]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
Fix gdb.texinfo more
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
219d1afa 2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
8b1ad454
NC
78#endif /* OBJ_ELF */
79
4962c51a
MS
80/* Results from operand parsing worker functions. */
81
82typedef enum
83{
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87} parse_operand_result;
88
33a392fb
PB
89enum arm_float_abi
90{
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94};
95
c19d1205 96/* Types of processor to assemble for. */
b99bd4ef 97#ifndef CPU_DEFAULT
8a59fff3 98/* The code that was here used to select a default CPU depending on compiler
fa94de6b 99 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
b99bd4ef
NC
104#endif
105
106#ifndef FPU_DEFAULT
c820d418
MM
107# ifdef TE_LINUX
108# define FPU_DEFAULT FPU_ARCH_FPA
109# elif defined (TE_NetBSD)
110# ifdef OBJ_ELF
111# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112# else
113 /* Legacy a.out format. */
114# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115# endif
4e7fd91e
PB
116# elif defined (TE_VXWORKS)
117# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
118# else
119 /* For backwards compatibility, default to FPA. */
120# define FPU_DEFAULT FPU_ARCH_FPA
121# endif
122#endif /* ifndef FPU_DEFAULT */
b99bd4ef 123
c19d1205 124#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 125
e74cfd16
PB
126static arm_feature_set cpu_variant;
127static arm_feature_set arm_arch_used;
128static arm_feature_set thumb_arch_used;
b99bd4ef 129
b99bd4ef 130/* Flags stored in private area of BFD structure. */
c19d1205
ZW
131static int uses_apcs_26 = FALSE;
132static int atpcs = FALSE;
b34976b6
AM
133static int support_interwork = FALSE;
134static int uses_apcs_float = FALSE;
c19d1205 135static int pic_code = FALSE;
845b51d6 136static int fix_v4bx = FALSE;
278df34e
NS
137/* Warn on using deprecated features. */
138static int warn_on_deprecated = TRUE;
139
2e6976a8
DG
140/* Understand CodeComposer Studio assembly syntax. */
141bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
0198d5e6
TC
146static const arm_feature_set * legacy_cpu = NULL;
147static const arm_feature_set * legacy_fpu = NULL;
148
149static const arm_feature_set * mcpu_cpu_opt = NULL;
150static arm_feature_set * dyn_mcpu_ext_opt = NULL;
151static const arm_feature_set * mcpu_fpu_opt = NULL;
152static const arm_feature_set * march_cpu_opt = NULL;
153static arm_feature_set * dyn_march_ext_opt = NULL;
154static const arm_feature_set * march_fpu_opt = NULL;
155static const arm_feature_set * mfpu_opt = NULL;
156static const arm_feature_set * object_arch = NULL;
e74cfd16
PB
157
158/* Constants for known architecture features. */
159static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 160static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 161static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
162static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
163static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
164static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
165static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 166#ifdef OBJ_ELF
e74cfd16 167static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 168#endif
e74cfd16
PB
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
823d2571 175static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 176static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 183static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
184 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
191static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
823d2571
TG
192static const arm_feature_set arm_ext_v6_notm =
193 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
194static const arm_feature_set arm_ext_v6_dsp =
195 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
196static const arm_feature_set arm_ext_barrier =
197 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
198static const arm_feature_set arm_ext_msr =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
200static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
201static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
202static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
203static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 204#ifdef OBJ_ELF
e7d39ed3 205static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 206#endif
823d2571 207static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 208static const arm_feature_set arm_ext_m =
173205ca 209 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 210 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
211static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
212static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
213static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
214static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
215static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 216static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 217static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
218static const arm_feature_set arm_ext_v8m_main =
219 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
220/* Instructions in ARMv8-M only found in M profile architectures. */
221static const arm_feature_set arm_ext_v8m_m_only =
222 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
223static const arm_feature_set arm_ext_v6t2_v8m =
224 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
225/* Instructions shared between ARMv8-A and ARMv8-M. */
226static const arm_feature_set arm_ext_atomics =
227 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 228#ifdef OBJ_ELF
15afaa63
TP
229/* DSP instructions Tag_DSP_extension refers to. */
230static const arm_feature_set arm_ext_dsp =
231 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 232#endif
4d1464f2
MW
233static const arm_feature_set arm_ext_ras =
234 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
235/* FP16 instructions. */
236static const arm_feature_set arm_ext_fp16 =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
238static const arm_feature_set arm_ext_fp16_fml =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
240static const arm_feature_set arm_ext_v8_2 =
241 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
242static const arm_feature_set arm_ext_v8_3 =
243 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
e74cfd16
PB
244
245static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 246#ifdef OBJ_ELF
2c6b98ea 247static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 248#endif
f85d59c3 249static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
250static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
251static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
252
2d447fca 253static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 254 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 255static const arm_feature_set arm_cext_iwmmxt =
823d2571 256 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 257static const arm_feature_set arm_cext_xscale =
823d2571 258 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 259static const arm_feature_set arm_cext_maverick =
823d2571
TG
260 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
261static const arm_feature_set fpu_fpa_ext_v1 =
262 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
263static const arm_feature_set fpu_fpa_ext_v2 =
264 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 265static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
266 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
267static const arm_feature_set fpu_vfp_ext_v1 =
268 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
269static const arm_feature_set fpu_vfp_ext_v2 =
270 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
271static const arm_feature_set fpu_vfp_ext_v3xd =
272 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
273static const arm_feature_set fpu_vfp_ext_v3 =
274 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 275static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
276 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
277static const arm_feature_set fpu_neon_ext_v1 =
278 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 279static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 280 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
69c9e028 281#ifdef OBJ_ELF
823d2571
TG
282static const arm_feature_set fpu_vfp_fp16 =
283 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
284static const arm_feature_set fpu_neon_ext_fma =
285 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 286#endif
823d2571
TG
287static const arm_feature_set fpu_vfp_ext_fma =
288 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 289static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 290 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 291static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 292 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 293static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 294 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 295static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 296 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 297static const arm_feature_set crc_ext_armv8 =
823d2571 298 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 299static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 300 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
301static const arm_feature_set fpu_neon_ext_dotprod =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 303
33a392fb 304static int mfloat_abi_opt = -1;
e74cfd16
PB
305/* Record user cpu selection for object attributes. */
306static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83 307/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 308static char selected_cpu_name[20];
8d67f500 309
aacf0b33
KT
310extern FLONUM_TYPE generic_floating_point_number;
311
8d67f500
NC
312/* Return if no cpu was selected on command-line. */
313static bfd_boolean
314no_cpu_selected (void)
315{
823d2571 316 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
317}
318
7cc69913 319#ifdef OBJ_ELF
deeaaff8
DJ
320# ifdef EABI_DEFAULT
321static int meabi_flags = EABI_DEFAULT;
322# else
d507cf36 323static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 324# endif
e1da3f5b 325
ee3c0378
AS
326static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
327
e1da3f5b 328bfd_boolean
5f4273c7 329arm_is_eabi (void)
e1da3f5b
PB
330{
331 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
332}
7cc69913 333#endif
b99bd4ef 334
b99bd4ef 335#ifdef OBJ_ELF
c19d1205 336/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
337symbolS * GOT_symbol;
338#endif
339
b99bd4ef
NC
340/* 0: assemble for ARM,
341 1: assemble for Thumb,
342 2: assemble for Thumb even though target CPU does not support thumb
343 instructions. */
344static int thumb_mode = 0;
8dc2430f
NC
345/* A value distinct from the possible values for thumb_mode that we
346 can use to record whether thumb_mode has been copied into the
347 tc_frag_data field of a frag. */
348#define MODE_RECORDED (1 << 4)
b99bd4ef 349
e07e6e58
NC
350/* Specifies the intrinsic IT insn behavior mode. */
351enum implicit_it_mode
352{
353 IMPLICIT_IT_MODE_NEVER = 0x00,
354 IMPLICIT_IT_MODE_ARM = 0x01,
355 IMPLICIT_IT_MODE_THUMB = 0x02,
356 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
357};
358static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
359
c19d1205
ZW
360/* If unified_syntax is true, we are processing the new unified
361 ARM/Thumb syntax. Important differences from the old ARM mode:
362
363 - Immediate operands do not require a # prefix.
364 - Conditional affixes always appear at the end of the
365 instruction. (For backward compatibility, those instructions
366 that formerly had them in the middle, continue to accept them
367 there.)
368 - The IT instruction may appear, and if it does is validated
369 against subsequent conditional affixes. It does not generate
370 machine code.
371
372 Important differences from the old Thumb mode:
373
374 - Immediate operands do not require a # prefix.
375 - Most of the V6T2 instructions are only available in unified mode.
376 - The .N and .W suffixes are recognized and honored (it is an error
377 if they cannot be honored).
378 - All instructions set the flags if and only if they have an 's' affix.
379 - Conditional affixes may be used. They are validated against
380 preceding IT instructions. Unlike ARM mode, you cannot use a
381 conditional affix except in the scope of an IT instruction. */
382
383static bfd_boolean unified_syntax = FALSE;
b99bd4ef 384
bacebabc
RM
385/* An immediate operand can start with #, and ld*, st*, pld operands
386 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
387 before a [, which can appear as the first operand for pld.
388 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
389const char arm_symbol_chars[] = "#[]{}";
bacebabc 390
5287ad62
JB
391enum neon_el_type
392{
dcbf9037 393 NT_invtype,
5287ad62
JB
394 NT_untyped,
395 NT_integer,
396 NT_float,
397 NT_poly,
398 NT_signed,
dcbf9037 399 NT_unsigned
5287ad62
JB
400};
401
402struct neon_type_el
403{
404 enum neon_el_type type;
405 unsigned size;
406};
407
408#define NEON_MAX_TYPE_ELS 4
409
410struct neon_type
411{
412 struct neon_type_el el[NEON_MAX_TYPE_ELS];
413 unsigned elems;
414};
415
e07e6e58
NC
416enum it_instruction_type
417{
418 OUTSIDE_IT_INSN,
419 INSIDE_IT_INSN,
420 INSIDE_IT_LAST_INSN,
421 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 422 if inside, should be the last one. */
e07e6e58 423 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 424 i.e. BKPT and NOP. */
e07e6e58
NC
425 IT_INSN /* The IT insn has been parsed. */
426};
427
ad6cec43
MGD
428/* The maximum number of operands we need. */
429#define ARM_IT_MAX_OPERANDS 6
430
b99bd4ef
NC
431struct arm_it
432{
c19d1205 433 const char * error;
b99bd4ef 434 unsigned long instruction;
c19d1205
ZW
435 int size;
436 int size_req;
437 int cond;
037e8744
JB
438 /* "uncond_value" is set to the value in place of the conditional field in
439 unconditional versions of the instruction, or -1 if nothing is
440 appropriate. */
441 int uncond_value;
5287ad62 442 struct neon_type vectype;
88714cb8
DG
443 /* This does not indicate an actual NEON instruction, only that
444 the mnemonic accepts neon-style type suffixes. */
445 int is_neon;
0110f2b8
PB
446 /* Set to the opcode if the instruction needs relaxation.
447 Zero if the instruction is not relaxed. */
448 unsigned long relax;
b99bd4ef
NC
449 struct
450 {
451 bfd_reloc_code_real_type type;
c19d1205
ZW
452 expressionS exp;
453 int pc_rel;
b99bd4ef 454 } reloc;
b99bd4ef 455
e07e6e58
NC
456 enum it_instruction_type it_insn_type;
457
c19d1205
ZW
458 struct
459 {
460 unsigned reg;
ca3f61f7 461 signed int imm;
dcbf9037 462 struct neon_type_el vectype;
ca3f61f7
NC
463 unsigned present : 1; /* Operand present. */
464 unsigned isreg : 1; /* Operand was a register. */
465 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
466 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
467 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 468 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
469 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
470 instructions. This allows us to disambiguate ARM <-> vector insns. */
471 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 472 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 473 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 474 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
475 unsigned hasreloc : 1; /* Operand has relocation suffix. */
476 unsigned writeback : 1; /* Operand has trailing ! */
477 unsigned preind : 1; /* Preindexed address. */
478 unsigned postind : 1; /* Postindexed address. */
479 unsigned negative : 1; /* Index register was negated. */
480 unsigned shifted : 1; /* Shift applied to operation. */
481 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 482 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
483};
484
c19d1205 485static struct arm_it inst;
b99bd4ef
NC
486
487#define NUM_FLOAT_VALS 8
488
05d2d07e 489const char * fp_const[] =
b99bd4ef
NC
490{
491 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
492};
493
c19d1205 494/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
495#define MAX_LITTLENUMS 6
496
497LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
498
499#define FAIL (-1)
500#define SUCCESS (0)
501
502#define SUFF_S 1
503#define SUFF_D 2
504#define SUFF_E 3
505#define SUFF_P 4
506
c19d1205
ZW
507#define CP_T_X 0x00008000
508#define CP_T_Y 0x00400000
b99bd4ef 509
c19d1205
ZW
510#define CONDS_BIT 0x00100000
511#define LOAD_BIT 0x00100000
b99bd4ef
NC
512
513#define DOUBLE_LOAD_FLAG 0x00000001
514
515struct asm_cond
516{
d3ce72d0 517 const char * template_name;
c921be7d 518 unsigned long value;
b99bd4ef
NC
519};
520
c19d1205 521#define COND_ALWAYS 0xE
b99bd4ef 522
b99bd4ef
NC
523struct asm_psr
524{
d3ce72d0 525 const char * template_name;
c921be7d 526 unsigned long field;
b99bd4ef
NC
527};
528
62b3e311
PB
529struct asm_barrier_opt
530{
e797f7e0
MGD
531 const char * template_name;
532 unsigned long value;
533 const arm_feature_set arch;
62b3e311
PB
534};
535
2d2255b5 536/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
537#define SPSR_BIT (1 << 22)
538
c19d1205
ZW
539/* The individual PSR flag bits. */
540#define PSR_c (1 << 16)
541#define PSR_x (1 << 17)
542#define PSR_s (1 << 18)
543#define PSR_f (1 << 19)
b99bd4ef 544
c19d1205 545struct reloc_entry
bfae80f2 546{
0198d5e6 547 const char * name;
c921be7d 548 bfd_reloc_code_real_type reloc;
bfae80f2
RE
549};
550
5287ad62 551enum vfp_reg_pos
bfae80f2 552{
5287ad62
JB
553 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
554 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
555};
556
557enum vfp_ldstm_type
558{
559 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
560};
561
dcbf9037
JB
562/* Bits for DEFINED field in neon_typed_alias. */
563#define NTA_HASTYPE 1
564#define NTA_HASINDEX 2
565
566struct neon_typed_alias
567{
c921be7d
NC
568 unsigned char defined;
569 unsigned char index;
570 struct neon_type_el eltype;
dcbf9037
JB
571};
572
c19d1205 573/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
574 architecture extensions' registers. Each entry should have an error message
575 in reg_expected_msgs below. */
c19d1205 576enum arm_reg_type
bfae80f2 577{
c19d1205
ZW
578 REG_TYPE_RN,
579 REG_TYPE_CP,
580 REG_TYPE_CN,
581 REG_TYPE_FN,
582 REG_TYPE_VFS,
583 REG_TYPE_VFD,
5287ad62 584 REG_TYPE_NQ,
037e8744 585 REG_TYPE_VFSD,
5287ad62 586 REG_TYPE_NDQ,
dec41383 587 REG_TYPE_NSD,
037e8744 588 REG_TYPE_NSDQ,
c19d1205
ZW
589 REG_TYPE_VFC,
590 REG_TYPE_MVF,
591 REG_TYPE_MVD,
592 REG_TYPE_MVFX,
593 REG_TYPE_MVDX,
594 REG_TYPE_MVAX,
595 REG_TYPE_DSPSC,
596 REG_TYPE_MMXWR,
597 REG_TYPE_MMXWC,
598 REG_TYPE_MMXWCG,
599 REG_TYPE_XSCALE,
90ec0d68 600 REG_TYPE_RNB
bfae80f2
RE
601};
602
dcbf9037
JB
603/* Structure for a hash table entry for a register.
604 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
605 information which states whether a vector type or index is specified (for a
606 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
607struct reg_entry
608{
c921be7d 609 const char * name;
90ec0d68 610 unsigned int number;
c921be7d
NC
611 unsigned char type;
612 unsigned char builtin;
613 struct neon_typed_alias * neon;
6c43fab6
RE
614};
615
c19d1205 616/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 617const char * const reg_expected_msgs[] =
c19d1205 618{
5aa75429
TP
619 [REG_TYPE_RN] = N_("ARM register expected"),
620 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
621 [REG_TYPE_CN] = N_("co-processor register expected"),
622 [REG_TYPE_FN] = N_("FPA register expected"),
623 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
624 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
625 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
626 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
627 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
628 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
629 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
630 " expected"),
631 [REG_TYPE_VFC] = N_("VFP system register expected"),
632 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
633 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
634 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
635 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
636 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
637 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
638 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
639 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
640 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
641 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
642 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
643};
644
c19d1205 645/* Some well known registers that we refer to directly elsewhere. */
bd340a04 646#define REG_R12 12
c19d1205
ZW
647#define REG_SP 13
648#define REG_LR 14
649#define REG_PC 15
404ff6b5 650
b99bd4ef
NC
651/* ARM instructions take 4bytes in the object file, Thumb instructions
652 take 2: */
c19d1205 653#define INSN_SIZE 4
b99bd4ef
NC
654
655struct asm_opcode
656{
657 /* Basic string to match. */
d3ce72d0 658 const char * template_name;
c19d1205
ZW
659
660 /* Parameters to instruction. */
5be8be5d 661 unsigned int operands[8];
c19d1205
ZW
662
663 /* Conditional tag - see opcode_lookup. */
664 unsigned int tag : 4;
b99bd4ef
NC
665
666 /* Basic instruction code. */
c19d1205 667 unsigned int avalue : 28;
b99bd4ef 668
c19d1205
ZW
669 /* Thumb-format instruction code. */
670 unsigned int tvalue;
b99bd4ef 671
90e4755a 672 /* Which architecture variant provides this instruction. */
c921be7d
NC
673 const arm_feature_set * avariant;
674 const arm_feature_set * tvariant;
c19d1205
ZW
675
676 /* Function to call to encode instruction in ARM format. */
677 void (* aencode) (void);
b99bd4ef 678
c19d1205
ZW
679 /* Function to call to encode instruction in Thumb format. */
680 void (* tencode) (void);
b99bd4ef
NC
681};
682
a737bd4d
NC
683/* Defines for various bits that we will want to toggle. */
684#define INST_IMMEDIATE 0x02000000
685#define OFFSET_REG 0x02000000
c19d1205 686#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
687#define SHIFT_BY_REG 0x00000010
688#define PRE_INDEX 0x01000000
689#define INDEX_UP 0x00800000
690#define WRITE_BACK 0x00200000
691#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 692#define CPSI_MMOD 0x00020000
90e4755a 693
a737bd4d
NC
694#define LITERAL_MASK 0xf000f000
695#define OPCODE_MASK 0xfe1fffff
696#define V4_STR_BIT 0x00000020
8335d6aa 697#define VLDR_VMOV_SAME 0x0040f000
90e4755a 698
efd81785
PB
699#define T2_SUBS_PC_LR 0xf3de8f00
700
a737bd4d 701#define DATA_OP_SHIFT 21
bada4342 702#define SBIT_SHIFT 20
90e4755a 703
ef8d22e6
PB
704#define T2_OPCODE_MASK 0xfe1fffff
705#define T2_DATA_OP_SHIFT 21
bada4342 706#define T2_SBIT_SHIFT 20
ef8d22e6 707
6530b175
NC
708#define A_COND_MASK 0xf0000000
709#define A_PUSH_POP_OP_MASK 0x0fff0000
710
711/* Opcodes for pushing/poping registers to/from the stack. */
712#define A1_OPCODE_PUSH 0x092d0000
713#define A2_OPCODE_PUSH 0x052d0004
714#define A2_OPCODE_POP 0x049d0004
715
a737bd4d
NC
716/* Codes to distinguish the arithmetic instructions. */
717#define OPCODE_AND 0
718#define OPCODE_EOR 1
719#define OPCODE_SUB 2
720#define OPCODE_RSB 3
721#define OPCODE_ADD 4
722#define OPCODE_ADC 5
723#define OPCODE_SBC 6
724#define OPCODE_RSC 7
725#define OPCODE_TST 8
726#define OPCODE_TEQ 9
727#define OPCODE_CMP 10
728#define OPCODE_CMN 11
729#define OPCODE_ORR 12
730#define OPCODE_MOV 13
731#define OPCODE_BIC 14
732#define OPCODE_MVN 15
90e4755a 733
ef8d22e6
PB
734#define T2_OPCODE_AND 0
735#define T2_OPCODE_BIC 1
736#define T2_OPCODE_ORR 2
737#define T2_OPCODE_ORN 3
738#define T2_OPCODE_EOR 4
739#define T2_OPCODE_ADD 8
740#define T2_OPCODE_ADC 10
741#define T2_OPCODE_SBC 11
742#define T2_OPCODE_SUB 13
743#define T2_OPCODE_RSB 14
744
a737bd4d
NC
745#define T_OPCODE_MUL 0x4340
746#define T_OPCODE_TST 0x4200
747#define T_OPCODE_CMN 0x42c0
748#define T_OPCODE_NEG 0x4240
749#define T_OPCODE_MVN 0x43c0
90e4755a 750
a737bd4d
NC
751#define T_OPCODE_ADD_R3 0x1800
752#define T_OPCODE_SUB_R3 0x1a00
753#define T_OPCODE_ADD_HI 0x4400
754#define T_OPCODE_ADD_ST 0xb000
755#define T_OPCODE_SUB_ST 0xb080
756#define T_OPCODE_ADD_SP 0xa800
757#define T_OPCODE_ADD_PC 0xa000
758#define T_OPCODE_ADD_I8 0x3000
759#define T_OPCODE_SUB_I8 0x3800
760#define T_OPCODE_ADD_I3 0x1c00
761#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 762
a737bd4d
NC
763#define T_OPCODE_ASR_R 0x4100
764#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
765#define T_OPCODE_LSR_R 0x40c0
766#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
767#define T_OPCODE_ASR_I 0x1000
768#define T_OPCODE_LSL_I 0x0000
769#define T_OPCODE_LSR_I 0x0800
b99bd4ef 770
a737bd4d
NC
771#define T_OPCODE_MOV_I8 0x2000
772#define T_OPCODE_CMP_I8 0x2800
773#define T_OPCODE_CMP_LR 0x4280
774#define T_OPCODE_MOV_HR 0x4600
775#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 776
a737bd4d
NC
777#define T_OPCODE_LDR_PC 0x4800
778#define T_OPCODE_LDR_SP 0x9800
779#define T_OPCODE_STR_SP 0x9000
780#define T_OPCODE_LDR_IW 0x6800
781#define T_OPCODE_STR_IW 0x6000
782#define T_OPCODE_LDR_IH 0x8800
783#define T_OPCODE_STR_IH 0x8000
784#define T_OPCODE_LDR_IB 0x7800
785#define T_OPCODE_STR_IB 0x7000
786#define T_OPCODE_LDR_RW 0x5800
787#define T_OPCODE_STR_RW 0x5000
788#define T_OPCODE_LDR_RH 0x5a00
789#define T_OPCODE_STR_RH 0x5200
790#define T_OPCODE_LDR_RB 0x5c00
791#define T_OPCODE_STR_RB 0x5400
c9b604bd 792
a737bd4d
NC
793#define T_OPCODE_PUSH 0xb400
794#define T_OPCODE_POP 0xbc00
b99bd4ef 795
2fc8bdac 796#define T_OPCODE_BRANCH 0xe000
b99bd4ef 797
a737bd4d 798#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 799#define THUMB_PP_PC_LR 0x0100
c19d1205 800#define THUMB_LOAD_BIT 0x0800
53365c0d 801#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
802
803#define BAD_ARGS _("bad arguments to instruction")
fdfde340 804#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
805#define BAD_PC _("r15 not allowed here")
806#define BAD_COND _("instruction cannot be conditional")
807#define BAD_OVERLAP _("registers may not be the same")
808#define BAD_HIREG _("lo register required")
809#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 810#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
811#define BAD_BRANCH _("branch must be last instruction in IT block")
812#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 813#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
814#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
815#define BAD_IT_COND _("incorrect condition in IT block")
816#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 817#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
818#define BAD_PC_ADDRESSING \
819 _("cannot use register index with PC-relative addressing")
820#define BAD_PC_WRITEBACK \
821 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
822#define BAD_RANGE _("branch out of range")
823#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 824#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 825#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
c19d1205 826
c921be7d
NC
827static struct hash_control * arm_ops_hsh;
828static struct hash_control * arm_cond_hsh;
829static struct hash_control * arm_shift_hsh;
830static struct hash_control * arm_psr_hsh;
831static struct hash_control * arm_v7m_psr_hsh;
832static struct hash_control * arm_reg_hsh;
833static struct hash_control * arm_reloc_hsh;
834static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 835
b99bd4ef
NC
836/* Stuff needed to resolve the label ambiguity
837 As:
838 ...
839 label: <insn>
840 may differ from:
841 ...
842 label:
5f4273c7 843 <insn> */
b99bd4ef
NC
844
845symbolS * last_label_seen;
b34976b6 846static int label_is_thumb_function_name = FALSE;
e07e6e58 847
3d0c9500
NC
848/* Literal pool structure. Held on a per-section
849 and per-sub-section basis. */
a737bd4d 850
c19d1205 851#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 852typedef struct literal_pool
b99bd4ef 853{
c921be7d
NC
854 expressionS literals [MAX_LITERAL_POOL_SIZE];
855 unsigned int next_free_entry;
856 unsigned int id;
857 symbolS * symbol;
858 segT section;
859 subsegT sub_section;
a8040cf2
NC
860#ifdef OBJ_ELF
861 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
862#endif
c921be7d 863 struct literal_pool * next;
8335d6aa 864 unsigned int alignment;
3d0c9500 865} literal_pool;
b99bd4ef 866
3d0c9500
NC
867/* Pointer to a linked list of literal pools. */
868literal_pool * list_of_pools = NULL;
e27ec89e 869
2e6976a8
DG
870typedef enum asmfunc_states
871{
872 OUTSIDE_ASMFUNC,
873 WAITING_ASMFUNC_NAME,
874 WAITING_ENDASMFUNC
875} asmfunc_states;
876
877static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
878
e07e6e58
NC
879#ifdef OBJ_ELF
880# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
881#else
882static struct current_it now_it;
883#endif
884
885static inline int
886now_it_compatible (int cond)
887{
888 return (cond & ~1) == (now_it.cc & ~1);
889}
890
891static inline int
892conditional_insn (void)
893{
894 return inst.cond != COND_ALWAYS;
895}
896
897static int in_it_block (void);
898
899static int handle_it_state (void);
900
901static void force_automatic_it_block_close (void);
902
c921be7d
NC
903static void it_fsm_post_encode (void);
904
e07e6e58
NC
905#define set_it_insn_type(type) \
906 do \
907 { \
908 inst.it_insn_type = type; \
909 if (handle_it_state () == FAIL) \
477330fc 910 return; \
e07e6e58
NC
911 } \
912 while (0)
913
c921be7d
NC
914#define set_it_insn_type_nonvoid(type, failret) \
915 do \
916 { \
917 inst.it_insn_type = type; \
918 if (handle_it_state () == FAIL) \
477330fc 919 return failret; \
c921be7d
NC
920 } \
921 while(0)
922
e07e6e58
NC
923#define set_it_insn_type_last() \
924 do \
925 { \
926 if (inst.cond == COND_ALWAYS) \
477330fc 927 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 928 else \
477330fc 929 set_it_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
930 } \
931 while (0)
932
c19d1205 933/* Pure syntax. */
b99bd4ef 934
c19d1205
ZW
935/* This array holds the chars that always start a comment. If the
936 pre-processor is disabled, these aren't very useful. */
2e6976a8 937char arm_comment_chars[] = "@";
3d0c9500 938
c19d1205
ZW
939/* This array holds the chars that only start a comment at the beginning of
940 a line. If the line seems to have the form '# 123 filename'
941 .line and .file directives will appear in the pre-processed output. */
942/* Note that input_file.c hand checks for '#' at the beginning of the
943 first line of the input file. This is because the compiler outputs
944 #NO_APP at the beginning of its output. */
945/* Also note that comments like this one will always work. */
946const char line_comment_chars[] = "#";
3d0c9500 947
2e6976a8 948char arm_line_separator_chars[] = ";";
b99bd4ef 949
c19d1205
ZW
950/* Chars that can be used to separate mant
951 from exp in floating point numbers. */
952const char EXP_CHARS[] = "eE";
3d0c9500 953
c19d1205
ZW
954/* Chars that mean this number is a floating point constant. */
955/* As in 0f12.456 */
956/* or 0d1.2345e12 */
b99bd4ef 957
c19d1205 958const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 959
c19d1205
ZW
960/* Prefix characters that indicate the start of an immediate
961 value. */
962#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 963
c19d1205
ZW
964/* Separator character handling. */
965
966#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
967
968static inline int
969skip_past_char (char ** str, char c)
970{
8ab8155f
NC
971 /* PR gas/14987: Allow for whitespace before the expected character. */
972 skip_whitespace (*str);
427d0db6 973
c19d1205
ZW
974 if (**str == c)
975 {
976 (*str)++;
977 return SUCCESS;
3d0c9500 978 }
c19d1205
ZW
979 else
980 return FAIL;
981}
c921be7d 982
c19d1205 983#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 984
c19d1205
ZW
985/* Arithmetic expressions (possibly involving symbols). */
986
987/* Return TRUE if anything in the expression is a bignum. */
988
0198d5e6 989static bfd_boolean
c19d1205
ZW
990walk_no_bignums (symbolS * sp)
991{
992 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 993 return TRUE;
c19d1205
ZW
994
995 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 996 {
c19d1205
ZW
997 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
998 || (symbol_get_value_expression (sp)->X_op_symbol
999 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1000 }
1001
0198d5e6 1002 return FALSE;
3d0c9500
NC
1003}
1004
0198d5e6 1005static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1006
1007/* Third argument to my_get_expression. */
1008#define GE_NO_PREFIX 0
1009#define GE_IMM_PREFIX 1
1010#define GE_OPT_PREFIX 2
5287ad62
JB
1011/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1012 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1013#define GE_OPT_PREFIX_BIG 3
a737bd4d 1014
b99bd4ef 1015static int
c19d1205 1016my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1017{
c19d1205
ZW
1018 char * save_in;
1019 segT seg;
b99bd4ef 1020
c19d1205
ZW
1021 /* In unified syntax, all prefixes are optional. */
1022 if (unified_syntax)
5287ad62 1023 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1024 : GE_OPT_PREFIX;
b99bd4ef 1025
c19d1205 1026 switch (prefix_mode)
b99bd4ef 1027 {
c19d1205
ZW
1028 case GE_NO_PREFIX: break;
1029 case GE_IMM_PREFIX:
1030 if (!is_immediate_prefix (**str))
1031 {
1032 inst.error = _("immediate expression requires a # prefix");
1033 return FAIL;
1034 }
1035 (*str)++;
1036 break;
1037 case GE_OPT_PREFIX:
5287ad62 1038 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1039 if (is_immediate_prefix (**str))
1040 (*str)++;
1041 break;
0198d5e6
TC
1042 default:
1043 abort ();
c19d1205 1044 }
b99bd4ef 1045
c19d1205 1046 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1047
c19d1205
ZW
1048 save_in = input_line_pointer;
1049 input_line_pointer = *str;
0198d5e6 1050 in_my_get_expression = TRUE;
c19d1205 1051 seg = expression (ep);
0198d5e6 1052 in_my_get_expression = FALSE;
c19d1205 1053
f86adc07 1054 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1055 {
f86adc07 1056 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1057 *str = input_line_pointer;
1058 input_line_pointer = save_in;
1059 if (inst.error == NULL)
f86adc07
NS
1060 inst.error = (ep->X_op == O_absent
1061 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1062 return 1;
1063 }
b99bd4ef 1064
c19d1205
ZW
1065#ifdef OBJ_AOUT
1066 if (seg != absolute_section
1067 && seg != text_section
1068 && seg != data_section
1069 && seg != bss_section
1070 && seg != undefined_section)
1071 {
1072 inst.error = _("bad segment");
1073 *str = input_line_pointer;
1074 input_line_pointer = save_in;
1075 return 1;
b99bd4ef 1076 }
87975d2a
AM
1077#else
1078 (void) seg;
c19d1205 1079#endif
b99bd4ef 1080
c19d1205
ZW
1081 /* Get rid of any bignums now, so that we don't generate an error for which
1082 we can't establish a line number later on. Big numbers are never valid
1083 in instructions, which is where this routine is always called. */
5287ad62
JB
1084 if (prefix_mode != GE_OPT_PREFIX_BIG
1085 && (ep->X_op == O_big
477330fc 1086 || (ep->X_add_symbol
5287ad62 1087 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1088 || (ep->X_op_symbol
5287ad62 1089 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1090 {
1091 inst.error = _("invalid constant");
1092 *str = input_line_pointer;
1093 input_line_pointer = save_in;
1094 return 1;
1095 }
b99bd4ef 1096
c19d1205
ZW
1097 *str = input_line_pointer;
1098 input_line_pointer = save_in;
0198d5e6 1099 return SUCCESS;
b99bd4ef
NC
1100}
1101
c19d1205
ZW
1102/* Turn a string in input_line_pointer into a floating point constant
1103 of type TYPE, and store the appropriate bytes in *LITP. The number
1104 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1105 returned, or NULL on OK.
b99bd4ef 1106
c19d1205
ZW
1107 Note that fp constants aren't represent in the normal way on the ARM.
1108 In big endian mode, things are as expected. However, in little endian
1109 mode fp constants are big-endian word-wise, and little-endian byte-wise
1110 within the words. For example, (double) 1.1 in big endian mode is
1111 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1112 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1113
c19d1205 1114 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1115
6d4af3c2 1116const char *
c19d1205
ZW
1117md_atof (int type, char * litP, int * sizeP)
1118{
1119 int prec;
1120 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1121 char *t;
1122 int i;
b99bd4ef 1123
c19d1205
ZW
1124 switch (type)
1125 {
1126 case 'f':
1127 case 'F':
1128 case 's':
1129 case 'S':
1130 prec = 2;
1131 break;
b99bd4ef 1132
c19d1205
ZW
1133 case 'd':
1134 case 'D':
1135 case 'r':
1136 case 'R':
1137 prec = 4;
1138 break;
b99bd4ef 1139
c19d1205
ZW
1140 case 'x':
1141 case 'X':
499ac353 1142 prec = 5;
c19d1205 1143 break;
b99bd4ef 1144
c19d1205
ZW
1145 case 'p':
1146 case 'P':
499ac353 1147 prec = 5;
c19d1205 1148 break;
a737bd4d 1149
c19d1205
ZW
1150 default:
1151 *sizeP = 0;
499ac353 1152 return _("Unrecognized or unsupported floating point constant");
c19d1205 1153 }
b99bd4ef 1154
c19d1205
ZW
1155 t = atof_ieee (input_line_pointer, type, words);
1156 if (t)
1157 input_line_pointer = t;
499ac353 1158 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1159
c19d1205
ZW
1160 if (target_big_endian)
1161 {
1162 for (i = 0; i < prec; i++)
1163 {
499ac353
NC
1164 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1165 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1166 }
1167 }
1168 else
1169 {
e74cfd16 1170 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1171 for (i = prec - 1; i >= 0; i--)
1172 {
499ac353
NC
1173 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1174 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1175 }
1176 else
1177 /* For a 4 byte float the order of elements in `words' is 1 0.
1178 For an 8 byte float the order is 1 0 3 2. */
1179 for (i = 0; i < prec; i += 2)
1180 {
499ac353
NC
1181 md_number_to_chars (litP, (valueT) words[i + 1],
1182 sizeof (LITTLENUM_TYPE));
1183 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1184 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1185 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1186 }
1187 }
b99bd4ef 1188
499ac353 1189 return NULL;
c19d1205 1190}
b99bd4ef 1191
c19d1205
ZW
1192/* We handle all bad expressions here, so that we can report the faulty
1193 instruction in the error message. */
0198d5e6 1194
c19d1205 1195void
91d6fa6a 1196md_operand (expressionS * exp)
c19d1205
ZW
1197{
1198 if (in_my_get_expression)
91d6fa6a 1199 exp->X_op = O_illegal;
b99bd4ef
NC
1200}
1201
c19d1205 1202/* Immediate values. */
b99bd4ef 1203
0198d5e6 1204#ifdef OBJ_ELF
c19d1205
ZW
1205/* Generic immediate-value read function for use in directives.
1206 Accepts anything that 'expression' can fold to a constant.
1207 *val receives the number. */
0198d5e6 1208
c19d1205
ZW
1209static int
1210immediate_for_directive (int *val)
b99bd4ef 1211{
c19d1205
ZW
1212 expressionS exp;
1213 exp.X_op = O_illegal;
b99bd4ef 1214
c19d1205
ZW
1215 if (is_immediate_prefix (*input_line_pointer))
1216 {
1217 input_line_pointer++;
1218 expression (&exp);
1219 }
b99bd4ef 1220
c19d1205
ZW
1221 if (exp.X_op != O_constant)
1222 {
1223 as_bad (_("expected #constant"));
1224 ignore_rest_of_line ();
1225 return FAIL;
1226 }
1227 *val = exp.X_add_number;
1228 return SUCCESS;
b99bd4ef 1229}
c19d1205 1230#endif
b99bd4ef 1231
c19d1205 1232/* Register parsing. */
b99bd4ef 1233
c19d1205
ZW
1234/* Generic register parser. CCP points to what should be the
1235 beginning of a register name. If it is indeed a valid register
1236 name, advance CCP over it and return the reg_entry structure;
1237 otherwise return NULL. Does not issue diagnostics. */
1238
1239static struct reg_entry *
1240arm_reg_parse_multi (char **ccp)
b99bd4ef 1241{
c19d1205
ZW
1242 char *start = *ccp;
1243 char *p;
1244 struct reg_entry *reg;
b99bd4ef 1245
477330fc
RM
1246 skip_whitespace (start);
1247
c19d1205
ZW
1248#ifdef REGISTER_PREFIX
1249 if (*start != REGISTER_PREFIX)
01cfc07f 1250 return NULL;
c19d1205
ZW
1251 start++;
1252#endif
1253#ifdef OPTIONAL_REGISTER_PREFIX
1254 if (*start == OPTIONAL_REGISTER_PREFIX)
1255 start++;
1256#endif
b99bd4ef 1257
c19d1205
ZW
1258 p = start;
1259 if (!ISALPHA (*p) || !is_name_beginner (*p))
1260 return NULL;
b99bd4ef 1261
c19d1205
ZW
1262 do
1263 p++;
1264 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1265
1266 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1267
1268 if (!reg)
1269 return NULL;
1270
1271 *ccp = p;
1272 return reg;
b99bd4ef
NC
1273}
1274
1275static int
dcbf9037 1276arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1277 enum arm_reg_type type)
b99bd4ef 1278{
c19d1205
ZW
1279 /* Alternative syntaxes are accepted for a few register classes. */
1280 switch (type)
1281 {
1282 case REG_TYPE_MVF:
1283 case REG_TYPE_MVD:
1284 case REG_TYPE_MVFX:
1285 case REG_TYPE_MVDX:
1286 /* Generic coprocessor register names are allowed for these. */
79134647 1287 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1288 return reg->number;
1289 break;
69b97547 1290
c19d1205
ZW
1291 case REG_TYPE_CP:
1292 /* For backward compatibility, a bare number is valid here. */
1293 {
1294 unsigned long processor = strtoul (start, ccp, 10);
1295 if (*ccp != start && processor <= 15)
1296 return processor;
1297 }
1a0670f3 1298 /* Fall through. */
6057a28f 1299
c19d1205
ZW
1300 case REG_TYPE_MMXWC:
1301 /* WC includes WCG. ??? I'm not sure this is true for all
1302 instructions that take WC registers. */
79134647 1303 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1304 return reg->number;
6057a28f 1305 break;
c19d1205 1306
6057a28f 1307 default:
c19d1205 1308 break;
6057a28f
NC
1309 }
1310
dcbf9037
JB
1311 return FAIL;
1312}
1313
1314/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1315 return value is the register number or FAIL. */
1316
1317static int
1318arm_reg_parse (char **ccp, enum arm_reg_type type)
1319{
1320 char *start = *ccp;
1321 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1322 int ret;
1323
1324 /* Do not allow a scalar (reg+index) to parse as a register. */
1325 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1326 return FAIL;
1327
1328 if (reg && reg->type == type)
1329 return reg->number;
1330
1331 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1332 return ret;
1333
c19d1205
ZW
1334 *ccp = start;
1335 return FAIL;
1336}
69b97547 1337
dcbf9037
JB
1338/* Parse a Neon type specifier. *STR should point at the leading '.'
1339 character. Does no verification at this stage that the type fits the opcode
1340 properly. E.g.,
1341
1342 .i32.i32.s16
1343 .s32.f32
1344 .u16
1345
1346 Can all be legally parsed by this function.
1347
1348 Fills in neon_type struct pointer with parsed information, and updates STR
1349 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1350 type, FAIL if not. */
1351
1352static int
1353parse_neon_type (struct neon_type *type, char **str)
1354{
1355 char *ptr = *str;
1356
1357 if (type)
1358 type->elems = 0;
1359
1360 while (type->elems < NEON_MAX_TYPE_ELS)
1361 {
1362 enum neon_el_type thistype = NT_untyped;
1363 unsigned thissize = -1u;
1364
1365 if (*ptr != '.')
1366 break;
1367
1368 ptr++;
1369
1370 /* Just a size without an explicit type. */
1371 if (ISDIGIT (*ptr))
1372 goto parsesize;
1373
1374 switch (TOLOWER (*ptr))
1375 {
1376 case 'i': thistype = NT_integer; break;
1377 case 'f': thistype = NT_float; break;
1378 case 'p': thistype = NT_poly; break;
1379 case 's': thistype = NT_signed; break;
1380 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1381 case 'd':
1382 thistype = NT_float;
1383 thissize = 64;
1384 ptr++;
1385 goto done;
dcbf9037
JB
1386 default:
1387 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1388 return FAIL;
1389 }
1390
1391 ptr++;
1392
1393 /* .f is an abbreviation for .f32. */
1394 if (thistype == NT_float && !ISDIGIT (*ptr))
1395 thissize = 32;
1396 else
1397 {
1398 parsesize:
1399 thissize = strtoul (ptr, &ptr, 10);
1400
1401 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1402 && thissize != 64)
1403 {
1404 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1405 return FAIL;
1406 }
1407 }
1408
037e8744 1409 done:
dcbf9037 1410 if (type)
477330fc
RM
1411 {
1412 type->el[type->elems].type = thistype;
dcbf9037
JB
1413 type->el[type->elems].size = thissize;
1414 type->elems++;
1415 }
1416 }
1417
1418 /* Empty/missing type is not a successful parse. */
1419 if (type->elems == 0)
1420 return FAIL;
1421
1422 *str = ptr;
1423
1424 return SUCCESS;
1425}
1426
1427/* Errors may be set multiple times during parsing or bit encoding
1428 (particularly in the Neon bits), but usually the earliest error which is set
1429 will be the most meaningful. Avoid overwriting it with later (cascading)
1430 errors by calling this function. */
1431
1432static void
1433first_error (const char *err)
1434{
1435 if (!inst.error)
1436 inst.error = err;
1437}
1438
1439/* Parse a single type, e.g. ".s32", leading period included. */
1440static int
1441parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1442{
1443 char *str = *ccp;
1444 struct neon_type optype;
1445
1446 if (*str == '.')
1447 {
1448 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1449 {
1450 if (optype.elems == 1)
1451 *vectype = optype.el[0];
1452 else
1453 {
1454 first_error (_("only one type should be specified for operand"));
1455 return FAIL;
1456 }
1457 }
dcbf9037 1458 else
477330fc
RM
1459 {
1460 first_error (_("vector type expected"));
1461 return FAIL;
1462 }
dcbf9037
JB
1463 }
1464 else
1465 return FAIL;
5f4273c7 1466
dcbf9037 1467 *ccp = str;
5f4273c7 1468
dcbf9037
JB
1469 return SUCCESS;
1470}
1471
1472/* Special meanings for indices (which have a range of 0-7), which will fit into
1473 a 4-bit integer. */
1474
1475#define NEON_ALL_LANES 15
1476#define NEON_INTERLEAVE_LANES 14
1477
1478/* Parse either a register or a scalar, with an optional type. Return the
1479 register number, and optionally fill in the actual type of the register
1480 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1481 type/index information in *TYPEINFO. */
1482
1483static int
1484parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1485 enum arm_reg_type *rtype,
1486 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1487{
1488 char *str = *ccp;
1489 struct reg_entry *reg = arm_reg_parse_multi (&str);
1490 struct neon_typed_alias atype;
1491 struct neon_type_el parsetype;
1492
1493 atype.defined = 0;
1494 atype.index = -1;
1495 atype.eltype.type = NT_invtype;
1496 atype.eltype.size = -1;
1497
1498 /* Try alternate syntax for some types of register. Note these are mutually
1499 exclusive with the Neon syntax extensions. */
1500 if (reg == NULL)
1501 {
1502 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1503 if (altreg != FAIL)
477330fc 1504 *ccp = str;
dcbf9037 1505 if (typeinfo)
477330fc 1506 *typeinfo = atype;
dcbf9037
JB
1507 return altreg;
1508 }
1509
037e8744
JB
1510 /* Undo polymorphism when a set of register types may be accepted. */
1511 if ((type == REG_TYPE_NDQ
1512 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1513 || (type == REG_TYPE_VFSD
477330fc 1514 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1515 || (type == REG_TYPE_NSDQ
477330fc
RM
1516 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1517 || reg->type == REG_TYPE_NQ))
dec41383
JW
1518 || (type == REG_TYPE_NSD
1519 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1520 || (type == REG_TYPE_MMXWC
1521 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1522 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1523
1524 if (type != reg->type)
1525 return FAIL;
1526
1527 if (reg->neon)
1528 atype = *reg->neon;
5f4273c7 1529
dcbf9037
JB
1530 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1531 {
1532 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1533 {
1534 first_error (_("can't redefine type for operand"));
1535 return FAIL;
1536 }
dcbf9037
JB
1537 atype.defined |= NTA_HASTYPE;
1538 atype.eltype = parsetype;
1539 }
5f4273c7 1540
dcbf9037
JB
1541 if (skip_past_char (&str, '[') == SUCCESS)
1542 {
dec41383
JW
1543 if (type != REG_TYPE_VFD
1544 && !(type == REG_TYPE_VFS
1545 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
477330fc
RM
1546 {
1547 first_error (_("only D registers may be indexed"));
1548 return FAIL;
1549 }
5f4273c7 1550
dcbf9037 1551 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1552 {
1553 first_error (_("can't change index for operand"));
1554 return FAIL;
1555 }
dcbf9037
JB
1556
1557 atype.defined |= NTA_HASINDEX;
1558
1559 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1560 atype.index = NEON_ALL_LANES;
dcbf9037 1561 else
477330fc
RM
1562 {
1563 expressionS exp;
dcbf9037 1564
477330fc 1565 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1566
477330fc
RM
1567 if (exp.X_op != O_constant)
1568 {
1569 first_error (_("constant expression required"));
1570 return FAIL;
1571 }
dcbf9037 1572
477330fc
RM
1573 if (skip_past_char (&str, ']') == FAIL)
1574 return FAIL;
dcbf9037 1575
477330fc
RM
1576 atype.index = exp.X_add_number;
1577 }
dcbf9037 1578 }
5f4273c7 1579
dcbf9037
JB
1580 if (typeinfo)
1581 *typeinfo = atype;
5f4273c7 1582
dcbf9037
JB
1583 if (rtype)
1584 *rtype = type;
5f4273c7 1585
dcbf9037 1586 *ccp = str;
5f4273c7 1587
dcbf9037
JB
1588 return reg->number;
1589}
1590
1591/* Like arm_reg_parse, but allow allow the following extra features:
1592 - If RTYPE is non-zero, return the (possibly restricted) type of the
1593 register (e.g. Neon double or quad reg when either has been requested).
1594 - If this is a Neon vector type with additional type information, fill
1595 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1596 This function will fault on encountering a scalar. */
dcbf9037
JB
1597
1598static int
1599arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1600 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1601{
1602 struct neon_typed_alias atype;
1603 char *str = *ccp;
1604 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1605
1606 if (reg == FAIL)
1607 return FAIL;
1608
0855e32b
NS
1609 /* Do not allow regname(... to parse as a register. */
1610 if (*str == '(')
1611 return FAIL;
1612
dcbf9037
JB
1613 /* Do not allow a scalar (reg+index) to parse as a register. */
1614 if ((atype.defined & NTA_HASINDEX) != 0)
1615 {
1616 first_error (_("register operand expected, but got scalar"));
1617 return FAIL;
1618 }
1619
1620 if (vectype)
1621 *vectype = atype.eltype;
1622
1623 *ccp = str;
1624
1625 return reg;
1626}
1627
1628#define NEON_SCALAR_REG(X) ((X) >> 4)
1629#define NEON_SCALAR_INDEX(X) ((X) & 15)
1630
5287ad62
JB
1631/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1632 have enough information to be able to do a good job bounds-checking. So, we
1633 just do easy checks here, and do further checks later. */
1634
1635static int
dcbf9037 1636parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1637{
dcbf9037 1638 int reg;
5287ad62 1639 char *str = *ccp;
dcbf9037 1640 struct neon_typed_alias atype;
dec41383
JW
1641 enum arm_reg_type reg_type = REG_TYPE_VFD;
1642
1643 if (elsize == 4)
1644 reg_type = REG_TYPE_VFS;
5f4273c7 1645
dec41383 1646 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1647
dcbf9037 1648 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1649 return FAIL;
5f4273c7 1650
dcbf9037 1651 if (atype.index == NEON_ALL_LANES)
5287ad62 1652 {
dcbf9037 1653 first_error (_("scalar must have an index"));
5287ad62
JB
1654 return FAIL;
1655 }
dcbf9037 1656 else if (atype.index >= 64 / elsize)
5287ad62 1657 {
dcbf9037 1658 first_error (_("scalar index out of range"));
5287ad62
JB
1659 return FAIL;
1660 }
5f4273c7 1661
dcbf9037
JB
1662 if (type)
1663 *type = atype.eltype;
5f4273c7 1664
5287ad62 1665 *ccp = str;
5f4273c7 1666
dcbf9037 1667 return reg * 16 + atype.index;
5287ad62
JB
1668}
1669
c19d1205 1670/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1671
c19d1205
ZW
1672static long
1673parse_reg_list (char ** strp)
1674{
1675 char * str = * strp;
1676 long range = 0;
1677 int another_range;
a737bd4d 1678
c19d1205
ZW
1679 /* We come back here if we get ranges concatenated by '+' or '|'. */
1680 do
6057a28f 1681 {
477330fc
RM
1682 skip_whitespace (str);
1683
c19d1205 1684 another_range = 0;
a737bd4d 1685
c19d1205
ZW
1686 if (*str == '{')
1687 {
1688 int in_range = 0;
1689 int cur_reg = -1;
a737bd4d 1690
c19d1205
ZW
1691 str++;
1692 do
1693 {
1694 int reg;
6057a28f 1695
dcbf9037 1696 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1697 {
dcbf9037 1698 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1699 return FAIL;
1700 }
a737bd4d 1701
c19d1205
ZW
1702 if (in_range)
1703 {
1704 int i;
a737bd4d 1705
c19d1205
ZW
1706 if (reg <= cur_reg)
1707 {
dcbf9037 1708 first_error (_("bad range in register list"));
c19d1205
ZW
1709 return FAIL;
1710 }
40a18ebd 1711
c19d1205
ZW
1712 for (i = cur_reg + 1; i < reg; i++)
1713 {
1714 if (range & (1 << i))
1715 as_tsktsk
1716 (_("Warning: duplicated register (r%d) in register list"),
1717 i);
1718 else
1719 range |= 1 << i;
1720 }
1721 in_range = 0;
1722 }
a737bd4d 1723
c19d1205
ZW
1724 if (range & (1 << reg))
1725 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1726 reg);
1727 else if (reg <= cur_reg)
1728 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1729
c19d1205
ZW
1730 range |= 1 << reg;
1731 cur_reg = reg;
1732 }
1733 while (skip_past_comma (&str) != FAIL
1734 || (in_range = 1, *str++ == '-'));
1735 str--;
a737bd4d 1736
d996d970 1737 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1738 {
dcbf9037 1739 first_error (_("missing `}'"));
c19d1205
ZW
1740 return FAIL;
1741 }
1742 }
1743 else
1744 {
91d6fa6a 1745 expressionS exp;
40a18ebd 1746
91d6fa6a 1747 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1748 return FAIL;
40a18ebd 1749
91d6fa6a 1750 if (exp.X_op == O_constant)
c19d1205 1751 {
91d6fa6a
NC
1752 if (exp.X_add_number
1753 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1754 {
1755 inst.error = _("invalid register mask");
1756 return FAIL;
1757 }
a737bd4d 1758
91d6fa6a 1759 if ((range & exp.X_add_number) != 0)
c19d1205 1760 {
91d6fa6a 1761 int regno = range & exp.X_add_number;
a737bd4d 1762
c19d1205
ZW
1763 regno &= -regno;
1764 regno = (1 << regno) - 1;
1765 as_tsktsk
1766 (_("Warning: duplicated register (r%d) in register list"),
1767 regno);
1768 }
a737bd4d 1769
91d6fa6a 1770 range |= exp.X_add_number;
c19d1205
ZW
1771 }
1772 else
1773 {
1774 if (inst.reloc.type != 0)
1775 {
1776 inst.error = _("expression too complex");
1777 return FAIL;
1778 }
a737bd4d 1779
91d6fa6a 1780 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1781 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1782 inst.reloc.pc_rel = 0;
1783 }
1784 }
a737bd4d 1785
c19d1205
ZW
1786 if (*str == '|' || *str == '+')
1787 {
1788 str++;
1789 another_range = 1;
1790 }
a737bd4d 1791 }
c19d1205 1792 while (another_range);
a737bd4d 1793
c19d1205
ZW
1794 *strp = str;
1795 return range;
a737bd4d
NC
1796}
1797
5287ad62
JB
1798/* Types of registers in a list. */
1799
1800enum reg_list_els
1801{
1802 REGLIST_VFP_S,
1803 REGLIST_VFP_D,
1804 REGLIST_NEON_D
1805};
1806
c19d1205
ZW
1807/* Parse a VFP register list. If the string is invalid return FAIL.
1808 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1809 register. Parses registers of type ETYPE.
1810 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1811 - Q registers can be used to specify pairs of D registers
1812 - { } can be omitted from around a singleton register list
477330fc
RM
1813 FIXME: This is not implemented, as it would require backtracking in
1814 some cases, e.g.:
1815 vtbl.8 d3,d4,d5
1816 This could be done (the meaning isn't really ambiguous), but doesn't
1817 fit in well with the current parsing framework.
dcbf9037
JB
1818 - 32 D registers may be used (also true for VFPv3).
1819 FIXME: Types are ignored in these register lists, which is probably a
1820 bug. */
6057a28f 1821
c19d1205 1822static int
037e8744 1823parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1824{
037e8744 1825 char *str = *ccp;
c19d1205
ZW
1826 int base_reg;
1827 int new_base;
21d799b5 1828 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1829 int max_regs = 0;
c19d1205
ZW
1830 int count = 0;
1831 int warned = 0;
1832 unsigned long mask = 0;
a737bd4d 1833 int i;
6057a28f 1834
477330fc 1835 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
1836 {
1837 inst.error = _("expecting {");
1838 return FAIL;
1839 }
6057a28f 1840
5287ad62 1841 switch (etype)
c19d1205 1842 {
5287ad62 1843 case REGLIST_VFP_S:
c19d1205
ZW
1844 regtype = REG_TYPE_VFS;
1845 max_regs = 32;
5287ad62 1846 break;
5f4273c7 1847
5287ad62
JB
1848 case REGLIST_VFP_D:
1849 regtype = REG_TYPE_VFD;
b7fc2769 1850 break;
5f4273c7 1851
b7fc2769
JB
1852 case REGLIST_NEON_D:
1853 regtype = REG_TYPE_NDQ;
1854 break;
1855 }
1856
1857 if (etype != REGLIST_VFP_S)
1858 {
b1cc4aeb
PB
1859 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1860 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
1861 {
1862 max_regs = 32;
1863 if (thumb_mode)
1864 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1865 fpu_vfp_ext_d32);
1866 else
1867 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1868 fpu_vfp_ext_d32);
1869 }
5287ad62 1870 else
477330fc 1871 max_regs = 16;
c19d1205 1872 }
6057a28f 1873
c19d1205 1874 base_reg = max_regs;
a737bd4d 1875
c19d1205
ZW
1876 do
1877 {
5287ad62 1878 int setmask = 1, addregs = 1;
dcbf9037 1879
037e8744 1880 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1881
c19d1205 1882 if (new_base == FAIL)
a737bd4d 1883 {
dcbf9037 1884 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1885 return FAIL;
1886 }
5f4273c7 1887
b7fc2769 1888 if (new_base >= max_regs)
477330fc
RM
1889 {
1890 first_error (_("register out of range in list"));
1891 return FAIL;
1892 }
5f4273c7 1893
5287ad62
JB
1894 /* Note: a value of 2 * n is returned for the register Q<n>. */
1895 if (regtype == REG_TYPE_NQ)
477330fc
RM
1896 {
1897 setmask = 3;
1898 addregs = 2;
1899 }
5287ad62 1900
c19d1205
ZW
1901 if (new_base < base_reg)
1902 base_reg = new_base;
a737bd4d 1903
5287ad62 1904 if (mask & (setmask << new_base))
c19d1205 1905 {
dcbf9037 1906 first_error (_("invalid register list"));
c19d1205 1907 return FAIL;
a737bd4d 1908 }
a737bd4d 1909
c19d1205
ZW
1910 if ((mask >> new_base) != 0 && ! warned)
1911 {
1912 as_tsktsk (_("register list not in ascending order"));
1913 warned = 1;
1914 }
0bbf2aa4 1915
5287ad62
JB
1916 mask |= setmask << new_base;
1917 count += addregs;
0bbf2aa4 1918
037e8744 1919 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1920 {
1921 int high_range;
0bbf2aa4 1922
037e8744 1923 str++;
0bbf2aa4 1924
037e8744 1925 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 1926 == FAIL)
c19d1205
ZW
1927 {
1928 inst.error = gettext (reg_expected_msgs[regtype]);
1929 return FAIL;
1930 }
0bbf2aa4 1931
477330fc
RM
1932 if (high_range >= max_regs)
1933 {
1934 first_error (_("register out of range in list"));
1935 return FAIL;
1936 }
b7fc2769 1937
477330fc
RM
1938 if (regtype == REG_TYPE_NQ)
1939 high_range = high_range + 1;
5287ad62 1940
c19d1205
ZW
1941 if (high_range <= new_base)
1942 {
1943 inst.error = _("register range not in ascending order");
1944 return FAIL;
1945 }
0bbf2aa4 1946
5287ad62 1947 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1948 {
5287ad62 1949 if (mask & (setmask << new_base))
0bbf2aa4 1950 {
c19d1205
ZW
1951 inst.error = _("invalid register list");
1952 return FAIL;
0bbf2aa4 1953 }
c19d1205 1954
5287ad62
JB
1955 mask |= setmask << new_base;
1956 count += addregs;
0bbf2aa4 1957 }
0bbf2aa4 1958 }
0bbf2aa4 1959 }
037e8744 1960 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1961
037e8744 1962 str++;
0bbf2aa4 1963
c19d1205
ZW
1964 /* Sanity check -- should have raised a parse error above. */
1965 if (count == 0 || count > max_regs)
1966 abort ();
1967
1968 *pbase = base_reg;
1969
1970 /* Final test -- the registers must be consecutive. */
1971 mask >>= base_reg;
1972 for (i = 0; i < count; i++)
1973 {
1974 if ((mask & (1u << i)) == 0)
1975 {
1976 inst.error = _("non-contiguous register range");
1977 return FAIL;
1978 }
1979 }
1980
037e8744
JB
1981 *ccp = str;
1982
c19d1205 1983 return count;
b99bd4ef
NC
1984}
1985
dcbf9037
JB
1986/* True if two alias types are the same. */
1987
c921be7d 1988static bfd_boolean
dcbf9037
JB
1989neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1990{
1991 if (!a && !b)
c921be7d 1992 return TRUE;
5f4273c7 1993
dcbf9037 1994 if (!a || !b)
c921be7d 1995 return FALSE;
dcbf9037
JB
1996
1997 if (a->defined != b->defined)
c921be7d 1998 return FALSE;
5f4273c7 1999
dcbf9037
JB
2000 if ((a->defined & NTA_HASTYPE) != 0
2001 && (a->eltype.type != b->eltype.type
477330fc 2002 || a->eltype.size != b->eltype.size))
c921be7d 2003 return FALSE;
dcbf9037
JB
2004
2005 if ((a->defined & NTA_HASINDEX) != 0
2006 && (a->index != b->index))
c921be7d 2007 return FALSE;
5f4273c7 2008
c921be7d 2009 return TRUE;
dcbf9037
JB
2010}
2011
5287ad62
JB
2012/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2013 The base register is put in *PBASE.
dcbf9037 2014 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2015 the return value.
2016 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2017 Bits [6:5] encode the list length (minus one).
2018 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2019
5287ad62 2020#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2021#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2022#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2023
2024static int
dcbf9037 2025parse_neon_el_struct_list (char **str, unsigned *pbase,
477330fc 2026 struct neon_type_el *eltype)
5287ad62
JB
2027{
2028 char *ptr = *str;
2029 int base_reg = -1;
2030 int reg_incr = -1;
2031 int count = 0;
2032 int lane = -1;
2033 int leading_brace = 0;
2034 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
2035 const char *const incr_error = _("register stride must be 1 or 2");
2036 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2037 struct neon_typed_alias firsttype;
f85d59c3
KT
2038 firsttype.defined = 0;
2039 firsttype.eltype.type = NT_invtype;
2040 firsttype.eltype.size = -1;
2041 firsttype.index = -1;
5f4273c7 2042
5287ad62
JB
2043 if (skip_past_char (&ptr, '{') == SUCCESS)
2044 leading_brace = 1;
5f4273c7 2045
5287ad62
JB
2046 do
2047 {
dcbf9037
JB
2048 struct neon_typed_alias atype;
2049 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2050
5287ad62 2051 if (getreg == FAIL)
477330fc
RM
2052 {
2053 first_error (_(reg_expected_msgs[rtype]));
2054 return FAIL;
2055 }
5f4273c7 2056
5287ad62 2057 if (base_reg == -1)
477330fc
RM
2058 {
2059 base_reg = getreg;
2060 if (rtype == REG_TYPE_NQ)
2061 {
2062 reg_incr = 1;
2063 }
2064 firsttype = atype;
2065 }
5287ad62 2066 else if (reg_incr == -1)
477330fc
RM
2067 {
2068 reg_incr = getreg - base_reg;
2069 if (reg_incr < 1 || reg_incr > 2)
2070 {
2071 first_error (_(incr_error));
2072 return FAIL;
2073 }
2074 }
5287ad62 2075 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2076 {
2077 first_error (_(incr_error));
2078 return FAIL;
2079 }
dcbf9037 2080
c921be7d 2081 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2082 {
2083 first_error (_(type_error));
2084 return FAIL;
2085 }
5f4273c7 2086
5287ad62 2087 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2088 modes. */
5287ad62 2089 if (ptr[0] == '-')
477330fc
RM
2090 {
2091 struct neon_typed_alias htype;
2092 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2093 if (lane == -1)
2094 lane = NEON_INTERLEAVE_LANES;
2095 else if (lane != NEON_INTERLEAVE_LANES)
2096 {
2097 first_error (_(type_error));
2098 return FAIL;
2099 }
2100 if (reg_incr == -1)
2101 reg_incr = 1;
2102 else if (reg_incr != 1)
2103 {
2104 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2105 return FAIL;
2106 }
2107 ptr++;
2108 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2109 if (hireg == FAIL)
2110 {
2111 first_error (_(reg_expected_msgs[rtype]));
2112 return FAIL;
2113 }
2114 if (! neon_alias_types_same (&htype, &firsttype))
2115 {
2116 first_error (_(type_error));
2117 return FAIL;
2118 }
2119 count += hireg + dregs - getreg;
2120 continue;
2121 }
5f4273c7 2122
5287ad62
JB
2123 /* If we're using Q registers, we can't use [] or [n] syntax. */
2124 if (rtype == REG_TYPE_NQ)
477330fc
RM
2125 {
2126 count += 2;
2127 continue;
2128 }
5f4273c7 2129
dcbf9037 2130 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2131 {
2132 if (lane == -1)
2133 lane = atype.index;
2134 else if (lane != atype.index)
2135 {
2136 first_error (_(type_error));
2137 return FAIL;
2138 }
2139 }
5287ad62 2140 else if (lane == -1)
477330fc 2141 lane = NEON_INTERLEAVE_LANES;
5287ad62 2142 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2143 {
2144 first_error (_(type_error));
2145 return FAIL;
2146 }
5287ad62
JB
2147 count++;
2148 }
2149 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2150
5287ad62
JB
2151 /* No lane set by [x]. We must be interleaving structures. */
2152 if (lane == -1)
2153 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2154
5287ad62
JB
2155 /* Sanity check. */
2156 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2157 || (count > 1 && reg_incr == -1))
2158 {
dcbf9037 2159 first_error (_("error parsing element/structure list"));
5287ad62
JB
2160 return FAIL;
2161 }
2162
2163 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2164 {
dcbf9037 2165 first_error (_("expected }"));
5287ad62
JB
2166 return FAIL;
2167 }
5f4273c7 2168
5287ad62
JB
2169 if (reg_incr == -1)
2170 reg_incr = 1;
2171
dcbf9037
JB
2172 if (eltype)
2173 *eltype = firsttype.eltype;
2174
5287ad62
JB
2175 *pbase = base_reg;
2176 *str = ptr;
5f4273c7 2177
5287ad62
JB
2178 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2179}
2180
c19d1205
ZW
2181/* Parse an explicit relocation suffix on an expression. This is
2182 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2183 arm_reloc_hsh contains no entries, so this function can only
2184 succeed if there is no () after the word. Returns -1 on error,
2185 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2186
c19d1205
ZW
2187static int
2188parse_reloc (char **str)
b99bd4ef 2189{
c19d1205
ZW
2190 struct reloc_entry *r;
2191 char *p, *q;
b99bd4ef 2192
c19d1205
ZW
2193 if (**str != '(')
2194 return BFD_RELOC_UNUSED;
b99bd4ef 2195
c19d1205
ZW
2196 p = *str + 1;
2197 q = p;
2198
2199 while (*q && *q != ')' && *q != ',')
2200 q++;
2201 if (*q != ')')
2202 return -1;
2203
21d799b5
NC
2204 if ((r = (struct reloc_entry *)
2205 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2206 return -1;
2207
2208 *str = q + 1;
2209 return r->reloc;
b99bd4ef
NC
2210}
2211
c19d1205
ZW
2212/* Directives: register aliases. */
2213
dcbf9037 2214static struct reg_entry *
90ec0d68 2215insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2216{
d3ce72d0 2217 struct reg_entry *new_reg;
c19d1205 2218 const char *name;
b99bd4ef 2219
d3ce72d0 2220 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2221 {
d3ce72d0 2222 if (new_reg->builtin)
c19d1205 2223 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2224
c19d1205
ZW
2225 /* Only warn about a redefinition if it's not defined as the
2226 same register. */
d3ce72d0 2227 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2228 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2229
d929913e 2230 return NULL;
c19d1205 2231 }
b99bd4ef 2232
c19d1205 2233 name = xstrdup (str);
325801bd 2234 new_reg = XNEW (struct reg_entry);
b99bd4ef 2235
d3ce72d0
NC
2236 new_reg->name = name;
2237 new_reg->number = number;
2238 new_reg->type = type;
2239 new_reg->builtin = FALSE;
2240 new_reg->neon = NULL;
b99bd4ef 2241
d3ce72d0 2242 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2243 abort ();
5f4273c7 2244
d3ce72d0 2245 return new_reg;
dcbf9037
JB
2246}
2247
2248static void
2249insert_neon_reg_alias (char *str, int number, int type,
477330fc 2250 struct neon_typed_alias *atype)
dcbf9037
JB
2251{
2252 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2253
dcbf9037
JB
2254 if (!reg)
2255 {
2256 first_error (_("attempt to redefine typed alias"));
2257 return;
2258 }
5f4273c7 2259
dcbf9037
JB
2260 if (atype)
2261 {
325801bd 2262 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2263 *reg->neon = *atype;
2264 }
c19d1205 2265}
b99bd4ef 2266
c19d1205 2267/* Look for the .req directive. This is of the form:
b99bd4ef 2268
c19d1205 2269 new_register_name .req existing_register_name
b99bd4ef 2270
c19d1205 2271 If we find one, or if it looks sufficiently like one that we want to
d929913e 2272 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2273
d929913e 2274static bfd_boolean
c19d1205
ZW
2275create_register_alias (char * newname, char *p)
2276{
2277 struct reg_entry *old;
2278 char *oldname, *nbuf;
2279 size_t nlen;
b99bd4ef 2280
c19d1205
ZW
2281 /* The input scrubber ensures that whitespace after the mnemonic is
2282 collapsed to single spaces. */
2283 oldname = p;
2284 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2285 return FALSE;
b99bd4ef 2286
c19d1205
ZW
2287 oldname += 6;
2288 if (*oldname == '\0')
d929913e 2289 return FALSE;
b99bd4ef 2290
21d799b5 2291 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2292 if (!old)
b99bd4ef 2293 {
c19d1205 2294 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2295 return TRUE;
b99bd4ef
NC
2296 }
2297
c19d1205
ZW
2298 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2299 the desired alias name, and p points to its end. If not, then
2300 the desired alias name is in the global original_case_string. */
2301#ifdef TC_CASE_SENSITIVE
2302 nlen = p - newname;
2303#else
2304 newname = original_case_string;
2305 nlen = strlen (newname);
2306#endif
b99bd4ef 2307
29a2809e 2308 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2309
c19d1205
ZW
2310 /* Create aliases under the new name as stated; an all-lowercase
2311 version of the new name; and an all-uppercase version of the new
2312 name. */
d929913e
NC
2313 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2314 {
2315 for (p = nbuf; *p; p++)
2316 *p = TOUPPER (*p);
c19d1205 2317
d929913e
NC
2318 if (strncmp (nbuf, newname, nlen))
2319 {
2320 /* If this attempt to create an additional alias fails, do not bother
2321 trying to create the all-lower case alias. We will fail and issue
2322 a second, duplicate error message. This situation arises when the
2323 programmer does something like:
2324 foo .req r0
2325 Foo .req r1
2326 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2327 the artificial FOO alias because it has already been created by the
d929913e
NC
2328 first .req. */
2329 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2330 {
2331 free (nbuf);
2332 return TRUE;
2333 }
d929913e 2334 }
c19d1205 2335
d929913e
NC
2336 for (p = nbuf; *p; p++)
2337 *p = TOLOWER (*p);
c19d1205 2338
d929913e
NC
2339 if (strncmp (nbuf, newname, nlen))
2340 insert_reg_alias (nbuf, old->number, old->type);
2341 }
c19d1205 2342
e1fa0163 2343 free (nbuf);
d929913e 2344 return TRUE;
b99bd4ef
NC
2345}
2346
dcbf9037
JB
2347/* Create a Neon typed/indexed register alias using directives, e.g.:
2348 X .dn d5.s32[1]
2349 Y .qn 6.s16
2350 Z .dn d7
2351 T .dn Z[0]
2352 These typed registers can be used instead of the types specified after the
2353 Neon mnemonic, so long as all operands given have types. Types can also be
2354 specified directly, e.g.:
5f4273c7 2355 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2356
c921be7d 2357static bfd_boolean
dcbf9037
JB
2358create_neon_reg_alias (char *newname, char *p)
2359{
2360 enum arm_reg_type basetype;
2361 struct reg_entry *basereg;
2362 struct reg_entry mybasereg;
2363 struct neon_type ntype;
2364 struct neon_typed_alias typeinfo;
12d6b0b7 2365 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2366 int namelen;
5f4273c7 2367
dcbf9037
JB
2368 typeinfo.defined = 0;
2369 typeinfo.eltype.type = NT_invtype;
2370 typeinfo.eltype.size = -1;
2371 typeinfo.index = -1;
5f4273c7 2372
dcbf9037 2373 nameend = p;
5f4273c7 2374
dcbf9037
JB
2375 if (strncmp (p, " .dn ", 5) == 0)
2376 basetype = REG_TYPE_VFD;
2377 else if (strncmp (p, " .qn ", 5) == 0)
2378 basetype = REG_TYPE_NQ;
2379 else
c921be7d 2380 return FALSE;
5f4273c7 2381
dcbf9037 2382 p += 5;
5f4273c7 2383
dcbf9037 2384 if (*p == '\0')
c921be7d 2385 return FALSE;
5f4273c7 2386
dcbf9037
JB
2387 basereg = arm_reg_parse_multi (&p);
2388
2389 if (basereg && basereg->type != basetype)
2390 {
2391 as_bad (_("bad type for register"));
c921be7d 2392 return FALSE;
dcbf9037
JB
2393 }
2394
2395 if (basereg == NULL)
2396 {
2397 expressionS exp;
2398 /* Try parsing as an integer. */
2399 my_get_expression (&exp, &p, GE_NO_PREFIX);
2400 if (exp.X_op != O_constant)
477330fc
RM
2401 {
2402 as_bad (_("expression must be constant"));
2403 return FALSE;
2404 }
dcbf9037
JB
2405 basereg = &mybasereg;
2406 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2407 : exp.X_add_number;
dcbf9037
JB
2408 basereg->neon = 0;
2409 }
2410
2411 if (basereg->neon)
2412 typeinfo = *basereg->neon;
2413
2414 if (parse_neon_type (&ntype, &p) == SUCCESS)
2415 {
2416 /* We got a type. */
2417 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2418 {
2419 as_bad (_("can't redefine the type of a register alias"));
2420 return FALSE;
2421 }
5f4273c7 2422
dcbf9037
JB
2423 typeinfo.defined |= NTA_HASTYPE;
2424 if (ntype.elems != 1)
477330fc
RM
2425 {
2426 as_bad (_("you must specify a single type only"));
2427 return FALSE;
2428 }
dcbf9037
JB
2429 typeinfo.eltype = ntype.el[0];
2430 }
5f4273c7 2431
dcbf9037
JB
2432 if (skip_past_char (&p, '[') == SUCCESS)
2433 {
2434 expressionS exp;
2435 /* We got a scalar index. */
5f4273c7 2436
dcbf9037 2437 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2438 {
2439 as_bad (_("can't redefine the index of a scalar alias"));
2440 return FALSE;
2441 }
5f4273c7 2442
dcbf9037 2443 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2444
dcbf9037 2445 if (exp.X_op != O_constant)
477330fc
RM
2446 {
2447 as_bad (_("scalar index must be constant"));
2448 return FALSE;
2449 }
5f4273c7 2450
dcbf9037
JB
2451 typeinfo.defined |= NTA_HASINDEX;
2452 typeinfo.index = exp.X_add_number;
5f4273c7 2453
dcbf9037 2454 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2455 {
2456 as_bad (_("expecting ]"));
2457 return FALSE;
2458 }
dcbf9037
JB
2459 }
2460
15735687
NS
2461 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2462 the desired alias name, and p points to its end. If not, then
2463 the desired alias name is in the global original_case_string. */
2464#ifdef TC_CASE_SENSITIVE
dcbf9037 2465 namelen = nameend - newname;
15735687
NS
2466#else
2467 newname = original_case_string;
2468 namelen = strlen (newname);
2469#endif
2470
29a2809e 2471 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2472
dcbf9037 2473 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2474 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2475
dcbf9037
JB
2476 /* Insert name in all uppercase. */
2477 for (p = namebuf; *p; p++)
2478 *p = TOUPPER (*p);
5f4273c7 2479
dcbf9037
JB
2480 if (strncmp (namebuf, newname, namelen))
2481 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2482 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2483
dcbf9037
JB
2484 /* Insert name in all lowercase. */
2485 for (p = namebuf; *p; p++)
2486 *p = TOLOWER (*p);
5f4273c7 2487
dcbf9037
JB
2488 if (strncmp (namebuf, newname, namelen))
2489 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2490 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2491
e1fa0163 2492 free (namebuf);
c921be7d 2493 return TRUE;
dcbf9037
JB
2494}
2495
c19d1205
ZW
2496/* Should never be called, as .req goes between the alias and the
2497 register name, not at the beginning of the line. */
c921be7d 2498
b99bd4ef 2499static void
c19d1205 2500s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2501{
c19d1205
ZW
2502 as_bad (_("invalid syntax for .req directive"));
2503}
b99bd4ef 2504
dcbf9037
JB
2505static void
2506s_dn (int a ATTRIBUTE_UNUSED)
2507{
2508 as_bad (_("invalid syntax for .dn directive"));
2509}
2510
2511static void
2512s_qn (int a ATTRIBUTE_UNUSED)
2513{
2514 as_bad (_("invalid syntax for .qn directive"));
2515}
2516
c19d1205
ZW
2517/* The .unreq directive deletes an alias which was previously defined
2518 by .req. For example:
b99bd4ef 2519
c19d1205
ZW
2520 my_alias .req r11
2521 .unreq my_alias */
b99bd4ef
NC
2522
2523static void
c19d1205 2524s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2525{
c19d1205
ZW
2526 char * name;
2527 char saved_char;
b99bd4ef 2528
c19d1205
ZW
2529 name = input_line_pointer;
2530
2531 while (*input_line_pointer != 0
2532 && *input_line_pointer != ' '
2533 && *input_line_pointer != '\n')
2534 ++input_line_pointer;
2535
2536 saved_char = *input_line_pointer;
2537 *input_line_pointer = 0;
2538
2539 if (!*name)
2540 as_bad (_("invalid syntax for .unreq directive"));
2541 else
2542 {
21d799b5 2543 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2544 name);
c19d1205
ZW
2545
2546 if (!reg)
2547 as_bad (_("unknown register alias '%s'"), name);
2548 else if (reg->builtin)
a1727c1a 2549 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2550 name);
2551 else
2552 {
d929913e
NC
2553 char * p;
2554 char * nbuf;
2555
db0bc284 2556 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2557 free ((char *) reg->name);
477330fc
RM
2558 if (reg->neon)
2559 free (reg->neon);
c19d1205 2560 free (reg);
d929913e
NC
2561
2562 /* Also locate the all upper case and all lower case versions.
2563 Do not complain if we cannot find one or the other as it
2564 was probably deleted above. */
5f4273c7 2565
d929913e
NC
2566 nbuf = strdup (name);
2567 for (p = nbuf; *p; p++)
2568 *p = TOUPPER (*p);
21d799b5 2569 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2570 if (reg)
2571 {
db0bc284 2572 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2573 free ((char *) reg->name);
2574 if (reg->neon)
2575 free (reg->neon);
2576 free (reg);
2577 }
2578
2579 for (p = nbuf; *p; p++)
2580 *p = TOLOWER (*p);
21d799b5 2581 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2582 if (reg)
2583 {
db0bc284 2584 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2585 free ((char *) reg->name);
2586 if (reg->neon)
2587 free (reg->neon);
2588 free (reg);
2589 }
2590
2591 free (nbuf);
c19d1205
ZW
2592 }
2593 }
b99bd4ef 2594
c19d1205 2595 *input_line_pointer = saved_char;
b99bd4ef
NC
2596 demand_empty_rest_of_line ();
2597}
2598
c19d1205
ZW
2599/* Directives: Instruction set selection. */
2600
2601#ifdef OBJ_ELF
2602/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2603 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2604 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2605 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2606
cd000bff
DJ
2607/* Create a new mapping symbol for the transition to STATE. */
2608
2609static void
2610make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2611{
a737bd4d 2612 symbolS * symbolP;
c19d1205
ZW
2613 const char * symname;
2614 int type;
b99bd4ef 2615
c19d1205 2616 switch (state)
b99bd4ef 2617 {
c19d1205
ZW
2618 case MAP_DATA:
2619 symname = "$d";
2620 type = BSF_NO_FLAGS;
2621 break;
2622 case MAP_ARM:
2623 symname = "$a";
2624 type = BSF_NO_FLAGS;
2625 break;
2626 case MAP_THUMB:
2627 symname = "$t";
2628 type = BSF_NO_FLAGS;
2629 break;
c19d1205
ZW
2630 default:
2631 abort ();
2632 }
2633
cd000bff 2634 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2635 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2636
2637 switch (state)
2638 {
2639 case MAP_ARM:
2640 THUMB_SET_FUNC (symbolP, 0);
2641 ARM_SET_THUMB (symbolP, 0);
2642 ARM_SET_INTERWORK (symbolP, support_interwork);
2643 break;
2644
2645 case MAP_THUMB:
2646 THUMB_SET_FUNC (symbolP, 1);
2647 ARM_SET_THUMB (symbolP, 1);
2648 ARM_SET_INTERWORK (symbolP, support_interwork);
2649 break;
2650
2651 case MAP_DATA:
2652 default:
cd000bff
DJ
2653 break;
2654 }
2655
2656 /* Save the mapping symbols for future reference. Also check that
2657 we do not place two mapping symbols at the same offset within a
2658 frag. We'll handle overlap between frags in
2de7820f
JZ
2659 check_mapping_symbols.
2660
2661 If .fill or other data filling directive generates zero sized data,
2662 the mapping symbol for the following code will have the same value
2663 as the one generated for the data filling directive. In this case,
2664 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2665 if (value == 0)
2666 {
2de7820f
JZ
2667 if (frag->tc_frag_data.first_map != NULL)
2668 {
2669 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2670 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2671 }
cd000bff
DJ
2672 frag->tc_frag_data.first_map = symbolP;
2673 }
2674 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2675 {
2676 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2677 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2678 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2679 }
cd000bff
DJ
2680 frag->tc_frag_data.last_map = symbolP;
2681}
2682
2683/* We must sometimes convert a region marked as code to data during
2684 code alignment, if an odd number of bytes have to be padded. The
2685 code mapping symbol is pushed to an aligned address. */
2686
2687static void
2688insert_data_mapping_symbol (enum mstate state,
2689 valueT value, fragS *frag, offsetT bytes)
2690{
2691 /* If there was already a mapping symbol, remove it. */
2692 if (frag->tc_frag_data.last_map != NULL
2693 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2694 {
2695 symbolS *symp = frag->tc_frag_data.last_map;
2696
2697 if (value == 0)
2698 {
2699 know (frag->tc_frag_data.first_map == symp);
2700 frag->tc_frag_data.first_map = NULL;
2701 }
2702 frag->tc_frag_data.last_map = NULL;
2703 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2704 }
cd000bff
DJ
2705
2706 make_mapping_symbol (MAP_DATA, value, frag);
2707 make_mapping_symbol (state, value + bytes, frag);
2708}
2709
2710static void mapping_state_2 (enum mstate state, int max_chars);
2711
2712/* Set the mapping state to STATE. Only call this when about to
2713 emit some STATE bytes to the file. */
2714
4e9aaefb 2715#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2716void
2717mapping_state (enum mstate state)
2718{
940b5ce0
DJ
2719 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2720
cd000bff
DJ
2721 if (mapstate == state)
2722 /* The mapping symbol has already been emitted.
2723 There is nothing else to do. */
2724 return;
49c62a33
NC
2725
2726 if (state == MAP_ARM || state == MAP_THUMB)
2727 /* PR gas/12931
2728 All ARM instructions require 4-byte alignment.
2729 (Almost) all Thumb instructions require 2-byte alignment.
2730
2731 When emitting instructions into any section, mark the section
2732 appropriately.
2733
2734 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2735 but themselves require 2-byte alignment; this applies to some
33eaf5de 2736 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2737 literal pool generation or an explicit .align >=2, both of
2738 which will cause the section to me marked with sufficient
2739 alignment. Thus, we don't handle those cases here. */
2740 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2741
2742 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2743 /* This case will be evaluated later. */
cd000bff 2744 return;
cd000bff
DJ
2745
2746 mapping_state_2 (state, 0);
cd000bff
DJ
2747}
2748
2749/* Same as mapping_state, but MAX_CHARS bytes have already been
2750 allocated. Put the mapping symbol that far back. */
2751
2752static void
2753mapping_state_2 (enum mstate state, int max_chars)
2754{
940b5ce0
DJ
2755 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2756
2757 if (!SEG_NORMAL (now_seg))
2758 return;
2759
cd000bff
DJ
2760 if (mapstate == state)
2761 /* The mapping symbol has already been emitted.
