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6554
6555 if (!buf_prev)
6556 buf_prev = buf + PPL_HEADER_SIZE;
6557 tmp = buf_prev;
6558 buf_prev = buf;
6559 buf = tmp;
2432ce9b
AP
6560 }
6561
e397cefe
AP
6562 if (buf_prev) {
6563 buf = buf_prev;
6564 ppl_hdr = buf_prev;
6565 }
2432ce9b 6566
54148aba
PB
6567 /*
6568 * Update metadata to use mutliple PPLs area (1MB).
6569 * This is done once for all RAID members
6570 */
6571 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6572 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6573 char subarray[20];
6574 struct mdinfo *member_dev;
6575
6576 sprintf(subarray, "%d", info->container_member);
6577
6578 if (mdmon_running(st->container_devnm))
6579 st->update_tail = &st->updates;
6580
03312b52 6581 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
54148aba
PB
6582 pr_err("Failed to update subarray %s\n",
6583 subarray);
6584 } else {
6585 if (st->update_tail)
6586 flush_metadata_updates(st);
6587 else
6588 st->ss->sync_metadata(st);
6589 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6590 for (member_dev = info->devs; member_dev;
6591 member_dev = member_dev->next)
6592 member_dev->ppl_size =
6593 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6594 }
6595 }
6596
b23d0750 6597 if (ret == 1) {
2fc0fc63
AP
6598 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6599
50b9c10d
PB
6600 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6601 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6602 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6603 (is_rebuilding(dev) &&
4036e7ee 6604 vol_curr_migr_unit(dev) == 0 &&
2ec9d182 6605 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6606 ret = st->ss->write_init_ppl(st, info, d->fd);
6607 else
6608 info->mismatch_cnt++;
e397cefe
AP
6609 } else if (ret == 0 &&
6610 ppl_hdr->entries_count == 0 &&
6611 is_rebuilding(dev) &&
6612 info->resync_start == 0) {
6613 /*
6614 * The header has no entries - add a single empty entry and
6615 * rewrite the header to prevent the kernel from going into
6616 * resync after an interrupted rebuild.
6617 */
6618 ppl_hdr->entries_count = __cpu_to_le32(1);
6619 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6620 }
2432ce9b 6621
e397cefe
AP
6622 free(buf_orig);
6623
2432ce9b
AP
6624 return ret;
6625}
6626
2432ce9b
AP
6627static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6628{
6629 struct intel_super *super = st->sb;
6630 struct dl *d;
6631 int ret = 0;
6632
6633 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6634 info->array.level != 5)
6635 return 0;
6636
6637 for (d = super->disks; d ; d = d->next) {
6638 if (d->index < 0 || is_failed(&d->disk))
6639 continue;
6640
6641 ret = st->ss->write_init_ppl(st, info, d->fd);
6642 if (ret)
6643 break;
6644 }
6645
6646 return ret;
6647}
43dad3d6 6648
fbc42556
JR
6649/*******************************************************************************
6650 * Function: write_init_bitmap_imsm_vol
6651 * Description: Write a bitmap header and prepares the area for the bitmap.
6652 * Parameters:
6653 * st : supertype information
6654 * vol_idx : the volume index to use
6655 *
6656 * Returns:
6657 * 0 : success
6658 * -1 : fail
6659 ******************************************************************************/
6660static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6661{
6662 struct intel_super *super = st->sb;
6663 int prev_current_vol = super->current_vol;
6664 struct dl *d;
6665 int ret = 0;
6666
6667 super->current_vol = vol_idx;
6668 for (d = super->disks; d; d = d->next) {
6669 if (d->index < 0 || is_failed(&d->disk))
6670 continue;
6671 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6672 if (ret)
6673 break;
6674 }
6675 super->current_vol = prev_current_vol;
6676 return ret;
6677}
6678
6679/*******************************************************************************
6680 * Function: write_init_bitmap_imsm_all
6681 * Description: Write a bitmap header and prepares the area for the bitmap.
6682 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6683 * Parameters:
6684 * st : supertype information
6685 * info : info about the volume where the bitmap should be written
6686 * vol_idx : the volume index to use
6687 *
6688 * Returns:
6689 * 0 : success
6690 * -1 : fail
6691 ******************************************************************************/
6692static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6693 int vol_idx)
6694{
6695 int ret = 0;
6696
6697 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6698 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6699
6700 return ret;
6701}
6702
c2c087e6
DW
6703static int write_init_super_imsm(struct supertype *st)
6704{
9b1fb677
DW
6705 struct intel_super *super = st->sb;
6706 int current_vol = super->current_vol;
2432ce9b
AP
6707 int rv = 0;
6708 struct mdinfo info;
6709
6710 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6711
6712 /* we are done with current_vol reset it to point st at the container */
6713 super->current_vol = -1;
6714
8273f55e 6715 if (st->update_tail) {
43dad3d6
DW
6716 /* queue the recently created array / added disk
6717 * as a metadata update */
8273f55e 6718
43dad3d6 6719 /* determine if we are creating a volume or adding a disk */
9b1fb677 6720 if (current_vol < 0) {
1a64be56
LM
6721 /* in the mgmt (add/remove) disk case we are running
6722 * in mdmon context, so don't close fd's
43dad3d6 6723 */
2432ce9b
AP
6724 rv = mgmt_disk(st);
6725 } else {
fbc42556 6726 /* adding the second volume to the array */
2432ce9b 6727 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6728 if (!rv)
6729 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
2432ce9b
AP
6730 if (!rv)
6731 rv = create_array(st, current_vol);
6732 }
d682f344
N
6733 } else {
6734 struct dl *d;
6735 for (d = super->disks; d; d = d->next)
ba728be7 6736 Kill(d->devname, NULL, 0, -1, 1);
fbc42556 6737 if (current_vol >= 0) {
2432ce9b 6738 rv = write_init_ppl_imsm_all(st, &info);
fbc42556
JR
6739 if (!rv)
6740 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6741 }
6742
2432ce9b
AP
6743 if (!rv)
6744 rv = write_super_imsm(st, 1);
d682f344 6745 }
2432ce9b
AP
6746
6747 return rv;
cdddbdbc
DW
6748}
6749
e683ca88 6750static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6751{
e683ca88
DW
6752 struct intel_super *super = st->sb;
6753 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6754
e683ca88 6755 if (!mpb)
ad97895e
DW
6756 return 1;
6757
f36a9ecd
PB
6758 if (super->sector_size == 4096)
6759 convert_to_4k(super);
e683ca88 6760 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6761}
6762
cdddbdbc 6763static int validate_geometry_imsm_container(struct supertype *st, int level,
1f5d54a0 6764 int raiddisks,
af4348dd
N
6765 unsigned long long data_offset,
6766 char *dev,
2c514b71
NB
6767 unsigned long long *freesize,
6768 int verbose)
cdddbdbc 6769{
c2c087e6
DW
6770 int fd;
6771 unsigned long long ldsize;
8662f92d 6772 struct intel_super *super = NULL;
f2f5c343 6773 int rv = 0;
cdddbdbc 6774
6f2af6a4 6775 if (!is_container(level))
c2c087e6
DW
6776 return 0;
6777 if (!dev)
6778 return 1;
6779
dca80fcd 6780 fd = dev_open(dev, O_RDONLY|O_EXCL);
4389ce73
MT
6781 if (!is_fd_valid(fd)) {
6782 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
c2c087e6
DW
6783 return 0;
6784 }
8662f92d
MT
6785 if (!get_dev_size(fd, dev, &ldsize))
6786 goto exit;
f2f5c343
LM
6787
6788 /* capabilities retrieve could be possible
6789 * note that there is no fd for the disks in array.
6790 */
6791 super = alloc_super();
8662f92d
MT
6792 if (!super)
6793 goto exit;
6794
6795 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6796 goto exit;
fa7bb6f8 6797
ba728be7 6798 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6799 if (rv != 0) {
6800#if DEBUG
6801 char str[256];
6802 fd2devname(fd, str);
1ade5cc1 6803 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6804 fd, str, super->orom, rv, raiddisks);
6805#endif
6806 /* no orom/efi or non-intel hba of the disk */
8662f92d
MT
6807 rv = 0;
6808 goto exit;
f2f5c343 6809 }
9126b9a8
CA
6810 if (super->orom) {
6811 if (raiddisks > super->orom->tds) {
6812 if (verbose)
7a862a02 6813 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8 6814 raiddisks, super->orom->tds);
8662f92d 6815 goto exit;
9126b9a8
CA
6816 }
6817 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6818 (ldsize >> 9) >> 32 > 0) {
6819 if (verbose)
e7b84f9d 6820 pr_err("%s exceeds maximum platform supported size\n", dev);
8662f92d
MT
6821 goto exit;
6822 }
6823
6824 if (super->hba->type == SYS_DEV_VMD ||
6825 super->hba->type == SYS_DEV_NVME) {
6826 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6827 if (verbose)
6828 pr_err("NVMe namespace %s is not supported by IMSM\n",
6829 basename(dev));
6830 goto exit;
6831 }
9126b9a8 6832 }
f2f5c343 6833 }
1f5d54a0
MT
6834 if (freesize)
6835 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
8662f92d
MT
6836 rv = 1;
6837exit:
6838 if (super)
6839 free_imsm(super);
6840 close(fd);
c2c087e6 6841
8662f92d 6842 return rv;
cdddbdbc
DW
6843}
6844
0dcecb2e
DW
6845static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6846{
6847 const unsigned long long base_start = e[*idx].start;
6848 unsigned long long end = base_start + e[*idx].size;
6849 int i;
6850
6851 if (base_start == end)
6852 return 0;
6853
6854 *idx = *idx + 1;
6855 for (i = *idx; i < num_extents; i++) {
6856 /* extend overlapping extents */
6857 if (e[i].start >= base_start &&
6858 e[i].start <= end) {
6859 if (e[i].size == 0)
6860 return 0;
6861 if (e[i].start + e[i].size > end)
6862 end = e[i].start + e[i].size;
6863 } else if (e[i].start > end) {
6864 *idx = i;
6865 break;
6866 }
6867 }
6868
6869 return end - base_start;
6870}
6871
6872static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6873{
6874 /* build a composite disk with all known extents and generate a new
6875 * 'maxsize' given the "all disks in an array must share a common start
6876 * offset" constraint
6877 */
503975b9 6878 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6879 struct dl *dl;
6880 int i, j;
6881 int start_extent;
6882 unsigned long long pos;
b9d77223 6883 unsigned long long start = 0;
0dcecb2e
DW
6884 unsigned long long maxsize;
6885 unsigned long reserve;
6886
0dcecb2e
DW
6887 /* coalesce and sort all extents. also, check to see if we need to
6888 * reserve space between member arrays
6889 */
6890 j = 0;
6891 for (dl = super->disks; dl; dl = dl->next) {
6892 if (!dl->e)
6893 continue;
6894 for (i = 0; i < dl->extent_cnt; i++)
6895 e[j++] = dl->e[i];
6896 }
6897 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6898
6899 /* merge extents */
6900 i = 0;
6901 j = 0;
6902 while (i < sum_extents) {
6903 e[j].start = e[i].start;
6904 e[j].size = find_size(e, &i, sum_extents);
6905 j++;
6906 if (e[j-1].size == 0)
6907 break;
6908 }
6909
6910 pos = 0;
6911 maxsize = 0;
6912 start_extent = 0;
6913 i = 0;
6914 do {
6915 unsigned long long esize;
6916
6917 esize = e[i].start - pos;
6918 if (esize >= maxsize) {
6919 maxsize = esize;
6920 start = pos;
6921 start_extent = i;
6922 }
6923 pos = e[i].start + e[i].size;
6924 i++;
6925 } while (e[i-1].size);
6926 free(e);
6927
a7dd165b
DW
6928 if (maxsize == 0)
6929 return 0;
6930
6931 /* FIXME assumes volume at offset 0 is the first volume in a
6932 * container
6933 */
0dcecb2e
DW
6934 if (start_extent > 0)
6935 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6936 else
6937 reserve = 0;
6938
6939 if (maxsize < reserve)
a7dd165b 6940 return 0;
0dcecb2e 6941
5551b113 6942 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6943 if (start + reserve > super->create_offset)
a7dd165b 6944 return 0; /* start overflows create_offset */
0dcecb2e
DW
6945 super->create_offset = start + reserve;
6946
6947 return maxsize - reserve;
6948}
6949
88c32bb1
DW
6950static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6951{
6952 if (level < 0 || level == 6 || level == 4)
6953 return 0;
6954
6955 /* if we have an orom prevent invalid raid levels */
6956 if (orom)
6957 switch (level) {
6958 case 0: return imsm_orom_has_raid0(orom);
6959 case 1:
6960 if (raiddisks > 2)
6961 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6962 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6963 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6964 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6965 }
6966 else
6967 return 1; /* not on an Intel RAID platform so anything goes */
6968
6969 return 0;
6970}
6971
ca9de185
LM
6972static int
6973active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6974 int dpa, int verbose)
6975{
6976 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6977 struct mdstat_ent *memb;
ca9de185
LM
6978 int count = 0;
6979 int num = 0;
594dc1b8 6980 struct md_list *dv;
ca9de185
LM
6981 int found;
6982
6983 for (memb = mdstat ; memb ; memb = memb->next) {
6984 if (memb->metadata_version &&
fc54fe7a 6985 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6986 (strcmp(&memb->metadata_version[9], name) == 0) &&
6987 !is_subarray(memb->metadata_version+9) &&
6988 memb->members) {
6989 struct dev_member *dev = memb->members;
6990 int fd = -1;
4389ce73 6991 while (dev && !is_fd_valid(fd)) {
503975b9
N
6992 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6993 num = sprintf(path, "%s%s", "/dev/", dev->name);
6994 if (num > 0)
6995 fd = open(path, O_RDONLY, 0);
4389ce73 6996 if (num <= 0 || !is_fd_valid(fd)) {
676e87a8 6997 pr_vrb("Cannot open %s: %s\n",
503975b9 6998 dev->name, strerror(errno));
ca9de185 6999 }
503975b9 7000 free(path);
ca9de185
LM
7001 dev = dev->next;
7002 }
7003 found = 0;
4389ce73 7004 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
7005 struct mdstat_ent *vol;
7006 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 7007 if (vol->active > 0 &&
ca9de185 7008 vol->metadata_version &&
9581efb1 7009 is_container_member(vol, memb->devnm)) {
ca9de185
LM
7010 found++;
7011 count++;
7012 }
7013 }
7014 if (*devlist && (found < dpa)) {
503975b9 7015 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
7016 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
7017 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
7018 dv->found = found;
7019 dv->used = 0;
7020 dv->next = *devlist;
7021 *devlist = dv;
ca9de185
LM
7022 }
7023 }
4389ce73 7024 close_fd(&fd);
ca9de185
LM
7025 }
7026 }
7027 free_mdstat(mdstat);
7028 return count;
7029}
7030
7031#ifdef DEBUG_LOOP
7032static struct md_list*
7033get_loop_devices(void)
7034{
7035 int i;
7036 struct md_list *devlist = NULL;
594dc1b8 7037 struct md_list *dv;
ca9de185
LM
7038
7039 for(i = 0; i < 12; i++) {
503975b9
N
7040 dv = xcalloc(1, sizeof(*dv));
7041 dv->devname = xmalloc(40);
ca9de185
LM
7042 sprintf(dv->devname, "/dev/loop%d", i);
7043 dv->next = devlist;
7044 devlist = dv;
7045 }
7046 return devlist;
7047}
7048#endif
7049
7050static struct md_list*
7051get_devices(const char *hba_path)
7052{
7053 struct md_list *devlist = NULL;
594dc1b8 7054 struct md_list *dv;
ca9de185
LM
7055 struct dirent *ent;
7056 DIR *dir;
7057 int err = 0;
7058
7059#if DEBUG_LOOP
7060 devlist = get_loop_devices();
7061 return devlist;
7062#endif
7063 /* scroll through /sys/dev/block looking for devices attached to
7064 * this hba
7065 */
7066 dir = opendir("/sys/dev/block");
7067 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7068 int fd;
7069 char buf[1024];
7070 int major, minor;
7071 char *path = NULL;
7072 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7073 continue;
7c798f87 7074 path = devt_to_devpath(makedev(major, minor), 1, NULL);
ca9de185
LM
7075 if (!path)
7076 continue;
7077 if (!path_attached_to_hba(path, hba_path)) {
7078 free(path);
7079 path = NULL;
7080 continue;
7081 }
7082 free(path);
7083 path = NULL;
7084 fd = dev_open(ent->d_name, O_RDONLY);
4389ce73 7085 if (is_fd_valid(fd)) {
ca9de185
LM
7086 fd2devname(fd, buf);
7087 close(fd);
7088 } else {
e7b84f9d 7089 pr_err("cannot open device: %s\n",
ca9de185
LM
7090 ent->d_name);
7091 continue;
7092 }
7093
503975b9
N
7094 dv = xcalloc(1, sizeof(*dv));
7095 dv->devname = xstrdup(buf);
ca9de185
LM
7096 dv->next = devlist;
7097 devlist = dv;
7098 }
7099 if (err) {
7100 while(devlist) {
7101 dv = devlist;
7102 devlist = devlist->next;
7103 free(dv->devname);
7104 free(dv);
7105 }
7106 }
562aa102 7107 closedir(dir);
ca9de185
LM
7108 return devlist;
7109}
7110
7111static int
7112count_volumes_list(struct md_list *devlist, char *homehost,
7113 int verbose, int *found)
7114{
7115 struct md_list *tmpdev;
7116 int count = 0;
594dc1b8 7117 struct supertype *st;
ca9de185
LM
7118
7119 /* first walk the list of devices to find a consistent set
7120 * that match the criterea, if that is possible.
7121 * We flag the ones we like with 'used'.
7122 */
7123 *found = 0;
7124 st = match_metadata_desc_imsm("imsm");
7125 if (st == NULL) {
676e87a8 7126 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7127 return 0;
7128 }
7129
7130 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7131 char *devname = tmpdev->devname;
0a6bff09 7132 dev_t rdev;
ca9de185
LM
7133 struct supertype *tst;
7134 int dfd;
7135 if (tmpdev->used > 1)
7136 continue;
7137 tst = dup_super(st);
7138 if (tst == NULL) {
676e87a8 7139 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
7140 goto err_1;
7141 }
7142 tmpdev->container = 0;
7143 dfd = dev_open(devname, O_RDONLY|O_EXCL);
4389ce73 7144 if (!is_fd_valid(dfd)) {
1ade5cc1 7145 dprintf("cannot open device %s: %s\n",
ca9de185
LM
7146 devname, strerror(errno));
7147 tmpdev->used = 2;
0a6bff09 7148 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
7149 tmpdev->used = 2;
7150 } else if (must_be_container(dfd)) {
7151 struct supertype *cst;
7152 cst = super_by_fd(dfd, NULL);
7153 if (cst == NULL) {
1ade5cc1 7154 dprintf("cannot recognize container type %s\n",
ca9de185
LM
7155 devname);
7156 tmpdev->used = 2;
7157 } else if (tst->ss != st->ss) {
1ade5cc1 7158 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
7159 devname);
7160 tmpdev->used = 2;
7161 } else if (!tst->ss->load_container ||
7162 tst->ss->load_container(tst, dfd, NULL))
7163 tmpdev->used = 2;
7164 else {
7165 tmpdev->container = 1;
7166 }
7167 if (cst)
7168 cst->ss->free_super(cst);
7169 } else {
0a6bff09 7170 tmpdev->st_rdev = rdev;
ca9de185 7171 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 7172 dprintf("no RAID superblock on %s\n",
ca9de185
LM
7173 devname);
7174 tmpdev->used = 2;
7175 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 7176 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
7177 tst->ss->name, devname);
7178 tmpdev->used = 2;
7179 }
7180 }
4389ce73
MT
7181 close_fd(&dfd);
7182
ca9de185
LM
7183 if (tmpdev->used == 2 || tmpdev->used == 4) {
7184 /* Ignore unrecognised devices during auto-assembly */
7185 goto loop;
7186 }
7187 else {
7188 struct mdinfo info;
7189 tst->ss->getinfo_super(tst, &info, NULL);
7190
7191 if (st->minor_version == -1)
7192 st->minor_version = tst->minor_version;
7193
7194 if (memcmp(info.uuid, uuid_zero,
7195 sizeof(int[4])) == 0) {
7196 /* this is a floating spare. It cannot define
7197 * an array unless there are no more arrays of
7198 * this type to be found. It can be included
7199 * in an array of this type though.
7200 */
7201 tmpdev->used = 3;
7202 goto loop;
7203 }
7204
7205 if (st->ss != tst->ss ||
7206 st->minor_version != tst->minor_version ||
c7b8547c 7207 st->ss->compare_super(st, tst, 1) != 0) {
ca9de185
LM
7208 /* Some mismatch. If exactly one array matches this host,
7209 * we can resolve on that one.
7210 * Or, if we are auto assembling, we just ignore the second
7211 * for now.
7212 */
1ade5cc1 7213 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
7214 devname);
7215 goto loop;
7216 }
7217 tmpdev->used = 1;
7218 *found = 1;
7219 dprintf("found: devname: %s\n", devname);
7220 }
7221 loop:
7222 if (tst)
7223 tst->ss->free_super(tst);
7224 }
7225 if (*found != 0) {
7226 int err;
7227 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7228 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7229 for (iter = head; iter; iter = iter->next) {
7230 dprintf("content->text_version: %s vol\n",
7231 iter->text_version);
7232 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7233 /* do not assemble arrays with unsupported
7234 configurations */
1ade5cc1 7235 dprintf("Cannot activate member %s.\n",
ca9de185
LM
7236 iter->text_version);
7237 } else
7238 count++;
7239 }
7240 sysfs_free(head);
7241
7242 } else {
1ade5cc1 7243 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
7244 err, st->sb);
7245 }
7246 } else {
1ade5cc1 7247 dprintf("no more devices to examine\n");
ca9de185
LM
7248 }
7249
7250 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 7251 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
7252 if (count) {
7253 if (count < tmpdev->found)
7254 count = 0;
7255 else
7256 count -= tmpdev->found;
7257 }
7258 }
7259 if (tmpdev->used == 1)
7260 tmpdev->used = 4;
7261 }
7262 err_1:
7263 if (st)
7264 st->ss->free_super(st);
7265 return count;
7266}
7267
d3c11416
AO
7268static int __count_volumes(char *hba_path, int dpa, int verbose,
7269 int cmp_hba_path)
ca9de185 7270{
72a45777 7271 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 7272 int count = 0;
72a45777
PB
7273 const struct orom_entry *entry;
7274 struct devid_list *dv, *devid_list;
ca9de185 7275
d3c11416 7276 if (!hba_path)
ca9de185
LM
7277 return 0;
7278
72a45777 7279 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
7280 if (strstr(idev->path, hba_path))
7281 break;
72a45777
PB
7282 }
7283
7284 if (!idev || !idev->dev_id)
ca9de185 7285 return 0;
72a45777
PB
7286
7287 entry = get_orom_entry_by_device_id(idev->dev_id);
7288
7289 if (!entry || !entry->devid_list)
7290 return 0;
7291
7292 devid_list = entry->devid_list;
7293 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 7294 struct md_list *devlist;
d3c11416
AO
7295 struct sys_dev *device = NULL;
7296 char *hpath;
72a45777
PB
7297 int found = 0;
7298
d3c11416
AO
7299 if (cmp_hba_path)
7300 device = device_by_id_and_path(dv->devid, hba_path);
7301 else
7302 device = device_by_id(dv->devid);
7303
72a45777 7304 if (device)
d3c11416 7305 hpath = device->path;
72a45777
PB
7306 else
7307 return 0;
7308
d3c11416 7309 devlist = get_devices(hpath);
72a45777
PB
7310 /* if no intel devices return zero volumes */
7311 if (devlist == NULL)
7312 return 0;
7313
d3c11416
AO
7314 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7315 verbose);
7316 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
7317 if (devlist == NULL)
7318 return 0;
7319 do {
7320 found = 0;
7321 count += count_volumes_list(devlist,
7322 NULL,
7323 verbose,
7324 &found);
7325 dprintf("found %d count: %d\n", found, count);
7326 } while (found);
7327
d3c11416 7328 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
7329
7330 while (devlist) {
7331 struct md_list *dv = devlist;
7332 devlist = devlist->next;
7333 free(dv->devname);
7334 free(dv);
7335 }
ca9de185
LM
7336 }
7337 return count;
7338}
7339
d3c11416
AO
7340static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7341{
7342 if (!hba)
7343 return 0;
7344 if (hba->type == SYS_DEV_VMD) {
7345 struct sys_dev *dev;
7346 int count = 0;
7347
7348 for (dev = find_intel_devices(); dev; dev = dev->next) {
7349 if (dev->type == SYS_DEV_VMD)
7350 count += __count_volumes(dev->path, dpa,
7351 verbose, 1);
7352 }
7353 return count;
7354 }
7355 return __count_volumes(hba->path, dpa, verbose, 0);
7356}
7357
cd9d1ac7
DW
7358static int imsm_default_chunk(const struct imsm_orom *orom)
7359{
7360 /* up to 512 if the plaform supports it, otherwise the platform max.
