]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
pcie_imx: increment timeout for link up
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
1a459660 8 * SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
9 */
10
11#include <common.h>
12#include <malloc.h>
cf92e05c 13#include <memalign.h>
0b23fb36 14#include <net.h>
84f64c8b 15#include <netdev.h>
0b23fb36
IY
16#include <miiphy.h>
17#include "fec_mxc.h"
18
19#include <asm/arch/clock.h>
20#include <asm/arch/imx-regs.h>
fbecbaa1 21#include <asm/imx-common/sys_proto.h>
0b23fb36
IY
22#include <asm/io.h>
23#include <asm/errno.h>
e2a66e60 24#include <linux/compiler.h>
0b23fb36
IY
25
26DECLARE_GLOBAL_DATA_PTR;
27
bc1ce150
MV
28/*
29 * Timeout the transfer after 5 mS. This is usually a bit more, since
30 * the code in the tightloops this timeout is used in adds some overhead.
31 */
32#define FEC_XFER_TIMEOUT 5000
33
db5b7f56
FE
34/*
35 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
36 * 64-byte alignment in the DMA RX FEC buffer.
37 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
38 * satisfies the alignment on other SoCs (32-bytes)
39 */
40#define FEC_DMA_RX_MINALIGN 64
41
0b23fb36
IY
42#ifndef CONFIG_MII
43#error "CONFIG_MII has to be defined!"
44#endif
45
5c1ad3e6
EN
46#ifndef CONFIG_FEC_XCV_TYPE
47#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
48#endif
49
be7e87e2
MV
50/*
51 * The i.MX28 operates with packets in big endian. We need to swap them before
52 * sending and after receiving.
53 */
5c1ad3e6
EN
54#ifdef CONFIG_MX28
55#define CONFIG_FEC_MXC_SWAP_PACKET
56#endif
57
58#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
59
60/* Check various alignment issues at compile time */
61#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
62#error "ARCH_DMA_MINALIGN must be multiple of 16!"
63#endif
64
65#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
66 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
67#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
68#endif
69
0b23fb36
IY
70#undef DEBUG
71
5c1ad3e6 72#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
73static void swap_packet(uint32_t *packet, int length)
74{
75 int i;
76
77 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
78 packet[i] = __swab32(packet[i]);
79}
80#endif
81
0b23fb36
IY
82/*
83 * MII-interface related functions
84 */
13947f43
TK
85static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
86 uint8_t regAddr)
0b23fb36 87{
0b23fb36
IY
88 uint32_t reg; /* convenient holder for the PHY register */
89 uint32_t phy; /* convenient holder for the PHY */
90 uint32_t start;
13947f43 91 int val;
0b23fb36
IY
92
93 /*
94 * reading from any PHY's register is done by properly
95 * programming the FEC's MII data register.
96 */
d133b881 97 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
98 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
99 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
100
101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 102 phy | reg, &eth->mii_data);
0b23fb36
IY
103
104 /*
105 * wait for the related interrupt
106 */
a60d1e5b 107 start = get_timer(0);
d133b881 108 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 printf("Read MDIO failed...\n");
111 return -1;
112 }
113 }
114
115 /*
116 * clear mii interrupt bit
117 */
d133b881 118 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
119
120 /*
121 * it's now safe to read the PHY's register
122 */
13947f43
TK
123 val = (unsigned short)readl(&eth->mii_data);
124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
125 regAddr, val);
126 return val;
0b23fb36
IY
127}
128
575c5cc0 129static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
130{
131 /*
132 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
133 * and do not drop the Preamble.
843a3e58
MR
134 *
135 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
136 * MII_SPEED) register that defines the MDIO output hold time. Earlier
137 * versions are RAZ there, so just ignore the difference and write the
138 * register always.
139 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
140 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
141 * output.
142 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
143 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
144 * holdtime cannot result in a value greater than 3.