2762 There is nothing else to do. */
2763 return;
2764
4e9aaefb
SA
2765 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2766 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2767 {
2768 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2769 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2770
2771 if (add_symbol)
2772 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2773 }
2774
cd000bff
DJ
2775 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2776 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2777}
4e9aaefb 2778#undef TRANSITION
c19d1205 2779#else
d3106081
NS
2780#define mapping_state(x) ((void)0)
2781#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2782#endif
2783
2784/* Find the real, Thumb encoded start of a Thumb function. */
2785
4343666d 2786#ifdef OBJ_COFF
c19d1205
ZW
2787static symbolS *
2788find_real_start (symbolS * symbolP)
2789{
2790 char * real_start;
2791 const char * name = S_GET_NAME (symbolP);
2792 symbolS * new_target;
2793
2794 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2795#define STUB_NAME ".real_start_of"
2796
2797 if (name == NULL)
2798 abort ();
2799
37f6032b
ZW
2800 /* The compiler may generate BL instructions to local labels because
2801 it needs to perform a branch to a far away location. These labels
2802 do not have a corresponding ".real_start_of" label. We check
2803 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2804 the ".real_start_of" convention for nonlocal branches. */
2805 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2806 return symbolP;
2807
e1fa0163 2808 real_start = concat (STUB_NAME, name, NULL);
c19d1205 2809 new_target = symbol_find (real_start);
e1fa0163 2810 free (real_start);
c19d1205
ZW
2811
2812 if (new_target == NULL)
2813 {
bd3ba5d1 2814 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2815 new_target = symbolP;
2816 }
2817
c19d1205
ZW
2818 return new_target;
2819}
4343666d 2820#endif
c19d1205
ZW
2821
2822static void
2823opcode_select (int width)
2824{
2825 switch (width)
2826 {
2827 case 16:
2828 if (! thumb_mode)
2829 {
e74cfd16 2830 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2831 as_bad (_("selected processor does not support THUMB opcodes"));
2832
2833 thumb_mode = 1;
2834 /* No need to force the alignment, since we will have been
2835 coming from ARM mode, which is word-aligned. */
2836 record_alignment (now_seg, 1);
2837 }
c19d1205
ZW
2838 break;
2839
2840 case 32:
2841 if (thumb_mode)
2842 {
e74cfd16 2843 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2844 as_bad (_("selected processor does not support ARM opcodes"));
2845
2846 thumb_mode = 0;
2847
2848 if (!need_pass_2)
2849 frag_align (2, 0, 0);
2850
2851 record_alignment (now_seg, 1);
2852 }
c19d1205
ZW
2853 break;
2854
2855 default:
2856 as_bad (_("invalid instruction size selected (%d)"), width);
2857 }
2858}
2859
2860static void
2861s_arm (int ignore ATTRIBUTE_UNUSED)
2862{
2863 opcode_select (32);
2864 demand_empty_rest_of_line ();
2865}
2866
2867static void
2868s_thumb (int ignore ATTRIBUTE_UNUSED)
2869{
2870 opcode_select (16);
2871 demand_empty_rest_of_line ();
2872}
2873
2874static void
2875s_code (int unused ATTRIBUTE_UNUSED)
2876{
2877 int temp;
2878
2879 temp = get_absolute_expression ();
2880 switch (temp)
2881 {
2882 case 16:
2883 case 32:
2884 opcode_select (temp);
2885 break;
2886
2887 default:
2888 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2889 }
2890}
2891
2892static void
2893s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2894{
2895 /* If we are not already in thumb mode go into it, EVEN if
2896 the target processor does not support thumb instructions.
2897 This is used by gcc/config/arm/lib1funcs.asm for example
2898 to compile interworking support functions even if the
2899 target processor should not support interworking. */
2900 if (! thumb_mode)
2901 {
2902 thumb_mode = 2;
2903 record_alignment (now_seg, 1);
2904 }
2905
2906 demand_empty_rest_of_line ();
2907}
2908
2909static void
2910s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2911{
2912 s_thumb (0);
2913
2914 /* The following label is the name/address of the start of a Thumb function.
2915 We need to know this for the interworking support. */
2916 label_is_thumb_function_name = TRUE;
2917}
2918
2919/* Perform a .set directive, but also mark the alias as
2920 being a thumb function. */
2921
2922static void
2923s_thumb_set (int equiv)
2924{
2925 /* XXX the following is a duplicate of the code for s_set() in read.c
2926 We cannot just call that code as we need to get at the symbol that
2927 is created. */
2928 char * name;
2929 char delim;
2930 char * end_name;
2931 symbolS * symbolP;
2932
2933 /* Especial apologies for the random logic:
2934 This just grew, and could be parsed much more simply!
2935 Dean - in haste. */
d02603dc 2936 delim = get_symbol_name (& name);
c19d1205 2937 end_name = input_line_pointer;
d02603dc 2938 (void) restore_line_pointer (delim);
c19d1205
ZW
2939
2940 if (*input_line_pointer != ',')
2941 {
2942 *end_name = 0;
2943 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2944 *end_name = delim;
2945 ignore_rest_of_line ();
2946 return;
2947 }
2948
2949 input_line_pointer++;
2950 *end_name = 0;
2951
2952 if (name[0] == '.' && name[1] == '\0')
2953 {
2954 /* XXX - this should not happen to .thumb_set. */
2955 abort ();
2956 }
2957
2958 if ((symbolP = symbol_find (name)) == NULL
2959 && (symbolP = md_undefined_symbol (name)) == NULL)
2960 {
2961#ifndef NO_LISTING
2962 /* When doing symbol listings, play games with dummy fragments living
2963 outside the normal fragment chain to record the file and line info
c19d1205 2964 for this symbol. */
b99bd4ef
NC
2965 if (listing & LISTING_SYMBOLS)
2966 {
2967 extern struct list_info_struct * listing_tail;
21d799b5 2968 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2969
2970 memset (dummy_frag, 0, sizeof (fragS));
2971 dummy_frag->fr_type = rs_fill;
2972 dummy_frag->line = listing_tail;
2973 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2974 dummy_frag->fr_symbol = symbolP;
2975 }
2976 else
2977#endif
2978 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2979
2980#ifdef OBJ_COFF
2981 /* "set" symbols are local unless otherwise specified. */
2982 SF_SET_LOCAL (symbolP);
2983#endif /* OBJ_COFF */
2984 } /* Make a new symbol. */
2985
2986 symbol_table_insert (symbolP);
2987
2988 * end_name = delim;
2989
2990 if (equiv
2991 && S_IS_DEFINED (symbolP)
2992 && S_GET_SEGMENT (symbolP) != reg_section)
2993 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2994
2995 pseudo_set (symbolP);
2996
2997 demand_empty_rest_of_line ();
2998
c19d1205 2999 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3000
3001 THUMB_SET_FUNC (symbolP, 1);
3002 ARM_SET_THUMB (symbolP, 1);
3003#if defined OBJ_ELF || defined OBJ_COFF
3004 ARM_SET_INTERWORK (symbolP, support_interwork);
3005#endif
3006}
3007
c19d1205 3008/* Directives: Mode selection. */
b99bd4ef 3009
c19d1205
ZW
3010/* .syntax [unified|divided] - choose the new unified syntax
3011 (same for Arm and Thumb encoding, modulo slight differences in what
3012 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3013static void
c19d1205 3014s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3015{
c19d1205
ZW
3016 char *name, delim;
3017
d02603dc 3018 delim = get_symbol_name (& name);
c19d1205
ZW
3019
3020 if (!strcasecmp (name, "unified"))
3021 unified_syntax = TRUE;
3022 else if (!strcasecmp (name, "divided"))
3023 unified_syntax = FALSE;
3024 else
3025 {
3026 as_bad (_("unrecognized syntax mode \"%s\""), name);
3027 return;
3028 }
d02603dc 3029 (void) restore_line_pointer (delim);
b99bd4ef
NC
3030 demand_empty_rest_of_line ();
3031}
3032
c19d1205
ZW
3033/* Directives: sectioning and alignment. */
3034
c19d1205
ZW
3035static void
3036s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3037{
c19d1205
ZW
3038 /* We don't support putting frags in the BSS segment, we fake it by
3039 marking in_bss, then looking at s_skip for clues. */
3040 subseg_set (bss_section, 0);
3041 demand_empty_rest_of_line ();
cd000bff
DJ
3042
3043#ifdef md_elf_section_change_hook
3044 md_elf_section_change_hook ();
3045#endif
c19d1205 3046}
b99bd4ef 3047
c19d1205
ZW
3048static void
3049s_even (int ignore ATTRIBUTE_UNUSED)
3050{
3051 /* Never make frag if expect extra pass. */
3052 if (!need_pass_2)
3053 frag_align (1, 0, 0);
b99bd4ef 3054
c19d1205 3055 record_alignment (now_seg, 1);
b99bd4ef 3056
c19d1205 3057 demand_empty_rest_of_line ();
b99bd4ef
NC
3058}
3059
2e6976a8
DG
3060/* Directives: CodeComposer Studio. */
3061
3062/* .ref (for CodeComposer Studio syntax only). */
3063static void
3064s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3065{
3066 if (codecomposer_syntax)
3067 ignore_rest_of_line ();
3068 else
3069 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3070}
3071
3072/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3073 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3074static void
3075asmfunc_debug (const char * name)
3076{
3077 static const char * last_name = NULL;
3078
3079 if (name != NULL)
3080 {
3081 gas_assert (last_name == NULL);
3082 last_name = name;
3083
3084 if (debug_type == DEBUG_STABS)
3085 stabs_generate_asm_func (name, name);
3086 }
3087 else
3088 {
3089 gas_assert (last_name != NULL);
3090
3091 if (debug_type == DEBUG_STABS)
3092 stabs_generate_asm_endfunc (last_name, last_name);
3093
3094 last_name = NULL;
3095 }
3096}
3097
3098static void
3099s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3100{
3101 if (codecomposer_syntax)
3102 {
3103 switch (asmfunc_state)
3104 {
3105 case OUTSIDE_ASMFUNC:
3106 asmfunc_state = WAITING_ASMFUNC_NAME;
3107 break;
3108
3109 case WAITING_ASMFUNC_NAME:
3110 as_bad (_(".asmfunc repeated."));
3111 break;
3112
3113 case WAITING_ENDASMFUNC:
3114 as_bad (_(".asmfunc without function."));
3115 break;
3116 }
3117 demand_empty_rest_of_line ();
3118 }
3119 else
3120 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3121}
3122
3123static void
3124s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3125{
3126 if (codecomposer_syntax)
3127 {
3128 switch (asmfunc_state)
3129 {
3130 case OUTSIDE_ASMFUNC:
3131 as_bad (_(".endasmfunc without a .asmfunc."));
3132 break;
3133
3134 case WAITING_ASMFUNC_NAME:
3135 as_bad (_(".endasmfunc without function."));
3136 break;
3137
3138 case WAITING_ENDASMFUNC:
3139 asmfunc_state = OUTSIDE_ASMFUNC;
3140 asmfunc_debug (NULL);
3141 break;
3142 }
3143 demand_empty_rest_of_line ();
3144 }
3145 else
3146 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3147}
3148
3149static void
3150s_ccs_def (int name)
3151{
3152 if (codecomposer_syntax)
3153 s_globl (name);
3154 else
3155 as_bad (_(".def pseudo-op only available with -mccs flag."));
3156}
3157
c19d1205 3158/* Directives: Literal pools. */
a737bd4d 3159
c19d1205
ZW
3160static literal_pool *
3161find_literal_pool (void)
a737bd4d 3162{
c19d1205 3163 literal_pool * pool;
a737bd4d 3164
c19d1205 3165 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3166 {
c19d1205
ZW
3167 if (pool->section == now_seg
3168 && pool->sub_section == now_subseg)
3169 break;
a737bd4d
NC
3170 }
3171
c19d1205 3172 return pool;
a737bd4d
NC
3173}
3174
c19d1205
ZW
3175static literal_pool *
3176find_or_make_literal_pool (void)
a737bd4d 3177{
c19d1205
ZW
3178 /* Next literal pool ID number. */
3179 static unsigned int latest_pool_num = 1;
3180 literal_pool * pool;
a737bd4d 3181
c19d1205 3182 pool = find_literal_pool ();
a737bd4d 3183
c19d1205 3184 if (pool == NULL)
a737bd4d 3185 {
c19d1205 3186 /* Create a new pool. */
325801bd 3187 pool = XNEW (literal_pool);
c19d1205
ZW
3188 if (! pool)
3189 return NULL;
a737bd4d 3190
c19d1205
ZW
3191 pool->next_free_entry = 0;
3192 pool->section = now_seg;
3193 pool->sub_section = now_subseg;
3194 pool->next = list_of_pools;
3195 pool->symbol = NULL;
8335d6aa 3196 pool->alignment = 2;
c19d1205
ZW
3197
3198 /* Add it to the list. */
3199 list_of_pools = pool;
a737bd4d 3200 }
a737bd4d 3201
c19d1205
ZW
3202 /* New pools, and emptied pools, will have a NULL symbol. */
3203 if (pool->symbol == NULL)
a737bd4d 3204 {
c19d1205
ZW
3205 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3206 (valueT) 0, &zero_address_frag);
3207 pool->id = latest_pool_num ++;
a737bd4d
NC
3208 }
3209
c19d1205
ZW
3210 /* Done. */
3211 return pool;
a737bd4d
NC
3212}
3213
c19d1205 3214/* Add the literal in the global 'inst'
5f4273c7 3215 structure to the relevant literal pool. */
b99bd4ef
NC
3216
3217static int
8335d6aa 3218add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3219{
8335d6aa
JW
3220#define PADDING_SLOT 0x1
3221#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3222 literal_pool * pool;
8335d6aa
JW
3223 unsigned int entry, pool_size = 0;
3224 bfd_boolean padding_slot_p = FALSE;
e56c722b 3225 unsigned imm1 = 0;
8335d6aa
JW
3226 unsigned imm2 = 0;
3227
3228 if (nbytes == 8)
3229 {
3230 imm1 = inst.operands[1].imm;
3231 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3232 : inst.reloc.exp.X_unsigned ? 0
2569ceb0 3233 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3234 if (target_big_endian)
3235 {
3236 imm1 = imm2;
3237 imm2 = inst.operands[1].imm;
3238 }
3239 }
b99bd4ef 3240
c19d1205
ZW
3241 pool = find_or_make_literal_pool ();
3242
3243 /* Check if this literal value is already in the pool. */
3244 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3245 {
8335d6aa
JW
3246 if (nbytes == 4)
3247 {
3248 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3249 && (inst.reloc.exp.X_op == O_constant)
3250 && (pool->literals[entry].X_add_number
3251 == inst.reloc.exp.X_add_number)
3252 && (pool->literals[entry].X_md == nbytes)
3253 && (pool->literals[entry].X_unsigned
3254 == inst.reloc.exp.X_unsigned))
3255 break;
3256
3257 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3258 && (inst.reloc.exp.X_op == O_symbol)
3259 && (pool->literals[entry].X_add_number
3260 == inst.reloc.exp.X_add_number)
3261 && (pool->literals[entry].X_add_symbol
3262 == inst.reloc.exp.X_add_symbol)
3263 && (pool->literals[entry].X_op_symbol
3264 == inst.reloc.exp.X_op_symbol)
3265 && (pool->literals[entry].X_md == nbytes))
3266 break;
3267 }
3268 else if ((nbytes == 8)
3269 && !(pool_size & 0x7)
3270 && ((entry + 1) != pool->next_free_entry)
3271 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3272 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa
JW
3273 && (pool->literals[entry].X_unsigned
3274 == inst.reloc.exp.X_unsigned)
3275 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3276 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa
JW
3277 && (pool->literals[entry + 1].X_unsigned
3278 == inst.reloc.exp.X_unsigned))
c19d1205
ZW
3279 break;
3280
8335d6aa
JW
3281 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3282 if (padding_slot_p && (nbytes == 4))
c19d1205 3283 break;
8335d6aa
JW
3284
3285 pool_size += 4;
b99bd4ef
NC
3286 }
3287
c19d1205
ZW
3288 /* Do we need to create a new entry? */
3289 if (entry == pool->next_free_entry)
3290 {
3291 if (entry >= MAX_LITERAL_POOL_SIZE)
3292 {
3293 inst.error = _("literal pool overflow");
3294 return FAIL;
3295 }
3296
8335d6aa
JW
3297 if (nbytes == 8)
3298 {
3299 /* For 8-byte entries, we align to an 8-byte boundary,
3300 and split it into two 4-byte entries, because on 32-bit
3301 host, 8-byte constants are treated as big num, thus
3302 saved in "generic_bignum" which will be overwritten
3303 by later assignments.
3304
3305 We also need to make sure there is enough space for
3306 the split.
3307
3308 We also check to make sure the literal operand is a
3309 constant number. */
19f2f6a9
JW
3310 if (!(inst.reloc.exp.X_op == O_constant
3311 || inst.reloc.exp.X_op == O_big))
8335d6aa
JW
3312 {
3313 inst.error = _("invalid type for literal pool");
3314 return FAIL;
3315 }
3316 else if (pool_size & 0x7)
3317 {
3318 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3319 {
3320 inst.error = _("literal pool overflow");
3321 return FAIL;
3322 }
3323
3324 pool->literals[entry] = inst.reloc.exp;
a6684f0d 3325 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3326 pool->literals[entry].X_add_number = 0;
3327 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3328 pool->next_free_entry += 1;
3329 pool_size += 4;
3330 }
3331 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3332 {
3333 inst.error = _("literal pool overflow");
3334 return FAIL;
3335 }
3336
3337 pool->literals[entry] = inst.reloc.exp;
3338 pool->literals[entry].X_op = O_constant;
3339 pool->literals[entry].X_add_number = imm1;
3340 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3341 pool->literals[entry++].X_md = 4;
3342 pool->literals[entry] = inst.reloc.exp;
3343 pool->literals[entry].X_op = O_constant;
3344 pool->literals[entry].X_add_number = imm2;
3345 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3346 pool->literals[entry].X_md = 4;
3347 pool->alignment = 3;
3348 pool->next_free_entry += 1;
3349 }
3350 else
3351 {
3352 pool->literals[entry] = inst.reloc.exp;
3353 pool->literals[entry].X_md = 4;
3354 }
3355
a8040cf2
NC
3356#ifdef OBJ_ELF
3357 /* PR ld/12974: Record the location of the first source line to reference
3358 this entry in the literal pool. If it turns out during linking that the
3359 symbol does not exist we will be able to give an accurate line number for
3360 the (first use of the) missing reference. */
3361 if (debug_type == DEBUG_DWARF2)
3362 dwarf2_where (pool->locs + entry);
3363#endif
c19d1205
ZW
3364 pool->next_free_entry += 1;
3365 }
8335d6aa
JW
3366 else if (padding_slot_p)
3367 {
3368 pool->literals[entry] = inst.reloc.exp;
3369 pool->literals[entry].X_md = nbytes;
3370 }
b99bd4ef 3371
c19d1205 3372 inst.reloc.exp.X_op = O_symbol;
8335d6aa 3373 inst.reloc.exp.X_add_number = pool_size;
c19d1205 3374 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3375
c19d1205 3376 return SUCCESS;
b99bd4ef
NC
3377}
3378
2e6976a8 3379bfd_boolean
2e57ce7b 3380tc_start_label_without_colon (void)
2e6976a8
DG
3381{
3382 bfd_boolean ret = TRUE;
3383
3384 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3385 {
2e57ce7b 3386 const char *label = input_line_pointer;
2e6976a8
DG
3387
3388 while (!is_end_of_line[(int) label[-1]])
3389 --label;
3390
3391 if (*label == '.')
3392 {
3393 as_bad (_("Invalid label '%s'"), label);
3394 ret = FALSE;
3395 }
3396
3397 asmfunc_debug (label);
3398
3399 asmfunc_state = WAITING_ENDASMFUNC;
3400 }
3401
3402 return ret;
3403}
3404
c19d1205 3405/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3406 a later date assign it a value. That's what these functions do. */
e16bb312 3407
c19d1205
ZW
3408static void
3409symbol_locate (symbolS * symbolP,
3410 const char * name, /* It is copied, the caller can modify. */
3411 segT segment, /* Segment identifier (SEG_<something>). */
3412 valueT valu, /* Symbol value. */
3413 fragS * frag) /* Associated fragment. */
3414{
e57e6ddc 3415 size_t name_length;
c19d1205 3416 char * preserved_copy_of_name;
e16bb312 3417
c19d1205
ZW
3418 name_length = strlen (name) + 1; /* +1 for \0. */
3419 obstack_grow (&notes, name, name_length);
21d799b5 3420 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3421
c19d1205
ZW
3422#ifdef tc_canonicalize_symbol_name
3423 preserved_copy_of_name =
3424 tc_canonicalize_symbol_name (preserved_copy_of_name);
3425#endif
b99bd4ef 3426
c19d1205 3427 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3428
c19d1205
ZW
3429 S_SET_SEGMENT (symbolP, segment);
3430 S_SET_VALUE (symbolP, valu);
3431 symbol_clear_list_pointers (symbolP);
b99bd4ef 3432
c19d1205 3433 symbol_set_frag (symbolP, frag);
b99bd4ef 3434
c19d1205
ZW
3435 /* Link to end of symbol chain. */
3436 {
3437 extern int symbol_table_frozen;
b99bd4ef 3438
c19d1205
ZW
3439 if (symbol_table_frozen)
3440 abort ();
3441 }
b99bd4ef 3442
c19d1205 3443 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3444
c19d1205 3445 obj_symbol_new_hook (symbolP);
b99bd4ef 3446
c19d1205
ZW
3447#ifdef tc_symbol_new_hook
3448 tc_symbol_new_hook (symbolP);
3449#endif
3450
3451#ifdef DEBUG_SYMS
3452 verify_symbol_chain (symbol_rootP, symbol_lastP);
3453#endif /* DEBUG_SYMS */
b99bd4ef
NC
3454}
3455
c19d1205
ZW
3456static void
3457s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3458{
c19d1205
ZW
3459 unsigned int entry;
3460 literal_pool * pool;
3461 char sym_name[20];
b99bd4ef 3462
c19d1205
ZW
3463 pool = find_literal_pool ();
3464 if (pool == NULL
3465 || pool->symbol == NULL
3466 || pool->next_free_entry == 0)
3467 return;
b99bd4ef 3468
c19d1205
ZW
3469 /* Align pool as you have word accesses.
3470 Only make a frag if we have to. */
3471 if (!need_pass_2)
8335d6aa 3472 frag_align (pool->alignment, 0, 0);
b99bd4ef 3473
c19d1205 3474 record_alignment (now_seg, 2);
b99bd4ef 3475
aaca88ef 3476#ifdef OBJ_ELF
47fc6e36
WN
3477 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3478 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3479#endif
c19d1205 3480 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3481
c19d1205
ZW
3482 symbol_locate (pool->symbol, sym_name, now_seg,
3483 (valueT) frag_now_fix (), frag_now);
3484 symbol_table_insert (pool->symbol);
b99bd4ef 3485
c19d1205 3486 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3487
c19d1205
ZW
3488#if defined OBJ_COFF || defined OBJ_ELF
3489 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3490#endif
6c43fab6 3491
c19d1205 3492 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3493 {
3494#ifdef OBJ_ELF
3495 if (debug_type == DEBUG_DWARF2)
3496 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3497#endif
3498 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3499 emit_expr (&(pool->literals[entry]),
3500 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3501 }
b99bd4ef 3502
c19d1205
ZW
3503 /* Mark the pool as empty. */
3504 pool->next_free_entry = 0;
3505 pool->symbol = NULL;
b99bd4ef
NC
3506}
3507
c19d1205
ZW
3508#ifdef OBJ_ELF
3509/* Forward declarations for functions below, in the MD interface
3510 section. */
3511static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3512static valueT create_unwind_entry (int);
3513static void start_unwind_section (const segT, int);
3514static void add_unwind_opcode (valueT, int);
3515static void flush_pending_unwind (void);
b99bd4ef 3516
c19d1205 3517/* Directives: Data. */
b99bd4ef 3518
c19d1205
ZW
3519static void
3520s_arm_elf_cons (int nbytes)
3521{
3522 expressionS exp;
b99bd4ef 3523
c19d1205
ZW
3524#ifdef md_flush_pending_output
3525 md_flush_pending_output ();
3526#endif
b99bd4ef 3527
c19d1205 3528 if (is_it_end_of_statement ())
b99bd4ef 3529 {
c19d1205
ZW
3530 demand_empty_rest_of_line ();
3531 return;
b99bd4ef
NC
3532 }
3533
c19d1205
ZW
3534#ifdef md_cons_align
3535 md_cons_align (nbytes);
3536#endif
b99bd4ef 3537
c19d1205
ZW
3538 mapping_state (MAP_DATA);
3539 do
b99bd4ef 3540 {
c19d1205
ZW
3541 int reloc;
3542 char *base = input_line_pointer;
b99bd4ef 3543
c19d1205 3544 expression (& exp);
b99bd4ef 3545
c19d1205
ZW
3546 if (exp.X_op != O_symbol)
3547 emit_expr (&exp, (unsigned int) nbytes);
3548 else
3549 {
3550 char *before_reloc = input_line_pointer;
3551 reloc = parse_reloc (&input_line_pointer);
3552 if (reloc == -1)
3553 {
3554 as_bad (_("unrecognized relocation suffix"));
3555 ignore_rest_of_line ();
3556 return;
3557 }
3558 else if (reloc == BFD_RELOC_UNUSED)
3559 emit_expr (&exp, (unsigned int) nbytes);
3560 else
3561 {
21d799b5 3562 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3563 bfd_reloc_type_lookup (stdoutput,
3564 (bfd_reloc_code_real_type) reloc);
c19d1205 3565 int size = bfd_get_reloc_size (howto);
b99bd4ef 3566
2fc8bdac
ZW
3567 if (reloc == BFD_RELOC_ARM_PLT32)
3568 {
3569 as_bad (_("(plt) is only valid on branch targets"));
3570 reloc = BFD_RELOC_UNUSED;
3571 size = 0;
3572 }
3573
c19d1205 3574 if (size > nbytes)
992a06ee
AM
3575 as_bad (ngettext ("%s relocations do not fit in %d byte",
3576 "%s relocations do not fit in %d bytes",
3577 nbytes),
c19d1205
ZW
3578 howto->name, nbytes);
3579 else
3580 {
3581 /* We've parsed an expression stopping at O_symbol.
3582 But there may be more expression left now that we
3583 have parsed the relocation marker. Parse it again.
3584 XXX Surely there is a cleaner way to do this. */
3585 char *p = input_line_pointer;
3586 int offset;
325801bd 3587 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3588
c19d1205
ZW
3589 memcpy (save_buf, base, input_line_pointer - base);
3590 memmove (base + (input_line_pointer - before_reloc),
3591 base, before_reloc - base);
3592
3593 input_line_pointer = base + (input_line_pointer-before_reloc);
3594 expression (&exp);
3595 memcpy (base, save_buf, p - base);
3596
3597 offset = nbytes - size;
4b1a927e
AM
3598 p = frag_more (nbytes);
3599 memset (p, 0, nbytes);
c19d1205 3600 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3601 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3602 free (save_buf);
c19d1205
ZW
3603 }
3604 }
3605 }
b99bd4ef 3606 }
c19d1205 3607 while (*input_line_pointer++ == ',');
b99bd4ef 3608
c19d1205
ZW
3609 /* Put terminator back into stream. */
3610 input_line_pointer --;
3611 demand_empty_rest_of_line ();
b99bd4ef
NC
3612}
3613
c921be7d
NC
3614/* Emit an expression containing a 32-bit thumb instruction.
3615 Implementation based on put_thumb32_insn. */
3616
3617static void
3618emit_thumb32_expr (expressionS * exp)
3619{
3620 expressionS exp_high = *exp;
3621
3622 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3623 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3624 exp->X_add_number &= 0xffff;
3625 emit_expr (exp, (unsigned int) THUMB_SIZE);
3626}
3627
3628/* Guess the instruction size based on the opcode. */
3629
3630static int
3631thumb_insn_size (int opcode)
3632{
3633 if ((unsigned int) opcode < 0xe800u)
3634 return 2;
3635 else if ((unsigned int) opcode >= 0xe8000000u)
3636 return 4;
3637 else
3638 return 0;
3639}
3640
3641static bfd_boolean
3642emit_insn (expressionS *exp, int nbytes)
3643{
3644 int size = 0;
3645
3646 if (exp->X_op == O_constant)
3647 {
3648 size = nbytes;
3649
3650 if (size == 0)
3651 size = thumb_insn_size (exp->X_add_number);
3652
3653 if (size != 0)
3654 {
3655 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3656 {
3657 as_bad (_(".inst.n operand too big. "\
3658 "Use .inst.w instead"));
3659 size = 0;
3660 }
3661 else
3662 {
3663 if (now_it.state == AUTOMATIC_IT_BLOCK)
3664 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3665 else
3666 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3667
3668 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3669 emit_thumb32_expr (exp);
3670 else
3671 emit_expr (exp, (unsigned int) size);
3672
3673 it_fsm_post_encode ();
3674 }
3675 }
3676 else
3677 as_bad (_("cannot determine Thumb instruction size. " \
3678 "Use .inst.n/.inst.w instead"));
3679 }
3680 else
3681 as_bad (_("constant expression required"));
3682
3683 return (size != 0);
3684}
3685
3686/* Like s_arm_elf_cons but do not use md_cons_align and
3687 set the mapping state to MAP_ARM/MAP_THUMB. */
3688
3689static void
3690s_arm_elf_inst (int nbytes)
3691{
3692 if (is_it_end_of_statement ())
3693 {
3694 demand_empty_rest_of_line ();
3695 return;
3696 }
3697
3698 /* Calling mapping_state () here will not change ARM/THUMB,
3699 but will ensure not to be in DATA state. */
3700
3701 if (thumb_mode)
3702 mapping_state (MAP_THUMB);
3703 else
3704 {
3705 if (nbytes != 0)
3706 {
3707 as_bad (_("width suffixes are invalid in ARM mode"));
3708 ignore_rest_of_line ();
3709 return;
3710 }
3711
3712 nbytes = 4;
3713
3714 mapping_state (MAP_ARM);
3715 }
3716
3717 do
3718 {
3719 expressionS exp;
3720
3721 expression (& exp);
3722
3723 if (! emit_insn (& exp, nbytes))
3724 {
3725 ignore_rest_of_line ();
3726 return;
3727 }
3728 }
3729 while (*input_line_pointer++ == ',');
3730
3731 /* Put terminator back into stream. */
3732 input_line_pointer --;
3733 demand_empty_rest_of_line ();
3734}
b99bd4ef 3735
c19d1205 3736/* Parse a .rel31 directive. */
b99bd4ef 3737
c19d1205
ZW
3738static void
3739s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3740{
3741 expressionS exp;
3742 char *p;
3743 valueT highbit;
b99bd4ef 3744
c19d1205
ZW
3745 highbit = 0;
3746 if (*input_line_pointer == '1')
3747 highbit = 0x80000000;
3748 else if (*input_line_pointer != '0')
3749 as_bad (_("expected 0 or 1"));
b99bd4ef 3750
c19d1205
ZW
3751 input_line_pointer++;
3752 if (*input_line_pointer != ',')
3753 as_bad (_("missing comma"));
3754 input_line_pointer++;
b99bd4ef 3755
c19d1205
ZW
3756#ifdef md_flush_pending_output
3757 md_flush_pending_output ();
3758#endif
b99bd4ef 3759
c19d1205
ZW
3760#ifdef md_cons_align
3761 md_cons_align (4);
3762#endif
b99bd4ef 3763
c19d1205 3764 mapping_state (MAP_DATA);
b99bd4ef 3765
c19d1205 3766 expression (&exp);
b99bd4ef 3767
c19d1205
ZW
3768 p = frag_more (4);
3769 md_number_to_chars (p, highbit, 4);
3770 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3771 BFD_RELOC_ARM_PREL31);
b99bd4ef 3772
c19d1205 3773 demand_empty_rest_of_line ();
b99bd4ef
NC
3774}
3775
c19d1205 3776/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3777
c19d1205 3778/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3779
c19d1205
ZW
3780static void
3781s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3782{
3783 demand_empty_rest_of_line ();
921e5f0a
PB
3784 if (unwind.proc_start)
3785 {
c921be7d 3786 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3787 return;
3788 }
3789
c19d1205
ZW
3790 /* Mark the start of the function. */
3791 unwind.proc_start = expr_build_dot ();
b99bd4ef 3792
c19d1205
ZW
3793 /* Reset the rest of the unwind info. */
3794 unwind.opcode_count = 0;
3795 unwind.table_entry = NULL;
3796 unwind.personality_routine = NULL;
3797 unwind.personality_index = -1;
3798 unwind.frame_size = 0;
3799 unwind.fp_offset = 0;
fdfde340 3800 unwind.fp_reg = REG_SP;
c19d1205
ZW
3801 unwind.fp_used = 0;
3802 unwind.sp_restored = 0;
3803}
b99bd4ef 3804
b99bd4ef 3805
c19d1205
ZW
3806/* Parse a handlerdata directive. Creates the exception handling table entry
3807 for the function. */
b99bd4ef 3808
c19d1205
ZW
3809static void
3810s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3811{
3812 demand_empty_rest_of_line ();
921e5f0a 3813 if (!unwind.proc_start)
c921be7d 3814 as_bad (MISSING_FNSTART);
921e5f0a 3815
c19d1205 3816 if (unwind.table_entry)
6decc662 3817 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3818
c19d1205
ZW
3819 create_unwind_entry (1);
3820}
a737bd4d 3821
c19d1205 3822/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3823
c19d1205
ZW
3824static void
3825s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3826{
3827 long where;
3828 char *ptr;
3829 valueT val;
940b5ce0 3830 unsigned int marked_pr_dependency;
f02232aa 3831
c19d1205 3832 demand_empty_rest_of_line ();
f02232aa 3833
921e5f0a
PB
3834 if (!unwind.proc_start)
3835 {
c921be7d 3836 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3837 return;
3838 }
3839
c19d1205
ZW
3840 /* Add eh table entry. */
3841 if (unwind.table_entry == NULL)
3842 val = create_unwind_entry (0);
3843 else
3844 val = 0;
f02232aa 3845
c19d1205
ZW
3846 /* Add index table entry. This is two words. */
3847 start_unwind_section (unwind.saved_seg, 1);
3848 frag_align (2, 0, 0);
3849 record_alignment (now_seg, 2);
b99bd4ef 3850
c19d1205 3851 ptr = frag_more (8);
5011093d 3852 memset (ptr, 0, 8);
c19d1205 3853 where = frag_now_fix () - 8;
f02232aa 3854
c19d1205
ZW
3855 /* Self relative offset of the function start. */
3856 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3857 BFD_RELOC_ARM_PREL31);
f02232aa 3858
c19d1205
ZW
3859 /* Indicate dependency on EHABI-defined personality routines to the
3860 linker, if it hasn't been done already. */
940b5ce0
DJ
3861 marked_pr_dependency
3862 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3863 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3864 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3865 {
5f4273c7
NC
3866 static const char *const name[] =
3867 {
3868 "__aeabi_unwind_cpp_pr0",
3869 "__aeabi_unwind_cpp_pr1",
3870 "__aeabi_unwind_cpp_pr2"
3871 };
c19d1205
ZW
3872 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3873 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3874 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3875 |= 1 << unwind.personality_index;
c19d1205 3876 }
f02232aa 3877
c19d1205
ZW
3878 if (val)
3879 /* Inline exception table entry. */
3880 md_number_to_chars (ptr + 4, val, 4);
3881 else
3882 /* Self relative offset of the table entry. */
3883 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3884 BFD_RELOC_ARM_PREL31);
f02232aa 3885
c19d1205
ZW
3886 /* Restore the original section. */
3887 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3888
3889 unwind.proc_start = NULL;
c19d1205 3890}
f02232aa 3891
f02232aa 3892
c19d1205 3893/* Parse an unwind_cantunwind directive. */
b99bd4ef 3894
c19d1205
ZW
3895static void
3896s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3897{
3898 demand_empty_rest_of_line ();
921e5f0a 3899 if (!unwind.proc_start)
c921be7d 3900 as_bad (MISSING_FNSTART);
921e5f0a 3901
c19d1205
ZW
3902 if (unwind.personality_routine || unwind.personality_index != -1)
3903 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3904
c19d1205
ZW
3905 unwind.personality_index = -2;
3906}
b99bd4ef 3907
b99bd4ef 3908
c19d1205 3909/* Parse a personalityindex directive. */
b99bd4ef 3910
c19d1205
ZW
3911static void
3912s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3913{
3914 expressionS exp;
b99bd4ef 3915
921e5f0a 3916 if (!unwind.proc_start)
c921be7d 3917 as_bad (MISSING_FNSTART);
921e5f0a 3918
c19d1205
ZW
3919 if (unwind.personality_routine || unwind.personality_index != -1)
3920 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3921
c19d1205 3922 expression (&exp);
b99bd4ef 3923
c19d1205
ZW
3924 if (exp.X_op != O_constant
3925 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3926 {
c19d1205
ZW
3927 as_bad (_("bad personality routine number"));
3928 ignore_rest_of_line ();
3929 return;
b99bd4ef
NC
3930 }
3931
c19d1205 3932 unwind.personality_index = exp.X_add_number;
b99bd4ef 3933
c19d1205
ZW
3934 demand_empty_rest_of_line ();
3935}
e16bb312 3936
e16bb312 3937
c19d1205 3938/* Parse a personality directive. */
e16bb312 3939
c19d1205
ZW
3940static void
3941s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3942{
3943 char *name, *p, c;
a737bd4d 3944
921e5f0a 3945 if (!unwind.proc_start)
c921be7d 3946 as_bad (MISSING_FNSTART);
921e5f0a 3947
c19d1205
ZW
3948 if (unwind.personality_routine || unwind.personality_index != -1)
3949 as_bad (_("duplicate .personality directive"));
a737bd4d 3950
d02603dc 3951 c = get_symbol_name (& name);
c19d1205 3952 p = input_line_pointer;
d02603dc
NC
3953 if (c == '"')
3954 ++ input_line_pointer;
c19d1205
ZW
3955 unwind.personality_routine = symbol_find_or_make (name);
3956 *p = c;
3957 demand_empty_rest_of_line ();
3958}
e16bb312 3959
e16bb312 3960
c19d1205 3961/* Parse a directive saving core registers. */
e16bb312 3962
c19d1205
ZW
3963static void
3964s_arm_unwind_save_core (void)
e16bb312 3965{
c19d1205
ZW
3966 valueT op;
3967 long range;
3968 int n;
e16bb312 3969
c19d1205
ZW
3970 range = parse_reg_list (&input_line_pointer);
3971 if (range == FAIL)
e16bb312 3972 {
c19d1205
ZW
3973 as_bad (_("expected register list"));
3974 ignore_rest_of_line ();
3975 return;
3976 }
e16bb312 3977
c19d1205 3978 demand_empty_rest_of_line ();
e16bb312 3979
c19d1205
ZW
3980 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3981 into .unwind_save {..., sp...}. We aren't bothered about the value of
3982 ip because it is clobbered by calls. */
3983 if (unwind.sp_restored && unwind.fp_reg == 12
3984 && (range & 0x3000) == 0x1000)
3985 {
3986 unwind.opcode_count--;
3987 unwind.sp_restored = 0;
3988 range = (range | 0x2000) & ~0x1000;
3989 unwind.pending_offset = 0;
3990 }
e16bb312 3991
01ae4198
DJ
3992 /* Pop r4-r15. */
3993 if (range & 0xfff0)
c19d1205 3994 {
01ae4198
DJ
3995 /* See if we can use the short opcodes. These pop a block of up to 8
3996 registers starting with r4, plus maybe r14. */
3997 for (n = 0; n < 8; n++)
3998 {
3999 /* Break at the first non-saved register. */
4000 if ((range & (1 << (n + 4))) == 0)
4001 break;
4002 }
4003 /* See if there are any other bits set. */
4004 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4005 {
4006 /* Use the long form. */
4007 op = 0x8000 | ((range >> 4) & 0xfff);
4008 add_unwind_opcode (op, 2);
4009 }
0dd132b6 4010 else
01ae4198
DJ
4011 {
4012 /* Use the short form. */
4013 if (range & 0x4000)
4014 op = 0xa8; /* Pop r14. */
4015 else
4016 op = 0xa0; /* Do not pop r14. */
4017 op |= (n - 1);
4018 add_unwind_opcode (op, 1);
4019 }
c19d1205 4020 }
0dd132b6 4021
c19d1205
ZW
4022 /* Pop r0-r3. */
4023 if (range & 0xf)
4024 {
4025 op = 0xb100 | (range & 0xf);
4026 add_unwind_opcode (op, 2);
0dd132b6
NC
4027 }
4028
c19d1205
ZW
4029 /* Record the number of bytes pushed. */
4030 for (n = 0; n < 16; n++)
4031 {
4032 if (range & (1 << n))
4033 unwind.frame_size += 4;
4034 }
0dd132b6
NC
4035}
4036
c19d1205
ZW
4037
4038/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4039
4040static void
c19d1205 4041s_arm_unwind_save_fpa (int reg)
b99bd4ef 4042{
c19d1205
ZW
4043 expressionS exp;
4044 int num_regs;
4045 valueT op;
b99bd4ef 4046
c19d1205
ZW
4047 /* Get Number of registers to transfer. */
4048 if (skip_past_comma (&input_line_pointer) != FAIL)
4049 expression (&exp);
4050 else
4051 exp.X_op = O_illegal;
b99bd4ef 4052
c19d1205 4053 if (exp.X_op != O_constant)
b99bd4ef 4054 {
c19d1205
ZW
4055 as_bad (_("expected , <constant>"));
4056 ignore_rest_of_line ();
b99bd4ef
NC
4057 return;
4058 }
4059
c19d1205
ZW
4060 num_regs = exp.X_add_number;
4061
4062 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4063 {
c19d1205
ZW
4064 as_bad (_("number of registers must be in the range [1:4]"));
4065 ignore_rest_of_line ();
b99bd4ef
NC
4066 return;
4067 }
4068
c19d1205 4069 demand_empty_rest_of_line ();
b99bd4ef 4070
c19d1205
ZW
4071 if (reg == 4)
4072 {
4073 /* Short form. */
4074 op = 0xb4 | (num_regs - 1);
4075 add_unwind_opcode (op, 1);
4076 }
b99bd4ef
NC
4077 else
4078 {
c19d1205
ZW
4079 /* Long form. */
4080 op = 0xc800 | (reg << 4) | (num_regs - 1);
4081 add_unwind_opcode (op, 2);
b99bd4ef 4082 }
c19d1205 4083 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4084}
4085
c19d1205 4086
fa073d69
MS
4087/* Parse a directive saving VFP registers for ARMv6 and above. */
4088
4089static void
4090s_arm_unwind_save_vfp_armv6 (void)
4091{
4092 int count;
4093 unsigned int start;
4094 valueT op;
4095 int num_vfpv3_regs = 0;
4096 int num_regs_below_16;
4097
4098 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4099 if (count == FAIL)
4100 {
4101 as_bad (_("expected register list"));
4102 ignore_rest_of_line ();
4103 return;
4104 }
4105
4106 demand_empty_rest_of_line ();
4107
4108 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4109 than FSTMX/FLDMX-style ones). */
4110
4111 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4112 if (start >= 16)
4113 num_vfpv3_regs = count;
4114 else if (start + count > 16)
4115 num_vfpv3_regs = start + count - 16;
4116
4117 if (num_vfpv3_regs > 0)
4118 {
4119 int start_offset = start > 16 ? start - 16 : 0;
4120 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4121 add_unwind_opcode (op, 2);
4122 }
4123
4124 /* Generate opcode for registers numbered in the range 0 .. 15. */
4125 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4126 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4127 if (num_regs_below_16 > 0)
4128 {
4129 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4130 add_unwind_opcode (op, 2);
4131 }
4132
4133 unwind.frame_size += count * 8;
4134}
4135
4136
4137/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4138
4139static void
c19d1205 4140s_arm_unwind_save_vfp (void)
b99bd4ef 4141{
c19d1205 4142 int count;
ca3f61f7 4143 unsigned int reg;
c19d1205 4144 valueT op;
b99bd4ef 4145
5287ad62 4146 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 4147 if (count == FAIL)
b99bd4ef 4148 {
c19d1205
ZW
4149 as_bad (_("expected register list"));
4150 ignore_rest_of_line ();
b99bd4ef
NC
4151 return;
4152 }
4153
c19d1205 4154 demand_empty_rest_of_line ();
b99bd4ef 4155
c19d1205 4156 if (reg == 8)
b99bd4ef 4157 {
c19d1205
ZW
4158 /* Short form. */
4159 op = 0xb8 | (count - 1);
4160 add_unwind_opcode (op, 1);
b99bd4ef 4161 }
c19d1205 4162 else
b99bd4ef 4163 {
c19d1205
ZW
4164 /* Long form. */
4165 op = 0xb300 | (reg << 4) | (count - 1);
4166 add_unwind_opcode (op, 2);
b99bd4ef 4167 }
c19d1205
ZW
4168 unwind.frame_size += count * 8 + 4;
4169}
b99bd4ef 4170
b99bd4ef 4171
c19d1205
ZW
4172/* Parse a directive saving iWMMXt data registers. */
4173
4174static void
4175s_arm_unwind_save_mmxwr (void)
4176{
4177 int reg;
4178 int hi_reg;
4179 int i;
4180 unsigned mask = 0;
4181 valueT op;
b99bd4ef 4182
c19d1205
ZW
4183 if (*input_line_pointer == '{')
4184 input_line_pointer++;
b99bd4ef 4185
c19d1205 4186 do
b99bd4ef 4187 {
dcbf9037 4188 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4189
c19d1205 4190 if (reg == FAIL)
b99bd4ef 4191 {
9b7132d3 4192 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4193 goto error;
b99bd4ef
NC
4194 }
4195
c19d1205
ZW
4196 if (mask >> reg)
4197 as_tsktsk (_("register list not in ascending order"));
4198 mask |= 1 << reg;
b99bd4ef 4199
c19d1205
ZW
4200 if (*input_line_pointer == '-')
4201 {
4202 input_line_pointer++;
dcbf9037 4203 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4204 if (hi_reg == FAIL)
4205 {
9b7132d3 4206 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4207 goto error;
4208 }
4209 else if (reg >= hi_reg)
4210 {
4211 as_bad (_("bad register range"));
4212 goto error;
4213 }
4214 for (; reg < hi_reg; reg++)
4215 mask |= 1 << reg;
4216 }
4217 }
4218 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4219
d996d970 4220 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4221
c19d1205 4222 demand_empty_rest_of_line ();
b99bd4ef 4223
708587a4 4224 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4225 the list. */
4226 flush_pending_unwind ();
b99bd4ef 4227
c19d1205 4228 for (i = 0; i < 16; i++)
b99bd4ef 4229 {
c19d1205
ZW
4230 if (mask & (1 << i))
4231 unwind.frame_size += 8;
b99bd4ef
NC
4232 }
4233
c19d1205
ZW
4234 /* Attempt to combine with a previous opcode. We do this because gcc
4235 likes to output separate unwind directives for a single block of
4236 registers. */
4237 if (unwind.opcode_count > 0)
b99bd4ef 4238 {
c19d1205
ZW
4239 i = unwind.opcodes[unwind.opcode_count - 1];
4240 if ((i & 0xf8) == 0xc0)
4241 {
4242 i &= 7;
4243 /* Only merge if the blocks are contiguous. */
4244 if (i < 6)
4245 {
4246 if ((mask & 0xfe00) == (1 << 9))
4247 {
4248 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4249 unwind.opcode_count--;
4250 }
4251 }
4252 else if (i == 6 && unwind.opcode_count >= 2)
4253 {
4254 i = unwind.opcodes[unwind.opcode_count - 2];
4255 reg = i >> 4;
4256 i &= 0xf;
b99bd4ef 4257
c19d1205
ZW
4258 op = 0xffff << (reg - 1);
4259 if (reg > 0
87a1fd79 4260 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4261 {
4262 op = (1 << (reg + i + 1)) - 1;
4263 op &= ~((1 << reg) - 1);
4264 mask |= op;
4265 unwind.opcode_count -= 2;
4266 }
4267 }
4268 }
b99bd4ef
NC
4269 }
4270
c19d1205
ZW
4271 hi_reg = 15;
4272 /* We want to generate opcodes in the order the registers have been
4273 saved, ie. descending order. */
4274 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4275 {
c19d1205
ZW
4276 /* Save registers in blocks. */
4277 if (reg < 0
4278 || !(mask & (1 << reg)))
4279 {
4280 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4281 preceding block. */
c19d1205
ZW
4282 if (reg != hi_reg)
4283 {
4284 if (reg == 9)
4285 {
4286 /* Short form. */
4287 op = 0xc0 | (hi_reg - 10);
4288 add_unwind_opcode (op, 1);
4289 }
4290 else
4291 {
4292 /* Long form. */
4293 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4294 add_unwind_opcode (op, 2);
4295 }
4296 }
4297 hi_reg = reg - 1;
4298 }
b99bd4ef
NC
4299 }
4300
c19d1205
ZW
4301 return;
4302error:
4303 ignore_rest_of_line ();
b99bd4ef
NC
4304}
4305
4306static void
c19d1205 4307s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4308{
c19d1205
ZW
4309 int reg;
4310 int hi_reg;
4311 unsigned mask = 0;
4312 valueT op;
b99bd4ef 4313
c19d1205
ZW
4314 if (*input_line_pointer == '{')
4315 input_line_pointer++;
b99bd4ef 4316
477330fc
RM
4317 skip_whitespace (input_line_pointer);
4318
c19d1205 4319 do
b99bd4ef 4320 {
dcbf9037 4321 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4322
c19d1205
ZW
4323 if (reg == FAIL)
4324 {
9b7132d3 4325 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4326 goto error;
4327 }
b99bd4ef 4328
c19d1205
ZW
4329 reg -= 8;
4330 if (mask >> reg)
4331 as_tsktsk (_("register list not in ascending order"));
4332 mask |= 1 << reg;
b99bd4ef 4333
c19d1205
ZW
4334 if (*input_line_pointer == '-')
4335 {
4336 input_line_pointer++;
dcbf9037 4337 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4338 if (hi_reg == FAIL)
4339 {
9b7132d3 4340 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4341 goto error;
4342 }
4343 else if (reg >= hi_reg)
4344 {
4345 as_bad (_("bad register range"));
4346 goto error;
4347 }
4348 for (; reg < hi_reg; reg++)
4349 mask |= 1 << reg;
4350 }
b99bd4ef 4351 }
c19d1205 4352 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4353
d996d970 4354 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4355
c19d1205
ZW
4356 demand_empty_rest_of_line ();
4357
708587a4 4358 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4359 the list. */
4360 flush_pending_unwind ();
b99bd4ef 4361
c19d1205 4362 for (reg = 0; reg < 16; reg++)
b99bd4ef 4363 {
c19d1205
ZW
4364 if (mask & (1 << reg))
4365 unwind.frame_size += 4;
b99bd4ef 4366 }
c19d1205
ZW
4367 op = 0xc700 | mask;
4368 add_unwind_opcode (op, 2);
4369 return;
4370error:
4371 ignore_rest_of_line ();
b99bd4ef
NC
4372}
4373
c19d1205 4374
fa073d69
MS
4375/* Parse an unwind_save directive.
4376 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4377
b99bd4ef 4378static void
fa073d69 4379s_arm_unwind_save (int arch_v6)
b99bd4ef 4380{
c19d1205
ZW
4381 char *peek;
4382 struct reg_entry *reg;
4383 bfd_boolean had_brace = FALSE;
b99bd4ef 4384
921e5f0a 4385 if (!unwind.proc_start)
c921be7d 4386 as_bad (MISSING_FNSTART);
921e5f0a 4387
c19d1205
ZW
4388 /* Figure out what sort of save we have. */
4389 peek = input_line_pointer;
b99bd4ef 4390
c19d1205 4391 if (*peek == '{')
b99bd4ef 4392 {
c19d1205
ZW
4393 had_brace = TRUE;
4394 peek++;
b99bd4ef
NC
4395 }
4396
c19d1205 4397 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4398
c19d1205 4399 if (!reg)
b99bd4ef 4400 {
c19d1205
ZW
4401 as_bad (_("register expected"));
4402 ignore_rest_of_line ();
b99bd4ef
NC
4403 return;
4404 }
4405
c19d1205 4406 switch (reg->type)
b99bd4ef 4407 {
c19d1205
ZW
4408 case REG_TYPE_FN:
4409 if (had_brace)
4410 {
4411 as_bad (_("FPA .unwind_save does not take a register list"));
4412 ignore_rest_of_line ();
4413 return;
4414 }
93ac2687 4415 input_line_pointer = peek;
c19d1205 4416 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4417 return;
c19d1205 4418
1f5afe1c
NC
4419 case REG_TYPE_RN:
4420 s_arm_unwind_save_core ();
4421 return;
4422
fa073d69
MS
4423 case REG_TYPE_VFD:
4424 if (arch_v6)
477330fc 4425 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4426 else
477330fc 4427 s_arm_unwind_save_vfp ();
fa073d69 4428 return;
1f5afe1c
NC
4429
4430 case REG_TYPE_MMXWR:
4431 s_arm_unwind_save_mmxwr ();
4432 return;
4433
4434 case REG_TYPE_MMXWCG:
4435 s_arm_unwind_save_mmxwcg ();
4436 return;
c19d1205
ZW
4437
4438 default:
4439 as_bad (_(".unwind_save does not support this kind of register"));
4440 ignore_rest_of_line ();
b99bd4ef 4441 }
c19d1205 4442}
b99bd4ef 4443
b99bd4ef 4444
c19d1205
ZW
4445/* Parse an unwind_movsp directive. */
4446
4447static void
4448s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4449{
4450 int reg;
4451 valueT op;
4fa3602b 4452 int offset;
c19d1205 4453
921e5f0a 4454 if (!unwind.proc_start)
c921be7d 4455 as_bad (MISSING_FNSTART);
921e5f0a 4456
dcbf9037 4457 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4458 if (reg == FAIL)
b99bd4ef 4459 {
9b7132d3 4460 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4461 ignore_rest_of_line ();
b99bd4ef
NC
4462 return;
4463 }
4fa3602b
PB
4464
4465 /* Optional constant. */
4466 if (skip_past_comma (&input_line_pointer) != FAIL)
4467 {
4468 if (immediate_for_directive (&offset) == FAIL)
4469 return;
4470 }
4471 else
4472 offset = 0;
4473
c19d1205 4474 demand_empty_rest_of_line ();
b99bd4ef 4475
c19d1205 4476 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4477 {
c19d1205 4478 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4479 return;
4480 }
4481
c19d1205
ZW
4482 if (unwind.fp_reg != REG_SP)
4483 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4484
c19d1205
ZW
4485 /* Generate opcode to restore the value. */
4486 op = 0x90 | reg;
4487 add_unwind_opcode (op, 1);
4488
4489 /* Record the information for later. */
4490 unwind.fp_reg = reg;
4fa3602b 4491 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4492 unwind.sp_restored = 1;
b05fe5cf
ZW
4493}
4494
c19d1205
ZW
4495/* Parse an unwind_pad directive. */
4496
b05fe5cf 4497static void
c19d1205 4498s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4499{
c19d1205 4500 int offset;
b05fe5cf 4501
921e5f0a 4502 if (!unwind.proc_start)
c921be7d 4503 as_bad (MISSING_FNSTART);
921e5f0a 4504
c19d1205
ZW
4505 if (immediate_for_directive (&offset) == FAIL)
4506 return;
b99bd4ef 4507
c19d1205
ZW
4508 if (offset & 3)
4509 {
4510 as_bad (_("stack increment must be multiple of 4"));
4511 ignore_rest_of_line ();
4512 return;
4513 }
b99bd4ef 4514
c19d1205
ZW
4515 /* Don't generate any opcodes, just record the details for later. */
4516 unwind.frame_size += offset;
4517 unwind.pending_offset += offset;
4518
4519 demand_empty_rest_of_line ();
4520}
4521
4522/* Parse an unwind_setfp directive. */
4523
4524static void
4525s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4526{
c19d1205
ZW
4527 int sp_reg;
4528 int fp_reg;
4529 int offset;
4530
921e5f0a 4531 if (!unwind.proc_start)
c921be7d 4532 as_bad (MISSING_FNSTART);
921e5f0a 4533
dcbf9037 4534 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4535 if (skip_past_comma (&input_line_pointer) == FAIL)
4536 sp_reg = FAIL;
4537 else
dcbf9037 4538 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4539
c19d1205
ZW
4540 if (fp_reg == FAIL || sp_reg == FAIL)
4541 {
4542 as_bad (_("expected <reg>, <reg>"));
4543 ignore_rest_of_line ();
4544 return;
4545 }
b99bd4ef 4546
c19d1205
ZW
4547 /* Optional constant. */
4548 if (skip_past_comma (&input_line_pointer) != FAIL)
4549 {
4550 if (immediate_for_directive (&offset) == FAIL)
4551 return;
4552 }
4553 else
4554 offset = 0;
a737bd4d 4555
c19d1205 4556 demand_empty_rest_of_line ();
a737bd4d 4557
fdfde340 4558 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4559 {
c19d1205
ZW
4560 as_bad (_("register must be either sp or set by a previous"
4561 "unwind_movsp directive"));
4562 return;
a737bd4d
NC
4563 }
4564
c19d1205
ZW
4565 /* Don't generate any opcodes, just record the information for later. */
4566 unwind.fp_reg = fp_reg;
4567 unwind.fp_used = 1;
fdfde340 4568 if (sp_reg == REG_SP)
c19d1205
ZW
4569 unwind.fp_offset = unwind.frame_size - offset;
4570 else
4571 unwind.fp_offset -= offset;
a737bd4d
NC
4572}
4573
c19d1205
ZW
4574/* Parse an unwind_raw directive. */
4575
4576static void
4577s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4578{
c19d1205 4579 expressionS exp;
708587a4 4580 /* This is an arbitrary limit. */
c19d1205
ZW
4581 unsigned char op[16];
4582 int count;
a737bd4d 4583
921e5f0a 4584 if (!unwind.proc_start)
c921be7d 4585 as_bad (MISSING_FNSTART);
921e5f0a 4586
c19d1205
ZW
4587 expression (&exp);
4588 if (exp.X_op == O_constant
4589 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4590 {
c19d1205
ZW
4591 unwind.frame_size += exp.X_add_number;
4592 expression (&exp);
4593 }
4594 else
4595 exp.X_op = O_illegal;
a737bd4d 4596
c19d1205
ZW
4597 if (exp.X_op != O_constant)
4598 {
4599 as_bad (_("expected <offset>, <opcode>"));
4600 ignore_rest_of_line ();
4601 return;
4602 }
a737bd4d 4603
c19d1205 4604 count = 0;
a737bd4d 4605
c19d1205
ZW
4606 /* Parse the opcode. */
4607 for (;;)
4608 {
4609 if (count >= 16)
4610 {
4611 as_bad (_("unwind opcode too long"));
4612 ignore_rest_of_line ();
a737bd4d 4613 }
c19d1205 4614 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4615 {
c19d1205
ZW
4616 as_bad (_("invalid unwind opcode"));
4617 ignore_rest_of_line ();
4618 return;
a737bd4d 4619 }
c19d1205 4620 op[count++] = exp.X_add_number;
a737bd4d 4621
c19d1205
ZW
4622 /* Parse the next byte. */
4623 if (skip_past_comma (&input_line_pointer) == FAIL)
4624 break;
a737bd4d 4625
c19d1205
ZW
4626 expression (&exp);
4627 }
b99bd4ef 4628
c19d1205
ZW
4629 /* Add the opcode bytes in reverse order. */
4630 while (count--)
4631 add_unwind_opcode (op[count], 1);
b99bd4ef 4632
c19d1205 4633 demand_empty_rest_of_line ();
b99bd4ef 4634}
ee065d83
PB
4635
4636
4637/* Parse a .eabi_attribute directive. */
4638
4639static void
4640s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4641{
0420f52b 4642 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378
AS
4643
4644 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4645 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4646}
4647
0855e32b
NS
4648/* Emit a tls fix for the symbol. */
4649
4650static void
4651s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4652{
4653 char *p;
4654 expressionS exp;
4655#ifdef md_flush_pending_output
4656 md_flush_pending_output ();
4657#endif
4658
4659#ifdef md_cons_align
4660 md_cons_align (4);
4661#endif
4662
4663 /* Since we're just labelling the code, there's no need to define a
4664 mapping symbol. */
4665 expression (&exp);
4666 p = obstack_next_free (&frchain_now->frch_obstack);
4667 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4668 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4669 : BFD_RELOC_ARM_TLS_DESCSEQ);
4670}
cdf9ccec 4671#endif /* OBJ_ELF */
0855e32b 4672
ee065d83 4673static void s_arm_arch (int);
7a1d4c38 4674static void s_arm_object_arch (int);
ee065d83
PB
4675static void s_arm_cpu (int);
4676static void s_arm_fpu (int);
69133863 4677static void s_arm_arch_extension (int);
b99bd4ef 4678
f0927246
NC
4679#ifdef TE_PE
4680
4681static void
5f4273c7 4682pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4683{
4684 expressionS exp;
4685
4686 do
4687 {
4688 expression (&exp);
4689 if (exp.X_op == O_symbol)
4690 exp.X_op = O_secrel;
4691
4692 emit_expr (&exp, 4);
4693 }
4694 while (*input_line_pointer++ == ',');
4695
4696 input_line_pointer--;
4697 demand_empty_rest_of_line ();
4698}
4699#endif /* TE_PE */
4700
c19d1205
ZW
4701/* This table describes all the machine specific pseudo-ops the assembler
4702 has to support. The fields are:
4703 pseudo-op name without dot
4704 function to call to execute this pseudo-op
4705 Integer arg to pass to the function. */
b99bd4ef 4706
c19d1205 4707const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4708{
c19d1205
ZW
4709 /* Never called because '.req' does not start a line. */
4710 { "req", s_req, 0 },
dcbf9037
JB
4711 /* Following two are likewise never called. */
4712 { "dn", s_dn, 0 },
4713 { "qn", s_qn, 0 },
c19d1205
ZW
4714 { "unreq", s_unreq, 0 },
4715 { "bss", s_bss, 0 },
db2ed2e0 4716 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4717 { "arm", s_arm, 0 },
4718 { "thumb", s_thumb, 0 },
4719 { "code", s_code, 0 },
4720 { "force_thumb", s_force_thumb, 0 },
4721 { "thumb_func", s_thumb_func, 0 },
4722 { "thumb_set", s_thumb_set, 0 },
4723 { "even", s_even, 0 },
4724 { "ltorg", s_ltorg, 0 },
4725 { "pool", s_ltorg, 0 },
4726 { "syntax", s_syntax, 0 },
8463be01
PB
4727 { "cpu", s_arm_cpu, 0 },
4728 { "arch", s_arm_arch, 0 },
7a1d4c38 4729 { "object_arch", s_arm_object_arch, 0 },
8463be01 4730 { "fpu", s_arm_fpu, 0 },
69133863 4731 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4732#ifdef OBJ_ELF
c921be7d
NC
4733 { "word", s_arm_elf_cons, 4 },
4734 { "long", s_arm_elf_cons, 4 },
4735 { "inst.n", s_arm_elf_inst, 2 },
4736 { "inst.w", s_arm_elf_inst, 4 },
4737 { "inst", s_arm_elf_inst, 0 },
4738 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4739 { "fnstart", s_arm_unwind_fnstart, 0 },
4740 { "fnend", s_arm_unwind_fnend, 0 },
4741 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4742 { "personality", s_arm_unwind_personality, 0 },
4743 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4744 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4745 { "save", s_arm_unwind_save, 0 },
fa073d69 4746 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4747 { "movsp", s_arm_unwind_movsp, 0 },
4748 { "pad", s_arm_unwind_pad, 0 },
4749 { "setfp", s_arm_unwind_setfp, 0 },
4750 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4751 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4752 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4753#else
4754 { "word", cons, 4},
f0927246
NC
4755
4756 /* These are used for dwarf. */
4757 {"2byte", cons, 2},
4758 {"4byte", cons, 4},
4759 {"8byte", cons, 8},
4760 /* These are used for dwarf2. */
4761 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4762 { "loc", dwarf2_directive_loc, 0 },
4763 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4764#endif
4765 { "extend", float_cons, 'x' },
4766 { "ldouble", float_cons, 'x' },
4767 { "packed", float_cons, 'p' },
f0927246
NC
4768#ifdef TE_PE
4769 {"secrel32", pe_directive_secrel, 0},
4770#endif
2e6976a8
DG
4771
4772 /* These are for compatibility with CodeComposer Studio. */
4773 {"ref", s_ccs_ref, 0},
4774 {"def", s_ccs_def, 0},
4775 {"asmfunc", s_ccs_asmfunc, 0},
4776 {"endasmfunc", s_ccs_endasmfunc, 0},
4777
c19d1205
ZW
4778 { 0, 0, 0 }
4779};
4780\f
4781/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4782
c19d1205
ZW
4783/* Generic immediate-value read function for use in insn parsing.
4784 STR points to the beginning of the immediate (the leading #);
4785 VAL receives the value; if the value is outside [MIN, MAX]
4786 issue an error. PREFIX_OPT is true if the immediate prefix is
4787 optional. */
b99bd4ef 4788
c19d1205
ZW
4789static int
4790parse_immediate (char **str, int *val, int min, int max,
4791 bfd_boolean prefix_opt)
4792{
4793 expressionS exp;
0198d5e6 4794
c19d1205
ZW
4795 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4796 if (exp.X_op != O_constant)
b99bd4ef 4797 {
c19d1205
ZW
4798 inst.error = _("constant expression required");
4799 return FAIL;
4800 }
b99bd4ef 4801
c19d1205
ZW
4802 if (exp.X_add_number < min || exp.X_add_number > max)
4803 {
4804 inst.error = _("immediate value out of range");
4805 return FAIL;
4806 }
b99bd4ef 4807
c19d1205
ZW
4808 *val = exp.X_add_number;
4809 return SUCCESS;
4810}
b99bd4ef 4811
5287ad62 4812/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4813 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4814 instructions. Puts the result directly in inst.operands[i]. */
4815
4816static int
8335d6aa
JW
4817parse_big_immediate (char **str, int i, expressionS *in_exp,
4818 bfd_boolean allow_symbol_p)
5287ad62
JB
4819{
4820 expressionS exp;
8335d6aa 4821 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
4822 char *ptr = *str;
4823
8335d6aa 4824 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 4825
8335d6aa 4826 if (exp_p->X_op == O_constant)
036dc3f7 4827 {
8335d6aa 4828 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
4829 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4830 O_constant. We have to be careful not to break compilation for
4831 32-bit X_add_number, though. */
8335d6aa 4832 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 4833 {
8335d6aa
JW
4834 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4835 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4836 & 0xffffffff);
036dc3f7
PB
4837 inst.operands[i].regisimm = 1;
4838 }
4839 }
8335d6aa
JW
4840 else if (exp_p->X_op == O_big
4841 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
4842 {
4843 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4844
5287ad62 4845 /* Bignums have their least significant bits in
477330fc
RM
4846 generic_bignum[0]. Make sure we put 32 bits in imm and
4847 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4848 gas_assert (parts != 0);
95b75c01
NC
4849
4850 /* Make sure that the number is not too big.
4851 PR 11972: Bignums can now be sign-extended to the
4852 size of a .octa so check that the out of range bits
4853 are all zero or all one. */
8335d6aa 4854 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
4855 {
4856 LITTLENUM_TYPE m = -1;
4857
4858 if (generic_bignum[parts * 2] != 0
4859 && generic_bignum[parts * 2] != m)
4860 return FAIL;
4861
8335d6aa 4862 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
4863 if (generic_bignum[j] != generic_bignum[j-1])
4864 return FAIL;
4865 }
4866
5287ad62
JB
4867 inst.operands[i].imm = 0;
4868 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4869 inst.operands[i].imm |= generic_bignum[idx]
4870 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4871 inst.operands[i].reg = 0;
4872 for (j = 0; j < parts; j++, idx++)
477330fc
RM
4873 inst.operands[i].reg |= generic_bignum[idx]
4874 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
4875 inst.operands[i].regisimm = 1;
4876 }
8335d6aa 4877 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 4878 return FAIL;
5f4273c7 4879
5287ad62
JB
4880 *str = ptr;
4881
4882 return SUCCESS;
4883}
4884
c19d1205
ZW
4885/* Returns the pseudo-register number of an FPA immediate constant,
4886 or FAIL if there isn't a valid constant here. */
b99bd4ef 4887
c19d1205
ZW
4888static int
4889parse_fpa_immediate (char ** str)
4890{
4891 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4892 char * save_in;
4893 expressionS exp;
4894 int i;
4895 int j;
b99bd4ef 4896
c19d1205
ZW
4897 /* First try and match exact strings, this is to guarantee
4898 that some formats will work even for cross assembly. */
b99bd4ef 4899
c19d1205
ZW
4900 for (i = 0; fp_const[i]; i++)
4901 {
4902 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4903 {
c19d1205 4904 char *start = *str;
b99bd4ef 4905
c19d1205
ZW
4906 *str += strlen (fp_const[i]);
4907 if (is_end_of_line[(unsigned char) **str])
4908 return i + 8;
4909 *str = start;
4910 }
4911 }
b99bd4ef 4912
c19d1205
ZW
4913 /* Just because we didn't get a match doesn't mean that the constant
4914 isn't valid, just that it is in a format that we don't
4915 automatically recognize. Try parsing it with the standard
4916 expression routines. */
b99bd4ef 4917
c19d1205 4918 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4919
c19d1205
ZW
4920 /* Look for a raw floating point number. */
4921 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4922 && is_end_of_line[(unsigned char) *save_in])
4923 {
4924 for (i = 0; i < NUM_FLOAT_VALS; i++)
4925 {
4926 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4927 {
c19d1205
ZW
4928 if (words[j] != fp_values[i][j])
4929 break;
b99bd4ef
NC
4930 }
4931
c19d1205 4932 if (j == MAX_LITTLENUMS)
b99bd4ef 4933 {
c19d1205
ZW
4934 *str = save_in;
4935 return i + 8;
b99bd4ef
NC
4936 }
4937 }
4938 }
b99bd4ef 4939
c19d1205
ZW
4940 /* Try and parse a more complex expression, this will probably fail
4941 unless the code uses a floating point prefix (eg "0f"). */
4942 save_in = input_line_pointer;
4943 input_line_pointer = *str;
4944 if (expression (&exp) == absolute_section
4945 && exp.X_op == O_big
4946 && exp.X_add_number < 0)
4947 {
4948 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4949 Ditto for 15. */
ba592044
AM
4950#define X_PRECISION 5
4951#define E_PRECISION 15L
4952 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
4953 {
4954 for (i = 0; i < NUM_FLOAT_VALS; i++)
4955 {
4956 for (j = 0; j < MAX_LITTLENUMS; j++)
4957 {
4958 if (words[j] != fp_values[i][j])
4959 break;
4960 }
b99bd4ef 4961
c19d1205
ZW
4962 if (j == MAX_LITTLENUMS)
4963 {
4964 *str = input_line_pointer;
4965 input_line_pointer = save_in;
4966 return i + 8;
4967 }
4968 }
4969 }
b99bd4ef
NC
4970 }
4971
c19d1205
ZW
4972 *str = input_line_pointer;
4973 input_line_pointer = save_in;
4974 inst.error = _("invalid FPA immediate expression");
4975 return FAIL;
b99bd4ef
NC
4976}
4977
136da414
JB
4978/* Returns 1 if a number has "quarter-precision" float format
4979 0baBbbbbbc defgh000 00000000 00000000. */
4980
4981static int
4982is_quarter_float (unsigned imm)
4983{
4984 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4985 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4986}
4987
aacf0b33
KT
4988
4989/* Detect the presence of a floating point or integer zero constant,
4990 i.e. #0.0 or #0. */
4991
4992static bfd_boolean
4993parse_ifimm_zero (char **in)
4994{
4995 int error_code;
4996
4997 if (!is_immediate_prefix (**in))
3c6452ae
TP
4998 {
4999 /* In unified syntax, all prefixes are optional. */
5000 if (!unified_syntax)
5001 return FALSE;
5002 }
5003 else
5004 ++*in;
0900a05b
JW
5005
5006 /* Accept #0x0 as a synonym for #0. */
5007 if (strncmp (*in, "0x", 2) == 0)
5008 {
5009 int val;
5010 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5011 return FALSE;
5012 return TRUE;
5013 }
5014
aacf0b33
KT
5015 error_code = atof_generic (in, ".", EXP_CHARS,
5016 &generic_floating_point_number);
5017
5018 if (!error_code
5019 && generic_floating_point_number.sign == '+'
5020 && (generic_floating_point_number.low
5021 > generic_floating_point_number.leader))
5022 return TRUE;
5023
5024 return FALSE;
5025}
5026
136da414
JB
5027/* Parse an 8-bit "quarter-precision" floating point number of the form:
5028 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5029 The zero and minus-zero cases need special handling, since they can't be
5030 encoded in the "quarter-precision" float format, but can nonetheless be
5031 loaded as integer constants. */
136da414
JB
5032
5033static unsigned
5034parse_qfloat_immediate (char **ccp, int *immed)
5035{
5036 char *str = *ccp;
c96612cc 5037 char *fpnum;
136da414 5038 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5039 int found_fpchar = 0;
5f4273c7 5040
136da414 5041 skip_past_char (&str, '#');
5f4273c7 5042
c96612cc
JB
5043 /* We must not accidentally parse an integer as a floating-point number. Make
5044 sure that the value we parse is not an integer by checking for special
5045 characters '.' or 'e'.
5046 FIXME: This is a horrible hack, but doing better is tricky because type
5047 information isn't in a very usable state at parse time. */
5048 fpnum = str;
5049 skip_whitespace (fpnum);
5050
5051 if (strncmp (fpnum, "0x", 2) == 0)
5052 return FAIL;
5053 else
5054 {
5055 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5056 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5057 {
5058 found_fpchar = 1;
5059 break;
5060 }
c96612cc
JB
5061
5062 if (!found_fpchar)
477330fc 5063 return FAIL;
c96612cc 5064 }
5f4273c7 5065
136da414
JB
5066 if ((str = atof_ieee (str, 's', words)) != NULL)
5067 {
5068 unsigned fpword = 0;
5069 int i;
5f4273c7 5070
136da414
JB
5071 /* Our FP word must be 32 bits (single-precision FP). */
5072 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5073 {
5074 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5075 fpword |= words[i];
5076 }
5f4273c7 5077
c96612cc 5078 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5079 *immed = fpword;
136da414 5080 else
477330fc 5081 return FAIL;
136da414
JB
5082
5083 *ccp = str;
5f4273c7 5084
136da414
JB
5085 return SUCCESS;
5086 }
5f4273c7 5087
136da414
JB
5088 return FAIL;
5089}
5090
c19d1205
ZW
5091/* Shift operands. */
5092enum shift_kind
b99bd4ef 5093{
c19d1205
ZW
5094 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5095};
b99bd4ef 5096
c19d1205
ZW
5097struct asm_shift_name
5098{
5099 const char *name;
5100 enum shift_kind kind;
5101};
b99bd4ef 5102
c19d1205
ZW
5103/* Third argument to parse_shift. */
5104enum parse_shift_mode
5105{
5106 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5107 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5108 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5109 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5110 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5111};
b99bd4ef 5112
c19d1205
ZW
5113/* Parse a <shift> specifier on an ARM data processing instruction.
5114 This has three forms:
b99bd4ef 5115
c19d1205
ZW
5116 (LSL|LSR|ASL|ASR|ROR) Rs
5117 (LSL|LSR|ASL|ASR|ROR) #imm
5118 RRX
b99bd4ef 5119
c19d1205
ZW
5120 Note that ASL is assimilated to LSL in the instruction encoding, and
5121 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5122
c19d1205
ZW
5123static int
5124parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5125{
c19d1205
ZW
5126 const struct asm_shift_name *shift_name;
5127 enum shift_kind shift;
5128 char *s = *str;
5129 char *p = s;
5130 int reg;
b99bd4ef 5131
c19d1205
ZW
5132 for (p = *str; ISALPHA (*p); p++)
5133 ;
b99bd4ef 5134
c19d1205 5135 if (p == *str)
b99bd4ef 5136 {
c19d1205
ZW
5137 inst.error = _("shift expression expected");
5138 return FAIL;
b99bd4ef
NC
5139 }
5140
21d799b5 5141 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5142 p - *str);
c19d1205
ZW
5143
5144 if (shift_name == NULL)
b99bd4ef 5145 {
c19d1205
ZW
5146 inst.error = _("shift expression expected");
5147 return FAIL;
b99bd4ef
NC
5148 }
5149
c19d1205 5150 shift = shift_name->kind;
b99bd4ef 5151
c19d1205
ZW
5152 switch (mode)
5153 {
5154 case NO_SHIFT_RESTRICT:
5155 case SHIFT_IMMEDIATE: break;
b99bd4ef 5156
c19d1205
ZW
5157 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5158 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5159 {
5160 inst.error = _("'LSL' or 'ASR' required");
5161 return FAIL;
5162 }
5163 break;
b99bd4ef 5164
c19d1205
ZW
5165 case SHIFT_LSL_IMMEDIATE:
5166 if (shift != SHIFT_LSL)
5167 {
5168 inst.error = _("'LSL' required");
5169 return FAIL;
5170 }
5171 break;
b99bd4ef 5172
c19d1205
ZW
5173 case SHIFT_ASR_IMMEDIATE:
5174 if (shift != SHIFT_ASR)
5175 {
5176 inst.error = _("'ASR' required");
5177 return FAIL;
5178 }
5179 break;
b99bd4ef 5180
c19d1205
ZW
5181 default: abort ();
5182 }
b99bd4ef 5183
c19d1205
ZW
5184 if (shift != SHIFT_RRX)
5185 {
5186 /* Whitespace can appear here if the next thing is a bare digit. */
5187 skip_whitespace (p);
b99bd4ef 5188
c19d1205 5189 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5190 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5191 {
5192 inst.operands[i].imm = reg;
5193 inst.operands[i].immisreg = 1;
5194 }
5195 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5196 return FAIL;
5197 }
5198 inst.operands[i].shift_kind = shift;
5199 inst.operands[i].shifted = 1;
5200 *str = p;
5201 return SUCCESS;
b99bd4ef
NC
5202}
5203
c19d1205 5204/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5205
c19d1205
ZW
5206 #<immediate>
5207 #<immediate>, <rotate>
5208 <Rm>
5209 <Rm>, <shift>
b99bd4ef 5210
c19d1205
ZW
5211 where <shift> is defined by parse_shift above, and <rotate> is a
5212 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5213 is deferred to md_apply_fix. */
b99bd4ef 5214
c19d1205
ZW
5215static int
5216parse_shifter_operand (char **str, int i)
5217{
5218 int value;
91d6fa6a 5219 expressionS exp;
b99bd4ef 5220
dcbf9037 5221 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5222 {
5223 inst.operands[i].reg = value;
5224 inst.operands[i].isreg = 1;
b99bd4ef 5225
c19d1205
ZW
5226 /* parse_shift will override this if appropriate */
5227 inst.reloc.exp.X_op = O_constant;
5228 inst.reloc.exp.X_add_number = 0;
b99bd4ef 5229
c19d1205
ZW
5230 if (skip_past_comma (str) == FAIL)
5231 return SUCCESS;
b99bd4ef 5232
c19d1205
ZW
5233 /* Shift operation on register. */
5234 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5235 }
5236
c19d1205
ZW
5237 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5238 return FAIL;
b99bd4ef 5239
c19d1205 5240 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5241 {
c19d1205 5242 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5243 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5244 return FAIL;
b99bd4ef 5245
91d6fa6a 5246 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
5247 {
5248 inst.error = _("constant expression expected");
5249 return FAIL;
5250 }
b99bd4ef 5251
91d6fa6a 5252 value = exp.X_add_number;
c19d1205
ZW
5253 if (value < 0 || value > 30 || value % 2 != 0)
5254 {
5255 inst.error = _("invalid rotation");
5256 return FAIL;
5257 }
5258 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5259 {
5260 inst.error = _("invalid constant");
5261 return FAIL;
5262 }
09d92015 5263
a415b1cd
JB
5264 /* Encode as specified. */
5265 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5266 return SUCCESS;
09d92015
MM
5267 }
5268
c19d1205
ZW
5269 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5270 inst.reloc.pc_rel = 0;
5271 return SUCCESS;
09d92015
MM
5272}
5273
4962c51a
MS
5274/* Group relocation information. Each entry in the table contains the
5275 textual name of the relocation as may appear in assembler source
5276 and must end with a colon.
5277 Along with this textual name are the relocation codes to be used if
5278 the corresponding instruction is an ALU instruction (ADD or SUB only),
5279 an LDR, an LDRS, or an LDC. */
5280
5281struct group_reloc_table_entry
5282{
5283 const char *name;
5284 int alu_code;
5285 int ldr_code;
5286 int ldrs_code;
5287 int ldc_code;
5288};
5289
5290typedef enum
5291{
5292 /* Varieties of non-ALU group relocation. */
5293
5294 GROUP_LDR,
5295 GROUP_LDRS,
5296 GROUP_LDC
5297} group_reloc_type;
5298
5299static struct group_reloc_table_entry group_reloc_table[] =
5300 { /* Program counter relative: */
5301 { "pc_g0_nc",
5302 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5303 0, /* LDR */
5304 0, /* LDRS */
5305 0 }, /* LDC */
5306 { "pc_g0",
5307 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5308 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5309 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5310 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5311 { "pc_g1_nc",
5312 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5313 0, /* LDR */
5314 0, /* LDRS */
5315 0 }, /* LDC */
5316 { "pc_g1",
5317 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5318 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5319 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5320 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5321 { "pc_g2",
5322 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5323 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5324 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5325 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5326 /* Section base relative */
5327 { "sb_g0_nc",
5328 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5329 0, /* LDR */
5330 0, /* LDRS */
5331 0 }, /* LDC */
5332 { "sb_g0",
5333 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5334 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5335 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5336 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5337 { "sb_g1_nc",
5338 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5339 0, /* LDR */
5340 0, /* LDRS */
5341 0 }, /* LDC */
5342 { "sb_g1",
5343 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5344 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5345 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5346 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5347 { "sb_g2",
5348 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5349 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5350 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5351 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5352 /* Absolute thumb alu relocations. */
5353 { "lower0_7",
5354 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5355 0, /* LDR. */
5356 0, /* LDRS. */
5357 0 }, /* LDC. */
5358 { "lower8_15",
5359 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5360 0, /* LDR. */
5361 0, /* LDRS. */
5362 0 }, /* LDC. */
5363 { "upper0_7",
5364 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5365 0, /* LDR. */
5366 0, /* LDRS. */
5367 0 }, /* LDC. */
5368 { "upper8_15",
5369 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5370 0, /* LDR. */
5371 0, /* LDRS. */
5372 0 } }; /* LDC. */
4962c51a
MS
5373
5374/* Given the address of a pointer pointing to the textual name of a group
5375 relocation as may appear in assembler source, attempt to find its details
5376 in group_reloc_table. The pointer will be updated to the character after
5377 the trailing colon. On failure, FAIL will be returned; SUCCESS
5378 otherwise. On success, *entry will be updated to point at the relevant
5379 group_reloc_table entry. */
5380
5381static int
5382find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5383{
5384 unsigned int i;
5385 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5386 {
5387 int length = strlen (group_reloc_table[i].name);
5388
5f4273c7
NC
5389 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5390 && (*str)[length] == ':')
477330fc
RM
5391 {
5392 *out = &group_reloc_table[i];
5393 *str += (length + 1);
5394 return SUCCESS;
5395 }
4962c51a
MS
5396 }
5397
5398 return FAIL;
5399}
5400
5401/* Parse a <shifter_operand> for an ARM data processing instruction
5402 (as for parse_shifter_operand) where group relocations are allowed:
5403
5404 #<immediate>
5405 #<immediate>, <rotate>
5406 #:<group_reloc>:<expression>
5407 <Rm>
5408 <Rm>, <shift>
5409
5410 where <group_reloc> is one of the strings defined in group_reloc_table.
5411 The hashes are optional.
5412
5413 Everything else is as for parse_shifter_operand. */
5414
5415static parse_operand_result
5416parse_shifter_operand_group_reloc (char **str, int i)
5417{
5418 /* Determine if we have the sequence of characters #: or just :
5419 coming next. If we do, then we check for a group relocation.