7361 * 128 if no platform detected
7362 */
7363 int fs = max(7, orom ? fls(orom->sss) : 0);
7364
7365 return min(512, (1 << fs));
7366}
73408129 7367
6592ce37
DW
7368static int
7369validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 7370 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 7371{
660260d0
DW
7372 /* check/set platform and metadata limits/defaults */
7373 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 7374 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 7375 super->orom->dpa);
73408129
LM
7376 return 0;
7377 }
7378
5d500228 7379 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 7380 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 7381 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
7382 level, raiddisks, raiddisks > 1 ? "s" : "");
7383 return 0;
7384 }
cd9d1ac7 7385
7ccc4cc4 7386 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7387 *chunk = imsm_default_chunk(super->orom);
7388
7ccc4cc4 7389 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7390 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7391 return 0;
6592ce37 7392 }
cd9d1ac7 7393
6592ce37
DW
7394 if (layout != imsm_level_to_layout(level)) {
7395 if (level == 5)
676e87a8 7396 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7397 else if (level == 10)
676e87a8 7398 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7399 else
676e87a8 7400 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7401 layout, level);
7402 return 0;
7403 }
2cc699af 7404
7ccc4cc4 7405 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7406 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7407 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7408 return 0;
7409 }
614902f6 7410
6592ce37
DW
7411 return 1;
7412}
7413
1011e834 7414/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7415 * FIX ME add ahci details
7416 */
8b353278 7417static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7418 int layout, int raiddisks, int *chunk,
af4348dd
N
7419 unsigned long long size,
7420 unsigned long long data_offset,
7421 char *dev,
2c514b71
NB
7422 unsigned long long *freesize,
7423 int verbose)
cdddbdbc 7424{
9e04ac1c 7425 dev_t rdev;
c2c087e6 7426 struct intel_super *super = st->sb;
b2916f25 7427 struct imsm_super *mpb;
c2c087e6
DW
7428 struct dl *dl;
7429 unsigned long long pos = 0;
7430 unsigned long long maxsize;
7431 struct extent *e;
7432 int i;
cdddbdbc 7433
88c32bb1
DW
7434 /* We must have the container info already read in. */
7435 if (!super)
c2c087e6
DW
7436 return 0;
7437
b2916f25
JS
7438 mpb = super->anchor;
7439
2cc699af 7440 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
3e684231 7441 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7442 return 0;
d54559f0 7443 }
c2c087e6
DW
7444 if (!dev) {
7445 /* General test: make sure there is space for
2da8544a
DW
7446 * 'raiddisks' device extents of size 'size' at a given
7447 * offset
c2c087e6 7448 */
e46273eb 7449 unsigned long long minsize = size;
b7528a20 7450 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7451 int dcnt = 0;
7452 if (minsize == 0)
7453 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7454 for (dl = super->disks; dl ; dl = dl->next) {
7455 int found = 0;
7456
bf5a934a 7457 pos = 0;
c2c087e6 7458 i = 0;
05501181 7459 e = get_extents(super, dl, 0);
c2c087e6
DW
7460 if (!e) continue;
7461 do {
7462 unsigned long long esize;
7463 esize = e[i].start - pos;
7464 if (esize >= minsize)
7465 found = 1;
b7528a20 7466 if (found && start_offset == MaxSector) {
2da8544a
DW
7467 start_offset = pos;
7468 break;
7469 } else if (found && pos != start_offset) {
7470 found = 0;
7471 break;
7472 }
c2c087e6
DW
7473 pos = e[i].start + e[i].size;
7474 i++;
7475 } while (e[i-1].size);
7476 if (found)
7477 dcnt++;
7478 free(e);
7479 }
7480 if (dcnt < raiddisks) {
2c514b71 7481 if (verbose)
7a862a02 7482 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7483 dcnt, raiddisks);
c2c087e6
DW
7484 return 0;
7485 }
7486 return 1;
7487 }
0dcecb2e 7488
c2c087e6 7489 /* This device must be a member of the set */
9e04ac1c 7490 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7491 return 0;
7492 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7493 if (dl->major == (int)major(rdev) &&
7494 dl->minor == (int)minor(rdev))
c2c087e6
DW
7495 break;
7496 }
7497 if (!dl) {
2c514b71 7498 if (verbose)
7a862a02 7499 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7500 return 0;
a20d2ba5
DW
7501 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7502 /* If a volume is present then the current creation attempt
7503 * cannot incorporate new spares because the orom may not
7504 * understand this configuration (all member disks must be
7505 * members of each array in the container).
7506 */
7a862a02
N
7507 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7508 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7509 return 0;
5fe62b94
WD
7510 } else if (super->orom && mpb->num_raid_devs > 0 &&
7511 mpb->num_disks != raiddisks) {
7a862a02 7512 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7513 return 0;
c2c087e6 7514 }
0dcecb2e
DW
7515
7516 /* retrieve the largest free space block */
05501181 7517 e = get_extents(super, dl, 0);
c2c087e6
DW
7518 maxsize = 0;
7519 i = 0;
0dcecb2e
DW
7520 if (e) {
7521 do {
7522 unsigned long long esize;
7523
7524 esize = e[i].start - pos;
7525 if (esize >= maxsize)
7526 maxsize = esize;
7527 pos = e[i].start + e[i].size;
7528 i++;
7529 } while (e[i-1].size);
7530 dl->e = e;
7531 dl->extent_cnt = i;
7532 } else {
7533 if (verbose)
e7b84f9d 7534 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7535 dev);
7536 return 0;
7537 }
7538 if (maxsize < size) {
7539 if (verbose)
e7b84f9d 7540 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7541 dev, maxsize, size);
7542 return 0;
7543 }
7544
7545 /* count total number of extents for merge */
7546 i = 0;
7547 for (dl = super->disks; dl; dl = dl->next)
7548 if (dl->e)
7549 i += dl->extent_cnt;
7550
7551 maxsize = merge_extents(super, i);
3baa56ab 7552
1a1ced1e
KS
7553 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7554 pr_err("attempting to create a second volume with size less then remaining space.\n");
3baa56ab 7555
a7dd165b 7556 if (maxsize < size || maxsize == 0) {
b3071342
LD
7557 if (verbose) {
7558 if (maxsize == 0)
7a862a02 7559 pr_err("no free space left on device. Aborting...\n");
b3071342 7560 else
7a862a02 7561 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7562 maxsize, size);
7563 }
0dcecb2e 7564 return 0;
0dcecb2e
DW
7565 }
7566
c2c087e6
DW
7567 *freesize = maxsize;
7568
ca9de185 7569 if (super->orom) {
72a45777 7570 int count = count_volumes(super->hba,
ca9de185
LM
7571 super->orom->dpa, verbose);
7572 if (super->orom->vphba <= count) {
676e87a8 7573 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7574 super->orom->vphba);
7575 return 0;
7576 }
7577 }
c2c087e6 7578 return 1;
cdddbdbc
DW
7579}
7580
6d4d9ab2
MT
7581/**
7582 * imsm_get_free_size() - get the biggest, common free space from members.
7583 * @super: &intel_super pointer, not NULL.
7584 * @raiddisks: number of raid disks.
7585 * @size: requested size, could be 0 (means max size).
7586 * @chunk: requested chunk.
7587 * @freesize: pointer for returned size value.
7588 *
7589 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7590 *
7591 * @freesize is set to meaningful value, this can be @size, or calculated
7592 * max free size.
7593 * super->create_offset value is modified and set appropriately in
7594 * merge_extends() for further creation.
7595 */
7596static imsm_status_t imsm_get_free_size(struct intel_super *super,
7597 const int raiddisks,
7598 unsigned long long size,
7599 const int chunk,
7600 unsigned long long *freesize)
efb30e7f 7601{
efb30e7f
DW
7602 struct imsm_super *mpb = super->anchor;
7603 struct dl *dl;
7604 int i;
7605 int extent_cnt;
7606 struct extent *e;
7607 unsigned long long maxsize;
7608 unsigned long long minsize;
7609 int cnt;
7610 int used;
7611
7612 /* find the largest common start free region of the possible disks */
7613 used = 0;
7614 extent_cnt = 0;
7615 cnt = 0;
7616 for (dl = super->disks; dl; dl = dl->next) {
7617 dl->raiddisk = -1;
7618
7619 if (dl->index >= 0)
7620 used++;
7621
7622 /* don't activate new spares if we are orom constrained
7623 * and there is already a volume active in the container
7624 */
7625 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7626 continue;
7627
05501181 7628 e = get_extents(super, dl, 0);
efb30e7f
DW
7629 if (!e)
7630 continue;
7631 for (i = 1; e[i-1].size; i++)
7632 ;
7633 dl->e = e;
7634 dl->extent_cnt = i;
7635 extent_cnt += i;
7636 cnt++;
7637 }
7638
7639 maxsize = merge_extents(super, extent_cnt);
7640 minsize = size;
7641 if (size == 0)
612e59d8
CA
7642 /* chunk is in K */
7643 minsize = chunk * 2;
efb30e7f 7644
6d4d9ab2
MT
7645 if (cnt < raiddisks || (super->orom && used && used != raiddisks) ||
7646 maxsize < minsize || maxsize == 0) {
e7b84f9d 7647 pr_err("not enough devices with space to create array.\n");
6d4d9ab2 7648 return IMSM_STATUS_ERROR;
efb30e7f
DW
7649 }
7650
7651 if (size == 0) {
7652 size = maxsize;
7653 if (chunk) {
612e59d8
CA
7654 size /= 2 * chunk;
7655 size *= 2 * chunk;
efb30e7f 7656 }
f878b242
LM
7657 maxsize = size;
7658 }
1a1ced1e
KS
7659 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7660 pr_err("attempting to create a second volume with size less then remaining space.\n");
efb30e7f
DW
7661 *freesize = size;
7662
13bcac90
AK
7663 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7664
6d4d9ab2 7665 return IMSM_STATUS_OK;
efb30e7f
DW
7666}
7667
6d4d9ab2
MT
7668/**
7669 * autolayout_imsm() - automatically layout a new volume.
7670 * @super: &intel_super pointer, not NULL.
7671 * @raiddisks: number of raid disks.
7672 * @size: requested size, could be 0 (means max size).
7673 * @chunk: requested chunk.
7674 * @freesize: pointer for returned size value.
7675 *
7676 * We are being asked to automatically layout a new volume based on the current
7677 * contents of the container. If the parameters can be satisfied autolayout_imsm
7678 * will record the disks, start offset, and will return size of the volume to
7679 * be created. See imsm_get_free_size() for details.
7680 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7681 * If first volume exists, slots are set consistently to it.
7682 *
7683 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7684 *
7685 * Disks are marked for creation via dl->raiddisk.
7686 */
7687static imsm_status_t autolayout_imsm(struct intel_super *super,
7688 const int raiddisks,
7689 unsigned long long size, const int chunk,
7690 unsigned long long *freesize)
13bcac90 7691{
6d4d9ab2
MT
7692 int curr_slot = 0;
7693 struct dl *disk;
7694 int vol_cnt = super->anchor->num_raid_devs;
7695 imsm_status_t rv;
13bcac90 7696
6d4d9ab2
MT
7697 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize);
7698 if (rv != IMSM_STATUS_OK)
7699 return IMSM_STATUS_ERROR;
7700
7701 for (disk = super->disks; disk; disk = disk->next) {
7702 if (!disk->e)
7703 continue;
7704
7705 if (curr_slot == raiddisks)
7706 break;
7707
7708 if (vol_cnt == 0) {
7709 disk->raiddisk = curr_slot;
7710 } else {
7711 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7712
7713 if (_slot == -1) {
7714 pr_err("Disk %s is not used in first volume, aborting\n",
7715 disk->devname);
7716 return IMSM_STATUS_ERROR;
7717 }
7718 disk->raiddisk = _slot;
7719 }
7720 curr_slot++;
13bcac90
AK
7721 }
7722
6d4d9ab2 7723 return IMSM_STATUS_OK;
13bcac90
AK
7724}
7725
bf5a934a 7726static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7727 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7728 unsigned long long data_offset,
bf5a934a 7729 char *dev, unsigned long long *freesize,
5308f117 7730 int consistency_policy, int verbose)
bf5a934a
DW
7731{
7732 int fd, cfd;
7733 struct mdinfo *sra;
20cbe8d2 7734 int is_member = 0;
bf5a934a 7735
d54559f0
LM
7736 /* load capability
7737 * if given unused devices create a container
bf5a934a
DW
7738 * if given given devices in a container create a member volume
7739 */
6f2af6a4 7740 if (is_container(level))
bf5a934a 7741 /* Must be a fresh device to add to a container */
1f5d54a0
MT
7742 return validate_geometry_imsm_container(st, level, raiddisks,
7743 data_offset, dev,
7744 freesize, verbose);
9587c373 7745
06a6101c
BK
7746 /*
7747 * Size is given in sectors.
7748 */
7749 if (size && (size < 2048)) {
22dc741f 7750 pr_err("Given size must be greater than 1M.\n");
54865c30
RS
7751 /* Depends on algorithm in Create.c :
7752 * if container was given (dev == NULL) return -1,
7753 * if block device was given ( dev != NULL) return 0.
7754 */
7755 return dev ? -1 : 0;
7756 }
7757
8592f29d 7758 if (!dev) {
6d4d9ab2
MT
7759 struct intel_super *super = st->sb;
7760
7761 /*
071f839e 7762 * Autolayout mode, st->sb must be set.
6d4d9ab2 7763 */
071f839e
KT
7764 if (!super) {
7765 pr_vrb("superblock must be set for autolayout, aborting\n");
7766 return 0;
6d4d9ab2
MT
7767 }
7768
7769 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7770 raiddisks, chunk, size,
7771 verbose))
7772 return 0;
7773
071f839e 7774 if (super->orom && freesize) {
6d4d9ab2
MT
7775 imsm_status_t rv;
7776 int count = count_volumes(super->hba, super->orom->dpa,
7777 verbose);
7778 if (super->orom->vphba <= count) {
7779 pr_vrb("platform does not support more than %d raid volumes.\n",
7780 super->orom->vphba);
e91a3bad 7781 return 0;
ca9de185 7782 }
6d4d9ab2
MT
7783
7784 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7785 freesize);
7786 if (rv != IMSM_STATUS_OK)
7787 return 0;
8592f29d
N
7788 }
7789 return 1;
7790 }
bf5a934a
DW
7791 if (st->sb) {
7792 /* creating in a given container */
7793 return validate_geometry_imsm_volume(st, level, layout,
7794 raiddisks, chunk, size,
af4348dd 7795 data_offset,
bf5a934a
DW
7796 dev, freesize, verbose);
7797 }
7798
bf5a934a
DW
7799 /* This device needs to be a device in an 'imsm' container */
7800 fd = open(dev, O_RDONLY|O_EXCL, 0);
4389ce73
MT
7801
7802 if (is_fd_valid(fd)) {
7803 pr_vrb("Cannot create this array on device %s\n", dev);
bf5a934a
DW
7804 close(fd);
7805 return 0;
7806 }
4389ce73
MT
7807 if (errno == EBUSY)
7808 fd = open(dev, O_RDONLY, 0);
7809
7810 if (!is_fd_valid(fd)) {
7811 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
bf5a934a
DW
7812 return 0;
7813 }
4389ce73 7814
bf5a934a
DW
7815 /* Well, it is in use by someone, maybe an 'imsm' container. */
7816 cfd = open_container(fd);
4389ce73
MT
7817 close_fd(&fd);
7818
7819 if (!is_fd_valid(cfd)) {
7820 pr_vrb("Cannot use %s: It is busy\n", dev);
bf5a934a
DW
7821 return 0;
7822 }
4dd2df09 7823 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7824 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7825 strcmp(sra->text_version, "imsm") == 0)
7826 is_member = 1;
7827 sysfs_free(sra);
7828 if (is_member) {
bf5a934a
DW
7829 /* This is a member of a imsm container. Load the container
7830 * and try to create a volume
7831 */
7832 struct intel_super *super;
7833
ec50f7b6 7834 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7835 st->sb = super;
4dd2df09 7836 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7837 close(cfd);
7838 return validate_geometry_imsm_volume(st, level, layout,
7839 raiddisks, chunk,
af4348dd 7840 size, data_offset, dev,
ecbd9e81
N
7841 freesize, 1)
7842 ? 1 : -1;
bf5a934a 7843 }
20cbe8d2 7844 }
bf5a934a 7845
20cbe8d2 7846 if (verbose)
e7b84f9d 7847 pr_err("failed container membership check\n");
20cbe8d2
AW
7848
7849 close(cfd);
7850 return 0;
bf5a934a 7851}
0bd16cf2 7852
30f58b22 7853static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7854{
7855 struct intel_super *super = st->sb;
7856
30f58b22
DW
7857 if (level && *level == UnSet)
7858 *level = LEVEL_CONTAINER;
7859
7860 if (level && layout && *layout == UnSet)
7861 *layout = imsm_level_to_layout(*level);
0bd16cf2 7862
cd9d1ac7
DW
7863 if (chunk && (*chunk == UnSet || *chunk == 0))
7864 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7865}
7866
33414a01
DW
7867static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7868
3364781b 7869static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
33414a01 7870{
3364781b 7871 /* remove the subarray currently referenced by subarray_id */
33414a01
DW
7872 __u8 i;
7873 struct intel_dev **dp;
7874 struct intel_super *super = st->sb;
3364781b 7875 __u8 current_vol = strtoul(subarray_id, NULL, 10);
33414a01
DW
7876 struct imsm_super *mpb = super->anchor;
7877
3364781b 7878 if (mpb->num_raid_devs == 0)
33414a01 7879 return 2;
33414a01
DW
7880
7881 /* block deletions that would change the uuid of active subarrays
7882 *
7883 * FIXME when immutable ids are available, but note that we'll
7884 * also need to fixup the invalidated/active subarray indexes in
7885 * mdstat
7886 */
7887 for (i = 0; i < mpb->num_raid_devs; i++) {
7888 char subarray[4];
7889
7890 if (i < current_vol)
7891 continue;
7892 sprintf(subarray, "%u", i);
4dd2df09 7893 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7894 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7895 current_vol, i);
33414a01
DW
7896
7897 return 2;
7898 }
7899 }
7900
7901 if (st->update_tail) {
503975b9 7902 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7903
33414a01
DW
7904 u->type = update_kill_array;
7905 u->dev_idx = current_vol;
7906 append_metadata_update(st, u, sizeof(*u));
7907
7908 return 0;
7909 }
7910
7911 for (dp = &super->devlist; *dp;)
7912 if ((*dp)->index == current_vol) {
7913 *dp = (*dp)->next;
7914 } else {
7915 handle_missing(super, (*dp)->dev);
7916 if ((*dp)->index > current_vol)
7917 (*dp)->index--;
7918 dp = &(*dp)->next;
7919 }
7920
7921 /* no more raid devices, all active components are now spares,
7922 * but of course failed are still failed
7923 */
7924 if (--mpb->num_raid_devs == 0) {
7925 struct dl *d;
7926
7927 for (d = super->disks; d; d = d->next)
a8619d23
AK
7928 if (d->index > -2)
7929 mark_spare(d);
33414a01
DW
7930 }
7931
7932 super->updates_pending++;
7933
7934 return 0;
7935}
aa534678 7936
4345e135
MK
7937/**
7938 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7939 * @update: Update option.
7940 */
7941static int get_rwh_policy_from_update(enum update_opt update)
19ad203e 7942{
4345e135
MK
7943 switch (update) {
7944 case UOPT_PPL:
19ad203e 7945 return RWH_MULTIPLE_DISTRIBUTED;
4345e135 7946 case UOPT_NO_PPL:
19ad203e 7947 return RWH_MULTIPLE_OFF;
4345e135 7948 case UOPT_BITMAP:
19ad203e 7949 return RWH_BITMAP;
4345e135 7950 case UOPT_NO_BITMAP:
19ad203e 7951 return RWH_OFF;
4345e135
MK
7952 default:
7953 break;
7954 }
7955 return UOPT_UNDEFINED;
19ad203e
JR
7956}
7957
a951a4f7 7958static int update_subarray_imsm(struct supertype *st, char *subarray,
03312b52 7959 enum update_opt update, struct mddev_ident *ident)
aa534678
DW
7960{
7961 /* update the subarray currently referenced by ->current_vol */
7962 struct intel_super *super = st->sb;
7963 struct imsm_super *mpb = super->anchor;
7964
03312b52 7965 if (update == UOPT_NAME) {
aa534678 7966 char *name = ident->name;
a951a4f7
N
7967 char *ep;
7968 int vol;
aa534678 7969
aa534678
DW
7970 if (!check_name(super, name, 0))
7971 return 2;
7972
a951a4f7
N
7973 vol = strtoul(subarray, &ep, 10);
7974 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7975 return 2;
7976
aa534678 7977 if (st->update_tail) {
503975b9 7978 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7979
aa534678 7980 u->type = update_rename_array;
a951a4f7 7981 u->dev_idx = vol;
618f4e6d
XN
7982 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7983 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7984 append_metadata_update(st, u, sizeof(*u));
7985 } else {
7986 struct imsm_dev *dev;
ebad3af2 7987 int i, namelen;
aa534678 7988
a951a4f7 7989 dev = get_imsm_dev(super, vol);
ebad3af2
JS
7990 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7991 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7992 memcpy(dev->volume, name, namelen);
aa534678
DW
7993 for (i = 0; i < mpb->num_raid_devs; i++) {
7994 dev = get_imsm_dev(super, i);
7995 handle_missing(super, dev);
7996 }
7997 super->updates_pending++;
7998 }
03312b52 7999 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
e6e9dd3f
AP
8000 int new_policy;
8001 char *ep;
8002 int vol = strtoul(subarray, &ep, 10);
8003
8004 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
8005 return 2;
8006
03312b52 8007 new_policy = get_rwh_policy_from_update(update);
e6e9dd3f
AP
8008
8009 if (st->update_tail) {
8010 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
8011
8012 u->type = update_rwh_policy;
8013 u->dev_idx = vol;
8014 u->new_policy = new_policy;
8015 append_metadata_update(st, u, sizeof(*u));
8016 } else {
8017 struct imsm_dev *dev;
8018
8019 dev = get_imsm_dev(super, vol);
8020 dev->rwh_policy = new_policy;
8021 super->updates_pending++;
8022 }
19ad203e
JR
8023 if (new_policy == RWH_BITMAP)
8024 return write_init_bitmap_imsm_vol(st, vol);
aa534678
DW
8025 } else
8026 return 2;
8027
8028 return 0;
8029}
bf5a934a 8030
195d1d76 8031static bool is_gen_migration(struct imsm_dev *dev)
28bce06f 8032{
195d1d76
PP
8033 if (dev && dev->vol.migr_state &&
8034 migr_type(dev) == MIGR_GEN_MIGR)
8035 return true;
28bce06f 8036
195d1d76 8037 return false;
28bce06f
AK
8038}
8039
1e5c6983
DW
8040static int is_rebuilding(struct imsm_dev *dev)
8041{
8042 struct imsm_map *migr_map;
8043
8044 if (!dev->vol.migr_state)
8045 return 0;
8046
8047 if (migr_type(dev) != MIGR_REBUILD)
8048 return 0;
8049
238c0a71 8050 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
8051
8052 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8053 return 1;
8054 else
8055 return 0;
8056}
8057
6ce1fbf1
AK
8058static int is_initializing(struct imsm_dev *dev)
8059{
8060 struct imsm_map *migr_map;
8061
8062 if (!dev->vol.migr_state)
8063 return 0;
8064
8065 if (migr_type(dev) != MIGR_INIT)
8066 return 0;
8067
238c0a71 8068 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
8069
8070 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8071 return 1;
8072
8073 return 0;
6ce1fbf1
AK
8074}
8075
c47b0ff6
AK
8076static void update_recovery_start(struct intel_super *super,
8077 struct imsm_dev *dev,
8078 struct mdinfo *array)
1e5c6983
DW
8079{
8080 struct mdinfo *rebuild = NULL;
8081 struct mdinfo *d;
8082 __u32 units;
8083
8084 if (!is_rebuilding(dev))
8085 return;
8086
8087 /* Find the rebuild target, but punt on the dual rebuild case */
8088 for (d = array->devs; d; d = d->next)
8089 if (d->recovery_start == 0) {
8090 if (rebuild)
8091 return;
8092 rebuild = d;
8093 }
8094
4363fd80
DW
8095 if (!rebuild) {
8096 /* (?) none of the disks are marked with
8097 * IMSM_ORD_REBUILD, so assume they are missing and the
8098 * disk_ord_tbl was not correctly updated
8099 */
1ade5cc1 8100 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
8101 return;
8102 }
8103
4036e7ee 8104 units = vol_curr_migr_unit(dev);
c47b0ff6 8105 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
8106}
8107
276d77db 8108static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 8109
00bbdbda 8110static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 8111{
4f5bc454
DW
8112 /* Given a container loaded by load_super_imsm_all,
8113 * extract information about all the arrays into
8114 * an mdinfo tree.
00bbdbda 8115 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
8116 *
8117 * For each imsm_dev create an mdinfo, fill it in,
8118 * then look for matching devices in super->disks
8119 * and create appropriate device mdinfo.
