]> git.ipfire.org Git - people/ms/u-boot.git/blame - README
FIT: output image load address for type 'firmware', fix message while there
[people/ms/u-boot.git] / README
CommitLineData
c609719b 1#
218ca724 2# (C) Copyright 2000 - 2008
c609719b
WD
3# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4#
5# See file CREDITS for list of people who contributed to this
6# project.
7#
8# This program is free software; you can redistribute it and/or
9# modify it under the terms of the GNU General Public License as
10# published by the Free Software Foundation; either version 2 of
11# the License, or (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21# MA 02111-1307 USA
22#
23
24Summary:
25========
26
24ee89b9 27This directory contains the source code for U-Boot, a boot loader for
e86e5a07
WD
28Embedded boards based on PowerPC, ARM, MIPS and several other
29processors, which can be installed in a boot ROM and used to
30initialize and test the hardware or to download and run application
31code.
c609719b
WD
32
33The development of U-Boot is closely related to Linux: some parts of
24ee89b9
WD
34the source code originate in the Linux source tree, we have some
35header files in common, and special provision has been made to
c609719b
WD
36support booting of Linux images.
37
38Some attention has been paid to make this software easily
39configurable and extendable. For instance, all monitor commands are
40implemented with the same call interface, so that it's very easy to
41add new commands. Also, instead of permanently adding rarely used
42code (for instance hardware test utilities) to the monitor, you can
43load and run it dynamically.
44
45
46Status:
47=======
48
49In general, all boards for which a configuration option exists in the
24ee89b9 50Makefile have been tested to some extent and can be considered
c609719b
WD
51"working". In fact, many of them are used in production systems.
52
24ee89b9 53In case of problems see the CHANGELOG and CREDITS files to find out
218ca724
WD
54who contributed the specific port. The MAINTAINERS file lists board
55maintainers.
c609719b 56
c609719b
WD
57
58Where to get help:
59==================
60
24ee89b9
WD
61In case you have questions about, problems with or contributions for
62U-Boot you should send a message to the U-Boot mailing list at
0c32565f
PT
63<u-boot@lists.denx.de>. There is also an archive of previous traffic
64on the mailing list - please search the archive before asking FAQ's.
65Please see http://lists.denx.de/pipermail/u-boot and
66http://dir.gmane.org/gmane.comp.boot-loaders.u-boot
c609719b
WD
67
68
218ca724
WD
69Where to get source code:
70=========================
71
72The U-Boot source code is maintained in the git repository at
73git://www.denx.de/git/u-boot.git ; you can browse it online at
74http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
75
76The "snapshot" links on this page allow you to download tarballs of
11ccc33f 77any version you might be interested in. Official releases are also
218ca724
WD
78available for FTP download from the ftp://ftp.denx.de/pub/u-boot/
79directory.
80
d4ee711d 81Pre-built (and tested) images are available from
218ca724
WD
82ftp://ftp.denx.de/pub/u-boot/images/
83
84
c609719b
WD
85Where we come from:
86===================
87
88- start from 8xxrom sources
24ee89b9 89- create PPCBoot project (http://sourceforge.net/projects/ppcboot)
c609719b
WD
90- clean up code
91- make it easier to add custom boards
92- make it possible to add other [PowerPC] CPUs
93- extend functions, especially:
94 * Provide extended interface to Linux boot loader
95 * S-Record download
96 * network boot
11ccc33f 97 * PCMCIA / CompactFlash / ATA disk / SCSI ... boot
24ee89b9 98- create ARMBoot project (http://sourceforge.net/projects/armboot)
c609719b 99- add other CPU families (starting with ARM)
24ee89b9 100- create U-Boot project (http://sourceforge.net/projects/u-boot)
0d28f34b 101- current project page: see http://www.denx.de/wiki/U-Boot
24ee89b9
WD
102
103
104Names and Spelling:
105===================
106
107The "official" name of this project is "Das U-Boot". The spelling
108"U-Boot" shall be used in all written text (documentation, comments
109in source files etc.). Example:
110
111 This is the README file for the U-Boot project.
112
113File names etc. shall be based on the string "u-boot". Examples:
114
115 include/asm-ppc/u-boot.h
116
117 #include <asm/u-boot.h>
118
119Variable names, preprocessor constants etc. shall be either based on
120the string "u_boot" or on "U_BOOT". Example:
121
122 U_BOOT_VERSION u_boot_logo
123 IH_OS_U_BOOT u_boot_hush_start
c609719b
WD
124
125
93f19cc0
WD
126Versioning:
127===========
128
129U-Boot uses a 3 level version number containing a version, a
130sub-version, and a patchlevel: "U-Boot-2.34.5" means version "2",
131sub-version "34", and patchlevel "4".
132
133The patchlevel is used to indicate certain stages of development
134between released versions, i. e. officially released versions of
135U-Boot will always have a patchlevel of "0".
136
137
c609719b
WD
138Directory Hierarchy:
139====================
140
7152b1d0
WD
141- board Board dependent files
142- common Misc architecture independent functions
c609719b 143- cpu CPU specific files
983fda83 144 - 74xx_7xx Files specific to Freescale MPC74xx and 7xx CPUs
11dadd54
WD
145 - arm720t Files specific to ARM 720 CPUs
146 - arm920t Files specific to ARM 920 CPUs
a85f9f21 147 - at91rm9200 Files specific to Atmel AT91RM9200 CPU
983fda83 148 - imx Files specific to Freescale MC9328 i.MX CPUs
1d9f4105 149 - s3c24x0 Files specific to Samsung S3C24X0 CPUs
11dadd54
WD
150 - arm925t Files specific to ARM 925 CPUs
151 - arm926ejs Files specific to ARM 926 CPUs
8ed96046 152 - arm1136 Files specific to ARM 1136 CPUs
72a087e0 153 - at32ap Files specific to Atmel AVR32 AP CPUs
11dadd54
WD
154 - i386 Files specific to i386 CPUs
155 - ixp Files specific to Intel XScale IXP CPUs
b330990c 156 - leon2 Files specific to Gaisler LEON2 SPARC CPU
1e9a164e 157 - leon3 Files specific to Gaisler LEON3 SPARC CPU
983fda83 158 - mcf52x2 Files specific to Freescale ColdFire MCF52x2 CPUs
1552af70 159 - mcf5227x Files specific to Freescale ColdFire MCF5227x CPUs
8e585f02 160 - mcf532x Files specific to Freescale ColdFire MCF5329 CPUs
8ae158cd 161 - mcf5445x Files specific to Freescale ColdFire MCF5445x CPUs
57a12720 162 - mcf547x_8x Files specific to Freescale ColdFire MCF547x_8x CPUs
11dadd54 163 - mips Files specific to MIPS CPUs
983fda83
WD
164 - mpc5xx Files specific to Freescale MPC5xx CPUs
165 - mpc5xxx Files specific to Freescale MPC5xxx CPUs
166 - mpc8xx Files specific to Freescale MPC8xx CPUs
167 - mpc8220 Files specific to Freescale MPC8220 CPUs
168 - mpc824x Files specific to Freescale MPC824x CPUs
169 - mpc8260 Files specific to Freescale MPC8260 CPUs
170 - mpc85xx Files specific to Freescale MPC85xx CPUs
11dadd54 171 - nios Files specific to Altera NIOS CPUs
5c952cf0 172 - nios2 Files specific to Altera Nios-II CPUs
0c8721a4 173 - ppc4xx Files specific to AMCC PowerPC 4xx CPUs
11dadd54
WD
174 - pxa Files specific to Intel XScale PXA CPUs
175 - s3c44b0 Files specific to Samsung S3C44B0 CPUs
176 - sa1100 Files specific to Intel StrongARM SA1100 CPUs
c609719b
WD
177- disk Code for disk drive partition handling
178- doc Documentation (don't expect too much)
7152b1d0 179- drivers Commonly used device drivers
c609719b
WD
180- dtt Digital Thermometer and Thermostat drivers
181- examples Example code for standalone applications, etc.
182- include Header Files
11dadd54 183- lib_arm Files generic to ARM architecture
7b64fef3 184- lib_avr32 Files generic to AVR32 architecture
11dadd54
WD
185- lib_generic Files generic to all architectures
186- lib_i386 Files generic to i386 architecture
187- lib_m68k Files generic to m68k architecture
188- lib_mips Files generic to MIPS architecture
189- lib_nios Files generic to NIOS architecture
190- lib_ppc Files generic to PowerPC architecture
c2f02da2 191- lib_sparc Files generic to SPARC architecture
218ca724 192- libfdt Library files to support flattened device trees
c609719b 193- net Networking code
c609719b 194- post Power On Self Test
c609719b
WD
195- rtc Real Time Clock drivers
196- tools Tools to build S-Record or U-Boot images, etc.
197
c609719b
WD
198Software Configuration:
199=======================
200
201Configuration is usually done using C preprocessor defines; the
202rationale behind that is to avoid dead code whenever possible.
203
204There are two classes of configuration variables:
205
206* Configuration _OPTIONS_:
207 These are selectable by the user and have names beginning with
208 "CONFIG_".
209
210* Configuration _SETTINGS_:
211 These depend on the hardware etc. and should not be meddled with if
212 you don't know what you're doing; they have names beginning with
213 "CFG_".
214
215Later we will add a configuration tool - probably similar to or even
216identical to what's used for the Linux kernel. Right now, we have to
217do the configuration by hand, which means creating some symbolic
218links and editing some configuration files. We use the TQM8xxL boards
219as an example here.
220
221
222Selection of Processor Architecture and Board Type:
223---------------------------------------------------
224
225For all supported boards there are ready-to-use default
226configurations available; just type "make <board_name>_config".
227
228Example: For a TQM823L module type:
229
230 cd u-boot
231 make TQM823L_config
232
11ccc33f 233For the Cogent platform, you need to specify the CPU type as well;
c609719b
WD
234e.g. "make cogent_mpc8xx_config". And also configure the cogent
235directory according to the instructions in cogent/README.
236
237
238Configuration Options:
239----------------------
240
241Configuration depends on the combination of board and CPU type; all
242such information is kept in a configuration file
243"include/configs/<board_name>.h".
244
245Example: For a TQM823L module, all configuration settings are in
246"include/configs/TQM823L.h".
247
248
7f6c2cbc
WD
249Many of the options are named exactly as the corresponding Linux
250kernel configuration options. The intention is to make it easier to
251build a config tool - later.
252
253
c609719b
WD
254The following options need to be configured:
255
2628114e
KP
256- CPU Type: Define exactly one, e.g. CONFIG_MPC85XX.
257
258- Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS.
6ccec449
WD
259
260- CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined)
09ea0de0 261 Define exactly one, e.g. CONFIG_ATSTK1002
c609719b
WD
262
263- CPU Module Type: (if CONFIG_COGENT is defined)
264 Define exactly one of
265 CONFIG_CMA286_60_OLD
266--- FIXME --- not tested yet:
267 CONFIG_CMA286_60, CONFIG_CMA286_21, CONFIG_CMA286_60P,
268 CONFIG_CMA287_23, CONFIG_CMA287_50
269
270- Motherboard Type: (if CONFIG_COGENT is defined)
271 Define exactly one of
272 CONFIG_CMA101, CONFIG_CMA102
273
274- Motherboard I/O Modules: (if CONFIG_COGENT is defined)
275 Define one or more of
276 CONFIG_CMA302
277
278- Motherboard Options: (if CONFIG_CMA101 or CONFIG_CMA102 are defined)
279 Define one or more of
280 CONFIG_LCD_HEARTBEAT - update a character position on
11ccc33f 281 the LCD display every second with
c609719b
WD
282 a "rotator" |\-/|\-/
283
2535d602
WD
284- Board flavour: (if CONFIG_MPC8260ADS is defined)
285 CONFIG_ADSTYPE
286 Possible values are:
287 CFG_8260ADS - original MPC8260ADS
180d3f74 288 CFG_8266ADS - MPC8266ADS
54387ac9 289 CFG_PQ2FADS - PQ2FADS-ZU or PQ2FADS-VR
04a85b3b 290 CFG_8272ADS - MPC8272ADS
2535d602 291
c609719b 292- MPC824X Family Member (if CONFIG_MPC824X is defined)
5da627a4
WD
293 Define exactly one of
294 CONFIG_MPC8240, CONFIG_MPC8245
c609719b 295
11ccc33f 296- 8xx CPU Options: (if using an MPC8xx CPU)
66ca92a5
WD
297 CONFIG_8xx_GCLK_FREQ - deprecated: CPU clock if
298 get_gclk_freq() cannot work
5da627a4
WD
299 e.g. if there is no 32KHz
300 reference PIT/RTC clock
66ca92a5
WD
301 CONFIG_8xx_OSCLK - PLL input clock (either EXTCLK
302 or XTAL/EXTAL)
c609719b 303
66ca92a5
WD
304- 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU):
305 CFG_8xx_CPUCLK_MIN
306 CFG_8xx_CPUCLK_MAX
307 CONFIG_8xx_CPUCLK_DEFAULT
75d1ea7f
WD
308 See doc/README.MPC866
309
310 CFG_MEASURE_CPUCLK
311
ba56f625
WD
312 Define this to measure the actual CPU clock instead
313 of relying on the correctness of the configured
314 values. Mostly useful for board bringup to make sure
315 the PLL is locked at the intended frequency. Note
316 that this requires a (stable) reference clock (32 kHz
66ca92a5 317 RTC clock or CFG_8XX_XIN)
75d1ea7f 318
0b953ffc
MK
319- Intel Monahans options:
320 CFG_MONAHANS_RUN_MODE_OSC_RATIO
321
322 Defines the Monahans run mode to oscillator
323 ratio. Valid values are 8, 16, 24, 31. The core
324 frequency is this value multiplied by 13 MHz.
325
326 CFG_MONAHANS_TURBO_RUN_MODE_RATIO
cf48eb9a 327
0b953ffc
MK
328 Defines the Monahans turbo mode to oscillator
329 ratio. Valid values are 1 (default if undefined) and
cf48eb9a 330 2. The core frequency as calculated above is multiplied
0b953ffc 331 by this value.
cf48eb9a 332
5da627a4 333- Linux Kernel Interface:
c609719b
WD
334 CONFIG_CLOCKS_IN_MHZ
335
336 U-Boot stores all clock information in Hz
337 internally. For binary compatibility with older Linux
338 kernels (which expect the clocks passed in the
339 bd_info data to be in MHz) the environment variable
340 "clocks_in_mhz" can be defined so that U-Boot
341 converts clock data to MHZ before passing it to the
342 Linux kernel.
c609719b 343 When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
218ca724 344 "clocks_in_mhz=1" is automatically included in the
c609719b
WD
345 default environment.
346
5da627a4
WD
347 CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only]
348
11ccc33f 349 When transferring memsize parameter to linux, some versions
5da627a4
WD
350 expect it to be in bytes, others in MB.
351 Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.
352
fec6d9ee 353 CONFIG_OF_LIBFDT
f57f70aa
WD
354
355 New kernel versions are expecting firmware settings to be
213bf8c8
GVB
356 passed using flattened device trees (based on open firmware
357 concepts).
358
359 CONFIG_OF_LIBFDT
360 * New libfdt-based support
361 * Adds the "fdt" command
3bb342fc 362 * The bootm command automatically updates the fdt
213bf8c8 363
f57f70aa 364 OF_CPU - The proper name of the cpus node.
c2871f03 365 OF_SOC - The proper name of the soc node.
f57f70aa 366 OF_TBCLK - The timebase frequency.
c2871f03 367 OF_STDOUT_PATH - The path to the console device
f57f70aa 368
11ccc33f
MZ
369 boards with QUICC Engines require OF_QE to set UCC MAC
370 addresses
3bb342fc 371
4e253137
KG
372 CONFIG_OF_BOARD_SETUP
373
374 Board code has addition modification that it wants to make
375 to the flat device tree before handing it off to the kernel
f57f70aa 376
0267768e
MM
377 CONFIG_OF_BOOT_CPU
378
11ccc33f 379 This define fills in the correct boot CPU in the boot
0267768e
MM
380 param header, the default value is zero if undefined.
381
6705d81e 382- Serial Ports:
48d0192f 383 CONFIG_PL010_SERIAL
6705d81e
WD
384
385 Define this if you want support for Amba PrimeCell PL010 UARTs.
386
48d0192f 387 CONFIG_PL011_SERIAL
6705d81e
WD
388
389 Define this if you want support for Amba PrimeCell PL011 UARTs.
390
391 CONFIG_PL011_CLOCK
392
393 If you have Amba PrimeCell PL011 UARTs, set this variable to
394 the clock speed of the UARTs.
395
396 CONFIG_PL01x_PORTS
397
398 If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
399 define this to a list of base addresses for each (supported)
400 port. See e.g. include/configs/versatile.h
401
402
c609719b 403- Console Interface:
43d9616c
WD
404 Depending on board, define exactly one serial port
405 (like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
406 CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
407 console by defining CONFIG_8xx_CONS_NONE
c609719b
WD
408
409 Note: if CONFIG_8xx_CONS_NONE is defined, the serial
410 port routines must be defined elsewhere
411 (i.e. serial_init(), serial_getc(), ...)
412
413 CONFIG_CFB_CONSOLE
414 Enables console device for a color framebuffer. Needs following
415 defines (cf. smiLynxEM, i8042, board/eltec/bab7xx)
416 VIDEO_FB_LITTLE_ENDIAN graphic memory organisation
417 (default big endian)
418 VIDEO_HW_RECTFILL graphic chip supports
419 rectangle fill
420 (cf. smiLynxEM)
421 VIDEO_HW_BITBLT graphic chip supports
422 bit-blit (cf. smiLynxEM)
423 VIDEO_VISIBLE_COLS visible pixel columns
424 (cols=pitch)
ba56f625
WD
425 VIDEO_VISIBLE_ROWS visible pixel rows
426 VIDEO_PIXEL_SIZE bytes per pixel
c609719b
WD
427 VIDEO_DATA_FORMAT graphic data format
428 (0-5, cf. cfb_console.c)
ba56f625 429 VIDEO_FB_ADRS framebuffer address
c609719b
WD
430 VIDEO_KBD_INIT_FCT keyboard int fct
431 (i.e. i8042_kbd_init())
432 VIDEO_TSTC_FCT test char fct
433 (i.e. i8042_tstc)
434 VIDEO_GETC_FCT get char fct
435 (i.e. i8042_getc)
436 CONFIG_CONSOLE_CURSOR cursor drawing on/off
437 (requires blink timer
438 cf. i8042.c)
439 CFG_CONSOLE_BLINK_COUNT blink interval (cf. i8042.c)
440 CONFIG_CONSOLE_TIME display time/date info in
441 upper right corner
602ad3b3 442 (requires CONFIG_CMD_DATE)
c609719b
WD
443 CONFIG_VIDEO_LOGO display Linux logo in
444 upper left corner
a6c7ad2f
WD
445 CONFIG_VIDEO_BMP_LOGO use bmp_logo.h instead of
446 linux_logo.h for logo.
447 Requires CONFIG_VIDEO_LOGO
c609719b 448 CONFIG_CONSOLE_EXTRA_INFO
11ccc33f 449 additional board info beside
c609719b
WD
450 the logo
451
43d9616c
WD
452 When CONFIG_CFB_CONSOLE is defined, video console is
453 default i/o. Serial console can be forced with
454 environment 'console=serial'.
c609719b 455
d4ca31c4
WD
456 When CONFIG_SILENT_CONSOLE is defined, all console
457 messages (by U-Boot and Linux!) can be silenced with
458 the "silent" environment variable. See
459 doc/README.silent for more information.
a3ad8e26 460
c609719b
WD
461- Console Baudrate:
462 CONFIG_BAUDRATE - in bps
463 Select one of the baudrates listed in
464 CFG_BAUDRATE_TABLE, see below.
3bbc899f 465 CFG_BRGCLK_PRESCALE, baudrate prescale
c609719b
WD
466
467- Interrupt driven serial port input:
468 CONFIG_SERIAL_SOFTWARE_FIFO
469
470 PPC405GP only.
471 Use an interrupt handler for receiving data on the
472 serial port. It also enables using hardware handshake
473 (RTS/CTS) and UART's built-in FIFO. Set the number of
474 bytes the interrupt driven input buffer should have.
475
109c0e3a
WD
476 Leave undefined to disable this feature, including
477 disable the buffer and hardware handshake.
c609719b 478
1d49b1f3
SR
479- Console UART Number:
480 CONFIG_UART1_CONSOLE
481
0c8721a4 482 AMCC PPC4xx only.
1d49b1f3
SR
483 If defined internal UART1 (and not UART0) is used
484 as default U-Boot console.
485
c609719b
WD
486- Boot Delay: CONFIG_BOOTDELAY - in seconds
487 Delay before automatically booting the default image;
488 set to -1 to disable autoboot.
489
490 See doc/README.autoboot for these options that
491 work with CONFIG_BOOTDELAY. None are required.
492 CONFIG_BOOT_RETRY_TIME
493 CONFIG_BOOT_RETRY_MIN
494 CONFIG_AUTOBOOT_KEYED
495 CONFIG_AUTOBOOT_PROMPT
496 CONFIG_AUTOBOOT_DELAY_STR
497 CONFIG_AUTOBOOT_STOP_STR
498 CONFIG_AUTOBOOT_DELAY_STR2
499 CONFIG_AUTOBOOT_STOP_STR2
500 CONFIG_ZERO_BOOTDELAY_CHECK
501 CONFIG_RESET_TO_RETRY
502
503- Autoboot Command:
504 CONFIG_BOOTCOMMAND
505 Only needed when CONFIG_BOOTDELAY is enabled;
506 define a command string that is automatically executed
507 when no character is read on the console interface
508 within "Boot Delay" after reset.
