]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
remove congestion tracking framework
[people/ms/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9caccd41 28#include <linux/proc_fs.h>
9ea459e1 29#include <linux/task_work.h>
9164bb4a 30#include <linux/sched/task.h>
e262e32d 31#include <uapi/linux/mount.h>
9bc61ab1 32#include <linux/fs_context.h>
037f11b4 33#include <linux/shmem_fs.h>
bd303368 34#include <linux/mnt_idmapping.h>
9164bb4a 35
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
d2921684 39/* Maximum number of mounts in a mount namespace */
ab171b95 40static unsigned int sysctl_mount_max __read_mostly = 100000;
d2921684 41
0818bf27
AV
42static unsigned int m_hash_mask __read_mostly;
43static unsigned int m_hash_shift __read_mostly;
44static unsigned int mp_hash_mask __read_mostly;
45static unsigned int mp_hash_shift __read_mostly;
46
47static __initdata unsigned long mhash_entries;
48static int __init set_mhash_entries(char *str)
49{
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54}
55__setup("mhash_entries=", set_mhash_entries);
56
57static __initdata unsigned long mphash_entries;
58static int __init set_mphash_entries(char *str)
59{
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64}
65__setup("mphash_entries=", set_mphash_entries);
13f14b4d 66
c7999c36 67static u64 event;
73cd49ec 68static DEFINE_IDA(mnt_id_ida);
719f5d7f 69static DEFINE_IDA(mnt_group_ida);
1da177e4 70
38129a13 71static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 72static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 73static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 74static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
75static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 77
2a186721
CB
78struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
9caccd41 84 struct user_namespace *mnt_userns;
2a186721
CB
85};
86
f87fd4c2 87/* /sys/fs */
00d26666
GKH
88struct kobject *fs_kobj;
89EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 90
99b7db7b
NP
91/*
92 * vfsmount lock may be taken for read to prevent changes to the
93 * vfsmount hash, ie. during mountpoint lookups or walking back
94 * up the tree.
95 *
96 * It should be taken for write in all cases where the vfsmount
97 * tree or hash is modified or when a vfsmount structure is modified.
98 */
48a066e7 99__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 100
d033cb67
CB
101static inline void lock_mount_hash(void)
102{
103 write_seqlock(&mount_lock);
104}
105
106static inline void unlock_mount_hash(void)
107{
108 write_sequnlock(&mount_lock);
109}
110
38129a13 111static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 112{
b58fed8b
RP
113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
115 tmp = tmp + (tmp >> m_hash_shift);
116 return &mount_hashtable[tmp & m_hash_mask];
117}
118
119static inline struct hlist_head *mp_hash(struct dentry *dentry)
120{
121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 tmp = tmp + (tmp >> mp_hash_shift);
123 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
124}
125
b105e270 126static int mnt_alloc_id(struct mount *mnt)
73cd49ec 127{
169b480e
MW
128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129
130 if (res < 0)
131 return res;
132 mnt->mnt_id = res;
133 return 0;
73cd49ec
MS
134}
135
b105e270 136static void mnt_free_id(struct mount *mnt)
73cd49ec 137{
169b480e 138 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
139}
140
719f5d7f
MS
141/*
142 * Allocate a new peer group ID
719f5d7f 143 */
4b8b21f4 144static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 145{
169b480e 146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 147
169b480e
MW
148 if (res < 0)
149 return res;
150 mnt->mnt_group_id = res;
151 return 0;
719f5d7f
MS
152}
153
154/*
155 * Release a peer group ID
156 */
4b8b21f4 157void mnt_release_group_id(struct mount *mnt)
719f5d7f 158{
169b480e 159 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 160 mnt->mnt_group_id = 0;
719f5d7f
MS
161}
162
b3e19d92
NP
163/*
164 * vfsmount lock must be held for read
165 */
83adc753 166static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
167{
168#ifdef CONFIG_SMP
68e8a9fe 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
170#else
171 preempt_disable();
68e8a9fe 172 mnt->mnt_count += n;
b3e19d92
NP
173 preempt_enable();
174#endif
175}
176
b3e19d92
NP
177/*
178 * vfsmount lock must be held for write
179 */
edf7ddbf 180int mnt_get_count(struct mount *mnt)
b3e19d92
NP
181{
182#ifdef CONFIG_SMP
edf7ddbf 183 int count = 0;
b3e19d92
NP
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
68e8a9fe 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
188 }
189
190 return count;
191#else
68e8a9fe 192 return mnt->mnt_count;
b3e19d92
NP
193#endif
194}
195
b105e270 196static struct mount *alloc_vfsmnt(const char *name)
1da177e4 197{
c63181e6
AV
198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 if (mnt) {
73cd49ec
MS
200 int err;
201
c63181e6 202 err = mnt_alloc_id(mnt);
88b38782
LZ
203 if (err)
204 goto out_free_cache;
205
206 if (name) {
79f6540b
VA
207 mnt->mnt_devname = kstrdup_const(name,
208 GFP_KERNEL_ACCOUNT);
c63181e6 209 if (!mnt->mnt_devname)
88b38782 210 goto out_free_id;
73cd49ec
MS
211 }
212
b3e19d92 213#ifdef CONFIG_SMP
c63181e6
AV
214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 if (!mnt->mnt_pcp)
b3e19d92
NP
216 goto out_free_devname;
217
c63181e6 218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 219#else
c63181e6
AV
220 mnt->mnt_count = 1;
221 mnt->mnt_writers = 0;
b3e19d92
NP
222#endif
223
38129a13 224 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
225 INIT_LIST_HEAD(&mnt->mnt_child);
226 INIT_LIST_HEAD(&mnt->mnt_mounts);
227 INIT_LIST_HEAD(&mnt->mnt_list);
228 INIT_LIST_HEAD(&mnt->mnt_expire);
229 INIT_LIST_HEAD(&mnt->mnt_share);
230 INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 232 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 233 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
a6435940 235 mnt->mnt.mnt_userns = &init_user_ns;
1da177e4 236 }
c63181e6 237 return mnt;
88b38782 238
d3ef3d73
NP
239#ifdef CONFIG_SMP
240out_free_devname:
fcc139ae 241 kfree_const(mnt->mnt_devname);
d3ef3d73 242#endif
88b38782 243out_free_id:
c63181e6 244 mnt_free_id(mnt);
88b38782 245out_free_cache:
c63181e6 246 kmem_cache_free(mnt_cache, mnt);
88b38782 247 return NULL;
1da177e4
LT
248}
249
3d733633
DH
250/*
251 * Most r/o checks on a fs are for operations that take
252 * discrete amounts of time, like a write() or unlink().
253 * We must keep track of when those operations start
254 * (for permission checks) and when they end, so that
255 * we can determine when writes are able to occur to
256 * a filesystem.
257 */
258/*
259 * __mnt_is_readonly: check whether a mount is read-only
260 * @mnt: the mount to check for its write status
261 *
262 * This shouldn't be used directly ouside of the VFS.
263 * It does not guarantee that the filesystem will stay
264 * r/w, just that it is right *now*. This can not and
265 * should not be used in place of IS_RDONLY(inode).
266 * mnt_want/drop_write() will _keep_ the filesystem
267 * r/w.
268 */
43f5e655 269bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 270{
43f5e655 271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
83adc753 275static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
276{
277#ifdef CONFIG_SMP
68e8a9fe 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 279#else
68e8a9fe 280 mnt->mnt_writers++;
d3ef3d73
NP
281#endif
282}
3d733633 283
83adc753 284static inline void mnt_dec_writers(struct mount *mnt)
3d733633 285{
d3ef3d73 286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers--;
d3ef3d73 290#endif
3d733633 291}
3d733633 292
83adc753 293static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 294{
d3ef3d73
NP
295#ifdef CONFIG_SMP
296 unsigned int count = 0;
3d733633 297 int cpu;
3d733633
DH
298
299 for_each_possible_cpu(cpu) {
68e8a9fe 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 301 }
3d733633 302
d3ef3d73
NP
303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
3d733633
DH
307}
308
4ed5e82f
MS
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
8366025e 318/*
eb04c282
JK
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
8366025e
DH
323 */
324/**
eb04c282 325 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 326 * @m: the mount on which to take a write
8366025e 327 *
eb04c282
JK
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
8366025e 333 */
eb04c282 334int __mnt_want_write(struct vfsmount *m)
8366025e 335{
83adc753 336 struct mount *mnt = real_mount(m);
3d733633 337 int ret = 0;
3d733633 338
d3ef3d73 339 preempt_disable();
c6653a83 340 mnt_inc_writers(mnt);
d3ef3d73 341 /*
c6653a83 342 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
6aa7de05 347 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
4ed5e82f 355 if (mnt_is_readonly(m)) {
c6653a83 356 mnt_dec_writers(mnt);
3d733633 357 ret = -EROFS;
3d733633 358 }
d3ef3d73 359 preempt_enable();
eb04c282
JK
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
3d733633 381 return ret;
8366025e
DH
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
96029c4e 385/**
eb04c282 386 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
387 * @file: the file who's mount on which to take a write
388 *
14e43bf4
EB
389 * This is like __mnt_want_write, but if the file is already open for writing it
390 * skips incrementing mnt_writers (since the open file already has a reference)
391 * and instead only does the check for emergency r/o remounts. This must be
392 * paired with __mnt_drop_write_file.
96029c4e 393 */
eb04c282 394int __mnt_want_write_file(struct file *file)
96029c4e 395{
14e43bf4
EB
396 if (file->f_mode & FMODE_WRITER) {
397 /*
398 * Superblock may have become readonly while there are still
399 * writable fd's, e.g. due to a fs error with errors=remount-ro
400 */
401 if (__mnt_is_readonly(file->f_path.mnt))
402 return -EROFS;
403 return 0;
404 }
405 return __mnt_want_write(file->f_path.mnt);
96029c4e 406}
eb04c282 407
7c6893e3
MS
408/**
409 * mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
14e43bf4
EB
412 * This is like mnt_want_write, but if the file is already open for writing it
413 * skips incrementing mnt_writers (since the open file already has a reference)
414 * and instead only does the freeze protection and the check for emergency r/o
415 * remounts. This must be paired with mnt_drop_write_file.
7c6893e3
MS
416 */
417int mnt_want_write_file(struct file *file)
418{
419 int ret;
420
a6795a58 421 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
422 ret = __mnt_want_write_file(file);
423 if (ret)
a6795a58 424 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
425 return ret;
426}
96029c4e
NP
427EXPORT_SYMBOL_GPL(mnt_want_write_file);
428
8366025e 429/**
eb04c282 430 * __mnt_drop_write - give up write access to a mount
8366025e
DH
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done
434 * performing writes to it. Must be matched with
eb04c282 435 * __mnt_want_write() call above.
8366025e 436 */
eb04c282 437void __mnt_drop_write(struct vfsmount *mnt)
8366025e 438{
d3ef3d73 439 preempt_disable();
83adc753 440 mnt_dec_writers(real_mount(mnt));
d3ef3d73 441 preempt_enable();
8366025e 442}
eb04c282
JK
443
444/**
445 * mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done performing writes to it and
449 * also allows filesystem to be frozen again. Must be matched with
450 * mnt_want_write() call above.
451 */
452void mnt_drop_write(struct vfsmount *mnt)
453{
454 __mnt_drop_write(mnt);
455 sb_end_write(mnt->mnt_sb);
456}
8366025e
DH
457EXPORT_SYMBOL_GPL(mnt_drop_write);
458
eb04c282
JK
459void __mnt_drop_write_file(struct file *file)
460{
14e43bf4
EB
461 if (!(file->f_mode & FMODE_WRITER))
462 __mnt_drop_write(file->f_path.mnt);
eb04c282
JK
463}
464
7c6893e3
MS
465void mnt_drop_write_file(struct file *file)
466{
a6795a58 467 __mnt_drop_write_file(file);
7c6893e3
MS
468 sb_end_write(file_inode(file)->i_sb);
469}
2a79f17e
AV
470EXPORT_SYMBOL(mnt_drop_write_file);
471
538f4f02
CB
472/**
473 * mnt_hold_writers - prevent write access to the given mount
474 * @mnt: mnt to prevent write access to
475 *
476 * Prevents write access to @mnt if there are no active writers for @mnt.
477 * This function needs to be called and return successfully before changing
478 * properties of @mnt that need to remain stable for callers with write access
479 * to @mnt.
480 *
481 * After this functions has been called successfully callers must pair it with
482 * a call to mnt_unhold_writers() in order to stop preventing write access to
483 * @mnt.
484 *
485 * Context: This function expects lock_mount_hash() to be held serializing
486 * setting MNT_WRITE_HOLD.
487 * Return: On success 0 is returned.
488 * On error, -EBUSY is returned.
489 */
fbdc2f6c 490static inline int mnt_hold_writers(struct mount *mnt)
8366025e 491{
83adc753 492 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 493 /*
d3ef3d73
NP
494 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
495 * should be visible before we do.
3d733633 496 */
d3ef3d73
NP
497 smp_mb();
498
3d733633 499 /*
d3ef3d73
NP
500 * With writers on hold, if this value is zero, then there are
501 * definitely no active writers (although held writers may subsequently
502 * increment the count, they'll have to wait, and decrement it after
503 * seeing MNT_READONLY).
504 *
505 * It is OK to have counter incremented on one CPU and decremented on
506 * another: the sum will add up correctly. The danger would be when we
507 * sum up each counter, if we read a counter before it is incremented,
508 * but then read another CPU's count which it has been subsequently
509 * decremented from -- we would see more decrements than we should.
510 * MNT_WRITE_HOLD protects against this scenario, because
511 * mnt_want_write first increments count, then smp_mb, then spins on
512 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
513 * we're counting up here.
3d733633 514 */
c6653a83 515 if (mnt_get_writers(mnt) > 0)
fbdc2f6c
CB
516 return -EBUSY;
517
518 return 0;
519}
520
538f4f02
CB
521/**
522 * mnt_unhold_writers - stop preventing write access to the given mount
523 * @mnt: mnt to stop preventing write access to
524 *
525 * Stop preventing write access to @mnt allowing callers to gain write access
526 * to @mnt again.
527 *
528 * This function can only be called after a successful call to
529 * mnt_hold_writers().
530 *
531 * Context: This function expects lock_mount_hash() to be held.
532 */
fbdc2f6c
CB
533static inline void mnt_unhold_writers(struct mount *mnt)
534{
d3ef3d73
NP
535 /*
536 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
537 * that become unheld will see MNT_READONLY.
538 */
539 smp_wmb();
83adc753 540 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
fbdc2f6c
CB
541}
542
543static int mnt_make_readonly(struct mount *mnt)
544{
545 int ret;
546
547 ret = mnt_hold_writers(mnt);
548 if (!ret)
549 mnt->mnt.mnt_flags |= MNT_READONLY;
550 mnt_unhold_writers(mnt);
3d733633 551 return ret;
8366025e 552}
8366025e 553
4ed5e82f
MS
554int sb_prepare_remount_readonly(struct super_block *sb)
555{
556 struct mount *mnt;
557 int err = 0;
558
8e8b8796
MS
559 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
560 if (atomic_long_read(&sb->s_remove_count))
561 return -EBUSY;
562
719ea2fb 563 lock_mount_hash();
4ed5e82f
MS
564 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
565 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
566 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
567 smp_mb();
568 if (mnt_get_writers(mnt) > 0) {
569 err = -EBUSY;
570 break;
571 }
572 }
573 }
8e8b8796
MS
574 if (!err && atomic_long_read(&sb->s_remove_count))
575 err = -EBUSY;
576
4ed5e82f
MS
577 if (!err) {
578 sb->s_readonly_remount = 1;
579 smp_wmb();
580 }
581 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
583 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
584 }
719ea2fb 585 unlock_mount_hash();
4ed5e82f
MS
586
587 return err;
588}
589
b105e270 590static void free_vfsmnt(struct mount *mnt)
1da177e4 591{
a6435940
CB
592 struct user_namespace *mnt_userns;
593
594 mnt_userns = mnt_user_ns(&mnt->mnt);
bd303368 595 if (!initial_idmapping(mnt_userns))
a6435940 596 put_user_ns(mnt_userns);
fcc139ae 597 kfree_const(mnt->mnt_devname);
d3ef3d73 598#ifdef CONFIG_SMP
68e8a9fe 599 free_percpu(mnt->mnt_pcp);
d3ef3d73 600#endif
b105e270 601 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
602}
603
8ffcb32e
DH
604static void delayed_free_vfsmnt(struct rcu_head *head)
605{
606 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
607}
608
48a066e7 609/* call under rcu_read_lock */
294d71ff 610int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
611{
612 struct mount *mnt;
613 if (read_seqretry(&mount_lock, seq))
294d71ff 614 return 1;
48a066e7 615 if (bastard == NULL)
294d71ff 616 return 0;
48a066e7
AV
617 mnt = real_mount(bastard);
618 mnt_add_count(mnt, 1);
119e1ef8 619 smp_mb(); // see mntput_no_expire()
48a066e7 620 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 621 return 0;
48a066e7
AV
622 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
623 mnt_add_count(mnt, -1);
294d71ff
AV
624 return 1;
625 }
119e1ef8
AV
626 lock_mount_hash();
627 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
628 mnt_add_count(mnt, -1);
629 unlock_mount_hash();
630 return 1;
631 }
632 unlock_mount_hash();
633 /* caller will mntput() */
294d71ff
AV
634 return -1;
635}
636
637/* call under rcu_read_lock */
638bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
639{
640 int res = __legitimize_mnt(bastard, seq);
641 if (likely(!res))
642 return true;
643 if (unlikely(res < 0)) {
644 rcu_read_unlock();
645 mntput(bastard);
646 rcu_read_lock();
48a066e7 647 }
48a066e7
AV
648 return false;
649}
650
1da177e4 651/*
474279dc 652 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 653 * call under rcu_read_lock()
1da177e4 654 */
474279dc 655struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 656{
38129a13 657 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
658 struct mount *p;
659
38129a13 660 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
661 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
662 return p;
663 return NULL;
664}
665
a05964f3 666/*
f015f126
DH
667 * lookup_mnt - Return the first child mount mounted at path
668 *
669 * "First" means first mounted chronologically. If you create the
670 * following mounts:
671 *
672 * mount /dev/sda1 /mnt
673 * mount /dev/sda2 /mnt
674 * mount /dev/sda3 /mnt
675 *
676 * Then lookup_mnt() on the base /mnt dentry in the root mount will
677 * return successively the root dentry and vfsmount of /dev/sda1, then
678 * /dev/sda2, then /dev/sda3, then NULL.