8120 */
8121 struct intel_super *super = st->sb;
949c47a0 8122 struct imsm_super *mpb = super->anchor;
4f5bc454 8123 struct mdinfo *rest = NULL;
00bbdbda 8124 unsigned int i;
81219e70 8125 int sb_errors = 0;
abef11a3
AK
8126 struct dl *d;
8127 int spare_disks = 0;
b6180160 8128 int current_vol = super->current_vol;
cdddbdbc 8129
19482bcc
AK
8130 /* do not assemble arrays when not all attributes are supported */
8131 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 8132 sb_errors = 1;
7a862a02 8133 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
8134 }
8135
abef11a3
AK
8136 /* count spare devices, not used in maps
8137 */
8138 for (d = super->disks; d; d = d->next)
8139 if (d->index == -1)
8140 spare_disks++;
8141
4f5bc454 8142 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
8143 struct imsm_dev *dev;
8144 struct imsm_map *map;
86e3692b 8145 struct imsm_map *map2;
4f5bc454 8146 struct mdinfo *this;
a6482415 8147 int slot;
a6482415 8148 int chunk;
00bbdbda 8149 char *ep;
8b9cd157 8150 int level;
00bbdbda
N
8151
8152 if (subarray &&
8153 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8154 continue;
8155
8156 dev = get_imsm_dev(super, i);
238c0a71
AK
8157 map = get_imsm_map(dev, MAP_0);
8158 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 8159 level = get_imsm_raid_level(map);
4f5bc454 8160
1ce0101c
DW
8161 /* do not publish arrays that are in the middle of an
8162 * unsupported migration
8163 */
8164 if (dev->vol.migr_state &&
28bce06f 8165 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 8166 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
8167 dev->volume);
8168 continue;
8169 }
2db86302
LM
8170 /* do not publish arrays that are not support by controller's
8171 * OROM/EFI
8172 */
1ce0101c 8173
503975b9 8174 this = xmalloc(sizeof(*this));
4f5bc454 8175
301406c9 8176 super->current_vol = i;
a5d85af7 8177 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 8178 this->next = rest;
a6482415 8179 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
8180 /* mdadm does not support all metadata features- set the bit in all arrays state */
8181 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
8182 level, /* RAID level */
8183 imsm_level_to_layout(level),
81219e70 8184 map->num_members, /* raid disks */
fcc2c9da 8185 &chunk, imsm_dev_size(dev),
81219e70 8186 1 /* verbose */)) {
7a862a02 8187 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
8188 dev->volume);
8189 this->array.state |=
8190 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8191 (1<<MD_SB_BLOCK_VOLUME);
8192 }
81219e70
LM
8193
8194 /* if array has bad blocks, set suitable bit in all arrays state */
8195 if (sb_errors)
8196 this->array.state |=
8197 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8198 (1<<MD_SB_BLOCK_VOLUME);
8199
4f5bc454 8200 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 8201 unsigned long long recovery_start;
4f5bc454
DW
8202 struct mdinfo *info_d;
8203 struct dl *d;
8204 int idx;
9a1608e5 8205 int skip;
7eef0453 8206 __u32 ord;
8b9cd157 8207 int missing = 0;
4f5bc454 8208
9a1608e5 8209 skip = 0;
238c0a71
AK
8210 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8211 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
8212 for (d = super->disks; d ; d = d->next)
8213 if (d->index == idx)
0fbd635c 8214 break;
4f5bc454 8215
1e5c6983 8216 recovery_start = MaxSector;
4f5bc454 8217 if (d == NULL)
9a1608e5 8218 skip = 1;
25ed7e59 8219 if (d && is_failed(&d->disk))
9a1608e5 8220 skip = 1;
8b9cd157 8221 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 8222 recovery_start = 0;
1e93d0d1
BK
8223 if (!(ord & IMSM_ORD_REBUILD))
8224 this->array.working_disks++;
1011e834 8225 /*
9a1608e5 8226 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
8227 * reset resync start to avoid a dirty-degraded
8228 * situation when performing the intial sync
9a1608e5 8229 */
8b9cd157
MK
8230 if (skip)
8231 missing++;
8232
8233 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8234 if ((!able_to_resync(level, missing) ||
8235 recovery_start == 0))
8236 this->resync_start = MaxSector;
8b9cd157
MK
8237 }
8238
9a1608e5
DW
8239 if (skip)
8240 continue;
4f5bc454 8241
503975b9 8242 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
8243 info_d->next = this->devs;
8244 this->devs = info_d;
8245
4f5bc454
DW
8246 info_d->disk.number = d->index;
8247 info_d->disk.major = d->major;
8248 info_d->disk.minor = d->minor;
8249 info_d->disk.raid_disk = slot;
1e5c6983 8250 info_d->recovery_start = recovery_start;
86e3692b
AK
8251 if (map2) {
8252 if (slot < map2->num_members)
8253 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8254 else
8255 this->array.spare_disks++;
86e3692b
AK
8256 } else {
8257 if (slot < map->num_members)
8258 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
8259 else
8260 this->array.spare_disks++;
86e3692b 8261 }
4f5bc454
DW
8262
8263 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 8264 info_d->data_offset = pba_of_lba0(map);
44490938 8265 info_d->component_size = calc_component_size(map, dev);
06fb291a
PB
8266
8267 if (map->raid_level == 5) {
2432ce9b
AP
8268 info_d->ppl_sector = this->ppl_sector;
8269 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
8270 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8271 recovery_start == 0)
8272 this->resync_start = 0;
06fb291a 8273 }
b12796be 8274
5e46202e 8275 info_d->bb.supported = 1;
b12796be
TM
8276 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8277 info_d->data_offset,
8278 info_d->component_size,
8279 &info_d->bb);
4f5bc454 8280 }
1e5c6983 8281 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 8282 update_recovery_start(super, dev, this);
abef11a3 8283 this->array.spare_disks += spare_disks;
276d77db
AK
8284
8285 /* check for reshape */
8286 if (this->reshape_active == 1)
8287 recover_backup_imsm(st, this);
9a1608e5 8288 rest = this;
4f5bc454
DW
8289 }
8290
b6180160 8291 super->current_vol = current_vol;
4f5bc454 8292 return rest;
cdddbdbc
DW
8293}
8294
3b451610
AK
8295static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8296 int failed, int look_in_map)
c2a1e7da 8297{
3b451610
AK
8298 struct imsm_map *map;
8299
8300 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
8301
8302 if (!failed)
1011e834 8303 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 8304 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
8305
8306 switch (get_imsm_raid_level(map)) {
8307 case 0:
8308 return IMSM_T_STATE_FAILED;
8309 break;
8310 case 1:
8311 if (failed < map->num_members)
8312 return IMSM_T_STATE_DEGRADED;
8313 else
8314 return IMSM_T_STATE_FAILED;
8315 break;
8316 case 10:
8317 {
8318 /**
c92a2527
DW
8319 * check to see if any mirrors have failed, otherwise we
8320 * are degraded. Even numbered slots are mirrored on
8321 * slot+1
c2a1e7da 8322 */
c2a1e7da 8323 int i;
d9b420a5
N
8324 /* gcc -Os complains that this is unused */
8325 int insync = insync;
c2a1e7da
DW
8326
8327 for (i = 0; i < map->num_members; i++) {
238c0a71 8328 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
8329 int idx = ord_to_idx(ord);
8330 struct imsm_disk *disk;
c2a1e7da 8331
c92a2527 8332 /* reset the potential in-sync count on even-numbered
1011e834 8333 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
8334 */
8335 if ((i & 1) == 0)
8336 insync = 2;
c2a1e7da 8337
c92a2527 8338 disk = get_imsm_disk(super, idx);
25ed7e59 8339 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 8340 insync--;
c2a1e7da 8341
c92a2527
DW
8342 /* no in-sync disks left in this mirror the
8343 * array has failed
8344 */
8345 if (insync == 0)
8346 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
8347 }
8348
8349 return IMSM_T_STATE_DEGRADED;
8350 }
8351 case 5:
8352 if (failed < 2)
8353 return IMSM_T_STATE_DEGRADED;
8354 else
8355 return IMSM_T_STATE_FAILED;
8356 break;
8357 default:
8358 break;
8359 }
8360
8361 return map->map_state;
8362}
8363
3b451610
AK
8364static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8365 int look_in_map)
c2a1e7da
DW
8366{
8367 int i;
8368 int failed = 0;
8369 struct imsm_disk *disk;
d5985138
AK
8370 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8371 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 8372 struct imsm_map *map_for_loop;
0556e1a2
DW
8373 __u32 ord;
8374 int idx;
d5985138 8375 int idx_1;
c2a1e7da 8376
0556e1a2
DW
8377 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8378 * disks that are being rebuilt. New failures are recorded to
8379 * map[0]. So we look through all the disks we started with and
8380 * see if any failures are still present, or if any new ones
8381 * have arrived
0556e1a2 8382 */
d5985138
AK
8383 map_for_loop = map;
8384 if (prev && (map->num_members < prev->num_members))
8385 map_for_loop = prev;
68fe4598
LD
8386
8387 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 8388 idx_1 = -255;
238c0a71
AK
8389 /* when MAP_X is passed both maps failures are counted
8390 */
d5985138 8391 if (prev &&
089f9d79
JS
8392 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8393 i < prev->num_members) {
d5985138
AK
8394 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8395 idx_1 = ord_to_idx(ord);
c2a1e7da 8396
d5985138
AK
8397 disk = get_imsm_disk(super, idx_1);
8398 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8399 failed++;
8400 }
089f9d79
JS
8401 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8402 i < map->num_members) {
d5985138
AK
8403 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8404 idx = ord_to_idx(ord);
8405
8406 if (idx != idx_1) {
8407 disk = get_imsm_disk(super, idx);
8408 if (!disk || is_failed(disk) ||
8409 ord & IMSM_ORD_REBUILD)
8410 failed++;
8411 }
8412 }
c2a1e7da
DW
8413 }
8414
8415 return failed;
845dea95
NB
8416}
8417
97b4d0e9 8418static int imsm_open_new(struct supertype *c, struct active_array *a,
60815698 8419 int inst)
97b4d0e9
DW
8420{
8421 struct intel_super *super = c->sb;
8422 struct imsm_super *mpb = super->anchor;
bbab0940 8423 struct imsm_update_prealloc_bb_mem u;
9587c373 8424
60815698
MG
8425 if (inst >= mpb->num_raid_devs) {
8426 pr_err("subarry index %d, out of range\n", inst);
97b4d0e9
DW
8427 return -ENODEV;
8428 }
8429
60815698
MG
8430 dprintf("imsm: open_new %d\n", inst);
8431 a->info.container_member = inst;
bbab0940
TM
8432
8433 u.type = update_prealloc_badblocks_mem;
8434 imsm_update_metadata_locally(c, &u, sizeof(u));
8435
97b4d0e9
DW
8436 return 0;
8437}
8438
0c046afd
DW
8439static int is_resyncing(struct imsm_dev *dev)
8440{
8441 struct imsm_map *migr_map;
8442
8443 if (!dev->vol.migr_state)
8444 return 0;
8445
1484e727
DW
8446 if (migr_type(dev) == MIGR_INIT ||
8447 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8448 return 1;
8449
4c9bc37b
AK
8450 if (migr_type(dev) == MIGR_GEN_MIGR)
8451 return 0;
8452
238c0a71 8453 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8454
089f9d79
JS
8455 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8456 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8457 return 1;
8458 else
8459 return 0;
8460}
8461
0556e1a2 8462/* return true if we recorded new information */
4c9e8c1e
TM
8463static int mark_failure(struct intel_super *super,
8464 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8465{
0556e1a2
DW
8466 __u32 ord;
8467 int slot;
8468 struct imsm_map *map;
86c54047
DW
8469 char buf[MAX_RAID_SERIAL_LEN+3];
8470 unsigned int len, shift = 0;
0556e1a2
DW
8471
8472 /* new failures are always set in map[0] */
238c0a71 8473 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8474
8475 slot = get_imsm_disk_slot(map, idx);
8476 if (slot < 0)
8477 return 0;
8478
8479 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8480 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8481 return 0;
8482
7d0c5e24
LD
8483 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8484 buf[MAX_RAID_SERIAL_LEN] = '\000';
8485 strcat(buf, ":0");
86c54047
DW
8486 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8487 shift = len - MAX_RAID_SERIAL_LEN + 1;
167d8bb8 8488 memcpy(disk->serial, &buf[shift], len + 1 - shift);
86c54047 8489
f2f27e63 8490 disk->status |= FAILED_DISK;
0556e1a2 8491 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8492 /* mark failures in second map if second map exists and this disk
8493 * in this slot.
8494 * This is valid for migration, initialization and rebuild
8495 */
8496 if (dev->vol.migr_state) {
238c0a71 8497 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8498 int slot2 = get_imsm_disk_slot(map2, idx);
8499
089f9d79 8500 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8501 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8502 idx | IMSM_ORD_REBUILD);
8503 }
d7a1fda2
MT
8504 if (map->failed_disk_num == 0xff ||
8505 (!is_rebuilding(dev) && map->failed_disk_num > slot))
0556e1a2 8506 map->failed_disk_num = slot;
4c9e8c1e
TM
8507
8508 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8509
0556e1a2
DW
8510 return 1;
8511}
8512
4c9e8c1e
TM
8513static void mark_missing(struct intel_super *super,
8514 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8515{
4c9e8c1e 8516 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8517
8518 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8519 return;
8520
47ee5a45
DW
8521 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8522 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8523}
8524
33414a01
DW
8525static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8526{
33414a01 8527 struct dl *dl;
33414a01
DW
8528
8529 if (!super->missing)
8530 return;
33414a01 8531
79b68f1b
PC
8532 /* When orom adds replacement for missing disk it does
8533 * not remove entry of missing disk, but just updates map with
8534 * new added disk. So it is not enough just to test if there is
8535 * any missing disk, we have to look if there are any failed disks
8536 * in map to stop migration */
8537
33414a01 8538 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8539 /* end process for initialization and rebuild only
8540 */
195d1d76 8541 if (is_gen_migration(dev) == false) {
fb12a745 8542 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8543
fb12a745
TM
8544 if (failed) {
8545 __u8 map_state;
8546 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8547 struct imsm_map *map1;
8548 int i, ord, ord_map1;
8549 int rebuilt = 1;
3d59f0c0 8550
fb12a745
TM
8551 for (i = 0; i < map->num_members; i++) {
8552 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8553 if (!(ord & IMSM_ORD_REBUILD))
8554 continue;
8555
8556 map1 = get_imsm_map(dev, MAP_1);
8557 if (!map1)
8558 continue;
8559
8560 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8561 if (ord_map1 & IMSM_ORD_REBUILD)
8562 rebuilt = 0;
8563 }
8564
8565 if (rebuilt) {
8566 map_state = imsm_check_degraded(super, dev,
8567 failed, MAP_0);
8568 end_migration(dev, super, map_state);
8569 }
8570 }
3d59f0c0 8571 }
33414a01 8572 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8573 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8574 super->updates_pending++;
8575}
8576
f3871fdc
AK
8577static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8578 long long new_size)
70bdf0dc 8579{
70bdf0dc 8580 unsigned long long array_blocks;
9529d343
MD
8581 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8582 int used_disks = imsm_num_data_members(map);
70bdf0dc
AK
8583
8584 if (used_disks == 0) {
8585 /* when problems occures
8586 * return current array_blocks value
8587 */
fcc2c9da 8588 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8589
8590 return array_blocks;
8591 }
8592
8593 /* set array size in metadata
8594 */
9529d343 8595 if (new_size <= 0)
f3871fdc
AK
8596 /* OLCE size change is caused by added disks
8597 */
44490938 8598 array_blocks = per_dev_array_size(map) * used_disks;
9529d343 8599 else
f3871fdc
AK
8600 /* Online Volume Size Change
8601 * Using available free space
8602 */
8603 array_blocks = new_size;
70bdf0dc 8604
b53bfba6 8605 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8606 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8607
8608 return array_blocks;
8609}
8610
28bce06f
AK
8611static void imsm_set_disk(struct active_array *a, int n, int state);
8612
0e2d1a4e
AK
8613static void imsm_progress_container_reshape(struct intel_super *super)
8614{
8615 /* if no device has a migr_state, but some device has a
8616 * different number of members than the previous device, start
8617 * changing the number of devices in this device to match
8618 * previous.
8619 */
8620 struct imsm_super *mpb = super->anchor;
8621 int prev_disks = -1;
8622 int i;
1dfaa380 8623 int copy_map_size;
0e2d1a4e
AK
8624
8625 for (i = 0; i < mpb->num_raid_devs; i++) {
8626 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8627 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8628 struct imsm_map *map2;
8629 int prev_num_members;
0e2d1a4e
AK
8630
8631 if (dev->vol.migr_state)
8632 return;
8633
8634 if (prev_disks == -1)
8635 prev_disks = map->num_members;
8636 if (prev_disks == map->num_members)
8637 continue;
8638
8639 /* OK, this array needs to enter reshape mode.
8640 * i.e it needs a migr_state
8641 */
8642
1dfaa380 8643 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8644 prev_num_members = map->num_members;
8645 map->num_members = prev_disks;
8646 dev->vol.migr_state = 1;
4036e7ee 8647 set_vol_curr_migr_unit(dev, 0);
ea672ee1 8648 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8649 for (i = prev_num_members;
8650 i < map->num_members; i++)
8651 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8652 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8653 /* Copy the current map */
1dfaa380 8654 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8655 map2->num_members = prev_num_members;
8656
f3871fdc 8657 imsm_set_array_size(dev, -1);
51d83f5d 8658 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8659 super->updates_pending++;
8660 }
8661}
8662
aad6f216 8663/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8664 * states are handled in imsm_set_disk() with one exception, when a
8665 * resync is stopped due to a new failure this routine will set the
8666 * 'degraded' state for the array.
8667 */
01f157d7 8668static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8669{
8670 int inst = a->info.container_member;
8671 struct intel_super *super = a->container->sb;
949c47a0 8672 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8673 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8674 int failed = imsm_count_failed(super, dev, MAP_0);
8675 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8676 __u32 blocks_per_unit;
a862209d 8677
1af97990
AK
8678 if (dev->vol.migr_state &&
8679 dev->vol.migr_type == MIGR_GEN_MIGR) {
8680 /* array state change is blocked due to reshape action
aad6f216
N
8681 * We might need to
8682 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8683 * - finish the reshape (if last_checkpoint is big and action != reshape)
4036e7ee 8684 * - update vol_curr_migr_unit
1af97990 8685 */
aad6f216 8686 if (a->curr_action == reshape) {
4036e7ee 8687 /* still reshaping, maybe update vol_curr_migr_unit */
633b5610 8688 goto mark_checkpoint;
aad6f216
N
8689 } else {
8690 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8691 /* for some reason we aborted the reshape.
b66e591b
AK
8692 *
8693 * disable automatic metadata rollback
8694 * user action is required to recover process
aad6f216 8695 */
b66e591b 8696 if (0) {
238c0a71
AK
8697 struct imsm_map *map2 =
8698 get_imsm_map(dev, MAP_1);
8699 dev->vol.migr_state = 0;
8700 set_migr_type(dev, 0);
4036e7ee 8701 set_vol_curr_migr_unit(dev, 0);
238c0a71
AK
8702 memcpy(map, map2,
8703 sizeof_imsm_map(map2));
8704 super->updates_pending++;
b66e591b 8705 }
aad6f216
N
8706 }
8707 if (a->last_checkpoint >= a->info.component_size) {
8708 unsigned long long array_blocks;
8709 int used_disks;
e154ced3 8710 struct mdinfo *mdi;
aad6f216 8711
9529d343 8712 used_disks = imsm_num_data_members(map);
d55adef9
AK
8713 if (used_disks > 0) {
8714 array_blocks =
44490938 8715 per_dev_array_size(map) *
d55adef9 8716 used_disks;
b53bfba6
TM
8717 array_blocks =
8718 round_size_to_mb(array_blocks,
8719 used_disks);
d55adef9
AK
8720 a->info.custom_array_size = array_blocks;
8721 /* encourage manager to update array
8722 * size
8723 */
e154ced3 8724
d55adef9 8725 a->check_reshape = 1;
633b5610 8726 }
e154ced3
AK
8727 /* finalize online capacity expansion/reshape */
8728 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8729 imsm_set_disk(a,
8730 mdi->disk.raid_disk,
8731 mdi->curr_state);
8732
0e2d1a4e 8733 imsm_progress_container_reshape(super);
e154ced3 8734 }
aad6f216 8735 }
1af97990
AK
8736 }
8737
47ee5a45 8738 /* before we activate this array handle any missing disks */
33414a01
DW
8739 if (consistent == 2)
8740 handle_missing(super, dev);
1e5c6983 8741
0c046afd 8742 if (consistent == 2 &&
b7941fd6 8743 (!is_resync_complete(&a->info) ||
0c046afd
DW
8744 map_state != IMSM_T_STATE_NORMAL ||
8745 dev->vol.migr_state))
01f157d7 8746 consistent = 0;
272906ef 8747
b7941fd6 8748 if (is_resync_complete(&a->info)) {
0c046afd 8749 /* complete intialization / resync,
0556e1a2
DW
8750 * recovery and interrupted recovery is completed in
8751 * ->set_disk
0c046afd
DW
8752 */
8753 if (is_resyncing(dev)) {
8754 dprintf("imsm: mark resync done\n");
809da78e 8755 end_migration(dev, super, map_state);
115c3803 8756 super->updates_pending++;
484240d8 8757 a->last_checkpoint = 0;
115c3803 8758 }
b9172665
AK
8759 } else if ((!is_resyncing(dev) && !failed) &&
8760 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8761 /* mark the start of the init process if nothing is failed */
b7941fd6 8762 dprintf("imsm: mark resync start\n");
1484e727 8763 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8764 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8765 else
8e59f3d8 8766 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8767 super->updates_pending++;
115c3803 8768 }
a862209d 8769
633b5610 8770mark_checkpoint:
5b83bacf
AK
8771 /* skip checkpointing for general migration,
8772 * it is controlled in mdadm
8773 */
8774 if (is_gen_migration(dev))
8775 goto skip_mark_checkpoint;
8776
4036e7ee
MT
8777 /* check if we can update vol_curr_migr_unit from resync_start,
8778 * recovery_start
8779 */
c47b0ff6 8780 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8781 if (blocks_per_unit) {
4036e7ee
MT
8782 set_vol_curr_migr_unit(dev,
8783 a->last_checkpoint / blocks_per_unit);
8784 dprintf("imsm: mark checkpoint (%llu)\n",
8785 vol_curr_migr_unit(dev));
8786 super->updates_pending++;
1e5c6983 8787 }
f8f603f1 8788
5b83bacf 8789skip_mark_checkpoint:
3393c6af 8790 /* mark dirty / clean */
2432ce9b
AP
8791 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8792 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8793 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8794 if (consistent) {
8795 dev->vol.dirty = RAIDVOL_CLEAN;
8796 } else {
8797 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8798 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8799 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8800 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8801 }
a862209d
DW
8802 super->updates_pending++;
8803 }
28bce06f 8804
01f157d7 8805 return consistent;
a862209d
DW
8806}
8807
6f50473f
TM
8808static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8809{
8810 int inst = a->info.container_member;
8811 struct intel_super *super = a->container->sb;
8812 struct imsm_dev *dev = get_imsm_dev(super, inst);
8813 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8814
8815 if (slot > map->num_members) {
8816 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8817 slot, map->num_members - 1);
8818 return -1;
8819 }
8820
8821 if (slot < 0)
8822 return -1;
8823
8824 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8825}
8826
8d45d196 8827static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8828{
8d45d196
DW
8829 int inst = a->info.container_member;
8830 struct intel_super *super = a->container->sb;
949c47a0 8831 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8832 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8833 struct imsm_disk *disk;
7ce05701
LD
8834 struct mdinfo *mdi;
8835 int recovery_not_finished = 0;
0c046afd 8836 int failed;
6f50473f 8837 int ord;
0c046afd 8838 __u8 map_state;
fb12a745
TM
8839 int rebuild_done = 0;
8840 int i;
8d45d196 8841
fb12a745 8842 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8843 if (ord < 0)
8d45d196
DW
8844 return;
8845
4e6e574a 8846 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8847 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8848
5802a811 8849 /* check for new failures */
ae7d61e3 8850 if (disk && (state & DS_FAULTY)) {
4c9e8c1e 8851 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8852 super->updates_pending++;
8d45d196 8853 }
47ee5a45 8854
19859edc 8855 /* check if in_sync */
0556e1a2 8856 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8857 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8858
8859 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8860 rebuild_done = 1;
19859edc
DW
8861 super->updates_pending++;
8862 }
8d45d196 8863
3b451610
AK
8864 failed = imsm_count_failed(super, dev, MAP_0);
8865 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8866
0c046afd 8867 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8868 dprintf("imsm: Detected transition to state ");
8869 switch (map_state) {
8870 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8871 dprintf("normal: ");
8872 if (is_rebuilding(dev)) {
1ade5cc1 8873 dprintf_cont("while rebuilding");
7ce05701
LD
8874 /* check if recovery is really finished */
8875 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8876 if (mdi->recovery_start != MaxSector) {
8877 recovery_not_finished = 1;
8878 break;
8879 }
8880 if (recovery_not_finished) {
1ade5cc1
N
8881 dprintf_cont("\n");
8882 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8883 if (a->last_checkpoint < mdi->recovery_start) {
8884 a->last_checkpoint = mdi->recovery_start;
8885 super->updates_pending++;
8886 }
8887 break;
8888 }
94002678 8889 end_migration(dev, super, map_state);
94002678
AK
8890 map->failed_disk_num = ~0;
8891 super->updates_pending++;
8892 a->last_checkpoint = 0;
8893 break;
8894 }
8895 if (is_gen_migration(dev)) {
1ade5cc1 8896 dprintf_cont("while general migration");
bf2f0071 8897 if (a->last_checkpoint >= a->info.component_size)
809da78e 8898 end_migration(dev, super, map_state);
94002678
AK
8899 else
8900 map->map_state = map_state;
28bce06f 8901 map->failed_disk_num = ~0;
94002678 8902 super->updates_pending++;
bf2f0071 8903 break;
94002678
AK
8904 }
8905 break;
8906 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8907 dprintf_cont("degraded: ");
089f9d79 8908 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8909 dprintf_cont("mark degraded");
94002678
AK
8910 map->map_state = map_state;
8911 super->updates_pending++;
8912 a->last_checkpoint = 0;
8913 break;
8914 }
8915 if (is_rebuilding(dev)) {
d7a1fda2 8916 dprintf_cont("while rebuilding ");
a4e96fd8
MT
8917 if (state & DS_FAULTY) {
8918 dprintf_cont("removing failed drive ");
d7a1fda2
MT
8919 if (n == map->failed_disk_num) {
8920 dprintf_cont("end migration");
8921 end_migration(dev, super, map_state);
a4e96fd8 8922 a->last_checkpoint = 0;
d7a1fda2 8923 } else {
a4e96fd8 8924 dprintf_cont("fail detected during rebuild, changing map state");
d7a1fda2
MT
8925 map->map_state = map_state;
8926 }
94002678 8927 super->updates_pending++;
fb12a745
TM
8928 }
8929
a4e96fd8
MT
8930 if (!rebuild_done)
8931 break;
8932
fb12a745
TM
8933 /* check if recovery is really finished */
8934 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8935 if (mdi->recovery_start != MaxSector) {
8936 recovery_not_finished = 1;
8937 break;
8938 }
8939 if (recovery_not_finished) {
8940 dprintf_cont("\n");
a4e96fd8 8941 dprintf_cont("Rebuild has not finished yet");
fb12a745
TM
8942 if (a->last_checkpoint < mdi->recovery_start) {
8943 a->last_checkpoint =
8944 mdi->recovery_start;
8945 super->updates_pending++;
8946 }
8947 break;
94002678 8948 }
fb12a745
TM
8949
8950 dprintf_cont(" Rebuild done, still degraded");
a4e96fd8
MT
8951 end_migration(dev, super, map_state);
8952 a->last_checkpoint = 0;
8953 super->updates_pending++;
fb12a745
TM
8954
8955 for (i = 0; i < map->num_members; i++) {
8956 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8957
8958 if (idx & IMSM_ORD_REBUILD)
8959 map->failed_disk_num = i;
8960 }
8961 super->updates_pending++;
94002678
AK
8962 break;
8963 }
8964 if (is_gen_migration(dev)) {
1ade5cc1 8965 dprintf_cont("while general migration");
bf2f0071 8966 if (a->last_checkpoint >= a->info.component_size)
809da78e 8967 end_migration(dev, super, map_state);
94002678
AK
8968 else {
8969 map->map_state = map_state;
3b451610 8970 manage_second_map(super, dev);
94002678
AK
8971 }
8972 super->updates_pending++;
bf2f0071 8973 break;
28bce06f 8974 }
6ce1fbf1 8975 if (is_initializing(dev)) {
1ade5cc1 8976 dprintf_cont("while initialization.");
6ce1fbf1
AK
8977 map->map_state = map_state;
8978 super->updates_pending++;
8979 break;
8980 }
94002678
AK
8981 break;
8982 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8983 dprintf_cont("failed: ");
94002678 8984 if (is_gen_migration(dev)) {
1ade5cc1 8985 dprintf_cont("while general migration");
94002678
AK
8986 map->map_state = map_state;
8987 super->updates_pending++;
8988 break;
8989 }
8990 if (map->map_state != map_state) {
1ade5cc1 8991 dprintf_cont("mark failed");
94002678
AK
8992 end_migration(dev, super, map_state);
8993 super->updates_pending++;
8994 a->last_checkpoint = 0;
8995 break;
8996 }
8997 break;
8998 default:
1ade5cc1 8999 dprintf_cont("state %i\n", map_state);
5802a811 9000 }
1ade5cc1 9001 dprintf_cont("\n");
845dea95
NB
9002}
9003
f796af5d 9004static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 9005{
f796af5d 9006 void *buf = mpb;
c2a1e7da
DW
9007 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
9008 unsigned long long dsize;
9009 unsigned long long sectors;
f36a9ecd 9010 unsigned int sector_size;
c2a1e7da 9011
aec01630
JS
9012 if (!get_dev_sector_size(fd, NULL, &sector_size))
9013 return 1;
c2a1e7da
DW
9014 get_dev_size(fd, NULL, &dsize);
9015
f36a9ecd 9016 if (mpb_size > sector_size) {
272f648f 9017 /* -1 to account for anchor */
f36a9ecd 9018 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 9019
272f648f 9020 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
9021 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
9022 SEEK_SET) < 0)
272f648f 9023 return 1;
c2a1e7da 9024
f36a9ecd
PB
9025 if ((unsigned long long)write(fd, buf + sector_size,
9026 sector_size * sectors) != sector_size * sectors)
272f648f
DW
9027 return 1;
9028 }
c2a1e7da 9029
272f648f 9030 /* first block is stored on second to last sector of the disk */
f36a9ecd 9031 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
9032 return 1;
9033
466070ad 9034 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
9035 return 1;
9036
c2a1e7da
DW
9037 return 0;
9038}
9039
2e735d19 9040static void imsm_sync_metadata(struct supertype *container)
845dea95 9041{
2e735d19 9042 struct intel_super *super = container->sb;
c2a1e7da 9043
1a64be56 9044 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
9045 if (!super->updates_pending)
9046 return;
9047
36988a3d 9048 write_super_imsm(container, 0);
c2a1e7da
DW
9049
9050 super->updates_pending = 0;
845dea95
NB
9051}
9052
272906ef
DW
9053static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9054{
9055 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9056 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
9057 struct dl *dl;
9058
9059 for (dl = super->disks; dl; dl = dl->next)
9060 if (dl->index == i)
9061 break;
9062
25ed7e59 9063 if (dl && is_failed(&dl->disk))
272906ef
DW
9064 dl = NULL;
9065
9066 if (dl)
1ade5cc1 9067 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
9068
9069 return dl;
9070}
9071
a20d2ba5 9072static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
9073 struct active_array *a, int activate_new,
9074 struct mdinfo *additional_test_list)
272906ef
DW
9075{
9076 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9077 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
9078 struct imsm_super *mpb = super->anchor;
9079 struct imsm_map *map;
272906ef
DW
9080 unsigned long long pos;
9081 struct mdinfo *d;
9082 struct extent *ex;
a20d2ba5 9083 int i, j;
272906ef 9084 int found;
569cc43f
DW
9085 __u32 array_start = 0;
9086 __u32 array_end = 0;
272906ef 9087 struct dl *dl;
6c932028 9088 struct mdinfo *test_list;
272906ef
DW
9089
9090 for (dl = super->disks; dl; dl = dl->next) {
9091 /* If in this array, skip */
9092 for (d = a->info.devs ; d ; d = d->next)
4389ce73 9093 if (is_fd_valid(d->state_fd) &&
e553d2a4 9094 d->disk.major == dl->major &&
272906ef 9095 d->disk.minor == dl->minor) {
8ba77d32
AK
9096 dprintf("%x:%x already in array\n",
9097 dl->major, dl->minor);
272906ef
DW
9098 break;
9099 }
9100 if (d)
9101 continue;
6c932028
AK
9102 test_list = additional_test_list;
9103 while (test_list) {
9104 if (test_list->disk.major == dl->major &&
9105 test_list->disk.minor == dl->minor) {
8ba77d32
AK
9106 dprintf("%x:%x already in additional test list\n",
9107 dl->major, dl->minor);
9108 break;
9109 }
6c932028 9110 test_list = test_list->next;
8ba77d32 9111 }
6c932028 9112 if (test_list)
8ba77d32 9113 continue;
272906ef 9114
e553d2a4 9115 /* skip in use or failed drives */
25ed7e59 9116 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
9117 dl->index == -2) {
9118 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 9119 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
9120 continue;
9121 }
9122
a20d2ba5
DW
9123 /* skip pure spares when we are looking for partially
9124 * assimilated drives
9125 */
9126 if (dl->index == -1 && !activate_new)
9127 continue;
9128
f2cc4f7d
AO
9129 if (!drive_validate_sector_size(super, dl))
9130 continue;
9131
272906ef 9132 /* Does this unused device have the requisite free space?