509
510 CONFIG_BOOTARGS
43d9616c
WD
511 This can be used to pass arguments to the bootm
512 command. The value of CONFIG_BOOTARGS goes into the
513 environment value "bootargs".
c609719b
WD
514
515 CONFIG_RAMBOOT and CONFIG_NFSBOOT
43d9616c
WD
516 The value of these goes into the environment as
517 "ramboot" and "nfsboot" respectively, and can be used
518 as a convenience, when switching between booting from
11ccc33f 519 RAM and NFS.
c609719b
WD
520
521- Pre-Boot Commands:
522 CONFIG_PREBOOT
523
524 When this option is #defined, the existence of the
525 environment variable "preboot" will be checked
526 immediately before starting the CONFIG_BOOTDELAY
527 countdown and/or running the auto-boot command resp.
528 entering interactive mode.
529
530 This feature is especially useful when "preboot" is
531 automatically generated or modified. For an example
532 see the LWMON board specific code: here "preboot" is
533 modified when the user holds down a certain
534 combination of keys on the (special) keyboard when
535 booting the systems
536
537- Serial Download Echo Mode:
538 CONFIG_LOADS_ECHO
539 If defined to 1, all characters received during a
540 serial download (using the "loads" command) are
541 echoed back. This might be needed by some terminal
542 emulations (like "cu"), but may as well just take
543 time on others. This setting #define's the initial
544 value of the "loads_echo" environment variable.
545
602ad3b3 546- Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined)
c609719b
WD
547 CONFIG_KGDB_BAUDRATE
548 Select one of the baudrates listed in
549 CFG_BAUDRATE_TABLE, see below.
550
551- Monitor Functions:
602ad3b3
JL
552 Monitor commands can be included or excluded
553 from the build by using the #include files
554 "config_cmd_all.h" and #undef'ing unwanted
555 commands, or using "config_cmd_default.h"
556 and augmenting with additional #define's
557 for wanted commands.
558
559 The default command configuration includes all commands
560 except those marked below with a "*".
561
562 CONFIG_CMD_ASKENV * ask for env variable
563 CONFIG_CMD_AUTOSCRIPT Autoscript Support
564 CONFIG_CMD_BDI bdinfo
565 CONFIG_CMD_BEDBUG * Include BedBug Debugger
566 CONFIG_CMD_BMP * BMP support
567 CONFIG_CMD_BSP * Board specific commands
568 CONFIG_CMD_BOOTD bootd
569 CONFIG_CMD_CACHE * icache, dcache
570 CONFIG_CMD_CONSOLE coninfo
571 CONFIG_CMD_DATE * support for RTC, date/time...
572 CONFIG_CMD_DHCP * DHCP support
573 CONFIG_CMD_DIAG * Diagnostics
574 CONFIG_CMD_DOC * Disk-On-Chip Support
575 CONFIG_CMD_DTT * Digital Therm and Thermostat
576 CONFIG_CMD_ECHO echo arguments
577 CONFIG_CMD_EEPROM * EEPROM read/write support
578 CONFIG_CMD_ELF * bootelf, bootvx
579 CONFIG_CMD_ENV saveenv
580 CONFIG_CMD_FDC * Floppy Disk Support
581 CONFIG_CMD_FAT * FAT partition support
582 CONFIG_CMD_FDOS * Dos diskette Support
583 CONFIG_CMD_FLASH flinfo, erase, protect
584 CONFIG_CMD_FPGA FPGA device initialization support
585 CONFIG_CMD_HWFLOW * RTS/CTS hw flow control
586 CONFIG_CMD_I2C * I2C serial bus support
587 CONFIG_CMD_IDE * IDE harddisk support
588 CONFIG_CMD_IMI iminfo
589 CONFIG_CMD_IMLS List all found images
590 CONFIG_CMD_IMMAP * IMMR dump support
591 CONFIG_CMD_IRQ * irqinfo
592 CONFIG_CMD_ITEST Integer/string test of 2 values
593 CONFIG_CMD_JFFS2 * JFFS2 Support
594 CONFIG_CMD_KGDB * kgdb
595 CONFIG_CMD_LOADB loadb
596 CONFIG_CMD_LOADS loads
597 CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base,
598 loop, loopw, mtest
599 CONFIG_CMD_MISC Misc functions like sleep etc
600 CONFIG_CMD_MMC * MMC memory mapped support
601 CONFIG_CMD_MII * MII utility commands
602 CONFIG_CMD_NAND * NAND support
603 CONFIG_CMD_NET bootp, tftpboot, rarpboot
604 CONFIG_CMD_PCI * pciinfo
605 CONFIG_CMD_PCMCIA * PCMCIA support
606 CONFIG_CMD_PING * send ICMP ECHO_REQUEST to network
607 host
608 CONFIG_CMD_PORTIO * Port I/O
609 CONFIG_CMD_REGINFO * Register dump
610 CONFIG_CMD_RUN run command in env variable
611 CONFIG_CMD_SAVES * save S record dump
612 CONFIG_CMD_SCSI * SCSI Support
613 CONFIG_CMD_SDRAM * print SDRAM configuration information
614 (requires CONFIG_CMD_I2C)
615 CONFIG_CMD_SETGETDCR Support for DCR Register access
616 (4xx only)
617 CONFIG_CMD_SPI * SPI serial bus support
618 CONFIG_CMD_USB * USB support
619 CONFIG_CMD_VFD * VFD support (TRAB)
602ad3b3
JL
620 CONFIG_CMD_CDP * Cisco Discover Protocol support
621 CONFIG_CMD_FSL * Microblaze FSL support
622
c609719b
WD
623
624 EXAMPLE: If you want all functions except of network
625 support you can write:
626
602ad3b3
JL
627 #include "config_cmd_all.h"
628 #undef CONFIG_CMD_NET
c609719b 629
213bf8c8
GVB
630 Other Commands:
631 fdt (flattened device tree) command: CONFIG_OF_LIBFDT
c609719b
WD
632
633 Note: Don't enable the "icache" and "dcache" commands
602ad3b3 634 (configuration option CONFIG_CMD_CACHE) unless you know
43d9616c
WD
635 what you (and your U-Boot users) are doing. Data
636 cache cannot be enabled on systems like the 8xx or
637 8260 (where accesses to the IMMR region must be
638 uncached), and it cannot be disabled on all other
639 systems where we (mis-) use the data cache to hold an
640 initial stack and some data.
c609719b
WD
641
642
643 XXX - this list needs to get updated!
644
645- Watchdog:
646 CONFIG_WATCHDOG
647 If this variable is defined, it enables watchdog
7152b1d0 648 support. There must be support in the platform specific
c609719b
WD
649 code for a watchdog. For the 8xx and 8260 CPUs, the
650 SIU Watchdog feature is enabled in the SYPCR
651 register.
652
c1551ea8
SR
653- U-Boot Version:
654 CONFIG_VERSION_VARIABLE
655 If this variable is defined, an environment variable
656 named "ver" is created by U-Boot showing the U-Boot
657 version as printed by the "version" command.
658 This variable is readonly.
659
c609719b
WD
660- Real-Time Clock:
661
602ad3b3 662 When CONFIG_CMD_DATE is selected, the type of the RTC
c609719b
WD
663 has to be selected, too. Define exactly one of the
664 following options:
665
666 CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx
667 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC
7ce63709 668 CONFIG_RTC_MC13783 - use MC13783 RTC
c609719b 669 CONFIG_RTC_MC146818 - use MC146818 RTC
1cb8e980 670 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC
c609719b 671 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC
7f70e853 672 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC
3bac3513 673 CONFIG_RTC_DS164x - use Dallas DS164x RTC
9536dfcc 674 CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC
4c0d4c3b 675 CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC
da8808df 676 CFG_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337
c609719b 677
b37c7e5e
WD
678 Note that if the RTC uses I2C, then the I2C interface
679 must also be configured. See I2C Support, below.
680
c609719b
WD
681- Timestamp Support:
682
43d9616c
WD
683 When CONFIG_TIMESTAMP is selected, the timestamp
684 (date and time) of an image is printed by image
685 commands like bootm or iminfo. This option is
602ad3b3 686 automatically enabled when you select CONFIG_CMD_DATE .
c609719b
WD
687
688- Partition Support:
689 CONFIG_MAC_PARTITION and/or CONFIG_DOS_PARTITION
690 and/or CONFIG_ISO_PARTITION
691
218ca724
WD
692 If IDE or SCSI support is enabled (CONFIG_CMD_IDE or
693 CONFIG_CMD_SCSI) you must configure support for at
694 least one partition type as well.
c609719b
WD
695
696- IDE Reset method:
4d13cbad
WD
697 CONFIG_IDE_RESET_ROUTINE - this is defined in several
698 board configurations files but used nowhere!
c609719b 699
4d13cbad
WD
700 CONFIG_IDE_RESET - is this is defined, IDE Reset will
701 be performed by calling the function
702 ide_set_reset(int reset)
703 which has to be defined in a board specific file
c609719b
WD
704
705- ATAPI Support:
706 CONFIG_ATAPI
707
708 Set this to enable ATAPI support.
709
c40b2956
WD
710- LBA48 Support
711 CONFIG_LBA48
712
713 Set this to enable support for disks larger than 137GB
714 Also look at CFG_64BIT_LBA ,CFG_64BIT_VSPRINTF and CFG_64BIT_STRTOUL
715 Whithout these , LBA48 support uses 32bit variables and will 'only'
716 support disks up to 2.1TB.
717
718 CFG_64BIT_LBA:
719 When enabled, makes the IDE subsystem use 64bit sector addresses.
720 Default is 32bit.
721
c609719b
WD
722- SCSI Support:
723 At the moment only there is only support for the
724 SYM53C8XX SCSI controller; define
725 CONFIG_SCSI_SYM53C8XX to enable it.
726
727 CFG_SCSI_MAX_LUN [8], CFG_SCSI_MAX_SCSI_ID [7] and
728 CFG_SCSI_MAX_DEVICE [CFG_SCSI_MAX_SCSI_ID *
729 CFG_SCSI_MAX_LUN] can be adjusted to define the
730 maximum numbers of LUNs, SCSI ID's and target
731 devices.
732 CFG_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)
733
734- NETWORK Support (PCI):
682011ff
WD
735 CONFIG_E1000
736 Support for Intel 8254x gigabit chips.
53cf9435 737
ac3315c2 738 CONFIG_E1000_FALLBACK_MAC
11ccc33f 739 default MAC for empty EEPROM after production.
ac3315c2 740
c609719b
WD
741 CONFIG_EEPRO100
742 Support for Intel 82557/82559/82559ER chips.
11ccc33f 743 Optional CONFIG_EEPRO100_SROM_WRITE enables EEPROM
c609719b
WD
744 write routine for first time initialisation.
745
746 CONFIG_TULIP
747 Support for Digital 2114x chips.
748 Optional CONFIG_TULIP_SELECT_MEDIA for board specific
749 modem chip initialisation (KS8761/QS6611).
750
751 CONFIG_NATSEMI
752 Support for National dp83815 chips.
753
754 CONFIG_NS8382X
755 Support for National dp8382[01] gigabit chips.
756
45219c46
WD
757- NETWORK Support (other):
758
759 CONFIG_DRIVER_LAN91C96
760 Support for SMSC's LAN91C96 chips.
761
762 CONFIG_LAN91C96_BASE
763 Define this to hold the physical address
764 of the LAN91C96's I/O space
765
766 CONFIG_LAN91C96_USE_32_BIT
767 Define this to enable 32 bit addressing
768
f39748ae
WD
769 CONFIG_DRIVER_SMC91111
770 Support for SMSC's LAN91C111 chip
771
772 CONFIG_SMC91111_BASE
773 Define this to hold the physical address
774 of the device (I/O space)
775
776 CONFIG_SMC_USE_32_BIT
777 Define this if data bus is 32 bits
778
779 CONFIG_SMC_USE_IOFUNCS
780 Define this to use i/o functions instead of macros
781 (some hardware wont work with macros)
782
557b377d
JG
783 CONFIG_DRIVER_SMC911X
784 Support for SMSC's LAN911x and LAN921x chips
785
786 CONFIG_DRIVER_SMC911X_BASE
787 Define this to hold the physical address
788 of the device (I/O space)
789
790 CONFIG_DRIVER_SMC911X_32_BIT
791 Define this if data bus is 32 bits
792
793 CONFIG_DRIVER_SMC911X_16_BIT
794 Define this if data bus is 16 bits. If your processor
795 automatically converts one 32 bit word to two 16 bit
796 words you may also try CONFIG_DRIVER_SMC911X_32_BIT.
797
c609719b
WD
798- USB Support:
799 At the moment only the UHCI host controller is
4d13cbad 800 supported (PIP405, MIP405, MPC5200); define
c609719b
WD
801 CONFIG_USB_UHCI to enable it.
802 define CONFIG_USB_KEYBOARD to enable the USB Keyboard
30d56fae 803 and define CONFIG_USB_STORAGE to enable the USB
c609719b
WD
804 storage devices.
805 Note:
806 Supported are USB Keyboards and USB Floppy drives
807 (TEAC FD-05PUB).
4d13cbad
WD
808 MPC5200 USB requires additional defines:
809 CONFIG_USB_CLOCK
810 for 528 MHz Clock: 0x0001bbbb
811 CONFIG_USB_CONFIG
812 for differential drivers: 0x00001000
813 for single ended drivers: 0x00005000
fdcfaa1b
ZW
814 CFG_USB_EVENT_POLL
815 May be defined to allow interrupt polling
816 instead of using asynchronous interrupts
4d13cbad 817
16c8d5e7
WD
818- USB Device:
819 Define the below if you wish to use the USB console.
820 Once firmware is rebuilt from a serial console issue the
821 command "setenv stdin usbtty; setenv stdout usbtty" and
11ccc33f 822 attach your USB cable. The Unix command "dmesg" should print
16c8d5e7
WD
823 it has found a new device. The environment variable usbtty
824 can be set to gserial or cdc_acm to enable your device to
386eda02 825 appear to a USB host as a Linux gserial device or a
16c8d5e7
WD
826 Common Device Class Abstract Control Model serial device.
827 If you select usbtty = gserial you should be able to enumerate
828 a Linux host by
829 # modprobe usbserial vendor=0xVendorID product=0xProductID
830 else if using cdc_acm, simply setting the environment
831 variable usbtty to be cdc_acm should suffice. The following
832 might be defined in YourBoardName.h
386eda02 833
16c8d5e7
WD
834 CONFIG_USB_DEVICE
835 Define this to build a UDC device
836
837 CONFIG_USB_TTY
838 Define this to have a tty type of device available to
839 talk to the UDC device
386eda02 840
16c8d5e7
WD
841 CFG_CONSOLE_IS_IN_ENV
842 Define this if you want stdin, stdout &/or stderr to
843 be set to usbtty.
844
845 mpc8xx:
846 CFG_USB_EXTC_CLK 0xBLAH
847 Derive USB clock from external clock "blah"
386eda02
WD
848 - CFG_USB_EXTC_CLK 0x02
849
16c8d5e7
WD
850 CFG_USB_BRG_CLK 0xBLAH
851 Derive USB clock from brgclk
852 - CFG_USB_BRG_CLK 0x04
853
386eda02 854 If you have a USB-IF assigned VendorID then you may wish to
16c8d5e7 855 define your own vendor specific values either in BoardName.h
386eda02 856 or directly in usbd_vendor_info.h. If you don't define
16c8d5e7
WD
857 CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
858 CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
859 should pretend to be a Linux device to it's target host.
860
861 CONFIG_USBD_MANUFACTURER
862 Define this string as the name of your company for
863 - CONFIG_USBD_MANUFACTURER "my company"
386eda02 864
16c8d5e7
WD
865 CONFIG_USBD_PRODUCT_NAME
866 Define this string as the name of your product
867 - CONFIG_USBD_PRODUCT_NAME "acme usb device"
868
869 CONFIG_USBD_VENDORID
870 Define this as your assigned Vendor ID from the USB
871 Implementors Forum. This *must* be a genuine Vendor ID
872 to avoid polluting the USB namespace.
873 - CONFIG_USBD_VENDORID 0xFFFF
386eda02 874
16c8d5e7
WD
875 CONFIG_USBD_PRODUCTID
876 Define this as the unique Product ID
877 for your device
878 - CONFIG_USBD_PRODUCTID 0xFFFF
4d13cbad 879
c609719b 880
71f95118 881- MMC Support:
8bde7f77
WD
882 The MMC controller on the Intel PXA is supported. To
883 enable this define CONFIG_MMC. The MMC can be
884 accessed from the boot prompt by mapping the device
71f95118 885 to physical memory similar to flash. Command line is
602ad3b3
JL
886 enabled with CONFIG_CMD_MMC. The MMC driver also works with
887 the FAT fs. This is enabled with CONFIG_CMD_FAT.
71f95118 888
6705d81e
WD
889- Journaling Flash filesystem support:
890 CONFIG_JFFS2_NAND, CONFIG_JFFS2_NAND_OFF, CONFIG_JFFS2_NAND_SIZE,
891 CONFIG_JFFS2_NAND_DEV
892 Define these for a default partition on a NAND device
893
894 CFG_JFFS2_FIRST_SECTOR,
895 CFG_JFFS2_FIRST_BANK, CFG_JFFS2_NUM_BANKS
896 Define these for a default partition on a NOR device
897
898 CFG_JFFS_CUSTOM_PART
899 Define this to create an own partition. You have to provide a
900 function struct part_info* jffs2_part_info(int part_num)
901
902 If you define only one JFFS2 partition you may also want to
efe2a4d5 903 #define CFG_JFFS_SINGLE_PART 1
6705d81e
WD
904 to disable the command chpart. This is the default when you
905 have not defined a custom partition
906
c609719b
WD
907- Keyboard Support:
908 CONFIG_ISA_KEYBOARD
909
910 Define this to enable standard (PC-Style) keyboard
911 support
912
913 CONFIG_I8042_KBD
914 Standard PC keyboard driver with US (is default) and
915 GERMAN key layout (switch via environment 'keymap=de') support.
916 Export function i8042_kbd_init, i8042_tstc and i8042_getc
917 for cfb_console. Supports cursor blinking.
918
919- Video support:
920 CONFIG_VIDEO
921
922 Define this to enable video support (for output to
923 video).
924
925 CONFIG_VIDEO_CT69000
926
927 Enable Chips & Technologies 69000 Video chip
928
929 CONFIG_VIDEO_SMI_LYNXEM
b79a11cc 930 Enable Silicon Motion SMI 712/710/810 Video chip. The
eeb1b77b
WD
931 video output is selected via environment 'videoout'
932 (1 = LCD and 2 = CRT). If videoout is undefined, CRT is
933 assumed.
934
b79a11cc 935 For the CT69000 and SMI_LYNXEM drivers, videomode is
11ccc33f 936 selected via environment 'videomode'. Two different ways
eeb1b77b
WD
937 are possible:
938 - "videomode=num" 'num' is a standard LiLo mode numbers.
6e592385 939 Following standard modes are supported (* is default):
eeb1b77b
WD
940
941 Colors 640x480 800x600 1024x768 1152x864 1280x1024
942 -------------+---------------------------------------------
943 8 bits | 0x301* 0x303 0x305 0x161 0x307
944 15 bits | 0x310 0x313 0x316 0x162 0x319
945 16 bits | 0x311 0x314 0x317 0x163 0x31A
946 24 bits | 0x312 0x315 0x318 ? 0x31B
947 -------------+---------------------------------------------
c609719b
WD
948 (i.e. setenv videomode 317; saveenv; reset;)
949
b79a11cc 950 - "videomode=bootargs" all the video parameters are parsed
7817cb20 951 from the bootargs. (See drivers/video/videomodes.c)
eeb1b77b
WD
952
953
c1551ea8 954 CONFIG_VIDEO_SED13806
43d9616c 955 Enable Epson SED13806 driver. This driver supports 8bpp
a6c7ad2f
WD
956 and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
957 or CONFIG_VIDEO_SED13806_16BPP
958
682011ff 959- Keyboard Support:
8bde7f77 960 CONFIG_KEYBOARD
682011ff 961
8bde7f77
WD
962 Define this to enable a custom keyboard support.
963 This simply calls drv_keyboard_init() which must be
964 defined in your board-specific files.
965 The only board using this so far is RBC823.
a6c7ad2f 966
c609719b
WD
967- LCD Support: CONFIG_LCD
968
969 Define this to enable LCD support (for output to LCD
970 display); also select one of the supported displays
971 by defining one of these:
972
39cf4804
SP
973 CONFIG_ATMEL_LCD:
974
975 HITACHI TX09D70VM1CCA, 3.5", 240x320.
976
fd3103bb 977 CONFIG_NEC_NL6448AC33:
c609719b 978
fd3103bb 979 NEC NL6448AC33-18. Active, color, single scan.
c609719b 980
fd3103bb 981 CONFIG_NEC_NL6448BC20
c609719b 982
fd3103bb
WD
983 NEC NL6448BC20-08. 6.5", 640x480.
984 Active, color, single scan.
985
986 CONFIG_NEC_NL6448BC33_54
987
988 NEC NL6448BC33-54. 10.4", 640x480.
c609719b
WD
989 Active, color, single scan.
990
991 CONFIG_SHARP_16x9
992
993 Sharp 320x240. Active, color, single scan.
994 It isn't 16x9, and I am not sure what it is.
995
996 CONFIG_SHARP_LQ64D341
997
998 Sharp LQ64D341 display, 640x480.
999 Active, color, single scan.
1000
1001 CONFIG_HLD1045
1002
1003 HLD1045 display, 640x480.
1004 Active, color, single scan.
1005
1006 CONFIG_OPTREX_BW
1007
1008 Optrex CBL50840-2 NF-FW 99 22 M5
1009 or
1010 Hitachi LMG6912RPFC-00T
1011 or
1012 Hitachi SP14Q002
1013
1014 320x240. Black & white.