4294b248 145 */
843a3e58
MR
146 u32 pclk = imx_get_fecclk();
147 u32 speed = DIV_ROUND_UP(pclk, 5000000);
148 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
6ba45cc0
MN
149#ifdef FEC_QUIRK_ENET_MAC
150 speed--;
151#endif
843a3e58 152 writel(speed << 1 | hold << 8, &eth->mii_speed);
575c5cc0 153 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 154}
0b23fb36 155
13947f43
TK
156static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
157 uint8_t regAddr, uint16_t data)
158{
0b23fb36
IY
159 uint32_t reg; /* convenient holder for the PHY register */
160 uint32_t phy; /* convenient holder for the PHY */
161 uint32_t start;
162
163 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
164 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
165
166 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 167 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
168
169 /*
170 * wait for the MII interrupt
171 */
a60d1e5b 172 start = get_timer(0);
d133b881 173 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
174 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
175 printf("Write MDIO failed...\n");
176 return -1;
177 }
178 }
179
180 /*
181 * clear MII interrupt bit
182 */
d133b881 183 writel(FEC_IEVENT_MII, &eth->ievent);
13947f43 184 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
0b23fb36
IY
185 regAddr, data);
186
187 return 0;
188}
189
84f64c8b
JH
190static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
191 int regAddr)
13947f43
TK
192{
193 return fec_mdio_read(bus->priv, phyAddr, regAddr);
194}
195
84f64c8b
JH
196static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
197 int regAddr, u16 data)
13947f43
TK
198{
199 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
200}
201
202#ifndef CONFIG_PHYLIB
0b23fb36
IY
203static int miiphy_restart_aneg(struct eth_device *dev)
204{
b774fe9d
SB
205 int ret = 0;
206#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 207 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 208 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 209
0b23fb36
IY
210 /*
211 * Wake up from sleep if necessary
212 * Reset PHY, then delay 300ns
213 */
cb17b92d 214#ifdef CONFIG_MX27
13947f43 215 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 216#endif
13947f43 217 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
218 udelay(1000);
219
220 /*
221 * Set the auto-negotiation advertisement register bits
222 */
13947f43 223 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
224 LPA_100FULL | LPA_100HALF | LPA_10FULL |
225 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 226 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
8ef583a0 227 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
228
229 if (fec->mii_postcall)
230 ret = fec->mii_postcall(fec->phy_id);
231
b774fe9d 232#endif
2e5f4421 233 return ret;
0b23fb36
IY
234}
235
236static int miiphy_wait_aneg(struct eth_device *dev)
237{
238 uint32_t start;
13947f43 239 int status;
9e27e9dc 240 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 241 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36
IY
242
243 /*
244 * Wait for AN completion
245 */
a60d1e5b 246 start = get_timer(0);
0b23fb36
IY
247 do {
248 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
249 printf("%s: Autonegotiation timeout\n", dev->name);
250 return -1;
251 }
252
13947f43
TK
253 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
254 if (status < 0) {
255 printf("%s: Autonegotiation failed. status: %d\n",
0b23fb36
IY
256 dev->name, status);
257 return -1;
258 }
8ef583a0 259 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
260
261 return 0;
262}
13947f43
TK
263#endif
264
0b23fb36
IY
265static int fec_rx_task_enable(struct fec_priv *fec)
266{
c0b5a3bb 267 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
268 return 0;
269}
270
271static int fec_rx_task_disable(struct fec_priv *fec)
272{
273 return 0;
274}
275
276static int fec_tx_task_enable(struct fec_priv *fec)
277{
c0b5a3bb 278 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
279 return 0;
280}
281
282static int fec_tx_task_disable(struct fec_priv *fec)
283{
284 return 0;
285}
286
287/**
288 * Initialize receive task's buffer descriptors
289 * @param[in] fec all we know about the device yet
290 * @param[in] count receive buffer count to be allocated
5c1ad3e6 291 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
292 * @return 0 on success
293 *
79e5f27b 294 * Init all RX descriptors to default values.
0b23fb36 295 */
79e5f27b 296static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 297{
5c1ad3e6 298 uint32_t size;
79e5f27b 299 uint8_t *data;
5c1ad3e6
EN
300 int i;
301
0b23fb36 302 /*
79e5f27b
MV
303 * Reload the RX descriptors with default values and wipe
304 * the RX buffers.
0b23fb36 305 */
5c1ad3e6
EN
306 size = roundup(dsize, ARCH_DMA_MINALIGN);
307 for (i = 0; i < count; i++) {
79e5f27b
MV
308 data = (uint8_t *)fec->rbd_base[i].data_pointer;
309 memset(data, 0, dsize);
310 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
311
312 fec->rbd_base[i].status = FEC_RBD_EMPTY;
313 fec->rbd_base[i].data_length = 0;
5c1ad3e6
EN
314 }
315
316 /* Mark the last RBD to close the ring. */
79e5f27b 317 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
0b23fb36
IY
318 fec->rbd_index = 0;
319
79e5f27b
MV
320 flush_dcache_range((unsigned)fec->rbd_base,
321 (unsigned)fec->rbd_base + size);
0b23fb36
IY
322}
323
324/**
325 * Initialize transmit task's buffer descriptors
326 * @param[in] fec all we know about the device yet
327 *
328 * Transmit buffers are created externally. We only have to init the BDs here.\n
329 * Note: There is a race condition in the hardware. When only one BD is in
330 * use it must be marked with the WRAP bit to use it for every transmitt.