a20d2ba5 9133 * It needs to be able to cover all member volumes
272906ef 9134 */
05501181 9135 ex = get_extents(super, dl, 1);
272906ef
DW
9136 if (!ex) {
9137 dprintf("cannot get extents\n");
9138 continue;
9139 }
a20d2ba5
DW
9140 for (i = 0; i < mpb->num_raid_devs; i++) {
9141 dev = get_imsm_dev(super, i);
238c0a71 9142 map = get_imsm_map(dev, MAP_0);
272906ef 9143
a20d2ba5
DW
9144 /* check if this disk is already a member of
9145 * this array
272906ef 9146 */
620b1713 9147 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
9148 continue;
9149
9150 found = 0;
9151 j = 0;
9152 pos = 0;
5551b113 9153 array_start = pba_of_lba0(map);
329c8278 9154 array_end = array_start +
44490938 9155 per_dev_array_size(map) - 1;
a20d2ba5
DW
9156
9157 do {
9158 /* check that we can start at pba_of_lba0 with
44490938 9159 * num_data_stripes*blocks_per_stripe of space
a20d2ba5 9160 */
329c8278 9161 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
9162 found = 1;
9163 break;
9164 }
9165 pos = ex[j].start + ex[j].size;
9166 j++;
9167 } while (ex[j-1].size);
9168
9169 if (!found)
272906ef 9170 break;
a20d2ba5 9171 }
272906ef
DW
9172
9173 free(ex);
a20d2ba5 9174 if (i < mpb->num_raid_devs) {
329c8278
DW
9175 dprintf("%x:%x does not have %u to %u available\n",
9176 dl->major, dl->minor, array_start, array_end);
272906ef
DW
9177 /* No room */
9178 continue;
a20d2ba5
DW
9179 }
9180 return dl;
272906ef
DW
9181 }
9182
9183 return dl;
9184}
9185
95d07a2c
LM
9186static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9187{
9188 struct imsm_dev *dev2;
9189 struct imsm_map *map;
9190 struct dl *idisk;
9191 int slot;
9192 int idx;
9193 __u8 state;
9194
9195 dev2 = get_imsm_dev(cont->sb, dev_idx);
756a15f3
MG
9196
9197 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9198 if (state == IMSM_T_STATE_FAILED) {
9199 map = get_imsm_map(dev2, MAP_0);
9200 for (slot = 0; slot < map->num_members; slot++) {
9201 /*
9202 * Check if failed disks are deleted from intel
9203 * disk list or are marked to be deleted
9204 */
9205 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9206 idisk = get_imsm_dl_disk(cont->sb, idx);
9207 /*
9208 * Do not rebuild the array if failed disks
9209 * from failed sub-array are not removed from
9210 * container.
9211 */
9212 if (idisk &&
9213 is_failed(&idisk->disk) &&
9214 (idisk->action != DISK_REMOVE))
9215 return 0;
95d07a2c
LM
9216 }
9217 }
9218 return 1;
9219}
9220
88758e9d
DW
9221static struct mdinfo *imsm_activate_spare(struct active_array *a,
9222 struct metadata_update **updates)
9223{
9224 /**
d23fe947
DW
9225 * Find a device with unused free space and use it to replace a
9226 * failed/vacant region in an array. We replace failed regions one a
9227 * array at a time. The result is that a new spare disk will be added
9228 * to the first failed array and after the monitor has finished
9229 * propagating failures the remainder will be consumed.
88758e9d 9230 *
d23fe947
DW
9231 * FIXME add a capability for mdmon to request spares from another
9232 * container.
88758e9d
DW
9233 */
9234
9235 struct intel_super *super = a->container->sb;
88758e9d 9236 int inst = a->info.container_member;
949c47a0 9237 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 9238 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
9239 int failed = a->info.array.raid_disks;
9240 struct mdinfo *rv = NULL;
9241 struct mdinfo *d;
9242 struct mdinfo *di;
9243 struct metadata_update *mu;
9244 struct dl *dl;
9245 struct imsm_update_activate_spare *u;
9246 int num_spares = 0;
9247 int i;
95d07a2c 9248 int allowed;
88758e9d 9249
4389ce73
MT
9250 for (d = a->info.devs ; d; d = d->next) {
9251 if (!is_fd_valid(d->state_fd))
9252 continue;
9253
9254 if (d->curr_state & DS_FAULTY)
88758e9d
DW
9255 /* wait for Removal to happen */
9256 return NULL;
4389ce73
MT
9257
9258 failed--;
88758e9d
DW
9259 }
9260
9261 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9262 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 9263
e2962bfc
AK
9264 if (imsm_reshape_blocks_arrays_changes(super))
9265 return NULL;
1af97990 9266
fc8ca064
AK
9267 /* Cannot activate another spare if rebuild is in progress already
9268 */
9269 if (is_rebuilding(dev)) {
7a862a02 9270 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
9271 return NULL;
9272 }
9273
89c67882
AK
9274 if (a->info.array.level == 4)
9275 /* No repair for takeovered array
9276 * imsm doesn't support raid4
9277 */
9278 return NULL;
9279
3b451610
AK
9280 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9281 IMSM_T_STATE_DEGRADED)
88758e9d
DW
9282 return NULL;
9283
83ca7d45
AP
9284 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9285 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9286 return NULL;
9287 }
9288
95d07a2c
LM
9289 /*
9290 * If there are any failed disks check state of the other volume.
9291 * Block rebuild if the another one is failed until failed disks
9292 * are removed from container.
9293 */
9294 if (failed) {
7a862a02 9295 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 9296 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
9297 /* check if states of the other volumes allow for rebuild */
9298 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9299 if (i != inst) {
9300 allowed = imsm_rebuild_allowed(a->container,
9301 i, failed);
9302 if (!allowed)
9303 return NULL;
9304 }
9305 }
9306 }
9307
88758e9d 9308 /* For each slot, if it is not working, find a spare */
88758e9d
DW
9309 for (i = 0; i < a->info.array.raid_disks; i++) {
9310 for (d = a->info.devs ; d ; d = d->next)
9311 if (d->disk.raid_disk == i)
9312 break;
9313 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4389ce73 9314 if (d && is_fd_valid(d->state_fd))
88758e9d
DW
9315 continue;
9316
272906ef 9317 /*
a20d2ba5
DW
9318 * OK, this device needs recovery. Try to re-add the
9319 * previous occupant of this slot, if this fails see if
9320 * we can continue the assimilation of a spare that was
9321 * partially assimilated, finally try to activate a new
9322 * spare.
272906ef
DW
9323 */
9324 dl = imsm_readd(super, i, a);
9325 if (!dl)
b303fe21 9326 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 9327 if (!dl)
b303fe21 9328 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
9329 if (!dl)
9330 continue;
1011e834 9331
272906ef 9332 /* found a usable disk with enough space */
503975b9 9333 di = xcalloc(1, sizeof(*di));
272906ef
DW
9334
9335 /* dl->index will be -1 in the case we are activating a
9336 * pristine spare. imsm_process_update() will create a
9337 * new index in this case. Once a disk is found to be
9338 * failed in all member arrays it is kicked from the
9339 * metadata
9340 */
9341 di->disk.number = dl->index;
d23fe947 9342
272906ef
DW
9343 /* (ab)use di->devs to store a pointer to the device
9344 * we chose
9345 */
9346 di->devs = (struct mdinfo *) dl;
9347
9348 di->disk.raid_disk = i;
9349 di->disk.major = dl->major;
9350 di->disk.minor = dl->minor;
9351 di->disk.state = 0;
d23534e4 9352 di->recovery_start = 0;
5551b113 9353 di->data_offset = pba_of_lba0(map);
272906ef
DW
9354 di->component_size = a->info.component_size;
9355 di->container_member = inst;
5e46202e 9356 di->bb.supported = 1;
2c8890e9 9357 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 9358 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 9359 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 9360 }
148acb7b 9361 super->random = random32();
272906ef
DW
9362 di->next = rv;
9363 rv = di;
9364 num_spares++;
9365 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9366 i, di->data_offset);
88758e9d
DW
9367 }
9368
9369 if (!rv)
9370 /* No spares found */
9371 return rv;
9372 /* Now 'rv' has a list of devices to return.
9373 * Create a metadata_update record to update the
9374 * disk_ord_tbl for the array
9375 */
503975b9 9376 mu = xmalloc(sizeof(*mu));
1011e834 9377 mu->buf = xcalloc(num_spares,
503975b9 9378 sizeof(struct imsm_update_activate_spare));
88758e9d 9379 mu->space = NULL;
cb23f1f4 9380 mu->space_list = NULL;
88758e9d
DW
9381 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9382 mu->next = *updates;
9383 u = (struct imsm_update_activate_spare *) mu->buf;
9384
9385 for (di = rv ; di ; di = di->next) {
9386 u->type = update_activate_spare;
d23fe947
DW
9387 u->dl = (struct dl *) di->devs;
9388 di->devs = NULL;
88758e9d
DW
9389 u->slot = di->disk.raid_disk;
9390 u->array = inst;
9391 u->next = u + 1;
9392 u++;
9393 }
9394 (u-1)->next = NULL;
9395 *updates = mu;
9396
9397 return rv;
9398}
9399
54c2c1ea 9400static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 9401{
54c2c1ea 9402 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
9403 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9404 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
9405 struct disk_info *inf = get_disk_info(u);
9406 struct imsm_disk *disk;
8273f55e
DW
9407 int i;
9408 int j;
8273f55e 9409
54c2c1ea 9410 for (i = 0; i < map->num_members; i++) {
238c0a71 9411 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
9412 for (j = 0; j < new_map->num_members; j++)
9413 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
9414 return 1;
9415 }
9416
9417 return 0;
9418}
9419
1a64be56
LM
9420static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9421{
594dc1b8
JS
9422 struct dl *dl;
9423
1a64be56 9424 for (dl = super->disks; dl; dl = dl->next)
089f9d79 9425 if (dl->major == major && dl->minor == minor)
1a64be56
LM
9426 return dl;
9427 return NULL;
9428}
9429
9430static int remove_disk_super(struct intel_super *super, int major, int minor)
9431{
594dc1b8 9432 struct dl *prev;
1a64be56
LM
9433 struct dl *dl;
9434
9435 prev = NULL;
9436 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9437 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9438 /* remove */
9439 if (prev)
9440 prev->next = dl->next;
9441 else
9442 super->disks = dl->next;
9443 dl->next = NULL;
3a85bf0e 9444 __free_imsm_disk(dl, 1);
1ade5cc1 9445 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9446 break;
9447 }
9448 prev = dl;
9449 }
9450 return 0;
9451}
9452
f21e18ca 9453static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9454
1a64be56
LM
9455static int add_remove_disk_update(struct intel_super *super)
9456{
9457 int check_degraded = 0;
594dc1b8
JS
9458 struct dl *disk;
9459
1a64be56
LM
9460 /* add/remove some spares to/from the metadata/contrainer */
9461 while (super->disk_mgmt_list) {
9462 struct dl *disk_cfg;
9463
9464 disk_cfg = super->disk_mgmt_list;
9465 super->disk_mgmt_list = disk_cfg->next;
9466 disk_cfg->next = NULL;
9467
9468 if (disk_cfg->action == DISK_ADD) {
9469 disk_cfg->next = super->disks;
9470 super->disks = disk_cfg;
9471 check_degraded = 1;
1ade5cc1
N
9472 dprintf("added %x:%x\n",
9473 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9474 } else if (disk_cfg->action == DISK_REMOVE) {
9475 dprintf("Disk remove action processed: %x.%x\n",
9476 disk_cfg->major, disk_cfg->minor);
9477 disk = get_disk_super(super,
9478 disk_cfg->major,
9479 disk_cfg->minor);
9480 if (disk) {
9481 /* store action status */
9482 disk->action = DISK_REMOVE;
9483 /* remove spare disks only */
9484 if (disk->index == -1) {
9485 remove_disk_super(super,
9486 disk_cfg->major,
9487 disk_cfg->minor);
91c97c54
MT
9488 } else {
9489 disk_cfg->fd = disk->fd;
9490 disk->fd = -1;
1a64be56
LM
9491 }
9492 }
9493 /* release allocate disk structure */
3a85bf0e 9494 __free_imsm_disk(disk_cfg, 1);
1a64be56
LM
9495 }
9496 }
9497 return check_degraded;
9498}
9499
a29911da
PC
9500static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9501 struct intel_super *super,
9502 void ***space_list)
9503{
9504 struct intel_dev *id;
9505 void **tofree = NULL;
9506 int ret_val = 0;
9507
1ade5cc1 9508 dprintf("(enter)\n");
089f9d79 9509 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9510 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9511 return ret_val;
9512 }
089f9d79 9513 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9514 dprintf("imsm: Error: Memory is not allocated\n");
9515 return ret_val;
9516 }
9517
9518 for (id = super->devlist ; id; id = id->next) {
9519 if (id->index == (unsigned)u->subdev) {
9520 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9521 struct imsm_map *map;
9522 struct imsm_dev *new_dev =
9523 (struct imsm_dev *)*space_list;
238c0a71 9524 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9525 int to_state;
9526 struct dl *new_disk;
9527
9528 if (new_dev == NULL)
9529 return ret_val;
9530 *space_list = **space_list;
9531 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9532 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9533 if (migr_map) {
9534 dprintf("imsm: Error: migration in progress");
9535 return ret_val;
9536 }
9537
9538 to_state = map->map_state;
9539 if ((u->new_level == 5) && (map->raid_level == 0)) {
9540 map->num_members++;
9541 /* this should not happen */
9542 if (u->new_disks[0] < 0) {
9543 map->failed_disk_num =
9544 map->num_members - 1;
9545 to_state = IMSM_T_STATE_DEGRADED;
9546 } else
9547 to_state = IMSM_T_STATE_NORMAL;
9548 }
8e59f3d8 9549 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9550 if (u->new_level > -1)
9551 map->raid_level = u->new_level;
238c0a71 9552 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9553 if ((u->new_level == 5) &&
9554 (migr_map->raid_level == 0)) {
9555 int ord = map->num_members - 1;
9556 migr_map->num_members--;
9557 if (u->new_disks[0] < 0)
9558 ord |= IMSM_ORD_REBUILD;
9559 set_imsm_ord_tbl_ent(map,
9560 map->num_members - 1,
9561 ord);
9562 }
9563 id->dev = new_dev;
9564 tofree = (void **)dev;
9565
4bba0439
PC
9566 /* update chunk size
9567 */
06fb291a 9568 if (u->new_chunksize > 0) {
9529d343
MD
9569 struct imsm_map *dest_map =
9570 get_imsm_map(dev, MAP_0);
06fb291a 9571 int used_disks =
9529d343 9572 imsm_num_data_members(dest_map);
06fb291a
PB
9573
9574 if (used_disks == 0)
9575 return ret_val;
9576
4bba0439
PC
9577 map->blocks_per_strip =
9578 __cpu_to_le16(u->new_chunksize * 2);
1c275381 9579 update_num_data_stripes(map, imsm_dev_size(dev));
06fb291a 9580 }
4bba0439 9581
44490938
MD
9582 /* ensure blocks_per_member has valid value
9583 */
9584 set_blocks_per_member(map,
9585 per_dev_array_size(map) +
9586 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9587
a29911da
PC
9588 /* add disk
9589 */
089f9d79
JS
9590 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9591 migr_map->raid_level == map->raid_level)
a29911da
PC
9592 goto skip_disk_add;
9593
9594 if (u->new_disks[0] >= 0) {
9595 /* use passes spare
9596 */
9597 new_disk = get_disk_super(super,
9598 major(u->new_disks[0]),
9599 minor(u->new_disks[0]));
7a862a02 9600 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9601 major(u->new_disks[0]),
9602 minor(u->new_disks[0]),
9603 new_disk, new_disk->index);
9604 if (new_disk == NULL)
9605 goto error_disk_add;
9606
9607 new_disk->index = map->num_members - 1;
9608 /* slot to fill in autolayout
9609 */
9610 new_disk->raiddisk = new_disk->index;
9611 new_disk->disk.status |= CONFIGURED_DISK;
9612 new_disk->disk.status &= ~SPARE_DISK;
9613 } else
9614 goto error_disk_add;
9615
9616skip_disk_add:
9617 *tofree = *space_list;
9618 /* calculate new size
9619 */
f3871fdc 9620 imsm_set_array_size(new_dev, -1);
a29911da
PC
9621
9622 ret_val = 1;
9623 }
9624 }
9625
9626 if (tofree)
9627 *space_list = tofree;
9628 return ret_val;
9629
9630error_disk_add:
9631 dprintf("Error: imsm: Cannot find disk.\n");
9632 return ret_val;
9633}
9634
f3871fdc
AK
9635static int apply_size_change_update(struct imsm_update_size_change *u,
9636 struct intel_super *super)
9637{
9638 struct intel_dev *id;
9639 int ret_val = 0;
9640
1ade5cc1 9641 dprintf("(enter)\n");
089f9d79 9642 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9643 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9644 return ret_val;
9645 }
9646
9647 for (id = super->devlist ; id; id = id->next) {
9648 if (id->index == (unsigned)u->subdev) {
9649 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9650 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9529d343 9651 int used_disks = imsm_num_data_members(map);
f3871fdc 9652 unsigned long long blocks_per_member;
44490938
MD
9653 unsigned long long new_size_per_disk;
9654
9655 if (used_disks == 0)
9656 return 0;
f3871fdc
AK
9657
9658 /* calculate new size
9659 */
44490938
MD
9660 new_size_per_disk = u->new_size / used_disks;
9661 blocks_per_member = new_size_per_disk +
9662 NUM_BLOCKS_DIRTY_STRIPE_REGION;
f3871fdc 9663
1c275381
MT
9664 imsm_set_array_size(dev, u->new_size);
9665 set_blocks_per_member(map, blocks_per_member);
9666 update_num_data_stripes(map, u->new_size);
f3871fdc
AK
9667 ret_val = 1;
9668 break;
9669 }
9670 }
9671
9672 return ret_val;
9673}
9674
69d40de4
JR
9675static int prepare_spare_to_activate(struct supertype *st,
9676 struct imsm_update_activate_spare *u)
9677{
9678 struct intel_super *super = st->sb;
9679 int prev_current_vol = super->current_vol;
9680 struct active_array *a;
9681 int ret = 1;
9682
9683 for (a = st->arrays; a; a = a->next)
9684 /*
9685 * Additional initialization (adding bitmap header, filling
9686 * the bitmap area with '1's to force initial rebuild for a whole
9687 * data-area) is required when adding the spare to the volume
9688 * with write-intent bitmap.
9689 */
9690 if (a->info.container_member == u->array &&
9691 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9692 struct dl *dl;
9693
9694 for (dl = super->disks; dl; dl = dl->next)
9695 if (dl == u->dl)
9696 break;
9697 if (!dl)
9698 break;
9699
9700 super->current_vol = u->array;
9701 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9702 ret = 0;
9703 super->current_vol = prev_current_vol;
9704 }
9705 return ret;
9706}
9707
061d7da3 9708static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9709 struct intel_super *super,
061d7da3
LO
9710 struct active_array *active_array)
9711{
9712 struct imsm_super *mpb = super->anchor;
9713 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9714 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9715 struct imsm_map *migr_map;
9716 struct active_array *a;
9717 struct imsm_disk *disk;
9718 __u8 to_state;
9719 struct dl *dl;
9720 unsigned int found;
9721 int failed;
5961eeec 9722 int victim;
061d7da3 9723 int i;
5961eeec 9724 int second_map_created = 0;
061d7da3 9725
5961eeec 9726 for (; u; u = u->next) {
238c0a71 9727 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9728
5961eeec 9729 if (victim < 0)
9730 return 0;
061d7da3 9731
5961eeec 9732 for (dl = super->disks; dl; dl = dl->next)
9733 if (dl == u->dl)
9734 break;
061d7da3 9735
5961eeec 9736 if (!dl) {
7a862a02 9737 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9738 u->dl->index);
9739 return 0;
9740 }
061d7da3 9741
5961eeec 9742 /* count failures (excluding rebuilds and the victim)
9743 * to determine map[0] state
9744 */
9745 failed = 0;
9746 for (i = 0; i < map->num_members; i++) {
9747 if (i == u->slot)
9748 continue;
9749 disk = get_imsm_disk(super,
238c0a71 9750 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9751 if (!disk || is_failed(disk))
9752 failed++;
9753 }
061d7da3 9754
5961eeec 9755 /* adding a pristine spare, assign a new index */
9756 if (dl->index < 0) {
9757 dl->index = super->anchor->num_disks;
9758 super->anchor->num_disks++;
9759 }
9760 disk = &dl->disk;
9761 disk->status |= CONFIGURED_DISK;
9762 disk->status &= ~SPARE_DISK;
9763
9764 /* mark rebuild */
238c0a71 9765 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9766 if (!second_map_created) {
9767 second_map_created = 1;
9768 map->map_state = IMSM_T_STATE_DEGRADED;
9769 migrate(dev, super, to_state, MIGR_REBUILD);
9770 } else
9771 map->map_state = to_state;
238c0a71 9772 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9773 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9774 set_imsm_ord_tbl_ent(migr_map, u->slot,
9775 dl->index | IMSM_ORD_REBUILD);
9776
9777 /* update the family_num to mark a new container
9778 * generation, being careful to record the existing
9779 * family_num in orig_family_num to clean up after
9780 * earlier mdadm versions that neglected to set it.
