]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: clear bad block from bad block log
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
c2c087e6 91#define IMSM_RESERVED_SECTORS 4096
b81221b7 92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
cdddbdbc
DW
95
96/* Disk configuration info. */
97#define IMSM_MAX_DEVICES 255
98struct imsm_disk {
99 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 100 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 101 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
102#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
103#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
104#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 105 __u32 status; /* 0xF0 - 0xF3 */
1011e834 106 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
107 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
108#define IMSM_DISK_FILLERS 3
109 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
110};
111
3b451610
AK
112/* map selector for map managment
113 */
238c0a71
AK
114#define MAP_0 0
115#define MAP_1 1
116#define MAP_X -1
3b451610 117
cdddbdbc
DW
118/* RAID map configuration infos. */
119struct imsm_map {
5551b113
CA
120 __u32 pba_of_lba0_lo; /* start address of partition */
121 __u32 blocks_per_member_lo;/* blocks per member */
122 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
123 __u16 blocks_per_strip;
124 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
125#define IMSM_T_STATE_NORMAL 0
126#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
127#define IMSM_T_STATE_DEGRADED 2
128#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
129 __u8 raid_level;
130#define IMSM_T_RAID0 0
131#define IMSM_T_RAID1 1
132#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
133 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
134 __u8 num_domains; /* number of parity domains */
135 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 136 __u8 ddf;
5551b113
CA
137 __u32 pba_of_lba0_hi;
138 __u32 blocks_per_member_hi;
139 __u32 num_data_stripes_hi;
140 __u32 filler[4]; /* expansion area */
7eef0453 141#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 142 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
143 * top byte contains some flags
144 */
cdddbdbc
DW
145} __attribute__ ((packed));
146
147struct imsm_vol {
f8f603f1 148 __u32 curr_migr_unit;
fe7ed8cb 149 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 150 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
151#define MIGR_INIT 0
152#define MIGR_REBUILD 1
153#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
154#define MIGR_GEN_MIGR 3
155#define MIGR_STATE_CHANGE 4
1484e727 156#define MIGR_REPAIR 5
cdddbdbc
DW
157 __u8 migr_type; /* Initializing, Rebuilding, ... */
158 __u8 dirty;
fe7ed8cb
DW
159 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
160 __u16 verify_errors; /* number of mismatches */
161 __u16 bad_blocks; /* number of bad blocks during verify */
162 __u32 filler[4];
cdddbdbc
DW
163 struct imsm_map map[1];
164 /* here comes another one if migr_state */
165} __attribute__ ((packed));
166
167struct imsm_dev {
fe7ed8cb 168 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
169 __u32 size_low;
170 __u32 size_high;
fe7ed8cb
DW
171#define DEV_BOOTABLE __cpu_to_le32(0x01)
172#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
173#define DEV_READ_COALESCING __cpu_to_le32(0x04)
174#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
175#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
176#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
177#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
178#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
179#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
180#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
181#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
182#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
183#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
184 __u32 status; /* Persistent RaidDev status */
185 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
186 __u8 migr_priority;
187 __u8 num_sub_vols;
188 __u8 tid;
189 __u8 cng_master_disk;
190 __u16 cache_policy;
191 __u8 cng_state;
192 __u8 cng_sub_state;
193#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
194 __u32 filler[IMSM_DEV_FILLERS];
195 struct imsm_vol vol;
196} __attribute__ ((packed));
197
198struct imsm_super {
199 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
200 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
201 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
202 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
203 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
204 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
205 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
206 __u8 num_disks; /* 0x38 Number of configured disks */
207 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
208 __u8 error_log_pos; /* 0x3A */
209 __u8 fill[1]; /* 0x3B */
210 __u32 cache_size; /* 0x3c - 0x40 in mb */
211 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
212 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
213 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
214#define IMSM_FILLERS 35
215 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
216 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
217 /* here comes imsm_dev[num_raid_devs] */
604b746f 218 /* here comes BBM logs */
cdddbdbc
DW
219} __attribute__ ((packed));
220
604b746f 221#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
222#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
223#define BBM_LOG_SIGNATURE 0xabadb10c
224
225struct bbm_log_block_addr {
226 __u16 w1;
227 __u32 dw1;
228} __attribute__ ((__packed__));
604b746f
JD
229
230struct bbm_log_entry {
8d67477f
TM
231 __u8 marked_count; /* Number of blocks marked - 1 */
232 __u8 disk_ordinal; /* Disk entry within the imsm_super */
233 struct bbm_log_block_addr defective_block_start;
604b746f
JD
234} __attribute__ ((__packed__));
235
236struct bbm_log {
237 __u32 signature; /* 0xABADB10C */
238 __u32 entry_count;
8d67477f 239 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
604b746f
JD
240} __attribute__ ((__packed__));
241
cdddbdbc
DW
242#ifndef MDASSEMBLE
243static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
244#endif
245
8e59f3d8
AK
246#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
247
248#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
249
de44e46f
PB
250#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
251#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
252 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
253 */
254
8e59f3d8
AK
255#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
256 * be recovered using srcMap */
257#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
258 * already been migrated and must
259 * be recovered from checkpoint area */
260struct migr_record {
261 __u32 rec_status; /* Status used to determine how to restart
262 * migration in case it aborts
263 * in some fashion */
264 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
265 __u32 family_num; /* Family number of MPB
266 * containing the RaidDev
267 * that is migrating */
268 __u32 ascending_migr; /* True if migrating in increasing
269 * order of lbas */
270 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
271 __u32 dest_depth_per_unit; /* Num member blocks each destMap
272 * member disk
273 * advances per unit-of-operation */
274 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
275 __u32 dest_1st_member_lba; /* First member lba on first
276 * stripe of destination */
277 __u32 num_migr_units; /* Total num migration units-of-op */
278 __u32 post_migr_vol_cap; /* Size of volume after
279 * migration completes */
280 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
281 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
282 * migration ckpt record was read from
283 * (for recovered migrations) */
284} __attribute__ ((__packed__));
285
ec50f7b6
LM
286struct md_list {
287 /* usage marker:
288 * 1: load metadata
289 * 2: metadata does not match
290 * 4: already checked
291 */
292 int used;
293 char *devname;
294 int found;
295 int container;
296 dev_t st_rdev;
297 struct md_list *next;
298};
299
e7b84f9d 300#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 301
1484e727
DW
302static __u8 migr_type(struct imsm_dev *dev)
303{
304 if (dev->vol.migr_type == MIGR_VERIFY &&
305 dev->status & DEV_VERIFY_AND_FIX)
306 return MIGR_REPAIR;
307 else
308 return dev->vol.migr_type;
309}
310
311static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
312{
313 /* for compatibility with older oroms convert MIGR_REPAIR, into
314 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
315 */
316 if (migr_type == MIGR_REPAIR) {
317 dev->vol.migr_type = MIGR_VERIFY;
318 dev->status |= DEV_VERIFY_AND_FIX;
319 } else {
320 dev->vol.migr_type = migr_type;
321 dev->status &= ~DEV_VERIFY_AND_FIX;
322 }
323}
324
f36a9ecd 325static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 326{
f36a9ecd 327 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 328}
cdddbdbc 329
f36a9ecd
PB
330static unsigned int mpb_sectors(struct imsm_super *mpb,
331 unsigned int sector_size)
87eb16df 332{
f36a9ecd 333 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
334}
335
ba2de7ba
DW
336struct intel_dev {
337 struct imsm_dev *dev;
338 struct intel_dev *next;
f21e18ca 339 unsigned index;
ba2de7ba
DW
340};
341
88654014
LM
342struct intel_hba {
343 enum sys_dev_type type;
344 char *path;
345 char *pci_id;
346 struct intel_hba *next;
347};
348
1a64be56
LM
349enum action {
350 DISK_REMOVE = 1,
351 DISK_ADD
352};
cdddbdbc
DW
353/* internal representation of IMSM metadata */
354struct intel_super {
355 union {
949c47a0
DW
356 void *buf; /* O_DIRECT buffer for reading/writing metadata */
357 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 358 };
8e59f3d8
AK
359 union {
360 void *migr_rec_buf; /* buffer for I/O operations */
361 struct migr_record *migr_rec; /* migration record */
362 };
51d83f5d
AK
363 int clean_migration_record_by_mdmon; /* when reshape is switched to next
364 array, it indicates that mdmon is allowed to clean migration
365 record */
949c47a0 366 size_t len; /* size of the 'buf' allocation */
bbab0940 367 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
368 void *next_buf; /* for realloc'ing buf from the manager */
369 size_t next_len;
c2c087e6 370 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 371 int current_vol; /* index of raid device undergoing creation */
5551b113 372 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 373 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 374 struct intel_dev *devlist;
fa7bb6f8 375 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
376 struct dl {
377 struct dl *next;
378 int index;
379 __u8 serial[MAX_RAID_SERIAL_LEN];
380 int major, minor;
381 char *devname;
b9f594fe 382 struct imsm_disk disk;
cdddbdbc 383 int fd;
0dcecb2e
DW
384 int extent_cnt;
385 struct extent *e; /* for determining freespace @ create */
efb30e7f 386 int raiddisk; /* slot to fill in autolayout */
1a64be56 387 enum action action;
ca0748fa 388 } *disks, *current_disk;
1a64be56
LM
389 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
390 active */
47ee5a45 391 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 392 struct bbm_log *bbm_log;
88654014 393 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 394 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
395 struct intel_super *next; /* (temp) list for disambiguating family_num */
396};
397
398struct intel_disk {
399 struct imsm_disk disk;
400 #define IMSM_UNKNOWN_OWNER (-1)
401 int owner;
402 struct intel_disk *next;
cdddbdbc
DW
403};
404
c2c087e6
DW
405struct extent {
406 unsigned long long start, size;
407};
408
694575e7
KW
409/* definitions of reshape process types */
410enum imsm_reshape_type {
411 CH_TAKEOVER,
b5347799 412 CH_MIGRATION,
7abc9871 413 CH_ARRAY_SIZE,
694575e7
KW
414};
415
88758e9d
DW
416/* definition of messages passed to imsm_process_update */
417enum imsm_update_type {
418 update_activate_spare,
8273f55e 419 update_create_array,
33414a01 420 update_kill_array,
aa534678 421 update_rename_array,
1a64be56 422 update_add_remove_disk,
78b10e66 423 update_reshape_container_disks,
48c5303a 424 update_reshape_migration,
2d40f3a1
AK
425 update_takeover,
426 update_general_migration_checkpoint,
f3871fdc 427 update_size_change,
bbab0940 428 update_prealloc_badblocks_mem,
88758e9d
DW
429};
430
431struct imsm_update_activate_spare {
432 enum imsm_update_type type;
d23fe947 433 struct dl *dl;
88758e9d
DW
434 int slot;
435 int array;
436 struct imsm_update_activate_spare *next;
437};
438
78b10e66 439struct geo_params {
4dd2df09 440 char devnm[32];
78b10e66 441 char *dev_name;
d04f65f4 442 unsigned long long size;
78b10e66
N
443 int level;
444 int layout;
445 int chunksize;
446 int raid_disks;
447};
448
bb025c2f
KW
449enum takeover_direction {
450 R10_TO_R0,
451 R0_TO_R10
452};
453struct imsm_update_takeover {
454 enum imsm_update_type type;
455 int subarray;
456 enum takeover_direction direction;
457};
78b10e66
N
458
459struct imsm_update_reshape {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
48c5303a
PC
463
464 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
465};
466
467struct imsm_update_reshape_migration {
468 enum imsm_update_type type;
469 int old_raid_disks;
470 int new_raid_disks;
471 /* fields for array migration changes
472 */
473 int subdev;
474 int new_level;
475 int new_layout;
4bba0439 476 int new_chunksize;
48c5303a 477
d195167d 478 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
479};
480
f3871fdc
AK
481struct imsm_update_size_change {
482 enum imsm_update_type type;
483 int subdev;
484 long long new_size;
485};
486
2d40f3a1
AK
487struct imsm_update_general_migration_checkpoint {
488 enum imsm_update_type type;
489 __u32 curr_migr_unit;
490};
491
54c2c1ea
DW
492struct disk_info {
493 __u8 serial[MAX_RAID_SERIAL_LEN];
494};
495
8273f55e
DW
496struct imsm_update_create_array {
497 enum imsm_update_type type;
8273f55e 498 int dev_idx;
6a3e913e 499 struct imsm_dev dev;
8273f55e
DW
500};
501
33414a01
DW
502struct imsm_update_kill_array {
503 enum imsm_update_type type;
504 int dev_idx;
505};
506
aa534678
DW
507struct imsm_update_rename_array {
508 enum imsm_update_type type;
509 __u8 name[MAX_RAID_SERIAL_LEN];
510 int dev_idx;
511};
512
1a64be56 513struct imsm_update_add_remove_disk {
43dad3d6
DW
514 enum imsm_update_type type;
515};
516
bbab0940
TM
517struct imsm_update_prealloc_bb_mem {
518 enum imsm_update_type type;
519};
520
88654014
LM
521static const char *_sys_dev_type[] = {
522 [SYS_DEV_UNKNOWN] = "Unknown",
523 [SYS_DEV_SAS] = "SAS",
614902f6 524 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
525 [SYS_DEV_NVME] = "NVMe",
526 [SYS_DEV_VMD] = "VMD"
88654014
LM
527};
528
529const char *get_sys_dev_type(enum sys_dev_type type)
530{
531 if (type >= SYS_DEV_MAX)
532 type = SYS_DEV_UNKNOWN;
533
534 return _sys_dev_type[type];
535}
536
537static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
538{
503975b9
N
539 struct intel_hba *result = xmalloc(sizeof(*result));
540
541 result->type = device->type;
542 result->path = xstrdup(device->path);
543 result->next = NULL;
544 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
545 result->pci_id++;
546
88654014
LM
547 return result;
548}
549
550static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
551{
594dc1b8
JS
552 struct intel_hba *result;
553
88654014
LM
554 for (result = hba; result; result = result->next) {
555 if (result->type == device->type && strcmp(result->path, device->path) == 0)
556 break;
557 }
558 return result;
559}
560
b4cf4cba 561static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
562{
563 struct intel_hba *hba;
564
565 /* check if disk attached to Intel HBA */
566 hba = find_intel_hba(super->hba, device);
567 if (hba != NULL)
568 return 1;
569 /* Check if HBA is already attached to super */
570 if (super->hba == NULL) {
571 super->hba = alloc_intel_hba(device);
572 return 1;
6b781d33
AP
573 }
574
575 hba = super->hba;
576 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 577 * Do not support HBA types mixing
6b781d33
AP
578 */
579 if (device->type != hba->type)
88654014 580 return 2;
6b781d33
AP
581
582 /* Multiple same type HBAs can be used if they share the same OROM */
583 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
584
585 if (device_orom != super->orom)
586 return 2;
587
588 while (hba->next)
589 hba = hba->next;
590
591 hba->next = alloc_intel_hba(device);
592 return 1;
88654014
LM
593}
594
595static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
596{
9bc4ae77 597 struct sys_dev *list, *elem;
88654014
LM
598 char *disk_path;
599
600 if ((list = find_intel_devices()) == NULL)
601 return 0;
602
603 if (fd < 0)
604 disk_path = (char *) devname;
605 else
606 disk_path = diskfd_to_devpath(fd);
607
9bc4ae77 608 if (!disk_path)
88654014 609 return 0;
88654014 610
9bc4ae77
N
611 for (elem = list; elem; elem = elem->next)
612 if (path_attached_to_hba(disk_path, elem->path))
88654014 613 return elem;
9bc4ae77 614
88654014
LM
615 if (disk_path != devname)
616 free(disk_path);
88654014
LM
617
618 return NULL;
619}
620
d424212e
N
621static int find_intel_hba_capability(int fd, struct intel_super *super,
622 char *devname);
f2f5c343 623
cdddbdbc
DW
624static struct supertype *match_metadata_desc_imsm(char *arg)
625{
626 struct supertype *st;
627
628 if (strcmp(arg, "imsm") != 0 &&
629 strcmp(arg, "default") != 0
630 )
631 return NULL;
632
503975b9 633 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
634 st->ss = &super_imsm;
635 st->max_devs = IMSM_MAX_DEVICES;
636 st->minor_version = 0;
637 st->sb = NULL;
638 return st;
639}
640
0e600426 641#ifndef MDASSEMBLE
cdddbdbc
DW
642static __u8 *get_imsm_version(struct imsm_super *mpb)
643{
644 return &mpb->sig[MPB_SIG_LEN];
645}
9e2d750d 646#endif
cdddbdbc 647
949c47a0
DW
648/* retrieve a disk directly from the anchor when the anchor is known to be
649 * up-to-date, currently only at load time
650 */
651static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 652{
949c47a0 653 if (index >= mpb->num_disks)
cdddbdbc
DW
654 return NULL;
655 return &mpb->disk[index];
656}
657
95d07a2c
LM
658/* retrieve the disk description based on a index of the disk
659 * in the sub-array
660 */
661static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 662{
b9f594fe
DW
663 struct dl *d;
664
665 for (d = super->disks; d; d = d->next)
666 if (d->index == index)
95d07a2c
LM
667 return d;
668
669 return NULL;
670}
671/* retrieve a disk from the parsed metadata */
672static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
673{
674 struct dl *dl;
675
676 dl = get_imsm_dl_disk(super, index);
677 if (dl)
678 return &dl->disk;
679
b9f594fe 680 return NULL;
949c47a0
DW
681}
682
683/* generate a checksum directly from the anchor when the anchor is known to be
684 * up-to-date, currently only at load or write_super after coalescing
685 */
686static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
687{
688 __u32 end = mpb->mpb_size / sizeof(end);
689 __u32 *p = (__u32 *) mpb;
690 __u32 sum = 0;
691
5d500228
N
692 while (end--) {
693 sum += __le32_to_cpu(*p);
97f734fd
N
694 p++;
695 }
cdddbdbc 696
5d500228 697 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
698}
699
a965f303
DW
700static size_t sizeof_imsm_map(struct imsm_map *map)
701{
702 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
703}
704
705struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 706{
5e7b0330
AK
707 /* A device can have 2 maps if it is in the middle of a migration.
708 * If second_map is:
238c0a71
AK
709 * MAP_0 - we return the first map
710 * MAP_1 - we return the second map if it exists, else NULL
711 * MAP_X - we return the second map if it exists, else the first
5e7b0330 712 */
a965f303 713 struct imsm_map *map = &dev->vol.map[0];
9535fc47 714 struct imsm_map *map2 = NULL;
a965f303 715
9535fc47
AK
716 if (dev->vol.migr_state)
717 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 718
9535fc47 719 switch (second_map) {
3b451610 720 case MAP_0:
9535fc47 721 break;
3b451610 722 case MAP_1:
9535fc47
AK
723 map = map2;
724 break;
238c0a71 725 case MAP_X:
9535fc47
AK
726 if (map2)
727 map = map2;
728 break;
9535fc47
AK
729 default:
730 map = NULL;
731 }
732 return map;
5e7b0330 733
a965f303 734}
cdddbdbc 735
3393c6af
DW
736/* return the size of the device.
737 * migr_state increases the returned size if map[0] were to be duplicated
738 */
739static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
740{
741 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 742 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
743
744 /* migrating means an additional map */
a965f303 745 if (dev->vol.migr_state)
238c0a71 746 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 747 else if (migr_state)
238c0a71 748 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
749
750 return size;
751}
752
54c2c1ea
DW
753#ifndef MDASSEMBLE
754/* retrieve disk serial number list from a metadata update */
755static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
756{
757 void *u = update;
758 struct disk_info *inf;
759
760 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
761 sizeof_imsm_dev(&update->dev, 0);
762
763 return inf;
764}
765#endif
766
949c47a0 767static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
768{
769 int offset;
770 int i;
771 void *_mpb = mpb;
772
949c47a0 773 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
774 return NULL;
775
776 /* devices start after all disks */
777 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
778
779 for (i = 0; i <= index; i++)
780 if (i == index)
781 return _mpb + offset;
782 else
3393c6af 783 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
784
785 return NULL;
786}
787
949c47a0
DW
788static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
789{
ba2de7ba
DW
790 struct intel_dev *dv;
791
949c47a0
DW
792 if (index >= super->anchor->num_raid_devs)
793 return NULL;
ba2de7ba
DW
794 for (dv = super->devlist; dv; dv = dv->next)
795 if (dv->index == index)
796 return dv->dev;
797 return NULL;
949c47a0
DW
798}
799
8d67477f
TM
800static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
801 *addr)
802{
803 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
804 __le16_to_cpu(addr->w1));
805}
806
807static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
808{
809 struct bbm_log_block_addr addr;
810
811 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
812 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
813 return addr;
814}
815
816#ifndef MDASSEMBLE
817/* get size of the bbm log */
818static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
819{
820 if (!log || log->entry_count == 0)
821 return 0;
822
823 return sizeof(log->signature) +
824 sizeof(log->entry_count) +
825 log->entry_count * sizeof(struct bbm_log_entry);
826}
6f50473f
TM
827
828/* check if bad block is not partially stored in bbm log */
829static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
830 long long sector, const int length, __u32 *pos)
831{
832 __u32 i;
833
834 for (i = *pos; i < log->entry_count; i++) {
835 struct bbm_log_entry *entry = &log->marked_block_entries[i];
836 unsigned long long bb_start;
837 unsigned long long bb_end;
838
839 bb_start = __le48_to_cpu(&entry->defective_block_start);
840 bb_end = bb_start + (entry->marked_count + 1);
841
842 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
843 (bb_end <= sector + length)) {
844 *pos = i;
845 return 1;
846 }
847 }
848 return 0;
849}
850
851/* record new bad block in bbm log */
852static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
853 long long sector, int length)
854{
855 int new_bb = 0;
856 __u32 pos = 0;
857 struct bbm_log_entry *entry = NULL;
858
859 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
860 struct bbm_log_entry *e = &log->marked_block_entries[pos];
861
862 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
863 (__le48_to_cpu(&e->defective_block_start) == sector)) {
864 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
865 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
866 pos = pos + 1;
867 continue;
868 }
869 entry = e;
870 break;
871 }
872
873 if (entry) {
874 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
875 BBM_LOG_MAX_LBA_ENTRY_VAL;
876 entry->defective_block_start = __cpu_to_le48(sector);
877 entry->marked_count = cnt - 1;
878 if (cnt == length)
879 return 1;
880 sector += cnt;
881 length -= cnt;
882 }
883
884 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
885 BBM_LOG_MAX_LBA_ENTRY_VAL;
886 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
887 return 0;
888
889 while (length > 0) {
890 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
891 BBM_LOG_MAX_LBA_ENTRY_VAL;
892 struct bbm_log_entry *entry =
893 &log->marked_block_entries[log->entry_count];
894
895 entry->defective_block_start = __cpu_to_le48(sector);
896 entry->marked_count = cnt - 1;
897 entry->disk_ordinal = idx;
898
899 sector += cnt;
900 length -= cnt;
901
902 log->entry_count++;
903 }
904
905 return new_bb;
906}
c07a5a4f
TM
907
908/* clear given bad block */
909static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
910 long long sector, const int length) {
911 __u32 i = 0;
912
913 while (i < log->entry_count) {
914 struct bbm_log_entry *entries = log->marked_block_entries;
915
916 if ((entries[i].disk_ordinal == idx) &&
917 (__le48_to_cpu(&entries[i].defective_block_start) ==
918 sector) && (entries[i].marked_count + 1 == length)) {
919 if (i < log->entry_count - 1)
920 entries[i] = entries[log->entry_count - 1];
921 log->entry_count--;
922 break;
923 }
924 i++;
925 }
926
927 return 1;
928}
8d67477f
TM
929#endif /* MDASSEMBLE */
930
931/* allocate and load BBM log from metadata */
932static int load_bbm_log(struct intel_super *super)
933{
934 struct imsm_super *mpb = super->anchor;
935 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
936
937 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
938 if (!super->bbm_log)
939 return 1;
940
941 if (bbm_log_size) {
942 struct bbm_log *log = (void *)mpb +
943 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
944
945 __u32 entry_count;
946
947 if (bbm_log_size < sizeof(log->signature) +
948 sizeof(log->entry_count))
949 return 2;
950
951 entry_count = __le32_to_cpu(log->entry_count);
952 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
953 (entry_count > BBM_LOG_MAX_ENTRIES))
954 return 3;
955
956 if (bbm_log_size !=
957 sizeof(log->signature) + sizeof(log->entry_count) +
958 entry_count * sizeof(struct bbm_log_entry))
959 return 4;
960
961 memcpy(super->bbm_log, log, bbm_log_size);
962 } else {
963 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
964 super->bbm_log->entry_count = 0;
965 }
966
967 return 0;
968}
969
b12796be
TM
970/* checks if bad block is within volume boundaries */
971static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
972 const unsigned long long start_sector,
973 const unsigned long long size)
974{
975 unsigned long long bb_start;
976 unsigned long long bb_end;
977
978 bb_start = __le48_to_cpu(&entry->defective_block_start);
979 bb_end = bb_start + (entry->marked_count + 1);
980
981 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
982 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
983 return 1;
984
985 return 0;
986}
987
988/* get list of bad blocks on a drive for a volume */
989static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
990 const unsigned long long start_sector,
991 const unsigned long long size,
992 struct md_bb *bbs)
993{
994 __u32 count = 0;
995 __u32 i;
996
997 for (i = 0; i < log->entry_count; i++) {
998 const struct bbm_log_entry *ent =
999 &log->marked_block_entries[i];
1000 struct md_bb_entry *bb;
1001
1002 if ((ent->disk_ordinal == idx) &&
1003 is_bad_block_in_volume(ent, start_sector, size)) {
1004
1005 if (!bbs->entries) {
1006 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1007 sizeof(*bb));
1008 if (!bbs->entries)
1009 break;
1010 }
1011
1012 bb = &bbs->entries[count++];
1013 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1014 bb->length = ent->marked_count + 1;
1015 }
1016 }
1017 bbs->count = count;
1018}
1019
98130f40
AK
1020/*
1021 * for second_map:
238c0a71
AK
1022 * == MAP_0 get first map
1023 * == MAP_1 get second map
1024 * == MAP_X than get map according to the current migr_state
98130f40
AK
1025 */
1026static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1027 int slot,
1028 int second_map)
7eef0453
DW
1029{
1030 struct imsm_map *map;
1031
5e7b0330 1032 map = get_imsm_map(dev, second_map);
7eef0453 1033
ff077194
DW
1034 /* top byte identifies disk under rebuild */
1035 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1036}
1037
1038#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1039static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1040{
98130f40 1041 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1042
1043 return ord_to_idx(ord);
7eef0453
DW
1044}
1045
be73972f
DW
1046static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1047{
1048 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1049}
1050
f21e18ca 1051static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1052{
1053 int slot;
1054 __u32 ord;
1055
1056 for (slot = 0; slot < map->num_members; slot++) {
1057 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1058 if (ord_to_idx(ord) == idx)
1059 return slot;
1060 }
1061
1062 return -1;
1063}
1064
cdddbdbc
DW
1065static int get_imsm_raid_level(struct imsm_map *map)
1066{
1067 if (map->raid_level == 1) {
1068 if (map->num_members == 2)
1069 return 1;
1070 else
1071 return 10;
1072 }
1073
1074 return map->raid_level;
1075}
1076
c2c087e6
DW
1077static int cmp_extent(const void *av, const void *bv)
1078{
1079 const struct extent *a = av;
1080 const struct extent *b = bv;
1081 if (a->start < b->start)
1082 return -1;
1083 if (a->start > b->start)
1084 return 1;
1085 return 0;
1086}
1087
0dcecb2e 1088static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1089{
c2c087e6 1090 int memberships = 0;
620b1713 1091 int i;
c2c087e6 1092
949c47a0
DW
1093 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1094 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1095 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1096
620b1713
DW
1097 if (get_imsm_disk_slot(map, dl->index) >= 0)
1098 memberships++;
c2c087e6 1099 }
0dcecb2e
DW
1100
1101 return memberships;
1102}
1103
b81221b7
CA
1104static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1105
5551b113
CA
1106static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1107{
1108 if (lo == 0 || hi == 0)
1109 return 1;
1110 *lo = __le32_to_cpu((unsigned)n);
1111 *hi = __le32_to_cpu((unsigned)(n >> 32));
1112 return 0;
1113}
1114
1115static unsigned long long join_u32(__u32 lo, __u32 hi)
1116{
1117 return (unsigned long long)__le32_to_cpu(lo) |
1118 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1119}
1120
1121static unsigned long long total_blocks(struct imsm_disk *disk)
1122{
1123 if (disk == NULL)
1124 return 0;
1125 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1126}
1127
1128static unsigned long long pba_of_lba0(struct imsm_map *map)
1129{
1130 if (map == NULL)
1131 return 0;
1132 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1133}
1134
1135static unsigned long long blocks_per_member(struct imsm_map *map)
1136{
1137 if (map == NULL)
1138 return 0;
1139 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1140}
1141
1142static unsigned long long num_data_stripes(struct imsm_map *map)
1143{
1144 if (map == NULL)
1145 return 0;
1146 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1147}
1148
1149static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1150{
1151 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1152}
1153
1154static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1155{
1156 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1157}
1158
1159static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1160{
1161 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1162}
1163
1164static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1165{
1166 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1167}
1168
0dcecb2e
DW
1169static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1170{
1171 /* find a list of used extents on the given physical device */
1172 struct extent *rv, *e;
620b1713 1173 int i;
0dcecb2e 1174 int memberships = count_memberships(dl, super);
b276dd33
DW
1175 __u32 reservation;
1176
1177 /* trim the reserved area for spares, so they can join any array
1178 * regardless of whether the OROM has assigned sectors from the
1179 * IMSM_RESERVED_SECTORS region
1180 */
1181 if (dl->index == -1)
b81221b7 1182 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1183 else
1184 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1185
503975b9 1186 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1187 e = rv;
1188
949c47a0
DW
1189 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1190 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1191 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1192
620b1713 1193 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
1194 e->start = pba_of_lba0(map);
1195 e->size = blocks_per_member(map);
620b1713 1196 e++;
c2c087e6
DW
1197 }
1198 }
1199 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1200
1011e834 1201 /* determine the start of the metadata
14e8215b
DW
1202 * when no raid devices are defined use the default
1203 * ...otherwise allow the metadata to truncate the value
1204 * as is the case with older versions of imsm
1205 */
1206 if (memberships) {
1207 struct extent *last = &rv[memberships - 1];
5551b113 1208 unsigned long long remainder;
14e8215b 1209
5551b113 1210 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1211 /* round down to 1k block to satisfy precision of the kernel
1212 * 'size' interface
1213 */
1214 remainder &= ~1UL;
1215 /* make sure remainder is still sane */
f21e18ca 1216 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1217 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1218 if (reservation > remainder)
1219 reservation = remainder;
1220 }
5551b113 1221 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1222 e->size = 0;
1223 return rv;
1224}
1225
14e8215b
DW
1226/* try to determine how much space is reserved for metadata from
1227 * the last get_extents() entry, otherwise fallback to the
1228 * default
1229 */
1230static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1231{
1232 struct extent *e;
1233 int i;
1234 __u32 rv;
1235
1236 /* for spares just return a minimal reservation which will grow
1237 * once the spare is picked up by an array
1238 */
1239 if (dl->index == -1)
1240 return MPB_SECTOR_CNT;
1241
1242 e = get_extents(super, dl);
1243 if (!e)
1244 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1245
1246 /* scroll to last entry */
1247 for (i = 0; e[i].size; i++)
1248 continue;
1249
5551b113 1250 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1251
1252 free(e);
1253
1254 return rv;
1255}
1256
25ed7e59
DW
1257static int is_spare(struct imsm_disk *disk)
1258{
1259 return (disk->status & SPARE_DISK) == SPARE_DISK;
1260}
1261
1262static int is_configured(struct imsm_disk *disk)
1263{
1264 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1265}
1266
1267static int is_failed(struct imsm_disk *disk)
1268{
1269 return (disk->status & FAILED_DISK) == FAILED_DISK;
1270}
1271
b81221b7
CA
1272/* try to determine how much space is reserved for metadata from
1273 * the last get_extents() entry on the smallest active disk,
1274 * otherwise fallback to the default
1275 */
1276static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1277{
1278 struct extent *e;
1279 int i;
5551b113
CA
1280 unsigned long long min_active;
1281 __u32 remainder;
b81221b7
CA
1282 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1283 struct dl *dl, *dl_min = NULL;
1284
1285 if (!super)
1286 return rv;
1287
1288 min_active = 0;
1289 for (dl = super->disks; dl; dl = dl->next) {
1290 if (dl->index < 0)
1291 continue;
5551b113
CA
1292 unsigned long long blocks = total_blocks(&dl->disk);
1293 if (blocks < min_active || min_active == 0) {
b81221b7 1294 dl_min = dl;
5551b113 1295 min_active = blocks;
b81221b7
CA
1296 }
1297 }
1298 if (!dl_min)
1299 return rv;
1300
1301 /* find last lba used by subarrays on the smallest active disk */
1302 e = get_extents(super, dl_min);
1303 if (!e)
1304 return rv;
1305 for (i = 0; e[i].size; i++)
1306 continue;
1307
1308 remainder = min_active - e[i].start;
1309 free(e);
1310
1311 /* to give priority to recovery we should not require full
1312 IMSM_RESERVED_SECTORS from the spare */
1313 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1314
1315 /* if real reservation is smaller use that value */
1316 return (remainder < rv) ? remainder : rv;
1317}
1318
80e7f8c3
AC
1319/* Return minimum size of a spare that can be used in this array*/
1320static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1321{
1322 struct intel_super *super = st->sb;
1323 struct dl *dl;
1324 struct extent *e;
1325 int i;
1326 unsigned long long rv = 0;
1327
1328 if (!super)
1329 return rv;
1330 /* find first active disk in array */
1331 dl = super->disks;
1332 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1333 dl = dl->next;
1334 if (!dl)
1335 return rv;
1336 /* find last lba used by subarrays */
1337 e = get_extents(super, dl);
1338 if (!e)
1339 return rv;
1340 for (i = 0; e[i].size; i++)
1341 continue;
1342 if (i > 0)
1343 rv = e[i-1].start + e[i-1].size;
1344 free(e);
b81221b7 1345
80e7f8c3 1346 /* add the amount of space needed for metadata */
b81221b7
CA
1347 rv = rv + imsm_min_reserved_sectors(super);
1348
80e7f8c3
AC
1349 return rv * 512;
1350}
1351
d1e02575
AK
1352static int is_gen_migration(struct imsm_dev *dev);
1353
f36a9ecd
PB
1354#define IMSM_4K_DIV 8
1355
1799c9e8 1356#ifndef MDASSEMBLE
c47b0ff6
AK
1357static __u64 blocks_per_migr_unit(struct intel_super *super,
1358 struct imsm_dev *dev);
1e5c6983 1359
c47b0ff6
AK
1360static void print_imsm_dev(struct intel_super *super,
1361 struct imsm_dev *dev,
1362 char *uuid,
1363 int disk_idx)
cdddbdbc
DW
1364{
1365 __u64 sz;
0d80bb2f 1366 int slot, i;
238c0a71
AK
1367 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1368 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1369 __u32 ord;
cdddbdbc
DW
1370
1371 printf("\n");
1e7bc0ed 1372 printf("[%.16s]:\n", dev->volume);
44470971 1373 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1374 printf(" RAID Level : %d", get_imsm_raid_level(map));
1375 if (map2)
1376 printf(" <-- %d", get_imsm_raid_level(map2));
1377 printf("\n");
1378 printf(" Members : %d", map->num_members);
1379 if (map2)
1380 printf(" <-- %d", map2->num_members);
1381 printf("\n");
0d80bb2f
DW
1382 printf(" Slots : [");
1383 for (i = 0; i < map->num_members; i++) {
238c0a71 1384 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1385 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1386 }
dd8bcb3b
AK
1387 printf("]");
1388 if (map2) {
1389 printf(" <-- [");
1390 for (i = 0; i < map2->num_members; i++) {
238c0a71 1391 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1392 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1393 }
1394 printf("]");
1395 }
1396 printf("\n");
7095bccb
AK
1397 printf(" Failed disk : ");
1398 if (map->failed_disk_num == 0xff)
1399 printf("none");
1400 else
1401 printf("%i", map->failed_disk_num);
1402 printf("\n");
620b1713
DW
1403 slot = get_imsm_disk_slot(map, disk_idx);
1404 if (slot >= 0) {
238c0a71 1405 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1406 printf(" This Slot : %d%s\n", slot,
1407 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1408 } else
cdddbdbc
DW
1409 printf(" This Slot : ?\n");
1410 sz = __le32_to_cpu(dev->size_high);
1411 sz <<= 32;
1412 sz += __le32_to_cpu(dev->size_low);
1413 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1414 human_size(sz * 512));
5551b113 1415 sz = blocks_per_member(map);
cdddbdbc
DW
1416 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1417 human_size(sz * 512));
5551b113
CA
1418 printf(" Sector Offset : %llu\n",
1419 pba_of_lba0(map));
1420 printf(" Num Stripes : %llu\n",
1421 num_data_stripes(map));
dd8bcb3b 1422 printf(" Chunk Size : %u KiB",
cdddbdbc 1423 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1424 if (map2)
1425 printf(" <-- %u KiB",
1426 __le16_to_cpu(map2->blocks_per_strip) / 2);
1427 printf("\n");
cdddbdbc 1428 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1429 printf(" Migrate State : ");
1484e727
DW
1430 if (dev->vol.migr_state) {
1431 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1432 printf("initialize\n");
1484e727 1433 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1434 printf("rebuild\n");
1484e727 1435 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1436 printf("check\n");
1484e727 1437 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1438 printf("general migration\n");
1484e727 1439 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1440 printf("state change\n");
1484e727 1441 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1442 printf("repair\n");
1484e727 1443 else
8655a7b1
DW
1444 printf("<unknown:%d>\n", migr_type(dev));
1445 } else
1446 printf("idle\n");
3393c6af
DW
1447 printf(" Map State : %s", map_state_str[map->map_state]);
1448 if (dev->vol.migr_state) {
238c0a71 1449 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1450
b10b37b8 1451 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1452 printf("\n Checkpoint : %u ",
1453 __le32_to_cpu(dev->vol.curr_migr_unit));
089f9d79 1454 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1455 printf("(N/A)");
1456 else
1457 printf("(%llu)", (unsigned long long)
1458 blocks_per_migr_unit(super, dev));
3393c6af
DW
1459 }
1460 printf("\n");
cdddbdbc 1461 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1462}
1463
0ec1f4e8 1464static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1465{
1f24f035 1466 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1467 __u64 sz;
1468
0ec1f4e8 1469 if (index < -1 || !disk)
e9d82038
DW
1470 return;
1471
cdddbdbc 1472 printf("\n");
1f24f035 1473 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1474 if (index >= 0)
1475 printf(" Disk%02d Serial : %s\n", index, str);
1476 else
1477 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1478 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1479 is_configured(disk) ? " active" : "",
1480 is_failed(disk) ? " failed" : "");
cdddbdbc 1481 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1482 sz = total_blocks(disk) - reserved;
cdddbdbc
DW
1483 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1484 human_size(sz * 512));
1485}
1486
de44e46f
PB
1487void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1488{
1489 struct migr_record *migr_rec = super->migr_rec;
1490
1491 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1492 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1493 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1494 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1495 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1496 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1497 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1498}
1499
f36a9ecd
PB
1500void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1501{
1502 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1503}
1504
1505void convert_to_4k(struct intel_super *super)
1506{
1507 struct imsm_super *mpb = super->anchor;
1508 struct imsm_disk *disk;
1509 int i;
1510
1511 for (i = 0; i < mpb->num_disks ; i++) {
1512 disk = __get_imsm_disk(mpb, i);
1513 /* disk */
1514 convert_to_4k_imsm_disk(disk);
1515 }
1516 for (i = 0; i < mpb->num_raid_devs; i++) {
1517 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1518 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1519 /* dev */
1520 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1521 &dev->size_low, &dev->size_high);
1522 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1523
1524 /* map0 */
1525 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1526 map->blocks_per_strip /= IMSM_4K_DIV;
1527 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1528
1529 if (dev->vol.migr_state) {
1530 /* map1 */
1531 map = get_imsm_map(dev, MAP_1);
1532 set_blocks_per_member(map,
1533 blocks_per_member(map)/IMSM_4K_DIV);
1534 map->blocks_per_strip /= IMSM_4K_DIV;
1535 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1536 }
1537 }
1538
1539 mpb->check_sum = __gen_imsm_checksum(mpb);
1540}
1541
520e69e2
AK
1542void examine_migr_rec_imsm(struct intel_super *super)
1543{
1544 struct migr_record *migr_rec = super->migr_rec;
1545 struct imsm_super *mpb = super->anchor;
1546 int i;
1547
1548 for (i = 0; i < mpb->num_raid_devs; i++) {
1549 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1550 struct imsm_map *map;
b4ab44d8 1551 int slot = -1;
3136abe5 1552
520e69e2
AK
1553 if (is_gen_migration(dev) == 0)
1554 continue;
1555
1556 printf("\nMigration Record Information:");
3136abe5 1557
44bfe6df
AK
1558 /* first map under migration */
1559 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1560 if (map)
1561 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1562 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1563 printf(" Empty\n ");
1564 printf("Examine one of first two disks in array\n");
1565 break;
1566 }
1567 printf("\n Status : ");
1568 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1569 printf("Normal\n");
1570 else
1571 printf("Contains Data\n");
1572 printf(" Current Unit : %u\n",
1573 __le32_to_cpu(migr_rec->curr_migr_unit));
1574 printf(" Family : %u\n",
1575 __le32_to_cpu(migr_rec->family_num));
1576 printf(" Ascending : %u\n",
1577 __le32_to_cpu(migr_rec->ascending_migr));
1578 printf(" Blocks Per Unit : %u\n",
1579 __le32_to_cpu(migr_rec->blocks_per_unit));
1580 printf(" Dest. Depth Per Unit : %u\n",
1581 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1582 printf(" Checkpoint Area pba : %u\n",
1583 __le32_to_cpu(migr_rec->ckpt_area_pba));
1584 printf(" First member lba : %u\n",
1585 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1586 printf(" Total Number of Units : %u\n",
1587 __le32_to_cpu(migr_rec->num_migr_units));
1588 printf(" Size of volume : %u\n",
1589 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1590 printf(" Expansion space for LBA64 : %u\n",
1591 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1592 printf(" Record was read from : %u\n",
1593 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1594
1595 break;
1596 }
1597}
9e2d750d 1598#endif /* MDASSEMBLE */
f36a9ecd 1599
de44e46f
PB
1600void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1601{
1602 struct migr_record *migr_rec = super->migr_rec;
1603
1604 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1605 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1606 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1607 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1608 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1609 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1610 &migr_rec->post_migr_vol_cap,
1611 &migr_rec->post_migr_vol_cap_hi);
1612}
1613
f36a9ecd
PB
1614void convert_from_4k(struct intel_super *super)
1615{
1616 struct imsm_super *mpb = super->anchor;
1617 struct imsm_disk *disk;
1618 int i;
1619
1620 for (i = 0; i < mpb->num_disks ; i++) {
1621 disk = __get_imsm_disk(mpb, i);
1622 /* disk */
1623 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1624 }
1625
1626 for (i = 0; i < mpb->num_raid_devs; i++) {
1627 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1628 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1629 /* dev */
1630 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1631 &dev->size_low, &dev->size_high);
1632 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1633
1634 /* map0 */
1635 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1636 map->blocks_per_strip *= IMSM_4K_DIV;
1637 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1638
1639 if (dev->vol.migr_state) {
1640 /* map1 */
1641 map = get_imsm_map(dev, MAP_1);
1642 set_blocks_per_member(map,
1643 blocks_per_member(map)*IMSM_4K_DIV);
1644 map->blocks_per_strip *= IMSM_4K_DIV;
1645 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1646 }
1647 }
1648
1649 mpb->check_sum = __gen_imsm_checksum(mpb);
1650}
1651
19482bcc
AK
1652/*******************************************************************************
1653 * function: imsm_check_attributes
1654 * Description: Function checks if features represented by attributes flags
1011e834 1655 * are supported by mdadm.