331 * This bit in combination with the READY bit results into double transmit
332 * of each data buffer. It seems the state machine checks READY earlier then
333 * resetting it after the first transfer.
334 * Using two BDs solves this issue.
335 */
336static void fec_tbd_init(struct fec_priv *fec)
337{
5c1ad3e6
EN
338 unsigned addr = (unsigned)fec->tbd_base;
339 unsigned size = roundup(2 * sizeof(struct fec_bd),
340 ARCH_DMA_MINALIGN);
79e5f27b
MV
341
342 memset(fec->tbd_base, 0, size);
343 fec->tbd_base[0].status = 0;
344 fec->tbd_base[1].status = FEC_TBD_WRAP;
0b23fb36 345 fec->tbd_index = 0;
79e5f27b 346 flush_dcache_range(addr, addr + size);
0b23fb36
IY
347}
348
349/**
350 * Mark the given read buffer descriptor as free
351 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
352 * @param[in] pRbd buffer descriptor to mark free again
353 */
354static void fec_rbd_clean(int last, struct fec_bd *pRbd)
355{
5c1ad3e6 356 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 357 if (last)
5c1ad3e6
EN
358 flags |= FEC_RBD_WRAP;
359 writew(flags, &pRbd->status);
0b23fb36
IY
360 writew(0, &pRbd->data_length);
361}
362
be252b65
FE
363static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
364 unsigned char *mac)
0b23fb36 365{
be252b65 366 imx_get_mac_from_fuse(dev_id, mac);
0adb5b76 367 return !is_valid_ethaddr(mac);
0b23fb36
IY
368}
369
4294b248 370static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 371{
4294b248 372 uchar *mac = dev->enetaddr;
0b23fb36
IY
373 struct fec_priv *fec = (struct fec_priv *)dev->priv;
374
375 writel(0, &fec->eth->iaddr1);
376 writel(0, &fec->eth->iaddr2);
377 writel(0, &fec->eth->gaddr1);
378 writel(0, &fec->eth->gaddr2);
379
380 /*
381 * Set physical address
382 */
383 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
384 &fec->eth->paddr1);
385 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
386
387 return 0;
388}
389
a5990b26
MV
390/*
391 * Do initial configuration of the FEC registers
392 */
393static void fec_reg_setup(struct fec_priv *fec)
394{
395 uint32_t rcntrl;
396
397 /*
398 * Set interrupt mask register
399 */
400 writel(0x00000000, &fec->eth->imask);
401
402 /*
403 * Clear FEC-Lite interrupt event register(IEVENT)
404 */
405 writel(0xffffffff, &fec->eth->ievent);
406
407
408 /*
409 * Set FEC-Lite receive control register(R_CNTRL):
410 */
411
412 /* Start with frame length = 1518, common for all modes. */
413 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 414 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
415 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
416 if (fec->xcv_type == RGMII)
a5990b26
MV
417 rcntrl |= FEC_RCNTRL_RGMII;
418 else if (fec->xcv_type == RMII)
419 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
420
421 writel(rcntrl, &fec->eth->r_cntrl);
422}
423
0b23fb36
IY
424/**
425 * Start the FEC engine
426 * @param[in] dev Our device to handle
427 */
428static int fec_open(struct eth_device *edev)
429{
430 struct fec_priv *fec = (struct fec_priv *)edev->priv;
28774cba 431 int speed;
5c1ad3e6
EN
432 uint32_t addr, size;
433 int i;
0b23fb36
IY
434
435 debug("fec_open: fec_open(dev)\n");
436 /* full-duplex, heartbeat disabled */
437 writel(1 << 2, &fec->eth->x_cntrl);
438 fec->rbd_index = 0;
439
5c1ad3e6
EN
440 /* Invalidate all descriptors */
441 for (i = 0; i < FEC_RBD_NUM - 1; i++)
442 fec_rbd_clean(0, &fec->rbd_base[i]);
443 fec_rbd_clean(1, &fec->rbd_base[i]);
444
445 /* Flush the descriptors into RAM */
446 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
447 ARCH_DMA_MINALIGN);
448 addr = (uint32_t)fec->rbd_base;
449 flush_dcache_range(addr, addr + size);
450
28774cba 451#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
452 /* Enable ENET HW endian SWAP */
453 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
454 &fec->eth->ecntrl);
455 /* Enable ENET store and forward mode */
456 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
457 &fec->eth->x_wmrk);
458#endif
0b23fb36
IY
459 /*
460 * Enable FEC-Lite controller
461 */
cb17b92d
JR
462 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
463 &fec->eth->ecntrl);
7df51fd8 464#if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
740d6ae5
JR
465 udelay(100);
466 /*
467 * setup the MII gasket for RMII mode
468 */
469