679 *
680 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 681 */
ca71cf71 682struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 683{
c7105365 684 struct mount *child_mnt;
48a066e7
AV
685 struct vfsmount *m;
686 unsigned seq;
99b7db7b 687
48a066e7
AV
688 rcu_read_lock();
689 do {
690 seq = read_seqbegin(&mount_lock);
691 child_mnt = __lookup_mnt(path->mnt, path->dentry);
692 m = child_mnt ? &child_mnt->mnt : NULL;
693 } while (!legitimize_mnt(m, seq));
694 rcu_read_unlock();
695 return m;
a05964f3
RP
696}
697
9f6c61f9
MS
698static inline void lock_ns_list(struct mnt_namespace *ns)
699{
700 spin_lock(&ns->ns_lock);
701}
702
703static inline void unlock_ns_list(struct mnt_namespace *ns)
704{
705 spin_unlock(&ns->ns_lock);
706}
707
708static inline bool mnt_is_cursor(struct mount *mnt)
709{
710 return mnt->mnt.mnt_flags & MNT_CURSOR;
711}
712
7af1364f
EB
713/*
714 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
715 * current mount namespace.
716 *
717 * The common case is dentries are not mountpoints at all and that
718 * test is handled inline. For the slow case when we are actually
719 * dealing with a mountpoint of some kind, walk through all of the
720 * mounts in the current mount namespace and test to see if the dentry
721 * is a mountpoint.
722 *
723 * The mount_hashtable is not usable in the context because we
724 * need to identify all mounts that may be in the current mount
725 * namespace not just a mount that happens to have some specified
726 * parent mount.
727 */
728bool __is_local_mountpoint(struct dentry *dentry)
729{
730 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
731 struct mount *mnt;
732 bool is_covered = false;
733
7af1364f 734 down_read(&namespace_sem);
9f6c61f9 735 lock_ns_list(ns);
7af1364f 736 list_for_each_entry(mnt, &ns->list, mnt_list) {
9f6c61f9
MS
737 if (mnt_is_cursor(mnt))
738 continue;
7af1364f
EB
739 is_covered = (mnt->mnt_mountpoint == dentry);
740 if (is_covered)
741 break;
742 }
9f6c61f9 743 unlock_ns_list(ns);
7af1364f 744 up_read(&namespace_sem);
5ad05cc8 745
7af1364f
EB
746 return is_covered;
747}
748
e2dfa935 749static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 750{
0818bf27 751 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
752 struct mountpoint *mp;
753
0818bf27 754 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 755 if (mp->m_dentry == dentry) {
84d17192
AV
756 mp->m_count++;
757 return mp;
758 }
759 }
e2dfa935
EB
760 return NULL;
761}
762
3895dbf8 763static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 764{
3895dbf8 765 struct mountpoint *mp, *new = NULL;
e2dfa935 766 int ret;
84d17192 767
3895dbf8 768 if (d_mountpoint(dentry)) {
1e9c75fb
BC
769 /* might be worth a WARN_ON() */
770 if (d_unlinked(dentry))
771 return ERR_PTR(-ENOENT);
3895dbf8
EB
772mountpoint:
773 read_seqlock_excl(&mount_lock);
774 mp = lookup_mountpoint(dentry);
775 read_sequnlock_excl(&mount_lock);
776 if (mp)
777 goto done;
778 }
779
780 if (!new)
781 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
782 if (!new)
84d17192
AV
783 return ERR_PTR(-ENOMEM);
784
3895dbf8
EB
785
786 /* Exactly one processes may set d_mounted */
eed81007 787 ret = d_set_mounted(dentry);
eed81007 788
3895dbf8
EB
789 /* Someone else set d_mounted? */
790 if (ret == -EBUSY)
791 goto mountpoint;
792
793 /* The dentry is not available as a mountpoint? */
794 mp = ERR_PTR(ret);
795 if (ret)
796 goto done;
797
798 /* Add the new mountpoint to the hash table */
799 read_seqlock_excl(&mount_lock);
4edbe133 800 new->m_dentry = dget(dentry);
3895dbf8
EB
801 new->m_count = 1;
802 hlist_add_head(&new->m_hash, mp_hash(dentry));
803 INIT_HLIST_HEAD(&new->m_list);
804 read_sequnlock_excl(&mount_lock);
805
806 mp = new;
807 new = NULL;
808done:
809 kfree(new);
84d17192
AV
810 return mp;
811}
812
4edbe133
AV
813/*
814 * vfsmount lock must be held. Additionally, the caller is responsible
815 * for serializing calls for given disposal list.
816 */
817static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
818{
819 if (!--mp->m_count) {
820 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 821 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
822 spin_lock(&dentry->d_lock);
823 dentry->d_flags &= ~DCACHE_MOUNTED;
824 spin_unlock(&dentry->d_lock);
4edbe133 825 dput_to_list(dentry, list);
0818bf27 826 hlist_del(&mp->m_hash);
84d17192
AV
827 kfree(mp);
828 }
829}
830
4edbe133
AV
831/* called with namespace_lock and vfsmount lock */
832static void put_mountpoint(struct mountpoint *mp)
833{
834 __put_mountpoint(mp, &ex_mountpoints);
835}
836
143c8c91 837static inline int check_mnt(struct mount *mnt)
1da177e4 838{
6b3286ed 839 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
840}
841
99b7db7b
NP
842/*
843 * vfsmount lock must be held for write
844 */
6b3286ed 845static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
846{
847 if (ns) {
848 ns->event = ++event;
849 wake_up_interruptible(&ns->poll);
850 }
851}
852
99b7db7b
NP
853/*
854 * vfsmount lock must be held for write
855 */
6b3286ed 856static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
857{
858 if (ns && ns->event != event) {
859 ns->event = event;
860 wake_up_interruptible(&ns->poll);
861 }
862}
863
99b7db7b
NP
864/*
865 * vfsmount lock must be held for write
866 */
e4e59906 867static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 868{
e4e59906 869 struct mountpoint *mp;
0714a533 870 mnt->mnt_parent = mnt;
a73324da 871 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 872 list_del_init(&mnt->mnt_child);
38129a13 873 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 874 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 875 mp = mnt->mnt_mp;
84d17192 876 mnt->mnt_mp = NULL;
e4e59906 877 return mp;
7bdb11de
EB
878}
879
6a46c573
EB
880/*
881 * vfsmount lock must be held for write
882 */
883static void umount_mnt(struct mount *mnt)
884{
e4e59906 885 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
886}
887
99b7db7b
NP
888/*
889 * vfsmount lock must be held for write
890 */
84d17192
AV
891void mnt_set_mountpoint(struct mount *mnt,
892 struct mountpoint *mp,
44d964d6 893 struct mount *child_mnt)
b90fa9ae 894{
84d17192 895 mp->m_count++;
3a2393d7 896 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 897 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 898 child_mnt->mnt_parent = mnt;
84d17192 899 child_mnt->mnt_mp = mp;
0a5eb7c8 900 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
901}
902
1064f874
EB
903static void __attach_mnt(struct mount *mnt, struct mount *parent)
904{
905 hlist_add_head_rcu(&mnt->mnt_hash,
906 m_hash(&parent->mnt, mnt->mnt_mountpoint));
907 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
908}
909
99b7db7b
NP
910/*
911 * vfsmount lock must be held for write
912 */
84d17192
AV
913static void attach_mnt(struct mount *mnt,
914 struct mount *parent,
915 struct mountpoint *mp)
1da177e4 916{
84d17192 917 mnt_set_mountpoint(parent, mp, mnt);
1064f874 918 __attach_mnt(mnt, parent);
b90fa9ae
RP
919}
920
1064f874 921void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 922{
1064f874 923 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
924 struct mount *old_parent = mnt->mnt_parent;
925
926 list_del_init(&mnt->mnt_child);
927 hlist_del_init(&mnt->mnt_mp_list);
928 hlist_del_init_rcu(&mnt->mnt_hash);
929
930 attach_mnt(mnt, parent, mp);
931
932 put_mountpoint(old_mp);
1064f874 933 mnt_add_count(old_parent, -1);
12a5b529
AV
934}
935
b90fa9ae 936/*
99b7db7b 937 * vfsmount lock must be held for write
b90fa9ae 938 */
1064f874 939static void commit_tree(struct mount *mnt)
b90fa9ae 940{
0714a533 941 struct mount *parent = mnt->mnt_parent;
83adc753 942 struct mount *m;
b90fa9ae 943 LIST_HEAD(head);
143c8c91 944 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 945
0714a533 946 BUG_ON(parent == mnt);
b90fa9ae 947
1a4eeaf2 948 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 949 list_for_each_entry(m, &head, mnt_list)
143c8c91 950 m->mnt_ns = n;
f03c6599 951
b90fa9ae
RP
952 list_splice(&head, n->list.prev);
953
d2921684
EB
954 n->mounts += n->pending_mounts;
955 n->pending_mounts = 0;
956
1064f874 957 __attach_mnt(mnt, parent);
6b3286ed 958 touch_mnt_namespace(n);
1da177e4
LT
959}
960
909b0a88 961static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 962{
6b41d536
AV
963 struct list_head *next = p->mnt_mounts.next;
964 if (next == &p->mnt_mounts) {
1da177e4 965 while (1) {
909b0a88 966 if (p == root)
1da177e4 967 return NULL;
6b41d536
AV
968 next = p->mnt_child.next;
969 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 970 break;
0714a533 971 p = p->mnt_parent;
1da177e4
LT
972 }
973 }
6b41d536 974 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
975}
976
315fc83e 977static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 978{
6b41d536
AV
979 struct list_head *prev = p->mnt_mounts.prev;
980 while (prev != &p->mnt_mounts) {
981 p = list_entry(prev, struct mount, mnt_child);
982 prev = p->mnt_mounts.prev;
9676f0c6
RP
983 }
984 return p;
985}
986
8f291889
AV
987/**
988 * vfs_create_mount - Create a mount for a configured superblock
989 * @fc: The configuration context with the superblock attached
990 *
991 * Create a mount to an already configured superblock. If necessary, the
992 * caller should invoke vfs_get_tree() before calling this.
993 *
994 * Note that this does not attach the mount to anything.
995 */
996struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 997{
b105e270 998 struct mount *mnt;
bd303368 999 struct user_namespace *fs_userns;
9d412a43 1000
8f291889
AV
1001 if (!fc->root)
1002 return ERR_PTR(-EINVAL);
9d412a43 1003
8f291889 1004 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
1005 if (!mnt)
1006 return ERR_PTR(-ENOMEM);
1007
8f291889 1008 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 1009 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 1010
8f291889
AV
1011 atomic_inc(&fc->root->d_sb->s_active);
1012 mnt->mnt.mnt_sb = fc->root->d_sb;
1013 mnt->mnt.mnt_root = dget(fc->root);
1014 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015 mnt->mnt_parent = mnt;
9d412a43 1016
bd303368
CB
1017 fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1018 if (!initial_idmapping(fs_userns))
1019 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1020
719ea2fb 1021 lock_mount_hash();
8f291889 1022 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 1023 unlock_mount_hash();
b105e270 1024 return &mnt->mnt;
9d412a43 1025}
8f291889
AV
1026EXPORT_SYMBOL(vfs_create_mount);
1027
1028struct vfsmount *fc_mount(struct fs_context *fc)
1029{
1030 int err = vfs_get_tree(fc);
1031 if (!err) {
1032 up_write(&fc->root->d_sb->s_umount);
1033 return vfs_create_mount(fc);
1034 }
1035 return ERR_PTR(err);
1036}
1037EXPORT_SYMBOL(fc_mount);
1038
9bc61ab1
DH
1039struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1040 int flags, const char *name,
1041 void *data)
9d412a43 1042{
9bc61ab1 1043 struct fs_context *fc;
8f291889 1044 struct vfsmount *mnt;
9bc61ab1 1045 int ret = 0;
9d412a43
AV
1046
1047 if (!type)
3e1aeb00 1048 return ERR_PTR(-EINVAL);
9d412a43 1049
9bc61ab1
DH
1050 fc = fs_context_for_mount(type, flags);
1051 if (IS_ERR(fc))
1052 return ERR_CAST(fc);
1053
3e1aeb00
DH
1054 if (name)
1055 ret = vfs_parse_fs_string(fc, "source",
1056 name, strlen(name));
9bc61ab1
DH
1057 if (!ret)
1058 ret = parse_monolithic_mount_data(fc, data);
1059 if (!ret)
8f291889
AV
1060 mnt = fc_mount(fc);
1061 else
1062 mnt = ERR_PTR(ret);
9d412a43 1063
9bc61ab1 1064 put_fs_context(fc);
8f291889 1065 return mnt;
9d412a43
AV
1066}
1067EXPORT_SYMBOL_GPL(vfs_kern_mount);
1068
93faccbb
EB
1069struct vfsmount *
1070vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1071 const char *name, void *data)
1072{
1073 /* Until it is worked out how to pass the user namespace
1074 * through from the parent mount to the submount don't support
1075 * unprivileged mounts with submounts.
1076 */
1077 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1078 return ERR_PTR(-EPERM);
1079
e462ec50 1080 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1081}
1082EXPORT_SYMBOL_GPL(vfs_submount);
1083
87129cc0 1084static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1085 int flag)
1da177e4 1086{
87129cc0 1087 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1088 struct mount *mnt;
1089 int err;
1da177e4 1090
be34d1a3
DH
1091 mnt = alloc_vfsmnt(old->mnt_devname);
1092 if (!mnt)
1093 return ERR_PTR(-ENOMEM);
719f5d7f 1094
7a472ef4 1095 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1096 mnt->mnt_group_id = 0; /* not a peer of original */
1097 else
1098 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1099
be34d1a3
DH
1100 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1101 err = mnt_alloc_group_id(mnt);
1102 if (err)
1103 goto out_free;
1da177e4 1104 }
be34d1a3 1105
16a34adb
AV
1106 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1107 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1108
be34d1a3 1109 atomic_inc(&sb->s_active);
a6435940 1110 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
bd303368 1111 if (!initial_idmapping(mnt->mnt.mnt_userns))
a6435940 1112 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
be34d1a3
DH
1113 mnt->mnt.mnt_sb = sb;
1114 mnt->mnt.mnt_root = dget(root);
1115 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1116 mnt->mnt_parent = mnt;
719ea2fb 1117 lock_mount_hash();
be34d1a3 1118 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1119 unlock_mount_hash();
be34d1a3 1120
7a472ef4
EB
1121 if ((flag & CL_SLAVE) ||
1122 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1123 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1124 mnt->mnt_master = old;
1125 CLEAR_MNT_SHARED(mnt);
1126 } else if (!(flag & CL_PRIVATE)) {
1127 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1128 list_add(&mnt->mnt_share, &old->mnt_share);
1129 if (IS_MNT_SLAVE(old))
1130 list_add(&mnt->mnt_slave, &old->mnt_slave);
1131 mnt->mnt_master = old->mnt_master;
5235d448
AV
1132 } else {
1133 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1134 }
1135 if (flag & CL_MAKE_SHARED)
1136 set_mnt_shared(mnt);
1137
1138 /* stick the duplicate mount on the same expiry list
1139 * as the original if that was on one */
1140 if (flag & CL_EXPIRE) {
1141 if (!list_empty(&old->mnt_expire))
1142 list_add(&mnt->mnt_expire, &old->mnt_expire);
1143 }
1144
cb338d06 1145 return mnt;
719f5d7f
MS
1146
1147 out_free:
8ffcb32e 1148 mnt_free_id(mnt);
719f5d7f 1149 free_vfsmnt(mnt);
be34d1a3 1150 return ERR_PTR(err);
1da177e4
LT
1151}
1152
9ea459e1
AV
1153static void cleanup_mnt(struct mount *mnt)
1154{
56cbb429
AV
1155 struct hlist_node *p;
1156 struct mount *m;
9ea459e1 1157 /*
56cbb429
AV
1158 * The warning here probably indicates that somebody messed
1159 * up a mnt_want/drop_write() pair. If this happens, the
1160 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1161 * The locking used to deal with mnt_count decrement provides barriers,
1162 * so mnt_get_writers() below is safe.
1163 */
1164 WARN_ON(mnt_get_writers(mnt));
1165 if (unlikely(mnt->mnt_pins.first))
1166 mnt_pin_kill(mnt);
56cbb429
AV
1167 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1168 hlist_del(&m->mnt_umount);
1169 mntput(&m->mnt);
1170 }
9ea459e1
AV
1171 fsnotify_vfsmount_delete(&mnt->mnt);
1172 dput(mnt->mnt.mnt_root);
1173 deactivate_super(mnt->mnt.mnt_sb);
1174 mnt_free_id(mnt);
1175 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1176}
1177
1178static void __cleanup_mnt(struct rcu_head *head)
1179{
1180 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1181}
1182
1183static LLIST_HEAD(delayed_mntput_list);
1184static void delayed_mntput(struct work_struct *unused)
1185{
1186 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1187 struct mount *m, *t;
9ea459e1 1188
29785735
BP
1189 llist_for_each_entry_safe(m, t, node, mnt_llist)
1190 cleanup_mnt(m);
9ea459e1
AV
1191}
1192static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1193
900148dc 1194static void mntput_no_expire(struct mount *mnt)
b3e19d92 1195{
4edbe133 1196 LIST_HEAD(list);
edf7ddbf 1197 int count;
4edbe133 1198
48a066e7 1199 rcu_read_lock();
9ea0a46c
AV
1200 if (likely(READ_ONCE(mnt->mnt_ns))) {
1201 /*
1202 * Since we don't do lock_mount_hash() here,
1203 * ->mnt_ns can change under us. However, if it's
1204 * non-NULL, then there's a reference that won't
1205 * be dropped until after an RCU delay done after
1206 * turning ->mnt_ns NULL. So if we observe it
1207 * non-NULL under rcu_read_lock(), the reference
1208 * we are dropping is not the final one.
1209 */
1210 mnt_add_count(mnt, -1);
48a066e7 1211 rcu_read_unlock();
f03c6599 1212 return;
b3e19d92 1213 }
719ea2fb 1214 lock_mount_hash();
119e1ef8
AV
1215 /*
1216 * make sure that if __legitimize_mnt() has not seen us grab
1217 * mount_lock, we'll see their refcount increment here.