19482bcc
AK
1656 * Parameters:
1657 * attributes - Attributes read from metadata
1658 * Returns:
1011e834
N
1659 * 0 - passed attributes contains unsupported features flags
1660 * 1 - all features are supported
19482bcc
AK
1661 ******************************************************************************/
1662static int imsm_check_attributes(__u32 attributes)
1663{
1664 int ret_val = 1;
418f9b36
N
1665 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1666
1667 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1668
1669 not_supported &= attributes;
1670 if (not_supported) {
e7b84f9d 1671 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1672 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1673 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1674 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1675 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1676 }
1677 if (not_supported & MPB_ATTRIB_2TB) {
1678 dprintf("\t\tMPB_ATTRIB_2TB\n");
1679 not_supported ^= MPB_ATTRIB_2TB;
1680 }
1681 if (not_supported & MPB_ATTRIB_RAID0) {
1682 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1683 not_supported ^= MPB_ATTRIB_RAID0;
1684 }
1685 if (not_supported & MPB_ATTRIB_RAID1) {
1686 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1687 not_supported ^= MPB_ATTRIB_RAID1;
1688 }
1689 if (not_supported & MPB_ATTRIB_RAID10) {
1690 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1691 not_supported ^= MPB_ATTRIB_RAID10;
1692 }
1693 if (not_supported & MPB_ATTRIB_RAID1E) {
1694 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1695 not_supported ^= MPB_ATTRIB_RAID1E;
1696 }
1697 if (not_supported & MPB_ATTRIB_RAID5) {
1698 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1699 not_supported ^= MPB_ATTRIB_RAID5;
1700 }
1701 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1702 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1703 not_supported ^= MPB_ATTRIB_RAIDCNG;
1704 }
1705 if (not_supported & MPB_ATTRIB_BBM) {
1706 dprintf("\t\tMPB_ATTRIB_BBM\n");
1707 not_supported ^= MPB_ATTRIB_BBM;
1708 }
1709 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1710 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1711 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1712 }
1713 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1714 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1715 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1716 }
1717 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1718 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1719 not_supported ^= MPB_ATTRIB_2TB_DISK;
1720 }
1721 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1722 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1723 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1724 }
1725 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1726 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1727 not_supported ^= MPB_ATTRIB_NEVER_USE;
1728 }
1729
1730 if (not_supported)
1ade5cc1 1731 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1732
1733 ret_val = 0;
1734 }
1735
1736 return ret_val;
1737}
1738
9e2d750d 1739#ifndef MDASSEMBLE
a5d85af7 1740static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1741
cdddbdbc
DW
1742static void examine_super_imsm(struct supertype *st, char *homehost)
1743{
1744 struct intel_super *super = st->sb;
949c47a0 1745 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1746 char str[MAX_SIGNATURE_LENGTH];
1747 int i;
27fd6274
DW
1748 struct mdinfo info;
1749 char nbuf[64];
cdddbdbc 1750 __u32 sum;
14e8215b 1751 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1752 struct dl *dl;
27fd6274 1753
cdddbdbc
DW
1754 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1755 printf(" Magic : %s\n", str);
1756 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1757 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1758 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1759 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1760 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1761 printf(" Attributes : ");
1762 if (imsm_check_attributes(mpb->attributes))
1763 printf("All supported\n");
1764 else
1765 printf("not supported\n");
a5d85af7 1766 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1767 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1768 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1769 sum = __le32_to_cpu(mpb->check_sum);
1770 printf(" Checksum : %08x %s\n", sum,
949c47a0 1771 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 1772 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
1773 printf(" Disks : %d\n", mpb->num_disks);
1774 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1775 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
8d67477f 1776 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
1777 struct bbm_log *log = super->bbm_log;
1778
1779 printf("\n");
1780 printf("Bad Block Management Log:\n");
1781 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1782 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1783 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 1784 }
44470971
DW
1785 for (i = 0; i < mpb->num_raid_devs; i++) {
1786 struct mdinfo info;
1787 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1788
1789 super->current_vol = i;
a5d85af7 1790 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1791 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1792 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1793 }
cdddbdbc
DW
1794 for (i = 0; i < mpb->num_disks; i++) {
1795 if (i == super->disks->index)
1796 continue;
0ec1f4e8 1797 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1798 }
94827db3 1799
0ec1f4e8
DW
1800 for (dl = super->disks; dl; dl = dl->next)
1801 if (dl->index == -1)
1802 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1803
1804 examine_migr_rec_imsm(super);
cdddbdbc
DW
1805}
1806
061f2c6a 1807static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1808{
27fd6274 1809 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1810 struct mdinfo info;
1811 char nbuf[64];
1e7bc0ed 1812 struct intel_super *super = st->sb;
1e7bc0ed 1813
0d5a423f
DW
1814 if (!super->anchor->num_raid_devs) {
1815 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1816 return;
0d5a423f 1817 }
ff54de6e 1818
a5d85af7 1819 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1820 fname_from_uuid(st, &info, nbuf, ':');
1821 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1822}
1823
1824static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1825{
1826 /* We just write a generic IMSM ARRAY entry */
1827 struct mdinfo info;
1828 char nbuf[64];
1829 char nbuf1[64];
1830 struct intel_super *super = st->sb;
1831 int i;
1832
1833 if (!super->anchor->num_raid_devs)
1834 return;
1835
a5d85af7 1836 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1837 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1838 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1839 struct imsm_dev *dev = get_imsm_dev(super, i);
1840
1841 super->current_vol = i;
a5d85af7 1842 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1843 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1844 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1845 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1846 }
cdddbdbc
DW
1847}
1848
9d84c8ea
DW
1849static void export_examine_super_imsm(struct supertype *st)
1850{
1851 struct intel_super *super = st->sb;
1852 struct imsm_super *mpb = super->anchor;
1853 struct mdinfo info;
1854 char nbuf[64];
1855
a5d85af7 1856 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1857 fname_from_uuid(st, &info, nbuf, ':');
1858 printf("MD_METADATA=imsm\n");
1859 printf("MD_LEVEL=container\n");
1860 printf("MD_UUID=%s\n", nbuf+5);
1861 printf("MD_DEVICES=%u\n", mpb->num_disks);
1862}
1863
74db60b0
N
1864static int copy_metadata_imsm(struct supertype *st, int from, int to)
1865{
f36a9ecd 1866 /* The second last sector of the device contains
74db60b0
N
1867 * the "struct imsm_super" metadata.
1868 * This contains mpb_size which is the size in bytes of the
1869 * extended metadata. This is located immediately before
1870 * the imsm_super.
1871 * We want to read all that, plus the last sector which
1872 * may contain a migration record, and write it all
1873 * to the target.
1874 */
1875 void *buf;
1876 unsigned long long dsize, offset;
1877 int sectors;
1878 struct imsm_super *sb;
f36a9ecd
PB
1879 struct intel_super *super = st->sb;
1880 unsigned int sector_size = super->sector_size;
1881 unsigned int written = 0;
74db60b0 1882
de44e46f 1883 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
74db60b0
N
1884 return 1;
1885
1886 if (!get_dev_size(from, NULL, &dsize))
1887 goto err;
1888
f36a9ecd 1889 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
74db60b0 1890 goto err;
f36a9ecd 1891 if (read(from, buf, sector_size) != sector_size)
74db60b0
N
1892 goto err;
1893 sb = buf;
1894 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1895 goto err;
1896
f36a9ecd
PB
1897 sectors = mpb_sectors(sb, sector_size) + 2;
1898 offset = dsize - sectors * sector_size;
74db60b0
N
1899 if (lseek64(from, offset, 0) < 0 ||
1900 lseek64(to, offset, 0) < 0)
1901 goto err;
f36a9ecd
PB
1902 while (written < sectors * sector_size) {
1903 int n = sectors*sector_size - written;
74db60b0
N
1904 if (n > 4096)
1905 n = 4096;
1906 if (read(from, buf, n) != n)
1907 goto err;
1908 if (write(to, buf, n) != n)
1909 goto err;
1910 written += n;
1911 }
1912 free(buf);
1913 return 0;
1914err:
1915 free(buf);
1916 return 1;
1917}
1918
cdddbdbc
DW
1919static void detail_super_imsm(struct supertype *st, char *homehost)
1920{
3ebe00a1
DW
1921 struct mdinfo info;
1922 char nbuf[64];
1923
a5d85af7 1924 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1925 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1926 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1927}
1928
1929static void brief_detail_super_imsm(struct supertype *st)
1930{
ff54de6e
N
1931 struct mdinfo info;
1932 char nbuf[64];
a5d85af7 1933 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1934 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1935 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1936}
d665cc31
DW
1937
1938static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1939static void fd2devname(int fd, char *name);
1940
120dc887 1941static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1942{
120dc887
LM
1943 /* dump an unsorted list of devices attached to AHCI Intel storage
1944 * controller, as well as non-connected ports
d665cc31
DW
1945 */
1946 int hba_len = strlen(hba_path) + 1;
1947 struct dirent *ent;
1948 DIR *dir;
1949 char *path = NULL;
1950 int err = 0;
1951 unsigned long port_mask = (1 << port_count) - 1;
1952
f21e18ca 1953 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 1954 if (verbose > 0)
e7b84f9d 1955 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
1956 return 2;
1957 }
1958
1959 /* scroll through /sys/dev/block looking for devices attached to
1960 * this hba
1961 */
1962 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
1963 if (!dir)
1964 return 1;
1965
1966 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
1967 int fd;
1968 char model[64];
1969 char vendor[64];
1970 char buf[1024];
1971 int major, minor;
1972 char *device;
1973 char *c;
1974 int port;
1975 int type;
1976
1977 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1978 continue;
1979 path = devt_to_devpath(makedev(major, minor));
1980 if (!path)
1981 continue;
1982 if (!path_attached_to_hba(path, hba_path)) {
1983 free(path);
1984 path = NULL;
1985 continue;
1986 }
1987
1988 /* retrieve the scsi device type */
1989 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 1990 if (verbose > 0)
e7b84f9d 1991 pr_err("failed to allocate 'device'\n");
d665cc31
DW
1992 err = 2;
1993 break;
1994 }
1995 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 1996 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 1997 if (verbose > 0)
e7b84f9d 1998 pr_err("failed to read device type for %s\n",
d665cc31
DW
1999 path);
2000 err = 2;
2001 free(device);
2002 break;
2003 }
2004 type = strtoul(buf, NULL, 10);
2005
2006 /* if it's not a disk print the vendor and model */
2007 if (!(type == 0 || type == 7 || type == 14)) {
2008 vendor[0] = '\0';
2009 model[0] = '\0';
2010 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 2011 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2012 strncpy(vendor, buf, sizeof(vendor));
2013 vendor[sizeof(vendor) - 1] = '\0';
2014 c = (char *) &vendor[sizeof(vendor) - 1];
2015 while (isspace(*c) || *c == '\0')
2016 *c-- = '\0';
2017
2018 }
2019 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 2020 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2021 strncpy(model, buf, sizeof(model));
2022 model[sizeof(model) - 1] = '\0';
2023 c = (char *) &model[sizeof(model) - 1];
2024 while (isspace(*c) || *c == '\0')
2025 *c-- = '\0';
2026 }
2027
2028 if (vendor[0] && model[0])
2029 sprintf(buf, "%.64s %.64s", vendor, model);
2030 else
2031 switch (type) { /* numbers from hald/linux/device.c */
2032 case 1: sprintf(buf, "tape"); break;
2033 case 2: sprintf(buf, "printer"); break;
2034 case 3: sprintf(buf, "processor"); break;
2035 case 4:
2036 case 5: sprintf(buf, "cdrom"); break;
2037 case 6: sprintf(buf, "scanner"); break;
2038 case 8: sprintf(buf, "media_changer"); break;
2039 case 9: sprintf(buf, "comm"); break;
2040 case 12: sprintf(buf, "raid"); break;
2041 default: sprintf(buf, "unknown");
2042 }
2043 } else
2044 buf[0] = '\0';
2045 free(device);
2046
2047 /* chop device path to 'host%d' and calculate the port number */
2048 c = strchr(&path[hba_len], '/');
4e5e717d 2049 if (!c) {
ba728be7 2050 if (verbose > 0)
e7b84f9d 2051 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2052 err = 2;
2053 break;
2054 }
d665cc31 2055 *c = '\0';
0858eccf
AP
2056 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2057 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2058 port -= host_base;
2059 else {
ba728be7 2060 if (verbose > 0) {
d665cc31 2061 *c = '/'; /* repair the full string */
e7b84f9d 2062 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2063 path);
2064 }
2065 err = 2;
2066 break;
2067 }
2068
2069 /* mark this port as used */
2070 port_mask &= ~(1 << port);
2071
2072 /* print out the device information */
2073 if (buf[0]) {
2074 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2075 continue;
2076 }
2077
2078 fd = dev_open(ent->d_name, O_RDONLY);
2079 if (fd < 0)
2080 printf(" Port%d : - disk info unavailable -\n", port);
2081 else {
2082 fd2devname(fd, buf);
2083 printf(" Port%d : %s", port, buf);
2084 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 2085 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 2086 else
664d5325 2087 printf(" ()\n");
4dab422a 2088 close(fd);
d665cc31 2089 }
d665cc31
DW
2090 free(path);
2091 path = NULL;
2092 }
2093 if (path)
2094 free(path);
2095 if (dir)
2096 closedir(dir);
2097 if (err == 0) {
2098 int i;
2099
2100 for (i = 0; i < port_count; i++)
2101 if (port_mask & (1 << i))
2102 printf(" Port%d : - no device attached -\n", i);
2103 }
2104
2105 return err;
2106}
2107
b5eece69 2108static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
2109{
2110 struct dirent *ent;
2111 DIR *dir;
2112 char path[292];
2113 char link[256];
2114 char *c, *rp;
2115
2116 if (hba->type != SYS_DEV_VMD)
b5eece69 2117 return 1;
60f0f54d
PB
2118
2119 /* scroll through /sys/dev/block looking for devices attached to
2120 * this hba
2121 */
2122 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 2123 if (!dir)
b5eece69 2124 return 1;
b9135011
JS
2125
2126 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
2127 int n;
2128
2129 /* is 'ent' a device? check that the 'subsystem' link exists and
2130 * that its target matches 'bus'
2131 */
2132 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2133 ent->d_name);
2134 n = readlink(path, link, sizeof(link));
2135 if (n < 0 || n >= (int)sizeof(link))
2136 continue;
2137 link[n] = '\0';
2138 c = strrchr(link, '/');
2139 if (!c)
2140 continue;
2141 if (strncmp("pci", c+1, strlen("pci")) != 0)
2142 continue;
2143
2144 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
2145 /* if not a intel NVMe - skip it*/
2146 if (devpath_to_vendor(path) != 0x8086)
2147 continue;
2148
2149 rp = realpath(path, NULL);
2150 if (!rp)
2151 continue;
2152
2153 if (path_attached_to_hba(rp, hba->path)) {
2154 printf(" NVMe under VMD : %s\n", rp);
2155 }
2156 free(rp);
2157 }
2158
b9135011 2159 closedir(dir);
b5eece69 2160 return 0;
60f0f54d
PB
2161}
2162
120dc887
LM
2163static void print_found_intel_controllers(struct sys_dev *elem)
2164{
2165 for (; elem; elem = elem->next) {
e7b84f9d 2166 pr_err("found Intel(R) ");
120dc887
LM
2167 if (elem->type == SYS_DEV_SATA)
2168 fprintf(stderr, "SATA ");
155cbb4c
LM
2169 else if (elem->type == SYS_DEV_SAS)
2170 fprintf(stderr, "SAS ");
0858eccf
AP
2171 else if (elem->type == SYS_DEV_NVME)
2172 fprintf(stderr, "NVMe ");
60f0f54d
PB
2173
2174 if (elem->type == SYS_DEV_VMD)
2175 fprintf(stderr, "VMD domain");
2176 else
2177 fprintf(stderr, "RAID controller");
2178
120dc887
LM
2179 if (elem->pci_id)
2180 fprintf(stderr, " at %s", elem->pci_id);
2181 fprintf(stderr, ".\n");
2182 }
2183 fflush(stderr);
2184}
2185
120dc887
LM
2186static int ahci_get_port_count(const char *hba_path, int *port_count)
2187{
2188 struct dirent *ent;
2189 DIR *dir;
2190 int host_base = -1;
2191
2192 *port_count = 0;
2193 if ((dir = opendir(hba_path)) == NULL)
2194 return -1;
2195
2196 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2197 int host;
2198
0858eccf
AP
2199 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2200 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2201 continue;
2202 if (*port_count == 0)
2203 host_base = host;
2204 else if (host < host_base)
2205 host_base = host;
2206
2207 if (host + 1 > *port_count + host_base)
2208 *port_count = host + 1 - host_base;
2209 }
2210 closedir(dir);
2211 return host_base;
2212}
2213
a891a3c2
LM
2214static void print_imsm_capability(const struct imsm_orom *orom)
2215{
0858eccf
AP
2216 printf(" Platform : Intel(R) ");
2217 if (orom->capabilities == 0 && orom->driver_features == 0)
2218 printf("Matrix Storage Manager\n");
2219 else
2220 printf("Rapid Storage Technology%s\n",
2221 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2222 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2223 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2224 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2225 printf(" RAID Levels :%s%s%s%s%s\n",
2226 imsm_orom_has_raid0(orom) ? " raid0" : "",
2227 imsm_orom_has_raid1(orom) ? " raid1" : "",
2228 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2229 imsm_orom_has_raid10(orom) ? " raid10" : "",
2230 imsm_orom_has_raid5(orom) ? " raid5" : "");
2231 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2232 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2233 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2234 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2235 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2236 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2237 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2238 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2239 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2240 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2241 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2242 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2243 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2244 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2245 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2246 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2247 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2248 printf(" 2TB volumes :%s supported\n",
2249 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2250 printf(" 2TB disks :%s supported\n",
2251 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2252 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2253 printf(" Max Volumes : %d per array, %d per %s\n",
2254 orom->vpa, orom->vphba,
2255 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2256 return;
2257}
2258
e50cf220
MN
2259static void print_imsm_capability_export(const struct imsm_orom *orom)
2260{
2261 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2262 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2263 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2264 orom->hotfix_ver, orom->build);
e50cf220
MN
2265 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2266 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2267 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2268 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2269 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2270 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2271 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2272 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2273 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2274 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2275 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2276 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2277 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2278 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2279 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2280 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2281 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2282 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2283 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2284 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2285 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2286 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2287 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2288 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2289 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2290 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2291 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2292 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2293}
2294
9eafa1de 2295static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2296{
2297 /* There are two components to imsm platform support, the ahci SATA
2298 * controller and the option-rom. To find the SATA controller we
2299 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2300 * controller with the Intel vendor id is present. This approach
2301 * allows mdadm to leverage the kernel's ahci detection logic, with the
2302 * caveat that if ahci.ko is not loaded mdadm will not be able to
2303 * detect platform raid capabilities. The option-rom resides in a
2304 * platform "Adapter ROM". We scan for its signature to retrieve the
2305 * platform capabilities. If raid support is disabled in the BIOS the
2306 * option-rom capability structure will not be available.
2307 */
d665cc31 2308 struct sys_dev *list, *hba;
d665cc31
DW
2309 int host_base = 0;
2310 int port_count = 0;
9eafa1de 2311 int result=1;
d665cc31 2312
5615172f 2313 if (enumerate_only) {
a891a3c2 2314 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2315 return 0;
a891a3c2
LM
2316 list = find_intel_devices();
2317 if (!list)
2318 return 2;
2319 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2320 if (find_imsm_capability(hba)) {
2321 result = 0;
a891a3c2
LM
2322 break;
2323 }
9eafa1de 2324 else
6b781d33 2325 result = 2;
a891a3c2 2326 }
a891a3c2 2327 return result;
5615172f
DW
2328 }
2329
155cbb4c
LM
2330 list = find_intel_devices();
2331 if (!list) {
ba728be7 2332 if (verbose > 0)
7a862a02 2333 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2334 return 2;
ba728be7 2335 } else if (verbose > 0)
155cbb4c 2336 print_found_intel_controllers(list);
d665cc31 2337
a891a3c2 2338 for (hba = list; hba; hba = hba->next) {
0858eccf 2339 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2340 continue;
0858eccf 2341 if (!find_imsm_capability(hba)) {
60f0f54d 2342 char buf[PATH_MAX];
e7b84f9d 2343 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2344 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2345 get_sys_dev_type(hba->type));
0858eccf
AP
2346 continue;
2347 }
2348 result = 0;
2349 }
2350
2351 if (controller_path && result == 1) {
2352 pr_err("no active Intel(R) RAID controller found under %s\n",
2353 controller_path);
2354 return result;
2355 }
2356
5e1d6128 2357 const struct orom_entry *entry;
0858eccf 2358
5e1d6128 2359 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2360 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2361 print_imsm_capability(&entry->orom);
60f0f54d
PB
2362 for (hba = list; hba; hba = hba->next) {
2363 if (hba->type == SYS_DEV_VMD) {
2364 char buf[PATH_MAX];
60f0f54d
PB
2365 printf(" I/O Controller : %s (%s)\n",
2366 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2367 if (print_vmd_attached_devs(hba)) {
2368 if (verbose > 0)
2369 pr_err("failed to get devices attached to VMD domain.\n");
2370 result |= 2;
2371 }
60f0f54d
PB
2372 }
2373 }
07cb1e57 2374 printf("\n");
60f0f54d
PB
2375 continue;
2376 }
0858eccf 2377
60f0f54d
PB
2378 print_imsm_capability(&entry->orom);
2379 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2380 for (hba = list; hba; hba = hba->next) {
2381 if (hba->type == SYS_DEV_NVME)
2382 printf(" NVMe Device : %s\n", hba->path);
2383 }
60f0f54d 2384 printf("\n");
0858eccf
AP
2385 continue;
2386 }
2387
2388 struct devid_list *devid;
5e1d6128 2389 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2390 hba = device_by_id(devid->devid);
2391 if (!hba)
2392 continue;
2393
9eafa1de
MN
2394 printf(" I/O Controller : %s (%s)\n",
2395 hba->path, get_sys_dev_type(hba->type));
2396 if (hba->type == SYS_DEV_SATA) {
2397 host_base = ahci_get_port_count(hba->path, &port_count);
2398 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2399 if (verbose > 0)
7a862a02 2400 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2401 result |= 2;
2402 }
120dc887
LM
2403 }
2404 }
0858eccf 2405 printf("\n");
d665cc31 2406 }
155cbb4c 2407
120dc887 2408 return result;
d665cc31 2409}
e50cf220 2410
9eafa1de 2411static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2412{
e50cf220
MN
2413 struct sys_dev *list, *hba;
2414 int result=1;
2415
2416 list = find_intel_devices();
2417 if (!list) {
2418 if (verbose > 0)
2419 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2420 result = 2;
e50cf220
MN
2421 return result;
2422 }
2423
2424 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2425 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2426 continue;
60f0f54d
PB
2427 if (!find_imsm_capability(hba) && verbose > 0) {
2428 char buf[PATH_MAX];
2429 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2430 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2431 }
0858eccf 2432 else
e50cf220 2433 result = 0;
e50cf220
MN
2434 }
2435
5e1d6128 2436 const struct orom_entry *entry;
0858eccf 2437
60f0f54d
PB
2438 for (entry = orom_entries; entry; entry = entry->next) {
2439 if (entry->type == SYS_DEV_VMD) {
2440 for (hba = list; hba; hba = hba->next)
2441 print_imsm_capability_export(&entry->orom);
2442 continue;
2443 }
5e1d6128 2444 print_imsm_capability_export(&entry->orom);
60f0f54d 2445 }
0858eccf 2446
e50cf220
MN
2447 return result;
2448}
2449
cdddbdbc
DW
2450#endif
2451
2452static int match_home_imsm(struct supertype *st, char *homehost)
2453{
5115ca67
DW
2454 /* the imsm metadata format does not specify any host
2455 * identification information. We return -1 since we can never
2456 * confirm nor deny whether a given array is "meant" for this
148acb7b 2457 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2458 * exclude member disks that do not belong, and we rely on
2459 * mdadm.conf to specify the arrays that should be assembled.
2460 * Auto-assembly may still pick up "foreign" arrays.
2461 */
cdddbdbc 2462
9362c1c8 2463 return -1;
cdddbdbc
DW
2464}
2465
2466static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2467{
51006d85
N
2468 /* The uuid returned here is used for:
2469 * uuid to put into bitmap file (Create, Grow)
2470 * uuid for backup header when saving critical section (Grow)
2471 * comparing uuids when re-adding a device into an array
2472 * In these cases the uuid required is that of the data-array,
2473 * not the device-set.
2474 * uuid to recognise same set when adding a missing device back
2475 * to an array. This is a uuid for the device-set.
1011e834 2476 *
51006d85
N
2477 * For each of these we can make do with a truncated
2478 * or hashed uuid rather than the original, as long as
2479 * everyone agrees.
2480 * In each case the uuid required is that of the data-array,
2481 * not the device-set.
43dad3d6 2482 */
51006d85
N
2483 /* imsm does not track uuid's so we synthesis one using sha1 on
2484 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2485 * - the orig_family_num of the container
51006d85
N
2486 * - the index number of the volume
2487 * - the 'serial' number of the volume.
2488 * Hopefully these are all constant.
2489 */
2490 struct intel_super *super = st->sb;
43dad3d6 2491
51006d85
N
2492 char buf[20];
2493 struct sha1_ctx ctx;
2494 struct imsm_dev *dev = NULL;
148acb7b 2495 __u32 family_num;
51006d85 2496
148acb7b
DW
2497 /* some mdadm versions failed to set ->orig_family_num, in which
2498 * case fall back to ->family_num. orig_family_num will be
2499 * fixed up with the first metadata update.
2500 */
2501 family_num = super->anchor->orig_family_num;
2502 if (family_num == 0)
2503 family_num = super->anchor->family_num;
51006d85 2504 sha1_init_ctx(&ctx);
92bd8f8d 2505 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2506 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2507 if (super->current_vol >= 0)
2508 dev = get_imsm_dev(super, super->current_vol);
2509 if (dev) {
2510 __u32 vol = super->current_vol;
2511 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2512 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2513 }
2514 sha1_finish_ctx(&ctx, buf);
2515 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2516}
2517
0d481d37 2518#if 0
4f5bc454
DW
2519static void
2520get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2521{
cdddbdbc
DW
2522 __u8 *v = get_imsm_version(mpb);
2523 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2524 char major[] = { 0, 0, 0 };
2525 char minor[] = { 0 ,0, 0 };
2526 char patch[] = { 0, 0, 0 };
2527 char *ver_parse[] = { major, minor, patch };
2528 int i, j;
2529
2530 i = j = 0;
2531 while (*v != '\0' && v < end) {
2532 if (*v != '.' && j < 2)
2533 ver_parse[i][j++] = *v;
2534 else {
2535 i++;
2536 j = 0;
2537 }
2538 v++;
2539 }
2540
4f5bc454
DW
2541 *m = strtol(minor, NULL, 0);
2542 *p = strtol(patch, NULL, 0);
2543}
0d481d37 2544#endif
4f5bc454 2545
1e5c6983
DW
2546static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2547{
2548 /* migr_strip_size when repairing or initializing parity */
238c0a71 2549 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2550 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2551
2552 switch (get_imsm_raid_level(map)) {
2553 case 5:
2554 case 10:
2555 return chunk;
2556 default:
2557 return 128*1024 >> 9;
2558 }
2559}
2560
2561static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2562{
2563 /* migr_strip_size when rebuilding a degraded disk, no idea why
2564 * this is different than migr_strip_size_resync(), but it's good
2565 * to be compatible
2566 */
238c0a71 2567 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2568 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2569
2570 switch (get_imsm_raid_level(map)) {
2571 case 1:
2572 case 10:
2573 if (map->num_members % map->num_domains == 0)
2574 return 128*1024 >> 9;
2575 else
2576 return chunk;
2577 case 5:
2578 return max((__u32) 64*1024 >> 9, chunk);
2579 default:
2580 return 128*1024 >> 9;
2581 }
2582}
2583
2584static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2585{
238c0a71
AK
2586 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2587 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2588 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2589 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2590
2591 return max((__u32) 1, hi_chunk / lo_chunk);
2592}
2593
2594static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2595{
238c0a71 2596 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2597 int level = get_imsm_raid_level(lo);
2598
2599 if (level == 1 || level == 10) {
238c0a71 2600 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2601
2602 return hi->num_domains;
2603 } else
2604 return num_stripes_per_unit_resync(dev);
2605}
2606
98130f40 2607static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2608{
2609 /* named 'imsm_' because raid0, raid1 and raid10
2610 * counter-intuitively have the same number of data disks
2611 */
98130f40 2612 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2613
2614 switch (get_imsm_raid_level(map)) {
2615 case 0:
36fd8ccc
AK
2616 return map->num_members;
2617 break;
1e5c6983
DW
2618 case 1:
2619 case 10:
36fd8ccc 2620 return map->num_members/2;
1e5c6983
DW
2621 case 5:
2622 return map->num_members - 1;
2623 default:
1ade5cc1 2624 dprintf("unsupported raid level\n");
1e5c6983
DW
2625 return 0;
2626 }
2627}
2628
2629static __u32 parity_segment_depth(struct imsm_dev *dev)
2630{
238c0a71 2631 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2632 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2633
2634 switch(get_imsm_raid_level(map)) {
2635 case 1:
2636 case 10:
2637 return chunk * map->num_domains;
2638 case 5:
2639 return chunk * map->num_members;
2640 default:
2641 return chunk;
2642 }
2643}
2644
2645static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2646{
238c0a71 2647 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2648 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2649 __u32 strip = block / chunk;
2650
2651 switch (get_imsm_raid_level(map)) {
2652 case 1:
2653 case 10: {
2654 __u32 vol_strip = (strip * map->num_domains) + 1;
2655 __u32 vol_stripe = vol_strip / map->num_members;
2656
2657 return vol_stripe * chunk + block % chunk;
2658 } case 5: {
2659 __u32 stripe = strip / (map->num_members - 1);
2660
2661 return stripe * chunk + block % chunk;
2662 }
2663 default:
2664 return 0;
2665 }
2666}
2667
c47b0ff6
AK
2668static __u64 blocks_per_migr_unit(struct intel_super *super,
2669 struct imsm_dev *dev)
1e5c6983
DW
2670{
2671 /* calculate the conversion factor between per member 'blocks'
2672 * (md/{resync,rebuild}_start) and imsm migration units, return
2673 * 0 for the 'not migrating' and 'unsupported migration' cases
2674 */
2675 if (!dev->vol.migr_state)
2676 return 0;
2677
2678 switch (migr_type(dev)) {
c47b0ff6
AK
2679 case MIGR_GEN_MIGR: {
2680 struct migr_record *migr_rec = super->migr_rec;
2681 return __le32_to_cpu(migr_rec->blocks_per_unit);
2682 }
1e5c6983
DW
2683 case MIGR_VERIFY:
2684 case MIGR_REPAIR:
2685 case MIGR_INIT: {
238c0a71 2686 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2687 __u32 stripes_per_unit;
2688 __u32 blocks_per_unit;
2689 __u32 parity_depth;
2690 __u32 migr_chunk;
2691 __u32 block_map;
2692 __u32 block_rel;
2693 __u32 segment;
2694 __u32 stripe;
2695 __u8 disks;
2696
2697 /* yes, this is really the translation of migr_units to
2698 * per-member blocks in the 'resync' case
2699 */
2700 stripes_per_unit = num_stripes_per_unit_resync(dev);
2701 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2702 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2703 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2704 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2705 segment = blocks_per_unit / stripe;
2706 block_rel = blocks_per_unit - segment * stripe;
2707 parity_depth = parity_segment_depth(dev);
2708 block_map = map_migr_block(dev, block_rel);
2709 return block_map + parity_depth * segment;
2710 }
2711 case MIGR_REBUILD: {
2712 __u32 stripes_per_unit;
2713 __u32 migr_chunk;
2714
2715 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2716 migr_chunk = migr_strip_blocks_rebuild(dev);
2717 return migr_chunk * stripes_per_unit;
2718 }
1e5c6983
DW
2719 case MIGR_STATE_CHANGE:
2720 default:
2721 return 0;
2722 }
2723}
2724
c2c087e6
DW
2725static int imsm_level_to_layout(int level)
2726{
2727 switch (level) {
2728 case 0:
2729 case 1:
2730 return 0;
2731 case 5:
2732 case 6:
a380c027 2733 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2734 case 10:
c92a2527 2735 return 0x102;
c2c087e6 2736 }
a18a888e 2737 return UnSet;
c2c087e6
DW
2738}
2739
8e59f3d8
AK
2740/*******************************************************************************
2741 * Function: read_imsm_migr_rec
2742 * Description: Function reads imsm migration record from last sector of disk
2743 * Parameters:
2744 * fd : disk descriptor
2745 * super : metadata info
2746 * Returns:
2747 * 0 : success,
2748 * -1 : fail
2749 ******************************************************************************/
2750static int read_imsm_migr_rec(int fd, struct intel_super *super)
2751{
2752 int ret_val = -1;
de44e46f 2753 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
2754 unsigned long long dsize;
2755
2756 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2757 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2758 SEEK_SET) < 0) {
e7b84f9d
N
2759 pr_err("Cannot seek to anchor block: %s\n",
2760 strerror(errno));
8e59f3d8
AK
2761 goto out;
2762 }
de44e46f
PB
2763 if (read(fd, super->migr_rec_buf,
2764 MIGR_REC_BUF_SECTORS*sector_size) !=
2765 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2766 pr_err("Cannot read migr record block: %s\n",
2767 strerror(errno));
8e59f3d8
AK
2768 goto out;
2769 }
2770 ret_val = 0;
de44e46f
PB
2771 if (sector_size == 4096)
2772 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
2773
2774out:
2775 return ret_val;
2776}
2777
3136abe5
AK
2778static struct imsm_dev *imsm_get_device_during_migration(
2779 struct intel_super *super)
2780{
2781
2782 struct intel_dev *dv;
2783
2784 for (dv = super->devlist; dv; dv = dv->next) {
2785 if (is_gen_migration(dv->dev))
2786 return dv->dev;
2787 }
2788 return NULL;
2789}
2790
8e59f3d8
AK
2791/*******************************************************************************
2792 * Function: load_imsm_migr_rec
2793 * Description: Function reads imsm migration record (it is stored at the last
2794 * sector of disk)
2795 * Parameters:
2796 * super : imsm internal array info
2797 * info : general array info
2798 * Returns:
2799 * 0 : success
2800 * -1 : fail
4c965cc9 2801 * -2 : no migration in progress
8e59f3d8
AK
2802 ******************************************************************************/
2803static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2804{
2805 struct mdinfo *sd;
594dc1b8 2806 struct dl *dl;
8e59f3d8
AK
2807 char nm[30];
2808 int retval = -1;
2809 int fd = -1;
3136abe5 2810 struct imsm_dev *dev;
594dc1b8 2811 struct imsm_map *map;
b4ab44d8 2812 int slot = -1;
3136abe5
AK
2813
2814 /* find map under migration */
2815 dev = imsm_get_device_during_migration(super);
2816 /* nothing to load,no migration in progress?
2817 */
2818 if (dev == NULL)
4c965cc9 2819 return -2;
8e59f3d8
AK
2820
2821 if (info) {
2822 for (sd = info->devs ; sd ; sd = sd->next) {
2823 /* read only from one of the first two slots */
12fe93e9
TM
2824 if ((sd->disk.raid_disk < 0) ||
2825 (sd->disk.raid_disk > 1))
8e59f3d8 2826 continue;
3136abe5 2827
8e59f3d8
AK
2828 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2829 fd = dev_open(nm, O_RDONLY);
2830 if (fd >= 0)
2831 break;
2832 }
2833 }
2834 if (fd < 0) {
12fe93e9 2835 map = get_imsm_map(dev, MAP_0);
8e59f3d8 2836 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2837 /* skip spare and failed disks
2838 */
2839 if (dl->index < 0)
2840 continue;
8e59f3d8 2841 /* read only from one of the first two slots */
3136abe5
AK
2842 if (map)
2843 slot = get_imsm_disk_slot(map, dl->index);
089f9d79 2844 if (map == NULL || slot > 1 || slot < 0)
8e59f3d8
AK
2845 continue;
2846 sprintf(nm, "%d:%d", dl->major, dl->minor);
2847 fd = dev_open(nm, O_RDONLY);
2848 if (fd >= 0)
2849 break;
2850 }
2851 }
2852 if (fd < 0)
2853 goto out;
2854 retval = read_imsm_migr_rec(fd, super);
2855
2856out:
2857 if (fd >= 0)
2858 close(fd);
2859 return retval;
2860}
2861
9e2d750d 2862#ifndef MDASSEMBLE
c17608ea
AK
2863/*******************************************************************************
2864 * function: imsm_create_metadata_checkpoint_update
2865 * Description: It creates update for checkpoint change.
2866 * Parameters:
2867 * super : imsm internal array info
2868 * u : pointer to prepared update
2869 * Returns:
2870 * Uptate length.
2871 * If length is equal to 0, input pointer u contains no update
2872 ******************************************************************************/
2873static int imsm_create_metadata_checkpoint_update(
2874 struct intel_super *super,
2875 struct imsm_update_general_migration_checkpoint **u)
2876{
2877
2878 int update_memory_size = 0;
2879
1ade5cc1 2880 dprintf("(enter)\n");
c17608ea
AK
2881
2882 if (u == NULL)
2883 return 0;
2884 *u = NULL;
2885
2886 /* size of all update data without anchor */
2887 update_memory_size =
2888 sizeof(struct imsm_update_general_migration_checkpoint);
2889
503975b9 2890 *u = xcalloc(1, update_memory_size);
c17608ea 2891 if (*u == NULL) {
1ade5cc1 2892 dprintf("error: cannot get memory\n");
c17608ea
AK
2893 return 0;
2894 }
2895 (*u)->type = update_general_migration_checkpoint;
2896 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 2897 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
2898
2899 return update_memory_size;
2900}
2901
c17608ea
AK
2902static void imsm_update_metadata_locally(struct supertype *st,
2903 void *buf, int len);
2904
687629c2
AK
2905/*******************************************************************************
2906 * Function: write_imsm_migr_rec
2907 * Description: Function writes imsm migration record
2908 * (at the last sector of disk)
2909 * Parameters:
2910 * super : imsm internal array info
2911 * Returns:
2912 * 0 : success
2913 * -1 : if fail
2914 ******************************************************************************/
2915static int write_imsm_migr_rec(struct supertype *st)
2916{
2917 struct intel_super *super = st->sb;
de44e46f 2918 unsigned int sector_size = super->sector_size;
687629c2
AK
2919 unsigned long long dsize;
2920 char nm[30];
2921 int fd = -1;
2922 int retval = -1;
2923 struct dl *sd;
c17608ea
AK
2924 int len;
2925 struct imsm_update_general_migration_checkpoint *u;
3136abe5 2926 struct imsm_dev *dev;
594dc1b8 2927 struct imsm_map *map;
3136abe5
AK
2928
2929 /* find map under migration */
2930 dev = imsm_get_device_during_migration(super);
2931 /* if no migration, write buffer anyway to clear migr_record
2932 * on disk based on first available device
2933 */
2934 if (dev == NULL)
2935 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2936 super->current_vol);
2937
44bfe6df 2938 map = get_imsm_map(dev, MAP_0);
687629c2 2939
de44e46f
PB
2940 if (sector_size == 4096)
2941 convert_to_4k_imsm_migr_rec(super);
687629c2 2942 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 2943 int slot = -1;
3136abe5
AK
2944
2945 /* skip failed and spare devices */
2946 if (sd->index < 0)
2947 continue;
687629c2 2948 /* write to 2 first slots only */
3136abe5
AK
2949 if (map)
2950 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 2951 if (map == NULL || slot > 1 || slot < 0)
687629c2 2952 continue;
3136abe5 2953
687629c2
AK
2954 sprintf(nm, "%d:%d", sd->major, sd->minor);
2955 fd = dev_open(nm, O_RDWR);
2956 if (fd < 0)
2957 continue;
2958 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2959 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
2960 SEEK_SET) < 0) {
e7b84f9d
N
2961 pr_err("Cannot seek to anchor block: %s\n",
2962 strerror(errno));
687629c2
AK
2963 goto out;
2964 }
de44e46f
PB
2965 if (write(fd, super->migr_rec_buf,
2966 MIGR_REC_BUF_SECTORS*sector_size) !=
2967 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2968 pr_err("Cannot write migr record block: %s\n",
2969 strerror(errno));
687629c2
AK
2970 goto out;
2971 }
2972 close(fd);
2973 fd = -1;
2974 }
de44e46f
PB
2975 if (sector_size == 4096)
2976 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
2977 /* update checkpoint information in metadata */
2978 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
2979 if (len <= 0) {
2980 dprintf("imsm: Cannot prepare update\n");
2981 goto out;
2982 }
2983 /* update metadata locally */
2984 imsm_update_metadata_locally(st, u, len);
2985 /* and possibly remotely */
2986 if (st->update_tail) {
2987 append_metadata_update(st, u, len);
2988 /* during reshape we do all work inside metadata handler
2989 * manage_reshape(), so metadata update has to be triggered
2990 * insida it
2991 */
2992 flush_metadata_updates(st);
2993 st->update_tail = &st->updates;
2994 } else
2995 free(u);
687629c2
AK
2996
2997 retval = 0;
2998 out:
2999 if (fd >= 0)
3000 close(fd);
3001 return retval;
3002}
9e2d750d 3003#endif /* MDASSEMBLE */
687629c2 3004
e2962bfc
AK
3005/* spare/missing disks activations are not allowe when
3006 * array/container performs reshape operation, because
3007 * all arrays in container works on the same disks set
3008 */
3009int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3010{
3011 int rv = 0;
3012 struct intel_dev *i_dev;
3013 struct imsm_dev *dev;
3014
3015 /* check whole container
3016 */
3017 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3018 dev = i_dev->dev;
3ad25638 3019 if (is_gen_migration(dev)) {
e2962bfc
AK
3020 /* No repair during any migration in container
3021 */
3022 rv = 1;
3023 break;
3024 }
3025 }
3026 return rv;
3027}
c41e00b2
AK
3028static unsigned long long imsm_component_size_aligment_check(int level,
3029 int chunk_size,
f36a9ecd 3030 unsigned int sector_size,
c41e00b2
AK
3031 unsigned long long component_size)
3032{
3033 unsigned int component_size_alligment;
3034
3035 /* check component size aligment
3036 */
f36a9ecd 3037 component_size_alligment = component_size % (chunk_size/sector_size);
c41e00b2 3038
1ade5cc1 3039 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
3040 level, chunk_size, component_size,
3041 component_size_alligment);
3042
3043 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3044 dprintf("imsm: reported component size alligned from %llu ",
3045 component_size);
3046 component_size -= component_size_alligment;
1ade5cc1 3047 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
3048 component_size, component_size_alligment);
3049 }
3050
3051 return component_size;
3052}
e2962bfc 3053
a5d85af7 3054static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3055{
3056 struct intel_super *super = st->sb;
c47b0ff6 3057 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3058 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3059 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3060 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3061 struct imsm_map *map_to_analyse = map;
efb30e7f 3062 struct dl *dl;
a5d85af7 3063 int map_disks = info->array.raid_disks;
bf5a934a 3064
95eeceeb 3065 memset(info, 0, sizeof(*info));
b335e593
AK
3066 if (prev_map)
3067 map_to_analyse = prev_map;
3068
ca0748fa 3069 dl = super->current_disk;
9894ec0d 3070
bf5a934a 3071 info->container_member = super->current_vol;
cd0430a1 3072 info->array.raid_disks = map->num_members;
b335e593 3073 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3074 info->array.layout = imsm_level_to_layout(info->array.level);
3075 info->array.md_minor = -1;
3076 info->array.ctime = 0;
3077 info->array.utime = 0;
b335e593
AK
3078 info->array.chunk_size =
3079 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 3080 info->array.state = !dev->vol.dirty;
da9b4a62
DW
3081 info->custom_array_size = __le32_to_cpu(dev->size_high);
3082 info->custom_array_size <<= 32;
3083 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
3084 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3085
3f510843 3086 if (is_gen_migration(dev)) {
3f83228a 3087 info->reshape_active = 1;
b335e593
AK
3088 info->new_level = get_imsm_raid_level(map);
3089 info->new_layout = imsm_level_to_layout(info->new_level);
3090 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3091 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3092 if (info->delta_disks) {
3093 /* this needs to be applied to every array
3094 * in the container.
3095 */
81219e70 3096 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3097 }
3f83228a
N
3098 /* We shape information that we give to md might have to be
3099 * modify to cope with md's requirement for reshaping arrays.
3100 * For example, when reshaping a RAID0, md requires it to be
3101 * presented as a degraded RAID4.
3102 * Also if a RAID0 is migrating to a RAID5 we need to specify
3103 * the array as already being RAID5, but the 'before' layout
3104 * is a RAID4-like layout.