470 /* disable the gasket */
471 writew(0, &fec->eth->miigsk_enr);
472
473 /* wait for the gasket to be disabled */
474 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
475 udelay(2);
476
477 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
478 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
479
480 /* re-enable the gasket */
481 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
482
483 /* wait until MII gasket is ready */
484 int max_loops = 10;
485 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
486 if (--max_loops <= 0) {
487 printf("WAIT for MII Gasket ready timed out\n");
488 break;
489 }
490 }
491#endif
0b23fb36 492
13947f43 493#ifdef CONFIG_PHYLIB
4dc27eed 494 {
13947f43 495 /* Start up the PHY */
11af8d65
TT
496 int ret = phy_startup(fec->phydev);
497
498 if (ret) {
499 printf("Could not initialize PHY %s\n",
500 fec->phydev->dev->name);
501 return ret;
502 }
13947f43 503 speed = fec->phydev->speed;
13947f43
TK
504 }
505#else
0b23fb36 506 miiphy_wait_aneg(edev);
28774cba 507 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 508 miiphy_duplex(edev->name, fec->phy_id);
13947f43 509#endif
0b23fb36 510
28774cba
TK
511#ifdef FEC_QUIRK_ENET_MAC
512 {
513 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 514 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
515 if (speed == _1000BASET)
516 ecr |= FEC_ECNTRL_SPEED;
517 else if (speed != _100BASET)
518 rcr |= FEC_RCNTRL_RMII_10T;
519 writel(ecr, &fec->eth->ecntrl);
520 writel(rcr, &fec->eth->r_cntrl);
521 }
522#endif
523 debug("%s:Speed=%i\n", __func__, speed);
524
0b23fb36
IY
525 /*
526 * Enable SmartDMA receive task
527 */
528 fec_rx_task_enable(fec);
529
530 udelay(100000);
531 return 0;
532}
533
534static int fec_init(struct eth_device *dev, bd_t* bd)
535{
0b23fb36 536 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 537 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
79e5f27b 538 int i;
0b23fb36 539
e9319f11
JR
540 /* Initialize MAC address */
541 fec_set_hwaddr(dev);
542
0b23fb36 543 /*
79e5f27b 544 * Setup transmit descriptors, there are two in total.
0b23fb36 545 */
79e5f27b 546 fec_tbd_init(fec);
0b23fb36 547
79e5f27b
MV
548 /* Setup receive descriptors. */
549 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
0b23fb36 550
a5990b26 551 fec_reg_setup(fec);
9eb3770b 552
f41471e6 553 if (fec->xcv_type != SEVENWIRE)
575c5cc0 554 fec_mii_setspeed(fec->bus->priv);
9eb3770b 555
0b23fb36
IY
556 /*
557 * Set Opcode/Pause Duration Register
558 */
559 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
560 writel(0x2, &fec->eth->x_wmrk);
561 /*
562 * Set multicast address filter
563 */
564 writel(0x00000000, &fec->eth->gaddr1);
565 writel(0x00000000, &fec->eth->gaddr2);
566
567
fbecbaa1 568 /* Do not access reserved register for i.MX6UL */
87f99895 569 if (!is_mx6ul()) {
fbecbaa1
PF
570 /* clear MIB RAM */
571 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
572 writel(0, i);
0b23fb36 573
fbecbaa1
PF
574 /* FIFO receive start register */
575 writel(0x520, &fec->eth->r_fstart);
576 }
0b23fb36
IY
577
578 /* size and address of each buffer */
579 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
580 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
581 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
582
13947f43 583#ifndef CONFIG_PHYLIB
0b23fb36
IY
584 if (fec->xcv_type != SEVENWIRE)
585 miiphy_restart_aneg(dev);
13947f43 586#endif
0b23fb36
IY
587 fec_open(dev);
588 return 0;
589}
590
591/**
592 * Halt the FEC engine
593 * @param[in] dev Our device to handle
594 */
595static void fec_halt(struct eth_device *dev)
596{
9e27e9dc 597 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
598 int counter = 0xffff;
599
600 /*
601 * issue graceful stop command to the FEC transmitter if necessary
602 */
cb17b92d 603 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
604 &fec->eth->x_cntrl);
605
606 debug("eth_halt: wait for stop regs\n");
607 /*
608 * wait for graceful stop to register
609 */
610 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 611 udelay(1);
0b23fb36
IY
612
613 /*
614 * Disable SmartDMA tasks
615 */
616 fec_tx_task_disable(fec);
617 fec_rx_task_disable(fec);
618
619 /*
620 * Disable the Ethernet Controller
621 * Note: this will also reset the BD index counter!