1218 */
1219 smp_mb();
9ea0a46c 1220 mnt_add_count(mnt, -1);
edf7ddbf
EB
1221 count = mnt_get_count(mnt);
1222 if (count != 0) {
1223 WARN_ON(count < 0);
48a066e7 1224 rcu_read_unlock();
719ea2fb 1225 unlock_mount_hash();
99b7db7b
NP
1226 return;
1227 }
48a066e7
AV
1228 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1229 rcu_read_unlock();
1230 unlock_mount_hash();
1231 return;
1232 }
1233 mnt->mnt.mnt_flags |= MNT_DOOMED;
1234 rcu_read_unlock();
962830df 1235
39f7c4db 1236 list_del(&mnt->mnt_instance);
ce07d891
EB
1237
1238 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1239 struct mount *p, *tmp;
1240 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1241 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1242 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1243 }
1244 }
719ea2fb 1245 unlock_mount_hash();
4edbe133 1246 shrink_dentry_list(&list);
649a795a 1247
9ea459e1
AV
1248 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1249 struct task_struct *task = current;
1250 if (likely(!(task->flags & PF_KTHREAD))) {
1251 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
91989c70 1252 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
9ea459e1
AV
1253 return;
1254 }
1255 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1256 schedule_delayed_work(&delayed_mntput_work, 1);
1257 return;
1258 }
1259 cleanup_mnt(mnt);
b3e19d92 1260}
b3e19d92
NP
1261
1262void mntput(struct vfsmount *mnt)
1263{
1264 if (mnt) {
863d684f 1265 struct mount *m = real_mount(mnt);
b3e19d92 1266 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1267 if (unlikely(m->mnt_expiry_mark))
1268 m->mnt_expiry_mark = 0;
1269 mntput_no_expire(m);
b3e19d92
NP
1270 }
1271}
1272EXPORT_SYMBOL(mntput);
1273
1274struct vfsmount *mntget(struct vfsmount *mnt)
1275{
1276 if (mnt)
83adc753 1277 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1278 return mnt;
1279}
1280EXPORT_SYMBOL(mntget);
1281
1f287bc4
RD
1282/**
1283 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1284 * @path: path to check
c6609c0a
IK
1285 *
1286 * d_mountpoint() can only be used reliably to establish if a dentry is
1287 * not mounted in any namespace and that common case is handled inline.
1288 * d_mountpoint() isn't aware of the possibility there may be multiple
1289 * mounts using a given dentry in a different namespace. This function
1290 * checks if the passed in path is a mountpoint rather than the dentry
1291 * alone.
1292 */
1293bool path_is_mountpoint(const struct path *path)
1294{
1295 unsigned seq;
1296 bool res;
1297
1298 if (!d_mountpoint(path->dentry))
1299 return false;
1300
1301 rcu_read_lock();
1302 do {
1303 seq = read_seqbegin(&mount_lock);
1304 res = __path_is_mountpoint(path);
1305 } while (read_seqretry(&mount_lock, seq));
1306 rcu_read_unlock();
1307
1308 return res;
1309}
1310EXPORT_SYMBOL(path_is_mountpoint);
1311
ca71cf71 1312struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1313{
3064c356
AV
1314 struct mount *p;
1315 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1316 if (IS_ERR(p))
1317 return ERR_CAST(p);
1318 p->mnt.mnt_flags |= MNT_INTERNAL;
1319 return &p->mnt;
7b7b1ace 1320}
1da177e4 1321
a1a2c409 1322#ifdef CONFIG_PROC_FS
9f6c61f9
MS
1323static struct mount *mnt_list_next(struct mnt_namespace *ns,
1324 struct list_head *p)
1325{
1326 struct mount *mnt, *ret = NULL;
1327
1328 lock_ns_list(ns);
1329 list_for_each_continue(p, &ns->list) {
1330 mnt = list_entry(p, typeof(*mnt), mnt_list);
1331 if (!mnt_is_cursor(mnt)) {
1332 ret = mnt;
1333 break;
1334 }
1335 }
1336 unlock_ns_list(ns);
1337
1338 return ret;
1339}
1340
0226f492 1341/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1342static void *m_start(struct seq_file *m, loff_t *pos)
1343{
ede1bf0d 1344 struct proc_mounts *p = m->private;
9f6c61f9 1345 struct list_head *prev;
1da177e4 1346
390c6843 1347 down_read(&namespace_sem);
9f6c61f9
MS
1348 if (!*pos) {
1349 prev = &p->ns->list;
1350 } else {
1351 prev = &p->cursor.mnt_list;
1352
1353 /* Read after we'd reached the end? */
1354 if (list_empty(prev))
1355 return NULL;
c7999c36
AV
1356 }
1357
9f6c61f9 1358 return mnt_list_next(p->ns, prev);
1da177e4
LT
1359}
1360
1361static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1362{
ede1bf0d 1363 struct proc_mounts *p = m->private;
9f6c61f9 1364 struct mount *mnt = v;
b0765fb8 1365
9f6c61f9
MS
1366 ++*pos;
1367 return mnt_list_next(p->ns, &mnt->mnt_list);
1da177e4
LT
1368}
1369
1370static void m_stop(struct seq_file *m, void *v)
1371{
9f6c61f9
MS
1372 struct proc_mounts *p = m->private;
1373 struct mount *mnt = v;
1374
1375 lock_ns_list(p->ns);
1376 if (mnt)
1377 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1378 else
1379 list_del_init(&p->cursor.mnt_list);
1380 unlock_ns_list(p->ns);
390c6843 1381 up_read(&namespace_sem);
1da177e4
LT
1382}
1383
0226f492 1384static int m_show(struct seq_file *m, void *v)
2d4d4864 1385{
ede1bf0d 1386 struct proc_mounts *p = m->private;
9f6c61f9 1387 struct mount *r = v;
0226f492 1388 return p->show(m, &r->mnt);
1da177e4
LT
1389}
1390
a1a2c409 1391const struct seq_operations mounts_op = {
1da177e4
LT
1392 .start = m_start,
1393 .next = m_next,
1394 .stop = m_stop,
0226f492 1395 .show = m_show,
b4629fe2 1396};
9f6c61f9
MS
1397
1398void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1399{
1400 down_read(&namespace_sem);
1401 lock_ns_list(ns);
1402 list_del(&cursor->mnt_list);
1403 unlock_ns_list(ns);
1404 up_read(&namespace_sem);
1405}
a1a2c409 1406#endif /* CONFIG_PROC_FS */
b4629fe2 1407
1da177e4
LT
1408/**
1409 * may_umount_tree - check if a mount tree is busy
1f287bc4 1410 * @m: root of mount tree
1da177e4
LT
1411 *
1412 * This is called to check if a tree of mounts has any
1413 * open files, pwds, chroots or sub mounts that are
1414 * busy.
1415 */
909b0a88 1416int may_umount_tree(struct vfsmount *m)
1da177e4 1417{
909b0a88 1418 struct mount *mnt = real_mount(m);
36341f64
RP
1419 int actual_refs = 0;
1420 int minimum_refs = 0;
315fc83e 1421 struct mount *p;
909b0a88 1422 BUG_ON(!m);
1da177e4 1423
b3e19d92 1424 /* write lock needed for mnt_get_count */
719ea2fb 1425 lock_mount_hash();
909b0a88 1426 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1427 actual_refs += mnt_get_count(p);
1da177e4 1428 minimum_refs += 2;
1da177e4 1429 }
719ea2fb 1430 unlock_mount_hash();
1da177e4
LT
1431
1432 if (actual_refs > minimum_refs)
e3474a8e 1433 return 0;
1da177e4 1434
e3474a8e 1435 return 1;
1da177e4
LT
1436}
1437
1438EXPORT_SYMBOL(may_umount_tree);
1439
1440/**
1441 * may_umount - check if a mount point is busy
1442 * @mnt: root of mount
1443 *
1444 * This is called to check if a mount point has any
1445 * open files, pwds, chroots or sub mounts. If the
1446 * mount has sub mounts this will return busy
1447 * regardless of whether the sub mounts are busy.
1448 *
1449 * Doesn't take quota and stuff into account. IOW, in some cases it will
1450 * give false negatives. The main reason why it's here is that we need
1451 * a non-destructive way to look for easily umountable filesystems.
1452 */
1453int may_umount(struct vfsmount *mnt)
1454{
e3474a8e 1455 int ret = 1;
8ad08d8a 1456 down_read(&namespace_sem);
719ea2fb 1457 lock_mount_hash();
1ab59738 1458 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1459 ret = 0;
719ea2fb 1460 unlock_mount_hash();
8ad08d8a 1461 up_read(&namespace_sem);
a05964f3 1462 return ret;
1da177e4
LT
1463}
1464
1465EXPORT_SYMBOL(may_umount);
1466
97216be0 1467static void namespace_unlock(void)
70fbcdf4 1468{
a3b3c562 1469 struct hlist_head head;
56cbb429
AV
1470 struct hlist_node *p;
1471 struct mount *m;
4edbe133 1472 LIST_HEAD(list);
97216be0 1473
a3b3c562 1474 hlist_move_list(&unmounted, &head);
4edbe133 1475 list_splice_init(&ex_mountpoints, &list);
97216be0 1476
97216be0
AV
1477 up_write(&namespace_sem);
1478
4edbe133
AV
1479 shrink_dentry_list(&list);
1480
a3b3c562
EB
1481 if (likely(hlist_empty(&head)))
1482 return;
1483
22cb7405 1484 synchronize_rcu_expedited();
48a066e7 1485
56cbb429
AV
1486 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1487 hlist_del(&m->mnt_umount);
1488 mntput(&m->mnt);
1489 }
70fbcdf4
RP
1490}
1491
97216be0 1492static inline void namespace_lock(void)
e3197d83 1493{
97216be0 1494 down_write(&namespace_sem);
e3197d83
AV
1495}
1496
e819f152
EB
1497enum umount_tree_flags {
1498 UMOUNT_SYNC = 1,
1499 UMOUNT_PROPAGATE = 2,
e0c9c0af 1500 UMOUNT_CONNECTED = 4,
e819f152 1501};
f2d0a123
EB
1502
1503static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1504{
1505 /* Leaving mounts connected is only valid for lazy umounts */
1506 if (how & UMOUNT_SYNC)
1507 return true;
1508
1509 /* A mount without a parent has nothing to be connected to */
1510 if (!mnt_has_parent(mnt))
1511 return true;
1512
1513 /* Because the reference counting rules change when mounts are
1514 * unmounted and connected, umounted mounts may not be
1515 * connected to mounted mounts.
1516 */
1517 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1518 return true;
1519
1520 /* Has it been requested that the mount remain connected? */
1521 if (how & UMOUNT_CONNECTED)
1522 return false;
1523
1524 /* Is the mount locked such that it needs to remain connected? */
1525 if (IS_MNT_LOCKED(mnt))
1526 return false;
1527
1528 /* By default disconnect the mount */
1529 return true;
1530}
1531
99b7db7b 1532/*
48a066e7 1533 * mount_lock must be held
99b7db7b
NP
1534 * namespace_sem must be held for write
1535 */
e819f152 1536static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1537{
c003b26f 1538 LIST_HEAD(tmp_list);
315fc83e 1539 struct mount *p;
1da177e4 1540
5d88457e
EB
1541 if (how & UMOUNT_PROPAGATE)
1542 propagate_mount_unlock(mnt);
1543
c003b26f 1544 /* Gather the mounts to umount */
590ce4bc
EB
1545 for (p = mnt; p; p = next_mnt(p, mnt)) {
1546 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1547 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1548 }
1da177e4 1549
411a938b 1550 /* Hide the mounts from mnt_mounts */
c003b26f 1551 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1552 list_del_init(&p->mnt_child);
c003b26f 1553 }
88b368f2 1554
c003b26f 1555 /* Add propogated mounts to the tmp_list */
e819f152 1556 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1557 propagate_umount(&tmp_list);
a05964f3 1558
c003b26f 1559 while (!list_empty(&tmp_list)) {
d2921684 1560 struct mnt_namespace *ns;
ce07d891 1561 bool disconnect;
c003b26f 1562 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1563 list_del_init(&p->mnt_expire);
1a4eeaf2 1564 list_del_init(&p->mnt_list);
d2921684
EB
1565 ns = p->mnt_ns;
1566 if (ns) {
1567 ns->mounts--;
1568 __touch_mnt_namespace(ns);
1569 }
143c8c91 1570 p->mnt_ns = NULL;
e819f152 1571 if (how & UMOUNT_SYNC)
48a066e7 1572 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1573
f2d0a123 1574 disconnect = disconnect_mount(p, how);
676da58d 1575 if (mnt_has_parent(p)) {
81b6b061 1576 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1577 if (!disconnect) {
1578 /* Don't forget about p */
1579 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1580 } else {
1581 umount_mnt(p);
1582 }
7c4b93d8 1583 }
0f0afb1d 1584 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1585 if (disconnect)
1586 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1587 }
1588}
1589
b54b9be7 1590static void shrink_submounts(struct mount *mnt);
c35038be 1591
8d0347f6
DH
1592static int do_umount_root(struct super_block *sb)
1593{
1594 int ret = 0;
1595
1596 down_write(&sb->s_umount);
1597 if (!sb_rdonly(sb)) {
1598 struct fs_context *fc;
1599
1600 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1601 SB_RDONLY);
1602 if (IS_ERR(fc)) {
1603 ret = PTR_ERR(fc);
1604 } else {
1605 ret = parse_monolithic_mount_data(fc, NULL);
1606 if (!ret)
1607 ret = reconfigure_super(fc);
1608 put_fs_context(fc);
1609 }
1610 }
1611 up_write(&sb->s_umount);
1612 return ret;
1613}
1614
1ab59738 1615static int do_umount(struct mount *mnt, int flags)
1da177e4 1616{
1ab59738 1617 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1618 int retval;
1619
1ab59738 1620 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1621 if (retval)
1622 return retval;
1623
1624 /*
1625 * Allow userspace to request a mountpoint be expired rather than
1626 * unmounting unconditionally. Unmount only happens if:
1627 * (1) the mark is already set (the mark is cleared by mntput())
1628 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1629 */
1630 if (flags & MNT_EXPIRE) {
1ab59738 1631 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1632 flags & (MNT_FORCE | MNT_DETACH))
1633 return -EINVAL;
1634
b3e19d92
NP
1635 /*
1636 * probably don't strictly need the lock here if we examined
1637 * all race cases, but it's a slowpath.
1638 */
719ea2fb 1639 lock_mount_hash();
83adc753 1640 if (mnt_get_count(mnt) != 2) {
719ea2fb 1641 unlock_mount_hash();
1da177e4 1642 return -EBUSY;
b3e19d92 1643 }
719ea2fb 1644 unlock_mount_hash();
1da177e4 1645
863d684f 1646 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1647 return -EAGAIN;
1648 }
1649
1650 /*
1651 * If we may have to abort operations to get out of this
1652 * mount, and they will themselves hold resources we must
1653 * allow the fs to do things. In the Unix tradition of
1654 * 'Gee thats tricky lets do it in userspace' the umount_begin
1655 * might fail to complete on the first run through as other tasks
1656 * must return, and the like. Thats for the mount program to worry
1657 * about for the moment.
1658 */
1659
42faad99 1660 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1661 sb->s_op->umount_begin(sb);
42faad99 1662 }
1da177e4
LT
1663
1664 /*
1665 * No sense to grab the lock for this test, but test itself looks
1666 * somewhat bogus. Suggestions for better replacement?
1667 * Ho-hum... In principle, we might treat that as umount + switch
1668 * to rootfs. GC would eventually take care of the old vfsmount.
1669 * Actually it makes sense, especially if rootfs would contain a
1670 * /reboot - static binary that would close all descriptors and
1671 * call reboot(9). Then init(8) could umount root and exec /reboot.
1672 */
1ab59738 1673 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1674 /*
1675 * Special case for "unmounting" root ...
1676 * we just try to remount it readonly.
1677 */
bc6155d1 1678 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1679 return -EPERM;
8d0347f6 1680 return do_umount_root(sb);
1da177e4
LT
1681 }
1682
97216be0 1683 namespace_lock();
719ea2fb 1684 lock_mount_hash();
1da177e4 1685
25d202ed
EB
1686 /* Recheck MNT_LOCKED with the locks held */
1687 retval = -EINVAL;
1688 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1689 goto out;
1690
1691 event++;
48a066e7 1692 if (flags & MNT_DETACH) {
1a4eeaf2 1693 if (!list_empty(&mnt->mnt_list))
e819f152 1694 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1695 retval = 0;
48a066e7
AV
1696 } else {
1697 shrink_submounts(mnt);
1698 retval = -EBUSY;
1699 if (!propagate_mount_busy(mnt, 2)) {
1700 if (!list_empty(&mnt->mnt_list))
e819f152 1701 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1702 retval = 0;
1703 }
1da177e4 1704 }
25d202ed 1705out:
719ea2fb 1706 unlock_mount_hash();
e3197d83 1707 namespace_unlock();
1da177e4
LT
1708 return retval;
1709}
1710
80b5dce8
EB
1711/*
1712 * __detach_mounts - lazily unmount all mounts on the specified dentry
1713 *
1714 * During unlink, rmdir, and d_drop it is possible to loose the path
1715 * to an existing mountpoint, and wind up leaking the mount.
1716 * detach_mounts allows lazily unmounting those mounts instead of
1717 * leaking them.
1718 *
1719 * The caller may hold dentry->d_inode->i_mutex.
1720 */
1721void __detach_mounts(struct dentry *dentry)
1722{
1723 struct mountpoint *mp;
1724 struct mount *mnt;
1725
1726 namespace_lock();
3895dbf8 1727 lock_mount_hash();
80b5dce8 1728 mp = lookup_mountpoint(dentry);
adc9b5c0 1729 if (!mp)
80b5dce8
EB
1730 goto out_unlock;
1731
e06b933e 1732 event++;
80b5dce8
EB
1733 while (!hlist_empty(&mp->m_list)) {
1734 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1735 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1736 umount_mnt(mnt);
56cbb429 1737 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1738 }
e0c9c0af 1739 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1740 }
80b5dce8
EB
1741 put_mountpoint(mp);
1742out_unlock:
3895dbf8 1743 unlock_mount_hash();
80b5dce8
EB
1744 namespace_unlock();
1745}
1746
dd111b31 1747/*
9b40bc90
AV
1748 * Is the caller allowed to modify his namespace?