3105 */
3106 switch (info->array.level) {
3107 case 0:
3108 switch(info->new_level) {
3109 case 0:
3110 /* conversion is happening as RAID4 */
3111 info->array.level = 4;
3112 info->array.raid_disks += 1;
3113 break;
3114 case 5:
3115 /* conversion is happening as RAID5 */
3116 info->array.level = 5;
3117 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3118 info->delta_disks -= 1;
3119 break;
3120 default:
3121 /* FIXME error message */
3122 info->array.level = UnSet;
3123 break;
3124 }
3125 break;
3126 }
b335e593
AK
3127 } else {
3128 info->new_level = UnSet;
3129 info->new_layout = UnSet;
3130 info->new_chunk = info->array.chunk_size;
3f83228a 3131 info->delta_disks = 0;
b335e593 3132 }
ca0748fa 3133
efb30e7f
DW
3134 if (dl) {
3135 info->disk.major = dl->major;
3136 info->disk.minor = dl->minor;
ca0748fa 3137 info->disk.number = dl->index;
656b6b5a
N
3138 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3139 dl->index);
efb30e7f 3140 }
bf5a934a 3141
5551b113 3142 info->data_offset = pba_of_lba0(map_to_analyse);
06fb291a
PB
3143
3144 if (info->array.level == 5) {
3145 info->component_size = num_data_stripes(map_to_analyse) *
3146 map_to_analyse->blocks_per_strip;
3147 } else {
3148 info->component_size = blocks_per_member(map_to_analyse);
3149 }
139dae11 3150
c41e00b2
AK
3151 info->component_size = imsm_component_size_aligment_check(
3152 info->array.level,
3153 info->array.chunk_size,
f36a9ecd 3154 super->sector_size,
c41e00b2 3155 info->component_size);
b12796be 3156 info->bb.supported = 0;
139dae11 3157
301406c9 3158 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3159 info->recovery_start = MaxSector;
bf5a934a 3160
d2e6d5d6 3161 info->reshape_progress = 0;
b6796ce1 3162 info->resync_start = MaxSector;
b9172665
AK
3163 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3164 dev->vol.dirty) &&
3165 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3166 info->resync_start = 0;
b6796ce1
AK
3167 }
3168 if (dev->vol.migr_state) {
1e5c6983
DW
3169 switch (migr_type(dev)) {
3170 case MIGR_REPAIR:
3171 case MIGR_INIT: {
c47b0ff6
AK
3172 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3173 dev);
1e5c6983
DW
3174 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3175
3176 info->resync_start = blocks_per_unit * units;
3177 break;
3178 }
d2e6d5d6 3179 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3180 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3181 dev);
3182 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
3183 unsigned long long array_blocks;
3184 int used_disks;
d2e6d5d6 3185
befb629b
AK
3186 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3187 (units <
3188 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3189 (super->migr_rec->rec_status ==
3190 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3191 units++;
3192
d2e6d5d6 3193 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3194
7a862a02 3195 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3196 (unsigned long long)units,
3197 (unsigned long long)blocks_per_unit,
3198 info->reshape_progress);
75156c46 3199
238c0a71 3200 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 3201 if (used_disks > 0) {
5551b113 3202 array_blocks = blocks_per_member(map) *
75156c46
AK
3203 used_disks;
3204 /* round array size down to closest MB
3205 */
3206 info->custom_array_size = (array_blocks
3207 >> SECT_PER_MB_SHIFT)
3208 << SECT_PER_MB_SHIFT;
3209 }
d2e6d5d6 3210 }
1e5c6983
DW
3211 case MIGR_VERIFY:
3212 /* we could emulate the checkpointing of
3213 * 'sync_action=check' migrations, but for now
3214 * we just immediately complete them
3215 */
3216 case MIGR_REBUILD:
3217 /* this is handled by container_content_imsm() */
1e5c6983
DW
3218 case MIGR_STATE_CHANGE:
3219 /* FIXME handle other migrations */
3220 default:
3221 /* we are not dirty, so... */
3222 info->resync_start = MaxSector;
3223 }
b6796ce1 3224 }
301406c9
DW
3225
3226 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3227 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3228
f35f2525
N
3229 info->array.major_version = -1;
3230 info->array.minor_version = -2;
4dd2df09 3231 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3232 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3233 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3234
3235 if (dmap) {
3236 int i, j;
3237 for (i=0; i<map_disks; i++) {
3238 dmap[i] = 0;
3239 if (i < info->array.raid_disks) {
3240 struct imsm_disk *dsk;
238c0a71 3241 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3242 dsk = get_imsm_disk(super, j);
3243 if (dsk && (dsk->status & CONFIGURED_DISK))
3244 dmap[i] = 1;
3245 }
3246 }
3247 }
81ac8b4d 3248}
bf5a934a 3249
3b451610
AK
3250static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3251 int failed, int look_in_map);
3252
3253static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3254 int look_in_map);
3255
b4ab44d8 3256#ifndef MDASSEMBLE
3b451610
AK
3257static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3258{
3259 if (is_gen_migration(dev)) {
3260 int failed;
3261 __u8 map_state;
3262 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3263
3264 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3265 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3266 if (map2->map_state != map_state) {
3267 map2->map_state = map_state;
3268 super->updates_pending++;
3269 }
3270 }
3271}
b4ab44d8 3272#endif
97b4d0e9
DW
3273
3274static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3275{
3276 struct dl *d;
3277
3278 for (d = super->missing; d; d = d->next)
3279 if (d->index == index)
3280 return &d->disk;
3281 return NULL;
3282}
3283
a5d85af7 3284static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3285{
3286 struct intel_super *super = st->sb;
4f5bc454 3287 struct imsm_disk *disk;
a5d85af7 3288 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3289 int max_enough = -1;
3290 int i;
3291 struct imsm_super *mpb;
4f5bc454 3292
bf5a934a 3293 if (super->current_vol >= 0) {
a5d85af7 3294 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3295 return;
3296 }
95eeceeb 3297 memset(info, 0, sizeof(*info));
d23fe947
DW
3298
3299 /* Set raid_disks to zero so that Assemble will always pull in valid
3300 * spares
3301 */
3302 info->array.raid_disks = 0;
cdddbdbc
DW
3303 info->array.level = LEVEL_CONTAINER;
3304 info->array.layout = 0;
3305 info->array.md_minor = -1;
1011e834 3306 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3307 info->array.utime = 0;
3308 info->array.chunk_size = 0;
3309
3310 info->disk.major = 0;
3311 info->disk.minor = 0;
cdddbdbc 3312 info->disk.raid_disk = -1;
c2c087e6 3313 info->reshape_active = 0;
f35f2525
N
3314 info->array.major_version = -1;
3315 info->array.minor_version = -2;
c2c087e6 3316 strcpy(info->text_version, "imsm");
a67dd8cc 3317 info->safe_mode_delay = 0;
c2c087e6
DW
3318 info->disk.number = -1;
3319 info->disk.state = 0;
c5afc314 3320 info->name[0] = 0;
921d9e16 3321 info->recovery_start = MaxSector;
3ad25638 3322 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
b12796be 3323 info->bb.supported = 0;
c2c087e6 3324
97b4d0e9 3325 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3326 mpb = super->anchor;
97b4d0e9 3327
ab3cb6b3
N
3328 for (i = 0; i < mpb->num_raid_devs; i++) {
3329 struct imsm_dev *dev = get_imsm_dev(super, i);
3330 int failed, enough, j, missing = 0;
3331 struct imsm_map *map;
3332 __u8 state;
97b4d0e9 3333
3b451610
AK
3334 failed = imsm_count_failed(super, dev, MAP_0);
3335 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3336 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3337
3338 /* any newly missing disks?
3339 * (catches single-degraded vs double-degraded)
3340 */
3341 for (j = 0; j < map->num_members; j++) {
238c0a71 3342 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3343 __u32 idx = ord_to_idx(ord);
3344
3345 if (!(ord & IMSM_ORD_REBUILD) &&
3346 get_imsm_missing(super, idx)) {
3347 missing = 1;
3348 break;
3349 }
97b4d0e9 3350 }
ab3cb6b3
N
3351
3352 if (state == IMSM_T_STATE_FAILED)
3353 enough = -1;
3354 else if (state == IMSM_T_STATE_DEGRADED &&
3355 (state != map->map_state || missing))
3356 enough = 0;
3357 else /* we're normal, or already degraded */
3358 enough = 1;
d2bde6d3
AK
3359 if (is_gen_migration(dev) && missing) {
3360 /* during general migration we need all disks
3361 * that process is running on.
3362 * No new missing disk is allowed.
3363 */
3364 max_enough = -1;
3365 enough = -1;
3366 /* no more checks necessary
3367 */
3368 break;
3369 }
ab3cb6b3
N
3370 /* in the missing/failed disk case check to see
3371 * if at least one array is runnable
3372 */
3373 max_enough = max(max_enough, enough);
3374 }
1ade5cc1 3375 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3376 info->container_enough = max_enough;
97b4d0e9 3377
4a04ec6c 3378 if (super->disks) {
14e8215b
DW
3379 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3380
b9f594fe 3381 disk = &super->disks->disk;
5551b113 3382 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3383 info->component_size = reserved;
25ed7e59 3384 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3385 /* we don't change info->disk.raid_disk here because
3386 * this state will be finalized in mdmon after we have
3387 * found the 'most fresh' version of the metadata
3388 */
25ed7e59
DW
3389 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3390 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3391 }
a575e2a7
DW
3392
3393 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3394 * ->compare_super may have updated the 'num_raid_devs' field for spares
3395 */
3396 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3397 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3398 else
3399 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3400
3401 /* I don't know how to compute 'map' on imsm, so use safe default */
3402 if (map) {
3403 int i;
3404 for (i = 0; i < map_disks; i++)
3405 map[i] = 1;
3406 }
3407
cdddbdbc
DW
3408}
3409
5c4cd5da
AC
3410/* allocates memory and fills disk in mdinfo structure
3411 * for each disk in array */
3412struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3413{
594dc1b8 3414 struct mdinfo *mddev;
5c4cd5da
AC
3415 struct intel_super *super = st->sb;
3416 struct imsm_disk *disk;
3417 int count = 0;
3418 struct dl *dl;
3419 if (!super || !super->disks)
3420 return NULL;
3421 dl = super->disks;
503975b9 3422 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3423 while (dl) {
3424 struct mdinfo *tmp;
3425 disk = &dl->disk;
503975b9 3426 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3427 if (mddev->devs)
3428 tmp->next = mddev->devs;
3429 mddev->devs = tmp;
3430 tmp->disk.number = count++;
3431 tmp->disk.major = dl->major;
3432 tmp->disk.minor = dl->minor;
3433 tmp->disk.state = is_configured(disk) ?
3434 (1 << MD_DISK_ACTIVE) : 0;
3435 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3436 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3437 tmp->disk.raid_disk = -1;
3438 dl = dl->next;
3439 }
3440 return mddev;
3441}
3442
cdddbdbc
DW
3443static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3444 char *update, char *devname, int verbose,
3445 int uuid_set, char *homehost)
3446{
f352c545
DW
3447 /* For 'assemble' and 'force' we need to return non-zero if any
3448 * change was made. For others, the return value is ignored.
3449 * Update options are:
3450 * force-one : This device looks a bit old but needs to be included,
3451 * update age info appropriately.
3452 * assemble: clear any 'faulty' flag to allow this device to
3453 * be assembled.
3454 * force-array: Array is degraded but being forced, mark it clean
3455 * if that will be needed to assemble it.
3456 *
3457 * newdev: not used ????
3458 * grow: Array has gained a new device - this is currently for
3459 * linear only
3460 * resync: mark as dirty so a resync will happen.
3461 * name: update the name - preserving the homehost
6e46bf34 3462 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3463 *
3464 * Following are not relevant for this imsm:
3465 * sparc2.2 : update from old dodgey metadata
3466 * super-minor: change the preferred_minor number
3467 * summaries: update redundant counters.
f352c545
DW
3468 * homehost: update the recorded homehost
3469 * _reshape_progress: record new reshape_progress position.
3470 */
6e46bf34
DW
3471 int rv = 1;
3472 struct intel_super *super = st->sb;
3473 struct imsm_super *mpb;
f352c545 3474
6e46bf34
DW
3475 /* we can only update container info */
3476 if (!super || super->current_vol >= 0 || !super->anchor)
3477 return 1;
3478
3479 mpb = super->anchor;
3480
81a5b4f5
N
3481 if (strcmp(update, "uuid") == 0) {
3482 /* We take this to mean that the family_num should be updated.
3483 * However that is much smaller than the uuid so we cannot really
3484 * allow an explicit uuid to be given. And it is hard to reliably
3485 * know if one was.
3486 * So if !uuid_set we know the current uuid is random and just used
3487 * the first 'int' and copy it to the other 3 positions.
3488 * Otherwise we require the 4 'int's to be the same as would be the
3489 * case if we are using a random uuid. So an explicit uuid will be
3490 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3491 */
81a5b4f5
N
3492 if (!uuid_set) {
3493 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3494 rv = 0;
81a5b4f5
N
3495 } else {
3496 if (info->uuid[0] != info->uuid[1] ||
3497 info->uuid[1] != info->uuid[2] ||
3498 info->uuid[2] != info->uuid[3])
3499 rv = -1;
3500 else
3501 rv = 0;
6e46bf34 3502 }
81a5b4f5
N
3503 if (rv == 0)
3504 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3505 } else if (strcmp(update, "assemble") == 0)
3506 rv = 0;
3507 else
1e2b2765 3508 rv = -1;
f352c545 3509
6e46bf34
DW
3510 /* successful update? recompute checksum */
3511 if (rv == 0)
3512 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3513
3514 return rv;
cdddbdbc
DW
3515}
3516
c2c087e6 3517static size_t disks_to_mpb_size(int disks)
cdddbdbc 3518{
c2c087e6 3519 size_t size;
cdddbdbc 3520
c2c087e6
DW
3521 size = sizeof(struct imsm_super);
3522 size += (disks - 1) * sizeof(struct imsm_disk);
3523 size += 2 * sizeof(struct imsm_dev);
3524 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3525 size += (4 - 2) * sizeof(struct imsm_map);
3526 /* 4 possible disk_ord_tbl's */
3527 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3528 /* maximum bbm log */
3529 size += sizeof(struct bbm_log);
c2c087e6
DW
3530
3531 return size;
3532}
3533
387fcd59
N
3534static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3535 unsigned long long data_offset)
c2c087e6
DW
3536{
3537 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3538 return 0;
3539
3540 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3541}
3542
ba2de7ba
DW
3543static void free_devlist(struct intel_super *super)
3544{
3545 struct intel_dev *dv;
3546
3547 while (super->devlist) {
3548 dv = super->devlist->next;
3549 free(super->devlist->dev);
3550 free(super->devlist);
3551 super->devlist = dv;
3552 }
3553}
3554
3555static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3556{
3557 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3558}
3559
cdddbdbc
DW
3560static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3561{
3562 /*
3563 * return:
3564 * 0 same, or first was empty, and second was copied
3565 * 1 second had wrong number
3566 * 2 wrong uuid
3567 * 3 wrong other info
3568 */
3569 struct intel_super *first = st->sb;
3570 struct intel_super *sec = tst->sb;
3571
5d500228
N
3572 if (!first) {
3573 st->sb = tst->sb;
3574 tst->sb = NULL;
3575 return 0;
3576 }
8603ea6f
LM
3577 /* in platform dependent environment test if the disks
3578 * use the same Intel hba
cb8f6859 3579 * If not on Intel hba at all, allow anything.
8603ea6f 3580 */
6b781d33
AP
3581 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3582 if (first->hba->type != sec->hba->type) {
8603ea6f 3583 fprintf(stderr,
6b781d33
AP
3584 "HBAs of devices do not match %s != %s\n",
3585 get_sys_dev_type(first->hba->type),
3586 get_sys_dev_type(sec->hba->type));
3587 return 3;
3588 }
3589 if (first->orom != sec->orom) {
3590 fprintf(stderr,
3591 "HBAs of devices do not match %s != %s\n",
3592 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3593 return 3;
3594 }
3595 }
cdddbdbc 3596
d23fe947
DW
3597 /* if an anchor does not have num_raid_devs set then it is a free
3598 * floating spare
3599 */
3600 if (first->anchor->num_raid_devs > 0 &&
3601 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3602 /* Determine if these disks might ever have been
3603 * related. Further disambiguation can only take place
3604 * in load_super_imsm_all
3605 */
3606 __u32 first_family = first->anchor->orig_family_num;
3607 __u32 sec_family = sec->anchor->orig_family_num;
3608
f796af5d
DW
3609 if (memcmp(first->anchor->sig, sec->anchor->sig,
3610 MAX_SIGNATURE_LENGTH) != 0)
3611 return 3;
3612
a2b97981
DW
3613 if (first_family == 0)
3614 first_family = first->anchor->family_num;
3615 if (sec_family == 0)
3616 sec_family = sec->anchor->family_num;
3617
3618 if (first_family != sec_family)
d23fe947 3619 return 3;
f796af5d 3620
d23fe947 3621 }
cdddbdbc 3622
3e372e5a
DW
3623 /* if 'first' is a spare promote it to a populated mpb with sec's
3624 * family number
3625 */
3626 if (first->anchor->num_raid_devs == 0 &&
3627 sec->anchor->num_raid_devs > 0) {
78d30f94 3628 int i;
ba2de7ba
DW
3629 struct intel_dev *dv;
3630 struct imsm_dev *dev;
78d30f94
DW
3631
3632 /* we need to copy raid device info from sec if an allocation
3633 * fails here we don't associate the spare
3634 */
3635 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3636 dv = xmalloc(sizeof(*dv));
3637 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3638 dv->dev = dev;
3639 dv->index = i;
3640 dv->next = first->devlist;
3641 first->devlist = dv;
78d30f94 3642 }
709743c5 3643 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3644 /* allocation failure */
3645 free_devlist(first);
e12b3daa 3646 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3647 return 3;
78d30f94 3648 }
3e372e5a 3649 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3650 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3651 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3652 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3653 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3654 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3655 }
3656
cdddbdbc
DW
3657 return 0;
3658}
3659
0030e8d6
DW
3660static void fd2devname(int fd, char *name)
3661{
3662 struct stat st;
3663 char path[256];
33a6535d 3664 char dname[PATH_MAX];
0030e8d6
DW
3665 char *nm;
3666 int rv;
3667
3668 name[0] = '\0';
3669 if (fstat(fd, &st) != 0)
3670 return;
3671 sprintf(path, "/sys/dev/block/%d:%d",
3672 major(st.st_rdev), minor(st.st_rdev));
3673
9cf014ec 3674 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3675 if (rv <= 0)
3676 return;
9587c373 3677
0030e8d6
DW
3678 dname[rv] = '\0';
3679 nm = strrchr(dname, '/');
7897de29
JS
3680 if (nm) {
3681 nm++;
3682 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3683 }
0030e8d6
DW
3684}
3685
21e9380b
AP
3686static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3687{
3688 char path[60];
3689 char *name = fd2kname(fd);
3690
3691 if (!name)
3692 return 1;
3693
3694 if (strncmp(name, "nvme", 4) != 0)
3695 return 1;
3696
3697 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3698
3699 return load_sys(path, buf, buf_len);
3700}
3701
cdddbdbc
DW
3702extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3703
3704static int imsm_read_serial(int fd, char *devname,
3705 __u8 serial[MAX_RAID_SERIAL_LEN])
3706{
21e9380b 3707 char buf[50];
cdddbdbc 3708 int rv;
1f24f035 3709 int len;
316e2bf4
DW
3710 char *dest;
3711 char *src;
21e9380b
AP
3712 unsigned int i;
3713
3714 memset(buf, 0, sizeof(buf));
cdddbdbc 3715
21e9380b 3716 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 3717
21e9380b
AP
3718 if (rv)
3719 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 3720
40ebbb9c 3721 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3722 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3723 fd2devname(fd, (char *) serial);
0030e8d6
DW
3724 return 0;
3725 }
3726
cdddbdbc
DW
3727 if (rv != 0) {
3728 if (devname)
e7b84f9d
N
3729 pr_err("Failed to retrieve serial for %s\n",
3730 devname);
cdddbdbc
DW
3731 return rv;
3732 }
3733
316e2bf4
DW
3734 /* trim all whitespace and non-printable characters and convert
3735 * ':' to ';'
3736 */
21e9380b
AP
3737 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3738 src = &buf[i];
316e2bf4
DW
3739 if (*src > 0x20) {
3740 /* ':' is reserved for use in placeholder serial
3741 * numbers for missing disks
3742 */
3743 if (*src == ':')
3744 *dest++ = ';';
3745 else
3746 *dest++ = *src;
3747 }
3748 }
21e9380b
AP
3749 len = dest - buf;
3750 dest = buf;
316e2bf4
DW
3751
3752 /* truncate leading characters */
3753 if (len > MAX_RAID_SERIAL_LEN) {
3754 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3755 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3756 }
5c3db629 3757
5c3db629 3758 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3759 memcpy(serial, dest, len);
cdddbdbc
DW
3760
3761 return 0;
3762}
3763
1f24f035
DW
3764static int serialcmp(__u8 *s1, __u8 *s2)
3765{
3766 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3767}
3768
3769static void serialcpy(__u8 *dest, __u8 *src)
3770{
3771 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3772}
3773
54c2c1ea
DW
3774static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3775{
3776 struct dl *dl;
3777
3778 for (dl = super->disks; dl; dl = dl->next)
3779 if (serialcmp(dl->serial, serial) == 0)
3780 break;
3781
3782 return dl;
3783}
3784
a2b97981
DW
3785static struct imsm_disk *
3786__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3787{
3788 int i;
3789
3790 for (i = 0; i < mpb->num_disks; i++) {
3791 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3792
3793 if (serialcmp(disk->serial, serial) == 0) {
3794 if (idx)
3795 *idx = i;
3796 return disk;
3797 }
3798 }
3799
3800 return NULL;
3801}
3802
cdddbdbc
DW
3803static int
3804load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3805{
a2b97981 3806 struct imsm_disk *disk;
cdddbdbc
DW
3807 struct dl *dl;
3808 struct stat stb;
cdddbdbc 3809 int rv;
a2b97981 3810 char name[40];
d23fe947
DW
3811 __u8 serial[MAX_RAID_SERIAL_LEN];
3812
3813 rv = imsm_read_serial(fd, devname, serial);
3814
3815 if (rv != 0)
3816 return 2;
3817
503975b9 3818 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3819
a2b97981
DW
3820 fstat(fd, &stb);
3821 dl->major = major(stb.st_rdev);
3822 dl->minor = minor(stb.st_rdev);
3823 dl->next = super->disks;
3824 dl->fd = keep_fd ? fd : -1;
3825 assert(super->disks == NULL);
3826 super->disks = dl;
3827 serialcpy(dl->serial, serial);
3828 dl->index = -2;
3829 dl->e = NULL;
3830 fd2devname(fd, name);
3831 if (devname)
503975b9 3832 dl->devname = xstrdup(devname);
a2b97981 3833 else
503975b9 3834 dl->devname = xstrdup(name);
cdddbdbc 3835
d23fe947 3836 /* look up this disk's index in the current anchor */
a2b97981
DW
3837 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3838 if (disk) {
3839 dl->disk = *disk;
3840 /* only set index on disks that are a member of a
3841 * populated contianer, i.e. one with raid_devs
3842 */
3843 if (is_failed(&dl->disk))
3f6efecc 3844 dl->index = -2;
a2b97981
DW
3845 else if (is_spare(&dl->disk))
3846 dl->index = -1;
3f6efecc
DW
3847 }
3848
949c47a0
DW
3849 return 0;
3850}
3851
0e600426 3852#ifndef MDASSEMBLE
0c046afd
DW
3853/* When migrating map0 contains the 'destination' state while map1
3854 * contains the current state. When not migrating map0 contains the
3855 * current state. This routine assumes that map[0].map_state is set to
3856 * the current array state before being called.
3857 *
3858 * Migration is indicated by one of the following states
3859 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3860 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3861 * map1state=unitialized)
1484e727 3862 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3863 * map1state=normal)
e3bba0e0 3864 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3865 * map1state=degraded)
8e59f3d8
AK
3866 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3867 * map1state=normal)
0c046afd 3868 */
8e59f3d8
AK
3869static void migrate(struct imsm_dev *dev, struct intel_super *super,
3870 __u8 to_state, int migr_type)
3393c6af 3871{
0c046afd 3872 struct imsm_map *dest;
238c0a71 3873 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3874
0c046afd 3875 dev->vol.migr_state = 1;
1484e727 3876 set_migr_type(dev, migr_type);
f8f603f1 3877 dev->vol.curr_migr_unit = 0;
238c0a71 3878 dest = get_imsm_map(dev, MAP_1);
0c046afd 3879
0556e1a2 3880 /* duplicate and then set the target end state in map[0] */
3393c6af 3881 memcpy(dest, src, sizeof_imsm_map(src));
089f9d79 3882 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
3883 __u32 ord;
3884 int i;
3885
3886 for (i = 0; i < src->num_members; i++) {
3887 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3888 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3889 }
3890 }
3891
8e59f3d8
AK
3892 if (migr_type == MIGR_GEN_MIGR)
3893 /* Clear migration record */
3894 memset(super->migr_rec, 0, sizeof(struct migr_record));
3895
0c046afd 3896 src->map_state = to_state;
949c47a0 3897}
f8f603f1 3898
809da78e
AK
3899static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3900 __u8 map_state)
f8f603f1 3901{
238c0a71
AK
3902 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3903 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3904 MAP_0 : MAP_1);
28bce06f 3905 int i, j;
0556e1a2
DW
3906
3907 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3908 * completed in the last migration.
3909 *
28bce06f 3910 * FIXME add support for raid-level-migration
0556e1a2 3911 */
089f9d79
JS
3912 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
3913 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
3914 /* when final map state is other than expected
3915 * merge maps (not for migration)
3916 */
3917 int failed;
3918
3919 for (i = 0; i < prev->num_members; i++)
3920 for (j = 0; j < map->num_members; j++)
3921 /* during online capacity expansion
3922 * disks position can be changed
3923 * if takeover is used
3924 */
3925 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3926 ord_to_idx(prev->disk_ord_tbl[i])) {
3927 map->disk_ord_tbl[j] |=
3928 prev->disk_ord_tbl[i];
3929 break;
3930 }
3931 failed = imsm_count_failed(super, dev, MAP_0);
3932 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3933 }
f8f603f1
DW
3934
3935 dev->vol.migr_state = 0;
ea672ee1 3936 set_migr_type(dev, 0);
f8f603f1
DW
3937 dev->vol.curr_migr_unit = 0;
3938 map->map_state = map_state;
3939}
0e600426 3940#endif
949c47a0
DW
3941
3942static int parse_raid_devices(struct intel_super *super)
3943{
3944 int i;
3945 struct imsm_dev *dev_new;
4d7b1503 3946 size_t len, len_migr;
401d313b 3947 size_t max_len = 0;
4d7b1503
DW
3948 size_t space_needed = 0;
3949 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3950
3951 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3952 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3953 struct intel_dev *dv;
949c47a0 3954
4d7b1503
DW
3955 len = sizeof_imsm_dev(dev_iter, 0);
3956 len_migr = sizeof_imsm_dev(dev_iter, 1);
3957 if (len_migr > len)
3958 space_needed += len_migr - len;
ca9de185 3959
503975b9 3960 dv = xmalloc(sizeof(*dv));
401d313b
AK
3961 if (max_len < len_migr)
3962 max_len = len_migr;
3963 if (max_len > len_migr)
3964 space_needed += max_len - len_migr;
503975b9 3965 dev_new = xmalloc(max_len);
949c47a0 3966 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3967 dv->dev = dev_new;
3968 dv->index = i;
3969 dv->next = super->devlist;
3970 super->devlist = dv;
949c47a0 3971 }
cdddbdbc 3972
4d7b1503
DW
3973 /* ensure that super->buf is large enough when all raid devices
3974 * are migrating
3975 */
3976 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3977 void *buf;
3978
f36a9ecd
PB
3979 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
3980 super->sector_size);
3981 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
3982 return 1;
3983
1f45a8ad
DW
3984 memcpy(buf, super->buf, super->len);
3985 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3986 free(super->buf);
3987 super->buf = buf;
3988 super->len = len;
3989 }
ca9de185 3990
bbab0940
TM
3991 super->extra_space += space_needed;
3992
cdddbdbc
DW
3993 return 0;
3994}
3995
e2f41b2c
AK
3996/*******************************************************************************
3997 * Function: check_mpb_migr_compatibility
3998 * Description: Function checks for unsupported migration features:
3999 * - migration optimization area (pba_of_lba0)
4000 * - descending reshape (ascending_migr)
4001 * Parameters:
4002 * super : imsm metadata information
4003 * Returns:
4004 * 0 : migration is compatible
4005 * -1 : migration is not compatible
4006 ******************************************************************************/
4007int check_mpb_migr_compatibility(struct intel_super *super)
4008{
4009 struct imsm_map *map0, *map1;
4010 struct migr_record *migr_rec = super->migr_rec;
4011 int i;
4012
4013 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4014 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4015
4016 if (dev_iter &&
4017 dev_iter->vol.migr_state == 1 &&
4018 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4019 /* This device is migrating */
238c0a71
AK
4020 map0 = get_imsm_map(dev_iter, MAP_0);
4021 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4022 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4023 /* migration optimization area was used */
4024 return -1;
4025 if (migr_rec->ascending_migr == 0
4026 && migr_rec->dest_depth_per_unit > 0)
4027 /* descending reshape not supported yet */
4028 return -1;
4029 }
4030 }
4031 return 0;
4032}
4033
d23fe947 4034static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4035
cdddbdbc 4036/* load_imsm_mpb - read matrix metadata
f2f5c343 4037 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4038 */
4039static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4040{
4041 unsigned long long dsize;
cdddbdbc 4042 unsigned long long sectors;
f36a9ecd 4043 unsigned int sector_size = super->sector_size;
cdddbdbc 4044 struct stat;
6416d527 4045 struct imsm_super *anchor;
cdddbdbc
DW
4046 __u32 check_sum;
4047
cdddbdbc 4048 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4049 if (dsize < 2*sector_size) {
64436f06 4050 if (devname)
e7b84f9d
N
4051 pr_err("%s: device to small for imsm\n",
4052 devname);
64436f06
N
4053 return 1;
4054 }
cdddbdbc 4055
f36a9ecd 4056 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4057 if (devname)
e7b84f9d
N
4058 pr_err("Cannot seek to anchor block on %s: %s\n",
4059 devname, strerror(errno));
cdddbdbc
DW
4060 return 1;
4061 }
4062
f36a9ecd 4063 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4064 if (devname)
7a862a02 4065 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4066 return 1;
4067 }
f36a9ecd 4068 if (read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4069 if (devname)
e7b84f9d
N
4070 pr_err("Cannot read anchor block on %s: %s\n",
4071 devname, strerror(errno));
6416d527 4072 free(anchor);
cdddbdbc
DW
4073 return 1;
4074 }
4075
6416d527 4076 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4077 if (devname)
e7b84f9d 4078 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4079 free(anchor);
cdddbdbc
DW
4080 return 2;
4081 }
4082
d23fe947 4083 __free_imsm(super, 0);
f2f5c343
LM
4084 /* reload capability and hba */
4085
4086 /* capability and hba must be updated with new super allocation */
d424212e 4087 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4088 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4089 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4090 if (devname)
e7b84f9d
N
4091 pr_err("unable to allocate %zu byte mpb buffer\n",
4092 super->len);
6416d527 4093 free(anchor);
cdddbdbc
DW
4094 return 2;
4095 }
f36a9ecd 4096 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4097
f36a9ecd 4098 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4099 free(anchor);
8e59f3d8 4100
de44e46f
PB
4101 if (posix_memalign(&super->migr_rec_buf, sector_size,
4102 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
1ade5cc1 4103 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4104 free(super->buf);
4105 return 2;
4106 }
51d83f5d 4107 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4108
949c47a0 4109 if (!sectors) {
ecf45690
DW
4110 check_sum = __gen_imsm_checksum(super->anchor);
4111 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4112 if (devname)
e7b84f9d
N
4113 pr_err("IMSM checksum %x != %x on %s\n",
4114 check_sum,
4115 __le32_to_cpu(super->anchor->check_sum),
4116 devname);
ecf45690
DW
4117 return 2;
4118 }
4119
a2b97981 4120 return 0;
949c47a0 4121 }
cdddbdbc
DW
4122
4123 /* read the extended mpb */
f36a9ecd 4124 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4125 if (devname)
e7b84f9d
N
4126 pr_err("Cannot seek to extended mpb on %s: %s\n",
4127 devname, strerror(errno));
cdddbdbc
DW
4128 return 1;
4129 }
4130
f36a9ecd
PB
4131 if ((unsigned int)read(fd, super->buf + sector_size,
4132 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4133 if (devname)
e7b84f9d
N
4134 pr_err("Cannot read extended mpb on %s: %s\n",
4135 devname, strerror(errno));
cdddbdbc
DW
4136 return 2;
4137 }
4138
949c47a0
DW
4139 check_sum = __gen_imsm_checksum(super->anchor);
4140 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4141 if (devname)
e7b84f9d
N
4142 pr_err("IMSM checksum %x != %x on %s\n",
4143 check_sum, __le32_to_cpu(super->anchor->check_sum),
4144 devname);
db575f3b 4145 return 3;
cdddbdbc
DW
4146 }
4147
a2b97981
DW
4148 return 0;
4149}
4150
8e59f3d8
AK
4151static int read_imsm_migr_rec(int fd, struct intel_super *super);
4152
97f81ee2
CA
4153/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4154static void clear_hi(struct intel_super *super)
4155{
4156 struct imsm_super *mpb = super->anchor;
4157 int i, n;
4158 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4159 return;
4160 for (i = 0; i < mpb->num_disks; ++i) {
4161 struct imsm_disk *disk = &mpb->disk[i];
4162 disk->total_blocks_hi = 0;
4163 }
4164 for (i = 0; i < mpb->num_raid_devs; ++i) {
4165 struct imsm_dev *dev = get_imsm_dev(super, i);
4166 if (!dev)
4167 return;
4168 for (n = 0; n < 2; ++n) {
4169 struct imsm_map *map = get_imsm_map(dev, n);
4170 if (!map)
4171 continue;
4172 map->pba_of_lba0_hi = 0;
4173 map->blocks_per_member_hi = 0;
4174 map->num_data_stripes_hi = 0;
4175 }
4176 }
4177}
4178
a2b97981
DW
4179static int
4180load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4181{
4182 int err;
4183
4184 err = load_imsm_mpb(fd, super, devname);
4185 if (err)
4186 return err;
f36a9ecd
PB
4187 if (super->sector_size == 4096)
4188 convert_from_4k(super);
a2b97981
DW
4189 err = load_imsm_disk(fd, super, devname, keep_fd);
4190 if (err)
4191 return err;
4192 err = parse_raid_devices(super);
8d67477f
TM
4193 if (err)
4194 return err;
4195 err = load_bbm_log(super);
97f81ee2 4196 clear_hi(super);
a2b97981 4197 return err;
cdddbdbc
DW
4198}
4199
ae6aad82
DW
4200static void __free_imsm_disk(struct dl *d)
4201{
4202 if (d->fd >= 0)
4203 close(d->fd);
4204 if (d->devname)
4205 free(d->devname);
0dcecb2e
DW
4206 if (d->e)
4207 free(d->e);
ae6aad82
DW
4208 free(d);
4209
4210}
1a64be56 4211
cdddbdbc
DW
4212static void free_imsm_disks(struct intel_super *super)
4213{
47ee5a45 4214 struct dl *d;
cdddbdbc 4215
47ee5a45
DW
4216 while (super->disks) {
4217 d = super->disks;
cdddbdbc 4218 super->disks = d->next;
ae6aad82 4219 __free_imsm_disk(d);
cdddbdbc 4220 }
cb82edca
AK
4221 while (super->disk_mgmt_list) {
4222 d = super->disk_mgmt_list;
4223 super->disk_mgmt_list = d->next;
4224 __free_imsm_disk(d);
4225 }
47ee5a45
DW
4226 while (super->missing) {
4227 d = super->missing;
4228 super->missing = d->next;
4229 __free_imsm_disk(d);
4230 }
4231
cdddbdbc
DW
4232}
4233
9ca2c81c 4234/* free all the pieces hanging off of a super pointer */
d23fe947 4235static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4236{
88654014
LM
4237 struct intel_hba *elem, *next;
4238
9ca2c81c 4239 if (super->buf) {
949c47a0 4240 free(super->buf);
9ca2c81c
DW
4241 super->buf = NULL;
4242 }
f2f5c343
LM
4243 /* unlink capability description */
4244 super->orom = NULL;
8e59f3d8
AK
4245 if (super->migr_rec_buf) {
4246 free(super->migr_rec_buf);
4247 super->migr_rec_buf = NULL;
4248 }
d23fe947
DW
4249 if (free_disks)
4250 free_imsm_disks(super);
ba2de7ba 4251 free_devlist(super);
88654014
LM
4252 elem = super->hba;
4253 while (elem) {
4254 if (elem->path)
4255 free((void *)elem->path);
4256 next = elem->next;
4257 free(elem);
4258 elem = next;
88c32bb1 4259 }
8d67477f
TM
4260 if (super->bbm_log)
4261 free(super->bbm_log);
88654014 4262 super->hba = NULL;
cdddbdbc
DW
4263}
4264
9ca2c81c
DW
4265static void free_imsm(struct intel_super *super)
4266{
d23fe947 4267 __free_imsm(super, 1);
9ca2c81c
DW
4268 free(super);
4269}
cdddbdbc
DW
4270
4271static void free_super_imsm(struct supertype *st)
4272{
4273 struct intel_super *super = st->sb;
4274
4275 if (!super)
4276 return;
4277
4278 free_imsm(super);
4279 st->sb = NULL;
4280}
4281
49133e57 4282static struct intel_super *alloc_super(void)
c2c087e6 4283{
503975b9 4284 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4285
503975b9
N
4286 super->current_vol = -1;
4287 super->create_offset = ~((unsigned long long) 0);
c2c087e6
DW
4288 return super;
4289}
4290
f0f5a016
LM
4291/*
4292 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4293 */
d424212e 4294static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4295{
4296 struct sys_dev *hba_name;
4297 int rv = 0;
4298
089f9d79 4299 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4300 super->orom = NULL;
f0f5a016
LM
4301 super->hba = NULL;
4302 return 0;
4303 }
4304 hba_name = find_disk_attached_hba(fd, NULL);
4305 if (!hba_name) {
d424212e 4306 if (devname)
e7b84f9d
N
4307 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4308 devname);
f0f5a016
LM
4309 return 1;
4310 }
4311 rv = attach_hba_to_super(super, hba_name);
4312 if (rv == 2) {
d424212e
N
4313 if (devname) {
4314 struct intel_hba *hba = super->hba;
f0f5a016 4315
60f0f54d
PB
4316 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4317 " but the container is assigned to Intel(R) %s %s (",
d424212e 4318 devname,
614902f6 4319 get_sys_dev_type(hba_name->type),
60f0f54d 4320 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4321 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4322 get_sys_dev_type(super->hba->type),
4323 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4324
f0f5a016
LM
4325 while (hba) {
4326 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4327 if (hba->next)
4328 fprintf(stderr, ", ");
4329 hba = hba->next;
4330 }
6b781d33 4331 fprintf(stderr, ").\n"
60f0f54d
PB
4332 " Mixing devices attached to different %s is not allowed.\n",
4333 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
f0f5a016 4334 }
f0f5a016
LM
4335 return 2;
4336 }
6b781d33 4337 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4338 if (!super->orom)
4339 return 3;
614902f6 4340
f0f5a016
LM
4341 return 0;
4342}
4343
47ee5a45
DW
4344/* find_missing - helper routine for load_super_imsm_all that identifies
4345 * disks that have disappeared from the system. This routine relies on
4346 * the mpb being uptodate, which it is at load time.
4347 */
4348static int find_missing(struct intel_super *super)
4349{
4350 int i;
4351 struct imsm_super *mpb = super->anchor;
4352 struct dl *dl;
4353 struct imsm_disk *disk;
47ee5a45
DW
4354
4355 for (i = 0; i < mpb->num_disks; i++) {
4356 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4357 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4358 if (dl)
4359 continue;
47ee5a45 4360
503975b9 4361 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4362 dl->major = 0;
4363 dl->minor = 0;
4364 dl->fd = -1;
503975b9 4365 dl->devname = xstrdup("missing");
47ee5a45
DW
4366 dl->index = i;
4367 serialcpy(dl->serial, disk->serial);
4368 dl->disk = *disk;
689c9bf3 4369 dl->e = NULL;
47ee5a45
DW
4370 dl->next = super->missing;
4371 super->missing = dl;
4372 }
4373
4374 return 0;
4375}
4376
3960e579 4377#ifndef MDASSEMBLE
a2b97981
DW
4378static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4379{
4380 struct intel_disk *idisk = disk_list;
4381
4382 while (idisk) {
4383 if (serialcmp(idisk->disk.serial, serial) == 0)
4384 break;
4385 idisk = idisk->next;
4386 }
4387
4388 return idisk;
4389}
4390
4391static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4392 struct intel_super *super,
4393 struct intel_disk **disk_list)
4394{
4395 struct imsm_disk *d = &super->disks->disk;
4396 struct imsm_super *mpb = super->anchor;
4397 int i, j;
4398
4399 for (i = 0; i < tbl_size; i++) {
4400 struct imsm_super *tbl_mpb = table[i]->anchor;
4401 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4402
4403 if (tbl_mpb->family_num == mpb->family_num) {
4404 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4405 dprintf("mpb from %d:%d matches %d:%d\n",
4406 super->disks->major,
a2b97981
DW
4407 super->disks->minor,
4408 table[i]->disks->major,
4409 table[i]->disks->minor);
4410 break;
4411 }
4412
4413 if (((is_configured(d) && !is_configured(tbl_d)) ||
4414 is_configured(d) == is_configured(tbl_d)) &&
4415 tbl_mpb->generation_num < mpb->generation_num) {
4416 /* current version of the mpb is a
4417 * better candidate than the one in
4418 * super_table, but copy over "cross
4419 * generational" status
4420 */
4421 struct intel_disk *idisk;
4422
1ade5cc1
N
4423 dprintf("mpb from %d:%d replaces %d:%d\n",
4424 super->disks->major,
a2b97981
DW
4425 super->disks->minor,
4426 table[i]->disks->major,
4427 table[i]->disks->minor);
4428
4429 idisk = disk_list_get(tbl_d->serial, *disk_list);
4430 if (idisk && is_failed(&idisk->disk))
4431 tbl_d->status |= FAILED_DISK;
4432 break;
4433 } else {
4434 struct intel_disk *idisk;
4435 struct imsm_disk *disk;
4436
4437 /* tbl_mpb is more up to date, but copy
4438 * over cross generational status before
4439 * returning
4440 */
4441 disk = __serial_to_disk(d->serial, mpb, NULL);
4442 if (disk && is_failed(disk))
4443 d->status |= FAILED_DISK;
4444
4445 idisk = disk_list_get(d->serial, *disk_list);
4446 if (idisk) {
4447 idisk->owner = i;
4448 if (disk && is_configured(disk))
4449 idisk->disk.status |= CONFIGURED_DISK;
4450 }
4451
1ade5cc1
N
4452 dprintf("mpb from %d:%d prefer %d:%d\n",
4453 super->disks->major,
a2b97981
DW
4454 super->disks->minor,
4455 table[i]->disks->major,
4456 table[i]->disks->minor);
4457
4458 return tbl_size;
4459 }
4460 }
4461 }
4462
4463 if (i >= tbl_size)
4464 table[tbl_size++] = super;
4465 else
4466 table[i] = super;
4467
4468 /* update/extend the merged list of imsm_disk records */
4469 for (j = 0; j < mpb->num_disks; j++) {
4470 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4471 struct intel_disk *idisk;
4472
4473 idisk = disk_list_get(disk->serial, *disk_list);
4474 if (idisk) {
4475 idisk->disk.status |= disk->status;
4476 if (is_configured(&idisk->disk) ||
4477 is_failed(&idisk->disk))
4478 idisk->disk.status &= ~(SPARE_DISK);
4479 } else {
503975b9 4480 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4481 idisk->owner = IMSM_UNKNOWN_OWNER;
4482 idisk->disk = *disk;
4483 idisk->next = *disk_list;
4484 *disk_list = idisk;
4485 }
4486
4487 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4488 idisk->owner = i;
4489 }
4490
4491 return tbl_size;
4492}
4493
4494static struct intel_super *
4495validate_members(struct intel_super *super, struct intel_disk *disk_list,
4496 const int owner)
4497{
4498 struct imsm_super *mpb = super->anchor;
4499 int ok_count = 0;
4500 int i;
4501
4502 for (i = 0; i < mpb->num_disks; i++) {
4503 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4504 struct intel_disk *idisk;
4505
4506 idisk = disk_list_get(disk->serial, disk_list);
4507 if (idisk) {
4508 if (idisk->owner == owner ||
4509 idisk->owner == IMSM_UNKNOWN_OWNER)
4510 ok_count++;
4511 else
1ade5cc1
N
4512 dprintf("'%.16s' owner %d != %d\n",
4513 disk->serial, idisk->owner,
a2b97981
DW
4514 owner);
4515 } else {
1ade5cc1
N
4516 dprintf("unknown disk %x [%d]: %.16s\n",
4517 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4518 disk->serial);
4519 break;
4520 }
4521 }
4522
4523 if (ok_count == mpb->num_disks)
4524 return super;
4525 return NULL;
4526}
4527
4528static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4529{
4530 struct intel_super *s;
4531
4532 for (s = super_list; s; s = s->next) {
4533 if (family_num != s->anchor->family_num)
4534 continue;
e12b3daa 4535 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4536 __le32_to_cpu(family_num), s->disks->devname);
4537 }
4538}
4539
4540static struct intel_super *
4541imsm_thunderdome(struct intel_super **super_list, int len)
4542{
4543 struct intel_super *super_table[len];
4544 struct intel_disk *disk_list = NULL;
4545 struct intel_super *champion, *spare;
4546 struct intel_super *s, **del;
4547 int tbl_size = 0;
4548 int conflict;
4549 int i;
4550
4551 memset(super_table, 0, sizeof(super_table));
4552 for (s = *super_list; s; s = s->next)
4553 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4554
4555 for (i = 0; i < tbl_size; i++) {
4556 struct imsm_disk *d;
4557 struct intel_disk *idisk;
4558 struct imsm_super *mpb = super_table[i]->anchor;
4559
4560 s = super_table[i];
4561 d = &s->disks->disk;
4562
4563 /* 'd' must appear in merged disk list for its
4564 * configuration to be valid
4565 */
4566 idisk = disk_list_get(d->serial, disk_list);
4567 if (idisk && idisk->owner == i)
4568 s = validate_members(s, disk_list, i);
4569 else
4570 s = NULL;
4571
4572 if (!s)
1ade5cc1
N
4573 dprintf("marking family: %#x from %d:%d offline\n",
4574 mpb->family_num,
a2b97981
DW
4575 super_table[i]->disks->major,
4576 super_table[i]->disks->minor);
4577 super_table[i] = s;
4578 }
4579
4580 /* This is where the mdadm implementation differs from the Windows
4581 * driver which has no strict concept of a container. We can only
4582 * assemble one family from a container, so when returning a prodigal
4583 * array member to this system the code will not be able to disambiguate
4584 * the container contents that should be assembled ("foreign" versus
4585 * "local"). It requires user intervention to set the orig_family_num
4586 * to a new value to establish a new container. The Windows driver in
4587 * this situation fixes up the volume name in place and manages the
4588 * foreign array as an independent entity.