622 */
740d6ae5
JR
623 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
624 &fec->eth->ecntrl);
0b23fb36
IY
625 fec->rbd_index = 0;
626 fec->tbd_index = 0;
0b23fb36
IY
627 debug("eth_halt: done\n");
628}
629
630/**
631 * Transmit one frame
632 * @param[in] dev Our ethernet device to handle
633 * @param[in] packet Pointer to the data to be transmitted
634 * @param[in] length Data count in bytes
635 * @return 0 on success
636 */
442dac4c 637static int fec_send(struct eth_device *dev, void *packet, int length)
0b23fb36
IY
638{
639 unsigned int status;
efe24d2e 640 uint32_t size, end;
5c1ad3e6 641 uint32_t addr;
bc1ce150
MV
642 int timeout = FEC_XFER_TIMEOUT;
643 int ret = 0;
0b23fb36
IY
644
645 /*
646 * This routine transmits one frame. This routine only accepts
647 * 6-byte Ethernet addresses.
648 */
649 struct fec_priv *fec = (struct fec_priv *)dev->priv;
650
651 /*
652 * Check for valid length of data.
653 */
654 if ((length > 1500) || (length <= 0)) {
4294b248 655 printf("Payload (%d) too large\n", length);
0b23fb36
IY
656 return -1;
657 }
658
659 /*
5c1ad3e6
EN
660 * Setup the transmit buffer. We are always using the first buffer for
661 * transmission, the second will be empty and only used to stop the DMA
662 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 663 */
5c1ad3e6 664#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
665 swap_packet((uint32_t *)packet, length);
666#endif
5c1ad3e6
EN
667
668 addr = (uint32_t)packet;
efe24d2e
MV
669 end = roundup(addr + length, ARCH_DMA_MINALIGN);
670 addr &= ~(ARCH_DMA_MINALIGN - 1);
671 flush_dcache_range(addr, end);
5c1ad3e6 672
0b23fb36 673 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
5c1ad3e6
EN
674 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
675
0b23fb36
IY
676 /*
677 * update BD's status now
678 * This block:
679 * - is always the last in a chain (means no chain)
680 * - should transmitt the CRC
681 * - might be the last BD in the list, so the address counter should
682 * wrap (-> keep the WRAP flag)
683 */
684 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
685 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
686 writew(status, &fec->tbd_base[fec->tbd_index].status);
687
5c1ad3e6
EN
688 /*
689 * Flush data cache. This code flushes both TX descriptors to RAM.
690 * After this code, the descriptors will be safely in RAM and we
691 * can start DMA.
692 */
693 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
694 addr = (uint32_t)fec->tbd_base;
695 flush_dcache_range(addr, addr + size);
696
ab94cd49
MV
697 /*
698 * Below we read the DMA descriptor's last four bytes back from the
699 * DRAM. This is important in order to make sure that all WRITE
700 * operations on the bus that were triggered by previous cache FLUSH
701 * have completed.
702 *
703 * Otherwise, on MX28, it is possible to observe a corruption of the
704 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
705 * for the bus structure of MX28. The scenario is as follows:
706 *
707 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
708 * to DRAM due to flush_dcache_range()
709 * 2) ARM core writes the FEC registers via AHB_ARB2
710 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
711 *
712 * Note that 2) does sometimes finish before 1) due to reordering of
713 * WRITE accesses on the AHB bus, therefore triggering 3) before the
714 * DMA descriptor is fully written into DRAM. This results in occasional
715 * corruption of the DMA descriptor.
716 */
717 readl(addr + size - 4);
718
0b23fb36
IY
719 /*
720 * Enable SmartDMA transmit task
721 */
722 fec_tx_task_enable(fec);
723
724 /*
5c1ad3e6
EN
725 * Wait until frame is sent. On each turn of the wait cycle, we must
726 * invalidate data cache to see what's really in RAM. Also, we need
727 * barrier here.
0b23fb36 728 */
67449098 729 while (--timeout) {
c0b5a3bb 730 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 731 break;
0b23fb36 732 }
5c1ad3e6 733
f599288d 734 if (!timeout) {
67449098 735 ret = -EINVAL;
f599288d
FE
736 goto out;
737 }
738
739 /*
740 * The TDAR bit is cleared when the descriptors are all out from TX
741 * but on mx6solox we noticed that the READY bit is still not cleared
742 * right after TDAR.