1749 */
1750static inline bool may_mount(void)
1751{
1752 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1753}
1754
f7e33bdb 1755static void warn_mandlock(void)
9e8925b6 1756{
f7e33bdb
JL
1757 pr_warn_once("=======================================================\n"
1758 "WARNING: The mand mount option has been deprecated and\n"
1759 " and is ignored by this kernel. Remove the mand\n"
1760 " option from the mount to silence this warning.\n"
1761 "=======================================================\n");
9e8925b6
JL
1762}
1763
25ccd24f 1764static int can_umount(const struct path *path, int flags)
1da177e4 1765{
25ccd24f 1766 struct mount *mnt = real_mount(path->mnt);
1da177e4 1767
9b40bc90
AV
1768 if (!may_mount())
1769 return -EPERM;
41525f56 1770 if (path->dentry != path->mnt->mnt_root)
25ccd24f 1771 return -EINVAL;
143c8c91 1772 if (!check_mnt(mnt))
25ccd24f 1773 return -EINVAL;
25d202ed 1774 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
25ccd24f 1775 return -EINVAL;
b2f5d4dc 1776 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
25ccd24f
CH
1777 return -EPERM;
1778 return 0;
1779}
1780
a0a6df9a 1781// caller is responsible for flags being sane
25ccd24f
CH
1782int path_umount(struct path *path, int flags)
1783{
1784 struct mount *mnt = real_mount(path->mnt);
1785 int ret;
1786
1787 ret = can_umount(path, flags);
1788 if (!ret)
1789 ret = do_umount(mnt, flags);
1da177e4 1790
429731b1 1791 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
41525f56 1792 dput(path->dentry);
900148dc 1793 mntput_no_expire(mnt);
25ccd24f 1794 return ret;
1da177e4
LT
1795}
1796
09267def 1797static int ksys_umount(char __user *name, int flags)
41525f56
CH
1798{
1799 int lookup_flags = LOOKUP_MOUNTPOINT;
1800 struct path path;
1801 int ret;
1802
a0a6df9a
AV
1803 // basic validity checks done first
1804 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1805 return -EINVAL;
1806
41525f56
CH
1807 if (!(flags & UMOUNT_NOFOLLOW))
1808 lookup_flags |= LOOKUP_FOLLOW;
1809 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1810 if (ret)
1811 return ret;
1812 return path_umount(&path, flags);
1813}
1814
3a18ef5c
DB
1815SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1816{
1817 return ksys_umount(name, flags);
1818}
1819
1da177e4
LT
1820#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1821
1822/*
b58fed8b 1823 * The 2.0 compatible umount. No flags.
1da177e4 1824 */
bdc480e3 1825SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1826{
3a18ef5c 1827 return ksys_umount(name, 0);
1da177e4
LT
1828}
1829
1830#endif
1831
4ce5d2b1 1832static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1833{
4ce5d2b1 1834 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1835 return dentry->d_op == &ns_dentry_operations &&
1836 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1837}
1838
213921f9 1839static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1840{
1841 return container_of(ns, struct mnt_namespace, ns);
1842}
1843
303cc571
CB
1844struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1845{
1846 return &mnt->ns;
1847}
1848
4ce5d2b1
EB
1849static bool mnt_ns_loop(struct dentry *dentry)
1850{
1851 /* Could bind mounting the mount namespace inode cause a
1852 * mount namespace loop?
1853 */
1854 struct mnt_namespace *mnt_ns;
1855 if (!is_mnt_ns_file(dentry))
1856 return false;
1857
f77c8014 1858 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1859 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1860}
1861
87129cc0 1862struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1863 int flag)
1da177e4 1864{
84d17192 1865 struct mount *res, *p, *q, *r, *parent;
1da177e4 1866
4ce5d2b1
EB
1867 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1868 return ERR_PTR(-EINVAL);
1869
1870 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1871 return ERR_PTR(-EINVAL);
9676f0c6 1872
36341f64 1873 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1874 if (IS_ERR(q))
1875 return q;
1876
a73324da 1877 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1878
1879 p = mnt;
6b41d536 1880 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1881 struct mount *s;
7ec02ef1 1882 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1883 continue;
1884
909b0a88 1885 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1886 if (!(flag & CL_COPY_UNBINDABLE) &&
1887 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1888 if (s->mnt.mnt_flags & MNT_LOCKED) {
1889 /* Both unbindable and locked. */
1890 q = ERR_PTR(-EPERM);
1891 goto out;
1892 } else {
1893 s = skip_mnt_tree(s);
1894 continue;
1895 }
4ce5d2b1
EB
1896 }
1897 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1898 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1899 s = skip_mnt_tree(s);
1900 continue;
1901 }
0714a533
AV
1902 while (p != s->mnt_parent) {
1903 p = p->mnt_parent;
1904 q = q->mnt_parent;
1da177e4 1905 }
87129cc0 1906 p = s;
84d17192 1907 parent = q;
87129cc0 1908 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1909 if (IS_ERR(q))
1910 goto out;
719ea2fb 1911 lock_mount_hash();
1a4eeaf2 1912 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1913 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1914 unlock_mount_hash();
1da177e4
LT
1915 }
1916 }
1917 return res;
be34d1a3 1918out:
1da177e4 1919 if (res) {
719ea2fb 1920 lock_mount_hash();
e819f152 1921 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1922 unlock_mount_hash();
1da177e4 1923 }
be34d1a3 1924 return q;
1da177e4
LT
1925}
1926
be34d1a3
DH
1927/* Caller should check returned pointer for errors */
1928
ca71cf71 1929struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1930{
cb338d06 1931 struct mount *tree;
97216be0 1932 namespace_lock();
cd4a4017
EB
1933 if (!check_mnt(real_mount(path->mnt)))
1934 tree = ERR_PTR(-EINVAL);
1935 else
1936 tree = copy_tree(real_mount(path->mnt), path->dentry,
1937 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1938 namespace_unlock();
be34d1a3 1939 if (IS_ERR(tree))
52e220d3 1940 return ERR_CAST(tree);
be34d1a3 1941 return &tree->mnt;
8aec0809
AV
1942}
1943
a07b2000
AV
1944static void free_mnt_ns(struct mnt_namespace *);
1945static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1946
1947void dissolve_on_fput(struct vfsmount *mnt)
1948{
1949 struct mnt_namespace *ns;
1950 namespace_lock();
1951 lock_mount_hash();
1952 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1953 if (ns) {
1954 if (is_anon_ns(ns))
1955 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1956 else
1957 ns = NULL;
1958 }
a07b2000
AV
1959 unlock_mount_hash();
1960 namespace_unlock();
44dfd84a
DH
1961 if (ns)
1962 free_mnt_ns(ns);
a07b2000
AV
1963}
1964
8aec0809
AV
1965void drop_collected_mounts(struct vfsmount *mnt)
1966{
97216be0 1967 namespace_lock();
719ea2fb 1968 lock_mount_hash();
9c8e0a1b 1969 umount_tree(real_mount(mnt), 0);
719ea2fb 1970 unlock_mount_hash();
3ab6abee 1971 namespace_unlock();
8aec0809
AV
1972}
1973
427215d8
MS
1974static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1975{
1976 struct mount *child;
1977
1978 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1979 if (!is_subdir(child->mnt_mountpoint, dentry))
1980 continue;
1981
1982 if (child->mnt.mnt_flags & MNT_LOCKED)
1983 return true;
1984 }
1985 return false;
1986}
1987
c771d683
MS
1988/**
1989 * clone_private_mount - create a private clone of a path
1f287bc4 1990 * @path: path to clone
c771d683 1991 *
1f287bc4
RD
1992 * This creates a new vfsmount, which will be the clone of @path. The new mount
1993 * will not be attached anywhere in the namespace and will be private (i.e.
1994 * changes to the originating mount won't be propagated into this).
c771d683
MS
1995 *
1996 * Release with mntput().
1997 */
ca71cf71 1998struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1999{
2000 struct mount *old_mnt = real_mount(path->mnt);
2001 struct mount *new_mnt;
2002
427215d8 2003 down_read(&namespace_sem);
c771d683 2004 if (IS_MNT_UNBINDABLE(old_mnt))
427215d8
MS
2005 goto invalid;
2006
2007 if (!check_mnt(old_mnt))
2008 goto invalid;
2009
2010 if (has_locked_children(old_mnt, path->dentry))
2011 goto invalid;
c771d683 2012
c771d683 2013 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
427215d8
MS
2014 up_read(&namespace_sem);
2015
c771d683
MS
2016 if (IS_ERR(new_mnt))
2017 return ERR_CAST(new_mnt);
2018
df820f8d
MS
2019 /* Longterm mount to be removed by kern_unmount*() */
2020 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2021
c771d683 2022 return &new_mnt->mnt;
427215d8
MS
2023
2024invalid:
2025 up_read(&namespace_sem);
2026 return ERR_PTR(-EINVAL);
c771d683
MS
2027}
2028EXPORT_SYMBOL_GPL(clone_private_mount);
2029
1f707137
AV
2030int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2031 struct vfsmount *root)
2032{
1a4eeaf2 2033 struct mount *mnt;
1f707137
AV
2034 int res = f(root, arg);
2035 if (res)
2036 return res;
1a4eeaf2
AV
2037 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2038 res = f(&mnt->mnt, arg);
1f707137
AV
2039 if (res)
2040 return res;
2041 }
2042 return 0;
2043}
2044
3bd045cc
AV
2045static void lock_mnt_tree(struct mount *mnt)
2046{
2047 struct mount *p;
2048
2049 for (p = mnt; p; p = next_mnt(p, mnt)) {
2050 int flags = p->mnt.mnt_flags;
2051 /* Don't allow unprivileged users to change mount flags */
2052 flags |= MNT_LOCK_ATIME;
2053
2054 if (flags & MNT_READONLY)
2055 flags |= MNT_LOCK_READONLY;
2056
2057 if (flags & MNT_NODEV)
2058 flags |= MNT_LOCK_NODEV;
2059
2060 if (flags & MNT_NOSUID)
2061 flags |= MNT_LOCK_NOSUID;
2062
2063 if (flags & MNT_NOEXEC)
2064 flags |= MNT_LOCK_NOEXEC;
2065 /* Don't allow unprivileged users to reveal what is under a mount */
2066 if (list_empty(&p->mnt_expire))
2067 flags |= MNT_LOCKED;
2068 p->mnt.mnt_flags = flags;
2069 }
2070}
2071
4b8b21f4 2072static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 2073{
315fc83e 2074 struct mount *p;
719f5d7f 2075
909b0a88 2076 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 2077 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 2078 mnt_release_group_id(p);
719f5d7f
MS
2079 }
2080}
2081
4b8b21f4 2082static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 2083{
315fc83e 2084 struct mount *p;
719f5d7f 2085
909b0a88 2086 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 2087 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 2088 int err = mnt_alloc_group_id(p);
719f5d7f 2089 if (err) {
4b8b21f4 2090 cleanup_group_ids(mnt, p);
719f5d7f
MS
2091 return err;
2092 }
2093 }
2094 }
2095
2096 return 0;
2097}
2098
d2921684
EB
2099int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2100{
2101 unsigned int max = READ_ONCE(sysctl_mount_max);
2102 unsigned int mounts = 0, old, pending, sum;
2103 struct mount *p;
2104
2105 for (p = mnt; p; p = next_mnt(p, mnt))
2106 mounts++;
2107
2108 old = ns->mounts;
2109 pending = ns->pending_mounts;
2110 sum = old + pending;
2111 if ((old > sum) ||
2112 (pending > sum) ||
2113 (max < sum) ||
2114 (mounts > (max - sum)))
2115 return -ENOSPC;
2116
2117 ns->pending_mounts = pending + mounts;
2118 return 0;
2119}
2120
b90fa9ae
RP
2121/*
2122 * @source_mnt : mount tree to be attached
21444403
RP
2123 * @nd : place the mount tree @source_mnt is attached
2124 * @parent_nd : if non-null, detach the source_mnt from its parent and
2125 * store the parent mount and mountpoint dentry.
2126 * (done when source_mnt is moved)
b90fa9ae
RP
2127 *
2128 * NOTE: in the table below explains the semantics when a source mount
2129 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2130 * ---------------------------------------------------------------------------
2131 * | BIND MOUNT OPERATION |
2132 * |**************************************************************************
2133 * | source-->| shared | private | slave | unbindable |
2134 * | dest | | | | |
2135 * | | | | | | |
2136 * | v | | | | |
2137 * |**************************************************************************
2138 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2139 * | | | | | |
2140 * |non-shared| shared (+) | private | slave (*) | invalid |
2141 * ***************************************************************************
b90fa9ae
RP
2142 * A bind operation clones the source mount and mounts the clone on the
2143 * destination mount.
2144 *
2145 * (++) the cloned mount is propagated to all the mounts in the propagation
2146 * tree of the destination mount and the cloned mount is added to
2147 * the peer group of the source mount.
2148 * (+) the cloned mount is created under the destination mount and is marked
2149 * as shared. The cloned mount is added to the peer group of the source
2150 * mount.
5afe0022
RP
2151 * (+++) the mount is propagated to all the mounts in the propagation tree
2152 * of the destination mount and the cloned mount is made slave
2153 * of the same master as that of the source mount. The cloned mount
2154 * is marked as 'shared and slave'.
2155 * (*) the cloned mount is made a slave of the same master as that of the
2156 * source mount.
2157 *
9676f0c6
RP
2158 * ---------------------------------------------------------------------------
2159 * | MOVE MOUNT OPERATION |
2160 * |**************************************************************************
2161 * | source-->| shared | private | slave | unbindable |
2162 * | dest | | | | |
2163 * | | | | | | |
2164 * | v | | | | |
2165 * |**************************************************************************
2166 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2167 * | | | | | |
2168 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2169 * ***************************************************************************
5afe0022
RP
2170 *
2171 * (+) the mount is moved to the destination. And is then propagated to
2172 * all the mounts in the propagation tree of the destination mount.
21444403 2173 * (+*) the mount is moved to the destination.
5afe0022
RP
2174 * (+++) the mount is moved to the destination and is then propagated to
2175 * all the mounts belonging to the destination mount's propagation tree.
2176 * the mount is marked as 'shared and slave'.
2177 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2178 *
2179 * if the source mount is a tree, the operations explained above is
2180 * applied to each mount in the tree.
2181 * Must be called without spinlocks held, since this function can sleep
2182 * in allocations.
2183 */
0fb54e50 2184static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2185 struct mount *dest_mnt,
2186 struct mountpoint *dest_mp,
2763d119 2187 bool moving)
b90fa9ae 2188{
3bd045cc 2189 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2190 HLIST_HEAD(tree_list);
d2921684 2191 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2192 struct mountpoint *smp;
315fc83e 2193 struct mount *child, *p;
38129a13 2194 struct hlist_node *n;
719f5d7f 2195 int err;
b90fa9ae 2196
1064f874
EB
2197 /* Preallocate a mountpoint in case the new mounts need
2198 * to be tucked under other mounts.
2199 */
2200 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2201 if (IS_ERR(smp))
2202 return PTR_ERR(smp);
2203
d2921684 2204 /* Is there space to add these mounts to the mount namespace? */
2763d119 2205 if (!moving) {
d2921684
EB
2206 err = count_mounts(ns, source_mnt);
2207 if (err)
2208 goto out;
2209 }
2210
fc7be130 2211 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2212 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2213 if (err)
2214 goto out;
0b1b901b 2215 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2216 lock_mount_hash();
0b1b901b
AV
2217 if (err)
2218 goto out_cleanup_ids;
909b0a88 2219 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2220 set_mnt_shared(p);
0b1b901b
AV
2221 } else {
2222 lock_mount_hash();
b90fa9ae 2223 }
2763d119
AV
2224 if (moving) {
2225 unhash_mnt(source_mnt);
84d17192 2226 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2227 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2228 } else {
44dfd84a
DH
2229 if (source_mnt->mnt_ns) {
2230 /* move from anon - the caller will destroy */
2231 list_del_init(&source_mnt->mnt_ns->list);
2232 }
84d17192 2233 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2234 commit_tree(source_mnt);
21444403 2235 }
b90fa9ae 2236
38129a13 2237 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2238 struct mount *q;
38129a13 2239 hlist_del_init(&child->mnt_hash);
1064f874
EB
2240 q = __lookup_mnt(&child->mnt_parent->mnt,
2241 child->mnt_mountpoint);
2242 if (q)
2243 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2244 /* Notice when we are propagating across user namespaces */
2245 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2246 lock_mnt_tree(child);
d728cf79 2247 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2248 commit_tree(child);
b90fa9ae 2249 }
1064f874 2250 put_mountpoint(smp);
719ea2fb 2251 unlock_mount_hash();
99b7db7b 2252
b90fa9ae 2253 return 0;
719f5d7f
MS
2254
2255 out_cleanup_ids:
f2ebb3a9
AV
2256 while (!hlist_empty(&tree_list)) {
2257 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2258 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2259 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2260 }
2261 unlock_mount_hash();
0b1b901b 2262 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2263 out:
d2921684 2264 ns->pending_mounts = 0;
1064f874
EB
2265
2266 read_seqlock_excl(&mount_lock);
2267 put_mountpoint(smp);
2268 read_sequnlock_excl(&mount_lock);
2269
719f5d7f 2270 return err;
b90fa9ae
RP
2271}
2272
84d17192 2273static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2274{
2275 struct vfsmount *mnt;
84d17192 2276 struct dentry *dentry = path->dentry;
b12cea91 2277retry:
5955102c 2278 inode_lock(dentry->d_inode);
84d17192 2279 if (unlikely(cant_mount(dentry))) {
5955102c 2280 inode_unlock(dentry->d_inode);
84d17192 2281 return ERR_PTR(-ENOENT);
b12cea91 2282 }
97216be0 2283 namespace_lock();
b12cea91 2284 mnt = lookup_mnt(path);
84d17192 2285 if (likely(!mnt)) {
3895dbf8 2286 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2287 if (IS_ERR(mp)) {
97216be0 2288 namespace_unlock();
5955102c 2289 inode_unlock(dentry->d_inode);
84d17192
AV
2290 return mp;
2291 }
2292 return mp;
2293 }
97216be0 2294 namespace_unlock();
5955102c 2295 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2296 path_put(path);
2297 path->mnt = mnt;
84d17192 2298 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2299 goto retry;
2300}
2301
84d17192 2302static void unlock_mount(struct mountpoint *where)
b12cea91 2303{
84d17192 2304 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2305
2306 read_seqlock_excl(&mount_lock);
84d17192 2307 put_mountpoint(where);
3895dbf8
EB
2308 read_sequnlock_excl(&mount_lock);
2309
328e6d90 2310 namespace_unlock();
5955102c 2311 inode_unlock(dentry->d_inode);
b12cea91
AV
2312}
2313
84d17192 2314static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2315{
e462ec50 2316 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2317 return -EINVAL;
2318
e36cb0b8
DH
2319 if (d_is_dir(mp->m_dentry) !=
2320 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2321 return -ENOTDIR;
2322
2763d119 2323 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2324}
2325
7a2e8a8f
VA
2326/*
2327 * Sanity check the flags to change_mnt_propagation.
2328 */
2329
e462ec50 2330static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2331{
e462ec50 2332 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2333
2334 /* Fail if any non-propagation flags are set */
2335 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2336 return 0;
2337 /* Only one propagation flag should be set */
2338 if (!is_power_of_2(type))
2339 return 0;
2340 return type;
2341}
2342
07b20889
RP
2343/*
2344 * recursively change the type of the mountpoint.