4589 */
4590 s = NULL;
4591 spare = NULL;
4592 conflict = 0;
4593 for (i = 0; i < tbl_size; i++) {
4594 struct intel_super *tbl_ent = super_table[i];
4595 int is_spare = 0;
4596
4597 if (!tbl_ent)
4598 continue;
4599
4600 if (tbl_ent->anchor->num_raid_devs == 0) {
4601 spare = tbl_ent;
4602 is_spare = 1;
4603 }
4604
4605 if (s && !is_spare) {
4606 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4607 conflict++;
4608 } else if (!s && !is_spare)
4609 s = tbl_ent;
4610 }
4611
4612 if (!s)
4613 s = spare;
4614 if (!s) {
4615 champion = NULL;
4616 goto out;
4617 }
4618 champion = s;
4619
4620 if (conflict)
7a862a02 4621 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4622 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4623
4624 /* collect all dl's onto 'champion', and update them to
4625 * champion's version of the status
4626 */
4627 for (s = *super_list; s; s = s->next) {
4628 struct imsm_super *mpb = champion->anchor;
4629 struct dl *dl = s->disks;
4630
4631 if (s == champion)
4632 continue;
4633
5d7b407a
CA
4634 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4635
a2b97981
DW
4636 for (i = 0; i < mpb->num_disks; i++) {
4637 struct imsm_disk *disk;
4638
4639 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4640 if (disk) {
4641 dl->disk = *disk;
4642 /* only set index on disks that are a member of
4643 * a populated contianer, i.e. one with
4644 * raid_devs
4645 */
4646 if (is_failed(&dl->disk))
4647 dl->index = -2;
4648 else if (is_spare(&dl->disk))
4649 dl->index = -1;
4650 break;
4651 }
4652 }
4653
4654 if (i >= mpb->num_disks) {
4655 struct intel_disk *idisk;
4656
4657 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4658 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4659 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4660 dl->index = -1;
4661 else {
4662 dl->index = -2;
4663 continue;
4664 }
4665 }
4666
4667 dl->next = champion->disks;
4668 champion->disks = dl;
4669 s->disks = NULL;
4670 }
4671
4672 /* delete 'champion' from super_list */
4673 for (del = super_list; *del; ) {
4674 if (*del == champion) {
4675 *del = (*del)->next;
4676 break;
4677 } else
4678 del = &(*del)->next;
4679 }
4680 champion->next = NULL;
4681
4682 out:
4683 while (disk_list) {
4684 struct intel_disk *idisk = disk_list;
4685
4686 disk_list = disk_list->next;
4687 free(idisk);
4688 }
4689
4690 return champion;
4691}
4692
9587c373
LM
4693static int
4694get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4695static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4696 int major, int minor, int keep_fd);
ec50f7b6
LM
4697static int
4698get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4699 int *max, int keep_fd);
4700
cdddbdbc 4701static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4702 char *devname, struct md_list *devlist,
4703 int keep_fd)
cdddbdbc 4704{
a2b97981
DW
4705 struct intel_super *super_list = NULL;
4706 struct intel_super *super = NULL;
a2b97981 4707 int err = 0;
9587c373 4708 int i = 0;
dab4a513 4709
9587c373
LM
4710 if (fd >= 0)
4711 /* 'fd' is an opened container */
4712 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4713 else
ec50f7b6
LM
4714 /* get super block from devlist devices */
4715 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4716 if (err)
1602d52c 4717 goto error;
a2b97981
DW
4718 /* all mpbs enter, maybe one leaves */
4719 super = imsm_thunderdome(&super_list, i);
4720 if (!super) {
4721 err = 1;
4722 goto error;
cdddbdbc
DW
4723 }
4724
47ee5a45
DW
4725 if (find_missing(super) != 0) {
4726 free_imsm(super);
a2b97981
DW
4727 err = 2;
4728 goto error;
47ee5a45 4729 }
8e59f3d8
AK
4730
4731 /* load migration record */
4732 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4733 if (err == -1) {
4734 /* migration is in progress,
4735 * but migr_rec cannot be loaded,
4736 */
8e59f3d8
AK
4737 err = 4;
4738 goto error;
4739 }
e2f41b2c
AK
4740
4741 /* Check migration compatibility */
089f9d79 4742 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4743 pr_err("Unsupported migration detected");
e2f41b2c
AK
4744 if (devname)
4745 fprintf(stderr, " on %s\n", devname);
4746 else
4747 fprintf(stderr, " (IMSM).\n");
4748
4749 err = 5;
4750 goto error;
4751 }
4752
a2b97981
DW
4753 err = 0;
4754
4755 error:
4756 while (super_list) {
4757 struct intel_super *s = super_list;
4758
4759 super_list = super_list->next;
4760 free_imsm(s);
4761 }
9587c373 4762
a2b97981
DW
4763 if (err)
4764 return err;
f7e7067b 4765
cdddbdbc 4766 *sbp = super;
9587c373 4767 if (fd >= 0)
4dd2df09 4768 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4769 else
4dd2df09 4770 st->container_devnm[0] = 0;
a2b97981 4771 if (err == 0 && st->ss == NULL) {
bf5a934a 4772 st->ss = &super_imsm;
cdddbdbc
DW
4773 st->minor_version = 0;
4774 st->max_devs = IMSM_MAX_DEVICES;
4775 }
cdddbdbc
DW
4776 return 0;
4777}
2b959fbf 4778
ec50f7b6
LM
4779static int
4780get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4781 int *max, int keep_fd)
4782{
4783 struct md_list *tmpdev;
4784 int err = 0;
4785 int i = 0;
9587c373 4786
ec50f7b6
LM
4787 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4788 if (tmpdev->used != 1)
4789 continue;
4790 if (tmpdev->container == 1) {
ca9de185 4791 int lmax = 0;
ec50f7b6
LM
4792 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4793 if (fd < 0) {
e7b84f9d 4794 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4795 tmpdev->devname, strerror(errno));
4796 err = 8;
4797 goto error;
4798 }
4799 err = get_sra_super_block(fd, super_list,
4800 tmpdev->devname, &lmax,
4801 keep_fd);
4802 i += lmax;
4803 close(fd);
4804 if (err) {
4805 err = 7;
4806 goto error;
4807 }
4808 } else {
4809 int major = major(tmpdev->st_rdev);
4810 int minor = minor(tmpdev->st_rdev);
4811 err = get_super_block(super_list,
4dd2df09 4812 NULL,
ec50f7b6
LM
4813 tmpdev->devname,
4814 major, minor,
4815 keep_fd);
4816 i++;
4817 if (err) {
4818 err = 6;
4819 goto error;
4820 }
4821 }
4822 }
4823 error:
4824 *max = i;
4825 return err;
4826}
9587c373 4827
4dd2df09 4828static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4829 int major, int minor, int keep_fd)
4830{
594dc1b8 4831 struct intel_super *s;
9587c373
LM
4832 char nm[32];
4833 int dfd = -1;
9587c373
LM
4834 int err = 0;
4835 int retry;
4836
4837 s = alloc_super();
4838 if (!s) {
4839 err = 1;
4840 goto error;
4841 }
4842
4843 sprintf(nm, "%d:%d", major, minor);
4844 dfd = dev_open(nm, O_RDWR);
4845 if (dfd < 0) {
4846 err = 2;
4847 goto error;
4848 }
4849
fa7bb6f8 4850 get_dev_sector_size(dfd, NULL, &s->sector_size);
cb8f6859 4851 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
4852 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4853
4854 /* retry the load if we might have raced against mdmon */
4dd2df09 4855 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
4856 for (retry = 0; retry < 3; retry++) {
4857 usleep(3000);
4858 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4859 if (err != 3)
4860 break;
4861 }
4862 error:
4863 if (!err) {
4864 s->next = *super_list;
4865 *super_list = s;
4866 } else {
4867 if (s)
8d67477f 4868 free_imsm(s);
36614e95 4869 if (dfd >= 0)
9587c373
LM
4870 close(dfd);
4871 }
089f9d79 4872 if (dfd >= 0 && !keep_fd)
9587c373
LM
4873 close(dfd);
4874 return err;
4875
4876}
4877
4878static int
4879get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4880{
4881 struct mdinfo *sra;
4dd2df09 4882 char *devnm;
9587c373
LM
4883 struct mdinfo *sd;
4884 int err = 0;
4885 int i = 0;
4dd2df09 4886 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
4887 if (!sra)
4888 return 1;
4889
4890 if (sra->array.major_version != -1 ||
4891 sra->array.minor_version != -2 ||
4892 strcmp(sra->text_version, "imsm") != 0) {
4893 err = 1;
4894 goto error;
4895 }
4896 /* load all mpbs */
4dd2df09 4897 devnm = fd2devnm(fd);
9587c373 4898 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 4899 if (get_super_block(super_list, devnm, devname,
9587c373
LM
4900 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4901 err = 7;
4902 goto error;
4903 }
4904 }
4905 error:
4906 sysfs_free(sra);
4907 *max = i;
4908 return err;
4909}
4910
2b959fbf
N
4911static int load_container_imsm(struct supertype *st, int fd, char *devname)
4912{
ec50f7b6 4913 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 4914}
cdddbdbc
DW
4915#endif
4916
4917static int load_super_imsm(struct supertype *st, int fd, char *devname)
4918{
4919 struct intel_super *super;
4920 int rv;
8a3544f8 4921 int retry;
cdddbdbc 4922
357ac106 4923 if (test_partition(fd))
691c6ee1
N
4924 /* IMSM not allowed on partitions */
4925 return 1;
4926
37424f13
DW
4927 free_super_imsm(st);
4928
49133e57 4929 super = alloc_super();
fa7bb6f8 4930 get_dev_sector_size(fd, NULL, &super->sector_size);
8d67477f
TM
4931 if (!super)
4932 return 1;
ea2bc72b
LM
4933 /* Load hba and capabilities if they exist.
4934 * But do not preclude loading metadata in case capabilities or hba are
4935 * non-compliant and ignore_hw_compat is set.
4936 */
d424212e 4937 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4938 /* no orom/efi or non-intel hba of the disk */
089f9d79 4939 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 4940 if (devname)
e7b84f9d 4941 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
4942 free_imsm(super);
4943 return 2;
4944 }
a2b97981 4945 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 4946
8a3544f8
AP
4947 /* retry the load if we might have raced against mdmon */
4948 if (rv == 3) {
f96b1302
AP
4949 struct mdstat_ent *mdstat = NULL;
4950 char *name = fd2kname(fd);
4951
4952 if (name)
4953 mdstat = mdstat_by_component(name);
8a3544f8
AP
4954
4955 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4956 for (retry = 0; retry < 3; retry++) {
4957 usleep(3000);
4958 rv = load_and_parse_mpb(fd, super, devname, 0);
4959 if (rv != 3)
4960 break;
4961 }
4962 }
4963
4964 free_mdstat(mdstat);
4965 }
4966
cdddbdbc
DW
4967 if (rv) {
4968 if (devname)
7a862a02 4969 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
4970 free_imsm(super);
4971 return rv;
4972 }
4973
4974 st->sb = super;
4975 if (st->ss == NULL) {
4976 st->ss = &super_imsm;
4977 st->minor_version = 0;
4978 st->max_devs = IMSM_MAX_DEVICES;
4979 }
8e59f3d8
AK
4980
4981 /* load migration record */
2e062e82
AK
4982 if (load_imsm_migr_rec(super, NULL) == 0) {
4983 /* Check for unsupported migration features */
4984 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4985 pr_err("Unsupported migration detected");
2e062e82
AK
4986 if (devname)
4987 fprintf(stderr, " on %s\n", devname);
4988 else
4989 fprintf(stderr, " (IMSM).\n");
4990 return 3;
4991 }
e2f41b2c
AK
4992 }
4993
cdddbdbc
DW
4994 return 0;
4995}
4996
ef6ffade
DW
4997static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4998{
4999 if (info->level == 1)
5000 return 128;
5001 return info->chunk_size >> 9;
5002}
5003
5551b113
CA
5004static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5005 unsigned long long size)
fcfd9599 5006{
4025c288 5007 if (info->level == 1)
5551b113 5008 return size * 2;
4025c288 5009 else
5551b113 5010 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5011}
5012
4d1313e9
DW
5013static void imsm_update_version_info(struct intel_super *super)
5014{
5015 /* update the version and attributes */
5016 struct imsm_super *mpb = super->anchor;
5017 char *version;
5018 struct imsm_dev *dev;
5019 struct imsm_map *map;
5020 int i;
5021
5022 for (i = 0; i < mpb->num_raid_devs; i++) {
5023 dev = get_imsm_dev(super, i);
238c0a71 5024 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5025 if (__le32_to_cpu(dev->size_high) > 0)
5026 mpb->attributes |= MPB_ATTRIB_2TB;
5027
5028 /* FIXME detect when an array spans a port multiplier */
5029 #if 0
5030 mpb->attributes |= MPB_ATTRIB_PM;
5031 #endif
5032
5033 if (mpb->num_raid_devs > 1 ||
5034 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5035 version = MPB_VERSION_ATTRIBS;
5036 switch (get_imsm_raid_level(map)) {
5037 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5038 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5039 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5040 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5041 }
5042 } else {
5043 if (map->num_members >= 5)
5044 version = MPB_VERSION_5OR6_DISK_ARRAY;
5045 else if (dev->status == DEV_CLONE_N_GO)
5046 version = MPB_VERSION_CNG;
5047 else if (get_imsm_raid_level(map) == 5)
5048 version = MPB_VERSION_RAID5;
5049 else if (map->num_members >= 3)
5050 version = MPB_VERSION_3OR4_DISK_ARRAY;
5051 else if (get_imsm_raid_level(map) == 1)
5052 version = MPB_VERSION_RAID1;
5053 else
5054 version = MPB_VERSION_RAID0;
5055 }
5056 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5057 }
5058}
5059
aa534678
DW
5060static int check_name(struct intel_super *super, char *name, int quiet)
5061{
5062 struct imsm_super *mpb = super->anchor;
5063 char *reason = NULL;
5064 int i;
5065
5066 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5067 reason = "must be 16 characters or less";
5068
5069 for (i = 0; i < mpb->num_raid_devs; i++) {
5070 struct imsm_dev *dev = get_imsm_dev(super, i);
5071
5072 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5073 reason = "already exists";
5074 break;
5075 }
5076 }
5077
5078 if (reason && !quiet)
e7b84f9d 5079 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5080
5081 return !reason;
5082}
5083
8b353278
DW
5084static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5085 unsigned long long size, char *name,
83cd1e97
N
5086 char *homehost, int *uuid,
5087 long long data_offset)
cdddbdbc 5088{
c2c087e6
DW
5089 /* We are creating a volume inside a pre-existing container.
5090 * so st->sb is already set.
5091 */
5092 struct intel_super *super = st->sb;
f36a9ecd 5093 unsigned int sector_size = super->sector_size;
949c47a0 5094 struct imsm_super *mpb = super->anchor;
ba2de7ba 5095 struct intel_dev *dv;
c2c087e6
DW
5096 struct imsm_dev *dev;
5097 struct imsm_vol *vol;
5098 struct imsm_map *map;
5099 int idx = mpb->num_raid_devs;
5100 int i;
5101 unsigned long long array_blocks;
2c092cad 5102 size_t size_old, size_new;
5551b113 5103 unsigned long long num_data_stripes;
cdddbdbc 5104
88c32bb1 5105 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5106 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5107 return 0;
5108 }
5109
2c092cad
DW
5110 /* ensure the mpb is large enough for the new data */
5111 size_old = __le32_to_cpu(mpb->mpb_size);
5112 size_new = disks_to_mpb_size(info->nr_disks);
5113 if (size_new > size_old) {
5114 void *mpb_new;
f36a9ecd 5115 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5116
f36a9ecd 5117 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5118 pr_err("could not allocate new mpb\n");
2c092cad
DW
5119 return 0;
5120 }
de44e46f
PB
5121 if (posix_memalign(&super->migr_rec_buf, sector_size,
5122 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
1ade5cc1 5123 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5124 free(super->buf);
5125 free(super);
ea944c8f 5126 free(mpb_new);
8e59f3d8
AK
5127 return 0;
5128 }
2c092cad
DW
5129 memcpy(mpb_new, mpb, size_old);
5130 free(mpb);
5131 mpb = mpb_new;
949c47a0 5132 super->anchor = mpb_new;
2c092cad
DW
5133 mpb->mpb_size = __cpu_to_le32(size_new);
5134 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5135 super->len = size_round;
2c092cad 5136 }
bf5a934a 5137 super->current_vol = idx;
3960e579
DW
5138
5139 /* handle 'failed_disks' by either:
5140 * a) create dummy disk entries in the table if this the first
5141 * volume in the array. We add them here as this is the only
5142 * opportunity to add them. add_to_super_imsm_volume()
5143 * handles the non-failed disks and continues incrementing
5144 * mpb->num_disks.
5145 * b) validate that 'failed_disks' matches the current number
5146 * of missing disks if the container is populated
d23fe947 5147 */
3960e579 5148 if (super->current_vol == 0) {
d23fe947 5149 mpb->num_disks = 0;
3960e579
DW
5150 for (i = 0; i < info->failed_disks; i++) {
5151 struct imsm_disk *disk;
5152
5153 mpb->num_disks++;
5154 disk = __get_imsm_disk(mpb, i);
5155 disk->status = CONFIGURED_DISK | FAILED_DISK;
5156 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5157 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5158 "missing:%d", i);
5159 }
5160 find_missing(super);
5161 } else {
5162 int missing = 0;
5163 struct dl *d;
5164
5165 for (d = super->missing; d; d = d->next)
5166 missing++;
5167 if (info->failed_disks > missing) {
e7b84f9d 5168 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5169 return 0;
5170 }
5171 }
5a038140 5172
aa534678
DW
5173 if (!check_name(super, name, 0))
5174 return 0;
503975b9
N
5175 dv = xmalloc(sizeof(*dv));
5176 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 5177 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 5178 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5179 info->layout, info->chunk_size,
5551b113 5180 size * 2);
979d38be
DW
5181 /* round array size down to closest MB */
5182 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5183
c2c087e6
DW
5184 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5185 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 5186 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5187 vol = &dev->vol;
5188 vol->migr_state = 0;
1484e727 5189 set_migr_type(dev, MIGR_INIT);
3960e579 5190 vol->dirty = !info->state;
f8f603f1 5191 vol->curr_migr_unit = 0;
238c0a71 5192 map = get_imsm_map(dev, MAP_0);
5551b113
CA
5193 set_pba_of_lba0(map, super->create_offset);
5194 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
ef6ffade 5195 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5196 map->failed_disk_num = ~0;
bf4442ab 5197 if (info->level > 0)
fffaf1ff
N
5198 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5199 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5200 else
5201 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5202 IMSM_T_STATE_NORMAL;
252d23c0 5203 map->ddf = 1;
ef6ffade
DW
5204
5205 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5206 free(dev);
5207 free(dv);
7a862a02 5208 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5209 return 0;
5210 }
81062a36
DW
5211
5212 map->raid_level = info->level;
4d1313e9 5213 if (info->level == 10) {
c2c087e6 5214 map->raid_level = 1;
4d1313e9 5215 map->num_domains = info->raid_disks / 2;
81062a36
DW
5216 } else if (info->level == 1)
5217 map->num_domains = info->raid_disks;
5218 else
ff596308 5219 map->num_domains = 1;
81062a36 5220
5551b113
CA
5221 /* info->size is only int so use the 'size' parameter instead */
5222 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
5223 num_data_stripes /= map->num_domains;
5224 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5225
c2c087e6
DW
5226 map->num_members = info->raid_disks;
5227 for (i = 0; i < map->num_members; i++) {
5228 /* initialized in add_to_super */
4eb26970 5229 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5230 }
949c47a0 5231 mpb->num_raid_devs++;
ba2de7ba
DW
5232
5233 dv->dev = dev;
5234 dv->index = super->current_vol;
5235 dv->next = super->devlist;
5236 super->devlist = dv;
c2c087e6 5237
4d1313e9
DW
5238 imsm_update_version_info(super);
5239
c2c087e6 5240 return 1;
cdddbdbc
DW
5241}
5242
bf5a934a
DW
5243static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5244 unsigned long long size, char *name,
83cd1e97
N
5245 char *homehost, int *uuid,
5246 unsigned long long data_offset)
bf5a934a
DW
5247{
5248 /* This is primarily called by Create when creating a new array.
5249 * We will then get add_to_super called for each component, and then
5250 * write_init_super called to write it out to each device.
5251 * For IMSM, Create can create on fresh devices or on a pre-existing
5252 * array.
5253 * To create on a pre-existing array a different method will be called.
5254 * This one is just for fresh drives.
5255 */
5256 struct intel_super *super;
5257 struct imsm_super *mpb;
5258 size_t mpb_size;
4d1313e9 5259 char *version;
bf5a934a 5260
83cd1e97 5261 if (data_offset != INVALID_SECTORS) {
ed503f89 5262 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5263 return 0;
5264 }
5265
bf5a934a 5266 if (st->sb)
83cd1e97
N
5267 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
5268 data_offset);
e683ca88
DW
5269
5270 if (info)
5271 mpb_size = disks_to_mpb_size(info->nr_disks);
5272 else
f36a9ecd 5273 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5274
49133e57 5275 super = alloc_super();
f36a9ecd
PB
5276 if (super &&
5277 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5278 free_imsm(super);
e683ca88
DW
5279 super = NULL;
5280 }
5281 if (!super) {
1ade5cc1 5282 pr_err("could not allocate superblock\n");
bf5a934a
DW
5283 return 0;
5284 }
de44e46f
PB
5285 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5286 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5287 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5288 free(super->buf);
8d67477f 5289 free_imsm(super);
8e59f3d8
AK
5290 return 0;
5291 }
e683ca88 5292 memset(super->buf, 0, mpb_size);
ef649044 5293 mpb = super->buf;
e683ca88
DW
5294 mpb->mpb_size = __cpu_to_le32(mpb_size);
5295 st->sb = super;
5296
5297 if (info == NULL) {
5298 /* zeroing superblock */
5299 return 0;
5300 }
bf5a934a 5301
4d1313e9
DW
5302 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5303
5304 version = (char *) mpb->sig;
5305 strcpy(version, MPB_SIGNATURE);
5306 version += strlen(MPB_SIGNATURE);
5307 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5308
bf5a934a
DW
5309 return 1;
5310}
5311
0e600426 5312#ifndef MDASSEMBLE
f20c3968 5313static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5314 int fd, char *devname)
5315{
5316 struct intel_super *super = st->sb;
d23fe947 5317 struct imsm_super *mpb = super->anchor;
3960e579 5318 struct imsm_disk *_disk;
bf5a934a
DW
5319 struct imsm_dev *dev;
5320 struct imsm_map *map;
3960e579 5321 struct dl *dl, *df;
4eb26970 5322 int slot;
bf5a934a 5323
949c47a0 5324 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5325 map = get_imsm_map(dev, MAP_0);
bf5a934a 5326
208933a7 5327 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5328 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5329 devname);
5330 return 1;
5331 }
5332
efb30e7f
DW
5333 if (fd == -1) {
5334 /* we're doing autolayout so grab the pre-marked (in
5335 * validate_geometry) raid_disk
5336 */
5337 for (dl = super->disks; dl; dl = dl->next)
5338 if (dl->raiddisk == dk->raid_disk)
5339 break;
5340 } else {
5341 for (dl = super->disks; dl ; dl = dl->next)
5342 if (dl->major == dk->major &&
5343 dl->minor == dk->minor)
5344 break;
5345 }
d23fe947 5346
208933a7 5347 if (!dl) {
e7b84f9d 5348 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5349 return 1;
208933a7 5350 }
bf5a934a 5351
d23fe947
DW
5352 /* add a pristine spare to the metadata */
5353 if (dl->index < 0) {
5354 dl->index = super->anchor->num_disks;
5355 super->anchor->num_disks++;
5356 }
4eb26970
DW
5357 /* Check the device has not already been added */
5358 slot = get_imsm_disk_slot(map, dl->index);
5359 if (slot >= 0 &&
238c0a71 5360 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5361 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5362 devname);
5363 return 1;
5364 }
656b6b5a 5365 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5366 dl->disk.status = CONFIGURED_DISK;
d23fe947 5367
3960e579
DW
5368 /* update size of 'missing' disks to be at least as large as the
5369 * largest acitve member (we only have dummy missing disks when
5370 * creating the first volume)
5371 */
5372 if (super->current_vol == 0) {
5373 for (df = super->missing; df; df = df->next) {
5551b113
CA
5374 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5375 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5376 _disk = __get_imsm_disk(mpb, df->index);
5377 *_disk = df->disk;
5378 }
5379 }
5380
5381 /* refresh unset/failed slots to point to valid 'missing' entries */
5382 for (df = super->missing; df; df = df->next)
5383 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5384 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5385
5386 if ((ord & IMSM_ORD_REBUILD) == 0)
5387 continue;
5388 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5389 if (is_gen_migration(dev)) {
238c0a71
AK
5390 struct imsm_map *map2 = get_imsm_map(dev,
5391 MAP_1);
0a108d63 5392 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5393 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5394 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5395 slot2,
5396 MAP_1);
1ace8403
AK
5397 if ((unsigned)df->index ==
5398 ord_to_idx(ord2))
5399 set_imsm_ord_tbl_ent(map2,
0a108d63 5400 slot2,
1ace8403
AK
5401 df->index |
5402 IMSM_ORD_REBUILD);
5403 }
5404 }
3960e579
DW
5405 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5406 break;
5407 }
5408
d23fe947
DW
5409 /* if we are creating the first raid device update the family number */
5410 if (super->current_vol == 0) {
5411 __u32 sum;
5412 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5413
3960e579 5414 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5415 if (!_dev || !_disk) {
e7b84f9d 5416 pr_err("BUG mpb setup error\n");
791b666a
AW
5417 return 1;
5418 }
d23fe947
DW
5419 *_dev = *dev;
5420 *_disk = dl->disk;
148acb7b
DW
5421 sum = random32();
5422 sum += __gen_imsm_checksum(mpb);
d23fe947 5423 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5424 mpb->orig_family_num = mpb->family_num;
d23fe947 5425 }
ca0748fa 5426 super->current_disk = dl;
f20c3968 5427 return 0;
bf5a934a
DW
5428}
5429
a8619d23
AK
5430/* mark_spare()
5431 * Function marks disk as spare and restores disk serial
5432 * in case it was previously marked as failed by takeover operation
5433 * reruns:
5434 * -1 : critical error
5435 * 0 : disk is marked as spare but serial is not set
5436 * 1 : success
5437 */
5438int mark_spare(struct dl *disk)
5439{
5440 __u8 serial[MAX_RAID_SERIAL_LEN];
5441 int ret_val = -1;
5442
5443 if (!disk)
5444 return ret_val;
5445
5446 ret_val = 0;
5447 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5448 /* Restore disk serial number, because takeover marks disk
5449 * as failed and adds to serial ':0' before it becomes
5450 * a spare disk.
5451 */
5452 serialcpy(disk->serial, serial);
5453 serialcpy(disk->disk.serial, serial);
5454 ret_val = 1;
5455 }
5456 disk->disk.status = SPARE_DISK;
5457 disk->index = -1;
5458
5459 return ret_val;
5460}
88654014 5461
f20c3968 5462static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5463 int fd, char *devname,
5464 unsigned long long data_offset)
cdddbdbc 5465{
c2c087e6 5466 struct intel_super *super = st->sb;
c2c087e6
DW
5467 struct dl *dd;
5468 unsigned long long size;
fa7bb6f8 5469 unsigned int member_sector_size;
f2f27e63 5470 __u32 id;
c2c087e6
DW
5471 int rv;
5472 struct stat stb;
5473
88654014
LM
5474 /* If we are on an RAID enabled platform check that the disk is
5475 * attached to the raid controller.
5476 * We do not need to test disks attachment for container based additions,
5477 * they shall be already tested when container was created/assembled.
88c32bb1 5478 */
d424212e 5479 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5480 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5481 if (rv != 0) {
5482 dprintf("capability: %p fd: %d ret: %d\n",
5483 super->orom, fd, rv);
5484 return 1;
88c32bb1
DW
5485 }
5486
f20c3968
DW
5487 if (super->current_vol >= 0)
5488 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5489
c2c087e6 5490 fstat(fd, &stb);
503975b9 5491 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5492 dd->major = major(stb.st_rdev);
5493 dd->minor = minor(stb.st_rdev);
503975b9 5494 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5495 dd->fd = fd;
689c9bf3 5496 dd->e = NULL;
1a64be56 5497 dd->action = DISK_ADD;
c2c087e6 5498 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5499 if (rv) {
e7b84f9d 5500 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5501 if (dd->devname)
5502 free(dd->devname);
949c47a0 5503 free(dd);
0030e8d6 5504 abort();
c2c087e6 5505 }
20bee0f8
PB
5506 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5507 (super->hba->type == SYS_DEV_VMD))) {
5508 int i;
5509 char *devpath = diskfd_to_devpath(fd);
5510 char controller_path[PATH_MAX];
5511
5512 if (!devpath) {
5513 pr_err("failed to get devpath, aborting\n");
5514 if (dd->devname)
5515 free(dd->devname);
5516 free(dd);
5517 return 1;
5518 }
5519
5520 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5521 free(devpath);
5522
5523 if (devpath_to_vendor(controller_path) == 0x8086) {
5524 /*
5525 * If Intel's NVMe drive has serial ended with
5526 * "-A","-B","-1" or "-2" it means that this is "x8"
5527 * device (double drive on single PCIe card).
5528 * User should be warned about potential data loss.
5529 */
5530 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5531 /* Skip empty character at the end */
5532 if (dd->serial[i] == 0)
5533 continue;
5534
5535 if (((dd->serial[i] == 'A') ||
5536 (dd->serial[i] == 'B') ||
5537 (dd->serial[i] == '1') ||
5538 (dd->serial[i] == '2')) &&
5539 (dd->serial[i-1] == '-'))
5540 pr_err("\tThe action you are about to take may put your data at risk.\n"
5541 "\tPlease note that x8 devices may consist of two separate x4 devices "
5542 "located on a single PCIe port.\n"
5543 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5544 break;
5545 }
5546 }
5547 }
c2c087e6 5548
c2c087e6 5549 get_dev_size(fd, NULL, &size);
fa7bb6f8
PB
5550 get_dev_sector_size(fd, NULL, &member_sector_size);
5551
5552 if (super->sector_size == 0) {
5553 /* this a first device, so sector_size is not set yet */
5554 super->sector_size = member_sector_size;
5555 } else if (member_sector_size != super->sector_size) {
5556 pr_err("Mixing between different sector size is forbidden, aborting...\n");
5557 if (dd->devname)
5558 free(dd->devname);
5559 free(dd);
5560 return 1;
5561 }
5562
71e5411e 5563 /* clear migr_rec when adding disk to container */
de44e46f
PB
5564 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*super->sector_size);
5565 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*super->sector_size,
5566 SEEK_SET) >= 0) {
71e5411e 5567 if (write(fd, super->migr_rec_buf,
de44e46f
PB
5568 MIGR_REC_BUF_SECTORS*super->sector_size) !=
5569 MIGR_REC_BUF_SECTORS*super->sector_size)
71e5411e
PB
5570 perror("Write migr_rec failed");
5571 }
5572
c2c087e6 5573 size /= 512;
1f24f035 5574 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5575 set_total_blocks(&dd->disk, size);
5576 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5577 struct imsm_super *mpb = super->anchor;
5578 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5579 }
a8619d23 5580 mark_spare(dd);
c2c087e6 5581 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5582 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5583 else
b9f594fe 5584 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5585
5586 if (st->update_tail) {
1a64be56
LM
5587 dd->next = super->disk_mgmt_list;
5588 super->disk_mgmt_list = dd;
43dad3d6
DW
5589 } else {
5590 dd->next = super->disks;
5591 super->disks = dd;
ceaf0ee1 5592 super->updates_pending++;
43dad3d6 5593 }
f20c3968
DW
5594
5595 return 0;
cdddbdbc
DW
5596}
5597
1a64be56
LM
5598static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5599{
5600 struct intel_super *super = st->sb;
5601 struct dl *dd;
5602
5603 /* remove from super works only in mdmon - for communication
5604 * manager - monitor. Check if communication memory buffer
5605 * is prepared.
5606 */
5607 if (!st->update_tail) {
1ade5cc1 5608 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5609 return 1;
5610 }
503975b9 5611 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5612 dd->major = dk->major;
5613 dd->minor = dk->minor;
1a64be56 5614 dd->fd = -1;
a8619d23 5615 mark_spare(dd);
1a64be56
LM
5616 dd->action = DISK_REMOVE;
5617
5618 dd->next = super->disk_mgmt_list;
5619 super->disk_mgmt_list = dd;
5620
1a64be56
LM
5621 return 0;
5622}
5623
f796af5d
DW
5624static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5625
5626static union {
f36a9ecd 5627 char buf[MAX_SECTOR_SIZE];
f796af5d 5628 struct imsm_super anchor;
f36a9ecd 5629} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 5630
d23fe947
DW
5631/* spare records have their own family number and do not have any defined raid
5632 * devices
5633 */
5634static int write_super_imsm_spares(struct intel_super *super, int doclose)
5635{
d23fe947 5636 struct imsm_super *mpb = super->anchor;
f796af5d 5637 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5638 __u32 sum;
5639 struct dl *d;
5640
68641cdb
JS
5641 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5642 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5643 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5644 spare->num_disks = 1;
5645 spare->num_raid_devs = 0;
5646 spare->cache_size = mpb->cache_size;
5647 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5648
5649 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5650 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5651
5652 for (d = super->disks; d; d = d->next) {
8796fdc4 5653 if (d->index != -1)
d23fe947
DW
5654 continue;
5655
f796af5d 5656 spare->disk[0] = d->disk;
027c374f
CA
5657 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5658 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5659
f36a9ecd
PB
5660 if (super->sector_size == 4096)
5661 convert_to_4k_imsm_disk(&spare->disk[0]);
5662
f796af5d
DW
5663 sum = __gen_imsm_checksum(spare);
5664 spare->family_num = __cpu_to_le32(sum);
5665 spare->orig_family_num = 0;
5666 sum = __gen_imsm_checksum(spare);
5667 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5668
f796af5d 5669 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5670 pr_err("failed for device %d:%d %s\n",
5671 d->major, d->minor, strerror(errno));
e74255d9 5672 return 1;
d23fe947
DW
5673 }
5674 if (doclose) {
5675 close(d->fd);
5676 d->fd = -1;
5677 }
5678 }
5679
e74255d9 5680 return 0;
d23fe947
DW
5681}
5682
36988a3d 5683static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5684{
36988a3d 5685 struct intel_super *super = st->sb;
f36a9ecd 5686 unsigned int sector_size = super->sector_size;
949c47a0 5687 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5688 struct dl *d;
5689 __u32 generation;
5690 __u32 sum;
d23fe947 5691 int spares = 0;
949c47a0 5692 int i;
a48ac0a8 5693 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5694 int num_disks = 0;
146c6260 5695 int clear_migration_record = 1;
bbab0940 5696 __u32 bbm_log_size;
cdddbdbc 5697
c2c087e6
DW
5698 /* 'generation' is incremented everytime the metadata is written */
5699 generation = __le32_to_cpu(mpb->generation_num);
5700 generation++;
5701 mpb->generation_num = __cpu_to_le32(generation);
5702
148acb7b
DW
5703 /* fix up cases where previous mdadm releases failed to set
5704 * orig_family_num
5705 */
5706 if (mpb->orig_family_num == 0)
5707 mpb->orig_family_num = mpb->family_num;
5708
d23fe947 5709 for (d = super->disks; d; d = d->next) {
8796fdc4 5710 if (d->index == -1)
d23fe947 5711 spares++;
36988a3d 5712 else {
d23fe947 5713 mpb->disk[d->index] = d->disk;
36988a3d
AK
5714 num_disks++;
5715 }
d23fe947 5716 }
36988a3d 5717 for (d = super->missing; d; d = d->next) {
47ee5a45 5718 mpb->disk[d->index] = d->disk;
36988a3d
AK
5719 num_disks++;
5720 }
5721 mpb->num_disks = num_disks;
5722 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5723
949c47a0
DW
5724 for (i = 0; i < mpb->num_raid_devs; i++) {
5725 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5726 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5727 if (dev && dev2) {
5728 imsm_copy_dev(dev, dev2);
5729 mpb_size += sizeof_imsm_dev(dev, 0);
5730 }
146c6260
AK
5731 if (is_gen_migration(dev2))
5732 clear_migration_record = 0;
949c47a0 5733 }
bbab0940
TM
5734
5735 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5736
5737 if (bbm_log_size) {
5738 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5739 mpb->attributes |= MPB_ATTRIB_BBM;
5740 } else
5741 mpb->attributes &= ~MPB_ATTRIB_BBM;
5742
5743 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5744 mpb_size += bbm_log_size;
a48ac0a8 5745 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5746
bbab0940
TM
5747#ifdef DEBUG
5748 assert(super->len == 0 || mpb_size <= super->len);
5749#endif
5750
c2c087e6 5751 /* recalculate checksum */
949c47a0 5752 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5753 mpb->check_sum = __cpu_to_le32(sum);
5754
51d83f5d
AK
5755 if (super->clean_migration_record_by_mdmon) {
5756 clear_migration_record = 1;
5757 super->clean_migration_record_by_mdmon = 0;
5758 }
146c6260 5759 if (clear_migration_record)
de44e46f
PB
5760 memset(super->migr_rec_buf, 0,
5761 MIGR_REC_BUF_SECTORS*sector_size);
146c6260 5762
f36a9ecd
PB
5763 if (sector_size == 4096)
5764 convert_to_4k(super);
5765
d23fe947 5766 /* write the mpb for disks that compose raid devices */
c2c087e6 5767 for (d = super->disks; d ; d = d->next) {
86c54047 5768 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5769 continue;
30602f53 5770
146c6260
AK
5771 if (clear_migration_record) {
5772 unsigned long long dsize;
5773
5774 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
5775 if (lseek64(d->fd, dsize - sector_size,
5776 SEEK_SET) >= 0) {
17a4eaf9 5777 if (write(d->fd, super->migr_rec_buf,
de44e46f
PB
5778 MIGR_REC_BUF_SECTORS*sector_size) !=
5779 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 5780 perror("Write migr_rec failed");
146c6260
AK
5781 }
5782 }
51d83f5d
AK
5783
5784 if (store_imsm_mpb(d->fd, mpb))
5785 fprintf(stderr,
1ade5cc1
N
5786 "failed for device %d:%d (fd: %d)%s\n",
5787 d->major, d->minor,
51d83f5d
AK
5788 d->fd, strerror(errno));
5789
c2c087e6
DW
5790 if (doclose) {
5791 close(d->fd);
5792 d->fd = -1;
5793 }
5794 }
5795
d23fe947
DW
5796 if (spares)
5797 return write_super_imsm_spares(super, doclose);
5798
e74255d9 5799 return 0;
c2c087e6
DW
5800}
5801
9b1fb677 5802static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5803{
5804 size_t len;
5805 struct imsm_update_create_array *u;
5806 struct intel_super *super = st->sb;
9b1fb677 5807 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5808 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5809 struct disk_info *inf;
5810 struct imsm_disk *disk;
5811 int i;
43dad3d6 5812
54c2c1ea
DW
5813 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5814 sizeof(*inf) * map->num_members;
503975b9 5815 u = xmalloc(len);
43dad3d6 5816 u->type = update_create_array;
9b1fb677 5817 u->dev_idx = dev_idx;
43dad3d6 5818 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
5819 inf = get_disk_info(u);
5820 for (i = 0; i < map->num_members; i++) {
238c0a71 5821 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 5822
54c2c1ea 5823 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
5824 if (!disk)
5825 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
5826 serialcpy(inf[i].serial, disk->serial);
5827 }
43dad3d6
DW
5828 append_metadata_update(st, u, len);
5829
5830 return 0;
5831}
5832
1a64be56 5833static int mgmt_disk(struct supertype *st)
43dad3d6
DW
5834{
5835 struct intel_super *super = st->sb;
5836 size_t len;
1a64be56 5837 struct imsm_update_add_remove_disk *u;
43dad3d6 5838
1a64be56 5839 if (!super->disk_mgmt_list)
43dad3d6
DW
5840 return 0;
5841
5842 len = sizeof(*u);
503975b9 5843 u = xmalloc(len);
1a64be56 5844 u->type = update_add_remove_disk;
43dad3d6
DW
5845 append_metadata_update(st, u, len);
5846
5847 return 0;
5848}
5849
c2c087e6
DW
5850static int write_init_super_imsm(struct supertype *st)
5851{
9b1fb677
DW
5852 struct intel_super *super = st->sb;
5853 int current_vol = super->current_vol;
5854
5855 /* we are done with current_vol reset it to point st at the container */
5856 super->current_vol = -1;
5857
8273f55e 5858 if (st->update_tail) {
43dad3d6
DW
5859 /* queue the recently created array / added disk
5860 * as a metadata update */
43dad3d6 5861 int rv;
8273f55e 5862
43dad3d6 5863 /* determine if we are creating a volume or adding a disk */
9b1fb677 5864 if (current_vol < 0) {
1a64be56
LM
5865 /* in the mgmt (add/remove) disk case we are running
5866 * in mdmon context, so don't close fd's
43dad3d6 5867 */
1a64be56 5868 return mgmt_disk(st);
43dad3d6 5869 } else
9b1fb677 5870 rv = create_array(st, current_vol);
8273f55e 5871
43dad3d6 5872 return rv;
d682f344
N
5873 } else {
5874 struct dl *d;
5875 for (d = super->disks; d; d = d->next)
ba728be7 5876 Kill(d->devname, NULL, 0, -1, 1);
36988a3d 5877 return write_super_imsm(st, 1);
d682f344 5878 }
cdddbdbc 5879}
0e600426 5880#endif
cdddbdbc 5881
e683ca88 5882static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 5883{
e683ca88
DW
5884 struct intel_super *super = st->sb;
5885 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 5886
e683ca88 5887 if (!mpb)
ad97895e
DW
5888 return 1;
5889
1799c9e8 5890#ifndef MDASSEMBLE
f36a9ecd
PB
5891 if (super->sector_size == 4096)
5892 convert_to_4k(super);
e683ca88 5893 return store_imsm_mpb(fd, mpb);
1799c9e8
N
5894#else
5895 return 1;
5896#endif
cdddbdbc
DW
5897}
5898
0e600426 5899#ifndef MDASSEMBLE
cdddbdbc
DW
5900static int validate_geometry_imsm_container(struct supertype *st, int level,
5901 int layout, int raiddisks, int chunk,
af4348dd
N
5902 unsigned long long size,
5903 unsigned long long data_offset,
5904 char *dev,
2c514b71
NB
5905 unsigned long long *freesize,
5906 int verbose)
cdddbdbc 5907{
c2c087e6
DW
5908 int fd;
5909 unsigned long long ldsize;
594dc1b8 5910 struct intel_super *super;
f2f5c343 5911 int rv = 0;
cdddbdbc 5912
c2c087e6
DW
5913 if (level != LEVEL_CONTAINER)
5914 return 0;
5915 if (!dev)
5916 return 1;
5917
5918 fd = open(dev, O_RDONLY|O_EXCL, 0);
5919 if (fd < 0) {
ba728be7 5920 if (verbose > 0)
e7b84f9d 5921 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 5922 dev, strerror(errno));
c2c087e6
DW
5923 return 0;
5924 }
5925 if (!get_dev_size(fd, dev, &ldsize)) {
5926 close(fd);
5927 return 0;
5928 }
f2f5c343
LM
5929
5930 /* capabilities retrieve could be possible
5931 * note that there is no fd for the disks in array.