743 * These are two distinct signals, and in IC simulation, we found that
744 * TDAR always gets cleared prior than the READY bit of last BD becomes
745 * cleared.
746 * In mx6solox, we use a later version of FEC IP. It looks like that
747 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
748 * version.
749 *
750 * Fix this by polling the READY bit of BD after the TDAR polling,
751 * which covers the mx6solox case and does not harm the other SoCs.
752 */
753 timeout = FEC_XFER_TIMEOUT;
754 while (--timeout) {
755 invalidate_dcache_range(addr, addr + size);
756 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
757 FEC_TBD_READY))
758 break;
759 }
67449098 760
f599288d 761 if (!timeout)
67449098
MV
762 ret = -EINVAL;
763
f599288d 764out:
67449098 765 debug("fec_send: status 0x%x index %d ret %i\n",
0b23fb36 766 readw(&fec->tbd_base[fec->tbd_index].status),
67449098 767 fec->tbd_index, ret);
0b23fb36
IY
768 /* for next transmission use the other buffer */
769 if (fec->tbd_index)
770 fec->tbd_index = 0;
771 else
772 fec->tbd_index = 1;
773
bc1ce150 774 return ret;
0b23fb36
IY
775}
776
777/**
778 * Pull one frame from the card
779 * @param[in] dev Our ethernet device to handle
780 * @return Length of packet read
781 */
782static int fec_recv(struct eth_device *dev)
783{
784 struct fec_priv *fec = (struct fec_priv *)dev->priv;
785 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
786 unsigned long ievent;
787 int frame_length, len = 0;
0b23fb36 788 uint16_t bd_status;
efe24d2e 789 uint32_t addr, size, end;
5c1ad3e6 790 int i;
fd37f195 791 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
0b23fb36
IY
792
793 /*
794 * Check if any critical events have happened
795 */
796 ievent = readl(&fec->eth->ievent);
797 writel(ievent, &fec->eth->ievent);
eda959f3 798 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36
IY
799 if (ievent & FEC_IEVENT_BABR) {
800 fec_halt(dev);
801 fec_init(dev, fec->bd);
802 printf("some error: 0x%08lx\n", ievent);
803 return 0;
804 }
805 if (ievent & FEC_IEVENT_HBERR) {
806 /* Heartbeat error */
807 writel(0x00000001 | readl(&fec->eth->x_cntrl),
808 &fec->eth->x_cntrl);
809 }
810 if (ievent & FEC_IEVENT_GRA) {
811 /* Graceful stop complete */
812 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
813 fec_halt(dev);
814 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
815 &fec->eth->x_cntrl);
816 fec_init(dev, fec->bd);
817 }
818 }
819
820 /*
5c1ad3e6
EN
821 * Read the buffer status. Before the status can be read, the data cache
822 * must be invalidated, because the data in RAM might have been changed
823 * by DMA. The descriptors are properly aligned to cachelines so there's
824 * no need to worry they'd overlap.
825 *
826 * WARNING: By invalidating the descriptor here, we also invalidate
827 * the descriptors surrounding this one. Therefore we can NOT change the
828 * contents of this descriptor nor the surrounding ones. The problem is
829 * that in order to mark the descriptor as processed, we need to change
830 * the descriptor. The solution is to mark the whole cache line when all
831 * descriptors in the cache line are processed.
0b23fb36 832 */
5c1ad3e6
EN
833 addr = (uint32_t)rbd;
834 addr &= ~(ARCH_DMA_MINALIGN - 1);
835 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
836 invalidate_dcache_range(addr, addr + size);
837
0b23fb36
IY
838 bd_status = readw(&rbd->status);
839 debug("fec_recv: status 0x%x\n", bd_status);
840
841 if (!(bd_status & FEC_RBD_EMPTY)) {
842 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
843 ((readw(&rbd->data_length) - 4) > 14)) {
844 /*
845 * Get buffer address and size
846 */
b189584b 847 addr = readl(&rbd->data_pointer);
0b23fb36 848 frame_length = readw(&rbd->data_length) - 4;
5c1ad3e6
EN
849 /*
850 * Invalidate data cache over the buffer
851 */
efe24d2e
MV
852 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
853 addr &= ~(ARCH_DMA_MINALIGN - 1);
854 invalidate_dcache_range(addr, end);
5c1ad3e6 855
0b23fb36
IY
856 /*
857 * Fill the buffer and pass it to upper layers
858 */
5c1ad3e6 859#ifdef CONFIG_FEC_MXC_SWAP_PACKET
b189584b 860 swap_packet((uint32_t *)addr, frame_length);
be7e87e2 861#endif
b189584b 862 memcpy(buff, (char *)addr, frame_length);
1fd92db8 863 net_process_received_packet(buff, frame_length);
0b23fb36
IY
864 len = frame_length;
865 } else {
866 if (bd_status & FEC_RBD_ERR)
b189584b
AA
867 printf("error frame: 0x%08x 0x%08x\n",
868 addr, bd_status);
0b23fb36 869 }
5c1ad3e6 870
0b23fb36 871 /*
5c1ad3e6
EN
872 * Free the current buffer, restart the engine and move forward
873 * to the next buffer. Here we check if the whole cacheline of
874 * descriptors was already processed and if so, we mark it free
875 * as whole.