1015
1016 Normally display is black on white background; define
1017 CFG_WHITE_ON_BLACK to get it inverted.
1018
7152b1d0 1019- Splash Screen Support: CONFIG_SPLASH_SCREEN
d791b1dc 1020
8bde7f77
WD
1021 If this option is set, the environment is checked for
1022 a variable "splashimage". If found, the usual display
1023 of logo, copyright and system information on the LCD
e94d2cd9 1024 is suppressed and the BMP image at the address
8bde7f77
WD
1025 specified in "splashimage" is loaded instead. The
1026 console is redirected to the "nulldev", too. This
1027 allows for a "silent" boot where a splash screen is
1028 loaded very quickly after power-on.
d791b1dc 1029
98f4a3df
SR
1030- Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP
1031
1032 If this option is set, additionally to standard BMP
1033 images, gzipped BMP images can be displayed via the
1034 splashscreen support or the bmp command.
1035
c29fdfc1
WD
1036- Compression support:
1037 CONFIG_BZIP2
1038
1039 If this option is set, support for bzip2 compressed
1040 images is included. If not, only uncompressed and gzip
1041 compressed images are supported.
1042
42d1f039
WD
1043 NOTE: the bzip2 algorithm requires a lot of RAM, so
1044 the malloc area (as defined by CFG_MALLOC_LEN) should
1045 be at least 4MB.
d791b1dc 1046
fc9c1727
LCM
1047 CONFIG_LZMA
1048
1049 If this option is set, support for lzma compressed
1050 images is included.
1051
1052 Note: The LZMA algorithm adds between 2 and 4KB of code and it
1053 requires an amount of dynamic memory that is given by the
1054 formula:
1055
1056 (1846 + 768 << (lc + lp)) * sizeof(uint16)
1057
1058 Where lc and lp stand for, respectively, Literal context bits
1059 and Literal pos bits.
1060
1061 This value is upper-bounded by 14MB in the worst case. Anyway,
1062 for a ~4MB large kernel image, we have lc=3 and lp=0 for a
1063 total amount of (1846 + 768 << (3 + 0)) * 2 = ~41KB... that is
1064 a very small buffer.
1065
1066 Use the lzmainfo tool to determinate the lc and lp values and
1067 then calculate the amount of needed dynamic memory (ensuring
1068 the appropriate CFG_MALLOC_LEN value).
1069
17ea1177
WD
1070- MII/PHY support:
1071 CONFIG_PHY_ADDR
1072
1073 The address of PHY on MII bus.
1074
1075 CONFIG_PHY_CLOCK_FREQ (ppc4xx)
1076
1077 The clock frequency of the MII bus
1078
1079 CONFIG_PHY_GIGE
1080
1081 If this option is set, support for speed/duplex
11ccc33f 1082 detection of gigabit PHY is included.
17ea1177
WD
1083
1084 CONFIG_PHY_RESET_DELAY
1085
1086 Some PHY like Intel LXT971A need extra delay after
1087 reset before any MII register access is possible.
1088 For such PHY, set this option to the usec delay
1089 required. (minimum 300usec for LXT971A)
1090
1091 CONFIG_PHY_CMD_DELAY (ppc4xx)
1092
1093 Some PHY like Intel LXT971A need extra delay after
1094 command issued before MII status register can be read
1095
c609719b
WD
1096- Ethernet address:
1097 CONFIG_ETHADDR
c68a05fe 1098 CONFIG_ETH1ADDR
c609719b
WD
1099 CONFIG_ETH2ADDR
1100 CONFIG_ETH3ADDR
c68a05fe 1101 CONFIG_ETH4ADDR
1102 CONFIG_ETH5ADDR
c609719b 1103
11ccc33f
MZ
1104 Define a default value for Ethernet address to use
1105 for the respective Ethernet interface, in case this
c609719b
WD
1106 is not determined automatically.
1107
1108- IP address:
1109 CONFIG_IPADDR
1110
1111 Define a default value for the IP address to use for
11ccc33f 1112 the default Ethernet interface, in case this is not
c609719b
WD
1113 determined through e.g. bootp.
1114
1115- Server IP address:
1116 CONFIG_SERVERIP
1117
11ccc33f 1118 Defines a default value for the IP address of a TFTP
c609719b
WD
1119 server to contact when using the "tftboot" command.
1120
53a5c424
DU
1121- Multicast TFTP Mode:
1122 CONFIG_MCAST_TFTP
1123
1124 Defines whether you want to support multicast TFTP as per
1125 rfc-2090; for example to work with atftp. Lets lots of targets
11ccc33f 1126 tftp down the same boot image concurrently. Note: the Ethernet
53a5c424
DU
1127 driver in use must provide a function: mcast() to join/leave a
1128 multicast group.
1129
1130 CONFIG_BOOTP_RANDOM_DELAY
c609719b
WD
1131- BOOTP Recovery Mode:
1132 CONFIG_BOOTP_RANDOM_DELAY
1133
1134 If you have many targets in a network that try to
1135 boot using BOOTP, you may want to avoid that all
1136 systems send out BOOTP requests at precisely the same
1137 moment (which would happen for instance at recovery
1138 from a power failure, when all systems will try to
1139 boot, thus flooding the BOOTP server. Defining
1140 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
1141 inserted before sending out BOOTP requests. The
6c33c785 1142 following delays are inserted then:
c609719b
WD
1143
1144 1st BOOTP request: delay 0 ... 1 sec
1145 2nd BOOTP request: delay 0 ... 2 sec
1146 3rd BOOTP request: delay 0 ... 4 sec
1147 4th and following
1148 BOOTP requests: delay 0 ... 8 sec
1149
fe389a82 1150- DHCP Advanced Options:
1fe80d79
JL
1151 You can fine tune the DHCP functionality by defining
1152 CONFIG_BOOTP_* symbols:
1153
1154 CONFIG_BOOTP_SUBNETMASK
1155 CONFIG_BOOTP_GATEWAY
1156 CONFIG_BOOTP_HOSTNAME
1157 CONFIG_BOOTP_NISDOMAIN
1158 CONFIG_BOOTP_BOOTPATH
1159 CONFIG_BOOTP_BOOTFILESIZE
1160 CONFIG_BOOTP_DNS
1161 CONFIG_BOOTP_DNS2
1162 CONFIG_BOOTP_SEND_HOSTNAME
1163 CONFIG_BOOTP_NTPSERVER
1164 CONFIG_BOOTP_TIMEOFFSET
1165 CONFIG_BOOTP_VENDOREX
fe389a82 1166
5d110f0a
WC
1167 CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip
1168 environment variable, not the BOOTP server.
fe389a82
SR
1169
1170 CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS
1171 serverip from a DHCP server, it is possible that more
1172 than one DNS serverip is offered to the client.
1173 If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS
1174 serverip will be stored in the additional environment
1175 variable "dnsip2". The first DNS serverip is always
1176 stored in the variable "dnsip", when CONFIG_BOOTP_DNS
1fe80d79 1177 is defined.
fe389a82
SR
1178
1179 CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable
1180 to do a dynamic update of a DNS server. To do this, they
1181 need the hostname of the DHCP requester.
5d110f0a 1182 If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content
1fe80d79
JL
1183 of the "hostname" environment variable is passed as
1184 option 12 to the DHCP server.
fe389a82 1185
d9a2f416
AV
1186 CONFIG_BOOTP_DHCP_REQUEST_DELAY
1187
1188 A 32bit value in microseconds for a delay between
1189 receiving a "DHCP Offer" and sending the "DHCP Request".
1190 This fixes a problem with certain DHCP servers that don't
1191 respond 100% of the time to a "DHCP request". E.g. On an
1192 AT91RM9200 processor running at 180MHz, this delay needed
1193 to be *at least* 15,000 usec before a Windows Server 2003
1194 DHCP server would reply 100% of the time. I recommend at
1195 least 50,000 usec to be safe. The alternative is to hope
1196 that one of the retries will be successful but note that
1197 the DHCP timeout and retry process takes a longer than
1198 this delay.
1199
a3d991bd 1200 - CDP Options:
6e592385 1201 CONFIG_CDP_DEVICE_ID
a3d991bd
WD
1202
1203 The device id used in CDP trigger frames.
1204
1205 CONFIG_CDP_DEVICE_ID_PREFIX
1206
1207 A two character string which is prefixed to the MAC address
1208 of the device.
1209
1210 CONFIG_CDP_PORT_ID
1211
1212 A printf format string which contains the ascii name of
1213 the port. Normally is set to "eth%d" which sets
11ccc33f 1214 eth0 for the first Ethernet, eth1 for the second etc.
a3d991bd
WD
1215
1216 CONFIG_CDP_CAPABILITIES
1217
1218 A 32bit integer which indicates the device capabilities;
1219 0x00000010 for a normal host which does not forwards.
1220
1221 CONFIG_CDP_VERSION
1222
1223 An ascii string containing the version of the software.
1224
1225 CONFIG_CDP_PLATFORM
1226
1227 An ascii string containing the name of the platform.
1228
1229 CONFIG_CDP_TRIGGER
1230
1231 A 32bit integer sent on the trigger.
1232
1233 CONFIG_CDP_POWER_CONSUMPTION
1234
1235 A 16bit integer containing the power consumption of the
1236 device in .1 of milliwatts.
1237
1238 CONFIG_CDP_APPLIANCE_VLAN_TYPE
1239
1240 A byte containing the id of the VLAN.
1241
c609719b
WD
1242- Status LED: CONFIG_STATUS_LED
1243
1244 Several configurations allow to display the current
1245 status using a LED. For instance, the LED will blink
1246 fast while running U-Boot code, stop blinking as
1247 soon as a reply to a BOOTP request was received, and
1248 start blinking slow once the Linux kernel is running
1249 (supported by a status LED driver in the Linux
1250 kernel). Defining CONFIG_STATUS_LED enables this
1251 feature in U-Boot.
1252
1253- CAN Support: CONFIG_CAN_DRIVER
1254
1255 Defining CONFIG_CAN_DRIVER enables CAN driver support
1256 on those systems that support this (optional)
1257 feature, like the TQM8xxL modules.
1258
1259- I2C Support: CONFIG_HARD_I2C | CONFIG_SOFT_I2C
1260
b37c7e5e 1261 These enable I2C serial bus commands. Defining either of
945af8d7 1262 (but not both of) CONFIG_HARD_I2C or CONFIG_SOFT_I2C will
11ccc33f 1263 include the appropriate I2C driver for the selected CPU.
c609719b 1264
945af8d7 1265 This will allow you to use i2c commands at the u-boot
602ad3b3 1266 command line (as long as you set CONFIG_CMD_I2C in
b37c7e5e
WD
1267 CONFIG_COMMANDS) and communicate with i2c based realtime
1268 clock chips. See common/cmd_i2c.c for a description of the
43d9616c 1269 command line interface.
c609719b 1270
bb99ad6d
BW
1271 CONFIG_I2C_CMD_TREE is a recommended option that places
1272 all I2C commands under a single 'i2c' root command. The
1273 older 'imm', 'imd', 'iprobe' etc. commands are considered
1274 deprecated and may disappear in the future.
1275
1276 CONFIG_HARD_I2C selects a hardware I2C controller.
b37c7e5e 1277
945af8d7 1278 CONFIG_SOFT_I2C configures u-boot to use a software (aka
b37c7e5e
WD
1279 bit-banging) driver instead of CPM or similar hardware
1280 support for I2C.
c609719b 1281
945af8d7 1282 There are several other quantities that must also be
b37c7e5e 1283 defined when you define CONFIG_HARD_I2C or CONFIG_SOFT_I2C.
c609719b 1284
b37c7e5e 1285 In both cases you will need to define CFG_I2C_SPEED
945af8d7
WD
1286 to be the frequency (in Hz) at which you wish your i2c bus
1287 to run and CFG_I2C_SLAVE to be the address of this node (ie
11ccc33f 1288 the CPU's i2c node address).
945af8d7 1289
b37c7e5e 1290 Now, the u-boot i2c code for the mpc8xx (cpu/mpc8xx/i2c.c)
11ccc33f 1291 sets the CPU up as a master node and so its address should
b37c7e5e 1292 therefore be cleared to 0 (See, eg, MPC823e User's Manual
945af8d7 1293 p.16-473). So, set CFG_I2C_SLAVE to 0.
c609719b 1294
945af8d7 1295 That's all that's required for CONFIG_HARD_I2C.
c609719b 1296
b37c7e5e
WD
1297 If you use the software i2c interface (CONFIG_SOFT_I2C)
1298 then the following macros need to be defined (examples are
1299 from include/configs/lwmon.h):
c609719b
WD
1300
1301 I2C_INIT
1302
b37c7e5e 1303 (Optional). Any commands necessary to enable the I2C
43d9616c 1304 controller or configure ports.
c609719b 1305
ba56f625 1306 eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL)
b37c7e5e 1307
c609719b
WD
1308 I2C_PORT
1309
43d9616c
WD
1310 (Only for MPC8260 CPU). The I/O port to use (the code
1311 assumes both bits are on the same port). Valid values
1312 are 0..3 for ports A..D.
c609719b
WD
1313
1314 I2C_ACTIVE
1315
1316 The code necessary to make the I2C data line active
1317 (driven). If the data line is open collector, this
1318 define can be null.
1319
b37c7e5e
WD
1320 eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA)
1321
c609719b
WD
1322 I2C_TRISTATE
1323
1324 The code necessary to make the I2C data line tri-stated
1325 (inactive). If the data line is open collector, this
1326 define can be null.
1327
b37c7e5e
WD
1328 eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)
1329
c609719b
WD
1330 I2C_READ
1331
1332 Code that returns TRUE if the I2C data line is high,
1333 FALSE if it is low.
1334
b37c7e5e
WD
1335 eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)
1336
c609719b
WD
1337 I2C_SDA(bit)
1338
1339 If <bit> is TRUE, sets the I2C data line high. If it
1340 is FALSE, it clears it (low).
1341
b37c7e5e 1342 eg: #define I2C_SDA(bit) \
2535d602 1343 if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \
ba56f625 1344 else immr->im_cpm.cp_pbdat &= ~PB_SDA
b37c7e5e 1345
c609719b
WD
1346 I2C_SCL(bit)
1347
1348 If <bit> is TRUE, sets the I2C clock line high. If it
1349 is FALSE, it clears it (low).
1350
b37c7e5e 1351 eg: #define I2C_SCL(bit) \
2535d602 1352 if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \
ba56f625 1353 else immr->im_cpm.cp_pbdat &= ~PB_SCL
b37c7e5e 1354
c609719b
WD
1355 I2C_DELAY
1356
1357 This delay is invoked four times per clock cycle so this
1358 controls the rate of data transfer. The data rate thus
b37c7e5e 1359 is 1 / (I2C_DELAY * 4). Often defined to be something
945af8d7
WD
1360 like:
1361
b37c7e5e 1362 #define I2C_DELAY udelay(2)
c609719b 1363
47cd00fa
WD
1364 CFG_I2C_INIT_BOARD
1365
8bde7f77
WD
1366 When a board is reset during an i2c bus transfer
1367 chips might think that the current transfer is still
1368 in progress. On some boards it is possible to access
1369 the i2c SCLK line directly, either by using the
1370 processor pin as a GPIO or by having a second pin
1371 connected to the bus. If this option is defined a
1372 custom i2c_init_board() routine in boards/xxx/board.c
1373 is run early in the boot sequence.
47cd00fa 1374
17ea1177
WD
1375 CONFIG_I2CFAST (PPC405GP|PPC405EP only)
1376
1377 This option enables configuration of bi_iic_fast[] flags
1378 in u-boot bd_info structure based on u-boot environment
1379 variable "i2cfast". (see also i2cfast)
1380
bb99ad6d
BW
1381 CONFIG_I2C_MULTI_BUS
1382
1383 This option allows the use of multiple I2C buses, each of which
1384 must have a controller. At any point in time, only one bus is
1385 active. To switch to a different bus, use the 'i2c dev' command.
1386 Note that bus numbering is zero-based.
1387
1388 CFG_I2C_NOPROBES
1389
1390 This option specifies a list of I2C devices that will be skipped
1391 when the 'i2c probe' command is issued (or 'iprobe' using the legacy
1392 command). If CONFIG_I2C_MULTI_BUS is set, specify a list of bus-device
218ca724 1393 pairs. Otherwise, specify a 1D array of device addresses
bb99ad6d
BW
1394
1395 e.g.
1396 #undef CONFIG_I2C_MULTI_BUS
1397 #define CFG_I2C_NOPROBES {0x50,0x68}
1398
1399 will skip addresses 0x50 and 0x68 on a board with one I2C bus
1400
1401 #define CONFIG_I2C_MULTI_BUS
1402 #define CFG_I2C_MULTI_NOPROBES {{0,0x50},{0,0x68},{1,0x54}}
1403
1404 will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1
1405
be5e6181
TT
1406 CFG_SPD_BUS_NUM
1407
1408 If defined, then this indicates the I2C bus number for DDR SPD.
1409 If not defined, then U-Boot assumes that SPD is on I2C bus 0.
1410
0dc018ec
SR
1411 CFG_RTC_BUS_NUM
1412
1413 If defined, then this indicates the I2C bus number for the RTC.
1414 If not defined, then U-Boot assumes that RTC is on I2C bus 0.
1415
1416 CFG_DTT_BUS_NUM
1417
1418 If defined, then this indicates the I2C bus number for the DTT.
1419 If not defined, then U-Boot assumes that DTT is on I2C bus 0.
1420
9ebbb54f
VG
1421 CFG_I2C_DTT_ADDR:
1422
1423 If defined, specifies the I2C address of the DTT device.
1424 If not defined, then U-Boot uses predefined value for
1425 specified DTT device.
1426
be5e6181
TT
1427 CONFIG_FSL_I2C
1428
1429 Define this option if you want to use Freescale's I2C driver in
7817cb20 1430 drivers/i2c/fsl_i2c.c.
be5e6181
TT
1431
1432
c609719b
WD
1433- SPI Support: CONFIG_SPI
1434
1435 Enables SPI driver (so far only tested with
1436 SPI EEPROM, also an instance works with Crystal A/D and
1437 D/As on the SACSng board)
1438
1439 CONFIG_SPI_X
1440
1441 Enables extended (16-bit) SPI EEPROM addressing.
1442 (symmetrical to CONFIG_I2C_X)
1443
1444 CONFIG_SOFT_SPI
1445
43d9616c
WD
1446 Enables a software (bit-bang) SPI driver rather than
1447 using hardware support. This is a general purpose
1448 driver that only requires three general I/O port pins
1449 (two outputs, one input) to function. If this is
1450 defined, the board configuration must define several
1451 SPI configuration items (port pins to use, etc). For
1452 an example, see include/configs/sacsng.h.
c609719b 1453
04a9e118
BW
1454 CONFIG_HARD_SPI
1455
1456 Enables a hardware SPI driver for general-purpose reads
1457 and writes. As with CONFIG_SOFT_SPI, the board configuration
1458 must define a list of chip-select function pointers.
1459 Currently supported on some MPC8xxx processors. For an
1460 example, see include/configs/mpc8349emds.h.
1461
38254f45
GL
1462 CONFIG_MXC_SPI
1463
1464 Enables the driver for the SPI controllers on i.MX and MXC
1465 SoCs. Currently only i.MX31 is supported.
1466
0133502e 1467- FPGA Support: CONFIG_FPGA
c609719b 1468
0133502e
MF
1469 Enables FPGA subsystem.
1470
1471 CONFIG_FPGA_<vendor>
1472
1473 Enables support for specific chip vendors.
1474 (ALTERA, XILINX)
c609719b 1475
0133502e 1476 CONFIG_FPGA_<family>
c609719b 1477
0133502e
MF
1478 Enables support for FPGA family.
1479 (SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)
1480
1481 CONFIG_FPGA_COUNT
1482
1483 Specify the number of FPGA devices to support.
c609719b 1484
8bde7f77 1485 CFG_FPGA_PROG_FEEDBACK
c609719b 1486
8bde7f77 1487 Enable printing of hash marks during FPGA configuration.
c609719b
WD
1488
1489 CFG_FPGA_CHECK_BUSY
1490
43d9616c
WD
1491 Enable checks on FPGA configuration interface busy
1492 status by the configuration function. This option
1493 will require a board or device specific function to
1494 be written.
c609719b
WD
1495
1496 CONFIG_FPGA_DELAY
1497
1498 If defined, a function that provides delays in the FPGA
1499 configuration driver.