5420 If we don't, punt the whole lot to parse_shifter_operand. */
5421
5422 if (((*str)[0] == '#' && (*str)[1] == ':')
5423 || (*str)[0] == ':')
5424 {
5425 struct group_reloc_table_entry *entry;
5426
5427 if ((*str)[0] == '#')
477330fc 5428 (*str) += 2;
4962c51a 5429 else
477330fc 5430 (*str)++;
4962c51a
MS
5431
5432 /* Try to parse a group relocation. Anything else is an error. */
5433 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5434 {
5435 inst.error = _("unknown group relocation");
5436 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5437 }
4962c51a
MS
5438
5439 /* We now have the group relocation table entry corresponding to
477330fc 5440 the name in the assembler source. Next, we parse the expression. */
4962c51a 5441 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
477330fc 5442 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5443
5444 /* Record the relocation type (always the ALU variant here). */
21d799b5 5445 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5446 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5447
5448 return PARSE_OPERAND_SUCCESS;
5449 }
5450 else
5451 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5452 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5453
5454 /* Never reached. */
5455}
5456
8e560766
MGD
5457/* Parse a Neon alignment expression. Information is written to
5458 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5459
8e560766
MGD
5460 align .imm = align << 8, .immisalign=1, .preind=0 */
5461static parse_operand_result
5462parse_neon_alignment (char **str, int i)
5463{
5464 char *p = *str;
5465 expressionS exp;
5466
5467 my_get_expression (&exp, &p, GE_NO_PREFIX);
5468
5469 if (exp.X_op != O_constant)
5470 {
5471 inst.error = _("alignment must be constant");
5472 return PARSE_OPERAND_FAIL;
5473 }
5474
5475 inst.operands[i].imm = exp.X_add_number << 8;
5476 inst.operands[i].immisalign = 1;
5477 /* Alignments are not pre-indexes. */
5478 inst.operands[i].preind = 0;
5479
5480 *str = p;
5481 return PARSE_OPERAND_SUCCESS;
5482}
5483
c19d1205
ZW
5484/* Parse all forms of an ARM address expression. Information is written
5485 to inst.operands[i] and/or inst.reloc.
09d92015 5486
c19d1205 5487 Preindexed addressing (.preind=1):
09d92015 5488
c19d1205
ZW
5489 [Rn, #offset] .reg=Rn .reloc.exp=offset
5490 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5491 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5492 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5493
c19d1205 5494 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5495
c19d1205 5496 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5497
c19d1205
ZW
5498 [Rn], #offset .reg=Rn .reloc.exp=offset
5499 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5500 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5501 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5502
c19d1205 5503 Unindexed addressing (.preind=0, .postind=0):
09d92015 5504
c19d1205 5505 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5506
c19d1205 5507 Other:
09d92015 5508
c19d1205
ZW
5509 [Rn]{!} shorthand for [Rn,#0]{!}
5510 =immediate .isreg=0 .reloc.exp=immediate
5511 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5512
c19d1205
ZW
5513 It is the caller's responsibility to check for addressing modes not
5514 supported by the instruction, and to set inst.reloc.type. */
5515
4962c51a
MS
5516static parse_operand_result
5517parse_address_main (char **str, int i, int group_relocations,
477330fc 5518 group_reloc_type group_type)
09d92015 5519{
c19d1205
ZW
5520 char *p = *str;
5521 int reg;
09d92015 5522
c19d1205 5523 if (skip_past_char (&p, '[') == FAIL)
09d92015 5524 {
c19d1205
ZW
5525 if (skip_past_char (&p, '=') == FAIL)
5526 {
974da60d 5527 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5528 inst.reloc.pc_rel = 1;
5529 inst.operands[i].reg = REG_PC;
5530 inst.operands[i].isreg = 1;
5531 inst.operands[i].preind = 1;
09d92015 5532
8335d6aa
JW
5533 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5534 return PARSE_OPERAND_FAIL;
5535 }
5536 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5537 /*allow_symbol_p=*/TRUE))
4962c51a 5538 return PARSE_OPERAND_FAIL;
09d92015 5539
c19d1205 5540 *str = p;
4962c51a 5541 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5542 }
5543
8ab8155f
NC
5544 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5545 skip_whitespace (p);
5546
dcbf9037 5547 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5548 {
c19d1205 5549 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5550 return PARSE_OPERAND_FAIL;
09d92015 5551 }
c19d1205
ZW
5552 inst.operands[i].reg = reg;
5553 inst.operands[i].isreg = 1;
09d92015 5554
c19d1205 5555 if (skip_past_comma (&p) == SUCCESS)
09d92015 5556 {
c19d1205 5557 inst.operands[i].preind = 1;
09d92015 5558
c19d1205
ZW
5559 if (*p == '+') p++;
5560 else if (*p == '-') p++, inst.operands[i].negative = 1;
5561
dcbf9037 5562 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5563 {
c19d1205
ZW
5564 inst.operands[i].imm = reg;
5565 inst.operands[i].immisreg = 1;
5566
5567 if (skip_past_comma (&p) == SUCCESS)
5568 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5569 return PARSE_OPERAND_FAIL;
c19d1205 5570 }
5287ad62 5571 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5572 {
5573 /* FIXME: '@' should be used here, but it's filtered out by generic
5574 code before we get to see it here. This may be subject to
5575 change. */
5576 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5577
8e560766
MGD
5578 if (result != PARSE_OPERAND_SUCCESS)
5579 return result;
5580 }
c19d1205
ZW
5581 else
5582 {
5583 if (inst.operands[i].negative)
5584 {
5585 inst.operands[i].negative = 0;
5586 p--;
5587 }
4962c51a 5588
5f4273c7
NC
5589 if (group_relocations
5590 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5591 {
5592 struct group_reloc_table_entry *entry;
5593
477330fc
RM
5594 /* Skip over the #: or : sequence. */
5595 if (*p == '#')
5596 p += 2;
5597 else
5598 p++;
4962c51a
MS
5599
5600 /* Try to parse a group relocation. Anything else is an
477330fc 5601 error. */
4962c51a
MS
5602 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5603 {
5604 inst.error = _("unknown group relocation");
5605 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5606 }
5607
5608 /* We now have the group relocation table entry corresponding to
5609 the name in the assembler source. Next, we parse the
477330fc 5610 expression. */
4962c51a
MS
5611 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5612 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5613
5614 /* Record the relocation type. */
477330fc
RM
5615 switch (group_type)
5616 {
5617 case GROUP_LDR:
5618 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5619 break;
4962c51a 5620
477330fc
RM
5621 case GROUP_LDRS:
5622 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5623 break;
4962c51a 5624
477330fc
RM
5625 case GROUP_LDC:
5626 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5627 break;
4962c51a 5628
477330fc
RM
5629 default:
5630 gas_assert (0);
5631 }
4962c51a 5632
477330fc 5633 if (inst.reloc.type == 0)
4962c51a
MS
5634 {
5635 inst.error = _("this group relocation is not allowed on this instruction");
5636 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5637 }
477330fc
RM
5638 }
5639 else
26d97720
NS
5640 {
5641 char *q = p;
0198d5e6 5642
26d97720
NS
5643 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5644 return PARSE_OPERAND_FAIL;
5645 /* If the offset is 0, find out if it's a +0 or -0. */
5646 if (inst.reloc.exp.X_op == O_constant
5647 && inst.reloc.exp.X_add_number == 0)
5648 {
5649 skip_whitespace (q);
5650 if (*q == '#')
5651 {
5652 q++;
5653 skip_whitespace (q);
5654 }
5655 if (*q == '-')
5656 inst.operands[i].negative = 1;
5657 }
5658 }
09d92015
MM
5659 }
5660 }
8e560766
MGD
5661 else if (skip_past_char (&p, ':') == SUCCESS)
5662 {
5663 /* FIXME: '@' should be used here, but it's filtered out by generic code
5664 before we get to see it here. This may be subject to change. */
5665 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5666
8e560766
MGD
5667 if (result != PARSE_OPERAND_SUCCESS)
5668 return result;
5669 }
09d92015 5670
c19d1205 5671 if (skip_past_char (&p, ']') == FAIL)
09d92015 5672 {
c19d1205 5673 inst.error = _("']' expected");
4962c51a 5674 return PARSE_OPERAND_FAIL;
09d92015
MM
5675 }
5676
c19d1205
ZW
5677 if (skip_past_char (&p, '!') == SUCCESS)
5678 inst.operands[i].writeback = 1;
09d92015 5679
c19d1205 5680 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5681 {
c19d1205
ZW
5682 if (skip_past_char (&p, '{') == SUCCESS)
5683 {
5684 /* [Rn], {expr} - unindexed, with option */
5685 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5686 0, 255, TRUE) == FAIL)
4962c51a 5687 return PARSE_OPERAND_FAIL;
09d92015 5688
c19d1205
ZW
5689 if (skip_past_char (&p, '}') == FAIL)
5690 {
5691 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5692 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5693 }
5694 if (inst.operands[i].preind)
5695 {
5696 inst.error = _("cannot combine index with option");
4962c51a 5697 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5698 }
5699 *str = p;
4962c51a 5700 return PARSE_OPERAND_SUCCESS;
09d92015 5701 }
c19d1205
ZW
5702 else
5703 {
5704 inst.operands[i].postind = 1;
5705 inst.operands[i].writeback = 1;
09d92015 5706
c19d1205
ZW
5707 if (inst.operands[i].preind)
5708 {
5709 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5710 return PARSE_OPERAND_FAIL;
c19d1205 5711 }
09d92015 5712
c19d1205
ZW
5713 if (*p == '+') p++;
5714 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5715
dcbf9037 5716 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5717 {
477330fc
RM
5718 /* We might be using the immediate for alignment already. If we
5719 are, OR the register number into the low-order bits. */
5720 if (inst.operands[i].immisalign)
5721 inst.operands[i].imm |= reg;
5722 else
5723 inst.operands[i].imm = reg;
c19d1205 5724 inst.operands[i].immisreg = 1;
a737bd4d 5725
c19d1205
ZW
5726 if (skip_past_comma (&p) == SUCCESS)
5727 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5728 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5729 }
5730 else
5731 {
26d97720 5732 char *q = p;
0198d5e6 5733
c19d1205
ZW
5734 if (inst.operands[i].negative)
5735 {
5736 inst.operands[i].negative = 0;
5737 p--;
5738 }
5739 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5740 return PARSE_OPERAND_FAIL;
26d97720
NS
5741 /* If the offset is 0, find out if it's a +0 or -0. */
5742 if (inst.reloc.exp.X_op == O_constant
5743 && inst.reloc.exp.X_add_number == 0)
5744 {
5745 skip_whitespace (q);
5746 if (*q == '#')
5747 {
5748 q++;
5749 skip_whitespace (q);
5750 }
5751 if (*q == '-')
5752 inst.operands[i].negative = 1;
5753 }
c19d1205
ZW
5754 }
5755 }
a737bd4d
NC
5756 }
5757
c19d1205
ZW
5758 /* If at this point neither .preind nor .postind is set, we have a
5759 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5760 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5761 {
5762 inst.operands[i].preind = 1;
5763 inst.reloc.exp.X_op = O_constant;
5764 inst.reloc.exp.X_add_number = 0;
5765 }
5766 *str = p;
4962c51a
MS
5767 return PARSE_OPERAND_SUCCESS;
5768}
5769
5770static int
5771parse_address (char **str, int i)
5772{
21d799b5 5773 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 5774 ? SUCCESS : FAIL;
4962c51a
MS
5775}
5776
5777static parse_operand_result
5778parse_address_group_reloc (char **str, int i, group_reloc_type type)
5779{
5780 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5781}
5782
b6895b4f
PB
5783/* Parse an operand for a MOVW or MOVT instruction. */
5784static int
5785parse_half (char **str)
5786{
5787 char * p;
5f4273c7 5788
b6895b4f
PB
5789 p = *str;
5790 skip_past_char (&p, '#');
5f4273c7 5791 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5792 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5793 else if (strncasecmp (p, ":upper16:", 9) == 0)
5794 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5795
5796 if (inst.reloc.type != BFD_RELOC_UNUSED)
5797 {
5798 p += 9;
5f4273c7 5799 skip_whitespace (p);
b6895b4f
PB
5800 }
5801
5802 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5803 return FAIL;
5804
5805 if (inst.reloc.type == BFD_RELOC_UNUSED)
5806 {
5807 if (inst.reloc.exp.X_op != O_constant)
5808 {
5809 inst.error = _("constant expression expected");
5810 return FAIL;
5811 }
5812 if (inst.reloc.exp.X_add_number < 0
5813 || inst.reloc.exp.X_add_number > 0xffff)
5814 {
5815 inst.error = _("immediate value out of range");
5816 return FAIL;
5817 }
5818 }
5819 *str = p;
5820 return SUCCESS;
5821}
5822
c19d1205 5823/* Miscellaneous. */
a737bd4d 5824
c19d1205
ZW
5825/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5826 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5827static int
d2cd1205 5828parse_psr (char **str, bfd_boolean lhs)
09d92015 5829{
c19d1205
ZW
5830 char *p;
5831 unsigned long psr_field;
62b3e311
PB
5832 const struct asm_psr *psr;
5833 char *start;
d2cd1205 5834 bfd_boolean is_apsr = FALSE;
ac7f631b 5835 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5836
a4482bb6
NC
5837 /* PR gas/12698: If the user has specified -march=all then m_profile will
5838 be TRUE, but we want to ignore it in this case as we are building for any
5839 CPU type, including non-m variants. */
823d2571 5840 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
5841 m_profile = FALSE;
5842
c19d1205
ZW
5843 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5844 feature for ease of use and backwards compatibility. */
5845 p = *str;
62b3e311 5846 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5847 {
5848 if (m_profile)
5849 goto unsupported_psr;
fa94de6b 5850
d2cd1205
JB
5851 psr_field = SPSR_BIT;
5852 }
5853 else if (strncasecmp (p, "CPSR", 4) == 0)
5854 {
5855 if (m_profile)
5856 goto unsupported_psr;
5857
5858 psr_field = 0;
5859 }
5860 else if (strncasecmp (p, "APSR", 4) == 0)
5861 {
5862 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5863 and ARMv7-R architecture CPUs. */
5864 is_apsr = TRUE;
5865 psr_field = 0;
5866 }
5867 else if (m_profile)
62b3e311
PB
5868 {
5869 start = p;
5870 do
5871 p++;
5872 while (ISALNUM (*p) || *p == '_');
5873
d2cd1205
JB
5874 if (strncasecmp (start, "iapsr", 5) == 0
5875 || strncasecmp (start, "eapsr", 5) == 0
5876 || strncasecmp (start, "xpsr", 4) == 0
5877 || strncasecmp (start, "psr", 3) == 0)
5878 p = start + strcspn (start, "rR") + 1;
5879
21d799b5 5880 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 5881 p - start);
d2cd1205 5882
62b3e311
PB
5883 if (!psr)
5884 return FAIL;
09d92015 5885
d2cd1205
JB
5886 /* If APSR is being written, a bitfield may be specified. Note that
5887 APSR itself is handled above. */
5888 if (psr->field <= 3)
5889 {
5890 psr_field = psr->field;
5891 is_apsr = TRUE;
5892 goto check_suffix;
5893 }
5894
62b3e311 5895 *str = p;
d2cd1205
JB
5896 /* M-profile MSR instructions have the mask field set to "10", except
5897 *PSR variants which modify APSR, which may use a different mask (and
5898 have been handled already). Do that by setting the PSR_f field
5899 here. */
5900 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5901 }
d2cd1205
JB
5902 else
5903 goto unsupported_psr;
09d92015 5904
62b3e311 5905 p += 4;
d2cd1205 5906check_suffix:
c19d1205
ZW
5907 if (*p == '_')
5908 {
5909 /* A suffix follows. */
c19d1205
ZW
5910 p++;
5911 start = p;
a737bd4d 5912
c19d1205
ZW
5913 do
5914 p++;
5915 while (ISALNUM (*p) || *p == '_');
a737bd4d 5916
d2cd1205
JB
5917 if (is_apsr)
5918 {
5919 /* APSR uses a notation for bits, rather than fields. */
5920 unsigned int nzcvq_bits = 0;
5921 unsigned int g_bit = 0;
5922 char *bit;
fa94de6b 5923
d2cd1205
JB
5924 for (bit = start; bit != p; bit++)
5925 {
5926 switch (TOLOWER (*bit))
477330fc 5927 {
d2cd1205
JB
5928 case 'n':
5929 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5930 break;
5931
5932 case 'z':
5933 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5934 break;
5935
5936 case 'c':
5937 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5938 break;
5939
5940 case 'v':
5941 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5942 break;
fa94de6b 5943
d2cd1205
JB
5944 case 'q':
5945 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5946 break;
fa94de6b 5947
d2cd1205
JB
5948 case 'g':
5949 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5950 break;
fa94de6b 5951
d2cd1205
JB
5952 default:
5953 inst.error = _("unexpected bit specified after APSR");
5954 return FAIL;
5955 }
5956 }
fa94de6b 5957
d2cd1205
JB
5958 if (nzcvq_bits == 0x1f)
5959 psr_field |= PSR_f;
fa94de6b 5960
d2cd1205
JB
5961 if (g_bit == 0x1)
5962 {
5963 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 5964 {
d2cd1205
JB
5965 inst.error = _("selected processor does not "
5966 "support DSP extension");
5967 return FAIL;
5968 }
5969
5970 psr_field |= PSR_s;
5971 }
fa94de6b 5972
d2cd1205
JB
5973 if ((nzcvq_bits & 0x20) != 0
5974 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5975 || (g_bit & 0x2) != 0)
5976 {
5977 inst.error = _("bad bitmask specified after APSR");
5978 return FAIL;
5979 }
5980 }
5981 else
477330fc 5982 {
d2cd1205 5983 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 5984 p - start);
d2cd1205 5985 if (!psr)
477330fc 5986 goto error;
a737bd4d 5987
d2cd1205
JB
5988 psr_field |= psr->field;
5989 }
a737bd4d 5990 }
c19d1205 5991 else
a737bd4d 5992 {
c19d1205
ZW
5993 if (ISALNUM (*p))
5994 goto error; /* Garbage after "[CS]PSR". */
5995
d2cd1205 5996 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 5997 is deprecated, but allow it anyway. */
d2cd1205
JB
5998 if (is_apsr && lhs)
5999 {
6000 psr_field |= PSR_f;
6001 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6002 "deprecated"));
6003 }
6004 else if (!m_profile)
6005 /* These bits are never right for M-profile devices: don't set them
6006 (only code paths which read/write APSR reach here). */
6007 psr_field |= (PSR_c | PSR_f);
a737bd4d 6008 }
c19d1205
ZW
6009 *str = p;
6010 return psr_field;
a737bd4d 6011
d2cd1205
JB
6012 unsupported_psr:
6013 inst.error = _("selected processor does not support requested special "
6014 "purpose register");
6015 return FAIL;
6016
c19d1205
ZW
6017 error:
6018 inst.error = _("flag for {c}psr instruction expected");
6019 return FAIL;
a737bd4d
NC
6020}
6021
c19d1205
ZW
6022/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6023 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6024
c19d1205
ZW
6025static int
6026parse_cps_flags (char **str)
a737bd4d 6027{
c19d1205
ZW
6028 int val = 0;
6029 int saw_a_flag = 0;
6030 char *s = *str;
a737bd4d 6031
c19d1205
ZW
6032 for (;;)
6033 switch (*s++)
6034 {
6035 case '\0': case ',':
6036 goto done;
a737bd4d 6037
c19d1205
ZW
6038 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6039 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6040 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6041
c19d1205
ZW
6042 default:
6043 inst.error = _("unrecognized CPS flag");
6044 return FAIL;
6045 }
a737bd4d 6046
c19d1205
ZW
6047 done:
6048 if (saw_a_flag == 0)
a737bd4d 6049 {
c19d1205
ZW
6050 inst.error = _("missing CPS flags");
6051 return FAIL;
a737bd4d 6052 }
a737bd4d 6053
c19d1205
ZW
6054 *str = s - 1;
6055 return val;
a737bd4d
NC
6056}
6057
c19d1205
ZW
6058/* Parse an endian specifier ("BE" or "LE", case insensitive);
6059 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6060
6061static int
c19d1205 6062parse_endian_specifier (char **str)
a737bd4d 6063{
c19d1205
ZW
6064 int little_endian;
6065 char *s = *str;
a737bd4d 6066
c19d1205
ZW
6067 if (strncasecmp (s, "BE", 2))
6068 little_endian = 0;
6069 else if (strncasecmp (s, "LE", 2))
6070 little_endian = 1;
6071 else
a737bd4d 6072 {
c19d1205 6073 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6074 return FAIL;
6075 }
6076
c19d1205 6077 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6078 {
c19d1205 6079 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6080 return FAIL;
6081 }
6082
c19d1205
ZW
6083 *str = s + 2;
6084 return little_endian;
6085}
a737bd4d 6086
c19d1205
ZW
6087/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6088 value suitable for poking into the rotate field of an sxt or sxta
6089 instruction, or FAIL on error. */
6090
6091static int
6092parse_ror (char **str)
6093{
6094 int rot;
6095 char *s = *str;
6096
6097 if (strncasecmp (s, "ROR", 3) == 0)
6098 s += 3;
6099 else
a737bd4d 6100 {
c19d1205 6101 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6102 return FAIL;
6103 }
c19d1205
ZW
6104
6105 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6106 return FAIL;
6107
6108 switch (rot)
a737bd4d 6109 {
c19d1205
ZW
6110 case 0: *str = s; return 0x0;
6111 case 8: *str = s; return 0x1;
6112 case 16: *str = s; return 0x2;
6113 case 24: *str = s; return 0x3;
6114
6115 default:
6116 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6117 return FAIL;
6118 }
c19d1205 6119}
a737bd4d 6120
c19d1205
ZW
6121/* Parse a conditional code (from conds[] below). The value returned is in the
6122 range 0 .. 14, or FAIL. */
6123static int
6124parse_cond (char **str)
6125{
c462b453 6126 char *q;
c19d1205 6127 const struct asm_cond *c;
c462b453
PB
6128 int n;
6129 /* Condition codes are always 2 characters, so matching up to
6130 3 characters is sufficient. */
6131 char cond[3];
a737bd4d 6132
c462b453
PB
6133 q = *str;
6134 n = 0;
6135 while (ISALPHA (*q) && n < 3)
6136 {
e07e6e58 6137 cond[n] = TOLOWER (*q);
c462b453
PB
6138 q++;
6139 n++;
6140 }
a737bd4d 6141
21d799b5 6142 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6143 if (!c)
a737bd4d 6144 {
c19d1205 6145 inst.error = _("condition required");
a737bd4d
NC
6146 return FAIL;
6147 }
6148
c19d1205
ZW
6149 *str = q;
6150 return c->value;
6151}
6152
643afb90
MW
6153/* Record a use of the given feature. */
6154static void
6155record_feature_use (const arm_feature_set *feature)
6156{
6157 if (thumb_mode)
6158 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6159 else
6160 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6161}
6162
e797f7e0
MGD
6163/* If the given feature available in the selected CPU, mark it as used.
6164 Returns TRUE iff feature is available. */
6165static bfd_boolean
6166mark_feature_used (const arm_feature_set *feature)
6167{
6168 /* Ensure the option is valid on the current architecture. */
6169 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6170 return FALSE;
6171
6172 /* Add the appropriate architecture feature for the barrier option used.
6173 */
643afb90 6174 record_feature_use (feature);
e797f7e0
MGD
6175
6176 return TRUE;
6177}
6178
62b3e311
PB
6179/* Parse an option for a barrier instruction. Returns the encoding for the
6180 option, or FAIL. */
6181static int
6182parse_barrier (char **str)
6183{
6184 char *p, *q;
6185 const struct asm_barrier_opt *o;
6186
6187 p = q = *str;
6188 while (ISALPHA (*q))
6189 q++;
6190
21d799b5 6191 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6192 q - p);
62b3e311
PB
6193 if (!o)
6194 return FAIL;
6195
e797f7e0
MGD
6196 if (!mark_feature_used (&o->arch))
6197 return FAIL;
6198
62b3e311
PB
6199 *str = q;
6200 return o->value;
6201}
6202
92e90b6e
PB
6203/* Parse the operands of a table branch instruction. Similar to a memory
6204 operand. */
6205static int
6206parse_tb (char **str)
6207{
6208 char * p = *str;
6209 int reg;
6210
6211 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6212 {
6213 inst.error = _("'[' expected");
6214 return FAIL;
6215 }
92e90b6e 6216
dcbf9037 6217 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6218 {
6219 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6220 return FAIL;
6221 }
6222 inst.operands[0].reg = reg;
6223
6224 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6225 {
6226 inst.error = _("',' expected");
6227 return FAIL;
6228 }
5f4273c7 6229
dcbf9037 6230 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6231 {
6232 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6233 return FAIL;
6234 }
6235 inst.operands[0].imm = reg;
6236
6237 if (skip_past_comma (&p) == SUCCESS)
6238 {
6239 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6240 return FAIL;
6241 if (inst.reloc.exp.X_add_number != 1)
6242 {
6243 inst.error = _("invalid shift");
6244 return FAIL;
6245 }
6246 inst.operands[0].shifted = 1;
6247 }
6248
6249 if (skip_past_char (&p, ']') == FAIL)
6250 {
6251 inst.error = _("']' expected");
6252 return FAIL;
6253 }
6254 *str = p;
6255 return SUCCESS;
6256}
6257
5287ad62
JB
6258/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6259 information on the types the operands can take and how they are encoded.
037e8744
JB
6260 Up to four operands may be read; this function handles setting the
6261 ".present" field for each read operand itself.
5287ad62
JB
6262 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6263 else returns FAIL. */
6264
6265static int
6266parse_neon_mov (char **str, int *which_operand)
6267{
6268 int i = *which_operand, val;
6269 enum arm_reg_type rtype;
6270 char *ptr = *str;
dcbf9037 6271 struct neon_type_el optype;
5f4273c7 6272
dcbf9037 6273 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6274 {
6275 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6276 inst.operands[i].reg = val;
6277 inst.operands[i].isscalar = 1;
dcbf9037 6278 inst.operands[i].vectype = optype;
5287ad62
JB
6279 inst.operands[i++].present = 1;
6280
6281 if (skip_past_comma (&ptr) == FAIL)
477330fc 6282 goto wanted_comma;
5f4273c7 6283
dcbf9037 6284 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6285 goto wanted_arm;
5f4273c7 6286
5287ad62
JB
6287 inst.operands[i].reg = val;
6288 inst.operands[i].isreg = 1;
6289 inst.operands[i].present = 1;
6290 }
037e8744 6291 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
477330fc 6292 != FAIL)
5287ad62
JB
6293 {
6294 /* Cases 0, 1, 2, 3, 5 (D only). */
6295 if (skip_past_comma (&ptr) == FAIL)
477330fc 6296 goto wanted_comma;
5f4273c7 6297
5287ad62
JB
6298 inst.operands[i].reg = val;
6299 inst.operands[i].isreg = 1;
6300 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6301 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6302 inst.operands[i].isvec = 1;
dcbf9037 6303 inst.operands[i].vectype = optype;
5287ad62
JB
6304 inst.operands[i++].present = 1;
6305
dcbf9037 6306 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6307 {
6308 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6309 Case 13: VMOV <Sd>, <Rm> */
6310 inst.operands[i].reg = val;
6311 inst.operands[i].isreg = 1;
6312 inst.operands[i].present = 1;
6313
6314 if (rtype == REG_TYPE_NQ)
6315 {
6316 first_error (_("can't use Neon quad register here"));
6317 return FAIL;
6318 }
6319 else if (rtype != REG_TYPE_VFS)
6320 {
6321 i++;
6322 if (skip_past_comma (&ptr) == FAIL)
6323 goto wanted_comma;
6324 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6325 goto wanted_arm;
6326 inst.operands[i].reg = val;
6327 inst.operands[i].isreg = 1;
6328 inst.operands[i].present = 1;
6329 }
6330 }
037e8744 6331 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6332 &optype)) != FAIL)
6333 {
6334 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6335 Case 1: VMOV<c><q> <Dd>, <Dm>
6336 Case 8: VMOV.F32 <Sd>, <Sm>
6337 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6338
6339 inst.operands[i].reg = val;
6340 inst.operands[i].isreg = 1;
6341 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6342 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6343 inst.operands[i].isvec = 1;
6344 inst.operands[i].vectype = optype;
6345 inst.operands[i].present = 1;
6346
6347 if (skip_past_comma (&ptr) == SUCCESS)
6348 {
6349 /* Case 15. */
6350 i++;
6351
6352 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6353 goto wanted_arm;
6354
6355 inst.operands[i].reg = val;
6356 inst.operands[i].isreg = 1;
6357 inst.operands[i++].present = 1;
6358
6359 if (skip_past_comma (&ptr) == FAIL)
6360 goto wanted_comma;
6361
6362 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6363 goto wanted_arm;
6364
6365 inst.operands[i].reg = val;
6366 inst.operands[i].isreg = 1;
6367 inst.operands[i].present = 1;
6368 }
6369 }
4641781c 6370 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6371 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6372 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6373 Case 10: VMOV.F32 <Sd>, #<imm>
6374 Case 11: VMOV.F64 <Dd>, #<imm> */
6375 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6376 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6377 == SUCCESS)
477330fc
RM
6378 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6379 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6380 ;
5287ad62 6381 else
477330fc
RM
6382 {
6383 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6384 return FAIL;
6385 }
5287ad62 6386 }
dcbf9037 6387 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6388 {
6389 /* Cases 6, 7. */
6390 inst.operands[i].reg = val;
6391 inst.operands[i].isreg = 1;
6392 inst.operands[i++].present = 1;
5f4273c7 6393
5287ad62 6394 if (skip_past_comma (&ptr) == FAIL)
477330fc 6395 goto wanted_comma;
5f4273c7 6396
dcbf9037 6397 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
477330fc
RM
6398 {
6399 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6400 inst.operands[i].reg = val;
6401 inst.operands[i].isscalar = 1;
6402 inst.operands[i].present = 1;
6403 inst.operands[i].vectype = optype;
6404 }
dcbf9037 6405 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6406 {
6407 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6408 inst.operands[i].reg = val;
6409 inst.operands[i].isreg = 1;
6410 inst.operands[i++].present = 1;
6411
6412 if (skip_past_comma (&ptr) == FAIL)
6413 goto wanted_comma;
6414
6415 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6416 == FAIL)
6417 {
6418 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6419 return FAIL;
6420 }
6421
6422 inst.operands[i].reg = val;
6423 inst.operands[i].isreg = 1;
6424 inst.operands[i].isvec = 1;
6425 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6426 inst.operands[i].vectype = optype;
6427 inst.operands[i].present = 1;
6428
6429 if (rtype == REG_TYPE_VFS)
6430 {
6431 /* Case 14. */
6432 i++;
6433 if (skip_past_comma (&ptr) == FAIL)
6434 goto wanted_comma;
6435 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6436 &optype)) == FAIL)
6437 {
6438 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6439 return FAIL;
6440 }
6441 inst.operands[i].reg = val;
6442 inst.operands[i].isreg = 1;
6443 inst.operands[i].isvec = 1;
6444 inst.operands[i].issingle = 1;
6445 inst.operands[i].vectype = optype;
6446 inst.operands[i].present = 1;
6447 }
6448 }
037e8744 6449 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6450 != FAIL)
6451 {
6452 /* Case 13. */
6453 inst.operands[i].reg = val;
6454 inst.operands[i].isreg = 1;
6455 inst.operands[i].isvec = 1;
6456 inst.operands[i].issingle = 1;
6457 inst.operands[i].vectype = optype;
6458 inst.operands[i].present = 1;
6459 }
5287ad62
JB
6460 }
6461 else
6462 {
dcbf9037 6463 first_error (_("parse error"));
5287ad62
JB
6464 return FAIL;
6465 }
6466
6467 /* Successfully parsed the operands. Update args. */
6468 *which_operand = i;
6469 *str = ptr;
6470 return SUCCESS;
6471
5f4273c7 6472 wanted_comma:
dcbf9037 6473 first_error (_("expected comma"));
5287ad62 6474 return FAIL;
5f4273c7
NC
6475
6476 wanted_arm:
dcbf9037 6477 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6478 return FAIL;
5287ad62
JB
6479}
6480
5be8be5d
DG
6481/* Use this macro when the operand constraints are different
6482 for ARM and THUMB (e.g. ldrd). */
6483#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6484 ((arm_operand) | ((thumb_operand) << 16))
6485
c19d1205
ZW
6486/* Matcher codes for parse_operands. */
6487enum operand_parse_code
6488{
6489 OP_stop, /* end of line */
6490
6491 OP_RR, /* ARM register */
6492 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6493 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6494 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6495 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6496 optional trailing ! */
c19d1205
ZW
6497 OP_RRw, /* ARM register, not r15, optional trailing ! */
6498 OP_RCP, /* Coprocessor number */
6499 OP_RCN, /* Coprocessor register */
6500 OP_RF, /* FPA register */
6501 OP_RVS, /* VFP single precision register */
5287ad62
JB
6502 OP_RVD, /* VFP double precision register (0..15) */
6503 OP_RND, /* Neon double precision register (0..31) */
6504 OP_RNQ, /* Neon quad precision register */
037e8744 6505 OP_RVSD, /* VFP single or double precision register */
dec41383 6506 OP_RNSD, /* Neon single or double precision register */
5287ad62 6507 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6508 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6509 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6510 OP_RVC, /* VFP control register */
6511 OP_RMF, /* Maverick F register */
6512 OP_RMD, /* Maverick D register */
6513 OP_RMFX, /* Maverick FX register */
6514 OP_RMDX, /* Maverick DX register */
6515 OP_RMAX, /* Maverick AX register */
6516 OP_RMDS, /* Maverick DSPSC register */
6517 OP_RIWR, /* iWMMXt wR register */
6518 OP_RIWC, /* iWMMXt wC register */
6519 OP_RIWG, /* iWMMXt wCG register */
6520 OP_RXA, /* XScale accumulator register */
6521
6522 OP_REGLST, /* ARM register list */
6523 OP_VRSLST, /* VFP single-precision register list */
6524 OP_VRDLST, /* VFP double-precision register list */
037e8744 6525 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6526 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6527 OP_NSTRLST, /* Neon element/structure list */
6528
5287ad62 6529 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6530 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6531 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
5287ad62 6532 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6533 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6534 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6535 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6536 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6537 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6538 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6539 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6540 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6541
6542 OP_I0, /* immediate zero */
c19d1205
ZW
6543 OP_I7, /* immediate value 0 .. 7 */
6544 OP_I15, /* 0 .. 15 */
6545 OP_I16, /* 1 .. 16 */
5287ad62 6546 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6547 OP_I31, /* 0 .. 31 */
6548 OP_I31w, /* 0 .. 31, optional trailing ! */
6549 OP_I32, /* 1 .. 32 */
5287ad62
JB
6550 OP_I32z, /* 0 .. 32 */
6551 OP_I63, /* 0 .. 63 */
c19d1205 6552 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6553 OP_I64, /* 1 .. 64 */
6554 OP_I64z, /* 0 .. 64 */
c19d1205 6555 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6556
6557 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6558 OP_I7b, /* 0 .. 7 */
6559 OP_I15b, /* 0 .. 15 */
6560 OP_I31b, /* 0 .. 31 */
6561
6562 OP_SH, /* shifter operand */
4962c51a 6563 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6564 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6565 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6566 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6567 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6568 OP_EXP, /* arbitrary expression */
6569 OP_EXPi, /* same, with optional immediate prefix */
6570 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6571 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
6572 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6573 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
6574
6575 OP_CPSF, /* CPS flags */
6576 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6577 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6578 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6579 OP_COND, /* conditional code */
92e90b6e 6580 OP_TB, /* Table branch. */
c19d1205 6581
037e8744
JB
6582 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6583
c19d1205 6584 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 6585 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
6586 OP_RR_EXi, /* ARM register or expression with imm prefix */
6587 OP_RF_IF, /* FPA register or immediate */
6588 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6589 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6590
6591 /* Optional operands. */
6592 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6593 OP_oI31b, /* 0 .. 31 */
5287ad62 6594 OP_oI32b, /* 1 .. 32 */
5f1af56b 6595 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6596 OP_oIffffb, /* 0 .. 65535 */
6597 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6598
6599 OP_oRR, /* ARM register */
6600 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6601 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6602 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6603 OP_oRND, /* Optional Neon double precision register */
6604 OP_oRNQ, /* Optional Neon quad precision register */
6605 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6606 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6607 OP_oSHll, /* LSL immediate */
6608 OP_oSHar, /* ASR immediate */
6609 OP_oSHllar, /* LSL or ASR immediate */
6610 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6611 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6612
5be8be5d
DG
6613 /* Some pre-defined mixed (ARM/THUMB) operands. */
6614 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6615 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6616 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6617
c19d1205
ZW
6618 OP_FIRST_OPTIONAL = OP_oI7b
6619};
a737bd4d 6620
c19d1205
ZW
6621/* Generic instruction operand parser. This does no encoding and no
6622 semantic validation; it merely squirrels values away in the inst
6623 structure. Returns SUCCESS or FAIL depending on whether the
6624 specified grammar matched. */
6625static int
5be8be5d 6626parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6627{
5be8be5d 6628 unsigned const int *upat = pattern;
c19d1205
ZW
6629 char *backtrack_pos = 0;
6630 const char *backtrack_error = 0;
99aad254 6631 int i, val = 0, backtrack_index = 0;
5287ad62 6632 enum arm_reg_type rtype;
4962c51a 6633 parse_operand_result result;
5be8be5d 6634 unsigned int op_parse_code;
c19d1205 6635
e07e6e58
NC
6636#define po_char_or_fail(chr) \
6637 do \
6638 { \
6639 if (skip_past_char (&str, chr) == FAIL) \
477330fc 6640 goto bad_args; \
e07e6e58
NC
6641 } \
6642 while (0)
c19d1205 6643
e07e6e58
NC
6644#define po_reg_or_fail(regtype) \
6645 do \
dcbf9037 6646 { \
e07e6e58 6647 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 6648 & inst.operands[i].vectype); \
e07e6e58 6649 if (val == FAIL) \
477330fc
RM
6650 { \
6651 first_error (_(reg_expected_msgs[regtype])); \
6652 goto failure; \
6653 } \
e07e6e58
NC
6654 inst.operands[i].reg = val; \
6655 inst.operands[i].isreg = 1; \
6656 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6657 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6658 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
6659 || rtype == REG_TYPE_VFD \
6660 || rtype == REG_TYPE_NQ); \
dcbf9037 6661 } \
e07e6e58
NC
6662 while (0)
6663
6664#define po_reg_or_goto(regtype, label) \
6665 do \
6666 { \
6667 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6668 & inst.operands[i].vectype); \
6669 if (val == FAIL) \
6670 goto label; \
dcbf9037 6671 \
e07e6e58
NC
6672 inst.operands[i].reg = val; \
6673 inst.operands[i].isreg = 1; \
6674 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6675 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6676 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 6677 || rtype == REG_TYPE_VFD \
e07e6e58
NC
6678 || rtype == REG_TYPE_NQ); \
6679 } \
6680 while (0)
6681
6682#define po_imm_or_fail(min, max, popt) \
6683 do \
6684 { \
6685 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6686 goto failure; \
6687 inst.operands[i].imm = val; \
6688 } \
6689 while (0)
6690
6691#define po_scalar_or_goto(elsz, label) \
6692 do \
6693 { \
6694 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6695 if (val == FAIL) \
6696 goto label; \
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isscalar = 1; \
6699 } \
6700 while (0)
6701
6702#define po_misc_or_fail(expr) \
6703 do \
6704 { \
6705 if (expr) \
6706 goto failure; \
6707 } \
6708 while (0)
6709
6710#define po_misc_or_fail_no_backtrack(expr) \
6711 do \
6712 { \
6713 result = expr; \
6714 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6715 backtrack_pos = 0; \
6716 if (result != PARSE_OPERAND_SUCCESS) \
6717 goto failure; \
6718 } \
6719 while (0)
4962c51a 6720
52e7f43d
RE
6721#define po_barrier_or_imm(str) \
6722 do \
6723 { \
6724 val = parse_barrier (&str); \
ccb84d65
JB
6725 if (val == FAIL && ! ISALPHA (*str)) \
6726 goto immediate; \
6727 if (val == FAIL \
6728 /* ISB can only take SY as an option. */ \
6729 || ((inst.instruction & 0xf0) == 0x60 \
6730 && val != 0xf)) \
52e7f43d 6731 { \
ccb84d65
JB
6732 inst.error = _("invalid barrier type"); \
6733 backtrack_pos = 0; \
6734 goto failure; \
52e7f43d
RE
6735 } \
6736 } \
6737 while (0)
6738
c19d1205
ZW
6739 skip_whitespace (str);
6740
6741 for (i = 0; upat[i] != OP_stop; i++)
6742 {
5be8be5d
DG
6743 op_parse_code = upat[i];
6744 if (op_parse_code >= 1<<16)
6745 op_parse_code = thumb ? (op_parse_code >> 16)
6746 : (op_parse_code & ((1<<16)-1));
6747
6748 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6749 {
6750 /* Remember where we are in case we need to backtrack. */
9c2799c2 6751 gas_assert (!backtrack_pos);
c19d1205
ZW
6752 backtrack_pos = str;
6753 backtrack_error = inst.error;
6754 backtrack_index = i;
6755 }
6756
b6702015 6757 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6758 po_char_or_fail (',');
6759
5be8be5d 6760 switch (op_parse_code)
c19d1205
ZW
6761 {
6762 /* Registers */
6763 case OP_oRRnpc:
5be8be5d 6764 case OP_oRRnpcsp:
c19d1205 6765 case OP_RRnpc:
5be8be5d 6766 case OP_RRnpcsp:
c19d1205
ZW
6767 case OP_oRR:
6768 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6769 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6770 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6771 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6772 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6773 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 6774 case OP_oRND:
5287ad62 6775 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6776 case OP_RVC:
6777 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6778 break;
6779 /* Also accept generic coprocessor regs for unknown registers. */
6780 coproc_reg:
6781 po_reg_or_fail (REG_TYPE_CN);
6782 break;
c19d1205
ZW
6783 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6784 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6785 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6786 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6787 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6788 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6789 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6790 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6791 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6792 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 6793 case OP_oRNQ:
5287ad62 6794 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 6795 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
477330fc 6796 case OP_oRNDQ:
5287ad62 6797 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
477330fc
RM
6798 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6799 case OP_oRNSDQ:
6800 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6801
6802 /* Neon scalar. Using an element size of 8 means that some invalid
6803 scalars are accepted here, so deal with those in later code. */
6804 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6805
6806 case OP_RNDQ_I0:
6807 {
6808 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6809 break;
6810 try_imm0:
6811 po_imm_or_fail (0, 0, TRUE);
6812 }
6813 break;
6814
6815 case OP_RVSD_I0:
6816 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6817 break;
6818
aacf0b33
KT
6819 case OP_RSVD_FI0:
6820 {
6821 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6822 break;
6823 try_ifimm0:
6824 if (parse_ifimm_zero (&str))
6825 inst.operands[i].imm = 0;
6826 else
6827 {
6828 inst.error
6829 = _("only floating point zero is allowed as immediate value");
6830 goto failure;
6831 }
6832 }
6833 break;
6834
477330fc
RM
6835 case OP_RR_RNSC:
6836 {
6837 po_scalar_or_goto (8, try_rr);
6838 break;
6839 try_rr:
6840 po_reg_or_fail (REG_TYPE_RN);
6841 }
6842 break;
6843
6844 case OP_RNSDQ_RNSC:
6845 {
6846 po_scalar_or_goto (8, try_nsdq);
6847 break;
6848 try_nsdq:
6849 po_reg_or_fail (REG_TYPE_NSDQ);
6850 }
6851 break;
6852
dec41383
JW
6853 case OP_RNSD_RNSC:
6854 {
6855 po_scalar_or_goto (8, try_s_scalar);
6856 break;
6857 try_s_scalar:
6858 po_scalar_or_goto (4, try_nsd);
6859 break;
6860 try_nsd:
6861 po_reg_or_fail (REG_TYPE_NSD);
6862 }
6863 break;
6864
477330fc
RM
6865 case OP_RNDQ_RNSC:
6866 {
6867 po_scalar_or_goto (8, try_ndq);
6868 break;
6869 try_ndq:
6870 po_reg_or_fail (REG_TYPE_NDQ);
6871 }
6872 break;
6873
6874 case OP_RND_RNSC:
6875 {
6876 po_scalar_or_goto (8, try_vfd);
6877 break;
6878 try_vfd:
6879 po_reg_or_fail (REG_TYPE_VFD);
6880 }
6881 break;
6882
6883 case OP_VMOV:
6884 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6885 not careful then bad things might happen. */
6886 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6887 break;
6888
6889 case OP_RNDQ_Ibig:
6890 {
6891 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6892 break;
6893 try_immbig:
6894 /* There's a possibility of getting a 64-bit immediate here, so
6895 we need special handling. */
8335d6aa
JW
6896 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6897 == FAIL)
477330fc
RM
6898 {
6899 inst.error = _("immediate value is out of range");
6900 goto failure;
6901 }
6902 }
6903 break;
6904
6905 case OP_RNDQ_I63b:
6906 {
6907 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6908 break;
6909 try_shimm:
6910 po_imm_or_fail (0, 63, TRUE);
6911 }
6912 break;
c19d1205
ZW
6913
6914 case OP_RRnpcb:
6915 po_char_or_fail ('[');
6916 po_reg_or_fail (REG_TYPE_RN);
6917 po_char_or_fail (']');
6918 break;
a737bd4d 6919
55881a11 6920 case OP_RRnpctw:
c19d1205 6921 case OP_RRw:
b6702015 6922 case OP_oRRw:
c19d1205
ZW
6923 po_reg_or_fail (REG_TYPE_RN);
6924 if (skip_past_char (&str, '!') == SUCCESS)
6925 inst.operands[i].writeback = 1;
6926 break;
6927
6928 /* Immediates */
6929 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6930 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6931 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 6932 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6933 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6934 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 6935 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6936 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
6937 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6938 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6939 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6940 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6941
6942 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6943 case OP_oI7b:
6944 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6945 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6946 case OP_oI31b:
6947 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
6948 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6949 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6950 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6951
6952 /* Immediate variants */
6953 case OP_oI255c:
6954 po_char_or_fail ('{');
6955 po_imm_or_fail (0, 255, TRUE);
6956 po_char_or_fail ('}');
6957 break;
6958
6959 case OP_I31w:
6960 /* The expression parser chokes on a trailing !, so we have
6961 to find it first and zap it. */
6962 {
6963 char *s = str;
6964 while (*s && *s != ',')
6965 s++;
6966 if (s[-1] == '!')
6967 {
6968 s[-1] = '\0';
6969 inst.operands[i].writeback = 1;
6970 }
6971 po_imm_or_fail (0, 31, TRUE);
6972 if (str == s - 1)
6973 str = s;
6974 }
6975 break;
6976
6977 /* Expressions */
6978 case OP_EXPi: EXPi:
6979 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6980 GE_OPT_PREFIX));
6981 break;
6982
6983 case OP_EXP:
6984 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6985 GE_NO_PREFIX));
6986 break;
6987
6988 case OP_EXPr: EXPr:
6989 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6990 GE_NO_PREFIX));
6991 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6992 {
c19d1205
ZW
6993 val = parse_reloc (&str);
6994 if (val == -1)
6995 {
6996 inst.error = _("unrecognized relocation suffix");
6997 goto failure;
6998 }
6999 else if (val != BFD_RELOC_UNUSED)
7000 {
7001 inst.operands[i].imm = val;
7002 inst.operands[i].hasreloc = 1;
7003 }
a737bd4d 7004 }
c19d1205 7005 break;
a737bd4d 7006
b6895b4f
PB
7007 /* Operand for MOVW or MOVT. */
7008 case OP_HALF:
7009 po_misc_or_fail (parse_half (&str));
7010 break;
7011
e07e6e58 7012 /* Register or expression. */
c19d1205
ZW
7013 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7014 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7015
e07e6e58 7016 /* Register or immediate. */
c19d1205
ZW
7017 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7018 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7019
c19d1205
ZW
7020 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7021 IF:
7022 if (!is_immediate_prefix (*str))
7023 goto bad_args;
7024 str++;
7025 val = parse_fpa_immediate (&str);
7026 if (val == FAIL)
7027 goto failure;
7028 /* FPA immediates are encoded as registers 8-15.
7029 parse_fpa_immediate has already applied the offset. */
7030 inst.operands[i].reg = val;
7031 inst.operands[i].isreg = 1;
7032 break;
09d92015 7033
2d447fca
JM
7034 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7035 I32z: po_imm_or_fail (0, 32, FALSE); break;
7036
e07e6e58 7037 /* Two kinds of register. */
c19d1205
ZW
7038 case OP_RIWR_RIWC:
7039 {
7040 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7041 if (!rege
7042 || (rege->type != REG_TYPE_MMXWR
7043 && rege->type != REG_TYPE_MMXWC
7044 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7045 {
7046 inst.error = _("iWMMXt data or control register expected");
7047 goto failure;
7048 }
7049 inst.operands[i].reg = rege->number;
7050 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7051 }
7052 break;
09d92015 7053
41adaa5c
JM
7054 case OP_RIWC_RIWG:
7055 {
7056 struct reg_entry *rege = arm_reg_parse_multi (&str);
7057 if (!rege
7058 || (rege->type != REG_TYPE_MMXWC
7059 && rege->type != REG_TYPE_MMXWCG))
7060 {
7061 inst.error = _("iWMMXt control register expected");
7062 goto failure;
7063 }
7064 inst.operands[i].reg = rege->number;
7065 inst.operands[i].isreg = 1;
7066 }
7067 break;
7068
c19d1205
ZW
7069 /* Misc */
7070 case OP_CPSF: val = parse_cps_flags (&str); break;
7071 case OP_ENDI: val = parse_endian_specifier (&str); break;
7072 case OP_oROR: val = parse_ror (&str); break;
c19d1205 7073 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7074 case OP_oBARRIER_I15:
7075 po_barrier_or_imm (str); break;
7076 immediate:
7077 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7078 goto failure;
52e7f43d 7079 break;
c19d1205 7080
fa94de6b 7081 case OP_wPSR:
d2cd1205 7082 case OP_rPSR:
90ec0d68
MGD
7083 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7084 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7085 {
7086 inst.error = _("Banked registers are not available with this "
7087 "architecture.");
7088 goto failure;
7089 }
7090 break;
d2cd1205
JB
7091 try_psr:
7092 val = parse_psr (&str, op_parse_code == OP_wPSR);
7093 break;
037e8744 7094
477330fc
RM
7095 case OP_APSR_RR:
7096 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7097 break;
7098 try_apsr:
7099 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7100 instruction). */
7101 if (strncasecmp (str, "APSR_", 5) == 0)
7102 {
7103 unsigned found = 0;
7104 str += 5;
7105 while (found < 15)
7106 switch (*str++)
7107 {
7108 case 'c': found = (found & 1) ? 16 : found | 1; break;
7109 case 'n': found = (found & 2) ? 16 : found | 2; break;
7110 case 'z': found = (found & 4) ? 16 : found | 4; break;
7111 case 'v': found = (found & 8) ? 16 : found | 8; break;
7112 default: found = 16;
7113 }
7114 if (found != 15)
7115 goto failure;
7116 inst.operands[i].isvec = 1;
f7c21dc7
NC
7117 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7118 inst.operands[i].reg = REG_PC;
477330fc
RM
7119 }
7120 else
7121 goto failure;
7122 break;
037e8744 7123
92e90b6e
PB
7124 case OP_TB:
7125 po_misc_or_fail (parse_tb (&str));
7126 break;
7127
e07e6e58 7128 /* Register lists. */
c19d1205
ZW
7129 case OP_REGLST:
7130 val = parse_reg_list (&str);
7131 if (*str == '^')
7132 {
5e0d7f77 7133 inst.operands[i].writeback = 1;
c19d1205
ZW
7134 str++;
7135 }
7136 break;
09d92015 7137
c19d1205 7138 case OP_VRSLST:
5287ad62 7139 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 7140 break;
09d92015 7141
c19d1205 7142 case OP_VRDLST:
5287ad62 7143 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 7144 break;
a737bd4d 7145
477330fc
RM
7146 case OP_VRSDLST:
7147 /* Allow Q registers too. */
7148 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7149 REGLIST_NEON_D);
7150 if (val == FAIL)
7151 {
7152 inst.error = NULL;
7153 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7154 REGLIST_VFP_S);
7155 inst.operands[i].issingle = 1;
7156 }
7157 break;
7158
7159 case OP_NRDLST:
7160 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7161 REGLIST_NEON_D);
7162 break;
5287ad62
JB
7163
7164 case OP_NSTRLST:
477330fc
RM
7165 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7166 &inst.operands[i].vectype);
7167 break;
5287ad62 7168
c19d1205
ZW
7169 /* Addressing modes */
7170 case OP_ADDR:
7171 po_misc_or_fail (parse_address (&str, i));
7172 break;
09d92015 7173
4962c51a
MS
7174 case OP_ADDRGLDR:
7175 po_misc_or_fail_no_backtrack (
477330fc 7176 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7177 break;
7178
7179 case OP_ADDRGLDRS:
7180 po_misc_or_fail_no_backtrack (
477330fc 7181 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7182 break;
7183
7184 case OP_ADDRGLDC:
7185 po_misc_or_fail_no_backtrack (
477330fc 7186 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7187 break;
7188
c19d1205
ZW
7189 case OP_SH:
7190 po_misc_or_fail (parse_shifter_operand (&str, i));
7191 break;
09d92015 7192
4962c51a
MS
7193 case OP_SHG:
7194 po_misc_or_fail_no_backtrack (
477330fc 7195 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7196 break;
7197
c19d1205
ZW
7198 case OP_oSHll:
7199 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7200 break;
09d92015 7201
c19d1205
ZW
7202 case OP_oSHar:
7203 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7204 break;
09d92015 7205
c19d1205
ZW
7206 case OP_oSHllar:
7207 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7208 break;
09d92015 7209
c19d1205 7210 default:
5be8be5d 7211 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7212 }
09d92015 7213
c19d1205
ZW
7214 /* Various value-based sanity checks and shared operations. We
7215 do not signal immediate failures for the register constraints;
7216 this allows a syntax error to take precedence. */
5be8be5d 7217 switch (op_parse_code)
c19d1205
ZW
7218 {
7219 case OP_oRRnpc:
7220 case OP_RRnpc:
7221 case OP_RRnpcb:
7222 case OP_RRw:
b6702015 7223 case OP_oRRw:
c19d1205
ZW
7224 case OP_RRnpc_I0:
7225 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7226 inst.error = BAD_PC;
7227 break;
09d92015 7228
5be8be5d
DG
7229 case OP_oRRnpcsp:
7230 case OP_RRnpcsp:
7231 if (inst.operands[i].isreg)
7232 {
7233 if (inst.operands[i].reg == REG_PC)
7234 inst.error = BAD_PC;
5c8ed6a4
JW
7235 else if (inst.operands[i].reg == REG_SP
7236 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7237 relaxed since ARMv8-A. */
7238 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7239 {
7240 gas_assert (thumb);
7241 inst.error = BAD_SP;
7242 }
5be8be5d
DG
7243 }
7244 break;
7245
55881a11 7246 case OP_RRnpctw:
fa94de6b
RM
7247 if (inst.operands[i].isreg
7248 && inst.operands[i].reg == REG_PC
55881a11
MGD
7249 && (inst.operands[i].writeback || thumb))
7250 inst.error = BAD_PC;
7251 break;
7252
c19d1205
ZW
7253 case OP_CPSF:
7254 case OP_ENDI:
7255 case OP_oROR:
d2cd1205
JB
7256 case OP_wPSR:
7257 case OP_rPSR:
c19d1205 7258 case OP_COND:
52e7f43d 7259 case OP_oBARRIER_I15:
c19d1205
ZW
7260 case OP_REGLST:
7261 case OP_VRSLST:
7262 case OP_VRDLST:
477330fc
RM
7263 case OP_VRSDLST:
7264 case OP_NRDLST:
7265 case OP_NSTRLST:
c19d1205
ZW
7266 if (val == FAIL)
7267 goto failure;
7268 inst.operands[i].imm = val;
7269 break;
a737bd4d 7270
c19d1205
ZW
7271 default:
7272 break;
7273 }
09d92015 7274
c19d1205
ZW
7275 /* If we get here, this operand was successfully parsed. */
7276 inst.operands[i].present = 1;
7277 continue;
09d92015 7278
c19d1205 7279 bad_args:
09d92015 7280 inst.error = BAD_ARGS;
c19d1205
ZW
7281
7282 failure:
7283 if (!backtrack_pos)
d252fdde
PB
7284 {
7285 /* The parse routine should already have set inst.error, but set a
5f4273c7 7286 default here just in case. */
d252fdde
PB
7287 if (!inst.error)
7288 inst.error = _("syntax error");
7289 return FAIL;
7290 }
c19d1205
ZW
7291
7292 /* Do not backtrack over a trailing optional argument that
7293 absorbed some text. We will only fail again, with the
7294 'garbage following instruction' error message, which is
7295 probably less helpful than the current one. */
7296 if (backtrack_index == i && backtrack_pos != str
7297 && upat[i+1] == OP_stop)
d252fdde
PB
7298 {
7299 if (!inst.error)
7300 inst.error = _("syntax error");
7301 return FAIL;
7302 }
c19d1205
ZW
7303
7304 /* Try again, skipping the optional argument at backtrack_pos. */
7305 str = backtrack_pos;
7306 inst.error = backtrack_error;
7307 inst.operands[backtrack_index].present = 0;
7308 i = backtrack_index;
7309 backtrack_pos = 0;
09d92015 7310 }
09d92015 7311
c19d1205
ZW
7312 /* Check that we have parsed all the arguments. */
7313 if (*str != '\0' && !inst.error)
7314 inst.error = _("garbage following instruction");
09d92015 7315
c19d1205 7316 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7317}
7318
c19d1205
ZW
7319#undef po_char_or_fail
7320#undef po_reg_or_fail
7321#undef po_reg_or_goto
7322#undef po_imm_or_fail
5287ad62 7323#undef po_scalar_or_fail
52e7f43d 7324#undef po_barrier_or_imm
e07e6e58 7325
c19d1205 7326/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7327#define constraint(expr, err) \
7328 do \
c19d1205 7329 { \
e07e6e58
NC
7330 if (expr) \
7331 { \
7332 inst.error = err; \
7333 return; \
7334 } \
c19d1205 7335 } \
e07e6e58 7336 while (0)
c19d1205 7337
fdfde340
JM
7338/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7339 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7340 is the BadReg predicate in ARM's Thumb-2 documentation.
7341
7342 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7343 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7344#define reject_bad_reg(reg) \
7345 do \
7346 if (reg == REG_PC) \
7347 { \
7348 inst.error = BAD_PC; \
7349 return; \
7350 } \
7351 else if (reg == REG_SP \
7352 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7353 { \
7354 inst.error = BAD_SP; \
7355 return; \
7356 } \
fdfde340
JM
7357 while (0)
7358
94206790
MM
7359/* If REG is R13 (the stack pointer), warn that its use is
7360 deprecated. */
7361#define warn_deprecated_sp(reg) \
7362 do \
7363 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7364 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7365 while (0)
7366
c19d1205
ZW
7367/* Functions for operand encoding. ARM, then Thumb. */
7368
d840c081 7369#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 7370
9db2f6b4
RL
7371/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7372
7373 The only binary encoding difference is the Coprocessor number. Coprocessor
7374 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 7375 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
7376 exists for Single-Precision operation. */
7377
7378static void
7379do_scalar_fp16_v82_encode (void)
7380{
7381 if (inst.cond != COND_ALWAYS)
7382 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7383 " the behaviour is UNPREDICTABLE"));
7384 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7385 _(BAD_FP16));
7386
7387 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7388 mark_feature_used (&arm_ext_fp16);
7389}
7390
c19d1205
ZW
7391/* If VAL can be encoded in the immediate field of an ARM instruction,
7392 return the encoded form. Otherwise, return FAIL. */
7393
7394static unsigned int
7395encode_arm_immediate (unsigned int val)
09d92015 7396{
c19d1205
ZW
7397 unsigned int a, i;
7398
4f1d6205
L
7399 if (val <= 0xff)
7400 return val;
7401
7402 for (i = 2; i < 32; i += 2)
c19d1205
ZW
7403 if ((a = rotate_left (val, i)) <= 0xff)
7404 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7405
7406 return FAIL;
09d92015
MM
7407}
7408
c19d1205
ZW
7409/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7410 return the encoded form. Otherwise, return FAIL. */
7411static unsigned int
7412encode_thumb32_immediate (unsigned int val)
09d92015 7413{
c19d1205 7414 unsigned int a, i;
09d92015 7415
9c3c69f2 7416 if (val <= 0xff)
c19d1205 7417 return val;
a737bd4d 7418
9c3c69f2 7419 for (i = 1; i <= 24; i++)
09d92015 7420 {
9c3c69f2
PB
7421 a = val >> i;
7422 if ((val & ~(0xff << i)) == 0)
7423 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 7424 }
a737bd4d 7425
c19d1205
ZW
7426 a = val & 0xff;
7427 if (val == ((a << 16) | a))
7428 return 0x100 | a;
7429 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7430 return 0x300 | a;
09d92015 7431
c19d1205
ZW
7432 a = val & 0xff00;
7433 if (val == ((a << 16) | a))
7434 return 0x200 | (a >> 8);
a737bd4d 7435
c19d1205 7436 return FAIL;
09d92015 7437}
5287ad62 7438/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
7439
7440static void
5287ad62
JB
7441encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7442{
7443 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7444 && reg > 15)
7445 {
b1cc4aeb 7446 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
7447 {
7448 if (thumb_mode)
7449 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7450 fpu_vfp_ext_d32);
7451 else
7452 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7453 fpu_vfp_ext_d32);
7454 }
5287ad62 7455 else
477330fc
RM
7456 {
7457 first_error (_("D register out of range for selected VFP version"));
7458 return;
7459 }
5287ad62
JB
7460 }
7461
c19d1205 7462 switch (pos)
09d92015 7463 {
c19d1205
ZW
7464 case VFP_REG_Sd:
7465 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7466 break;
7467
7468 case VFP_REG_Sn:
7469 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7470 break;
7471
7472 case VFP_REG_Sm:
7473 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7474 break;
7475
5287ad62
JB
7476 case VFP_REG_Dd:
7477 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7478 break;
5f4273c7 7479
5287ad62
JB
7480 case VFP_REG_Dn:
7481 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7482 break;
5f4273c7 7483
5287ad62
JB
7484 case VFP_REG_Dm:
7485 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7486 break;
7487
c19d1205
ZW
7488 default:
7489 abort ();
09d92015 7490 }
09d92015
MM
7491}
7492
c19d1205 7493/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7494 if any, is handled by md_apply_fix. */
09d92015 7495static void
c19d1205 7496encode_arm_shift (int i)
09d92015 7497{
008a97ef
RL
7498 /* register-shifted register. */
7499 if (inst.operands[i].immisreg)
7500 {
bf355b69
MR
7501 int op_index;
7502 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 7503 {
5689c942
RL
7504 /* Check the operand only when it's presented. In pre-UAL syntax,
7505 if the destination register is the same as the first operand, two
7506 register form of the instruction can be used. */
bf355b69
MR
7507 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7508 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
7509 as_warn (UNPRED_REG ("r15"));
7510 }
7511
7512 if (inst.operands[i].imm == REG_PC)
7513 as_warn (UNPRED_REG ("r15"));
7514 }
7515
c19d1205
ZW
7516 if (inst.operands[i].shift_kind == SHIFT_RRX)
7517 inst.instruction |= SHIFT_ROR << 5;
7518 else
09d92015 7519 {
c19d1205
ZW
7520 inst.instruction |= inst.operands[i].shift_kind << 5;
7521 if (inst.operands[i].immisreg)
7522 {
7523 inst.instruction |= SHIFT_BY_REG;
7524 inst.instruction |= inst.operands[i].imm << 8;
7525 }
7526 else
7527 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7528 }
c19d1205 7529}
09d92015 7530
c19d1205
ZW
7531static void
7532encode_arm_shifter_operand (int i)
7533{
7534 if (inst.operands[i].isreg)
09d92015 7535 {
c19d1205
ZW
7536 inst.instruction |= inst.operands[i].reg;
7537 encode_arm_shift (i);
09d92015 7538 }
c19d1205 7539 else
a415b1cd
JB
7540 {
7541 inst.instruction |= INST_IMMEDIATE;
7542 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7543 inst.instruction |= inst.operands[i].imm;
7544 }
09d92015
MM
7545}
7546
c19d1205 7547/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7548static void
c19d1205 7549encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7550{
2b2f5df9
NC
7551 /* PR 14260:
7552 Generate an error if the operand is not a register. */
7553 constraint (!inst.operands[i].isreg,
7554 _("Instruction does not support =N addresses"));
7555
c19d1205 7556 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7557
c19d1205 7558 if (inst.operands[i].preind)
09d92015 7559 {
c19d1205
ZW
7560 if (is_t)
7561 {
7562 inst.error = _("instruction does not accept preindexed addressing");
7563 return;
7564 }
7565 inst.instruction |= PRE_INDEX;
7566 if (inst.operands[i].writeback)
7567 inst.instruction |= WRITE_BACK;
09d92015 7568
c19d1205
ZW
7569 }
7570 else if (inst.operands[i].postind)
7571 {
9c2799c2 7572 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7573 if (is_t)
7574 inst.instruction |= WRITE_BACK;
7575 }
7576 else /* unindexed - only for coprocessor */
09d92015 7577 {
c19d1205 7578 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7579 return;
7580 }
7581
c19d1205
ZW
7582 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7583 && (((inst.instruction & 0x000f0000) >> 16)
7584 == ((inst.instruction & 0x0000f000) >> 12)))
7585 as_warn ((inst.instruction & LOAD_BIT)
7586 ? _("destination register same as write-back base")
7587 : _("source register same as write-back base"));
09d92015
MM
7588}
7589
c19d1205
ZW
7590/* inst.operands[i] was set up by parse_address. Encode it into an
7591 ARM-format mode 2 load or store instruction. If is_t is true,
7592 reject forms that cannot be used with a T instruction (i.e. not
7593 post-indexed). */
a737bd4d 7594static void
c19d1205 7595encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7596{
5be8be5d
DG
7597 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7598
c19d1205 7599 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7600
c19d1205 7601 if (inst.operands[i].immisreg)
09d92015 7602 {
5be8be5d
DG
7603 constraint ((inst.operands[i].imm == REG_PC
7604 || (is_pc && inst.operands[i].writeback)),
7605 BAD_PC_ADDRESSING);
c19d1205
ZW
7606 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7607 inst.instruction |= inst.operands[i].imm;
7608 if (!inst.operands[i].negative)
7609 inst.instruction |= INDEX_UP;
7610 if (inst.operands[i].shifted)
7611 {
7612 if (inst.operands[i].shift_kind == SHIFT_RRX)
7613 inst.instruction |= SHIFT_ROR << 5;
7614 else
7615 {
7616 inst.instruction |= inst.operands[i].shift_kind << 5;
7617 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7618 }
7619 }
09d92015 7620 }
c19d1205 7621 else /* immediate offset in inst.reloc */
09d92015 7622 {
5be8be5d
DG
7623 if (is_pc && !inst.reloc.pc_rel)
7624 {
7625 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7626
7627 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7628 cannot use PC in addressing.
7629 PC cannot be used in writeback addressing, either. */
7630 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7631 BAD_PC_ADDRESSING);
23a10334 7632
dc5ec521 7633 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7634 if (warn_on_deprecated
7635 && !is_load
7636 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 7637 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7638 }
7639
c19d1205 7640 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7641 {
7642 /* Prefer + for zero encoded value. */
7643 if (!inst.operands[i].negative)
7644 inst.instruction |= INDEX_UP;
7645 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7646 }
09d92015 7647 }
09d92015
MM
7648}
7649
c19d1205
ZW
7650/* inst.operands[i] was set up by parse_address. Encode it into an
7651 ARM-format mode 3 load or store instruction. Reject forms that
7652 cannot be used with such instructions. If is_t is true, reject
7653 forms that cannot be used with a T instruction (i.e. not
7654 post-indexed). */
7655static void
7656encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7657{
c19d1205 7658 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7659 {
c19d1205
ZW
7660 inst.error = _("instruction does not accept scaled register index");
7661 return;
09d92015 7662 }
a737bd4d 7663
c19d1205 7664 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7665
c19d1205
ZW
7666 if (inst.operands[i].immisreg)
7667 {
5be8be5d 7668 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 7669 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 7670 BAD_PC_ADDRESSING);
eb9f3f00
JB
7671 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7672 BAD_PC_WRITEBACK);
c19d1205
ZW
7673 inst.instruction |= inst.operands[i].imm;
7674 if (!inst.operands[i].negative)
7675 inst.instruction |= INDEX_UP;
7676 }
7677 else /* immediate offset in inst.reloc */
7678 {
5be8be5d
DG
7679 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7680 && inst.operands[i].writeback),
7681 BAD_PC_WRITEBACK);
c19d1205
ZW
7682 inst.instruction |= HWOFFSET_IMM;
7683 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7684 {
7685 /* Prefer + for zero encoded value. */
7686 if (!inst.operands[i].negative)
7687 inst.instruction |= INDEX_UP;
7688
7689 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7690 }
c19d1205 7691 }
a737bd4d
NC
7692}
7693
8335d6aa
JW
7694/* Write immediate bits [7:0] to the following locations:
7695
7696 |28/24|23 19|18 16|15 4|3 0|
7697 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7698
7699 This function is used by VMOV/VMVN/VORR/VBIC. */
7700
7701static void
7702neon_write_immbits (unsigned immbits)
7703{
7704 inst.instruction |= immbits & 0xf;
7705 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7706 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7707}
7708
7709/* Invert low-order SIZE bits of XHI:XLO. */
7710
7711static void
7712neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7713{
7714 unsigned immlo = xlo ? *xlo : 0;
7715 unsigned immhi = xhi ? *xhi : 0;
7716
7717 switch (size)
7718 {
7719 case 8:
7720 immlo = (~immlo) & 0xff;
7721 break;
7722
7723 case 16:
7724 immlo = (~immlo) & 0xffff;
7725 break;
7726
7727 case 64:
7728 immhi = (~immhi) & 0xffffffff;
7729 /* fall through. */
7730
7731 case 32:
7732 immlo = (~immlo) & 0xffffffff;
7733 break;
7734
7735 default:
7736 abort ();
7737 }
7738
7739 if (xlo)
7740 *xlo = immlo;
7741
7742 if (xhi)
7743 *xhi = immhi;
7744}
7745
7746/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7747 A, B, C, D. */
09d92015 7748
c19d1205 7749static int
8335d6aa 7750neon_bits_same_in_bytes (unsigned imm)
09d92015 7751{
8335d6aa
JW
7752 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7753 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7754 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7755 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7756}
a737bd4d 7757
8335d6aa 7758/* For immediate of above form, return 0bABCD. */
09d92015 7759
8335d6aa
JW
7760static unsigned
7761neon_squash_bits (unsigned imm)
7762{
7763 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7764 | ((imm & 0x01000000) >> 21);
7765}
7766
7767/* Compress quarter-float representation to 0b...000 abcdefgh. */
7768
7769static unsigned
7770neon_qfloat_bits (unsigned imm)
7771{
7772 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7773}
7774
7775/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7776 the instruction. *OP is passed as the initial value of the op field, and
7777 may be set to a different value depending on the constant (i.e.
7778 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7779 MVN). If the immediate looks like a repeated pattern then also
7780 try smaller element sizes. */
7781
7782static int
7783neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7784 unsigned *immbits, int *op, int size,
7785 enum neon_el_type type)
7786{
7787 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7788 float. */
7789 if (type == NT_float && !float_p)
7790 return FAIL;
7791
7792 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 7793 {
8335d6aa
JW
7794 if (size != 32 || *op == 1)
7795 return FAIL;
7796 *immbits = neon_qfloat_bits (immlo);
7797 return 0xf;
7798 }
7799
7800 if (size == 64)
7801 {
7802 if (neon_bits_same_in_bytes (immhi)
7803 && neon_bits_same_in_bytes (immlo))
c19d1205 7804 {
8335d6aa
JW
7805 if (*op == 1)
7806 return FAIL;
7807 *immbits = (neon_squash_bits (immhi) << 4)
7808 | neon_squash_bits (immlo);
7809 *op = 1;
7810 return 0xe;
c19d1205 7811 }
a737bd4d 7812
8335d6aa
JW
7813 if (immhi != immlo)
7814 return FAIL;
7815 }
a737bd4d 7816
8335d6aa 7817 if (size >= 32)
09d92015 7818 {
8335d6aa 7819 if (immlo == (immlo & 0x000000ff))
c19d1205 7820 {
8335d6aa
JW
7821 *immbits = immlo;
7822 return 0x0;
c19d1205 7823 }
8335d6aa 7824 else if (immlo == (immlo & 0x0000ff00))
c19d1205 7825 {
8335d6aa
JW
7826 *immbits = immlo >> 8;
7827 return 0x2;
c19d1205 7828 }
8335d6aa
JW
7829 else if (immlo == (immlo & 0x00ff0000))
7830 {
7831 *immbits = immlo >> 16;
7832 return 0x4;
7833 }
7834 else if (immlo == (immlo & 0xff000000))
7835 {
7836 *immbits = immlo >> 24;
7837 return 0x6;
7838 }
7839 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7840 {
7841 *immbits = (immlo >> 8) & 0xff;
7842 return 0xc;
7843 }
7844 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7845 {
7846 *immbits = (immlo >> 16) & 0xff;
7847 return 0xd;
7848 }
7849
7850 if ((immlo & 0xffff) != (immlo >> 16))
7851 return FAIL;
7852 immlo &= 0xffff;
09d92015 7853 }
a737bd4d 7854
8335d6aa 7855 if (size >= 16)
4962c51a 7856 {
8335d6aa
JW
7857 if (immlo == (immlo & 0x000000ff))
7858 {
7859 *immbits = immlo;
7860 return 0x8;
7861 }
7862 else if (immlo == (immlo & 0x0000ff00))
7863 {
7864 *immbits = immlo >> 8;
7865 return 0xa;
7866 }
7867
7868 if ((immlo & 0xff) != (immlo >> 8))
7869 return FAIL;
7870 immlo &= 0xff;
4962c51a
MS
7871 }
7872
8335d6aa
JW
7873 if (immlo == (immlo & 0x000000ff))
7874 {
7875 /* Don't allow MVN with 8-bit immediate. */
7876 if (*op == 1)
7877 return FAIL;
7878 *immbits = immlo;
7879 return 0xe;
7880 }
26d97720 7881
8335d6aa 7882 return FAIL;
c19d1205 7883}
a737bd4d 7884
5fc177c8 7885#if defined BFD_HOST_64_BIT
ba592044
AM
7886/* Returns TRUE if double precision value V may be cast
7887 to single precision without loss of accuracy. */
7888
7889static bfd_boolean
5fc177c8 7890is_double_a_single (bfd_int64_t v)
ba592044 7891{
5fc177c8 7892 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 7893 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7894
7895 return (exp == 0 || exp == 0x7FF
7896 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7897 && (mantissa & 0x1FFFFFFFl) == 0;
7898}
7899
3739860c 7900/* Returns a double precision value casted to single precision
ba592044
AM
7901 (ignoring the least significant bits in exponent and mantissa). */
7902
7903static int
5fc177c8 7904double_to_single (bfd_int64_t v)
ba592044
AM
7905{
7906 int sign = (int) ((v >> 63) & 1l);
5fc177c8 7907 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 7908 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
7909
7910 if (exp == 0x7FF)
7911 exp = 0xFF;
7912 else
7913 {
7914 exp = exp - 1023 + 127;
7915 if (exp >= 0xFF)
7916 {
7917 /* Infinity. */
7918 exp = 0x7F;
7919 mantissa = 0;
7920 }
7921 else if (exp < 0)
7922 {
7923 /* No denormalized numbers. */
7924 exp = 0;
7925 mantissa = 0;
7926 }
7927 }
7928 mantissa >>= 29;
7929 return (sign << 31) | (exp << 23) | mantissa;
7930}
5fc177c8 7931#endif /* BFD_HOST_64_BIT */
ba592044 7932
8335d6aa
JW
7933enum lit_type
7934{
7935 CONST_THUMB,
7936 CONST_ARM,
7937 CONST_VEC
7938};
7939
ba592044
AM
7940static void do_vfp_nsyn_opcode (const char *);
7941
c19d1205
ZW
7942/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7943 Determine whether it can be performed with a move instruction; if
7944 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7945 return TRUE; if it can't, convert inst.instruction to a literal-pool
7946 load and return FALSE. If this is not a valid thing to do in the
7947 current context, set inst.error and return TRUE.
a737bd4d 7948
c19d1205
ZW
7949 inst.operands[i] describes the destination register. */
7950
c921be7d 7951static bfd_boolean
8335d6aa 7952move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 7953{
53365c0d 7954 unsigned long tbit;
8335d6aa
JW
7955 bfd_boolean thumb_p = (t == CONST_THUMB);
7956 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
7957
7958 if (thumb_p)
7959 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7960 else
7961 tbit = LOAD_BIT;
7962
7963 if ((inst.instruction & tbit) == 0)
09d92015 7964 {
c19d1205 7965 inst.error = _("invalid pseudo operation");
c921be7d 7966 return TRUE;
09d92015 7967 }
ba592044 7968
8335d6aa
JW
7969 if (inst.reloc.exp.X_op != O_constant
7970 && inst.reloc.exp.X_op != O_symbol
7971 && inst.reloc.exp.X_op != O_big)
09d92015
MM
7972 {
7973 inst.error = _("constant expression expected");
c921be7d 7974 return TRUE;
09d92015 7975 }
ba592044
AM
7976
7977 if (inst.reloc.exp.X_op == O_constant
7978 || inst.reloc.exp.X_op == O_big)
8335d6aa 7979 {
5fc177c8
NC
7980#if defined BFD_HOST_64_BIT
7981 bfd_int64_t v;
7982#else
ba592044 7983 offsetT v;
5fc177c8 7984#endif
ba592044 7985 if (inst.reloc.exp.X_op == O_big)
8335d6aa 7986 {
ba592044
AM
7987 LITTLENUM_TYPE w[X_PRECISION];
7988 LITTLENUM_TYPE * l;
7989
7990 if (inst.reloc.exp.X_add_number == -1)
8335d6aa 7991 {
ba592044
AM
7992 gen_to_words (w, X_PRECISION, E_PRECISION);
7993 l = w;
7994 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 7995 }
ba592044
AM
7996 else
7997 l = generic_bignum;
3739860c 7998
5fc177c8
NC
7999#if defined BFD_HOST_64_BIT
8000 v =
8001 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8002 << LITTLENUM_NUMBER_OF_BITS)
8003 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8004 << LITTLENUM_NUMBER_OF_BITS)
8005 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8006 << LITTLENUM_NUMBER_OF_BITS)
8007 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8008#else
ba592044
AM
8009 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8010 | (l[0] & LITTLENUM_MASK);
5fc177c8 8011#endif
8335d6aa 8012 }
ba592044
AM
8013 else
8014 v = inst.reloc.exp.X_add_number;
8015
8016 if (!inst.operands[i].issingle)
8335d6aa 8017 {
12569877 8018 if (thumb_p)
8335d6aa 8019 {
53445554
TP
8020 /* LDR should not use lead in a flag-setting instruction being
8021 chosen so we do not check whether movs can be used. */
12569877 8022
53445554 8023 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8024 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8025 && inst.operands[i].reg != 13
8026 && inst.operands[i].reg != 15)
12569877 8027 {
fc289b0a
TP
8028 /* Check if on thumb2 it can be done with a mov.w, mvn or
8029 movw instruction. */
12569877
AM
8030 unsigned int newimm;
8031 bfd_boolean isNegated;
8032
8033 newimm = encode_thumb32_immediate (v);
8034 if (newimm != (unsigned int) FAIL)
8035 isNegated = FALSE;
8036 else
8037 {
582cfe03 8038 newimm = encode_thumb32_immediate (~v);
12569877
AM
8039 if (newimm != (unsigned int) FAIL)
8040 isNegated = TRUE;
8041 }
8042
fc289b0a
TP
8043 /* The number can be loaded with a mov.w or mvn
8044 instruction. */
ff8646ee
TP
8045 if (newimm != (unsigned int) FAIL
8046 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8047 {
fc289b0a 8048 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8049 | (inst.operands[i].reg << 8));
fc289b0a 8050 /* Change to MOVN. */
582cfe03 8051 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8052 inst.instruction |= (newimm & 0x800) << 15;
8053 inst.instruction |= (newimm & 0x700) << 4;
8054 inst.instruction |= (newimm & 0x0ff);
8055 return TRUE;
8056 }
fc289b0a 8057 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8058 else if ((v & ~0xFFFF) == 0
8059 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8060 {
582cfe03 8061 int imm = v & 0xFFFF;
12569877 8062
582cfe03 8063 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8064 inst.instruction |= (inst.operands[i].reg << 8);
8065 inst.instruction |= (imm & 0xf000) << 4;
8066 inst.instruction |= (imm & 0x0800) << 15;
8067 inst.instruction |= (imm & 0x0700) << 4;
8068 inst.instruction |= (imm & 0x00ff);
8069 return TRUE;
8070 }
8071 }
8335d6aa 8072 }
12569877 8073 else if (arm_p)
ba592044
AM
8074 {
8075 int value = encode_arm_immediate (v);
12569877 8076
ba592044
AM
8077 if (value != FAIL)
8078 {
8079 /* This can be done with a mov instruction. */
8080 inst.instruction &= LITERAL_MASK;
8081 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8082 inst.instruction |= value & 0xfff;
8083 return TRUE;
8084 }
8335d6aa 8085
ba592044
AM
8086 value = encode_arm_immediate (~ v);
8087 if (value != FAIL)
8088 {
8089 /* This can be done with a mvn instruction. */
8090 inst.instruction &= LITERAL_MASK;
8091 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8092 inst.instruction |= value & 0xfff;
8093 return TRUE;
8094 }
8095 }
934c2632 8096 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8097 {
ba592044
AM
8098 int op = 0;
8099 unsigned immbits = 0;
8100 unsigned immlo = inst.operands[1].imm;
8101 unsigned immhi = inst.operands[1].regisimm
8102 ? inst.operands[1].reg
8103 : inst.reloc.exp.X_unsigned
8104 ? 0
8105 : ((bfd_int64_t)((int) immlo)) >> 32;
8106 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8107 &op, 64, NT_invtype);
8108
8109 if (cmode == FAIL)
8110 {
8111 neon_invert_size (&immlo, &immhi, 64);
8112 op = !op;
8113 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8114 &op, 64, NT_invtype);
8115 }
8116
8117 if (cmode != FAIL)
8118 {
8119 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8120 | (1 << 23)
8121 | (cmode << 8)
8122 | (op << 5)
8123 | (1 << 4);
8124
8125 /* Fill other bits in vmov encoding for both thumb and arm. */
8126 if (thumb_mode)
eff0bc54 8127 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8128 else
eff0bc54 8129 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8130 neon_write_immbits (immbits);
8131 return TRUE;
8132 }
8335d6aa
JW
8133 }
8134 }
8335d6aa 8135
ba592044
AM
8136 if (t == CONST_VEC)
8137 {
8138 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8139 if (inst.operands[i].issingle
8140 && is_quarter_float (inst.operands[1].imm)
8141 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8142 {
ba592044
AM
8143 inst.operands[1].imm =
8144 neon_qfloat_bits (v);
8145 do_vfp_nsyn_opcode ("fconsts");
8146 return TRUE;
8335d6aa 8147 }
5fc177c8
NC
8148
8149 /* If our host does not support a 64-bit type then we cannot perform
8150 the following optimization. This mean that there will be a
8151 discrepancy between the output produced by an assembler built for
8152 a 32-bit-only host and the output produced from a 64-bit host, but
8153 this cannot be helped. */
8154#if defined BFD_HOST_64_BIT
ba592044
AM
8155 else if (!inst.operands[1].issingle
8156 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8157 {
ba592044
AM
8158 if (is_double_a_single (v)
8159 && is_quarter_float (double_to_single (v)))
8160 {
8161 inst.operands[1].imm =
8162 neon_qfloat_bits (double_to_single (v));
8163 do_vfp_nsyn_opcode ("fconstd");
8164 return TRUE;
8165 }
8335d6aa 8166 }
5fc177c8 8167#endif
8335d6aa
JW
8168 }
8169 }
8170
8171 if (add_to_lit_pool ((!inst.operands[i].isvec
8172 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8173 return TRUE;
8174
8175 inst.operands[1].reg = REG_PC;
8176 inst.operands[1].isreg = 1;
8177 inst.operands[1].preind = 1;
8178 inst.reloc.pc_rel = 1;
8179 inst.reloc.type = (thumb_p
8180 ? BFD_RELOC_ARM_THUMB_OFFSET
8181 : (mode_3
8182 ? BFD_RELOC_ARM_HWLITERAL
8183 : BFD_RELOC_ARM_LITERAL));
8184 return FALSE;
8185}
8186
8187/* inst.operands[i] was set up by parse_address. Encode it into an
8188 ARM-format instruction. Reject all forms which cannot be encoded
8189 into a coprocessor load/store instruction. If wb_ok is false,
8190 reject use of writeback; if unind_ok is false, reject use of
8191 unindexed addressing. If reloc_override is not 0, use it instead
8192 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8193 (in which case it is preserved). */
8194
8195static int
8196encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8197{
8198 if (!inst.operands[i].isreg)
8199 {
99b2a2dd
NC
8200 /* PR 18256 */
8201 if (! inst.operands[0].isvec)
8202 {
8203 inst.error = _("invalid co-processor operand");
8204 return FAIL;
8205 }
8335d6aa
JW
8206 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8207 return SUCCESS;
8208 }
8209
8210 inst.instruction |= inst.operands[i].reg << 16;
8211
8212 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8213
8214 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8215 {
8216 gas_assert (!inst.operands[i].writeback);
8217 if (!unind_ok)
8218 {
8219 inst.error = _("instruction does not support unindexed addressing");
8220 return FAIL;
8221 }
8222 inst.instruction |= inst.operands[i].imm;
8223 inst.instruction |= INDEX_UP;
8224 return SUCCESS;
8225 }
8226
8227 if (inst.operands[i].preind)
8228 inst.instruction |= PRE_INDEX;
8229
8230 if (inst.operands[i].writeback)
09d92015 8231 {
8335d6aa 8232 if (inst.operands[i].reg == REG_PC)
c19d1205 8233 {
8335d6aa
JW
8234 inst.error = _("pc may not be used with write-back");
8235 return FAIL;
c19d1205 8236 }
8335d6aa 8237 if (!wb_ok)
c19d1205 8238 {
8335d6aa
JW
8239 inst.error = _("instruction does not support writeback");
8240 return FAIL;
c19d1205 8241 }
8335d6aa 8242 inst.instruction |= WRITE_BACK;
09d92015
MM
8243 }
8244
8335d6aa
JW
8245 if (reloc_override)
8246 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8247 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8248 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8249 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8250 {
8335d6aa
JW
8251 if (thumb_mode)
8252 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8253 else
8254 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8255 }
8335d6aa
JW
8256
8257 /* Prefer + for zero encoded value. */
8258 if (!inst.operands[i].negative)
8259 inst.instruction |= INDEX_UP;
8260
8261 return SUCCESS;
09d92015
MM
8262}
8263
5f4273c7 8264/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8265 First some generics; their names are taken from the conventional
8266 bit positions for register arguments in ARM format instructions. */
09d92015 8267
a737bd4d 8268static void
c19d1205 8269do_noargs (void)
09d92015 8270{
c19d1205 8271}
a737bd4d 8272
c19d1205
ZW
8273static void
8274do_rd (void)
8275{
8276 inst.instruction |= inst.operands[0].reg << 12;
8277}
a737bd4d 8278
16a1fa25
TP
8279static void
8280do_rn (void)
8281{
8282 inst.instruction |= inst.operands[0].reg << 16;
8283}
8284
c19d1205
ZW
8285static void
8286do_rd_rm (void)
8287{
8288 inst.instruction |= inst.operands[0].reg << 12;
8289 inst.instruction |= inst.operands[1].reg;
8290}
09d92015 8291
9eb6c0f1
MGD
8292static void
8293do_rm_rn (void)
8294{
8295 inst.instruction |= inst.operands[0].reg;
8296 inst.instruction |= inst.operands[1].reg << 16;
8297}
8298
c19d1205
ZW
8299static void
8300do_rd_rn (void)
8301{
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 inst.instruction |= inst.operands[1].reg << 16;
8304}
a737bd4d 8305
c19d1205
ZW
8306static void
8307do_rn_rd (void)
8308{
8309 inst.instruction |= inst.operands[0].reg << 16;
8310 inst.instruction |= inst.operands[1].reg << 12;
8311}
09d92015 8312
4ed7ed8d
TP
8313static void
8314do_tt (void)
8315{
8316 inst.instruction |= inst.operands[0].reg << 8;
8317 inst.instruction |= inst.operands[1].reg << 16;
8318}
8319
59d09be6
MGD
8320static bfd_boolean
8321check_obsolete (const arm_feature_set *feature, const char *msg)
8322{
8323 if (ARM_CPU_IS_ANY (cpu_variant))
8324 {
5c3696f8 8325 as_tsktsk ("%s", msg);
59d09be6
MGD
8326 return TRUE;
8327 }
8328 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8329 {
8330 as_bad ("%s", msg);
8331 return TRUE;
8332 }
8333
8334 return FALSE;
8335}
8336
c19d1205
ZW
8337static void
8338do_rd_rm_rn (void)
8339{
9a64e435 8340 unsigned Rn = inst.operands[2].reg;
708587a4 8341 /* Enforce restrictions on SWP instruction. */
9a64e435 8342 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8343 {
8344 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8345 _("Rn must not overlap other operands"));
8346
59d09be6
MGD
8347 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8348 */
8349 if (!check_obsolete (&arm_ext_v8,
8350 _("swp{b} use is obsoleted for ARMv8 and later"))
8351 && warn_on_deprecated
8352 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8353 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8354 }
59d09be6 8355
c19d1205
ZW
8356 inst.instruction |= inst.operands[0].reg << 12;
8357 inst.instruction |= inst.operands[1].reg;
9a64e435 8358 inst.instruction |= Rn << 16;
c19d1205 8359}
09d92015 8360
c19d1205
ZW
8361static void
8362do_rd_rn_rm (void)
8363{
8364 inst.instruction |= inst.operands[0].reg << 12;
8365 inst.instruction |= inst.operands[1].reg << 16;
8366 inst.instruction |= inst.operands[2].reg;
8367}
a737bd4d 8368
c19d1205
ZW
8369static void
8370do_rm_rd_rn (void)
8371{
5be8be5d
DG
8372 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8373 constraint (((inst.reloc.exp.X_op != O_constant
8374 && inst.reloc.exp.X_op != O_illegal)
8375 || inst.reloc.exp.X_add_number != 0),
8376 BAD_ADDR_MODE);
c19d1205
ZW
8377 inst.instruction |= inst.operands[0].reg;
8378 inst.instruction |= inst.operands[1].reg << 12;
8379 inst.instruction |= inst.operands[2].reg << 16;
8380}
09d92015 8381
c19d1205
ZW
8382static void
8383do_imm0 (void)
8384{
8385 inst.instruction |= inst.operands[0].imm;
8386}
09d92015 8387
c19d1205
ZW
8388static void
8389do_rd_cpaddr (void)
8390{
8391 inst.instruction |= inst.operands[0].reg << 12;
8392 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 8393}
a737bd4d 8394
c19d1205
ZW
8395/* ARM instructions, in alphabetical order by function name (except
8396 that wrapper functions appear immediately after the function they
8397 wrap). */
09d92015 8398
c19d1205
ZW
8399/* This is a pseudo-op of the form "adr rd, label" to be converted
8400 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
8401
8402static void
c19d1205 8403do_adr (void)
09d92015 8404{
c19d1205 8405 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8406
c19d1205
ZW
8407 /* Frag hacking will turn this into a sub instruction if the offset turns
8408 out to be negative. */
8409 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 8410 inst.reloc.pc_rel = 1;
2fc8bdac 8411 inst.reloc.exp.X_add_number -= 8;
52a86f84
NC
8412
8413 if (inst.reloc.exp.X_op == O_symbol
8414 && inst.reloc.exp.X_add_symbol != NULL
8415 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8416 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
0198d5e6 8417 inst.reloc.exp.X_add_number += 1;
c19d1205 8418}
b99bd4ef 8419
c19d1205
ZW
8420/* This is a pseudo-op of the form "adrl rd, label" to be converted
8421 into a relative address of the form:
8422 add rd, pc, #low(label-.-8)"
8423 add rd, rd, #high(label-.-8)" */
b99bd4ef 8424
c19d1205
ZW
8425static void
8426do_adrl (void)
8427{
8428 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 8429
c19d1205
ZW
8430 /* Frag hacking will turn this into a sub instruction if the offset turns
8431 out to be negative. */
8432 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
8433 inst.reloc.pc_rel = 1;
8434 inst.size = INSN_SIZE * 2;
2fc8bdac 8435 inst.reloc.exp.X_add_number -= 8;
52a86f84
NC
8436
8437 if (inst.reloc.exp.X_op == O_symbol
8438 && inst.reloc.exp.X_add_symbol != NULL
8439 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8440 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
0198d5e6 8441 inst.reloc.exp.X_add_number += 1;
b99bd4ef
NC
8442}
8443
b99bd4ef 8444static void
c19d1205 8445do_arit (void)
b99bd4ef 8446{
a9f02af8
MG
8447 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8448 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8449 THUMB1_RELOC_ONLY);
c19d1205
ZW
8450 if (!inst.operands[1].present)
8451 inst.operands[1].reg = inst.operands[0].reg;
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg << 16;
8454 encode_arm_shifter_operand (2);
8455}
b99bd4ef 8456
62b3e311
PB
8457static void
8458do_barrier (void)
8459{
8460 if (inst.operands[0].present)
ccb84d65 8461 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
8462 else
8463 inst.instruction |= 0xf;
8464}
8465
c19d1205
ZW
8466static void
8467do_bfc (void)
8468{
8469 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8470 constraint (msb > 32, _("bit-field extends past end of register"));
8471 /* The instruction encoding stores the LSB and MSB,
8472 not the LSB and width. */
8473 inst.instruction |= inst.operands[0].reg << 12;
8474 inst.instruction |= inst.operands[1].imm << 7;
8475 inst.instruction |= (msb - 1) << 16;
8476}
b99bd4ef 8477
c19d1205
ZW
8478static void
8479do_bfi (void)
8480{
8481 unsigned int msb;
b99bd4ef 8482
c19d1205
ZW
8483 /* #0 in second position is alternative syntax for bfc, which is
8484 the same instruction but with REG_PC in the Rm field. */
8485 if (!inst.operands[1].isreg)
8486 inst.operands[1].reg = REG_PC;
b99bd4ef 8487
c19d1205
ZW
8488 msb = inst.operands[2].imm + inst.operands[3].imm;
8489 constraint (msb > 32, _("bit-field extends past end of register"));
8490 /* The instruction encoding stores the LSB and MSB,
8491 not the LSB and width. */
8492 inst.instruction |= inst.operands[0].reg << 12;
8493 inst.instruction |= inst.operands[1].reg;
8494 inst.instruction |= inst.operands[2].imm << 7;
8495 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
8496}
8497
b99bd4ef 8498static void
c19d1205 8499do_bfx (void)
b99bd4ef 8500{
c19d1205
ZW
8501 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8502 _("bit-field extends past end of register"));
8503 inst.instruction |= inst.operands[0].reg << 12;
8504 inst.instruction |= inst.operands[1].reg;
8505 inst.instruction |= inst.operands[2].imm << 7;
8506 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8507}
09d92015 8508
c19d1205
ZW
8509/* ARM V5 breakpoint instruction (argument parse)
8510 BKPT <16 bit unsigned immediate>
8511 Instruction is not conditional.
8512 The bit pattern given in insns[] has the COND_ALWAYS condition,
8513 and it is an error if the caller tried to override that. */
b99bd4ef 8514
c19d1205
ZW
8515static void
8516do_bkpt (void)
8517{
8518 /* Top 12 of 16 bits to bits 19:8. */
8519 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 8520
c19d1205
ZW
8521 /* Bottom 4 of 16 bits to bits 3:0. */
8522 inst.instruction |= inst.operands[0].imm & 0xf;
8523}
09d92015 8524
c19d1205
ZW
8525static void
8526encode_branch (int default_reloc)
8527{
8528 if (inst.operands[0].hasreloc)
8529 {
0855e32b
NS
8530 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8531 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8532 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8533 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8534 ? BFD_RELOC_ARM_PLT32
8535 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 8536 }
b99bd4ef 8537 else
9ae92b05 8538 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 8539 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8540}
8541
b99bd4ef 8542static void
c19d1205 8543do_branch (void)
b99bd4ef 8544{
39b41c9c
PB
8545#ifdef OBJ_ELF
8546 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8547 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8548 else
8549#endif
8550 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8551}
8552
8553static void
8554do_bl (void)
8555{
8556#ifdef OBJ_ELF
8557 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8558 {
8559 if (inst.cond == COND_ALWAYS)
8560 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8561 else
8562 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8563 }
8564 else
8565#endif
8566 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 8567}
b99bd4ef 8568
c19d1205
ZW
8569/* ARM V5 branch-link-exchange instruction (argument parse)
8570 BLX <target_addr> ie BLX(1)
8571 BLX{<condition>} <Rm> ie BLX(2)
8572 Unfortunately, there are two different opcodes for this mnemonic.
8573 So, the insns[].value is not used, and the code here zaps values
8574 into inst.instruction.