5932 */
5933 super = alloc_super();
8d67477f
TM
5934 if (!super) {
5935 close(fd);
5936 return 0;
5937 }
fa7bb6f8
PB
5938 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5939 close(fd);
5940 free_imsm(super);
5941 return 0;
5942 }
5943
ba728be7 5944 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
5945 if (rv != 0) {
5946#if DEBUG
5947 char str[256];
5948 fd2devname(fd, str);
1ade5cc1 5949 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
5950 fd, str, super->orom, rv, raiddisks);
5951#endif
5952 /* no orom/efi or non-intel hba of the disk */
5953 close(fd);
5954 free_imsm(super);
5955 return 0;
5956 }
c2c087e6 5957 close(fd);
9126b9a8
CA
5958 if (super->orom) {
5959 if (raiddisks > super->orom->tds) {
5960 if (verbose)
7a862a02 5961 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
5962 raiddisks, super->orom->tds);
5963 free_imsm(super);
5964 return 0;
5965 }
5966 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5967 (ldsize >> 9) >> 32 > 0) {
5968 if (verbose)
e7b84f9d 5969 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
5970 free_imsm(super);
5971 return 0;
5972 }
f2f5c343 5973 }
c2c087e6 5974
af4348dd 5975 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 5976 free_imsm(super);
c2c087e6
DW
5977
5978 return 1;
cdddbdbc
DW
5979}
5980
0dcecb2e
DW
5981static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5982{
5983 const unsigned long long base_start = e[*idx].start;
5984 unsigned long long end = base_start + e[*idx].size;
5985 int i;
5986
5987 if (base_start == end)
5988 return 0;
5989
5990 *idx = *idx + 1;
5991 for (i = *idx; i < num_extents; i++) {
5992 /* extend overlapping extents */
5993 if (e[i].start >= base_start &&
5994 e[i].start <= end) {
5995 if (e[i].size == 0)
5996 return 0;
5997 if (e[i].start + e[i].size > end)
5998 end = e[i].start + e[i].size;
5999 } else if (e[i].start > end) {
6000 *idx = i;
6001 break;
6002 }
6003 }
6004
6005 return end - base_start;
6006}
6007
6008static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6009{
6010 /* build a composite disk with all known extents and generate a new
6011 * 'maxsize' given the "all disks in an array must share a common start
6012 * offset" constraint
6013 */
503975b9 6014 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6015 struct dl *dl;
6016 int i, j;
6017 int start_extent;
6018 unsigned long long pos;
b9d77223 6019 unsigned long long start = 0;
0dcecb2e
DW
6020 unsigned long long maxsize;
6021 unsigned long reserve;
6022
0dcecb2e
DW
6023 /* coalesce and sort all extents. also, check to see if we need to
6024 * reserve space between member arrays
6025 */
6026 j = 0;
6027 for (dl = super->disks; dl; dl = dl->next) {
6028 if (!dl->e)
6029 continue;
6030 for (i = 0; i < dl->extent_cnt; i++)
6031 e[j++] = dl->e[i];
6032 }
6033 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6034
6035 /* merge extents */
6036 i = 0;
6037 j = 0;
6038 while (i < sum_extents) {
6039 e[j].start = e[i].start;
6040 e[j].size = find_size(e, &i, sum_extents);
6041 j++;
6042 if (e[j-1].size == 0)
6043 break;
6044 }
6045
6046 pos = 0;
6047 maxsize = 0;
6048 start_extent = 0;
6049 i = 0;
6050 do {
6051 unsigned long long esize;
6052
6053 esize = e[i].start - pos;
6054 if (esize >= maxsize) {
6055 maxsize = esize;
6056 start = pos;
6057 start_extent = i;
6058 }
6059 pos = e[i].start + e[i].size;
6060 i++;
6061 } while (e[i-1].size);
6062 free(e);
6063
a7dd165b
DW
6064 if (maxsize == 0)
6065 return 0;
6066
6067 /* FIXME assumes volume at offset 0 is the first volume in a
6068 * container
6069 */
0dcecb2e
DW
6070 if (start_extent > 0)
6071 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6072 else
6073 reserve = 0;
6074
6075 if (maxsize < reserve)
a7dd165b 6076 return 0;
0dcecb2e 6077
5551b113 6078 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6079 if (start + reserve > super->create_offset)
a7dd165b 6080 return 0; /* start overflows create_offset */
0dcecb2e
DW
6081 super->create_offset = start + reserve;
6082
6083 return maxsize - reserve;
6084}
6085
88c32bb1
DW
6086static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6087{
6088 if (level < 0 || level == 6 || level == 4)
6089 return 0;
6090
6091 /* if we have an orom prevent invalid raid levels */
6092 if (orom)
6093 switch (level) {
6094 case 0: return imsm_orom_has_raid0(orom);
6095 case 1:
6096 if (raiddisks > 2)
6097 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6098 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6099 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6100 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6101 }
6102 else
6103 return 1; /* not on an Intel RAID platform so anything goes */
6104
6105 return 0;
6106}
6107
ca9de185
LM
6108static int
6109active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6110 int dpa, int verbose)
6111{
6112 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6113 struct mdstat_ent *memb;
ca9de185
LM
6114 int count = 0;
6115 int num = 0;
594dc1b8 6116 struct md_list *dv;
ca9de185
LM
6117 int found;
6118
6119 for (memb = mdstat ; memb ; memb = memb->next) {
6120 if (memb->metadata_version &&
6121 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6122 (strcmp(&memb->metadata_version[9], name) == 0) &&
6123 !is_subarray(memb->metadata_version+9) &&
6124 memb->members) {
6125 struct dev_member *dev = memb->members;
6126 int fd = -1;
6127 while(dev && (fd < 0)) {
503975b9
N
6128 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6129 num = sprintf(path, "%s%s", "/dev/", dev->name);
6130 if (num > 0)
6131 fd = open(path, O_RDONLY, 0);
089f9d79 6132 if (num <= 0 || fd < 0) {
676e87a8 6133 pr_vrb("Cannot open %s: %s\n",
503975b9 6134 dev->name, strerror(errno));
ca9de185 6135 }
503975b9 6136 free(path);
ca9de185
LM
6137 dev = dev->next;
6138 }
6139 found = 0;
089f9d79 6140 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6141 struct mdstat_ent *vol;
6142 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6143 if (vol->active > 0 &&
ca9de185 6144 vol->metadata_version &&
9581efb1 6145 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6146 found++;
6147 count++;
6148 }
6149 }
6150 if (*devlist && (found < dpa)) {
503975b9 6151 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6152 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6153 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6154 dv->found = found;
6155 dv->used = 0;
6156 dv->next = *devlist;
6157 *devlist = dv;
ca9de185
LM
6158 }
6159 }
6160 if (fd >= 0)
6161 close(fd);
6162 }
6163 }
6164 free_mdstat(mdstat);
6165 return count;
6166}
6167
6168#ifdef DEBUG_LOOP
6169static struct md_list*
6170get_loop_devices(void)
6171{
6172 int i;
6173 struct md_list *devlist = NULL;
594dc1b8 6174 struct md_list *dv;
ca9de185
LM
6175
6176 for(i = 0; i < 12; i++) {
503975b9
N
6177 dv = xcalloc(1, sizeof(*dv));
6178 dv->devname = xmalloc(40);
ca9de185
LM
6179 sprintf(dv->devname, "/dev/loop%d", i);
6180 dv->next = devlist;
6181 devlist = dv;
6182 }
6183 return devlist;
6184}
6185#endif
6186
6187static struct md_list*
6188get_devices(const char *hba_path)
6189{
6190 struct md_list *devlist = NULL;
594dc1b8 6191 struct md_list *dv;
ca9de185
LM
6192 struct dirent *ent;
6193 DIR *dir;
6194 int err = 0;
6195
6196#if DEBUG_LOOP
6197 devlist = get_loop_devices();
6198 return devlist;
6199#endif
6200 /* scroll through /sys/dev/block looking for devices attached to
6201 * this hba
6202 */
6203 dir = opendir("/sys/dev/block");
6204 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6205 int fd;
6206 char buf[1024];
6207 int major, minor;
6208 char *path = NULL;
6209 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6210 continue;
6211 path = devt_to_devpath(makedev(major, minor));
6212 if (!path)
6213 continue;
6214 if (!path_attached_to_hba(path, hba_path)) {
6215 free(path);
6216 path = NULL;
6217 continue;
6218 }
6219 free(path);
6220 path = NULL;
6221 fd = dev_open(ent->d_name, O_RDONLY);
6222 if (fd >= 0) {
6223 fd2devname(fd, buf);
6224 close(fd);
6225 } else {
e7b84f9d 6226 pr_err("cannot open device: %s\n",
ca9de185
LM
6227 ent->d_name);
6228 continue;
6229 }
6230
503975b9
N
6231 dv = xcalloc(1, sizeof(*dv));
6232 dv->devname = xstrdup(buf);
ca9de185
LM
6233 dv->next = devlist;
6234 devlist = dv;
6235 }
6236 if (err) {
6237 while(devlist) {
6238 dv = devlist;
6239 devlist = devlist->next;
6240 free(dv->devname);
6241 free(dv);
6242 }
6243 }
562aa102 6244 closedir(dir);
ca9de185
LM
6245 return devlist;
6246}
6247
6248static int
6249count_volumes_list(struct md_list *devlist, char *homehost,
6250 int verbose, int *found)
6251{
6252 struct md_list *tmpdev;
6253 int count = 0;
594dc1b8 6254 struct supertype *st;
ca9de185
LM
6255
6256 /* first walk the list of devices to find a consistent set
6257 * that match the criterea, if that is possible.
6258 * We flag the ones we like with 'used'.
6259 */
6260 *found = 0;
6261 st = match_metadata_desc_imsm("imsm");
6262 if (st == NULL) {
676e87a8 6263 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6264 return 0;
6265 }
6266
6267 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6268 char *devname = tmpdev->devname;
6269 struct stat stb;
6270 struct supertype *tst;
6271 int dfd;
6272 if (tmpdev->used > 1)
6273 continue;
6274 tst = dup_super(st);
6275 if (tst == NULL) {
676e87a8 6276 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6277 goto err_1;
6278 }
6279 tmpdev->container = 0;
6280 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6281 if (dfd < 0) {
1ade5cc1 6282 dprintf("cannot open device %s: %s\n",
ca9de185
LM
6283 devname, strerror(errno));
6284 tmpdev->used = 2;
6285 } else if (fstat(dfd, &stb)< 0) {
6286 /* Impossible! */
1ade5cc1 6287 dprintf("fstat failed for %s: %s\n",
ca9de185
LM
6288 devname, strerror(errno));
6289 tmpdev->used = 2;
6290 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
1ade5cc1 6291 dprintf("%s is not a block device.\n",
ca9de185
LM
6292 devname);
6293 tmpdev->used = 2;
6294 } else if (must_be_container(dfd)) {
6295 struct supertype *cst;
6296 cst = super_by_fd(dfd, NULL);
6297 if (cst == NULL) {
1ade5cc1 6298 dprintf("cannot recognize container type %s\n",
ca9de185
LM
6299 devname);
6300 tmpdev->used = 2;
6301 } else if (tst->ss != st->ss) {
1ade5cc1 6302 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
6303 devname);
6304 tmpdev->used = 2;
6305 } else if (!tst->ss->load_container ||
6306 tst->ss->load_container(tst, dfd, NULL))
6307 tmpdev->used = 2;
6308 else {
6309 tmpdev->container = 1;
6310 }
6311 if (cst)
6312 cst->ss->free_super(cst);
6313 } else {
6314 tmpdev->st_rdev = stb.st_rdev;
6315 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 6316 dprintf("no RAID superblock on %s\n",
ca9de185
LM
6317 devname);
6318 tmpdev->used = 2;
6319 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 6320 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
6321 tst->ss->name, devname);
6322 tmpdev->used = 2;
6323 }
6324 }
6325 if (dfd >= 0)
6326 close(dfd);
6327 if (tmpdev->used == 2 || tmpdev->used == 4) {
6328 /* Ignore unrecognised devices during auto-assembly */
6329 goto loop;
6330 }
6331 else {
6332 struct mdinfo info;
6333 tst->ss->getinfo_super(tst, &info, NULL);
6334
6335 if (st->minor_version == -1)
6336 st->minor_version = tst->minor_version;
6337
6338 if (memcmp(info.uuid, uuid_zero,
6339 sizeof(int[4])) == 0) {
6340 /* this is a floating spare. It cannot define
6341 * an array unless there are no more arrays of
6342 * this type to be found. It can be included
6343 * in an array of this type though.
6344 */
6345 tmpdev->used = 3;
6346 goto loop;
6347 }
6348
6349 if (st->ss != tst->ss ||
6350 st->minor_version != tst->minor_version ||
6351 st->ss->compare_super(st, tst) != 0) {
6352 /* Some mismatch. If exactly one array matches this host,
6353 * we can resolve on that one.
6354 * Or, if we are auto assembling, we just ignore the second
6355 * for now.
6356 */
1ade5cc1 6357 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
6358 devname);
6359 goto loop;
6360 }
6361 tmpdev->used = 1;
6362 *found = 1;
6363 dprintf("found: devname: %s\n", devname);
6364 }
6365 loop:
6366 if (tst)
6367 tst->ss->free_super(tst);
6368 }
6369 if (*found != 0) {
6370 int err;
6371 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6372 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6373 for (iter = head; iter; iter = iter->next) {
6374 dprintf("content->text_version: %s vol\n",
6375 iter->text_version);
6376 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6377 /* do not assemble arrays with unsupported
6378 configurations */
1ade5cc1 6379 dprintf("Cannot activate member %s.\n",
ca9de185
LM
6380 iter->text_version);
6381 } else
6382 count++;
6383 }
6384 sysfs_free(head);
6385
6386 } else {
1ade5cc1 6387 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
6388 err, st->sb);
6389 }
6390 } else {
1ade5cc1 6391 dprintf("no more devices to examine\n");
ca9de185
LM
6392 }
6393
6394 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 6395 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
6396 if (count) {
6397 if (count < tmpdev->found)
6398 count = 0;
6399 else
6400 count -= tmpdev->found;
6401 }
6402 }
6403 if (tmpdev->used == 1)
6404 tmpdev->used = 4;
6405 }
6406 err_1:
6407 if (st)
6408 st->ss->free_super(st);
6409 return count;
6410}
6411
ca9de185 6412static int
72a45777 6413count_volumes(struct intel_hba *hba, int dpa, int verbose)
ca9de185 6414{
72a45777 6415 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 6416 int count = 0;
72a45777
PB
6417 const struct orom_entry *entry;
6418 struct devid_list *dv, *devid_list;
ca9de185 6419
72a45777 6420 if (!hba || !hba->path)
ca9de185
LM
6421 return 0;
6422
72a45777
PB
6423 for (idev = intel_devices; idev; idev = idev->next) {
6424 if (strstr(idev->path, hba->path))
6425 break;
6426 }
6427
6428 if (!idev || !idev->dev_id)
ca9de185 6429 return 0;
72a45777
PB
6430
6431 entry = get_orom_entry_by_device_id(idev->dev_id);
6432
6433 if (!entry || !entry->devid_list)
6434 return 0;
6435
6436 devid_list = entry->devid_list;
6437 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 6438 struct md_list *devlist;
72a45777
PB
6439 struct sys_dev *device = device_by_id(dv->devid);
6440 char *hba_path;
6441 int found = 0;
6442
6443 if (device)
6444 hba_path = device->path;
6445 else
6446 return 0;
6447
6448 devlist = get_devices(hba_path);
6449 /* if no intel devices return zero volumes */
6450 if (devlist == NULL)
6451 return 0;
6452
6453 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6454 dprintf("path: %s active arrays: %d\n", hba_path, count);
6455 if (devlist == NULL)
6456 return 0;
6457 do {
6458 found = 0;
6459 count += count_volumes_list(devlist,
6460 NULL,
6461 verbose,
6462 &found);
6463 dprintf("found %d count: %d\n", found, count);
6464 } while (found);
6465
6466 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6467
6468 while (devlist) {
6469 struct md_list *dv = devlist;
6470 devlist = devlist->next;
6471 free(dv->devname);
6472 free(dv);
6473 }
ca9de185
LM
6474 }
6475 return count;
6476}
6477
cd9d1ac7
DW
6478static int imsm_default_chunk(const struct imsm_orom *orom)
6479{
6480 /* up to 512 if the plaform supports it, otherwise the platform max.
6481 * 128 if no platform detected
6482 */
6483 int fs = max(7, orom ? fls(orom->sss) : 0);
6484
6485 return min(512, (1 << fs));
6486}
73408129 6487
6592ce37
DW
6488static int
6489validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6490 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6491{
660260d0
DW
6492 /* check/set platform and metadata limits/defaults */
6493 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 6494 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 6495 super->orom->dpa);
73408129
LM
6496 return 0;
6497 }
6498
5d500228 6499 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6500 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 6501 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
6502 level, raiddisks, raiddisks > 1 ? "s" : "");
6503 return 0;
6504 }
cd9d1ac7 6505
7ccc4cc4 6506 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
6507 *chunk = imsm_default_chunk(super->orom);
6508
7ccc4cc4 6509 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 6510 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 6511 return 0;
6592ce37 6512 }
cd9d1ac7 6513
6592ce37
DW
6514 if (layout != imsm_level_to_layout(level)) {
6515 if (level == 5)
676e87a8 6516 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 6517 else if (level == 10)
676e87a8 6518 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 6519 else
676e87a8 6520 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
6521 layout, level);
6522 return 0;
6523 }
2cc699af 6524
7ccc4cc4 6525 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 6526 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 6527 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
6528 return 0;
6529 }
614902f6 6530
6592ce37
DW
6531 return 1;
6532}
6533
1011e834 6534/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
6535 * FIX ME add ahci details
6536 */
8b353278 6537static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 6538 int layout, int raiddisks, int *chunk,
af4348dd
N
6539 unsigned long long size,
6540 unsigned long long data_offset,
6541 char *dev,
2c514b71
NB
6542 unsigned long long *freesize,
6543 int verbose)
cdddbdbc 6544{
c2c087e6
DW
6545 struct stat stb;
6546 struct intel_super *super = st->sb;
b2916f25 6547 struct imsm_super *mpb;
c2c087e6
DW
6548 struct dl *dl;
6549 unsigned long long pos = 0;
6550 unsigned long long maxsize;
6551 struct extent *e;
6552 int i;
cdddbdbc 6553
88c32bb1
DW
6554 /* We must have the container info already read in. */
6555 if (!super)
c2c087e6
DW
6556 return 0;
6557
b2916f25
JS
6558 mpb = super->anchor;
6559
2cc699af 6560 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 6561 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 6562 return 0;
d54559f0 6563 }
c2c087e6
DW
6564 if (!dev) {
6565 /* General test: make sure there is space for
2da8544a
DW
6566 * 'raiddisks' device extents of size 'size' at a given
6567 * offset
c2c087e6 6568 */
e46273eb 6569 unsigned long long minsize = size;
b7528a20 6570 unsigned long long start_offset = MaxSector;
c2c087e6
DW
6571 int dcnt = 0;
6572 if (minsize == 0)
6573 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6574 for (dl = super->disks; dl ; dl = dl->next) {
6575 int found = 0;
6576
bf5a934a 6577 pos = 0;
c2c087e6
DW
6578 i = 0;
6579 e = get_extents(super, dl);
6580 if (!e) continue;
6581 do {
6582 unsigned long long esize;
6583 esize = e[i].start - pos;
6584 if (esize >= minsize)
6585 found = 1;
b7528a20 6586 if (found && start_offset == MaxSector) {
2da8544a
DW
6587 start_offset = pos;
6588 break;
6589 } else if (found && pos != start_offset) {
6590 found = 0;
6591 break;
6592 }
c2c087e6
DW
6593 pos = e[i].start + e[i].size;
6594 i++;
6595 } while (e[i-1].size);
6596 if (found)
6597 dcnt++;
6598 free(e);
6599 }
6600 if (dcnt < raiddisks) {
2c514b71 6601 if (verbose)
7a862a02 6602 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 6603 dcnt, raiddisks);
c2c087e6
DW
6604 return 0;
6605 }
6606 return 1;
6607 }
0dcecb2e 6608
c2c087e6
DW
6609 /* This device must be a member of the set */
6610 if (stat(dev, &stb) < 0)
6611 return 0;
6612 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6613 return 0;
6614 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
6615 if (dl->major == (int)major(stb.st_rdev) &&
6616 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
6617 break;
6618 }
6619 if (!dl) {
2c514b71 6620 if (verbose)
7a862a02 6621 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 6622 return 0;
a20d2ba5
DW
6623 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6624 /* If a volume is present then the current creation attempt
6625 * cannot incorporate new spares because the orom may not
6626 * understand this configuration (all member disks must be
6627 * members of each array in the container).
6628 */
7a862a02
N
6629 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6630 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 6631 return 0;
5fe62b94
WD
6632 } else if (super->orom && mpb->num_raid_devs > 0 &&
6633 mpb->num_disks != raiddisks) {
7a862a02 6634 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 6635 return 0;
c2c087e6 6636 }
0dcecb2e
DW
6637
6638 /* retrieve the largest free space block */
c2c087e6
DW
6639 e = get_extents(super, dl);
6640 maxsize = 0;
6641 i = 0;
0dcecb2e
DW
6642 if (e) {
6643 do {
6644 unsigned long long esize;
6645
6646 esize = e[i].start - pos;
6647 if (esize >= maxsize)
6648 maxsize = esize;
6649 pos = e[i].start + e[i].size;
6650 i++;
6651 } while (e[i-1].size);
6652 dl->e = e;
6653 dl->extent_cnt = i;
6654 } else {
6655 if (verbose)
e7b84f9d 6656 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6657 dev);
6658 return 0;
6659 }
6660 if (maxsize < size) {
6661 if (verbose)
e7b84f9d 6662 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6663 dev, maxsize, size);
6664 return 0;
6665 }
6666
6667 /* count total number of extents for merge */
6668 i = 0;
6669 for (dl = super->disks; dl; dl = dl->next)
6670 if (dl->e)
6671 i += dl->extent_cnt;
6672
6673 maxsize = merge_extents(super, i);
3baa56ab
LO
6674
6675 if (!check_env("IMSM_NO_PLATFORM") &&
6676 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6677 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
6678 return 0;
6679 }
6680
a7dd165b 6681 if (maxsize < size || maxsize == 0) {
b3071342
LD
6682 if (verbose) {
6683 if (maxsize == 0)
7a862a02 6684 pr_err("no free space left on device. Aborting...\n");
b3071342 6685 else
7a862a02 6686 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
6687 maxsize, size);
6688 }
0dcecb2e 6689 return 0;
0dcecb2e
DW
6690 }
6691
c2c087e6
DW
6692 *freesize = maxsize;
6693
ca9de185 6694 if (super->orom) {
72a45777 6695 int count = count_volumes(super->hba,
ca9de185
LM
6696 super->orom->dpa, verbose);
6697 if (super->orom->vphba <= count) {
676e87a8 6698 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
6699 super->orom->vphba);
6700 return 0;
6701 }
6702 }
c2c087e6 6703 return 1;
cdddbdbc
DW
6704}
6705
13bcac90 6706static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
6707 unsigned long long size, int chunk,
6708 unsigned long long *freesize)
6709{
6710 struct intel_super *super = st->sb;
6711 struct imsm_super *mpb = super->anchor;
6712 struct dl *dl;
6713 int i;
6714 int extent_cnt;
6715 struct extent *e;
6716 unsigned long long maxsize;
6717 unsigned long long minsize;
6718 int cnt;
6719 int used;
6720
6721 /* find the largest common start free region of the possible disks */
6722 used = 0;
6723 extent_cnt = 0;
6724 cnt = 0;
6725 for (dl = super->disks; dl; dl = dl->next) {
6726 dl->raiddisk = -1;
6727
6728 if (dl->index >= 0)
6729 used++;
6730
6731 /* don't activate new spares if we are orom constrained
6732 * and there is already a volume active in the container
6733 */
6734 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6735 continue;
6736
6737 e = get_extents(super, dl);
6738 if (!e)
6739 continue;
6740 for (i = 1; e[i-1].size; i++)
6741 ;
6742 dl->e = e;
6743 dl->extent_cnt = i;
6744 extent_cnt += i;
6745 cnt++;
6746 }
6747
6748 maxsize = merge_extents(super, extent_cnt);
6749 minsize = size;
6750 if (size == 0)
612e59d8
CA
6751 /* chunk is in K */
6752 minsize = chunk * 2;
efb30e7f
DW
6753
6754 if (cnt < raiddisks ||
6755 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
6756 maxsize < minsize ||
6757 maxsize == 0) {
e7b84f9d 6758 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
6759 return 0; /* No enough free spaces large enough */
6760 }
6761
6762 if (size == 0) {
6763 size = maxsize;
6764 if (chunk) {
612e59d8
CA
6765 size /= 2 * chunk;
6766 size *= 2 * chunk;
efb30e7f 6767 }
f878b242
LM
6768 maxsize = size;
6769 }
6770 if (!check_env("IMSM_NO_PLATFORM") &&
6771 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6772 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 6773 return 0;
efb30e7f 6774 }
efb30e7f
DW
6775 cnt = 0;
6776 for (dl = super->disks; dl; dl = dl->next)
6777 if (dl->e)
6778 dl->raiddisk = cnt++;
6779
6780 *freesize = size;
6781
13bcac90
AK
6782 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6783
efb30e7f
DW
6784 return 1;
6785}
6786
13bcac90
AK
6787static int reserve_space(struct supertype *st, int raiddisks,
6788 unsigned long long size, int chunk,
6789 unsigned long long *freesize)
6790{
6791 struct intel_super *super = st->sb;
6792 struct dl *dl;
6793 int cnt;
6794 int rv = 0;
6795
6796 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6797 if (rv) {
6798 cnt = 0;
6799 for (dl = super->disks; dl; dl = dl->next)
6800 if (dl->e)
6801 dl->raiddisk = cnt++;
6802 rv = 1;
6803 }
6804
6805 return rv;
6806}
6807
bf5a934a 6808static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 6809 int raiddisks, int *chunk, unsigned long long size,
af4348dd 6810 unsigned long long data_offset,
bf5a934a
DW
6811 char *dev, unsigned long long *freesize,
6812 int verbose)
6813{
6814 int fd, cfd;
6815 struct mdinfo *sra;
20cbe8d2 6816 int is_member = 0;
bf5a934a 6817
d54559f0
LM
6818 /* load capability
6819 * if given unused devices create a container
bf5a934a
DW
6820 * if given given devices in a container create a member volume
6821 */
6822 if (level == LEVEL_CONTAINER) {
6823 /* Must be a fresh device to add to a container */
6824 return validate_geometry_imsm_container(st, level, layout,
c21e737b 6825 raiddisks,
7ccc4cc4 6826 *chunk,
af4348dd 6827 size, data_offset,
bf5a934a
DW
6828 dev, freesize,
6829 verbose);
6830 }
9587c373 6831
8592f29d 6832 if (!dev) {
e91a3bad 6833 if (st->sb) {
ca9de185 6834 struct intel_super *super = st->sb;
e91a3bad 6835 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 6836 raiddisks, chunk, size,
e91a3bad
LM
6837 verbose))
6838 return 0;
efb30e7f
DW
6839 /* we are being asked to automatically layout a
6840 * new volume based on the current contents of
6841 * the container. If the the parameters can be
6842 * satisfied reserve_space will record the disks,
6843 * start offset, and size of the volume to be
6844 * created. add_to_super and getinfo_super
6845 * detect when autolayout is in progress.
6846 */
ca9de185
LM
6847 /* assuming that freesize is always given when array is
6848 created */
6849 if (super->orom && freesize) {
6850 int count;
72a45777 6851 count = count_volumes(super->hba,
ca9de185
LM
6852 super->orom->dpa, verbose);
6853 if (super->orom->vphba <= count) {
676e87a8 6854 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
6855 super->orom->vphba);
6856 return 0;
6857 }
6858 }
e91a3bad
LM
6859 if (freesize)
6860 return reserve_space(st, raiddisks, size,
7ccc4cc4 6861 *chunk, freesize);
8592f29d
N
6862 }
6863 return 1;
6864 }
bf5a934a
DW
6865 if (st->sb) {
6866 /* creating in a given container */
6867 return validate_geometry_imsm_volume(st, level, layout,
6868 raiddisks, chunk, size,
af4348dd 6869 data_offset,
bf5a934a
DW
6870 dev, freesize, verbose);
6871 }
6872
bf5a934a
DW
6873 /* This device needs to be a device in an 'imsm' container */
6874 fd = open(dev, O_RDONLY|O_EXCL, 0);
6875 if (fd >= 0) {
6876 if (verbose)
e7b84f9d
N
6877 pr_err("Cannot create this array on device %s\n",
6878 dev);
bf5a934a
DW
6879 close(fd);
6880 return 0;
6881 }
6882 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6883 if (verbose)
e7b84f9d 6884 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
6885 dev, strerror(errno));
6886 return 0;
6887 }
6888 /* Well, it is in use by someone, maybe an 'imsm' container. */
6889 cfd = open_container(fd);
20cbe8d2 6890 close(fd);
bf5a934a 6891 if (cfd < 0) {
bf5a934a 6892 if (verbose)
e7b84f9d 6893 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
6894 dev);
6895 return 0;
6896 }
4dd2df09 6897 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 6898 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
6899 strcmp(sra->text_version, "imsm") == 0)
6900 is_member = 1;
6901 sysfs_free(sra);
6902 if (is_member) {
bf5a934a
DW
6903 /* This is a member of a imsm container. Load the container
6904 * and try to create a volume
6905 */
6906 struct intel_super *super;
6907
ec50f7b6 6908 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 6909 st->sb = super;
4dd2df09 6910 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
6911 close(cfd);
6912 return validate_geometry_imsm_volume(st, level, layout,
6913 raiddisks, chunk,
af4348dd 6914 size, data_offset, dev,
ecbd9e81
N
6915 freesize, 1)
6916 ? 1 : -1;
bf5a934a 6917 }
20cbe8d2 6918 }
bf5a934a 6919
20cbe8d2 6920 if (verbose)
e7b84f9d 6921 pr_err("failed container membership check\n");
20cbe8d2
AW
6922
6923 close(cfd);
6924 return 0;
bf5a934a 6925}
0bd16cf2 6926
30f58b22 6927static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
6928{
6929 struct intel_super *super = st->sb;
6930
30f58b22
DW
6931 if (level && *level == UnSet)
6932 *level = LEVEL_CONTAINER;
6933
6934 if (level && layout && *layout == UnSet)
6935 *layout = imsm_level_to_layout(*level);
0bd16cf2 6936
cd9d1ac7
DW
6937 if (chunk && (*chunk == UnSet || *chunk == 0))
6938 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
6939}
6940
33414a01
DW
6941static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6942
6943static int kill_subarray_imsm(struct supertype *st)
6944{
6945 /* remove the subarray currently referenced by ->current_vol */
6946 __u8 i;
6947 struct intel_dev **dp;
6948 struct intel_super *super = st->sb;
6949 __u8 current_vol = super->current_vol;
6950 struct imsm_super *mpb = super->anchor;
6951
6952 if (super->current_vol < 0)
6953 return 2;
6954 super->current_vol = -1; /* invalidate subarray cursor */
6955
6956 /* block deletions that would change the uuid of active subarrays
6957 *
6958 * FIXME when immutable ids are available, but note that we'll
6959 * also need to fixup the invalidated/active subarray indexes in
6960 * mdstat
6961 */
6962 for (i = 0; i < mpb->num_raid_devs; i++) {
6963 char subarray[4];
6964
6965 if (i < current_vol)
6966 continue;
6967 sprintf(subarray, "%u", i);
4dd2df09 6968 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
6969 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6970 current_vol, i);
33414a01
DW
6971
6972 return 2;
6973 }
6974 }
6975
6976 if (st->update_tail) {
503975b9 6977 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 6978
33414a01
DW
6979 u->type = update_kill_array;
6980 u->dev_idx = current_vol;
6981 append_metadata_update(st, u, sizeof(*u));
6982
6983 return 0;
6984 }
6985
6986 for (dp = &super->devlist; *dp;)
6987 if ((*dp)->index == current_vol) {
6988 *dp = (*dp)->next;
6989 } else {
6990 handle_missing(super, (*dp)->dev);
6991 if ((*dp)->index > current_vol)
6992 (*dp)->index--;
6993 dp = &(*dp)->next;
6994 }
6995
6996 /* no more raid devices, all active components are now spares,
6997 * but of course failed are still failed
6998 */
6999 if (--mpb->num_raid_devs == 0) {
7000 struct dl *d;
7001
7002 for (d = super->disks; d; d = d->next)
a8619d23
AK
7003 if (d->index > -2)
7004 mark_spare(d);
33414a01
DW
7005 }
7006
7007 super->updates_pending++;
7008
7009 return 0;
7010}
aa534678 7011
a951a4f7 7012static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7013 char *update, struct mddev_ident *ident)
aa534678
DW
7014{
7015 /* update the subarray currently referenced by ->current_vol */
7016 struct intel_super *super = st->sb;
7017 struct imsm_super *mpb = super->anchor;
7018
aa534678
DW
7019 if (strcmp(update, "name") == 0) {
7020 char *name = ident->name;
a951a4f7
N
7021 char *ep;
7022 int vol;
aa534678 7023
4dd2df09 7024 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7025 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7026 return 2;
7027 }
7028
7029 if (!check_name(super, name, 0))
7030 return 2;
7031
a951a4f7
N
7032 vol = strtoul(subarray, &ep, 10);
7033 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7034 return 2;
7035
aa534678 7036 if (st->update_tail) {
503975b9 7037 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7038
aa534678 7039 u->type = update_rename_array;
a951a4f7 7040 u->dev_idx = vol;
aa534678
DW
7041 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
7042 append_metadata_update(st, u, sizeof(*u));
7043 } else {
7044 struct imsm_dev *dev;
7045 int i;
7046
a951a4f7 7047 dev = get_imsm_dev(super, vol);
aa534678
DW
7048 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7049 for (i = 0; i < mpb->num_raid_devs; i++) {
7050 dev = get_imsm_dev(super, i);
7051 handle_missing(super, dev);
7052 }
7053 super->updates_pending++;
7054 }
7055 } else
7056 return 2;
7057
7058 return 0;
7059}
d1e02575 7060#endif /* MDASSEMBLE */
bf5a934a 7061
28bce06f
AK
7062static int is_gen_migration(struct imsm_dev *dev)
7063{
7534230b
AK
7064 if (dev == NULL)
7065 return 0;
7066
28bce06f
AK
7067 if (!dev->vol.migr_state)
7068 return 0;
7069
7070 if (migr_type(dev) == MIGR_GEN_MIGR)
7071 return 1;
7072
7073 return 0;
7074}
7075
1e5c6983
DW
7076static int is_rebuilding(struct imsm_dev *dev)
7077{
7078 struct imsm_map *migr_map;
7079
7080 if (!dev->vol.migr_state)
7081 return 0;
7082
7083 if (migr_type(dev) != MIGR_REBUILD)
7084 return 0;
7085
238c0a71 7086 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7087
7088 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7089 return 1;
7090 else
7091 return 0;
7092}
7093
b4ab44d8 7094#ifndef MDASSEMBLE
6ce1fbf1
AK
7095static int is_initializing(struct imsm_dev *dev)
7096{
7097 struct imsm_map *migr_map;
7098
7099 if (!dev->vol.migr_state)
7100 return 0;
7101
7102 if (migr_type(dev) != MIGR_INIT)
7103 return 0;
7104
238c0a71 7105 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7106
7107 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7108 return 1;
7109
7110 return 0;
6ce1fbf1 7111}
b4ab44d8 7112#endif
6ce1fbf1 7113
c47b0ff6
AK
7114static void update_recovery_start(struct intel_super *super,
7115 struct imsm_dev *dev,
7116 struct mdinfo *array)
1e5c6983
DW
7117{
7118 struct mdinfo *rebuild = NULL;
7119 struct mdinfo *d;
7120 __u32 units;
7121
7122 if (!is_rebuilding(dev))
7123 return;
7124
7125 /* Find the rebuild target, but punt on the dual rebuild case */
7126 for (d = array->devs; d; d = d->next)
7127 if (d->recovery_start == 0) {
7128 if (rebuild)
7129 return;
7130 rebuild = d;
7131 }
7132
4363fd80
DW
7133 if (!rebuild) {
7134 /* (?) none of the disks are marked with
7135 * IMSM_ORD_REBUILD, so assume they are missing and the
7136 * disk_ord_tbl was not correctly updated
7137 */
1ade5cc1 7138 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7139 return;
7140 }
7141
1e5c6983 7142 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 7143 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7144}
7145
9e2d750d 7146#ifndef MDASSEMBLE
276d77db 7147static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 7148#endif
1e5c6983 7149
00bbdbda 7150static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7151{
4f5bc454
DW
7152 /* Given a container loaded by load_super_imsm_all,
7153 * extract information about all the arrays into
7154 * an mdinfo tree.
00bbdbda 7155 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7156 *
7157 * For each imsm_dev create an mdinfo, fill it in,
7158 * then look for matching devices in super->disks
7159 * and create appropriate device mdinfo.
7160 */
7161 struct intel_super *super = st->sb;
949c47a0 7162 struct imsm_super *mpb = super->anchor;
4f5bc454 7163 struct mdinfo *rest = NULL;
00bbdbda 7164 unsigned int i;
81219e70 7165 int sb_errors = 0;
abef11a3
AK
7166 struct dl *d;
7167 int spare_disks = 0;
cdddbdbc 7168
19482bcc
AK
7169 /* do not assemble arrays when not all attributes are supported */
7170 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7171 sb_errors = 1;
7a862a02 7172 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7173 }
7174
abef11a3
AK
7175 /* count spare devices, not used in maps
7176 */
7177 for (d = super->disks; d; d = d->next)
7178 if (d->index == -1)
7179 spare_disks++;
7180
4f5bc454 7181 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7182 struct imsm_dev *dev;
7183 struct imsm_map *map;
86e3692b 7184 struct imsm_map *map2;
4f5bc454 7185 struct mdinfo *this;
a6482415
N
7186 int slot;
7187#ifndef MDASSEMBLE
7188 int chunk;
7189#endif
00bbdbda
N
7190 char *ep;
7191
7192 if (subarray &&
7193 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7194 continue;
7195
7196 dev = get_imsm_dev(super, i);
238c0a71
AK
7197 map = get_imsm_map(dev, MAP_0);
7198 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 7199
1ce0101c
DW
7200 /* do not publish arrays that are in the middle of an
7201 * unsupported migration
7202 */
7203 if (dev->vol.migr_state &&
28bce06f 7204 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 7205 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
7206 dev->volume);
7207 continue;
7208 }
2db86302
LM
7209 /* do not publish arrays that are not support by controller's
7210 * OROM/EFI
7211 */
1ce0101c 7212
503975b9 7213 this = xmalloc(sizeof(*this));
4f5bc454 7214
301406c9 7215 super->current_vol = i;
a5d85af7 7216 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 7217 this->next = rest;
81219e70 7218#ifndef MDASSEMBLE
a6482415 7219 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
7220 /* mdadm does not support all metadata features- set the bit in all arrays state */
7221 if (!validate_geometry_imsm_orom(super,
7222 get_imsm_raid_level(map), /* RAID level */
7223 imsm_level_to_layout(get_imsm_raid_level(map)),
7224 map->num_members, /* raid disks */
2cc699af 7225 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 7226 1 /* verbose */)) {
7a862a02 7227 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
7228 dev->volume);
7229 this->array.state |=
7230 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7231 (1<<MD_SB_BLOCK_VOLUME);
7232 }
7233#endif
7234
7235 /* if array has bad blocks, set suitable bit in all arrays state */
7236 if (sb_errors)
7237 this->array.state |=
7238 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7239 (1<<MD_SB_BLOCK_VOLUME);
7240
4f5bc454 7241 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 7242 unsigned long long recovery_start;
4f5bc454
DW
7243 struct mdinfo *info_d;
7244 struct dl *d;
7245 int idx;
9a1608e5 7246 int skip;
7eef0453 7247 __u32 ord;
4f5bc454 7248
9a1608e5 7249 skip = 0;
238c0a71
AK
7250 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7251 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
7252 for (d = super->disks; d ; d = d->next)
7253 if (d->index == idx)
0fbd635c 7254 break;
4f5bc454 7255
1e5c6983 7256 recovery_start = MaxSector;
4f5bc454 7257 if (d == NULL)
9a1608e5 7258 skip = 1;
25ed7e59 7259 if (d && is_failed(&d->disk))
9a1608e5 7260 skip = 1;
7eef0453 7261 if (ord & IMSM_ORD_REBUILD)
1e5c6983 7262 recovery_start = 0;
9a1608e5 7263
1011e834 7264 /*
9a1608e5 7265 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
7266 * reset resync start to avoid a dirty-degraded
7267 * situation when performing the intial sync
9a1608e5
DW
7268 *
7269 * FIXME handle dirty degraded
7270 */
1e5c6983 7271 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 7272 this->resync_start = MaxSector;
9a1608e5
DW
7273 if (skip)
7274 continue;
4f5bc454 7275
503975b9 7276 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
7277 info_d->next = this->devs;
7278 this->devs = info_d;
7279
4f5bc454
DW
7280 info_d->disk.number = d->index;
7281 info_d->disk.major = d->major;
7282 info_d->disk.minor = d->minor;
7283 info_d->disk.raid_disk = slot;
1e5c6983 7284 info_d->recovery_start = recovery_start;
86e3692b
AK
7285 if (map2) {
7286 if (slot < map2->num_members)
7287 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7288 else
7289 this->array.spare_disks++;
86e3692b
AK
7290 } else {
7291 if (slot < map->num_members)
7292 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7293 else
7294 this->array.spare_disks++;
86e3692b 7295 }
1e5c6983
DW
7296 if (info_d->recovery_start == MaxSector)
7297 this->array.working_disks++;
4f5bc454
DW
7298
7299 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 7300 info_d->data_offset = pba_of_lba0(map);
06fb291a
PB
7301
7302 if (map->raid_level == 5) {
7303 info_d->component_size =
7304 num_data_stripes(map) *
7305 map->blocks_per_strip;
7306 } else {
7307 info_d->component_size = blocks_per_member(map);
7308 }
b12796be
TM
7309
7310 info_d->bb.supported = 0;
7311 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7312 info_d->data_offset,
7313 info_d->component_size,
7314 &info_d->bb);
4f5bc454 7315 }
1e5c6983 7316 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 7317 update_recovery_start(super, dev, this);
abef11a3 7318 this->array.spare_disks += spare_disks;
276d77db 7319
9e2d750d 7320#ifndef MDASSEMBLE
276d77db
AK
7321 /* check for reshape */
7322 if (this->reshape_active == 1)
7323 recover_backup_imsm(st, this);
9e2d750d 7324#endif
9a1608e5 7325 rest = this;
4f5bc454
DW
7326 }
7327
7328 return rest;
cdddbdbc
DW
7329}
7330
3b451610
AK
7331static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7332 int failed, int look_in_map)
c2a1e7da 7333{
3b451610
AK
7334 struct imsm_map *map;
7335
7336 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
7337
7338 if (!failed)
1011e834 7339 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 7340 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
7341
7342 switch (get_imsm_raid_level(map)) {
7343 case 0:
7344 return IMSM_T_STATE_FAILED;
7345 break;
7346 case 1:
7347 if (failed < map->num_members)
7348 return IMSM_T_STATE_DEGRADED;
7349 else
7350 return IMSM_T_STATE_FAILED;
7351 break;
7352 case 10:
7353 {
7354 /**
c92a2527
DW
7355 * check to see if any mirrors have failed, otherwise we
7356 * are degraded. Even numbered slots are mirrored on
7357 * slot+1
c2a1e7da 7358 */
c2a1e7da 7359 int i;
d9b420a5
N
7360 /* gcc -Os complains that this is unused */
7361 int insync = insync;
c2a1e7da
DW
7362
7363 for (i = 0; i < map->num_members; i++) {
238c0a71 7364 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
7365 int idx = ord_to_idx(ord);
7366 struct imsm_disk *disk;
c2a1e7da 7367
c92a2527 7368 /* reset the potential in-sync count on even-numbered
1011e834 7369 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
7370 */
7371 if ((i & 1) == 0)
7372 insync = 2;
c2a1e7da 7373
c92a2527 7374 disk = get_imsm_disk(super, idx);
25ed7e59 7375 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 7376 insync--;
c2a1e7da 7377
c92a2527
DW
7378 /* no in-sync disks left in this mirror the
7379 * array has failed
7380 */
7381 if (insync == 0)
7382 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
7383 }
7384
7385 return IMSM_T_STATE_DEGRADED;
7386 }
7387 case 5:
7388 if (failed < 2)
7389 return IMSM_T_STATE_DEGRADED;
7390 else
7391 return IMSM_T_STATE_FAILED;
7392 break;
7393 default:
7394 break;
7395 }
7396
7397 return map->map_state;
7398}
7399
3b451610
AK
7400static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7401 int look_in_map)
c2a1e7da
DW
7402{
7403 int i;
7404 int failed = 0;
7405 struct imsm_disk *disk;
d5985138
AK
7406 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7407 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 7408 struct imsm_map *map_for_loop;
0556e1a2
DW
7409 __u32 ord;
7410 int idx;
d5985138 7411 int idx_1;
c2a1e7da 7412
0556e1a2
DW
7413 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7414 * disks that are being rebuilt. New failures are recorded to
7415 * map[0]. So we look through all the disks we started with and
7416 * see if any failures are still present, or if any new ones
7417 * have arrived
0556e1a2 7418 */
d5985138
AK
7419 map_for_loop = map;
7420 if (prev && (map->num_members < prev->num_members))
7421 map_for_loop = prev;
68fe4598
LD
7422
7423 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 7424 idx_1 = -255;
238c0a71
AK
7425 /* when MAP_X is passed both maps failures are counted
7426 */
d5985138 7427 if (prev &&
089f9d79
JS
7428 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7429 i < prev->num_members) {
d5985138
AK
7430 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7431 idx_1 = ord_to_idx(ord);
c2a1e7da 7432
d5985138
AK
7433 disk = get_imsm_disk(super, idx_1);
7434 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7435 failed++;
7436 }
089f9d79
JS
7437 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7438 i < map->num_members) {
d5985138
AK
7439 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7440 idx = ord_to_idx(ord);
7441
7442 if (idx != idx_1) {
7443 disk = get_imsm_disk(super, idx);
7444 if (!disk || is_failed(disk) ||
7445 ord & IMSM_ORD_REBUILD)
7446 failed++;
7447 }
7448 }
c2a1e7da
DW
7449 }
7450
7451 return failed;
845dea95
NB
7452}
7453
97b4d0e9
DW
7454#ifndef MDASSEMBLE
7455static int imsm_open_new(struct supertype *c, struct active_array *a,
7456 char *inst)
7457{
7458 struct intel_super *super = c->sb;
7459 struct imsm_super *mpb = super->anchor;
bbab0940 7460 struct imsm_update_prealloc_bb_mem u;
9587c373 7461
97b4d0e9 7462 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7463 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7464 return -ENODEV;
7465 }
7466
7467 dprintf("imsm: open_new %s\n", inst);
7468 a->info.container_member = atoi(inst);
bbab0940
TM
7469
7470 u.type = update_prealloc_badblocks_mem;
7471 imsm_update_metadata_locally(c, &u, sizeof(u));
7472
97b4d0e9
DW
7473 return 0;
7474}
7475
0c046afd
DW
7476static int is_resyncing(struct imsm_dev *dev)
7477{
7478 struct imsm_map *migr_map;
7479
7480 if (!dev->vol.migr_state)
7481 return 0;
7482
1484e727
DW
7483 if (migr_type(dev) == MIGR_INIT ||
7484 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
7485 return 1;
7486
4c9bc37b
AK
7487 if (migr_type(dev) == MIGR_GEN_MIGR)
7488 return 0;
7489
238c0a71 7490 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 7491
089f9d79
JS
7492 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7493 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
7494 return 1;
7495 else
7496 return 0;
7497}
7498
0556e1a2
DW
7499/* return true if we recorded new information */
7500static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 7501{
0556e1a2
DW
7502 __u32 ord;
7503 int slot;
7504 struct imsm_map *map;
86c54047
DW
7505 char buf[MAX_RAID_SERIAL_LEN+3];
7506 unsigned int len, shift = 0;
0556e1a2
DW
7507
7508 /* new failures are always set in map[0] */
238c0a71 7509 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
7510
7511 slot = get_imsm_disk_slot(map, idx);
7512 if (slot < 0)
7513 return 0;
7514
7515 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 7516 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
7517 return 0;
7518
7d0c5e24
LD
7519 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7520 buf[MAX_RAID_SERIAL_LEN] = '\000';
7521 strcat(buf, ":0");
86c54047
DW
7522 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7523 shift = len - MAX_RAID_SERIAL_LEN + 1;
7524 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7525
f2f27e63 7526 disk->status |= FAILED_DISK;
0556e1a2 7527 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
7528 /* mark failures in second map if second map exists and this disk
7529 * in this slot.