1500
1501 CFG_FPGA_CHECK_CTRLC
1502 Allow Control-C to interrupt FPGA configuration
1503
1504 CFG_FPGA_CHECK_ERROR
1505
43d9616c
WD
1506 Check for configuration errors during FPGA bitfile
1507 loading. For example, abort during Virtex II
1508 configuration if the INIT_B line goes low (which
1509 indicated a CRC error).
c609719b
WD
1510
1511 CFG_FPGA_WAIT_INIT
1512
43d9616c
WD
1513 Maximum time to wait for the INIT_B line to deassert
1514 after PROB_B has been deasserted during a Virtex II
1515 FPGA configuration sequence. The default time is 500
11ccc33f 1516 ms.
c609719b
WD
1517
1518 CFG_FPGA_WAIT_BUSY
1519
43d9616c 1520 Maximum time to wait for BUSY to deassert during
11ccc33f 1521 Virtex II FPGA configuration. The default is 5 ms.
c609719b
WD
1522
1523 CFG_FPGA_WAIT_CONFIG
1524
43d9616c 1525 Time to wait after FPGA configuration. The default is
11ccc33f 1526 200 ms.
c609719b
WD
1527
1528- Configuration Management:
1529 CONFIG_IDENT_STRING
1530
43d9616c
WD
1531 If defined, this string will be added to the U-Boot
1532 version information (U_BOOT_VERSION)
c609719b
WD
1533
1534- Vendor Parameter Protection:
1535
43d9616c
WD
1536 U-Boot considers the values of the environment
1537 variables "serial#" (Board Serial Number) and
7152b1d0 1538 "ethaddr" (Ethernet Address) to be parameters that
43d9616c
WD
1539 are set once by the board vendor / manufacturer, and
1540 protects these variables from casual modification by
1541 the user. Once set, these variables are read-only,
1542 and write or delete attempts are rejected. You can
11ccc33f 1543 change this behaviour:
c609719b
WD
1544
1545 If CONFIG_ENV_OVERWRITE is #defined in your config
1546 file, the write protection for vendor parameters is
47cd00fa 1547 completely disabled. Anybody can change or delete
c609719b
WD
1548 these parameters.
1549
1550 Alternatively, if you #define _both_ CONFIG_ETHADDR
1551 _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
11ccc33f 1552 Ethernet address is installed in the environment,
c609719b
WD
1553 which can be changed exactly ONCE by the user. [The
1554 serial# is unaffected by this, i. e. it remains
1555 read-only.]
1556
1557- Protected RAM:
1558 CONFIG_PRAM
1559
1560 Define this variable to enable the reservation of
1561 "protected RAM", i. e. RAM which is not overwritten
1562 by U-Boot. Define CONFIG_PRAM to hold the number of
1563 kB you want to reserve for pRAM. You can overwrite
1564 this default value by defining an environment
1565 variable "pram" to the number of kB you want to
1566 reserve. Note that the board info structure will
1567 still show the full amount of RAM. If pRAM is
1568 reserved, a new environment variable "mem" will
1569 automatically be defined to hold the amount of
1570 remaining RAM in a form that can be passed as boot
1571 argument to Linux, for instance like that:
1572
fe126d8b 1573 setenv bootargs ... mem=\${mem}
c609719b
WD
1574 saveenv
1575
1576 This way you can tell Linux not to use this memory,
1577 either, which results in a memory region that will
1578 not be affected by reboots.
1579
1580 *WARNING* If your board configuration uses automatic
1581 detection of the RAM size, you must make sure that
1582 this memory test is non-destructive. So far, the
1583 following board configurations are known to be
1584 "pRAM-clean":
1585
1586 ETX094, IVMS8, IVML24, SPD8xx, TQM8xxL,
1587 HERMES, IP860, RPXlite, LWMON, LANTEC,
1588 PCU_E, FLAGADM, TQM8260
1589
1590- Error Recovery:
1591 CONFIG_PANIC_HANG
1592
1593 Define this variable to stop the system in case of a
1594 fatal error, so that you have to reset it manually.
1595 This is probably NOT a good idea for an embedded
11ccc33f 1596 system where you want the system to reboot
c609719b
WD
1597 automatically as fast as possible, but it may be
1598 useful during development since you can try to debug
1599 the conditions that lead to the situation.
1600
1601 CONFIG_NET_RETRY_COUNT
1602
43d9616c
WD
1603 This variable defines the number of retries for
1604 network operations like ARP, RARP, TFTP, or BOOTP
1605 before giving up the operation. If not defined, a
1606 default value of 5 is used.
c609719b 1607
40cb90ee
GL
1608 CONFIG_ARP_TIMEOUT
1609
1610 Timeout waiting for an ARP reply in milliseconds.
1611
c609719b 1612- Command Interpreter:
8078f1a5 1613 CONFIG_AUTO_COMPLETE
04a85b3b
WD
1614
1615 Enable auto completion of commands using TAB.
1616
a9398e01
WD
1617 Note that this feature has NOT been implemented yet
1618 for the "hush" shell.
8078f1a5
WD
1619
1620
c609719b
WD
1621 CFG_HUSH_PARSER
1622
1623 Define this variable to enable the "hush" shell (from
1624 Busybox) as command line interpreter, thus enabling
1625 powerful command line syntax like
1626 if...then...else...fi conditionals or `&&' and '||'
1627 constructs ("shell scripts").
1628
1629 If undefined, you get the old, much simpler behaviour
1630 with a somewhat smaller memory footprint.
1631
1632
1633 CFG_PROMPT_HUSH_PS2
1634
1635 This defines the secondary prompt string, which is
1636 printed when the command interpreter needs more input
1637 to complete a command. Usually "> ".
1638
1639 Note:
1640
8bde7f77
WD
1641 In the current implementation, the local variables
1642 space and global environment variables space are
1643 separated. Local variables are those you define by
1644 simply typing `name=value'. To access a local
1645 variable later on, you have write `$name' or
1646 `${name}'; to execute the contents of a variable
1647 directly type `$name' at the command prompt.
c609719b 1648
43d9616c
WD
1649 Global environment variables are those you use
1650 setenv/printenv to work with. To run a command stored
1651 in such a variable, you need to use the run command,
1652 and you must not use the '$' sign to access them.
c609719b
WD
1653
1654 To store commands and special characters in a
1655 variable, please use double quotation marks
1656 surrounding the whole text of the variable, instead
1657 of the backslashes before semicolons and special
1658 symbols.
1659
aa0c71ac
WD
1660- Commandline Editing and History:
1661 CONFIG_CMDLINE_EDITING
1662
11ccc33f 1663 Enable editing and History functions for interactive
b9365a26 1664 commandline input operations
aa0c71ac 1665
a8c7c708 1666- Default Environment:
c609719b
WD
1667 CONFIG_EXTRA_ENV_SETTINGS
1668
43d9616c
WD
1669 Define this to contain any number of null terminated
1670 strings (variable = value pairs) that will be part of
7152b1d0 1671 the default environment compiled into the boot image.
2262cfee 1672
43d9616c
WD
1673 For example, place something like this in your
1674 board's config file:
c609719b
WD
1675
1676 #define CONFIG_EXTRA_ENV_SETTINGS \
1677 "myvar1=value1\0" \
1678 "myvar2=value2\0"
1679
43d9616c
WD
1680 Warning: This method is based on knowledge about the
1681 internal format how the environment is stored by the
1682 U-Boot code. This is NOT an official, exported
1683 interface! Although it is unlikely that this format
7152b1d0 1684 will change soon, there is no guarantee either.
c609719b
WD
1685 You better know what you are doing here.
1686
43d9616c
WD
1687 Note: overly (ab)use of the default environment is
1688 discouraged. Make sure to check other ways to preset
1689 the environment like the autoscript function or the
1690 boot command first.
c609719b 1691
a8c7c708 1692- DataFlash Support:
2abbe075
WD
1693 CONFIG_HAS_DATAFLASH
1694
8bde7f77
WD
1695 Defining this option enables DataFlash features and
1696 allows to read/write in Dataflash via the standard
1697 commands cp, md...
2abbe075 1698
3f85ce27
WD
1699- SystemACE Support:
1700 CONFIG_SYSTEMACE
1701
1702 Adding this option adds support for Xilinx SystemACE
1703 chips attached via some sort of local bus. The address
11ccc33f 1704 of the chip must also be defined in the
3f85ce27
WD
1705 CFG_SYSTEMACE_BASE macro. For example:
1706
1707 #define CONFIG_SYSTEMACE
1708 #define CFG_SYSTEMACE_BASE 0xf0000000
1709
1710 When SystemACE support is added, the "ace" device type
1711 becomes available to the fat commands, i.e. fatls.
1712
ecb0ccd9
WD
1713- TFTP Fixed UDP Port:
1714 CONFIG_TFTP_PORT
1715
28cb9375 1716 If this is defined, the environment variable tftpsrcp
ecb0ccd9 1717 is used to supply the TFTP UDP source port value.
28cb9375 1718 If tftpsrcp isn't defined, the normal pseudo-random port
ecb0ccd9
WD
1719 number generator is used.
1720
28cb9375
WD
1721 Also, the environment variable tftpdstp is used to supply
1722 the TFTP UDP destination port value. If tftpdstp isn't
1723 defined, the normal port 69 is used.
1724
1725 The purpose for tftpsrcp is to allow a TFTP server to
ecb0ccd9
WD
1726 blindly start the TFTP transfer using the pre-configured
1727 target IP address and UDP port. This has the effect of
1728 "punching through" the (Windows XP) firewall, allowing
1729 the remainder of the TFTP transfer to proceed normally.
1730 A better solution is to properly configure the firewall,
1731 but sometimes that is not allowed.
1732
a8c7c708 1733- Show boot progress:
c609719b
WD
1734 CONFIG_SHOW_BOOT_PROGRESS
1735
43d9616c
WD
1736 Defining this option allows to add some board-
1737 specific code (calling a user-provided function
1738 "show_boot_progress(int)") that enables you to show
1739 the system's boot progress on some display (for
1740 example, some LED's) on your board. At the moment,
1741 the following checkpoints are implemented:
c609719b 1742
4bae9090
BS
1743- Automatic software updates via TFTP server
1744 CONFIG_UPDATE_TFTP
1745 CONFIG_UPDATE_TFTP_CNT_MAX
1746 CONFIG_UPDATE_TFTP_MSEC_MAX
1747
1748 These options enable and control the auto-update feature;
1749 for a more detailed description refer to doc/README.update.
1750
1372cce2
MB
1751Legacy uImage format:
1752
c609719b
WD
1753 Arg Where When
1754 1 common/cmd_bootm.c before attempting to boot an image
ba56f625 1755 -1 common/cmd_bootm.c Image header has bad magic number
c609719b 1756 2 common/cmd_bootm.c Image header has correct magic number
ba56f625 1757 -2 common/cmd_bootm.c Image header has bad checksum
c609719b 1758 3 common/cmd_bootm.c Image header has correct checksum
ba56f625 1759 -3 common/cmd_bootm.c Image data has bad checksum
c609719b
WD
1760 4 common/cmd_bootm.c Image data has correct checksum
1761 -4 common/cmd_bootm.c Image is for unsupported architecture
1762 5 common/cmd_bootm.c Architecture check OK
1372cce2 1763 -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi)
c609719b
WD
1764 6 common/cmd_bootm.c Image Type check OK
1765 -6 common/cmd_bootm.c gunzip uncompression error
1766 -7 common/cmd_bootm.c Unimplemented compression type
1767 7 common/cmd_bootm.c Uncompression OK
1372cce2 1768 8 common/cmd_bootm.c No uncompress/copy overwrite error
c609719b 1769 -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX)
1372cce2
MB
1770
1771 9 common/image.c Start initial ramdisk verification
1772 -10 common/image.c Ramdisk header has bad magic number
1773 -11 common/image.c Ramdisk header has bad checksum
1774 10 common/image.c Ramdisk header is OK
1775 -12 common/image.c Ramdisk data has bad checksum
1776 11 common/image.c Ramdisk data has correct checksum
1777 12 common/image.c Ramdisk verification complete, start loading
11ccc33f 1778 -13 common/image.c Wrong Image Type (not PPC Linux ramdisk)
1372cce2
MB
1779 13 common/image.c Start multifile image verification
1780 14 common/image.c No initial ramdisk, no multifile, continue.
1781
1782 15 lib_<arch>/bootm.c All preparation done, transferring control to OS
c609719b 1783
11dadd54
WD
1784 -30 lib_ppc/board.c Fatal error, hang the system
1785 -31 post/post.c POST test failed, detected by post_output_backlog()
1786 -32 post/post.c POST test failed, detected by post_run_single()
63e73c9a 1787
566a494f
HS
1788 34 common/cmd_doc.c before loading a Image from a DOC device
1789 -35 common/cmd_doc.c Bad usage of "doc" command
1790 35 common/cmd_doc.c correct usage of "doc" command
1791 -36 common/cmd_doc.c No boot device
1792 36 common/cmd_doc.c correct boot device
1793 -37 common/cmd_doc.c Unknown Chip ID on boot device
1794 37 common/cmd_doc.c correct chip ID found, device available
1795 -38 common/cmd_doc.c Read Error on boot device
1796 38 common/cmd_doc.c reading Image header from DOC device OK
1797 -39 common/cmd_doc.c Image header has bad magic number
1798 39 common/cmd_doc.c Image header has correct magic number
1799 -40 common/cmd_doc.c Error reading Image from DOC device
1800 40 common/cmd_doc.c Image header has correct magic number
1801 41 common/cmd_ide.c before loading a Image from a IDE device
1802 -42 common/cmd_ide.c Bad usage of "ide" command
1803 42 common/cmd_ide.c correct usage of "ide" command
1804 -43 common/cmd_ide.c No boot device
1805 43 common/cmd_ide.c boot device found
1806 -44 common/cmd_ide.c Device not available
1807 44 common/cmd_ide.c Device available
1808 -45 common/cmd_ide.c wrong partition selected
1809 45 common/cmd_ide.c partition selected
1810 -46 common/cmd_ide.c Unknown partition table
1811 46 common/cmd_ide.c valid partition table found
1812 -47 common/cmd_ide.c Invalid partition type
1813 47 common/cmd_ide.c correct partition type
1814 -48 common/cmd_ide.c Error reading Image Header on boot device
1815 48 common/cmd_ide.c reading Image Header from IDE device OK
1816 -49 common/cmd_ide.c Image header has bad magic number
1817 49 common/cmd_ide.c Image header has correct magic number
1818 -50 common/cmd_ide.c Image header has bad checksum
1819 50 common/cmd_ide.c Image header has correct checksum
1820 -51 common/cmd_ide.c Error reading Image from IDE device
1821 51 common/cmd_ide.c reading Image from IDE device OK
1822 52 common/cmd_nand.c before loading a Image from a NAND device
1823 -53 common/cmd_nand.c Bad usage of "nand" command
1824 53 common/cmd_nand.c correct usage of "nand" command
1825 -54 common/cmd_nand.c No boot device
1826 54 common/cmd_nand.c boot device found
1827 -55 common/cmd_nand.c Unknown Chip ID on boot device
1828 55 common/cmd_nand.c correct chip ID found, device available
1829 -56 common/cmd_nand.c Error reading Image Header on boot device
1830 56 common/cmd_nand.c reading Image Header from NAND device OK
1831 -57 common/cmd_nand.c Image header has bad magic number
1832 57 common/cmd_nand.c Image header has correct magic number
1833 -58 common/cmd_nand.c Error reading Image from NAND device
1834 58 common/cmd_nand.c reading Image from NAND device OK
1835
1836 -60 common/env_common.c Environment has a bad CRC, using default
1837
11ccc33f 1838 64 net/eth.c starting with Ethernet configuration.
566a494f
HS
1839 -64 net/eth.c no Ethernet found.
1840 65 net/eth.c Ethernet found.
1841
1842 -80 common/cmd_net.c usage wrong
1843 80 common/cmd_net.c before calling NetLoop()
11ccc33f 1844 -81 common/cmd_net.c some error in NetLoop() occurred
566a494f
HS
1845 81 common/cmd_net.c NetLoop() back without error
1846 -82 common/cmd_net.c size == 0 (File with size 0 loaded)
1847 82 common/cmd_net.c trying automatic boot
1848 83 common/cmd_net.c running autoscript
1849 -83 common/cmd_net.c some error in automatic boot or autoscript
1850 84 common/cmd_net.c end without errors
c609719b 1851
1372cce2
MB
1852FIT uImage format:
1853
1854 Arg Where When
1855 100 common/cmd_bootm.c Kernel FIT Image has correct format
1856 -100 common/cmd_bootm.c Kernel FIT Image has incorrect format
1857 101 common/cmd_bootm.c No Kernel subimage unit name, using configuration
1858 -101 common/cmd_bootm.c Can't get configuration for kernel subimage
1859 102 common/cmd_bootm.c Kernel unit name specified
1860 -103 common/cmd_bootm.c Can't get kernel subimage node offset
f773bea8 1861 103 common/cmd_bootm.c Found configuration node
1372cce2
MB
1862 104 common/cmd_bootm.c Got kernel subimage node offset
1863 -104 common/cmd_bootm.c Kernel subimage hash verification failed
1864 105 common/cmd_bootm.c Kernel subimage hash verification OK
1865 -105 common/cmd_bootm.c Kernel subimage is for unsupported architecture
1866 106 common/cmd_bootm.c Architecture check OK
11ccc33f
MZ
1867 -106 common/cmd_bootm.c Kernel subimage has wrong type
1868 107 common/cmd_bootm.c Kernel subimage type OK
1372cce2
MB
1869 -107 common/cmd_bootm.c Can't get kernel subimage data/size
1870 108 common/cmd_bootm.c Got kernel subimage data/size
1871 -108 common/cmd_bootm.c Wrong image type (not legacy, FIT)
1872 -109 common/cmd_bootm.c Can't get kernel subimage type
1873 -110 common/cmd_bootm.c Can't get kernel subimage comp
1874 -111 common/cmd_bootm.c Can't get kernel subimage os
1875 -112 common/cmd_bootm.c Can't get kernel subimage load address
1876 -113 common/cmd_bootm.c Image uncompress/copy overwrite error
1877
1878 120 common/image.c Start initial ramdisk verification
1879 -120 common/image.c Ramdisk FIT image has incorrect format
1880 121 common/image.c Ramdisk FIT image has correct format
11ccc33f 1881 122 common/image.c No ramdisk subimage unit name, using configuration
1372cce2
MB
1882 -122 common/image.c Can't get configuration for ramdisk subimage
1883 123 common/image.c Ramdisk unit name specified
1884 -124 common/image.c Can't get ramdisk subimage node offset
1885 125 common/image.c Got ramdisk subimage node offset
1886 -125 common/image.c Ramdisk subimage hash verification failed
1887 126 common/image.c Ramdisk subimage hash verification OK
1888 -126 common/image.c Ramdisk subimage for unsupported architecture
1889 127 common/image.c Architecture check OK
1890 -127 common/image.c Can't get ramdisk subimage data/size
1891 128 common/image.c Got ramdisk subimage data/size
1892 129 common/image.c Can't get ramdisk load address
1893 -129 common/image.c Got ramdisk load address
1894
11ccc33f 1895 -130 common/cmd_doc.c Incorrect FIT image format
1372cce2
MB
1896 131 common/cmd_doc.c FIT image format OK
1897
11ccc33f 1898 -140 common/cmd_ide.c Incorrect FIT image format
1372cce2
MB
1899 141 common/cmd_ide.c FIT image format OK
1900
11ccc33f 1901 -150 common/cmd_nand.c Incorrect FIT image format
1372cce2
MB
1902 151 common/cmd_nand.c FIT image format OK
1903
1904
c609719b
WD
1905Modem Support:
1906--------------
1907
85ec0bcc 1908[so far only for SMDK2400 and TRAB boards]
c609719b 1909
11ccc33f 1910- Modem support enable:
c609719b
WD
1911 CONFIG_MODEM_SUPPORT
1912
1913- RTS/CTS Flow control enable:
1914 CONFIG_HWFLOW
1915
1916- Modem debug support:
1917 CONFIG_MODEM_SUPPORT_DEBUG
1918
43d9616c
WD
1919 Enables debugging stuff (char screen[1024], dbg())
1920 for modem support. Useful only with BDI2000.
c609719b 1921
a8c7c708
WD
1922- Interrupt support (PPC):
1923
d4ca31c4
WD
1924 There are common interrupt_init() and timer_interrupt()
1925 for all PPC archs. interrupt_init() calls interrupt_init_cpu()
11ccc33f 1926 for CPU specific initialization. interrupt_init_cpu()
d4ca31c4 1927 should set decrementer_count to appropriate value. If
11ccc33f 1928 CPU resets decrementer automatically after interrupt
d4ca31c4 1929 (ppc4xx) it should set decrementer_count to zero.
11ccc33f 1930 timer_interrupt() calls timer_interrupt_cpu() for CPU
d4ca31c4
WD
1931 specific handling. If board has watchdog / status_led
1932 / other_activity_monitor it works automatically from
1933 general timer_interrupt().
a8c7c708 1934
c609719b
WD
1935- General:
1936
43d9616c
WD
1937 In the target system modem support is enabled when a
1938 specific key (key combination) is pressed during
1939 power-on. Otherwise U-Boot will boot normally
11ccc33f 1940 (autoboot). The key_pressed() function is called from
43d9616c
WD
1941 board_init(). Currently key_pressed() is a dummy
1942 function, returning 1 and thus enabling modem
1943 initialization.
c609719b 1944
43d9616c
WD
1945 If there are no modem init strings in the
1946 environment, U-Boot proceed to autoboot; the
1947 previous output (banner, info printfs) will be
11ccc33f 1948 suppressed, though.
c609719b
WD
1949
1950 See also: doc/README.Modem
1951
1952
c609719b
WD
1953Configuration Settings:
1954-----------------------
1955
1956- CFG_LONGHELP: Defined when you want long help messages included;
1957 undefine this when you're short of memory.