9781 */
9782 if (mpb->orig_family_num == 0)
9783 mpb->orig_family_num = mpb->family_num;
9784 mpb->family_num += super->random;
9785
9786 /* count arrays using the victim in the metadata */
9787 found = 0;
9788 for (a = active_array; a ; a = a->next) {
76c152ca 9789 int dev_idx = a->info.container_member;
061d7da3 9790
76c152ca 9791 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
5961eeec 9792 found++;
9793 }
061d7da3 9794
5961eeec 9795 /* delete the victim if it is no longer being
9796 * utilized anywhere
061d7da3 9797 */
5961eeec 9798 if (!found) {
9799 struct dl **dlp;
061d7da3 9800
5961eeec 9801 /* We know that 'manager' isn't touching anything,
9802 * so it is safe to delete
9803 */
9804 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9805 if ((*dlp)->index == victim)
9806 break;
5961eeec 9807
9808 /* victim may be on the missing list */
9809 if (!*dlp)
9810 for (dlp = &super->missing; *dlp;
9811 dlp = &(*dlp)->next)
9812 if ((*dlp)->index == victim)
9813 break;
9814 imsm_delete(super, dlp, victim);
9815 }
061d7da3
LO
9816 }
9817
9818 return 1;
9819}
a29911da 9820
2e5dc010
N
9821static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9822 struct intel_super *super,
9823 void ***space_list)
9824{
9825 struct dl *new_disk;
9826 struct intel_dev *id;
9827 int i;
9828 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9829 int disk_count = u->old_raid_disks;
2e5dc010
N
9830 void **tofree = NULL;
9831 int devices_to_reshape = 1;
9832 struct imsm_super *mpb = super->anchor;
9833 int ret_val = 0;
d098291a 9834 unsigned int dev_id;
2e5dc010 9835
1ade5cc1 9836 dprintf("(enter)\n");
2e5dc010
N
9837
9838 /* enable spares to use in array */
9839 for (i = 0; i < delta_disks; i++) {
9840 new_disk = get_disk_super(super,
9841 major(u->new_disks[i]),
9842 minor(u->new_disks[i]));
7a862a02 9843 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9844 major(u->new_disks[i]), minor(u->new_disks[i]),
9845 new_disk, new_disk->index);
089f9d79
JS
9846 if (new_disk == NULL ||
9847 (new_disk->index >= 0 &&
9848 new_disk->index < u->old_raid_disks))
2e5dc010 9849 goto update_reshape_exit;
ee4beede 9850 new_disk->index = disk_count++;
2e5dc010
N
9851 /* slot to fill in autolayout
9852 */
9853 new_disk->raiddisk = new_disk->index;
9854 new_disk->disk.status |=
9855 CONFIGURED_DISK;
9856 new_disk->disk.status &= ~SPARE_DISK;
9857 }
9858
ed7333bd
AK
9859 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9860 mpb->num_raid_devs);
2e5dc010
N
9861 /* manage changes in volume
9862 */
d098291a 9863 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9864 void **sp = *space_list;
9865 struct imsm_dev *newdev;
9866 struct imsm_map *newmap, *oldmap;
9867
d098291a
AK
9868 for (id = super->devlist ; id; id = id->next) {
9869 if (id->index == dev_id)
9870 break;
9871 }
9872 if (id == NULL)
9873 break;
2e5dc010
N
9874 if (!sp)
9875 continue;
9876 *space_list = *sp;
9877 newdev = (void*)sp;
9878 /* Copy the dev, but not (all of) the map */
9879 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9880 oldmap = get_imsm_map(id->dev, MAP_0);
9881 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9882 /* Copy the current map */
9883 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9884 /* update one device only
9885 */
9886 if (devices_to_reshape) {
ed7333bd
AK
9887 dprintf("imsm: modifying subdev: %i\n",
9888 id->index);
2e5dc010
N
9889 devices_to_reshape--;
9890 newdev->vol.migr_state = 1;
4036e7ee 9891 set_vol_curr_migr_unit(newdev, 0);
ea672ee1 9892 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9893 newmap->num_members = u->new_raid_disks;
9894 for (i = 0; i < delta_disks; i++) {
9895 set_imsm_ord_tbl_ent(newmap,
9896 u->old_raid_disks + i,
9897 u->old_raid_disks + i);
9898 }
9899 /* New map is correct, now need to save old map
9900 */
238c0a71 9901 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9902 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9903
f3871fdc 9904 imsm_set_array_size(newdev, -1);
2e5dc010
N
9905 }
9906
9907 sp = (void **)id->dev;
9908 id->dev = newdev;
9909 *sp = tofree;
9910 tofree = sp;
8e59f3d8
AK
9911
9912 /* Clear migration record */
9913 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9914 }
819bc634
AK
9915 if (tofree)
9916 *space_list = tofree;
2e5dc010
N
9917 ret_val = 1;
9918
9919update_reshape_exit:
9920
9921 return ret_val;
9922}
9923
bb025c2f 9924static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9925 struct intel_super *super,
9926 void ***space_list)
bb025c2f
KW
9927{
9928 struct imsm_dev *dev = NULL;
8ca6df95
KW
9929 struct intel_dev *dv;
9930 struct imsm_dev *dev_new;
bb025c2f
KW
9931 struct imsm_map *map;
9932 struct dl *dm, *du;
8ca6df95 9933 int i;
bb025c2f
KW
9934
9935 for (dv = super->devlist; dv; dv = dv->next)
9936 if (dv->index == (unsigned int)u->subarray) {
9937 dev = dv->dev;
9938 break;
9939 }
9940
9941 if (dev == NULL)
9942 return 0;
9943
238c0a71 9944 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9945
9946 if (u->direction == R10_TO_R0) {
43d5ec18 9947 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9948 if (imsm_count_failed(super, dev, MAP_0) !=
9949 (map->num_members / 2))
43d5ec18
KW
9950 return 0;
9951
bb025c2f
KW
9952 /* iterate through devices to mark removed disks as spare */
9953 for (dm = super->disks; dm; dm = dm->next) {
9954 if (dm->disk.status & FAILED_DISK) {
9955 int idx = dm->index;
9956 /* update indexes on the disk list */
9957/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9958 the index values will end up being correct.... NB */
9959 for (du = super->disks; du; du = du->next)
9960 if (du->index > idx)
9961 du->index--;
9962 /* mark as spare disk */
a8619d23 9963 mark_spare(dm);
bb025c2f
KW
9964 }
9965 }
bb025c2f 9966 /* update map */
1c275381 9967 map->num_members /= map->num_domains;
bb025c2f 9968 map->map_state = IMSM_T_STATE_NORMAL;
bb025c2f 9969 map->raid_level = 0;
1c275381
MT
9970 set_num_domains(map);
9971 update_num_data_stripes(map, imsm_dev_size(dev));
bb025c2f
KW
9972 map->failed_disk_num = -1;
9973 }
9974
8ca6df95
KW
9975 if (u->direction == R0_TO_R10) {
9976 void **space;
4a353e6e 9977
8ca6df95
KW
9978 /* update slots in current disk list */
9979 for (dm = super->disks; dm; dm = dm->next) {
9980 if (dm->index >= 0)
9981 dm->index *= 2;
9982 }
9983 /* create new *missing* disks */
9984 for (i = 0; i < map->num_members; i++) {
9985 space = *space_list;
9986 if (!space)
9987 continue;
9988 *space_list = *space;
9989 du = (void *)space;
9990 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9991 du->fd = -1;
9992 du->minor = 0;
9993 du->major = 0;
9994 du->index = (i * 2) + 1;
9995 sprintf((char *)du->disk.serial,
9996 " MISSING_%d", du->index);
9997 sprintf((char *)du->serial,
9998 "MISSING_%d", du->index);
9999 du->next = super->missing;
10000 super->missing = du;
10001 }
10002 /* create new dev and map */
10003 space = *space_list;
10004 if (!space)
10005 return 0;
10006 *space_list = *space;
10007 dev_new = (void *)space;
10008 memcpy(dev_new, dev, sizeof(*dev));
10009 /* update new map */
238c0a71 10010 map = get_imsm_map(dev_new, MAP_0);
1c275381 10011
1a2487c2 10012 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95 10013 map->raid_level = 1;
1c275381
MT
10014 set_num_domains(map);
10015 map->num_members = map->num_members * map->num_domains;
10016 update_num_data_stripes(map, imsm_dev_size(dev));
4a353e6e 10017
8ca6df95
KW
10018 /* replace dev<->dev_new */
10019 dv->dev = dev_new;
10020 }
bb025c2f
KW
10021 /* update disk order table */
10022 for (du = super->disks; du; du = du->next)
10023 if (du->index >= 0)
10024 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 10025 for (du = super->missing; du; du = du->next)
1a2487c2
KW
10026 if (du->index >= 0) {
10027 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 10028 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 10029 }
bb025c2f
KW
10030
10031 return 1;
10032}
10033
e8319a19
DW
10034static void imsm_process_update(struct supertype *st,
10035 struct metadata_update *update)
10036{
10037 /**
10038 * crack open the metadata_update envelope to find the update record
10039 * update can be one of:
d195167d
AK
10040 * update_reshape_container_disks - all the arrays in the container
10041 * are being reshaped to have more devices. We need to mark
10042 * the arrays for general migration and convert selected spares
10043 * into active devices.
10044 * update_activate_spare - a spare device has replaced a failed
1011e834
N
10045 * device in an array, update the disk_ord_tbl. If this disk is
10046 * present in all member arrays then also clear the SPARE_DISK
10047 * flag
d195167d
AK
10048 * update_create_array
10049 * update_kill_array
10050 * update_rename_array
10051 * update_add_remove_disk
e8319a19
DW
10052 */
10053 struct intel_super *super = st->sb;
4d7b1503 10054 struct imsm_super *mpb;
e8319a19
DW
10055 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10056
4d7b1503
DW
10057 /* update requires a larger buf but the allocation failed */
10058 if (super->next_len && !super->next_buf) {
10059 super->next_len = 0;
10060 return;
10061 }
10062
10063 if (super->next_buf) {
10064 memcpy(super->next_buf, super->buf, super->len);
10065 free(super->buf);
10066 super->len = super->next_len;
10067 super->buf = super->next_buf;
10068
10069 super->next_len = 0;
10070 super->next_buf = NULL;
10071 }
10072
10073 mpb = super->anchor;
10074
e8319a19 10075 switch (type) {
0ec5d470
AK
10076 case update_general_migration_checkpoint: {
10077 struct intel_dev *id;
10078 struct imsm_update_general_migration_checkpoint *u =
10079 (void *)update->buf;
10080
1ade5cc1 10081 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
10082
10083 /* find device under general migration */
10084 for (id = super->devlist ; id; id = id->next) {
10085 if (is_gen_migration(id->dev)) {
4036e7ee
MT
10086 set_vol_curr_migr_unit(id->dev,
10087 u->curr_migr_unit);
0ec5d470
AK
10088 super->updates_pending++;
10089 }
10090 }
10091 break;
10092 }
bb025c2f
KW
10093 case update_takeover: {
10094 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
10095 if (apply_takeover_update(u, super, &update->space_list)) {
10096 imsm_update_version_info(super);
bb025c2f 10097 super->updates_pending++;
1a2487c2 10098 }
bb025c2f
KW
10099 break;
10100 }
10101
78b10e66 10102 case update_reshape_container_disks: {
d195167d 10103 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
10104 if (apply_reshape_container_disks_update(
10105 u, super, &update->space_list))
10106 super->updates_pending++;
78b10e66
N
10107 break;
10108 }
48c5303a 10109 case update_reshape_migration: {
a29911da
PC
10110 struct imsm_update_reshape_migration *u = (void *)update->buf;
10111 if (apply_reshape_migration_update(
10112 u, super, &update->space_list))
10113 super->updates_pending++;
48c5303a
PC
10114 break;
10115 }
f3871fdc
AK
10116 case update_size_change: {
10117 struct imsm_update_size_change *u = (void *)update->buf;
10118 if (apply_size_change_update(u, super))
10119 super->updates_pending++;
10120 break;
10121 }
e8319a19 10122 case update_activate_spare: {
1011e834 10123 struct imsm_update_activate_spare *u = (void *) update->buf;
69d40de4
JR
10124
10125 if (prepare_spare_to_activate(st, u) &&
10126 apply_update_activate_spare(u, super, st->arrays))
061d7da3 10127 super->updates_pending++;
8273f55e
DW
10128 break;
10129 }
10130 case update_create_array: {
10131 /* someone wants to create a new array, we need to be aware of
10132 * a few races/collisions:
10133 * 1/ 'Create' called by two separate instances of mdadm
10134 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10135 * devices that have since been assimilated via
10136 * activate_spare.
10137 * In the event this update can not be carried out mdadm will
10138 * (FIX ME) notice that its update did not take hold.
10139 */
10140 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10141 struct intel_dev *dv;
8273f55e
DW
10142 struct imsm_dev *dev;
10143 struct imsm_map *map, *new_map;
10144 unsigned long long start, end;
10145 unsigned long long new_start, new_end;
10146 int i;
54c2c1ea
DW
10147 struct disk_info *inf;
10148 struct dl *dl;
8273f55e
DW
10149
10150 /* handle racing creates: first come first serve */
10151 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 10152 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 10153 goto create_error;
8273f55e
DW
10154 }
10155
10156 /* check update is next in sequence */
10157 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
10158 dprintf("can not create array %d expected index %d\n",
10159 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 10160 goto create_error;
8273f55e
DW
10161 }
10162
238c0a71 10163 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113 10164 new_start = pba_of_lba0(new_map);
44490938 10165 new_end = new_start + per_dev_array_size(new_map);
54c2c1ea 10166 inf = get_disk_info(u);
8273f55e
DW
10167
10168 /* handle activate_spare versus create race:
10169 * check to make sure that overlapping arrays do not include
10170 * overalpping disks
10171 */
10172 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 10173 dev = get_imsm_dev(super, i);
238c0a71 10174 map = get_imsm_map(dev, MAP_0);
5551b113 10175 start = pba_of_lba0(map);
44490938 10176 end = start + per_dev_array_size(map);
8273f55e
DW
10177 if ((new_start >= start && new_start <= end) ||
10178 (start >= new_start && start <= new_end))
54c2c1ea
DW
10179 /* overlap */;
10180 else
10181 continue;
10182
10183 if (disks_overlap(super, i, u)) {
1ade5cc1 10184 dprintf("arrays overlap\n");
ba2de7ba 10185 goto create_error;
8273f55e
DW
10186 }
10187 }
8273f55e 10188
949c47a0
DW
10189 /* check that prepare update was successful */
10190 if (!update->space) {
1ade5cc1 10191 dprintf("prepare update failed\n");
ba2de7ba 10192 goto create_error;
949c47a0
DW
10193 }
10194
54c2c1ea
DW
10195 /* check that all disks are still active before committing
10196 * changes. FIXME: could we instead handle this by creating a
10197 * degraded array? That's probably not what the user expects,
10198 * so better to drop this update on the floor.
10199 */
10200 for (i = 0; i < new_map->num_members; i++) {
10201 dl = serial_to_dl(inf[i].serial, super);
10202 if (!dl) {
1ade5cc1 10203 dprintf("disk disappeared\n");
ba2de7ba 10204 goto create_error;
54c2c1ea 10205 }
949c47a0
DW
10206 }
10207
8273f55e 10208 super->updates_pending++;
54c2c1ea
DW
10209
10210 /* convert spares to members and fixup ord_tbl */
10211 for (i = 0; i < new_map->num_members; i++) {
10212 dl = serial_to_dl(inf[i].serial, super);
10213 if (dl->index == -1) {
10214 dl->index = mpb->num_disks;
10215 mpb->num_disks++;
10216 dl->disk.status |= CONFIGURED_DISK;
10217 dl->disk.status &= ~SPARE_DISK;
10218 }
10219 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10220 }
10221
ba2de7ba
DW
10222 dv = update->space;
10223 dev = dv->dev;
949c47a0
DW
10224 update->space = NULL;
10225 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
10226 dv->index = u->dev_idx;
10227 dv->next = super->devlist;
10228 super->devlist = dv;
8273f55e 10229 mpb->num_raid_devs++;
8273f55e 10230
4d1313e9 10231 imsm_update_version_info(super);
8273f55e 10232 break;
ba2de7ba
DW
10233 create_error:
10234 /* mdmon knows how to release update->space, but not
10235 * ((struct intel_dev *) update->space)->dev
10236 */
10237 if (update->space) {
10238 dv = update->space;
10239 free(dv->dev);
10240 }
8273f55e 10241 break;
e8319a19 10242 }
33414a01
DW
10243 case update_kill_array: {
10244 struct imsm_update_kill_array *u = (void *) update->buf;
10245 int victim = u->dev_idx;
10246 struct active_array *a;
10247 struct intel_dev **dp;
33414a01
DW
10248
10249 /* sanity check that we are not affecting the uuid of
10250 * active arrays, or deleting an active array
10251 *
10252 * FIXME when immutable ids are available, but note that
10253 * we'll also need to fixup the invalidated/active
10254 * subarray indexes in mdstat
10255 */
10256 for (a = st->arrays; a; a = a->next)
10257 if (a->info.container_member >= victim)
10258 break;
10259 /* by definition if mdmon is running at least one array
10260 * is active in the container, so checking
10261 * mpb->num_raid_devs is just extra paranoia
10262 */
756a15f3 10263 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
33414a01
DW
10264 dprintf("failed to delete subarray-%d\n", victim);
10265 break;
10266 }
10267
10268 for (dp = &super->devlist; *dp;)
f21e18ca 10269 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
10270 *dp = (*dp)->next;
10271 } else {
f21e18ca 10272 if ((*dp)->index > (unsigned)victim)
33414a01
DW
10273 (*dp)->index--;
10274 dp = &(*dp)->next;
10275 }
10276 mpb->num_raid_devs--;
10277 super->updates_pending++;
10278 break;
10279 }
aa534678
DW
10280 case update_rename_array: {
10281 struct imsm_update_rename_array *u = (void *) update->buf;
10282 char name[MAX_RAID_SERIAL_LEN+1];
10283 int target = u->dev_idx;
10284 struct active_array *a;
10285 struct imsm_dev *dev;
10286
10287 /* sanity check that we are not affecting the uuid of
10288 * an active array
10289 */
40659392 10290 memset(name, 0, sizeof(name));
aa534678
DW
10291 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10292 name[MAX_RAID_SERIAL_LEN] = '\0';
10293 for (a = st->arrays; a; a = a->next)
10294 if (a->info.container_member == target)
10295 break;
10296 dev = get_imsm_dev(super, u->dev_idx);
756a15f3 10297 if (a || !check_name(super, name, 1)) {
aa534678
DW
10298 dprintf("failed to rename subarray-%d\n", target);
10299 break;
10300 }
10301
40659392 10302 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
aa534678
DW
10303 super->updates_pending++;
10304 break;
10305 }
1a64be56 10306 case update_add_remove_disk: {
43dad3d6 10307 /* we may be able to repair some arrays if disks are
095b8088 10308 * being added, check the status of add_remove_disk
1a64be56
LM
10309 * if discs has been added.
10310 */
10311 if (add_remove_disk_update(super)) {
43dad3d6 10312 struct active_array *a;
072b727f
DW
10313
10314 super->updates_pending++;
1a64be56 10315 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
10316 a->check_degraded = 1;
10317 }
43dad3d6 10318 break;
e8319a19 10319 }
bbab0940
TM
10320 case update_prealloc_badblocks_mem:
10321 break;
e6e9dd3f
AP
10322 case update_rwh_policy: {
10323 struct imsm_update_rwh_policy *u = (void *)update->buf;
10324 int target = u->dev_idx;
10325 struct imsm_dev *dev = get_imsm_dev(super, target);
e6e9dd3f
AP
10326
10327 if (dev->rwh_policy != u->new_policy) {
10328 dev->rwh_policy = u->new_policy;
10329 super->updates_pending++;
10330 }
10331 break;
10332 }
1a64be56 10333 default:
ebf3be99 10334 pr_err("error: unsupported process update type:(type: %d)\n", type);
1a64be56 10335 }
e8319a19 10336}
88758e9d 10337
bc0b9d34
PC
10338static struct mdinfo *get_spares_for_grow(struct supertype *st);
10339
5fe6f031
N
10340static int imsm_prepare_update(struct supertype *st,
10341 struct metadata_update *update)
8273f55e 10342{
949c47a0 10343 /**
4d7b1503
DW
10344 * Allocate space to hold new disk entries, raid-device entries or a new
10345 * mpb if necessary. The manager synchronously waits for updates to
10346 * complete in the monitor, so new mpb buffers allocated here can be
10347 * integrated by the monitor thread without worrying about live pointers
10348 * in the manager thread.
8273f55e 10349 */
095b8088 10350 enum imsm_update_type type;
4d7b1503 10351 struct intel_super *super = st->sb;
f36a9ecd 10352 unsigned int sector_size = super->sector_size;
4d7b1503
DW
10353 struct imsm_super *mpb = super->anchor;
10354 size_t buf_len;
10355 size_t len = 0;
949c47a0 10356
095b8088
N
10357 if (update->len < (int)sizeof(type))
10358 return 0;
10359
10360 type = *(enum imsm_update_type *) update->buf;
10361
949c47a0 10362 switch (type) {
0ec5d470 10363 case update_general_migration_checkpoint:
095b8088
N
10364 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10365 return 0;
1ade5cc1 10366 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 10367 break;
abedf5fc
KW
10368 case update_takeover: {
10369 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
10370 if (update->len < (int)sizeof(*u))
10371 return 0;
abedf5fc
KW
10372 if (u->direction == R0_TO_R10) {
10373 void **tail = (void **)&update->space_list;
10374 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 10375 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
10376 int num_members = map->num_members;
10377 void *space;
10378 int size, i;
abedf5fc
KW
10379 /* allocate memory for added disks */
10380 for (i = 0; i < num_members; i++) {
10381 size = sizeof(struct dl);
503975b9 10382 space = xmalloc(size);
abedf5fc
KW
10383 *tail = space;
10384 tail = space;
10385 *tail = NULL;
10386 }
10387 /* allocate memory for new device */
10388 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10389 (num_members * sizeof(__u32));
503975b9
N
10390 space = xmalloc(size);
10391 *tail = space;
10392 tail = space;
10393 *tail = NULL;
10394 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
10395 }
10396
10397 break;
10398 }
78b10e66 10399 case update_reshape_container_disks: {
d195167d
AK
10400 /* Every raid device in the container is about to
10401 * gain some more devices, and we will enter a
10402 * reconfiguration.
10403 * So each 'imsm_map' will be bigger, and the imsm_vol
10404 * will now hold 2 of them.
10405 * Thus we need new 'struct imsm_dev' allocations sized
10406 * as sizeof_imsm_dev but with more devices in both maps.
10407 */
10408 struct imsm_update_reshape *u = (void *)update->buf;
10409 struct intel_dev *dl;
10410 void **space_tail = (void**)&update->space_list;
10411
095b8088
N
10412 if (update->len < (int)sizeof(*u))
10413 return 0;
10414
1ade5cc1 10415 dprintf("for update_reshape\n");
d195167d
AK
10416
10417 for (dl = super->devlist; dl; dl = dl->next) {
10418 int size = sizeof_imsm_dev(dl->dev, 1);
10419 void *s;
d677e0b8
AK
10420 if (u->new_raid_disks > u->old_raid_disks)
10421 size += sizeof(__u32)*2*
10422 (u->new_raid_disks - u->old_raid_disks);
503975b9 10423 s = xmalloc(size);
d195167d
AK
10424 *space_tail = s;
10425 space_tail = s;
10426 *space_tail = NULL;
10427 }
10428
10429 len = disks_to_mpb_size(u->new_raid_disks);
10430 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
10431 break;
10432 }
48c5303a 10433 case update_reshape_migration: {
bc0b9d34
PC
10434 /* for migration level 0->5 we need to add disks
10435 * so the same as for container operation we will copy
10436 * device to the bigger location.
10437 * in memory prepared device and new disk area are prepared
10438 * for usage in process update
10439 */
10440 struct imsm_update_reshape_migration *u = (void *)update->buf;
10441 struct intel_dev *id;
10442 void **space_tail = (void **)&update->space_list;
10443 int size;
10444 void *s;
10445 int current_level = -1;
10446
095b8088
N
10447 if (update->len < (int)sizeof(*u))
10448 return 0;
10449
1ade5cc1 10450 dprintf("for update_reshape\n");
bc0b9d34
PC
10451
10452 /* add space for bigger array in update
10453 */
10454 for (id = super->devlist; id; id = id->next) {
10455 if (id->index == (unsigned)u->subdev) {
10456 size = sizeof_imsm_dev(id->dev, 1);
10457 if (u->new_raid_disks > u->old_raid_disks)
10458 size += sizeof(__u32)*2*
10459 (u->new_raid_disks - u->old_raid_disks);
503975b9 10460 s = xmalloc(size);
bc0b9d34
PC
10461 *space_tail = s;
10462 space_tail = s;
10463 *space_tail = NULL;
10464 break;
10465 }
10466 }
10467 if (update->space_list == NULL)
10468 break;
10469
10470 /* add space for disk in update
10471 */
10472 size = sizeof(struct dl);
503975b9 10473 s = xmalloc(size);
bc0b9d34
PC
10474 *space_tail = s;
10475 space_tail = s;
10476 *space_tail = NULL;
10477
10478 /* add spare device to update
10479 */
10480 for (id = super->devlist ; id; id = id->next)
10481 if (id->index == (unsigned)u->subdev) {
10482 struct imsm_dev *dev;
10483 struct imsm_map *map;
10484
10485 dev = get_imsm_dev(super, u->subdev);
238c0a71 10486 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10487 current_level = map->raid_level;
10488 break;
10489 }
089f9d79 10490 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10491 struct mdinfo *spares;
10492
10493 spares = get_spares_for_grow(st);
10494 if (spares) {
10495 struct dl *dl;
10496 struct mdinfo *dev;
10497
10498 dev = spares->devs;
10499 if (dev) {
10500 u->new_disks[0] =
10501 makedev(dev->disk.major,
10502 dev->disk.minor);
10503 dl = get_disk_super(super,
10504 dev->disk.major,
10505 dev->disk.minor);
10506 dl->index = u->old_raid_disks;
10507 dev = dev->next;
10508 }
10509 sysfs_free(spares);
10510 }
10511 }
10512 len = disks_to_mpb_size(u->new_raid_disks);
10513 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10514 break;
10515 }
f3871fdc 10516 case update_size_change: {
095b8088
N
10517 if (update->len < (int)sizeof(struct imsm_update_size_change))
10518 return 0;
10519 break;
10520 }
10521 case update_activate_spare: {
10522 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10523 return 0;
f3871fdc
AK
10524 break;
10525 }
949c47a0
DW
10526 case update_create_array: {
10527 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10528 struct intel_dev *dv;
54c2c1ea 10529 struct imsm_dev *dev = &u->dev;
238c0a71 10530 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10531 struct dl *dl;
10532 struct disk_info *inf;
10533 int i;
10534 int activate = 0;
949c47a0 10535
095b8088
N
10536 if (update->len < (int)sizeof(*u))
10537 return 0;
10538
54c2c1ea
DW
10539 inf = get_disk_info(u);
10540 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10541 /* allocate a new super->devlist entry */
503975b9
N
10542 dv = xmalloc(sizeof(*dv));
10543 dv->dev = xmalloc(len);
10544 update->space = dv;
949c47a0 10545
54c2c1ea
DW
10546 /* count how many spares will be converted to members */
10547 for (i = 0; i < map->num_members; i++) {
10548 dl = serial_to_dl(inf[i].serial, super);
10549 if (!dl) {
10550 /* hmm maybe it failed?, nothing we can do about
10551 * it here
10552 */
10553 continue;
10554 }
10555 if (count_memberships(dl, super) == 0)
10556 activate++;
10557 }
10558 len += activate * sizeof(struct imsm_disk);
949c47a0 10559 break;
095b8088
N
10560 }
10561 case update_kill_array: {
10562 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10563 return 0;
949c47a0
DW
10564 break;
10565 }
095b8088
N
10566 case update_rename_array: {
10567 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10568 return 0;
10569 break;
10570 }
10571 case update_add_remove_disk:
10572 /* no update->len needed */
10573 break;
bbab0940
TM
10574 case update_prealloc_badblocks_mem:
10575 super->extra_space += sizeof(struct bbm_log) -
10576 get_imsm_bbm_log_size(super->bbm_log);
10577 break;
e6e9dd3f
AP
10578 case update_rwh_policy: {
10579 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10580 return 0;
10581 break;
10582 }
095b8088
N
10583 default:
10584 return 0;
949c47a0 10585 }
8273f55e 10586
4d7b1503
DW
10587 /* check if we need a larger metadata buffer */
10588 if (super->next_buf)
10589 buf_len = super->next_len;
10590 else
10591 buf_len = super->len;
10592
bbab0940 10593 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10594 /* ok we need a larger buf than what is currently allocated
10595 * if this allocation fails process_update will notice that
10596 * ->next_len is set and ->next_buf is NULL
10597 */
bbab0940
TM
10598 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10599 super->extra_space + len, sector_size);
4d7b1503
DW
10600 if (super->next_buf)
10601 free(super->next_buf);
10602
10603 super->next_len = buf_len;
f36a9ecd 10604 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10605 memset(super->next_buf, 0, buf_len);
10606 else
4d7b1503
DW
10607 super->next_buf = NULL;
10608 }
5fe6f031 10609 return 1;
8273f55e
DW
10610}
10611
ae6aad82 10612/* must be called while manager is quiesced */
f21e18ca 10613static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10614{
10615 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10616 struct dl *iter;
10617 struct imsm_dev *dev;
10618 struct imsm_map *map;
4c9e8c1e 10619 unsigned int i, j, num_members;
fb12a745 10620 __u32 ord, ord_map0;
4c9e8c1e 10621 struct bbm_log *log = super->bbm_log;
ae6aad82 10622
1ade5cc1 10623 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10624
10625 /* shift all indexes down one */
10626 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10627 if (iter->index > (int)index)
ae6aad82 10628 iter->index--;
47ee5a45 10629 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10630 if (iter->index > (int)index)
47ee5a45 10631 iter->index--;
ae6aad82
DW
10632
10633 for (i = 0; i < mpb->num_raid_devs; i++) {
10634 dev = get_imsm_dev(super, i);
238c0a71 10635 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10636 num_members = map->num_members;
10637 for (j = 0; j < num_members; j++) {
10638 /* update ord entries being careful not to propagate
10639 * ord-flags to the first map
10640 */
238c0a71 10641 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10642 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10643
24565c9a
DW
10644 if (ord_to_idx(ord) <= index)
10645 continue;
ae6aad82 10646
238c0a71 10647 map = get_imsm_map(dev, MAP_0);
fb12a745 10648 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10649 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10650 if (map)
10651 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10652 }
10653 }
10654
4c9e8c1e
TM
10655 for (i = 0; i < log->entry_count; i++) {
10656 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10657
10658 if (entry->disk_ordinal <= index)
10659 continue;
10660 entry->disk_ordinal--;
10661 }
10662
ae6aad82
DW
10663 mpb->num_disks--;
10664 super->updates_pending++;
24565c9a
DW
10665 if (*dlp) {
10666 struct dl *dl = *dlp;
10667
10668 *dlp = (*dlp)->next;
3a85bf0e 10669 __free_imsm_disk(dl, 1);
24565c9a 10670 }
ae6aad82 10671}
9a717282 10672
9a717282
AK
10673static int imsm_get_allowed_degradation(int level, int raid_disks,
10674 struct intel_super *super,
10675 struct imsm_dev *dev)
10676{
10677 switch (level) {
bf5cf7c7 10678 case 1:
9a717282
AK
10679 case 10:{
10680 int ret_val = 0;
10681 struct imsm_map *map;
10682 int i;
10683
10684 ret_val = raid_disks/2;
10685 /* check map if all disks pairs not failed
10686 * in both maps
10687 */
238c0a71 10688 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10689 for (i = 0; i < ret_val; i++) {
10690 int degradation = 0;
10691 if (get_imsm_disk(super, i) == NULL)
10692 degradation++;
10693 if (get_imsm_disk(super, i + 1) == NULL)
10694 degradation++;
10695 if (degradation == 2)
10696 return 0;
10697 }
238c0a71 10698 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10699 /* if there is no second map
10700 * result can be returned
10701 */
10702 if (map == NULL)
10703 return ret_val;
10704 /* check degradation in second map
10705 */
10706 for (i = 0; i < ret_val; i++) {
10707 int degradation = 0;
10708 if (get_imsm_disk(super, i) == NULL)
10709 degradation++;
10710 if (get_imsm_disk(super, i + 1) == NULL)
10711 degradation++;
10712 if (degradation == 2)
10713 return 0;
10714 }
10715 return ret_val;
10716 }
10717 case 5:
10718 return 1;
10719 case 6:
10720 return 2;
10721 default:
10722 return 0;
10723 }
10724}
10725
d31ad643
PB
10726/*******************************************************************************
10727 * Function: validate_container_imsm
10728 * Description: This routine validates container after assemble,
10729 * eg. if devices in container are under the same controller.