2345 */
e462ec50 2346static int do_change_type(struct path *path, int ms_flags)
07b20889 2347{
315fc83e 2348 struct mount *m;
4b8b21f4 2349 struct mount *mnt = real_mount(path->mnt);
e462ec50 2350 int recurse = ms_flags & MS_REC;
7a2e8a8f 2351 int type;
719f5d7f 2352 int err = 0;
07b20889 2353
2d92ab3c 2354 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2355 return -EINVAL;
2356
e462ec50 2357 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2358 if (!type)
2359 return -EINVAL;
2360
97216be0 2361 namespace_lock();
719f5d7f
MS
2362 if (type == MS_SHARED) {
2363 err = invent_group_ids(mnt, recurse);
2364 if (err)
2365 goto out_unlock;
2366 }
2367
719ea2fb 2368 lock_mount_hash();
909b0a88 2369 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2370 change_mnt_propagation(m, type);
719ea2fb 2371 unlock_mount_hash();
719f5d7f
MS
2372
2373 out_unlock:
97216be0 2374 namespace_unlock();
719f5d7f 2375 return err;
07b20889
RP
2376}
2377
a07b2000
AV
2378static struct mount *__do_loopback(struct path *old_path, int recurse)
2379{
2380 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2381
2382 if (IS_MNT_UNBINDABLE(old))
2383 return mnt;
2384
2385 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2386 return mnt;
2387
2388 if (!recurse && has_locked_children(old, old_path->dentry))
2389 return mnt;
2390
2391 if (recurse)
2392 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2393 else
2394 mnt = clone_mnt(old, old_path->dentry, 0);
2395
2396 if (!IS_ERR(mnt))
2397 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2398
2399 return mnt;
2400}
2401
1da177e4
LT
2402/*
2403 * do loopback mount.
2404 */
808d4e3c 2405static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2406 int recurse)
1da177e4 2407{
2d92ab3c 2408 struct path old_path;
a07b2000 2409 struct mount *mnt = NULL, *parent;
84d17192 2410 struct mountpoint *mp;
57eccb83 2411 int err;
1da177e4
LT
2412 if (!old_name || !*old_name)
2413 return -EINVAL;
815d405c 2414 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2415 if (err)
2416 return err;
2417
8823c079 2418 err = -EINVAL;
4ce5d2b1 2419 if (mnt_ns_loop(old_path.dentry))
dd111b31 2420 goto out;
8823c079 2421
84d17192 2422 mp = lock_mount(path);
a07b2000
AV
2423 if (IS_ERR(mp)) {
2424 err = PTR_ERR(mp);
b12cea91 2425 goto out;
a07b2000 2426 }
b12cea91 2427
84d17192 2428 parent = real_mount(path->mnt);
e149ed2b
AV
2429 if (!check_mnt(parent))
2430 goto out2;
2431
a07b2000 2432 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2433 if (IS_ERR(mnt)) {
2434 err = PTR_ERR(mnt);
e9c5d8a5 2435 goto out2;
be34d1a3 2436 }
ccd48bc7 2437
84d17192 2438 err = graft_tree(mnt, parent, mp);
ccd48bc7 2439 if (err) {
719ea2fb 2440 lock_mount_hash();
e819f152 2441 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2442 unlock_mount_hash();
5b83d2c5 2443 }
b12cea91 2444out2:
84d17192 2445 unlock_mount(mp);
ccd48bc7 2446out:
2d92ab3c 2447 path_put(&old_path);
1da177e4
LT
2448 return err;
2449}
2450
a07b2000
AV
2451static struct file *open_detached_copy(struct path *path, bool recursive)
2452{
2453 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2454 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2455 struct mount *mnt, *p;
2456 struct file *file;
2457
2458 if (IS_ERR(ns))
2459 return ERR_CAST(ns);
2460
2461 namespace_lock();
2462 mnt = __do_loopback(path, recursive);
2463 if (IS_ERR(mnt)) {
2464 namespace_unlock();
2465 free_mnt_ns(ns);
2466 return ERR_CAST(mnt);
2467 }
2468
2469 lock_mount_hash();
2470 for (p = mnt; p; p = next_mnt(p, mnt)) {
2471 p->mnt_ns = ns;
2472 ns->mounts++;
2473 }
2474 ns->root = mnt;
2475 list_add_tail(&ns->list, &mnt->mnt_list);
2476 mntget(&mnt->mnt);
2477 unlock_mount_hash();
2478 namespace_unlock();
2479
2480 mntput(path->mnt);
2481 path->mnt = &mnt->mnt;
2482 file = dentry_open(path, O_PATH, current_cred());
2483 if (IS_ERR(file))
2484 dissolve_on_fput(path->mnt);
2485 else
2486 file->f_mode |= FMODE_NEED_UNMOUNT;
2487 return file;
2488}
2489
2658ce09 2490SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2491{
2492 struct file *file;
2493 struct path path;
2494 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2495 bool detached = flags & OPEN_TREE_CLONE;
2496 int error;
2497 int fd;
2498
2499 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2500
2501 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2502 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2503 OPEN_TREE_CLOEXEC))
2504 return -EINVAL;
2505
2506 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2507 return -EINVAL;
2508
2509 if (flags & AT_NO_AUTOMOUNT)
2510 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2511 if (flags & AT_SYMLINK_NOFOLLOW)
2512 lookup_flags &= ~LOOKUP_FOLLOW;
2513 if (flags & AT_EMPTY_PATH)
2514 lookup_flags |= LOOKUP_EMPTY;
2515
2516 if (detached && !may_mount())
2517 return -EPERM;
2518
2519 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2520 if (fd < 0)
2521 return fd;
2522
2523 error = user_path_at(dfd, filename, lookup_flags, &path);
2524 if (unlikely(error)) {
2525 file = ERR_PTR(error);
2526 } else {
2527 if (detached)
2528 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2529 else
2530 file = dentry_open(&path, O_PATH, current_cred());
2531 path_put(&path);
2532 }
2533 if (IS_ERR(file)) {
2534 put_unused_fd(fd);
2535 return PTR_ERR(file);
2536 }
2537 fd_install(fd, file);
2538 return fd;
2539}
2540
43f5e655
DH
2541/*
2542 * Don't allow locked mount flags to be cleared.
2543 *
2544 * No locks need to be held here while testing the various MNT_LOCK
2545 * flags because those flags can never be cleared once they are set.
2546 */
2547static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2548{
43f5e655
DH
2549 unsigned int fl = mnt->mnt.mnt_flags;
2550
2551 if ((fl & MNT_LOCK_READONLY) &&
2552 !(mnt_flags & MNT_READONLY))
2553 return false;
2554
2555 if ((fl & MNT_LOCK_NODEV) &&
2556 !(mnt_flags & MNT_NODEV))
2557 return false;
2558
2559 if ((fl & MNT_LOCK_NOSUID) &&
2560 !(mnt_flags & MNT_NOSUID))
2561 return false;
2562
2563 if ((fl & MNT_LOCK_NOEXEC) &&
2564 !(mnt_flags & MNT_NOEXEC))
2565 return false;
2566
2567 if ((fl & MNT_LOCK_ATIME) &&
2568 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2569 return false;
2e4b7fcd 2570
43f5e655
DH
2571 return true;
2572}
2573
2574static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2575{
43f5e655 2576 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2577
43f5e655 2578 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2579 return 0;
2580
2581 if (readonly_request)
43f5e655
DH
2582 return mnt_make_readonly(mnt);
2583
68847c94
CB
2584 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2585 return 0;
43f5e655
DH
2586}
2587
43f5e655
DH
2588static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2589{
43f5e655
DH
2590 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2591 mnt->mnt.mnt_flags = mnt_flags;
2592 touch_mnt_namespace(mnt->mnt_ns);
43f5e655
DH
2593}
2594
f8b92ba6
DD
2595static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2596{
2597 struct super_block *sb = mnt->mnt_sb;
2598
2599 if (!__mnt_is_readonly(mnt) &&
2600 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2601 char *buf = (char *)__get_free_page(GFP_KERNEL);
2602 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2603 struct tm tm;
2604
2605 time64_to_tm(sb->s_time_max, 0, &tm);
2606
0ecee669
EB
2607 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2608 sb->s_type->name,
2609 is_mounted(mnt) ? "remounted" : "mounted",
2610 mntpath,
f8b92ba6
DD
2611 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2612
2613 free_page((unsigned long)buf);
2614 }
2615}
2616
43f5e655
DH
2617/*
2618 * Handle reconfiguration of the mountpoint only without alteration of the
2619 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2620 * to mount(2).
2621 */
2622static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2623{
2624 struct super_block *sb = path->mnt->mnt_sb;
2625 struct mount *mnt = real_mount(path->mnt);
2626 int ret;
2627
2628 if (!check_mnt(mnt))
2629 return -EINVAL;
2630
2631 if (path->dentry != mnt->mnt.mnt_root)
2632 return -EINVAL;
2633
2634 if (!can_change_locked_flags(mnt, mnt_flags))
2635 return -EPERM;
2636
e58ace1a
CB
2637 /*
2638 * We're only checking whether the superblock is read-only not
2639 * changing it, so only take down_read(&sb->s_umount).
2640 */
2641 down_read(&sb->s_umount);
68847c94 2642 lock_mount_hash();
43f5e655
DH
2643 ret = change_mount_ro_state(mnt, mnt_flags);
2644 if (ret == 0)
2645 set_mount_attributes(mnt, mnt_flags);
68847c94 2646 unlock_mount_hash();
e58ace1a 2647 up_read(&sb->s_umount);
f8b92ba6
DD
2648
2649 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2650
43f5e655 2651 return ret;
2e4b7fcd
DH
2652}
2653
1da177e4
LT
2654/*
2655 * change filesystem flags. dir should be a physical root of filesystem.
2656 * If you've mounted a non-root directory somewhere and want to do remount
2657 * on it - tough luck.
2658 */
e462ec50
DH
2659static int do_remount(struct path *path, int ms_flags, int sb_flags,
2660 int mnt_flags, void *data)
1da177e4
LT
2661{
2662 int err;
2d92ab3c 2663 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2664 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2665 struct fs_context *fc;
1da177e4 2666
143c8c91 2667 if (!check_mnt(mnt))
1da177e4
LT
2668 return -EINVAL;
2669
2d92ab3c 2670 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2671 return -EINVAL;
2672
43f5e655 2673 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2674 return -EPERM;
9566d674 2675
8d0347f6
DH
2676 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2677 if (IS_ERR(fc))
2678 return PTR_ERR(fc);
ff36fe2c 2679
b330966f 2680 fc->oldapi = true;
8d0347f6
DH
2681 err = parse_monolithic_mount_data(fc, data);
2682 if (!err) {
2683 down_write(&sb->s_umount);
2684 err = -EPERM;
2685 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2686 err = reconfigure_super(fc);
68847c94
CB
2687 if (!err) {
2688 lock_mount_hash();
8d0347f6 2689 set_mount_attributes(mnt, mnt_flags);
68847c94
CB
2690 unlock_mount_hash();
2691 }
8d0347f6
DH
2692 }
2693 up_write(&sb->s_umount);
0e55a7cc 2694 }
f8b92ba6
DD
2695
2696 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2697
8d0347f6 2698 put_fs_context(fc);
1da177e4
LT
2699 return err;
2700}
2701
cbbe362c 2702static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2703{
315fc83e 2704 struct mount *p;
909b0a88 2705 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2706 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2707 return 1;
2708 }
2709 return 0;
2710}
2711
44dfd84a
DH
2712/*
2713 * Check that there aren't references to earlier/same mount namespaces in the
2714 * specified subtree. Such references can act as pins for mount namespaces
2715 * that aren't checked by the mount-cycle checking code, thereby allowing
2716 * cycles to be made.
2717 */
2718static bool check_for_nsfs_mounts(struct mount *subtree)
2719{
2720 struct mount *p;
2721 bool ret = false;
2722
2723 lock_mount_hash();
2724 for (p = subtree; p; p = next_mnt(p, subtree))
2725 if (mnt_ns_loop(p->mnt.mnt_root))
2726 goto out;
2727
2728 ret = true;
2729out:
2730 unlock_mount_hash();
2731 return ret;
2732}
2733
9ffb14ef
PT
2734static int do_set_group(struct path *from_path, struct path *to_path)
2735{
2736 struct mount *from, *to;
2737 int err;
2738
2739 from = real_mount(from_path->mnt);
2740 to = real_mount(to_path->mnt);
2741
2742 namespace_lock();
2743
2744 err = -EINVAL;
2745 /* To and From must be mounted */
2746 if (!is_mounted(&from->mnt))
2747 goto out;
2748 if (!is_mounted(&to->mnt))
2749 goto out;
2750
2751 err = -EPERM;
2752 /* We should be allowed to modify mount namespaces of both mounts */
2753 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2754 goto out;
2755 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2756 goto out;
2757
2758 err = -EINVAL;
2759 /* To and From paths should be mount roots */
2760 if (from_path->dentry != from_path->mnt->mnt_root)
2761 goto out;
2762 if (to_path->dentry != to_path->mnt->mnt_root)
2763 goto out;
2764
2765 /* Setting sharing groups is only allowed across same superblock */
2766 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2767 goto out;
2768
2769 /* From mount root should be wider than To mount root */
2770 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2771 goto out;
2772
2773 /* From mount should not have locked children in place of To's root */
2774 if (has_locked_children(from, to->mnt.mnt_root))
2775 goto out;
2776
2777 /* Setting sharing groups is only allowed on private mounts */
2778 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2779 goto out;
2780
2781 /* From should not be private */
2782 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2783 goto out;
2784
2785 if (IS_MNT_SLAVE(from)) {
2786 struct mount *m = from->mnt_master;
2787
2788 list_add(&to->mnt_slave, &m->mnt_slave_list);
2789 to->mnt_master = m;
2790 }
2791
2792 if (IS_MNT_SHARED(from)) {
2793 to->mnt_group_id = from->mnt_group_id;
2794 list_add(&to->mnt_share, &from->mnt_share);
2795 lock_mount_hash();
2796 set_mnt_shared(to);
2797 unlock_mount_hash();
2798 }
2799
2800 err = 0;
2801out:
2802 namespace_unlock();
2803 return err;
2804}
2805
2db154b3 2806static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2807{
44dfd84a 2808 struct mnt_namespace *ns;
676da58d 2809 struct mount *p;
0fb54e50 2810 struct mount *old;
2763d119
AV
2811 struct mount *parent;
2812 struct mountpoint *mp, *old_mp;
57eccb83 2813 int err;
44dfd84a 2814 bool attached;
1da177e4 2815
2db154b3 2816 mp = lock_mount(new_path);
84d17192 2817 if (IS_ERR(mp))
2db154b3 2818 return PTR_ERR(mp);
cc53ce53 2819
2db154b3
DH
2820 old = real_mount(old_path->mnt);
2821 p = real_mount(new_path->mnt);
2763d119 2822 parent = old->mnt_parent;
44dfd84a 2823 attached = mnt_has_parent(old);
2763d119 2824 old_mp = old->mnt_mp;
44dfd84a 2825 ns = old->mnt_ns;
143c8c91 2826
1da177e4 2827 err = -EINVAL;
44dfd84a
DH
2828 /* The mountpoint must be in our namespace. */
2829 if (!check_mnt(p))
2db154b3 2830 goto out;
1da177e4 2831
570d7a98
EB
2832 /* The thing moved must be mounted... */
2833 if (!is_mounted(&old->mnt))
44dfd84a
DH
2834 goto out;
2835
570d7a98
EB
2836 /* ... and either ours or the root of anon namespace */
2837 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2838 goto out;
5ff9d8a6 2839
2db154b3
DH
2840 if (old->mnt.mnt_flags & MNT_LOCKED)
2841 goto out;
1da177e4 2842
2db154b3
DH
2843 if (old_path->dentry != old_path->mnt->mnt_root)
2844 goto out;
1da177e4 2845
2db154b3
DH
2846 if (d_is_dir(new_path->dentry) !=
2847 d_is_dir(old_path->dentry))
2848 goto out;
21444403
RP
2849 /*
2850 * Don't move a mount residing in a shared parent.
2851 */
2763d119 2852 if (attached && IS_MNT_SHARED(parent))
2db154b3 2853 goto out;
9676f0c6
RP
2854 /*
2855 * Don't move a mount tree containing unbindable mounts to a destination
2856 * mount which is shared.
2857 */
fc7be130 2858 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2859 goto out;
1da177e4 2860 err = -ELOOP;
44dfd84a
DH
2861 if (!check_for_nsfs_mounts(old))
2862 goto out;
fc7be130 2863 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2864 if (p == old)
2db154b3 2865 goto out;
1da177e4 2866
2db154b3 2867 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2868 attached);
4ac91378 2869 if (err)
2db154b3 2870 goto out;
1da177e4
LT
2871
2872 /* if the mount is moved, it should no longer be expire
2873 * automatically */
6776db3d 2874 list_del_init(&old->mnt_expire);
2763d119
AV
2875 if (attached)
2876 put_mountpoint(old_mp);
1da177e4 2877out:
2db154b3 2878 unlock_mount(mp);
44dfd84a 2879 if (!err) {
2763d119
AV
2880 if (attached)
2881 mntput_no_expire(parent);
2882 else
44dfd84a
DH
2883 free_mnt_ns(ns);
2884 }
2db154b3
DH
2885 return err;
2886}
2887
2888static int do_move_mount_old(struct path *path, const char *old_name)
2889{
2890 struct path old_path;
2891 int err;
2892
2893 if (!old_name || !*old_name)
2894 return -EINVAL;
2895
2896 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2897 if (err)
2898 return err;
2899
2900 err = do_move_mount(&old_path, path);
2d92ab3c 2901 path_put(&old_path);
1da177e4
LT
2902 return err;
2903}
2904
9d412a43
AV
2905/*
2906 * add a mount into a namespace's mount tree
2907 */
8f11538e
AV
2908static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2909 struct path *path, int mnt_flags)
9d412a43 2910{
8f11538e 2911 struct mount *parent = real_mount(path->mnt);
9d412a43 2912
f2ebb3a9 2913 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2914
84d17192 2915 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2916 /* that's acceptable only for automounts done in private ns */
2917 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2918 return -EINVAL;
156cacb1 2919 /* ... and for those we'd better have mountpoint still alive */
84d17192 2920 if (!parent->mnt_ns)
8f11538e 2921 return -EINVAL;
156cacb1 2922 }
9d412a43
AV
2923
2924 /* Refuse the same filesystem on the same mount point */
95bc5f25 2925 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2926 path->mnt->mnt_root == path->dentry)
8f11538e 2927 return -EBUSY;
9d412a43 2928
e36cb0b8 2929 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2930 return -EINVAL;
9d412a43 2931
95bc5f25 2932 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2933 return graft_tree(newmnt, parent, mp);
9d412a43 2934}
b1e75df4 2935
132e4608
DH
2936static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2937
2938/*
2939 * Create a new mount using a superblock configuration and request it
2940 * be added to the namespace tree.