1958
1959- CFG_PROMPT: This is what U-Boot prints on the console to
1960 prompt for user input.
1961
1962- CFG_CBSIZE: Buffer size for input from the Console
1963
1964- CFG_PBSIZE: Buffer size for Console output
1965
1966- CFG_MAXARGS: max. Number of arguments accepted for monitor commands
1967
1968- CFG_BARGSIZE: Buffer size for Boot Arguments which are passed to
1969 the application (usually a Linux kernel) when it is
1970 booted
1971
1972- CFG_BAUDRATE_TABLE:
1973 List of legal baudrate settings for this board.
1974
1975- CFG_CONSOLE_INFO_QUIET
8bde7f77 1976 Suppress display of console information at boot.
c609719b
WD
1977
1978- CFG_CONSOLE_IS_IN_ENV
8bde7f77
WD
1979 If the board specific function
1980 extern int overwrite_console (void);
1981 returns 1, the stdin, stderr and stdout are switched to the
c609719b
WD
1982 serial port, else the settings in the environment are used.
1983
1984- CFG_CONSOLE_OVERWRITE_ROUTINE
8bde7f77 1985 Enable the call to overwrite_console().
c609719b
WD
1986
1987- CFG_CONSOLE_ENV_OVERWRITE
1988 Enable overwrite of previous console environment settings.
1989
1990- CFG_MEMTEST_START, CFG_MEMTEST_END:
1991 Begin and End addresses of the area used by the
1992 simple memory test.
1993
1994- CFG_ALT_MEMTEST:
8bde7f77 1995 Enable an alternate, more extensive memory test.
c609719b 1996
5f535fe1
WD
1997- CFG_MEMTEST_SCRATCH:
1998 Scratch address used by the alternate memory test
1999 You only need to set this if address zero isn't writeable
2000
14f73ca6
SR
2001- CFG_MEM_TOP_HIDE (PPC only):
2002 If CFG_MEM_TOP_HIDE is defined in the board config header,
2003 this specified memory area will get subtracted from the top
11ccc33f 2004 (end) of RAM and won't get "touched" at all by U-Boot. By
14f73ca6
SR
2005 fixing up gd->ram_size the Linux kernel should gets passed
2006 the now "corrected" memory size and won't touch it either.
2007 This should work for arch/ppc and arch/powerpc. Only Linux
5e12e75d 2008 board ports in arch/powerpc with bootwrapper support that
14f73ca6 2009 recalculate the memory size from the SDRAM controller setup
5e12e75d 2010 will have to get fixed in Linux additionally.
14f73ca6
SR
2011
2012 This option can be used as a workaround for the 440EPx/GRx
2013 CHIP 11 errata where the last 256 bytes in SDRAM shouldn't
2014 be touched.
2015
2016 WARNING: Please make sure that this value is a multiple of
2017 the Linux page size (normally 4k). If this is not the case,
2018 then the end address of the Linux memory will be located at a
2019 non page size aligned address and this could cause major
2020 problems.
2021
c609719b
WD
2022- CFG_TFTP_LOADADDR:
2023 Default load address for network file downloads
2024
2025- CFG_LOADS_BAUD_CHANGE:
2026 Enable temporary baudrate change while serial download
2027
2028- CFG_SDRAM_BASE:
2029 Physical start address of SDRAM. _Must_ be 0 here.
2030
2031- CFG_MBIO_BASE:
2032 Physical start address of Motherboard I/O (if using a
2033 Cogent motherboard)
2034
2035- CFG_FLASH_BASE:
2036 Physical start address of Flash memory.
2037
2038- CFG_MONITOR_BASE:
2039 Physical start address of boot monitor code (set by
2040 make config files to be same as the text base address
2041 (TEXT_BASE) used when linking) - same as
2042 CFG_FLASH_BASE when booting from flash.
2043
2044- CFG_MONITOR_LEN:
8bde7f77
WD
2045 Size of memory reserved for monitor code, used to
2046 determine _at_compile_time_ (!) if the environment is
2047 embedded within the U-Boot image, or in a separate
2048 flash sector.
c609719b
WD
2049
2050- CFG_MALLOC_LEN:
2051 Size of DRAM reserved for malloc() use.
2052
15940c9a
SR
2053- CFG_BOOTM_LEN:
2054 Normally compressed uImages are limited to an
2055 uncompressed size of 8 MBytes. If this is not enough,
2056 you can define CFG_BOOTM_LEN in your board config file
2057 to adjust this setting to your needs.
2058
c609719b
WD
2059- CFG_BOOTMAPSZ:
2060 Maximum size of memory mapped by the startup code of
2061 the Linux kernel; all data that must be processed by
7d721e34
BS
2062 the Linux kernel (bd_info, boot arguments, FDT blob if
2063 used) must be put below this limit, unless "bootm_low"
2064 enviroment variable is defined and non-zero. In such case
2065 all data for the Linux kernel must be between "bootm_low"
2066 and "bootm_low" + CFG_BOOTMAPSZ.
c609719b
WD
2067
2068- CFG_MAX_FLASH_BANKS:
2069 Max number of Flash memory banks
2070
2071- CFG_MAX_FLASH_SECT:
2072 Max number of sectors on a Flash chip
2073
2074- CFG_FLASH_ERASE_TOUT:
2075 Timeout for Flash erase operations (in ms)
2076
2077- CFG_FLASH_WRITE_TOUT:
2078 Timeout for Flash write operations (in ms)
2079
8564acf9
WD
2080- CFG_FLASH_LOCK_TOUT
2081 Timeout for Flash set sector lock bit operation (in ms)
2082
2083- CFG_FLASH_UNLOCK_TOUT
2084 Timeout for Flash clear lock bits operation (in ms)
2085
2086- CFG_FLASH_PROTECTION
2087 If defined, hardware flash sectors protection is used
2088 instead of U-Boot software protection.
2089
c609719b
WD
2090- CFG_DIRECT_FLASH_TFTP:
2091
2092 Enable TFTP transfers directly to flash memory;
2093 without this option such a download has to be
2094 performed in two steps: (1) download to RAM, and (2)
2095 copy from RAM to flash.
2096
2097 The two-step approach is usually more reliable, since
2098 you can check if the download worked before you erase
11ccc33f
MZ
2099 the flash, but in some situations (when system RAM is
2100 too limited to allow for a temporary copy of the
c609719b
WD
2101 downloaded image) this option may be very useful.
2102
2103- CFG_FLASH_CFI:
43d9616c 2104 Define if the flash driver uses extra elements in the
5653fc33
WD
2105 common flash structure for storing flash geometry.
2106
00b1883a 2107- CONFIG_FLASH_CFI_DRIVER
5653fc33
WD
2108 This option also enables the building of the cfi_flash driver
2109 in the drivers directory
c609719b 2110
96ef831f
GL
2111- CFG_FLASH_USE_BUFFER_WRITE
2112 Use buffered writes to flash.
2113
2114- CONFIG_FLASH_SPANSION_S29WS_N
2115 s29ws-n MirrorBit flash has non-standard addresses for buffered
2116 write commands.
2117
5568e613
SR
2118- CFG_FLASH_QUIET_TEST
2119 If this option is defined, the common CFI flash doesn't
2120 print it's warning upon not recognized FLASH banks. This
2121 is useful, if some of the configured banks are only
2122 optionally available.
2123
9a042e9c
JVB
2124- CONFIG_FLASH_SHOW_PROGRESS
2125 If defined (must be an integer), print out countdown
2126 digits and dots. Recommended value: 45 (9..1) for 80
2127 column displays, 15 (3..1) for 40 column displays.
2128
53cf9435 2129- CFG_RX_ETH_BUFFER:
11ccc33f
MZ
2130 Defines the number of Ethernet receive buffers. On some
2131 Ethernet controllers it is recommended to set this value
53cf9435
SR
2132 to 8 or even higher (EEPRO100 or 405 EMAC), since all
2133 buffers can be full shortly after enabling the interface
11ccc33f 2134 on high Ethernet traffic.
53cf9435
SR
2135 Defaults to 4 if not defined.
2136
c609719b
WD
2137The following definitions that deal with the placement and management
2138of environment data (variable area); in general, we support the
2139following configurations:
2140
5a1aceb0 2141- CONFIG_ENV_IS_IN_FLASH:
c609719b
WD
2142
2143 Define this if the environment is in flash memory.
2144
2145 a) The environment occupies one whole flash sector, which is
2146 "embedded" in the text segment with the U-Boot code. This
2147 happens usually with "bottom boot sector" or "top boot
2148 sector" type flash chips, which have several smaller
2149 sectors at the start or the end. For instance, such a
2150 layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
2151 such a case you would place the environment in one of the
2152 4 kB sectors - with U-Boot code before and after it. With
2153 "top boot sector" type flash chips, you would put the
2154 environment in one of the last sectors, leaving a gap
2155 between U-Boot and the environment.
2156
0e8d1586 2157 - CONFIG_ENV_OFFSET:
c609719b
WD
2158
2159 Offset of environment data (variable area) to the
2160 beginning of flash memory; for instance, with bottom boot
2161 type flash chips the second sector can be used: the offset
2162 for this sector is given here.
2163
0e8d1586 2164 CONFIG_ENV_OFFSET is used relative to CFG_FLASH_BASE.
c609719b 2165
0e8d1586 2166 - CONFIG_ENV_ADDR:
c609719b
WD
2167
2168 This is just another way to specify the start address of
2169 the flash sector containing the environment (instead of
0e8d1586 2170 CONFIG_ENV_OFFSET).
c609719b 2171
0e8d1586 2172 - CONFIG_ENV_SECT_SIZE:
c609719b
WD
2173
2174 Size of the sector containing the environment.
2175
2176
2177 b) Sometimes flash chips have few, equal sized, BIG sectors.
2178 In such a case you don't want to spend a whole sector for
2179 the environment.
2180
0e8d1586 2181 - CONFIG_ENV_SIZE:
c609719b 2182
5a1aceb0 2183 If you use this in combination with CONFIG_ENV_IS_IN_FLASH
0e8d1586 2184 and CONFIG_ENV_SECT_SIZE, you can specify to use only a part
c609719b
WD
2185 of this flash sector for the environment. This saves
2186 memory for the RAM copy of the environment.
2187
2188 It may also save flash memory if you decide to use this
2189 when your environment is "embedded" within U-Boot code,
2190 since then the remainder of the flash sector could be used
2191 for U-Boot code. It should be pointed out that this is
2192 STRONGLY DISCOURAGED from a robustness point of view:
2193 updating the environment in flash makes it always
2194 necessary to erase the WHOLE sector. If something goes
2195 wrong before the contents has been restored from a copy in
2196 RAM, your target system will be dead.
2197
0e8d1586
JCPV
2198 - CONFIG_ENV_ADDR_REDUND
2199 CONFIG_ENV_SIZE_REDUND
c609719b 2200
43d9616c 2201 These settings describe a second storage area used to hold
11ccc33f 2202 a redundant copy of the environment data, so that there is
3e38691e 2203 a valid backup copy in case there is a power failure during
43d9616c 2204 a "saveenv" operation.
c609719b
WD
2205
2206BE CAREFUL! Any changes to the flash layout, and some changes to the
2207source code will make it necessary to adapt <board>/u-boot.lds*
2208accordingly!
2209
2210
9314cee6 2211- CONFIG_ENV_IS_IN_NVRAM:
c609719b
WD
2212
2213 Define this if you have some non-volatile memory device
2214 (NVRAM, battery buffered SRAM) which you want to use for the
2215 environment.
2216
0e8d1586
JCPV
2217 - CONFIG_ENV_ADDR:
2218 - CONFIG_ENV_SIZE:
c609719b 2219
11ccc33f 2220 These two #defines are used to determine the memory area you
c609719b
WD
2221 want to use for environment. It is assumed that this memory
2222 can just be read and written to, without any special
2223 provision.
2224
2225BE CAREFUL! The first access to the environment happens quite early
2226in U-Boot initalization (when we try to get the setting of for the
11ccc33f 2227console baudrate). You *MUST* have mapped your NVRAM area then, or
c609719b
WD
2228U-Boot will hang.
2229
2230Please note that even with NVRAM we still use a copy of the
2231environment in RAM: we could work on NVRAM directly, but we want to
2232keep settings there always unmodified except somebody uses "saveenv"
2233to save the current settings.
2234
2235
bb1f8b4f 2236- CONFIG_ENV_IS_IN_EEPROM:
c609719b
WD
2237
2238 Use this if you have an EEPROM or similar serial access
2239 device and a driver for it.
2240
0e8d1586
JCPV
2241 - CONFIG_ENV_OFFSET:
2242 - CONFIG_ENV_SIZE:
c609719b
WD
2243
2244 These two #defines specify the offset and size of the
2245 environment area within the total memory of your EEPROM.
2246
2247 - CFG_I2C_EEPROM_ADDR:
2248 If defined, specified the chip address of the EEPROM device.
2249 The default address is zero.
2250
2251 - CFG_EEPROM_PAGE_WRITE_BITS:
2252 If defined, the number of bits used to address bytes in a
2253 single page in the EEPROM device. A 64 byte page, for example
2254 would require six bits.
2255
2256 - CFG_EEPROM_PAGE_WRITE_DELAY_MS:
2257 If defined, the number of milliseconds to delay between
ba56f625 2258 page writes. The default is zero milliseconds.
c609719b
WD
2259
2260 - CFG_I2C_EEPROM_ADDR_LEN:
2261 The length in bytes of the EEPROM memory array address. Note
2262 that this is NOT the chip address length!
2263
5cf91d6b
WD
2264 - CFG_I2C_EEPROM_ADDR_OVERFLOW:
2265 EEPROM chips that implement "address overflow" are ones
2266 like Catalyst 24WC04/08/16 which has 9/10/11 bits of
2267 address and the extra bits end up in the "chip address" bit
2268 slots. This makes a 24WC08 (1Kbyte) chip look like four 256
2269 byte chips.
2270
2271 Note that we consider the length of the address field to
2272 still be one byte because the extra address bits are hidden
2273 in the chip address.
2274
c609719b
WD
2275 - CFG_EEPROM_SIZE:
2276 The size in bytes of the EEPROM device.
2277
c609719b 2278
057c849c 2279- CONFIG_ENV_IS_IN_DATAFLASH:
5779d8d9 2280
d4ca31c4 2281 Define this if you have a DataFlash memory device which you
5779d8d9
WD
2282 want to use for the environment.
2283
0e8d1586
JCPV
2284 - CONFIG_ENV_OFFSET:
2285 - CONFIG_ENV_ADDR:
2286 - CONFIG_ENV_SIZE:
5779d8d9
WD
2287
2288 These three #defines specify the offset and size of the
2289 environment area within the total memory of your DataFlash placed
2290 at the specified address.
2291
51bfee19 2292- CONFIG_ENV_IS_IN_NAND:
13a5695b
WD
2293
2294 Define this if you have a NAND device which you want to use
2295 for the environment.
2296
0e8d1586
JCPV
2297 - CONFIG_ENV_OFFSET:
2298 - CONFIG_ENV_SIZE:
13a5695b
WD
2299
2300 These two #defines specify the offset and size of the environment
2301 area within the first NAND device.
5779d8d9 2302
0e8d1586 2303 - CONFIG_ENV_OFFSET_REDUND
e443c944 2304
0e8d1586 2305 This setting describes a second storage area of CONFIG_ENV_SIZE
e443c944
MK
2306 size used to hold a redundant copy of the environment data,
2307 so that there is a valid backup copy in case there is a
2308 power failure during a "saveenv" operation.
2309
0e8d1586
JCPV
2310 Note: CONFIG_ENV_OFFSET and CONFIG_ENV_OFFSET_REDUND must be aligned
2311 to a block boundary, and CONFIG_ENV_SIZE must be a multiple of
e443c944
MK
2312 the NAND devices block size.
2313
c609719b
WD
2314- CFG_SPI_INIT_OFFSET
2315
2316 Defines offset to the initial SPI buffer area in DPRAM. The
2317 area is used at an early stage (ROM part) if the environment
2318 is configured to reside in the SPI EEPROM: We need a 520 byte
2319 scratch DPRAM area. It is used between the two initialization
2320 calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
2321 to be a good choice since it makes it far enough from the
2322 start of the data area as well as from the stack pointer.
2323
e881cb56 2324Please note that the environment is read-only until the monitor
c609719b
WD
2325has been relocated to RAM and a RAM copy of the environment has been
2326created; also, when using EEPROM you will have to use getenv_r()
2327until then to read environment variables.
2328
85ec0bcc
WD
2329The environment is protected by a CRC32 checksum. Before the monitor
2330is relocated into RAM, as a result of a bad CRC you will be working
2331with the compiled-in default environment - *silently*!!! [This is
2332necessary, because the first environment variable we need is the
2333"baudrate" setting for the console - if we have a bad CRC, we don't
2334have any device yet where we could complain.]
c609719b
WD
2335
2336Note: once the monitor has been relocated, then it will complain if
2337the default environment is used; a new CRC is computed as soon as you
85ec0bcc 2338use the "saveenv" command to store a valid environment.
c609719b 2339
fc3e2165 2340- CFG_FAULT_ECHO_LINK_DOWN:
42d1f039 2341 Echo the inverted Ethernet link state to the fault LED.
fc3e2165
WD
2342
2343 Note: If this option is active, then CFG_FAULT_MII_ADDR
2344 also needs to be defined.
2345
2346- CFG_FAULT_MII_ADDR:
42d1f039 2347 MII address of the PHY to check for the Ethernet link state.
c609719b 2348
c40b2956
WD
2349- CFG_64BIT_VSPRINTF:
2350 Makes vsprintf (and all *printf functions) support printing
2351 of 64bit values by using the L quantifier
2352
2353- CFG_64BIT_STRTOUL:
2354 Adds simple_strtoull that returns a 64bit value
2355
c609719b 2356Low Level (hardware related) configuration options:
dc7c9a1a 2357---------------------------------------------------
c609719b
WD
2358
2359- CFG_CACHELINE_SIZE:
2360 Cache Line Size of the CPU.
2361
2362- CFG_DEFAULT_IMMR:
2363 Default address of the IMMR after system reset.
2535d602 2364
42d1f039
WD
2365 Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU,
2366 and RPXsuper) to be able to adjust the position of
2367 the IMMR register after a reset.
c609719b 2368
7f6c2cbc
WD
2369- Floppy Disk Support:
2370 CFG_FDC_DRIVE_NUMBER
2371
2372 the default drive number (default value 0)
2373
2374 CFG_ISA_IO_STRIDE
2375
11ccc33f 2376 defines the spacing between FDC chipset registers
7f6c2cbc
WD
2377 (default value 1)
2378
2379 CFG_ISA_IO_OFFSET
2380
43d9616c
WD
2381 defines the offset of register from address. It
2382 depends on which part of the data bus is connected to
11ccc33f 2383 the FDC chipset. (default value 0)
7f6c2cbc 2384
43d9616c
WD
2385 If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
2386 CFG_FDC_DRIVE_NUMBER are undefined, they take their
2387 default value.
7f6c2cbc 2388
43d9616c
WD
2389 if CFG_FDC_HW_INIT is defined, then the function
2390 fdc_hw_init() is called at the beginning of the FDC
2391 setup. fdc_hw_init() must be provided by the board
2392 source code. It is used to make hardware dependant
2393 initializations.
7f6c2cbc 2394
25d6712a 2395- CFG_IMMR: Physical address of the Internal Memory.
efe2a4d5 2396 DO NOT CHANGE unless you know exactly what you're
25d6712a 2397 doing! (11-4) [MPC8xx/82xx systems only]
c609719b
WD
2398
2399- CFG_INIT_RAM_ADDR:
2400
7152b1d0 2401 Start address of memory area that can be used for
c609719b
WD
2402 initial data and stack; please note that this must be
2403 writable memory that is working WITHOUT special
2404 initialization, i. e. you CANNOT use normal RAM which
2405 will become available only after programming the
2406 memory controller and running certain initialization
2407 sequences.
2408
2409 U-Boot uses the following memory types:
2410 - MPC8xx and MPC8260: IMMR (internal memory of the CPU)
2411 - MPC824X: data cache
2412 - PPC4xx: data cache
2413
85ec0bcc 2414- CFG_GBL_DATA_OFFSET:
c609719b
WD
2415
2416 Offset of the initial data structure in the memory
2417 area defined by CFG_INIT_RAM_ADDR. Usually
85ec0bcc 2418 CFG_GBL_DATA_OFFSET is chosen such that the initial
c609719b
WD
2419 data is located at the end of the available space
2420 (sometimes written as (CFG_INIT_RAM_END -
2421 CFG_INIT_DATA_SIZE), and the initial stack is just
2422 below that area (growing from (CFG_INIT_RAM_ADDR +
85ec0bcc 2423 CFG_GBL_DATA_OFFSET) downward.
c609719b
WD
2424
2425 Note:
2426 On the MPC824X (or other systems that use the data
2427 cache for initial memory) the address chosen for
2428 CFG_INIT_RAM_ADDR is basically arbitrary - it must
2429 point to an otherwise UNUSED address space between
2430 the top of RAM and the start of the PCI space.