7530 * This is valid for migration, initialization and rebuild
7531 */
7532 if (dev->vol.migr_state) {
238c0a71 7533 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
7534 int slot2 = get_imsm_disk_slot(map2, idx);
7535
089f9d79 7536 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 7537 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
7538 idx | IMSM_ORD_REBUILD);
7539 }
f21e18ca 7540 if (map->failed_disk_num == 0xff)
0556e1a2
DW
7541 map->failed_disk_num = slot;
7542 return 1;
7543}
7544
7545static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7546{
7547 mark_failure(dev, disk, idx);
7548
7549 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7550 return;
7551
47ee5a45
DW
7552 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7553 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7554}
7555
33414a01
DW
7556static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7557{
33414a01 7558 struct dl *dl;
33414a01
DW
7559
7560 if (!super->missing)
7561 return;
33414a01 7562
79b68f1b
PC
7563 /* When orom adds replacement for missing disk it does
7564 * not remove entry of missing disk, but just updates map with
7565 * new added disk. So it is not enough just to test if there is
7566 * any missing disk, we have to look if there are any failed disks
7567 * in map to stop migration */
7568
33414a01 7569 dprintf("imsm: mark missing\n");
3d59f0c0
AK
7570 /* end process for initialization and rebuild only
7571 */
7572 if (is_gen_migration(dev) == 0) {
7573 __u8 map_state;
7574 int failed;
7575
7576 failed = imsm_count_failed(super, dev, MAP_0);
7577 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7578
79b68f1b
PC
7579 if (failed)
7580 end_migration(dev, super, map_state);
3d59f0c0 7581 }
33414a01
DW
7582 for (dl = super->missing; dl; dl = dl->next)
7583 mark_missing(dev, &dl->disk, dl->index);
7584 super->updates_pending++;
7585}
7586
f3871fdc
AK
7587static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7588 long long new_size)
70bdf0dc 7589{
238c0a71 7590 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
7591 unsigned long long array_blocks;
7592 struct imsm_map *map;
7593
7594 if (used_disks == 0) {
7595 /* when problems occures
7596 * return current array_blocks value
7597 */
7598 array_blocks = __le32_to_cpu(dev->size_high);
7599 array_blocks = array_blocks << 32;
7600 array_blocks += __le32_to_cpu(dev->size_low);
7601
7602 return array_blocks;
7603 }
7604
7605 /* set array size in metadata
7606 */
f3871fdc
AK
7607 if (new_size <= 0) {
7608 /* OLCE size change is caused by added disks
7609 */
7610 map = get_imsm_map(dev, MAP_0);
7611 array_blocks = blocks_per_member(map) * used_disks;
7612 } else {
7613 /* Online Volume Size Change
7614 * Using available free space
7615 */
7616 array_blocks = new_size;
7617 }
70bdf0dc
AK
7618
7619 /* round array size down to closest MB
7620 */
7621 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7622 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7623 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7624
7625 return array_blocks;
7626}
7627
28bce06f
AK
7628static void imsm_set_disk(struct active_array *a, int n, int state);
7629
0e2d1a4e
AK
7630static void imsm_progress_container_reshape(struct intel_super *super)
7631{
7632 /* if no device has a migr_state, but some device has a
7633 * different number of members than the previous device, start
7634 * changing the number of devices in this device to match
7635 * previous.
7636 */
7637 struct imsm_super *mpb = super->anchor;
7638 int prev_disks = -1;
7639 int i;
1dfaa380 7640 int copy_map_size;
0e2d1a4e
AK
7641
7642 for (i = 0; i < mpb->num_raid_devs; i++) {
7643 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7644 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7645 struct imsm_map *map2;
7646 int prev_num_members;
0e2d1a4e
AK
7647
7648 if (dev->vol.migr_state)
7649 return;
7650
7651 if (prev_disks == -1)
7652 prev_disks = map->num_members;
7653 if (prev_disks == map->num_members)
7654 continue;
7655
7656 /* OK, this array needs to enter reshape mode.
7657 * i.e it needs a migr_state
7658 */
7659
1dfaa380 7660 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
7661 prev_num_members = map->num_members;
7662 map->num_members = prev_disks;
7663 dev->vol.migr_state = 1;
7664 dev->vol.curr_migr_unit = 0;
ea672ee1 7665 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
7666 for (i = prev_num_members;
7667 i < map->num_members; i++)
7668 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 7669 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 7670 /* Copy the current map */
1dfaa380 7671 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
7672 map2->num_members = prev_num_members;
7673
f3871fdc 7674 imsm_set_array_size(dev, -1);
51d83f5d 7675 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
7676 super->updates_pending++;
7677 }
7678}
7679
aad6f216 7680/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
7681 * states are handled in imsm_set_disk() with one exception, when a
7682 * resync is stopped due to a new failure this routine will set the
7683 * 'degraded' state for the array.
7684 */
01f157d7 7685static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
7686{
7687 int inst = a->info.container_member;
7688 struct intel_super *super = a->container->sb;
949c47a0 7689 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7690 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
7691 int failed = imsm_count_failed(super, dev, MAP_0);
7692 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 7693 __u32 blocks_per_unit;
a862209d 7694
1af97990
AK
7695 if (dev->vol.migr_state &&
7696 dev->vol.migr_type == MIGR_GEN_MIGR) {
7697 /* array state change is blocked due to reshape action
aad6f216
N
7698 * We might need to
7699 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7700 * - finish the reshape (if last_checkpoint is big and action != reshape)
7701 * - update curr_migr_unit
1af97990 7702 */
aad6f216
N
7703 if (a->curr_action == reshape) {
7704 /* still reshaping, maybe update curr_migr_unit */
633b5610 7705 goto mark_checkpoint;
aad6f216
N
7706 } else {
7707 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7708 /* for some reason we aborted the reshape.
b66e591b
AK
7709 *
7710 * disable automatic metadata rollback
7711 * user action is required to recover process
aad6f216 7712 */
b66e591b 7713 if (0) {
238c0a71
AK
7714 struct imsm_map *map2 =
7715 get_imsm_map(dev, MAP_1);
7716 dev->vol.migr_state = 0;
7717 set_migr_type(dev, 0);
7718 dev->vol.curr_migr_unit = 0;
7719 memcpy(map, map2,
7720 sizeof_imsm_map(map2));
7721 super->updates_pending++;
b66e591b 7722 }
aad6f216
N
7723 }
7724 if (a->last_checkpoint >= a->info.component_size) {
7725 unsigned long long array_blocks;
7726 int used_disks;
e154ced3 7727 struct mdinfo *mdi;
aad6f216 7728
238c0a71 7729 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
7730 if (used_disks > 0) {
7731 array_blocks =
5551b113 7732 blocks_per_member(map) *
d55adef9
AK
7733 used_disks;
7734 /* round array size down to closest MB
7735 */
7736 array_blocks = (array_blocks
7737 >> SECT_PER_MB_SHIFT)
7738 << SECT_PER_MB_SHIFT;
d55adef9
AK
7739 a->info.custom_array_size = array_blocks;
7740 /* encourage manager to update array
7741 * size
7742 */
e154ced3 7743
d55adef9 7744 a->check_reshape = 1;
633b5610 7745 }
e154ced3
AK
7746 /* finalize online capacity expansion/reshape */
7747 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7748 imsm_set_disk(a,
7749 mdi->disk.raid_disk,
7750 mdi->curr_state);
7751
0e2d1a4e 7752 imsm_progress_container_reshape(super);
e154ced3 7753 }
aad6f216 7754 }
1af97990
AK
7755 }
7756
47ee5a45 7757 /* before we activate this array handle any missing disks */
33414a01
DW
7758 if (consistent == 2)
7759 handle_missing(super, dev);
1e5c6983 7760
0c046afd 7761 if (consistent == 2 &&
b7941fd6 7762 (!is_resync_complete(&a->info) ||
0c046afd
DW
7763 map_state != IMSM_T_STATE_NORMAL ||
7764 dev->vol.migr_state))
01f157d7 7765 consistent = 0;
272906ef 7766
b7941fd6 7767 if (is_resync_complete(&a->info)) {
0c046afd 7768 /* complete intialization / resync,
0556e1a2
DW
7769 * recovery and interrupted recovery is completed in
7770 * ->set_disk
0c046afd
DW
7771 */
7772 if (is_resyncing(dev)) {
7773 dprintf("imsm: mark resync done\n");
809da78e 7774 end_migration(dev, super, map_state);
115c3803 7775 super->updates_pending++;
484240d8 7776 a->last_checkpoint = 0;
115c3803 7777 }
b9172665
AK
7778 } else if ((!is_resyncing(dev) && !failed) &&
7779 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 7780 /* mark the start of the init process if nothing is failed */
b7941fd6 7781 dprintf("imsm: mark resync start\n");
1484e727 7782 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 7783 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 7784 else
8e59f3d8 7785 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 7786 super->updates_pending++;
115c3803 7787 }
a862209d 7788
633b5610 7789mark_checkpoint:
5b83bacf
AK
7790 /* skip checkpointing for general migration,
7791 * it is controlled in mdadm
7792 */
7793 if (is_gen_migration(dev))
7794 goto skip_mark_checkpoint;
7795
1e5c6983 7796 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 7797 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 7798 if (blocks_per_unit) {
1e5c6983
DW
7799 __u32 units32;
7800 __u64 units;
7801
4f0a7acc 7802 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
7803 units32 = units;
7804
7805 /* check that we did not overflow 32-bits, and that
7806 * curr_migr_unit needs updating
7807 */
7808 if (units32 == units &&
bfd80a56 7809 units32 != 0 &&
1e5c6983
DW
7810 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7811 dprintf("imsm: mark checkpoint (%u)\n", units32);
7812 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7813 super->updates_pending++;
7814 }
7815 }
f8f603f1 7816
5b83bacf 7817skip_mark_checkpoint:
3393c6af 7818 /* mark dirty / clean */
0c046afd 7819 if (dev->vol.dirty != !consistent) {
b7941fd6 7820 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
7821 if (consistent)
7822 dev->vol.dirty = 0;
7823 else
7824 dev->vol.dirty = 1;
a862209d
DW
7825 super->updates_pending++;
7826 }
28bce06f 7827
01f157d7 7828 return consistent;
a862209d
DW
7829}
7830
6f50473f
TM
7831static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
7832{
7833 int inst = a->info.container_member;
7834 struct intel_super *super = a->container->sb;
7835 struct imsm_dev *dev = get_imsm_dev(super, inst);
7836 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7837
7838 if (slot > map->num_members) {
7839 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
7840 slot, map->num_members - 1);
7841 return -1;
7842 }
7843
7844 if (slot < 0)
7845 return -1;
7846
7847 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
7848}
7849
8d45d196 7850static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 7851{
8d45d196
DW
7852 int inst = a->info.container_member;
7853 struct intel_super *super = a->container->sb;
949c47a0 7854 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7855 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 7856 struct imsm_disk *disk;
7ce05701
LD
7857 struct mdinfo *mdi;
7858 int recovery_not_finished = 0;
0c046afd 7859 int failed;
6f50473f 7860 int ord;
0c046afd 7861 __u8 map_state;
8d45d196 7862
6f50473f
TM
7863 ord = imsm_disk_slot_to_ord(a, n);
7864 if (ord < 0)
8d45d196
DW
7865 return;
7866
4e6e574a 7867 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 7868 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 7869
5802a811 7870 /* check for new failures */
0556e1a2
DW
7871 if (state & DS_FAULTY) {
7872 if (mark_failure(dev, disk, ord_to_idx(ord)))
7873 super->updates_pending++;
8d45d196 7874 }
47ee5a45 7875
19859edc 7876 /* check if in_sync */
0556e1a2 7877 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 7878 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
7879
7880 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
7881 super->updates_pending++;
7882 }
8d45d196 7883
3b451610
AK
7884 failed = imsm_count_failed(super, dev, MAP_0);
7885 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 7886
0c046afd 7887 /* check if recovery complete, newly degraded, or failed */
94002678
AK
7888 dprintf("imsm: Detected transition to state ");
7889 switch (map_state) {
7890 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7891 dprintf("normal: ");
7892 if (is_rebuilding(dev)) {
1ade5cc1 7893 dprintf_cont("while rebuilding");
7ce05701
LD
7894 /* check if recovery is really finished */
7895 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7896 if (mdi->recovery_start != MaxSector) {
7897 recovery_not_finished = 1;
7898 break;
7899 }
7900 if (recovery_not_finished) {
1ade5cc1
N
7901 dprintf_cont("\n");
7902 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
7903 if (a->last_checkpoint < mdi->recovery_start) {
7904 a->last_checkpoint = mdi->recovery_start;
7905 super->updates_pending++;
7906 }
7907 break;
7908 }
94002678 7909 end_migration(dev, super, map_state);
238c0a71 7910 map = get_imsm_map(dev, MAP_0);
94002678
AK
7911 map->failed_disk_num = ~0;
7912 super->updates_pending++;
7913 a->last_checkpoint = 0;
7914 break;
7915 }
7916 if (is_gen_migration(dev)) {
1ade5cc1 7917 dprintf_cont("while general migration");
bf2f0071 7918 if (a->last_checkpoint >= a->info.component_size)
809da78e 7919 end_migration(dev, super, map_state);
94002678
AK
7920 else
7921 map->map_state = map_state;
238c0a71 7922 map = get_imsm_map(dev, MAP_0);
28bce06f 7923 map->failed_disk_num = ~0;
94002678 7924 super->updates_pending++;
bf2f0071 7925 break;
94002678
AK
7926 }
7927 break;
7928 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 7929 dprintf_cont("degraded: ");
089f9d79 7930 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 7931 dprintf_cont("mark degraded");
94002678
AK
7932 map->map_state = map_state;
7933 super->updates_pending++;
7934 a->last_checkpoint = 0;
7935 break;
7936 }
7937 if (is_rebuilding(dev)) {
1ade5cc1 7938 dprintf_cont("while rebuilding.");
94002678 7939 if (map->map_state != map_state) {
1ade5cc1 7940 dprintf_cont(" Map state change");
94002678
AK
7941 end_migration(dev, super, map_state);
7942 super->updates_pending++;
7943 }
7944 break;
7945 }
7946 if (is_gen_migration(dev)) {
1ade5cc1 7947 dprintf_cont("while general migration");
bf2f0071 7948 if (a->last_checkpoint >= a->info.component_size)
809da78e 7949 end_migration(dev, super, map_state);
94002678
AK
7950 else {
7951 map->map_state = map_state;
3b451610 7952 manage_second_map(super, dev);
94002678
AK
7953 }
7954 super->updates_pending++;
bf2f0071 7955 break;
28bce06f 7956 }
6ce1fbf1 7957 if (is_initializing(dev)) {
1ade5cc1 7958 dprintf_cont("while initialization.");
6ce1fbf1
AK
7959 map->map_state = map_state;
7960 super->updates_pending++;
7961 break;
7962 }
94002678
AK
7963 break;
7964 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 7965 dprintf_cont("failed: ");
94002678 7966 if (is_gen_migration(dev)) {
1ade5cc1 7967 dprintf_cont("while general migration");
94002678
AK
7968 map->map_state = map_state;
7969 super->updates_pending++;
7970 break;
7971 }
7972 if (map->map_state != map_state) {
1ade5cc1 7973 dprintf_cont("mark failed");
94002678
AK
7974 end_migration(dev, super, map_state);
7975 super->updates_pending++;
7976 a->last_checkpoint = 0;
7977 break;
7978 }
7979 break;
7980 default:
1ade5cc1 7981 dprintf_cont("state %i\n", map_state);
5802a811 7982 }
1ade5cc1 7983 dprintf_cont("\n");
845dea95
NB
7984}
7985
f796af5d 7986static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 7987{
f796af5d 7988 void *buf = mpb;
c2a1e7da
DW
7989 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7990 unsigned long long dsize;
7991 unsigned long long sectors;
f36a9ecd 7992 unsigned int sector_size;
c2a1e7da 7993
f36a9ecd 7994 get_dev_sector_size(fd, NULL, &sector_size);
c2a1e7da
DW
7995 get_dev_size(fd, NULL, &dsize);
7996
f36a9ecd 7997 if (mpb_size > sector_size) {
272f648f 7998 /* -1 to account for anchor */
f36a9ecd 7999 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8000
272f648f 8001 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8002 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8003 SEEK_SET) < 0)
272f648f 8004 return 1;
c2a1e7da 8005
f36a9ecd
PB
8006 if ((unsigned long long)write(fd, buf + sector_size,
8007 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8008 return 1;
8009 }
c2a1e7da 8010
272f648f 8011 /* first block is stored on second to last sector of the disk */
f36a9ecd 8012 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8013 return 1;
8014
f36a9ecd 8015 if (write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8016 return 1;
8017
c2a1e7da
DW
8018 return 0;
8019}
8020
2e735d19 8021static void imsm_sync_metadata(struct supertype *container)
845dea95 8022{
2e735d19 8023 struct intel_super *super = container->sb;
c2a1e7da 8024
1a64be56 8025 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8026 if (!super->updates_pending)
8027 return;
8028
36988a3d 8029 write_super_imsm(container, 0);
c2a1e7da
DW
8030
8031 super->updates_pending = 0;
845dea95
NB
8032}
8033
272906ef
DW
8034static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8035{
8036 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8037 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8038 struct dl *dl;
8039
8040 for (dl = super->disks; dl; dl = dl->next)
8041 if (dl->index == i)
8042 break;
8043
25ed7e59 8044 if (dl && is_failed(&dl->disk))
272906ef
DW
8045 dl = NULL;
8046
8047 if (dl)
1ade5cc1 8048 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8049
8050 return dl;
8051}
8052
a20d2ba5 8053static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8054 struct active_array *a, int activate_new,
8055 struct mdinfo *additional_test_list)
272906ef
DW
8056{
8057 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8058 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8059 struct imsm_super *mpb = super->anchor;
8060 struct imsm_map *map;
272906ef
DW
8061 unsigned long long pos;
8062 struct mdinfo *d;
8063 struct extent *ex;
a20d2ba5 8064 int i, j;
272906ef 8065 int found;
569cc43f
DW
8066 __u32 array_start = 0;
8067 __u32 array_end = 0;
272906ef 8068 struct dl *dl;
6c932028 8069 struct mdinfo *test_list;
272906ef
DW
8070
8071 for (dl = super->disks; dl; dl = dl->next) {
8072 /* If in this array, skip */
8073 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8074 if (d->state_fd >= 0 &&
8075 d->disk.major == dl->major &&
272906ef 8076 d->disk.minor == dl->minor) {
8ba77d32
AK
8077 dprintf("%x:%x already in array\n",
8078 dl->major, dl->minor);
272906ef
DW
8079 break;
8080 }
8081 if (d)
8082 continue;
6c932028
AK
8083 test_list = additional_test_list;
8084 while (test_list) {
8085 if (test_list->disk.major == dl->major &&
8086 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8087 dprintf("%x:%x already in additional test list\n",
8088 dl->major, dl->minor);
8089 break;
8090 }
6c932028 8091 test_list = test_list->next;
8ba77d32 8092 }
6c932028 8093 if (test_list)
8ba77d32 8094 continue;
272906ef 8095
e553d2a4 8096 /* skip in use or failed drives */
25ed7e59 8097 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8098 dl->index == -2) {
8099 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8100 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8101 continue;
8102 }
8103
a20d2ba5
DW
8104 /* skip pure spares when we are looking for partially
8105 * assimilated drives
8106 */
8107 if (dl->index == -1 && !activate_new)
8108 continue;
8109
272906ef 8110 /* Does this unused device have the requisite free space?
a20d2ba5 8111 * It needs to be able to cover all member volumes
272906ef
DW
8112 */
8113 ex = get_extents(super, dl);
8114 if (!ex) {
8115 dprintf("cannot get extents\n");
8116 continue;
8117 }
a20d2ba5
DW
8118 for (i = 0; i < mpb->num_raid_devs; i++) {
8119 dev = get_imsm_dev(super, i);
238c0a71 8120 map = get_imsm_map(dev, MAP_0);
272906ef 8121
a20d2ba5
DW
8122 /* check if this disk is already a member of
8123 * this array
272906ef 8124 */
620b1713 8125 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8126 continue;
8127
8128 found = 0;
8129 j = 0;
8130 pos = 0;
5551b113 8131 array_start = pba_of_lba0(map);
329c8278 8132 array_end = array_start +
5551b113 8133 blocks_per_member(map) - 1;
a20d2ba5
DW
8134
8135 do {
8136 /* check that we can start at pba_of_lba0 with
8137 * blocks_per_member of space
8138 */
329c8278 8139 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
8140 found = 1;
8141 break;
8142 }
8143 pos = ex[j].start + ex[j].size;
8144 j++;
8145 } while (ex[j-1].size);
8146
8147 if (!found)
272906ef 8148 break;
a20d2ba5 8149 }
272906ef
DW
8150
8151 free(ex);
a20d2ba5 8152 if (i < mpb->num_raid_devs) {
329c8278
DW
8153 dprintf("%x:%x does not have %u to %u available\n",
8154 dl->major, dl->minor, array_start, array_end);
272906ef
DW
8155 /* No room */
8156 continue;
a20d2ba5
DW
8157 }
8158 return dl;
272906ef
DW
8159 }
8160
8161 return dl;
8162}
8163
95d07a2c
LM
8164static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8165{
8166 struct imsm_dev *dev2;
8167 struct imsm_map *map;
8168 struct dl *idisk;
8169 int slot;
8170 int idx;
8171 __u8 state;
8172
8173 dev2 = get_imsm_dev(cont->sb, dev_idx);
8174 if (dev2) {
238c0a71 8175 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 8176 if (state == IMSM_T_STATE_FAILED) {
238c0a71 8177 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
8178 if (!map)
8179 return 1;
8180 for (slot = 0; slot < map->num_members; slot++) {
8181 /*
8182 * Check if failed disks are deleted from intel
8183 * disk list or are marked to be deleted
8184 */
238c0a71 8185 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
8186 idisk = get_imsm_dl_disk(cont->sb, idx);
8187 /*
8188 * Do not rebuild the array if failed disks
8189 * from failed sub-array are not removed from
8190 * container.
8191 */
8192 if (idisk &&
8193 is_failed(&idisk->disk) &&
8194 (idisk->action != DISK_REMOVE))
8195 return 0;
8196 }
8197 }
8198 }
8199 return 1;
8200}
8201
88758e9d
DW
8202static struct mdinfo *imsm_activate_spare(struct active_array *a,
8203 struct metadata_update **updates)
8204{
8205 /**
d23fe947
DW
8206 * Find a device with unused free space and use it to replace a
8207 * failed/vacant region in an array. We replace failed regions one a
8208 * array at a time. The result is that a new spare disk will be added
8209 * to the first failed array and after the monitor has finished
8210 * propagating failures the remainder will be consumed.
88758e9d 8211 *
d23fe947
DW
8212 * FIXME add a capability for mdmon to request spares from another
8213 * container.
88758e9d
DW
8214 */
8215
8216 struct intel_super *super = a->container->sb;
88758e9d 8217 int inst = a->info.container_member;
949c47a0 8218 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8219 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
8220 int failed = a->info.array.raid_disks;
8221 struct mdinfo *rv = NULL;
8222 struct mdinfo *d;
8223 struct mdinfo *di;
8224 struct metadata_update *mu;
8225 struct dl *dl;
8226 struct imsm_update_activate_spare *u;
8227 int num_spares = 0;
8228 int i;
95d07a2c 8229 int allowed;
88758e9d
DW
8230
8231 for (d = a->info.devs ; d ; d = d->next) {
8232 if ((d->curr_state & DS_FAULTY) &&
8233 d->state_fd >= 0)
8234 /* wait for Removal to happen */
8235 return NULL;
8236 if (d->state_fd >= 0)
8237 failed--;
8238 }
8239
8240 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8241 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 8242
e2962bfc
AK
8243 if (imsm_reshape_blocks_arrays_changes(super))
8244 return NULL;
1af97990 8245
fc8ca064
AK
8246 /* Cannot activate another spare if rebuild is in progress already
8247 */
8248 if (is_rebuilding(dev)) {
7a862a02 8249 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
8250 return NULL;
8251 }
8252
89c67882
AK
8253 if (a->info.array.level == 4)
8254 /* No repair for takeovered array
8255 * imsm doesn't support raid4
8256 */
8257 return NULL;
8258
3b451610
AK
8259 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8260 IMSM_T_STATE_DEGRADED)
88758e9d
DW
8261 return NULL;
8262
83ca7d45
AP
8263 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8264 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8265 return NULL;
8266 }
8267
95d07a2c
LM
8268 /*
8269 * If there are any failed disks check state of the other volume.
8270 * Block rebuild if the another one is failed until failed disks
8271 * are removed from container.
8272 */
8273 if (failed) {
7a862a02 8274 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 8275 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
8276 /* check if states of the other volumes allow for rebuild */
8277 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8278 if (i != inst) {
8279 allowed = imsm_rebuild_allowed(a->container,
8280 i, failed);
8281 if (!allowed)
8282 return NULL;
8283 }
8284 }
8285 }
8286
88758e9d 8287 /* For each slot, if it is not working, find a spare */
88758e9d
DW
8288 for (i = 0; i < a->info.array.raid_disks; i++) {
8289 for (d = a->info.devs ; d ; d = d->next)
8290 if (d->disk.raid_disk == i)
8291 break;
8292 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8293 if (d && (d->state_fd >= 0))
8294 continue;
8295
272906ef 8296 /*
a20d2ba5
DW
8297 * OK, this device needs recovery. Try to re-add the
8298 * previous occupant of this slot, if this fails see if
8299 * we can continue the assimilation of a spare that was
8300 * partially assimilated, finally try to activate a new
8301 * spare.
272906ef
DW
8302 */
8303 dl = imsm_readd(super, i, a);
8304 if (!dl)
b303fe21 8305 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 8306 if (!dl)
b303fe21 8307 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
8308 if (!dl)
8309 continue;
1011e834 8310
272906ef 8311 /* found a usable disk with enough space */
503975b9 8312 di = xcalloc(1, sizeof(*di));
272906ef
DW
8313
8314 /* dl->index will be -1 in the case we are activating a
8315 * pristine spare. imsm_process_update() will create a
8316 * new index in this case. Once a disk is found to be
8317 * failed in all member arrays it is kicked from the
8318 * metadata
8319 */
8320 di->disk.number = dl->index;
d23fe947 8321
272906ef
DW
8322 /* (ab)use di->devs to store a pointer to the device
8323 * we chose
8324 */
8325 di->devs = (struct mdinfo *) dl;
8326
8327 di->disk.raid_disk = i;
8328 di->disk.major = dl->major;
8329 di->disk.minor = dl->minor;
8330 di->disk.state = 0;
d23534e4 8331 di->recovery_start = 0;
5551b113 8332 di->data_offset = pba_of_lba0(map);
272906ef
DW
8333 di->component_size = a->info.component_size;
8334 di->container_member = inst;
b12796be 8335 di->bb.supported = 0;
148acb7b 8336 super->random = random32();
272906ef
DW
8337 di->next = rv;
8338 rv = di;
8339 num_spares++;
8340 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8341 i, di->data_offset);
88758e9d
DW
8342 }
8343
8344 if (!rv)
8345 /* No spares found */
8346 return rv;
8347 /* Now 'rv' has a list of devices to return.
8348 * Create a metadata_update record to update the
8349 * disk_ord_tbl for the array
8350 */
503975b9 8351 mu = xmalloc(sizeof(*mu));
1011e834 8352 mu->buf = xcalloc(num_spares,
503975b9 8353 sizeof(struct imsm_update_activate_spare));
88758e9d 8354 mu->space = NULL;
cb23f1f4 8355 mu->space_list = NULL;
88758e9d
DW
8356 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8357 mu->next = *updates;
8358 u = (struct imsm_update_activate_spare *) mu->buf;
8359
8360 for (di = rv ; di ; di = di->next) {
8361 u->type = update_activate_spare;
d23fe947
DW
8362 u->dl = (struct dl *) di->devs;
8363 di->devs = NULL;
88758e9d
DW
8364 u->slot = di->disk.raid_disk;
8365 u->array = inst;
8366 u->next = u + 1;
8367 u++;
8368 }
8369 (u-1)->next = NULL;
8370 *updates = mu;
8371
8372 return rv;
8373}
8374
54c2c1ea 8375static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 8376{
54c2c1ea 8377 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
8378 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8379 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
8380 struct disk_info *inf = get_disk_info(u);
8381 struct imsm_disk *disk;
8273f55e
DW
8382 int i;
8383 int j;
8273f55e 8384
54c2c1ea 8385 for (i = 0; i < map->num_members; i++) {
238c0a71 8386 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
8387 for (j = 0; j < new_map->num_members; j++)
8388 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
8389 return 1;
8390 }
8391
8392 return 0;
8393}
8394
1a64be56
LM
8395static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8396{
594dc1b8
JS
8397 struct dl *dl;
8398
1a64be56 8399 for (dl = super->disks; dl; dl = dl->next)
089f9d79 8400 if (dl->major == major && dl->minor == minor)
1a64be56
LM
8401 return dl;
8402 return NULL;
8403}
8404
8405static int remove_disk_super(struct intel_super *super, int major, int minor)
8406{
594dc1b8 8407 struct dl *prev;
1a64be56
LM
8408 struct dl *dl;
8409
8410 prev = NULL;
8411 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 8412 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
8413 /* remove */
8414 if (prev)
8415 prev->next = dl->next;
8416 else
8417 super->disks = dl->next;
8418 dl->next = NULL;
8419 __free_imsm_disk(dl);
1ade5cc1 8420 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
8421 break;
8422 }
8423 prev = dl;
8424 }
8425 return 0;
8426}
8427
f21e18ca 8428static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 8429
1a64be56
LM
8430static int add_remove_disk_update(struct intel_super *super)
8431{
8432 int check_degraded = 0;
594dc1b8
JS
8433 struct dl *disk;
8434
1a64be56
LM
8435 /* add/remove some spares to/from the metadata/contrainer */
8436 while (super->disk_mgmt_list) {
8437 struct dl *disk_cfg;
8438
8439 disk_cfg = super->disk_mgmt_list;
8440 super->disk_mgmt_list = disk_cfg->next;
8441 disk_cfg->next = NULL;
8442
8443 if (disk_cfg->action == DISK_ADD) {
8444 disk_cfg->next = super->disks;
8445 super->disks = disk_cfg;
8446 check_degraded = 1;
1ade5cc1
N
8447 dprintf("added %x:%x\n",
8448 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
8449 } else if (disk_cfg->action == DISK_REMOVE) {
8450 dprintf("Disk remove action processed: %x.%x\n",
8451 disk_cfg->major, disk_cfg->minor);
8452 disk = get_disk_super(super,
8453 disk_cfg->major,
8454 disk_cfg->minor);
8455 if (disk) {
8456 /* store action status */
8457 disk->action = DISK_REMOVE;
8458 /* remove spare disks only */
8459 if (disk->index == -1) {
8460 remove_disk_super(super,
8461 disk_cfg->major,
8462 disk_cfg->minor);
8463 }
8464 }
8465 /* release allocate disk structure */
8466 __free_imsm_disk(disk_cfg);
8467 }
8468 }
8469 return check_degraded;
8470}
8471
a29911da
PC
8472static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8473 struct intel_super *super,
8474 void ***space_list)
8475{
8476 struct intel_dev *id;
8477 void **tofree = NULL;
8478 int ret_val = 0;
8479
1ade5cc1 8480 dprintf("(enter)\n");
089f9d79 8481 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
8482 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8483 return ret_val;
8484 }
089f9d79 8485 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
8486 dprintf("imsm: Error: Memory is not allocated\n");
8487 return ret_val;
8488 }
8489
8490 for (id = super->devlist ; id; id = id->next) {
8491 if (id->index == (unsigned)u->subdev) {
8492 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8493 struct imsm_map *map;
8494 struct imsm_dev *new_dev =
8495 (struct imsm_dev *)*space_list;
238c0a71 8496 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
8497 int to_state;
8498 struct dl *new_disk;
8499
8500 if (new_dev == NULL)
8501 return ret_val;
8502 *space_list = **space_list;
8503 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 8504 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
8505 if (migr_map) {
8506 dprintf("imsm: Error: migration in progress");
8507 return ret_val;
8508 }
8509
8510 to_state = map->map_state;
8511 if ((u->new_level == 5) && (map->raid_level == 0)) {
8512 map->num_members++;
8513 /* this should not happen */
8514 if (u->new_disks[0] < 0) {
8515 map->failed_disk_num =
8516 map->num_members - 1;
8517 to_state = IMSM_T_STATE_DEGRADED;
8518 } else
8519 to_state = IMSM_T_STATE_NORMAL;
8520 }
8e59f3d8 8521 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
8522 if (u->new_level > -1)
8523 map->raid_level = u->new_level;
238c0a71 8524 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
8525 if ((u->new_level == 5) &&
8526 (migr_map->raid_level == 0)) {
8527 int ord = map->num_members - 1;
8528 migr_map->num_members--;
8529 if (u->new_disks[0] < 0)
8530 ord |= IMSM_ORD_REBUILD;
8531 set_imsm_ord_tbl_ent(map,
8532 map->num_members - 1,
8533 ord);
8534 }
8535 id->dev = new_dev;
8536 tofree = (void **)dev;
8537
4bba0439
PC
8538 /* update chunk size
8539 */
06fb291a
PB
8540 if (u->new_chunksize > 0) {
8541 unsigned long long num_data_stripes;
8542 int used_disks =
8543 imsm_num_data_members(dev, MAP_0);
8544
8545 if (used_disks == 0)
8546 return ret_val;
8547
4bba0439
PC
8548 map->blocks_per_strip =
8549 __cpu_to_le16(u->new_chunksize * 2);
06fb291a
PB
8550 num_data_stripes =
8551 (join_u32(dev->size_low, dev->size_high)
8552 / used_disks);
8553 num_data_stripes /= map->blocks_per_strip;
8554 num_data_stripes /= map->num_domains;
8555 set_num_data_stripes(map, num_data_stripes);
8556 }
4bba0439 8557
a29911da
PC
8558 /* add disk
8559 */
089f9d79
JS
8560 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8561 migr_map->raid_level == map->raid_level)
a29911da
PC
8562 goto skip_disk_add;
8563
8564 if (u->new_disks[0] >= 0) {
8565 /* use passes spare
8566 */
8567 new_disk = get_disk_super(super,
8568 major(u->new_disks[0]),
8569 minor(u->new_disks[0]));
7a862a02 8570 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
8571 major(u->new_disks[0]),
8572 minor(u->new_disks[0]),
8573 new_disk, new_disk->index);
8574 if (new_disk == NULL)
8575 goto error_disk_add;
8576
8577 new_disk->index = map->num_members - 1;
8578 /* slot to fill in autolayout
8579 */
8580 new_disk->raiddisk = new_disk->index;
8581 new_disk->disk.status |= CONFIGURED_DISK;
8582 new_disk->disk.status &= ~SPARE_DISK;
8583 } else
8584 goto error_disk_add;
8585
8586skip_disk_add:
8587 *tofree = *space_list;
8588 /* calculate new size
8589 */
f3871fdc 8590 imsm_set_array_size(new_dev, -1);
a29911da
PC
8591
8592 ret_val = 1;
8593 }
8594 }
8595
8596 if (tofree)
8597 *space_list = tofree;
8598 return ret_val;
8599
8600error_disk_add:
8601 dprintf("Error: imsm: Cannot find disk.\n");
8602 return ret_val;
8603}
8604
f3871fdc
AK
8605static int apply_size_change_update(struct imsm_update_size_change *u,
8606 struct intel_super *super)
8607{
8608 struct intel_dev *id;
8609 int ret_val = 0;
8610
1ade5cc1 8611 dprintf("(enter)\n");
089f9d79 8612 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
8613 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8614 return ret_val;
8615 }
8616
8617 for (id = super->devlist ; id; id = id->next) {
8618 if (id->index == (unsigned)u->subdev) {
8619 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8620 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8621 int used_disks = imsm_num_data_members(dev, MAP_0);
8622 unsigned long long blocks_per_member;
06fb291a 8623 unsigned long long num_data_stripes;
f3871fdc
AK
8624
8625 /* calculate new size
8626 */
8627 blocks_per_member = u->new_size / used_disks;
06fb291a
PB
8628 num_data_stripes = blocks_per_member /
8629 map->blocks_per_strip;
8630 num_data_stripes /= map->num_domains;
8631 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8632 u->new_size, blocks_per_member,
8633 num_data_stripes);
f3871fdc 8634 set_blocks_per_member(map, blocks_per_member);
06fb291a 8635 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
8636 imsm_set_array_size(dev, u->new_size);
8637
8638 ret_val = 1;
8639 break;
8640 }
8641 }
8642
8643 return ret_val;
8644}
8645
061d7da3 8646static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 8647 struct intel_super *super,
061d7da3
LO
8648 struct active_array *active_array)
8649{
8650 struct imsm_super *mpb = super->anchor;
8651 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 8652 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
8653 struct imsm_map *migr_map;
8654 struct active_array *a;
8655 struct imsm_disk *disk;
8656 __u8 to_state;
8657 struct dl *dl;
8658 unsigned int found;
8659 int failed;
5961eeec 8660 int victim;
061d7da3 8661 int i;
5961eeec 8662 int second_map_created = 0;
061d7da3 8663
5961eeec 8664 for (; u; u = u->next) {
238c0a71 8665 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 8666
5961eeec 8667 if (victim < 0)
8668 return 0;
061d7da3 8669
5961eeec 8670 for (dl = super->disks; dl; dl = dl->next)
8671 if (dl == u->dl)
8672 break;
061d7da3 8673
5961eeec 8674 if (!dl) {
7a862a02 8675 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 8676 u->dl->index);
8677 return 0;
8678 }
061d7da3 8679
5961eeec 8680 /* count failures (excluding rebuilds and the victim)
8681 * to determine map[0] state
8682 */
8683 failed = 0;
8684 for (i = 0; i < map->num_members; i++) {
8685 if (i == u->slot)
8686 continue;
8687 disk = get_imsm_disk(super,
238c0a71 8688 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 8689 if (!disk || is_failed(disk))
8690 failed++;
8691 }
061d7da3 8692
5961eeec 8693 /* adding a pristine spare, assign a new index */
8694 if (dl->index < 0) {
8695 dl->index = super->anchor->num_disks;
8696 super->anchor->num_disks++;
8697 }
8698 disk = &dl->disk;
8699 disk->status |= CONFIGURED_DISK;
8700 disk->status &= ~SPARE_DISK;
8701
8702 /* mark rebuild */
238c0a71 8703 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 8704 if (!second_map_created) {
8705 second_map_created = 1;
8706 map->map_state = IMSM_T_STATE_DEGRADED;
8707 migrate(dev, super, to_state, MIGR_REBUILD);
8708 } else
8709 map->map_state = to_state;
238c0a71 8710 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 8711 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8712 set_imsm_ord_tbl_ent(migr_map, u->slot,
8713 dl->index | IMSM_ORD_REBUILD);
8714
8715 /* update the family_num to mark a new container
8716 * generation, being careful to record the existing
8717 * family_num in orig_family_num to clean up after
8718 * earlier mdadm versions that neglected to set it.