2941 */
2942static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2943 unsigned int mnt_flags)
2944{
2945 struct vfsmount *mnt;
8f11538e 2946 struct mountpoint *mp;
132e4608
DH
2947 struct super_block *sb = fc->root->d_sb;
2948 int error;
2949
c9ce29ed
AV
2950 error = security_sb_kern_mount(sb);
2951 if (!error && mount_too_revealing(sb, &mnt_flags))
2952 error = -EPERM;
2953
2954 if (unlikely(error)) {
2955 fc_drop_locked(fc);
2956 return error;
132e4608
DH
2957 }
2958
2959 up_write(&sb->s_umount);
2960
2961 mnt = vfs_create_mount(fc);
2962 if (IS_ERR(mnt))
2963 return PTR_ERR(mnt);
2964
f8b92ba6
DD
2965 mnt_warn_timestamp_expiry(mountpoint, mnt);
2966
8f11538e
AV
2967 mp = lock_mount(mountpoint);
2968 if (IS_ERR(mp)) {
2969 mntput(mnt);
2970 return PTR_ERR(mp);
2971 }
2972 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2973 unlock_mount(mp);
0ecee669
EB
2974 if (error < 0)
2975 mntput(mnt);
132e4608
DH
2976 return error;
2977}
1b852bce 2978
1da177e4
LT
2979/*
2980 * create a new mount for userspace and request it to be added into the
2981 * namespace's tree
2982 */
e462ec50 2983static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2984 int mnt_flags, const char *name, void *data)
1da177e4 2985{
0c55cfc4 2986 struct file_system_type *type;
a0c9a8b8
AV
2987 struct fs_context *fc;
2988 const char *subtype = NULL;
2989 int err = 0;
1da177e4 2990
0c55cfc4 2991 if (!fstype)
1da177e4
LT
2992 return -EINVAL;
2993
0c55cfc4
EB
2994 type = get_fs_type(fstype);
2995 if (!type)
2996 return -ENODEV;
2997
a0c9a8b8
AV
2998 if (type->fs_flags & FS_HAS_SUBTYPE) {
2999 subtype = strchr(fstype, '.');
3000 if (subtype) {
3001 subtype++;
3002 if (!*subtype) {
3003 put_filesystem(type);
3004 return -EINVAL;
3005 }
a0c9a8b8
AV
3006 }
3007 }
0c55cfc4 3008
a0c9a8b8 3009 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 3010 put_filesystem(type);
a0c9a8b8
AV
3011 if (IS_ERR(fc))
3012 return PTR_ERR(fc);
3013
3e1aeb00
DH
3014 if (subtype)
3015 err = vfs_parse_fs_string(fc, "subtype",
3016 subtype, strlen(subtype));
3017 if (!err && name)
3018 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
3019 if (!err)
3020 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
3021 if (!err && !mount_capable(fc))
3022 err = -EPERM;
a0c9a8b8
AV
3023 if (!err)
3024 err = vfs_get_tree(fc);
132e4608
DH
3025 if (!err)
3026 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 3027
a0c9a8b8 3028 put_fs_context(fc);
15f9a3f3 3029 return err;
1da177e4
LT
3030}
3031
19a167af
AV
3032int finish_automount(struct vfsmount *m, struct path *path)
3033{
26df6034 3034 struct dentry *dentry = path->dentry;
8f11538e 3035 struct mountpoint *mp;
25e195aa 3036 struct mount *mnt;
19a167af 3037 int err;
25e195aa
AV
3038
3039 if (!m)
3040 return 0;
3041 if (IS_ERR(m))
3042 return PTR_ERR(m);
3043
3044 mnt = real_mount(m);
19a167af
AV
3045 /* The new mount record should have at least 2 refs to prevent it being
3046 * expired before we get a chance to add it
3047 */
6776db3d 3048 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
3049
3050 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 3051 m->mnt_root == dentry) {
b1e75df4 3052 err = -ELOOP;
26df6034 3053 goto discard;
19a167af
AV
3054 }
3055
26df6034
AV
3056 /*
3057 * we don't want to use lock_mount() - in this case finding something
3058 * that overmounts our mountpoint to be means "quitely drop what we've
3059 * got", not "try to mount it on top".
3060 */
3061 inode_lock(dentry->d_inode);
3062 namespace_lock();
3063 if (unlikely(cant_mount(dentry))) {
3064 err = -ENOENT;
3065 goto discard_locked;
3066 }
3067 rcu_read_lock();
3068 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3069 rcu_read_unlock();
3070 err = 0;
3071 goto discard_locked;
3072 }
3073 rcu_read_unlock();
3074 mp = get_mountpoint(dentry);
8f11538e
AV
3075 if (IS_ERR(mp)) {
3076 err = PTR_ERR(mp);
26df6034 3077 goto discard_locked;
8f11538e 3078 }
26df6034 3079
8f11538e
AV
3080 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3081 unlock_mount(mp);
26df6034
AV
3082 if (unlikely(err))
3083 goto discard;
3084 mntput(m);
3085 return 0;
3086
3087discard_locked:
3088 namespace_unlock();
3089 inode_unlock(dentry->d_inode);
3090discard:
b1e75df4 3091 /* remove m from any expiration list it may be on */
6776db3d 3092 if (!list_empty(&mnt->mnt_expire)) {
97216be0 3093 namespace_lock();
6776db3d 3094 list_del_init(&mnt->mnt_expire);
97216be0 3095 namespace_unlock();
19a167af 3096 }
b1e75df4
AV
3097 mntput(m);
3098 mntput(m);
19a167af
AV
3099 return err;
3100}
3101
ea5b778a
DH
3102/**
3103 * mnt_set_expiry - Put a mount on an expiration list
3104 * @mnt: The mount to list.
3105 * @expiry_list: The list to add the mount to.
3106 */
3107void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3108{
97216be0 3109 namespace_lock();
ea5b778a 3110
6776db3d 3111 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 3112
97216be0 3113 namespace_unlock();
ea5b778a
DH
3114}
3115EXPORT_SYMBOL(mnt_set_expiry);
3116
1da177e4
LT
3117/*
3118 * process a list of expirable mountpoints with the intent of discarding any
3119 * mountpoints that aren't in use and haven't been touched since last we came
3120 * here
3121 */
3122void mark_mounts_for_expiry(struct list_head *mounts)
3123{
761d5c38 3124 struct mount *mnt, *next;
1da177e4
LT
3125 LIST_HEAD(graveyard);
3126
3127 if (list_empty(mounts))
3128 return;
3129
97216be0 3130 namespace_lock();
719ea2fb 3131 lock_mount_hash();
1da177e4
LT
3132
3133 /* extract from the expiration list every vfsmount that matches the
3134 * following criteria:
3135 * - only referenced by its parent vfsmount
3136 * - still marked for expiry (marked on the last call here; marks are
3137 * cleared by mntput())
3138 */
6776db3d 3139 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 3140 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 3141 propagate_mount_busy(mnt, 1))
1da177e4 3142 continue;
6776db3d 3143 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 3144 }
bcc5c7d2 3145 while (!list_empty(&graveyard)) {
6776db3d 3146 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 3147 touch_mnt_namespace(mnt->mnt_ns);
e819f152 3148 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 3149 }
719ea2fb 3150 unlock_mount_hash();
3ab6abee 3151 namespace_unlock();
5528f911
TM
3152}
3153
3154EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3155
3156/*
3157 * Ripoff of 'select_parent()'
3158 *
3159 * search the list of submounts for a given mountpoint, and move any
3160 * shrinkable submounts to the 'graveyard' list.
3161 */
692afc31 3162static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 3163{
692afc31 3164 struct mount *this_parent = parent;
5528f911
TM
3165 struct list_head *next;
3166 int found = 0;
3167
3168repeat:
6b41d536 3169 next = this_parent->mnt_mounts.next;
5528f911 3170resume:
6b41d536 3171 while (next != &this_parent->mnt_mounts) {
5528f911 3172 struct list_head *tmp = next;
6b41d536 3173 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
3174
3175 next = tmp->next;
692afc31 3176 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 3177 continue;
5528f911
TM
3178 /*
3179 * Descend a level if the d_mounts list is non-empty.
3180 */
6b41d536 3181 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
3182 this_parent = mnt;
3183 goto repeat;
3184 }
1da177e4 3185
1ab59738 3186 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 3187 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
3188 found++;
3189 }
1da177e4 3190 }
5528f911
TM
3191 /*
3192 * All done at this level ... ascend and resume the search
3193 */
3194 if (this_parent != parent) {
6b41d536 3195 next = this_parent->mnt_child.next;
0714a533 3196 this_parent = this_parent->mnt_parent;
5528f911
TM
3197 goto resume;
3198 }
3199 return found;
3200}
3201
3202/*
3203 * process a list of expirable mountpoints with the intent of discarding any
3204 * submounts of a specific parent mountpoint
99b7db7b 3205 *
48a066e7 3206 * mount_lock must be held for write
5528f911 3207 */
b54b9be7 3208static void shrink_submounts(struct mount *mnt)
5528f911
TM
3209{
3210 LIST_HEAD(graveyard);
761d5c38 3211 struct mount *m;
5528f911 3212
5528f911 3213 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3214 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3215 while (!list_empty(&graveyard)) {
761d5c38 3216 m = list_first_entry(&graveyard, struct mount,
6776db3d 3217 mnt_expire);
143c8c91 3218 touch_mnt_namespace(m->mnt_ns);
e819f152 3219 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3220 }
3221 }
1da177e4
LT
3222}
3223
028abd92 3224static void *copy_mount_options(const void __user * data)
1da177e4 3225{
b40ef869 3226 char *copy;
d563d678 3227 unsigned left, offset;
b58fed8b 3228
1da177e4 3229 if (!data)
b40ef869 3230 return NULL;
1da177e4 3231
b40ef869
AV
3232 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3233 if (!copy)
3234 return ERR_PTR(-ENOMEM);
1da177e4 3235
d563d678 3236 left = copy_from_user(copy, data, PAGE_SIZE);
1da177e4 3237
d563d678
CM
3238 /*
3239 * Not all architectures have an exact copy_from_user(). Resort to
3240 * byte at a time.
3241 */
3242 offset = PAGE_SIZE - left;
3243 while (left) {
3244 char c;
3245 if (get_user(c, (const char __user *)data + offset))
3246 break;
3247 copy[offset] = c;
3248 left--;
3249 offset++;
3250 }
3251
3252 if (left == PAGE_SIZE) {
b40ef869
AV
3253 kfree(copy);
3254 return ERR_PTR(-EFAULT);
1da177e4 3255 }
d563d678 3256
b40ef869 3257 return copy;
1da177e4
LT
3258}
3259
028abd92 3260static char *copy_mount_string(const void __user *data)
eca6f534 3261{
fbdb4401 3262 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3263}
3264
1da177e4
LT
3265/*
3266 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3267 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3268 *
3269 * data is a (void *) that can point to any structure up to
3270 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3271 * information (or be NULL).
3272 *
3273 * Pre-0.97 versions of mount() didn't have a flags word.
3274 * When the flags word was introduced its top half was required
3275 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3276 * Therefore, if this magic number is present, it carries no information
3277 * and must be discarded.
3278 */
c60166f0 3279int path_mount(const char *dev_name, struct path *path,
808d4e3c 3280 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3281{
e462ec50 3282 unsigned int mnt_flags = 0, sb_flags;
a1e6aaa3 3283 int ret;
1da177e4
LT
3284
3285 /* Discard magic */
3286 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3287 flags &= ~MS_MGC_MSK;
3288
3289 /* Basic sanity checks */
1da177e4
LT
3290 if (data_page)
3291 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3292
e462ec50
DH
3293 if (flags & MS_NOUSER)
3294 return -EINVAL;
3295
a1e6aaa3
CH
3296 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3297 if (ret)
3298 return ret;
3299 if (!may_mount())
3300 return -EPERM;
f7e33bdb
JL
3301 if (flags & SB_MANDLOCK)
3302 warn_mandlock();
a27ab9f2 3303
613cbe3d
AK
3304 /* Default to relatime unless overriden */
3305 if (!(flags & MS_NOATIME))
3306 mnt_flags |= MNT_RELATIME;
0a1c01c9 3307
1da177e4
LT
3308 /* Separate the per-mountpoint flags */
3309 if (flags & MS_NOSUID)
3310 mnt_flags |= MNT_NOSUID;
3311 if (flags & MS_NODEV)
3312 mnt_flags |= MNT_NODEV;
3313 if (flags & MS_NOEXEC)
3314 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3315 if (flags & MS_NOATIME)
3316 mnt_flags |= MNT_NOATIME;
3317 if (flags & MS_NODIRATIME)
3318 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3319 if (flags & MS_STRICTATIME)
3320 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3321 if (flags & MS_RDONLY)
2e4b7fcd 3322 mnt_flags |= MNT_READONLY;
dab741e0
MN
3323 if (flags & MS_NOSYMFOLLOW)
3324 mnt_flags |= MNT_NOSYMFOLLOW;
fc33a7bb 3325
ffbc6f0e
EB
3326 /* The default atime for remount is preservation */
3327 if ((flags & MS_REMOUNT) &&
3328 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3329 MS_STRICTATIME)) == 0)) {
3330 mnt_flags &= ~MNT_ATIME_MASK;
a1e6aaa3 3331 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
ffbc6f0e
EB
3332 }
3333
e462ec50
DH
3334 sb_flags = flags & (SB_RDONLY |
3335 SB_SYNCHRONOUS |
3336 SB_MANDLOCK |
3337 SB_DIRSYNC |
3338 SB_SILENT |
917086ff 3339 SB_POSIXACL |
d7ee9469 3340 SB_LAZYTIME |
917086ff 3341 SB_I_VERSION);
1da177e4 3342
43f5e655 3343 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
a1e6aaa3
CH
3344 return do_reconfigure_mnt(path, mnt_flags);
3345 if (flags & MS_REMOUNT)
3346 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3347 if (flags & MS_BIND)
3348 return do_loopback(path, dev_name, flags & MS_REC);
3349 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3350 return do_change_type(path, flags);
3351 if (flags & MS_MOVE)
3352 return do_move_mount_old(path, dev_name);
3353
3354 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3355 data_page);
3356}
3357
3358long do_mount(const char *dev_name, const char __user *dir_name,
3359 const char *type_page, unsigned long flags, void *data_page)
3360{
3361 struct path path;
3362 int ret;
3363
3364 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3365 if (ret)
3366 return ret;
3367 ret = path_mount(dev_name, &path, type_page, flags, data_page);
2d92ab3c 3368 path_put(&path);
a1e6aaa3 3369 return ret;
1da177e4
LT
3370}
3371
537f7ccb
EB
3372static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3373{
3374 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3375}
3376
3377static void dec_mnt_namespaces(struct ucounts *ucounts)
3378{
3379 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3380}
3381
771b1371
EB
3382static void free_mnt_ns(struct mnt_namespace *ns)
3383{
74e83122
AV
3384 if (!is_anon_ns(ns))
3385 ns_free_inum(&ns->ns);
537f7ccb 3386 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3387 put_user_ns(ns->user_ns);
3388 kfree(ns);
3389}
3390
8823c079
EB
3391/*
3392 * Assign a sequence number so we can detect when we attempt to bind
3393 * mount a reference to an older mount namespace into the current
3394 * mount namespace, preventing reference counting loops. A 64bit
3395 * number incrementing at 10Ghz will take 12,427 years to wrap which
3396 * is effectively never, so we can ignore the possibility.
3397 */
3398static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3399
74e83122 3400static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3401{
3402 struct mnt_namespace *new_ns;
537f7ccb 3403 struct ucounts *ucounts;
98f842e6 3404 int ret;
cf8d2c11 3405
537f7ccb
EB
3406 ucounts = inc_mnt_namespaces(user_ns);
3407 if (!ucounts)
df75e774 3408 return ERR_PTR(-ENOSPC);
537f7ccb 3409
30acd0bd 3410 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
537f7ccb
EB
3411 if (!new_ns) {
3412 dec_mnt_namespaces(ucounts);
cf8d2c11 3413 return ERR_PTR(-ENOMEM);
537f7ccb 3414 }
74e83122
AV
3415 if (!anon) {
3416 ret = ns_alloc_inum(&new_ns->ns);
3417 if (ret) {
3418 kfree(new_ns);
3419 dec_mnt_namespaces(ucounts);
3420 return ERR_PTR(ret);
3421 }
98f842e6 3422 }
33c42940 3423 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3424 if (!anon)
3425 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
1a7b8969 3426 refcount_set(&new_ns->ns.count, 1);
cf8d2c11
TM
3427 INIT_LIST_HEAD(&new_ns->list);
3428 init_waitqueue_head(&new_ns->poll);
9f6c61f9 3429 spin_lock_init(&new_ns->ns_lock);
771b1371 3430 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3431 new_ns->ucounts = ucounts;
cf8d2c11
TM
3432 return new_ns;
3433}
3434
0766f788 3435__latent_entropy
9559f689
AV
3436struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3437 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3438{
6b3286ed 3439 struct mnt_namespace *new_ns;
7f2da1e7 3440 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3441 struct mount *p, *q;
9559f689 3442 struct mount *old;
cb338d06 3443 struct mount *new;
7a472ef4 3444 int copy_flags;
1da177e4 3445
9559f689
AV
3446 BUG_ON(!ns);
3447
3448 if (likely(!(flags & CLONE_NEWNS))) {
3449 get_mnt_ns(ns);
3450 return ns;
3451 }
3452
3453 old = ns->root;
3454
74e83122 3455 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3456 if (IS_ERR(new_ns))
3457 return new_ns;
1da177e4 3458
97216be0 3459 namespace_lock();
1da177e4 3460 /* First pass: copy the tree topology */
4ce5d2b1 3461 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3462 if (user_ns != ns->user_ns)
3bd045cc 3463 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3464 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3465 if (IS_ERR(new)) {
328e6d90 3466 namespace_unlock();
771b1371 3467 free_mnt_ns(new_ns);
be34d1a3 3468 return ERR_CAST(new);
1da177e4 3469 }
3bd045cc
AV
3470 if (user_ns != ns->user_ns) {
3471 lock_mount_hash();
3472 lock_mnt_tree(new);
3473 unlock_mount_hash();
3474 }
be08d6d2 3475 new_ns->root = new;
1a4eeaf2 3476 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3477
3478 /*
3479 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3480 * as belonging to new namespace. We have already acquired a private
3481 * fs_struct, so tsk->fs->lock is not needed.