2431
2432- CFG_SIUMCR: SIU Module Configuration (11-6)
2433
2434- CFG_SYPCR: System Protection Control (11-9)
2435
2436- CFG_TBSCR: Time Base Status and Control (11-26)
2437
2438- CFG_PISCR: Periodic Interrupt Status and Control (11-31)
2439
2440- CFG_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30)
2441
2442- CFG_SCCR: System Clock and reset Control Register (15-27)
2443
2444- CFG_OR_TIMING_SDRAM:
2445 SDRAM timing
2446
2447- CFG_MAMR_PTA:
2448 periodic timer for refresh
2449
2450- CFG_DER: Debug Event Register (37-47)
2451
2452- FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CFG_REMAP_OR_AM,
2453 CFG_PRELIM_OR_AM, CFG_OR_TIMING_FLASH, CFG_OR0_REMAP,
2454 CFG_OR0_PRELIM, CFG_BR0_PRELIM, CFG_OR1_REMAP, CFG_OR1_PRELIM,
2455 CFG_BR1_PRELIM:
2456 Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)
2457
2458- SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
2459 CFG_OR_TIMING_SDRAM, CFG_OR2_PRELIM, CFG_BR2_PRELIM,
2460 CFG_OR3_PRELIM, CFG_BR3_PRELIM:
2461 Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)
2462
2463- CFG_MAMR_PTA, CFG_MPTPR_2BK_4K, CFG_MPTPR_1BK_4K, CFG_MPTPR_2BK_8K,
2464 CFG_MPTPR_1BK_8K, CFG_MAMR_8COL, CFG_MAMR_9COL:
2465 Machine Mode Register and Memory Periodic Timer
2466 Prescaler definitions (SDRAM timing)
2467
2468- CFG_I2C_UCODE_PATCH, CFG_I2C_DPMEM_OFFSET [0x1FC0]:
2469 enable I2C microcode relocation patch (MPC8xx);
2470 define relocation offset in DPRAM [DSP2]
2471
b423d055
HS
2472- CFG_SMC_UCODE_PATCH, CFG_SMC_DPMEM_OFFSET [0x1FC0]:
2473 enable SMC microcode relocation patch (MPC8xx);
2474 define relocation offset in DPRAM [SMC1]
2475
c609719b
WD
2476- CFG_SPI_UCODE_PATCH, CFG_SPI_DPMEM_OFFSET [0x1FC0]:
2477 enable SPI microcode relocation patch (MPC8xx);
2478 define relocation offset in DPRAM [SCC4]
2479
2480- CFG_USE_OSCCLK:
2481 Use OSCM clock mode on MBX8xx board. Be careful,
2482 wrong setting might damage your board. Read
2483 doc/README.MBX before setting this variable!
2484
ea909b76 2485- CFG_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
43d9616c
WD
2486 Offset of the bootmode word in DPRAM used by post
2487 (Power On Self Tests). This definition overrides
2488 #define'd default value in commproc.h resp.
2489 cpm_8260.h.
ea909b76 2490
1d49b1f3
SR
2491- CFG_PCI_SLV_MEM_LOCAL, CFG_PCI_SLV_MEM_BUS, CFG_PICMR0_MASK_ATTRIB,
2492 CFG_PCI_MSTR0_LOCAL, CFG_PCIMSK0_MASK, CFG_PCI_MSTR1_LOCAL,
2493 CFG_PCIMSK1_MASK, CFG_PCI_MSTR_MEM_LOCAL, CFG_PCI_MSTR_MEM_BUS,
2494 CFG_CPU_PCI_MEM_START, CFG_PCI_MSTR_MEM_SIZE, CFG_POCMR0_MASK_ATTRIB,
2495 CFG_PCI_MSTR_MEMIO_LOCAL, CFG_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
2496 CFG_PCI_MSTR_MEMIO_SIZE, CFG_POCMR1_MASK_ATTRIB, CFG_PCI_MSTR_IO_LOCAL,
2497 CFG_PCI_MSTR_IO_BUS, CFG_CPU_PCI_IO_START, CFG_PCI_MSTR_IO_SIZE,
5d232d0e
WD
2498 CFG_POCMR2_MASK_ATTRIB: (MPC826x only)
2499 Overrides the default PCI memory map in cpu/mpc8260/pci.c if set.
2500
bb99ad6d 2501- CONFIG_SPD_EEPROM
218ca724
WD
2502 Get DDR timing information from an I2C EEPROM. Common
2503 with pluggable memory modules such as SODIMMs
2504
bb99ad6d
BW
2505 SPD_EEPROM_ADDRESS
2506 I2C address of the SPD EEPROM
2507
2508- CFG_SPD_BUS_NUM
218ca724
WD
2509 If SPD EEPROM is on an I2C bus other than the first
2510 one, specify here. Note that the value must resolve
2511 to something your driver can deal with.
bb99ad6d 2512
2ad6b513 2513- CFG_83XX_DDR_USES_CS0
218ca724
WD
2514 Only for 83xx systems. If specified, then DDR should
2515 be configured using CS0 and CS1 instead of CS2 and CS3.
2ad6b513
TT
2516
2517- CFG_83XX_DDR_USES_CS0
218ca724
WD
2518 Only for 83xx systems. If specified, then DDR should
2519 be configured using CS0 and CS1 instead of CS2 and CS3.
2ad6b513 2520
c26e454d
WD
2521- CONFIG_ETHER_ON_FEC[12]
2522 Define to enable FEC[12] on a 8xx series processor.
2523
2524- CONFIG_FEC[12]_PHY
2525 Define to the hardcoded PHY address which corresponds
6e592385
WD
2526 to the given FEC; i. e.
2527 #define CONFIG_FEC1_PHY 4
c26e454d
WD
2528 means that the PHY with address 4 is connected to FEC1
2529
2530 When set to -1, means to probe for first available.
2531
2532- CONFIG_FEC[12]_PHY_NORXERR
2533 The PHY does not have a RXERR line (RMII only).
2534 (so program the FEC to ignore it).
2535
2536- CONFIG_RMII
2537 Enable RMII mode for all FECs.
2538 Note that this is a global option, we can't
2539 have one FEC in standard MII mode and another in RMII mode.
2540
5cf91d6b
WD
2541- CONFIG_CRC32_VERIFY
2542 Add a verify option to the crc32 command.
2543 The syntax is:
2544
2545 => crc32 -v <address> <count> <crc32>
2546
2547 Where address/count indicate a memory area
2548 and crc32 is the correct crc32 which the
2549 area should have.
2550
56523f12
WD
2551- CONFIG_LOOPW
2552 Add the "loopw" memory command. This only takes effect if
602ad3b3 2553 the memory commands are activated globally (CONFIG_CMD_MEM).
56523f12 2554
7b466641
SR
2555- CONFIG_MX_CYCLIC
2556 Add the "mdc" and "mwc" memory commands. These are cyclic
2557 "md/mw" commands.
2558 Examples:
2559
efe2a4d5 2560 => mdc.b 10 4 500
7b466641
SR
2561 This command will print 4 bytes (10,11,12,13) each 500 ms.
2562
efe2a4d5 2563 => mwc.l 100 12345678 10
7b466641
SR
2564 This command will write 12345678 to address 100 all 10 ms.
2565
efe2a4d5 2566 This only takes effect if the memory commands are activated
602ad3b3 2567 globally (CONFIG_CMD_MEM).
7b466641 2568
8aa1a2d1
WD
2569- CONFIG_SKIP_LOWLEVEL_INIT
2570- CONFIG_SKIP_RELOCATE_UBOOT
2571
3c2b3d45
WD
2572 [ARM only] If these variables are defined, then
2573 certain low level initializations (like setting up
2574 the memory controller) are omitted and/or U-Boot does
2575 not relocate itself into RAM.
2576 Normally these variables MUST NOT be defined. The
2577 only exception is when U-Boot is loaded (to RAM) by
2578 some other boot loader or by a debugger which
11ccc33f 2579 performs these initializations itself.
8aa1a2d1 2580
400558b5 2581
c609719b
WD
2582Building the Software:
2583======================
2584
218ca724
WD
2585Building U-Boot has been tested in several native build environments
2586and in many different cross environments. Of course we cannot support
2587all possibly existing versions of cross development tools in all
2588(potentially obsolete) versions. In case of tool chain problems we
2589recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK)
2590which is extensively used to build and test U-Boot.
c609719b 2591
218ca724
WD
2592If you are not using a native environment, it is assumed that you
2593have GNU cross compiling tools available in your path. In this case,
2594you must set the environment variable CROSS_COMPILE in your shell.
2595Note that no changes to the Makefile or any other source files are
2596necessary. For example using the ELDK on a 4xx CPU, please enter:
c609719b 2597
218ca724
WD
2598 $ CROSS_COMPILE=ppc_4xx-
2599 $ export CROSS_COMPILE
c609719b 2600
218ca724
WD
2601U-Boot is intended to be simple to build. After installing the
2602sources you must configure U-Boot for one specific board type. This
c609719b
WD
2603is done by typing:
2604
2605 make NAME_config
2606
218ca724
WD
2607where "NAME_config" is the name of one of the existing configu-
2608rations; see the main Makefile for supported names.
db01a2ea 2609
2729af9d
WD
2610Note: for some board special configuration names may exist; check if
2611 additional information is available from the board vendor; for
2612 instance, the TQM823L systems are available without (standard)
2613 or with LCD support. You can select such additional "features"
11ccc33f 2614 when choosing the configuration, i. e.
2729af9d
WD
2615
2616 make TQM823L_config
2617 - will configure for a plain TQM823L, i. e. no LCD support
2618
2619 make TQM823L_LCD_config
2620 - will configure for a TQM823L with U-Boot console on LCD
2621
2622 etc.
2623
2624
2625Finally, type "make all", and you should get some working U-Boot
2626images ready for download to / installation on your system:
2627
2628- "u-boot.bin" is a raw binary image
2629- "u-boot" is an image in ELF binary format
2630- "u-boot.srec" is in Motorola S-Record format
2631
baf31249
MB
2632By default the build is performed locally and the objects are saved
2633in the source directory. One of the two methods can be used to change
2634this behavior and build U-Boot to some external directory:
2635
26361. Add O= to the make command line invocations:
2637
2638 make O=/tmp/build distclean
2639 make O=/tmp/build NAME_config
2640 make O=/tmp/build all
2641
26422. Set environment variable BUILD_DIR to point to the desired location:
2643
2644 export BUILD_DIR=/tmp/build
2645 make distclean
2646 make NAME_config
2647 make all
2648
2649Note that the command line "O=" setting overrides the BUILD_DIR environment
2650variable.
2651
2729af9d
WD
2652
2653Please be aware that the Makefiles assume you are using GNU make, so
2654for instance on NetBSD you might need to use "gmake" instead of
2655native "make".
2656
2657
2658If the system board that you have is not listed, then you will need
2659to port U-Boot to your hardware platform. To do this, follow these
2660steps:
2661
26621. Add a new configuration option for your board to the toplevel
2663 "Makefile" and to the "MAKEALL" script, using the existing
2664 entries as examples. Note that here and at many other places
2665 boards and other names are listed in alphabetical sort order. Please
2666 keep this order.
26672. Create a new directory to hold your board specific code. Add any
2668 files you need. In your board directory, you will need at least
2669 the "Makefile", a "<board>.c", "flash.c" and "u-boot.lds".
26703. Create a new configuration file "include/configs/<board>.h" for
2671 your board
26723. If you're porting U-Boot to a new CPU, then also create a new
2673 directory to hold your CPU specific code. Add any files you need.
26744. Run "make <board>_config" with your new name.
26755. Type "make", and you should get a working "u-boot.srec" file
2676 to be installed on your target system.
26776. Debug and solve any problems that might arise.
2678 [Of course, this last step is much harder than it sounds.]
2679
2680
2681Testing of U-Boot Modifications, Ports to New Hardware, etc.:
2682==============================================================
2683
218ca724
WD
2684If you have modified U-Boot sources (for instance added a new board
2685or support for new devices, a new CPU, etc.) you are expected to
2729af9d
WD
2686provide feedback to the other developers. The feedback normally takes
2687the form of a "patch", i. e. a context diff against a certain (latest
218ca724 2688official or latest in the git repository) version of U-Boot sources.
2729af9d 2689
218ca724
WD
2690But before you submit such a patch, please verify that your modifi-
2691cation did not break existing code. At least make sure that *ALL* of
2729af9d
WD
2692the supported boards compile WITHOUT ANY compiler warnings. To do so,
2693just run the "MAKEALL" script, which will configure and build U-Boot
218ca724
WD
2694for ALL supported system. Be warned, this will take a while. You can
2695select which (cross) compiler to use by passing a `CROSS_COMPILE'
2696environment variable to the script, i. e. to use the ELDK cross tools
2697you can type
2729af9d
WD
2698
2699 CROSS_COMPILE=ppc_8xx- MAKEALL
2700
2701or to build on a native PowerPC system you can type
2702
2703 CROSS_COMPILE=' ' MAKEALL
2704
218ca724
WD
2705When using the MAKEALL script, the default behaviour is to build
2706U-Boot in the source directory. This location can be changed by
2707setting the BUILD_DIR environment variable. Also, for each target
2708built, the MAKEALL script saves two log files (<target>.ERR and
2709<target>.MAKEALL) in the <source dir>/LOG directory. This default
2710location can be changed by setting the MAKEALL_LOGDIR environment
2711variable. For example:
baf31249
MB
2712
2713 export BUILD_DIR=/tmp/build
2714 export MAKEALL_LOGDIR=/tmp/log
2715 CROSS_COMPILE=ppc_8xx- MAKEALL
2716
218ca724
WD
2717With the above settings build objects are saved in the /tmp/build,
2718log files are saved in the /tmp/log and the source tree remains clean
2719during the whole build process.
baf31249
MB
2720
2721
2729af9d
WD
2722See also "U-Boot Porting Guide" below.
2723
2724
2725Monitor Commands - Overview:
2726============================
2727
2728go - start application at address 'addr'
2729run - run commands in an environment variable
2730bootm - boot application image from memory
2731bootp - boot image via network using BootP/TFTP protocol
2732tftpboot- boot image via network using TFTP protocol
2733 and env variables "ipaddr" and "serverip"
2734 (and eventually "gatewayip")
2735rarpboot- boot image via network using RARP/TFTP protocol
2736diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
2737loads - load S-Record file over serial line
2738loadb - load binary file over serial line (kermit mode)
2739md - memory display
2740mm - memory modify (auto-incrementing)
2741nm - memory modify (constant address)
2742mw - memory write (fill)
2743cp - memory copy
2744cmp - memory compare
2745crc32 - checksum calculation
2746imd - i2c memory display
2747imm - i2c memory modify (auto-incrementing)
2748inm - i2c memory modify (constant address)
2749imw - i2c memory write (fill)
2750icrc32 - i2c checksum calculation
2751iprobe - probe to discover valid I2C chip addresses
2752iloop - infinite loop on address range
2753isdram - print SDRAM configuration information
2754sspi - SPI utility commands
2755base - print or set address offset
2756printenv- print environment variables
2757setenv - set environment variables
2758saveenv - save environment variables to persistent storage
2759protect - enable or disable FLASH write protection
2760erase - erase FLASH memory
2761flinfo - print FLASH memory information
2762bdinfo - print Board Info structure
2763iminfo - print header information for application image
2764coninfo - print console devices and informations
2765ide - IDE sub-system
2766loop - infinite loop on address range
56523f12 2767loopw - infinite write loop on address range
2729af9d
WD
2768mtest - simple RAM test
2769icache - enable or disable instruction cache
2770dcache - enable or disable data cache
2771reset - Perform RESET of the CPU
2772echo - echo args to console
2773version - print monitor version
2774help - print online help
2775? - alias for 'help'
2776
2777
2778Monitor Commands - Detailed Description:
2779========================================
2780
2781TODO.
2782
2783For now: just type "help <command>".
2784
2785
2786Environment Variables:
2787======================
2788
2789U-Boot supports user configuration using Environment Variables which
2790can be made persistent by saving to Flash memory.
c609719b 2791
2729af9d
WD
2792Environment Variables are set using "setenv", printed using
2793"printenv", and saved to Flash using "saveenv". Using "setenv"
2794without a value can be used to delete a variable from the
2795environment. As long as you don't save the environment you are
2796working with an in-memory copy. In case the Flash area containing the
2797environment is erased by accident, a default environment is provided.
c609719b 2798
2729af9d 2799Some configuration options can be set using Environment Variables:
c609719b 2800
2729af9d 2801 baudrate - see CONFIG_BAUDRATE
c609719b 2802
2729af9d 2803 bootdelay - see CONFIG_BOOTDELAY
c609719b 2804
2729af9d 2805 bootcmd - see CONFIG_BOOTCOMMAND
4a6fd34b 2806
2729af9d 2807 bootargs - Boot arguments when booting an RTOS image
c609719b 2808
2729af9d 2809 bootfile - Name of the image to load with TFTP
c609719b 2810
7d721e34
BS
2811 bootm_low - Memory range available for image processing in the bootm
2812 command can be restricted. This variable is given as
2813 a hexadecimal number and defines lowest address allowed
2814 for use by the bootm command. See also "bootm_size"
2815 environment variable. Address defined by "bootm_low" is
2816 also the base of the initial memory mapping for the Linux
11ccc33f 2817 kernel -- see the description of CFG_BOOTMAPSZ.
7d721e34
BS
2818
2819 bootm_size - Memory range available for image processing in the bootm
2820 command can be restricted. This variable is given as
2821 a hexadecimal number and defines the size of the region
2822 allowed for use by the bootm command. See also "bootm_low"
2823 environment variable.
2824
4bae9090
BS
2825 updatefile - Location of the software update file on a TFTP server, used
2826 by the automatic software update feature. Please refer to
2827 documentation in doc/README.update for more details.
2828
2729af9d
WD
2829 autoload - if set to "no" (any string beginning with 'n'),
2830 "bootp" will just load perform a lookup of the
2831 configuration from the BOOTP server, but not try to
2832 load any image using TFTP
c609719b 2833
3310c549
MB
2834 autoscript - if set to "yes" commands like "loadb", "loady",
2835 "bootp", "tftpb", "rarpboot" and "nfs" will attempt
2836 to automatically run script images (by internally
2837 calling "autoscript").
2838
2839 autoscript_uname - if script image is in a format (FIT) this
2840 variable is used to get script subimage unit name.
2841
2729af9d
WD
2842 autostart - if set to "yes", an image loaded using the "bootp",
2843 "rarpboot", "tftpboot" or "diskboot" commands will
2844 be automatically started (by internally calling
2845 "bootm")
38b99261 2846
2729af9d
WD
2847 If set to "no", a standalone image passed to the
2848 "bootm" command will be copied to the load address
2849 (and eventually uncompressed), but NOT be started.
2850 This can be used to load and uncompress arbitrary
2851 data.
c609719b 2852
17ea1177
WD
2853 i2cfast - (PPC405GP|PPC405EP only)
2854 if set to 'y' configures Linux I2C driver for fast
2855 mode (400kHZ). This environment variable is used in
2856 initialization code. So, for changes to be effective
2857 it must be saved and board must be reset.
2858
2729af9d
WD
2859 initrd_high - restrict positioning of initrd images:
2860 If this variable is not set, initrd images will be
2861 copied to the highest possible address in RAM; this
2862 is usually what you want since it allows for
2863 maximum initrd size. If for some reason you want to
2864 make sure that the initrd image is loaded below the
2865 CFG_BOOTMAPSZ limit, you can set this environment
2866 variable to a value of "no" or "off" or "0".
2867 Alternatively, you can set it to a maximum upper
2868 address to use (U-Boot will still check that it
2869 does not overwrite the U-Boot stack and data).
c609719b 2870
2729af9d
WD
2871 For instance, when you have a system with 16 MB
2872 RAM, and want to reserve 4 MB from use by Linux,
2873 you can do this by adding "mem=12M" to the value of
2874 the "bootargs" variable. However, now you must make
2875 sure that the initrd image is placed in the first
2876 12 MB as well - this can be done with
c609719b 2877
2729af9d 2878 setenv initrd_high 00c00000
c609719b 2879
2729af9d
WD
2880 If you set initrd_high to 0xFFFFFFFF, this is an
2881 indication to U-Boot that all addresses are legal
2882 for the Linux kernel, including addresses in flash
2883 memory. In this case U-Boot will NOT COPY the
2884 ramdisk at all. This may be useful to reduce the
2885 boot time on your system, but requires that this
2886 feature is supported by your Linux kernel.
c609719b 2887
2729af9d 2888 ipaddr - IP address; needed for tftpboot command
c609719b 2889
2729af9d
WD
2890 loadaddr - Default load address for commands like "bootp",
2891 "rarpboot", "tftpboot", "loadb" or "diskboot"
c609719b 2892
2729af9d 2893 loads_echo - see CONFIG_LOADS_ECHO
a3d991bd 2894
2729af9d 2895 serverip - TFTP server IP address; needed for tftpboot command
a3d991bd 2896
2729af9d 2897 bootretry - see CONFIG_BOOT_RETRY_TIME
a3d991bd 2898
2729af9d 2899 bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR
a3d991bd 2900
2729af9d 2901 bootstopkey - see CONFIG_AUTOBOOT_STOP_STR
c609719b 2902
2729af9d
WD
2903 ethprime - When CONFIG_NET_MULTI is enabled controls which
2904 interface is used first.
c609719b 2905
2729af9d
WD
2906 ethact - When CONFIG_NET_MULTI is enabled controls which
2907 interface is currently active. For example you
2908 can do the following
c609719b 2909
2729af9d
WD
2910 => setenv ethact FEC ETHERNET
2911 => ping 192.168.0.1 # traffic sent on FEC ETHERNET
2912 => setenv ethact SCC ETHERNET
2913 => ping 10.0.0.1 # traffic sent on SCC ETHERNET
c609719b 2914
e1692577
MF
2915 ethrotate - When set to "no" U-Boot does not go through all
2916 available network interfaces.