10730 *
10731 * Parameters:
10732 * info : linked list with info about devices used in array
10733 * Returns:
10734 * 1 : HBA mismatch
10735 * 0 : Success
10736 ******************************************************************************/
10737int validate_container_imsm(struct mdinfo *info)
10738{
420dafcd 10739 if (check_no_platform())
6b781d33 10740 return 0;
d31ad643 10741
6b781d33
AP
10742 struct sys_dev *idev;
10743 struct sys_dev *hba = NULL;
10744 struct sys_dev *intel_devices = find_intel_devices();
10745 char *dev_path = devt_to_devpath(makedev(info->disk.major,
7c798f87 10746 info->disk.minor), 1, NULL);
6b781d33
AP
10747
10748 for (idev = intel_devices; idev; idev = idev->next) {
10749 if (dev_path && strstr(dev_path, idev->path)) {
10750 hba = idev;
10751 break;
d31ad643 10752 }
6b781d33
AP
10753 }
10754 if (dev_path)
d31ad643
PB
10755 free(dev_path);
10756
6b781d33
AP
10757 if (!hba) {
10758 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10759 devid2kname(makedev(info->disk.major, info->disk.minor)));
10760 return 1;
10761 }
10762
10763 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10764 struct mdinfo *dev;
10765
10766 for (dev = info->next; dev; dev = dev->next) {
7c798f87
MT
10767 dev_path = devt_to_devpath(makedev(dev->disk.major,
10768 dev->disk.minor), 1, NULL);
6b781d33
AP
10769
10770 struct sys_dev *hba2 = NULL;
10771 for (idev = intel_devices; idev; idev = idev->next) {
10772 if (dev_path && strstr(dev_path, idev->path)) {
10773 hba2 = idev;
10774 break;
d31ad643
PB
10775 }
10776 }
6b781d33
AP
10777 if (dev_path)
10778 free(dev_path);
10779
10780 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10781 get_orom_by_device_id(hba2->dev_id);
10782
10783 if (hba2 && hba->type != hba2->type) {
10784 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10785 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10786 return 1;
10787 }
10788
07cb1e57 10789 if (orom != orom2) {
6b781d33
AP
10790 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10791 " This operation is not supported and can lead to data loss.\n");
10792 return 1;
10793 }
10794
10795 if (!orom) {
10796 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10797 " This operation is not supported and can lead to data loss.\n");
10798 return 1;
10799 }
d31ad643 10800 }
6b781d33 10801
d31ad643
PB
10802 return 0;
10803}
32141c17 10804
6f50473f
TM
10805/*******************************************************************************
10806* Function: imsm_record_badblock
10807* Description: This routine stores new bad block record in BBM log
10808*
10809* Parameters:
10810* a : array containing a bad block
10811* slot : disk number containing a bad block
10812* sector : bad block sector
10813* length : bad block sectors range
10814* Returns:
10815* 1 : Success
10816* 0 : Error
10817******************************************************************************/
10818static int imsm_record_badblock(struct active_array *a, int slot,
10819 unsigned long long sector, int length)
10820{
10821 struct intel_super *super = a->container->sb;
10822 int ord;
10823 int ret;
10824
10825 ord = imsm_disk_slot_to_ord(a, slot);
10826 if (ord < 0)
10827 return 0;
10828
10829 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10830 length);
10831 if (ret)
10832 super->updates_pending++;
10833
10834 return ret;
10835}
c07a5a4f
TM
10836/*******************************************************************************
10837* Function: imsm_clear_badblock
10838* Description: This routine clears bad block record from BBM log
10839*
10840* Parameters:
10841* a : array containing a bad block
10842* slot : disk number containing a bad block
10843* sector : bad block sector
10844* length : bad block sectors range
10845* Returns:
10846* 1 : Success
10847* 0 : Error
10848******************************************************************************/
10849static int imsm_clear_badblock(struct active_array *a, int slot,
10850 unsigned long long sector, int length)
10851{
10852 struct intel_super *super = a->container->sb;
10853 int ord;
10854 int ret;
10855
10856 ord = imsm_disk_slot_to_ord(a, slot);
10857 if (ord < 0)
10858 return 0;
10859
10860 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10861 if (ret)
10862 super->updates_pending++;
10863
10864 return ret;
10865}
928f1424
TM
10866/*******************************************************************************
10867* Function: imsm_get_badblocks
10868* Description: This routine get list of bad blocks for an array
10869*
10870* Parameters:
10871* a : array
10872* slot : disk number
10873* Returns:
10874* bb : structure containing bad blocks
10875* NULL : error
10876******************************************************************************/
10877static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10878{
10879 int inst = a->info.container_member;
10880 struct intel_super *super = a->container->sb;
10881 struct imsm_dev *dev = get_imsm_dev(super, inst);
10882 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10883 int ord;
10884
10885 ord = imsm_disk_slot_to_ord(a, slot);
10886 if (ord < 0)
10887 return NULL;
10888
10889 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
44490938 10890 per_dev_array_size(map), &super->bb);
928f1424
TM
10891
10892 return &super->bb;
10893}
27156a57
TM
10894/*******************************************************************************
10895* Function: examine_badblocks_imsm
10896* Description: Prints list of bad blocks on a disk to the standard output
10897*
10898* Parameters:
10899* st : metadata handler
10900* fd : open file descriptor for device
10901* devname : device name
10902* Returns:
10903* 0 : Success
10904* 1 : Error
10905******************************************************************************/
10906static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10907{
10908 struct intel_super *super = st->sb;
10909 struct bbm_log *log = super->bbm_log;
10910 struct dl *d = NULL;
10911 int any = 0;
10912
10913 for (d = super->disks; d ; d = d->next) {
10914 if (strcmp(d->devname, devname) == 0)
10915 break;
10916 }
10917
10918 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10919 pr_err("%s doesn't appear to be part of a raid array\n",
10920 devname);
10921 return 1;
10922 }
10923
10924 if (log != NULL) {
10925 unsigned int i;
10926 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10927
10928 for (i = 0; i < log->entry_count; i++) {
10929 if (entry[i].disk_ordinal == d->index) {
10930 unsigned long long sector = __le48_to_cpu(
10931 &entry[i].defective_block_start);
10932 int cnt = entry[i].marked_count + 1;
10933
10934 if (!any) {
10935 printf("Bad-blocks on %s:\n", devname);
10936 any = 1;
10937 }
10938
10939 printf("%20llu for %d sectors\n", sector, cnt);
10940 }
10941 }
10942 }
10943
10944 if (!any)
10945 printf("No bad-blocks list configured on %s\n", devname);
10946
10947 return 0;
10948}
687629c2
AK
10949/*******************************************************************************
10950 * Function: init_migr_record_imsm
10951 * Description: Function inits imsm migration record
10952 * Parameters:
10953 * super : imsm internal array info
10954 * dev : device under migration
10955 * info : general array info to find the smallest device
10956 * Returns:
10957 * none
10958 ******************************************************************************/
10959void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10960 struct mdinfo *info)
10961{
10962 struct intel_super *super = st->sb;
10963 struct migr_record *migr_rec = super->migr_rec;
10964 int new_data_disks;
10965 unsigned long long dsize, dev_sectors;
10966 long long unsigned min_dev_sectors = -1LLU;
238c0a71
AK
10967 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10968 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10969 unsigned long long num_migr_units;
3ef4403c 10970 unsigned long long array_blocks;
2f86fda3 10971 struct dl *dl_disk = NULL;
687629c2
AK
10972
10973 memset(migr_rec, 0, sizeof(struct migr_record));
10974 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10975
10976 /* only ascending reshape supported now */
10977 migr_rec->ascending_migr = __cpu_to_le32(1);
10978
10979 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10980 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10981 migr_rec->dest_depth_per_unit *=
10982 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9529d343 10983 new_data_disks = imsm_num_data_members(map_dest);
687629c2
AK
10984 migr_rec->blocks_per_unit =
10985 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10986 migr_rec->dest_depth_per_unit =
10987 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10988 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10989 num_migr_units =
10990 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10991
10992 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10993 num_migr_units++;
9f421827 10994 set_num_migr_units(migr_rec, num_migr_units);
687629c2
AK
10995
10996 migr_rec->post_migr_vol_cap = dev->size_low;
10997 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10998
687629c2 10999 /* Find the smallest dev */
2f86fda3
MT
11000 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
11001 /* ignore spares in container */
11002 if (dl_disk->index < 0)
687629c2 11003 continue;
2f86fda3 11004 get_dev_size(dl_disk->fd, NULL, &dsize);
687629c2
AK
11005 dev_sectors = dsize / 512;
11006 if (dev_sectors < min_dev_sectors)
11007 min_dev_sectors = dev_sectors;
687629c2 11008 }
9f421827 11009 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
687629c2
AK
11010 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
11011
11012 write_imsm_migr_rec(st);
11013
11014 return;
11015}
11016
11017/*******************************************************************************
11018 * Function: save_backup_imsm
11019 * Description: Function saves critical data stripes to Migration Copy Area
11020 * and updates the current migration unit status.
11021 * Use restore_stripes() to form a destination stripe,
11022 * and to write it to the Copy Area.
11023 * Parameters:
11024 * st : supertype information
aea93171 11025 * dev : imsm device that backup is saved for
687629c2
AK
11026 * info : general array info
11027 * buf : input buffer
687629c2
AK
11028 * length : length of data to backup (blocks_per_unit)
11029 * Returns:
11030 * 0 : success
11031 *, -1 : fail
11032 ******************************************************************************/
11033int save_backup_imsm(struct supertype *st,
11034 struct imsm_dev *dev,
11035 struct mdinfo *info,
11036 void *buf,
687629c2
AK
11037 int length)
11038{
11039 int rv = -1;
11040 struct intel_super *super = st->sb;
687629c2 11041 int i;
238c0a71 11042 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 11043 int new_disks = map_dest->num_members;
ab724b98 11044 int dest_layout = 0;
4389ce73
MT
11045 int dest_chunk, targets[new_disks];
11046 unsigned long long start, target_offsets[new_disks];
9529d343 11047 int data_disks = imsm_num_data_members(map_dest);
687629c2 11048
2f86fda3
MT
11049 for (i = 0; i < new_disks; i++) {
11050 struct dl *dl_disk = get_imsm_dl_disk(super, i);
4389ce73
MT
11051 if (dl_disk && is_fd_valid(dl_disk->fd))
11052 targets[i] = dl_disk->fd;
11053 else
11054 goto abort;
2f86fda3 11055 }
7e45b550 11056
d1877f69 11057 start = info->reshape_progress * 512;
687629c2 11058 for (i = 0; i < new_disks; i++) {
9f421827 11059 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
d1877f69
AK
11060 /* move back copy area adderss, it will be moved forward
11061 * in restore_stripes() using start input variable
11062 */
11063 target_offsets[i] -= start/data_disks;
687629c2
AK
11064 }
11065
68eb8bc6 11066 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
11067 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11068
687629c2
AK
11069 if (restore_stripes(targets, /* list of dest devices */
11070 target_offsets, /* migration record offsets */
11071 new_disks,
ab724b98
AK
11072 dest_chunk,
11073 map_dest->raid_level,
11074 dest_layout,
11075 -1, /* source backup file descriptor */
11076 0, /* input buf offset
11077 * always 0 buf is already offseted */
d1877f69 11078 start,
687629c2
AK
11079 length,
11080 buf) != 0) {
e7b84f9d 11081 pr_err("Error restoring stripes\n");
687629c2
AK
11082 goto abort;
11083 }
11084
11085 rv = 0;
11086
11087abort:
687629c2
AK
11088 return rv;
11089}
11090
11091/*******************************************************************************
11092 * Function: save_checkpoint_imsm
11093 * Description: Function called for current unit status update
11094 * in the migration record. It writes it to disk.
11095 * Parameters:
11096 * super : imsm internal array info
11097 * info : general array info
11098 * Returns:
11099 * 0: success
11100 * 1: failure
0228d92c
AK
11101 * 2: failure, means no valid migration record
11102 * / no general migration in progress /
687629c2
AK
11103 ******************************************************************************/
11104int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11105{
11106 struct intel_super *super = st->sb;
f8b72ef5
AK
11107 unsigned long long blocks_per_unit;
11108 unsigned long long curr_migr_unit;
11109
2f86fda3 11110 if (load_imsm_migr_rec(super) != 0) {
7a862a02 11111 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
11112 return 1;
11113 }
11114
f8b72ef5
AK
11115 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11116 if (blocks_per_unit == 0) {
0228d92c
AK
11117 dprintf("imsm: no migration in progress.\n");
11118 return 2;
687629c2 11119 }
f8b72ef5
AK
11120 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11121 /* check if array is alligned to copy area
11122 * if it is not alligned, add one to current migration unit value
11123 * this can happend on array reshape finish only
11124 */
11125 if (info->reshape_progress % blocks_per_unit)
11126 curr_migr_unit++;
687629c2 11127
9f421827 11128 set_current_migr_unit(super->migr_rec, curr_migr_unit);
687629c2 11129 super->migr_rec->rec_status = __cpu_to_le32(state);
9f421827
PB
11130 set_migr_dest_1st_member_lba(super->migr_rec,
11131 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11132
687629c2 11133 if (write_imsm_migr_rec(st) < 0) {
7a862a02 11134 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
11135 return 1;
11136 }
11137
11138 return 0;
11139}
11140
276d77db
AK
11141/*******************************************************************************
11142 * Function: recover_backup_imsm
11143 * Description: Function recovers critical data from the Migration Copy Area
11144 * while assembling an array.
11145 * Parameters:
11146 * super : imsm internal array info
11147 * info : general array info
11148 * Returns:
11149 * 0 : success (or there is no data to recover)
11150 * 1 : fail
11151 ******************************************************************************/
11152int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11153{
11154 struct intel_super *super = st->sb;
11155 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 11156 struct imsm_map *map_dest;
276d77db
AK
11157 struct intel_dev *id = NULL;
11158 unsigned long long read_offset;
11159 unsigned long long write_offset;
11160 unsigned unit_len;
2f86fda3 11161 int new_disks, err;
276d77db
AK
11162 char *buf = NULL;
11163 int retval = 1;
f36a9ecd 11164 unsigned int sector_size = super->sector_size;
4036e7ee
MT
11165 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11166 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
276d77db 11167 char buffer[20];
6c3560c0 11168 int skipped_disks = 0;
2f86fda3 11169 struct dl *dl_disk;
276d77db
AK
11170
11171 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
11172 if (err < 1)
11173 return 1;
11174
11175 /* recover data only during assemblation */
11176 if (strncmp(buffer, "inactive", 8) != 0)
11177 return 0;
11178 /* no data to recover */
11179 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11180 return 0;
11181 if (curr_migr_unit >= num_migr_units)
11182 return 1;
11183
11184 /* find device during reshape */
11185 for (id = super->devlist; id; id = id->next)
11186 if (is_gen_migration(id->dev))
11187 break;
11188 if (id == NULL)
11189 return 1;
11190
238c0a71 11191 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
11192 new_disks = map_dest->num_members;
11193
9f421827 11194 read_offset = migr_chkp_area_pba(migr_rec) * 512;
276d77db 11195
9f421827 11196 write_offset = (migr_dest_1st_member_lba(migr_rec) +
5551b113 11197 pba_of_lba0(map_dest)) * 512;
276d77db
AK
11198
11199 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 11200 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 11201 goto abort;
276d77db 11202
2f86fda3
MT
11203 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11204 if (dl_disk->index < 0)
11205 continue;
276d77db 11206
4389ce73 11207 if (!is_fd_valid(dl_disk->fd)) {
6c3560c0
AK
11208 skipped_disks++;
11209 continue;
11210 }
2f86fda3 11211 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
e7b84f9d
N
11212 pr_err("Cannot seek to block: %s\n",
11213 strerror(errno));
137debce
AK
11214 skipped_disks++;
11215 continue;
276d77db 11216 }
83b3de77 11217 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11218 pr_err("Cannot read copy area block: %s\n",
11219 strerror(errno));
137debce
AK
11220 skipped_disks++;
11221 continue;
276d77db 11222 }
2f86fda3 11223 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
e7b84f9d
N
11224 pr_err("Cannot seek to block: %s\n",
11225 strerror(errno));
137debce
AK
11226 skipped_disks++;
11227 continue;
276d77db 11228 }
83b3de77 11229 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
e7b84f9d
N
11230 pr_err("Cannot restore block: %s\n",
11231 strerror(errno));
137debce
AK
11232 skipped_disks++;
11233 continue;
276d77db
AK
11234 }
11235 }
11236
137debce
AK
11237 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11238 new_disks,
11239 super,
11240 id->dev)) {
7a862a02 11241 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
11242 goto abort;
11243 }
11244
befb629b
AK
11245 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11246 /* ignore error == 2, this can mean end of reshape here
11247 */
7a862a02 11248 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 11249 } else
276d77db 11250 retval = 0;
276d77db
AK
11251
11252abort:
276d77db
AK
11253 free(buf);
11254 return retval;
11255}
11256
2cda7640
ML
11257static char disk_by_path[] = "/dev/disk/by-path/";
11258
11259static const char *imsm_get_disk_controller_domain(const char *path)
11260{
2cda7640 11261 char disk_path[PATH_MAX];
96234762
LM
11262 char *drv=NULL;
11263 struct stat st;
2cda7640 11264
6d8d290a 11265 strcpy(disk_path, disk_by_path);
96234762
LM
11266 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11267 if (stat(disk_path, &st) == 0) {
11268 struct sys_dev* hba;
594dc1b8 11269 char *path;
96234762 11270
7c798f87 11271 path = devt_to_devpath(st.st_rdev, 1, NULL);
96234762
LM
11272 if (path == NULL)
11273 return "unknown";
11274 hba = find_disk_attached_hba(-1, path);
11275 if (hba && hba->type == SYS_DEV_SAS)
11276 drv = "isci";
11277 else if (hba && hba->type == SYS_DEV_SATA)
11278 drv = "ahci";
c6839718
MT
11279 else if (hba && hba->type == SYS_DEV_VMD)
11280 drv = "vmd";
11281 else if (hba && hba->type == SYS_DEV_NVME)
11282 drv = "nvme";
1011e834 11283 else
96234762
LM
11284 drv = "unknown";
11285 dprintf("path: %s hba: %s attached: %s\n",
11286 path, (hba) ? hba->path : "NULL", drv);
11287 free(path);
2cda7640 11288 }
96234762 11289 return drv;
2cda7640
ML
11290}
11291
4dd2df09 11292static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 11293{
4dd2df09 11294 static char devnm[32];
78b10e66
N
11295 char subdev_name[20];
11296 struct mdstat_ent *mdstat;
11297
11298 sprintf(subdev_name, "%d", subdev);
11299 mdstat = mdstat_by_subdev(subdev_name, container);
11300 if (!mdstat)
4dd2df09 11301 return NULL;
78b10e66 11302
4dd2df09 11303 strcpy(devnm, mdstat->devnm);
78b10e66 11304 free_mdstat(mdstat);
4dd2df09 11305 return devnm;
78b10e66
N
11306}
11307
11308static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11309 struct geo_params *geo,
fbf3d202
AK
11310 int *old_raid_disks,
11311 int direction)
78b10e66 11312{
694575e7
KW
11313 /* currently we only support increasing the number of devices
11314 * for a container. This increases the number of device for each
11315 * member array. They must all be RAID0 or RAID5.
11316 */
78b10e66
N
11317 int ret_val = 0;
11318 struct mdinfo *info, *member;
11319 int devices_that_can_grow = 0;
11320
7a862a02 11321 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 11322
d04f65f4 11323 if (geo->size > 0 ||
78b10e66
N
11324 geo->level != UnSet ||
11325 geo->layout != UnSet ||
11326 geo->chunksize != 0 ||
11327 geo->raid_disks == UnSet) {
7a862a02 11328 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
11329 return ret_val;
11330 }
11331
fbf3d202 11332 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 11333 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
11334 return ret_val;
11335 }
11336
78b10e66
N
11337 info = container_content_imsm(st, NULL);
11338 for (member = info; member; member = member->next) {
4dd2df09 11339 char *result;
78b10e66
N
11340
11341 dprintf("imsm: checking device_num: %i\n",
11342 member->container_member);
11343
d7d205bd 11344 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
11345 /* we work on container for Online Capacity Expansion
11346 * only so raid_disks has to grow
11347 */
7a862a02 11348 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
11349 break;
11350 }
11351
089f9d79 11352 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
11353 /* we cannot use this container with other raid level
11354 */
7a862a02 11355 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
11356 info->array.level);
11357 break;
11358 } else {
11359 /* check for platform support
11360 * for this raid level configuration
11361 */
11362 struct intel_super *super = st->sb;
11363 if (!is_raid_level_supported(super->orom,
11364 member->array.level,
11365 geo->raid_disks)) {
7a862a02 11366 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11367 info->array.level,
11368 geo->raid_disks,
11369 geo->raid_disks > 1 ? "s" : "");
11370 break;
11371 }
2a4a08e7
AK
11372 /* check if component size is aligned to chunk size
11373 */
11374 if (info->component_size %
11375 (info->array.chunk_size/512)) {
7a862a02 11376 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11377 break;
11378 }
78b10e66
N
11379 }
11380
11381 if (*old_raid_disks &&
11382 info->array.raid_disks != *old_raid_disks)
11383 break;
11384 *old_raid_disks = info->array.raid_disks;
11385
11386 /* All raid5 and raid0 volumes in container
11387 * have to be ready for Online Capacity Expansion
11388 * so they need to be assembled. We have already
11389 * checked that no recovery etc is happening.
11390 */
4dd2df09
N
11391 result = imsm_find_array_devnm_by_subdev(member->container_member,
11392 st->container_devnm);
11393 if (result == NULL) {
78b10e66
N
11394 dprintf("imsm: cannot find array\n");
11395 break;
11396 }
11397 devices_that_can_grow++;
11398 }
11399 sysfs_free(info);
11400 if (!member && devices_that_can_grow)
11401 ret_val = 1;
11402
11403 if (ret_val)
1ade5cc1 11404 dprintf("Container operation allowed\n");
78b10e66 11405 else
1ade5cc1 11406 dprintf("Error: %i\n", ret_val);
78b10e66
N
11407
11408 return ret_val;
11409}
11410
11411/* Function: get_spares_for_grow
11412 * Description: Allocates memory and creates list of spare devices
1011e834 11413 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11414 * Parameters: Pointer to the supertype structure
11415 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11416 * NULL if fail
78b10e66
N
11417 */
11418static struct mdinfo *get_spares_for_grow(struct supertype *st)
11419{
fbfdcb06
AO
11420 struct spare_criteria sc;
11421
11422 get_spare_criteria_imsm(st, &sc);
11423 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11424}
11425
11426/******************************************************************************
11427 * function: imsm_create_metadata_update_for_reshape
11428 * Function creates update for whole IMSM container.