3482 */
909b0a88 3483 p = old;
cb338d06 3484 q = new;
1da177e4 3485 while (p) {
143c8c91 3486 q->mnt_ns = new_ns;
d2921684 3487 new_ns->mounts++;
9559f689
AV
3488 if (new_fs) {
3489 if (&p->mnt == new_fs->root.mnt) {
3490 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3491 rootmnt = &p->mnt;
1da177e4 3492 }
9559f689
AV
3493 if (&p->mnt == new_fs->pwd.mnt) {
3494 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3495 pwdmnt = &p->mnt;
1da177e4 3496 }
1da177e4 3497 }
909b0a88
AV
3498 p = next_mnt(p, old);
3499 q = next_mnt(q, new);
4ce5d2b1
EB
3500 if (!q)
3501 break;
3502 while (p->mnt.mnt_root != q->mnt.mnt_root)
3503 p = next_mnt(p, old);
1da177e4 3504 }
328e6d90 3505 namespace_unlock();
1da177e4 3506
1da177e4 3507 if (rootmnt)
f03c6599 3508 mntput(rootmnt);
1da177e4 3509 if (pwdmnt)
f03c6599 3510 mntput(pwdmnt);
1da177e4 3511
741a2951 3512 return new_ns;
1da177e4
LT
3513}
3514
74e83122 3515struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3516{
74e83122 3517 struct mount *mnt = real_mount(m);
ea441d11 3518 struct mnt_namespace *ns;
d31da0f0 3519 struct super_block *s;
ea441d11
AV
3520 struct path path;
3521 int err;
3522
74e83122
AV
3523 ns = alloc_mnt_ns(&init_user_ns, true);
3524 if (IS_ERR(ns)) {
3525 mntput(m);
ea441d11 3526 return ERR_CAST(ns);
74e83122
AV
3527 }
3528 mnt->mnt_ns = ns;
3529 ns->root = mnt;
3530 ns->mounts++;
3531 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3532
74e83122 3533 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3534 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3535
3536 put_mnt_ns(ns);
3537
3538 if (err)
3539 return ERR_PTR(err);
3540
3541 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3542 s = path.mnt->mnt_sb;
3543 atomic_inc(&s->s_active);
ea441d11
AV
3544 mntput(path.mnt);
3545 /* lock the sucker */
d31da0f0 3546 down_write(&s->s_umount);
ea441d11
AV
3547 /* ... and return the root of (sub)tree on it */
3548 return path.dentry;
3549}
3550EXPORT_SYMBOL(mount_subtree);
3551
cccaa5e3
DB
3552SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3553 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3554{
eca6f534
VN
3555 int ret;
3556 char *kernel_type;
eca6f534 3557 char *kernel_dev;
b40ef869 3558 void *options;
1da177e4 3559
b8850d1f
TG
3560 kernel_type = copy_mount_string(type);
3561 ret = PTR_ERR(kernel_type);
3562 if (IS_ERR(kernel_type))
eca6f534 3563 goto out_type;
1da177e4 3564
b8850d1f
TG
3565 kernel_dev = copy_mount_string(dev_name);
3566 ret = PTR_ERR(kernel_dev);
3567 if (IS_ERR(kernel_dev))
eca6f534 3568 goto out_dev;
1da177e4 3569
b40ef869
AV
3570 options = copy_mount_options(data);
3571 ret = PTR_ERR(options);
3572 if (IS_ERR(options))
eca6f534 3573 goto out_data;
1da177e4 3574
b40ef869 3575 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3576
b40ef869 3577 kfree(options);
eca6f534
VN
3578out_data:
3579 kfree(kernel_dev);
3580out_dev:
eca6f534
VN
3581 kfree(kernel_type);
3582out_type:
3583 return ret;
1da177e4
LT
3584}
3585
dd8b477f
CB
3586#define FSMOUNT_VALID_FLAGS \
3587 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3588 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3589 MOUNT_ATTR_NOSYMFOLLOW)
5b490500 3590
9caccd41 3591#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
2a186721
CB
3592
3593#define MOUNT_SETATTR_PROPAGATION_FLAGS \
3594 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3595
5b490500
CB
3596static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3597{
3598 unsigned int mnt_flags = 0;
3599
3600 if (attr_flags & MOUNT_ATTR_RDONLY)
3601 mnt_flags |= MNT_READONLY;
3602 if (attr_flags & MOUNT_ATTR_NOSUID)
3603 mnt_flags |= MNT_NOSUID;
3604 if (attr_flags & MOUNT_ATTR_NODEV)
3605 mnt_flags |= MNT_NODEV;
3606 if (attr_flags & MOUNT_ATTR_NOEXEC)
3607 mnt_flags |= MNT_NOEXEC;
3608 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3609 mnt_flags |= MNT_NODIRATIME;
dd8b477f
CB
3610 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3611 mnt_flags |= MNT_NOSYMFOLLOW;
5b490500
CB
3612
3613 return mnt_flags;
3614}
3615
2db154b3 3616/*
93766fbd
DH
3617 * Create a kernel mount representation for a new, prepared superblock
3618 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3619 */
3620SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3621 unsigned int, attr_flags)
3622{
3623 struct mnt_namespace *ns;
3624 struct fs_context *fc;
3625 struct file *file;
3626 struct path newmount;
3627 struct mount *mnt;
3628 struct fd f;
3629 unsigned int mnt_flags = 0;
3630 long ret;
3631
3632 if (!may_mount())
3633 return -EPERM;
3634
3635 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3636 return -EINVAL;
3637
5b490500 3638 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
93766fbd
DH
3639 return -EINVAL;
3640
5b490500 3641 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
93766fbd
DH
3642
3643 switch (attr_flags & MOUNT_ATTR__ATIME) {
3644 case MOUNT_ATTR_STRICTATIME:
3645 break;
3646 case MOUNT_ATTR_NOATIME:
3647 mnt_flags |= MNT_NOATIME;
3648 break;
3649 case MOUNT_ATTR_RELATIME:
3650 mnt_flags |= MNT_RELATIME;
3651 break;
3652 default:
3653 return -EINVAL;
3654 }
3655
3656 f = fdget(fs_fd);
3657 if (!f.file)
3658 return -EBADF;
3659
3660 ret = -EINVAL;
3661 if (f.file->f_op != &fscontext_fops)
3662 goto err_fsfd;
3663
3664 fc = f.file->private_data;
3665
3666 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3667 if (ret < 0)
3668 goto err_fsfd;
3669
3670 /* There must be a valid superblock or we can't mount it */
3671 ret = -EINVAL;
3672 if (!fc->root)
3673 goto err_unlock;
3674
3675 ret = -EPERM;
3676 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3677 pr_warn("VFS: Mount too revealing\n");
3678 goto err_unlock;
3679 }
3680
3681 ret = -EBUSY;
3682 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3683 goto err_unlock;
3684
f7e33bdb
JL
3685 if (fc->sb_flags & SB_MANDLOCK)
3686 warn_mandlock();
93766fbd
DH
3687
3688 newmount.mnt = vfs_create_mount(fc);
3689 if (IS_ERR(newmount.mnt)) {
3690 ret = PTR_ERR(newmount.mnt);
3691 goto err_unlock;
3692 }
3693 newmount.dentry = dget(fc->root);
3694 newmount.mnt->mnt_flags = mnt_flags;
3695
3696 /* We've done the mount bit - now move the file context into more or
3697 * less the same state as if we'd done an fspick(). We don't want to
3698 * do any memory allocation or anything like that at this point as we
3699 * don't want to have to handle any errors incurred.
3700 */
3701 vfs_clean_context(fc);
3702
3703 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3704 if (IS_ERR(ns)) {
3705 ret = PTR_ERR(ns);
3706 goto err_path;
3707 }
3708 mnt = real_mount(newmount.mnt);
3709 mnt->mnt_ns = ns;
3710 ns->root = mnt;
3711 ns->mounts = 1;
3712 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3713 mntget(newmount.mnt);
93766fbd
DH
3714
3715 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3716 * it, not just simply put it.
3717 */
3718 file = dentry_open(&newmount, O_PATH, fc->cred);
3719 if (IS_ERR(file)) {
3720 dissolve_on_fput(newmount.mnt);
3721 ret = PTR_ERR(file);
3722 goto err_path;
3723 }
3724 file->f_mode |= FMODE_NEED_UNMOUNT;
3725
3726 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3727 if (ret >= 0)
3728 fd_install(ret, file);
3729 else
3730 fput(file);
3731
3732err_path:
3733 path_put(&newmount);
3734err_unlock:
3735 mutex_unlock(&fc->uapi_mutex);
3736err_fsfd:
3737 fdput(f);
3738 return ret;
3739}
3740
3741/*
3742 * Move a mount from one place to another. In combination with
3743 * fsopen()/fsmount() this is used to install a new mount and in combination
3744 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3745 * a mount subtree.
2db154b3
DH
3746 *
3747 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3748 */
3749SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3750 int, from_dfd, const char __user *, from_pathname,
3751 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3752 unsigned int, flags)
3753{
3754 struct path from_path, to_path;
3755 unsigned int lflags;
3756 int ret = 0;
3757
3758 if (!may_mount())
3759 return -EPERM;
3760
3761 if (flags & ~MOVE_MOUNT__MASK)
3762 return -EINVAL;
3763
3764 /* If someone gives a pathname, they aren't permitted to move
3765 * from an fd that requires unmount as we can't get at the flag
3766 * to clear it afterwards.
3767 */
3768 lflags = 0;
3769 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3770 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3771 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3772
3773 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3774 if (ret < 0)
3775 return ret;
3776
3777 lflags = 0;
3778 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3779 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3780 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3781
3782 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3783 if (ret < 0)
3784 goto out_from;
3785
3786 ret = security_move_mount(&from_path, &to_path);
3787 if (ret < 0)
3788 goto out_to;
3789
9ffb14ef
PT
3790 if (flags & MOVE_MOUNT_SET_GROUP)
3791 ret = do_set_group(&from_path, &to_path);
3792 else
3793 ret = do_move_mount(&from_path, &to_path);
2db154b3
DH
3794
3795out_to:
3796 path_put(&to_path);
3797out_from:
3798 path_put(&from_path);
3799 return ret;
3800}
3801
afac7cba
AV
3802/*
3803 * Return true if path is reachable from root
3804 *
48a066e7 3805 * namespace_sem or mount_lock is held
afac7cba 3806 */
643822b4 3807bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3808 const struct path *root)
3809{
643822b4 3810 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3811 dentry = mnt->mnt_mountpoint;
0714a533 3812 mnt = mnt->mnt_parent;
afac7cba 3813 }
643822b4 3814 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3815}
3816
640eb7e7 3817bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3818{
25ab4c9b 3819 bool res;
48a066e7 3820 read_seqlock_excl(&mount_lock);
643822b4 3821 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3822 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3823 return res;
3824}
3825EXPORT_SYMBOL(path_is_under);
3826
1da177e4
LT
3827/*
3828 * pivot_root Semantics:
3829 * Moves the root file system of the current process to the directory put_old,
3830 * makes new_root as the new root file system of the current process, and sets
3831 * root/cwd of all processes which had them on the current root to new_root.
3832 *
3833 * Restrictions:
3834 * The new_root and put_old must be directories, and must not be on the
3835 * same file system as the current process root. The put_old must be
3836 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3837 * pointed to by put_old must yield the same directory as new_root. No other
3838 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3839 *
4a0d11fa 3840 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
0c1bc6b8 3841 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4a0d11fa
NB
3842 * in this situation.
3843 *
1da177e4
LT
3844 * Notes:
3845 * - we don't move root/cwd if they are not at the root (reason: if something
3846 * cared enough to change them, it's probably wrong to force them elsewhere)
3847 * - it's okay to pick a root that isn't the root of a file system, e.g.
3848 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3849 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3850 * first.
3851 */
3480b257
HC
3852SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3853 const char __user *, put_old)
1da177e4 3854{
2763d119
AV
3855 struct path new, old, root;
3856 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3857 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3858 int error;
3859
9b40bc90 3860 if (!may_mount())
1da177e4
LT
3861 return -EPERM;
3862
ce6595a2
AV
3863 error = user_path_at(AT_FDCWD, new_root,
3864 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3865 if (error)
3866 goto out0;
1da177e4 3867
ce6595a2
AV
3868 error = user_path_at(AT_FDCWD, put_old,
3869 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3870 if (error)
3871 goto out1;
3872
2d8f3038 3873 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3874 if (error)
3875 goto out2;
1da177e4 3876
f7ad3c6b 3877 get_fs_root(current->fs, &root);
84d17192
AV
3878 old_mp = lock_mount(&old);
3879 error = PTR_ERR(old_mp);
3880 if (IS_ERR(old_mp))
b12cea91
AV
3881 goto out3;
3882
1da177e4 3883 error = -EINVAL;
419148da
AV
3884 new_mnt = real_mount(new.mnt);
3885 root_mnt = real_mount(root.mnt);
84d17192 3886 old_mnt = real_mount(old.mnt);
2763d119
AV
3887 ex_parent = new_mnt->mnt_parent;
3888 root_parent = root_mnt->mnt_parent;
84d17192 3889 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3890 IS_MNT_SHARED(ex_parent) ||
3891 IS_MNT_SHARED(root_parent))
b12cea91 3892 goto out4;
143c8c91 3893 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3894 goto out4;
5ff9d8a6
EB
3895 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3896 goto out4;
1da177e4 3897 error = -ENOENT;
f3da392e 3898 if (d_unlinked(new.dentry))
b12cea91 3899 goto out4;
1da177e4 3900 error = -EBUSY;
84d17192 3901 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3902 goto out4; /* loop, on the same file system */
1da177e4 3903 error = -EINVAL;
8c3ee42e 3904 if (root.mnt->mnt_root != root.dentry)
b12cea91 3905 goto out4; /* not a mountpoint */
676da58d 3906 if (!mnt_has_parent(root_mnt))
b12cea91 3907 goto out4; /* not attached */
2d8f3038 3908 if (new.mnt->mnt_root != new.dentry)
b12cea91 3909 goto out4; /* not a mountpoint */
676da58d 3910 if (!mnt_has_parent(new_mnt))
b12cea91 3911 goto out4; /* not attached */
4ac91378 3912 /* make sure we can reach put_old from new_root */
84d17192 3913 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3914 goto out4;
0d082601
EB
3915 /* make certain new is below the root */
3916 if (!is_path_reachable(new_mnt, new.dentry, &root))
3917 goto out4;
719ea2fb 3918 lock_mount_hash();
2763d119
AV
3919 umount_mnt(new_mnt);
3920 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3921 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3922 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3923 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3924 }
4ac91378 3925 /* mount old root on put_old */
84d17192 3926 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3927 /* mount new_root on / */
2763d119
AV
3928 attach_mnt(new_mnt, root_parent, root_mp);
3929 mnt_add_count(root_parent, -1);
6b3286ed 3930 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3931 /* A moved mount should not expire automatically */
3932 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3933 put_mountpoint(root_mp);
719ea2fb 3934 unlock_mount_hash();
2d8f3038 3935 chroot_fs_refs(&root, &new);
1da177e4 3936 error = 0;
b12cea91 3937out4:
84d17192 3938 unlock_mount(old_mp);
2763d119
AV
3939 if (!error)
3940 mntput_no_expire(ex_parent);
b12cea91 3941out3:
8c3ee42e 3942 path_put(&root);
b12cea91 3943out2:
2d8f3038 3944 path_put(&old);
1da177e4 3945out1:
2d8f3038 3946 path_put(&new);
1da177e4 3947out0:
1da177e4 3948 return error;
1da177e4
LT
3949}
3950
2a186721
CB
3951static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3952{
3953 unsigned int flags = mnt->mnt.mnt_flags;
3954
3955 /* flags to clear */
3956 flags &= ~kattr->attr_clr;
3957 /* flags to raise */
3958 flags |= kattr->attr_set;
3959
3960 return flags;
3961}
3962
9caccd41
CB
3963static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3964{
3965 struct vfsmount *m = &mnt->mnt;
bd303368 3966 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
9caccd41
CB
3967
3968 if (!kattr->mnt_userns)
3969 return 0;
3970
bd303368
CB
3971 /*
3972 * Creating an idmapped mount with the filesystem wide idmapping
3973 * doesn't make sense so block that. We don't allow mushy semantics.
3974 */
3975 if (kattr->mnt_userns == fs_userns)
3976 return -EINVAL;
3977
9caccd41
CB
3978 /*
3979 * Once a mount has been idmapped we don't allow it to change its
3980 * mapping. It makes things simpler and callers can just create
3981 * another bind-mount they can idmap if they want to.
3982 */
bb49e9e7 3983 if (is_idmapped_mnt(m))
9caccd41
CB
3984 return -EPERM;
3985
3986 /* The underlying filesystem doesn't support idmapped mounts yet. */
3987 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3988 return -EINVAL;
3989
3990 /* We're not controlling the superblock. */
bd303368 3991 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
9caccd41
CB
3992 return -EPERM;
3993
3994 /* Mount has already been visible in the filesystem hierarchy. */
3995 if (!is_anon_ns(mnt->mnt_ns))
3996 return -EINVAL;
3997
3998 return 0;
3999}
4000
2a186721
CB
4001static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
4002 struct mount *mnt, int *err)
4003{
4004 struct mount *m = mnt, *last = NULL;
4005
4006 if (!is_mounted(&m->mnt)) {
4007 *err = -EINVAL;
4008 goto out;
4009 }
4010
4011 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
4012 *err = -EINVAL;
4013 goto out;
4014 }
4015
4016 do {
4017 unsigned int flags;
4018
4019 flags = recalc_flags(kattr, m);
4020 if (!can_change_locked_flags(m, flags)) {
4021 *err = -EPERM;
4022 goto out;
4023 }
4024
9caccd41
CB
4025 *err = can_idmap_mount(kattr, m);
4026 if (*err)
4027 goto out;
4028
2a186721
CB
4029 last = m;
4030
4031 if ((kattr->attr_set & MNT_READONLY) &&
4032 !(m->mnt.mnt_flags & MNT_READONLY)) {
4033 *err = mnt_hold_writers(m);
4034 if (*err)
4035 goto out;
4036 }
4037 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4038
4039out:
4040 return last;
4041}
4042
9caccd41
CB
4043static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4044{
bd303368 4045 struct user_namespace *mnt_userns, *old_mnt_userns;
9caccd41
CB
4046
4047 if (!kattr->mnt_userns)
4048 return;
4049
bd303368
CB
4050 /*
4051 * We're the only ones able to change the mount's idmapping. So
4052 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4053 */
4054 old_mnt_userns = mnt->mnt.mnt_userns;
4055
9caccd41
CB
4056 mnt_userns = get_user_ns(kattr->mnt_userns);
4057 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4058 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
bd303368
CB
4059
4060 /*
4061 * If this is an idmapped filesystem drop the reference we've taken
4062 * in vfs_create_mount() before.
4063 */
4064 if (!initial_idmapping(old_mnt_userns))
4065 put_user_ns(old_mnt_userns);
9caccd41
CB
4066}
4067
2a186721
CB
4068static void mount_setattr_commit(struct mount_kattr *kattr,
4069 struct mount *mnt, struct mount *last,
4070 int err)
4071{
4072 struct mount *m = mnt;
4073
4074 do {
4075 if (!err) {
4076 unsigned int flags;
4077
9caccd41 4078 do_idmap_mount(kattr, m);
2a186721
CB
4079 flags = recalc_flags(kattr, m);
4080 WRITE_ONCE(m->mnt.mnt_flags, flags);
4081 }
4082
4083 /*
4084 * We either set MNT_READONLY above so make it visible
4085 * before ~MNT_WRITE_HOLD or we failed to recursively
4086 * apply mount options.