2917 It just stays at the currently selected interface.
2918
2729af9d
WD
2919 netretry - When set to "no" each network operation will
2920 either succeed or fail without retrying.
2921 When set to "once" the network operation will
2922 fail when all the available network interfaces
2923 are tried once without success.
2924 Useful on scripts which control the retry operation
2925 themselves.
c609719b 2926
a1cf027a 2927 npe_ucode - see CONFIG_IXP4XX_NPE_EXT_UCOD
11ccc33f 2928 if set load address for the NPE microcode
a1cf027a 2929
28cb9375 2930 tftpsrcport - If this is set, the value is used for TFTP's
ecb0ccd9
WD
2931 UDP source port.
2932
28cb9375
WD
2933 tftpdstport - If this is set, the value is used for TFTP's UDP
2934 destination port instead of the Well Know Port 69.
2935
2729af9d 2936 vlan - When set to a value < 4095 the traffic over
11ccc33f 2937 Ethernet is encapsulated/received over 802.1q
2729af9d 2938 VLAN tagged frames.
c609719b 2939
2729af9d
WD
2940The following environment variables may be used and automatically
2941updated by the network boot commands ("bootp" and "rarpboot"),
2942depending the information provided by your boot server:
c609719b 2943
2729af9d
WD
2944 bootfile - see above
2945 dnsip - IP address of your Domain Name Server
2946 dnsip2 - IP address of your secondary Domain Name Server
2947 gatewayip - IP address of the Gateway (Router) to use
2948 hostname - Target hostname
2949 ipaddr - see above
2950 netmask - Subnet Mask
2951 rootpath - Pathname of the root filesystem on the NFS server
2952 serverip - see above
c1551ea8 2953
c1551ea8 2954
2729af9d 2955There are two special Environment Variables:
c1551ea8 2956
2729af9d
WD
2957 serial# - contains hardware identification information such
2958 as type string and/or serial number
2959 ethaddr - Ethernet address
c609719b 2960
2729af9d
WD
2961These variables can be set only once (usually during manufacturing of
2962the board). U-Boot refuses to delete or overwrite these variables
2963once they have been set once.
c609719b 2964
f07771cc 2965
2729af9d 2966Further special Environment Variables:
f07771cc 2967
2729af9d
WD
2968 ver - Contains the U-Boot version string as printed
2969 with the "version" command. This variable is
2970 readonly (see CONFIG_VERSION_VARIABLE).
f07771cc 2971
f07771cc 2972
2729af9d
WD
2973Please note that changes to some configuration parameters may take
2974only effect after the next boot (yes, that's just like Windoze :-).
f07771cc 2975
f07771cc 2976
2729af9d
WD
2977Command Line Parsing:
2978=====================
f07771cc 2979
2729af9d
WD
2980There are two different command line parsers available with U-Boot:
2981the old "simple" one, and the much more powerful "hush" shell:
c609719b 2982
2729af9d
WD
2983Old, simple command line parser:
2984--------------------------------
c609719b 2985
2729af9d
WD
2986- supports environment variables (through setenv / saveenv commands)
2987- several commands on one line, separated by ';'
fe126d8b 2988- variable substitution using "... ${name} ..." syntax
2729af9d
WD
2989- special characters ('$', ';') can be escaped by prefixing with '\',
2990 for example:
fe126d8b 2991 setenv bootcmd bootm \${address}
2729af9d
WD
2992- You can also escape text by enclosing in single apostrophes, for example:
2993 setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
c609719b 2994
2729af9d
WD
2995Hush shell:
2996-----------
c609719b 2997
2729af9d
WD
2998- similar to Bourne shell, with control structures like
2999 if...then...else...fi, for...do...done; while...do...done,
3000 until...do...done, ...
3001- supports environment ("global") variables (through setenv / saveenv
3002 commands) and local shell variables (through standard shell syntax
3003 "name=value"); only environment variables can be used with "run"
3004 command
3005
3006General rules:
3007--------------
c609719b 3008
2729af9d
WD
3009(1) If a command line (or an environment variable executed by a "run"
3010 command) contains several commands separated by semicolon, and
3011 one of these commands fails, then the remaining commands will be
3012 executed anyway.
c609719b 3013
2729af9d 3014(2) If you execute several variables with one call to run (i. e.
11ccc33f 3015 calling run with a list of variables as arguments), any failing
2729af9d
WD
3016 command will cause "run" to terminate, i. e. the remaining
3017 variables are not executed.
c609719b 3018
2729af9d
WD
3019Note for Redundant Ethernet Interfaces:
3020=======================================
c609719b 3021
11ccc33f 3022Some boards come with redundant Ethernet interfaces; U-Boot supports
2729af9d
WD
3023such configurations and is capable of automatic selection of a
3024"working" interface when needed. MAC assignment works as follows:
c609719b 3025
2729af9d
WD
3026Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
3027MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
3028"eth1addr" (=>eth1), "eth2addr", ...
c609719b 3029
2729af9d
WD
3030If the network interface stores some valid MAC address (for instance
3031in SROM), this is used as default address if there is NO correspon-
3032ding setting in the environment; if the corresponding environment
3033variable is set, this overrides the settings in the card; that means:
c609719b 3034
2729af9d
WD
3035o If the SROM has a valid MAC address, and there is no address in the
3036 environment, the SROM's address is used.
c609719b 3037
2729af9d
WD
3038o If there is no valid address in the SROM, and a definition in the
3039 environment exists, then the value from the environment variable is
3040 used.
c609719b 3041
2729af9d
WD
3042o If both the SROM and the environment contain a MAC address, and
3043 both addresses are the same, this MAC address is used.
c609719b 3044
2729af9d
WD
3045o If both the SROM and the environment contain a MAC address, and the
3046 addresses differ, the value from the environment is used and a
3047 warning is printed.
c609719b 3048
2729af9d
WD
3049o If neither SROM nor the environment contain a MAC address, an error
3050 is raised.
c609719b 3051
c609719b 3052
2729af9d
WD
3053Image Formats:
3054==============
c609719b 3055
3310c549
MB
3056U-Boot is capable of booting (and performing other auxiliary operations on)
3057images in two formats:
3058
3059New uImage format (FIT)
3060-----------------------
3061
3062Flexible and powerful format based on Flattened Image Tree -- FIT (similar
3063to Flattened Device Tree). It allows the use of images with multiple
3064components (several kernels, ramdisks, etc.), with contents protected by
3065SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory.
3066
3067
3068Old uImage format
3069-----------------
3070
3071Old image format is based on binary files which can be basically anything,
3072preceded by a special header; see the definitions in include/image.h for
3073details; basically, the header defines the following image properties:
c609719b 3074
2729af9d
WD
3075* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
3076 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
f5ed9e39
PT
3077 LynxOS, pSOS, QNX, RTEMS, INTEGRITY;
3078 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, LynxOS,
3079 INTEGRITY).
7b64fef3 3080* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86,
2729af9d 3081 IA64, MIPS, NIOS, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
7b64fef3 3082 Currently supported: ARM, AVR32, Intel x86, MIPS, NIOS, PowerPC).
2729af9d
WD
3083* Compression Type (uncompressed, gzip, bzip2)
3084* Load Address
3085* Entry Point
3086* Image Name
3087* Image Timestamp
c609719b 3088
2729af9d
WD
3089The header is marked by a special Magic Number, and both the header
3090and the data portions of the image are secured against corruption by
3091CRC32 checksums.
c609719b
WD
3092
3093
2729af9d
WD
3094Linux Support:
3095==============
c609719b 3096
2729af9d
WD
3097Although U-Boot should support any OS or standalone application
3098easily, the main focus has always been on Linux during the design of
3099U-Boot.
c609719b 3100
2729af9d
WD
3101U-Boot includes many features that so far have been part of some
3102special "boot loader" code within the Linux kernel. Also, any
3103"initrd" images to be used are no longer part of one big Linux image;
3104instead, kernel and "initrd" are separate images. This implementation
3105serves several purposes:
c609719b 3106
2729af9d
WD
3107- the same features can be used for other OS or standalone
3108 applications (for instance: using compressed images to reduce the
3109 Flash memory footprint)
c609719b 3110
2729af9d
WD
3111- it becomes much easier to port new Linux kernel versions because
3112 lots of low-level, hardware dependent stuff are done by U-Boot
c609719b 3113
2729af9d
WD
3114- the same Linux kernel image can now be used with different "initrd"
3115 images; of course this also means that different kernel images can
3116 be run with the same "initrd". This makes testing easier (you don't
3117 have to build a new "zImage.initrd" Linux image when you just
3118 change a file in your "initrd"). Also, a field-upgrade of the
3119 software is easier now.
c609719b 3120
c609719b 3121
2729af9d
WD
3122Linux HOWTO:
3123============
c609719b 3124
2729af9d
WD
3125Porting Linux to U-Boot based systems:
3126---------------------------------------
c609719b 3127
2729af9d
WD
3128U-Boot cannot save you from doing all the necessary modifications to
3129configure the Linux device drivers for use with your target hardware
3130(no, we don't intend to provide a full virtual machine interface to
3131Linux :-).
c609719b 3132
2729af9d 3133But now you can ignore ALL boot loader code (in arch/ppc/mbxboot).
24ee89b9 3134
2729af9d
WD
3135Just make sure your machine specific header file (for instance
3136include/asm-ppc/tqm8xx.h) includes the same definition of the Board
1dc30693
MH
3137Information structure as we define in include/asm-<arch>/u-boot.h,
3138and make sure that your definition of IMAP_ADDR uses the same value
3139as your U-Boot configuration in CFG_IMMR.
24ee89b9 3140
c609719b 3141
2729af9d
WD
3142Configuring the Linux kernel:
3143-----------------------------
c609719b 3144
2729af9d
WD
3145No specific requirements for U-Boot. Make sure you have some root
3146device (initial ramdisk, NFS) for your target system.
3147
3148
3149Building a Linux Image:
3150-----------------------
c609719b 3151
2729af9d
WD
3152With U-Boot, "normal" build targets like "zImage" or "bzImage" are
3153not used. If you use recent kernel source, a new build target
3154"uImage" will exist which automatically builds an image usable by
3155U-Boot. Most older kernels also have support for a "pImage" target,
3156which was introduced for our predecessor project PPCBoot and uses a
3157100% compatible format.
3158
3159Example:
3160
3161 make TQM850L_config
3162 make oldconfig
3163 make dep
3164 make uImage
3165
3166The "uImage" build target uses a special tool (in 'tools/mkimage') to
3167encapsulate a compressed Linux kernel image with header information,
3168CRC32 checksum etc. for use with U-Boot. This is what we are doing:
3169
3170* build a standard "vmlinux" kernel image (in ELF binary format):
3171
3172* convert the kernel into a raw binary image:
3173
3174 ${CROSS_COMPILE}-objcopy -O binary \
3175 -R .note -R .comment \
3176 -S vmlinux linux.bin
3177
3178* compress the binary image:
3179
3180 gzip -9 linux.bin
3181
3182* package compressed binary image for U-Boot:
3183
3184 mkimage -A ppc -O linux -T kernel -C gzip \
3185 -a 0 -e 0 -n "Linux Kernel Image" \
3186 -d linux.bin.gz uImage
c609719b 3187
c609719b 3188
2729af9d
WD
3189The "mkimage" tool can also be used to create ramdisk images for use
3190with U-Boot, either separated from the Linux kernel image, or
3191combined into one file. "mkimage" encapsulates the images with a 64
3192byte header containing information about target architecture,
3193operating system, image type, compression method, entry points, time
3194stamp, CRC32 checksums, etc.
3195
3196"mkimage" can be called in two ways: to verify existing images and
3197print the header information, or to build new images.
3198
3199In the first form (with "-l" option) mkimage lists the information
3200contained in the header of an existing U-Boot image; this includes
3201checksum verification:
c609719b 3202
2729af9d
WD
3203 tools/mkimage -l image
3204 -l ==> list image header information
3205
3206The second form (with "-d" option) is used to build a U-Boot image
3207from a "data file" which is used as image payload:
3208
3209 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
3210 -n name -d data_file image
3211 -A ==> set architecture to 'arch'
3212 -O ==> set operating system to 'os'
3213 -T ==> set image type to 'type'
3214 -C ==> set compression type 'comp'
3215 -a ==> set load address to 'addr' (hex)
3216 -e ==> set entry point to 'ep' (hex)
3217 -n ==> set image name to 'name'
3218 -d ==> use image data from 'datafile'
3219
69459791
WD
3220Right now, all Linux kernels for PowerPC systems use the same load
3221address (0x00000000), but the entry point address depends on the
3222kernel version:
2729af9d
WD
3223
3224- 2.2.x kernels have the entry point at 0x0000000C,
3225- 2.3.x and later kernels have the entry point at 0x00000000.
3226
3227So a typical call to build a U-Boot image would read:
3228
3229 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
3230 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
3231 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz \
3232 > examples/uImage.TQM850L
3233 Image Name: 2.4.4 kernel for TQM850L
3234 Created: Wed Jul 19 02:34:59 2000
3235 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3236 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
3237 Load Address: 0x00000000
3238 Entry Point: 0x00000000
3239
3240To verify the contents of the image (or check for corruption):
3241
3242 -> tools/mkimage -l examples/uImage.TQM850L
3243 Image Name: 2.4.4 kernel for TQM850L
3244 Created: Wed Jul 19 02:34:59 2000
3245 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3246 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
3247 Load Address: 0x00000000
3248 Entry Point: 0x00000000
3249
3250NOTE: for embedded systems where boot time is critical you can trade
3251speed for memory and install an UNCOMPRESSED image instead: this
3252needs more space in Flash, but boots much faster since it does not
3253need to be uncompressed:
3254
3255 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz
3256 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
3257 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \
3258 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux \
3259 > examples/uImage.TQM850L-uncompressed
3260 Image Name: 2.4.4 kernel for TQM850L
3261 Created: Wed Jul 19 02:34:59 2000
3262 Image Type: PowerPC Linux Kernel Image (uncompressed)
3263 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
3264 Load Address: 0x00000000
3265 Entry Point: 0x00000000
3266
3267
3268Similar you can build U-Boot images from a 'ramdisk.image.gz' file
3269when your kernel is intended to use an initial ramdisk:
3270
3271 -> tools/mkimage -n 'Simple Ramdisk Image' \
3272 > -A ppc -O linux -T ramdisk -C gzip \
3273 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
3274 Image Name: Simple Ramdisk Image
3275 Created: Wed Jan 12 14:01:50 2000
3276 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
3277 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
3278 Load Address: 0x00000000
3279 Entry Point: 0x00000000
3280
3281
3282Installing a Linux Image:
3283-------------------------
3284
3285To downloading a U-Boot image over the serial (console) interface,
3286you must convert the image to S-Record format:
3287
3288 objcopy -I binary -O srec examples/image examples/image.srec
3289
3290The 'objcopy' does not understand the information in the U-Boot
3291image header, so the resulting S-Record file will be relative to
3292address 0x00000000. To load it to a given address, you need to
3293specify the target address as 'offset' parameter with the 'loads'
3294command.
3295
3296Example: install the image to address 0x40100000 (which on the
3297TQM8xxL is in the first Flash bank):
3298
3299 => erase 40100000 401FFFFF
3300
3301 .......... done
3302 Erased 8 sectors
3303
3304 => loads 40100000
3305 ## Ready for S-Record download ...
3306 ~>examples/image.srec
3307 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
3308 ...
3309 15989 15990 15991 15992
3310 [file transfer complete]
3311 [connected]
3312 ## Start Addr = 0x00000000
3313
3314
3315You can check the success of the download using the 'iminfo' command;
218ca724 3316this includes a checksum verification so you can be sure no data
2729af9d
WD
3317corruption happened:
3318
3319 => imi 40100000
3320
3321 ## Checking Image at 40100000 ...
3322 Image Name: 2.2.13 for initrd on TQM850L
3323 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3324 Data Size: 335725 Bytes = 327 kB = 0 MB
3325 Load Address: 00000000
3326 Entry Point: 0000000c
3327 Verifying Checksum ... OK
3328
3329
3330Boot Linux:
3331-----------
3332
3333The "bootm" command is used to boot an application that is stored in
3334memory (RAM or Flash). In case of a Linux kernel image, the contents
3335of the "bootargs" environment variable is passed to the kernel as
3336parameters. You can check and modify this variable using the
3337"printenv" and "setenv" commands:
3338
3339
3340 => printenv bootargs
3341 bootargs=root=/dev/ram
3342
3343 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3344
3345 => printenv bootargs
3346 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3347
3348 => bootm 40020000
3349 ## Booting Linux kernel at 40020000 ...
3350 Image Name: 2.2.13 for NFS on TQM850L
3351 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3352 Data Size: 381681 Bytes = 372 kB = 0 MB
3353 Load Address: 00000000
3354 Entry Point: 0000000c
3355 Verifying Checksum ... OK
3356 Uncompressing Kernel Image ... OK
3357 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
3358 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3359 time_init: decrementer frequency = 187500000/60
3360 Calibrating delay loop... 49.77 BogoMIPS
3361 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
3362 ...
3363
11ccc33f 3364If you want to boot a Linux kernel with initial RAM disk, you pass
2729af9d
WD
3365the memory addresses of both the kernel and the initrd image (PPBCOOT
3366format!) to the "bootm" command:
3367
3368 => imi 40100000 40200000
3369
3370 ## Checking Image at 40100000 ...
3371 Image Name: 2.2.13 for initrd on TQM850L
3372 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3373 Data Size: 335725 Bytes = 327 kB = 0 MB
3374 Load Address: 00000000
3375 Entry Point: 0000000c
3376 Verifying Checksum ... OK
3377
3378 ## Checking Image at 40200000 ...
3379 Image Name: Simple Ramdisk Image
3380 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
3381 Data Size: 566530 Bytes = 553 kB = 0 MB
3382 Load Address: 00000000
3383 Entry Point: 00000000
3384 Verifying Checksum ... OK
3385
3386 => bootm 40100000 40200000
3387 ## Booting Linux kernel at 40100000 ...
3388 Image Name: 2.2.13 for initrd on TQM850L
3389 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3390 Data Size: 335725 Bytes = 327 kB = 0 MB
3391 Load Address: 00000000
3392 Entry Point: 0000000c
3393 Verifying Checksum ... OK
3394 Uncompressing Kernel Image ... OK
3395 ## Loading RAMDisk Image at 40200000 ...
3396 Image Name: Simple Ramdisk Image
3397 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
3398 Data Size: 566530 Bytes = 553 kB = 0 MB
3399 Load Address: 00000000
3400 Entry Point: 00000000
3401 Verifying Checksum ... OK
3402 Loading Ramdisk ... OK
3403 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
3404 Boot arguments: root=/dev/ram
3405 time_init: decrementer frequency = 187500000/60
3406 Calibrating delay loop... 49.77 BogoMIPS
3407 ...
3408 RAMDISK: Compressed image found at block 0
3409 VFS: Mounted root (ext2 filesystem).
3410
3411 bash#
3412
0267768e
MM
3413Boot Linux and pass a flat device tree:
3414-----------
3415
3416First, U-Boot must be compiled with the appropriate defines. See the section
3417titled "Linux Kernel Interface" above for a more in depth explanation. The
3418following is an example of how to start a kernel and pass an updated
3419flat device tree:
3420
3421=> print oftaddr
3422oftaddr=0x300000
3423=> print oft
3424oft=oftrees/mpc8540ads.dtb
3425=> tftp $oftaddr $oft
3426Speed: 1000, full duplex
3427Using TSEC0 device
3428TFTP from server 192.168.1.1; our IP address is 192.168.1.101
3429Filename 'oftrees/mpc8540ads.dtb'.
3430Load address: 0x300000
3431Loading: #
3432done
3433Bytes transferred = 4106 (100a hex)
3434=> tftp $loadaddr $bootfile
3435Speed: 1000, full duplex
3436Using TSEC0 device
3437TFTP from server 192.168.1.1; our IP address is 192.168.1.2
3438Filename 'uImage'.
3439Load address: 0x200000
3440Loading:############
3441done
3442Bytes transferred = 1029407 (fb51f hex)
3443=> print loadaddr
3444loadaddr=200000
3445=> print oftaddr
3446oftaddr=0x300000
3447=> bootm $loadaddr - $oftaddr
3448## Booting image at 00200000 ...
a9398e01
WD
3449 Image Name: Linux-2.6.17-dirty
3450 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3451 Data Size: 1029343 Bytes = 1005.2 kB
0267768e 3452 Load Address: 00000000
a9398e01 3453 Entry Point: 00000000
0267768e
MM
3454 Verifying Checksum ... OK
3455 Uncompressing Kernel Image ... OK
3456Booting using flat device tree at 0x300000
3457Using MPC85xx ADS machine description
3458Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
3459[snip]
3460
3461
2729af9d
WD
3462More About U-Boot Image Types:
3463------------------------------
3464
3465U-Boot supports the following image types:
3466
3467 "Standalone Programs" are directly runnable in the environment
3468 provided by U-Boot; it is expected that (if they behave
3469 well) you can continue to work in U-Boot after return from
3470 the Standalone Program.