0b23fb36 876 */
5c1ad3e6
EN
877 size = RXDESC_PER_CACHELINE - 1;
878 if ((fec->rbd_index & size) == size) {
879 i = fec->rbd_index - size;
880 addr = (uint32_t)&fec->rbd_base[i];
881 for (; i <= fec->rbd_index ; i++) {
882 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
883 &fec->rbd_base[i]);
884 }
885 flush_dcache_range(addr,
886 addr + ARCH_DMA_MINALIGN);
887 }
888
0b23fb36
IY
889 fec_rx_task_enable(fec);
890 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
891 }
892 debug("fec_recv: stop\n");
893
894 return len;
895}
896
ef8e3a3b
TK
897static void fec_set_dev_name(char *dest, int dev_id)
898{
899 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
900}
901
79e5f27b
MV
902static int fec_alloc_descs(struct fec_priv *fec)
903{
904 unsigned int size;
905 int i;
906 uint8_t *data;
907
908 /* Allocate TX descriptors. */
909 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
910 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
911 if (!fec->tbd_base)
912 goto err_tx;
913
914 /* Allocate RX descriptors. */
915 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
916 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
917 if (!fec->rbd_base)
918 goto err_rx;
919
920 memset(fec->rbd_base, 0, size);
921
922 /* Allocate RX buffers. */
923
924 /* Maximum RX buffer size. */
db5b7f56 925 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
79e5f27b 926 for (i = 0; i < FEC_RBD_NUM; i++) {
db5b7f56 927 data = memalign(FEC_DMA_RX_MINALIGN, size);
79e5f27b
MV
928 if (!data) {
929 printf("%s: error allocating rxbuf %d\n", __func__, i);
930 goto err_ring;
931 }
932
933 memset(data, 0, size);
934
935 fec->rbd_base[i].data_pointer = (uint32_t)data;
936 fec->rbd_base[i].status = FEC_RBD_EMPTY;
937 fec->rbd_base[i].data_length = 0;
938 /* Flush the buffer to memory. */
939 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
940 }
941
942 /* Mark the last RBD to close the ring. */
943 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
944
945 fec->rbd_index = 0;
946 fec->tbd_index = 0;
947
948 return 0;
949
950err_ring:
951 for (; i >= 0; i--)
952 free((void *)fec->rbd_base[i].data_pointer);
953 free(fec->rbd_base);
954err_rx:
955 free(fec->tbd_base);
956err_tx:
957 return -ENOMEM;
958}
959
960static void fec_free_descs(struct fec_priv *fec)
961{
962 int i;
963
964 for (i = 0; i < FEC_RBD_NUM; i++)
965 free((void *)fec->rbd_base[i].data_pointer);
966 free(fec->rbd_base);
967 free(fec->tbd_base);
968}
969
fe428b90
TK
970#ifdef CONFIG_PHYLIB
971int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
972 struct mii_dev *bus, struct phy_device *phydev)
973#else
974static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
975 struct mii_dev *bus, int phy_id)
976#endif
0b23fb36 977{
0b23fb36 978 struct eth_device *edev;
9e27e9dc 979 struct fec_priv *fec;
0b23fb36 980 unsigned char ethaddr[6];
e382fb48
MV
981 uint32_t start;
982 int ret = 0;
0b23fb36
IY
983
984 /* create and fill edev struct */
985 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
986 if (!edev) {
9e27e9dc 987 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
988 ret = -ENOMEM;
989 goto err1;
9e27e9dc
MV
990 }
991
992 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
993 if (!fec) {
994 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
995 ret = -ENOMEM;
996 goto err2;
0b23fb36 997 }
9e27e9dc 998
de0b9576 999 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
1000 memset(fec, 0, sizeof(*fec));
1001
79e5f27b
MV
1002 ret = fec_alloc_descs(fec);
1003 if (ret)
1004 goto err3;
1005
0b23fb36
IY
1006 edev->priv = fec;
1007 edev->init = fec_init;
1008 edev->send = fec_send;
1009 edev->recv = fec_recv;
1010 edev->halt = fec_halt;
fb57ec97 1011 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 1012