11429 *
11430 ******************************************************************************/
11431static int imsm_create_metadata_update_for_reshape(
11432 struct supertype *st,
11433 struct geo_params *geo,
11434 int old_raid_disks,
11435 struct imsm_update_reshape **updatep)
11436{
11437 struct intel_super *super = st->sb;
11438 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11439 int update_memory_size;
11440 struct imsm_update_reshape *u;
11441 struct mdinfo *spares;
78b10e66 11442 int i;
594dc1b8 11443 int delta_disks;
bbd24d86 11444 struct mdinfo *dev;
78b10e66 11445
1ade5cc1 11446 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11447
11448 delta_disks = geo->raid_disks - old_raid_disks;
11449
11450 /* size of all update data without anchor */
11451 update_memory_size = sizeof(struct imsm_update_reshape);
11452
11453 /* now add space for spare disks that we need to add. */
11454 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11455
503975b9 11456 u = xcalloc(1, update_memory_size);
78b10e66
N
11457 u->type = update_reshape_container_disks;
11458 u->old_raid_disks = old_raid_disks;
11459 u->new_raid_disks = geo->raid_disks;
11460
11461 /* now get spare disks list
11462 */
11463 spares = get_spares_for_grow(st);
11464
d7be7d87 11465 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11466 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11467 i = -1;
78b10e66
N
11468 goto abort;
11469 }
11470
11471 /* we have got spares
11472 * update disk list in imsm_disk list table in anchor
11473 */
11474 dprintf("imsm: %i spares are available.\n\n",
11475 spares->array.spare_disks);
11476
bbd24d86 11477 dev = spares->devs;
78b10e66 11478 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11479 struct dl *dl;
11480
bbd24d86
AK
11481 if (dev == NULL)
11482 break;
78b10e66
N
11483 u->new_disks[i] = makedev(dev->disk.major,
11484 dev->disk.minor);
11485 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11486 dl->index = mpb->num_disks;
11487 mpb->num_disks++;
bbd24d86 11488 dev = dev->next;
78b10e66 11489 }
78b10e66
N
11490
11491abort:
11492 /* free spares
11493 */
11494 sysfs_free(spares);
11495
d677e0b8 11496 dprintf("imsm: reshape update preparation :");
78b10e66 11497 if (i == delta_disks) {
1ade5cc1 11498 dprintf_cont(" OK\n");
78b10e66
N
11499 *updatep = u;
11500 return update_memory_size;
11501 }
11502 free(u);
1ade5cc1 11503 dprintf_cont(" Error\n");
78b10e66
N
11504
11505 return 0;
11506}
11507
f3871fdc
AK
11508/******************************************************************************
11509 * function: imsm_create_metadata_update_for_size_change()
11510 * Creates update for IMSM array for array size change.
11511 *
11512 ******************************************************************************/
11513static int imsm_create_metadata_update_for_size_change(
11514 struct supertype *st,
11515 struct geo_params *geo,
11516 struct imsm_update_size_change **updatep)
11517{
11518 struct intel_super *super = st->sb;
594dc1b8
JS
11519 int update_memory_size;
11520 struct imsm_update_size_change *u;
f3871fdc 11521
1ade5cc1 11522 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11523
11524 /* size of all update data without anchor */
11525 update_memory_size = sizeof(struct imsm_update_size_change);
11526
503975b9 11527 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11528 u->type = update_size_change;
11529 u->subdev = super->current_vol;
11530 u->new_size = geo->size;
11531
11532 dprintf("imsm: reshape update preparation : OK\n");
11533 *updatep = u;
11534
11535 return update_memory_size;
11536}
11537
48c5303a
PC
11538/******************************************************************************
11539 * function: imsm_create_metadata_update_for_migration()
11540 * Creates update for IMSM array.
11541 *
11542 ******************************************************************************/
11543static int imsm_create_metadata_update_for_migration(
11544 struct supertype *st,
11545 struct geo_params *geo,
11546 struct imsm_update_reshape_migration **updatep)
11547{
11548 struct intel_super *super = st->sb;
594dc1b8 11549 int update_memory_size;
756a15f3 11550 int current_chunk_size;
594dc1b8 11551 struct imsm_update_reshape_migration *u;
756a15f3
MG
11552 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11553 struct imsm_map *map = get_imsm_map(dev, MAP_0);
48c5303a
PC
11554 int previous_level = -1;
11555
1ade5cc1 11556 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11557
11558 /* size of all update data without anchor */
11559 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11560
503975b9 11561 u = xcalloc(1, update_memory_size);
48c5303a
PC
11562 u->type = update_reshape_migration;
11563 u->subdev = super->current_vol;
11564 u->new_level = geo->level;
11565 u->new_layout = geo->layout;
11566 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11567 u->new_disks[0] = -1;
4bba0439 11568 u->new_chunksize = -1;
48c5303a 11569
756a15f3 11570 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
48c5303a 11571
756a15f3
MG
11572 if (geo->chunksize != current_chunk_size) {
11573 u->new_chunksize = geo->chunksize / 1024;
11574 dprintf("imsm: chunk size change from %i to %i\n",
11575 current_chunk_size, u->new_chunksize);
48c5303a 11576 }
756a15f3
MG
11577 previous_level = map->raid_level;
11578
089f9d79 11579 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11580 struct mdinfo *spares = NULL;
11581
11582 u->new_raid_disks++;
11583 spares = get_spares_for_grow(st);
089f9d79 11584 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11585 free(u);
11586 sysfs_free(spares);
11587 update_memory_size = 0;
565cc99e 11588 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11589 return 0;
11590 }
11591 sysfs_free(spares);
11592 }
11593 dprintf("imsm: reshape update preparation : OK\n");
11594 *updatep = u;
11595
11596 return update_memory_size;
11597}
11598
8dd70bce
AK
11599static void imsm_update_metadata_locally(struct supertype *st,
11600 void *buf, int len)
11601{
11602 struct metadata_update mu;
11603
11604 mu.buf = buf;
11605 mu.len = len;
11606 mu.space = NULL;
11607 mu.space_list = NULL;
11608 mu.next = NULL;
5fe6f031
N
11609 if (imsm_prepare_update(st, &mu))
11610 imsm_process_update(st, &mu);
8dd70bce
AK
11611
11612 while (mu.space_list) {
11613 void **space = mu.space_list;
11614 mu.space_list = *space;
11615 free(space);
11616 }
11617}
78b10e66 11618
471bceb6 11619/***************************************************************************
694575e7 11620* Function: imsm_analyze_change
471bceb6 11621* Description: Function analyze change for single volume
1011e834 11622* and validate if transition is supported
fbf3d202
AK
11623* Parameters: Geometry parameters, supertype structure,
11624* metadata change direction (apply/rollback)
694575e7 11625* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11626****************************************************************************/
11627enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11628 struct geo_params *geo,
11629 int direction)
694575e7 11630{
471bceb6
KW
11631 struct mdinfo info;
11632 int change = -1;
11633 int check_devs = 0;
c21e737b 11634 int chunk;
67a2db32
AK
11635 /* number of added/removed disks in operation result */
11636 int devNumChange = 0;
11637 /* imsm compatible layout value for array geometry verification */
11638 int imsm_layout = -1;
7abc9871
AK
11639 int data_disks;
11640 struct imsm_dev *dev;
9529d343 11641 struct imsm_map *map;
7abc9871 11642 struct intel_super *super;
d04f65f4 11643 unsigned long long current_size;
65d38cca 11644 unsigned long long free_size;
d04f65f4 11645 unsigned long long max_size;
6d4d9ab2 11646 imsm_status_t rv;
471bceb6
KW
11647
11648 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11649 if (geo->level != info.array.level && geo->level >= 0 &&
11650 geo->level != UnSet) {
471bceb6
KW
11651 switch (info.array.level) {
11652 case 0:
11653 if (geo->level == 5) {
b5347799 11654 change = CH_MIGRATION;
e13ce846 11655 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11656 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11657 change = -1;
11658 goto analyse_change_exit;
11659 }
67a2db32 11660 imsm_layout = geo->layout;
471bceb6 11661 check_devs = 1;
e91a3bad
LM
11662 devNumChange = 1; /* parity disk added */
11663 } else if (geo->level == 10) {
471bceb6
KW
11664 change = CH_TAKEOVER;
11665 check_devs = 1;
e91a3bad 11666 devNumChange = 2; /* two mirrors added */
67a2db32 11667 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11668 }
dfe77a9e
KW
11669 break;
11670 case 1:
471bceb6
KW
11671 case 10:
11672 if (geo->level == 0) {
11673 change = CH_TAKEOVER;
11674 check_devs = 1;
e91a3bad 11675 devNumChange = -(geo->raid_disks/2);
67a2db32 11676 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11677 }
11678 break;
11679 }
11680 if (change == -1) {
7a862a02 11681 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11682 info.array.level, geo->level);
471bceb6
KW
11683 goto analyse_change_exit;
11684 }
11685 } else
11686 geo->level = info.array.level;
11687
089f9d79
JS
11688 if (geo->layout != info.array.layout &&
11689 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11690 change = CH_MIGRATION;
089f9d79
JS
11691 if (info.array.layout == 0 && info.array.level == 5 &&
11692 geo->layout == 5) {
471bceb6 11693 /* reshape 5 -> 4 */
089f9d79
JS
11694 } else if (info.array.layout == 5 && info.array.level == 5 &&
11695 geo->layout == 0) {
471bceb6
KW
11696 /* reshape 4 -> 5 */
11697 geo->layout = 0;
11698 geo->level = 5;
11699 } else {
7a862a02 11700 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11701 info.array.layout, geo->layout);
471bceb6
KW
11702 change = -1;
11703 goto analyse_change_exit;
11704 }
67a2db32 11705 } else {
471bceb6 11706 geo->layout = info.array.layout;
67a2db32
AK
11707 if (imsm_layout == -1)
11708 imsm_layout = info.array.layout;
11709 }
471bceb6 11710
089f9d79
JS
11711 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11712 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11713 if (info.array.level == 10) {
11714 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11715 change = -1;
11716 goto analyse_change_exit;
1e9b2c3f
PB
11717 } else if (info.component_size % (geo->chunksize/512)) {
11718 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11719 geo->chunksize/1024, info.component_size/2);
11720 change = -1;
11721 goto analyse_change_exit;
2d2b0eb7 11722 }
b5347799 11723 change = CH_MIGRATION;
2d2b0eb7 11724 } else {
471bceb6 11725 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11726 }
471bceb6 11727
c21e737b 11728 chunk = geo->chunksize / 1024;
7abc9871
AK
11729
11730 super = st->sb;
11731 dev = get_imsm_dev(super, super->current_vol);
9529d343
MD
11732 map = get_imsm_map(dev, MAP_0);
11733 data_disks = imsm_num_data_members(map);
c41e00b2 11734 /* compute current size per disk member
7abc9871 11735 */
c41e00b2
AK
11736 current_size = info.custom_array_size / data_disks;
11737
089f9d79 11738 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11739 /* align component size
11740 */
3e684231 11741 geo->size = imsm_component_size_alignment_check(
c41e00b2 11742 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11743 chunk * 1024, super->sector_size,
c41e00b2 11744 geo->size * 2);
65d0b4ce 11745 if (geo->size == 0) {
7a862a02 11746 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11747 current_size);
11748 goto analyse_change_exit;
11749 }
c41e00b2 11750 }
7abc9871 11751
089f9d79 11752 if (current_size != geo->size && geo->size > 0) {
7abc9871 11753 if (change != -1) {
7a862a02 11754 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11755 change = -1;
11756 goto analyse_change_exit;
11757 }
11758 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11759 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11760 super->current_vol, st->devnm);
7abc9871
AK
11761 goto analyse_change_exit;
11762 }
65d38cca
LD
11763 /* check the maximum available size
11764 */
6d4d9ab2
MT
11765 rv = imsm_get_free_size(super, dev->vol.map->num_members,
11766 0, chunk, &free_size);
11767
11768 if (rv != IMSM_STATUS_OK)
65d38cca
LD
11769 /* Cannot find maximum available space
11770 */
11771 max_size = 0;
11772 else {
11773 max_size = free_size + current_size;
11774 /* align component size
11775 */
3e684231 11776 max_size = imsm_component_size_alignment_check(
65d38cca 11777 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11778 chunk * 1024, super->sector_size,
65d38cca
LD
11779 max_size);
11780 }
d04f65f4 11781 if (geo->size == MAX_SIZE) {
b130333f
AK
11782 /* requested size change to the maximum available size
11783 */
65d38cca 11784 if (max_size == 0) {
7a862a02 11785 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11786 change = -1;
11787 goto analyse_change_exit;
65d38cca
LD
11788 } else
11789 geo->size = max_size;
c41e00b2 11790 }
b130333f 11791
681b7ae2 11792 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11793 /* accept size for rollback only
11794 */
11795 } else {
11796 /* round size due to metadata compatibility
11797 */
11798 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11799 << SECT_PER_MB_SHIFT;
11800 dprintf("Prepare update for size change to %llu\n",
11801 geo->size );
11802 if (current_size >= geo->size) {
7a862a02 11803 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11804 current_size, geo->size);
fbf3d202
AK
11805 goto analyse_change_exit;
11806 }
65d38cca 11807 if (max_size && geo->size > max_size) {
7a862a02 11808 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11809 max_size, geo->size);
65d38cca
LD
11810 goto analyse_change_exit;
11811 }
7abc9871
AK
11812 }
11813 geo->size *= data_disks;
11814 geo->raid_disks = dev->vol.map->num_members;
11815 change = CH_ARRAY_SIZE;
11816 }
471bceb6
KW
11817 if (!validate_geometry_imsm(st,
11818 geo->level,
67a2db32 11819 imsm_layout,
e91a3bad 11820 geo->raid_disks + devNumChange,
c21e737b 11821 &chunk,
af4348dd 11822 geo->size, INVALID_SECTORS,
5308f117 11823 0, 0, info.consistency_policy, 1))
471bceb6
KW
11824 change = -1;
11825
11826 if (check_devs) {
11827 struct intel_super *super = st->sb;
11828 struct imsm_super *mpb = super->anchor;
11829
11830 if (mpb->num_raid_devs > 1) {
f1cc8ab9
LF
11831 pr_err("Error. Cannot perform operation on %s- for this operation "
11832 "it MUST be single array in container\n", geo->dev_name);
471bceb6
KW
11833 change = -1;
11834 }
11835 }
11836
11837analyse_change_exit:
089f9d79
JS
11838 if (direction == ROLLBACK_METADATA_CHANGES &&
11839 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11840 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11841 change = -1;
11842 }
471bceb6 11843 return change;
694575e7
KW
11844}
11845
bb025c2f
KW
11846int imsm_takeover(struct supertype *st, struct geo_params *geo)
11847{
11848 struct intel_super *super = st->sb;
11849 struct imsm_update_takeover *u;
11850
503975b9 11851 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11852
11853 u->type = update_takeover;
11854 u->subarray = super->current_vol;
11855
11856 /* 10->0 transition */
11857 if (geo->level == 0)
11858 u->direction = R10_TO_R0;
11859
0529c688
KW
11860 /* 0->10 transition */
11861 if (geo->level == 10)
11862 u->direction = R0_TO_R10;
11863
bb025c2f
KW
11864 /* update metadata locally */
11865 imsm_update_metadata_locally(st, u,
11866 sizeof(struct imsm_update_takeover));
11867 /* and possibly remotely */
11868 if (st->update_tail)
11869 append_metadata_update(st, u,
11870 sizeof(struct imsm_update_takeover));
11871 else
11872 free(u);
11873
11874 return 0;
11875}
11876
895ffd99
MT
11877/* Flush size update if size calculated by num_data_stripes is higher than
11878 * imsm_dev_size to eliminate differences during reshape.
11879 * Mdmon will recalculate them correctly.
11880 * If subarray index is not set then check whole container.
11881 * Returns:
11882 * 0 - no error occurred
11883 * 1 - error detected
11884 */
11885static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11886{
11887 struct intel_super *super = st->sb;
11888 int tmp = super->current_vol;
11889 int ret_val = 1;
11890 int i;
11891
11892 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11893 if (subarray_index >= 0 && i != subarray_index)
11894 continue;
11895 super->current_vol = i;
11896 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11897 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11898 unsigned int disc_count = imsm_num_data_members(map);
11899 struct geo_params geo;
11900 struct imsm_update_size_change *update;
11901 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11902 unsigned long long d_size = imsm_dev_size(dev);
11903 int u_size;
11904
42e02e61 11905 if (calc_size == d_size)
895ffd99
MT
11906 continue;
11907
ff904202
MT
11908 /* There is a difference, confirm that imsm_dev_size is
11909 * smaller and push update.
895ffd99 11910 */
ff904202
MT
11911 if (d_size > calc_size) {
11912 pr_err("imsm: dev size of subarray %d is incorrect\n",
11913 i);
895ffd99
MT
11914 goto exit;
11915 }
11916 memset(&geo, 0, sizeof(struct geo_params));
11917 geo.size = d_size;
11918 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11919 &update);
895ffd99
MT
11920 imsm_update_metadata_locally(st, update, u_size);
11921 if (st->update_tail) {
11922 append_metadata_update(st, update, u_size);
11923 flush_metadata_updates(st);
11924 st->update_tail = &st->updates;
11925 } else {
11926 imsm_sync_metadata(st);
5ce5a15f 11927 free(update);
895ffd99
MT
11928 }
11929 }
11930 ret_val = 0;
11931exit:
11932 super->current_vol = tmp;
11933 return ret_val;
11934}
11935
d04f65f4
N
11936static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11937 int level,
78b10e66 11938 int layout, int chunksize, int raid_disks,
41784c88 11939 int delta_disks, char *backup, char *dev,
016e00f5 11940 int direction, int verbose)
78b10e66 11941{
78b10e66
N
11942 int ret_val = 1;
11943 struct geo_params geo;
11944
1ade5cc1 11945 dprintf("(enter)\n");
78b10e66 11946
71204a50 11947 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11948
11949 geo.dev_name = dev;
4dd2df09 11950 strcpy(geo.devnm, st->devnm);
78b10e66
N
11951 geo.size = size;
11952 geo.level = level;
11953 geo.layout = layout;
11954 geo.chunksize = chunksize;
11955 geo.raid_disks = raid_disks;
41784c88
AK
11956 if (delta_disks != UnSet)
11957 geo.raid_disks += delta_disks;
78b10e66 11958
1ade5cc1
N
11959 dprintf("for level : %i\n", geo.level);
11960 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66 11961
4dd2df09 11962 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11963 /* On container level we can only increase number of devices. */
11964 dprintf("imsm: info: Container operation\n");
78b10e66 11965 int old_raid_disks = 0;
6dc0be30 11966
78b10e66 11967 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11968 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11969 struct imsm_update_reshape *u = NULL;
11970 int len;
11971
895ffd99
MT
11972 if (imsm_fix_size_mismatch(st, -1)) {
11973 dprintf("imsm: Cannot fix size mismatch\n");
11974 goto exit_imsm_reshape_super;
11975 }
11976
78b10e66
N
11977 len = imsm_create_metadata_update_for_reshape(
11978 st, &geo, old_raid_disks, &u);
11979
ed08d51c
AK
11980 if (len <= 0) {
11981 dprintf("imsm: Cannot prepare update\n");
11982 goto exit_imsm_reshape_super;
11983 }
11984
8dd70bce
AK
11985 ret_val = 0;
11986 /* update metadata locally */
11987 imsm_update_metadata_locally(st, u, len);
11988 /* and possibly remotely */
11989 if (st->update_tail)
11990 append_metadata_update(st, u, len);
11991 else
ed08d51c 11992 free(u);
8dd70bce 11993
694575e7 11994 } else {
7a862a02 11995 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11996 }
11997 } else {
11998 /* On volume level we support following operations
471bceb6
KW
11999 * - takeover: raid10 -> raid0; raid0 -> raid10
12000 * - chunk size migration
12001 * - migration: raid5 -> raid0; raid0 -> raid5
12002 */
12003 struct intel_super *super = st->sb;
12004 struct intel_dev *dev = super->devlist;
4dd2df09 12005 int change;
694575e7 12006 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
12007 /* find requested device */
12008 while (dev) {
1011e834 12009 char *devnm =
4dd2df09
N
12010 imsm_find_array_devnm_by_subdev(
12011 dev->index, st->container_devnm);
12012 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
12013 break;
12014 dev = dev->next;
12015 }
12016 if (dev == NULL) {
4dd2df09
N
12017 pr_err("Cannot find %s (%s) subarray\n",
12018 geo.dev_name, geo.devnm);
471bceb6
KW
12019 goto exit_imsm_reshape_super;
12020 }
12021 super->current_vol = dev->index;
fbf3d202 12022 change = imsm_analyze_change(st, &geo, direction);
694575e7 12023 switch (change) {
471bceb6 12024 case CH_TAKEOVER:
bb025c2f 12025 ret_val = imsm_takeover(st, &geo);
694575e7 12026 break;
48c5303a
PC
12027 case CH_MIGRATION: {
12028 struct imsm_update_reshape_migration *u = NULL;
12029 int len =
12030 imsm_create_metadata_update_for_migration(
12031 st, &geo, &u);
12032 if (len < 1) {
7a862a02 12033 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
12034 break;
12035 }
471bceb6 12036 ret_val = 0;
48c5303a
PC
12037 /* update metadata locally */
12038 imsm_update_metadata_locally(st, u, len);
12039 /* and possibly remotely */
12040 if (st->update_tail)
12041 append_metadata_update(st, u, len);
12042 else
12043 free(u);
12044 }
12045 break;
7abc9871 12046 case CH_ARRAY_SIZE: {
f3871fdc
AK
12047 struct imsm_update_size_change *u = NULL;
12048 int len =
12049 imsm_create_metadata_update_for_size_change(
12050 st, &geo, &u);
12051 if (len < 1) {
7a862a02 12052 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
12053 break;
12054 }
12055 ret_val = 0;
12056 /* update metadata locally */
12057 imsm_update_metadata_locally(st, u, len);
12058 /* and possibly remotely */
12059 if (st->update_tail)
12060 append_metadata_update(st, u, len);
12061 else
12062 free(u);
7abc9871
AK
12063 }
12064 break;
471bceb6
KW
12065 default:
12066 ret_val = 1;
694575e7 12067 }
694575e7 12068 }
78b10e66 12069
ed08d51c 12070exit_imsm_reshape_super:
78b10e66
N
12071 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12072 return ret_val;
12073}
2cda7640 12074
0febb20c
AO
12075#define COMPLETED_OK 0
12076#define COMPLETED_NONE 1
12077#define COMPLETED_DELAYED 2
12078
12079static int read_completed(int fd, unsigned long long *val)
12080{
12081 int ret;
12082 char buf[50];
12083
12084 ret = sysfs_fd_get_str(fd, buf, 50);
12085 if (ret < 0)
12086 return ret;
12087
12088 ret = COMPLETED_OK;
12089 if (strncmp(buf, "none", 4) == 0) {
12090 ret = COMPLETED_NONE;
12091 } else if (strncmp(buf, "delayed", 7) == 0) {
12092 ret = COMPLETED_DELAYED;
12093 } else {
12094 char *ep;
12095 *val = strtoull(buf, &ep, 0);
12096 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12097 ret = -1;
12098 }
12099 return ret;
12100}
12101
eee67a47
AK
12102/*******************************************************************************
12103 * Function: wait_for_reshape_imsm
12104 * Description: Function writes new sync_max value and waits until
12105 * reshape process reach new position
12106 * Parameters:
12107 * sra : general array info
eee67a47
AK
12108 * ndata : number of disks in new array's layout
12109 * Returns:
12110 * 0 : success,
12111 * 1 : there is no reshape in progress,
12112 * -1 : fail
12113 ******************************************************************************/
ae9f01f8 12114int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 12115{
85ca499c 12116 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 12117 int retry = 3;
eee67a47 12118 unsigned long long completed;
ae9f01f8
AK
12119 /* to_complete : new sync_max position */
12120 unsigned long long to_complete = sra->reshape_progress;
12121 unsigned long long position_to_set = to_complete / ndata;
eee67a47 12122
4389ce73 12123 if (!is_fd_valid(fd)) {
1ade5cc1 12124 dprintf("cannot open reshape_position\n");
eee67a47 12125 return 1;
ae9f01f8 12126 }
eee67a47 12127
df2647fa
PB
12128 do {
12129 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12130 if (!retry) {
12131 dprintf("cannot read reshape_position (no reshape in progres)\n");
12132 close(fd);
12133 return 1;
12134 }
239b3cc0 12135 sleep_for(0, MSEC_TO_NSEC(30), true);
df2647fa
PB
12136 } else
12137 break;
12138 } while (retry--);
eee67a47 12139
85ca499c 12140 if (completed > position_to_set) {
1ade5cc1 12141 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 12142 to_complete, position_to_set);
ae9f01f8
AK
12143 close(fd);
12144 return -1;
12145 }
12146 dprintf("Position set: %llu\n", position_to_set);
12147 if (sysfs_set_num(sra, NULL, "sync_max",
12148 position_to_set) != 0) {
1ade5cc1 12149 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
12150 position_to_set);
12151 close(fd);
12152 return -1;
eee67a47
AK
12153 }
12154
eee67a47 12155 do {
0febb20c 12156 int rc;
eee67a47 12157 char action[20];
5ff3a780 12158 int timeout = 3000;
0febb20c 12159
5ff3a780 12160 sysfs_wait(fd, &timeout);
a47e44fb
AK
12161 if (sysfs_get_str(sra, NULL, "sync_action",
12162 action, 20) > 0 &&
d7d3809a 12163 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
12164 if (strncmp(action, "idle", 4) == 0)
12165 break;
d7d3809a
AP
12166 close(fd);
12167 return -1;
12168 }
0febb20c
AO
12169
12170 rc = read_completed(fd, &completed);
12171 if (rc < 0) {
1ade5cc1 12172 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
12173 close(fd);
12174 return 1;
0febb20c
AO
12175 } else if (rc == COMPLETED_NONE)
12176 break;
85ca499c 12177 } while (completed < position_to_set);
b2be2b62 12178
eee67a47
AK
12179 close(fd);
12180 return 0;
eee67a47
AK
12181}
12182
b915c95f
AK
12183/*******************************************************************************
12184 * Function: check_degradation_change
12185 * Description: Check that array hasn't become failed.