8575 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 8576
c19d1205
ZW
8577static void
8578do_blx (void)
8579{
8580 if (inst.operands[0].isreg)
b99bd4ef 8581 {
c19d1205
ZW
8582 /* Arg is a register; the opcode provided by insns[] is correct.
8583 It is not illegal to do "blx pc", just useless. */
8584 if (inst.operands[0].reg == REG_PC)
8585 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 8586
c19d1205
ZW
8587 inst.instruction |= inst.operands[0].reg;
8588 }
8589 else
b99bd4ef 8590 {
c19d1205 8591 /* Arg is an address; this instruction cannot be executed
267bf995
RR
8592 conditionally, and the opcode must be adjusted.
8593 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8594 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 8595 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 8596 inst.instruction = 0xfa000000;
267bf995 8597 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 8598 }
c19d1205
ZW
8599}
8600
8601static void
8602do_bx (void)
8603{
845b51d6
PB
8604 bfd_boolean want_reloc;
8605
c19d1205
ZW
8606 if (inst.operands[0].reg == REG_PC)
8607 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 8608
c19d1205 8609 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
8610 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8611 it is for ARMv4t or earlier. */
8612 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8613 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8614 want_reloc = TRUE;
8615
5ad34203 8616#ifdef OBJ_ELF
845b51d6 8617 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 8618#endif
584206db 8619 want_reloc = FALSE;
845b51d6
PB
8620
8621 if (want_reloc)
8622 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
8623}
8624
c19d1205
ZW
8625
8626/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
8627
8628static void
c19d1205 8629do_bxj (void)
a737bd4d 8630{
c19d1205
ZW
8631 if (inst.operands[0].reg == REG_PC)
8632 as_tsktsk (_("use of r15 in bxj is not really useful"));
8633
8634 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
8635}
8636
c19d1205
ZW
8637/* Co-processor data operation:
8638 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8639 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8640static void
8641do_cdp (void)
8642{
8643 inst.instruction |= inst.operands[0].reg << 8;
8644 inst.instruction |= inst.operands[1].imm << 20;
8645 inst.instruction |= inst.operands[2].reg << 12;
8646 inst.instruction |= inst.operands[3].reg << 16;
8647 inst.instruction |= inst.operands[4].reg;
8648 inst.instruction |= inst.operands[5].imm << 5;
8649}
a737bd4d
NC
8650
8651static void
c19d1205 8652do_cmp (void)
a737bd4d 8653{
c19d1205
ZW
8654 inst.instruction |= inst.operands[0].reg << 16;
8655 encode_arm_shifter_operand (1);
a737bd4d
NC
8656}
8657
c19d1205
ZW
8658/* Transfer between coprocessor and ARM registers.
8659 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8660 MRC2
8661 MCR{cond}
8662 MCR2
8663
8664 No special properties. */
09d92015 8665
dcbd0d71
MGD
8666struct deprecated_coproc_regs_s
8667{
8668 unsigned cp;
8669 int opc1;
8670 unsigned crn;
8671 unsigned crm;
8672 int opc2;
8673 arm_feature_set deprecated;
8674 arm_feature_set obsoleted;
8675 const char *dep_msg;
8676 const char *obs_msg;
8677};
8678
8679#define DEPR_ACCESS_V8 \
8680 N_("This coprocessor register access is deprecated in ARMv8")
8681
8682/* Table of all deprecated coprocessor registers. */
8683static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8684{
8685 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 8686 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8687 DEPR_ACCESS_V8, NULL},
8688 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 8689 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8690 DEPR_ACCESS_V8, NULL},
8691 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 8692 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8693 DEPR_ACCESS_V8, NULL},
8694 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 8695 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8696 DEPR_ACCESS_V8, NULL},
8697 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 8698 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
8699 DEPR_ACCESS_V8, NULL},
8700};
8701
8702#undef DEPR_ACCESS_V8
8703
8704static const size_t deprecated_coproc_reg_count =
8705 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8706
09d92015 8707static void
c19d1205 8708do_co_reg (void)
09d92015 8709{
fdfde340 8710 unsigned Rd;
dcbd0d71 8711 size_t i;
fdfde340
JM
8712
8713 Rd = inst.operands[2].reg;
8714 if (thumb_mode)
8715 {
8716 if (inst.instruction == 0xee000010
8717 || inst.instruction == 0xfe000010)
8718 /* MCR, MCR2 */
8719 reject_bad_reg (Rd);
5c8ed6a4 8720 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
8721 /* MRC, MRC2 */
8722 constraint (Rd == REG_SP, BAD_SP);
8723 }
8724 else
8725 {
8726 /* MCR */
8727 if (inst.instruction == 0xe000010)
8728 constraint (Rd == REG_PC, BAD_PC);
8729 }
8730
dcbd0d71
MGD
8731 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8732 {
8733 const struct deprecated_coproc_regs_s *r =
8734 deprecated_coproc_regs + i;
8735
8736 if (inst.operands[0].reg == r->cp
8737 && inst.operands[1].imm == r->opc1
8738 && inst.operands[3].reg == r->crn
8739 && inst.operands[4].reg == r->crm
8740 && inst.operands[5].imm == r->opc2)
8741 {
b10bf8c5 8742 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 8743 && warn_on_deprecated
dcbd0d71 8744 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 8745 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
8746 }
8747 }
fdfde340 8748
c19d1205
ZW
8749 inst.instruction |= inst.operands[0].reg << 8;
8750 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 8751 inst.instruction |= Rd << 12;
c19d1205
ZW
8752 inst.instruction |= inst.operands[3].reg << 16;
8753 inst.instruction |= inst.operands[4].reg;
8754 inst.instruction |= inst.operands[5].imm << 5;
8755}
09d92015 8756
c19d1205
ZW
8757/* Transfer between coprocessor register and pair of ARM registers.
8758 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8759 MCRR2
8760 MRRC{cond}
8761 MRRC2
b99bd4ef 8762
c19d1205 8763 Two XScale instructions are special cases of these:
09d92015 8764
c19d1205
ZW
8765 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8766 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 8767
5f4273c7 8768 Result unpredictable if Rd or Rn is R15. */
a737bd4d 8769
c19d1205
ZW
8770static void
8771do_co_reg2c (void)
8772{
fdfde340
JM
8773 unsigned Rd, Rn;
8774
8775 Rd = inst.operands[2].reg;
8776 Rn = inst.operands[3].reg;
8777
8778 if (thumb_mode)
8779 {
8780 reject_bad_reg (Rd);
8781 reject_bad_reg (Rn);
8782 }
8783 else
8784 {
8785 constraint (Rd == REG_PC, BAD_PC);
8786 constraint (Rn == REG_PC, BAD_PC);
8787 }
8788
873f10f0
TC
8789 /* Only check the MRRC{2} variants. */
8790 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8791 {
8792 /* If Rd == Rn, error that the operation is
8793 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8794 constraint (Rd == Rn, BAD_OVERLAP);
8795 }
8796
c19d1205
ZW
8797 inst.instruction |= inst.operands[0].reg << 8;
8798 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
8799 inst.instruction |= Rd << 12;
8800 inst.instruction |= Rn << 16;
c19d1205 8801 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
8802}
8803
c19d1205
ZW
8804static void
8805do_cpsi (void)
8806{
8807 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
8808 if (inst.operands[1].present)
8809 {
8810 inst.instruction |= CPSI_MMOD;
8811 inst.instruction |= inst.operands[1].imm;
8812 }
c19d1205 8813}
b99bd4ef 8814
62b3e311
PB
8815static void
8816do_dbg (void)
8817{
8818 inst.instruction |= inst.operands[0].imm;
8819}
8820
eea54501
MGD
8821static void
8822do_div (void)
8823{
8824 unsigned Rd, Rn, Rm;
8825
8826 Rd = inst.operands[0].reg;
8827 Rn = (inst.operands[1].present
8828 ? inst.operands[1].reg : Rd);
8829 Rm = inst.operands[2].reg;
8830
8831 constraint ((Rd == REG_PC), BAD_PC);
8832 constraint ((Rn == REG_PC), BAD_PC);
8833 constraint ((Rm == REG_PC), BAD_PC);
8834
8835 inst.instruction |= Rd << 16;
8836 inst.instruction |= Rn << 0;
8837 inst.instruction |= Rm << 8;
8838}
8839
b99bd4ef 8840static void
c19d1205 8841do_it (void)
b99bd4ef 8842{
c19d1205 8843 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
8844 process it to do the validation as if in
8845 thumb mode, just in case the code gets
8846 assembled for thumb using the unified syntax. */
8847
c19d1205 8848 inst.size = 0;
e07e6e58
NC
8849 if (unified_syntax)
8850 {
8851 set_it_insn_type (IT_INSN);
8852 now_it.mask = (inst.instruction & 0xf) | 0x10;
8853 now_it.cc = inst.operands[0].imm;
8854 }
09d92015 8855}
b99bd4ef 8856
6530b175
NC
8857/* If there is only one register in the register list,
8858 then return its register number. Otherwise return -1. */
8859static int
8860only_one_reg_in_list (int range)
8861{
8862 int i = ffs (range) - 1;
8863 return (i > 15 || range != (1 << i)) ? -1 : i;
8864}
8865
09d92015 8866static void
6530b175 8867encode_ldmstm(int from_push_pop_mnem)
ea6ef066 8868{
c19d1205
ZW
8869 int base_reg = inst.operands[0].reg;
8870 int range = inst.operands[1].imm;
6530b175 8871 int one_reg;
ea6ef066 8872
c19d1205
ZW
8873 inst.instruction |= base_reg << 16;
8874 inst.instruction |= range;
ea6ef066 8875
c19d1205
ZW
8876 if (inst.operands[1].writeback)
8877 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 8878
c19d1205 8879 if (inst.operands[0].writeback)
ea6ef066 8880 {
c19d1205
ZW
8881 inst.instruction |= WRITE_BACK;
8882 /* Check for unpredictable uses of writeback. */
8883 if (inst.instruction & LOAD_BIT)
09d92015 8884 {
c19d1205
ZW
8885 /* Not allowed in LDM type 2. */
8886 if ((inst.instruction & LDM_TYPE_2_OR_3)
8887 && ((range & (1 << REG_PC)) == 0))
8888 as_warn (_("writeback of base register is UNPREDICTABLE"));
8889 /* Only allowed if base reg not in list for other types. */
8890 else if (range & (1 << base_reg))
8891 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8892 }
8893 else /* STM. */
8894 {
8895 /* Not allowed for type 2. */
8896 if (inst.instruction & LDM_TYPE_2_OR_3)
8897 as_warn (_("writeback of base register is UNPREDICTABLE"));
8898 /* Only allowed if base reg not in list, or first in list. */
8899 else if ((range & (1 << base_reg))
8900 && (range & ((1 << base_reg) - 1)))
8901 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 8902 }
ea6ef066 8903 }
6530b175
NC
8904
8905 /* If PUSH/POP has only one register, then use the A2 encoding. */
8906 one_reg = only_one_reg_in_list (range);
8907 if (from_push_pop_mnem && one_reg >= 0)
8908 {
8909 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8910
4f588891
NC
8911 if (is_push && one_reg == 13 /* SP */)
8912 /* PR 22483: The A2 encoding cannot be used when
8913 pushing the stack pointer as this is UNPREDICTABLE. */
8914 return;
8915
6530b175
NC
8916 inst.instruction &= A_COND_MASK;
8917 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8918 inst.instruction |= one_reg << 12;
8919 }
8920}
8921
8922static void
8923do_ldmstm (void)
8924{
8925 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
8926}
8927
c19d1205
ZW
8928/* ARMv5TE load-consecutive (argument parse)
8929 Mode is like LDRH.
8930
8931 LDRccD R, mode
8932 STRccD R, mode. */
8933
a737bd4d 8934static void
c19d1205 8935do_ldrd (void)
a737bd4d 8936{
c19d1205 8937 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8938 _("first transfer register must be even"));
c19d1205
ZW
8939 constraint (inst.operands[1].present
8940 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8941 _("can only transfer two consecutive registers"));
c19d1205
ZW
8942 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8943 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8944
c19d1205
ZW
8945 if (!inst.operands[1].present)
8946 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8947
c56791bb
RE
8948 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8949 register and the first register written; we have to diagnose
8950 overlap between the base and the second register written here. */
ea6ef066 8951
c56791bb
RE
8952 if (inst.operands[2].reg == inst.operands[1].reg
8953 && (inst.operands[2].writeback || inst.operands[2].postind))
8954 as_warn (_("base register written back, and overlaps "
8955 "second transfer register"));
b05fe5cf 8956
c56791bb
RE
8957 if (!(inst.instruction & V4_STR_BIT))
8958 {
c19d1205 8959 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8960 destination (even if not write-back). */
8961 if (inst.operands[2].immisreg
8962 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8963 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8964 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8965 }
c19d1205
ZW
8966 inst.instruction |= inst.operands[0].reg << 12;
8967 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8968}
8969
8970static void
c19d1205 8971do_ldrex (void)
b05fe5cf 8972{
c19d1205
ZW
8973 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8974 || inst.operands[1].postind || inst.operands[1].writeback
8975 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8976 || inst.operands[1].negative
8977 /* This can arise if the programmer has written
8978 strex rN, rM, foo
8979 or if they have mistakenly used a register name as the last
8980 operand, eg:
8981 strex rN, rM, rX
8982 It is very difficult to distinguish between these two cases
8983 because "rX" might actually be a label. ie the register
8984 name has been occluded by a symbol of the same name. So we
8985 just generate a general 'bad addressing mode' type error
8986 message and leave it up to the programmer to discover the
8987 true cause and fix their mistake. */
8988 || (inst.operands[1].reg == REG_PC),
8989 BAD_ADDR_MODE);
b05fe5cf 8990
c19d1205
ZW
8991 constraint (inst.reloc.exp.X_op != O_constant
8992 || inst.reloc.exp.X_add_number != 0,
8993 _("offset must be zero in ARM encoding"));
b05fe5cf 8994
5be8be5d
DG
8995 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8996
c19d1205
ZW
8997 inst.instruction |= inst.operands[0].reg << 12;
8998 inst.instruction |= inst.operands[1].reg << 16;
8999 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9000}
9001
9002static void
c19d1205 9003do_ldrexd (void)
b05fe5cf 9004{
c19d1205
ZW
9005 constraint (inst.operands[0].reg % 2 != 0,
9006 _("even register required"));
9007 constraint (inst.operands[1].present
9008 && inst.operands[1].reg != inst.operands[0].reg + 1,
9009 _("can only load two consecutive registers"));
9010 /* If op 1 were present and equal to PC, this function wouldn't
9011 have been called in the first place. */
9012 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9013
c19d1205
ZW
9014 inst.instruction |= inst.operands[0].reg << 12;
9015 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9016}
9017
1be5fd2e
NC
9018/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9019 which is not a multiple of four is UNPREDICTABLE. */
9020static void
9021check_ldr_r15_aligned (void)
9022{
9023 constraint (!(inst.operands[1].immisreg)
9024 && (inst.operands[0].reg == REG_PC
9025 && inst.operands[1].reg == REG_PC
9026 && (inst.reloc.exp.X_add_number & 0x3)),
de194d85 9027 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9028}
9029
b05fe5cf 9030static void
c19d1205 9031do_ldst (void)
b05fe5cf 9032{
c19d1205
ZW
9033 inst.instruction |= inst.operands[0].reg << 12;
9034 if (!inst.operands[1].isreg)
8335d6aa 9035 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9036 return;
c19d1205 9037 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9038 check_ldr_r15_aligned ();
b05fe5cf
ZW
9039}
9040
9041static void
c19d1205 9042do_ldstt (void)
b05fe5cf 9043{
c19d1205
ZW
9044 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9045 reject [Rn,...]. */
9046 if (inst.operands[1].preind)
b05fe5cf 9047 {
bd3ba5d1
NC
9048 constraint (inst.reloc.exp.X_op != O_constant
9049 || inst.reloc.exp.X_add_number != 0,
c19d1205 9050 _("this instruction requires a post-indexed address"));
b05fe5cf 9051
c19d1205
ZW
9052 inst.operands[1].preind = 0;
9053 inst.operands[1].postind = 1;
9054 inst.operands[1].writeback = 1;
b05fe5cf 9055 }
c19d1205
ZW
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9058}
b05fe5cf 9059
c19d1205 9060/* Halfword and signed-byte load/store operations. */
b05fe5cf 9061
c19d1205
ZW
9062static void
9063do_ldstv4 (void)
9064{
ff4a8d2b 9065 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9066 inst.instruction |= inst.operands[0].reg << 12;
9067 if (!inst.operands[1].isreg)
8335d6aa 9068 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9069 return;
c19d1205 9070 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9071}
9072
9073static void
c19d1205 9074do_ldsttv4 (void)
b05fe5cf 9075{
c19d1205
ZW
9076 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9077 reject [Rn,...]. */
9078 if (inst.operands[1].preind)
b05fe5cf 9079 {
bd3ba5d1
NC
9080 constraint (inst.reloc.exp.X_op != O_constant
9081 || inst.reloc.exp.X_add_number != 0,
c19d1205 9082 _("this instruction requires a post-indexed address"));
b05fe5cf 9083
c19d1205
ZW
9084 inst.operands[1].preind = 0;
9085 inst.operands[1].postind = 1;
9086 inst.operands[1].writeback = 1;
b05fe5cf 9087 }
c19d1205
ZW
9088 inst.instruction |= inst.operands[0].reg << 12;
9089 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9090}
b05fe5cf 9091
c19d1205
ZW
9092/* Co-processor register load/store.
9093 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9094static void
9095do_lstc (void)
9096{
9097 inst.instruction |= inst.operands[0].reg << 8;
9098 inst.instruction |= inst.operands[1].reg << 12;
9099 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9100}
9101
b05fe5cf 9102static void
c19d1205 9103do_mlas (void)
b05fe5cf 9104{
8fb9d7b9 9105 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9106 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9107 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9108 && !(inst.instruction & 0x00400000))
8fb9d7b9 9109 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9110
c19d1205
ZW
9111 inst.instruction |= inst.operands[0].reg << 16;
9112 inst.instruction |= inst.operands[1].reg;
9113 inst.instruction |= inst.operands[2].reg << 8;
9114 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9115}
b05fe5cf 9116
c19d1205
ZW
9117static void
9118do_mov (void)
9119{
a9f02af8
MG
9120 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9121 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9122 THUMB1_RELOC_ONLY);
c19d1205
ZW
9123 inst.instruction |= inst.operands[0].reg << 12;
9124 encode_arm_shifter_operand (1);
9125}
b05fe5cf 9126
c19d1205
ZW
9127/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9128static void
9129do_mov16 (void)
9130{
b6895b4f
PB
9131 bfd_vma imm;
9132 bfd_boolean top;
9133
9134 top = (inst.instruction & 0x00400000) != 0;
9135 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
33eaf5de 9136 _(":lower16: not allowed in this instruction"));
b6895b4f 9137 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
33eaf5de 9138 _(":upper16: not allowed in this instruction"));
c19d1205 9139 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
9140 if (inst.reloc.type == BFD_RELOC_UNUSED)
9141 {
9142 imm = inst.reloc.exp.X_add_number;
9143 /* The value is in two pieces: 0:11, 16:19. */
9144 inst.instruction |= (imm & 0x00000fff);
9145 inst.instruction |= (imm & 0x0000f000) << 4;
9146 }
b05fe5cf 9147}
b99bd4ef 9148
037e8744
JB
9149static int
9150do_vfp_nsyn_mrs (void)
9151{
9152 if (inst.operands[0].isvec)
9153 {
9154 if (inst.operands[1].reg != 1)
477330fc 9155 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9156 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9157 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9158 do_vfp_nsyn_opcode ("fmstat");
9159 }
9160 else if (inst.operands[1].isvec)
9161 do_vfp_nsyn_opcode ("fmrx");
9162 else
9163 return FAIL;
5f4273c7 9164
037e8744
JB
9165 return SUCCESS;
9166}
9167
9168static int
9169do_vfp_nsyn_msr (void)
9170{
9171 if (inst.operands[0].isvec)
9172 do_vfp_nsyn_opcode ("fmxr");
9173 else
9174 return FAIL;
9175
9176 return SUCCESS;
9177}
9178
f7c21dc7
NC
9179static void
9180do_vmrs (void)
9181{
9182 unsigned Rt = inst.operands[0].reg;
fa94de6b 9183
16d02dc9 9184 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9185 {
9186 inst.error = BAD_SP;
9187 return;
9188 }
9189
40c7d507
RR
9190 /* MVFR2 is only valid at ARMv8-A. */
9191 if (inst.operands[1].reg == 5)
9192 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9193 _(BAD_FPU));
9194
f7c21dc7 9195 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9196 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9197 {
9198 inst.error = BAD_PC;
9199 return;
9200 }
9201
16d02dc9
JB
9202 /* If we get through parsing the register name, we just insert the number
9203 generated into the instruction without further validation. */
9204 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9205 inst.instruction |= (Rt << 12);
9206}
9207
9208static void
9209do_vmsr (void)
9210{
9211 unsigned Rt = inst.operands[1].reg;
fa94de6b 9212
f7c21dc7
NC
9213 if (thumb_mode)
9214 reject_bad_reg (Rt);
9215 else if (Rt == REG_PC)
9216 {
9217 inst.error = BAD_PC;
9218 return;
9219 }
9220
40c7d507
RR
9221 /* MVFR2 is only valid for ARMv8-A. */
9222 if (inst.operands[0].reg == 5)
9223 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9224 _(BAD_FPU));
9225
16d02dc9
JB
9226 /* If we get through parsing the register name, we just insert the number
9227 generated into the instruction without further validation. */
9228 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9229 inst.instruction |= (Rt << 12);
9230}
9231
b99bd4ef 9232static void
c19d1205 9233do_mrs (void)
b99bd4ef 9234{
90ec0d68
MGD
9235 unsigned br;
9236
037e8744
JB
9237 if (do_vfp_nsyn_mrs () == SUCCESS)
9238 return;
9239
ff4a8d2b 9240 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9241 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9242
9243 if (inst.operands[1].isreg)
9244 {
9245 br = inst.operands[1].reg;
806ab1c0 9246 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9247 as_bad (_("bad register for mrs"));
9248 }
9249 else
9250 {
9251 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9252 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9253 != (PSR_c|PSR_f),
d2cd1205 9254 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9255 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9256 }
9257
9258 inst.instruction |= br;
c19d1205 9259}
b99bd4ef 9260
c19d1205
ZW
9261/* Two possible forms:
9262 "{C|S}PSR_<field>, Rm",
9263 "{C|S}PSR_f, #expression". */
b99bd4ef 9264
c19d1205
ZW
9265static void
9266do_msr (void)
9267{
037e8744
JB
9268 if (do_vfp_nsyn_msr () == SUCCESS)
9269 return;
9270
c19d1205
ZW
9271 inst.instruction |= inst.operands[0].imm;
9272 if (inst.operands[1].isreg)
9273 inst.instruction |= inst.operands[1].reg;
9274 else
b99bd4ef 9275 {
c19d1205
ZW
9276 inst.instruction |= INST_IMMEDIATE;
9277 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9278 inst.reloc.pc_rel = 0;
b99bd4ef 9279 }
b99bd4ef
NC
9280}
9281
c19d1205
ZW
9282static void
9283do_mul (void)
a737bd4d 9284{
ff4a8d2b
NC
9285 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9286
c19d1205
ZW
9287 if (!inst.operands[2].present)
9288 inst.operands[2].reg = inst.operands[0].reg;
9289 inst.instruction |= inst.operands[0].reg << 16;
9290 inst.instruction |= inst.operands[1].reg;
9291 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9292
8fb9d7b9
MS
9293 if (inst.operands[0].reg == inst.operands[1].reg
9294 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9295 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9296}
9297
c19d1205
ZW
9298/* Long Multiply Parser
9299 UMULL RdLo, RdHi, Rm, Rs
9300 SMULL RdLo, RdHi, Rm, Rs
9301 UMLAL RdLo, RdHi, Rm, Rs
9302 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9303
9304static void
c19d1205 9305do_mull (void)
b99bd4ef 9306{
c19d1205
ZW
9307 inst.instruction |= inst.operands[0].reg << 12;
9308 inst.instruction |= inst.operands[1].reg << 16;
9309 inst.instruction |= inst.operands[2].reg;
9310 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9311
682b27ad
PB
9312 /* rdhi and rdlo must be different. */
9313 if (inst.operands[0].reg == inst.operands[1].reg)
9314 as_tsktsk (_("rdhi and rdlo must be different"));
9315
9316 /* rdhi, rdlo and rm must all be different before armv6. */
9317 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9318 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9319 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9320 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9321}
b99bd4ef 9322
c19d1205
ZW
9323static void
9324do_nop (void)
9325{
e7495e45
NS
9326 if (inst.operands[0].present
9327 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9328 {
9329 /* Architectural NOP hints are CPSR sets with no bits selected. */
9330 inst.instruction &= 0xf0000000;
e7495e45
NS
9331 inst.instruction |= 0x0320f000;
9332 if (inst.operands[0].present)
9333 inst.instruction |= inst.operands[0].imm;
c19d1205 9334 }
b99bd4ef
NC
9335}
9336
c19d1205
ZW
9337/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9338 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9339 Condition defaults to COND_ALWAYS.
9340 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9341
9342static void
c19d1205 9343do_pkhbt (void)
b99bd4ef 9344{
c19d1205
ZW
9345 inst.instruction |= inst.operands[0].reg << 12;
9346 inst.instruction |= inst.operands[1].reg << 16;
9347 inst.instruction |= inst.operands[2].reg;
9348 if (inst.operands[3].present)
9349 encode_arm_shift (3);
9350}
b99bd4ef 9351
c19d1205 9352/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9353
c19d1205
ZW
9354static void
9355do_pkhtb (void)
9356{
9357 if (!inst.operands[3].present)
b99bd4ef 9358 {
c19d1205
ZW
9359 /* If the shift specifier is omitted, turn the instruction
9360 into pkhbt rd, rm, rn. */
9361 inst.instruction &= 0xfff00010;
9362 inst.instruction |= inst.operands[0].reg << 12;
9363 inst.instruction |= inst.operands[1].reg;
9364 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9365 }
9366 else
9367 {
c19d1205
ZW
9368 inst.instruction |= inst.operands[0].reg << 12;
9369 inst.instruction |= inst.operands[1].reg << 16;
9370 inst.instruction |= inst.operands[2].reg;
9371 encode_arm_shift (3);
b99bd4ef
NC
9372 }
9373}
9374
c19d1205 9375/* ARMv5TE: Preload-Cache
60e5ef9f 9376 MP Extensions: Preload for write
c19d1205 9377
60e5ef9f 9378 PLD(W) <addr_mode>
c19d1205
ZW
9379
9380 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
9381
9382static void
c19d1205 9383do_pld (void)
b99bd4ef 9384{
c19d1205
ZW
9385 constraint (!inst.operands[0].isreg,
9386 _("'[' expected after PLD mnemonic"));
9387 constraint (inst.operands[0].postind,
9388 _("post-indexed expression used in preload instruction"));
9389 constraint (inst.operands[0].writeback,
9390 _("writeback used in preload instruction"));
9391 constraint (!inst.operands[0].preind,
9392 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
9393 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9394}
b99bd4ef 9395
62b3e311
PB
9396/* ARMv7: PLI <addr_mode> */
9397static void
9398do_pli (void)
9399{
9400 constraint (!inst.operands[0].isreg,
9401 _("'[' expected after PLI mnemonic"));
9402 constraint (inst.operands[0].postind,
9403 _("post-indexed expression used in preload instruction"));
9404 constraint (inst.operands[0].writeback,
9405 _("writeback used in preload instruction"));
9406 constraint (!inst.operands[0].preind,
9407 _("unindexed addressing used in preload instruction"));
9408 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9409 inst.instruction &= ~PRE_INDEX;
9410}
9411
c19d1205
ZW
9412static void
9413do_push_pop (void)
9414{
5e0d7f77
MP
9415 constraint (inst.operands[0].writeback,
9416 _("push/pop do not support {reglist}^"));
c19d1205
ZW
9417 inst.operands[1] = inst.operands[0];
9418 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9419 inst.operands[0].isreg = 1;
9420 inst.operands[0].writeback = 1;
9421 inst.operands[0].reg = REG_SP;
6530b175 9422 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 9423}
b99bd4ef 9424
c19d1205
ZW
9425/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9426 word at the specified address and the following word
9427 respectively.
9428 Unconditionally executed.
9429 Error if Rn is R15. */
b99bd4ef 9430
c19d1205
ZW
9431static void
9432do_rfe (void)
9433{
9434 inst.instruction |= inst.operands[0].reg << 16;
9435 if (inst.operands[0].writeback)
9436 inst.instruction |= WRITE_BACK;
9437}
b99bd4ef 9438
c19d1205 9439/* ARM V6 ssat (argument parse). */
b99bd4ef 9440
c19d1205
ZW
9441static void
9442do_ssat (void)
9443{
9444 inst.instruction |= inst.operands[0].reg << 12;
9445 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9446 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9447
c19d1205
ZW
9448 if (inst.operands[3].present)
9449 encode_arm_shift (3);
b99bd4ef
NC
9450}
9451
c19d1205 9452/* ARM V6 usat (argument parse). */
b99bd4ef
NC
9453
9454static void
c19d1205 9455do_usat (void)
b99bd4ef 9456{
c19d1205
ZW
9457 inst.instruction |= inst.operands[0].reg << 12;
9458 inst.instruction |= inst.operands[1].imm << 16;
9459 inst.instruction |= inst.operands[2].reg;
b99bd4ef 9460
c19d1205
ZW
9461 if (inst.operands[3].present)
9462 encode_arm_shift (3);
b99bd4ef
NC
9463}
9464
c19d1205 9465/* ARM V6 ssat16 (argument parse). */
09d92015
MM
9466
9467static void
c19d1205 9468do_ssat16 (void)
09d92015 9469{
c19d1205
ZW
9470 inst.instruction |= inst.operands[0].reg << 12;
9471 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9472 inst.instruction |= inst.operands[2].reg;
09d92015
MM
9473}
9474
c19d1205
ZW
9475static void
9476do_usat16 (void)
a737bd4d 9477{
c19d1205
ZW
9478 inst.instruction |= inst.operands[0].reg << 12;
9479 inst.instruction |= inst.operands[1].imm << 16;
9480 inst.instruction |= inst.operands[2].reg;
9481}
a737bd4d 9482
c19d1205
ZW
9483/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9484 preserving the other bits.
a737bd4d 9485
c19d1205
ZW
9486 setend <endian_specifier>, where <endian_specifier> is either
9487 BE or LE. */
a737bd4d 9488
c19d1205
ZW
9489static void
9490do_setend (void)
9491{
12e37cbc
MGD
9492 if (warn_on_deprecated
9493 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 9494 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 9495
c19d1205
ZW
9496 if (inst.operands[0].imm)
9497 inst.instruction |= 0x200;
a737bd4d
NC
9498}
9499
9500static void
c19d1205 9501do_shift (void)
a737bd4d 9502{
c19d1205
ZW
9503 unsigned int Rm = (inst.operands[1].present
9504 ? inst.operands[1].reg
9505 : inst.operands[0].reg);
a737bd4d 9506
c19d1205
ZW
9507 inst.instruction |= inst.operands[0].reg << 12;
9508 inst.instruction |= Rm;
9509 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 9510 {
c19d1205
ZW
9511 inst.instruction |= inst.operands[2].reg << 8;
9512 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
9513 /* PR 12854: Error on extraneous shifts. */
9514 constraint (inst.operands[2].shifted,
9515 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
9516 }
9517 else
c19d1205 9518 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
9519}
9520
09d92015 9521static void
3eb17e6b 9522do_smc (void)
09d92015 9523{
3eb17e6b 9524 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 9525 inst.reloc.pc_rel = 0;
09d92015
MM
9526}
9527
90ec0d68
MGD
9528static void
9529do_hvc (void)
9530{
9531 inst.reloc.type = BFD_RELOC_ARM_HVC;
9532 inst.reloc.pc_rel = 0;
9533}
9534
09d92015 9535static void
c19d1205 9536do_swi (void)
09d92015 9537{
c19d1205
ZW
9538 inst.reloc.type = BFD_RELOC_ARM_SWI;
9539 inst.reloc.pc_rel = 0;
09d92015
MM
9540}
9541
ddfded2f
MW
9542static void
9543do_setpan (void)
9544{
9545 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9546 _("selected processor does not support SETPAN instruction"));
9547
9548 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9549}
9550
9551static void
9552do_t_setpan (void)
9553{
9554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9555 _("selected processor does not support SETPAN instruction"));
9556
9557 inst.instruction |= (inst.operands[0].imm << 3);
9558}
9559
c19d1205
ZW
9560/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9561 SMLAxy{cond} Rd,Rm,Rs,Rn
9562 SMLAWy{cond} Rd,Rm,Rs,Rn
9563 Error if any register is R15. */
e16bb312 9564
c19d1205
ZW
9565static void
9566do_smla (void)
e16bb312 9567{
c19d1205
ZW
9568 inst.instruction |= inst.operands[0].reg << 16;
9569 inst.instruction |= inst.operands[1].reg;
9570 inst.instruction |= inst.operands[2].reg << 8;
9571 inst.instruction |= inst.operands[3].reg << 12;
9572}
a737bd4d 9573
c19d1205
ZW
9574/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9575 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9576 Error if any register is R15.
9577 Warning if Rdlo == Rdhi. */
a737bd4d 9578
c19d1205
ZW
9579static void
9580do_smlal (void)
9581{
9582 inst.instruction |= inst.operands[0].reg << 12;
9583 inst.instruction |= inst.operands[1].reg << 16;
9584 inst.instruction |= inst.operands[2].reg;
9585 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 9586
c19d1205
ZW
9587 if (inst.operands[0].reg == inst.operands[1].reg)
9588 as_tsktsk (_("rdhi and rdlo must be different"));
9589}
a737bd4d 9590
c19d1205
ZW
9591/* ARM V5E (El Segundo) signed-multiply (argument parse)
9592 SMULxy{cond} Rd,Rm,Rs
9593 Error if any register is R15. */
a737bd4d 9594
c19d1205
ZW
9595static void
9596do_smul (void)
9597{
9598 inst.instruction |= inst.operands[0].reg << 16;
9599 inst.instruction |= inst.operands[1].reg;
9600 inst.instruction |= inst.operands[2].reg << 8;
9601}
a737bd4d 9602
b6702015
PB
9603/* ARM V6 srs (argument parse). The variable fields in the encoding are
9604 the same for both ARM and Thumb-2. */
a737bd4d 9605
c19d1205
ZW
9606static void
9607do_srs (void)
9608{
b6702015
PB
9609 int reg;
9610
9611 if (inst.operands[0].present)
9612 {
9613 reg = inst.operands[0].reg;
fdfde340 9614 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
9615 }
9616 else
fdfde340 9617 reg = REG_SP;
b6702015
PB
9618
9619 inst.instruction |= reg << 16;
9620 inst.instruction |= inst.operands[1].imm;
9621 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
9622 inst.instruction |= WRITE_BACK;
9623}
a737bd4d 9624
c19d1205 9625/* ARM V6 strex (argument parse). */
a737bd4d 9626
c19d1205
ZW
9627static void
9628do_strex (void)
9629{
9630 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9631 || inst.operands[2].postind || inst.operands[2].writeback
9632 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
9633 || inst.operands[2].negative
9634 /* See comment in do_ldrex(). */
9635 || (inst.operands[2].reg == REG_PC),
9636 BAD_ADDR_MODE);
a737bd4d 9637
c19d1205
ZW
9638 constraint (inst.operands[0].reg == inst.operands[1].reg
9639 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 9640
c19d1205
ZW
9641 constraint (inst.reloc.exp.X_op != O_constant
9642 || inst.reloc.exp.X_add_number != 0,
9643 _("offset must be zero in ARM encoding"));
a737bd4d 9644
c19d1205
ZW
9645 inst.instruction |= inst.operands[0].reg << 12;
9646 inst.instruction |= inst.operands[1].reg;
9647 inst.instruction |= inst.operands[2].reg << 16;
9648 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
9649}
9650
877807f8
NC
9651static void
9652do_t_strexbh (void)
9653{
9654 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9655 || inst.operands[2].postind || inst.operands[2].writeback
9656 || inst.operands[2].immisreg || inst.operands[2].shifted
9657 || inst.operands[2].negative,
9658 BAD_ADDR_MODE);
9659
9660 constraint (inst.operands[0].reg == inst.operands[1].reg
9661 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9662
9663 do_rm_rd_rn ();
9664}
9665
e16bb312 9666static void
c19d1205 9667do_strexd (void)
e16bb312 9668{
c19d1205
ZW
9669 constraint (inst.operands[1].reg % 2 != 0,
9670 _("even register required"));
9671 constraint (inst.operands[2].present
9672 && inst.operands[2].reg != inst.operands[1].reg + 1,
9673 _("can only store two consecutive registers"));
9674 /* If op 2 were present and equal to PC, this function wouldn't
9675 have been called in the first place. */
9676 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 9677
c19d1205
ZW
9678 constraint (inst.operands[0].reg == inst.operands[1].reg
9679 || inst.operands[0].reg == inst.operands[1].reg + 1
9680 || inst.operands[0].reg == inst.operands[3].reg,
9681 BAD_OVERLAP);
e16bb312 9682
c19d1205
ZW
9683 inst.instruction |= inst.operands[0].reg << 12;
9684 inst.instruction |= inst.operands[1].reg;
9685 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
9686}
9687
9eb6c0f1
MGD
9688/* ARM V8 STRL. */
9689static void
4b8c8c02 9690do_stlex (void)
9eb6c0f1
MGD
9691{
9692 constraint (inst.operands[0].reg == inst.operands[1].reg
9693 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9694
9695 do_rd_rm_rn ();
9696}
9697
9698static void
4b8c8c02 9699do_t_stlex (void)
9eb6c0f1
MGD
9700{
9701 constraint (inst.operands[0].reg == inst.operands[1].reg
9702 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9703
9704 do_rm_rd_rn ();
9705}
9706
c19d1205
ZW
9707/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9708 extends it to 32-bits, and adds the result to a value in another
9709 register. You can specify a rotation by 0, 8, 16, or 24 bits
9710 before extracting the 16-bit value.
9711 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9712 Condition defaults to COND_ALWAYS.
9713 Error if any register uses R15. */
9714
e16bb312 9715static void
c19d1205 9716do_sxtah (void)
e16bb312 9717{
c19d1205
ZW
9718 inst.instruction |= inst.operands[0].reg << 12;
9719 inst.instruction |= inst.operands[1].reg << 16;
9720 inst.instruction |= inst.operands[2].reg;
9721 inst.instruction |= inst.operands[3].imm << 10;
9722}
e16bb312 9723
c19d1205 9724/* ARM V6 SXTH.
e16bb312 9725
c19d1205
ZW
9726 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9727 Condition defaults to COND_ALWAYS.
9728 Error if any register uses R15. */
e16bb312
NC
9729
9730static void
c19d1205 9731do_sxth (void)
e16bb312 9732{
c19d1205
ZW
9733 inst.instruction |= inst.operands[0].reg << 12;
9734 inst.instruction |= inst.operands[1].reg;
9735 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 9736}
c19d1205
ZW
9737\f
9738/* VFP instructions. In a logical order: SP variant first, monad
9739 before dyad, arithmetic then move then load/store. */
e16bb312
NC
9740
9741static void
c19d1205 9742do_vfp_sp_monadic (void)
e16bb312 9743{
5287ad62
JB
9744 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9745 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9746}
9747
9748static void
c19d1205 9749do_vfp_sp_dyadic (void)
e16bb312 9750{
5287ad62
JB
9751 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9752 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9753 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9754}
9755
9756static void
c19d1205 9757do_vfp_sp_compare_z (void)
e16bb312 9758{
5287ad62 9759 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
9760}
9761
9762static void
c19d1205 9763do_vfp_dp_sp_cvt (void)
e16bb312 9764{
5287ad62
JB
9765 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9766 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
9767}
9768
9769static void
c19d1205 9770do_vfp_sp_dp_cvt (void)
e16bb312 9771{
5287ad62
JB
9772 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9773 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
9774}
9775
9776static void
c19d1205 9777do_vfp_reg_from_sp (void)
e16bb312 9778{
c19d1205 9779 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 9780 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
9781}
9782
9783static void
c19d1205 9784do_vfp_reg2_from_sp2 (void)
e16bb312 9785{
c19d1205
ZW
9786 constraint (inst.operands[2].imm != 2,
9787 _("only two consecutive VFP SP registers allowed here"));
9788 inst.instruction |= inst.operands[0].reg << 12;
9789 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 9790 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
9791}
9792
9793static void
c19d1205 9794do_vfp_sp_from_reg (void)
e16bb312 9795{
5287ad62 9796 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 9797 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
9798}
9799
9800static void
c19d1205 9801do_vfp_sp2_from_reg2 (void)
e16bb312 9802{
c19d1205
ZW
9803 constraint (inst.operands[0].imm != 2,
9804 _("only two consecutive VFP SP registers allowed here"));
5287ad62 9805 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
9806 inst.instruction |= inst.operands[1].reg << 12;
9807 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
9808}
9809
9810static void
c19d1205 9811do_vfp_sp_ldst (void)
e16bb312 9812{
5287ad62 9813 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 9814 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9815}
9816
9817static void
c19d1205 9818do_vfp_dp_ldst (void)
e16bb312 9819{
5287ad62 9820 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 9821 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
9822}
9823
c19d1205 9824
e16bb312 9825static void
c19d1205 9826vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9827{
c19d1205
ZW
9828 if (inst.operands[0].writeback)
9829 inst.instruction |= WRITE_BACK;
9830 else
9831 constraint (ldstm_type != VFP_LDSTMIA,
9832 _("this addressing mode requires base-register writeback"));
9833 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9834 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 9835 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
9836}
9837
9838static void
c19d1205 9839vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 9840{
c19d1205 9841 int count;
e16bb312 9842
c19d1205
ZW
9843 if (inst.operands[0].writeback)
9844 inst.instruction |= WRITE_BACK;
9845 else
9846 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9847 _("this addressing mode requires base-register writeback"));
e16bb312 9848
c19d1205 9849 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 9850 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 9851
c19d1205
ZW
9852 count = inst.operands[1].imm << 1;
9853 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9854 count += 1;
e16bb312 9855
c19d1205 9856 inst.instruction |= count;
e16bb312
NC
9857}
9858
9859static void
c19d1205 9860do_vfp_sp_ldstmia (void)
e16bb312 9861{
c19d1205 9862 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9863}
9864
9865static void
c19d1205 9866do_vfp_sp_ldstmdb (void)
e16bb312 9867{
c19d1205 9868 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9869}
9870
9871static void
c19d1205 9872do_vfp_dp_ldstmia (void)
e16bb312 9873{
c19d1205 9874 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
9875}
9876
9877static void
c19d1205 9878do_vfp_dp_ldstmdb (void)
e16bb312 9879{
c19d1205 9880 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
9881}
9882
9883static void
c19d1205 9884do_vfp_xp_ldstmia (void)
e16bb312 9885{
c19d1205
ZW
9886 vfp_dp_ldstm (VFP_LDSTMIAX);
9887}
e16bb312 9888
c19d1205
ZW
9889static void
9890do_vfp_xp_ldstmdb (void)
9891{
9892 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 9893}
5287ad62
JB
9894
9895static void
9896do_vfp_dp_rd_rm (void)
9897{
9898 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9899 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9900}
9901
9902static void
9903do_vfp_dp_rn_rd (void)
9904{
9905 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9906 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9907}
9908
9909static void
9910do_vfp_dp_rd_rn (void)
9911{
9912 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9913 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9914}
9915
9916static void
9917do_vfp_dp_rd_rn_rm (void)
9918{
9919 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9920 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9921 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9922}
9923
9924static void
9925do_vfp_dp_rd (void)
9926{
9927 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9928}
9929
9930static void
9931do_vfp_dp_rm_rd_rn (void)
9932{
9933 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9934 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9935 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9936}
9937
9938/* VFPv3 instructions. */
9939static void
9940do_vfp_sp_const (void)
9941{
9942 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
9943 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9944 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9945}
9946
9947static void
9948do_vfp_dp_const (void)
9949{
9950 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9951 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9952 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9953}
9954
9955static void
9956vfp_conv (int srcsize)
9957{
5f1af56b
MGD
9958 int immbits = srcsize - inst.operands[1].imm;
9959
fa94de6b
RM
9960 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9961 {
5f1af56b 9962 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 9963 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
9964 inst.error = _("immediate value out of range, expected range [0, 16]");
9965 return;
9966 }
fa94de6b 9967 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9968 {
9969 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 9970 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
9971 inst.error = _("immediate value out of range, expected range [1, 32]");
9972 return;
9973 }
9974
5287ad62
JB
9975 inst.instruction |= (immbits & 1) << 5;
9976 inst.instruction |= (immbits >> 1);
9977}
9978
9979static void
9980do_vfp_sp_conv_16 (void)
9981{
9982 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9983 vfp_conv (16);
9984}
9985
9986static void
9987do_vfp_dp_conv_16 (void)
9988{
9989 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9990 vfp_conv (16);
9991}
9992
9993static void
9994do_vfp_sp_conv_32 (void)
9995{
9996 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9997 vfp_conv (32);
9998}
9999
10000static void
10001do_vfp_dp_conv_32 (void)
10002{
10003 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10004 vfp_conv (32);
10005}
c19d1205
ZW
10006\f
10007/* FPA instructions. Also in a logical order. */
e16bb312 10008
c19d1205
ZW
10009static void
10010do_fpa_cmp (void)
10011{
10012 inst.instruction |= inst.operands[0].reg << 16;
10013 inst.instruction |= inst.operands[1].reg;
10014}
b99bd4ef
NC
10015
10016static void
c19d1205 10017do_fpa_ldmstm (void)
b99bd4ef 10018{
c19d1205
ZW
10019 inst.instruction |= inst.operands[0].reg << 12;
10020 switch (inst.operands[1].imm)
10021 {
10022 case 1: inst.instruction |= CP_T_X; break;
10023 case 2: inst.instruction |= CP_T_Y; break;
10024 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10025 case 4: break;
10026 default: abort ();
10027 }
b99bd4ef 10028
c19d1205
ZW
10029 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10030 {
10031 /* The instruction specified "ea" or "fd", so we can only accept
10032 [Rn]{!}. The instruction does not really support stacking or
10033 unstacking, so we have to emulate these by setting appropriate
10034 bits and offsets. */
10035 constraint (inst.reloc.exp.X_op != O_constant
10036 || inst.reloc.exp.X_add_number != 0,
10037 _("this instruction does not support indexing"));
b99bd4ef 10038
c19d1205
ZW
10039 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10040 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10041
c19d1205
ZW
10042 if (!(inst.instruction & INDEX_UP))
10043 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 10044
c19d1205
ZW
10045 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10046 {
10047 inst.operands[2].preind = 0;
10048 inst.operands[2].postind = 1;
10049 }
10050 }
b99bd4ef 10051
c19d1205 10052 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10053}
c19d1205
ZW
10054\f
10055/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10056
c19d1205
ZW
10057static void
10058do_iwmmxt_tandorc (void)
10059{
10060 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10061}
b99bd4ef 10062
c19d1205
ZW
10063static void
10064do_iwmmxt_textrc (void)
10065{
10066 inst.instruction |= inst.operands[0].reg << 12;
10067 inst.instruction |= inst.operands[1].imm;
10068}
b99bd4ef
NC
10069
10070static void
c19d1205 10071do_iwmmxt_textrm (void)
b99bd4ef 10072{
c19d1205
ZW
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= inst.operands[1].reg << 16;
10075 inst.instruction |= inst.operands[2].imm;
10076}
b99bd4ef 10077
c19d1205
ZW
10078static void
10079do_iwmmxt_tinsr (void)
10080{
10081 inst.instruction |= inst.operands[0].reg << 16;
10082 inst.instruction |= inst.operands[1].reg << 12;
10083 inst.instruction |= inst.operands[2].imm;
10084}
b99bd4ef 10085
c19d1205
ZW
10086static void
10087do_iwmmxt_tmia (void)
10088{
10089 inst.instruction |= inst.operands[0].reg << 5;
10090 inst.instruction |= inst.operands[1].reg;
10091 inst.instruction |= inst.operands[2].reg << 12;
10092}
b99bd4ef 10093
c19d1205
ZW
10094static void
10095do_iwmmxt_waligni (void)
10096{
10097 inst.instruction |= inst.operands[0].reg << 12;
10098 inst.instruction |= inst.operands[1].reg << 16;
10099 inst.instruction |= inst.operands[2].reg;
10100 inst.instruction |= inst.operands[3].imm << 20;
10101}
b99bd4ef 10102
2d447fca
JM
10103static void
10104do_iwmmxt_wmerge (void)
10105{
10106 inst.instruction |= inst.operands[0].reg << 12;
10107 inst.instruction |= inst.operands[1].reg << 16;
10108 inst.instruction |= inst.operands[2].reg;
10109 inst.instruction |= inst.operands[3].imm << 21;
10110}
10111
c19d1205
ZW
10112static void
10113do_iwmmxt_wmov (void)
10114{
10115 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10116 inst.instruction |= inst.operands[0].reg << 12;
10117 inst.instruction |= inst.operands[1].reg << 16;
10118 inst.instruction |= inst.operands[1].reg;
10119}
b99bd4ef 10120
c19d1205
ZW
10121static void
10122do_iwmmxt_wldstbh (void)
10123{
8f06b2d8 10124 int reloc;
c19d1205 10125 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10126 if (thumb_mode)
10127 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10128 else
10129 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10130 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10131}
10132
c19d1205
ZW
10133static void
10134do_iwmmxt_wldstw (void)
10135{
10136 /* RIWR_RIWC clears .isreg for a control register. */
10137 if (!inst.operands[0].isreg)
10138 {
10139 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10140 inst.instruction |= 0xf0000000;
10141 }
b99bd4ef 10142
c19d1205
ZW
10143 inst.instruction |= inst.operands[0].reg << 12;
10144 encode_arm_cp_address (1, TRUE, TRUE, 0);
10145}
b99bd4ef
NC
10146
10147static void
c19d1205 10148do_iwmmxt_wldstd (void)
b99bd4ef 10149{
c19d1205 10150 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10151 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10152 && inst.operands[1].immisreg)
10153 {
10154 inst.instruction &= ~0x1a000ff;
eff0bc54 10155 inst.instruction |= (0xfU << 28);
2d447fca
JM
10156 if (inst.operands[1].preind)
10157 inst.instruction |= PRE_INDEX;
10158 if (!inst.operands[1].negative)
10159 inst.instruction |= INDEX_UP;
10160 if (inst.operands[1].writeback)
10161 inst.instruction |= WRITE_BACK;
10162 inst.instruction |= inst.operands[1].reg << 16;
10163 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10164 inst.instruction |= inst.operands[1].imm;
10165 }
10166 else
10167 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10168}
b99bd4ef 10169
c19d1205
ZW
10170static void
10171do_iwmmxt_wshufh (void)
10172{
10173 inst.instruction |= inst.operands[0].reg << 12;
10174 inst.instruction |= inst.operands[1].reg << 16;
10175 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10176 inst.instruction |= (inst.operands[2].imm & 0x0f);
10177}
b99bd4ef 10178
c19d1205
ZW
10179static void
10180do_iwmmxt_wzero (void)
10181{
10182 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10183 inst.instruction |= inst.operands[0].reg;
10184 inst.instruction |= inst.operands[0].reg << 12;
10185 inst.instruction |= inst.operands[0].reg << 16;
10186}
2d447fca
JM
10187
10188static void
10189do_iwmmxt_wrwrwr_or_imm5 (void)
10190{
10191 if (inst.operands[2].isreg)
10192 do_rd_rn_rm ();
10193 else {
10194 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10195 _("immediate operand requires iWMMXt2"));
10196 do_rd_rn ();
10197 if (inst.operands[2].imm == 0)
10198 {
10199 switch ((inst.instruction >> 20) & 0xf)
10200 {
10201 case 4:
10202 case 5:
10203 case 6:
5f4273c7 10204 case 7:
2d447fca
JM
10205 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10206 inst.operands[2].imm = 16;
10207 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10208 break;
10209 case 8:
10210 case 9:
10211 case 10:
10212 case 11:
10213 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10214 inst.operands[2].imm = 32;
10215 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10216 break;
10217 case 12:
10218 case 13:
10219 case 14:
10220 case 15:
10221 {
10222 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10223 unsigned long wrn;
10224 wrn = (inst.instruction >> 16) & 0xf;
10225 inst.instruction &= 0xff0fff0f;
10226 inst.instruction |= wrn;
10227 /* Bail out here; the instruction is now assembled. */
10228 return;
10229 }
10230 }
10231 }
10232 /* Map 32 -> 0, etc. */
10233 inst.operands[2].imm &= 0x1f;
eff0bc54 10234 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10235 }
10236}
c19d1205
ZW
10237\f
10238/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10239 operations first, then control, shift, and load/store. */
b99bd4ef 10240
c19d1205 10241/* Insns like "foo X,Y,Z". */
b99bd4ef 10242
c19d1205
ZW
10243static void
10244do_mav_triple (void)
10245{
10246 inst.instruction |= inst.operands[0].reg << 16;
10247 inst.instruction |= inst.operands[1].reg;
10248 inst.instruction |= inst.operands[2].reg << 12;
10249}
b99bd4ef 10250
c19d1205
ZW
10251/* Insns like "foo W,X,Y,Z".
10252 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10253
c19d1205
ZW
10254static void
10255do_mav_quad (void)
10256{
10257 inst.instruction |= inst.operands[0].reg << 5;
10258 inst.instruction |= inst.operands[1].reg << 12;
10259 inst.instruction |= inst.operands[2].reg << 16;
10260 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10261}
10262
c19d1205
ZW
10263/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10264static void
10265do_mav_dspsc (void)
a737bd4d 10266{
c19d1205
ZW
10267 inst.instruction |= inst.operands[1].reg << 12;
10268}
a737bd4d 10269
c19d1205
ZW
10270/* Maverick shift immediate instructions.
10271 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10272 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10273
c19d1205
ZW
10274static void
10275do_mav_shift (void)
10276{
10277 int imm = inst.operands[2].imm;
a737bd4d 10278
c19d1205
ZW
10279 inst.instruction |= inst.operands[0].reg << 12;
10280 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10281
c19d1205
ZW
10282 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10283 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10284 Bit 4 should be 0. */
10285 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10286
c19d1205
ZW
10287 inst.instruction |= imm;
10288}
10289\f
10290/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10291
c19d1205
ZW
10292/* Xscale multiply-accumulate (argument parse)
10293 MIAcc acc0,Rm,Rs
10294 MIAPHcc acc0,Rm,Rs
10295 MIAxycc acc0,Rm,Rs. */
a737bd4d 10296
c19d1205
ZW
10297static void
10298do_xsc_mia (void)
10299{
10300 inst.instruction |= inst.operands[1].reg;
10301 inst.instruction |= inst.operands[2].reg << 12;
10302}
a737bd4d 10303
c19d1205 10304/* Xscale move-accumulator-register (argument parse)
a737bd4d 10305
c19d1205 10306 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10307
c19d1205
ZW
10308static void
10309do_xsc_mar (void)
10310{
10311 inst.instruction |= inst.operands[1].reg << 12;
10312 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10313}
10314
c19d1205 10315/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10316
c19d1205 10317 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10318
10319static void
c19d1205 10320do_xsc_mra (void)
b99bd4ef 10321{
c19d1205
ZW
10322 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10323 inst.instruction |= inst.operands[0].reg << 12;
10324 inst.instruction |= inst.operands[1].reg << 16;
10325}
10326\f
10327/* Encoding functions relevant only to Thumb. */
b99bd4ef 10328
c19d1205
ZW
10329/* inst.operands[i] is a shifted-register operand; encode
10330 it into inst.instruction in the format used by Thumb32. */
10331
10332static void
10333encode_thumb32_shifted_operand (int i)
10334{
10335 unsigned int value = inst.reloc.exp.X_add_number;
10336 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10337
9c3c69f2
PB
10338 constraint (inst.operands[i].immisreg,
10339 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10340 inst.instruction |= inst.operands[i].reg;
10341 if (shift == SHIFT_RRX)
10342 inst.instruction |= SHIFT_ROR << 4;
10343 else
b99bd4ef 10344 {
c19d1205
ZW
10345 constraint (inst.reloc.exp.X_op != O_constant,
10346 _("expression too complex"));
10347
10348 constraint (value > 32
10349 || (value == 32 && (shift == SHIFT_LSL
10350 || shift == SHIFT_ROR)),
10351 _("shift expression is too large"));
10352
10353 if (value == 0)
10354 shift = SHIFT_LSL;
10355 else if (value == 32)
10356 value = 0;
10357
10358 inst.instruction |= shift << 4;
10359 inst.instruction |= (value & 0x1c) << 10;
10360 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 10361 }
c19d1205 10362}
b99bd4ef 10363
b99bd4ef 10364
c19d1205
ZW
10365/* inst.operands[i] was set up by parse_address. Encode it into a
10366 Thumb32 format load or store instruction. Reject forms that cannot
10367 be used with such instructions. If is_t is true, reject forms that
10368 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
10369 that cannot be used with a D instruction. If it is a store insn,
10370 reject PC in Rn. */
b99bd4ef 10371
c19d1205
ZW
10372static void
10373encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10374{
5be8be5d 10375 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
10376
10377 constraint (!inst.operands[i].isreg,
53365c0d 10378 _("Instruction does not support =N addresses"));
b99bd4ef 10379
c19d1205
ZW
10380 inst.instruction |= inst.operands[i].reg << 16;
10381 if (inst.operands[i].immisreg)
b99bd4ef 10382 {
5be8be5d 10383 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
10384 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10385 constraint (inst.operands[i].negative,
10386 _("Thumb does not support negative register indexing"));
10387 constraint (inst.operands[i].postind,
10388 _("Thumb does not support register post-indexing"));
10389 constraint (inst.operands[i].writeback,
10390 _("Thumb does not support register indexing with writeback"));
10391 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10392 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 10393
f40d1643 10394 inst.instruction |= inst.operands[i].imm;
c19d1205 10395 if (inst.operands[i].shifted)
b99bd4ef 10396 {
c19d1205
ZW
10397 constraint (inst.reloc.exp.X_op != O_constant,
10398 _("expression too complex"));
9c3c69f2
PB
10399 constraint (inst.reloc.exp.X_add_number < 0
10400 || inst.reloc.exp.X_add_number > 3,
c19d1205 10401 _("shift out of range"));
9c3c69f2 10402 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
10403 }
10404 inst.reloc.type = BFD_RELOC_UNUSED;
10405 }
10406 else if (inst.operands[i].preind)
10407 {
5be8be5d 10408 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 10409 constraint (is_t && inst.operands[i].writeback,
c19d1205 10410 _("cannot use writeback with this instruction"));
4755303e
WN
10411 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10412 BAD_PC_ADDRESSING);
c19d1205
ZW
10413
10414 if (is_d)
10415 {
10416 inst.instruction |= 0x01000000;
10417 if (inst.operands[i].writeback)
10418 inst.instruction |= 0x00200000;
b99bd4ef 10419 }
c19d1205 10420 else
b99bd4ef 10421 {
c19d1205
ZW
10422 inst.instruction |= 0x00000c00;
10423 if (inst.operands[i].writeback)
10424 inst.instruction |= 0x00000100;
b99bd4ef 10425 }
c19d1205 10426 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 10427 }
c19d1205 10428 else if (inst.operands[i].postind)
b99bd4ef 10429 {
9c2799c2 10430 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
10431 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10432 constraint (is_t, _("cannot use post-indexing with this instruction"));
10433
10434 if (is_d)
10435 inst.instruction |= 0x00200000;
10436 else
10437 inst.instruction |= 0x00000900;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10439 }
10440 else /* unindexed - only for coprocessor */
10441 inst.error = _("instruction does not accept unindexed addressing");
10442}
10443
10444/* Table of Thumb instructions which exist in both 16- and 32-bit
10445 encodings (the latter only in post-V6T2 cores). The index is the
10446 value used in the insns table below. When there is more than one
10447 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
10448 holds variant (1).
10449 Also contains several pseudo-instructions used during relaxation. */
c19d1205 10450#define T16_32_TAB \
21d799b5
NC
10451 X(_adc, 4140, eb400000), \
10452 X(_adcs, 4140, eb500000), \
10453 X(_add, 1c00, eb000000), \
10454 X(_adds, 1c00, eb100000), \
10455 X(_addi, 0000, f1000000), \
10456 X(_addis, 0000, f1100000), \
10457 X(_add_pc,000f, f20f0000), \
10458 X(_add_sp,000d, f10d0000), \
10459 X(_adr, 000f, f20f0000), \
10460 X(_and, 4000, ea000000), \
10461 X(_ands, 4000, ea100000), \
10462 X(_asr, 1000, fa40f000), \
10463 X(_asrs, 1000, fa50f000), \
10464 X(_b, e000, f000b000), \
10465 X(_bcond, d000, f0008000), \
10466 X(_bic, 4380, ea200000), \
10467 X(_bics, 4380, ea300000), \
10468 X(_cmn, 42c0, eb100f00), \
10469 X(_cmp, 2800, ebb00f00), \
10470 X(_cpsie, b660, f3af8400), \
10471 X(_cpsid, b670, f3af8600), \
10472 X(_cpy, 4600, ea4f0000), \
10473 X(_dec_sp,80dd, f1ad0d00), \
10474 X(_eor, 4040, ea800000), \
10475 X(_eors, 4040, ea900000), \
10476 X(_inc_sp,00dd, f10d0d00), \
10477 X(_ldmia, c800, e8900000), \
10478 X(_ldr, 6800, f8500000), \
10479 X(_ldrb, 7800, f8100000), \
10480 X(_ldrh, 8800, f8300000), \
10481 X(_ldrsb, 5600, f9100000), \
10482 X(_ldrsh, 5e00, f9300000), \
10483 X(_ldr_pc,4800, f85f0000), \
10484 X(_ldr_pc2,4800, f85f0000), \
10485 X(_ldr_sp,9800, f85d0000), \
10486 X(_lsl, 0000, fa00f000), \
10487 X(_lsls, 0000, fa10f000), \
10488 X(_lsr, 0800, fa20f000), \
10489 X(_lsrs, 0800, fa30f000), \
10490 X(_mov, 2000, ea4f0000), \
10491 X(_movs, 2000, ea5f0000), \
10492 X(_mul, 4340, fb00f000), \
10493 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10494 X(_mvn, 43c0, ea6f0000), \
10495 X(_mvns, 43c0, ea7f0000), \
10496 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10497 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10498 X(_orr, 4300, ea400000), \
10499 X(_orrs, 4300, ea500000), \
10500 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10501 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10502 X(_rev, ba00, fa90f080), \
10503 X(_rev16, ba40, fa90f090), \
10504 X(_revsh, bac0, fa90f0b0), \
10505 X(_ror, 41c0, fa60f000), \
10506 X(_rors, 41c0, fa70f000), \
10507 X(_sbc, 4180, eb600000), \
10508 X(_sbcs, 4180, eb700000), \
10509 X(_stmia, c000, e8800000), \
10510 X(_str, 6000, f8400000), \
10511 X(_strb, 7000, f8000000), \
10512 X(_strh, 8000, f8200000), \
10513 X(_str_sp,9000, f84d0000), \
10514 X(_sub, 1e00, eba00000), \
10515 X(_subs, 1e00, ebb00000), \
10516 X(_subi, 8000, f1a00000), \
10517 X(_subis, 8000, f1b00000), \
10518 X(_sxtb, b240, fa4ff080), \
10519 X(_sxth, b200, fa0ff080), \
10520 X(_tst, 4200, ea100f00), \
10521 X(_uxtb, b2c0, fa5ff080), \
10522 X(_uxth, b280, fa1ff080), \
10523 X(_nop, bf00, f3af8000), \
10524 X(_yield, bf10, f3af8001), \
10525 X(_wfe, bf20, f3af8002), \
10526 X(_wfi, bf30, f3af8003), \
53c4b28b 10527 X(_sev, bf40, f3af8004), \
74db7efb
NC
10528 X(_sevl, bf50, f3af8005), \
10529 X(_udf, de00, f7f0a000)
c19d1205
ZW
10530
10531/* To catch errors in encoding functions, the codes are all offset by
10532 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10533 as 16-bit instructions. */
21d799b5 10534#define X(a,b,c) T_MNEM##a
c19d1205
ZW
10535enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10536#undef X
10537
10538#define X(a,b,c) 0x##b
10539static const unsigned short thumb_op16[] = { T16_32_TAB };
10540#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10541#undef X
10542
10543#define X(a,b,c) 0x##c
10544static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
10545#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10546#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
10547#undef X
10548#undef T16_32_TAB
10549
10550/* Thumb instruction encoders, in alphabetical order. */
10551
92e90b6e 10552/* ADDW or SUBW. */
c921be7d 10553
92e90b6e
PB
10554static void
10555do_t_add_sub_w (void)
10556{
10557 int Rd, Rn;
10558
10559 Rd = inst.operands[0].reg;
10560 Rn = inst.operands[1].reg;
10561
539d4391
NC
10562 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10563 is the SP-{plus,minus}-immediate form of the instruction. */
10564 if (Rn == REG_SP)
10565 constraint (Rd == REG_PC, BAD_PC);
10566 else
10567 reject_bad_reg (Rd);
fdfde340 10568
92e90b6e
PB
10569 inst.instruction |= (Rn << 16) | (Rd << 8);
10570 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10571}
10572
c19d1205 10573/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 10574 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
10575
10576static void
10577do_t_add_sub (void)
10578{
10579 int Rd, Rs, Rn;
10580
10581 Rd = inst.operands[0].reg;
10582 Rs = (inst.operands[1].present
10583 ? inst.operands[1].reg /* Rd, Rs, foo */
10584 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10585
e07e6e58
NC
10586 if (Rd == REG_PC)
10587 set_it_insn_type_last ();
10588
c19d1205
ZW
10589 if (unified_syntax)
10590 {
0110f2b8
PB
10591 bfd_boolean flags;
10592 bfd_boolean narrow;
10593 int opcode;
10594
10595 flags = (inst.instruction == T_MNEM_adds
10596 || inst.instruction == T_MNEM_subs);
10597 if (flags)
e07e6e58 10598 narrow = !in_it_block ();
0110f2b8 10599 else
e07e6e58 10600 narrow = in_it_block ();
c19d1205 10601 if (!inst.operands[2].isreg)
b99bd4ef 10602 {
16805f35
PB
10603 int add;
10604
5c8ed6a4
JW
10605 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10606 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 10607
16805f35
PB
10608 add = (inst.instruction == T_MNEM_add
10609 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
10610 opcode = 0;
10611 if (inst.size_req != 4)
10612 {
0110f2b8 10613 /* Attempt to use a narrow opcode, with relaxation if
477330fc 10614 appropriate. */
0110f2b8
PB
10615 if (Rd == REG_SP && Rs == REG_SP && !flags)
10616 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10617 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10618 opcode = T_MNEM_add_sp;
10619 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10620 opcode = T_MNEM_add_pc;
10621 else if (Rd <= 7 && Rs <= 7 && narrow)
10622 {
10623 if (flags)
10624 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10625 else
10626 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10627 }
10628 if (opcode)
10629 {
10630 inst.instruction = THUMB_OP16(opcode);
10631 inst.instruction |= (Rd << 4) | Rs;
72d98d16
MG
10632 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10633 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
a9f02af8
MG
10634 {
10635 if (inst.size_req == 2)
10636 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10637 else
10638 inst.relax = opcode;
10639 }
0110f2b8
PB
10640 }
10641 else
10642 constraint (inst.size_req == 2, BAD_HIREG);
10643 }
10644 if (inst.size_req == 4
10645 || (inst.size_req != 2 && !opcode))
10646 {
a9f02af8
MG
10647 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10648 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10649 THUMB1_RELOC_ONLY);
efd81785
PB
10650 if (Rd == REG_PC)
10651 {
fdfde340 10652 constraint (add, BAD_PC);
efd81785
PB
10653 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10654 _("only SUBS PC, LR, #const allowed"));
10655 constraint (inst.reloc.exp.X_op != O_constant,
10656 _("expression too complex"));
10657 constraint (inst.reloc.exp.X_add_number < 0
10658 || inst.reloc.exp.X_add_number > 0xff,
10659 _("immediate value out of range"));
10660 inst.instruction = T2_SUBS_PC_LR
10661 | inst.reloc.exp.X_add_number;
10662 inst.reloc.type = BFD_RELOC_UNUSED;
10663 return;
10664 }
10665 else if (Rs == REG_PC)
16805f35
PB
10666 {
10667 /* Always use addw/subw. */
10668 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10670 }
10671 else
10672 {
10673 inst.instruction = THUMB_OP32 (inst.instruction);
10674 inst.instruction = (inst.instruction & 0xe1ffffff)
10675 | 0x10000000;
10676 if (flags)
10677 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10678 else
10679 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10680 }
dc4503c6
PB
10681 inst.instruction |= Rd << 8;
10682 inst.instruction |= Rs << 16;
0110f2b8 10683 }
b99bd4ef 10684 }
c19d1205
ZW
10685 else
10686 {
5f4cb198
NC
10687 unsigned int value = inst.reloc.exp.X_add_number;
10688 unsigned int shift = inst.operands[2].shift_kind;
10689
c19d1205
ZW
10690 Rn = inst.operands[2].reg;
10691 /* See if we can do this with a 16-bit instruction. */
10692 if (!inst.operands[2].shifted && inst.size_req != 4)
10693 {
e27ec89e
PB
10694 if (Rd > 7 || Rs > 7 || Rn > 7)
10695 narrow = FALSE;
10696
10697 if (narrow)
c19d1205 10698 {
e27ec89e
PB
10699 inst.instruction = ((inst.instruction == T_MNEM_adds
10700 || inst.instruction == T_MNEM_add)
c19d1205
ZW
10701 ? T_OPCODE_ADD_R3
10702 : T_OPCODE_SUB_R3);
10703 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10704 return;
10705 }
b99bd4ef 10706
7e806470 10707 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 10708 {
7e806470
PB
10709 /* Thumb-1 cores (except v6-M) require at least one high
10710 register in a narrow non flag setting add. */
10711 if (Rd > 7 || Rn > 7
10712 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10713 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 10714 {
7e806470
PB
10715 if (Rd == Rn)
10716 {
10717 Rn = Rs;
10718 Rs = Rd;
10719 }
c19d1205
ZW
10720 inst.instruction = T_OPCODE_ADD_HI;
10721 inst.instruction |= (Rd & 8) << 4;
10722 inst.instruction |= (Rd & 7);
10723 inst.instruction |= Rn << 3;
10724 return;
10725 }
c19d1205
ZW
10726 }
10727 }
c921be7d 10728
fdfde340 10729 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
10730 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10731 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
10732 constraint (Rs == REG_PC, BAD_PC);
10733 reject_bad_reg (Rn);
10734
c19d1205
ZW
10735 /* If we get here, it can't be done in 16 bits. */
10736 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10737 _("shift must be constant"));
10738 inst.instruction = THUMB_OP32 (inst.instruction);
10739 inst.instruction |= Rd << 8;
10740 inst.instruction |= Rs << 16;
5f4cb198
NC
10741 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10742 _("shift value over 3 not allowed in thumb mode"));
10743 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10744 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
10745 encode_thumb32_shifted_operand (2);
10746 }
10747 }
10748 else
10749 {
10750 constraint (inst.instruction == T_MNEM_adds
10751 || inst.instruction == T_MNEM_subs,
10752 BAD_THUMB32);
b99bd4ef 10753
c19d1205 10754 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 10755 {
c19d1205
ZW
10756 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10757 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10758 BAD_HIREG);
10759
10760 inst.instruction = (inst.instruction == T_MNEM_add
10761 ? 0x0000 : 0x8000);
10762 inst.instruction |= (Rd << 4) | Rs;
10763 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
10764 return;
10765 }
10766
c19d1205
ZW
10767 Rn = inst.operands[2].reg;
10768 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 10769
c19d1205
ZW
10770 /* We now have Rd, Rs, and Rn set to registers. */
10771 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 10772 {
c19d1205
ZW
10773 /* Can't do this for SUB. */
10774 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10775 inst.instruction = T_OPCODE_ADD_HI;
10776 inst.instruction |= (Rd & 8) << 4;
10777 inst.instruction |= (Rd & 7);
10778 if (Rs == Rd)
10779 inst.instruction |= Rn << 3;
10780 else if (Rn == Rd)
10781 inst.instruction |= Rs << 3;
10782 else
10783 constraint (1, _("dest must overlap one source register"));
10784 }
10785 else
10786 {
10787 inst.instruction = (inst.instruction == T_MNEM_add
10788 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10789 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 10790 }
b99bd4ef 10791 }
b99bd4ef
NC
10792}
10793
c19d1205
ZW
10794static void
10795do_t_adr (void)
10796{
fdfde340
JM
10797 unsigned Rd;
10798
10799 Rd = inst.operands[0].reg;
10800 reject_bad_reg (Rd);
10801
10802 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
10803 {
10804 /* Defer to section relaxation. */
10805 inst.relax = inst.instruction;
10806 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10807 inst.instruction |= Rd << 4;
0110f2b8
PB
10808 }
10809 else if (unified_syntax && inst.size_req != 2)
e9f89963 10810 {
0110f2b8 10811 /* Generate a 32-bit opcode. */
e9f89963 10812 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10813 inst.instruction |= Rd << 8;
e9f89963
PB
10814 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10815 inst.reloc.pc_rel = 1;
10816 }
10817 else
10818 {
0110f2b8 10819 /* Generate a 16-bit opcode. */
e9f89963
PB
10820 inst.instruction = THUMB_OP16 (inst.instruction);
10821 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10822 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10823 inst.reloc.pc_rel = 1;
fdfde340 10824 inst.instruction |= Rd << 4;
e9f89963 10825 }
52a86f84
NC
10826
10827 if (inst.reloc.exp.X_op == O_symbol
10828 && inst.reloc.exp.X_add_symbol != NULL
10829 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10830 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10831 inst.reloc.exp.X_add_number += 1;
c19d1205 10832}
b99bd4ef 10833
c19d1205
ZW
10834/* Arithmetic instructions for which there is just one 16-bit
10835 instruction encoding, and it allows only two low registers.