8719 */
8720 if (mpb->orig_family_num == 0)
8721 mpb->orig_family_num = mpb->family_num;
8722 mpb->family_num += super->random;
8723
8724 /* count arrays using the victim in the metadata */
8725 found = 0;
8726 for (a = active_array; a ; a = a->next) {
8727 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8728 map = get_imsm_map(dev, MAP_0);
061d7da3 8729
5961eeec 8730 if (get_imsm_disk_slot(map, victim) >= 0)
8731 found++;
8732 }
061d7da3 8733
5961eeec 8734 /* delete the victim if it is no longer being
8735 * utilized anywhere
061d7da3 8736 */
5961eeec 8737 if (!found) {
8738 struct dl **dlp;
061d7da3 8739
5961eeec 8740 /* We know that 'manager' isn't touching anything,
8741 * so it is safe to delete
8742 */
8743 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
8744 if ((*dlp)->index == victim)
8745 break;
5961eeec 8746
8747 /* victim may be on the missing list */
8748 if (!*dlp)
8749 for (dlp = &super->missing; *dlp;
8750 dlp = &(*dlp)->next)
8751 if ((*dlp)->index == victim)
8752 break;
8753 imsm_delete(super, dlp, victim);
8754 }
061d7da3
LO
8755 }
8756
8757 return 1;
8758}
a29911da 8759
2e5dc010
N
8760static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8761 struct intel_super *super,
8762 void ***space_list)
8763{
8764 struct dl *new_disk;
8765 struct intel_dev *id;
8766 int i;
8767 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 8768 int disk_count = u->old_raid_disks;
2e5dc010
N
8769 void **tofree = NULL;
8770 int devices_to_reshape = 1;
8771 struct imsm_super *mpb = super->anchor;
8772 int ret_val = 0;
d098291a 8773 unsigned int dev_id;
2e5dc010 8774
1ade5cc1 8775 dprintf("(enter)\n");
2e5dc010
N
8776
8777 /* enable spares to use in array */
8778 for (i = 0; i < delta_disks; i++) {
8779 new_disk = get_disk_super(super,
8780 major(u->new_disks[i]),
8781 minor(u->new_disks[i]));
7a862a02 8782 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
8783 major(u->new_disks[i]), minor(u->new_disks[i]),
8784 new_disk, new_disk->index);
089f9d79
JS
8785 if (new_disk == NULL ||
8786 (new_disk->index >= 0 &&
8787 new_disk->index < u->old_raid_disks))
2e5dc010 8788 goto update_reshape_exit;
ee4beede 8789 new_disk->index = disk_count++;
2e5dc010
N
8790 /* slot to fill in autolayout
8791 */
8792 new_disk->raiddisk = new_disk->index;
8793 new_disk->disk.status |=
8794 CONFIGURED_DISK;
8795 new_disk->disk.status &= ~SPARE_DISK;
8796 }
8797
ed7333bd
AK
8798 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8799 mpb->num_raid_devs);
2e5dc010
N
8800 /* manage changes in volume
8801 */
d098291a 8802 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
8803 void **sp = *space_list;
8804 struct imsm_dev *newdev;
8805 struct imsm_map *newmap, *oldmap;
8806
d098291a
AK
8807 for (id = super->devlist ; id; id = id->next) {
8808 if (id->index == dev_id)
8809 break;
8810 }
8811 if (id == NULL)
8812 break;
2e5dc010
N
8813 if (!sp)
8814 continue;
8815 *space_list = *sp;
8816 newdev = (void*)sp;
8817 /* Copy the dev, but not (all of) the map */
8818 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
8819 oldmap = get_imsm_map(id->dev, MAP_0);
8820 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
8821 /* Copy the current map */
8822 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8823 /* update one device only
8824 */
8825 if (devices_to_reshape) {
ed7333bd
AK
8826 dprintf("imsm: modifying subdev: %i\n",
8827 id->index);
2e5dc010
N
8828 devices_to_reshape--;
8829 newdev->vol.migr_state = 1;
8830 newdev->vol.curr_migr_unit = 0;
ea672ee1 8831 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
8832 newmap->num_members = u->new_raid_disks;
8833 for (i = 0; i < delta_disks; i++) {
8834 set_imsm_ord_tbl_ent(newmap,
8835 u->old_raid_disks + i,
8836 u->old_raid_disks + i);
8837 }
8838 /* New map is correct, now need to save old map
8839 */
238c0a71 8840 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
8841 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8842
f3871fdc 8843 imsm_set_array_size(newdev, -1);
2e5dc010
N
8844 }
8845
8846 sp = (void **)id->dev;
8847 id->dev = newdev;
8848 *sp = tofree;
8849 tofree = sp;
8e59f3d8
AK
8850
8851 /* Clear migration record */
8852 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 8853 }
819bc634
AK
8854 if (tofree)
8855 *space_list = tofree;
2e5dc010
N
8856 ret_val = 1;
8857
8858update_reshape_exit:
8859
8860 return ret_val;
8861}
8862
bb025c2f 8863static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
8864 struct intel_super *super,
8865 void ***space_list)
bb025c2f
KW
8866{
8867 struct imsm_dev *dev = NULL;
8ca6df95
KW
8868 struct intel_dev *dv;
8869 struct imsm_dev *dev_new;
bb025c2f
KW
8870 struct imsm_map *map;
8871 struct dl *dm, *du;
8ca6df95 8872 int i;
bb025c2f
KW
8873
8874 for (dv = super->devlist; dv; dv = dv->next)
8875 if (dv->index == (unsigned int)u->subarray) {
8876 dev = dv->dev;
8877 break;
8878 }
8879
8880 if (dev == NULL)
8881 return 0;
8882
238c0a71 8883 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
8884
8885 if (u->direction == R10_TO_R0) {
06fb291a
PB
8886 unsigned long long num_data_stripes;
8887
8888 map->num_domains = 1;
8889 num_data_stripes = blocks_per_member(map);
8890 num_data_stripes /= map->blocks_per_strip;
8891 num_data_stripes /= map->num_domains;
8892 set_num_data_stripes(map, num_data_stripes);
8893
43d5ec18 8894 /* Number of failed disks must be half of initial disk number */
3b451610
AK
8895 if (imsm_count_failed(super, dev, MAP_0) !=
8896 (map->num_members / 2))
43d5ec18
KW
8897 return 0;
8898
bb025c2f
KW
8899 /* iterate through devices to mark removed disks as spare */
8900 for (dm = super->disks; dm; dm = dm->next) {
8901 if (dm->disk.status & FAILED_DISK) {
8902 int idx = dm->index;
8903 /* update indexes on the disk list */
8904/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8905 the index values will end up being correct.... NB */
8906 for (du = super->disks; du; du = du->next)
8907 if (du->index > idx)
8908 du->index--;
8909 /* mark as spare disk */
a8619d23 8910 mark_spare(dm);
bb025c2f
KW
8911 }
8912 }
bb025c2f
KW
8913 /* update map */
8914 map->num_members = map->num_members / 2;
8915 map->map_state = IMSM_T_STATE_NORMAL;
8916 map->num_domains = 1;
8917 map->raid_level = 0;
8918 map->failed_disk_num = -1;
8919 }
8920
8ca6df95
KW
8921 if (u->direction == R0_TO_R10) {
8922 void **space;
8923 /* update slots in current disk list */
8924 for (dm = super->disks; dm; dm = dm->next) {
8925 if (dm->index >= 0)
8926 dm->index *= 2;
8927 }
8928 /* create new *missing* disks */
8929 for (i = 0; i < map->num_members; i++) {
8930 space = *space_list;
8931 if (!space)
8932 continue;
8933 *space_list = *space;
8934 du = (void *)space;
8935 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
8936 du->fd = -1;
8937 du->minor = 0;
8938 du->major = 0;
8939 du->index = (i * 2) + 1;
8940 sprintf((char *)du->disk.serial,
8941 " MISSING_%d", du->index);
8942 sprintf((char *)du->serial,
8943 "MISSING_%d", du->index);
8944 du->next = super->missing;
8945 super->missing = du;
8946 }
8947 /* create new dev and map */
8948 space = *space_list;
8949 if (!space)
8950 return 0;
8951 *space_list = *space;
8952 dev_new = (void *)space;
8953 memcpy(dev_new, dev, sizeof(*dev));
8954 /* update new map */
238c0a71 8955 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 8956 map->num_members = map->num_members * 2;
1a2487c2 8957 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
8958 map->num_domains = 2;
8959 map->raid_level = 1;
8960 /* replace dev<->dev_new */
8961 dv->dev = dev_new;
8962 }
bb025c2f
KW
8963 /* update disk order table */
8964 for (du = super->disks; du; du = du->next)
8965 if (du->index >= 0)
8966 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 8967 for (du = super->missing; du; du = du->next)
1a2487c2
KW
8968 if (du->index >= 0) {
8969 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 8970 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 8971 }
bb025c2f
KW
8972
8973 return 1;
8974}
8975
e8319a19
DW
8976static void imsm_process_update(struct supertype *st,
8977 struct metadata_update *update)
8978{
8979 /**
8980 * crack open the metadata_update envelope to find the update record
8981 * update can be one of:
d195167d
AK
8982 * update_reshape_container_disks - all the arrays in the container
8983 * are being reshaped to have more devices. We need to mark
8984 * the arrays for general migration and convert selected spares
8985 * into active devices.
8986 * update_activate_spare - a spare device has replaced a failed
1011e834
N
8987 * device in an array, update the disk_ord_tbl. If this disk is
8988 * present in all member arrays then also clear the SPARE_DISK
8989 * flag
d195167d
AK
8990 * update_create_array
8991 * update_kill_array
8992 * update_rename_array
8993 * update_add_remove_disk
e8319a19
DW
8994 */
8995 struct intel_super *super = st->sb;
4d7b1503 8996 struct imsm_super *mpb;
e8319a19
DW
8997 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8998
4d7b1503
DW
8999 /* update requires a larger buf but the allocation failed */
9000 if (super->next_len && !super->next_buf) {
9001 super->next_len = 0;
9002 return;
9003 }
9004
9005 if (super->next_buf) {
9006 memcpy(super->next_buf, super->buf, super->len);
9007 free(super->buf);
9008 super->len = super->next_len;
9009 super->buf = super->next_buf;
9010
9011 super->next_len = 0;
9012 super->next_buf = NULL;
9013 }
9014
9015 mpb = super->anchor;
9016
e8319a19 9017 switch (type) {
0ec5d470
AK
9018 case update_general_migration_checkpoint: {
9019 struct intel_dev *id;
9020 struct imsm_update_general_migration_checkpoint *u =
9021 (void *)update->buf;
9022
1ade5cc1 9023 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9024
9025 /* find device under general migration */
9026 for (id = super->devlist ; id; id = id->next) {
9027 if (is_gen_migration(id->dev)) {
9028 id->dev->vol.curr_migr_unit =
9029 __cpu_to_le32(u->curr_migr_unit);
9030 super->updates_pending++;
9031 }
9032 }
9033 break;
9034 }
bb025c2f
KW
9035 case update_takeover: {
9036 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9037 if (apply_takeover_update(u, super, &update->space_list)) {
9038 imsm_update_version_info(super);
bb025c2f 9039 super->updates_pending++;
1a2487c2 9040 }
bb025c2f
KW
9041 break;
9042 }
9043
78b10e66 9044 case update_reshape_container_disks: {
d195167d 9045 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9046 if (apply_reshape_container_disks_update(
9047 u, super, &update->space_list))
9048 super->updates_pending++;
78b10e66
N
9049 break;
9050 }
48c5303a 9051 case update_reshape_migration: {
a29911da
PC
9052 struct imsm_update_reshape_migration *u = (void *)update->buf;
9053 if (apply_reshape_migration_update(
9054 u, super, &update->space_list))
9055 super->updates_pending++;
48c5303a
PC
9056 break;
9057 }
f3871fdc
AK
9058 case update_size_change: {
9059 struct imsm_update_size_change *u = (void *)update->buf;
9060 if (apply_size_change_update(u, super))
9061 super->updates_pending++;
9062 break;
9063 }
e8319a19 9064 case update_activate_spare: {
1011e834 9065 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
9066 if (apply_update_activate_spare(u, super, st->arrays))
9067 super->updates_pending++;
8273f55e
DW
9068 break;
9069 }
9070 case update_create_array: {
9071 /* someone wants to create a new array, we need to be aware of
9072 * a few races/collisions:
9073 * 1/ 'Create' called by two separate instances of mdadm
9074 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9075 * devices that have since been assimilated via
9076 * activate_spare.
9077 * In the event this update can not be carried out mdadm will
9078 * (FIX ME) notice that its update did not take hold.
9079 */
9080 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9081 struct intel_dev *dv;
8273f55e
DW
9082 struct imsm_dev *dev;
9083 struct imsm_map *map, *new_map;
9084 unsigned long long start, end;
9085 unsigned long long new_start, new_end;
9086 int i;
54c2c1ea
DW
9087 struct disk_info *inf;
9088 struct dl *dl;
8273f55e
DW
9089
9090 /* handle racing creates: first come first serve */
9091 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 9092 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 9093 goto create_error;
8273f55e
DW
9094 }
9095
9096 /* check update is next in sequence */
9097 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
9098 dprintf("can not create array %d expected index %d\n",
9099 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 9100 goto create_error;
8273f55e
DW
9101 }
9102
238c0a71 9103 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
9104 new_start = pba_of_lba0(new_map);
9105 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 9106 inf = get_disk_info(u);
8273f55e
DW
9107
9108 /* handle activate_spare versus create race:
9109 * check to make sure that overlapping arrays do not include
9110 * overalpping disks
9111 */
9112 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 9113 dev = get_imsm_dev(super, i);
238c0a71 9114 map = get_imsm_map(dev, MAP_0);
5551b113
CA
9115 start = pba_of_lba0(map);
9116 end = start + blocks_per_member(map);
8273f55e
DW
9117 if ((new_start >= start && new_start <= end) ||
9118 (start >= new_start && start <= new_end))
54c2c1ea
DW
9119 /* overlap */;
9120 else
9121 continue;
9122
9123 if (disks_overlap(super, i, u)) {
1ade5cc1 9124 dprintf("arrays overlap\n");
ba2de7ba 9125 goto create_error;
8273f55e
DW
9126 }
9127 }
8273f55e 9128
949c47a0
DW
9129 /* check that prepare update was successful */
9130 if (!update->space) {
1ade5cc1 9131 dprintf("prepare update failed\n");
ba2de7ba 9132 goto create_error;
949c47a0
DW
9133 }
9134
54c2c1ea
DW
9135 /* check that all disks are still active before committing
9136 * changes. FIXME: could we instead handle this by creating a
9137 * degraded array? That's probably not what the user expects,
9138 * so better to drop this update on the floor.
9139 */
9140 for (i = 0; i < new_map->num_members; i++) {
9141 dl = serial_to_dl(inf[i].serial, super);
9142 if (!dl) {
1ade5cc1 9143 dprintf("disk disappeared\n");
ba2de7ba 9144 goto create_error;
54c2c1ea 9145 }
949c47a0
DW
9146 }
9147
8273f55e 9148 super->updates_pending++;
54c2c1ea
DW
9149
9150 /* convert spares to members and fixup ord_tbl */
9151 for (i = 0; i < new_map->num_members; i++) {
9152 dl = serial_to_dl(inf[i].serial, super);
9153 if (dl->index == -1) {
9154 dl->index = mpb->num_disks;
9155 mpb->num_disks++;
9156 dl->disk.status |= CONFIGURED_DISK;
9157 dl->disk.status &= ~SPARE_DISK;
9158 }
9159 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9160 }
9161
ba2de7ba
DW
9162 dv = update->space;
9163 dev = dv->dev;
949c47a0
DW
9164 update->space = NULL;
9165 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
9166 dv->index = u->dev_idx;
9167 dv->next = super->devlist;
9168 super->devlist = dv;
8273f55e 9169 mpb->num_raid_devs++;
8273f55e 9170
4d1313e9 9171 imsm_update_version_info(super);
8273f55e 9172 break;
ba2de7ba
DW
9173 create_error:
9174 /* mdmon knows how to release update->space, but not
9175 * ((struct intel_dev *) update->space)->dev
9176 */
9177 if (update->space) {
9178 dv = update->space;
9179 free(dv->dev);
9180 }
8273f55e 9181 break;
e8319a19 9182 }
33414a01
DW
9183 case update_kill_array: {
9184 struct imsm_update_kill_array *u = (void *) update->buf;
9185 int victim = u->dev_idx;
9186 struct active_array *a;
9187 struct intel_dev **dp;
9188 struct imsm_dev *dev;
9189
9190 /* sanity check that we are not affecting the uuid of
9191 * active arrays, or deleting an active array
9192 *
9193 * FIXME when immutable ids are available, but note that
9194 * we'll also need to fixup the invalidated/active
9195 * subarray indexes in mdstat
9196 */
9197 for (a = st->arrays; a; a = a->next)
9198 if (a->info.container_member >= victim)
9199 break;
9200 /* by definition if mdmon is running at least one array
9201 * is active in the container, so checking
9202 * mpb->num_raid_devs is just extra paranoia
9203 */
9204 dev = get_imsm_dev(super, victim);
9205 if (a || !dev || mpb->num_raid_devs == 1) {
9206 dprintf("failed to delete subarray-%d\n", victim);
9207 break;
9208 }
9209
9210 for (dp = &super->devlist; *dp;)
f21e18ca 9211 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
9212 *dp = (*dp)->next;
9213 } else {
f21e18ca 9214 if ((*dp)->index > (unsigned)victim)
33414a01
DW
9215 (*dp)->index--;
9216 dp = &(*dp)->next;
9217 }
9218 mpb->num_raid_devs--;
9219 super->updates_pending++;
9220 break;
9221 }
aa534678
DW
9222 case update_rename_array: {
9223 struct imsm_update_rename_array *u = (void *) update->buf;
9224 char name[MAX_RAID_SERIAL_LEN+1];
9225 int target = u->dev_idx;
9226 struct active_array *a;
9227 struct imsm_dev *dev;
9228
9229 /* sanity check that we are not affecting the uuid of
9230 * an active array
9231 */
9232 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9233 name[MAX_RAID_SERIAL_LEN] = '\0';
9234 for (a = st->arrays; a; a = a->next)
9235 if (a->info.container_member == target)
9236 break;
9237 dev = get_imsm_dev(super, u->dev_idx);
9238 if (a || !dev || !check_name(super, name, 1)) {
9239 dprintf("failed to rename subarray-%d\n", target);
9240 break;
9241 }
9242
cdbe98cd 9243 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
9244 super->updates_pending++;
9245 break;
9246 }
1a64be56 9247 case update_add_remove_disk: {
43dad3d6 9248 /* we may be able to repair some arrays if disks are
095b8088 9249 * being added, check the status of add_remove_disk
1a64be56
LM
9250 * if discs has been added.
9251 */
9252 if (add_remove_disk_update(super)) {
43dad3d6 9253 struct active_array *a;
072b727f
DW
9254
9255 super->updates_pending++;
1a64be56 9256 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
9257 a->check_degraded = 1;
9258 }
43dad3d6 9259 break;
e8319a19 9260 }
bbab0940
TM
9261 case update_prealloc_badblocks_mem:
9262 break;
1a64be56 9263 default:
7a862a02 9264 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 9265 }
e8319a19 9266}
88758e9d 9267
bc0b9d34
PC
9268static struct mdinfo *get_spares_for_grow(struct supertype *st);
9269
5fe6f031
N
9270static int imsm_prepare_update(struct supertype *st,
9271 struct metadata_update *update)
8273f55e 9272{
949c47a0 9273 /**
4d7b1503
DW
9274 * Allocate space to hold new disk entries, raid-device entries or a new
9275 * mpb if necessary. The manager synchronously waits for updates to
9276 * complete in the monitor, so new mpb buffers allocated here can be
9277 * integrated by the monitor thread without worrying about live pointers
9278 * in the manager thread.
8273f55e 9279 */
095b8088 9280 enum imsm_update_type type;
4d7b1503 9281 struct intel_super *super = st->sb;
f36a9ecd 9282 unsigned int sector_size = super->sector_size;
4d7b1503
DW
9283 struct imsm_super *mpb = super->anchor;
9284 size_t buf_len;
9285 size_t len = 0;
949c47a0 9286
095b8088
N
9287 if (update->len < (int)sizeof(type))
9288 return 0;
9289
9290 type = *(enum imsm_update_type *) update->buf;
9291
949c47a0 9292 switch (type) {
0ec5d470 9293 case update_general_migration_checkpoint:
095b8088
N
9294 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9295 return 0;
1ade5cc1 9296 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 9297 break;
abedf5fc
KW
9298 case update_takeover: {
9299 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
9300 if (update->len < (int)sizeof(*u))
9301 return 0;
abedf5fc
KW
9302 if (u->direction == R0_TO_R10) {
9303 void **tail = (void **)&update->space_list;
9304 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 9305 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
9306 int num_members = map->num_members;
9307 void *space;
9308 int size, i;
abedf5fc
KW
9309 /* allocate memory for added disks */
9310 for (i = 0; i < num_members; i++) {
9311 size = sizeof(struct dl);
503975b9 9312 space = xmalloc(size);
abedf5fc
KW
9313 *tail = space;
9314 tail = space;
9315 *tail = NULL;
9316 }
9317 /* allocate memory for new device */
9318 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9319 (num_members * sizeof(__u32));
503975b9
N
9320 space = xmalloc(size);
9321 *tail = space;
9322 tail = space;
9323 *tail = NULL;
9324 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
9325 }
9326
9327 break;
9328 }
78b10e66 9329 case update_reshape_container_disks: {
d195167d
AK
9330 /* Every raid device in the container is about to
9331 * gain some more devices, and we will enter a
9332 * reconfiguration.
9333 * So each 'imsm_map' will be bigger, and the imsm_vol
9334 * will now hold 2 of them.
9335 * Thus we need new 'struct imsm_dev' allocations sized
9336 * as sizeof_imsm_dev but with more devices in both maps.
9337 */
9338 struct imsm_update_reshape *u = (void *)update->buf;
9339 struct intel_dev *dl;
9340 void **space_tail = (void**)&update->space_list;
9341
095b8088
N
9342 if (update->len < (int)sizeof(*u))
9343 return 0;
9344
1ade5cc1 9345 dprintf("for update_reshape\n");
d195167d
AK
9346
9347 for (dl = super->devlist; dl; dl = dl->next) {
9348 int size = sizeof_imsm_dev(dl->dev, 1);
9349 void *s;
d677e0b8
AK
9350 if (u->new_raid_disks > u->old_raid_disks)
9351 size += sizeof(__u32)*2*
9352 (u->new_raid_disks - u->old_raid_disks);
503975b9 9353 s = xmalloc(size);
d195167d
AK
9354 *space_tail = s;
9355 space_tail = s;
9356 *space_tail = NULL;
9357 }
9358
9359 len = disks_to_mpb_size(u->new_raid_disks);
9360 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
9361 break;
9362 }
48c5303a 9363 case update_reshape_migration: {
bc0b9d34
PC
9364 /* for migration level 0->5 we need to add disks
9365 * so the same as for container operation we will copy
9366 * device to the bigger location.
9367 * in memory prepared device and new disk area are prepared
9368 * for usage in process update
9369 */
9370 struct imsm_update_reshape_migration *u = (void *)update->buf;
9371 struct intel_dev *id;
9372 void **space_tail = (void **)&update->space_list;
9373 int size;
9374 void *s;
9375 int current_level = -1;
9376
095b8088
N
9377 if (update->len < (int)sizeof(*u))
9378 return 0;
9379
1ade5cc1 9380 dprintf("for update_reshape\n");
bc0b9d34
PC
9381
9382 /* add space for bigger array in update
9383 */
9384 for (id = super->devlist; id; id = id->next) {
9385 if (id->index == (unsigned)u->subdev) {
9386 size = sizeof_imsm_dev(id->dev, 1);
9387 if (u->new_raid_disks > u->old_raid_disks)
9388 size += sizeof(__u32)*2*
9389 (u->new_raid_disks - u->old_raid_disks);
503975b9 9390 s = xmalloc(size);
bc0b9d34
PC
9391 *space_tail = s;
9392 space_tail = s;
9393 *space_tail = NULL;
9394 break;
9395 }
9396 }
9397 if (update->space_list == NULL)
9398 break;
9399
9400 /* add space for disk in update
9401 */
9402 size = sizeof(struct dl);
503975b9 9403 s = xmalloc(size);
bc0b9d34
PC
9404 *space_tail = s;
9405 space_tail = s;
9406 *space_tail = NULL;
9407
9408 /* add spare device to update
9409 */
9410 for (id = super->devlist ; id; id = id->next)
9411 if (id->index == (unsigned)u->subdev) {
9412 struct imsm_dev *dev;
9413 struct imsm_map *map;
9414
9415 dev = get_imsm_dev(super, u->subdev);
238c0a71 9416 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
9417 current_level = map->raid_level;
9418 break;
9419 }
089f9d79 9420 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
9421 struct mdinfo *spares;
9422
9423 spares = get_spares_for_grow(st);
9424 if (spares) {
9425 struct dl *dl;
9426 struct mdinfo *dev;
9427
9428 dev = spares->devs;
9429 if (dev) {
9430 u->new_disks[0] =
9431 makedev(dev->disk.major,
9432 dev->disk.minor);
9433 dl = get_disk_super(super,
9434 dev->disk.major,
9435 dev->disk.minor);
9436 dl->index = u->old_raid_disks;
9437 dev = dev->next;
9438 }
9439 sysfs_free(spares);
9440 }
9441 }
9442 len = disks_to_mpb_size(u->new_raid_disks);
9443 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
9444 break;
9445 }
f3871fdc 9446 case update_size_change: {
095b8088
N
9447 if (update->len < (int)sizeof(struct imsm_update_size_change))
9448 return 0;
9449 break;
9450 }
9451 case update_activate_spare: {
9452 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9453 return 0;
f3871fdc
AK
9454 break;
9455 }
949c47a0
DW
9456 case update_create_array: {
9457 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9458 struct intel_dev *dv;
54c2c1ea 9459 struct imsm_dev *dev = &u->dev;
238c0a71 9460 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
9461 struct dl *dl;
9462 struct disk_info *inf;
9463 int i;
9464 int activate = 0;
949c47a0 9465
095b8088
N
9466 if (update->len < (int)sizeof(*u))
9467 return 0;
9468
54c2c1ea
DW
9469 inf = get_disk_info(u);
9470 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 9471 /* allocate a new super->devlist entry */
503975b9
N
9472 dv = xmalloc(sizeof(*dv));
9473 dv->dev = xmalloc(len);
9474 update->space = dv;
949c47a0 9475
54c2c1ea
DW
9476 /* count how many spares will be converted to members */
9477 for (i = 0; i < map->num_members; i++) {
9478 dl = serial_to_dl(inf[i].serial, super);
9479 if (!dl) {
9480 /* hmm maybe it failed?, nothing we can do about
9481 * it here
9482 */
9483 continue;
9484 }
9485 if (count_memberships(dl, super) == 0)
9486 activate++;
9487 }
9488 len += activate * sizeof(struct imsm_disk);
949c47a0 9489 break;
095b8088
N
9490 }
9491 case update_kill_array: {
9492 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9493 return 0;
949c47a0
DW
9494 break;
9495 }
095b8088
N
9496 case update_rename_array: {
9497 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9498 return 0;
9499 break;
9500 }
9501 case update_add_remove_disk:
9502 /* no update->len needed */
9503 break;
bbab0940
TM
9504 case update_prealloc_badblocks_mem:
9505 super->extra_space += sizeof(struct bbm_log) -
9506 get_imsm_bbm_log_size(super->bbm_log);
9507 break;
095b8088
N
9508 default:
9509 return 0;
949c47a0 9510 }
8273f55e 9511
4d7b1503
DW
9512 /* check if we need a larger metadata buffer */
9513 if (super->next_buf)
9514 buf_len = super->next_len;
9515 else
9516 buf_len = super->len;
9517
bbab0940 9518 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
9519 /* ok we need a larger buf than what is currently allocated
9520 * if this allocation fails process_update will notice that
9521 * ->next_len is set and ->next_buf is NULL
9522 */
bbab0940
TM
9523 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9524 super->extra_space + len, sector_size);
4d7b1503
DW
9525 if (super->next_buf)
9526 free(super->next_buf);
9527
9528 super->next_len = buf_len;
f36a9ecd 9529 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
9530 memset(super->next_buf, 0, buf_len);
9531 else
4d7b1503
DW
9532 super->next_buf = NULL;
9533 }
5fe6f031 9534 return 1;
8273f55e
DW
9535}
9536
ae6aad82 9537/* must be called while manager is quiesced */
f21e18ca 9538static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
9539{
9540 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
9541 struct dl *iter;
9542 struct imsm_dev *dev;
9543 struct imsm_map *map;
24565c9a
DW
9544 int i, j, num_members;
9545 __u32 ord;
ae6aad82 9546
1ade5cc1 9547 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
9548
9549 /* shift all indexes down one */
9550 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 9551 if (iter->index > (int)index)
ae6aad82 9552 iter->index--;
47ee5a45 9553 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 9554 if (iter->index > (int)index)
47ee5a45 9555 iter->index--;
ae6aad82
DW
9556
9557 for (i = 0; i < mpb->num_raid_devs; i++) {
9558 dev = get_imsm_dev(super, i);
238c0a71 9559 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
9560 num_members = map->num_members;
9561 for (j = 0; j < num_members; j++) {
9562 /* update ord entries being careful not to propagate
9563 * ord-flags to the first map
9564 */
238c0a71 9565 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 9566
24565c9a
DW
9567 if (ord_to_idx(ord) <= index)
9568 continue;
ae6aad82 9569
238c0a71 9570 map = get_imsm_map(dev, MAP_0);
24565c9a 9571 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 9572 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
9573 if (map)
9574 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
9575 }
9576 }
9577
9578 mpb->num_disks--;
9579 super->updates_pending++;
24565c9a
DW
9580 if (*dlp) {
9581 struct dl *dl = *dlp;
9582
9583 *dlp = (*dlp)->next;
9584 __free_imsm_disk(dl);
9585 }
ae6aad82 9586}
9e2d750d 9587#endif /* MDASSEMBLE */
9a717282
AK
9588
9589static void close_targets(int *targets, int new_disks)
9590{
9591 int i;
9592
9593 if (!targets)
9594 return;
9595
9596 for (i = 0; i < new_disks; i++) {
9597 if (targets[i] >= 0) {
9598 close(targets[i]);
9599 targets[i] = -1;
9600 }
9601 }
9602}
9603
9604static int imsm_get_allowed_degradation(int level, int raid_disks,
9605 struct intel_super *super,
9606 struct imsm_dev *dev)
9607{
9608 switch (level) {
bf5cf7c7 9609 case 1:
9a717282
AK
9610 case 10:{
9611 int ret_val = 0;
9612 struct imsm_map *map;
9613 int i;
9614
9615 ret_val = raid_disks/2;
9616 /* check map if all disks pairs not failed
9617 * in both maps
9618 */
238c0a71 9619 map = get_imsm_map(dev, MAP_0);
9a717282
AK
9620 for (i = 0; i < ret_val; i++) {
9621 int degradation = 0;
9622 if (get_imsm_disk(super, i) == NULL)
9623 degradation++;
9624 if (get_imsm_disk(super, i + 1) == NULL)
9625 degradation++;
9626 if (degradation == 2)
9627 return 0;
9628 }
238c0a71 9629 map = get_imsm_map(dev, MAP_1);
9a717282
AK
9630 /* if there is no second map
9631 * result can be returned
9632 */
9633 if (map == NULL)
9634 return ret_val;
9635 /* check degradation in second map
9636 */
9637 for (i = 0; i < ret_val; i++) {
9638 int degradation = 0;
9639 if (get_imsm_disk(super, i) == NULL)
9640 degradation++;
9641 if (get_imsm_disk(super, i + 1) == NULL)
9642 degradation++;
9643 if (degradation == 2)
9644 return 0;
9645 }
9646 return ret_val;
9647 }
9648 case 5:
9649 return 1;
9650 case 6:
9651 return 2;
9652 default:
9653 return 0;
9654 }
9655}
9656
687629c2
AK
9657/*******************************************************************************
9658 * Function: open_backup_targets
9659 * Description: Function opens file descriptors for all devices given in
9660 * info->devs
9661 * Parameters:
9662 * info : general array info
9663 * raid_disks : number of disks
9664 * raid_fds : table of device's file descriptors
9a717282
AK
9665 * super : intel super for raid10 degradation check
9666 * dev : intel device for raid10 degradation check
687629c2
AK
9667 * Returns:
9668 * 0 : success
9669 * -1 : fail
9670 ******************************************************************************/
9a717282
AK
9671int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9672 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
9673{
9674 struct mdinfo *sd;
f627f5ad 9675 int i;
9a717282 9676 int opened = 0;
f627f5ad
AK
9677
9678 for (i = 0; i < raid_disks; i++)
9679 raid_fds[i] = -1;
687629c2
AK
9680
9681 for (sd = info->devs ; sd ; sd = sd->next) {
9682 char *dn;
9683
9684 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9685 dprintf("disk is faulty!!\n");
9686 continue;
9687 }
9688
089f9d79 9689 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
687629c2
AK
9690 continue;
9691
9692 dn = map_dev(sd->disk.major,
9693 sd->disk.minor, 1);
9694 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9695 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 9696 pr_err("cannot open component\n");
9a717282 9697 continue;
687629c2 9698 }
9a717282
AK
9699 opened++;
9700 }
9701 /* check if maximum array degradation level is not exceeded
9702 */
9703 if ((raid_disks - opened) >
089f9d79
JS
9704 imsm_get_allowed_degradation(info->new_level, raid_disks,
9705 super, dev)) {
e12b3daa 9706 pr_err("Not enough disks can be opened.\n");
9a717282
AK
9707 close_targets(raid_fds, raid_disks);
9708 return -2;
687629c2
AK
9709 }
9710 return 0;
9711}
9712
d31ad643
PB
9713/*******************************************************************************
9714 * Function: validate_container_imsm
9715 * Description: This routine validates container after assemble,
9716 * eg. if devices in container are under the same controller.
9717 *
9718 * Parameters:
9719 * info : linked list with info about devices used in array
9720 * Returns:
9721 * 1 : HBA mismatch
9722 * 0 : Success
9723 ******************************************************************************/
9724int validate_container_imsm(struct mdinfo *info)
9725{
6b781d33
AP
9726 if (check_env("IMSM_NO_PLATFORM"))
9727 return 0;
d31ad643 9728
6b781d33
AP
9729 struct sys_dev *idev;
9730 struct sys_dev *hba = NULL;
9731 struct sys_dev *intel_devices = find_intel_devices();
9732 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9733 info->disk.minor));
9734
9735 for (idev = intel_devices; idev; idev = idev->next) {
9736 if (dev_path && strstr(dev_path, idev->path)) {
9737 hba = idev;
9738 break;
d31ad643 9739 }
6b781d33
AP
9740 }
9741 if (dev_path)
d31ad643
PB
9742 free(dev_path);
9743
6b781d33
AP
9744 if (!hba) {
9745 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9746 devid2kname(makedev(info->disk.major, info->disk.minor)));
9747 return 1;
9748 }
9749
9750 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9751 struct mdinfo *dev;
9752
9753 for (dev = info->next; dev; dev = dev->next) {
9754 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9755
9756 struct sys_dev *hba2 = NULL;
9757 for (idev = intel_devices; idev; idev = idev->next) {
9758 if (dev_path && strstr(dev_path, idev->path)) {
9759 hba2 = idev;
9760 break;
d31ad643
PB
9761 }
9762 }
6b781d33
AP
9763 if (dev_path)
9764 free(dev_path);
9765
9766 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9767 get_orom_by_device_id(hba2->dev_id);
9768
9769 if (hba2 && hba->type != hba2->type) {
9770 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9771 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9772 return 1;
9773 }
9774
07cb1e57 9775 if (orom != orom2) {
6b781d33
AP
9776 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9777 " This operation is not supported and can lead to data loss.\n");
9778 return 1;
9779 }
9780
9781 if (!orom) {
9782 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9783 " This operation is not supported and can lead to data loss.\n");
9784 return 1;
9785 }
d31ad643 9786 }
6b781d33 9787
d31ad643
PB
9788 return 0;
9789}
9e2d750d 9790#ifndef MDASSEMBLE
6f50473f
TM
9791/*******************************************************************************
9792* Function: imsm_record_badblock
9793* Description: This routine stores new bad block record in BBM log
9794*
9795* Parameters:
9796* a : array containing a bad block
9797* slot : disk number containing a bad block
9798* sector : bad block sector
9799* length : bad block sectors range
9800* Returns:
9801* 1 : Success
9802* 0 : Error
9803******************************************************************************/
9804static int imsm_record_badblock(struct active_array *a, int slot,
9805 unsigned long long sector, int length)
9806{
9807 struct intel_super *super = a->container->sb;
9808 int ord;
9809 int ret;
9810
9811 ord = imsm_disk_slot_to_ord(a, slot);
9812 if (ord < 0)
9813 return 0;
9814
9815 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
9816 length);
9817 if (ret)
9818 super->updates_pending++;
9819
9820 return ret;
9821}
c07a5a4f
TM
9822/*******************************************************************************
9823* Function: imsm_clear_badblock
9824* Description: This routine clears bad block record from BBM log
9825*
9826* Parameters:
9827* a : array containing a bad block
9828* slot : disk number containing a bad block
9829* sector : bad block sector
9830* length : bad block sectors range
9831* Returns:
9832* 1 : Success
9833* 0 : Error
9834******************************************************************************/
9835static int imsm_clear_badblock(struct active_array *a, int slot,
9836 unsigned long long sector, int length)
9837{
9838 struct intel_super *super = a->container->sb;
9839 int ord;
9840 int ret;
9841
9842 ord = imsm_disk_slot_to_ord(a, slot);
9843 if (ord < 0)
9844 return 0;
9845
9846 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
9847 if (ret)
9848 super->updates_pending++;
9849
9850 return ret;
9851}
687629c2
AK
9852/*******************************************************************************
9853 * Function: init_migr_record_imsm
9854 * Description: Function inits imsm migration record
9855 * Parameters:
9856 * super : imsm internal array info
9857 * dev : device under migration
9858 * info : general array info to find the smallest device
9859 * Returns:
9860 * none
9861 ******************************************************************************/
9862void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9863 struct mdinfo *info)
9864{
9865 struct intel_super *super = st->sb;
9866 struct migr_record *migr_rec = super->migr_rec;
9867 int new_data_disks;
9868 unsigned long long dsize, dev_sectors;
9869 long long unsigned min_dev_sectors = -1LLU;
9870 struct mdinfo *sd;
9871 char nm[30];
9872 int fd;
238c0a71
AK
9873 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9874 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 9875 unsigned long long num_migr_units;
3ef4403c 9876 unsigned long long array_blocks;
687629c2
AK
9877
9878 memset(migr_rec, 0, sizeof(struct migr_record));
9879 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9880
9881 /* only ascending reshape supported now */
9882 migr_rec->ascending_migr = __cpu_to_le32(1);
9883
9884 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9885 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
9886 migr_rec->dest_depth_per_unit *=
9887 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 9888 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
9889 migr_rec->blocks_per_unit =
9890 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9891 migr_rec->dest_depth_per_unit =
9892 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 9893 array_blocks = info->component_size * new_data_disks;
687629c2
AK
9894 num_migr_units =
9895 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9896
9897 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9898 num_migr_units++;
9899 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9900
9901 migr_rec->post_migr_vol_cap = dev->size_low;
9902 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9903
687629c2
AK
9904 /* Find the smallest dev */
9905 for (sd = info->devs ; sd ; sd = sd->next) {
9906 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9907 fd = dev_open(nm, O_RDONLY);
9908 if (fd < 0)
9909 continue;
9910 get_dev_size(fd, NULL, &dsize);
9911 dev_sectors = dsize / 512;
9912 if (dev_sectors < min_dev_sectors)
9913 min_dev_sectors = dev_sectors;
9914 close(fd);
9915 }
9916 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9917 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9918
9919 write_imsm_migr_rec(st);
9920
9921 return;
9922}
9923
9924/*******************************************************************************
9925 * Function: save_backup_imsm
9926 * Description: Function saves critical data stripes to Migration Copy Area
9927 * and updates the current migration unit status.
9928 * Use restore_stripes() to form a destination stripe,
9929 * and to write it to the Copy Area.
9930 * Parameters:
9931 * st : supertype information
aea93171 9932 * dev : imsm device that backup is saved for
687629c2
AK
9933 * info : general array info
9934 * buf : input buffer
687629c2
AK
9935 * length : length of data to backup (blocks_per_unit)
9936 * Returns:
9937 * 0 : success
9938 *, -1 : fail
9939 ******************************************************************************/
9940int save_backup_imsm(struct supertype *st,
9941 struct imsm_dev *dev,
9942 struct mdinfo *info,
9943 void *buf,
687629c2
AK
9944 int length)
9945{
9946 int rv = -1;
9947 struct intel_super *super = st->sb;
594dc1b8
JS
9948 unsigned long long *target_offsets;
9949 int *targets;
687629c2 9950 int i;
238c0a71 9951 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 9952 int new_disks = map_dest->num_members;
ab724b98
AK
9953 int dest_layout = 0;
9954 int dest_chunk;
d1877f69 9955 unsigned long long start;
238c0a71 9956 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 9957
503975b9 9958 targets = xmalloc(new_disks * sizeof(int));
687629c2 9959
7e45b550
AK
9960 for (i = 0; i < new_disks; i++)
9961 targets[i] = -1;
9962
503975b9 9963 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 9964
d1877f69 9965 start = info->reshape_progress * 512;
687629c2 9966 for (i = 0; i < new_disks; i++) {
687629c2
AK
9967 target_offsets[i] = (unsigned long long)
9968 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
9969 /* move back copy area adderss, it will be moved forward
9970 * in restore_stripes() using start input variable
9971 */
9972 target_offsets[i] -= start/data_disks;
687629c2
AK
9973 }
9974
9a717282
AK
9975 if (open_backup_targets(info, new_disks, targets,
9976 super, dev))
687629c2
AK
9977 goto abort;
9978
68eb8bc6 9979 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
9980 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9981
687629c2
AK
9982 if (restore_stripes(targets, /* list of dest devices */
9983 target_offsets, /* migration record offsets */
9984 new_disks,
ab724b98
AK
9985 dest_chunk,
9986 map_dest->raid_level,
9987 dest_layout,
9988 -1, /* source backup file descriptor */
9989 0, /* input buf offset
9990 * always 0 buf is already offseted */
d1877f69 9991 start,
687629c2
AK
9992 length,
9993 buf) != 0) {
e7b84f9d 9994 pr_err("Error restoring stripes\n");
687629c2
AK
9995 goto abort;
9996 }
9997
9998 rv = 0;
9999
10000abort:
10001 if (targets) {
9a717282 10002 close_targets(targets, new_disks);
687629c2
AK
10003 free(targets);
10004 }
10005 free(target_offsets);
10006
10007 return rv;
10008}
10009
10010/*******************************************************************************
10011 * Function: save_checkpoint_imsm
10012 * Description: Function called for current unit status update
10013 * in the migration record. It writes it to disk.
10014 * Parameters:
10015 * super : imsm internal array info
10016 * info : general array info
10017 * Returns:
10018 * 0: success
10019 * 1: failure
0228d92c
AK
10020 * 2: failure, means no valid migration record
10021 * / no general migration in progress /
687629c2
AK
10022 ******************************************************************************/
10023int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10024{
10025 struct intel_super *super = st->sb;
f8b72ef5
AK
10026 unsigned long long blocks_per_unit;
10027 unsigned long long curr_migr_unit;
10028
2e062e82 10029 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 10030 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10031 return 1;
10032 }
10033
f8b72ef5
AK
10034 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10035 if (blocks_per_unit == 0) {
0228d92c
AK
10036 dprintf("imsm: no migration in progress.\n");
10037 return 2;
687629c2 10038 }
f8b72ef5
AK
10039 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10040 /* check if array is alligned to copy area
10041 * if it is not alligned, add one to current migration unit value
10042 * this can happend on array reshape finish only
10043 */
10044 if (info->reshape_progress % blocks_per_unit)
10045 curr_migr_unit++;
687629c2
AK
10046
10047 super->migr_rec->curr_migr_unit =
f8b72ef5 10048 __cpu_to_le32(curr_migr_unit);
687629c2
AK
10049 super->migr_rec->rec_status = __cpu_to_le32(state);
10050 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
10051 __cpu_to_le32(curr_migr_unit *
10052 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 10053 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10054 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10055 return 1;
10056 }
10057
10058 return 0;
10059}
10060
276d77db
AK
10061/*******************************************************************************
10062 * Function: recover_backup_imsm
10063 * Description: Function recovers critical data from the Migration Copy Area
10064 * while assembling an array.