12186 * Parameters:
12187 * info : for sysfs access
12188 * sources : source disks descriptors
12189 * degraded: previous degradation level
12190 * Returns:
12191 * degradation level
12192 ******************************************************************************/
12193int check_degradation_change(struct mdinfo *info,
12194 int *sources,
12195 int degraded)
12196{
12197 unsigned long long new_degraded;
e1993023
LD
12198 int rv;
12199
12200 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 12201 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
12202 /* check each device to ensure it is still working */
12203 struct mdinfo *sd;
12204 new_degraded = 0;
12205 for (sd = info->devs ; sd ; sd = sd->next) {
12206 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12207 continue;
12208 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5 12209 char sbuf[100];
4389ce73 12210 int raid_disk = sd->disk.raid_disk;
cf52eff5 12211
b915c95f 12212 if (sysfs_get_str(info,
cf52eff5 12213 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
12214 strstr(sbuf, "faulty") ||
12215 strstr(sbuf, "in_sync") == NULL) {
12216 /* this device is dead */
12217 sd->disk.state = (1<<MD_DISK_FAULTY);
4389ce73
MT
12218 if (raid_disk >= 0)
12219 close_fd(&sources[raid_disk]);
b915c95f
AK
12220 new_degraded++;
12221 }
12222 }
12223 }
12224 }
12225
12226 return new_degraded;
12227}
12228
10f22854
AK
12229/*******************************************************************************
12230 * Function: imsm_manage_reshape
12231 * Description: Function finds array under reshape and it manages reshape
12232 * process. It creates stripes backups (if required) and sets
942e1cdb 12233 * checkpoints.
10f22854
AK
12234 * Parameters:
12235 * afd : Backup handle (nattive) - not used
12236 * sra : general array info
12237 * reshape : reshape parameters - not used
12238 * st : supertype structure
12239 * blocks : size of critical section [blocks]
12240 * fds : table of source device descriptor
12241 * offsets : start of array (offest per devices)
12242 * dests : not used
12243 * destfd : table of destination device descriptor
12244 * destoffsets : table of destination offsets (per device)
12245 * Returns:
12246 * 1 : success, reshape is done
12247 * 0 : fail
12248 ******************************************************************************/
999b4972
N
12249static int imsm_manage_reshape(
12250 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 12251 struct supertype *st, unsigned long backup_blocks,
999b4972
N
12252 int *fds, unsigned long long *offsets,
12253 int dests, int *destfd, unsigned long long *destoffsets)
12254{
10f22854
AK
12255 int ret_val = 0;
12256 struct intel_super *super = st->sb;
594dc1b8 12257 struct intel_dev *dv;
de44e46f 12258 unsigned int sector_size = super->sector_size;
10f22854 12259 struct imsm_dev *dev = NULL;
9529d343 12260 struct imsm_map *map_src, *map_dest;
10f22854
AK
12261 int migr_vol_qan = 0;
12262 int ndata, odata; /* [bytes] */
12263 int chunk; /* [bytes] */
12264 struct migr_record *migr_rec;
12265 char *buf = NULL;
12266 unsigned int buf_size; /* [bytes] */
12267 unsigned long long max_position; /* array size [bytes] */
12268 unsigned long long next_step; /* [blocks]/[bytes] */
12269 unsigned long long old_data_stripe_length;
10f22854
AK
12270 unsigned long long start_src; /* [bytes] */
12271 unsigned long long start; /* [bytes] */
12272 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 12273 int degraded = 0;
ab724b98 12274 int source_layout = 0;
895ffd99 12275 int subarray_index = -1;
10f22854 12276
79a16a9b
JS
12277 if (!sra)
12278 return ret_val;
12279
12280 if (!fds || !offsets)
10f22854
AK
12281 goto abort;
12282
12283 /* Find volume during the reshape */
12284 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
12285 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12286 dv->dev->vol.migr_state == 1) {
10f22854
AK
12287 dev = dv->dev;
12288 migr_vol_qan++;
895ffd99 12289 subarray_index = dv->index;
10f22854
AK
12290 }
12291 }
12292 /* Only one volume can migrate at the same time */
12293 if (migr_vol_qan != 1) {
676e87a8 12294 pr_err("%s", migr_vol_qan ?
10f22854
AK
12295 "Number of migrating volumes greater than 1\n" :
12296 "There is no volume during migrationg\n");
12297 goto abort;
12298 }
12299
9529d343 12300 map_dest = get_imsm_map(dev, MAP_0);
238c0a71 12301 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
12302 if (map_src == NULL)
12303 goto abort;
10f22854 12304
9529d343
MD
12305 ndata = imsm_num_data_members(map_dest);
12306 odata = imsm_num_data_members(map_src);
10f22854 12307
7b1ab482 12308 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
12309 old_data_stripe_length = odata * chunk;
12310
12311 migr_rec = super->migr_rec;
12312
10f22854
AK
12313 /* initialize migration record for start condition */
12314 if (sra->reshape_progress == 0)
12315 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
12316 else {
12317 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 12318 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
12319 goto abort;
12320 }
6a75c8ca
AK
12321 /* Save checkpoint to update migration record for current
12322 * reshape position (in md). It can be farther than current
12323 * reshape position in metadata.
12324 */
12325 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12326 /* ignore error == 2, this can mean end of reshape here
12327 */
7a862a02 12328 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
12329 goto abort;
12330 }
b2c59438 12331 }
10f22854
AK
12332
12333 /* size for data */
12334 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12335 /* extend buffer size for parity disk */
12336 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
3e684231 12337 /* add space for stripe alignment */
10f22854 12338 buf_size += old_data_stripe_length;
de44e46f
PB
12339 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12340 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
12341 goto abort;
12342 }
12343
3ef4403c 12344 max_position = sra->component_size * ndata;
68eb8bc6 12345 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854 12346
9f421827
PB
12347 while (current_migr_unit(migr_rec) <
12348 get_num_migr_units(migr_rec)) {
10f22854
AK
12349 /* current reshape position [blocks] */
12350 unsigned long long current_position =
12351 __le32_to_cpu(migr_rec->blocks_per_unit)
9f421827 12352 * current_migr_unit(migr_rec);
10f22854
AK
12353 unsigned long long border;
12354
b915c95f
AK
12355 /* Check that array hasn't become failed.
12356 */
12357 degraded = check_degradation_change(sra, fds, degraded);
12358 if (degraded > 1) {
7a862a02 12359 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
12360 goto abort;
12361 }
12362
10f22854
AK
12363 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12364
12365 if ((current_position + next_step) > max_position)
12366 next_step = max_position - current_position;
12367
92144abf 12368 start = current_position * 512;
10f22854 12369
942e1cdb 12370 /* align reading start to old geometry */
10f22854
AK
12371 start_buf_shift = start % old_data_stripe_length;
12372 start_src = start - start_buf_shift;
12373
12374 border = (start_src / odata) - (start / ndata);
12375 border /= 512;
12376 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12377 /* save critical stripes to buf
12378 * start - start address of current unit
12379 * to backup [bytes]
12380 * start_src - start address of current unit
12381 * to backup alligned to source array
12382 * [bytes]
12383 */
594dc1b8 12384 unsigned long long next_step_filler;
10f22854
AK
12385 unsigned long long copy_length = next_step * 512;
12386
12387 /* allign copy area length to stripe in old geometry */
12388 next_step_filler = ((copy_length + start_buf_shift)
12389 % old_data_stripe_length);
12390 if (next_step_filler)
12391 next_step_filler = (old_data_stripe_length
12392 - next_step_filler);
7a862a02 12393 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
12394 start, start_src, copy_length,
12395 start_buf_shift, next_step_filler);
12396
12397 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
12398 chunk, map_src->raid_level,
12399 source_layout, 0, NULL, start_src,
10f22854
AK
12400 copy_length +
12401 next_step_filler + start_buf_shift,
12402 buf)) {
7a862a02 12403 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
12404 goto abort;
12405 }
12406 /* Convert data to destination format and store it
12407 * in backup general migration area
12408 */
12409 if (save_backup_imsm(st, dev, sra,
aea93171 12410 buf + start_buf_shift, copy_length)) {
7a862a02 12411 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
12412 goto abort;
12413 }
12414 if (save_checkpoint_imsm(st, sra,
12415 UNIT_SRC_IN_CP_AREA)) {
7a862a02 12416 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
12417 goto abort;
12418 }
8016a6d4
AK
12419 } else {
12420 /* set next step to use whole border area */
12421 border /= next_step;
12422 if (border > 1)
12423 next_step *= border;
10f22854
AK
12424 }
12425 /* When data backed up, checkpoint stored,
12426 * kick the kernel to reshape unit of data
12427 */
12428 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12429 /* limit next step to array max position */
12430 if (next_step > max_position)
12431 next_step = max_position;
10f22854
AK
12432 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12433 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12434 sra->reshape_progress = next_step;
10f22854
AK
12435
12436 /* wait until reshape finish */
c85338c6 12437 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12438 dprintf("wait_for_reshape_imsm returned error!\n");
12439 goto abort;
12440 }
84d11e6c
N
12441 if (sigterm)
12442 goto abort;
10f22854 12443
0228d92c
AK
12444 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12445 /* ignore error == 2, this can mean end of reshape here
12446 */
7a862a02 12447 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12448 goto abort;
12449 }
12450
12451 }
12452
71e5411e
PB
12453 /* clear migr_rec on disks after successful migration */
12454 struct dl *d;
12455
85337573 12456 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12457 for (d = super->disks; d; d = d->next) {
12458 if (d->index < 0 || is_failed(&d->disk))
12459 continue;
12460 unsigned long long dsize;
12461
12462 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12463 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12464 SEEK_SET) >= 0) {
466070ad 12465 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12466 MIGR_REC_BUF_SECTORS*sector_size) !=
12467 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12468 perror("Write migr_rec failed");
12469 }
12470 }
12471
10f22854
AK
12472 /* return '1' if done */
12473 ret_val = 1;
895ffd99
MT
12474
12475 /* After the reshape eliminate size mismatch in metadata.
12476 * Don't update md/component_size here, volume hasn't
12477 * to take whole space. It is allowed by kernel.
12478 * md/component_size will be set propoperly after next assembly.
12479 */
12480 imsm_fix_size_mismatch(st, subarray_index);
12481
10f22854
AK
12482abort:
12483 free(buf);
942e1cdb
N
12484 /* See Grow.c: abort_reshape() for further explanation */
12485 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12486 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12487 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12488
12489 return ret_val;
999b4972 12490}
0c21b485 12491
fbc42556
JR
12492/*******************************************************************************
12493 * Function: calculate_bitmap_min_chunksize
12494 * Description: Calculates the minimal valid bitmap chunk size
12495 * Parameters:
12496 * max_bits : indicate how many bits can be used for the bitmap
12497 * data_area_size : the size of the data area covered by the bitmap
12498 *
12499 * Returns:
12500 * The bitmap chunk size
12501 ******************************************************************************/
12502static unsigned long long
12503calculate_bitmap_min_chunksize(unsigned long long max_bits,
12504 unsigned long long data_area_size)
12505{
12506 unsigned long long min_chunk =
12507 4096; /* sub-page chunks don't work yet.. */
12508 unsigned long long bits = data_area_size / min_chunk + 1;
12509
12510 while (bits > max_bits) {
12511 min_chunk *= 2;
12512 bits = (bits + 1) / 2;
12513 }
12514 return min_chunk;
12515}
12516
12517/*******************************************************************************
12518 * Function: calculate_bitmap_chunksize
12519 * Description: Calculates the bitmap chunk size for the given device
12520 * Parameters:
12521 * st : supertype information
12522 * dev : device for the bitmap
12523 *
12524 * Returns:
12525 * The bitmap chunk size
12526 ******************************************************************************/
12527static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12528 struct imsm_dev *dev)
12529{
12530 struct intel_super *super = st->sb;
12531 unsigned long long min_chunksize;
12532 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12533 size_t dev_size = imsm_dev_size(dev);
12534
12535 min_chunksize = calculate_bitmap_min_chunksize(
12536 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12537
12538 if (result < min_chunksize)
12539 result = min_chunksize;
12540
12541 return result;
12542}
12543
12544/*******************************************************************************
12545 * Function: init_bitmap_header
12546 * Description: Initialize the bitmap header structure
12547 * Parameters:
12548 * st : supertype information
12549 * bms : bitmap header struct to initialize
12550 * dev : device for the bitmap
12551 *
12552 * Returns:
12553 * 0 : success
12554 * -1 : fail
12555 ******************************************************************************/
12556static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12557 struct imsm_dev *dev)
12558{
12559 int vol_uuid[4];
12560
12561 if (!bms || !dev)
12562 return -1;
12563
12564 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12565 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12566 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12567 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12568 bms->write_behind = __cpu_to_le32(0);
12569
12570 uuid_from_super_imsm(st, vol_uuid);
12571 memcpy(bms->uuid, vol_uuid, 16);
12572
12573 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12574
12575 return 0;
12576}
12577
12578/*******************************************************************************
12579 * Function: validate_internal_bitmap_for_drive
12580 * Description: Verify if the bitmap header for a given drive.
12581 * Parameters:
12582 * st : supertype information
12583 * offset : The offset from the beginning of the drive where to look for
12584 * the bitmap header.
12585 * d : the drive info
12586 *
12587 * Returns:
12588 * 0 : success
12589 * -1 : fail
12590 ******************************************************************************/
12591static int validate_internal_bitmap_for_drive(struct supertype *st,
12592 unsigned long long offset,
12593 struct dl *d)
12594{
12595 struct intel_super *super = st->sb;
12596 int ret = -1;
12597 int vol_uuid[4];
12598 bitmap_super_t *bms;
12599 int fd;
12600
12601 if (!d)
12602 return -1;
12603
12604 void *read_buf;
12605
12606 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12607 return -1;
12608
12609 fd = d->fd;
4389ce73 12610 if (!is_fd_valid(fd)) {
fbc42556 12611 fd = open(d->devname, O_RDONLY, 0);
4389ce73
MT
12612
12613 if (!is_fd_valid(fd)) {
fbc42556
JR
12614 dprintf("cannot open the device %s\n", d->devname);
12615 goto abort;
12616 }
12617 }
12618
12619 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12620 goto abort;
12621 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12622 IMSM_BITMAP_HEADER_SIZE)
12623 goto abort;
12624
12625 uuid_from_super_imsm(st, vol_uuid);
12626
12627 bms = read_buf;
12628 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12629 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12630 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12631 dprintf("wrong bitmap header detected\n");
12632 goto abort;
12633 }
12634
12635 ret = 0;
12636abort:
4389ce73
MT
12637 if (!is_fd_valid(d->fd))
12638 close_fd(&fd);
12639
fbc42556
JR
12640 if (read_buf)
12641 free(read_buf);
12642
12643 return ret;
12644}
12645
12646/*******************************************************************************
12647 * Function: validate_internal_bitmap_imsm
12648 * Description: Verify if the bitmap header is in place and with proper data.
12649 * Parameters:
12650 * st : supertype information
12651 *
12652 * Returns:
12653 * 0 : success or device w/o RWH_BITMAP
12654 * -1 : fail
12655 ******************************************************************************/
12656static int validate_internal_bitmap_imsm(struct supertype *st)
12657{
12658 struct intel_super *super = st->sb;
12659 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12660 unsigned long long offset;
12661 struct dl *d;
12662
fbc42556
JR
12663 if (dev->rwh_policy != RWH_BITMAP)
12664 return 0;
12665
12666 offset = get_bitmap_header_sector(super, super->current_vol);
12667 for (d = super->disks; d; d = d->next) {
12668 if (d->index < 0 || is_failed(&d->disk))
12669 continue;
12670
12671 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12672 pr_err("imsm: bitmap validation failed\n");
12673 return -1;
12674 }
12675 }
12676 return 0;
12677}
12678
12679/*******************************************************************************
12680 * Function: add_internal_bitmap_imsm
12681 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12682 * Parameters:
12683 * st : supertype information
12684 * chunkp : bitmap chunk size
12685 * delay : not used for imsm
12686 * write_behind : not used for imsm
12687 * size : not used for imsm
12688 * may_change : not used for imsm
12689 * amajor : not used for imsm
12690 *
12691 * Returns:
12692 * 0 : success
12693 * -1 : fail
12694 ******************************************************************************/
12695static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12696 int delay, int write_behind,
12697 unsigned long long size, int may_change,
12698 int amajor)
12699{
12700 struct intel_super *super = st->sb;
12701 int vol_idx = super->current_vol;
12702 struct imsm_dev *dev;
12703
12704 if (!super->devlist || vol_idx == -1 || !chunkp)
12705 return -1;
12706
12707 dev = get_imsm_dev(super, vol_idx);
fbc42556 12708 dev->rwh_policy = RWH_BITMAP;
fbc42556 12709 *chunkp = calculate_bitmap_chunksize(st, dev);
fbc42556
JR
12710 return 0;
12711}
12712
12713/*******************************************************************************
12714 * Function: locate_bitmap_imsm
12715 * Description: Seek 'fd' to start of write-intent-bitmap.
12716 * Parameters:
12717 * st : supertype information
12718 * fd : file descriptor for the device
12719 * node_num : not used for imsm
12720 *
12721 * Returns:
12722 * 0 : success
12723 * -1 : fail
12724 ******************************************************************************/
12725static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12726{
12727 struct intel_super *super = st->sb;
12728 unsigned long long offset;
12729 int vol_idx = super->current_vol;
12730
12731 if (!super->devlist || vol_idx == -1)
12732 return -1;
12733
12734 offset = get_bitmap_header_sector(super, super->current_vol);
12735 dprintf("bitmap header offset is %llu\n", offset);
12736
12737 lseek64(fd, offset << 9, 0);
12738
12739 return 0;
12740}
12741
12742/*******************************************************************************
12743 * Function: write_init_bitmap_imsm
12744 * Description: Write a bitmap header and prepares the area for the bitmap.
12745 * Parameters:
12746 * st : supertype information
12747 * fd : file descriptor for the device
12748 * update : not used for imsm
12749 *
12750 * Returns:
12751 * 0 : success
12752 * -1 : fail
12753 ******************************************************************************/
12754static int write_init_bitmap_imsm(struct supertype *st, int fd,
12755 enum bitmap_update update)
12756{
12757 struct intel_super *super = st->sb;
12758 int vol_idx = super->current_vol;
12759 int ret = 0;
12760 unsigned long long offset;
12761 bitmap_super_t bms = { 0 };
12762 size_t written = 0;
12763 size_t to_write;
12764 ssize_t rv_num;
12765 void *buf;
12766
12767 if (!super->devlist || !super->sector_size || vol_idx == -1)
12768 return -1;
12769
12770 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12771
12772 /* first clear the space for bitmap header */
12773 unsigned long long bitmap_area_start =
12774 get_bitmap_header_sector(super, vol_idx);
12775
12776 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12777 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12778 if (zero_disk_range(fd, bitmap_area_start,
12779 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12780 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12781 return -1;
12782 }
12783
12784 /* The bitmap area should be filled with "1"s to perform initial
12785 * synchronization.
12786 */
12787 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12788 return -1;
12789 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12790 offset = get_bitmap_sector(super, vol_idx);
12791 lseek64(fd, offset << 9, 0);
12792 while (written < IMSM_BITMAP_AREA_SIZE) {
12793 to_write = IMSM_BITMAP_AREA_SIZE - written;
12794 if (to_write > MAX_SECTOR_SIZE)
12795 to_write = MAX_SECTOR_SIZE;
12796 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12797 if (rv_num != MAX_SECTOR_SIZE) {
12798 ret = -1;
12799 dprintf("cannot initialize bitmap area\n");
12800 goto abort;
12801 }
12802 written += rv_num;
12803 }
12804
12805 /* write a bitmap header */
12806 init_bitmap_header(st, &bms, dev);
12807 memset(buf, 0, MAX_SECTOR_SIZE);
12808 memcpy(buf, &bms, sizeof(bitmap_super_t));
12809 if (locate_bitmap_imsm(st, fd, 0)) {
12810 ret = -1;
12811 dprintf("cannot locate the bitmap\n");
12812 goto abort;
12813 }
12814 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12815 ret = -1;
12816 dprintf("cannot write the bitmap header\n");
12817 goto abort;
12818 }
12819 fsync(fd);
12820
12821abort:
12822 free(buf);
12823
12824 return ret;
12825}
12826
12827/*******************************************************************************
12828 * Function: is_vol_to_setup_bitmap
12829 * Description: Checks if a bitmap should be activated on the dev.
12830 * Parameters:
12831 * info : info about the volume to setup the bitmap
12832 * dev : the device to check against bitmap creation
12833 *
12834 * Returns:
12835 * 0 : bitmap should be set up on the device
12836 * -1 : otherwise
12837 ******************************************************************************/
12838static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12839{
12840 if (!dev || !info)
12841 return -1;
12842
12843 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12844 (dev->rwh_policy == RWH_BITMAP))
12845 return -1;
12846
12847 return 0;
12848}
12849
12850/*******************************************************************************
12851 * Function: set_bitmap_sysfs
12852 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12853 * Parameters:
12854 * info : info about the volume where the bitmap should be setup
12855 * chunksize : bitmap chunk size
12856 * location : location of the bitmap
12857 *
12858 * Returns:
12859 * 0 : success
12860 * -1 : fail
12861 ******************************************************************************/
12862static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12863 char *location)
12864{
12865 /* The bitmap/metadata is set to external to allow changing of value for
12866 * bitmap/location. When external is used, the kernel will treat an offset
12867 * related to the device's first lba (in opposition to the "internal" case
12868 * when this value is related to the beginning of the superblock).
12869 */
12870 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12871 dprintf("failed to set bitmap/metadata\n");
12872 return -1;
12873 }
12874
12875 /* It can only be changed when no bitmap is active.
12876 * Should be bigger than 512 and must be power of 2.
12877 * It is expecting the value in bytes.
12878 */
12879 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12880 __cpu_to_le32(chunksize))) {
12881 dprintf("failed to set bitmap/chunksize\n");
12882 return -1;
12883 }
12884
12885 /* It is expecting the value in sectors. */
12886 if (sysfs_set_num(info, NULL, "bitmap/space",
12887 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12888 dprintf("failed to set bitmap/space\n");
12889 return -1;
12890 }
12891
12892 /* Determines the delay between the bitmap updates.
12893 * It is expecting the value in seconds.
12894 */
12895 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12896 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12897 dprintf("failed to set bitmap/time_base\n");
12898 return -1;
12899 }
12900
12901 /* It is expecting the value in sectors with a sign at the beginning. */
12902 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12903 dprintf("failed to set bitmap/location\n");
12904 return -1;
12905 }
12906
12907 return 0;
12908}
12909
12910/*******************************************************************************
12911 * Function: set_bitmap_imsm
12912 * Description: Setup the bitmap for the given volume
12913 * Parameters:
12914 * st : supertype information
12915 * info : info about the volume where the bitmap should be setup
12916 *
12917 * Returns:
12918 * 0 : success
12919 * -1 : fail
12920 ******************************************************************************/
12921static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12922{
12923 struct intel_super *super = st->sb;
12924 int prev_current_vol = super->current_vol;
12925 struct imsm_dev *dev;
12926 int ret = -1;
12927 char location[16] = "";
12928 unsigned long long chunksize;
12929 struct intel_dev *dev_it;
12930
12931 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12932 super->current_vol = dev_it->index;
12933 dev = get_imsm_dev(super, super->current_vol);
12934
12935 if (is_vol_to_setup_bitmap(info, dev)) {
12936 if (validate_internal_bitmap_imsm(st)) {
12937 dprintf("bitmap header validation failed\n");
12938 goto abort;
12939 }
12940
12941 chunksize = calculate_bitmap_chunksize(st, dev);
12942 dprintf("chunk size is %llu\n", chunksize);
12943
12944 snprintf(location, sizeof(location), "+%llu",
12945 get_bitmap_sector(super, super->current_vol));
12946 dprintf("bitmap offset is %s\n", location);
12947
12948 if (set_bitmap_sysfs(info, chunksize, location)) {
12949 dprintf("cannot setup the bitmap\n");
12950 goto abort;
12951 }
12952 }
12953 }
12954 ret = 0;
12955abort:
12956 super->current_vol = prev_current_vol;
12957 return ret;
12958}
12959
cdddbdbc 12960struct superswitch super_imsm = {
cdddbdbc
DW
12961 .examine_super = examine_super_imsm,
12962 .brief_examine_super = brief_examine_super_imsm,
4737ae25 12963 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 12964 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
12965 .detail_super = detail_super_imsm,
12966 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 12967 .write_init_super = write_init_super_imsm,
0e600426
N
12968 .validate_geometry = validate_geometry_imsm,
12969 .add_to_super = add_to_super_imsm,
1a64be56 12970 .remove_from_super = remove_from_super_imsm,
d665cc31 12971 .detail_platform = detail_platform_imsm,
e50cf220 12972 .export_detail_platform = export_detail_platform_imsm,
33414a01 12973 .kill_subarray = kill_subarray_imsm,
aa534678 12974 .update_subarray = update_subarray_imsm,
2b959fbf 12975 .load_container = load_container_imsm,
71204a50
N
12976 .default_geometry = default_geometry_imsm,
12977 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12978 .reshape_super = imsm_reshape_super,
12979 .manage_reshape = imsm_manage_reshape,
9e2d750d 12980 .recover_backup = recover_backup_imsm,
27156a57 12981 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12982 .match_home = match_home_imsm,
12983 .uuid_from_super= uuid_from_super_imsm,
12984 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12985 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12986 .update_super = update_super_imsm,
12987
12988 .avail_size = avail_size_imsm,
fbfdcb06 12989 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12990
12991 .compare_super = compare_super_imsm,
12992
12993 .load_super = load_super_imsm,
bf5a934a 12994 .init_super = init_super_imsm,
e683ca88 12995 .store_super = store_super_imsm,
cdddbdbc
DW
12996 .free_super = free_super_imsm,
12997 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12998 .container_content = container_content_imsm,
0c21b485 12999 .validate_container = validate_container_imsm,
cdddbdbc 13000
fbc42556
JR
13001 .add_internal_bitmap = add_internal_bitmap_imsm,
13002 .locate_bitmap = locate_bitmap_imsm,
13003 .write_bitmap = write_init_bitmap_imsm,
13004 .set_bitmap = set_bitmap_imsm,
13005
2432ce9b
AP
13006 .write_init_ppl = write_init_ppl_imsm,
13007 .validate_ppl = validate_ppl_imsm,
13008
cdddbdbc 13009 .external = 1,
4cce4069 13010 .name = "imsm",
845dea95
NB
13011
13012/* for mdmon */
13013 .open_new = imsm_open_new,
ed9d66aa 13014 .set_array_state= imsm_set_array_state,
845dea95
NB
13015 .set_disk = imsm_set_disk,
13016 .sync_metadata = imsm_sync_metadata,
88758e9d 13017 .activate_spare = imsm_activate_spare,
e8319a19 13018 .process_update = imsm_process_update,
8273f55e 13019 .prepare_update = imsm_prepare_update,
6f50473f 13020 .record_bad_block = imsm_record_badblock,
c07a5a4f 13021 .clear_bad_block = imsm_clear_badblock,
928f1424 13022 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 13023};