10836 For maximal compatibility with ARM syntax, we allow three register
10837 operands even when Thumb-32 instructions are not available, as long
10838 as the first two are identical. For instance, both "sbc r0,r1" and
10839 "sbc r0,r0,r1" are allowed. */
b99bd4ef 10840static void
c19d1205 10841do_t_arit3 (void)
b99bd4ef 10842{
c19d1205 10843 int Rd, Rs, Rn;
b99bd4ef 10844
c19d1205
ZW
10845 Rd = inst.operands[0].reg;
10846 Rs = (inst.operands[1].present
10847 ? inst.operands[1].reg /* Rd, Rs, foo */
10848 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10849 Rn = inst.operands[2].reg;
b99bd4ef 10850
fdfde340
JM
10851 reject_bad_reg (Rd);
10852 reject_bad_reg (Rs);
10853 if (inst.operands[2].isreg)
10854 reject_bad_reg (Rn);
10855
c19d1205 10856 if (unified_syntax)
b99bd4ef 10857 {
c19d1205
ZW
10858 if (!inst.operands[2].isreg)
10859 {
10860 /* For an immediate, we always generate a 32-bit opcode;
10861 section relaxation will shrink it later if possible. */
10862 inst.instruction = THUMB_OP32 (inst.instruction);
10863 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10864 inst.instruction |= Rd << 8;
10865 inst.instruction |= Rs << 16;
10866 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10867 }
10868 else
10869 {
e27ec89e
PB
10870 bfd_boolean narrow;
10871
c19d1205 10872 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10873 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10874 narrow = !in_it_block ();
e27ec89e 10875 else
e07e6e58 10876 narrow = in_it_block ();
e27ec89e
PB
10877
10878 if (Rd > 7 || Rn > 7 || Rs > 7)
10879 narrow = FALSE;
10880 if (inst.operands[2].shifted)
10881 narrow = FALSE;
10882 if (inst.size_req == 4)
10883 narrow = FALSE;
10884
10885 if (narrow
c19d1205
ZW
10886 && Rd == Rs)
10887 {
10888 inst.instruction = THUMB_OP16 (inst.instruction);
10889 inst.instruction |= Rd;
10890 inst.instruction |= Rn << 3;
10891 return;
10892 }
b99bd4ef 10893
c19d1205
ZW
10894 /* If we get here, it can't be done in 16 bits. */
10895 constraint (inst.operands[2].shifted
10896 && inst.operands[2].immisreg,
10897 _("shift must be constant"));
10898 inst.instruction = THUMB_OP32 (inst.instruction);
10899 inst.instruction |= Rd << 8;
10900 inst.instruction |= Rs << 16;
10901 encode_thumb32_shifted_operand (2);
10902 }
a737bd4d 10903 }
c19d1205 10904 else
b99bd4ef 10905 {
c19d1205
ZW
10906 /* On its face this is a lie - the instruction does set the
10907 flags. However, the only supported mnemonic in this mode
10908 says it doesn't. */
10909 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10910
c19d1205
ZW
10911 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10912 _("unshifted register required"));
10913 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10914 constraint (Rd != Rs,
10915 _("dest and source1 must be the same register"));
a737bd4d 10916
c19d1205
ZW
10917 inst.instruction = THUMB_OP16 (inst.instruction);
10918 inst.instruction |= Rd;
10919 inst.instruction |= Rn << 3;
b99bd4ef 10920 }
a737bd4d 10921}
b99bd4ef 10922
c19d1205
ZW
10923/* Similarly, but for instructions where the arithmetic operation is
10924 commutative, so we can allow either of them to be different from
10925 the destination operand in a 16-bit instruction. For instance, all
10926 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10927 accepted. */
10928static void
10929do_t_arit3c (void)
a737bd4d 10930{
c19d1205 10931 int Rd, Rs, Rn;
b99bd4ef 10932
c19d1205
ZW
10933 Rd = inst.operands[0].reg;
10934 Rs = (inst.operands[1].present
10935 ? inst.operands[1].reg /* Rd, Rs, foo */
10936 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10937 Rn = inst.operands[2].reg;
c921be7d 10938
fdfde340
JM
10939 reject_bad_reg (Rd);
10940 reject_bad_reg (Rs);
10941 if (inst.operands[2].isreg)
10942 reject_bad_reg (Rn);
a737bd4d 10943
c19d1205 10944 if (unified_syntax)
a737bd4d 10945 {
c19d1205 10946 if (!inst.operands[2].isreg)
b99bd4ef 10947 {
c19d1205
ZW
10948 /* For an immediate, we always generate a 32-bit opcode;
10949 section relaxation will shrink it later if possible. */
10950 inst.instruction = THUMB_OP32 (inst.instruction);
10951 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10952 inst.instruction |= Rd << 8;
10953 inst.instruction |= Rs << 16;
10954 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10955 }
c19d1205 10956 else
a737bd4d 10957 {
e27ec89e
PB
10958 bfd_boolean narrow;
10959
c19d1205 10960 /* See if we can do this with a 16-bit instruction. */
e27ec89e 10961 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10962 narrow = !in_it_block ();
e27ec89e 10963 else
e07e6e58 10964 narrow = in_it_block ();
e27ec89e
PB
10965
10966 if (Rd > 7 || Rn > 7 || Rs > 7)
10967 narrow = FALSE;
10968 if (inst.operands[2].shifted)
10969 narrow = FALSE;
10970 if (inst.size_req == 4)
10971 narrow = FALSE;
10972
10973 if (narrow)
a737bd4d 10974 {
c19d1205 10975 if (Rd == Rs)
a737bd4d 10976 {
c19d1205
ZW
10977 inst.instruction = THUMB_OP16 (inst.instruction);
10978 inst.instruction |= Rd;
10979 inst.instruction |= Rn << 3;
10980 return;
a737bd4d 10981 }
c19d1205 10982 if (Rd == Rn)
a737bd4d 10983 {
c19d1205
ZW
10984 inst.instruction = THUMB_OP16 (inst.instruction);
10985 inst.instruction |= Rd;
10986 inst.instruction |= Rs << 3;
10987 return;
a737bd4d
NC
10988 }
10989 }
c19d1205
ZW
10990
10991 /* If we get here, it can't be done in 16 bits. */
10992 constraint (inst.operands[2].shifted
10993 && inst.operands[2].immisreg,
10994 _("shift must be constant"));
10995 inst.instruction = THUMB_OP32 (inst.instruction);
10996 inst.instruction |= Rd << 8;
10997 inst.instruction |= Rs << 16;
10998 encode_thumb32_shifted_operand (2);
a737bd4d 10999 }
b99bd4ef 11000 }
c19d1205
ZW
11001 else
11002 {
11003 /* On its face this is a lie - the instruction does set the
11004 flags. However, the only supported mnemonic in this mode
11005 says it doesn't. */
11006 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11007
c19d1205
ZW
11008 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11009 _("unshifted register required"));
11010 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11011
11012 inst.instruction = THUMB_OP16 (inst.instruction);
11013 inst.instruction |= Rd;
11014
11015 if (Rd == Rs)
11016 inst.instruction |= Rn << 3;
11017 else if (Rd == Rn)
11018 inst.instruction |= Rs << 3;
11019 else
11020 constraint (1, _("dest must overlap one source register"));
11021 }
a737bd4d
NC
11022}
11023
c19d1205
ZW
11024static void
11025do_t_bfc (void)
a737bd4d 11026{
fdfde340 11027 unsigned Rd;
c19d1205
ZW
11028 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11029 constraint (msb > 32, _("bit-field extends past end of register"));
11030 /* The instruction encoding stores the LSB and MSB,
11031 not the LSB and width. */
fdfde340
JM
11032 Rd = inst.operands[0].reg;
11033 reject_bad_reg (Rd);
11034 inst.instruction |= Rd << 8;
c19d1205
ZW
11035 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11036 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11037 inst.instruction |= msb - 1;
b99bd4ef
NC
11038}
11039
c19d1205
ZW
11040static void
11041do_t_bfi (void)
b99bd4ef 11042{
fdfde340 11043 int Rd, Rn;
c19d1205 11044 unsigned int msb;
b99bd4ef 11045
fdfde340
JM
11046 Rd = inst.operands[0].reg;
11047 reject_bad_reg (Rd);
11048
c19d1205
ZW
11049 /* #0 in second position is alternative syntax for bfc, which is
11050 the same instruction but with REG_PC in the Rm field. */
11051 if (!inst.operands[1].isreg)
fdfde340
JM
11052 Rn = REG_PC;
11053 else
11054 {
11055 Rn = inst.operands[1].reg;
11056 reject_bad_reg (Rn);
11057 }
b99bd4ef 11058
c19d1205
ZW
11059 msb = inst.operands[2].imm + inst.operands[3].imm;
11060 constraint (msb > 32, _("bit-field extends past end of register"));
11061 /* The instruction encoding stores the LSB and MSB,
11062 not the LSB and width. */
fdfde340
JM
11063 inst.instruction |= Rd << 8;
11064 inst.instruction |= Rn << 16;
c19d1205
ZW
11065 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11066 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11067 inst.instruction |= msb - 1;
b99bd4ef
NC
11068}
11069
c19d1205
ZW
11070static void
11071do_t_bfx (void)
b99bd4ef 11072{
fdfde340
JM
11073 unsigned Rd, Rn;
11074
11075 Rd = inst.operands[0].reg;
11076 Rn = inst.operands[1].reg;
11077
11078 reject_bad_reg (Rd);
11079 reject_bad_reg (Rn);
11080
c19d1205
ZW
11081 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11082 _("bit-field extends past end of register"));
fdfde340
JM
11083 inst.instruction |= Rd << 8;
11084 inst.instruction |= Rn << 16;
c19d1205
ZW
11085 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11086 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11087 inst.instruction |= inst.operands[3].imm - 1;
11088}
b99bd4ef 11089
c19d1205
ZW
11090/* ARM V5 Thumb BLX (argument parse)
11091 BLX <target_addr> which is BLX(1)
11092 BLX <Rm> which is BLX(2)
11093 Unfortunately, there are two different opcodes for this mnemonic.
11094 So, the insns[].value is not used, and the code here zaps values
11095 into inst.instruction.
b99bd4ef 11096
c19d1205
ZW
11097 ??? How to take advantage of the additional two bits of displacement
11098 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11099
c19d1205
ZW
11100static void
11101do_t_blx (void)
11102{
e07e6e58
NC
11103 set_it_insn_type_last ();
11104
c19d1205 11105 if (inst.operands[0].isreg)
fdfde340
JM
11106 {
11107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11108 /* We have a register, so this is BLX(2). */
11109 inst.instruction |= inst.operands[0].reg << 3;
11110 }
b99bd4ef
NC
11111 else
11112 {
c19d1205 11113 /* No register. This must be BLX(1). */
2fc8bdac 11114 inst.instruction = 0xf000e800;
0855e32b 11115 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11116 }
11117}
11118
c19d1205
ZW
11119static void
11120do_t_branch (void)
b99bd4ef 11121{
0110f2b8 11122 int opcode;
dfa9f0d5 11123 int cond;
2fe88214 11124 bfd_reloc_code_real_type reloc;
dfa9f0d5 11125
e07e6e58
NC
11126 cond = inst.cond;
11127 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11128
11129 if (in_it_block ())
dfa9f0d5
PB
11130 {
11131 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11132 branches. */
dfa9f0d5 11133 cond = COND_ALWAYS;
dfa9f0d5
PB
11134 }
11135 else
11136 cond = inst.cond;
11137
11138 if (cond != COND_ALWAYS)
0110f2b8
PB
11139 opcode = T_MNEM_bcond;
11140 else
11141 opcode = inst.instruction;
11142
12d6b0b7
RS
11143 if (unified_syntax
11144 && (inst.size_req == 4
10960bfb
PB
11145 || (inst.size_req != 2
11146 && (inst.operands[0].hasreloc
11147 || inst.reloc.exp.X_op == O_constant))))
c19d1205 11148 {
0110f2b8 11149 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11150 if (cond == COND_ALWAYS)
9ae92b05 11151 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11152 else
11153 {
ff8646ee
TP
11154 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11155 _("selected architecture does not support "
11156 "wide conditional branch instruction"));
11157
9c2799c2 11158 gas_assert (cond != 0xF);
dfa9f0d5 11159 inst.instruction |= cond << 22;
9ae92b05 11160 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11161 }
11162 }
b99bd4ef
NC
11163 else
11164 {
0110f2b8 11165 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11166 if (cond == COND_ALWAYS)
9ae92b05 11167 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11168 else
b99bd4ef 11169 {
dfa9f0d5 11170 inst.instruction |= cond << 8;
9ae92b05 11171 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11172 }
0110f2b8
PB
11173 /* Allow section relaxation. */
11174 if (unified_syntax && inst.size_req != 2)
11175 inst.relax = opcode;
b99bd4ef 11176 }
9ae92b05 11177 inst.reloc.type = reloc;
c19d1205 11178 inst.reloc.pc_rel = 1;
b99bd4ef
NC
11179}
11180
8884b720 11181/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11182 between the two is the maximum immediate allowed - which is passed in
8884b720 11183 RANGE. */
b99bd4ef 11184static void
8884b720 11185do_t_bkpt_hlt1 (int range)
b99bd4ef 11186{
dfa9f0d5
PB
11187 constraint (inst.cond != COND_ALWAYS,
11188 _("instruction is always unconditional"));
c19d1205 11189 if (inst.operands[0].present)
b99bd4ef 11190 {
8884b720 11191 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11192 _("immediate value out of range"));
11193 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11194 }
8884b720
MGD
11195
11196 set_it_insn_type (NEUTRAL_IT_INSN);
11197}
11198
11199static void
11200do_t_hlt (void)
11201{
11202 do_t_bkpt_hlt1 (63);
11203}
11204
11205static void
11206do_t_bkpt (void)
11207{
11208 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11209}
11210
11211static void
c19d1205 11212do_t_branch23 (void)
b99bd4ef 11213{
e07e6e58 11214 set_it_insn_type_last ();
0855e32b 11215 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11216
0855e32b
NS
11217 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11218 this file. We used to simply ignore the PLT reloc type here --
11219 the branch encoding is now needed to deal with TLSCALL relocs.
11220 So if we see a PLT reloc now, put it back to how it used to be to
11221 keep the preexisting behaviour. */
11222 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11223 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11224
4343666d 11225#if defined(OBJ_COFF)
c19d1205
ZW
11226 /* If the destination of the branch is a defined symbol which does not have
11227 the THUMB_FUNC attribute, then we must be calling a function which has
11228 the (interfacearm) attribute. We look for the Thumb entry point to that
11229 function and change the branch to refer to that function instead. */
11230 if ( inst.reloc.exp.X_op == O_symbol
11231 && inst.reloc.exp.X_add_symbol != NULL
11232 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11233 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11234 inst.reloc.exp.X_add_symbol =
11235 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 11236#endif
90e4755a
RE
11237}
11238
11239static void
c19d1205 11240do_t_bx (void)
90e4755a 11241{
e07e6e58 11242 set_it_insn_type_last ();
c19d1205
ZW
11243 inst.instruction |= inst.operands[0].reg << 3;
11244 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11245 should cause the alignment to be checked once it is known. This is
11246 because BX PC only works if the instruction is word aligned. */
11247}
90e4755a 11248
c19d1205
ZW
11249static void
11250do_t_bxj (void)
11251{
fdfde340 11252 int Rm;
90e4755a 11253
e07e6e58 11254 set_it_insn_type_last ();
fdfde340
JM
11255 Rm = inst.operands[0].reg;
11256 reject_bad_reg (Rm);
11257 inst.instruction |= Rm << 16;
90e4755a
RE
11258}
11259
11260static void
c19d1205 11261do_t_clz (void)
90e4755a 11262{
fdfde340
JM
11263 unsigned Rd;
11264 unsigned Rm;
11265
11266 Rd = inst.operands[0].reg;
11267 Rm = inst.operands[1].reg;
11268
11269 reject_bad_reg (Rd);
11270 reject_bad_reg (Rm);
11271
11272 inst.instruction |= Rd << 8;
11273 inst.instruction |= Rm << 16;
11274 inst.instruction |= Rm;
c19d1205 11275}
90e4755a 11276
91d8b670
JG
11277static void
11278do_t_csdb (void)
11279{
11280 set_it_insn_type (OUTSIDE_IT_INSN);
11281}
11282
dfa9f0d5
PB
11283static void
11284do_t_cps (void)
11285{
e07e6e58 11286 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
11287 inst.instruction |= inst.operands[0].imm;
11288}
11289
c19d1205
ZW
11290static void
11291do_t_cpsi (void)
11292{
e07e6e58 11293 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 11294 if (unified_syntax
62b3e311
PB
11295 && (inst.operands[1].present || inst.size_req == 4)
11296 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11297 {
c19d1205
ZW
11298 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11299 inst.instruction = 0xf3af8000;
11300 inst.instruction |= imod << 9;
11301 inst.instruction |= inst.operands[0].imm << 5;
11302 if (inst.operands[1].present)
11303 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11304 }
c19d1205 11305 else
90e4755a 11306 {
62b3e311
PB
11307 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11308 && (inst.operands[0].imm & 4),
11309 _("selected processor does not support 'A' form "
11310 "of this instruction"));
11311 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11312 _("Thumb does not support the 2-argument "
11313 "form of this instruction"));
11314 inst.instruction |= inst.operands[0].imm;
90e4755a 11315 }
90e4755a
RE
11316}
11317
c19d1205
ZW
11318/* THUMB CPY instruction (argument parse). */
11319
90e4755a 11320static void
c19d1205 11321do_t_cpy (void)
90e4755a 11322{
c19d1205 11323 if (inst.size_req == 4)
90e4755a 11324 {
c19d1205
ZW
11325 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11326 inst.instruction |= inst.operands[0].reg << 8;
11327 inst.instruction |= inst.operands[1].reg;
90e4755a 11328 }
c19d1205 11329 else
90e4755a 11330 {
c19d1205
ZW
11331 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11332 inst.instruction |= (inst.operands[0].reg & 0x7);
11333 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 11334 }
90e4755a
RE
11335}
11336
90e4755a 11337static void
25fe350b 11338do_t_cbz (void)
90e4755a 11339{
e07e6e58 11340 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11341 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11342 inst.instruction |= inst.operands[0].reg;
11343 inst.reloc.pc_rel = 1;
11344 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11345}
90e4755a 11346
62b3e311
PB
11347static void
11348do_t_dbg (void)
11349{
11350 inst.instruction |= inst.operands[0].imm;
11351}
11352
11353static void
11354do_t_div (void)
11355{
fdfde340
JM
11356 unsigned Rd, Rn, Rm;
11357
11358 Rd = inst.operands[0].reg;
11359 Rn = (inst.operands[1].present
11360 ? inst.operands[1].reg : Rd);
11361 Rm = inst.operands[2].reg;
11362
11363 reject_bad_reg (Rd);
11364 reject_bad_reg (Rn);
11365 reject_bad_reg (Rm);
11366
11367 inst.instruction |= Rd << 8;
11368 inst.instruction |= Rn << 16;
11369 inst.instruction |= Rm;
62b3e311
PB
11370}
11371
c19d1205
ZW
11372static void
11373do_t_hint (void)
11374{
11375 if (unified_syntax && inst.size_req == 4)
11376 inst.instruction = THUMB_OP32 (inst.instruction);
11377 else
11378 inst.instruction = THUMB_OP16 (inst.instruction);
11379}
90e4755a 11380
c19d1205
ZW
11381static void
11382do_t_it (void)
11383{
11384 unsigned int cond = inst.operands[0].imm;
e27ec89e 11385
e07e6e58
NC
11386 set_it_insn_type (IT_INSN);
11387 now_it.mask = (inst.instruction & 0xf) | 0x10;
11388 now_it.cc = cond;
5a01bb1d 11389 now_it.warn_deprecated = FALSE;
e27ec89e
PB
11390
11391 /* If the condition is a negative condition, invert the mask. */
c19d1205 11392 if ((cond & 0x1) == 0x0)
90e4755a 11393 {
c19d1205 11394 unsigned int mask = inst.instruction & 0x000f;
90e4755a 11395
c19d1205 11396 if ((mask & 0x7) == 0)
5a01bb1d
MGD
11397 {
11398 /* No conversion needed. */
11399 now_it.block_length = 1;
11400 }
c19d1205 11401 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
11402 {
11403 mask ^= 0x8;
11404 now_it.block_length = 2;
11405 }
e27ec89e 11406 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
11407 {
11408 mask ^= 0xC;
11409 now_it.block_length = 3;
11410 }
c19d1205 11411 else
5a01bb1d
MGD
11412 {
11413 mask ^= 0xE;
11414 now_it.block_length = 4;
11415 }
90e4755a 11416
e27ec89e
PB
11417 inst.instruction &= 0xfff0;
11418 inst.instruction |= mask;
c19d1205 11419 }
90e4755a 11420
c19d1205
ZW
11421 inst.instruction |= cond << 4;
11422}
90e4755a 11423
3c707909
PB
11424/* Helper function used for both push/pop and ldm/stm. */
11425static void
11426encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11427{
11428 bfd_boolean load;
11429
11430 load = (inst.instruction & (1 << 20)) != 0;
11431
11432 if (mask & (1 << 13))
11433 inst.error = _("SP not allowed in register list");
1e5b0379
NC
11434
11435 if ((mask & (1 << base)) != 0
11436 && writeback)
11437 inst.error = _("having the base register in the register list when "
11438 "using write back is UNPREDICTABLE");
11439
3c707909
PB
11440 if (load)
11441 {
e07e6e58 11442 if (mask & (1 << 15))
477330fc
RM
11443 {
11444 if (mask & (1 << 14))
11445 inst.error = _("LR and PC should not both be in register list");
11446 else
11447 set_it_insn_type_last ();
11448 }
3c707909
PB
11449 }
11450 else
11451 {
11452 if (mask & (1 << 15))
11453 inst.error = _("PC not allowed in register list");
3c707909
PB
11454 }
11455
11456 if ((mask & (mask - 1)) == 0)
11457 {
11458 /* Single register transfers implemented as str/ldr. */
11459 if (writeback)
11460 {
11461 if (inst.instruction & (1 << 23))
11462 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11463 else
11464 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11465 }
11466 else
11467 {
11468 if (inst.instruction & (1 << 23))
11469 inst.instruction = 0x00800000; /* ia -> [base] */
11470 else
11471 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11472 }
11473
11474 inst.instruction |= 0xf8400000;
11475 if (load)
11476 inst.instruction |= 0x00100000;
11477
5f4273c7 11478 mask = ffs (mask) - 1;
3c707909
PB
11479 mask <<= 12;
11480 }
11481 else if (writeback)
11482 inst.instruction |= WRITE_BACK;
11483
11484 inst.instruction |= mask;
11485 inst.instruction |= base << 16;
11486}
11487
c19d1205
ZW
11488static void
11489do_t_ldmstm (void)
11490{
11491 /* This really doesn't seem worth it. */
11492 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11493 _("expression too complex"));
11494 constraint (inst.operands[1].writeback,
11495 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 11496
c19d1205
ZW
11497 if (unified_syntax)
11498 {
3c707909
PB
11499 bfd_boolean narrow;
11500 unsigned mask;
11501
11502 narrow = FALSE;
c19d1205
ZW
11503 /* See if we can use a 16-bit instruction. */
11504 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11505 && inst.size_req != 4
3c707909 11506 && !(inst.operands[1].imm & ~0xff))
90e4755a 11507 {
3c707909 11508 mask = 1 << inst.operands[0].reg;
90e4755a 11509
eab4f823 11510 if (inst.operands[0].reg <= 7)
90e4755a 11511 {
3c707909 11512 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
11513 ? inst.operands[0].writeback
11514 : (inst.operands[0].writeback
11515 == !(inst.operands[1].imm & mask)))
477330fc 11516 {
eab4f823
MGD
11517 if (inst.instruction == T_MNEM_stmia
11518 && (inst.operands[1].imm & mask)
11519 && (inst.operands[1].imm & (mask - 1)))
11520 as_warn (_("value stored for r%d is UNKNOWN"),
11521 inst.operands[0].reg);
3c707909 11522
eab4f823
MGD
11523 inst.instruction = THUMB_OP16 (inst.instruction);
11524 inst.instruction |= inst.operands[0].reg << 8;
11525 inst.instruction |= inst.operands[1].imm;
11526 narrow = TRUE;
11527 }
11528 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11529 {
11530 /* This means 1 register in reg list one of 3 situations:
11531 1. Instruction is stmia, but without writeback.
11532 2. lmdia without writeback, but with Rn not in
477330fc 11533 reglist.
eab4f823
MGD
11534 3. ldmia with writeback, but with Rn in reglist.
11535 Case 3 is UNPREDICTABLE behaviour, so we handle
11536 case 1 and 2 which can be converted into a 16-bit
11537 str or ldr. The SP cases are handled below. */
11538 unsigned long opcode;
11539 /* First, record an error for Case 3. */
11540 if (inst.operands[1].imm & mask
11541 && inst.operands[0].writeback)
fa94de6b 11542 inst.error =
eab4f823
MGD
11543 _("having the base register in the register list when "
11544 "using write back is UNPREDICTABLE");
fa94de6b
RM
11545
11546 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
11547 : T_MNEM_ldr);
11548 inst.instruction = THUMB_OP16 (opcode);
11549 inst.instruction |= inst.operands[0].reg << 3;
11550 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11551 narrow = TRUE;
11552 }
90e4755a 11553 }
eab4f823 11554 else if (inst.operands[0] .reg == REG_SP)
90e4755a 11555 {
eab4f823
MGD
11556 if (inst.operands[0].writeback)
11557 {
fa94de6b 11558 inst.instruction =
eab4f823 11559 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11560 ? T_MNEM_push : T_MNEM_pop);
eab4f823 11561 inst.instruction |= inst.operands[1].imm;
477330fc 11562 narrow = TRUE;
eab4f823
MGD
11563 }
11564 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11565 {
fa94de6b 11566 inst.instruction =
eab4f823 11567 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 11568 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 11569 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 11570 narrow = TRUE;
eab4f823 11571 }
90e4755a 11572 }
3c707909
PB
11573 }
11574
11575 if (!narrow)
11576 {
c19d1205
ZW
11577 if (inst.instruction < 0xffff)
11578 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 11579
5f4273c7
NC
11580 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11581 inst.operands[0].writeback);
90e4755a
RE
11582 }
11583 }
c19d1205 11584 else
90e4755a 11585 {
c19d1205
ZW
11586 constraint (inst.operands[0].reg > 7
11587 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
11588 constraint (inst.instruction != T_MNEM_ldmia
11589 && inst.instruction != T_MNEM_stmia,
11590 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 11591 if (inst.instruction == T_MNEM_stmia)
f03698e6 11592 {
c19d1205
ZW
11593 if (!inst.operands[0].writeback)
11594 as_warn (_("this instruction will write back the base register"));
11595 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11596 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 11597 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 11598 inst.operands[0].reg);
f03698e6 11599 }
c19d1205 11600 else
90e4755a 11601 {
c19d1205
ZW
11602 if (!inst.operands[0].writeback
11603 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11604 as_warn (_("this instruction will write back the base register"));
11605 else if (inst.operands[0].writeback
11606 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11607 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
11608 }
11609
c19d1205
ZW
11610 inst.instruction = THUMB_OP16 (inst.instruction);
11611 inst.instruction |= inst.operands[0].reg << 8;
11612 inst.instruction |= inst.operands[1].imm;
11613 }
11614}
e28cd48c 11615
c19d1205
ZW
11616static void
11617do_t_ldrex (void)
11618{
11619 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11620 || inst.operands[1].postind || inst.operands[1].writeback
11621 || inst.operands[1].immisreg || inst.operands[1].shifted
11622 || inst.operands[1].negative,
01cfc07f 11623 BAD_ADDR_MODE);
e28cd48c 11624
5be8be5d
DG
11625 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11626
c19d1205
ZW
11627 inst.instruction |= inst.operands[0].reg << 12;
11628 inst.instruction |= inst.operands[1].reg << 16;
11629 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11630}
e28cd48c 11631
c19d1205
ZW
11632static void
11633do_t_ldrexd (void)
11634{
11635 if (!inst.operands[1].present)
1cac9012 11636 {
c19d1205
ZW
11637 constraint (inst.operands[0].reg == REG_LR,
11638 _("r14 not allowed as first register "
11639 "when second register is omitted"));
11640 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 11641 }
c19d1205
ZW
11642 constraint (inst.operands[0].reg == inst.operands[1].reg,
11643 BAD_OVERLAP);
b99bd4ef 11644
c19d1205
ZW
11645 inst.instruction |= inst.operands[0].reg << 12;
11646 inst.instruction |= inst.operands[1].reg << 8;
11647 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11648}
11649
11650static void
c19d1205 11651do_t_ldst (void)
b99bd4ef 11652{
0110f2b8
PB
11653 unsigned long opcode;
11654 int Rn;
11655
e07e6e58
NC
11656 if (inst.operands[0].isreg
11657 && !inst.operands[0].preind
11658 && inst.operands[0].reg == REG_PC)
11659 set_it_insn_type_last ();
11660
0110f2b8 11661 opcode = inst.instruction;
c19d1205 11662 if (unified_syntax)
b99bd4ef 11663 {
53365c0d
PB
11664 if (!inst.operands[1].isreg)
11665 {
11666 if (opcode <= 0xffff)
11667 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 11668 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
11669 return;
11670 }
0110f2b8
PB
11671 if (inst.operands[1].isreg
11672 && !inst.operands[1].writeback
c19d1205
ZW
11673 && !inst.operands[1].shifted && !inst.operands[1].postind
11674 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
11675 && opcode <= 0xffff
11676 && inst.size_req != 4)
c19d1205 11677 {
0110f2b8
PB
11678 /* Insn may have a 16-bit form. */
11679 Rn = inst.operands[1].reg;
11680 if (inst.operands[1].immisreg)
11681 {
11682 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 11683 /* [Rn, Rik] */
0110f2b8
PB
11684 if (Rn <= 7 && inst.operands[1].imm <= 7)
11685 goto op16;
5be8be5d
DG
11686 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11687 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
11688 }
11689 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11690 && opcode != T_MNEM_ldrsb)
11691 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11692 || (Rn == REG_SP && opcode == T_MNEM_str))
11693 {
11694 /* [Rn, #const] */
11695 if (Rn > 7)
11696 {
11697 if (Rn == REG_PC)
11698 {
11699 if (inst.reloc.pc_rel)
11700 opcode = T_MNEM_ldr_pc2;
11701 else
11702 opcode = T_MNEM_ldr_pc;
11703 }
11704 else
11705 {
11706 if (opcode == T_MNEM_ldr)
11707 opcode = T_MNEM_ldr_sp;
11708 else
11709 opcode = T_MNEM_str_sp;
11710 }
11711 inst.instruction = inst.operands[0].reg << 8;
11712 }
11713 else
11714 {
11715 inst.instruction = inst.operands[0].reg;
11716 inst.instruction |= inst.operands[1].reg << 3;
11717 }
11718 inst.instruction |= THUMB_OP16 (opcode);
11719 if (inst.size_req == 2)
11720 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11721 else
11722 inst.relax = opcode;
11723 return;
11724 }
c19d1205 11725 }
0110f2b8 11726 /* Definitely a 32-bit variant. */
5be8be5d 11727
8d67f500
NC
11728 /* Warning for Erratum 752419. */
11729 if (opcode == T_MNEM_ldr
11730 && inst.operands[0].reg == REG_SP
11731 && inst.operands[1].writeback == 1
11732 && !inst.operands[1].immisreg)
11733 {
11734 if (no_cpu_selected ()
11735 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
11736 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11737 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
11738 as_warn (_("This instruction may be unpredictable "
11739 "if executed on M-profile cores "
11740 "with interrupts enabled."));
11741 }
11742
5be8be5d 11743 /* Do some validations regarding addressing modes. */
1be5fd2e 11744 if (inst.operands[1].immisreg)
5be8be5d
DG
11745 reject_bad_reg (inst.operands[1].imm);
11746
1be5fd2e
NC
11747 constraint (inst.operands[1].writeback == 1
11748 && inst.operands[0].reg == inst.operands[1].reg,
11749 BAD_OVERLAP);
11750
0110f2b8 11751 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
11752 inst.instruction |= inst.operands[0].reg << 12;
11753 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 11754 check_ldr_r15_aligned ();
b99bd4ef
NC
11755 return;
11756 }
11757
c19d1205
ZW
11758 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11759
11760 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 11761 {
c19d1205
ZW
11762 /* Only [Rn,Rm] is acceptable. */
11763 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11764 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11765 || inst.operands[1].postind || inst.operands[1].shifted
11766 || inst.operands[1].negative,
11767 _("Thumb does not support this addressing mode"));
11768 inst.instruction = THUMB_OP16 (inst.instruction);
11769 goto op16;
b99bd4ef 11770 }
5f4273c7 11771
c19d1205
ZW
11772 inst.instruction = THUMB_OP16 (inst.instruction);
11773 if (!inst.operands[1].isreg)
8335d6aa 11774 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 11775 return;
b99bd4ef 11776
c19d1205
ZW
11777 constraint (!inst.operands[1].preind
11778 || inst.operands[1].shifted
11779 || inst.operands[1].writeback,
11780 _("Thumb does not support this addressing mode"));
11781 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 11782 {
c19d1205
ZW
11783 constraint (inst.instruction & 0x0600,
11784 _("byte or halfword not valid for base register"));
11785 constraint (inst.operands[1].reg == REG_PC
11786 && !(inst.instruction & THUMB_LOAD_BIT),
11787 _("r15 based store not allowed"));
11788 constraint (inst.operands[1].immisreg,
11789 _("invalid base register for register offset"));
b99bd4ef 11790
c19d1205
ZW
11791 if (inst.operands[1].reg == REG_PC)
11792 inst.instruction = T_OPCODE_LDR_PC;
11793 else if (inst.instruction & THUMB_LOAD_BIT)
11794 inst.instruction = T_OPCODE_LDR_SP;
11795 else
11796 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 11797
c19d1205
ZW
11798 inst.instruction |= inst.operands[0].reg << 8;
11799 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11800 return;
11801 }
90e4755a 11802
c19d1205
ZW
11803 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11804 if (!inst.operands[1].immisreg)
11805 {
11806 /* Immediate offset. */
11807 inst.instruction |= inst.operands[0].reg;
11808 inst.instruction |= inst.operands[1].reg << 3;
11809 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11810 return;
11811 }
90e4755a 11812
c19d1205
ZW
11813 /* Register offset. */
11814 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11815 constraint (inst.operands[1].negative,
11816 _("Thumb does not support this addressing mode"));
90e4755a 11817
c19d1205
ZW
11818 op16:
11819 switch (inst.instruction)
11820 {
11821 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11822 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11823 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11824 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11825 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11826 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11827 case 0x5600 /* ldrsb */:
11828 case 0x5e00 /* ldrsh */: break;
11829 default: abort ();
11830 }
90e4755a 11831
c19d1205
ZW
11832 inst.instruction |= inst.operands[0].reg;
11833 inst.instruction |= inst.operands[1].reg << 3;
11834 inst.instruction |= inst.operands[1].imm << 6;
11835}
90e4755a 11836
c19d1205
ZW
11837static void
11838do_t_ldstd (void)
11839{
11840 if (!inst.operands[1].present)
b99bd4ef 11841 {
c19d1205
ZW
11842 inst.operands[1].reg = inst.operands[0].reg + 1;
11843 constraint (inst.operands[0].reg == REG_LR,
11844 _("r14 not allowed here"));
bd340a04 11845 constraint (inst.operands[0].reg == REG_R12,
477330fc 11846 _("r12 not allowed here"));
b99bd4ef 11847 }
bd340a04
MGD
11848
11849 if (inst.operands[2].writeback
11850 && (inst.operands[0].reg == inst.operands[2].reg
11851 || inst.operands[1].reg == inst.operands[2].reg))
11852 as_warn (_("base register written back, and overlaps "
477330fc 11853 "one of transfer registers"));
bd340a04 11854
c19d1205
ZW
11855 inst.instruction |= inst.operands[0].reg << 12;
11856 inst.instruction |= inst.operands[1].reg << 8;
11857 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
11858}
11859
c19d1205
ZW
11860static void
11861do_t_ldstt (void)
11862{
11863 inst.instruction |= inst.operands[0].reg << 12;
11864 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11865}
a737bd4d 11866
b99bd4ef 11867static void
c19d1205 11868do_t_mla (void)
b99bd4ef 11869{
fdfde340 11870 unsigned Rd, Rn, Rm, Ra;
c921be7d 11871
fdfde340
JM
11872 Rd = inst.operands[0].reg;
11873 Rn = inst.operands[1].reg;
11874 Rm = inst.operands[2].reg;
11875 Ra = inst.operands[3].reg;
11876
11877 reject_bad_reg (Rd);
11878 reject_bad_reg (Rn);
11879 reject_bad_reg (Rm);
11880 reject_bad_reg (Ra);
11881
11882 inst.instruction |= Rd << 8;
11883 inst.instruction |= Rn << 16;
11884 inst.instruction |= Rm;
11885 inst.instruction |= Ra << 12;
c19d1205 11886}
b99bd4ef 11887
c19d1205
ZW
11888static void
11889do_t_mlal (void)
11890{
fdfde340
JM
11891 unsigned RdLo, RdHi, Rn, Rm;
11892
11893 RdLo = inst.operands[0].reg;
11894 RdHi = inst.operands[1].reg;
11895 Rn = inst.operands[2].reg;
11896 Rm = inst.operands[3].reg;
11897
11898 reject_bad_reg (RdLo);
11899 reject_bad_reg (RdHi);
11900 reject_bad_reg (Rn);
11901 reject_bad_reg (Rm);
11902
11903 inst.instruction |= RdLo << 12;
11904 inst.instruction |= RdHi << 8;
11905 inst.instruction |= Rn << 16;
11906 inst.instruction |= Rm;
c19d1205 11907}
b99bd4ef 11908
c19d1205
ZW
11909static void
11910do_t_mov_cmp (void)
11911{
fdfde340
JM
11912 unsigned Rn, Rm;
11913
11914 Rn = inst.operands[0].reg;
11915 Rm = inst.operands[1].reg;
11916
e07e6e58
NC
11917 if (Rn == REG_PC)
11918 set_it_insn_type_last ();
11919
c19d1205 11920 if (unified_syntax)
b99bd4ef 11921 {
c19d1205
ZW
11922 int r0off = (inst.instruction == T_MNEM_mov
11923 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 11924 unsigned long opcode;
3d388997
PB
11925 bfd_boolean narrow;
11926 bfd_boolean low_regs;
11927
fdfde340 11928 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 11929 opcode = inst.instruction;
e07e6e58 11930 if (in_it_block ())
0110f2b8 11931 narrow = opcode != T_MNEM_movs;
3d388997 11932 else
0110f2b8 11933 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
11934 if (inst.size_req == 4
11935 || inst.operands[1].shifted)
11936 narrow = FALSE;
11937
efd81785
PB
11938 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11939 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11940 && !inst.operands[1].shifted
fdfde340
JM
11941 && Rn == REG_PC
11942 && Rm == REG_LR)
efd81785
PB
11943 {
11944 inst.instruction = T2_SUBS_PC_LR;
11945 return;
11946 }
11947
fdfde340
JM
11948 if (opcode == T_MNEM_cmp)
11949 {
11950 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
11951 if (narrow)
11952 {
11953 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11954 but valid. */
11955 warn_deprecated_sp (Rm);
11956 /* R15 was documented as a valid choice for Rm in ARMv6,
11957 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11958 tools reject R15, so we do too. */
11959 constraint (Rm == REG_PC, BAD_PC);
11960 }
11961 else
11962 reject_bad_reg (Rm);
fdfde340
JM
11963 }
11964 else if (opcode == T_MNEM_mov
11965 || opcode == T_MNEM_movs)
11966 {
11967 if (inst.operands[1].isreg)
11968 {
11969 if (opcode == T_MNEM_movs)
11970 {
11971 reject_bad_reg (Rn);
11972 reject_bad_reg (Rm);
11973 }
76fa04a4
MGD
11974 else if (narrow)
11975 {
11976 /* This is mov.n. */
11977 if ((Rn == REG_SP || Rn == REG_PC)
11978 && (Rm == REG_SP || Rm == REG_PC))
11979 {
5c3696f8 11980 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
11981 "deprecated when r%u is the destination "
11982 "register."), Rm, Rn);
11983 }
11984 }
11985 else
11986 {
11987 /* This is mov.w. */
11988 constraint (Rn == REG_PC, BAD_PC);
11989 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
11990 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11991 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 11992 }
fdfde340
JM
11993 }
11994 else
11995 reject_bad_reg (Rn);
11996 }
11997
c19d1205
ZW
11998 if (!inst.operands[1].isreg)
11999 {
0110f2b8 12000 /* Immediate operand. */
e07e6e58 12001 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12002 narrow = 0;
12003 if (low_regs && narrow)
12004 {
12005 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12006 inst.instruction |= Rn << 8;
a9f02af8
MG
12007 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12008 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12009 {
a9f02af8 12010 if (inst.size_req == 2)
72d98d16 12011 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12012 else
12013 inst.relax = opcode;
72d98d16 12014 }
0110f2b8
PB
12015 }
12016 else
12017 {
a9f02af8
MG
12018 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12019 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
12020 THUMB1_RELOC_ONLY);
12021
0110f2b8
PB
12022 inst.instruction = THUMB_OP32 (inst.instruction);
12023 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12024 inst.instruction |= Rn << r0off;
0110f2b8
PB
12025 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12026 }
c19d1205 12027 }
728ca7c9
PB
12028 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12029 && (inst.instruction == T_MNEM_mov
12030 || inst.instruction == T_MNEM_movs))
12031 {
12032 /* Register shifts are encoded as separate shift instructions. */
12033 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12034
e07e6e58 12035 if (in_it_block ())
728ca7c9
PB
12036 narrow = !flags;
12037 else
12038 narrow = flags;
12039
12040 if (inst.size_req == 4)
12041 narrow = FALSE;
12042
12043 if (!low_regs || inst.operands[1].imm > 7)
12044 narrow = FALSE;
12045
fdfde340 12046 if (Rn != Rm)
728ca7c9
PB
12047 narrow = FALSE;
12048
12049 switch (inst.operands[1].shift_kind)
12050 {
12051 case SHIFT_LSL:
12052 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12053 break;
12054 case SHIFT_ASR:
12055 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12056 break;
12057 case SHIFT_LSR:
12058 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12059 break;
12060 case SHIFT_ROR:
12061 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12062 break;
12063 default:
5f4273c7 12064 abort ();
728ca7c9
PB
12065 }
12066
12067 inst.instruction = opcode;
12068 if (narrow)
12069 {
fdfde340 12070 inst.instruction |= Rn;
728ca7c9
PB
12071 inst.instruction |= inst.operands[1].imm << 3;
12072 }
12073 else
12074 {
12075 if (flags)
12076 inst.instruction |= CONDS_BIT;
12077
fdfde340
JM
12078 inst.instruction |= Rn << 8;
12079 inst.instruction |= Rm << 16;
728ca7c9
PB
12080 inst.instruction |= inst.operands[1].imm;
12081 }
12082 }
3d388997 12083 else if (!narrow)
c19d1205 12084 {
728ca7c9
PB
12085 /* Some mov with immediate shift have narrow variants.
12086 Register shifts are handled above. */
12087 if (low_regs && inst.operands[1].shifted
12088 && (inst.instruction == T_MNEM_mov
12089 || inst.instruction == T_MNEM_movs))
12090 {
e07e6e58 12091 if (in_it_block ())
728ca7c9
PB
12092 narrow = (inst.instruction == T_MNEM_mov);
12093 else
12094 narrow = (inst.instruction == T_MNEM_movs);
12095 }
12096
12097 if (narrow)
12098 {
12099 switch (inst.operands[1].shift_kind)
12100 {
12101 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12102 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12103 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12104 default: narrow = FALSE; break;
12105 }
12106 }
12107
12108 if (narrow)
12109 {
fdfde340
JM
12110 inst.instruction |= Rn;
12111 inst.instruction |= Rm << 3;
728ca7c9
PB
12112 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12113 }
12114 else
12115 {
12116 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12117 inst.instruction |= Rn << r0off;
728ca7c9
PB
12118 encode_thumb32_shifted_operand (1);
12119 }
c19d1205
ZW
12120 }
12121 else
12122 switch (inst.instruction)
12123 {
12124 case T_MNEM_mov:
837b3435 12125 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12126 results. Don't allow this. */
12127 if (low_regs)
12128 {
12129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12130 "MOV Rd, Rs with two low registers is not "
12131 "permitted on this architecture");
fa94de6b 12132 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12133 arm_ext_v6);
12134 }
12135
c19d1205 12136 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12137 inst.instruction |= (Rn & 0x8) << 4;
12138 inst.instruction |= (Rn & 0x7);
12139 inst.instruction |= Rm << 3;
c19d1205 12140 break;
b99bd4ef 12141
c19d1205
ZW
12142 case T_MNEM_movs:
12143 /* We know we have low registers at this point.
941a8a52
MGD
12144 Generate LSLS Rd, Rs, #0. */
12145 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12146 inst.instruction |= Rn;
12147 inst.instruction |= Rm << 3;
c19d1205
ZW
12148 break;
12149
12150 case T_MNEM_cmp:
3d388997 12151 if (low_regs)
c19d1205
ZW
12152 {
12153 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12154 inst.instruction |= Rn;
12155 inst.instruction |= Rm << 3;
c19d1205
ZW
12156 }
12157 else
12158 {
12159 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12160 inst.instruction |= (Rn & 0x8) << 4;
12161 inst.instruction |= (Rn & 0x7);
12162 inst.instruction |= Rm << 3;
c19d1205
ZW
12163 }
12164 break;
12165 }
b99bd4ef
NC
12166 return;
12167 }
12168
c19d1205 12169 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12170
12171 /* PR 10443: Do not silently ignore shifted operands. */
12172 constraint (inst.operands[1].shifted,
12173 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12174
c19d1205 12175 if (inst.operands[1].isreg)
b99bd4ef 12176 {
fdfde340 12177 if (Rn < 8 && Rm < 8)
b99bd4ef 12178 {
c19d1205
ZW
12179 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12180 since a MOV instruction produces unpredictable results. */
12181 if (inst.instruction == T_OPCODE_MOV_I8)
12182 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12183 else
c19d1205 12184 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12185
fdfde340
JM
12186 inst.instruction |= Rn;
12187 inst.instruction |= Rm << 3;
b99bd4ef
NC
12188 }
12189 else
12190 {
c19d1205
ZW
12191 if (inst.instruction == T_OPCODE_MOV_I8)
12192 inst.instruction = T_OPCODE_MOV_HR;
12193 else
12194 inst.instruction = T_OPCODE_CMP_HR;
12195 do_t_cpy ();
b99bd4ef
NC
12196 }
12197 }
c19d1205 12198 else
b99bd4ef 12199 {
fdfde340 12200 constraint (Rn > 7,
c19d1205 12201 _("only lo regs allowed with immediate"));
fdfde340 12202 inst.instruction |= Rn << 8;
c19d1205
ZW
12203 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12204 }
12205}
b99bd4ef 12206
c19d1205
ZW
12207static void
12208do_t_mov16 (void)
12209{
fdfde340 12210 unsigned Rd;
b6895b4f
PB
12211 bfd_vma imm;
12212 bfd_boolean top;
12213
12214 top = (inst.instruction & 0x00800000) != 0;
12215 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12216 {
33eaf5de 12217 constraint (top, _(":lower16: not allowed in this instruction"));
b6895b4f
PB
12218 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12219 }
12220 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12221 {
33eaf5de 12222 constraint (!top, _(":upper16: not allowed in this instruction"));
b6895b4f
PB
12223 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12224 }
12225
fdfde340
JM
12226 Rd = inst.operands[0].reg;
12227 reject_bad_reg (Rd);
12228
12229 inst.instruction |= Rd << 8;
b6895b4f
PB
12230 if (inst.reloc.type == BFD_RELOC_UNUSED)
12231 {
12232 imm = inst.reloc.exp.X_add_number;
12233 inst.instruction |= (imm & 0xf000) << 4;
12234 inst.instruction |= (imm & 0x0800) << 15;
12235 inst.instruction |= (imm & 0x0700) << 4;
12236 inst.instruction |= (imm & 0x00ff);
12237 }
c19d1205 12238}
b99bd4ef 12239
c19d1205
ZW
12240static void
12241do_t_mvn_tst (void)
12242{
fdfde340 12243 unsigned Rn, Rm;
c921be7d 12244
fdfde340
JM
12245 Rn = inst.operands[0].reg;
12246 Rm = inst.operands[1].reg;
12247
12248 if (inst.instruction == T_MNEM_cmp
12249 || inst.instruction == T_MNEM_cmn)
12250 constraint (Rn == REG_PC, BAD_PC);
12251 else
12252 reject_bad_reg (Rn);
12253 reject_bad_reg (Rm);
12254
c19d1205
ZW
12255 if (unified_syntax)
12256 {
12257 int r0off = (inst.instruction == T_MNEM_mvn
12258 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12259 bfd_boolean narrow;
12260
12261 if (inst.size_req == 4
12262 || inst.instruction > 0xffff
12263 || inst.operands[1].shifted
fdfde340 12264 || Rn > 7 || Rm > 7)
3d388997 12265 narrow = FALSE;
fe8b4cc3
KT
12266 else if (inst.instruction == T_MNEM_cmn
12267 || inst.instruction == T_MNEM_tst)
3d388997
PB
12268 narrow = TRUE;
12269 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12270 narrow = !in_it_block ();
3d388997 12271 else
e07e6e58 12272 narrow = in_it_block ();
3d388997 12273
c19d1205 12274 if (!inst.operands[1].isreg)
b99bd4ef 12275 {
c19d1205
ZW
12276 /* For an immediate, we always generate a 32-bit opcode;
12277 section relaxation will shrink it later if possible. */
12278 if (inst.instruction < 0xffff)
12279 inst.instruction = THUMB_OP32 (inst.instruction);
12280 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12281 inst.instruction |= Rn << r0off;
c19d1205 12282 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12283 }
c19d1205 12284 else
b99bd4ef 12285 {
c19d1205 12286 /* See if we can do this with a 16-bit instruction. */
3d388997 12287 if (narrow)
b99bd4ef 12288 {
c19d1205 12289 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12290 inst.instruction |= Rn;
12291 inst.instruction |= Rm << 3;
b99bd4ef 12292 }
c19d1205 12293 else
b99bd4ef 12294 {
c19d1205
ZW
12295 constraint (inst.operands[1].shifted
12296 && inst.operands[1].immisreg,
12297 _("shift must be constant"));
12298 if (inst.instruction < 0xffff)
12299 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12300 inst.instruction |= Rn << r0off;
c19d1205 12301 encode_thumb32_shifted_operand (1);
b99bd4ef 12302 }
b99bd4ef
NC
12303 }
12304 }
12305 else
12306 {
c19d1205
ZW
12307 constraint (inst.instruction > 0xffff
12308 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12309 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12310 _("unshifted register required"));
fdfde340 12311 constraint (Rn > 7 || Rm > 7,
c19d1205 12312 BAD_HIREG);
b99bd4ef 12313
c19d1205 12314 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12315 inst.instruction |= Rn;
12316 inst.instruction |= Rm << 3;
b99bd4ef 12317 }
b99bd4ef
NC
12318}
12319
b05fe5cf 12320static void
c19d1205 12321do_t_mrs (void)
b05fe5cf 12322{
fdfde340 12323 unsigned Rd;
037e8744
JB
12324
12325 if (do_vfp_nsyn_mrs () == SUCCESS)
12326 return;
12327
90ec0d68
MGD
12328 Rd = inst.operands[0].reg;
12329 reject_bad_reg (Rd);
12330 inst.instruction |= Rd << 8;
12331
12332 if (inst.operands[1].isreg)
62b3e311 12333 {
90ec0d68
MGD
12334 unsigned br = inst.operands[1].reg;
12335 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12336 as_bad (_("bad register for mrs"));
12337
12338 inst.instruction |= br & (0xf << 16);
12339 inst.instruction |= (br & 0x300) >> 4;
12340 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
12341 }
12342 else
12343 {
90ec0d68 12344 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 12345
d2cd1205 12346 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
12347 {
12348 /* PR gas/12698: The constraint is only applied for m_profile.
12349 If the user has specified -march=all, we want to ignore it as
12350 we are building for any CPU type, including non-m variants. */
823d2571
TG
12351 bfd_boolean m_profile =
12352 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
12353 constraint ((flags != 0) && m_profile, _("selected processor does "
12354 "not support requested special purpose register"));
12355 }
90ec0d68 12356 else
d2cd1205
JB
12357 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12358 devices). */
12359 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12360 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 12361
90ec0d68
MGD
12362 inst.instruction |= (flags & SPSR_BIT) >> 2;
12363 inst.instruction |= inst.operands[1].imm & 0xff;
12364 inst.instruction |= 0xf0000;
12365 }
c19d1205 12366}
b05fe5cf 12367
c19d1205
ZW
12368static void
12369do_t_msr (void)
12370{
62b3e311 12371 int flags;
fdfde340 12372 unsigned Rn;
62b3e311 12373
037e8744
JB
12374 if (do_vfp_nsyn_msr () == SUCCESS)
12375 return;
12376
c19d1205
ZW
12377 constraint (!inst.operands[1].isreg,
12378 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
12379
12380 if (inst.operands[0].isreg)
12381 flags = (int)(inst.operands[0].reg);
12382 else
12383 flags = inst.operands[0].imm;
12384
d2cd1205 12385 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 12386 {
d2cd1205
JB
12387 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12388
1a43faaf 12389 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
12390 If the user has specified -march=all, we want to ignore it as
12391 we are building for any CPU type, including non-m variants. */
823d2571
TG
12392 bfd_boolean m_profile =
12393 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 12394 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
12395 && (bits & ~(PSR_s | PSR_f)) != 0)
12396 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12397 && bits != PSR_f)) && m_profile,
12398 _("selected processor does not support requested special "
12399 "purpose register"));
62b3e311
PB
12400 }
12401 else
d2cd1205
JB
12402 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12403 "requested special purpose register"));
c921be7d 12404
fdfde340
JM
12405 Rn = inst.operands[1].reg;
12406 reject_bad_reg (Rn);
12407
62b3e311 12408 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
12409 inst.instruction |= (flags & 0xf0000) >> 8;
12410 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 12411 inst.instruction |= (flags & 0xff);
fdfde340 12412 inst.instruction |= Rn << 16;
c19d1205 12413}
b05fe5cf 12414
c19d1205
ZW
12415static void
12416do_t_mul (void)
12417{
17828f45 12418 bfd_boolean narrow;
fdfde340 12419 unsigned Rd, Rn, Rm;
17828f45 12420
c19d1205
ZW
12421 if (!inst.operands[2].present)
12422 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 12423
fdfde340
JM
12424 Rd = inst.operands[0].reg;
12425 Rn = inst.operands[1].reg;
12426 Rm = inst.operands[2].reg;
12427
17828f45 12428 if (unified_syntax)
b05fe5cf 12429 {
17828f45 12430 if (inst.size_req == 4
fdfde340
JM
12431 || (Rd != Rn
12432 && Rd != Rm)
12433 || Rn > 7
12434 || Rm > 7)
17828f45
JM
12435 narrow = FALSE;
12436 else if (inst.instruction == T_MNEM_muls)
e07e6e58 12437 narrow = !in_it_block ();
17828f45 12438 else
e07e6e58 12439 narrow = in_it_block ();
b05fe5cf 12440 }
c19d1205 12441 else
b05fe5cf 12442 {
17828f45 12443 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 12444 constraint (Rn > 7 || Rm > 7,
c19d1205 12445 BAD_HIREG);
17828f45
JM
12446 narrow = TRUE;
12447 }
b05fe5cf 12448
17828f45
JM
12449 if (narrow)
12450 {
12451 /* 16-bit MULS/Conditional MUL. */
c19d1205 12452 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 12453 inst.instruction |= Rd;
b05fe5cf 12454
fdfde340
JM
12455 if (Rd == Rn)
12456 inst.instruction |= Rm << 3;
12457 else if (Rd == Rm)
12458 inst.instruction |= Rn << 3;
c19d1205
ZW
12459 else
12460 constraint (1, _("dest must overlap one source register"));
12461 }
17828f45
JM
12462 else
12463 {
e07e6e58
NC
12464 constraint (inst.instruction != T_MNEM_mul,
12465 _("Thumb-2 MUL must not set flags"));
17828f45
JM
12466 /* 32-bit MUL. */
12467 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12468 inst.instruction |= Rd << 8;
12469 inst.instruction |= Rn << 16;
12470 inst.instruction |= Rm << 0;
12471
12472 reject_bad_reg (Rd);
12473 reject_bad_reg (Rn);
12474 reject_bad_reg (Rm);
17828f45 12475 }
c19d1205 12476}
b05fe5cf 12477
c19d1205
ZW
12478static void
12479do_t_mull (void)
12480{
fdfde340 12481 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 12482
fdfde340
JM
12483 RdLo = inst.operands[0].reg;
12484 RdHi = inst.operands[1].reg;
12485 Rn = inst.operands[2].reg;
12486 Rm = inst.operands[3].reg;
12487
12488 reject_bad_reg (RdLo);
12489 reject_bad_reg (RdHi);
12490 reject_bad_reg (Rn);
12491 reject_bad_reg (Rm);
12492
12493 inst.instruction |= RdLo << 12;
12494 inst.instruction |= RdHi << 8;
12495 inst.instruction |= Rn << 16;
12496 inst.instruction |= Rm;
12497
12498 if (RdLo == RdHi)
c19d1205
ZW
12499 as_tsktsk (_("rdhi and rdlo must be different"));
12500}
b05fe5cf 12501
c19d1205
ZW
12502static void
12503do_t_nop (void)
12504{
e07e6e58
NC
12505 set_it_insn_type (NEUTRAL_IT_INSN);
12506
c19d1205
ZW
12507 if (unified_syntax)
12508 {
12509 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 12510 {
c19d1205
ZW
12511 inst.instruction = THUMB_OP32 (inst.instruction);
12512 inst.instruction |= inst.operands[0].imm;
12513 }
12514 else
12515 {
bc2d1808
NC
12516 /* PR9722: Check for Thumb2 availability before
12517 generating a thumb2 nop instruction. */
afa62d5e 12518 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
12519 {
12520 inst.instruction = THUMB_OP16 (inst.instruction);
12521 inst.instruction |= inst.operands[0].imm << 4;
12522 }
12523 else
12524 inst.instruction = 0x46c0;
c19d1205
ZW
12525 }
12526 }
12527 else
12528 {
12529 constraint (inst.operands[0].present,
12530 _("Thumb does not support NOP with hints"));
12531 inst.instruction = 0x46c0;
12532 }
12533}
b05fe5cf 12534
c19d1205
ZW
12535static void
12536do_t_neg (void)
12537{
12538 if (unified_syntax)
12539 {
3d388997
PB
12540 bfd_boolean narrow;
12541
12542 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12543 narrow = !in_it_block ();
3d388997 12544 else
e07e6e58 12545 narrow = in_it_block ();
3d388997
PB
12546 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12547 narrow = FALSE;
12548 if (inst.size_req == 4)
12549 narrow = FALSE;
12550
12551 if (!narrow)
c19d1205
ZW
12552 {
12553 inst.instruction = THUMB_OP32 (inst.instruction);
12554 inst.instruction |= inst.operands[0].reg << 8;
12555 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
12556 }
12557 else
12558 {
c19d1205
ZW
12559 inst.instruction = THUMB_OP16 (inst.instruction);
12560 inst.instruction |= inst.operands[0].reg;
12561 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
12562 }
12563 }
12564 else
12565 {
c19d1205
ZW
12566 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12567 BAD_HIREG);
12568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12569
12570 inst.instruction = THUMB_OP16 (inst.instruction);
12571 inst.instruction |= inst.operands[0].reg;
12572 inst.instruction |= inst.operands[1].reg << 3;
12573 }
12574}
12575
1c444d06
JM
12576static void
12577do_t_orn (void)
12578{
12579 unsigned Rd, Rn;
12580
12581 Rd = inst.operands[0].reg;
12582 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12583
fdfde340
JM
12584 reject_bad_reg (Rd);
12585 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12586 reject_bad_reg (Rn);
12587
1c444d06
JM
12588 inst.instruction |= Rd << 8;
12589 inst.instruction |= Rn << 16;
12590
12591 if (!inst.operands[2].isreg)
12592 {
12593 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12594 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12595 }
12596 else
12597 {
12598 unsigned Rm;
12599
12600 Rm = inst.operands[2].reg;
fdfde340 12601 reject_bad_reg (Rm);
1c444d06
JM
12602
12603 constraint (inst.operands[2].shifted
12604 && inst.operands[2].immisreg,
12605 _("shift must be constant"));
12606 encode_thumb32_shifted_operand (2);
12607 }
12608}
12609
c19d1205
ZW
12610static void
12611do_t_pkhbt (void)
12612{
fdfde340
JM
12613 unsigned Rd, Rn, Rm;
12614
12615 Rd = inst.operands[0].reg;
12616 Rn = inst.operands[1].reg;
12617 Rm = inst.operands[2].reg;
12618
12619 reject_bad_reg (Rd);
12620 reject_bad_reg (Rn);
12621 reject_bad_reg (Rm);
12622
12623 inst.instruction |= Rd << 8;
12624 inst.instruction |= Rn << 16;
12625 inst.instruction |= Rm;
c19d1205
ZW
12626 if (inst.operands[3].present)
12627 {
12628 unsigned int val = inst.reloc.exp.X_add_number;
12629 constraint (inst.reloc.exp.X_op != O_constant,
12630 _("expression too complex"));
12631 inst.instruction |= (val & 0x1c) << 10;
12632 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 12633 }
c19d1205 12634}
b05fe5cf 12635
c19d1205
ZW
12636static void
12637do_t_pkhtb (void)
12638{
12639 if (!inst.operands[3].present)
1ef52f49
NC
12640 {
12641 unsigned Rtmp;
12642
12643 inst.instruction &= ~0x00000020;
12644
12645 /* PR 10168. Swap the Rm and Rn registers. */
12646 Rtmp = inst.operands[1].reg;
12647 inst.operands[1].reg = inst.operands[2].reg;
12648 inst.operands[2].reg = Rtmp;
12649 }
c19d1205 12650 do_t_pkhbt ();
b05fe5cf
ZW
12651}
12652
c19d1205
ZW
12653static void
12654do_t_pld (void)
12655{
fdfde340
JM
12656 if (inst.operands[0].immisreg)
12657 reject_bad_reg (inst.operands[0].imm);
12658
c19d1205
ZW
12659 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12660}
b05fe5cf 12661
c19d1205
ZW
12662static void
12663do_t_push_pop (void)
b99bd4ef 12664{
e9f89963 12665 unsigned mask;
5f4273c7 12666
c19d1205
ZW
12667 constraint (inst.operands[0].writeback,
12668 _("push/pop do not support {reglist}^"));
12669 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12670 _("expression too complex"));
b99bd4ef 12671
e9f89963 12672 mask = inst.operands[0].imm;
d3bfe16e 12673 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 12674 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 12675 else if (inst.size_req != 4
c6025a80 12676 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 12677 ? REG_LR : REG_PC)))
b99bd4ef 12678 {
c19d1205
ZW
12679 inst.instruction = THUMB_OP16 (inst.instruction);
12680 inst.instruction |= THUMB_PP_PC_LR;
3c707909 12681 inst.instruction |= mask & 0xff;
c19d1205
ZW
12682 }
12683 else if (unified_syntax)
12684 {
3c707909 12685 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 12686 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
12687 }
12688 else
12689 {
12690 inst.error = _("invalid register list to push/pop instruction");
12691 return;
12692 }
c19d1205 12693}
b99bd4ef 12694
c19d1205
ZW
12695static void
12696do_t_rbit (void)
12697{
fdfde340
JM
12698 unsigned Rd, Rm;
12699
12700 Rd = inst.operands[0].reg;
12701 Rm = inst.operands[1].reg;
12702
12703 reject_bad_reg (Rd);
12704 reject_bad_reg (Rm);
12705
12706 inst.instruction |= Rd << 8;
12707 inst.instruction |= Rm << 16;
12708 inst.instruction |= Rm;
c19d1205 12709}
b99bd4ef 12710
c19d1205
ZW
12711static void
12712do_t_rev (void)
12713{
fdfde340
JM
12714 unsigned Rd, Rm;
12715
12716 Rd = inst.operands[0].reg;
12717 Rm = inst.operands[1].reg;
12718
12719 reject_bad_reg (Rd);
12720 reject_bad_reg (Rm);
12721
12722 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
12723 && inst.size_req != 4)
12724 {
12725 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12726 inst.instruction |= Rd;
12727 inst.instruction |= Rm << 3;
c19d1205
ZW
12728 }
12729 else if (unified_syntax)
12730 {
12731 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12732 inst.instruction |= Rd << 8;
12733 inst.instruction |= Rm << 16;
12734 inst.instruction |= Rm;
c19d1205
ZW
12735 }
12736 else
12737 inst.error = BAD_HIREG;
12738}
b99bd4ef 12739
1c444d06
JM
12740static void
12741do_t_rrx (void)
12742{
12743 unsigned Rd, Rm;
12744
12745 Rd = inst.operands[0].reg;
12746 Rm = inst.operands[1].reg;
12747
fdfde340
JM
12748 reject_bad_reg (Rd);
12749 reject_bad_reg (Rm);
c921be7d 12750
1c444d06
JM
12751 inst.instruction |= Rd << 8;
12752 inst.instruction |= Rm;
12753}
12754
c19d1205
ZW
12755static void
12756do_t_rsb (void)
12757{
fdfde340 12758 unsigned Rd, Rs;
b99bd4ef 12759
c19d1205
ZW
12760 Rd = inst.operands[0].reg;
12761 Rs = (inst.operands[1].present
12762 ? inst.operands[1].reg /* Rd, Rs, foo */
12763 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 12764
fdfde340
JM
12765 reject_bad_reg (Rd);
12766 reject_bad_reg (Rs);
12767 if (inst.operands[2].isreg)
12768 reject_bad_reg (inst.operands[2].reg);
12769
c19d1205
ZW
12770 inst.instruction |= Rd << 8;
12771 inst.instruction |= Rs << 16;
12772 if (!inst.operands[2].isreg)
12773 {
026d3abb
PB
12774 bfd_boolean narrow;
12775
12776 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 12777 narrow = !in_it_block ();
026d3abb 12778 else
e07e6e58 12779 narrow = in_it_block ();
026d3abb
PB
12780
12781 if (Rd > 7 || Rs > 7)
12782 narrow = FALSE;
12783
12784 if (inst.size_req == 4 || !unified_syntax)
12785 narrow = FALSE;
12786
12787 if (inst.reloc.exp.X_op != O_constant
12788 || inst.reloc.exp.X_add_number != 0)
12789 narrow = FALSE;
12790
12791 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 12792 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
12793 if (narrow)
12794 {
12795 inst.reloc.type = BFD_RELOC_UNUSED;
12796 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12797 inst.instruction |= Rs << 3;
12798 inst.instruction |= Rd;
12799 }
12800 else
12801 {
12802 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12803 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12804 }
c19d1205
ZW
12805 }
12806 else
12807 encode_thumb32_shifted_operand (2);
12808}
b99bd4ef 12809
c19d1205
ZW
12810static void
12811do_t_setend (void)
12812{
12e37cbc
MGD
12813 if (warn_on_deprecated
12814 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 12815 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 12816
e07e6e58 12817 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
12818 if (inst.operands[0].imm)
12819 inst.instruction |= 0x8;
12820}
b99bd4ef 12821
c19d1205
ZW
12822static void
12823do_t_shift (void)
12824{
12825 if (!inst.operands[1].present)
12826 inst.operands[1].reg = inst.operands[0].reg;
12827
12828 if (unified_syntax)
12829 {
3d388997
PB
12830 bfd_boolean narrow;
12831 int shift_kind;
12832
12833 switch (inst.instruction)
12834 {
12835 case T_MNEM_asr:
12836 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12837 case T_MNEM_lsl:
12838 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12839 case T_MNEM_lsr:
12840 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12841 case T_MNEM_ror:
12842 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12843 default: abort ();
12844 }
12845
12846 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 12847 narrow = !in_it_block ();
3d388997 12848 else
e07e6e58 12849 narrow = in_it_block ();
3d388997
PB
12850 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12851 narrow = FALSE;
12852 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12853 narrow = FALSE;
12854 if (inst.operands[2].isreg
12855 && (inst.operands[1].reg != inst.operands[0].reg
12856 || inst.operands[2].reg > 7))
12857 narrow = FALSE;
12858 if (inst.size_req == 4)
12859 narrow = FALSE;
12860
fdfde340
JM
12861 reject_bad_reg (inst.operands[0].reg);
12862 reject_bad_reg (inst.operands[1].reg);
c921be7d 12863
3d388997 12864 if (!narrow)
c19d1205
ZW
12865 {
12866 if (inst.operands[2].isreg)
b99bd4ef 12867 {
fdfde340 12868 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
12869 inst.instruction = THUMB_OP32 (inst.instruction);
12870 inst.instruction |= inst.operands[0].reg << 8;
12871 inst.instruction |= inst.operands[1].reg << 16;
12872 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
12873
12874 /* PR 12854: Error on extraneous shifts. */
12875 constraint (inst.operands[2].shifted,
12876 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12877 }
12878 else
12879 {
12880 inst.operands[1].shifted = 1;
3d388997 12881 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
12882 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12883 ? T_MNEM_movs : T_MNEM_mov);
12884 inst.instruction |= inst.operands[0].reg << 8;
12885 encode_thumb32_shifted_operand (1);
12886 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12887 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
12888 }
12889 }
12890 else
12891 {
c19d1205 12892 if (inst.operands[2].isreg)
b99bd4ef 12893 {
3d388997 12894 switch (shift_kind)
b99bd4ef 12895 {
3d388997
PB
12896 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12897 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12898 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12899 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 12900 default: abort ();
b99bd4ef 12901 }
5f4273c7 12902
c19d1205
ZW
12903 inst.instruction |= inst.operands[0].reg;
12904 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12905
12906 /* PR 12854: Error on extraneous shifts. */
12907 constraint (inst.operands[2].shifted,
12908 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
12909 }
12910 else
12911 {
3d388997 12912 switch (shift_kind)
b99bd4ef 12913 {
3d388997
PB
12914 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12915 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12916 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 12917 default: abort ();
b99bd4ef 12918 }
c19d1205
ZW
12919 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12920 inst.instruction |= inst.operands[0].reg;
12921 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12922 }
12923 }
c19d1205
ZW
12924 }
12925 else
12926 {
12927 constraint (inst.operands[0].reg > 7
12928 || inst.operands[1].reg > 7, BAD_HIREG);
12929 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 12930
c19d1205
ZW
12931 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12932 {
12933 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12934 constraint (inst.operands[0].reg != inst.operands[1].reg,
12935 _("source1 and dest must be same register"));
b99bd4ef 12936
c19d1205
ZW
12937 switch (inst.instruction)
12938 {
12939 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12940 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12941 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12942 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12943 default: abort ();
12944 }
5f4273c7 12945
c19d1205
ZW
12946 inst.instruction |= inst.operands[0].reg;
12947 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
12948
12949 /* PR 12854: Error on extraneous shifts. */
12950 constraint (inst.operands[2].shifted,
12951 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
12952 }
12953 else
b99bd4ef 12954 {
c19d1205
ZW
12955 switch (inst.instruction)
12956 {
12957 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12958 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12959 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12960 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12961 default: abort ();
12962 }
12963 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12964 inst.instruction |= inst.operands[0].reg;
12965 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
12966 }
12967 }
b99bd4ef
NC
12968}
12969
12970static void
c19d1205 12971do_t_simd (void)
b99bd4ef 12972{
fdfde340
JM
12973 unsigned Rd, Rn, Rm;
12974
12975 Rd = inst.operands[0].reg;
12976 Rn = inst.operands[1].reg;
12977 Rm = inst.operands[2].reg;
12978
12979 reject_bad_reg (Rd);
12980 reject_bad_reg (Rn);
12981 reject_bad_reg (Rm);
12982
12983 inst.instruction |= Rd << 8;
12984 inst.instruction |= Rn << 16;
12985 inst.instruction |= Rm;
c19d1205 12986}
b99bd4ef 12987
03ee1b7f
NC
12988static void
12989do_t_simd2 (void)
12990{
12991 unsigned Rd, Rn, Rm;
12992
12993 Rd = inst.operands[0].reg;
12994 Rm = inst.operands[1].reg;
12995 Rn = inst.operands[2].reg;
12996
12997 reject_bad_reg (Rd);
12998 reject_bad_reg (Rn);
12999 reject_bad_reg (Rm);
13000
13001 inst.instruction |= Rd << 8;
13002 inst.instruction |= Rn << 16;
13003 inst.instruction |= Rm;
13004}
13005
c19d1205 13006static void
3eb17e6b 13007do_t_smc (void)
c19d1205
ZW
13008{
13009 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
13010 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13011 _("SMC is not permitted on this architecture"));
c19d1205
ZW
13012 constraint (inst.reloc.exp.X_op != O_constant,
13013 _("expression too complex"));
13014 inst.reloc.type = BFD_RELOC_UNUSED;
13015 inst.instruction |= (value & 0xf000) >> 12;
13016 inst.instruction |= (value & 0x0ff0);
13017 inst.instruction |= (value & 0x000f) << 16;
24382199
NC
13018 /* PR gas/15623: SMC instructions must be last in an IT block. */
13019 set_it_insn_type_last ();
c19d1205 13020}
b99bd4ef 13021
90ec0d68
MGD
13022static void
13023do_t_hvc (void)
13024{
13025 unsigned int value = inst.reloc.exp.X_add_number;
13026
13027 inst.reloc.type = BFD_RELOC_UNUSED;
13028 inst.instruction |= (value & 0x0fff);
13029 inst.instruction |= (value & 0xf000) << 4;
13030}
13031
c19d1205 13032static void
3a21c15a 13033do_t_ssat_usat (int bias)
c19d1205 13034{
fdfde340
JM
13035 unsigned Rd, Rn;
13036
13037 Rd = inst.operands[0].reg;
13038 Rn = inst.operands[2].reg;
13039
13040 reject_bad_reg (Rd);
13041 reject_bad_reg (Rn);
13042
13043 inst.instruction |= Rd << 8;
3a21c15a 13044 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13045 inst.instruction |= Rn << 16;
b99bd4ef 13046
c19d1205 13047 if (inst.operands[3].present)
b99bd4ef 13048 {
3a21c15a
NC
13049 offsetT shift_amount = inst.reloc.exp.X_add_number;
13050
13051 inst.reloc.type = BFD_RELOC_UNUSED;
13052
c19d1205
ZW
13053 constraint (inst.reloc.exp.X_op != O_constant,
13054 _("expression too complex"));
b99bd4ef 13055
3a21c15a 13056 if (shift_amount != 0)
6189168b 13057 {
3a21c15a
NC
13058 constraint (shift_amount > 31,
13059 _("shift expression is too large"));
13060
c19d1205 13061 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13062 inst.instruction |= 0x00200000; /* sh bit. */
13063
13064 inst.instruction |= (shift_amount & 0x1c) << 10;
13065 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13066 }
13067 }
b99bd4ef 13068}
c921be7d 13069
3a21c15a
NC
13070static void
13071do_t_ssat (void)
13072{
13073 do_t_ssat_usat (1);
13074}
b99bd4ef 13075
0dd132b6 13076static void
c19d1205 13077do_t_ssat16 (void)
0dd132b6 13078{
fdfde340
JM
13079 unsigned Rd, Rn;
13080
13081 Rd = inst.operands[0].reg;
13082 Rn = inst.operands[2].reg;
13083
13084 reject_bad_reg (Rd);
13085 reject_bad_reg (Rn);
13086
13087 inst.instruction |= Rd << 8;
c19d1205 13088 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13089 inst.instruction |= Rn << 16;
c19d1205 13090}
0dd132b6 13091
c19d1205
ZW
13092static void
13093do_t_strex (void)
13094{
13095 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13096 || inst.operands[2].postind || inst.operands[2].writeback
13097 || inst.operands[2].immisreg || inst.operands[2].shifted
13098 || inst.operands[2].negative,
01cfc07f 13099 BAD_ADDR_MODE);
0dd132b6 13100
5be8be5d
DG
13101 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13102
c19d1205
ZW
13103 inst.instruction |= inst.operands[0].reg << 8;
13104 inst.instruction |= inst.operands[1].reg << 12;
13105 inst.instruction |= inst.operands[2].reg << 16;
13106 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13107}
13108
b99bd4ef 13109static void
c19d1205 13110do_t_strexd (void)
b99bd4ef 13111{
c19d1205
ZW
13112 if (!inst.operands[2].present)
13113 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13114
c19d1205
ZW
13115 constraint (inst.operands[0].reg == inst.operands[1].reg
13116 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13117 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13118 BAD_OVERLAP);
b99bd4ef 13119
c19d1205
ZW
13120 inst.instruction |= inst.operands[0].reg;
13121 inst.instruction |= inst.operands[1].reg << 12;
13122 inst.instruction |= inst.operands[2].reg << 8;
13123 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13124}
13125
13126static void
c19d1205 13127do_t_sxtah (void)
b99bd4ef 13128{
fdfde340
JM
13129 unsigned Rd, Rn, Rm;
13130
13131 Rd = inst.operands[0].reg;
13132 Rn = inst.operands[1].reg;
13133 Rm = inst.operands[2].reg;
13134
13135 reject_bad_reg (Rd);
13136 reject_bad_reg (Rn);
13137 reject_bad_reg (Rm);
13138
13139 inst.instruction |= Rd << 8;
13140 inst.instruction |= Rn << 16;
13141 inst.instruction |= Rm;
c19d1205
ZW
13142 inst.instruction |= inst.operands[3].imm << 4;
13143}
b99bd4ef 13144
c19d1205
ZW
13145static void
13146do_t_sxth (void)
13147{
fdfde340
JM
13148 unsigned Rd, Rm;
13149
13150 Rd = inst.operands[0].reg;
13151 Rm = inst.operands[1].reg;
13152
13153 reject_bad_reg (Rd);
13154 reject_bad_reg (Rm);
c921be7d
NC
13155
13156 if (inst.instruction <= 0xffff
13157 && inst.size_req != 4
fdfde340 13158 && Rd <= 7 && Rm <= 7
c19d1205 13159 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13160 {
c19d1205 13161 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13162 inst.instruction |= Rd;
13163 inst.instruction |= Rm << 3;
b99bd4ef 13164 }
c19d1205 13165 else if (unified_syntax)
b99bd4ef 13166 {
c19d1205
ZW
13167 if (inst.instruction <= 0xffff)
13168 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13169 inst.instruction |= Rd << 8;
13170 inst.instruction |= Rm;
c19d1205 13171 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13172 }
c19d1205 13173 else
b99bd4ef 13174 {
c19d1205
ZW
13175 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13176 _("Thumb encoding does not support rotation"));
13177 constraint (1, BAD_HIREG);
b99bd4ef 13178 }
c19d1205 13179}
b99bd4ef 13180
c19d1205
ZW
13181static void
13182do_t_swi (void)
13183{
13184 inst.reloc.type = BFD_RELOC_ARM_SWI;
13185}
b99bd4ef 13186
92e90b6e
PB
13187static void
13188do_t_tb (void)
13189{
fdfde340 13190 unsigned Rn, Rm;
92e90b6e
PB
13191 int half;
13192
13193 half = (inst.instruction & 0x10) != 0;
e07e6e58 13194 set_it_insn_type_last ();
dfa9f0d5
PB
13195 constraint (inst.operands[0].immisreg,
13196 _("instruction requires register index"));
fdfde340
JM
13197
13198 Rn = inst.operands[0].reg;
13199 Rm = inst.operands[0].imm;
c921be7d 13200
5c8ed6a4
JW
13201 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13202 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13203 reject_bad_reg (Rm);
13204
92e90b6e
PB
13205 constraint (!half && inst.operands[0].shifted,
13206 _("instruction does not allow shifted index"));
fdfde340 13207 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13208}
13209
74db7efb
NC
13210static void
13211do_t_udf (void)
13212{
13213 if (!inst.operands[0].present)
13214 inst.operands[0].imm = 0;
13215
13216 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13217 {
13218 constraint (inst.size_req == 2,
13219 _("immediate value out of range"));
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13222 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13223 }
13224 else
13225 {
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].imm;
13228 }
13229
13230 set_it_insn_type (NEUTRAL_IT_INSN);
13231}
13232
13233
c19d1205
ZW
13234static void
13235do_t_usat (void)
13236{
3a21c15a 13237 do_t_ssat_usat (0);
b99bd4ef
NC
13238}
13239
13240static void
c19d1205 13241do_t_usat16 (void)
b99bd4ef 13242{
fdfde340
JM
13243 unsigned Rd, Rn;
13244
13245 Rd = inst.operands[0].reg;
13246 Rn = inst.operands[2].reg;
13247
13248 reject_bad_reg (Rd);
13249 reject_bad_reg (Rn);
13250
13251 inst.instruction |= Rd << 8;
c19d1205 13252 inst.instruction |= inst.operands[1].imm;
fdfde340 13253 inst.instruction |= Rn << 16;
b99bd4ef 13254}
c19d1205 13255
5287ad62 13256/* Neon instruction encoder helpers. */
5f4273c7 13257
5287ad62 13258/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 13259
5287ad62
JB
13260/* An "invalid" code for the following tables. */
13261#define N_INV -1u
13262
13263struct neon_tab_entry
b99bd4ef 13264{
5287ad62
JB
13265 unsigned integer;
13266 unsigned float_or_poly;
13267 unsigned scalar_or_imm;
13268};
5f4273c7 13269
5287ad62
JB
13270/* Map overloaded Neon opcodes to their respective encodings. */
13271#define NEON_ENC_TAB \
13272 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13273 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13274 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13275 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13276 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13277 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13278 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13279 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13280 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13281 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13282 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13283 /* Register variants of the following two instructions are encoded as
e07e6e58 13284 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
13285 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13286 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
13287 X(vfma, N_INV, 0x0000c10, N_INV), \
13288 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
13289 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13290 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13291 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13292 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13293 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13294 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13295 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13296 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13297 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13298 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13299 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
13300 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13301 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
13302 X(vshl, 0x0000400, N_INV, 0x0800510), \
13303 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13304 X(vand, 0x0000110, N_INV, 0x0800030), \
13305 X(vbic, 0x0100110, N_INV, 0x0800030), \
13306 X(veor, 0x1000110, N_INV, N_INV), \
13307 X(vorn, 0x0300110, N_INV, 0x0800010), \
13308 X(vorr, 0x0200110, N_INV, 0x0800010), \
13309 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13310 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13311 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13312 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13313 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13314 X(vst1, 0x0000000, 0x0800000, N_INV), \
13315 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13316 X(vst2, 0x0000100, 0x0800100, N_INV), \
13317 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13318 X(vst3, 0x0000200, 0x0800200, N_INV), \
13319 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13320 X(vst4, 0x0000300, 0x0800300, N_INV), \
13321 X(vmovn, 0x1b20200, N_INV, N_INV), \
13322 X(vtrn, 0x1b20080, N_INV, N_INV), \
13323 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
13324 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13325 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
13326 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13327 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
13328 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13329 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
13330 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13331 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13332 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
13333 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13334 X(vseleq, 0xe000a00, N_INV, N_INV), \
13335 X(vselvs, 0xe100a00, N_INV, N_INV), \
13336 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
13337 X(vselgt, 0xe300a00, N_INV, N_INV), \
13338 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 13339 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
13340 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13341 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 13342 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 13343 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
13344 X(sha3op, 0x2000c00, N_INV, N_INV), \
13345 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13346 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
13347
13348enum neon_opc
13349{
13350#define X(OPC,I,F,S) N_MNEM_##OPC
13351NEON_ENC_TAB
13352#undef X
13353};
b99bd4ef 13354
5287ad62
JB
13355static const struct neon_tab_entry neon_enc_tab[] =
13356{
13357#define X(OPC,I,F,S) { (I), (F), (S) }
13358NEON_ENC_TAB
13359#undef X
13360};
b99bd4ef 13361
88714cb8
DG
13362/* Do not use these macros; instead, use NEON_ENCODE defined below. */
13363#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13364#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13365#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13366#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13367#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13368#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13369#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13370#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13371#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13372#define NEON_ENC_SINGLE_(X) \
037e8744 13373 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 13374#define NEON_ENC_DOUBLE_(X) \
037e8744 13375 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
13376#define NEON_ENC_FPV8_(X) \
13377 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 13378
88714cb8
DG
13379#define NEON_ENCODE(type, inst) \
13380 do \
13381 { \
13382 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13383 inst.is_neon = 1; \
13384 } \
13385 while (0)
13386
13387#define check_neon_suffixes \
13388 do \
13389 { \
13390 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13391 { \
13392 as_bad (_("invalid neon suffix for non neon instruction")); \
13393 return; \
13394 } \
13395 } \
13396 while (0)
13397
037e8744
JB
13398/* Define shapes for instruction operands. The following mnemonic characters
13399 are used in this table:
5287ad62 13400
037e8744 13401 F - VFP S<n> register
5287ad62
JB
13402 D - Neon D<n> register
13403 Q - Neon Q<n> register
13404 I - Immediate
13405 S - Scalar
13406 R - ARM register
13407 L - D<n> register list
5f4273c7 13408
037e8744
JB
13409 This table is used to generate various data:
13410 - enumerations of the form NS_DDR to be used as arguments to
13411 neon_select_shape.