10065 * Parameters:
10066 * super : imsm internal array info
10067 * info : general array info
10068 * Returns:
10069 * 0 : success (or there is no data to recover)
10070 * 1 : fail
10071 ******************************************************************************/
10072int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10073{
10074 struct intel_super *super = st->sb;
10075 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 10076 struct imsm_map *map_dest;
276d77db
AK
10077 struct intel_dev *id = NULL;
10078 unsigned long long read_offset;
10079 unsigned long long write_offset;
10080 unsigned unit_len;
10081 int *targets = NULL;
10082 int new_disks, i, err;
10083 char *buf = NULL;
10084 int retval = 1;
f36a9ecd 10085 unsigned int sector_size = super->sector_size;
276d77db
AK
10086 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10087 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 10088 char buffer[20];
6c3560c0 10089 int skipped_disks = 0;
276d77db
AK
10090
10091 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10092 if (err < 1)
10093 return 1;
10094
10095 /* recover data only during assemblation */
10096 if (strncmp(buffer, "inactive", 8) != 0)
10097 return 0;
10098 /* no data to recover */
10099 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10100 return 0;
10101 if (curr_migr_unit >= num_migr_units)
10102 return 1;
10103
10104 /* find device during reshape */
10105 for (id = super->devlist; id; id = id->next)
10106 if (is_gen_migration(id->dev))
10107 break;
10108 if (id == NULL)
10109 return 1;
10110
238c0a71 10111 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
10112 new_disks = map_dest->num_members;
10113
10114 read_offset = (unsigned long long)
10115 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10116
10117 write_offset = ((unsigned long long)
10118 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 10119 pba_of_lba0(map_dest)) * 512;
276d77db
AK
10120
10121 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 10122 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 10123 goto abort;
503975b9 10124 targets = xcalloc(new_disks, sizeof(int));
276d77db 10125
9a717282 10126 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 10127 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
10128 goto abort;
10129 }
276d77db
AK
10130
10131 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
10132 if (targets[i] < 0) {
10133 skipped_disks++;
10134 continue;
10135 }
276d77db 10136 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
10137 pr_err("Cannot seek to block: %s\n",
10138 strerror(errno));
137debce
AK
10139 skipped_disks++;
10140 continue;
276d77db 10141 }
9ec11d1a 10142 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10143 pr_err("Cannot read copy area block: %s\n",
10144 strerror(errno));
137debce
AK
10145 skipped_disks++;
10146 continue;
276d77db
AK
10147 }
10148 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
10149 pr_err("Cannot seek to block: %s\n",
10150 strerror(errno));
137debce
AK
10151 skipped_disks++;
10152 continue;
276d77db 10153 }
9ec11d1a 10154 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10155 pr_err("Cannot restore block: %s\n",
10156 strerror(errno));
137debce
AK
10157 skipped_disks++;
10158 continue;
276d77db
AK
10159 }
10160 }
10161
137debce
AK
10162 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10163 new_disks,
10164 super,
10165 id->dev)) {
7a862a02 10166 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
10167 goto abort;
10168 }
10169
befb629b
AK
10170 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10171 /* ignore error == 2, this can mean end of reshape here
10172 */
7a862a02 10173 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 10174 } else
276d77db 10175 retval = 0;
276d77db
AK
10176
10177abort:
10178 if (targets) {
10179 for (i = 0; i < new_disks; i++)
10180 if (targets[i])
10181 close(targets[i]);
10182 free(targets);
10183 }
10184 free(buf);
10185 return retval;
10186}
10187
2cda7640
ML
10188static char disk_by_path[] = "/dev/disk/by-path/";
10189
10190static const char *imsm_get_disk_controller_domain(const char *path)
10191{
2cda7640 10192 char disk_path[PATH_MAX];
96234762
LM
10193 char *drv=NULL;
10194 struct stat st;
2cda7640 10195
6d8d290a 10196 strcpy(disk_path, disk_by_path);
96234762
LM
10197 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10198 if (stat(disk_path, &st) == 0) {
10199 struct sys_dev* hba;
594dc1b8 10200 char *path;
96234762
LM
10201
10202 path = devt_to_devpath(st.st_rdev);
10203 if (path == NULL)
10204 return "unknown";
10205 hba = find_disk_attached_hba(-1, path);
10206 if (hba && hba->type == SYS_DEV_SAS)
10207 drv = "isci";
10208 else if (hba && hba->type == SYS_DEV_SATA)
10209 drv = "ahci";
1011e834 10210 else
96234762
LM
10211 drv = "unknown";
10212 dprintf("path: %s hba: %s attached: %s\n",
10213 path, (hba) ? hba->path : "NULL", drv);
10214 free(path);
2cda7640 10215 }
96234762 10216 return drv;
2cda7640
ML
10217}
10218
4dd2df09 10219static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 10220{
4dd2df09 10221 static char devnm[32];
78b10e66
N
10222 char subdev_name[20];
10223 struct mdstat_ent *mdstat;
10224
10225 sprintf(subdev_name, "%d", subdev);
10226 mdstat = mdstat_by_subdev(subdev_name, container);
10227 if (!mdstat)
4dd2df09 10228 return NULL;
78b10e66 10229
4dd2df09 10230 strcpy(devnm, mdstat->devnm);
78b10e66 10231 free_mdstat(mdstat);
4dd2df09 10232 return devnm;
78b10e66
N
10233}
10234
10235static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10236 struct geo_params *geo,
fbf3d202
AK
10237 int *old_raid_disks,
10238 int direction)
78b10e66 10239{
694575e7
KW
10240 /* currently we only support increasing the number of devices
10241 * for a container. This increases the number of device for each
10242 * member array. They must all be RAID0 or RAID5.
10243 */
78b10e66
N
10244 int ret_val = 0;
10245 struct mdinfo *info, *member;
10246 int devices_that_can_grow = 0;
10247
7a862a02 10248 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 10249
d04f65f4 10250 if (geo->size > 0 ||
78b10e66
N
10251 geo->level != UnSet ||
10252 geo->layout != UnSet ||
10253 geo->chunksize != 0 ||
10254 geo->raid_disks == UnSet) {
7a862a02 10255 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
10256 return ret_val;
10257 }
10258
fbf3d202 10259 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 10260 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
10261 return ret_val;
10262 }
10263
78b10e66
N
10264 info = container_content_imsm(st, NULL);
10265 for (member = info; member; member = member->next) {
4dd2df09 10266 char *result;
78b10e66
N
10267
10268 dprintf("imsm: checking device_num: %i\n",
10269 member->container_member);
10270
d7d205bd 10271 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
10272 /* we work on container for Online Capacity Expansion
10273 * only so raid_disks has to grow
10274 */
7a862a02 10275 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
10276 break;
10277 }
10278
089f9d79 10279 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
10280 /* we cannot use this container with other raid level
10281 */
7a862a02 10282 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
10283 info->array.level);
10284 break;
10285 } else {
10286 /* check for platform support
10287 * for this raid level configuration
10288 */
10289 struct intel_super *super = st->sb;
10290 if (!is_raid_level_supported(super->orom,
10291 member->array.level,
10292 geo->raid_disks)) {
7a862a02 10293 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
10294 info->array.level,
10295 geo->raid_disks,
10296 geo->raid_disks > 1 ? "s" : "");
10297 break;
10298 }
2a4a08e7
AK
10299 /* check if component size is aligned to chunk size
10300 */
10301 if (info->component_size %
10302 (info->array.chunk_size/512)) {
7a862a02 10303 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
10304 break;
10305 }
78b10e66
N
10306 }
10307
10308 if (*old_raid_disks &&
10309 info->array.raid_disks != *old_raid_disks)
10310 break;
10311 *old_raid_disks = info->array.raid_disks;
10312
10313 /* All raid5 and raid0 volumes in container
10314 * have to be ready for Online Capacity Expansion
10315 * so they need to be assembled. We have already
10316 * checked that no recovery etc is happening.
10317 */
4dd2df09
N
10318 result = imsm_find_array_devnm_by_subdev(member->container_member,
10319 st->container_devnm);
10320 if (result == NULL) {
78b10e66
N
10321 dprintf("imsm: cannot find array\n");
10322 break;
10323 }
10324 devices_that_can_grow++;
10325 }
10326 sysfs_free(info);
10327 if (!member && devices_that_can_grow)
10328 ret_val = 1;
10329
10330 if (ret_val)
1ade5cc1 10331 dprintf("Container operation allowed\n");
78b10e66 10332 else
1ade5cc1 10333 dprintf("Error: %i\n", ret_val);
78b10e66
N
10334
10335 return ret_val;
10336}
10337
10338/* Function: get_spares_for_grow
10339 * Description: Allocates memory and creates list of spare devices
1011e834 10340 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
10341 * Parameters: Pointer to the supertype structure
10342 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 10343 * NULL if fail
78b10e66
N
10344 */
10345static struct mdinfo *get_spares_for_grow(struct supertype *st)
10346{
78b10e66 10347 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 10348 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
10349}
10350
10351/******************************************************************************
10352 * function: imsm_create_metadata_update_for_reshape
10353 * Function creates update for whole IMSM container.
10354 *
10355 ******************************************************************************/
10356static int imsm_create_metadata_update_for_reshape(
10357 struct supertype *st,
10358 struct geo_params *geo,
10359 int old_raid_disks,
10360 struct imsm_update_reshape **updatep)
10361{
10362 struct intel_super *super = st->sb;
10363 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
10364 int update_memory_size;
10365 struct imsm_update_reshape *u;
10366 struct mdinfo *spares;
78b10e66 10367 int i;
594dc1b8 10368 int delta_disks;
bbd24d86 10369 struct mdinfo *dev;
78b10e66 10370
1ade5cc1 10371 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
10372
10373 delta_disks = geo->raid_disks - old_raid_disks;
10374
10375 /* size of all update data without anchor */
10376 update_memory_size = sizeof(struct imsm_update_reshape);
10377
10378 /* now add space for spare disks that we need to add. */
10379 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10380
503975b9 10381 u = xcalloc(1, update_memory_size);
78b10e66
N
10382 u->type = update_reshape_container_disks;
10383 u->old_raid_disks = old_raid_disks;
10384 u->new_raid_disks = geo->raid_disks;
10385
10386 /* now get spare disks list
10387 */
10388 spares = get_spares_for_grow(st);
10389
10390 if (spares == NULL
10391 || delta_disks > spares->array.spare_disks) {
7a862a02 10392 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 10393 i = -1;
78b10e66
N
10394 goto abort;
10395 }
10396
10397 /* we have got spares
10398 * update disk list in imsm_disk list table in anchor
10399 */
10400 dprintf("imsm: %i spares are available.\n\n",
10401 spares->array.spare_disks);
10402
bbd24d86 10403 dev = spares->devs;
78b10e66 10404 for (i = 0; i < delta_disks; i++) {
78b10e66
N
10405 struct dl *dl;
10406
bbd24d86
AK
10407 if (dev == NULL)
10408 break;
78b10e66
N
10409 u->new_disks[i] = makedev(dev->disk.major,
10410 dev->disk.minor);
10411 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
10412 dl->index = mpb->num_disks;
10413 mpb->num_disks++;
bbd24d86 10414 dev = dev->next;
78b10e66 10415 }
78b10e66
N
10416
10417abort:
10418 /* free spares
10419 */
10420 sysfs_free(spares);
10421
d677e0b8 10422 dprintf("imsm: reshape update preparation :");
78b10e66 10423 if (i == delta_disks) {
1ade5cc1 10424 dprintf_cont(" OK\n");
78b10e66
N
10425 *updatep = u;
10426 return update_memory_size;
10427 }
10428 free(u);
1ade5cc1 10429 dprintf_cont(" Error\n");
78b10e66
N
10430
10431 return 0;
10432}
10433
f3871fdc
AK
10434/******************************************************************************
10435 * function: imsm_create_metadata_update_for_size_change()
10436 * Creates update for IMSM array for array size change.
10437 *
10438 ******************************************************************************/
10439static int imsm_create_metadata_update_for_size_change(
10440 struct supertype *st,
10441 struct geo_params *geo,
10442 struct imsm_update_size_change **updatep)
10443{
10444 struct intel_super *super = st->sb;
594dc1b8
JS
10445 int update_memory_size;
10446 struct imsm_update_size_change *u;
f3871fdc 10447
1ade5cc1 10448 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
10449
10450 /* size of all update data without anchor */
10451 update_memory_size = sizeof(struct imsm_update_size_change);
10452
503975b9 10453 u = xcalloc(1, update_memory_size);
f3871fdc
AK
10454 u->type = update_size_change;
10455 u->subdev = super->current_vol;
10456 u->new_size = geo->size;
10457
10458 dprintf("imsm: reshape update preparation : OK\n");
10459 *updatep = u;
10460
10461 return update_memory_size;
10462}
10463
48c5303a
PC
10464/******************************************************************************
10465 * function: imsm_create_metadata_update_for_migration()
10466 * Creates update for IMSM array.
10467 *
10468 ******************************************************************************/
10469static int imsm_create_metadata_update_for_migration(
10470 struct supertype *st,
10471 struct geo_params *geo,
10472 struct imsm_update_reshape_migration **updatep)
10473{
10474 struct intel_super *super = st->sb;
594dc1b8
JS
10475 int update_memory_size;
10476 struct imsm_update_reshape_migration *u;
48c5303a
PC
10477 struct imsm_dev *dev;
10478 int previous_level = -1;
10479
1ade5cc1 10480 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
10481
10482 /* size of all update data without anchor */
10483 update_memory_size = sizeof(struct imsm_update_reshape_migration);
10484
503975b9 10485 u = xcalloc(1, update_memory_size);
48c5303a
PC
10486 u->type = update_reshape_migration;
10487 u->subdev = super->current_vol;
10488 u->new_level = geo->level;
10489 u->new_layout = geo->layout;
10490 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10491 u->new_disks[0] = -1;
4bba0439 10492 u->new_chunksize = -1;
48c5303a
PC
10493
10494 dev = get_imsm_dev(super, u->subdev);
10495 if (dev) {
10496 struct imsm_map *map;
10497
238c0a71 10498 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
10499 if (map) {
10500 int current_chunk_size =
10501 __le16_to_cpu(map->blocks_per_strip) / 2;
10502
10503 if (geo->chunksize != current_chunk_size) {
10504 u->new_chunksize = geo->chunksize / 1024;
7a862a02 10505 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
10506 current_chunk_size, u->new_chunksize);
10507 }
48c5303a 10508 previous_level = map->raid_level;
4bba0439 10509 }
48c5303a 10510 }
089f9d79 10511 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
10512 struct mdinfo *spares = NULL;
10513
10514 u->new_raid_disks++;
10515 spares = get_spares_for_grow(st);
089f9d79 10516 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
10517 free(u);
10518 sysfs_free(spares);
10519 update_memory_size = 0;
7a862a02 10520 dprintf("error: cannot get spare device for requested migration");
48c5303a
PC
10521 return 0;
10522 }
10523 sysfs_free(spares);
10524 }
10525 dprintf("imsm: reshape update preparation : OK\n");
10526 *updatep = u;
10527
10528 return update_memory_size;
10529}
10530
8dd70bce
AK
10531static void imsm_update_metadata_locally(struct supertype *st,
10532 void *buf, int len)
10533{
10534 struct metadata_update mu;
10535
10536 mu.buf = buf;
10537 mu.len = len;
10538 mu.space = NULL;
10539 mu.space_list = NULL;
10540 mu.next = NULL;
5fe6f031
N
10541 if (imsm_prepare_update(st, &mu))
10542 imsm_process_update(st, &mu);
8dd70bce
AK
10543
10544 while (mu.space_list) {
10545 void **space = mu.space_list;
10546 mu.space_list = *space;
10547 free(space);
10548 }
10549}
78b10e66 10550
471bceb6 10551/***************************************************************************
694575e7 10552* Function: imsm_analyze_change
471bceb6 10553* Description: Function analyze change for single volume
1011e834 10554* and validate if transition is supported
fbf3d202
AK
10555* Parameters: Geometry parameters, supertype structure,
10556* metadata change direction (apply/rollback)
694575e7 10557* Returns: Operation type code on success, -1 if fail
471bceb6
KW
10558****************************************************************************/
10559enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
10560 struct geo_params *geo,
10561 int direction)
694575e7 10562{
471bceb6
KW
10563 struct mdinfo info;
10564 int change = -1;
10565 int check_devs = 0;
c21e737b 10566 int chunk;
67a2db32
AK
10567 /* number of added/removed disks in operation result */
10568 int devNumChange = 0;
10569 /* imsm compatible layout value for array geometry verification */
10570 int imsm_layout = -1;
7abc9871
AK
10571 int data_disks;
10572 struct imsm_dev *dev;
10573 struct intel_super *super;
d04f65f4 10574 unsigned long long current_size;
65d38cca 10575 unsigned long long free_size;
d04f65f4 10576 unsigned long long max_size;
65d38cca 10577 int rv;
471bceb6
KW
10578
10579 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
10580 if (geo->level != info.array.level && geo->level >= 0 &&
10581 geo->level != UnSet) {
471bceb6
KW
10582 switch (info.array.level) {
10583 case 0:
10584 if (geo->level == 5) {
b5347799 10585 change = CH_MIGRATION;
e13ce846 10586 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 10587 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
10588 change = -1;
10589 goto analyse_change_exit;
10590 }
67a2db32 10591 imsm_layout = geo->layout;
471bceb6 10592 check_devs = 1;
e91a3bad
LM
10593 devNumChange = 1; /* parity disk added */
10594 } else if (geo->level == 10) {
471bceb6
KW
10595 change = CH_TAKEOVER;
10596 check_devs = 1;
e91a3bad 10597 devNumChange = 2; /* two mirrors added */
67a2db32 10598 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 10599 }
dfe77a9e
KW
10600 break;
10601 case 1:
471bceb6
KW
10602 case 10:
10603 if (geo->level == 0) {
10604 change = CH_TAKEOVER;
10605 check_devs = 1;
e91a3bad 10606 devNumChange = -(geo->raid_disks/2);
67a2db32 10607 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
10608 }
10609 break;
10610 }
10611 if (change == -1) {
7a862a02 10612 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 10613 info.array.level, geo->level);
471bceb6
KW
10614 goto analyse_change_exit;
10615 }
10616 } else
10617 geo->level = info.array.level;
10618
089f9d79
JS
10619 if (geo->layout != info.array.layout &&
10620 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 10621 change = CH_MIGRATION;
089f9d79
JS
10622 if (info.array.layout == 0 && info.array.level == 5 &&
10623 geo->layout == 5) {
471bceb6 10624 /* reshape 5 -> 4 */
089f9d79
JS
10625 } else if (info.array.layout == 5 && info.array.level == 5 &&
10626 geo->layout == 0) {
471bceb6
KW
10627 /* reshape 4 -> 5 */
10628 geo->layout = 0;
10629 geo->level = 5;
10630 } else {
7a862a02 10631 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 10632 info.array.layout, geo->layout);
471bceb6
KW
10633 change = -1;
10634 goto analyse_change_exit;
10635 }
67a2db32 10636 } else {
471bceb6 10637 geo->layout = info.array.layout;
67a2db32
AK
10638 if (imsm_layout == -1)
10639 imsm_layout = info.array.layout;
10640 }
471bceb6 10641
089f9d79
JS
10642 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
10643 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
10644 if (info.array.level == 10) {
10645 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
10646 change = -1;
10647 goto analyse_change_exit;
10648 }
b5347799 10649 change = CH_MIGRATION;
2d2b0eb7 10650 } else {
471bceb6 10651 geo->chunksize = info.array.chunk_size;
2d2b0eb7 10652 }
471bceb6 10653
c21e737b 10654 chunk = geo->chunksize / 1024;
7abc9871
AK
10655
10656 super = st->sb;
10657 dev = get_imsm_dev(super, super->current_vol);
10658 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 10659 /* compute current size per disk member
7abc9871 10660 */
c41e00b2
AK
10661 current_size = info.custom_array_size / data_disks;
10662
089f9d79 10663 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
10664 /* align component size
10665 */
10666 geo->size = imsm_component_size_aligment_check(
10667 get_imsm_raid_level(dev->vol.map),
f36a9ecd 10668 chunk * 1024, super->sector_size,
c41e00b2 10669 geo->size * 2);
65d0b4ce 10670 if (geo->size == 0) {
7a862a02 10671 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
10672 current_size);
10673 goto analyse_change_exit;
10674 }
c41e00b2 10675 }
7abc9871 10676
089f9d79 10677 if (current_size != geo->size && geo->size > 0) {
7abc9871 10678 if (change != -1) {
7a862a02 10679 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
10680 change = -1;
10681 goto analyse_change_exit;
10682 }
10683 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 10684 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 10685 super->current_vol, st->devnm);
7abc9871
AK
10686 goto analyse_change_exit;
10687 }
65d38cca
LD
10688 /* check the maximum available size
10689 */
10690 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10691 0, chunk, &free_size);
10692 if (rv == 0)
10693 /* Cannot find maximum available space
10694 */
10695 max_size = 0;
10696 else {
10697 max_size = free_size + current_size;
10698 /* align component size
10699 */
10700 max_size = imsm_component_size_aligment_check(
10701 get_imsm_raid_level(dev->vol.map),
f36a9ecd 10702 chunk * 1024, super->sector_size,
65d38cca
LD
10703 max_size);
10704 }
d04f65f4 10705 if (geo->size == MAX_SIZE) {
b130333f
AK
10706 /* requested size change to the maximum available size
10707 */
65d38cca 10708 if (max_size == 0) {
7a862a02 10709 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
10710 change = -1;
10711 goto analyse_change_exit;
65d38cca
LD
10712 } else
10713 geo->size = max_size;
c41e00b2 10714 }
b130333f 10715
681b7ae2 10716 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
10717 /* accept size for rollback only
10718 */
10719 } else {
10720 /* round size due to metadata compatibility
10721 */
10722 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10723 << SECT_PER_MB_SHIFT;
10724 dprintf("Prepare update for size change to %llu\n",
10725 geo->size );
10726 if (current_size >= geo->size) {
7a862a02 10727 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 10728 current_size, geo->size);
fbf3d202
AK
10729 goto analyse_change_exit;
10730 }
65d38cca 10731 if (max_size && geo->size > max_size) {
7a862a02 10732 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 10733 max_size, geo->size);
65d38cca
LD
10734 goto analyse_change_exit;
10735 }
7abc9871
AK
10736 }
10737 geo->size *= data_disks;
10738 geo->raid_disks = dev->vol.map->num_members;
10739 change = CH_ARRAY_SIZE;
10740 }
471bceb6
KW
10741 if (!validate_geometry_imsm(st,
10742 geo->level,
67a2db32 10743 imsm_layout,
e91a3bad 10744 geo->raid_disks + devNumChange,
c21e737b 10745 &chunk,
af4348dd 10746 geo->size, INVALID_SECTORS,
471bceb6
KW
10747 0, 0, 1))
10748 change = -1;
10749
10750 if (check_devs) {
10751 struct intel_super *super = st->sb;
10752 struct imsm_super *mpb = super->anchor;
10753
10754 if (mpb->num_raid_devs > 1) {
7a862a02 10755 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 10756 geo->dev_name);
471bceb6
KW
10757 change = -1;
10758 }
10759 }
10760
10761analyse_change_exit:
089f9d79
JS
10762 if (direction == ROLLBACK_METADATA_CHANGES &&
10763 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 10764 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
10765 change = -1;
10766 }
471bceb6 10767 return change;
694575e7
KW
10768}
10769
bb025c2f
KW
10770int imsm_takeover(struct supertype *st, struct geo_params *geo)
10771{
10772 struct intel_super *super = st->sb;
10773 struct imsm_update_takeover *u;
10774
503975b9 10775 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
10776
10777 u->type = update_takeover;
10778 u->subarray = super->current_vol;
10779
10780 /* 10->0 transition */
10781 if (geo->level == 0)
10782 u->direction = R10_TO_R0;
10783
0529c688
KW
10784 /* 0->10 transition */
10785 if (geo->level == 10)
10786 u->direction = R0_TO_R10;
10787
bb025c2f
KW
10788 /* update metadata locally */
10789 imsm_update_metadata_locally(st, u,
10790 sizeof(struct imsm_update_takeover));
10791 /* and possibly remotely */
10792 if (st->update_tail)
10793 append_metadata_update(st, u,
10794 sizeof(struct imsm_update_takeover));
10795 else
10796 free(u);
10797
10798 return 0;
10799}
10800
d04f65f4
N
10801static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10802 int level,
78b10e66 10803 int layout, int chunksize, int raid_disks,
41784c88 10804 int delta_disks, char *backup, char *dev,
016e00f5 10805 int direction, int verbose)
78b10e66 10806{
78b10e66
N
10807 int ret_val = 1;
10808 struct geo_params geo;
10809
1ade5cc1 10810 dprintf("(enter)\n");
78b10e66 10811
71204a50 10812 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
10813
10814 geo.dev_name = dev;
4dd2df09 10815 strcpy(geo.devnm, st->devnm);
78b10e66
N
10816 geo.size = size;
10817 geo.level = level;
10818 geo.layout = layout;
10819 geo.chunksize = chunksize;
10820 geo.raid_disks = raid_disks;
41784c88
AK
10821 if (delta_disks != UnSet)
10822 geo.raid_disks += delta_disks;
78b10e66 10823
1ade5cc1
N
10824 dprintf("for level : %i\n", geo.level);
10825 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
10826
10827 if (experimental() == 0)
10828 return ret_val;
10829
4dd2df09 10830 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
10831 /* On container level we can only increase number of devices. */
10832 dprintf("imsm: info: Container operation\n");
78b10e66 10833 int old_raid_disks = 0;
6dc0be30 10834
78b10e66 10835 if (imsm_reshape_is_allowed_on_container(
fbf3d202 10836 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
10837 struct imsm_update_reshape *u = NULL;
10838 int len;
10839
10840 len = imsm_create_metadata_update_for_reshape(
10841 st, &geo, old_raid_disks, &u);
10842
ed08d51c
AK
10843 if (len <= 0) {
10844 dprintf("imsm: Cannot prepare update\n");
10845 goto exit_imsm_reshape_super;
10846 }
10847
8dd70bce
AK
10848 ret_val = 0;
10849 /* update metadata locally */
10850 imsm_update_metadata_locally(st, u, len);
10851 /* and possibly remotely */
10852 if (st->update_tail)
10853 append_metadata_update(st, u, len);
10854 else
ed08d51c 10855 free(u);
8dd70bce 10856
694575e7 10857 } else {
7a862a02 10858 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
10859 }
10860 } else {
10861 /* On volume level we support following operations
471bceb6
KW
10862 * - takeover: raid10 -> raid0; raid0 -> raid10
10863 * - chunk size migration
10864 * - migration: raid5 -> raid0; raid0 -> raid5
10865 */
10866 struct intel_super *super = st->sb;
10867 struct intel_dev *dev = super->devlist;
4dd2df09 10868 int change;
694575e7 10869 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
10870 /* find requested device */
10871 while (dev) {
1011e834 10872 char *devnm =
4dd2df09
N
10873 imsm_find_array_devnm_by_subdev(
10874 dev->index, st->container_devnm);
10875 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
10876 break;
10877 dev = dev->next;
10878 }
10879 if (dev == NULL) {
4dd2df09
N
10880 pr_err("Cannot find %s (%s) subarray\n",
10881 geo.dev_name, geo.devnm);
471bceb6
KW
10882 goto exit_imsm_reshape_super;
10883 }
10884 super->current_vol = dev->index;
fbf3d202 10885 change = imsm_analyze_change(st, &geo, direction);
694575e7 10886 switch (change) {
471bceb6 10887 case CH_TAKEOVER:
bb025c2f 10888 ret_val = imsm_takeover(st, &geo);
694575e7 10889 break;
48c5303a
PC
10890 case CH_MIGRATION: {
10891 struct imsm_update_reshape_migration *u = NULL;
10892 int len =
10893 imsm_create_metadata_update_for_migration(
10894 st, &geo, &u);
10895 if (len < 1) {
7a862a02 10896 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
10897 break;
10898 }
471bceb6 10899 ret_val = 0;
48c5303a
PC
10900 /* update metadata locally */
10901 imsm_update_metadata_locally(st, u, len);
10902 /* and possibly remotely */
10903 if (st->update_tail)
10904 append_metadata_update(st, u, len);
10905 else
10906 free(u);
10907 }
10908 break;
7abc9871 10909 case CH_ARRAY_SIZE: {
f3871fdc
AK
10910 struct imsm_update_size_change *u = NULL;
10911 int len =
10912 imsm_create_metadata_update_for_size_change(
10913 st, &geo, &u);
10914 if (len < 1) {
7a862a02 10915 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
10916 break;
10917 }
10918 ret_val = 0;
10919 /* update metadata locally */
10920 imsm_update_metadata_locally(st, u, len);
10921 /* and possibly remotely */
10922 if (st->update_tail)
10923 append_metadata_update(st, u, len);
10924 else
10925 free(u);
7abc9871
AK
10926 }
10927 break;
471bceb6
KW
10928 default:
10929 ret_val = 1;
694575e7 10930 }
694575e7 10931 }
78b10e66 10932
ed08d51c 10933exit_imsm_reshape_super:
78b10e66
N
10934 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10935 return ret_val;
10936}
2cda7640 10937
0febb20c
AO
10938#define COMPLETED_OK 0
10939#define COMPLETED_NONE 1
10940#define COMPLETED_DELAYED 2
10941
10942static int read_completed(int fd, unsigned long long *val)
10943{
10944 int ret;
10945 char buf[50];
10946
10947 ret = sysfs_fd_get_str(fd, buf, 50);
10948 if (ret < 0)
10949 return ret;
10950
10951 ret = COMPLETED_OK;
10952 if (strncmp(buf, "none", 4) == 0) {
10953 ret = COMPLETED_NONE;
10954 } else if (strncmp(buf, "delayed", 7) == 0) {
10955 ret = COMPLETED_DELAYED;
10956 } else {
10957 char *ep;
10958 *val = strtoull(buf, &ep, 0);
10959 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
10960 ret = -1;
10961 }
10962 return ret;
10963}
10964
eee67a47
AK
10965/*******************************************************************************
10966 * Function: wait_for_reshape_imsm
10967 * Description: Function writes new sync_max value and waits until
10968 * reshape process reach new position
10969 * Parameters:
10970 * sra : general array info
eee67a47
AK
10971 * ndata : number of disks in new array's layout
10972 * Returns:
10973 * 0 : success,
10974 * 1 : there is no reshape in progress,
10975 * -1 : fail
10976 ******************************************************************************/
ae9f01f8 10977int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 10978{
85ca499c 10979 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 10980 int retry = 3;
eee67a47 10981 unsigned long long completed;
ae9f01f8
AK
10982 /* to_complete : new sync_max position */
10983 unsigned long long to_complete = sra->reshape_progress;
10984 unsigned long long position_to_set = to_complete / ndata;
eee67a47 10985
ae9f01f8 10986 if (fd < 0) {
1ade5cc1 10987 dprintf("cannot open reshape_position\n");
eee67a47 10988 return 1;
ae9f01f8 10989 }
eee67a47 10990
df2647fa
PB
10991 do {
10992 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10993 if (!retry) {
10994 dprintf("cannot read reshape_position (no reshape in progres)\n");
10995 close(fd);
10996 return 1;
10997 }
10998 usleep(30000);
10999 } else
11000 break;
11001 } while (retry--);
eee67a47 11002
85ca499c 11003 if (completed > position_to_set) {
1ade5cc1 11004 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 11005 to_complete, position_to_set);
ae9f01f8
AK
11006 close(fd);
11007 return -1;
11008 }
11009 dprintf("Position set: %llu\n", position_to_set);
11010 if (sysfs_set_num(sra, NULL, "sync_max",
11011 position_to_set) != 0) {
1ade5cc1 11012 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
11013 position_to_set);
11014 close(fd);
11015 return -1;
eee67a47
AK
11016 }
11017
eee67a47 11018 do {
0febb20c 11019 int rc;
eee67a47 11020 char action[20];
5ff3a780 11021 int timeout = 3000;
0febb20c 11022
5ff3a780 11023 sysfs_wait(fd, &timeout);
a47e44fb
AK
11024 if (sysfs_get_str(sra, NULL, "sync_action",
11025 action, 20) > 0 &&
d7d3809a 11026 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
11027 if (strncmp(action, "idle", 4) == 0)
11028 break;
d7d3809a
AP
11029 close(fd);
11030 return -1;
11031 }
0febb20c
AO
11032
11033 rc = read_completed(fd, &completed);
11034 if (rc < 0) {
1ade5cc1 11035 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
11036 close(fd);
11037 return 1;
0febb20c
AO
11038 } else if (rc == COMPLETED_NONE)
11039 break;
85ca499c 11040 } while (completed < position_to_set);
b2be2b62 11041
eee67a47
AK
11042 close(fd);
11043 return 0;
eee67a47
AK
11044}
11045
b915c95f
AK
11046/*******************************************************************************
11047 * Function: check_degradation_change
11048 * Description: Check that array hasn't become failed.
11049 * Parameters:
11050 * info : for sysfs access
11051 * sources : source disks descriptors
11052 * degraded: previous degradation level
11053 * Returns:
11054 * degradation level
11055 ******************************************************************************/
11056int check_degradation_change(struct mdinfo *info,
11057 int *sources,
11058 int degraded)
11059{
11060 unsigned long long new_degraded;
e1993023
LD
11061 int rv;
11062
11063 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 11064 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
11065 /* check each device to ensure it is still working */
11066 struct mdinfo *sd;
11067 new_degraded = 0;
11068 for (sd = info->devs ; sd ; sd = sd->next) {
11069 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11070 continue;
11071 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
11072 char sbuf[100];
11073
b915c95f 11074 if (sysfs_get_str(info,
cf52eff5 11075 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
11076 strstr(sbuf, "faulty") ||
11077 strstr(sbuf, "in_sync") == NULL) {
11078 /* this device is dead */
11079 sd->disk.state = (1<<MD_DISK_FAULTY);
11080 if (sd->disk.raid_disk >= 0 &&
11081 sources[sd->disk.raid_disk] >= 0) {
11082 close(sources[
11083 sd->disk.raid_disk]);
11084 sources[sd->disk.raid_disk] =
11085 -1;
11086 }
11087 new_degraded++;
11088 }
11089 }
11090 }
11091 }
11092
11093 return new_degraded;
11094}
11095
10f22854
AK
11096/*******************************************************************************
11097 * Function: imsm_manage_reshape
11098 * Description: Function finds array under reshape and it manages reshape
11099 * process. It creates stripes backups (if required) and sets
942e1cdb 11100 * checkpoints.
10f22854
AK
11101 * Parameters:
11102 * afd : Backup handle (nattive) - not used
11103 * sra : general array info
11104 * reshape : reshape parameters - not used
11105 * st : supertype structure
11106 * blocks : size of critical section [blocks]
11107 * fds : table of source device descriptor
11108 * offsets : start of array (offest per devices)
11109 * dests : not used
11110 * destfd : table of destination device descriptor
11111 * destoffsets : table of destination offsets (per device)
11112 * Returns:
11113 * 1 : success, reshape is done
11114 * 0 : fail
11115 ******************************************************************************/
999b4972
N
11116static int imsm_manage_reshape(
11117 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 11118 struct supertype *st, unsigned long backup_blocks,
999b4972
N
11119 int *fds, unsigned long long *offsets,
11120 int dests, int *destfd, unsigned long long *destoffsets)
11121{
10f22854
AK
11122 int ret_val = 0;
11123 struct intel_super *super = st->sb;
594dc1b8 11124 struct intel_dev *dv;
de44e46f 11125 unsigned int sector_size = super->sector_size;
10f22854 11126 struct imsm_dev *dev = NULL;
a6b6d984 11127 struct imsm_map *map_src;
10f22854
AK
11128 int migr_vol_qan = 0;
11129 int ndata, odata; /* [bytes] */
11130 int chunk; /* [bytes] */
11131 struct migr_record *migr_rec;
11132 char *buf = NULL;
11133 unsigned int buf_size; /* [bytes] */
11134 unsigned long long max_position; /* array size [bytes] */
11135 unsigned long long next_step; /* [blocks]/[bytes] */
11136 unsigned long long old_data_stripe_length;
10f22854
AK
11137 unsigned long long start_src; /* [bytes] */
11138 unsigned long long start; /* [bytes] */
11139 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 11140 int degraded = 0;
ab724b98 11141 int source_layout = 0;
10f22854 11142
79a16a9b
JS
11143 if (!sra)
11144 return ret_val;
11145
11146 if (!fds || !offsets)
10f22854
AK
11147 goto abort;
11148
11149 /* Find volume during the reshape */
11150 for (dv = super->devlist; dv; dv = dv->next) {
11151 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11152 && dv->dev->vol.migr_state == 1) {
11153 dev = dv->dev;
11154 migr_vol_qan++;
11155 }
11156 }
11157 /* Only one volume can migrate at the same time */
11158 if (migr_vol_qan != 1) {
676e87a8 11159 pr_err("%s", migr_vol_qan ?
10f22854
AK
11160 "Number of migrating volumes greater than 1\n" :
11161 "There is no volume during migrationg\n");
11162 goto abort;
11163 }
11164
238c0a71 11165 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
11166 if (map_src == NULL)
11167 goto abort;
10f22854 11168
238c0a71
AK
11169 ndata = imsm_num_data_members(dev, MAP_0);
11170 odata = imsm_num_data_members(dev, MAP_1);
10f22854 11171
7b1ab482 11172 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
11173 old_data_stripe_length = odata * chunk;
11174
11175 migr_rec = super->migr_rec;
11176
10f22854
AK
11177 /* initialize migration record for start condition */
11178 if (sra->reshape_progress == 0)
11179 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
11180 else {
11181 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 11182 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
11183 goto abort;
11184 }
6a75c8ca
AK
11185 /* Save checkpoint to update migration record for current
11186 * reshape position (in md). It can be farther than current
11187 * reshape position in metadata.
11188 */
11189 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11190 /* ignore error == 2, this can mean end of reshape here
11191 */
7a862a02 11192 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
11193 goto abort;
11194 }
b2c59438 11195 }
10f22854
AK
11196
11197 /* size for data */
11198 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11199 /* extend buffer size for parity disk */
11200 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11201 /* add space for stripe aligment */
11202 buf_size += old_data_stripe_length;
de44e46f
PB
11203 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11204 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
11205 goto abort;
11206 }
11207
3ef4403c 11208 max_position = sra->component_size * ndata;
68eb8bc6 11209 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
11210
11211 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11212 __le32_to_cpu(migr_rec->num_migr_units)) {
11213 /* current reshape position [blocks] */
11214 unsigned long long current_position =
11215 __le32_to_cpu(migr_rec->blocks_per_unit)
11216 * __le32_to_cpu(migr_rec->curr_migr_unit);
11217 unsigned long long border;
11218
b915c95f
AK
11219 /* Check that array hasn't become failed.
11220 */
11221 degraded = check_degradation_change(sra, fds, degraded);
11222 if (degraded > 1) {
7a862a02 11223 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
11224 goto abort;
11225 }
11226
10f22854
AK
11227 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11228
11229 if ((current_position + next_step) > max_position)
11230 next_step = max_position - current_position;
11231
92144abf 11232 start = current_position * 512;
10f22854 11233
942e1cdb 11234 /* align reading start to old geometry */
10f22854
AK
11235 start_buf_shift = start % old_data_stripe_length;
11236 start_src = start - start_buf_shift;
11237
11238 border = (start_src / odata) - (start / ndata);
11239 border /= 512;
11240 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11241 /* save critical stripes to buf
11242 * start - start address of current unit
11243 * to backup [bytes]
11244 * start_src - start address of current unit
11245 * to backup alligned to source array
11246 * [bytes]
11247 */
594dc1b8 11248 unsigned long long next_step_filler;
10f22854
AK
11249 unsigned long long copy_length = next_step * 512;
11250
11251 /* allign copy area length to stripe in old geometry */
11252 next_step_filler = ((copy_length + start_buf_shift)
11253 % old_data_stripe_length);
11254 if (next_step_filler)
11255 next_step_filler = (old_data_stripe_length
11256 - next_step_filler);
7a862a02 11257 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
11258 start, start_src, copy_length,
11259 start_buf_shift, next_step_filler);
11260
11261 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
11262 chunk, map_src->raid_level,
11263 source_layout, 0, NULL, start_src,
10f22854
AK
11264 copy_length +
11265 next_step_filler + start_buf_shift,
11266 buf)) {
7a862a02 11267 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
11268 goto abort;
11269 }
11270 /* Convert data to destination format and store it
11271 * in backup general migration area
11272 */
11273 if (save_backup_imsm(st, dev, sra,
aea93171 11274 buf + start_buf_shift, copy_length)) {
7a862a02 11275 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
11276 goto abort;
11277 }
11278 if (save_checkpoint_imsm(st, sra,
11279 UNIT_SRC_IN_CP_AREA)) {
7a862a02 11280 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
11281 goto abort;
11282 }
8016a6d4
AK
11283 } else {
11284 /* set next step to use whole border area */
11285 border /= next_step;
11286 if (border > 1)
11287 next_step *= border;
10f22854
AK
11288 }
11289 /* When data backed up, checkpoint stored,
11290 * kick the kernel to reshape unit of data
11291 */
11292 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
11293 /* limit next step to array max position */
11294 if (next_step > max_position)
11295 next_step = max_position;
10f22854
AK
11296 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11297 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 11298 sra->reshape_progress = next_step;
10f22854
AK
11299
11300 /* wait until reshape finish */
c85338c6 11301 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
11302 dprintf("wait_for_reshape_imsm returned error!\n");
11303 goto abort;
11304 }
84d11e6c
N
11305 if (sigterm)
11306 goto abort;
10f22854 11307
0228d92c
AK
11308 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11309 /* ignore error == 2, this can mean end of reshape here
11310 */
7a862a02 11311 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
11312 goto abort;
11313 }
11314
11315 }
11316
71e5411e
PB
11317 /* clear migr_rec on disks after successful migration */
11318 struct dl *d;
11319
de44e46f 11320 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*sector_size);
71e5411e
PB
11321 for (d = super->disks; d; d = d->next) {
11322 if (d->index < 0 || is_failed(&d->disk))
11323 continue;
11324 unsigned long long dsize;
11325
11326 get_dev_size(d->fd, NULL, &dsize);
de44e46f 11327 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e
PB
11328 SEEK_SET) >= 0) {
11329 if (write(d->fd, super->migr_rec_buf,
de44e46f
PB
11330 MIGR_REC_BUF_SECTORS*sector_size) !=
11331 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
11332 perror("Write migr_rec failed");
11333 }
11334 }
11335
10f22854
AK
11336 /* return '1' if done */
11337 ret_val = 1;
11338abort:
11339 free(buf);
942e1cdb
N
11340 /* See Grow.c: abort_reshape() for further explanation */
11341 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11342 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11343 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
11344
11345 return ret_val;
999b4972 11346}
0c21b485 11347
71204a50 11348#endif /* MDASSEMBLE */
999b4972 11349
cdddbdbc
DW
11350struct superswitch super_imsm = {
11351#ifndef MDASSEMBLE
11352 .examine_super = examine_super_imsm,
11353 .brief_examine_super = brief_examine_super_imsm,
4737ae25 11354 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 11355 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
11356 .detail_super = detail_super_imsm,
11357 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 11358 .write_init_super = write_init_super_imsm,
0e600426
N
11359 .validate_geometry = validate_geometry_imsm,
11360 .add_to_super = add_to_super_imsm,
1a64be56 11361 .remove_from_super = remove_from_super_imsm,
d665cc31 11362 .detail_platform = detail_platform_imsm,
e50cf220 11363 .export_detail_platform = export_detail_platform_imsm,
33414a01 11364 .kill_subarray = kill_subarray_imsm,
aa534678 11365 .update_subarray = update_subarray_imsm,
2b959fbf 11366 .load_container = load_container_imsm,
71204a50
N
11367 .default_geometry = default_geometry_imsm,
11368 .get_disk_controller_domain = imsm_get_disk_controller_domain,
11369 .reshape_super = imsm_reshape_super,
11370 .manage_reshape = imsm_manage_reshape,
9e2d750d 11371 .recover_backup = recover_backup_imsm,
74db60b0 11372 .copy_metadata = copy_metadata_imsm,
cdddbdbc
DW
11373#endif
11374 .match_home = match_home_imsm,
11375 .uuid_from_super= uuid_from_super_imsm,
11376 .getinfo_super = getinfo_super_imsm,
5c4cd5da 11377 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
11378 .update_super = update_super_imsm,
11379
11380 .avail_size = avail_size_imsm,
80e7f8c3 11381 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
11382
11383 .compare_super = compare_super_imsm,
11384
11385 .load_super = load_super_imsm,
bf5a934a 11386 .init_super = init_super_imsm,
e683ca88 11387 .store_super = store_super_imsm,
cdddbdbc
DW
11388 .free_super = free_super_imsm,
11389 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 11390 .container_content = container_content_imsm,
0c21b485 11391 .validate_container = validate_container_imsm,
cdddbdbc 11392
cdddbdbc 11393 .external = 1,
4cce4069 11394 .name = "imsm",
845dea95 11395
0e600426 11396#ifndef MDASSEMBLE
845dea95
NB
11397/* for mdmon */
11398 .open_new = imsm_open_new,
ed9d66aa 11399 .set_array_state= imsm_set_array_state,
845dea95
NB
11400 .set_disk = imsm_set_disk,
11401 .sync_metadata = imsm_sync_metadata,
88758e9d 11402 .activate_spare = imsm_activate_spare,
e8319a19 11403 .process_update = imsm_process_update,
8273f55e 11404 .prepare_update = imsm_prepare_update,
6f50473f 11405 .record_bad_block = imsm_record_badblock,
c07a5a4f 11406 .clear_bad_block = imsm_clear_badblock,
0e600426 11407#endif /* MDASSEMBLE */
cdddbdbc 11408};