4087 */
4088 if ((kattr->attr_set & MNT_READONLY) &&
4089 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4090 mnt_unhold_writers(m);
4091
4092 if (!err && kattr->propagation)
4093 change_mnt_propagation(m, kattr->propagation);
4094
4095 /*
4096 * On failure, only cleanup until we found the first mount
4097 * we failed to handle.
4098 */
4099 if (err && m == last)
4100 break;
4101 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4102
4103 if (!err)
4104 touch_mnt_namespace(mnt->mnt_ns);
4105}
4106
4107static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4108{
4109 struct mount *mnt = real_mount(path->mnt), *last = NULL;
4110 int err = 0;
4111
4112 if (path->dentry != mnt->mnt.mnt_root)
4113 return -EINVAL;
4114
4115 if (kattr->propagation) {
4116 /*
4117 * Only take namespace_lock() if we're actually changing
4118 * propagation.
4119 */
4120 namespace_lock();
4121 if (kattr->propagation == MS_SHARED) {
4122 err = invent_group_ids(mnt, kattr->recurse);
4123 if (err) {
4124 namespace_unlock();
4125 return err;
4126 }
4127 }
4128 }
4129
4130 lock_mount_hash();
4131
4132 /*
4133 * Get the mount tree in a shape where we can change mount
4134 * properties without failure.
4135 */
4136 last = mount_setattr_prepare(kattr, mnt, &err);
4137 if (last) /* Commit all changes or revert to the old state. */
4138 mount_setattr_commit(kattr, mnt, last, err);
4139
4140 unlock_mount_hash();
4141
4142 if (kattr->propagation) {
4143 namespace_unlock();
4144 if (err)
4145 cleanup_group_ids(mnt, NULL);
4146 }
4147
4148 return err;
4149}
4150
9caccd41
CB
4151static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4152 struct mount_kattr *kattr, unsigned int flags)
4153{
4154 int err = 0;
4155 struct ns_common *ns;
4156 struct user_namespace *mnt_userns;
4157 struct file *file;
4158
4159 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4160 return 0;
4161
4162 /*
4163 * We currently do not support clearing an idmapped mount. If this ever
4164 * is a use-case we can revisit this but for now let's keep it simple
4165 * and not allow it.
4166 */
4167 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4168 return -EINVAL;
4169
4170 if (attr->userns_fd > INT_MAX)
4171 return -EINVAL;
4172
4173 file = fget(attr->userns_fd);
4174 if (!file)
4175 return -EBADF;
4176
4177 if (!proc_ns_file(file)) {
4178 err = -EINVAL;
4179 goto out_fput;
4180 }
4181
4182 ns = get_proc_ns(file_inode(file));
4183 if (ns->ops->type != CLONE_NEWUSER) {
4184 err = -EINVAL;
4185 goto out_fput;
4186 }
4187
4188 /*
bd303368
CB
4189 * The initial idmapping cannot be used to create an idmapped
4190 * mount. We use the initial idmapping as an indicator of a mount
4191 * that is not idmapped. It can simply be passed into helpers that
4192 * are aware of idmapped mounts as a convenient shortcut. A user
4193 * can just create a dedicated identity mapping to achieve the same
4194 * result.
9caccd41
CB
4195 */
4196 mnt_userns = container_of(ns, struct user_namespace, ns);
bd303368 4197 if (initial_idmapping(mnt_userns)) {
9caccd41
CB
4198 err = -EPERM;
4199 goto out_fput;
4200 }
4201 kattr->mnt_userns = get_user_ns(mnt_userns);
4202
4203out_fput:
4204 fput(file);
4205 return err;
4206}
4207
4208static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
2a186721
CB
4209 struct mount_kattr *kattr, unsigned int flags)
4210{
4211 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4212
4213 if (flags & AT_NO_AUTOMOUNT)
4214 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4215 if (flags & AT_SYMLINK_NOFOLLOW)
4216 lookup_flags &= ~LOOKUP_FOLLOW;
4217 if (flags & AT_EMPTY_PATH)
4218 lookup_flags |= LOOKUP_EMPTY;
4219
4220 *kattr = (struct mount_kattr) {
4221 .lookup_flags = lookup_flags,
4222 .recurse = !!(flags & AT_RECURSIVE),
4223 };
4224
4225 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4226 return -EINVAL;
4227 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4228 return -EINVAL;
4229 kattr->propagation = attr->propagation;
4230
4231 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4232 return -EINVAL;
4233
2a186721
CB
4234 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4235 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4236
4237 /*
4238 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4239 * users wanting to transition to a different atime setting cannot
4240 * simply specify the atime setting in @attr_set, but must also
4241 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4242 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4243 * @attr_clr and that @attr_set can't have any atime bits set if
4244 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4245 */
4246 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4247 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4248 return -EINVAL;
4249
4250 /*
4251 * Clear all previous time settings as they are mutually
4252 * exclusive.
4253 */
4254 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4255 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4256 case MOUNT_ATTR_RELATIME:
4257 kattr->attr_set |= MNT_RELATIME;
4258 break;
4259 case MOUNT_ATTR_NOATIME:
4260 kattr->attr_set |= MNT_NOATIME;
4261 break;
4262 case MOUNT_ATTR_STRICTATIME:
4263 break;
4264 default:
4265 return -EINVAL;
4266 }
4267 } else {
4268 if (attr->attr_set & MOUNT_ATTR__ATIME)
4269 return -EINVAL;
4270 }
4271
9caccd41
CB
4272 return build_mount_idmapped(attr, usize, kattr, flags);
4273}
4274
4275static void finish_mount_kattr(struct mount_kattr *kattr)
4276{
4277 put_user_ns(kattr->mnt_userns);
4278 kattr->mnt_userns = NULL;
2a186721
CB
4279}
4280
4281SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4282 unsigned int, flags, struct mount_attr __user *, uattr,
4283 size_t, usize)
4284{
4285 int err;
4286 struct path target;
4287 struct mount_attr attr;
4288 struct mount_kattr kattr;
4289
4290 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4291
4292 if (flags & ~(AT_EMPTY_PATH |
4293 AT_RECURSIVE |
4294 AT_SYMLINK_NOFOLLOW |
4295 AT_NO_AUTOMOUNT))
4296 return -EINVAL;
4297
4298 if (unlikely(usize > PAGE_SIZE))
4299 return -E2BIG;
4300 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4301 return -EINVAL;
4302
4303 if (!may_mount())
4304 return -EPERM;
4305
4306 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4307 if (err)
4308 return err;
4309
4310 /* Don't bother walking through the mounts if this is a nop. */
4311 if (attr.attr_set == 0 &&
4312 attr.attr_clr == 0 &&
4313 attr.propagation == 0)
4314 return 0;
4315
9caccd41 4316 err = build_mount_kattr(&attr, usize, &kattr, flags);
2a186721
CB
4317 if (err)
4318 return err;
4319
4320 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
012e3322
CB
4321 if (!err) {
4322 err = do_mount_setattr(&target, &kattr);
4323 path_put(&target);
4324 }
9caccd41 4325 finish_mount_kattr(&kattr);
2a186721
CB
4326 return err;
4327}
4328
1da177e4
LT
4329static void __init init_mount_tree(void)
4330{
4331 struct vfsmount *mnt;
74e83122 4332 struct mount *m;
6b3286ed 4333 struct mnt_namespace *ns;
ac748a09 4334 struct path root;
1da177e4 4335
fd3e007f 4336 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
4337 if (IS_ERR(mnt))
4338 panic("Can't create rootfs");
b3e19d92 4339
74e83122 4340 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 4341 if (IS_ERR(ns))
1da177e4 4342 panic("Can't allocate initial namespace");
74e83122
AV
4343 m = real_mount(mnt);
4344 m->mnt_ns = ns;
4345 ns->root = m;
4346 ns->mounts = 1;
4347 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
4348 init_task.nsproxy->mnt_ns = ns;
4349 get_mnt_ns(ns);
4350
be08d6d2
AV
4351 root.mnt = mnt;
4352 root.dentry = mnt->mnt_root;
da362b09 4353 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
4354
4355 set_fs_pwd(current->fs, &root);
4356 set_fs_root(current->fs, &root);
1da177e4
LT
4357}
4358
74bf17cf 4359void __init mnt_init(void)
1da177e4 4360{
15a67dd8 4361 int err;
1da177e4 4362
7d6fec45 4363 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
79f6540b 4364 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 4365
0818bf27 4366 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 4367 sizeof(struct hlist_head),
0818bf27 4368 mhash_entries, 19,
3d375d78 4369 HASH_ZERO,
0818bf27
AV
4370 &m_hash_shift, &m_hash_mask, 0, 0);
4371 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4372 sizeof(struct hlist_head),
4373 mphash_entries, 19,
3d375d78 4374 HASH_ZERO,
0818bf27 4375 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 4376
84d17192 4377 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
4378 panic("Failed to allocate mount hash table\n");
4379
4b93dc9b
TH
4380 kernfs_init();
4381
15a67dd8
RD
4382 err = sysfs_init();
4383 if (err)
4384 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 4385 __func__, err);
00d26666
GKH
4386 fs_kobj = kobject_create_and_add("fs", NULL);
4387 if (!fs_kobj)
8e24eea7 4388 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 4389 shmem_init();
1da177e4
LT
4390 init_rootfs();
4391 init_mount_tree();
4392}
4393
616511d0 4394void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 4395{
1a7b8969 4396 if (!refcount_dec_and_test(&ns->ns.count))
616511d0 4397 return;
7b00ed6f 4398 drop_collected_mounts(&ns->root->mnt);
771b1371 4399 free_mnt_ns(ns);
1da177e4 4400}
9d412a43 4401
d911b458 4402struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 4403{
423e0ab0 4404 struct vfsmount *mnt;
d911b458 4405 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
4406 if (!IS_ERR(mnt)) {
4407 /*
4408 * it is a longterm mount, don't release mnt until
4409 * we unmount before file sys is unregistered
4410 */
f7a99c5b 4411 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
4412 }
4413 return mnt;
9d412a43 4414}
d911b458 4415EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
4416
4417void kern_unmount(struct vfsmount *mnt)
4418{
4419 /* release long term mount so mount point can be released */
4420 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 4421 real_mount(mnt)->mnt_ns = NULL;
48a066e7 4422 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
4423 mntput(mnt);
4424 }
4425}
4426EXPORT_SYMBOL(kern_unmount);
02125a82 4427
df820f8d
MS
4428void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4429{
4430 unsigned int i;
4431
4432 for (i = 0; i < num; i++)
4433 if (mnt[i])
4434 real_mount(mnt[i])->mnt_ns = NULL;
4435 synchronize_rcu_expedited();
4436 for (i = 0; i < num; i++)
4437 mntput(mnt[i]);
4438}
4439EXPORT_SYMBOL(kern_unmount_array);
4440
02125a82
AV
4441bool our_mnt(struct vfsmount *mnt)
4442{
143c8c91 4443 return check_mnt(real_mount(mnt));
02125a82 4444}
8823c079 4445
3151527e
EB
4446bool current_chrooted(void)
4447{
4448 /* Does the current process have a non-standard root */
4449 struct path ns_root;
4450 struct path fs_root;
4451 bool chrooted;
4452
4453 /* Find the namespace root */
4454 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4455 ns_root.dentry = ns_root.mnt->mnt_root;
4456 path_get(&ns_root);
4457 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4458 ;
4459
4460 get_fs_root(current->fs, &fs_root);
4461
4462 chrooted = !path_equal(&fs_root, &ns_root);
4463
4464 path_put(&fs_root);
4465 path_put(&ns_root);
4466
4467 return chrooted;
4468}
4469
132e4608
DH
4470static bool mnt_already_visible(struct mnt_namespace *ns,
4471 const struct super_block *sb,
8654df4e 4472 int *new_mnt_flags)
87a8ebd6 4473{
8c6cf9cc 4474 int new_flags = *new_mnt_flags;
87a8ebd6 4475 struct mount *mnt;
e51db735 4476 bool visible = false;
87a8ebd6 4477
44bb4385 4478 down_read(&namespace_sem);
9f6c61f9 4479 lock_ns_list(ns);
87a8ebd6 4480 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 4481 struct mount *child;
77b1a97d
EB
4482 int mnt_flags;
4483
9f6c61f9
MS
4484 if (mnt_is_cursor(mnt))
4485 continue;
4486
132e4608 4487 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
4488 continue;
4489
7e96c1b0
EB
4490 /* This mount is not fully visible if it's root directory
4491 * is not the root directory of the filesystem.
4492 */
4493 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4494 continue;
4495
a1935c17 4496 /* A local view of the mount flags */
77b1a97d 4497 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 4498
695e9df0 4499 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 4500 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
4501 mnt_flags |= MNT_LOCK_READONLY;
4502
8c6cf9cc
EB
4503 /* Verify the mount flags are equal to or more permissive
4504 * than the proposed new mount.
4505 */
77b1a97d 4506 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
4507 !(new_flags & MNT_READONLY))
4508 continue;
77b1a97d
EB
4509 if ((mnt_flags & MNT_LOCK_ATIME) &&
4510 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
4511 continue;
4512
ceeb0e5d
EB
4513 /* This mount is not fully visible if there are any
4514 * locked child mounts that cover anything except for
4515 * empty directories.
e51db735
EB
4516 */
4517 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4518 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 4519 /* Only worry about locked mounts */
d71ed6c9 4520 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 4521 continue;
7236c85e
EB
4522 /* Is the directory permanetly empty? */
4523 if (!is_empty_dir_inode(inode))
e51db735 4524 goto next;
87a8ebd6 4525 }
8c6cf9cc 4526 /* Preserve the locked attributes */
77b1a97d 4527 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 4528 MNT_LOCK_ATIME);
e51db735
EB
4529 visible = true;
4530 goto found;
4531 next: ;
87a8ebd6 4532 }
e51db735 4533found:
9f6c61f9 4534 unlock_ns_list(ns);
44bb4385 4535 up_read(&namespace_sem);
e51db735 4536 return visible;
87a8ebd6
EB
4537}
4538
132e4608 4539static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 4540{
a1935c17 4541 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
4542 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4543 unsigned long s_iflags;
4544
4545 if (ns->user_ns == &init_user_ns)
4546 return false;
4547
4548 /* Can this filesystem be too revealing? */
132e4608 4549 s_iflags = sb->s_iflags;
8654df4e
EB
4550 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4551 return false;
4552
a1935c17
EB
4553 if ((s_iflags & required_iflags) != required_iflags) {
4554 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4555 required_iflags);
4556 return true;
4557 }
4558
132e4608 4559 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
4560}
4561
380cf5ba
AL
4562bool mnt_may_suid(struct vfsmount *mnt)
4563{
4564 /*
4565 * Foreign mounts (accessed via fchdir or through /proc
4566 * symlinks) are always treated as if they are nosuid. This
4567 * prevents namespaces from trusting potentially unsafe
4568 * suid/sgid bits, file caps, or security labels that originate
4569 * in other namespaces.
4570 */
4571 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4572 current_in_userns(mnt->mnt_sb->s_user_ns);
4573}
4574
64964528 4575static struct ns_common *mntns_get(struct task_struct *task)
8823c079 4576{
58be2825 4577 struct ns_common *ns = NULL;
8823c079
EB
4578 struct nsproxy *nsproxy;
4579
728dba3a
EB
4580 task_lock(task);
4581 nsproxy = task->nsproxy;
8823c079 4582 if (nsproxy) {
58be2825
AV
4583 ns = &nsproxy->mnt_ns->ns;
4584 get_mnt_ns(to_mnt_ns(ns));
8823c079 4585 }
728dba3a 4586 task_unlock(task);
8823c079
EB
4587
4588 return ns;
4589}
4590
64964528 4591static void mntns_put(struct ns_common *ns)
8823c079 4592{
58be2825 4593 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
4594}
4595
f2a8d52e 4596static int mntns_install(struct nsset *nsset, struct ns_common *ns)
8823c079 4597{
f2a8d52e
CB
4598 struct nsproxy *nsproxy = nsset->nsproxy;
4599 struct fs_struct *fs = nsset->fs;
4f757f3c 4600 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
f2a8d52e 4601 struct user_namespace *user_ns = nsset->cred->user_ns;
8823c079 4602 struct path root;
4f757f3c 4603 int err;
8823c079 4604
0c55cfc4 4605 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e
CB
4606 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4607 !ns_capable(user_ns, CAP_SYS_ADMIN))
ae11e0f1 4608 return -EPERM;
8823c079 4609
74e83122
AV
4610 if (is_anon_ns(mnt_ns))
4611 return -EINVAL;
4612
8823c079
EB
4613 if (fs->users != 1)
4614 return -EINVAL;
4615
4616 get_mnt_ns(mnt_ns);
4f757f3c 4617 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4618 nsproxy->mnt_ns = mnt_ns;
4619
4620 /* Find the root */
4f757f3c
AV
4621 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4622 "/", LOOKUP_DOWN, &root);
4623 if (err) {
4624 /* revert to old namespace */
4625 nsproxy->mnt_ns = old_mnt_ns;
4626 put_mnt_ns(mnt_ns);
4627 return err;
4628 }
8823c079 4629
4068367c
AV
4630 put_mnt_ns(old_mnt_ns);
4631
8823c079
EB
4632 /* Update the pwd and root */
4633 set_fs_pwd(fs, &root);
4634 set_fs_root(fs, &root);
4635
4636 path_put(&root);
4637 return 0;
4638}
4639
bcac25a5
AV
4640static struct user_namespace *mntns_owner(struct ns_common *ns)
4641{
4642 return to_mnt_ns(ns)->user_ns;
4643}
4644
8823c079
EB
4645const struct proc_ns_operations mntns_operations = {
4646 .name = "mnt",
4647 .type = CLONE_NEWNS,
4648 .get = mntns_get,
4649 .put = mntns_put,
4650 .install = mntns_install,
bcac25a5 4651 .owner = mntns_owner,
8823c079 4652};
ab171b95
LC
4653
4654#ifdef CONFIG_SYSCTL
4655static struct ctl_table fs_namespace_sysctls[] = {
4656 {
4657 .procname = "mount-max",
4658 .data = &sysctl_mount_max,
4659 .maxlen = sizeof(unsigned int),
4660 .mode = 0644,
4661 .proc_handler = proc_dointvec_minmax,
4662 .extra1 = SYSCTL_ONE,
4663 },
4664 { }
4665};
4666
4667static int __init init_fs_namespace_sysctls(void)
4668{
4669 register_sysctl_init("fs", fs_namespace_sysctls);
4670 return 0;
4671}
4672fs_initcall(init_fs_namespace_sysctls);
4673
4674#endif /* CONFIG_SYSCTL */