3471 "OS Kernel Images" are usually images of some Embedded OS which
3472 will take over control completely. Usually these programs
3473 will install their own set of exception handlers, device
3474 drivers, set up the MMU, etc. - this means, that you cannot
3475 expect to re-enter U-Boot except by resetting the CPU.
3476 "RAMDisk Images" are more or less just data blocks, and their
3477 parameters (address, size) are passed to an OS kernel that is
3478 being started.
3479 "Multi-File Images" contain several images, typically an OS
3480 (Linux) kernel image and one or more data images like
3481 RAMDisks. This construct is useful for instance when you want
3482 to boot over the network using BOOTP etc., where the boot
3483 server provides just a single image file, but you want to get
3484 for instance an OS kernel and a RAMDisk image.
3485
3486 "Multi-File Images" start with a list of image sizes, each
3487 image size (in bytes) specified by an "uint32_t" in network
3488 byte order. This list is terminated by an "(uint32_t)0".
3489 Immediately after the terminating 0 follow the images, one by
3490 one, all aligned on "uint32_t" boundaries (size rounded up to
3491 a multiple of 4 bytes).
3492
3493 "Firmware Images" are binary images containing firmware (like
3494 U-Boot or FPGA images) which usually will be programmed to
3495 flash memory.
3496
3497 "Script files" are command sequences that will be executed by
3498 U-Boot's command interpreter; this feature is especially
3499 useful when you configure U-Boot to use a real shell (hush)
3500 as command interpreter.
3501
3502
3503Standalone HOWTO:
3504=================
3505
3506One of the features of U-Boot is that you can dynamically load and
3507run "standalone" applications, which can use some resources of
3508U-Boot like console I/O functions or interrupt services.
3509
3510Two simple examples are included with the sources:
3511
3512"Hello World" Demo:
3513-------------------
3514
3515'examples/hello_world.c' contains a small "Hello World" Demo
3516application; it is automatically compiled when you build U-Boot.
3517It's configured to run at address 0x00040004, so you can play with it
3518like that:
3519
3520 => loads
3521 ## Ready for S-Record download ...
3522 ~>examples/hello_world.srec
3523 1 2 3 4 5 6 7 8 9 10 11 ...
3524 [file transfer complete]
3525 [connected]
3526 ## Start Addr = 0x00040004
3527
3528 => go 40004 Hello World! This is a test.
3529 ## Starting application at 0x00040004 ...
3530 Hello World
3531 argc = 7
3532 argv[0] = "40004"
3533 argv[1] = "Hello"
3534 argv[2] = "World!"
3535 argv[3] = "This"
3536 argv[4] = "is"
3537 argv[5] = "a"
3538 argv[6] = "test."
3539 argv[7] = "<NULL>"
3540 Hit any key to exit ...
3541
3542 ## Application terminated, rc = 0x0
3543
3544Another example, which demonstrates how to register a CPM interrupt
3545handler with the U-Boot code, can be found in 'examples/timer.c'.
3546Here, a CPM timer is set up to generate an interrupt every second.
3547The interrupt service routine is trivial, just printing a '.'
3548character, but this is just a demo program. The application can be
3549controlled by the following keys:
3550
3551 ? - print current values og the CPM Timer registers
3552 b - enable interrupts and start timer
3553 e - stop timer and disable interrupts
3554 q - quit application
3555
3556 => loads
3557 ## Ready for S-Record download ...
3558 ~>examples/timer.srec
3559 1 2 3 4 5 6 7 8 9 10 11 ...
3560 [file transfer complete]
3561 [connected]
3562 ## Start Addr = 0x00040004
3563
3564 => go 40004
3565 ## Starting application at 0x00040004 ...
3566 TIMERS=0xfff00980
3567 Using timer 1
3568 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
3569
3570Hit 'b':
3571 [q, b, e, ?] Set interval 1000000 us
3572 Enabling timer
3573Hit '?':
3574 [q, b, e, ?] ........
3575 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
3576Hit '?':
3577 [q, b, e, ?] .
3578 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
3579Hit '?':
3580 [q, b, e, ?] .
3581 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
3582Hit '?':
3583 [q, b, e, ?] .
3584 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
3585Hit 'e':
3586 [q, b, e, ?] ...Stopping timer
3587Hit 'q':
3588 [q, b, e, ?] ## Application terminated, rc = 0x0
3589
3590
3591Minicom warning:
3592================
3593
3594Over time, many people have reported problems when trying to use the
3595"minicom" terminal emulation program for serial download. I (wd)
3596consider minicom to be broken, and recommend not to use it. Under
3597Unix, I recommend to use C-Kermit for general purpose use (and
3598especially for kermit binary protocol download ("loadb" command), and
3599use "cu" for S-Record download ("loads" command).
3600
3601Nevertheless, if you absolutely want to use it try adding this
3602configuration to your "File transfer protocols" section:
3603
3604 Name Program Name U/D FullScr IO-Red. Multi
3605 X kermit /usr/bin/kermit -i -l %l -s Y U Y N N
3606 Y kermit /usr/bin/kermit -i -l %l -r N D Y N N
3607
3608
3609NetBSD Notes:
3610=============
3611
3612Starting at version 0.9.2, U-Boot supports NetBSD both as host
3613(build U-Boot) and target system (boots NetBSD/mpc8xx).
3614
3615Building requires a cross environment; it is known to work on
3616NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
3617need gmake since the Makefiles are not compatible with BSD make).
3618Note that the cross-powerpc package does not install include files;
3619attempting to build U-Boot will fail because <machine/ansi.h> is
3620missing. This file has to be installed and patched manually:
3621
3622 # cd /usr/pkg/cross/powerpc-netbsd/include
3623 # mkdir powerpc
3624 # ln -s powerpc machine
3625 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
3626 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST
3627
3628Native builds *don't* work due to incompatibilities between native
3629and U-Boot include files.
3630
3631Booting assumes that (the first part of) the image booted is a
3632stage-2 loader which in turn loads and then invokes the kernel
3633proper. Loader sources will eventually appear in the NetBSD source
3634tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
2a8af187 3635meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
2729af9d
WD
3636
3637
3638Implementation Internals:
3639=========================
3640
3641The following is not intended to be a complete description of every
3642implementation detail. However, it should help to understand the
3643inner workings of U-Boot and make it easier to port it to custom
3644hardware.
3645
3646
3647Initial Stack, Global Data:
3648---------------------------
3649
3650The implementation of U-Boot is complicated by the fact that U-Boot
3651starts running out of ROM (flash memory), usually without access to
3652system RAM (because the memory controller is not initialized yet).
3653This means that we don't have writable Data or BSS segments, and BSS
3654is not initialized as zero. To be able to get a C environment working
3655at all, we have to allocate at least a minimal stack. Implementation
3656options for this are defined and restricted by the CPU used: Some CPU
3657models provide on-chip memory (like the IMMR area on MPC8xx and
3658MPC826x processors), on others (parts of) the data cache can be
3659locked as (mis-) used as memory, etc.
3660
218ca724 3661 Chris Hallinan posted a good summary of these issues to the
2729af9d
WD
3662 u-boot-users mailing list:
3663
3664 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
3665 From: "Chris Hallinan" <clh@net1plus.com>
3666 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
3667 ...
3668
3669 Correct me if I'm wrong, folks, but the way I understand it
3670 is this: Using DCACHE as initial RAM for Stack, etc, does not
3671 require any physical RAM backing up the cache. The cleverness
3672 is that the cache is being used as a temporary supply of
3673 necessary storage before the SDRAM controller is setup. It's
11ccc33f 3674 beyond the scope of this list to explain the details, but you
2729af9d
WD
3675 can see how this works by studying the cache architecture and
3676 operation in the architecture and processor-specific manuals.
3677
3678 OCM is On Chip Memory, which I believe the 405GP has 4K. It
3679 is another option for the system designer to use as an
11ccc33f 3680 initial stack/RAM area prior to SDRAM being available. Either
2729af9d
WD
3681 option should work for you. Using CS 4 should be fine if your
3682 board designers haven't used it for something that would
3683 cause you grief during the initial boot! It is frequently not
3684 used.
3685
3686 CFG_INIT_RAM_ADDR should be somewhere that won't interfere
3687 with your processor/board/system design. The default value
3688 you will find in any recent u-boot distribution in
8a316c9b 3689 walnut.h should work for you. I'd set it to a value larger
2729af9d
WD
3690 than your SDRAM module. If you have a 64MB SDRAM module, set
3691 it above 400_0000. Just make sure your board has no resources
3692 that are supposed to respond to that address! That code in
3693 start.S has been around a while and should work as is when
3694 you get the config right.
3695
3696 -Chris Hallinan
3697 DS4.COM, Inc.
3698
3699It is essential to remember this, since it has some impact on the C
3700code for the initialization procedures:
3701
3702* Initialized global data (data segment) is read-only. Do not attempt
3703 to write it.
3704
11ccc33f 3705* Do not use any uninitialized global data (or implicitely initialized
2729af9d
WD
3706 as zero data - BSS segment) at all - this is undefined, initiali-
3707 zation is performed later (when relocating to RAM).
3708
3709* Stack space is very limited. Avoid big data buffers or things like
3710 that.
3711
3712Having only the stack as writable memory limits means we cannot use
3713normal global data to share information beween the code. But it
3714turned out that the implementation of U-Boot can be greatly
3715simplified by making a global data structure (gd_t) available to all
3716functions. We could pass a pointer to this data as argument to _all_
3717functions, but this would bloat the code. Instead we use a feature of
3718the GCC compiler (Global Register Variables) to share the data: we
3719place a pointer (gd) to the global data into a register which we
3720reserve for this purpose.
3721
3722When choosing a register for such a purpose we are restricted by the
3723relevant (E)ABI specifications for the current architecture, and by
3724GCC's implementation.
3725
3726For PowerPC, the following registers have specific use:
3727 R1: stack pointer
e7670f6c 3728 R2: reserved for system use
2729af9d
WD
3729 R3-R4: parameter passing and return values
3730 R5-R10: parameter passing
3731 R13: small data area pointer
3732 R30: GOT pointer
3733 R31: frame pointer
3734
3735 (U-Boot also uses R14 as internal GOT pointer.)
3736
e7670f6c 3737 ==> U-Boot will use R2 to hold a pointer to the global data
2729af9d
WD
3738
3739 Note: on PPC, we could use a static initializer (since the
3740 address of the global data structure is known at compile time),
3741 but it turned out that reserving a register results in somewhat
3742 smaller code - although the code savings are not that big (on
3743 average for all boards 752 bytes for the whole U-Boot image,
3744 624 text + 127 data).
3745
4c58eb55
MF
3746On Blackfin, the normal C ABI (except for P5) is followed as documented here:
3747 http://docs.blackfin.uclinux.org/doku.php?id=application_binary_interface
3748
3749 ==> U-Boot will use P5 to hold a pointer to the global data
3750
2729af9d
WD
3751On ARM, the following registers are used:
3752
3753 R0: function argument word/integer result
3754 R1-R3: function argument word
3755 R9: GOT pointer
3756 R10: stack limit (used only if stack checking if enabled)
3757 R11: argument (frame) pointer
3758 R12: temporary workspace
3759 R13: stack pointer
3760 R14: link register
3761 R15: program counter
3762
3763 ==> U-Boot will use R8 to hold a pointer to the global data
3764
d87080b7
WD
3765NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
3766or current versions of GCC may "optimize" the code too much.
2729af9d
WD
3767
3768Memory Management:
3769------------------
3770
3771U-Boot runs in system state and uses physical addresses, i.e. the
3772MMU is not used either for address mapping nor for memory protection.
3773
3774The available memory is mapped to fixed addresses using the memory
3775controller. In this process, a contiguous block is formed for each
3776memory type (Flash, SDRAM, SRAM), even when it consists of several
3777physical memory banks.
3778
3779U-Boot is installed in the first 128 kB of the first Flash bank (on
3780TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
3781booting and sizing and initializing DRAM, the code relocates itself
3782to the upper end of DRAM. Immediately below the U-Boot code some
3783memory is reserved for use by malloc() [see CFG_MALLOC_LEN
3784configuration setting]. Below that, a structure with global Board
3785Info data is placed, followed by the stack (growing downward).
3786
3787Additionally, some exception handler code is copied to the low 8 kB
3788of DRAM (0x00000000 ... 0x00001FFF).
3789
3790So a typical memory configuration with 16 MB of DRAM could look like
3791this:
3792
3793 0x0000 0000 Exception Vector code
3794 :
3795 0x0000 1FFF
3796 0x0000 2000 Free for Application Use
3797 :
3798 :
3799
3800 :
3801 :
3802 0x00FB FF20 Monitor Stack (Growing downward)
3803 0x00FB FFAC Board Info Data and permanent copy of global data
3804 0x00FC 0000 Malloc Arena
3805 :
3806 0x00FD FFFF
3807 0x00FE 0000 RAM Copy of Monitor Code
3808 ... eventually: LCD or video framebuffer
3809 ... eventually: pRAM (Protected RAM - unchanged by reset)
3810 0x00FF FFFF [End of RAM]
3811
3812
3813System Initialization:
3814----------------------
c609719b 3815
2729af9d 3816In the reset configuration, U-Boot starts at the reset entry point
11ccc33f 3817(on most PowerPC systems at address 0x00000100). Because of the reset
2729af9d
WD
3818configuration for CS0# this is a mirror of the onboard Flash memory.
3819To be able to re-map memory U-Boot then jumps to its link address.
3820To be able to implement the initialization code in C, a (small!)
3821initial stack is set up in the internal Dual Ported RAM (in case CPUs
3822which provide such a feature like MPC8xx or MPC8260), or in a locked
3823part of the data cache. After that, U-Boot initializes the CPU core,
3824the caches and the SIU.
3825
3826Next, all (potentially) available memory banks are mapped using a
3827preliminary mapping. For example, we put them on 512 MB boundaries
3828(multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
3829on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
3830programmed for SDRAM access. Using the temporary configuration, a
3831simple memory test is run that determines the size of the SDRAM
3832banks.
3833
3834When there is more than one SDRAM bank, and the banks are of
3835different size, the largest is mapped first. For equal size, the first
3836bank (CS2#) is mapped first. The first mapping is always for address
38370x00000000, with any additional banks following immediately to create
3838contiguous memory starting from 0.
3839
3840Then, the monitor installs itself at the upper end of the SDRAM area
3841and allocates memory for use by malloc() and for the global Board
3842Info data; also, the exception vector code is copied to the low RAM
3843pages, and the final stack is set up.
3844
3845Only after this relocation will you have a "normal" C environment;
3846until that you are restricted in several ways, mostly because you are
3847running from ROM, and because the code will have to be relocated to a
3848new address in RAM.
3849
3850
3851U-Boot Porting Guide:
3852----------------------
c609719b 3853
2729af9d
WD
3854[Based on messages by Jerry Van Baren in the U-Boot-Users mailing
3855list, October 2002]
c609719b
WD
3856
3857
2729af9d
WD
3858int main (int argc, char *argv[])
3859{
3860 sighandler_t no_more_time;
c609719b 3861
2729af9d
WD
3862 signal (SIGALRM, no_more_time);
3863 alarm (PROJECT_DEADLINE - toSec (3 * WEEK));
c609719b 3864
2729af9d
WD
3865 if (available_money > available_manpower) {
3866 pay consultant to port U-Boot;
c609719b
WD
3867 return 0;
3868 }
3869
2729af9d
WD
3870 Download latest U-Boot source;
3871
3872 Subscribe to u-boot-users mailing list;
3873
3874 if (clueless) {
3875 email ("Hi, I am new to U-Boot, how do I get started?");
3876 }
3877
3878 while (learning) {
3879 Read the README file in the top level directory;
3880 Read http://www.denx.de/twiki/bin/view/DULG/Manual ;
3881 Read the source, Luke;
3882 }
3883
3884 if (available_money > toLocalCurrency ($2500)) {
3885 Buy a BDI2000;
3886 } else {
3887 Add a lot of aggravation and time;
c609719b
WD
3888 }
3889
2729af9d
WD
3890 Create your own board support subdirectory;
3891
3892 Create your own board config file;
3893
3894 while (!running) {
3895 do {
3896 Add / modify source code;
3897 } until (compiles);
3898 Debug;
3899 if (clueless)
3900 email ("Hi, I am having problems...");
3901 }
3902 Send patch file to Wolfgang;
3903
3904 return 0;
3905}
3906
3907void no_more_time (int sig)
3908{
3909 hire_a_guru();
3910}
3911
c609719b 3912
2729af9d
WD
3913Coding Standards:
3914-----------------
c609719b 3915
2729af9d 3916All contributions to U-Boot should conform to the Linux kernel
2c051651
DZ
3917coding style; see the file "Documentation/CodingStyle" and the script
3918"scripts/Lindent" in your Linux kernel source directory. In sources
3919originating from U-Boot a style corresponding to "Lindent -pcs" (adding
3920spaces before parameters to function calls) is actually used.
3921
3922Source files originating from a different project (for example the
3923MTD subsystem) are generally exempt from these guidelines and are not
3924reformated to ease subsequent migration to newer versions of those
3925sources.
3926
3927Please note that U-Boot is implemented in C (and to some small parts in
3928Assembler); no C++ is used, so please do not use C++ style comments (//)
3929in your code.
c609719b 3930
2729af9d
WD
3931Please also stick to the following formatting rules:
3932- remove any trailing white space
3933- use TAB characters for indentation, not spaces
3934- make sure NOT to use DOS '\r\n' line feeds
3935- do not add more than 2 empty lines to source files
3936- do not add trailing empty lines to source files
180d3f74 3937
2729af9d
WD
3938Submissions which do not conform to the standards may be returned
3939with a request to reformat the changes.
c609719b
WD
3940
3941
2729af9d
WD
3942Submitting Patches:
3943-------------------
c609719b 3944
2729af9d
WD
3945Since the number of patches for U-Boot is growing, we need to
3946establish some rules. Submissions which do not conform to these rules
3947may be rejected, even when they contain important and valuable stuff.
c609719b 3948
90dc6704 3949Patches shall be sent to the u-boot-users mailing list.
c609719b 3950
0d28f34b 3951Please see http://www.denx.de/wiki/U-Boot/Patches for details.
218ca724 3952
2729af9d
WD
3953When you send a patch, please include the following information with
3954it:
c609719b 3955
2729af9d
WD
3956* For bug fixes: a description of the bug and how your patch fixes
3957 this bug. Please try to include a way of demonstrating that the
3958 patch actually fixes something.
c609719b 3959
2729af9d
WD
3960* For new features: a description of the feature and your
3961 implementation.
c609719b 3962
2729af9d 3963* A CHANGELOG entry as plaintext (separate from the patch)
c609719b 3964
2729af9d 3965* For major contributions, your entry to the CREDITS file
c609719b 3966
2729af9d
WD
3967* When you add support for a new board, don't forget to add this
3968 board to the MAKEALL script, too.
c609719b 3969
2729af9d
WD
3970* If your patch adds new configuration options, don't forget to
3971 document these in the README file.
c609719b 3972
218ca724
WD
3973* The patch itself. If you are using git (which is *strongly*
3974 recommended) you can easily generate the patch using the
3975 "git-format-patch". If you then use "git-send-email" to send it to
3976 the U-Boot mailing list, you will avoid most of the common problems
3977 with some other mail clients.
3978
3979 If you cannot use git, use "diff -purN OLD NEW". If your version of
3980 diff does not support these options, then get the latest version of
3981 GNU diff.
c609719b 3982
218ca724
WD
3983 The current directory when running this command shall be the parent
3984 directory of the U-Boot source tree (i. e. please make sure that
3985 your patch includes sufficient directory information for the
3986 affected files).
6dff5529 3987
218ca724
WD
3988 We prefer patches as plain text. MIME attachments are discouraged,
3989 and compressed attachments must not be used.
c609719b 3990
2729af9d
WD
3991* If one logical set of modifications affects or creates several
3992 files, all these changes shall be submitted in a SINGLE patch file.
52f52c14 3993
2729af9d
WD
3994* Changesets that contain different, unrelated modifications shall be
3995 submitted as SEPARATE patches, one patch per changeset.
8bde7f77 3996
52f52c14 3997
2729af9d 3998Notes:
c609719b 3999
2729af9d
WD
4000* Before sending the patch, run the MAKEALL script on your patched
4001 source tree and make sure that no errors or warnings are reported
4002 for any of the boards.
c609719b 4003
2729af9d
WD
4004* Keep your modifications to the necessary minimum: A patch
4005 containing several unrelated changes or arbitrary reformats will be
4006 returned with a request to re-formatting / split it.
c609719b 4007
2729af9d
WD
4008* If you modify existing code, make sure that your new code does not
4009 add to the memory footprint of the code ;-) Small is beautiful!
4010 When adding new features, these should compile conditionally only
4011 (using #ifdef), and the resulting code with the new feature
4012 disabled must not need more memory than the old code without your
4013 modification.
90dc6704
WD
4014
4015* Remember that there is a size limit of 40 kB per message on the
218ca724
WD
4016 u-boot-users mailing list. Bigger patches will be moderated. If
4017 they are reasonable and not bigger than 100 kB, they will be
4018 acknowledged. Even bigger patches should be avoided.