13412 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 13413 - a table used to drive neon_select_shape. */
b99bd4ef 13414
037e8744
JB
13415#define NEON_SHAPE_DEF \
13416 X(3, (D, D, D), DOUBLE), \
13417 X(3, (Q, Q, Q), QUAD), \
13418 X(3, (D, D, I), DOUBLE), \
13419 X(3, (Q, Q, I), QUAD), \
13420 X(3, (D, D, S), DOUBLE), \
13421 X(3, (Q, Q, S), QUAD), \
13422 X(2, (D, D), DOUBLE), \
13423 X(2, (Q, Q), QUAD), \
13424 X(2, (D, S), DOUBLE), \
13425 X(2, (Q, S), QUAD), \
13426 X(2, (D, R), DOUBLE), \
13427 X(2, (Q, R), QUAD), \
13428 X(2, (D, I), DOUBLE), \
13429 X(2, (Q, I), QUAD), \
13430 X(3, (D, L, D), DOUBLE), \
13431 X(2, (D, Q), MIXED), \
13432 X(2, (Q, D), MIXED), \
13433 X(3, (D, Q, I), MIXED), \
13434 X(3, (Q, D, I), MIXED), \
13435 X(3, (Q, D, D), MIXED), \
13436 X(3, (D, Q, Q), MIXED), \
13437 X(3, (Q, Q, D), MIXED), \
13438 X(3, (Q, D, S), MIXED), \
13439 X(3, (D, Q, S), MIXED), \
13440 X(4, (D, D, D, I), DOUBLE), \
13441 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
13442 X(4, (D, D, S, I), DOUBLE), \
13443 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
13444 X(2, (F, F), SINGLE), \
13445 X(3, (F, F, F), SINGLE), \
13446 X(2, (F, I), SINGLE), \
13447 X(2, (F, D), MIXED), \
13448 X(2, (D, F), MIXED), \
13449 X(3, (F, F, I), MIXED), \
13450 X(4, (R, R, F, F), SINGLE), \
13451 X(4, (F, F, R, R), SINGLE), \
13452 X(3, (D, R, R), DOUBLE), \
13453 X(3, (R, R, D), DOUBLE), \
13454 X(2, (S, R), SINGLE), \
13455 X(2, (R, S), SINGLE), \
13456 X(2, (F, R), SINGLE), \
d54af2d0
RL
13457 X(2, (R, F), SINGLE), \
13458/* Half float shape supported so far. */\
13459 X (2, (H, D), MIXED), \
13460 X (2, (D, H), MIXED), \
13461 X (2, (H, F), MIXED), \
13462 X (2, (F, H), MIXED), \
13463 X (2, (H, H), HALF), \
13464 X (2, (H, R), HALF), \
13465 X (2, (R, H), HALF), \
13466 X (2, (H, I), HALF), \
13467 X (3, (H, H, H), HALF), \
13468 X (3, (H, F, I), MIXED), \
dec41383
JW
13469 X (3, (F, H, I), MIXED), \
13470 X (3, (D, H, H), MIXED), \
13471 X (3, (D, H, S), MIXED)
037e8744
JB
13472
13473#define S2(A,B) NS_##A##B
13474#define S3(A,B,C) NS_##A##B##C
13475#define S4(A,B,C,D) NS_##A##B##C##D
13476
13477#define X(N, L, C) S##N L
13478
5287ad62
JB
13479enum neon_shape
13480{
037e8744
JB
13481 NEON_SHAPE_DEF,
13482 NS_NULL
5287ad62 13483};
b99bd4ef 13484
037e8744
JB
13485#undef X
13486#undef S2
13487#undef S3
13488#undef S4
13489
13490enum neon_shape_class
13491{
d54af2d0 13492 SC_HALF,
037e8744
JB
13493 SC_SINGLE,
13494 SC_DOUBLE,
13495 SC_QUAD,
13496 SC_MIXED
13497};
13498
13499#define X(N, L, C) SC_##C
13500
13501static enum neon_shape_class neon_shape_class[] =
13502{
13503 NEON_SHAPE_DEF
13504};
13505
13506#undef X
13507
13508enum neon_shape_el
13509{
d54af2d0 13510 SE_H,
037e8744
JB
13511 SE_F,
13512 SE_D,
13513 SE_Q,
13514 SE_I,
13515 SE_S,
13516 SE_R,
13517 SE_L
13518};
13519
13520/* Register widths of above. */
13521static unsigned neon_shape_el_size[] =
13522{
d54af2d0 13523 16,
037e8744
JB
13524 32,
13525 64,
13526 128,
13527 0,
13528 32,
13529 32,
13530 0
13531};
13532
13533struct neon_shape_info
13534{
13535 unsigned els;
13536 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13537};
13538
13539#define S2(A,B) { SE_##A, SE_##B }
13540#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13541#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13542
13543#define X(N, L, C) { N, S##N L }
13544
13545static struct neon_shape_info neon_shape_tab[] =
13546{
13547 NEON_SHAPE_DEF
13548};
13549
13550#undef X
13551#undef S2
13552#undef S3
13553#undef S4
13554
5287ad62
JB
13555/* Bit masks used in type checking given instructions.
13556 'N_EQK' means the type must be the same as (or based on in some way) the key
13557 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13558 set, various other bits can be set as well in order to modify the meaning of
13559 the type constraint. */
13560
13561enum neon_type_mask
13562{
8e79c3df
CM
13563 N_S8 = 0x0000001,
13564 N_S16 = 0x0000002,
13565 N_S32 = 0x0000004,
13566 N_S64 = 0x0000008,
13567 N_U8 = 0x0000010,
13568 N_U16 = 0x0000020,
13569 N_U32 = 0x0000040,
13570 N_U64 = 0x0000080,
13571 N_I8 = 0x0000100,
13572 N_I16 = 0x0000200,
13573 N_I32 = 0x0000400,
13574 N_I64 = 0x0000800,
13575 N_8 = 0x0001000,
13576 N_16 = 0x0002000,
13577 N_32 = 0x0004000,
13578 N_64 = 0x0008000,
13579 N_P8 = 0x0010000,
13580 N_P16 = 0x0020000,
13581 N_F16 = 0x0040000,
13582 N_F32 = 0x0080000,
13583 N_F64 = 0x0100000,
4f51b4bd 13584 N_P64 = 0x0200000,
c921be7d
NC
13585 N_KEY = 0x1000000, /* Key element (main type specifier). */
13586 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 13587 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 13588 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
13589 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13590 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13591 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13592 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13593 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13594 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13595 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 13596 N_UTYP = 0,
4f51b4bd 13597 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
13598};
13599
dcbf9037
JB
13600#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13601
5287ad62
JB
13602#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13603#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13604#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
13605#define N_S_32 (N_S8 | N_S16 | N_S32)
13606#define N_F_16_32 (N_F16 | N_F32)
13607#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 13608#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 13609#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 13610#define N_F_ALL (N_F16 | N_F32 | N_F64)
5287ad62
JB
13611
13612/* Pass this as the first type argument to neon_check_type to ignore types
13613 altogether. */
13614#define N_IGNORE_TYPE (N_KEY | N_EQK)
13615
037e8744
JB
13616/* Select a "shape" for the current instruction (describing register types or
13617 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13618 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13619 function of operand parsing, so this function doesn't need to be called.
13620 Shapes should be listed in order of decreasing length. */
5287ad62
JB
13621
13622static enum neon_shape
037e8744 13623neon_select_shape (enum neon_shape shape, ...)
5287ad62 13624{
037e8744
JB
13625 va_list ap;
13626 enum neon_shape first_shape = shape;
5287ad62
JB
13627
13628 /* Fix missing optional operands. FIXME: we don't know at this point how
13629 many arguments we should have, so this makes the assumption that we have
13630 > 1. This is true of all current Neon opcodes, I think, but may not be
13631 true in the future. */
13632 if (!inst.operands[1].present)
13633 inst.operands[1] = inst.operands[0];
13634
037e8744 13635 va_start (ap, shape);
5f4273c7 13636
21d799b5 13637 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
13638 {
13639 unsigned j;
13640 int matches = 1;
13641
13642 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
13643 {
13644 if (!inst.operands[j].present)
13645 {
13646 matches = 0;
13647 break;
13648 }
13649
13650 switch (neon_shape_tab[shape].el[j])
13651 {
d54af2d0
RL
13652 /* If a .f16, .16, .u16, .s16 type specifier is given over
13653 a VFP single precision register operand, it's essentially
13654 means only half of the register is used.
13655
13656 If the type specifier is given after the mnemonics, the
13657 information is stored in inst.vectype. If the type specifier
13658 is given after register operand, the information is stored
13659 in inst.operands[].vectype.
13660
13661 When there is only one type specifier, and all the register
13662 operands are the same type of hardware register, the type
13663 specifier applies to all register operands.
13664
13665 If no type specifier is given, the shape is inferred from
13666 operand information.
13667
13668 for example:
13669 vadd.f16 s0, s1, s2: NS_HHH
13670 vabs.f16 s0, s1: NS_HH
13671 vmov.f16 s0, r1: NS_HR
13672 vmov.f16 r0, s1: NS_RH
13673 vcvt.f16 r0, s1: NS_RH
13674 vcvt.f16.s32 s2, s2, #29: NS_HFI
13675 vcvt.f16.s32 s2, s2: NS_HF
13676 */
13677 case SE_H:
13678 if (!(inst.operands[j].isreg
13679 && inst.operands[j].isvec
13680 && inst.operands[j].issingle
13681 && !inst.operands[j].isquad
13682 && ((inst.vectype.elems == 1
13683 && inst.vectype.el[0].size == 16)
13684 || (inst.vectype.elems > 1
13685 && inst.vectype.el[j].size == 16)
13686 || (inst.vectype.elems == 0
13687 && inst.operands[j].vectype.type != NT_invtype
13688 && inst.operands[j].vectype.size == 16))))
13689 matches = 0;
13690 break;
13691
477330fc
RM
13692 case SE_F:
13693 if (!(inst.operands[j].isreg
13694 && inst.operands[j].isvec
13695 && inst.operands[j].issingle
d54af2d0
RL
13696 && !inst.operands[j].isquad
13697 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13698 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13699 || (inst.vectype.elems == 0
13700 && (inst.operands[j].vectype.size == 32
13701 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
13702 matches = 0;
13703 break;
13704
13705 case SE_D:
13706 if (!(inst.operands[j].isreg
13707 && inst.operands[j].isvec
13708 && !inst.operands[j].isquad
13709 && !inst.operands[j].issingle))
13710 matches = 0;
13711 break;
13712
13713 case SE_R:
13714 if (!(inst.operands[j].isreg
13715 && !inst.operands[j].isvec))
13716 matches = 0;
13717 break;
13718
13719 case SE_Q:
13720 if (!(inst.operands[j].isreg
13721 && inst.operands[j].isvec
13722 && inst.operands[j].isquad
13723 && !inst.operands[j].issingle))
13724 matches = 0;
13725 break;
13726
13727 case SE_I:
13728 if (!(!inst.operands[j].isreg
13729 && !inst.operands[j].isscalar))
13730 matches = 0;
13731 break;
13732
13733 case SE_S:
13734 if (!(!inst.operands[j].isreg
13735 && inst.operands[j].isscalar))
13736 matches = 0;
13737 break;
13738
13739 case SE_L:
13740 break;
13741 }
3fde54a2
JZ
13742 if (!matches)
13743 break;
477330fc 13744 }
ad6cec43
MGD
13745 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13746 /* We've matched all the entries in the shape table, and we don't
13747 have any left over operands which have not been matched. */
477330fc 13748 break;
037e8744 13749 }
5f4273c7 13750
037e8744 13751 va_end (ap);
5287ad62 13752
037e8744
JB
13753 if (shape == NS_NULL && first_shape != NS_NULL)
13754 first_error (_("invalid instruction shape"));
5287ad62 13755
037e8744
JB
13756 return shape;
13757}
5287ad62 13758
037e8744
JB
13759/* True if SHAPE is predominantly a quadword operation (most of the time, this
13760 means the Q bit should be set). */
13761
13762static int
13763neon_quad (enum neon_shape shape)
13764{
13765 return neon_shape_class[shape] == SC_QUAD;
5287ad62 13766}
037e8744 13767
5287ad62
JB
13768static void
13769neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 13770 unsigned *g_size)
5287ad62
JB
13771{
13772 /* Allow modification to be made to types which are constrained to be
13773 based on the key element, based on bits set alongside N_EQK. */
13774 if ((typebits & N_EQK) != 0)
13775 {
13776 if ((typebits & N_HLF) != 0)
13777 *g_size /= 2;
13778 else if ((typebits & N_DBL) != 0)
13779 *g_size *= 2;
13780 if ((typebits & N_SGN) != 0)
13781 *g_type = NT_signed;
13782 else if ((typebits & N_UNS) != 0)
477330fc 13783 *g_type = NT_unsigned;
5287ad62 13784 else if ((typebits & N_INT) != 0)
477330fc 13785 *g_type = NT_integer;
5287ad62 13786 else if ((typebits & N_FLT) != 0)
477330fc 13787 *g_type = NT_float;
dcbf9037 13788 else if ((typebits & N_SIZ) != 0)
477330fc 13789 *g_type = NT_untyped;
5287ad62
JB
13790 }
13791}
5f4273c7 13792
5287ad62
JB
13793/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13794 operand type, i.e. the single type specified in a Neon instruction when it
13795 is the only one given. */
13796
13797static struct neon_type_el
13798neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13799{
13800 struct neon_type_el dest = *key;
5f4273c7 13801
9c2799c2 13802 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 13803
5287ad62
JB
13804 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13805
13806 return dest;
13807}
13808
13809/* Convert Neon type and size into compact bitmask representation. */
13810
13811static enum neon_type_mask
13812type_chk_of_el_type (enum neon_el_type type, unsigned size)
13813{
13814 switch (type)
13815 {
13816 case NT_untyped:
13817 switch (size)
477330fc
RM
13818 {
13819 case 8: return N_8;
13820 case 16: return N_16;
13821 case 32: return N_32;
13822 case 64: return N_64;
13823 default: ;
13824 }
5287ad62
JB
13825 break;
13826
13827 case NT_integer:
13828 switch (size)
477330fc
RM
13829 {
13830 case 8: return N_I8;
13831 case 16: return N_I16;
13832 case 32: return N_I32;
13833 case 64: return N_I64;
13834 default: ;
13835 }
5287ad62
JB
13836 break;
13837
13838 case NT_float:
037e8744 13839 switch (size)
477330fc 13840 {
8e79c3df 13841 case 16: return N_F16;
477330fc
RM
13842 case 32: return N_F32;
13843 case 64: return N_F64;
13844 default: ;
13845 }
5287ad62
JB
13846 break;
13847
13848 case NT_poly:
13849 switch (size)
477330fc
RM
13850 {
13851 case 8: return N_P8;
13852 case 16: return N_P16;
4f51b4bd 13853 case 64: return N_P64;
477330fc
RM
13854 default: ;
13855 }
5287ad62
JB
13856 break;
13857
13858 case NT_signed:
13859 switch (size)
477330fc
RM
13860 {
13861 case 8: return N_S8;
13862 case 16: return N_S16;
13863 case 32: return N_S32;
13864 case 64: return N_S64;
13865 default: ;
13866 }
5287ad62
JB
13867 break;
13868
13869 case NT_unsigned:
13870 switch (size)
477330fc
RM
13871 {
13872 case 8: return N_U8;
13873 case 16: return N_U16;
13874 case 32: return N_U32;
13875 case 64: return N_U64;
13876 default: ;
13877 }
5287ad62
JB
13878 break;
13879
13880 default: ;
13881 }
5f4273c7 13882
5287ad62
JB
13883 return N_UTYP;
13884}
13885
13886/* Convert compact Neon bitmask type representation to a type and size. Only
13887 handles the case where a single bit is set in the mask. */
13888
dcbf9037 13889static int
5287ad62 13890el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 13891 enum neon_type_mask mask)
5287ad62 13892{
dcbf9037
JB
13893 if ((mask & N_EQK) != 0)
13894 return FAIL;
13895
5287ad62
JB
13896 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13897 *size = 8;
c70a8987 13898 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 13899 *size = 16;
dcbf9037 13900 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 13901 *size = 32;
4f51b4bd 13902 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 13903 *size = 64;
dcbf9037
JB
13904 else
13905 return FAIL;
13906
5287ad62
JB
13907 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13908 *type = NT_signed;
dcbf9037 13909 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 13910 *type = NT_unsigned;
dcbf9037 13911 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 13912 *type = NT_integer;
dcbf9037 13913 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 13914 *type = NT_untyped;
4f51b4bd 13915 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 13916 *type = NT_poly;
d54af2d0 13917 else if ((mask & (N_F_ALL)) != 0)
5287ad62 13918 *type = NT_float;
dcbf9037
JB
13919 else
13920 return FAIL;
5f4273c7 13921
dcbf9037 13922 return SUCCESS;
5287ad62
JB
13923}
13924
13925/* Modify a bitmask of allowed types. This is only needed for type
13926 relaxation. */
13927
13928static unsigned
13929modify_types_allowed (unsigned allowed, unsigned mods)
13930{
13931 unsigned size;
13932 enum neon_el_type type;
13933 unsigned destmask;
13934 int i;
5f4273c7 13935
5287ad62 13936 destmask = 0;
5f4273c7 13937
5287ad62
JB
13938 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13939 {
21d799b5 13940 if (el_type_of_type_chk (&type, &size,
477330fc
RM
13941 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13942 {
13943 neon_modify_type_size (mods, &type, &size);
13944 destmask |= type_chk_of_el_type (type, size);
13945 }
5287ad62 13946 }
5f4273c7 13947
5287ad62
JB
13948 return destmask;
13949}
13950
13951/* Check type and return type classification.
13952 The manual states (paraphrase): If one datatype is given, it indicates the
13953 type given in:
13954 - the second operand, if there is one
13955 - the operand, if there is no second operand
13956 - the result, if there are no operands.
13957 This isn't quite good enough though, so we use a concept of a "key" datatype
13958 which is set on a per-instruction basis, which is the one which matters when
13959 only one data type is written.
13960 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 13961 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
13962
13963static struct neon_type_el
13964neon_check_type (unsigned els, enum neon_shape ns, ...)
13965{
13966 va_list ap;
13967 unsigned i, pass, key_el = 0;
13968 unsigned types[NEON_MAX_TYPE_ELS];
13969 enum neon_el_type k_type = NT_invtype;
13970 unsigned k_size = -1u;
13971 struct neon_type_el badtype = {NT_invtype, -1};
13972 unsigned key_allowed = 0;
13973
13974 /* Optional registers in Neon instructions are always (not) in operand 1.
13975 Fill in the missing operand here, if it was omitted. */
13976 if (els > 1 && !inst.operands[1].present)
13977 inst.operands[1] = inst.operands[0];
13978
13979 /* Suck up all the varargs. */
13980 va_start (ap, ns);
13981 for (i = 0; i < els; i++)
13982 {
13983 unsigned thisarg = va_arg (ap, unsigned);
13984 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
13985 {
13986 va_end (ap);
13987 return badtype;
13988 }
5287ad62
JB
13989 types[i] = thisarg;
13990 if ((thisarg & N_KEY) != 0)
477330fc 13991 key_el = i;
5287ad62
JB
13992 }
13993 va_end (ap);
13994
dcbf9037
JB
13995 if (inst.vectype.elems > 0)
13996 for (i = 0; i < els; i++)
13997 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
13998 {
13999 first_error (_("types specified in both the mnemonic and operands"));
14000 return badtype;
14001 }
dcbf9037 14002
5287ad62
JB
14003 /* Duplicate inst.vectype elements here as necessary.
14004 FIXME: No idea if this is exactly the same as the ARM assembler,
14005 particularly when an insn takes one register and one non-register
14006 operand. */
14007 if (inst.vectype.elems == 1 && els > 1)
14008 {
14009 unsigned j;
14010 inst.vectype.elems = els;
14011 inst.vectype.el[key_el] = inst.vectype.el[0];
14012 for (j = 0; j < els; j++)
477330fc
RM
14013 if (j != key_el)
14014 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14015 types[j]);
dcbf9037
JB
14016 }
14017 else if (inst.vectype.elems == 0 && els > 0)
14018 {
14019 unsigned j;
14020 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
14021 after each operand. We allow some flexibility here; as long as the
14022 "key" operand has a type, we can infer the others. */
dcbf9037 14023 for (j = 0; j < els; j++)
477330fc
RM
14024 if (inst.operands[j].vectype.type != NT_invtype)
14025 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
14026
14027 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
14028 {
14029 for (j = 0; j < els; j++)
14030 if (inst.operands[j].vectype.type == NT_invtype)
14031 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14032 types[j]);
14033 }
dcbf9037 14034 else
477330fc
RM
14035 {
14036 first_error (_("operand types can't be inferred"));
14037 return badtype;
14038 }
5287ad62
JB
14039 }
14040 else if (inst.vectype.elems != els)
14041 {
dcbf9037 14042 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
14043 return badtype;
14044 }
14045
14046 for (pass = 0; pass < 2; pass++)
14047 {
14048 for (i = 0; i < els; i++)
477330fc
RM
14049 {
14050 unsigned thisarg = types[i];
14051 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14052 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14053 enum neon_el_type g_type = inst.vectype.el[i].type;
14054 unsigned g_size = inst.vectype.el[i].size;
14055
14056 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 14057 integer types if sign-specific variants are unavailable. */
477330fc 14058 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
14059 && (types_allowed & N_SU_ALL) == 0)
14060 g_type = NT_integer;
14061
477330fc 14062 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
14063 them. Some instructions only care about signs for some element
14064 sizes, so handle that properly. */
477330fc 14065 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
14066 && ((g_size == 8 && (types_allowed & N_8) != 0)
14067 || (g_size == 16 && (types_allowed & N_16) != 0)
14068 || (g_size == 32 && (types_allowed & N_32) != 0)
14069 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
14070 g_type = NT_untyped;
14071
477330fc
RM
14072 if (pass == 0)
14073 {
14074 if ((thisarg & N_KEY) != 0)
14075 {
14076 k_type = g_type;
14077 k_size = g_size;
14078 key_allowed = thisarg & ~N_KEY;
cc933301
JW
14079
14080 /* Check architecture constraint on FP16 extension. */
14081 if (k_size == 16
14082 && k_type == NT_float
14083 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14084 {
14085 inst.error = _(BAD_FP16);
14086 return badtype;
14087 }
477330fc
RM
14088 }
14089 }
14090 else
14091 {
14092 if ((thisarg & N_VFP) != 0)
14093 {
14094 enum neon_shape_el regshape;
14095 unsigned regwidth, match;
99b253c5
NC
14096
14097 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14098 if (ns == NS_NULL)
14099 {
14100 first_error (_("invalid instruction shape"));
14101 return badtype;
14102 }
477330fc
RM
14103 regshape = neon_shape_tab[ns].el[i];
14104 regwidth = neon_shape_el_size[regshape];
14105
14106 /* In VFP mode, operands must match register widths. If we
14107 have a key operand, use its width, else use the width of
14108 the current operand. */
14109 if (k_size != -1u)
14110 match = k_size;
14111 else
14112 match = g_size;
14113
9db2f6b4
RL
14114 /* FP16 will use a single precision register. */
14115 if (regwidth == 32 && match == 16)
14116 {
14117 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14118 match = regwidth;
14119 else
14120 {
14121 inst.error = _(BAD_FP16);
14122 return badtype;
14123 }
14124 }
14125
477330fc
RM
14126 if (regwidth != match)
14127 {
14128 first_error (_("operand size must match register width"));
14129 return badtype;
14130 }
14131 }
14132
14133 if ((thisarg & N_EQK) == 0)
14134 {
14135 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14136
14137 if ((given_type & types_allowed) == 0)
14138 {
14139 first_error (_("bad type in Neon instruction"));
14140 return badtype;
14141 }
14142 }
14143 else
14144 {
14145 enum neon_el_type mod_k_type = k_type;
14146 unsigned mod_k_size = k_size;
14147 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14148 if (g_type != mod_k_type || g_size != mod_k_size)
14149 {
14150 first_error (_("inconsistent types in Neon instruction"));
14151 return badtype;
14152 }
14153 }
14154 }
14155 }
5287ad62
JB
14156 }
14157
14158 return inst.vectype.el[key_el];
14159}
14160
037e8744 14161/* Neon-style VFP instruction forwarding. */
5287ad62 14162
037e8744
JB
14163/* Thumb VFP instructions have 0xE in the condition field. */
14164
14165static void
14166do_vfp_cond_or_thumb (void)
5287ad62 14167{
88714cb8
DG
14168 inst.is_neon = 1;
14169
5287ad62 14170 if (thumb_mode)
037e8744 14171 inst.instruction |= 0xe0000000;
5287ad62 14172 else
037e8744 14173 inst.instruction |= inst.cond << 28;
5287ad62
JB
14174}
14175
037e8744
JB
14176/* Look up and encode a simple mnemonic, for use as a helper function for the
14177 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14178 etc. It is assumed that operand parsing has already been done, and that the
14179 operands are in the form expected by the given opcode (this isn't necessarily
14180 the same as the form in which they were parsed, hence some massaging must
14181 take place before this function is called).
14182 Checks current arch version against that in the looked-up opcode. */
5287ad62 14183
037e8744
JB
14184static void
14185do_vfp_nsyn_opcode (const char *opname)
5287ad62 14186{
037e8744 14187 const struct asm_opcode *opcode;
5f4273c7 14188
21d799b5 14189 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 14190
037e8744
JB
14191 if (!opcode)
14192 abort ();
5287ad62 14193
037e8744 14194 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
14195 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14196 _(BAD_FPU));
5287ad62 14197
88714cb8
DG
14198 inst.is_neon = 1;
14199
037e8744
JB
14200 if (thumb_mode)
14201 {
14202 inst.instruction = opcode->tvalue;
14203 opcode->tencode ();
14204 }
14205 else
14206 {
14207 inst.instruction = (inst.cond << 28) | opcode->avalue;
14208 opcode->aencode ();
14209 }
14210}
5287ad62
JB
14211
14212static void
037e8744 14213do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 14214{
037e8744
JB
14215 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14216
9db2f6b4 14217 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14218 {
14219 if (is_add)
477330fc 14220 do_vfp_nsyn_opcode ("fadds");
037e8744 14221 else
477330fc 14222 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
14223
14224 /* ARMv8.2 fp16 instruction. */
14225 if (rs == NS_HHH)
14226 do_scalar_fp16_v82_encode ();
037e8744
JB
14227 }
14228 else
14229 {
14230 if (is_add)
477330fc 14231 do_vfp_nsyn_opcode ("faddd");
037e8744 14232 else
477330fc 14233 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
14234 }
14235}
14236
14237/* Check operand types to see if this is a VFP instruction, and if so call
14238 PFN (). */
14239
14240static int
14241try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14242{
14243 enum neon_shape rs;
14244 struct neon_type_el et;
14245
14246 switch (args)
14247 {
14248 case 2:
9db2f6b4
RL
14249 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14250 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 14251 break;
5f4273c7 14252
037e8744 14253 case 3:
9db2f6b4
RL
14254 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14255 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14256 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
14257 break;
14258
14259 default:
14260 abort ();
14261 }
14262
14263 if (et.type != NT_invtype)
14264 {
14265 pfn (rs);
14266 return SUCCESS;
14267 }
037e8744 14268
99b253c5 14269 inst.error = NULL;
037e8744
JB
14270 return FAIL;
14271}
14272
14273static void
14274do_vfp_nsyn_mla_mls (enum neon_shape rs)
14275{
14276 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 14277
9db2f6b4 14278 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
14279 {
14280 if (is_mla)
477330fc 14281 do_vfp_nsyn_opcode ("fmacs");
037e8744 14282 else
477330fc 14283 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
14284
14285 /* ARMv8.2 fp16 instruction. */
14286 if (rs == NS_HHH)
14287 do_scalar_fp16_v82_encode ();
037e8744
JB
14288 }
14289 else
14290 {
14291 if (is_mla)
477330fc 14292 do_vfp_nsyn_opcode ("fmacd");
037e8744 14293 else
477330fc 14294 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
14295 }
14296}
14297
62f3b8c8
PB
14298static void
14299do_vfp_nsyn_fma_fms (enum neon_shape rs)
14300{
14301 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14302
9db2f6b4 14303 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
14304 {
14305 if (is_fma)
477330fc 14306 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 14307 else
477330fc 14308 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
14309
14310 /* ARMv8.2 fp16 instruction. */
14311 if (rs == NS_HHH)
14312 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
14313 }
14314 else
14315 {
14316 if (is_fma)
477330fc 14317 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 14318 else
477330fc 14319 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
14320 }
14321}
14322
037e8744
JB
14323static void
14324do_vfp_nsyn_mul (enum neon_shape rs)
14325{
9db2f6b4
RL
14326 if (rs == NS_FFF || rs == NS_HHH)
14327 {
14328 do_vfp_nsyn_opcode ("fmuls");
14329
14330 /* ARMv8.2 fp16 instruction. */
14331 if (rs == NS_HHH)
14332 do_scalar_fp16_v82_encode ();
14333 }
037e8744
JB
14334 else
14335 do_vfp_nsyn_opcode ("fmuld");
14336}
14337
14338static void
14339do_vfp_nsyn_abs_neg (enum neon_shape rs)
14340{
14341 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 14342 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 14343
9db2f6b4 14344 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
14345 {
14346 if (is_neg)
477330fc 14347 do_vfp_nsyn_opcode ("fnegs");
037e8744 14348 else
477330fc 14349 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
14350
14351 /* ARMv8.2 fp16 instruction. */
14352 if (rs == NS_HH)
14353 do_scalar_fp16_v82_encode ();
037e8744
JB
14354 }
14355 else
14356 {
14357 if (is_neg)
477330fc 14358 do_vfp_nsyn_opcode ("fnegd");
037e8744 14359 else
477330fc 14360 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
14361 }
14362}
14363
14364/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14365 insns belong to Neon, and are handled elsewhere. */
14366
14367static void
14368do_vfp_nsyn_ldm_stm (int is_dbmode)
14369{
14370 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14371 if (is_ldm)
14372 {
14373 if (is_dbmode)
477330fc 14374 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 14375 else
477330fc 14376 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
14377 }
14378 else
14379 {
14380 if (is_dbmode)
477330fc 14381 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 14382 else
477330fc 14383 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
14384 }
14385}
14386
037e8744
JB
14387static void
14388do_vfp_nsyn_sqrt (void)
14389{
9db2f6b4
RL
14390 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14391 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14392
9db2f6b4
RL
14393 if (rs == NS_FF || rs == NS_HH)
14394 {
14395 do_vfp_nsyn_opcode ("fsqrts");
14396
14397 /* ARMv8.2 fp16 instruction. */
14398 if (rs == NS_HH)
14399 do_scalar_fp16_v82_encode ();
14400 }
037e8744
JB
14401 else
14402 do_vfp_nsyn_opcode ("fsqrtd");
14403}
14404
14405static void
14406do_vfp_nsyn_div (void)
14407{
9db2f6b4 14408 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14409 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14410 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14411
9db2f6b4
RL
14412 if (rs == NS_FFF || rs == NS_HHH)
14413 {
14414 do_vfp_nsyn_opcode ("fdivs");
14415
14416 /* ARMv8.2 fp16 instruction. */
14417 if (rs == NS_HHH)
14418 do_scalar_fp16_v82_encode ();
14419 }
037e8744
JB
14420 else
14421 do_vfp_nsyn_opcode ("fdivd");
14422}
14423
14424static void
14425do_vfp_nsyn_nmul (void)
14426{
9db2f6b4 14427 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 14428 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 14429 N_F_ALL | N_KEY | N_VFP);
5f4273c7 14430
9db2f6b4 14431 if (rs == NS_FFF || rs == NS_HHH)
037e8744 14432 {
88714cb8 14433 NEON_ENCODE (SINGLE, inst);
037e8744 14434 do_vfp_sp_dyadic ();
9db2f6b4
RL
14435
14436 /* ARMv8.2 fp16 instruction. */
14437 if (rs == NS_HHH)
14438 do_scalar_fp16_v82_encode ();
037e8744
JB
14439 }
14440 else
14441 {
88714cb8 14442 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
14443 do_vfp_dp_rd_rn_rm ();
14444 }
14445 do_vfp_cond_or_thumb ();
9db2f6b4 14446
037e8744
JB
14447}
14448
14449static void
14450do_vfp_nsyn_cmp (void)
14451{
9db2f6b4 14452 enum neon_shape rs;
037e8744
JB
14453 if (inst.operands[1].isreg)
14454 {
9db2f6b4
RL
14455 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14456 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 14457
9db2f6b4 14458 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
14459 {
14460 NEON_ENCODE (SINGLE, inst);
14461 do_vfp_sp_monadic ();
14462 }
037e8744 14463 else
477330fc
RM
14464 {
14465 NEON_ENCODE (DOUBLE, inst);
14466 do_vfp_dp_rd_rm ();
14467 }
037e8744
JB
14468 }
14469 else
14470 {
9db2f6b4
RL
14471 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14472 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
14473
14474 switch (inst.instruction & 0x0fffffff)
477330fc
RM
14475 {
14476 case N_MNEM_vcmp:
14477 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14478 break;
14479 case N_MNEM_vcmpe:
14480 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14481 break;
14482 default:
14483 abort ();
14484 }
5f4273c7 14485
9db2f6b4 14486 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
14487 {
14488 NEON_ENCODE (SINGLE, inst);
14489 do_vfp_sp_compare_z ();
14490 }
037e8744 14491 else
477330fc
RM
14492 {
14493 NEON_ENCODE (DOUBLE, inst);
14494 do_vfp_dp_rd ();
14495 }
037e8744
JB
14496 }
14497 do_vfp_cond_or_thumb ();
9db2f6b4
RL
14498
14499 /* ARMv8.2 fp16 instruction. */
14500 if (rs == NS_HI || rs == NS_HH)
14501 do_scalar_fp16_v82_encode ();
037e8744
JB
14502}
14503
14504static void
14505nsyn_insert_sp (void)
14506{
14507 inst.operands[1] = inst.operands[0];
14508 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 14509 inst.operands[0].reg = REG_SP;
037e8744
JB
14510 inst.operands[0].isreg = 1;
14511 inst.operands[0].writeback = 1;
14512 inst.operands[0].present = 1;
14513}
14514
14515static void
14516do_vfp_nsyn_push (void)
14517{
14518 nsyn_insert_sp ();
b126985e
NC
14519
14520 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14521 _("register list must contain at least 1 and at most 16 "
14522 "registers"));
14523
037e8744
JB
14524 if (inst.operands[1].issingle)
14525 do_vfp_nsyn_opcode ("fstmdbs");
14526 else
14527 do_vfp_nsyn_opcode ("fstmdbd");
14528}
14529
14530static void
14531do_vfp_nsyn_pop (void)
14532{
14533 nsyn_insert_sp ();
b126985e
NC
14534
14535 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14536 _("register list must contain at least 1 and at most 16 "
14537 "registers"));
14538
037e8744 14539 if (inst.operands[1].issingle)
22b5b651 14540 do_vfp_nsyn_opcode ("fldmias");
037e8744 14541 else
22b5b651 14542 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
14543}
14544
14545/* Fix up Neon data-processing instructions, ORing in the correct bits for
14546 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14547
88714cb8
DG
14548static void
14549neon_dp_fixup (struct arm_it* insn)
037e8744 14550{
88714cb8
DG
14551 unsigned int i = insn->instruction;
14552 insn->is_neon = 1;
14553
037e8744
JB
14554 if (thumb_mode)
14555 {
14556 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14557 if (i & (1 << 24))
477330fc 14558 i |= 1 << 28;
5f4273c7 14559
037e8744 14560 i &= ~(1 << 24);
5f4273c7 14561
037e8744
JB
14562 i |= 0xef000000;
14563 }
14564 else
14565 i |= 0xf2000000;
5f4273c7 14566
88714cb8 14567 insn->instruction = i;
037e8744
JB
14568}
14569
14570/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14571 (0, 1, 2, 3). */
14572
14573static unsigned
14574neon_logbits (unsigned x)
14575{
14576 return ffs (x) - 4;
14577}
14578
14579#define LOW4(R) ((R) & 0xf)
14580#define HI1(R) (((R) >> 4) & 1)
14581
14582/* Encode insns with bit pattern:
14583
14584 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14585 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 14586
037e8744
JB
14587 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14588 different meaning for some instruction. */
14589
14590static void
14591neon_three_same (int isquad, int ubit, int size)
14592{
14593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14594 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14595 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14596 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14597 inst.instruction |= LOW4 (inst.operands[2].reg);
14598 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14599 inst.instruction |= (isquad != 0) << 6;
14600 inst.instruction |= (ubit != 0) << 24;
14601 if (size != -1)
14602 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14603
88714cb8 14604 neon_dp_fixup (&inst);
037e8744
JB
14605}
14606
14607/* Encode instructions of the form:
14608
14609 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14610 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
14611
14612 Don't write size if SIZE == -1. */
14613
14614static void
14615neon_two_same (int qbit, int ubit, int size)
14616{
14617 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14618 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14619 inst.instruction |= LOW4 (inst.operands[1].reg);
14620 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14621 inst.instruction |= (qbit != 0) << 6;
14622 inst.instruction |= (ubit != 0) << 24;
14623
14624 if (size != -1)
14625 inst.instruction |= neon_logbits (size) << 18;
14626
88714cb8 14627 neon_dp_fixup (&inst);
5287ad62
JB
14628}
14629
14630/* Neon instruction encoders, in approximate order of appearance. */
14631
14632static void
14633do_neon_dyadic_i_su (void)
14634{
037e8744 14635 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14636 struct neon_type_el et = neon_check_type (3, rs,
14637 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 14638 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14639}
14640
14641static void
14642do_neon_dyadic_i64_su (void)
14643{
037e8744 14644 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14645 struct neon_type_el et = neon_check_type (3, rs,
14646 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 14647 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14648}
14649
14650static void
14651neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 14652 unsigned immbits)
5287ad62
JB
14653{
14654 unsigned size = et.size >> 3;
14655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14657 inst.instruction |= LOW4 (inst.operands[1].reg);
14658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14659 inst.instruction |= (isquad != 0) << 6;
14660 inst.instruction |= immbits << 16;
14661 inst.instruction |= (size >> 3) << 7;
14662 inst.instruction |= (size & 0x7) << 19;
14663 if (write_ubit)
14664 inst.instruction |= (uval != 0) << 24;
14665
88714cb8 14666 neon_dp_fixup (&inst);
5287ad62
JB
14667}
14668
14669static void
14670do_neon_shl_imm (void)
14671{
14672 if (!inst.operands[2].isreg)
14673 {
037e8744 14674 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14675 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
cb3b1e65
JB
14676 int imm = inst.operands[2].imm;
14677
14678 constraint (imm < 0 || (unsigned)imm >= et.size,
14679 _("immediate out of range for shift"));
88714cb8 14680 NEON_ENCODE (IMMED, inst);
cb3b1e65 14681 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14682 }
14683 else
14684 {
037e8744 14685 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14686 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14687 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14688 unsigned int tmp;
14689
14690 /* VSHL/VQSHL 3-register variants have syntax such as:
477330fc
RM
14691 vshl.xx Dd, Dm, Dn
14692 whereas other 3-register operations encoded by neon_three_same have
14693 syntax like:
14694 vadd.xx Dd, Dn, Dm
14695 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14696 here. */
627907b7
JB
14697 tmp = inst.operands[2].reg;
14698 inst.operands[2].reg = inst.operands[1].reg;
14699 inst.operands[1].reg = tmp;
88714cb8 14700 NEON_ENCODE (INTEGER, inst);
037e8744 14701 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14702 }
14703}
14704
14705static void
14706do_neon_qshl_imm (void)
14707{
14708 if (!inst.operands[2].isreg)
14709 {
037e8744 14710 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 14711 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
cb3b1e65 14712 int imm = inst.operands[2].imm;
627907b7 14713
cb3b1e65
JB
14714 constraint (imm < 0 || (unsigned)imm >= et.size,
14715 _("immediate out of range for shift"));
88714cb8 14716 NEON_ENCODE (IMMED, inst);
cb3b1e65 14717 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
14718 }
14719 else
14720 {
037e8744 14721 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14722 struct neon_type_el et = neon_check_type (3, rs,
477330fc 14723 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
14724 unsigned int tmp;
14725
14726 /* See note in do_neon_shl_imm. */
14727 tmp = inst.operands[2].reg;
14728 inst.operands[2].reg = inst.operands[1].reg;
14729 inst.operands[1].reg = tmp;
88714cb8 14730 NEON_ENCODE (INTEGER, inst);
037e8744 14731 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
14732 }
14733}
14734
627907b7
JB
14735static void
14736do_neon_rshl (void)
14737{
14738 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14739 struct neon_type_el et = neon_check_type (3, rs,
14740 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14741 unsigned int tmp;
14742
14743 tmp = inst.operands[2].reg;
14744 inst.operands[2].reg = inst.operands[1].reg;
14745 inst.operands[1].reg = tmp;
14746 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14747}
14748
5287ad62
JB
14749static int
14750neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14751{
036dc3f7
PB
14752 /* Handle .I8 pseudo-instructions. */
14753 if (size == 8)
5287ad62 14754 {
5287ad62 14755 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
14756 FIXME is this the intended semantics? There doesn't seem much point in
14757 accepting .I8 if so. */
5287ad62
JB
14758 immediate |= immediate << 8;
14759 size = 16;
036dc3f7
PB
14760 }
14761
14762 if (size >= 32)
14763 {
14764 if (immediate == (immediate & 0x000000ff))
14765 {
14766 *immbits = immediate;
14767 return 0x1;
14768 }
14769 else if (immediate == (immediate & 0x0000ff00))
14770 {
14771 *immbits = immediate >> 8;
14772 return 0x3;
14773 }
14774 else if (immediate == (immediate & 0x00ff0000))
14775 {
14776 *immbits = immediate >> 16;
14777 return 0x5;
14778 }
14779 else if (immediate == (immediate & 0xff000000))
14780 {
14781 *immbits = immediate >> 24;
14782 return 0x7;
14783 }
14784 if ((immediate & 0xffff) != (immediate >> 16))
14785 goto bad_immediate;
14786 immediate &= 0xffff;
5287ad62
JB
14787 }
14788
14789 if (immediate == (immediate & 0x000000ff))
14790 {
14791 *immbits = immediate;
036dc3f7 14792 return 0x9;
5287ad62
JB
14793 }
14794 else if (immediate == (immediate & 0x0000ff00))
14795 {
14796 *immbits = immediate >> 8;
036dc3f7 14797 return 0xb;
5287ad62
JB
14798 }
14799
14800 bad_immediate:
dcbf9037 14801 first_error (_("immediate value out of range"));
5287ad62
JB
14802 return FAIL;
14803}
14804
5287ad62
JB
14805static void
14806do_neon_logic (void)
14807{
14808 if (inst.operands[2].present && inst.operands[2].isreg)
14809 {
037e8744 14810 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14811 neon_check_type (3, rs, N_IGNORE_TYPE);
14812 /* U bit and size field were set as part of the bitmask. */
88714cb8 14813 NEON_ENCODE (INTEGER, inst);
037e8744 14814 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14815 }
14816 else
14817 {
4316f0d2
DG
14818 const int three_ops_form = (inst.operands[2].present
14819 && !inst.operands[2].isreg);
14820 const int immoperand = (three_ops_form ? 2 : 1);
14821 enum neon_shape rs = (three_ops_form
14822 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14823 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744 14824 struct neon_type_el et = neon_check_type (2, rs,
477330fc 14825 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 14826 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
14827 unsigned immbits;
14828 int cmode;
5f4273c7 14829
5287ad62 14830 if (et.type == NT_invtype)
477330fc 14831 return;
5f4273c7 14832
4316f0d2
DG
14833 if (three_ops_form)
14834 constraint (inst.operands[0].reg != inst.operands[1].reg,
14835 _("first and second operands shall be the same register"));
14836
88714cb8 14837 NEON_ENCODE (IMMED, inst);
5287ad62 14838
4316f0d2 14839 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
14840 if (et.size == 64)
14841 {
14842 /* .i64 is a pseudo-op, so the immediate must be a repeating
14843 pattern. */
4316f0d2
DG
14844 if (immbits != (inst.operands[immoperand].regisimm ?
14845 inst.operands[immoperand].reg : 0))
036dc3f7
PB
14846 {
14847 /* Set immbits to an invalid constant. */
14848 immbits = 0xdeadbeef;
14849 }
14850 }
14851
5287ad62 14852 switch (opcode)
477330fc
RM
14853 {
14854 case N_MNEM_vbic:
14855 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14856 break;
14857
14858 case N_MNEM_vorr:
14859 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14860 break;
14861
14862 case N_MNEM_vand:
14863 /* Pseudo-instruction for VBIC. */
14864 neon_invert_size (&immbits, 0, et.size);
14865 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14866 break;
14867
14868 case N_MNEM_vorn:
14869 /* Pseudo-instruction for VORR. */
14870 neon_invert_size (&immbits, 0, et.size);
14871 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14872 break;
14873
14874 default:
14875 abort ();
14876 }
5287ad62
JB
14877
14878 if (cmode == FAIL)
477330fc 14879 return;
5287ad62 14880
037e8744 14881 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14884 inst.instruction |= cmode << 8;
14885 neon_write_immbits (immbits);
5f4273c7 14886
88714cb8 14887 neon_dp_fixup (&inst);
5287ad62
JB
14888 }
14889}
14890
14891static void
14892do_neon_bitfield (void)
14893{
037e8744 14894 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14895 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 14896 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14897}
14898
14899static void
dcbf9037 14900neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 14901 unsigned destbits)
5287ad62 14902{
037e8744 14903 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 14904 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 14905 types | N_KEY);
5287ad62
JB
14906 if (et.type == NT_float)
14907 {
88714cb8 14908 NEON_ENCODE (FLOAT, inst);
cc933301 14909 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
14910 }
14911 else
14912 {
88714cb8 14913 NEON_ENCODE (INTEGER, inst);
037e8744 14914 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
14915 }
14916}
14917
14918static void
14919do_neon_dyadic_if_su (void)
14920{
dcbf9037 14921 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14922}
14923
14924static void
14925do_neon_dyadic_if_su_d (void)
14926{
14927 /* This version only allow D registers, but that constraint is enforced during
14928 operand parsing so we don't need to do anything extra here. */
dcbf9037 14929 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
14930}
14931
5287ad62
JB
14932static void
14933do_neon_dyadic_if_i_d (void)
14934{
428e3f1f
PB
14935 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14936 affected if we specify unsigned args. */
14937 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
14938}
14939
037e8744
JB
14940enum vfp_or_neon_is_neon_bits
14941{
14942 NEON_CHECK_CC = 1,
73924fbc
MGD
14943 NEON_CHECK_ARCH = 2,
14944 NEON_CHECK_ARCH8 = 4
037e8744
JB
14945};
14946
14947/* Call this function if an instruction which may have belonged to the VFP or
14948 Neon instruction sets, but turned out to be a Neon instruction (due to the
14949 operand types involved, etc.). We have to check and/or fix-up a couple of
14950 things:
14951
14952 - Make sure the user hasn't attempted to make a Neon instruction
14953 conditional.
14954 - Alter the value in the condition code field if necessary.
14955 - Make sure that the arch supports Neon instructions.
14956
14957 Which of these operations take place depends on bits from enum
14958 vfp_or_neon_is_neon_bits.
14959
14960 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14961 current instruction's condition is COND_ALWAYS, the condition field is
14962 changed to inst.uncond_value. This is necessary because instructions shared
14963 between VFP and Neon may be conditional for the VFP variants only, and the
14964 unconditional Neon version must have, e.g., 0xF in the condition field. */
14965
14966static int
14967vfp_or_neon_is_neon (unsigned check)
14968{
14969 /* Conditions are always legal in Thumb mode (IT blocks). */
14970 if (!thumb_mode && (check & NEON_CHECK_CC))
14971 {
14972 if (inst.cond != COND_ALWAYS)
477330fc
RM
14973 {
14974 first_error (_(BAD_COND));
14975 return FAIL;
14976 }
037e8744 14977 if (inst.uncond_value != -1)
477330fc 14978 inst.instruction |= inst.uncond_value << 28;
037e8744 14979 }
5f4273c7 14980
037e8744 14981 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
14982 && !mark_feature_used (&fpu_neon_ext_v1))
14983 {
14984 first_error (_(BAD_FPU));
14985 return FAIL;
14986 }
14987
14988 if ((check & NEON_CHECK_ARCH8)
14989 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
14990 {
14991 first_error (_(BAD_FPU));
14992 return FAIL;
14993 }
5f4273c7 14994
037e8744
JB
14995 return SUCCESS;
14996}
14997
5287ad62
JB
14998static void
14999do_neon_addsub_if_i (void)
15000{
037e8744
JB
15001 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15002 return;
15003
15004 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15005 return;
15006
5287ad62
JB
15007 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15008 affected if we specify unsigned args. */
dcbf9037 15009 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
15010}
15011
15012/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15013 result to be:
15014 V<op> A,B (A is operand 0, B is operand 2)
15015 to mean:
15016 V<op> A,B,A
15017 not:
15018 V<op> A,B,B
15019 so handle that case specially. */
15020
15021static void
15022neon_exchange_operands (void)
15023{
5287ad62
JB
15024 if (inst.operands[1].present)
15025 {
e1fa0163
NC
15026 void *scratch = xmalloc (sizeof (inst.operands[0]));
15027
5287ad62
JB
15028 /* Swap operands[1] and operands[2]. */
15029 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15030 inst.operands[1] = inst.operands[2];
15031 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 15032 free (scratch);
5287ad62
JB
15033 }
15034 else
15035 {
15036 inst.operands[1] = inst.operands[2];
15037 inst.operands[2] = inst.operands[0];
15038 }
15039}
15040
15041static void
15042neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15043{
15044 if (inst.operands[2].isreg)
15045 {
15046 if (invert)
477330fc 15047 neon_exchange_operands ();
dcbf9037 15048 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
15049 }
15050 else
15051 {
037e8744 15052 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 15053 struct neon_type_el et = neon_check_type (2, rs,
477330fc 15054 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 15055
88714cb8 15056 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15057 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15059 inst.instruction |= LOW4 (inst.operands[1].reg);
15060 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15061 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15062 inst.instruction |= (et.type == NT_float) << 10;
15063 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15064
88714cb8 15065 neon_dp_fixup (&inst);
5287ad62
JB
15066 }
15067}
15068
15069static void
15070do_neon_cmp (void)
15071{
cc933301 15072 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
15073}
15074
15075static void
15076do_neon_cmp_inv (void)
15077{
cc933301 15078 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
15079}
15080
15081static void
15082do_neon_ceq (void)
15083{
15084 neon_compare (N_IF_32, N_IF_32, FALSE);
15085}
15086
15087/* For multiply instructions, we have the possibility of 16-bit or 32-bit
15088 scalars, which are encoded in 5 bits, M : Rm.
15089 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15090 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
15091 index in M.
15092
15093 Dot Product instructions are similar to multiply instructions except elsize
15094 should always be 32.
15095
15096 This function translates SCALAR, which is GAS's internal encoding of indexed
15097 scalar register, to raw encoding. There is also register and index range
15098 check based on ELSIZE. */
5287ad62
JB
15099
15100static unsigned
15101neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15102{
dcbf9037
JB
15103 unsigned regno = NEON_SCALAR_REG (scalar);
15104 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
15105
15106 switch (elsize)
15107 {
15108 case 16:
15109 if (regno > 7 || elno > 3)
477330fc 15110 goto bad_scalar;
5287ad62 15111 return regno | (elno << 3);
5f4273c7 15112
5287ad62
JB
15113 case 32:
15114 if (regno > 15 || elno > 1)
477330fc 15115 goto bad_scalar;
5287ad62
JB
15116 return regno | (elno << 4);
15117
15118 default:
15119 bad_scalar:
dcbf9037 15120 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
15121 }
15122
15123 return 0;
15124}
15125
15126/* Encode multiply / multiply-accumulate scalar instructions. */
15127
15128static void
15129neon_mul_mac (struct neon_type_el et, int ubit)
15130{
dcbf9037
JB
15131 unsigned scalar;
15132
15133 /* Give a more helpful error message if we have an invalid type. */
15134 if (et.type == NT_invtype)
15135 return;
5f4273c7 15136
dcbf9037 15137 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
15138 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15139 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15140 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15141 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15142 inst.instruction |= LOW4 (scalar);
15143 inst.instruction |= HI1 (scalar) << 5;
15144 inst.instruction |= (et.type == NT_float) << 8;
15145 inst.instruction |= neon_logbits (et.size) << 20;
15146 inst.instruction |= (ubit != 0) << 24;
15147
88714cb8 15148 neon_dp_fixup (&inst);
5287ad62
JB
15149}
15150
15151static void
15152do_neon_mac_maybe_scalar (void)
15153{
037e8744
JB
15154 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15155 return;
15156
15157 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15158 return;
15159
5287ad62
JB
15160 if (inst.operands[2].isscalar)
15161 {
037e8744 15162 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15163 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 15164 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 15165 NEON_ENCODE (SCALAR, inst);
037e8744 15166 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15167 }
15168 else
428e3f1f
PB
15169 {
15170 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15171 affected if we specify unsigned args. */
15172 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15173 }
5287ad62
JB
15174}
15175
62f3b8c8
PB
15176static void
15177do_neon_fmac (void)
15178{
15179 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15180 return;
15181
15182 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15183 return;
15184
15185 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15186}
15187
5287ad62
JB
15188static void
15189do_neon_tst (void)
15190{
037e8744 15191 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
15192 struct neon_type_el et = neon_check_type (3, rs,
15193 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 15194 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15195}
15196
15197/* VMUL with 3 registers allows the P8 type. The scalar version supports the
15198 same types as the MAC equivalents. The polynomial type for this instruction
15199 is encoded the same as the integer type. */
15200
15201static void
15202do_neon_mul (void)
15203{
037e8744
JB
15204 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15205 return;
15206
15207 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15208 return;
15209
5287ad62
JB
15210 if (inst.operands[2].isscalar)
15211 do_neon_mac_maybe_scalar ();
15212 else
cc933301 15213 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
5287ad62
JB
15214}
15215
15216static void
15217do_neon_qdmulh (void)
15218{
15219 if (inst.operands[2].isscalar)
15220 {
037e8744 15221 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 15222 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15223 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15224 NEON_ENCODE (SCALAR, inst);
037e8744 15225 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
15226 }
15227 else
15228 {
037e8744 15229 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 15230 struct neon_type_el et = neon_check_type (3, rs,
477330fc 15231 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 15232 NEON_ENCODE (INTEGER, inst);
5287ad62 15233 /* The U bit (rounding) comes from bit mask. */
037e8744 15234 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
15235 }
15236}
15237
643afb90
MW
15238static void
15239do_neon_qrdmlah (void)
15240{
15241 /* Check we're on the correct architecture. */
15242 if (!mark_feature_used (&fpu_neon_ext_armv8))
15243 inst.error =
15244 _("instruction form not available on this architecture.");
15245 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15246 {
15247 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15248 record_feature_use (&fpu_neon_ext_v8_1);
15249 }
15250
15251 if (inst.operands[2].isscalar)
15252 {
15253 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15254 struct neon_type_el et = neon_check_type (3, rs,
15255 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15256 NEON_ENCODE (SCALAR, inst);
15257 neon_mul_mac (et, neon_quad (rs));
15258 }
15259 else
15260 {
15261 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15262 struct neon_type_el et = neon_check_type (3, rs,
15263 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15264 NEON_ENCODE (INTEGER, inst);
15265 /* The U bit (rounding) comes from bit mask. */
15266 neon_three_same (neon_quad (rs), 0, et.size);
15267 }
15268}
15269
5287ad62
JB
15270static void
15271do_neon_fcmp_absolute (void)
15272{
037e8744 15273 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15274 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15275 N_F_16_32 | N_KEY);
5287ad62 15276 /* Size field comes from bit mask. */
cc933301 15277 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15278}
15279
15280static void
15281do_neon_fcmp_absolute_inv (void)
15282{
15283 neon_exchange_operands ();
15284 do_neon_fcmp_absolute ();
15285}
15286
15287static void
15288do_neon_step (void)
15289{
037e8744 15290 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
15291 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15292 N_F_16_32 | N_KEY);
15293 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
15294}
15295
15296static void
15297do_neon_abs_neg (void)
15298{
037e8744
JB
15299 enum neon_shape rs;
15300 struct neon_type_el et;
5f4273c7 15301
037e8744
JB
15302 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15303 return;
15304
15305 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15306 return;
15307
15308 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 15309 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 15310
5287ad62
JB
15311 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15312 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15313 inst.instruction |= LOW4 (inst.operands[1].reg);
15314 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15315 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15316 inst.instruction |= (et.type == NT_float) << 10;
15317 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15318
88714cb8 15319 neon_dp_fixup (&inst);
5287ad62
JB
15320}
15321
15322static void
15323do_neon_sli (void)
15324{
037e8744 15325 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15326 struct neon_type_el et = neon_check_type (2, rs,
15327 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15328 int imm = inst.operands[2].imm;
15329 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15330 _("immediate out of range for insert"));
037e8744 15331 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15332}
15333
15334static void
15335do_neon_sri (void)
15336{
037e8744 15337 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15338 struct neon_type_el et = neon_check_type (2, rs,
15339 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15340 int imm = inst.operands[2].imm;
15341 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15342 _("immediate out of range for insert"));
037e8744 15343 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
15344}
15345
15346static void
15347do_neon_qshlu_imm (void)
15348{
037e8744 15349 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15350 struct neon_type_el et = neon_check_type (2, rs,
15351 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15352 int imm = inst.operands[2].imm;
15353 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 15354 _("immediate out of range for shift"));
5287ad62
JB
15355 /* Only encodes the 'U present' variant of the instruction.
15356 In this case, signed types have OP (bit 8) set to 0.
15357 Unsigned types have OP set to 1. */
15358 inst.instruction |= (et.type == NT_unsigned) << 8;
15359 /* The rest of the bits are the same as other immediate shifts. */
037e8744 15360 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
15361}
15362
15363static void
15364do_neon_qmovn (void)
15365{
15366 struct neon_type_el et = neon_check_type (2, NS_DQ,
15367 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15368 /* Saturating move where operands can be signed or unsigned, and the
15369 destination has the same signedness. */
88714cb8 15370 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15371 if (et.type == NT_unsigned)
15372 inst.instruction |= 0xc0;
15373 else
15374 inst.instruction |= 0x80;
15375 neon_two_same (0, 1, et.size / 2);
15376}
15377
15378static void
15379do_neon_qmovun (void)
15380{
15381 struct neon_type_el et = neon_check_type (2, NS_DQ,
15382 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15383 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 15384 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15385 neon_two_same (0, 1, et.size / 2);
15386}
15387
15388static void
15389do_neon_rshift_sat_narrow (void)
15390{
15391 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15392 or unsigned. If operands are unsigned, results must also be unsigned. */
15393 struct neon_type_el et = neon_check_type (2, NS_DQI,
15394 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15395 int imm = inst.operands[2].imm;
15396 /* This gets the bounds check, size encoding and immediate bits calculation
15397 right. */
15398 et.size /= 2;
5f4273c7 15399
5287ad62
JB
15400 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15401 VQMOVN.I<size> <Dd>, <Qm>. */
15402 if (imm == 0)
15403 {
15404 inst.operands[2].present = 0;
15405 inst.instruction = N_MNEM_vqmovn;
15406 do_neon_qmovn ();
15407 return;
15408 }
5f4273c7 15409
5287ad62 15410 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15411 _("immediate out of range"));
5287ad62
JB
15412 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15413}
15414
15415static void
15416do_neon_rshift_sat_narrow_u (void)
15417{
15418 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15419 or unsigned. If operands are unsigned, results must also be unsigned. */
15420 struct neon_type_el et = neon_check_type (2, NS_DQI,
15421 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15422 int imm = inst.operands[2].imm;
15423 /* This gets the bounds check, size encoding and immediate bits calculation
15424 right. */
15425 et.size /= 2;
15426
15427 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15428 VQMOVUN.I<size> <Dd>, <Qm>. */
15429 if (imm == 0)
15430 {
15431 inst.operands[2].present = 0;
15432 inst.instruction = N_MNEM_vqmovun;
15433 do_neon_qmovun ();
15434 return;
15435 }
15436
15437 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15438 _("immediate out of range"));
5287ad62
JB
15439 /* FIXME: The manual is kind of unclear about what value U should have in
15440 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15441 must be 1. */
15442 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15443}
15444
15445static void
15446do_neon_movn (void)
15447{
15448 struct neon_type_el et = neon_check_type (2, NS_DQ,
15449 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 15450 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15451 neon_two_same (0, 1, et.size / 2);
15452}
15453
15454static void
15455do_neon_rshift_narrow (void)
15456{
15457 struct neon_type_el et = neon_check_type (2, NS_DQI,
15458 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15459 int imm = inst.operands[2].imm;
15460 /* This gets the bounds check, size encoding and immediate bits calculation
15461 right. */
15462 et.size /= 2;
5f4273c7 15463
5287ad62
JB
15464 /* If immediate is zero then we are a pseudo-instruction for
15465 VMOVN.I<size> <Dd>, <Qm> */
15466 if (imm == 0)
15467 {
15468 inst.operands[2].present = 0;
15469 inst.instruction = N_MNEM_vmovn;
15470 do_neon_movn ();
15471 return;
15472 }
5f4273c7 15473
5287ad62 15474 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 15475 _("immediate out of range for narrowing operation"));
5287ad62
JB
15476 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15477}
15478
15479static void
15480do_neon_shll (void)
15481{
15482 /* FIXME: Type checking when lengthening. */
15483 struct neon_type_el et = neon_check_type (2, NS_QDI,
15484 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15485 unsigned imm = inst.operands[2].imm;
15486
15487 if (imm == et.size)
15488 {
15489 /* Maximum shift variant. */
88714cb8 15490 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15491 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15492 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15493 inst.instruction |= LOW4 (inst.operands[1].reg);
15494 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15495 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 15496
88714cb8 15497 neon_dp_fixup (&inst);
5287ad62
JB
15498 }
15499 else
15500 {
15501 /* A more-specific type check for non-max versions. */
15502 et = neon_check_type (2, NS_QDI,
477330fc 15503 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 15504 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15505 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15506 }
15507}
15508
037e8744 15509/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
15510 the current instruction is. */
15511
6b9a8b67
MGD
15512#define CVT_FLAVOUR_VAR \
15513 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15514 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15515 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15516 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15517 /* Half-precision conversions. */ \
cc933301
JW
15518 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15519 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15520 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15521 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
15522 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15523 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
15524 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15525 Compared with single/double precision variants, only the co-processor \
15526 field is different, so the encoding flow is reused here. */ \
15527 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15528 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15529 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15530 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
15531 /* VFP instructions. */ \
15532 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15533 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15534 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15535 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15536 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15537 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15538 /* VFP instructions with bitshift. */ \
15539 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15540 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15541 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15542 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15543 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15544 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15545 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15546 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15547
15548#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15549 neon_cvt_flavour_##C,
15550
15551/* The different types of conversions we can do. */
15552enum neon_cvt_flavour
15553{
15554 CVT_FLAVOUR_VAR
15555 neon_cvt_flavour_invalid,
15556 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15557};
15558
15559#undef CVT_VAR
15560
15561static enum neon_cvt_flavour
15562get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 15563{
6b9a8b67
MGD
15564#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15565 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15566 if (et.type != NT_invtype) \
15567 { \
15568 inst.error = NULL; \
15569 return (neon_cvt_flavour_##C); \
5287ad62 15570 }
6b9a8b67 15571
5287ad62 15572 struct neon_type_el et;
037e8744 15573 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 15574 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
15575 /* The instruction versions which take an immediate take one register
15576 argument, which is extended to the width of the full register. Thus the
15577 "source" and "destination" registers must have the same width. Hack that
15578 here by making the size equal to the key (wider, in this case) operand. */
15579 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 15580
6b9a8b67
MGD
15581 CVT_FLAVOUR_VAR;
15582
15583 return neon_cvt_flavour_invalid;
5287ad62
JB
15584#undef CVT_VAR
15585}
15586
7e8e6784
MGD
15587enum neon_cvt_mode
15588{
15589 neon_cvt_mode_a,
15590 neon_cvt_mode_n,
15591 neon_cvt_mode_p,
15592 neon_cvt_mode_m,
15593 neon_cvt_mode_z,
30bdf752
MGD
15594 neon_cvt_mode_x,
15595 neon_cvt_mode_r
7e8e6784
MGD
15596};
15597
037e8744
JB
15598/* Neon-syntax VFP conversions. */
15599
5287ad62 15600static void
6b9a8b67 15601do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 15602{
037e8744 15603 const char *opname = 0;
5f4273c7 15604
d54af2d0
RL
15605 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15606 || rs == NS_FHI || rs == NS_HFI)
5287ad62 15607 {
037e8744
JB
15608 /* Conversions with immediate bitshift. */
15609 const char *enc[] =
477330fc 15610 {
6b9a8b67
MGD
15611#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15612 CVT_FLAVOUR_VAR
15613 NULL
15614#undef CVT_VAR
477330fc 15615 };
037e8744 15616
6b9a8b67 15617 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
15618 {
15619 opname = enc[flavour];
15620 constraint (inst.operands[0].reg != inst.operands[1].reg,
15621 _("operands 0 and 1 must be the same register"));
15622 inst.operands[1] = inst.operands[2];
15623 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15624 }
5287ad62
JB
15625 }
15626 else
15627 {
037e8744
JB
15628 /* Conversions without bitshift. */
15629 const char *enc[] =
477330fc 15630 {
6b9a8b67
MGD
15631#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15632 CVT_FLAVOUR_VAR
15633 NULL
15634#undef CVT_VAR
477330fc 15635 };
037e8744 15636
6b9a8b67 15637 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 15638 opname = enc[flavour];
037e8744
JB
15639 }
15640
15641 if (opname)
15642 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
15643
15644 /* ARMv8.2 fp16 VCVT instruction. */
15645 if (flavour == neon_cvt_flavour_s32_f16
15646 || flavour == neon_cvt_flavour_u32_f16
15647 || flavour == neon_cvt_flavour_f16_u32
15648 || flavour == neon_cvt_flavour_f16_s32)
15649 do_scalar_fp16_v82_encode ();
037e8744
JB
15650}
15651
15652static void
15653do_vfp_nsyn_cvtz (void)
15654{
d54af2d0 15655 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 15656 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
15657 const char *enc[] =
15658 {
6b9a8b67
MGD
15659#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15660 CVT_FLAVOUR_VAR
15661 NULL
15662#undef CVT_VAR
037e8744
JB
15663 };
15664
6b9a8b67 15665 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
15666 do_vfp_nsyn_opcode (enc[flavour]);
15667}
f31fef98 15668
037e8744 15669static void
bacebabc 15670do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
15671 enum neon_cvt_mode mode)
15672{
15673 int sz, op;
15674 int rm;
15675
a715796b
TG
15676 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15677 D register operands. */
15678 if (flavour == neon_cvt_flavour_s32_f64
15679 || flavour == neon_cvt_flavour_u32_f64)
15680 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15681 _(BAD_FPU));
15682
9db2f6b4
RL
15683 if (flavour == neon_cvt_flavour_s32_f16
15684 || flavour == neon_cvt_flavour_u32_f16)
15685 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15686 _(BAD_FP16));
15687
7e8e6784
MGD
15688 set_it_insn_type (OUTSIDE_IT_INSN);
15689
15690 switch (flavour)
15691 {
15692 case neon_cvt_flavour_s32_f64:
15693 sz = 1;
827f64ff 15694 op = 1;
7e8e6784
MGD
15695 break;
15696 case neon_cvt_flavour_s32_f32:
15697 sz = 0;
15698 op = 1;
15699 break;
9db2f6b4
RL
15700 case neon_cvt_flavour_s32_f16:
15701 sz = 0;
15702 op = 1;
15703 break;
7e8e6784
MGD
15704 case neon_cvt_flavour_u32_f64:
15705 sz = 1;
15706 op = 0;
15707 break;
15708 case neon_cvt_flavour_u32_f32:
15709 sz = 0;
15710 op = 0;
15711 break;
9db2f6b4
RL
15712 case neon_cvt_flavour_u32_f16:
15713 sz = 0;
15714 op = 0;
15715 break;
7e8e6784
MGD
15716 default:
15717 first_error (_("invalid instruction shape"));
15718 return;
15719 }
15720
15721 switch (mode)
15722 {
15723 case neon_cvt_mode_a: rm = 0; break;
15724 case neon_cvt_mode_n: rm = 1; break;
15725 case neon_cvt_mode_p: rm = 2; break;
15726 case neon_cvt_mode_m: rm = 3; break;
15727 default: first_error (_("invalid rounding mode")); return;
15728 }
15729
15730 NEON_ENCODE (FPV8, inst);
15731 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15732 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15733 inst.instruction |= sz << 8;
9db2f6b4
RL
15734
15735 /* ARMv8.2 fp16 VCVT instruction. */
15736 if (flavour == neon_cvt_flavour_s32_f16
15737 ||flavour == neon_cvt_flavour_u32_f16)
15738 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
15739 inst.instruction |= op << 7;
15740 inst.instruction |= rm << 16;
15741 inst.instruction |= 0xf0000000;
15742 inst.is_neon = TRUE;
15743}
15744
15745static void
15746do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
15747{
15748 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
15749 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15750 NS_FH, NS_HF, NS_FHI, NS_HFI,
15751 NS_NULL);
6b9a8b67 15752 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 15753
cc933301
JW
15754 if (flavour == neon_cvt_flavour_invalid)
15755 return;
15756
e3e535bc 15757 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 15758 if (mode == neon_cvt_mode_z
e3e535bc 15759 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
15760 && (flavour == neon_cvt_flavour_s16_f16
15761 || flavour == neon_cvt_flavour_u16_f16
15762 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
15763 || flavour == neon_cvt_flavour_u32_f32
15764 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 15765 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
15766 && (rs == NS_FD || rs == NS_FF))
15767 {
15768 do_vfp_nsyn_cvtz ();
15769 return;
15770 }
15771
9db2f6b4
RL
15772 /* ARMv8.2 fp16 VCVT conversions. */
15773 if (mode == neon_cvt_mode_z
15774 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15775 && (flavour == neon_cvt_flavour_s32_f16
15776 || flavour == neon_cvt_flavour_u32_f16)
15777 && (rs == NS_FH))
15778 {
15779 do_vfp_nsyn_cvtz ();
15780 do_scalar_fp16_v82_encode ();
15781 return;
15782 }
15783
037e8744 15784 /* VFP rather than Neon conversions. */
6b9a8b67 15785 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 15786 {
7e8e6784
MGD
15787 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15788 do_vfp_nsyn_cvt (rs, flavour);
15789 else
15790 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15791
037e8744
JB
15792 return;
15793 }
15794
15795 switch (rs)
15796 {
15797 case NS_DDI:
15798 case NS_QQI:
15799 {
477330fc 15800 unsigned immbits;
cc933301
JW
15801 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15802 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 15803
477330fc
RM
15804 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15805 return;
037e8744 15806
477330fc
RM
15807 /* Fixed-point conversion with #0 immediate is encoded as an
15808 integer conversion. */
15809 if (inst.operands[2].present && inst.operands[2].imm == 0)
15810 goto int_encode;
477330fc
RM
15811 NEON_ENCODE (IMMED, inst);
15812 if (flavour != neon_cvt_flavour_invalid)
15813 inst.instruction |= enctab[flavour];
15814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15816 inst.instruction |= LOW4 (inst.operands[1].reg);
15817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15818 inst.instruction |= neon_quad (rs) << 6;
15819 inst.instruction |= 1 << 21;
cc933301
JW
15820 if (flavour < neon_cvt_flavour_s16_f16)
15821 {
15822 inst.instruction |= 1 << 21;
15823 immbits = 32 - inst.operands[2].imm;
15824 inst.instruction |= immbits << 16;
15825 }
15826 else
15827 {
15828 inst.instruction |= 3 << 20;
15829 immbits = 16 - inst.operands[2].imm;
15830 inst.instruction |= immbits << 16;
15831 inst.instruction &= ~(1 << 9);
15832 }
477330fc
RM
15833
15834 neon_dp_fixup (&inst);
037e8744
JB
15835 }
15836 break;
15837
15838 case NS_DD:
15839 case NS_QQ:
7e8e6784
MGD
15840 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15841 {
15842 NEON_ENCODE (FLOAT, inst);
15843 set_it_insn_type (OUTSIDE_IT_INSN);
15844
15845 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15846 return;
15847
15848 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15849 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15850 inst.instruction |= LOW4 (inst.operands[1].reg);
15851 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15852 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15853 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15854 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 15855 inst.instruction |= mode << 8;
cc933301
JW
15856 if (flavour == neon_cvt_flavour_u16_f16
15857 || flavour == neon_cvt_flavour_s16_f16)
15858 /* Mask off the original size bits and reencode them. */
15859 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15860
7e8e6784
MGD
15861 if (thumb_mode)
15862 inst.instruction |= 0xfc000000;
15863 else
15864 inst.instruction |= 0xf0000000;
15865 }
15866 else
15867 {
037e8744 15868 int_encode:
7e8e6784 15869 {
cc933301
JW
15870 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15871 0x100, 0x180, 0x0, 0x080};
037e8744 15872
7e8e6784 15873 NEON_ENCODE (INTEGER, inst);
037e8744 15874
7e8e6784
MGD
15875 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15876 return;
037e8744 15877
7e8e6784
MGD
15878 if (flavour != neon_cvt_flavour_invalid)
15879 inst.instruction |= enctab[flavour];
037e8744 15880
7e8e6784
MGD
15881 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15882 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15883 inst.instruction |= LOW4 (inst.operands[1].reg);
15884 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15885 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
15886 if (flavour >= neon_cvt_flavour_s16_f16
15887 && flavour <= neon_cvt_flavour_f16_u16)
15888 /* Half precision. */
15889 inst.instruction |= 1 << 18;
15890 else
15891 inst.instruction |= 2 << 18;
037e8744 15892
7e8e6784
MGD
15893 neon_dp_fixup (&inst);
15894 }
15895 }
15896 break;
037e8744 15897
8e79c3df
CM
15898 /* Half-precision conversions for Advanced SIMD -- neon. */
15899 case NS_QD:
15900 case NS_DQ:
15901
15902 if ((rs == NS_DQ)
15903 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15904 {
15905 as_bad (_("operand size must match register width"));
15906 break;
15907 }
15908
15909 if ((rs == NS_QD)
15910 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15911 {
15912 as_bad (_("operand size must match register width"));
15913 break;
15914 }
15915
15916 if (rs == NS_DQ)
477330fc 15917 inst.instruction = 0x3b60600;
8e79c3df
CM
15918 else
15919 inst.instruction = 0x3b60700;
15920
15921 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15923 inst.instruction |= LOW4 (inst.operands[1].reg);
15924 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 15925 neon_dp_fixup (&inst);
8e79c3df
CM
15926 break;
15927
037e8744
JB
15928 default:
15929 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
15930 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15931 do_vfp_nsyn_cvt (rs, flavour);
15932 else
15933 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 15934 }
5287ad62
JB
15935}
15936
e3e535bc
NC
15937static void
15938do_neon_cvtr (void)
15939{
7e8e6784 15940 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
15941}
15942
15943static void
15944do_neon_cvt (void)
15945{
7e8e6784
MGD
15946 do_neon_cvt_1 (neon_cvt_mode_z);
15947}
15948
15949static void
15950do_neon_cvta (void)
15951{
15952 do_neon_cvt_1 (neon_cvt_mode_a);
15953}
15954
15955static void
15956do_neon_cvtn (void)
15957{
15958 do_neon_cvt_1 (neon_cvt_mode_n);
15959}
15960
15961static void
15962do_neon_cvtp (void)
15963{
15964 do_neon_cvt_1 (neon_cvt_mode_p);
15965}
15966
15967static void
15968do_neon_cvtm (void)
15969{
15970 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
15971}
15972
8e79c3df 15973static void
c70a8987 15974do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 15975{
c70a8987
MGD
15976 if (is_double)
15977 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 15978
c70a8987
MGD
15979 encode_arm_vfp_reg (inst.operands[0].reg,
15980 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15981 encode_arm_vfp_reg (inst.operands[1].reg,
15982 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15983 inst.instruction |= to ? 0x10000 : 0;
15984 inst.instruction |= t ? 0x80 : 0;
15985 inst.instruction |= is_double ? 0x100 : 0;
15986 do_vfp_cond_or_thumb ();
15987}
8e79c3df 15988
c70a8987
MGD
15989static void
15990do_neon_cvttb_1 (bfd_boolean t)
15991{
d54af2d0
RL
15992 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
15993 NS_DF, NS_DH, NS_NULL);
8e79c3df 15994
c70a8987
MGD
15995 if (rs == NS_NULL)
15996 return;
15997 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15998 {
15999 inst.error = NULL;
16000 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16001 }
16002 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16003 {
16004 inst.error = NULL;
16005 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16006 }
16007 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16008 {
a715796b
TG
16009 /* The VCVTB and VCVTT instructions with D-register operands
16010 don't work for SP only targets. */
16011 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16012 _(BAD_FPU));
16013
c70a8987
MGD
16014 inst.error = NULL;
16015 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16016 }
16017 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16018 {
a715796b
TG
16019 /* The VCVTB and VCVTT instructions with D-register operands
16020 don't work for SP only targets. */
16021 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16022 _(BAD_FPU));
16023
c70a8987
MGD
16024 inst.error = NULL;
16025 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16026 }
16027 else
16028 return;
16029}
16030
16031static void
16032do_neon_cvtb (void)
16033{
16034 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
16035}
16036
16037
16038static void
16039do_neon_cvtt (void)
16040{
c70a8987 16041 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
16042}
16043
5287ad62
JB
16044static void
16045neon_move_immediate (void)
16046{
037e8744
JB
16047 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16048 struct neon_type_el et = neon_check_type (2, rs,
16049 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 16050 unsigned immlo, immhi = 0, immbits;
c96612cc 16051 int op, cmode, float_p;
5287ad62 16052
037e8744 16053 constraint (et.type == NT_invtype,
477330fc 16054 _("operand size must be specified for immediate VMOV"));
037e8744 16055
5287ad62
JB
16056 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16057 op = (inst.instruction & (1 << 5)) != 0;
16058
16059 immlo = inst.operands[1].imm;
16060 if (inst.operands[1].regisimm)
16061 immhi = inst.operands[1].reg;
16062
16063 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 16064 _("immediate has bits set outside the operand size"));
5287ad62 16065
c96612cc
JB
16066 float_p = inst.operands[1].immisfloat;
16067
16068 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 16069 et.size, et.type)) == FAIL)
5287ad62
JB
16070 {
16071 /* Invert relevant bits only. */
16072 neon_invert_size (&immlo, &immhi, et.size);
16073 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
16074 with one or the other; those cases are caught by
16075 neon_cmode_for_move_imm. */
5287ad62 16076 op = !op;
c96612cc
JB
16077 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16078 &op, et.size, et.type)) == FAIL)
477330fc
RM
16079 {
16080 first_error (_("immediate out of range"));
16081 return;
16082 }
5287ad62
JB
16083 }
16084
16085 inst.instruction &= ~(1 << 5);
16086 inst.instruction |= op << 5;
16087
16088 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16089 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 16090 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16091 inst.instruction |= cmode << 8;
16092
16093 neon_write_immbits (immbits);
16094}
16095
16096static void
16097do_neon_mvn (void)
16098{
16099 if (inst.operands[1].isreg)
16100 {
037e8744 16101 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 16102
88714cb8 16103 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16104 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16105 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16106 inst.instruction |= LOW4 (inst.operands[1].reg);
16107 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 16108 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16109 }
16110 else
16111 {
88714cb8 16112 NEON_ENCODE (IMMED, inst);
5287ad62
JB
16113 neon_move_immediate ();
16114 }
16115
88714cb8 16116 neon_dp_fixup (&inst);
5287ad62
JB
16117}
16118
16119/* Encode instructions of form:
16120
16121 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 16122 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
16123
16124static void
16125neon_mixed_length (struct neon_type_el et, unsigned size)
16126{
16127 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16128 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16129 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16130 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16131 inst.instruction |= LOW4 (inst.operands[2].reg);
16132 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16133 inst.instruction |= (et.type == NT_unsigned) << 24;
16134 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16135
88714cb8 16136 neon_dp_fixup (&inst);
5287ad62
JB
16137}
16138
16139static void
16140do_neon_dyadic_long (void)
16141{
16142 /* FIXME: Type checking for lengthening op. */
16143 struct neon_type_el et = neon_check_type (3, NS_QDD,
16144 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16145 neon_mixed_length (et, et.size);
16146}
16147
16148static void
16149do_neon_abal (void)
16150{
16151 struct neon_type_el et = neon_check_type (3, NS_QDD,
16152 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16153 neon_mixed_length (et, et.size);
16154}
16155
16156static void
16157neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16158{
16159 if (inst.operands[2].isscalar)
16160 {
dcbf9037 16161 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 16162 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 16163 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16164 neon_mul_mac (et, et.type == NT_unsigned);
16165 }
16166 else
16167 {
16168 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16169 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 16170 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
16171 neon_mixed_length (et, et.size);
16172 }
16173}
16174
16175static void
16176do_neon_mac_maybe_scalar_long (void)
16177{
16178 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16179}
16180
dec41383
JW
16181/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16182 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16183
16184static unsigned
16185neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16186{
16187 unsigned regno = NEON_SCALAR_REG (scalar);
16188 unsigned elno = NEON_SCALAR_INDEX (scalar);
16189
16190 if (quad_p)
16191 {
16192 if (regno > 7 || elno > 3)
16193 goto bad_scalar;
16194
16195 return ((regno & 0x7)
16196 | ((elno & 0x1) << 3)
16197 | (((elno >> 1) & 0x1) << 5));
16198 }
16199 else
16200 {
16201 if (regno > 15 || elno > 1)
16202 goto bad_scalar;
16203
16204 return (((regno & 0x1) << 5)
16205 | ((regno >> 1) & 0x7)
16206 | ((elno & 0x1) << 3));
16207 }
16208
16209bad_scalar:
16210 first_error (_("scalar out of range for multiply instruction"));
16211 return 0;
16212}
16213
16214static void
16215do_neon_fmac_maybe_scalar_long (int subtype)
16216{
16217 enum neon_shape rs;
16218 int high8;
16219 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16220 field (bits[21:20]) has different meaning. For scalar index variant, it's
16221 used to differentiate add and subtract, otherwise it's with fixed value
16222 0x2. */
16223 int size = -1;
16224
16225 if (inst.cond != COND_ALWAYS)
16226 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16227 "behaviour is UNPREDICTABLE"));
16228
01f48020 16229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
16230 _(BAD_FP16));
16231
16232 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16233 _(BAD_FPU));
16234
16235 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16236 be a scalar index register. */
16237 if (inst.operands[2].isscalar)
16238 {
16239 high8 = 0xfe000000;
16240 if (subtype)
16241 size = 16;
16242 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16243 }
16244 else
16245 {
16246 high8 = 0xfc000000;
16247 size = 32;
16248 if (subtype)
16249 inst.instruction |= (0x1 << 23);
16250 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16251 }
16252
16253 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16254
16255 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16256 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16257 so we simply pass -1 as size. */
16258 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16259 neon_three_same (quad_p, 0, size);
16260
16261 /* Undo neon_dp_fixup. Redo the high eight bits. */
16262 inst.instruction &= 0x00ffffff;
16263 inst.instruction |= high8;
16264
16265#define LOW1(R) ((R) & 0x1)
16266#define HI4(R) (((R) >> 1) & 0xf)
16267 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16268 whether the instruction is in Q form and whether Vm is a scalar indexed
16269 operand. */
16270 if (inst.operands[2].isscalar)
16271 {
16272 unsigned rm
16273 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16274 inst.instruction &= 0xffffffd0;
16275 inst.instruction |= rm;
16276
16277 if (!quad_p)
16278 {
16279 /* Redo Rn as well. */
16280 inst.instruction &= 0xfff0ff7f;
16281 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16282 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16283 }
16284 }
16285 else if (!quad_p)
16286 {
16287 /* Redo Rn and Rm. */
16288 inst.instruction &= 0xfff0ff50;
16289 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16290 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16291 inst.instruction |= HI4 (inst.operands[2].reg);
16292 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16293 }
16294}
16295
16296static void
16297do_neon_vfmal (void)
16298{
16299 return do_neon_fmac_maybe_scalar_long (0);
16300}
16301
16302static void
16303do_neon_vfmsl (void)
16304{
16305 return do_neon_fmac_maybe_scalar_long (1);
16306}
16307
5287ad62
JB
16308static void
16309do_neon_dyadic_wide (void)
16310{
16311 struct neon_type_el et = neon_check_type (3, NS_QQD,
16312 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16313 neon_mixed_length (et, et.size);
16314}
16315
16316static void
16317do_neon_dyadic_narrow (void)
16318{
16319 struct neon_type_el et = neon_check_type (3, NS_QDD,
16320 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
16321 /* Operand sign is unimportant, and the U bit is part of the opcode,
16322 so force the operand type to integer. */
16323 et.type = NT_integer;
5287ad62
JB
16324 neon_mixed_length (et, et.size / 2);
16325}
16326
16327static void
16328do_neon_mul_sat_scalar_long (void)
16329{
16330 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16331}
16332
16333static void
16334do_neon_vmull (void)
16335{
16336 if (inst.operands[2].isscalar)
16337 do_neon_mac_maybe_scalar_long ();
16338 else
16339 {
16340 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 16341 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 16342
5287ad62 16343 if (et.type == NT_poly)
477330fc 16344 NEON_ENCODE (POLY, inst);
5287ad62 16345 else
477330fc 16346 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
16347
16348 /* For polynomial encoding the U bit must be zero, and the size must
16349 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16350 obviously, as 0b10). */
16351 if (et.size == 64)
16352 {
16353 /* Check we're on the correct architecture. */
16354 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16355 inst.error =
16356 _("Instruction form not available on this architecture.");
16357
16358 et.size = 32;
16359 }
16360
5287ad62
JB
16361 neon_mixed_length (et, et.size);
16362 }
16363}
16364
16365static void
16366do_neon_ext (void)
16367{
037e8744 16368 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
16369 struct neon_type_el et = neon_check_type (3, rs,
16370 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16371 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
16372
16373 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16374 _("shift out of range"));
5287ad62
JB
16375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16376 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16377 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16378 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16379 inst.instruction |= LOW4 (inst.operands[2].reg);
16380 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 16381 inst.instruction |= neon_quad (rs) << 6;
5287ad62 16382 inst.instruction |= imm << 8;
5f4273c7 16383
88714cb8 16384 neon_dp_fixup (&inst);
5287ad62
JB
16385}
16386
16387static void
16388do_neon_rev (void)
16389{
037e8744 16390 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16391 struct neon_type_el et = neon_check_type (2, rs,
16392 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16393 unsigned op = (inst.instruction >> 7) & 3;
16394 /* N (width of reversed regions) is encoded as part of the bitmask. We
16395 extract it here to check the elements to be reversed are smaller.