9e27e9dc 1013 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
1014 fec->bd = bd;
1015
392b8502 1016 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
1017
1018 /* Reset chip. */
cb17b92d 1019 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
1020 start = get_timer(0);
1021 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1022 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1023 printf("FEC MXC: Timeout reseting chip\n");
79e5f27b 1024 goto err4;
e382fb48 1025 }
0b23fb36 1026 udelay(10);
e382fb48 1027 }
0b23fb36 1028
a5990b26 1029 fec_reg_setup(fec);
ef8e3a3b
TK
1030 fec_set_dev_name(edev->name, dev_id);
1031 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fe428b90
TK
1032 fec->bus = bus;
1033 fec_mii_setspeed(bus->priv);
1034#ifdef CONFIG_PHYLIB
1035 fec->phydev = phydev;
1036 phy_connect_dev(phydev, edev);
1037 /* Configure phy */
1038 phy_config(phydev);
1039#else
9e27e9dc 1040 fec->phy_id = phy_id;
fe428b90
TK
1041#endif
1042 eth_register(edev);
1043
1044 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1045 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1046 memcpy(edev->enetaddr, ethaddr, 6);
ddb636bd
EN
1047 if (!getenv("ethaddr"))
1048 eth_setenv_enetaddr("ethaddr", ethaddr);
fe428b90
TK
1049 }
1050 return ret;
79e5f27b
MV
1051err4:
1052 fec_free_descs(fec);
fe428b90
TK
1053err3:
1054 free(fec);
1055err2:
1056 free(edev);
1057err1:
1058 return ret;
1059}
1060
1061struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1062{
1063 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1064 struct mii_dev *bus;
1065 int ret;
0b23fb36 1066
13947f43
TK
1067 bus = mdio_alloc();
1068 if (!bus) {
1069 printf("mdio_alloc failed\n");
fe428b90 1070 return NULL;
13947f43
TK
1071 }
1072 bus->read = fec_phy_read;
1073 bus->write = fec_phy_write;
fe428b90 1074 bus->priv = eth;
ef8e3a3b 1075 fec_set_dev_name(bus->name, dev_id);
fe428b90
TK
1076
1077 ret = mdio_register(bus);
1078 if (ret) {
1079 printf("mdio_register failed\n");
1080 free(bus);
1081 return NULL;
1082 }
1083 fec_mii_setspeed(eth);
1084 return bus;
1085}
1086
1087int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1088{
1089 uint32_t base_mii;
1090 struct mii_dev *bus = NULL;
1091#ifdef CONFIG_PHYLIB
1092 struct phy_device *phydev = NULL;
1093#endif
1094 int ret;
1095
5c1ad3e6 1096#ifdef CONFIG_MX28
13947f43
TK
1097 /*
1098 * The i.MX28 has two ethernet interfaces, but they are not equal.
1099 * Only the first one can access the MDIO bus.
1100 */
fe428b90 1101 base_mii = MXS_ENET0_BASE;
13947f43 1102#else
fe428b90 1103 base_mii = addr;
13947f43 1104#endif
fe428b90
TK
1105 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1106 bus = fec_get_miibus(base_mii, dev_id);
1107 if (!bus)
1108 return -ENOMEM;
4dc27eed 1109#ifdef CONFIG_PHYLIB
fe428b90 1110 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
4dc27eed 1111 if (!phydev) {
845a57b4 1112 mdio_unregister(bus);
4dc27eed 1113 free(bus);
fe428b90 1114 return -ENOMEM;
4dc27eed 1115 }
fe428b90
TK
1116 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1117#else
1118 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
4dc27eed 1119#endif
fe428b90
TK
1120 if (ret) {
1121#ifdef CONFIG_PHYLIB
1122 free(phydev);
1123#endif
845a57b4 1124 mdio_unregister(bus);
fe428b90
TK
1125 free(bus);
1126 }
e382fb48 1127 return ret;
eef24480 1128}
0b23fb36 1129
eef24480
TK
1130#ifdef CONFIG_FEC_MXC_PHYADDR
1131int fecmxc_initialize(bd_t *bd)
1132{
1133 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1134 IMX_FEC_BASE);
0b23fb36 1135}
eef24480 1136#endif
2e5f4421 1137
13947f43 1138#ifndef CONFIG_PHYLIB
2e5f4421
MV
1139int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1140{
1141 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1142 fec->mii_postcall = cb;
1143 return 0;
1144}
13947f43 1145#endif