16396 Otherwise we'd get a reserved instruction. */
16397 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 16398 gas_assert (elsize != 0);
5287ad62 16399 constraint (et.size >= elsize,
477330fc 16400 _("elements must be smaller than reversal region"));
037e8744 16401 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16402}
16403
16404static void
16405do_neon_dup (void)
16406{
16407 if (inst.operands[1].isscalar)
16408 {
037e8744 16409 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 16410 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16411 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 16412 unsigned sizebits = et.size >> 3;
dcbf9037 16413 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 16414 int logsize = neon_logbits (et.size);
dcbf9037 16415 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
16416
16417 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 16418 return;
037e8744 16419
88714cb8 16420 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
16421 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16422 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16423 inst.instruction |= LOW4 (dm);
16424 inst.instruction |= HI1 (dm) << 5;
037e8744 16425 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16426 inst.instruction |= x << 17;
16427 inst.instruction |= sizebits << 16;
5f4273c7 16428
88714cb8 16429 neon_dp_fixup (&inst);
5287ad62
JB
16430 }
16431 else
16432 {
037e8744
JB
16433 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16434 struct neon_type_el et = neon_check_type (2, rs,
477330fc 16435 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 16436 /* Duplicate ARM register to lanes of vector. */
88714cb8 16437 NEON_ENCODE (ARMREG, inst);
5287ad62 16438 switch (et.size)
477330fc
RM
16439 {
16440 case 8: inst.instruction |= 0x400000; break;
16441 case 16: inst.instruction |= 0x000020; break;
16442 case 32: inst.instruction |= 0x000000; break;
16443 default: break;
16444 }
5287ad62
JB
16445 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16446 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16447 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 16448 inst.instruction |= neon_quad (rs) << 21;
5287ad62 16449 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 16450 variants, except for the condition field. */
037e8744 16451 do_vfp_cond_or_thumb ();
5287ad62
JB
16452 }
16453}
16454
16455/* VMOV has particularly many variations. It can be one of:
16456 0. VMOV<c><q> <Qd>, <Qm>
16457 1. VMOV<c><q> <Dd>, <Dm>
16458 (Register operations, which are VORR with Rm = Rn.)
16459 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16460 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16461 (Immediate loads.)
16462 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16463 (ARM register to scalar.)
16464 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16465 (Two ARM registers to vector.)
16466 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16467 (Scalar to ARM register.)
16468 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16469 (Vector to two ARM registers.)
037e8744
JB
16470 8. VMOV.F32 <Sd>, <Sm>
16471 9. VMOV.F64 <Dd>, <Dm>
16472 (VFP register moves.)
16473 10. VMOV.F32 <Sd>, #imm
16474 11. VMOV.F64 <Dd>, #imm
16475 (VFP float immediate load.)
16476 12. VMOV <Rd>, <Sm>
16477 (VFP single to ARM reg.)
16478 13. VMOV <Sd>, <Rm>
16479 (ARM reg to VFP single.)
16480 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16481 (Two ARM regs to two VFP singles.)
16482 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16483 (Two VFP singles to two ARM regs.)
5f4273c7 16484
037e8744
JB
16485 These cases can be disambiguated using neon_select_shape, except cases 1/9
16486 and 3/11 which depend on the operand type too.
5f4273c7 16487
5287ad62 16488 All the encoded bits are hardcoded by this function.
5f4273c7 16489
b7fc2769
JB
16490 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16491 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 16492
5287ad62 16493 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 16494 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
16495
16496static void
16497do_neon_mov (void)
16498{
037e8744 16499 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
9db2f6b4
RL
16500 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16501 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16502 NS_HR, NS_RH, NS_HI, NS_NULL);
037e8744
JB
16503 struct neon_type_el et;
16504 const char *ldconst = 0;
5287ad62 16505
037e8744 16506 switch (rs)
5287ad62 16507 {
037e8744
JB
16508 case NS_DD: /* case 1/9. */
16509 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16510 /* It is not an error here if no type is given. */
16511 inst.error = NULL;
16512 if (et.type == NT_float && et.size == 64)
477330fc
RM
16513 {
16514 do_vfp_nsyn_opcode ("fcpyd");
16515 break;
16516 }
037e8744 16517 /* fall through. */
5287ad62 16518
037e8744
JB
16519 case NS_QQ: /* case 0/1. */
16520 {
477330fc
RM
16521 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16522 return;
16523 /* The architecture manual I have doesn't explicitly state which
16524 value the U bit should have for register->register moves, but
16525 the equivalent VORR instruction has U = 0, so do that. */
16526 inst.instruction = 0x0200110;
16527 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16528 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16529 inst.instruction |= LOW4 (inst.operands[1].reg);
16530 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16531 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16532 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16533 inst.instruction |= neon_quad (rs) << 6;
16534
16535 neon_dp_fixup (&inst);
037e8744
JB
16536 }
16537 break;
5f4273c7 16538
037e8744
JB
16539 case NS_DI: /* case 3/11. */
16540 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16541 inst.error = NULL;
16542 if (et.type == NT_float && et.size == 64)
477330fc
RM
16543 {
16544 /* case 11 (fconstd). */
16545 ldconst = "fconstd";
16546 goto encode_fconstd;
16547 }
037e8744
JB
16548 /* fall through. */
16549
16550 case NS_QI: /* case 2/3. */
16551 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
477330fc 16552 return;
037e8744
JB
16553 inst.instruction = 0x0800010;
16554 neon_move_immediate ();
88714cb8 16555 neon_dp_fixup (&inst);
5287ad62 16556 break;
5f4273c7 16557
037e8744
JB
16558 case NS_SR: /* case 4. */
16559 {
477330fc
RM
16560 unsigned bcdebits = 0;
16561 int logsize;
16562 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16563 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 16564
05ac0ffb
JB
16565 /* .<size> is optional here, defaulting to .32. */
16566 if (inst.vectype.elems == 0
16567 && inst.operands[0].vectype.type == NT_invtype
16568 && inst.operands[1].vectype.type == NT_invtype)
16569 {
16570 inst.vectype.el[0].type = NT_untyped;
16571 inst.vectype.el[0].size = 32;
16572 inst.vectype.elems = 1;
16573 }
16574
477330fc
RM
16575 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16576 logsize = neon_logbits (et.size);
16577
16578 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16579 _(BAD_FPU));
16580 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16581 && et.size != 32, _(BAD_FPU));
16582 constraint (et.type == NT_invtype, _("bad type for scalar"));
16583 constraint (x >= 64 / et.size, _("scalar index out of range"));
16584
16585 switch (et.size)
16586 {
16587 case 8: bcdebits = 0x8; break;
16588 case 16: bcdebits = 0x1; break;
16589 case 32: bcdebits = 0x0; break;
16590 default: ;
16591 }
16592
16593 bcdebits |= x << logsize;
16594
16595 inst.instruction = 0xe000b10;
16596 do_vfp_cond_or_thumb ();
16597 inst.instruction |= LOW4 (dn) << 16;
16598 inst.instruction |= HI1 (dn) << 7;
16599 inst.instruction |= inst.operands[1].reg << 12;
16600 inst.instruction |= (bcdebits & 3) << 5;
16601 inst.instruction |= (bcdebits >> 2) << 21;
037e8744
JB
16602 }
16603 break;
5f4273c7 16604
037e8744 16605 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 16606 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16607 _(BAD_FPU));
b7fc2769 16608
037e8744
JB
16609 inst.instruction = 0xc400b10;
16610 do_vfp_cond_or_thumb ();
16611 inst.instruction |= LOW4 (inst.operands[0].reg);
16612 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16613 inst.instruction |= inst.operands[1].reg << 12;
16614 inst.instruction |= inst.operands[2].reg << 16;
16615 break;
5f4273c7 16616
037e8744
JB
16617 case NS_RS: /* case 6. */
16618 {
477330fc
RM
16619 unsigned logsize;
16620 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16621 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16622 unsigned abcdebits = 0;
037e8744 16623
05ac0ffb
JB
16624 /* .<dt> is optional here, defaulting to .32. */
16625 if (inst.vectype.elems == 0
16626 && inst.operands[0].vectype.type == NT_invtype
16627 && inst.operands[1].vectype.type == NT_invtype)
16628 {
16629 inst.vectype.el[0].type = NT_untyped;
16630 inst.vectype.el[0].size = 32;
16631 inst.vectype.elems = 1;
16632 }
16633
91d6fa6a
NC
16634 et = neon_check_type (2, NS_NULL,
16635 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
16636 logsize = neon_logbits (et.size);
16637
16638 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16639 _(BAD_FPU));
16640 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16641 && et.size != 32, _(BAD_FPU));
16642 constraint (et.type == NT_invtype, _("bad type for scalar"));
16643 constraint (x >= 64 / et.size, _("scalar index out of range"));
16644
16645 switch (et.size)
16646 {
16647 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16648 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16649 case 32: abcdebits = 0x00; break;
16650 default: ;
16651 }
16652
16653 abcdebits |= x << logsize;
16654 inst.instruction = 0xe100b10;
16655 do_vfp_cond_or_thumb ();
16656 inst.instruction |= LOW4 (dn) << 16;
16657 inst.instruction |= HI1 (dn) << 7;
16658 inst.instruction |= inst.operands[0].reg << 12;
16659 inst.instruction |= (abcdebits & 3) << 5;
16660 inst.instruction |= (abcdebits >> 2) << 21;
037e8744
JB
16661 }
16662 break;
5f4273c7 16663
037e8744
JB
16664 case NS_RRD: /* case 7 (fmrrd). */
16665 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
477330fc 16666 _(BAD_FPU));
037e8744
JB
16667
16668 inst.instruction = 0xc500b10;
16669 do_vfp_cond_or_thumb ();
16670 inst.instruction |= inst.operands[0].reg << 12;
16671 inst.instruction |= inst.operands[1].reg << 16;
16672 inst.instruction |= LOW4 (inst.operands[2].reg);
16673 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16674 break;
5f4273c7 16675
037e8744
JB
16676 case NS_FF: /* case 8 (fcpys). */
16677 do_vfp_nsyn_opcode ("fcpys");
16678 break;
5f4273c7 16679
9db2f6b4 16680 case NS_HI:
037e8744
JB
16681 case NS_FI: /* case 10 (fconsts). */
16682 ldconst = "fconsts";
16683 encode_fconstd:
16684 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
16685 {
16686 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16687 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
16688
16689 /* ARMv8.2 fp16 vmov.f16 instruction. */
16690 if (rs == NS_HI)
16691 do_scalar_fp16_v82_encode ();
477330fc 16692 }
5287ad62 16693 else
477330fc 16694 first_error (_("immediate out of range"));
037e8744 16695 break;
5f4273c7 16696
9db2f6b4 16697 case NS_RH:
037e8744
JB
16698 case NS_RF: /* case 12 (fmrs). */
16699 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
16700 /* ARMv8.2 fp16 vmov.f16 instruction. */
16701 if (rs == NS_RH)
16702 do_scalar_fp16_v82_encode ();
037e8744 16703 break;
5f4273c7 16704
9db2f6b4 16705 case NS_HR:
037e8744
JB
16706 case NS_FR: /* case 13 (fmsr). */
16707 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
16708 /* ARMv8.2 fp16 vmov.f16 instruction. */
16709 if (rs == NS_HR)
16710 do_scalar_fp16_v82_encode ();
037e8744 16711 break;
5f4273c7 16712
037e8744
JB
16713 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16714 (one of which is a list), but we have parsed four. Do some fiddling to
16715 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16716 expect. */
16717 case NS_RRFF: /* case 14 (fmrrs). */
16718 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 16719 _("VFP registers must be adjacent"));
037e8744
JB
16720 inst.operands[2].imm = 2;
16721 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16722 do_vfp_nsyn_opcode ("fmrrs");
16723 break;
5f4273c7 16724
037e8744
JB
16725 case NS_FFRR: /* case 15 (fmsrr). */
16726 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 16727 _("VFP registers must be adjacent"));
037e8744
JB
16728 inst.operands[1] = inst.operands[2];
16729 inst.operands[2] = inst.operands[3];
16730 inst.operands[0].imm = 2;
16731 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16732 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 16733 break;
5f4273c7 16734
4c261dff
NC
16735 case NS_NULL:
16736 /* neon_select_shape has determined that the instruction
16737 shape is wrong and has already set the error message. */
16738 break;
16739
5287ad62
JB
16740 default:
16741 abort ();
16742 }
16743}
16744
16745static void
16746do_neon_rshift_round_imm (void)
16747{
037e8744 16748 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
16749 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16750 int imm = inst.operands[2].imm;
16751
16752 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16753 if (imm == 0)
16754 {
16755 inst.operands[2].present = 0;
16756 do_neon_mov ();
16757 return;
16758 }
16759
16760 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 16761 _("immediate out of range for shift"));
037e8744 16762 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 16763 et.size - imm);
5287ad62
JB
16764}
16765
9db2f6b4
RL
16766static void
16767do_neon_movhf (void)
16768{
16769 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16770 constraint (rs != NS_HH, _("invalid suffix"));
16771
16772 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16773 _(BAD_FPU));
16774
16775 do_vfp_sp_monadic ();
16776
16777 inst.is_neon = 1;
16778 inst.instruction |= 0xf0000000;
16779}
16780
5287ad62
JB
16781static void
16782do_neon_movl (void)
16783{
16784 struct neon_type_el et = neon_check_type (2, NS_QD,
16785 N_EQK | N_DBL, N_SU_32 | N_KEY);
16786 unsigned sizebits = et.size >> 3;
16787 inst.instruction |= sizebits << 19;
16788 neon_two_same (0, et.type == NT_unsigned, -1);
16789}
16790
16791static void
16792do_neon_trn (void)
16793{
037e8744 16794 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16795 struct neon_type_el et = neon_check_type (2, rs,
16796 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 16797 NEON_ENCODE (INTEGER, inst);
037e8744 16798 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16799}
16800
16801static void
16802do_neon_zip_uzp (void)
16803{
037e8744 16804 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16805 struct neon_type_el et = neon_check_type (2, rs,
16806 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16807 if (rs == NS_DD && et.size == 32)
16808 {
16809 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16810 inst.instruction = N_MNEM_vtrn;
16811 do_neon_trn ();
16812 return;
16813 }
037e8744 16814 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16815}
16816
16817static void
16818do_neon_sat_abs_neg (void)
16819{
037e8744 16820 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16821 struct neon_type_el et = neon_check_type (2, rs,
16822 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16823 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16824}
16825
16826static void
16827do_neon_pair_long (void)
16828{
037e8744 16829 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16830 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16831 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16832 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 16833 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16834}
16835
16836static void
16837do_neon_recip_est (void)
16838{
037e8744 16839 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 16840 struct neon_type_el et = neon_check_type (2, rs,
cc933301 16841 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 16842 inst.instruction |= (et.type == NT_float) << 8;
037e8744 16843 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16844}
16845
16846static void
16847do_neon_cls (void)
16848{
037e8744 16849 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16850 struct neon_type_el et = neon_check_type (2, rs,
16851 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 16852 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16853}
16854
16855static void
16856do_neon_clz (void)
16857{
037e8744 16858 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16859 struct neon_type_el et = neon_check_type (2, rs,
16860 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 16861 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16862}
16863
16864static void
16865do_neon_cnt (void)
16866{
037e8744 16867 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
16868 struct neon_type_el et = neon_check_type (2, rs,
16869 N_EQK | N_INT, N_8 | N_KEY);
037e8744 16870 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
16871}
16872
16873static void
16874do_neon_swp (void)
16875{
037e8744
JB
16876 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16877 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
16878}
16879
16880static void
16881do_neon_tbl_tbx (void)
16882{
16883 unsigned listlenbits;
dcbf9037 16884 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 16885
5287ad62
JB
16886 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16887 {
dcbf9037 16888 first_error (_("bad list length for table lookup"));
5287ad62
JB
16889 return;
16890 }
5f4273c7 16891
5287ad62
JB
16892 listlenbits = inst.operands[1].imm - 1;
16893 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16894 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16895 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16896 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16897 inst.instruction |= LOW4 (inst.operands[2].reg);
16898 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16899 inst.instruction |= listlenbits << 8;
5f4273c7 16900
88714cb8 16901 neon_dp_fixup (&inst);
5287ad62
JB
16902}
16903
16904static void
16905do_neon_ldm_stm (void)
16906{
16907 /* P, U and L bits are part of bitmask. */
16908 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16909 unsigned offsetbits = inst.operands[1].imm * 2;
16910
037e8744
JB
16911 if (inst.operands[1].issingle)
16912 {
16913 do_vfp_nsyn_ldm_stm (is_dbmode);
16914 return;
16915 }
16916
5287ad62 16917 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 16918 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
16919
16920 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
16921 _("register list must contain at least 1 and at most 16 "
16922 "registers"));
5287ad62
JB
16923
16924 inst.instruction |= inst.operands[0].reg << 16;
16925 inst.instruction |= inst.operands[0].writeback << 21;
16926 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16927 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16928
16929 inst.instruction |= offsetbits;
5f4273c7 16930
037e8744 16931 do_vfp_cond_or_thumb ();
5287ad62
JB
16932}
16933
16934static void
16935do_neon_ldr_str (void)
16936{
5287ad62 16937 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 16938
6844b2c2
MGD
16939 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16940 And is UNPREDICTABLE in thumb mode. */
fa94de6b 16941 if (!is_ldr
6844b2c2 16942 && inst.operands[1].reg == REG_PC
ba86b375 16943 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 16944 {
94dcf8bf 16945 if (thumb_mode)
6844b2c2 16946 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 16947 else if (warn_on_deprecated)
5c3696f8 16948 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
16949 }
16950
037e8744
JB
16951 if (inst.operands[0].issingle)
16952 {
cd2f129f 16953 if (is_ldr)
477330fc 16954 do_vfp_nsyn_opcode ("flds");
cd2f129f 16955 else
477330fc 16956 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
16957
16958 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16959 if (inst.vectype.el[0].size == 16)
16960 do_scalar_fp16_v82_encode ();
5287ad62
JB
16961 }
16962 else
5287ad62 16963 {
cd2f129f 16964 if (is_ldr)
477330fc 16965 do_vfp_nsyn_opcode ("fldd");
5287ad62 16966 else
477330fc 16967 do_vfp_nsyn_opcode ("fstd");
5287ad62 16968 }
5287ad62
JB
16969}
16970
16971/* "interleave" version also handles non-interleaving register VLD1/VST1
16972 instructions. */
16973
16974static void
16975do_neon_ld_st_interleave (void)
16976{
037e8744 16977 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 16978 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
16979 unsigned alignbits = 0;
16980 unsigned idx;
16981 /* The bits in this table go:
16982 0: register stride of one (0) or two (1)
16983 1,2: register list length, minus one (1, 2, 3, 4).
16984 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16985 We use -1 for invalid entries. */
16986 const int typetable[] =
16987 {
16988 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16989 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16990 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16991 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16992 };
16993 int typebits;
16994
dcbf9037
JB
16995 if (et.type == NT_invtype)
16996 return;
16997
5287ad62
JB
16998 if (inst.operands[1].immisalign)
16999 switch (inst.operands[1].imm >> 8)
17000 {
17001 case 64: alignbits = 1; break;
17002 case 128:
477330fc 17003 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 17004 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
17005 goto bad_alignment;
17006 alignbits = 2;
17007 break;
5287ad62 17008 case 256:
477330fc
RM
17009 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17010 goto bad_alignment;
17011 alignbits = 3;
17012 break;
5287ad62
JB
17013 default:
17014 bad_alignment:
477330fc
RM
17015 first_error (_("bad alignment"));
17016 return;
5287ad62
JB
17017 }
17018
17019 inst.instruction |= alignbits << 4;
17020 inst.instruction |= neon_logbits (et.size) << 6;
17021
17022 /* Bits [4:6] of the immediate in a list specifier encode register stride
17023 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17024 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17025 up the right value for "type" in a table based on this value and the given
17026 list style, then stick it back. */
17027 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 17028 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
17029
17030 typebits = typetable[idx];
5f4273c7 17031
5287ad62 17032 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c
WN
17033 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17034 _("bad element type for instruction"));
5287ad62
JB
17035
17036 inst.instruction &= ~0xf00;
17037 inst.instruction |= typebits << 8;
17038}
17039
17040/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17041 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17042 otherwise. The variable arguments are a list of pairs of legal (size, align)
17043 values, terminated with -1. */
17044
17045static int
aa8a0863 17046neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
17047{
17048 va_list ap;
17049 int result = FAIL, thissize, thisalign;
5f4273c7 17050
5287ad62
JB
17051 if (!inst.operands[1].immisalign)
17052 {
aa8a0863 17053 *do_alignment = 0;
5287ad62
JB
17054 return SUCCESS;
17055 }
5f4273c7 17056
aa8a0863 17057 va_start (ap, do_alignment);
5287ad62
JB
17058
17059 do
17060 {
17061 thissize = va_arg (ap, int);
17062 if (thissize == -1)
477330fc 17063 break;
5287ad62
JB
17064 thisalign = va_arg (ap, int);
17065
17066 if (size == thissize && align == thisalign)
477330fc 17067 result = SUCCESS;
5287ad62
JB
17068 }
17069 while (result != SUCCESS);
17070
17071 va_end (ap);
17072
17073 if (result == SUCCESS)
aa8a0863 17074 *do_alignment = 1;
5287ad62 17075 else
dcbf9037 17076 first_error (_("unsupported alignment for instruction"));
5f4273c7 17077
5287ad62
JB
17078 return result;
17079}
17080
17081static void
17082do_neon_ld_st_lane (void)
17083{
037e8744 17084 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17085 int align_good, do_alignment = 0;
5287ad62
JB
17086 int logsize = neon_logbits (et.size);
17087 int align = inst.operands[1].imm >> 8;
17088 int n = (inst.instruction >> 8) & 3;
17089 int max_el = 64 / et.size;
5f4273c7 17090
dcbf9037
JB
17091 if (et.type == NT_invtype)
17092 return;
5f4273c7 17093
5287ad62 17094 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 17095 _("bad list length"));
5287ad62 17096 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 17097 _("scalar index out of range"));
5287ad62 17098 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
17099 && et.size == 8,
17100 _("stride of 2 unavailable when element size is 8"));
5f4273c7 17101
5287ad62
JB
17102 switch (n)
17103 {
17104 case 0: /* VLD1 / VST1. */
aa8a0863 17105 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 17106 32, 32, -1);
5287ad62 17107 if (align_good == FAIL)
477330fc 17108 return;
aa8a0863 17109 if (do_alignment)
477330fc
RM
17110 {
17111 unsigned alignbits = 0;
17112 switch (et.size)
17113 {
17114 case 16: alignbits = 0x1; break;
17115 case 32: alignbits = 0x3; break;
17116 default: ;
17117 }
17118 inst.instruction |= alignbits << 4;
17119 }
5287ad62
JB
17120 break;
17121
17122 case 1: /* VLD2 / VST2. */
aa8a0863
TS
17123 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17124 16, 32, 32, 64, -1);
5287ad62 17125 if (align_good == FAIL)
477330fc 17126 return;
aa8a0863 17127 if (do_alignment)
477330fc 17128 inst.instruction |= 1 << 4;
5287ad62
JB
17129 break;
17130
17131 case 2: /* VLD3 / VST3. */
17132 constraint (inst.operands[1].immisalign,
477330fc 17133 _("can't use alignment with this instruction"));
5287ad62
JB
17134 break;
17135
17136 case 3: /* VLD4 / VST4. */
aa8a0863 17137 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 17138 16, 64, 32, 64, 32, 128, -1);
5287ad62 17139 if (align_good == FAIL)
477330fc 17140 return;
aa8a0863 17141 if (do_alignment)
477330fc
RM
17142 {
17143 unsigned alignbits = 0;
17144 switch (et.size)
17145 {
17146 case 8: alignbits = 0x1; break;
17147 case 16: alignbits = 0x1; break;
17148 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17149 default: ;
17150 }
17151 inst.instruction |= alignbits << 4;
17152 }
5287ad62
JB
17153 break;
17154
17155 default: ;
17156 }
17157
17158 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17159 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17160 inst.instruction |= 1 << (4 + logsize);
5f4273c7 17161
5287ad62
JB
17162 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17163 inst.instruction |= logsize << 10;
17164}
17165
17166/* Encode single n-element structure to all lanes VLD<n> instructions. */
17167
17168static void
17169do_neon_ld_dup (void)
17170{
037e8744 17171 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 17172 int align_good, do_alignment = 0;
5287ad62 17173
dcbf9037
JB
17174 if (et.type == NT_invtype)
17175 return;
17176
5287ad62
JB
17177 switch ((inst.instruction >> 8) & 3)
17178 {
17179 case 0: /* VLD1. */
9c2799c2 17180 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 17181 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 17182 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 17183 if (align_good == FAIL)
477330fc 17184 return;
5287ad62 17185 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
17186 {
17187 case 1: break;
17188 case 2: inst.instruction |= 1 << 5; break;
17189 default: first_error (_("bad list length")); return;
17190 }
5287ad62
JB
17191 inst.instruction |= neon_logbits (et.size) << 6;
17192 break;
17193
17194 case 1: /* VLD2. */
17195 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
17196 &do_alignment, 8, 16, 16, 32, 32, 64,
17197 -1);
5287ad62 17198 if (align_good == FAIL)
477330fc 17199 return;
5287ad62 17200 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 17201 _("bad list length"));
5287ad62 17202 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17203 inst.instruction |= 1 << 5;
5287ad62
JB
17204 inst.instruction |= neon_logbits (et.size) << 6;
17205 break;
17206
17207 case 2: /* VLD3. */
17208 constraint (inst.operands[1].immisalign,
477330fc 17209 _("can't use alignment with this instruction"));
5287ad62 17210 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 17211 _("bad list length"));
5287ad62 17212 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 17213 inst.instruction |= 1 << 5;
5287ad62
JB
17214 inst.instruction |= neon_logbits (et.size) << 6;
17215 break;
17216
17217 case 3: /* VLD4. */
17218 {
477330fc 17219 int align = inst.operands[1].imm >> 8;
aa8a0863 17220 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
17221 16, 64, 32, 64, 32, 128, -1);
17222 if (align_good == FAIL)
17223 return;
17224 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17225 _("bad list length"));
17226 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17227 inst.instruction |= 1 << 5;
17228 if (et.size == 32 && align == 128)
17229 inst.instruction |= 0x3 << 6;
17230 else
17231 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
17232 }
17233 break;
17234
17235 default: ;
17236 }
17237
aa8a0863 17238 inst.instruction |= do_alignment << 4;
5287ad62
JB
17239}
17240
17241/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17242 apart from bits [11:4]. */
17243
17244static void
17245do_neon_ldx_stx (void)
17246{
b1a769ed
DG
17247 if (inst.operands[1].isreg)
17248 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17249
5287ad62
JB
17250 switch (NEON_LANE (inst.operands[0].imm))
17251 {
17252 case NEON_INTERLEAVE_LANES:
88714cb8 17253 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
17254 do_neon_ld_st_interleave ();
17255 break;
5f4273c7 17256
5287ad62 17257 case NEON_ALL_LANES:
88714cb8 17258 NEON_ENCODE (DUP, inst);
2d51fb74
JB
17259 if (inst.instruction == N_INV)
17260 {
17261 first_error ("only loads support such operands");
17262 break;
17263 }
5287ad62
JB
17264 do_neon_ld_dup ();
17265 break;
5f4273c7 17266
5287ad62 17267 default:
88714cb8 17268 NEON_ENCODE (LANE, inst);
5287ad62
JB
17269 do_neon_ld_st_lane ();
17270 }
17271
17272 /* L bit comes from bit mask. */
17273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17275 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 17276
5287ad62
JB
17277 if (inst.operands[1].postind)
17278 {
17279 int postreg = inst.operands[1].imm & 0xf;
17280 constraint (!inst.operands[1].immisreg,
477330fc 17281 _("post-index must be a register"));
5287ad62 17282 constraint (postreg == 0xd || postreg == 0xf,
477330fc 17283 _("bad register for post-index"));
5287ad62
JB
17284 inst.instruction |= postreg;
17285 }
4f2374c7 17286 else
5287ad62 17287 {
4f2374c7
WN
17288 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17289 constraint (inst.reloc.exp.X_op != O_constant
17290 || inst.reloc.exp.X_add_number != 0,
17291 BAD_ADDR_MODE);
17292
17293 if (inst.operands[1].writeback)
17294 {
17295 inst.instruction |= 0xd;
17296 }
17297 else
17298 inst.instruction |= 0xf;
5287ad62 17299 }
5f4273c7 17300
5287ad62
JB
17301 if (thumb_mode)
17302 inst.instruction |= 0xf9000000;
17303 else
17304 inst.instruction |= 0xf4000000;
17305}
33399f07
MGD
17306
17307/* FP v8. */
17308static void
17309do_vfp_nsyn_fpv8 (enum neon_shape rs)
17310{
a715796b
TG
17311 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17312 D register operands. */
17313 if (neon_shape_class[rs] == SC_DOUBLE)
17314 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17315 _(BAD_FPU));
17316
33399f07
MGD
17317 NEON_ENCODE (FPV8, inst);
17318
9db2f6b4
RL
17319 if (rs == NS_FFF || rs == NS_HHH)
17320 {
17321 do_vfp_sp_dyadic ();
17322
17323 /* ARMv8.2 fp16 instruction. */
17324 if (rs == NS_HHH)
17325 do_scalar_fp16_v82_encode ();
17326 }
33399f07
MGD
17327 else
17328 do_vfp_dp_rd_rn_rm ();
17329
17330 if (rs == NS_DDD)
17331 inst.instruction |= 0x100;
17332
17333 inst.instruction |= 0xf0000000;
17334}
17335
17336static void
17337do_vsel (void)
17338{
17339 set_it_insn_type (OUTSIDE_IT_INSN);
17340
17341 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17342 first_error (_("invalid instruction shape"));
17343}
17344
73924fbc
MGD
17345static void
17346do_vmaxnm (void)
17347{
17348 set_it_insn_type (OUTSIDE_IT_INSN);
17349
17350 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17351 return;
17352
17353 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17354 return;
17355
cc933301 17356 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
17357}
17358
30bdf752
MGD
17359static void
17360do_vrint_1 (enum neon_cvt_mode mode)
17361{
9db2f6b4 17362 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
17363 struct neon_type_el et;
17364
17365 if (rs == NS_NULL)
17366 return;
17367
a715796b
TG
17368 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17369 D register operands. */
17370 if (neon_shape_class[rs] == SC_DOUBLE)
17371 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17372 _(BAD_FPU));
17373
9db2f6b4
RL
17374 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17375 | N_VFP);
30bdf752
MGD
17376 if (et.type != NT_invtype)
17377 {
17378 /* VFP encodings. */
17379 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17380 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17381 set_it_insn_type (OUTSIDE_IT_INSN);
17382
17383 NEON_ENCODE (FPV8, inst);
9db2f6b4 17384 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
17385 do_vfp_sp_monadic ();
17386 else
17387 do_vfp_dp_rd_rm ();
17388
17389 switch (mode)
17390 {
17391 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17392 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17393 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17394 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17395 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17396 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17397 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17398 default: abort ();
17399 }
17400
17401 inst.instruction |= (rs == NS_DD) << 8;
17402 do_vfp_cond_or_thumb ();
9db2f6b4
RL
17403
17404 /* ARMv8.2 fp16 vrint instruction. */
17405 if (rs == NS_HH)
17406 do_scalar_fp16_v82_encode ();
30bdf752
MGD
17407 }
17408 else
17409 {
17410 /* Neon encodings (or something broken...). */
17411 inst.error = NULL;
cc933301 17412 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
17413
17414 if (et.type == NT_invtype)
17415 return;
17416
17417 set_it_insn_type (OUTSIDE_IT_INSN);
17418 NEON_ENCODE (FLOAT, inst);
17419
17420 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17421 return;
17422
17423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17424 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17425 inst.instruction |= LOW4 (inst.operands[1].reg);
17426 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17427 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
17428 /* Mask off the original size bits and reencode them. */
17429 inst.instruction = ((inst.instruction & 0xfff3ffff)
17430 | neon_logbits (et.size) << 18);
17431
30bdf752
MGD
17432 switch (mode)
17433 {
17434 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17435 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17436 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17437 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17438 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17439 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17440 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17441 default: abort ();
17442 }
17443
17444 if (thumb_mode)
17445 inst.instruction |= 0xfc000000;
17446 else
17447 inst.instruction |= 0xf0000000;
17448 }
17449}
17450
17451static void
17452do_vrintx (void)
17453{
17454 do_vrint_1 (neon_cvt_mode_x);
17455}
17456
17457static void
17458do_vrintz (void)
17459{
17460 do_vrint_1 (neon_cvt_mode_z);
17461}
17462
17463static void
17464do_vrintr (void)
17465{
17466 do_vrint_1 (neon_cvt_mode_r);
17467}
17468
17469static void
17470do_vrinta (void)
17471{
17472 do_vrint_1 (neon_cvt_mode_a);
17473}
17474
17475static void
17476do_vrintn (void)
17477{
17478 do_vrint_1 (neon_cvt_mode_n);
17479}
17480
17481static void
17482do_vrintp (void)
17483{
17484 do_vrint_1 (neon_cvt_mode_p);
17485}
17486
17487static void
17488do_vrintm (void)
17489{
17490 do_vrint_1 (neon_cvt_mode_m);
17491}
17492
c28eeff2
SN
17493static unsigned
17494neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17495{
17496 unsigned regno = NEON_SCALAR_REG (opnd);
17497 unsigned elno = NEON_SCALAR_INDEX (opnd);
17498
17499 if (elsize == 16 && elno < 2 && regno < 16)
17500 return regno | (elno << 4);
17501 else if (elsize == 32 && elno == 0)
17502 return regno;
17503
17504 first_error (_("scalar out of range"));
17505 return 0;
17506}
17507
17508static void
17509do_vcmla (void)
17510{
17511 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17512 _(BAD_FPU));
17513 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17514 unsigned rot = inst.reloc.exp.X_add_number;
17515 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17516 _("immediate out of range"));
17517 rot /= 90;
17518 if (inst.operands[2].isscalar)
17519 {
17520 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17521 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17522 N_KEY | N_F16 | N_F32).size;
17523 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17524 inst.is_neon = 1;
17525 inst.instruction = 0xfe000800;
17526 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17527 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17528 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17529 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17530 inst.instruction |= LOW4 (m);
17531 inst.instruction |= HI1 (m) << 5;
17532 inst.instruction |= neon_quad (rs) << 6;
17533 inst.instruction |= rot << 20;
17534 inst.instruction |= (size == 32) << 23;
17535 }
17536 else
17537 {
17538 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17539 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17540 N_KEY | N_F16 | N_F32).size;
17541 neon_three_same (neon_quad (rs), 0, -1);
17542 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17543 inst.instruction |= 0xfc200800;
17544 inst.instruction |= rot << 23;
17545 inst.instruction |= (size == 32) << 20;
17546 }
17547}
17548
17549static void
17550do_vcadd (void)
17551{
17552 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17553 _(BAD_FPU));
17554 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17555 unsigned rot = inst.reloc.exp.X_add_number;
17556 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17557 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17558 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17559 N_KEY | N_F16 | N_F32).size;
17560 neon_three_same (neon_quad (rs), 0, -1);
17561 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17562 inst.instruction |= 0xfc800800;
17563 inst.instruction |= (rot == 270) << 24;
17564 inst.instruction |= (size == 32) << 20;
17565}
17566
c604a79a
JW
17567/* Dot Product instructions encoding support. */
17568
17569static void
17570do_neon_dotproduct (int unsigned_p)
17571{
17572 enum neon_shape rs;
17573 unsigned scalar_oprd2 = 0;
17574 int high8;
17575
17576 if (inst.cond != COND_ALWAYS)
17577 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17578 "is UNPREDICTABLE"));
17579
17580 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17581 _(BAD_FPU));
17582
17583 /* Dot Product instructions are in three-same D/Q register format or the third
17584 operand can be a scalar index register. */
17585 if (inst.operands[2].isscalar)
17586 {
17587 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17588 high8 = 0xfe000000;
17589 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17590 }
17591 else
17592 {
17593 high8 = 0xfc000000;
17594 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17595 }
17596
17597 if (unsigned_p)
17598 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17599 else
17600 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17601
17602 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17603 Product instruction, so we pass 0 as the "ubit" parameter. And the
17604 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17605 neon_three_same (neon_quad (rs), 0, 32);
17606
17607 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17608 different NEON three-same encoding. */
17609 inst.instruction &= 0x00ffffff;
17610 inst.instruction |= high8;
17611 /* Encode 'U' bit which indicates signedness. */
17612 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17613 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17614 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17615 the instruction encoding. */
17616 if (inst.operands[2].isscalar)
17617 {
17618 inst.instruction &= 0xffffffd0;
17619 inst.instruction |= LOW4 (scalar_oprd2);
17620 inst.instruction |= HI1 (scalar_oprd2) << 5;
17621 }
17622}
17623
17624/* Dot Product instructions for signed integer. */
17625
17626static void
17627do_neon_dotproduct_s (void)
17628{
17629 return do_neon_dotproduct (0);
17630}
17631
17632/* Dot Product instructions for unsigned integer. */
17633
17634static void
17635do_neon_dotproduct_u (void)
17636{
17637 return do_neon_dotproduct (1);
17638}
17639
91ff7894
MGD
17640/* Crypto v1 instructions. */
17641static void
17642do_crypto_2op_1 (unsigned elttype, int op)
17643{
17644 set_it_insn_type (OUTSIDE_IT_INSN);
17645
17646 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17647 == NT_invtype)
17648 return;
17649
17650 inst.error = NULL;
17651
17652 NEON_ENCODE (INTEGER, inst);
17653 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17654 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17655 inst.instruction |= LOW4 (inst.operands[1].reg);
17656 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17657 if (op != -1)
17658 inst.instruction |= op << 6;
17659
17660 if (thumb_mode)
17661 inst.instruction |= 0xfc000000;
17662 else
17663 inst.instruction |= 0xf0000000;
17664}
17665
48adcd8e
MGD
17666static void
17667do_crypto_3op_1 (int u, int op)
17668{
17669 set_it_insn_type (OUTSIDE_IT_INSN);
17670
17671 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17672 N_32 | N_UNT | N_KEY).type == NT_invtype)
17673 return;
17674
17675 inst.error = NULL;
17676
17677 NEON_ENCODE (INTEGER, inst);
17678 neon_three_same (1, u, 8 << op);
17679}
17680
91ff7894
MGD
17681static void
17682do_aese (void)
17683{
17684 do_crypto_2op_1 (N_8, 0);
17685}
17686
17687static void
17688do_aesd (void)
17689{
17690 do_crypto_2op_1 (N_8, 1);
17691}
17692
17693static void
17694do_aesmc (void)
17695{
17696 do_crypto_2op_1 (N_8, 2);
17697}
17698
17699static void
17700do_aesimc (void)
17701{
17702 do_crypto_2op_1 (N_8, 3);
17703}
17704
48adcd8e
MGD
17705static void
17706do_sha1c (void)
17707{
17708 do_crypto_3op_1 (0, 0);
17709}
17710
17711static void
17712do_sha1p (void)
17713{
17714 do_crypto_3op_1 (0, 1);
17715}
17716
17717static void
17718do_sha1m (void)
17719{
17720 do_crypto_3op_1 (0, 2);
17721}
17722
17723static void
17724do_sha1su0 (void)
17725{
17726 do_crypto_3op_1 (0, 3);
17727}
91ff7894 17728
48adcd8e
MGD
17729static void
17730do_sha256h (void)
17731{
17732 do_crypto_3op_1 (1, 0);
17733}
17734
17735static void
17736do_sha256h2 (void)
17737{
17738 do_crypto_3op_1 (1, 1);
17739}
17740
17741static void
17742do_sha256su1 (void)
17743{
17744 do_crypto_3op_1 (1, 2);
17745}
3c9017d2
MGD
17746
17747static void
17748do_sha1h (void)
17749{
17750 do_crypto_2op_1 (N_32, -1);
17751}
17752
17753static void
17754do_sha1su1 (void)
17755{
17756 do_crypto_2op_1 (N_32, 0);
17757}
17758
17759static void
17760do_sha256su0 (void)
17761{
17762 do_crypto_2op_1 (N_32, 1);
17763}
dd5181d5
KT
17764
17765static void
17766do_crc32_1 (unsigned int poly, unsigned int sz)
17767{
17768 unsigned int Rd = inst.operands[0].reg;
17769 unsigned int Rn = inst.operands[1].reg;
17770 unsigned int Rm = inst.operands[2].reg;
17771
17772 set_it_insn_type (OUTSIDE_IT_INSN);
17773 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17774 inst.instruction |= LOW4 (Rn) << 16;
17775 inst.instruction |= LOW4 (Rm);
17776 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17777 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17778
17779 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17780 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
17781}
17782
17783static void
17784do_crc32b (void)
17785{
17786 do_crc32_1 (0, 0);
17787}
17788
17789static void
17790do_crc32h (void)
17791{
17792 do_crc32_1 (0, 1);
17793}
17794
17795static void
17796do_crc32w (void)
17797{
17798 do_crc32_1 (0, 2);
17799}
17800
17801static void
17802do_crc32cb (void)
17803{
17804 do_crc32_1 (1, 0);
17805}
17806
17807static void
17808do_crc32ch (void)
17809{
17810 do_crc32_1 (1, 1);
17811}
17812
17813static void
17814do_crc32cw (void)
17815{
17816 do_crc32_1 (1, 2);
17817}
17818
49e8a725
SN
17819static void
17820do_vjcvt (void)
17821{
17822 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17823 _(BAD_FPU));
17824 neon_check_type (2, NS_FD, N_S32, N_F64);
17825 do_vfp_sp_dp_cvt ();
17826 do_vfp_cond_or_thumb ();
17827}
17828
5287ad62
JB
17829\f
17830/* Overall per-instruction processing. */
17831
17832/* We need to be able to fix up arbitrary expressions in some statements.
17833 This is so that we can handle symbols that are an arbitrary distance from
17834 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17835 which returns part of an address in a form which will be valid for
17836 a data instruction. We do this by pushing the expression into a symbol
17837 in the expr_section, and creating a fix for that. */
17838
17839static void
17840fix_new_arm (fragS * frag,
17841 int where,
17842 short int size,
17843 expressionS * exp,
17844 int pc_rel,
17845 int reloc)
17846{
17847 fixS * new_fix;
17848
17849 switch (exp->X_op)
17850 {
17851 case O_constant:
6e7ce2cd
PB
17852 if (pc_rel)
17853 {
17854 /* Create an absolute valued symbol, so we have something to
477330fc
RM
17855 refer to in the object file. Unfortunately for us, gas's
17856 generic expression parsing will already have folded out
17857 any use of .set foo/.type foo %function that may have
17858 been used to set type information of the target location,
17859 that's being specified symbolically. We have to presume
17860 the user knows what they are doing. */
6e7ce2cd
PB
17861 char name[16 + 8];
17862 symbolS *symbol;
17863
17864 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17865
17866 symbol = symbol_find_or_make (name);
17867 S_SET_SEGMENT (symbol, absolute_section);
17868 symbol_set_frag (symbol, &zero_address_frag);
17869 S_SET_VALUE (symbol, exp->X_add_number);
17870 exp->X_op = O_symbol;
17871 exp->X_add_symbol = symbol;
17872 exp->X_add_number = 0;
17873 }
17874 /* FALLTHROUGH */
5287ad62
JB
17875 case O_symbol:
17876 case O_add:
17877 case O_subtract:
21d799b5 17878 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 17879 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17880 break;
17881
17882 default:
21d799b5 17883 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 17884 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
17885 break;
17886 }
17887
17888 /* Mark whether the fix is to a THUMB instruction, or an ARM
17889 instruction. */
17890 new_fix->tc_fix_data = thumb_mode;
17891}
17892
17893/* Create a frg for an instruction requiring relaxation. */
17894static void
17895output_relax_insn (void)
17896{
17897 char * to;
17898 symbolS *sym;
0110f2b8
PB
17899 int offset;
17900
6e1cb1a6
PB
17901 /* The size of the instruction is unknown, so tie the debug info to the
17902 start of the instruction. */
17903 dwarf2_emit_insn (0);
6e1cb1a6 17904
0110f2b8
PB
17905 switch (inst.reloc.exp.X_op)
17906 {
17907 case O_symbol:
17908 sym = inst.reloc.exp.X_add_symbol;
17909 offset = inst.reloc.exp.X_add_number;
17910 break;
17911 case O_constant:
17912 sym = NULL;
17913 offset = inst.reloc.exp.X_add_number;
17914 break;
17915 default:
17916 sym = make_expr_symbol (&inst.reloc.exp);
17917 offset = 0;
17918 break;
17919 }
17920 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17921 inst.relax, sym, offset, NULL/*offset, opcode*/);
17922 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
17923}
17924
17925/* Write a 32-bit thumb instruction to buf. */
17926static void
17927put_thumb32_insn (char * buf, unsigned long insn)
17928{
17929 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17930 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17931}
17932
b99bd4ef 17933static void
c19d1205 17934output_inst (const char * str)
b99bd4ef 17935{
c19d1205 17936 char * to = NULL;
b99bd4ef 17937
c19d1205 17938 if (inst.error)
b99bd4ef 17939 {
c19d1205 17940 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
17941 return;
17942 }
5f4273c7
NC
17943 if (inst.relax)
17944 {
17945 output_relax_insn ();
0110f2b8 17946 return;
5f4273c7 17947 }
c19d1205
ZW
17948 if (inst.size == 0)
17949 return;
b99bd4ef 17950
c19d1205 17951 to = frag_more (inst.size);
8dc2430f
NC
17952 /* PR 9814: Record the thumb mode into the current frag so that we know
17953 what type of NOP padding to use, if necessary. We override any previous
17954 setting so that if the mode has changed then the NOPS that we use will
17955 match the encoding of the last instruction in the frag. */
cd000bff 17956 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
17957
17958 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 17959 {
9c2799c2 17960 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 17961 put_thumb32_insn (to, inst.instruction);
b99bd4ef 17962 }
c19d1205 17963 else if (inst.size > INSN_SIZE)
b99bd4ef 17964 {
9c2799c2 17965 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
17966 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17967 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 17968 }
c19d1205
ZW
17969 else
17970 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 17971
c19d1205
ZW
17972 if (inst.reloc.type != BFD_RELOC_UNUSED)
17973 fix_new_arm (frag_now, to - frag_now->fr_literal,
17974 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17975 inst.reloc.type);
b99bd4ef 17976
c19d1205 17977 dwarf2_emit_insn (inst.size);
c19d1205 17978}
b99bd4ef 17979
e07e6e58
NC
17980static char *
17981output_it_inst (int cond, int mask, char * to)
17982{
17983 unsigned long instruction = 0xbf00;
17984
17985 mask &= 0xf;
17986 instruction |= mask;
17987 instruction |= cond << 4;
17988
17989 if (to == NULL)
17990 {
17991 to = frag_more (2);
17992#ifdef OBJ_ELF
17993 dwarf2_emit_insn (2);
17994#endif
17995 }
17996
17997 md_number_to_chars (to, instruction, 2);
17998
17999 return to;
18000}
18001
c19d1205
ZW
18002/* Tag values used in struct asm_opcode's tag field. */
18003enum opcode_tag
18004{
18005 OT_unconditional, /* Instruction cannot be conditionalized.
18006 The ARM condition field is still 0xE. */
18007 OT_unconditionalF, /* Instruction cannot be conditionalized
18008 and carries 0xF in its ARM condition field. */
18009 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744 18010 OT_csuffixF, /* Some forms of the instruction take a conditional
477330fc
RM
18011 suffix, others place 0xF where the condition field
18012 would be. */
c19d1205
ZW
18013 OT_cinfix3, /* Instruction takes a conditional infix,
18014 beginning at character index 3. (In
18015 unified mode, it becomes a suffix.) */
088fa78e
KH
18016 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18017 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
18018 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18019 character index 3, even in unified mode. Used for
18020 legacy instructions where suffix and infix forms
18021 may be ambiguous. */
c19d1205 18022 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 18023 suffix or an infix at character index 3. */
c19d1205
ZW
18024 OT_odd_infix_unc, /* This is the unconditional variant of an
18025 instruction that takes a conditional infix
18026 at an unusual position. In unified mode,
18027 this variant will accept a suffix. */
18028 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18029 are the conditional variants of instructions that
18030 take conditional infixes in unusual positions.
18031 The infix appears at character index
18032 (tag - OT_odd_infix_0). These are not accepted
18033 in unified mode. */
18034};
b99bd4ef 18035
c19d1205
ZW
18036/* Subroutine of md_assemble, responsible for looking up the primary
18037 opcode from the mnemonic the user wrote. STR points to the
18038 beginning of the mnemonic.
18039
18040 This is not simply a hash table lookup, because of conditional
18041 variants. Most instructions have conditional variants, which are
18042 expressed with a _conditional affix_ to the mnemonic. If we were
18043 to encode each conditional variant as a literal string in the opcode
18044 table, it would have approximately 20,000 entries.
18045
18046 Most mnemonics take this affix as a suffix, and in unified syntax,
18047 'most' is upgraded to 'all'. However, in the divided syntax, some
18048 instructions take the affix as an infix, notably the s-variants of
18049 the arithmetic instructions. Of those instructions, all but six
18050 have the infix appear after the third character of the mnemonic.
18051
18052 Accordingly, the algorithm for looking up primary opcodes given
18053 an identifier is:
18054
18055 1. Look up the identifier in the opcode table.
18056 If we find a match, go to step U.
18057
18058 2. Look up the last two characters of the identifier in the
18059 conditions table. If we find a match, look up the first N-2
18060 characters of the identifier in the opcode table. If we
18061 find a match, go to step CE.
18062
18063 3. Look up the fourth and fifth characters of the identifier in
18064 the conditions table. If we find a match, extract those
18065 characters from the identifier, and look up the remaining
18066 characters in the opcode table. If we find a match, go
18067 to step CM.
18068
18069 4. Fail.
18070
18071 U. Examine the tag field of the opcode structure, in case this is
18072 one of the six instructions with its conditional infix in an
18073 unusual place. If it is, the tag tells us where to find the
18074 infix; look it up in the conditions table and set inst.cond
18075 accordingly. Otherwise, this is an unconditional instruction.
18076 Again set inst.cond accordingly. Return the opcode structure.
18077
18078 CE. Examine the tag field to make sure this is an instruction that
18079 should receive a conditional suffix. If it is not, fail.
18080 Otherwise, set inst.cond from the suffix we already looked up,
18081 and return the opcode structure.
18082
18083 CM. Examine the tag field to make sure this is an instruction that
18084 should receive a conditional infix after the third character.
18085 If it is not, fail. Otherwise, undo the edits to the current
18086 line of input and proceed as for case CE. */
18087
18088static const struct asm_opcode *
18089opcode_lookup (char **str)
18090{
18091 char *end, *base;
18092 char *affix;
18093 const struct asm_opcode *opcode;
18094 const struct asm_cond *cond;
e3cb604e 18095 char save[2];
c19d1205
ZW
18096
18097 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 18098 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 18099 for (base = end = *str; *end != '\0'; end++)
721a8186 18100 if (*end == ' ' || *end == '.')
c19d1205 18101 break;
b99bd4ef 18102
c19d1205 18103 if (end == base)
c921be7d 18104 return NULL;
b99bd4ef 18105
5287ad62 18106 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 18107 if (end[0] == '.')
b99bd4ef 18108 {
5287ad62 18109 int offset = 2;
5f4273c7 18110
267d2029 18111 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 18112 use. */
267d2029 18113 if (unified_syntax && end[1] == 'w')
c19d1205 18114 inst.size_req = 4;
267d2029 18115 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
18116 inst.size_req = 2;
18117 else
477330fc 18118 offset = 0;
5287ad62
JB
18119
18120 inst.vectype.elems = 0;
18121
18122 *str = end + offset;
b99bd4ef 18123
5f4273c7 18124 if (end[offset] == '.')
5287ad62 18125 {
267d2029 18126 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
18127 non-unified ARM syntax mode). */
18128 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 18129 return NULL;
477330fc 18130 }
5287ad62 18131 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 18132 return NULL;
b99bd4ef 18133 }
c19d1205
ZW
18134 else
18135 *str = end;
b99bd4ef 18136
c19d1205 18137 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 18138 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18139 end - base);
c19d1205 18140 if (opcode)
b99bd4ef 18141 {
c19d1205
ZW
18142 /* step U */
18143 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 18144 {
c19d1205
ZW
18145 inst.cond = COND_ALWAYS;
18146 return opcode;
b99bd4ef 18147 }
b99bd4ef 18148
278df34e 18149 if (warn_on_deprecated && unified_syntax)
5c3696f8 18150 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 18151 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 18152 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 18153 gas_assert (cond);
b99bd4ef 18154
c19d1205
ZW
18155 inst.cond = cond->value;
18156 return opcode;
18157 }
b99bd4ef 18158
c19d1205
ZW
18159 /* Cannot have a conditional suffix on a mnemonic of less than two
18160 characters. */
18161 if (end - base < 3)
c921be7d 18162 return NULL;
b99bd4ef 18163
c19d1205
ZW
18164 /* Look for suffixed mnemonic. */
18165 affix = end - 2;
21d799b5
NC
18166 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18167 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18168 affix - base);
c19d1205
ZW
18169 if (opcode && cond)
18170 {
18171 /* step CE */
18172 switch (opcode->tag)
18173 {
e3cb604e
PB
18174 case OT_cinfix3_legacy:
18175 /* Ignore conditional suffixes matched on infix only mnemonics. */
18176 break;
18177
c19d1205 18178 case OT_cinfix3:
088fa78e 18179 case OT_cinfix3_deprecated:
c19d1205
ZW
18180 case OT_odd_infix_unc:
18181 if (!unified_syntax)
0198d5e6 18182 return NULL;
1a0670f3 18183 /* Fall through. */
c19d1205
ZW
18184
18185 case OT_csuffix:
477330fc 18186 case OT_csuffixF:
c19d1205
ZW
18187 case OT_csuf_or_in3:
18188 inst.cond = cond->value;
18189 return opcode;
18190
18191 case OT_unconditional:
18192 case OT_unconditionalF:
dfa9f0d5 18193 if (thumb_mode)
c921be7d 18194 inst.cond = cond->value;
dfa9f0d5
PB
18195 else
18196 {
c921be7d 18197 /* Delayed diagnostic. */
dfa9f0d5
PB
18198 inst.error = BAD_COND;
18199 inst.cond = COND_ALWAYS;
18200 }
c19d1205 18201 return opcode;
b99bd4ef 18202
c19d1205 18203 default:
c921be7d 18204 return NULL;
c19d1205
ZW
18205 }
18206 }
b99bd4ef 18207
c19d1205
ZW
18208 /* Cannot have a usual-position infix on a mnemonic of less than
18209 six characters (five would be a suffix). */
18210 if (end - base < 6)
c921be7d 18211 return NULL;
b99bd4ef 18212
c19d1205
ZW
18213 /* Look for infixed mnemonic in the usual position. */
18214 affix = base + 3;
21d799b5 18215 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 18216 if (!cond)
c921be7d 18217 return NULL;
e3cb604e
PB
18218
18219 memcpy (save, affix, 2);
18220 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 18221 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 18222 (end - base) - 2);
e3cb604e
PB
18223 memmove (affix + 2, affix, (end - affix) - 2);
18224 memcpy (affix, save, 2);
18225
088fa78e
KH
18226 if (opcode
18227 && (opcode->tag == OT_cinfix3
18228 || opcode->tag == OT_cinfix3_deprecated
18229 || opcode->tag == OT_csuf_or_in3
18230 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 18231 {
c921be7d 18232 /* Step CM. */
278df34e 18233 if (warn_on_deprecated && unified_syntax
088fa78e
KH
18234 && (opcode->tag == OT_cinfix3
18235 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 18236 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
18237
18238 inst.cond = cond->value;
18239 return opcode;
b99bd4ef
NC
18240 }
18241
c921be7d 18242 return NULL;
b99bd4ef
NC
18243}
18244
e07e6e58
NC
18245/* This function generates an initial IT instruction, leaving its block
18246 virtually open for the new instructions. Eventually,
18247 the mask will be updated by now_it_add_mask () each time
18248 a new instruction needs to be included in the IT block.
18249 Finally, the block is closed with close_automatic_it_block ().
18250 The block closure can be requested either from md_assemble (),
18251 a tencode (), or due to a label hook. */
18252
18253static void
18254new_automatic_it_block (int cond)
18255{
18256 now_it.state = AUTOMATIC_IT_BLOCK;
18257 now_it.mask = 0x18;
18258 now_it.cc = cond;
18259 now_it.block_length = 1;
cd000bff 18260 mapping_state (MAP_THUMB);
e07e6e58 18261 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
18262 now_it.warn_deprecated = FALSE;
18263 now_it.insn_cond = TRUE;
e07e6e58
NC
18264}
18265
18266/* Close an automatic IT block.
18267 See comments in new_automatic_it_block (). */
18268
18269static void
18270close_automatic_it_block (void)
18271{
18272 now_it.mask = 0x10;
18273 now_it.block_length = 0;
18274}
18275
18276/* Update the mask of the current automatically-generated IT
18277 instruction. See comments in new_automatic_it_block (). */
18278
18279static void
18280now_it_add_mask (int cond)
18281{
18282#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18283#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 18284 | ((bitvalue) << (nbit)))
e07e6e58 18285 const int resulting_bit = (cond & 1);
c921be7d 18286
e07e6e58
NC
18287 now_it.mask &= 0xf;
18288 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18289 resulting_bit,
18290 (5 - now_it.block_length));
e07e6e58 18291 now_it.mask = SET_BIT_VALUE (now_it.mask,
477330fc
RM
18292 1,
18293 ((5 - now_it.block_length) - 1) );
e07e6e58
NC
18294 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18295
18296#undef CLEAR_BIT
18297#undef SET_BIT_VALUE
e07e6e58
NC
18298}
18299
18300/* The IT blocks handling machinery is accessed through the these functions:
18301 it_fsm_pre_encode () from md_assemble ()
18302 set_it_insn_type () optional, from the tencode functions
18303 set_it_insn_type_last () ditto
18304 in_it_block () ditto
18305 it_fsm_post_encode () from md_assemble ()
33eaf5de 18306 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
18307
18308 Rationale:
18309 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
18310 initializing the IT insn type with a generic initial value depending
18311 on the inst.condition.
e07e6e58 18312 2) During the tencode function, two things may happen:
477330fc
RM
18313 a) The tencode function overrides the IT insn type by
18314 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18315 b) The tencode function queries the IT block state by
18316 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18317
18318 Both set_it_insn_type and in_it_block run the internal FSM state
18319 handling function (handle_it_state), because: a) setting the IT insn
18320 type may incur in an invalid state (exiting the function),
18321 and b) querying the state requires the FSM to be updated.
18322 Specifically we want to avoid creating an IT block for conditional
18323 branches, so it_fsm_pre_encode is actually a guess and we can't
18324 determine whether an IT block is required until the tencode () routine
18325 has decided what type of instruction this actually it.
18326 Because of this, if set_it_insn_type and in_it_block have to be used,
18327 set_it_insn_type has to be called first.
18328
18329 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18330 determines the insn IT type depending on the inst.cond code.
18331 When a tencode () routine encodes an instruction that can be
18332 either outside an IT block, or, in the case of being inside, has to be
18333 the last one, set_it_insn_type_last () will determine the proper
18334 IT instruction type based on the inst.cond code. Otherwise,
18335 set_it_insn_type can be called for overriding that logic or
18336 for covering other cases.
18337
18338 Calling handle_it_state () may not transition the IT block state to
2b0f3761 18339 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
477330fc
RM
18340 still queried. Instead, if the FSM determines that the state should
18341 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18342 after the tencode () function: that's what it_fsm_post_encode () does.
18343
18344 Since in_it_block () calls the state handling function to get an
18345 updated state, an error may occur (due to invalid insns combination).
18346 In that case, inst.error is set.
18347 Therefore, inst.error has to be checked after the execution of
18348 the tencode () routine.
e07e6e58
NC
18349
18350 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc
RM
18351 any pending state change (if any) that didn't take place in
18352 handle_it_state () as explained above. */
e07e6e58
NC
18353
18354static void
18355it_fsm_pre_encode (void)
18356{
18357 if (inst.cond != COND_ALWAYS)
18358 inst.it_insn_type = INSIDE_IT_INSN;
18359 else
18360 inst.it_insn_type = OUTSIDE_IT_INSN;
18361
18362 now_it.state_handled = 0;
18363}
18364
18365/* IT state FSM handling function. */
18366
18367static int
18368handle_it_state (void)
18369{
18370 now_it.state_handled = 1;
5a01bb1d 18371 now_it.insn_cond = FALSE;
e07e6e58
NC
18372
18373 switch (now_it.state)
18374 {
18375 case OUTSIDE_IT_BLOCK:
18376 switch (inst.it_insn_type)
18377 {
18378 case OUTSIDE_IT_INSN:
18379 break;
18380
18381 case INSIDE_IT_INSN:
18382 case INSIDE_IT_LAST_INSN:
18383 if (thumb_mode == 0)
18384 {
c921be7d 18385 if (unified_syntax
e07e6e58
NC
18386 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18387 as_tsktsk (_("Warning: conditional outside an IT block"\
18388 " for Thumb."));
18389 }
18390 else
18391 {
18392 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
fc289b0a 18393 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
e07e6e58
NC
18394 {
18395 /* Automatically generate the IT instruction. */
18396 new_automatic_it_block (inst.cond);
18397 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18398 close_automatic_it_block ();
18399 }
18400 else
18401 {
18402 inst.error = BAD_OUT_IT;
18403 return FAIL;
18404 }
18405 }
18406 break;
18407
18408 case IF_INSIDE_IT_LAST_INSN:
18409 case NEUTRAL_IT_INSN:
18410 break;
18411
18412 case IT_INSN:
18413 now_it.state = MANUAL_IT_BLOCK;
18414 now_it.block_length = 0;
18415 break;
18416 }
18417 break;
18418
18419 case AUTOMATIC_IT_BLOCK:
18420 /* Three things may happen now:
18421 a) We should increment current it block size;
18422 b) We should close current it block (closing insn or 4 insns);
18423 c) We should close current it block and start a new one (due
18424 to incompatible conditions or
18425 4 insns-length block reached). */
18426
18427 switch (inst.it_insn_type)
18428 {
18429 case OUTSIDE_IT_INSN:
2b0f3761 18430 /* The closure of the block shall happen immediately,
e07e6e58
NC
18431 so any in_it_block () call reports the block as closed. */
18432 force_automatic_it_block_close ();
18433 break;
18434
18435 case INSIDE_IT_INSN:
18436 case INSIDE_IT_LAST_INSN:
18437 case IF_INSIDE_IT_LAST_INSN:
18438 now_it.block_length++;
18439
18440 if (now_it.block_length > 4
18441 || !now_it_compatible (inst.cond))
18442 {
18443 force_automatic_it_block_close ();
18444 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18445 new_automatic_it_block (inst.cond);
18446 }
18447 else
18448 {
5a01bb1d 18449 now_it.insn_cond = TRUE;
e07e6e58
NC
18450 now_it_add_mask (inst.cond);
18451 }
18452
18453 if (now_it.state == AUTOMATIC_IT_BLOCK
18454 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18455 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18456 close_automatic_it_block ();
18457 break;
18458
18459 case NEUTRAL_IT_INSN:
18460 now_it.block_length++;
5a01bb1d 18461 now_it.insn_cond = TRUE;
e07e6e58
NC
18462
18463 if (now_it.block_length > 4)
18464 force_automatic_it_block_close ();
18465 else
18466 now_it_add_mask (now_it.cc & 1);
18467 break;
18468
18469 case IT_INSN:
18470 close_automatic_it_block ();
18471 now_it.state = MANUAL_IT_BLOCK;
18472 break;
18473 }
18474 break;
18475
18476 case MANUAL_IT_BLOCK:
18477 {
18478 /* Check conditional suffixes. */
18479 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18480 int is_last;
18481 now_it.mask <<= 1;
18482 now_it.mask &= 0x1f;
18483 is_last = (now_it.mask == 0x10);
5a01bb1d 18484 now_it.insn_cond = TRUE;
e07e6e58
NC
18485
18486 switch (inst.it_insn_type)
18487 {
18488 case OUTSIDE_IT_INSN:
18489 inst.error = BAD_NOT_IT;
18490 return FAIL;
18491
18492 case INSIDE_IT_INSN:
18493 if (cond != inst.cond)
18494 {
18495 inst.error = BAD_IT_COND;
18496 return FAIL;
18497 }
18498 break;
18499
18500 case INSIDE_IT_LAST_INSN:
18501 case IF_INSIDE_IT_LAST_INSN:
18502 if (cond != inst.cond)
18503 {
18504 inst.error = BAD_IT_COND;
18505 return FAIL;
18506 }
18507 if (!is_last)
18508 {
18509 inst.error = BAD_BRANCH;
18510 return FAIL;
18511 }
18512 break;
18513
18514 case NEUTRAL_IT_INSN:
18515 /* The BKPT instruction is unconditional even in an IT block. */
18516 break;
18517
18518 case IT_INSN:
18519 inst.error = BAD_IT_IT;
18520 return FAIL;
18521 }
18522 }
18523 break;
18524 }
18525
18526 return SUCCESS;
18527}
18528
5a01bb1d
MGD
18529struct depr_insn_mask
18530{
18531 unsigned long pattern;
18532 unsigned long mask;
18533 const char* description;
18534};
18535
18536/* List of 16-bit instruction patterns deprecated in an IT block in
18537 ARMv8. */
18538static const struct depr_insn_mask depr_it_insns[] = {
18539 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18540 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18541 { 0xa000, 0xb800, N_("ADR") },
18542 { 0x4800, 0xf800, N_("Literal loads") },
18543 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18544 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
18545 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18546 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18547 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
18548 { 0, 0, NULL }
18549};
18550
e07e6e58
NC
18551static void
18552it_fsm_post_encode (void)
18553{
18554 int is_last;
18555
18556 if (!now_it.state_handled)
18557 handle_it_state ();
18558
5a01bb1d
MGD
18559 if (now_it.insn_cond
18560 && !now_it.warn_deprecated
18561 && warn_on_deprecated
18562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
18563 {
18564 if (inst.instruction >= 0x10000)
18565 {
5c3696f8 18566 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
5a01bb1d
MGD
18567 "deprecated in ARMv8"));
18568 now_it.warn_deprecated = TRUE;
18569 }
18570 else
18571 {
18572 const struct depr_insn_mask *p = depr_it_insns;
18573
18574 while (p->mask != 0)
18575 {
18576 if ((inst.instruction & p->mask) == p->pattern)
18577 {
5c3696f8 18578 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
5a01bb1d
MGD
18579 "of the following class are deprecated in ARMv8: "
18580 "%s"), p->description);
18581 now_it.warn_deprecated = TRUE;
18582 break;
18583 }
18584
18585 ++p;
18586 }
18587 }
18588
18589 if (now_it.block_length > 1)
18590 {
5c3696f8 18591 as_tsktsk (_("IT blocks containing more than one conditional "
0a8897c7 18592 "instruction are deprecated in ARMv8"));
5a01bb1d
MGD
18593 now_it.warn_deprecated = TRUE;
18594 }
18595 }
18596
e07e6e58
NC
18597 is_last = (now_it.mask == 0x10);
18598 if (is_last)
18599 {
18600 now_it.state = OUTSIDE_IT_BLOCK;
18601 now_it.mask = 0;
18602 }
18603}
18604
18605static void
18606force_automatic_it_block_close (void)
18607{
18608 if (now_it.state == AUTOMATIC_IT_BLOCK)
18609 {
18610 close_automatic_it_block ();
18611 now_it.state = OUTSIDE_IT_BLOCK;
18612 now_it.mask = 0;
18613 }
18614}
18615
18616static int
18617in_it_block (void)
18618{
18619 if (!now_it.state_handled)
18620 handle_it_state ();
18621
18622 return now_it.state != OUTSIDE_IT_BLOCK;
18623}
18624
ff8646ee
TP
18625/* Whether OPCODE only has T32 encoding. Since this function is only used by
18626 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18627 here, hence the "known" in the function name. */
fc289b0a
TP
18628
18629static bfd_boolean
ff8646ee 18630known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
18631{
18632 /* Original Thumb-1 wide instruction. */
18633 if (opcode->tencode == do_t_blx
18634 || opcode->tencode == do_t_branch23
18635 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18636 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18637 return TRUE;
18638
16a1fa25
TP
18639 /* Wide-only instruction added to ARMv8-M Baseline. */
18640 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
18641 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18642 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18643 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18644 return TRUE;
18645
18646 return FALSE;
18647}
18648
18649/* Whether wide instruction variant can be used if available for a valid OPCODE
18650 in ARCH. */
18651
18652static bfd_boolean
18653t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18654{
18655 if (known_t32_only_insn (opcode))
18656 return TRUE;
18657
18658 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18659 of variant T3 of B.W is checked in do_t_branch. */
18660 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18661 && opcode->tencode == do_t_branch)
18662 return TRUE;
18663
bada4342
JW
18664 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18665 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18666 && opcode->tencode == do_t_mov_cmp
18667 /* Make sure CMP instruction is not affected. */
18668 && opcode->aencode == do_mov)
18669 return TRUE;
18670
ff8646ee
TP
18671 /* Wide instruction variants of all instructions with narrow *and* wide
18672 variants become available with ARMv6t2. Other opcodes are either
18673 narrow-only or wide-only and are thus available if OPCODE is valid. */
18674 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18675 return TRUE;
18676
18677 /* OPCODE with narrow only instruction variant or wide variant not
18678 available. */
fc289b0a
TP
18679 return FALSE;
18680}
18681
c19d1205
ZW
18682void
18683md_assemble (char *str)
b99bd4ef 18684{
c19d1205
ZW
18685 char *p = str;
18686 const struct asm_opcode * opcode;
b99bd4ef 18687
c19d1205
ZW
18688 /* Align the previous label if needed. */
18689 if (last_label_seen != NULL)
b99bd4ef 18690 {
c19d1205
ZW
18691 symbol_set_frag (last_label_seen, frag_now);
18692 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18693 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
18694 }
18695
c19d1205
ZW
18696 memset (&inst, '\0', sizeof (inst));
18697 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 18698
c19d1205
ZW
18699 opcode = opcode_lookup (&p);
18700 if (!opcode)
b99bd4ef 18701 {
c19d1205 18702 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 18703 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 18704 if (! create_register_alias (str, p)
477330fc 18705 && ! create_neon_reg_alias (str, p))
c19d1205 18706 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 18707
b99bd4ef
NC
18708 return;
18709 }
18710
278df34e 18711 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 18712 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 18713
037e8744
JB
18714 /* The value which unconditional instructions should have in place of the
18715 condition field. */
18716 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18717
c19d1205 18718 if (thumb_mode)
b99bd4ef 18719 {
e74cfd16 18720 arm_feature_set variant;
8f06b2d8
PB
18721
18722 variant = cpu_variant;
18723 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
18724 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18725 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 18726 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
18727 if (!opcode->tvariant
18728 || (thumb_mode == 1
18729 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 18730 {
173205ca
TP
18731 if (opcode->tencode == do_t_swi)
18732 as_bad (_("SVC is not permitted on this architecture"));
18733 else
18734 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
18735 return;
18736 }
c19d1205
ZW
18737 if (inst.cond != COND_ALWAYS && !unified_syntax
18738 && opcode->tencode != do_t_branch)
b99bd4ef 18739 {
c19d1205 18740 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
18741 return;
18742 }
18743
fc289b0a
TP
18744 /* Two things are addressed here:
18745 1) Implicit require narrow instructions on Thumb-1.
18746 This avoids relaxation accidentally introducing Thumb-2
18747 instructions.
18748 2) Reject wide instructions in non Thumb-2 cores.
18749
18750 Only instructions with narrow and wide variants need to be handled
18751 but selecting all non wide-only instructions is easier. */
18752 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 18753 && !t32_insn_ok (variant, opcode))
076d447c 18754 {
fc289b0a
TP
18755 if (inst.size_req == 0)
18756 inst.size_req = 2;
18757 else if (inst.size_req == 4)
752d5da4 18758 {
ff8646ee
TP
18759 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18760 as_bad (_("selected processor does not support 32bit wide "
18761 "variant of instruction `%s'"), str);
18762 else
18763 as_bad (_("selected processor does not support `%s' in "
18764 "Thumb-2 mode"), str);
fc289b0a 18765 return;
752d5da4 18766 }
076d447c
PB
18767 }
18768
c19d1205
ZW
18769 inst.instruction = opcode->tvalue;
18770
5be8be5d 18771 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc
RM
18772 {
18773 /* Prepare the it_insn_type for those encodings that don't set
18774 it. */
18775 it_fsm_pre_encode ();
c19d1205 18776
477330fc 18777 opcode->tencode ();
e07e6e58 18778
477330fc
RM
18779 it_fsm_post_encode ();
18780 }
e27ec89e 18781
0110f2b8 18782 if (!(inst.error || inst.relax))
b99bd4ef 18783 {
9c2799c2 18784 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
18785 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18786 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 18787 {
c19d1205 18788 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
18789 return;
18790 }
18791 }
076d447c
PB
18792
18793 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 18794 instruction. */
9c2799c2 18795 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 18796
e74cfd16
PB
18797 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18798 *opcode->tvariant);
ee065d83 18799 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
18800 set those bits when Thumb-2 32-bit instructions are seen. The impact
18801 of relaxable instructions will be considered later after we finish all
18802 relaxation. */
ff8646ee
TP
18803 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18804 variant = arm_arch_none;
18805 else
18806 variant = cpu_variant;
18807 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
18808 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18809 arm_ext_v6t2);
cd000bff 18810
88714cb8
DG
18811 check_neon_suffixes;
18812
cd000bff 18813 if (!inst.error)
c877a2f2
NC
18814 {
18815 mapping_state (MAP_THUMB);
18816 }
c19d1205 18817 }
3e9e4fcf 18818 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 18819 {
845b51d6
PB
18820 bfd_boolean is_bx;
18821
18822 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18823 is_bx = (opcode->aencode == do_bx);
18824
c19d1205 18825 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
18826 if (!(is_bx && fix_v4bx)
18827 && !(opcode->avariant &&
18828 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 18829 {
84b52b66 18830 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 18831 return;
b99bd4ef 18832 }
c19d1205 18833 if (inst.size_req)
b99bd4ef 18834 {
c19d1205
ZW
18835 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18836 return;
b99bd4ef
NC
18837 }
18838
c19d1205
ZW
18839 inst.instruction = opcode->avalue;
18840 if (opcode->tag == OT_unconditionalF)
eff0bc54 18841 inst.instruction |= 0xFU << 28;
c19d1205
ZW
18842 else
18843 inst.instruction |= inst.cond << 28;
18844 inst.size = INSN_SIZE;
5be8be5d 18845 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
18846 {
18847 it_fsm_pre_encode ();
18848 opcode->aencode ();
18849 it_fsm_post_encode ();
18850 }
ee065d83 18851 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 18852 on a hypothetical non-thumb v5 core. */
845b51d6 18853 if (is_bx)
e74cfd16 18854 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 18855 else
e74cfd16
PB
18856 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18857 *opcode->avariant);
88714cb8
DG
18858
18859 check_neon_suffixes;
18860
cd000bff 18861 if (!inst.error)
c877a2f2
NC
18862 {
18863 mapping_state (MAP_ARM);
18864 }
b99bd4ef 18865 }
3e9e4fcf
JB
18866 else
18867 {
18868 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18869 "-- `%s'"), str);
18870 return;
18871 }
c19d1205
ZW
18872 output_inst (str);
18873}
b99bd4ef 18874
e07e6e58
NC
18875static void
18876check_it_blocks_finished (void)
18877{
18878#ifdef OBJ_ELF
18879 asection *sect;
18880
18881 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18882 if (seg_info (sect)->tc_segment_info_data.current_it.state
18883 == MANUAL_IT_BLOCK)
18884 {
18885 as_warn (_("section '%s' finished with an open IT block."),
18886 sect->name);
18887 }
18888#else
18889 if (now_it.state == MANUAL_IT_BLOCK)
18890 as_warn (_("file finished with an open IT block."));
18891#endif
18892}
18893
c19d1205
ZW
18894/* Various frobbings of labels and their addresses. */
18895
18896void
18897arm_start_line_hook (void)
18898{
18899 last_label_seen = NULL;
b99bd4ef
NC
18900}
18901
c19d1205
ZW
18902void
18903arm_frob_label (symbolS * sym)
b99bd4ef 18904{
c19d1205 18905 last_label_seen = sym;
b99bd4ef 18906
c19d1205 18907 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 18908
c19d1205
ZW
18909#if defined OBJ_COFF || defined OBJ_ELF
18910 ARM_SET_INTERWORK (sym, support_interwork);
18911#endif
b99bd4ef 18912
e07e6e58
NC
18913 force_automatic_it_block_close ();
18914
5f4273c7 18915 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
18916 as Thumb functions. This is because these labels, whilst
18917 they exist inside Thumb code, are not the entry points for
18918 possible ARM->Thumb calls. Also, these labels can be used
18919 as part of a computed goto or switch statement. eg gcc
18920 can generate code that looks like this:
b99bd4ef 18921
c19d1205
ZW
18922 ldr r2, [pc, .Laaa]
18923 lsl r3, r3, #2
18924 ldr r2, [r3, r2]
18925 mov pc, r2
b99bd4ef 18926
c19d1205
ZW
18927 .Lbbb: .word .Lxxx
18928 .Lccc: .word .Lyyy
18929 ..etc...
18930 .Laaa: .word Lbbb
b99bd4ef 18931
c19d1205
ZW
18932 The first instruction loads the address of the jump table.
18933 The second instruction converts a table index into a byte offset.
18934 The third instruction gets the jump address out of the table.
18935 The fourth instruction performs the jump.
b99bd4ef 18936
c19d1205
ZW
18937 If the address stored at .Laaa is that of a symbol which has the
18938 Thumb_Func bit set, then the linker will arrange for this address
18939 to have the bottom bit set, which in turn would mean that the
18940 address computation performed by the third instruction would end
18941 up with the bottom bit set. Since the ARM is capable of unaligned
18942 word loads, the instruction would then load the incorrect address
18943 out of the jump table, and chaos would ensue. */
18944 if (label_is_thumb_function_name
18945 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18946 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 18947 {
c19d1205
ZW
18948 /* When the address of a Thumb function is taken the bottom
18949 bit of that address should be set. This will allow
18950 interworking between Arm and Thumb functions to work
18951 correctly. */
b99bd4ef 18952
c19d1205 18953 THUMB_SET_FUNC (sym, 1);
b99bd4ef 18954
c19d1205 18955 label_is_thumb_function_name = FALSE;
b99bd4ef 18956 }
07a53e5c 18957
07a53e5c 18958 dwarf2_emit_label (sym);
b99bd4ef
NC
18959}
18960
c921be7d 18961bfd_boolean
c19d1205 18962arm_data_in_code (void)
b99bd4ef 18963{
c19d1205 18964 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 18965 {
c19d1205
ZW
18966 *input_line_pointer = '/';
18967 input_line_pointer += 5;
18968 *input_line_pointer = 0;
c921be7d 18969 return TRUE;
b99bd4ef
NC
18970 }
18971
c921be7d 18972 return FALSE;
b99bd4ef
NC
18973}
18974
c19d1205
ZW
18975char *
18976arm_canonicalize_symbol_name (char * name)
b99bd4ef 18977{
c19d1205 18978 int len;
b99bd4ef 18979
c19d1205
ZW
18980 if (thumb_mode && (len = strlen (name)) > 5
18981 && streq (name + len - 5, "/data"))
18982 *(name + len - 5) = 0;
b99bd4ef 18983
c19d1205 18984 return name;
b99bd4ef 18985}
c19d1205
ZW
18986\f
18987/* Table of all register names defined by default. The user can
18988 define additional names with .req. Note that all register names
18989 should appear in both upper and lowercase variants. Some registers
18990 also have mixed-case names. */
b99bd4ef 18991
dcbf9037 18992#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 18993#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 18994#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
18995#define REGSET(p,t) \
18996 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18997 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18998 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18999 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
19000#define REGSETH(p,t) \
19001 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19002 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19003 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19004 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19005#define REGSET2(p,t) \
19006 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19007 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19008 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19009 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
19010#define SPLRBANK(base,bank,t) \
19011 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19012 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19013 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19014 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19015 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19016 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 19017
c19d1205 19018static const struct reg_entry reg_names[] =
7ed4c4c5 19019{
c19d1205
ZW
19020 /* ARM integer registers. */
19021 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 19022
c19d1205
ZW
19023 /* ATPCS synonyms. */
19024 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19025 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19026 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 19027
c19d1205
ZW
19028 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19029 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19030 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 19031
c19d1205
ZW
19032 /* Well-known aliases. */
19033 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19034 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19035
19036 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19037 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19038
19039 /* Coprocessor numbers. */
19040 REGSET(p, CP), REGSET(P, CP),
19041
19042 /* Coprocessor register numbers. The "cr" variants are for backward
19043 compatibility. */
19044 REGSET(c, CN), REGSET(C, CN),
19045 REGSET(cr, CN), REGSET(CR, CN),
19046
90ec0d68
MGD
19047 /* ARM banked registers. */
19048 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19049 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19050 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19051 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19052 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19053 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19054 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19055
19056 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19057 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19058 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19059 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19060 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 19061 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
19062 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19063 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19064
19065 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19066 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19067 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19068 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19069 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19070 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19071 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 19072 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
19073 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19074
c19d1205
ZW
19075 /* FPA registers. */
19076 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19077 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19078
19079 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19080 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19081
19082 /* VFP SP registers. */
5287ad62
JB
19083 REGSET(s,VFS), REGSET(S,VFS),
19084 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
19085
19086 /* VFP DP Registers. */
5287ad62
JB
19087 REGSET(d,VFD), REGSET(D,VFD),
19088 /* Extra Neon DP registers. */
19089 REGSETH(d,VFD), REGSETH(D,VFD),
19090
19091 /* Neon QP registers. */
19092 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
19093
19094 /* VFP control registers. */
19095 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19096 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
19097 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19098 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19099 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19100 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 19101 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
19102
19103 /* Maverick DSP coprocessor registers. */
19104 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19105 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19106
19107 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19108 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19109 REGDEF(dspsc,0,DSPSC),
19110
19111 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19112 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19113 REGDEF(DSPSC,0,DSPSC),
19114
19115 /* iWMMXt data registers - p0, c0-15. */
19116 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19117
19118 /* iWMMXt control registers - p1, c0-3. */
19119 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19120 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19121 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19122 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19123
19124 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19125 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19126 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19127 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19128 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19129
19130 /* XScale accumulator registers. */
19131 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19132};
19133#undef REGDEF
19134#undef REGNUM
19135#undef REGSET
7ed4c4c5 19136
c19d1205
ZW
19137/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19138 within psr_required_here. */
19139static const struct asm_psr psrs[] =
19140{
19141 /* Backward compatibility notation. Note that "all" is no longer
19142 truly all possible PSR bits. */
19143 {"all", PSR_c | PSR_f},
19144 {"flg", PSR_f},
19145 {"ctl", PSR_c},
19146
19147 /* Individual flags. */
19148 {"f", PSR_f},
19149 {"c", PSR_c},
19150 {"x", PSR_x},
19151 {"s", PSR_s},
59b42a0d 19152
c19d1205
ZW
19153 /* Combinations of flags. */
19154 {"fs", PSR_f | PSR_s},
19155 {"fx", PSR_f | PSR_x},
19156 {"fc", PSR_f | PSR_c},
19157 {"sf", PSR_s | PSR_f},
19158 {"sx", PSR_s | PSR_x},
19159 {"sc", PSR_s | PSR_c},
19160 {"xf", PSR_x | PSR_f},
19161 {"xs", PSR_x | PSR_s},
19162 {"xc", PSR_x | PSR_c},
19163 {"cf", PSR_c | PSR_f},
19164 {"cs", PSR_c | PSR_s},
19165 {"cx", PSR_c | PSR_x},
19166 {"fsx", PSR_f | PSR_s | PSR_x},
19167 {"fsc", PSR_f | PSR_s | PSR_c},
19168 {"fxs", PSR_f | PSR_x | PSR_s},
19169 {"fxc", PSR_f | PSR_x | PSR_c},
19170 {"fcs", PSR_f | PSR_c | PSR_s},
19171 {"fcx", PSR_f | PSR_c | PSR_x},
19172 {"sfx", PSR_s | PSR_f | PSR_x},
19173 {"sfc", PSR_s | PSR_f | PSR_c},
19174 {"sxf", PSR_s | PSR_x | PSR_f},
19175 {"sxc", PSR_s | PSR_x | PSR_c},
19176 {"scf", PSR_s | PSR_c | PSR_f},
19177 {"scx", PSR_s | PSR_c | PSR_x},
19178 {"xfs", PSR_x | PSR_f | PSR_s},
19179 {"xfc", PSR_x | PSR_f | PSR_c},
19180 {"xsf", PSR_x | PSR_s | PSR_f},
19181 {"xsc", PSR_x | PSR_s | PSR_c},
19182 {"xcf", PSR_x | PSR_c | PSR_f},
19183 {"xcs", PSR_x | PSR_c | PSR_s},
19184 {"cfs", PSR_c | PSR_f | PSR_s},
19185 {"cfx", PSR_c | PSR_f | PSR_x},
19186 {"csf", PSR_c | PSR_s | PSR_f},
19187 {"csx", PSR_c | PSR_s | PSR_x},
19188 {"cxf", PSR_c | PSR_x | PSR_f},
19189 {"cxs", PSR_c | PSR_x | PSR_s},
19190 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19191 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19192 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19193 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19194 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19195 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19196 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19197 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19198 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19199 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19200 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19201 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19202 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19203 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19204 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19205 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19206 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19207 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19208 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19209 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19210 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19211 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19212 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19213 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19214};
19215
62b3e311
PB
19216/* Table of V7M psr names. */
19217static const struct asm_psr v7m_psrs[] =
19218{
1a336194
TP
19219 {"apsr", 0x0 }, {"APSR", 0x0 },
19220 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19221 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19222 {"psr", 0x3 }, {"PSR", 0x3 },
19223 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19224 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19225 {"epsr", 0x6 }, {"EPSR", 0x6 },
19226 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19227 {"msp", 0x8 }, {"MSP", 0x8 },
19228 {"psp", 0x9 }, {"PSP", 0x9 },
19229 {"msplim", 0xa }, {"MSPLIM", 0xa },
19230 {"psplim", 0xb }, {"PSPLIM", 0xb },
19231 {"primask", 0x10}, {"PRIMASK", 0x10},
19232 {"basepri", 0x11}, {"BASEPRI", 0x11},
19233 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
19234 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19235 {"control", 0x14}, {"CONTROL", 0x14},
19236 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19237 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19238 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19239 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19240 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19241 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19242 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19243 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19244 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
19245};
19246
c19d1205
ZW
19247/* Table of all shift-in-operand names. */
19248static const struct asm_shift_name shift_names [] =
b99bd4ef 19249{
c19d1205
ZW
19250 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19251 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19252 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19253 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19254 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19255 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19256};
b99bd4ef 19257
c19d1205
ZW
19258/* Table of all explicit relocation names. */
19259#ifdef OBJ_ELF
19260static struct reloc_entry reloc_names[] =
19261{
19262 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19263 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19264 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19265 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19266 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19267 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19268 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19269 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19270 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19271 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 19272 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
19273 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19274 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 19275 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 19276 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 19277 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 19278 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
477330fc 19279 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
19280};
19281#endif
b99bd4ef 19282
c19d1205
ZW
19283/* Table of all conditional affixes. 0xF is not defined as a condition code. */
19284static const struct asm_cond conds[] =
19285{
19286 {"eq", 0x0},
19287 {"ne", 0x1},
19288 {"cs", 0x2}, {"hs", 0x2},
19289 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19290 {"mi", 0x4},
19291 {"pl", 0x5},
19292 {"vs", 0x6},
19293 {"vc", 0x7},
19294 {"hi", 0x8},
19295 {"ls", 0x9},
19296 {"ge", 0xa},
19297 {"lt", 0xb},
19298 {"gt", 0xc},
19299 {"le", 0xd},
19300 {"al", 0xe}
19301};
bfae80f2 19302
e797f7e0 19303#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
19304 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19305 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 19306
62b3e311
PB
19307static struct asm_barrier_opt barrier_opt_names[] =
19308{
e797f7e0
MGD
19309 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19310 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19311 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19312 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19313 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19314 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19315 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19316 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19317 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19318 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19319 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19320 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19321 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19322 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19323 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19324 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
19325};
19326
e797f7e0
MGD
19327#undef UL_BARRIER
19328
c19d1205
ZW
19329/* Table of ARM-format instructions. */
19330
19331/* Macros for gluing together operand strings. N.B. In all cases
19332 other than OPS0, the trailing OP_stop comes from default
19333 zero-initialization of the unspecified elements of the array. */
19334#define OPS0() { OP_stop, }
19335#define OPS1(a) { OP_##a, }
19336#define OPS2(a,b) { OP_##a,OP_##b, }
19337#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19338#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19339#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19340#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19341
5be8be5d
DG
19342/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19343 This is useful when mixing operands for ARM and THUMB, i.e. using the
19344 MIX_ARM_THUMB_OPERANDS macro.
19345 In order to use these macros, prefix the number of operands with _
19346 e.g. _3. */
19347#define OPS_1(a) { a, }
19348#define OPS_2(a,b) { a,b, }
19349#define OPS_3(a,b,c) { a,b,c, }
19350#define OPS_4(a,b,c,d) { a,b,c,d, }
19351#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19352#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19353
c19d1205
ZW
19354/* These macros abstract out the exact format of the mnemonic table and
19355 save some repeated characters. */
19356
19357/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19358#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19359 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 19360 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19361
19362/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19363 a T_MNEM_xyz enumerator. */
19364#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19365 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19366#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19367 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
19368
19369/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19370 infix after the third character. */
19371#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 19372 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 19373 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 19374#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 19375 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 19376 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19377#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19378 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 19379#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 19380 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 19381#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19382 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 19383#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 19384 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 19385
c19d1205 19386/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
19387 field is still 0xE. Many of the Thumb variants can be executed
19388 conditionally, so this is checked separately. */
c19d1205 19389#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 19390 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19391 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 19392
dd5181d5
KT
19393/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19394 Used by mnemonics that have very minimal differences in the encoding for
19395 ARM and Thumb variants and can be handled in a common function. */
19396#define TUEc(mnem, op, top, nops, ops, en) \
19397 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19398 THUMB_VARIANT, do_##en, do_##en }
19399
c19d1205
ZW
19400/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19401 condition code field. */
19402#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 19403 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 19404 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
19405
19406/* ARM-only variants of all the above. */
6a86118a 19407#define CE(mnem, op, nops, ops, ae) \
21d799b5 19408 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
19409
19410#define C3(mnem, op, nops, ops, ae) \
19411 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19412
e3cb604e
PB
19413/* Legacy mnemonics that always have conditional infix after the third
19414 character. */
19415#define CL(mnem, op, nops, ops, ae) \
21d799b5 19416 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19417 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19418
8f06b2d8
PB
19419/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19420#define cCE(mnem, op, nops, ops, ae) \
21d799b5 19421 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19422
e3cb604e
PB
19423/* Legacy coprocessor instructions where conditional infix and conditional
19424 suffix are ambiguous. For consistency this includes all FPA instructions,
19425 not just the potentially ambiguous ones. */
19426#define cCL(mnem, op, nops, ops, ae) \
21d799b5 19427 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
19428 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19429
19430/* Coprocessor, takes either a suffix or a position-3 infix
19431 (for an FPA corner case). */
19432#define C3E(mnem, op, nops, ops, ae) \
21d799b5 19433 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 19434 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 19435
6a86118a 19436#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
19437 { m1 #m2 m3, OPS##nops ops, \
19438 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
19439 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19440
19441#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
19442 xCM_ (m1, , m2, op, nops, ops, ae), \
19443 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19444 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19445 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19446 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19447 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19448 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19449 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19450 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19451 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19452 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19453 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19454 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19455 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19456 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19457 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19458 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19459 xCM_ (m1, le, m2, op, nops, ops, ae), \
19460 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
19461
19462#define UE(mnem, op, nops, ops, ae) \
19463 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19464
19465#define UF(mnem, op, nops, ops, ae) \
19466 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19467
5287ad62
JB
19468/* Neon data-processing. ARM versions are unconditional with cond=0xf.
19469 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19470 use the same encoding function for each. */
19471#define NUF(mnem, op, nops, ops, enc) \
19472 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19473 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19474
19475/* Neon data processing, version which indirects through neon_enc_tab for
19476 the various overloaded versions of opcodes. */
19477#define nUF(mnem, op, nops, ops, enc) \
21d799b5 19478 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19479 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19480
19481/* Neon insn with conditional suffix for the ARM version, non-overloaded
19482 version. */
037e8744
JB
19483#define NCE_tag(mnem, op, nops, ops, enc, tag) \
19484 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
19485 THUMB_VARIANT, do_##enc, do_##enc }
19486
037e8744 19487#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 19488 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19489
19490#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 19491 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19492
5287ad62 19493/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 19494#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 19495 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
19496 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19497
037e8744 19498#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 19499 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
19500
19501#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 19502 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 19503
c19d1205
ZW
19504#define do_0 0
19505
c19d1205 19506static const struct asm_opcode insns[] =
bfae80f2 19507{
74db7efb
NC
19508#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19509#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
19510 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19511 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19512 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19513 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19514 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19515 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19516 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19517 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19518 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19519 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19520 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19521 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19522 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19523 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19524 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19525 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
19526
19527 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19528 for setting PSR flag bits. They are obsolete in V6 and do not
19529 have Thumb equivalents. */
21d799b5
NC
19530 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19531 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19532 CL("tstp", 110f000, 2, (RR, SH), cmp),
19533 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19534 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19535 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19536 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19537 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19538 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19539
19540 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 19541 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
19542 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19543 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19544
19545 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
19546 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19547 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19548 OP_RRnpc),
19549 OP_ADDRGLDR),ldst, t_ldst),
19550 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
19551
19552 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19553 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19554 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19555 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19556 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19557 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19558
21d799b5
NC
19559 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19560 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 19561
c19d1205 19562 /* Pseudo ops. */
21d799b5 19563 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 19564 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 19565 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 19566 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
19567
19568 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
19569 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19570 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19571 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19572 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19573 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19574 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19575 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19576 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19577 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19578 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19579 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19580 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 19581
16a4cf17 19582 /* These may simplify to neg. */
21d799b5
NC
19583 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19584 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 19585
173205ca
TP
19586#undef THUMB_VARIANT
19587#define THUMB_VARIANT & arm_ext_os
19588
19589 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19590 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19591
c921be7d
NC
19592#undef THUMB_VARIANT
19593#define THUMB_VARIANT & arm_ext_v6
19594
21d799b5 19595 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
19596
19597 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
19598#undef THUMB_VARIANT
19599#define THUMB_VARIANT & arm_ext_v6t2
19600
21d799b5
NC
19601 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19602 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19603 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 19604
5be8be5d
DG
19605 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19606 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19607 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19608 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 19609
21d799b5
NC
19610 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19611 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 19612
21d799b5
NC
19613 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19614 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
19615
19616 /* V1 instructions with no Thumb analogue at all. */
21d799b5 19617 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
19618 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19619
19620 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19621 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19622 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19623 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19624 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19625 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19626 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19627 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19628
c921be7d
NC
19629#undef ARM_VARIANT
19630#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19631#undef THUMB_VARIANT
19632#define THUMB_VARIANT & arm_ext_v4t
19633
21d799b5
NC
19634 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19635 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 19636
c921be7d
NC
19637#undef THUMB_VARIANT
19638#define THUMB_VARIANT & arm_ext_v6t2
19639
21d799b5 19640 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
19641 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19642
19643 /* Generic coprocessor instructions. */
21d799b5
NC
19644 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19645 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19646 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19647 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19648 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19649 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 19650 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19651
c921be7d
NC
19652#undef ARM_VARIANT
19653#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19654
21d799b5 19655 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
19656 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19657
c921be7d
NC
19658#undef ARM_VARIANT
19659#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19660#undef THUMB_VARIANT
19661#define THUMB_VARIANT & arm_ext_msr
19662
d2cd1205
JB
19663 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19664 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 19665
c921be7d
NC
19666#undef ARM_VARIANT
19667#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19668#undef THUMB_VARIANT
19669#define THUMB_VARIANT & arm_ext_v6t2
19670
21d799b5
NC
19671 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19672 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19673 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19674 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19675 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19676 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19677 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19678 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 19679
c921be7d
NC
19680#undef ARM_VARIANT
19681#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19682#undef THUMB_VARIANT
19683#define THUMB_VARIANT & arm_ext_v4t
19684
5be8be5d
DG
19685 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19686 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19687 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19688 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
19689 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19690 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 19691
c921be7d
NC
19692#undef ARM_VARIANT
19693#define ARM_VARIANT & arm_ext_v4t_5
19694
c19d1205
ZW
19695 /* ARM Architecture 4T. */
19696 /* Note: bx (and blx) are required on V5, even if the processor does
19697 not support Thumb. */
21d799b5 19698 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 19699
c921be7d
NC
19700#undef ARM_VARIANT
19701#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19702#undef THUMB_VARIANT
19703#define THUMB_VARIANT & arm_ext_v5t
19704
c19d1205
ZW
19705 /* Note: blx has 2 variants; the .value coded here is for
19706 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
19707 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19708 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 19709
c921be7d
NC
19710#undef THUMB_VARIANT
19711#define THUMB_VARIANT & arm_ext_v6t2
19712
21d799b5
NC
19713 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19714 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19715 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19716 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19717 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19718 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19719 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19720 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 19721
c921be7d 19722#undef ARM_VARIANT
74db7efb
NC
19723#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19724#undef THUMB_VARIANT
19725#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 19726
21d799b5
NC
19727 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19728 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19729 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19730 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19731
21d799b5
NC
19732 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19733 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 19734
21d799b5
NC
19735 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19736 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19737 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19738 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 19739
21d799b5
NC
19740 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19741 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19742 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19743 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19744
21d799b5
NC
19745 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19746 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 19747
03ee1b7f
NC
19748 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19749 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19750 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19751 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 19752
c921be7d 19753#undef ARM_VARIANT
74db7efb
NC
19754#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19755#undef THUMB_VARIANT
19756#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19757
21d799b5 19758 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
19759 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19760 ldrd, t_ldstd),
19761 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19762 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 19763
21d799b5
NC
19764 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19765 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 19766
c921be7d
NC
19767#undef ARM_VARIANT
19768#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19769
21d799b5 19770 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 19771
c921be7d
NC
19772#undef ARM_VARIANT
19773#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19774#undef THUMB_VARIANT
19775#define THUMB_VARIANT & arm_ext_v6
19776
21d799b5
NC
19777 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19778 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19779 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19780 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19781 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19782 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19783 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19784 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19785 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19786 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 19787
c921be7d 19788#undef THUMB_VARIANT
ff8646ee 19789#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 19790
5be8be5d
DG
19791 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19792 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19793 strex, t_strex),
ff8646ee
TP
19794#undef THUMB_VARIANT
19795#define THUMB_VARIANT & arm_ext_v6t2
19796
21d799b5
NC
19797 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19798 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 19799
21d799b5
NC
19800 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19801 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 19802
9e3c6df6 19803/* ARM V6 not included in V7M. */
c921be7d
NC
19804#undef THUMB_VARIANT
19805#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 19806 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 19807 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
19808 UF(rfeib, 9900a00, 1, (RRw), rfe),
19809 UF(rfeda, 8100a00, 1, (RRw), rfe),
19810 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19811 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
19812 UF(rfefa, 8100a00, 1, (RRw), rfe),
19813 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19814 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 19815 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
19816 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19817 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 19818 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 19819 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 19820 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 19821 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 19822 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 19823 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 19824 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 19825
9e3c6df6
PB
19826/* ARM V6 not included in V7M (eg. integer SIMD). */
19827#undef THUMB_VARIANT
19828#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
19829 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19830 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19831 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19832 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19833 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19834 /* Old name for QASX. */
74db7efb 19835 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19836 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19837 /* Old name for QSAX. */
74db7efb 19838 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19839 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19840 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19841 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19842 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19843 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19844 /* Old name for SASX. */
74db7efb 19845 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19846 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19847 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19848 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19849 /* Old name for SHASX. */
21d799b5 19850 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19851 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19852 /* Old name for SHSAX. */
21d799b5
NC
19853 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19854 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19855 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19856 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19857 /* Old name for SSAX. */
74db7efb 19858 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19859 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19860 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19861 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19862 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19863 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19864 /* Old name for UASX. */
74db7efb 19865 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19866 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19867 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19868 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19869 /* Old name for UHASX. */
21d799b5
NC
19870 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19871 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19872 /* Old name for UHSAX. */
21d799b5
NC
19873 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19874 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19875 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19876 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19877 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 19878 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19879 /* Old name for UQASX. */
21d799b5
NC
19880 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19881 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19882 /* Old name for UQSAX. */
21d799b5
NC
19883 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19884 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19885 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19886 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19887 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 19888 /* Old name for USAX. */
74db7efb 19889 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 19890 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
19891 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19892 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19893 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19894 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19895 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19896 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19897 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19898 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19899 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19900 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19901 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19902 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19903 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19904 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19905 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19906 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19907 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19908 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19909 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19910 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19911 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19912 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19913 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19914 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19915 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19916 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19917 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
19918 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19919 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19920 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19921 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19922 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 19923
c921be7d
NC
19924#undef ARM_VARIANT
19925#define ARM_VARIANT & arm_ext_v6k
19926#undef THUMB_VARIANT
19927#define THUMB_VARIANT & arm_ext_v6k
19928
21d799b5
NC
19929 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19930 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19931 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19932 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 19933
c921be7d
NC
19934#undef THUMB_VARIANT
19935#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
19936 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19937 ldrexd, t_ldrexd),
19938 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19939 RRnpcb), strexd, t_strexd),
ebdca51a 19940
c921be7d 19941#undef THUMB_VARIANT
ff8646ee 19942#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
19943 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19944 rd_rn, rd_rn),
19945 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19946 rd_rn, rd_rn),
19947 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 19948 strex, t_strexbh),
5be8be5d 19949 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 19950 strex, t_strexbh),
21d799b5 19951 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 19952
c921be7d 19953#undef ARM_VARIANT
f4c65163 19954#define ARM_VARIANT & arm_ext_sec
74db7efb 19955#undef THUMB_VARIANT
f4c65163 19956#define THUMB_VARIANT & arm_ext_sec
c921be7d 19957
21d799b5 19958 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 19959
90ec0d68
MGD
19960#undef ARM_VARIANT
19961#define ARM_VARIANT & arm_ext_virt
19962#undef THUMB_VARIANT
19963#define THUMB_VARIANT & arm_ext_virt
19964
19965 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19966 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19967
ddfded2f
MW
19968#undef ARM_VARIANT
19969#define ARM_VARIANT & arm_ext_pan
19970#undef THUMB_VARIANT
19971#define THUMB_VARIANT & arm_ext_pan
19972
19973 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19974
c921be7d 19975#undef ARM_VARIANT
74db7efb 19976#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
19977#undef THUMB_VARIANT
19978#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 19979
21d799b5
NC
19980 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19981 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19982 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19983 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 19984
21d799b5 19985 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 19986 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 19987
5be8be5d
DG
19988 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19989 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19990 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19991 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 19992
91d8b670
JG
19993#undef ARM_VARIANT
19994#define ARM_VARIANT & arm_ext_v3
19995#undef THUMB_VARIANT
19996#define THUMB_VARIANT & arm_ext_v6t2
19997
19998 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
19999
20000#undef ARM_VARIANT
20001#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
20002#undef THUMB_VARIANT
20003#define THUMB_VARIANT & arm_ext_v6t2_v8m
20004 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20005 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20006
bf3eeda7 20007 /* Thumb-only instructions. */
74db7efb 20008#undef ARM_VARIANT
bf3eeda7
NS
20009#define ARM_VARIANT NULL
20010 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20011 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
20012
20013 /* ARM does not really have an IT instruction, so always allow it.
20014 The opcode is copied from Thumb in order to allow warnings in
20015 -mimplicit-it=[never | arm] modes. */
20016#undef ARM_VARIANT
20017#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
20018#undef THUMB_VARIANT
20019#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 20020
21d799b5
NC
20021 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20022 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20023 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20024 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20025 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20026 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20027 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20028 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20029 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20030 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20031 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20032 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20033 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20034 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20035 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 20036 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
20037 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20038 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 20039
92e90b6e 20040 /* Thumb2 only instructions. */
c921be7d
NC
20041#undef ARM_VARIANT
20042#define ARM_VARIANT NULL
92e90b6e 20043
21d799b5
NC
20044 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20045 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20046 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20047 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20048 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20049 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 20050
eea54501
MGD
20051 /* Hardware division instructions. */
20052#undef ARM_VARIANT
20053#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
20054#undef THUMB_VARIANT
20055#define THUMB_VARIANT & arm_ext_div
20056
eea54501
MGD
20057 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20058 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 20059
7e806470 20060 /* ARM V6M/V7 instructions. */
c921be7d
NC
20061#undef ARM_VARIANT
20062#define ARM_VARIANT & arm_ext_barrier
20063#undef THUMB_VARIANT
20064#define THUMB_VARIANT & arm_ext_barrier
20065
ccb84d65
JB
20066 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20067 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20068 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 20069
62b3e311 20070 /* ARM V7 instructions. */
c921be7d
NC
20071#undef ARM_VARIANT
20072#define ARM_VARIANT & arm_ext_v7
20073#undef THUMB_VARIANT
20074#define THUMB_VARIANT & arm_ext_v7
20075
21d799b5
NC
20076 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20077 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 20078
74db7efb 20079#undef ARM_VARIANT
60e5ef9f 20080#define ARM_VARIANT & arm_ext_mp
74db7efb 20081#undef THUMB_VARIANT
60e5ef9f
MGD
20082#define THUMB_VARIANT & arm_ext_mp
20083
20084 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20085
53c4b28b
MGD
20086 /* AArchv8 instructions. */
20087#undef ARM_VARIANT
20088#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
20089
20090/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 20091#undef THUMB_VARIANT
4ed7ed8d 20092#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 20093
4ed7ed8d
TP
20094 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20095 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20096 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20097 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20098 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20099 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 20100 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
20101 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20102 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20103 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20104 stlex, t_stlex),
4b8c8c02
RE
20105 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20106 stlex, t_stlex),
20107 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20108 stlex, t_stlex),
4ed7ed8d
TP
20109#undef THUMB_VARIANT
20110#define THUMB_VARIANT & arm_ext_v8
53c4b28b 20111
4ed7ed8d
TP
20112 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
20113 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20114 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20115 ldrexd, t_ldrexd),
20116 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20117 strexd, t_strexd),
8884b720 20118 /* ARMv8 T32 only. */
74db7efb 20119#undef ARM_VARIANT
b79f7053
MGD
20120#define ARM_VARIANT NULL
20121 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20122 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20123 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20124
33399f07
MGD
20125 /* FP for ARMv8. */
20126#undef ARM_VARIANT
a715796b 20127#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 20128#undef THUMB_VARIANT
a715796b 20129#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
20130
20131 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20132 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20133 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20134 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
20135 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20136 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
20137 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20138 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20139 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20140 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
20141 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20142 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20143 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20144 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20145 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20146 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20147 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 20148
91ff7894
MGD
20149 /* Crypto v1 extensions. */
20150#undef ARM_VARIANT
20151#define ARM_VARIANT & fpu_crypto_ext_armv8
20152#undef THUMB_VARIANT
20153#define THUMB_VARIANT & fpu_crypto_ext_armv8
20154
20155 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20156 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20157 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20158 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
20159 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20160 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20161 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20162 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20163 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20164 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20165 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
20166 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20167 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20168 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 20169
dd5181d5 20170#undef ARM_VARIANT
74db7efb 20171#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
20172#undef THUMB_VARIANT
20173#define THUMB_VARIANT & crc_ext_armv8
20174 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20175 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20176 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20177 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20178 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20179 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20180
105bde57
MW
20181 /* ARMv8.2 RAS extension. */
20182#undef ARM_VARIANT
4d1464f2 20183#define ARM_VARIANT & arm_ext_ras
105bde57 20184#undef THUMB_VARIANT
4d1464f2 20185#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
20186 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20187
49e8a725
SN
20188#undef ARM_VARIANT
20189#define ARM_VARIANT & arm_ext_v8_3
20190#undef THUMB_VARIANT
20191#define THUMB_VARIANT & arm_ext_v8_3
20192 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
c28eeff2
SN
20193 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20194 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
49e8a725 20195
c604a79a
JW
20196#undef ARM_VARIANT
20197#define ARM_VARIANT & fpu_neon_ext_dotprod
20198#undef THUMB_VARIANT
20199#define THUMB_VARIANT & fpu_neon_ext_dotprod
20200 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20201 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20202
c921be7d
NC
20203#undef ARM_VARIANT
20204#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
20205#undef THUMB_VARIANT
20206#define THUMB_VARIANT NULL
c921be7d 20207
21d799b5
NC
20208 cCE("wfs", e200110, 1, (RR), rd),
20209 cCE("rfs", e300110, 1, (RR), rd),
20210 cCE("wfc", e400110, 1, (RR), rd),
20211 cCE("rfc", e500110, 1, (RR), rd),
20212
20213 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20214 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20215 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20216 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20217
20218 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20219 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20220 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20221 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20222
20223 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20224 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20225 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20226 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20227 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20228 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20229 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20230 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20231 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20232 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20233 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20234 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20235
20236 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20237 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20238 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20239 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20240 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20241 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20242 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20243 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20244 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20245 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20246 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20247 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20248
20249 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20250 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20251 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20252 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20253 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20254 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20255 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20256 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20257 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20258 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20259 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20260 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20261
20262 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20263 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20264 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20265 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20266 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20267 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20268 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20269 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20270 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20271 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20272 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20273 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20274
20275 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20276 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20277 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20278 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20279 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20280 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20281 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20282 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20283 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20284 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20285 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20286 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20287
20288 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20289 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20290 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20291 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20292 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20293 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20294 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20295 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20296 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20297 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20298 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20299 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20300
20301 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20302 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20303 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20304 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20305 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20306 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20307 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20308 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20309 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20310 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20311 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20312 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20313
20314 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20315 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20316 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20317 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20318 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20319 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20320 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20321 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20322 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20323 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20324 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20325 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20326
20327 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20328 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20329 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20330 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20331 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20332 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20333 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20334 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20335 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20336 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20337 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20338 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20339
20340 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20341 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20342 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20343 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20344 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20345 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20346 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20347 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20348 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20349 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20350 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20351 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20352
20353 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20354 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20355 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20356 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20357 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20358 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20359 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20360 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20361 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20362 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20363 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20364 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20365
20366 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20367 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20368 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20369 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20370 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20371 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20372 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20373 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20374 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20375 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20376 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20377 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20378
20379 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20380 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20381 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20382 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20383 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20384 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20385 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20386 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20387 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20388 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20389 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20390 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20391
20392 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20393 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20394 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20395 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20396 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20397 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20398 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20399 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20400 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20401 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20402 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20403 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20404
20405 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20406 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20407 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20408 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20409 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20410 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20411 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20412 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20413 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20414 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20415 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20416 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20417
20418 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20419 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20420 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20421 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20422 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20423 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20424 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20425 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20426 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20427 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20428 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20429 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20430
20431 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20432 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20433 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20434 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20435 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20436 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20437 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20438 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20439 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20440 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20441 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20442 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20443
20444 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20445 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20446 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20447 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20448 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20449 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20450 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20451 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20452 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20453 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20454 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20455 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20456
20457 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20458 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20459 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20460 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20461 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20462 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20463 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20464 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20465 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20466 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20467 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20468 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20469
20470 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20471 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20472 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20473 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20474 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20475 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20476 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20477 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20478 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20479 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20480 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20481 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20482
20483 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20484 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20485 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20486 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20487 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20488 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20489 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20490 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20491 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20492 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20493 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20494 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20495
20496 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20497 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20498 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20499 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20500 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20501 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20502 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20503 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20504 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20505 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20506 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20507 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20508
20509 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20510 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20511 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20512 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20513 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20514 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20515 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20516 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20517 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20518 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20519 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20520 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20521
20522 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20523 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20524 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20525 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20526 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20527 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20528 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20529 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20530 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20531 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20532 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20533 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20534
20535 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20536 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20537 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20538 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20539 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20540 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20541 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20542 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20543 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20544 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20545 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20546 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20547
20548 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20549 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20550 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20551 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20552 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20553 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20554 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20555 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20556 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20557 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20558 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20559 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20560
20561 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20562 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20563 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20564 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20565 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20566 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20567 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20568 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20569 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20570 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20571 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20572 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20573
20574 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20575 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20576 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20577 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20578 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20579 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20580 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20581 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20582 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20583 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20584 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20585 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20586
20587 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20588 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20589 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20590 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20591 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20592 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20593 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20594 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20595 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20596 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20597 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20598 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20599
20600 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20601 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20602 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20603 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20604
20605 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20606 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20607 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20608 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20609 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20610 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20611 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20612 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20613 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20614 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20615 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20616 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 20617
c19d1205
ZW
20618 /* The implementation of the FIX instruction is broken on some
20619 assemblers, in that it accepts a precision specifier as well as a
20620 rounding specifier, despite the fact that this is meaningless.
20621 To be more compatible, we accept it as well, though of course it
20622 does not set any bits. */
21d799b5
NC
20623 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20624 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20625 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20626 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20627 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20628 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20629 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20630 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20631 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20632 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20633 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20634 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20635 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 20636
c19d1205 20637 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
20638#undef ARM_VARIANT
20639#define ARM_VARIANT & fpu_fpa_ext_v2
20640
21d799b5
NC
20641 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20642 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20643 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20644 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20645 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20646 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 20647
c921be7d
NC
20648#undef ARM_VARIANT
20649#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20650
c19d1205 20651 /* Moves and type conversions. */
21d799b5
NC
20652 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20653 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20654 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20655 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
20656 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20657 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
20658 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20659 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20660 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20661 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20662 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20663 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20664 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20665 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
20666
20667 /* Memory operations. */
21d799b5
NC
20668 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20669 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
20670 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20671 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20672 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20673 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20674 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20675 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20676 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20677 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20678 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20679 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20680 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20681 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20682 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20683 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20684 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20685 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 20686
c19d1205 20687 /* Monadic operations. */
21d799b5
NC
20688 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20689 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20690 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
20691
20692 /* Dyadic operations. */
21d799b5
NC
20693 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20694 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20695 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20696 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20697 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20698 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20699 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20700 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20701 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 20702
c19d1205 20703 /* Comparisons. */
21d799b5
NC
20704 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20705 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20706 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20707 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 20708
62f3b8c8
PB
20709 /* Double precision load/store are still present on single precision
20710 implementations. */
20711 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20712 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
20713 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20714 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20715 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20716 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20717 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20718 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20719 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20720 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 20721
c921be7d
NC
20722#undef ARM_VARIANT
20723#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20724
c19d1205 20725 /* Moves and type conversions. */
21d799b5
NC
20726 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20727 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20728 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20729 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20730 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20731 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20732 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20733 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20734 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20735 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20736 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20737 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20738 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 20739
c19d1205 20740 /* Monadic operations. */
21d799b5
NC
20741 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20742 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20743 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
20744
20745 /* Dyadic operations. */
21d799b5
NC
20746 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20747 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20748 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20749 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20750 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20751 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20752 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20753 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20754 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 20755
c19d1205 20756 /* Comparisons. */
21d799b5
NC
20757 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20758 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20759 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20760 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 20761
c921be7d
NC
20762#undef ARM_VARIANT
20763#define ARM_VARIANT & fpu_vfp_ext_v2
20764
21d799b5
NC
20765 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20766 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20767 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20768 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 20769
037e8744
JB
20770/* Instructions which may belong to either the Neon or VFP instruction sets.
20771 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
20772#undef ARM_VARIANT
20773#define ARM_VARIANT & fpu_vfp_ext_v1xd
20774#undef THUMB_VARIANT
20775#define THUMB_VARIANT & fpu_vfp_ext_v1xd
20776
037e8744
JB
20777 /* These mnemonics are unique to VFP. */
20778 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20779 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
20780 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20781 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20782 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
aacf0b33
KT
20783 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20784 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
037e8744
JB
20785 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20786 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20787 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20788
20789 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
20790 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20791 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20792 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 20793
21d799b5
NC
20794 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20795 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
20796
20797 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20798 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20799
55881a11
MGD
20800 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20801 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20802 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20803 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20804 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20805 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
20806 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20807 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 20808
5f1af56b 20809 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 20810 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
20811 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20812 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 20813
037e8744
JB
20814
20815 /* NOTE: All VMOV encoding is special-cased! */
20816 NCE(vmov, 0, 1, (VMOV), neon_mov),
20817 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20818
9db2f6b4
RL
20819#undef ARM_VARIANT
20820#define ARM_VARIANT & arm_ext_fp16
20821#undef THUMB_VARIANT
20822#define THUMB_VARIANT & arm_ext_fp16
20823 /* New instructions added from v8.2, allowing the extraction and insertion of
20824 the upper 16 bits of a 32-bit vector register. */
20825 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20826 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20827
dec41383
JW
20828 /* New backported fma/fms instructions optional in v8.2. */
20829 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
20830 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
20831
c921be7d
NC
20832#undef THUMB_VARIANT
20833#define THUMB_VARIANT & fpu_neon_ext_v1
20834#undef ARM_VARIANT
20835#define ARM_VARIANT & fpu_neon_ext_v1
20836
5287ad62
JB
20837 /* Data processing with three registers of the same length. */
20838 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20839 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20840 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20841 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20842 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20843 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20844 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20845 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20846 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20847 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20848 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20849 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20850 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20851 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
20852 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20853 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20854 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20855 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
20856 /* If not immediate, fall back to neon_dyadic_i64_su.
20857 shl_imm should accept I8 I16 I32 I64,
20858 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
20859 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20860 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20861 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20862 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 20863 /* Logic ops, types optional & ignored. */
4316f0d2
DG
20864 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20865 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20866 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20867 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20868 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20869 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20870 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20871 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20872 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20873 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
20874 /* Bitfield ops, untyped. */
20875 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20876 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20877 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20878 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20879 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20880 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 20881 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5
NC
20882 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20883 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20884 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20885 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20886 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20887 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
20888 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20889 back to neon_dyadic_if_su. */
21d799b5
NC
20890 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20891 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20892 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20893 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20894 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20895 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20896 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20897 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 20898 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
20899 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20900 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 20901 /* As above, D registers only. */
21d799b5
NC
20902 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20903 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 20904 /* Int and float variants, signedness unimportant. */
21d799b5
NC
20905 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20906 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20907 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 20908 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
20909 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20910 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
20911 /* vtst takes sizes 8, 16, 32. */
20912 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20913 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20914 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 20915 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 20916 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
20917 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20918 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20919 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20920 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
20921 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20922 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20923 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20924 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
20925 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20926 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20927 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20928 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
20929 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20930 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20931 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20932 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 20933 /* ARM v8.1 extension. */
643afb90
MW
20934 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20935 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20936 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20937 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
20938
20939 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 20940 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
20941 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20942
20943 /* Data processing with two registers and a shift amount. */
20944 /* Right shifts, and variants with rounding.
20945 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
20946 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20947 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20948 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20949 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20950 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20951 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20952 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20953 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20954 /* Shift and insert. Sizes accepted 8 16 32 64. */
20955 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20956 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20957 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20958 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20959 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20960 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20961 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20962 /* Right shift immediate, saturating & narrowing, with rounding variants.
20963 Types accepted S16 S32 S64 U16 U32 U64. */
20964 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20965 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20966 /* As above, unsigned. Types accepted S16 S32 S64. */
20967 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20968 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20969 /* Right shift narrowing. Types accepted I16 I32 I64. */
20970 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20971 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20972 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 20973 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 20974 /* CVT with optional immediate for fixed-point variant. */
21d799b5 20975 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 20976
4316f0d2
DG
20977 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20978 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
20979
20980 /* Data processing, three registers of different lengths. */
20981 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20982 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20983 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20984 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20985 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20986 /* If not scalar, fall back to neon_dyadic_long.
20987 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
20988 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20989 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
20990 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20991 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20992 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20993 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20994 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20995 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20996 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20997 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20998 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
20999 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21000 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21001 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
21002 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21003 S16 S32 U16 U32. */
21d799b5 21004 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
21005
21006 /* Extract. Size 8. */
3b8d421e
PB
21007 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21008 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
21009
21010 /* Two registers, miscellaneous. */
21011 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21012 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21013 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21014 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21015 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21016 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21017 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21018 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
21019 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21020 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
21021 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21022 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21023 /* VMOVN. Types I16 I32 I64. */
21d799b5 21024 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 21025 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 21026 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 21027 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 21028 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
21029 /* VZIP / VUZP. Sizes 8 16 32. */
21030 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21031 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21032 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21033 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21034 /* VQABS / VQNEG. Types S8 S16 S32. */
21035 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21036 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21037 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21038 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21039 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21040 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21041 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21042 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21043 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 21044 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
21045 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21046 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21047 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21048 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21049 /* VCLS. Types S8 S16 S32. */
21050 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21051 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21052 /* VCLZ. Types I8 I16 I32. */
21053 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21054 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21055 /* VCNT. Size 8. */
21056 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21057 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21058 /* Two address, untyped. */
21059 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21060 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21061 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
21062 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21063 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
21064
21065 /* Table lookup. Size 8. */
21066 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21067 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21068
c921be7d
NC
21069#undef THUMB_VARIANT
21070#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21071#undef ARM_VARIANT
21072#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21073
5287ad62 21074 /* Neon element/structure load/store. */
21d799b5
NC
21075 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21076 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21077 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21078 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21079 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21080 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21081 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21082 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 21083
c921be7d 21084#undef THUMB_VARIANT
74db7efb
NC
21085#define THUMB_VARIANT & fpu_vfp_ext_v3xd
21086#undef ARM_VARIANT
21087#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
21088 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21089 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21090 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21091 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21092 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21093 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21094 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21095 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21096 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21097
74db7efb 21098#undef THUMB_VARIANT
c921be7d
NC
21099#define THUMB_VARIANT & fpu_vfp_ext_v3
21100#undef ARM_VARIANT
21101#define ARM_VARIANT & fpu_vfp_ext_v3
21102
21d799b5 21103 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 21104 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21105 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21106 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21107 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21108 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21109 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 21110 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 21111 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 21112
74db7efb
NC
21113#undef ARM_VARIANT
21114#define ARM_VARIANT & fpu_vfp_ext_fma
21115#undef THUMB_VARIANT
21116#define THUMB_VARIANT & fpu_vfp_ext_fma
62f3b8c8
PB
21117 /* Mnemonics shared by Neon and VFP. These are included in the
21118 VFP FMA variant; NEON and VFP FMA always includes the NEON
21119 FMA instructions. */
21120 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21121 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21122 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21123 the v form should always be used. */
21124 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21125 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21126 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21127 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21128 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21129 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21130
5287ad62 21131#undef THUMB_VARIANT
c921be7d
NC
21132#undef ARM_VARIANT
21133#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21134
21d799b5
NC
21135 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21136 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21137 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21138 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21139 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21140 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21141 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21142 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 21143
c921be7d
NC
21144#undef ARM_VARIANT
21145#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21146
21d799b5
NC
21147 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21148 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21149 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21150 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21151 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21152 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21153 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21154 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21155 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
21156 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21157 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21158 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21159 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21160 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21161 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
21162 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21163 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21164 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21165 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21166 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21167 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21168 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21169 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21170 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21171 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21172 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
21173 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21174 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21175 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
21176 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21177 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21178 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21179 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21180 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21181 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21182 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21183 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21184 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21185 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21186 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21187 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21188 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21189 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21190 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21191 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21192 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21193 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
21194 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21195 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21196 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21197 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21198 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21199 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21200 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21201 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21202 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21203 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21204 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21205 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21206 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21207 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21208 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21209 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21210 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21211 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21212 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21213 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21214 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21215 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21216 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21217 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21218 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21219 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21220 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21221 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21222 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21223 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21224 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21225 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21226 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21227 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21228 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21229 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21230 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21231 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21232 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21233 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21234 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21235 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21236 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21237 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21238 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21239 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21240 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
21241 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21242 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21243 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21244 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21245 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21246 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
21247 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21248 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21249 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21250 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21251 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21252 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21253 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21254 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21255 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21256 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21257 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21258 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21259 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21260 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21261 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21262 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21263 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21264 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21265 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21266 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21267 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21268 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21269 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21270 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21271 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21272 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21273 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21274 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21275 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21276 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21277 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21278 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21279 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21280 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21281 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21282 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21283 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21284 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21285 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21286 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21287 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21288 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21289 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21290 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21291 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21292 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21293 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21294 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21295 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21296 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21297 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21298 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21299 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21300 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21301 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21302 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21303 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21304 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21305 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21306 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21307 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21308 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 21309
c921be7d
NC
21310#undef ARM_VARIANT
21311#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21312
21d799b5
NC
21313 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21314 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21315 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21316 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21317 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21318 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21319 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21320 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21321 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21322 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21323 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21324 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21325 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21326 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21327 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21328 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21329 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21330 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21331 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21332 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21333 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21334 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21335 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21336 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21337 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21338 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21339 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21340 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21341 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21342 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21343 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21344 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21345 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21346 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21347 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21348 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21349 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21350 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21351 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21352 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21353 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21354 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21355 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21356 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21357 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21358 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21359 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21360 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21361 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21362 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21363 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21364 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21365 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21366 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21367 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21368 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21369 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 21370
c921be7d
NC
21371#undef ARM_VARIANT
21372#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21373
21d799b5
NC
21374 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21375 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21376 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21377 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21378 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21379 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21380 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21381 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21382 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21383 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21384 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21385 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21386 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21387 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
21388 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21389 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21390 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21391 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21392 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21393 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21394 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21395 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21396 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21397 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
21398 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21399 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21400 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21401 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
21402 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21403 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
21404 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21405 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21406 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21407 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
21408 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21409 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21410 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21411 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21412 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21413 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
21414 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21415 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
21416 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21417 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
21418 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21419 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21420 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21421 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21422 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21423 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21424 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21425 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21426 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21427 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21428 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21429 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21430 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21431 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21432 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21433 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21434 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21435 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21436 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21437 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21438 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21439 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21440 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21441 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21442 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21443 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21444 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21445 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
21446 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21447 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
21448 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21449 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 21450
16a1fa25 21451 /* ARMv8-M instructions. */
4ed7ed8d
TP
21452#undef ARM_VARIANT
21453#define ARM_VARIANT NULL
21454#undef THUMB_VARIANT
21455#define THUMB_VARIANT & arm_ext_v8m
16a1fa25
TP
21456 TUE("sg", 0, e97fe97f, 0, (), 0, noargs),
21457 TUE("blxns", 0, 4784, 1, (RRnpc), 0, t_blx),
21458 TUE("bxns", 0, 4704, 1, (RRnpc), 0, t_bx),
4ed7ed8d
TP
21459 TUE("tt", 0, e840f000, 2, (RRnpc, RRnpc), 0, tt),
21460 TUE("ttt", 0, e840f040, 2, (RRnpc, RRnpc), 0, tt),
16a1fa25
TP
21461 TUE("tta", 0, e840f080, 2, (RRnpc, RRnpc), 0, tt),
21462 TUE("ttat", 0, e840f0c0, 2, (RRnpc, RRnpc), 0, tt),
21463
21464 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21465 instructions behave as nop if no VFP is present. */
21466#undef THUMB_VARIANT
21467#define THUMB_VARIANT & arm_ext_v8m_main
21468 TUEc("vlldm", 0, ec300a00, 1, (RRnpc), rn),
21469 TUEc("vlstm", 0, ec200a00, 1, (RRnpc), rn),
c19d1205
ZW
21470};
21471#undef ARM_VARIANT
21472#undef THUMB_VARIANT
21473#undef TCE
c19d1205
ZW
21474#undef TUE
21475#undef TUF
21476#undef TCC
8f06b2d8 21477#undef cCE
e3cb604e
PB
21478#undef cCL
21479#undef C3E
c19d1205
ZW
21480#undef CE
21481#undef CM
21482#undef UE
21483#undef UF
21484#undef UT
5287ad62
JB
21485#undef NUF
21486#undef nUF
21487#undef NCE
21488#undef nCE
c19d1205
ZW
21489#undef OPS0
21490#undef OPS1
21491#undef OPS2
21492#undef OPS3
21493#undef OPS4
21494#undef OPS5
21495#undef OPS6
21496#undef do_0
21497\f
21498/* MD interface: bits in the object file. */
bfae80f2 21499
c19d1205
ZW
21500/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21501 for use in the a.out file, and stores them in the array pointed to by buf.
21502 This knows about the endian-ness of the target machine and does
21503 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21504 2 (short) and 4 (long) Floating numbers are put out as a series of
21505 LITTLENUMS (shorts, here at least). */
b99bd4ef 21506
c19d1205
ZW
21507void
21508md_number_to_chars (char * buf, valueT val, int n)
21509{
21510 if (target_big_endian)
21511 number_to_chars_bigendian (buf, val, n);
21512 else
21513 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
21514}
21515
c19d1205
ZW
21516static valueT
21517md_chars_to_number (char * buf, int n)
bfae80f2 21518{
c19d1205
ZW
21519 valueT result = 0;
21520 unsigned char * where = (unsigned char *) buf;
bfae80f2 21521
c19d1205 21522 if (target_big_endian)
b99bd4ef 21523 {
c19d1205
ZW
21524 while (n--)
21525 {
21526 result <<= 8;
21527 result |= (*where++ & 255);
21528 }
b99bd4ef 21529 }
c19d1205 21530 else
b99bd4ef 21531 {
c19d1205
ZW
21532 while (n--)
21533 {
21534 result <<= 8;
21535 result |= (where[n] & 255);
21536 }
bfae80f2 21537 }
b99bd4ef 21538
c19d1205 21539 return result;
bfae80f2 21540}
b99bd4ef 21541
c19d1205 21542/* MD interface: Sections. */
b99bd4ef 21543
fa94de6b
RM
21544/* Calculate the maximum variable size (i.e., excluding fr_fix)
21545 that an rs_machine_dependent frag may reach. */
21546
21547unsigned int
21548arm_frag_max_var (fragS *fragp)
21549{
21550 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21551 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21552
21553 Note that we generate relaxable instructions even for cases that don't
21554 really need it, like an immediate that's a trivial constant. So we're
21555 overestimating the instruction size for some of those cases. Rather
21556 than putting more intelligence here, it would probably be better to
21557 avoid generating a relaxation frag in the first place when it can be
21558 determined up front that a short instruction will suffice. */
21559
21560 gas_assert (fragp->fr_type == rs_machine_dependent);
21561 return INSN_SIZE;
21562}
21563
0110f2b8
PB
21564/* Estimate the size of a frag before relaxing. Assume everything fits in
21565 2 bytes. */
21566
c19d1205 21567int
0110f2b8 21568md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
21569 segT segtype ATTRIBUTE_UNUSED)
21570{
0110f2b8
PB
21571 fragp->fr_var = 2;
21572 return 2;
21573}
21574
21575/* Convert a machine dependent frag. */
21576
21577void
21578md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21579{
21580 unsigned long insn;
21581 unsigned long old_op;
21582 char *buf;
21583 expressionS exp;
21584 fixS *fixp;
21585 int reloc_type;
21586 int pc_rel;
21587 int opcode;
21588
21589 buf = fragp->fr_literal + fragp->fr_fix;
21590
21591 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
21592 if (fragp->fr_symbol)
21593 {
0110f2b8
PB
21594 exp.X_op = O_symbol;
21595 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
21596 }
21597 else
21598 {
0110f2b8 21599 exp.X_op = O_constant;
5f4273c7 21600 }
0110f2b8
PB
21601 exp.X_add_number = fragp->fr_offset;
21602 opcode = fragp->fr_subtype;
21603 switch (opcode)
21604 {
21605 case T_MNEM_ldr_pc:
21606 case T_MNEM_ldr_pc2:
21607 case T_MNEM_ldr_sp:
21608 case T_MNEM_str_sp:
21609 case T_MNEM_ldr:
21610 case T_MNEM_ldrb:
21611 case T_MNEM_ldrh:
21612 case T_MNEM_str:
21613 case T_MNEM_strb:
21614 case T_MNEM_strh:
21615 if (fragp->fr_var == 4)
21616 {
5f4273c7 21617 insn = THUMB_OP32 (opcode);
0110f2b8
PB
21618 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21619 {
21620 insn |= (old_op & 0x700) << 4;
21621 }
21622 else
21623 {
21624 insn |= (old_op & 7) << 12;
21625 insn |= (old_op & 0x38) << 13;
21626 }
21627 insn |= 0x00000c00;
21628 put_thumb32_insn (buf, insn);
21629 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21630 }
21631 else
21632 {
21633 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21634 }
21635 pc_rel = (opcode == T_MNEM_ldr_pc2);
21636 break;
21637 case T_MNEM_adr:
21638 if (fragp->fr_var == 4)
21639 {
21640 insn = THUMB_OP32 (opcode);
21641 insn |= (old_op & 0xf0) << 4;
21642 put_thumb32_insn (buf, insn);
21643 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21644 }
21645 else
21646 {
21647 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21648 exp.X_add_number -= 4;
21649 }
21650 pc_rel = 1;
21651 break;
21652 case T_MNEM_mov:
21653 case T_MNEM_movs:
21654 case T_MNEM_cmp:
21655 case T_MNEM_cmn:
21656 if (fragp->fr_var == 4)
21657 {
21658 int r0off = (opcode == T_MNEM_mov
21659 || opcode == T_MNEM_movs) ? 0 : 8;
21660 insn = THUMB_OP32 (opcode);
21661 insn = (insn & 0xe1ffffff) | 0x10000000;
21662 insn |= (old_op & 0x700) << r0off;
21663 put_thumb32_insn (buf, insn);
21664 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21665 }
21666 else
21667 {
21668 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21669 }
21670 pc_rel = 0;
21671 break;
21672 case T_MNEM_b:
21673 if (fragp->fr_var == 4)
21674 {
21675 insn = THUMB_OP32(opcode);
21676 put_thumb32_insn (buf, insn);
21677 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21678 }
21679 else
21680 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21681 pc_rel = 1;
21682 break;
21683 case T_MNEM_bcond:
21684 if (fragp->fr_var == 4)
21685 {
21686 insn = THUMB_OP32(opcode);
21687 insn |= (old_op & 0xf00) << 14;
21688 put_thumb32_insn (buf, insn);
21689 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21690 }
21691 else
21692 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21693 pc_rel = 1;
21694 break;
21695 case T_MNEM_add_sp:
21696 case T_MNEM_add_pc:
21697 case T_MNEM_inc_sp:
21698 case T_MNEM_dec_sp:
21699 if (fragp->fr_var == 4)
21700 {
21701 /* ??? Choose between add and addw. */
21702 insn = THUMB_OP32 (opcode);
21703 insn |= (old_op & 0xf0) << 4;
21704 put_thumb32_insn (buf, insn);
16805f35
PB
21705 if (opcode == T_MNEM_add_pc)
21706 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21707 else
21708 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
21709 }
21710 else
21711 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21712 pc_rel = 0;
21713 break;
21714
21715 case T_MNEM_addi:
21716 case T_MNEM_addis:
21717 case T_MNEM_subi:
21718 case T_MNEM_subis:
21719 if (fragp->fr_var == 4)
21720 {
21721 insn = THUMB_OP32 (opcode);
21722 insn |= (old_op & 0xf0) << 4;
21723 insn |= (old_op & 0xf) << 16;
21724 put_thumb32_insn (buf, insn);
16805f35
PB
21725 if (insn & (1 << 20))
21726 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21727 else
21728 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
21729 }
21730 else
21731 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21732 pc_rel = 0;
21733 break;
21734 default:
5f4273c7 21735 abort ();
0110f2b8
PB
21736 }
21737 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 21738 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
21739 fixp->fx_file = fragp->fr_file;
21740 fixp->fx_line = fragp->fr_line;
21741 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
21742
21743 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21744 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21745 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21746 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
21747}
21748
21749/* Return the size of a relaxable immediate operand instruction.
21750 SHIFT and SIZE specify the form of the allowable immediate. */
21751static int
21752relax_immediate (fragS *fragp, int size, int shift)
21753{
21754 offsetT offset;
21755 offsetT mask;
21756 offsetT low;
21757
21758 /* ??? Should be able to do better than this. */
21759 if (fragp->fr_symbol)
21760 return 4;
21761
21762 low = (1 << shift) - 1;
21763 mask = (1 << (shift + size)) - (1 << shift);
21764 offset = fragp->fr_offset;
21765 /* Force misaligned offsets to 32-bit variant. */
21766 if (offset & low)
5e77afaa 21767 return 4;
0110f2b8
PB
21768 if (offset & ~mask)
21769 return 4;
21770 return 2;
21771}
21772
5e77afaa
PB
21773/* Get the address of a symbol during relaxation. */
21774static addressT
5f4273c7 21775relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
21776{
21777 fragS *sym_frag;
21778 addressT addr;
21779 symbolS *sym;
21780
21781 sym = fragp->fr_symbol;
21782 sym_frag = symbol_get_frag (sym);
21783 know (S_GET_SEGMENT (sym) != absolute_section
21784 || sym_frag == &zero_address_frag);
21785 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21786
21787 /* If frag has yet to be reached on this pass, assume it will
21788 move by STRETCH just as we did. If this is not so, it will
21789 be because some frag between grows, and that will force
21790 another pass. */
21791
21792 if (stretch != 0
21793 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
21794 {
21795 fragS *f;
21796
21797 /* Adjust stretch for any alignment frag. Note that if have
21798 been expanding the earlier code, the symbol may be
21799 defined in what appears to be an earlier frag. FIXME:
21800 This doesn't handle the fr_subtype field, which specifies
21801 a maximum number of bytes to skip when doing an
21802 alignment. */
21803 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21804 {
21805 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21806 {
21807 if (stretch < 0)
21808 stretch = - ((- stretch)
21809 & ~ ((1 << (int) f->fr_offset) - 1));
21810 else
21811 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21812 if (stretch == 0)
21813 break;
21814 }
21815 }
21816 if (f != NULL)
21817 addr += stretch;
21818 }
5e77afaa
PB
21819
21820 return addr;
21821}
21822
0110f2b8
PB
21823/* Return the size of a relaxable adr pseudo-instruction or PC-relative
21824 load. */
21825static int
5e77afaa 21826relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
21827{
21828 addressT addr;
21829 offsetT val;
21830
21831 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
21832 if (fragp->fr_symbol == NULL
21833 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21834 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21835 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21836 return 4;
21837
5f4273c7 21838 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
21839 addr = fragp->fr_address + fragp->fr_fix;
21840 addr = (addr + 4) & ~3;
5e77afaa 21841 /* Force misaligned targets to 32-bit variant. */
0110f2b8 21842 if (val & 3)
5e77afaa 21843 return 4;
0110f2b8
PB
21844 val -= addr;
21845 if (val < 0 || val > 1020)
21846 return 4;
21847 return 2;
21848}
21849
21850/* Return the size of a relaxable add/sub immediate instruction. */
21851static int
21852relax_addsub (fragS *fragp, asection *sec)
21853{
21854 char *buf;
21855 int op;
21856
21857 buf = fragp->fr_literal + fragp->fr_fix;
21858 op = bfd_get_16(sec->owner, buf);
21859 if ((op & 0xf) == ((op >> 4) & 0xf))
21860 return relax_immediate (fragp, 8, 0);
21861 else
21862 return relax_immediate (fragp, 3, 0);
21863}
21864
e83a675f
RE
21865/* Return TRUE iff the definition of symbol S could be pre-empted
21866 (overridden) at link or load time. */
21867static bfd_boolean
21868symbol_preemptible (symbolS *s)
21869{
21870 /* Weak symbols can always be pre-empted. */
21871 if (S_IS_WEAK (s))
21872 return TRUE;
21873
21874 /* Non-global symbols cannot be pre-empted. */
21875 if (! S_IS_EXTERNAL (s))
21876 return FALSE;
21877
21878#ifdef OBJ_ELF
21879 /* In ELF, a global symbol can be marked protected, or private. In that
21880 case it can't be pre-empted (other definitions in the same link unit
21881 would violate the ODR). */
21882 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21883 return FALSE;
21884#endif
21885
21886 /* Other global symbols might be pre-empted. */
21887 return TRUE;
21888}
0110f2b8
PB
21889
21890/* Return the size of a relaxable branch instruction. BITS is the
21891 size of the offset field in the narrow instruction. */
21892
21893static int
5e77afaa 21894relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
21895{
21896 addressT addr;
21897 offsetT val;
21898 offsetT limit;
21899
21900 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 21901 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
21902 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21903 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
21904 return 4;
21905
267bf995 21906#ifdef OBJ_ELF
e83a675f 21907 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
21908 if (S_IS_DEFINED (fragp->fr_symbol)
21909 && ARM_IS_FUNC (fragp->fr_symbol))
21910 return 4;
e83a675f 21911#endif
0d9b4b55 21912
e83a675f 21913 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 21914 return 4;
267bf995 21915
5f4273c7 21916 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
21917 addr = fragp->fr_address + fragp->fr_fix + 4;
21918 val -= addr;
21919
21920 /* Offset is a signed value *2 */
21921 limit = 1 << bits;
21922 if (val >= limit || val < -limit)
21923 return 4;
21924 return 2;
21925}
21926
21927
21928/* Relax a machine dependent frag. This returns the amount by which
21929 the current size of the frag should change. */
21930
21931int
5e77afaa 21932arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
21933{
21934 int oldsize;
21935 int newsize;
21936
21937 oldsize = fragp->fr_var;
21938 switch (fragp->fr_subtype)
21939 {
21940 case T_MNEM_ldr_pc2:
5f4273c7 21941 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
21942 break;
21943 case T_MNEM_ldr_pc:
21944 case T_MNEM_ldr_sp:
21945 case T_MNEM_str_sp:
5f4273c7 21946 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
21947 break;
21948 case T_MNEM_ldr:
21949 case T_MNEM_str:
5f4273c7 21950 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
21951 break;
21952 case T_MNEM_ldrh:
21953 case T_MNEM_strh:
5f4273c7 21954 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
21955 break;
21956 case T_MNEM_ldrb:
21957 case T_MNEM_strb:
5f4273c7 21958 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
21959 break;
21960 case T_MNEM_adr:
5f4273c7 21961 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
21962 break;
21963 case T_MNEM_mov:
21964 case T_MNEM_movs:
21965 case T_MNEM_cmp:
21966 case T_MNEM_cmn:
5f4273c7 21967 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
21968 break;
21969 case T_MNEM_b:
5f4273c7 21970 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
21971 break;
21972 case T_MNEM_bcond:
5f4273c7 21973 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
21974 break;
21975 case T_MNEM_add_sp:
21976 case T_MNEM_add_pc:
21977 newsize = relax_immediate (fragp, 8, 2);
21978 break;
21979 case T_MNEM_inc_sp:
21980 case T_MNEM_dec_sp:
21981 newsize = relax_immediate (fragp, 7, 2);
21982 break;
21983 case T_MNEM_addi:
21984 case T_MNEM_addis:
21985 case T_MNEM_subi:
21986 case T_MNEM_subis:
21987 newsize = relax_addsub (fragp, sec);
21988 break;
21989 default:
5f4273c7 21990 abort ();
0110f2b8 21991 }
5e77afaa
PB
21992
21993 fragp->fr_var = newsize;
21994 /* Freeze wide instructions that are at or before the same location as
21995 in the previous pass. This avoids infinite loops.
5f4273c7
NC
21996 Don't freeze them unconditionally because targets may be artificially
21997 misaligned by the expansion of preceding frags. */
5e77afaa 21998 if (stretch <= 0 && newsize > 2)
0110f2b8 21999 {
0110f2b8 22000 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 22001 frag_wane (fragp);
0110f2b8 22002 }
5e77afaa 22003
0110f2b8 22004 return newsize - oldsize;
c19d1205 22005}
b99bd4ef 22006
c19d1205 22007/* Round up a section size to the appropriate boundary. */
b99bd4ef 22008
c19d1205
ZW
22009valueT
22010md_section_align (segT segment ATTRIBUTE_UNUSED,
22011 valueT size)
22012{
f0927246
NC
22013#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
22014 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
22015 {
22016 /* For a.out, force the section size to be aligned. If we don't do
22017 this, BFD will align it for us, but it will not write out the
22018 final bytes of the section. This may be a bug in BFD, but it is
22019 easier to fix it here since that is how the other a.out targets
22020 work. */
22021 int align;
22022
22023 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 22024 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
f0927246 22025 }
c19d1205 22026#endif
f0927246 22027
6844c0cc 22028 return size;
bfae80f2 22029}
b99bd4ef 22030
c19d1205
ZW
22031/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22032 of an rs_align_code fragment. */
22033
22034void
22035arm_handle_align (fragS * fragP)
bfae80f2 22036{
d9235011 22037 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
22038 {
22039 { /* ARMv1 */
22040 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22041 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22042 },
22043 { /* ARMv6k */
22044 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22045 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22046 },
22047 };
d9235011 22048 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
22049 {
22050 { /* Thumb-1 */
22051 {0xc0, 0x46}, /* LE */
22052 {0x46, 0xc0}, /* BE */
22053 },
22054 { /* Thumb-2 */
22055 {0x00, 0xbf}, /* LE */
22056 {0xbf, 0x00} /* BE */
22057 }
22058 };
d9235011 22059 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
22060 { /* Wide Thumb-2 */
22061 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22062 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22063 };
c921be7d 22064
e7495e45 22065 unsigned bytes, fix, noop_size;
c19d1205 22066 char * p;
d9235011
TS
22067 const unsigned char * noop;
22068 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
22069#ifdef OBJ_ELF
22070 enum mstate state;
22071#endif
bfae80f2 22072
c19d1205 22073 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
22074 return;
22075
c19d1205
ZW
22076 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22077 p = fragP->fr_literal + fragP->fr_fix;
22078 fix = 0;
bfae80f2 22079
c19d1205
ZW
22080 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22081 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 22082
cd000bff 22083 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 22084
cd000bff 22085 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 22086 {
7f78eb34
JW
22087 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22088 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
22089 {
22090 narrow_noop = thumb_noop[1][target_big_endian];
22091 noop = wide_thumb_noop[target_big_endian];
22092 }
c19d1205 22093 else
e7495e45
NS
22094 noop = thumb_noop[0][target_big_endian];
22095 noop_size = 2;
cd000bff
DJ
22096#ifdef OBJ_ELF
22097 state = MAP_THUMB;
22098#endif
7ed4c4c5
NC
22099 }
22100 else
22101 {
7f78eb34
JW
22102 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22103 ? selected_cpu : arm_arch_none,
22104 arm_ext_v6k) != 0]
e7495e45
NS
22105 [target_big_endian];
22106 noop_size = 4;
cd000bff
DJ
22107#ifdef OBJ_ELF
22108 state = MAP_ARM;
22109#endif
7ed4c4c5 22110 }
c921be7d 22111
e7495e45 22112 fragP->fr_var = noop_size;
c921be7d 22113
c19d1205 22114 if (bytes & (noop_size - 1))
7ed4c4c5 22115 {
c19d1205 22116 fix = bytes & (noop_size - 1);
cd000bff
DJ
22117#ifdef OBJ_ELF
22118 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22119#endif
c19d1205
ZW
22120 memset (p, 0, fix);
22121 p += fix;
22122 bytes -= fix;
a737bd4d 22123 }
a737bd4d 22124
e7495e45
NS
22125 if (narrow_noop)
22126 {
22127 if (bytes & noop_size)
22128 {
22129 /* Insert a narrow noop. */
22130 memcpy (p, narrow_noop, noop_size);
22131 p += noop_size;
22132 bytes -= noop_size;
22133 fix += noop_size;
22134 }
22135
22136 /* Use wide noops for the remainder */
22137 noop_size = 4;
22138 }
22139
c19d1205 22140 while (bytes >= noop_size)
a737bd4d 22141 {
c19d1205
ZW
22142 memcpy (p, noop, noop_size);
22143 p += noop_size;
22144 bytes -= noop_size;
22145 fix += noop_size;
a737bd4d
NC
22146 }
22147
c19d1205 22148 fragP->fr_fix += fix;
a737bd4d
NC
22149}
22150
c19d1205
ZW
22151/* Called from md_do_align. Used to create an alignment
22152 frag in a code section. */
22153
22154void
22155arm_frag_align_code (int n, int max)
bfae80f2 22156{
c19d1205 22157 char * p;
7ed4c4c5 22158
c19d1205 22159 /* We assume that there will never be a requirement
6ec8e702 22160 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 22161 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
22162 {
22163 char err_msg[128];
22164
fa94de6b 22165 sprintf (err_msg,
477330fc
RM
22166 _("alignments greater than %d bytes not supported in .text sections."),
22167 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 22168 as_fatal ("%s", err_msg);
6ec8e702 22169 }
bfae80f2 22170
c19d1205
ZW
22171 p = frag_var (rs_align_code,
22172 MAX_MEM_FOR_RS_ALIGN_CODE,
22173 1,
22174 (relax_substateT) max,
22175 (symbolS *) NULL,
22176 (offsetT) n,
22177 (char *) NULL);
22178 *p = 0;
22179}
bfae80f2 22180
8dc2430f
NC
22181/* Perform target specific initialisation of a frag.
22182 Note - despite the name this initialisation is not done when the frag
22183 is created, but only when its type is assigned. A frag can be created
22184 and used a long time before its type is set, so beware of assuming that
33eaf5de 22185 this initialisation is performed first. */
bfae80f2 22186
cd000bff
DJ
22187#ifndef OBJ_ELF
22188void
22189arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22190{
22191 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 22192 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
22193}
22194
22195#else /* OBJ_ELF is defined. */
c19d1205 22196void
cd000bff 22197arm_init_frag (fragS * fragP, int max_chars)
c19d1205 22198{
e8d84ca1 22199 bfd_boolean frag_thumb_mode;
b968d18a 22200
8dc2430f
NC
22201 /* If the current ARM vs THUMB mode has not already
22202 been recorded into this frag then do so now. */
cd000bff 22203 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
22204 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22205
e8d84ca1
NC
22206 /* PR 21809: Do not set a mapping state for debug sections
22207 - it just confuses other tools. */
22208 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22209 return;
22210
b968d18a 22211 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 22212
f9c1b181
RL
22213 /* Record a mapping symbol for alignment frags. We will delete this
22214 later if the alignment ends up empty. */
22215 switch (fragP->fr_type)
22216 {
22217 case rs_align:
22218 case rs_align_test:
22219 case rs_fill:
22220 mapping_state_2 (MAP_DATA, max_chars);
22221 break;
22222 case rs_align_code:
b968d18a 22223 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
22224 break;
22225 default:
22226 break;
cd000bff 22227 }
bfae80f2
RE
22228}
22229
c19d1205
ZW
22230/* When we change sections we need to issue a new mapping symbol. */
22231
22232void
22233arm_elf_change_section (void)
bfae80f2 22234{
c19d1205
ZW
22235 /* Link an unlinked unwind index table section to the .text section. */
22236 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22237 && elf_linked_to_section (now_seg) == NULL)
22238 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
22239}
22240
c19d1205
ZW
22241int
22242arm_elf_section_type (const char * str, size_t len)
e45d0630 22243{
c19d1205
ZW
22244 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22245 return SHT_ARM_EXIDX;
e45d0630 22246
c19d1205
ZW
22247 return -1;
22248}
22249\f
22250/* Code to deal with unwinding tables. */
e45d0630 22251
c19d1205 22252static void add_unwind_adjustsp (offsetT);
e45d0630 22253
5f4273c7 22254/* Generate any deferred unwind frame offset. */
e45d0630 22255
bfae80f2 22256static void
c19d1205 22257flush_pending_unwind (void)
bfae80f2 22258{
c19d1205 22259 offsetT offset;
bfae80f2 22260
c19d1205
ZW
22261 offset = unwind.pending_offset;
22262 unwind.pending_offset = 0;
22263 if (offset != 0)
22264 add_unwind_adjustsp (offset);
bfae80f2
RE
22265}
22266
c19d1205
ZW
22267/* Add an opcode to this list for this function. Two-byte opcodes should
22268 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22269 order. */
22270
bfae80f2 22271static void
c19d1205 22272add_unwind_opcode (valueT op, int length)
bfae80f2 22273{
c19d1205
ZW
22274 /* Add any deferred stack adjustment. */
22275 if (unwind.pending_offset)
22276 flush_pending_unwind ();
bfae80f2 22277
c19d1205 22278 unwind.sp_restored = 0;
bfae80f2 22279
c19d1205 22280 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 22281 {
c19d1205
ZW
22282 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22283 if (unwind.opcodes)
325801bd
TS
22284 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22285 unwind.opcode_alloc);
c19d1205 22286 else
325801bd 22287 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 22288 }
c19d1205 22289 while (length > 0)
bfae80f2 22290 {
c19d1205
ZW
22291 length--;
22292 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22293 op >>= 8;
22294 unwind.opcode_count++;
bfae80f2 22295 }
bfae80f2
RE
22296}
22297
c19d1205
ZW
22298/* Add unwind opcodes to adjust the stack pointer. */
22299
bfae80f2 22300static void
c19d1205 22301add_unwind_adjustsp (offsetT offset)
bfae80f2 22302{
c19d1205 22303 valueT op;
bfae80f2 22304
c19d1205 22305 if (offset > 0x200)
bfae80f2 22306 {
c19d1205
ZW
22307 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22308 char bytes[5];
22309 int n;
22310 valueT o;
bfae80f2 22311
c19d1205
ZW
22312 /* Long form: 0xb2, uleb128. */
22313 /* This might not fit in a word so add the individual bytes,
22314 remembering the list is built in reverse order. */
22315 o = (valueT) ((offset - 0x204) >> 2);
22316 if (o == 0)
22317 add_unwind_opcode (0, 1);
bfae80f2 22318
c19d1205
ZW
22319 /* Calculate the uleb128 encoding of the offset. */
22320 n = 0;
22321 while (o)
22322 {
22323 bytes[n] = o & 0x7f;
22324 o >>= 7;
22325 if (o)
22326 bytes[n] |= 0x80;
22327 n++;
22328 }
22329 /* Add the insn. */
22330 for (; n; n--)
22331 add_unwind_opcode (bytes[n - 1], 1);
22332 add_unwind_opcode (0xb2, 1);
22333 }
22334 else if (offset > 0x100)
bfae80f2 22335 {
c19d1205
ZW
22336 /* Two short opcodes. */
22337 add_unwind_opcode (0x3f, 1);
22338 op = (offset - 0x104) >> 2;
22339 add_unwind_opcode (op, 1);
bfae80f2 22340 }
c19d1205
ZW
22341 else if (offset > 0)
22342 {
22343 /* Short opcode. */
22344 op = (offset - 4) >> 2;
22345 add_unwind_opcode (op, 1);
22346 }
22347 else if (offset < 0)
bfae80f2 22348 {
c19d1205
ZW
22349 offset = -offset;
22350 while (offset > 0x100)
bfae80f2 22351 {
c19d1205
ZW
22352 add_unwind_opcode (0x7f, 1);
22353 offset -= 0x100;
bfae80f2 22354 }
c19d1205
ZW
22355 op = ((offset - 4) >> 2) | 0x40;
22356 add_unwind_opcode (op, 1);
bfae80f2 22357 }
bfae80f2
RE
22358}
22359
c19d1205 22360/* Finish the list of unwind opcodes for this function. */
0198d5e6 22361
c19d1205
ZW
22362static void
22363finish_unwind_opcodes (void)
bfae80f2 22364{
c19d1205 22365 valueT op;
bfae80f2 22366
c19d1205 22367 if (unwind.fp_used)
bfae80f2 22368 {
708587a4 22369 /* Adjust sp as necessary. */
c19d1205
ZW
22370 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22371 flush_pending_unwind ();
bfae80f2 22372
c19d1205
ZW
22373 /* After restoring sp from the frame pointer. */
22374 op = 0x90 | unwind.fp_reg;
22375 add_unwind_opcode (op, 1);
22376 }
22377 else
22378 flush_pending_unwind ();
bfae80f2
RE
22379}
22380
bfae80f2 22381
c19d1205
ZW
22382/* Start an exception table entry. If idx is nonzero this is an index table
22383 entry. */
bfae80f2
RE
22384
22385static void
c19d1205 22386start_unwind_section (const segT text_seg, int idx)
bfae80f2 22387{
c19d1205
ZW
22388 const char * text_name;
22389 const char * prefix;
22390 const char * prefix_once;
22391 const char * group_name;
c19d1205 22392 char * sec_name;
c19d1205
ZW
22393 int type;
22394 int flags;
22395 int linkonce;
bfae80f2 22396
c19d1205 22397 if (idx)
bfae80f2 22398 {
c19d1205
ZW
22399 prefix = ELF_STRING_ARM_unwind;
22400 prefix_once = ELF_STRING_ARM_unwind_once;
22401 type = SHT_ARM_EXIDX;
bfae80f2 22402 }
c19d1205 22403 else
bfae80f2 22404 {
c19d1205
ZW
22405 prefix = ELF_STRING_ARM_unwind_info;
22406 prefix_once = ELF_STRING_ARM_unwind_info_once;
22407 type = SHT_PROGBITS;
bfae80f2
RE
22408 }
22409
c19d1205
ZW
22410 text_name = segment_name (text_seg);
22411 if (streq (text_name, ".text"))
22412 text_name = "";
22413
22414 if (strncmp (text_name, ".gnu.linkonce.t.",
22415 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 22416 {
c19d1205
ZW
22417 prefix = prefix_once;
22418 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
22419 }
22420
29a2809e 22421 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 22422
c19d1205
ZW
22423 flags = SHF_ALLOC;
22424 linkonce = 0;
22425 group_name = 0;
bfae80f2 22426
c19d1205
ZW
22427 /* Handle COMDAT group. */
22428 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 22429 {
c19d1205
ZW
22430 group_name = elf_group_name (text_seg);
22431 if (group_name == NULL)
22432 {
bd3ba5d1 22433 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
22434 segment_name (text_seg));
22435 ignore_rest_of_line ();
22436 return;
22437 }
22438 flags |= SHF_GROUP;
22439 linkonce = 1;
bfae80f2
RE
22440 }
22441
a91e1603
L
22442 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22443 linkonce, 0);
bfae80f2 22444
5f4273c7 22445 /* Set the section link for index tables. */
c19d1205
ZW
22446 if (idx)
22447 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
22448}
22449
bfae80f2 22450
c19d1205
ZW
22451/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22452 personality routine data. Returns zero, or the index table value for
cad0da33 22453 an inline entry. */
c19d1205
ZW
22454
22455static valueT
22456create_unwind_entry (int have_data)
bfae80f2 22457{
c19d1205
ZW
22458 int size;
22459 addressT where;
22460 char *ptr;
22461 /* The current word of data. */
22462 valueT data;
22463 /* The number of bytes left in this word. */
22464 int n;
bfae80f2 22465
c19d1205 22466 finish_unwind_opcodes ();
bfae80f2 22467
c19d1205
ZW
22468 /* Remember the current text section. */
22469 unwind.saved_seg = now_seg;
22470 unwind.saved_subseg = now_subseg;
bfae80f2 22471
c19d1205 22472 start_unwind_section (now_seg, 0);
bfae80f2 22473
c19d1205 22474 if (unwind.personality_routine == NULL)
bfae80f2 22475 {
c19d1205
ZW
22476 if (unwind.personality_index == -2)
22477 {
22478 if (have_data)
5f4273c7 22479 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
22480 return 1; /* EXIDX_CANTUNWIND. */
22481 }
bfae80f2 22482
c19d1205
ZW
22483 /* Use a default personality routine if none is specified. */
22484 if (unwind.personality_index == -1)
22485 {
22486 if (unwind.opcode_count > 3)
22487 unwind.personality_index = 1;
22488 else
22489 unwind.personality_index = 0;
22490 }
bfae80f2 22491
c19d1205
ZW
22492 /* Space for the personality routine entry. */
22493 if (unwind.personality_index == 0)
22494 {
22495 if (unwind.opcode_count > 3)
22496 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 22497
c19d1205
ZW
22498 if (!have_data)
22499 {
22500 /* All the data is inline in the index table. */
22501 data = 0x80;
22502 n = 3;
22503 while (unwind.opcode_count > 0)
22504 {
22505 unwind.opcode_count--;
22506 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22507 n--;
22508 }
bfae80f2 22509
c19d1205
ZW
22510 /* Pad with "finish" opcodes. */
22511 while (n--)
22512 data = (data << 8) | 0xb0;
bfae80f2 22513
c19d1205
ZW
22514 return data;
22515 }
22516 size = 0;
22517 }
22518 else
22519 /* We get two opcodes "free" in the first word. */
22520 size = unwind.opcode_count - 2;
22521 }
22522 else
5011093d 22523 {
cad0da33
NC
22524 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22525 if (unwind.personality_index != -1)
22526 {
22527 as_bad (_("attempt to recreate an unwind entry"));
22528 return 1;
22529 }
5011093d
NC
22530
22531 /* An extra byte is required for the opcode count. */
22532 size = unwind.opcode_count + 1;
22533 }
bfae80f2 22534
c19d1205
ZW
22535 size = (size + 3) >> 2;
22536 if (size > 0xff)
22537 as_bad (_("too many unwind opcodes"));
bfae80f2 22538
c19d1205
ZW
22539 frag_align (2, 0, 0);
22540 record_alignment (now_seg, 2);
22541 unwind.table_entry = expr_build_dot ();
22542
22543 /* Allocate the table entry. */
22544 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
22545 /* PR 13449: Zero the table entries in case some of them are not used. */
22546 memset (ptr, 0, (size << 2) + 4);
c19d1205 22547 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 22548
c19d1205 22549 switch (unwind.personality_index)
bfae80f2 22550 {
c19d1205
ZW
22551 case -1:
22552 /* ??? Should this be a PLT generating relocation? */
22553 /* Custom personality routine. */
22554 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22555 BFD_RELOC_ARM_PREL31);
bfae80f2 22556
c19d1205
ZW
22557 where += 4;
22558 ptr += 4;
bfae80f2 22559
c19d1205 22560 /* Set the first byte to the number of additional words. */
5011093d 22561 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
22562 n = 3;
22563 break;
bfae80f2 22564
c19d1205
ZW
22565 /* ABI defined personality routines. */
22566 case 0:
22567 /* Three opcodes bytes are packed into the first word. */
22568 data = 0x80;
22569 n = 3;
22570 break;
bfae80f2 22571
c19d1205
ZW
22572 case 1:
22573 case 2:
22574 /* The size and first two opcode bytes go in the first word. */
22575 data = ((0x80 + unwind.personality_index) << 8) | size;
22576 n = 2;
22577 break;
bfae80f2 22578
c19d1205
ZW
22579 default:
22580 /* Should never happen. */
22581 abort ();
22582 }
bfae80f2 22583
c19d1205
ZW
22584 /* Pack the opcodes into words (MSB first), reversing the list at the same
22585 time. */
22586 while (unwind.opcode_count > 0)
22587 {
22588 if (n == 0)
22589 {
22590 md_number_to_chars (ptr, data, 4);
22591 ptr += 4;
22592 n = 4;
22593 data = 0;
22594 }
22595 unwind.opcode_count--;
22596 n--;
22597 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22598 }
22599
22600 /* Finish off the last word. */
22601 if (n < 4)
22602 {
22603 /* Pad with "finish" opcodes. */
22604 while (n--)
22605 data = (data << 8) | 0xb0;
22606
22607 md_number_to_chars (ptr, data, 4);
22608 }
22609
22610 if (!have_data)
22611 {
22612 /* Add an empty descriptor if there is no user-specified data. */
22613 ptr = frag_more (4);
22614 md_number_to_chars (ptr, 0, 4);
22615 }
22616
22617 return 0;
bfae80f2
RE
22618}
22619
f0927246
NC
22620
22621/* Initialize the DWARF-2 unwind information for this procedure. */
22622
22623void
22624tc_arm_frame_initial_instructions (void)
22625{
22626 cfi_add_CFA_def_cfa (REG_SP, 0);
22627}
22628#endif /* OBJ_ELF */
22629
c19d1205
ZW
22630/* Convert REGNAME to a DWARF-2 register number. */
22631
22632int
1df69f4f 22633tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 22634{
1df69f4f 22635 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
22636 if (reg != FAIL)
22637 return reg;
c19d1205 22638
1f5afe1c
NC
22639 /* PR 16694: Allow VFP registers as well. */
22640 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22641 if (reg != FAIL)
22642 return 64 + reg;
c19d1205 22643
1f5afe1c
NC
22644 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22645 if (reg != FAIL)
22646 return reg + 256;
22647
0198d5e6 22648 return FAIL;
bfae80f2
RE
22649}
22650
f0927246 22651#ifdef TE_PE
c19d1205 22652void
f0927246 22653tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 22654{
91d6fa6a 22655 expressionS exp;
bfae80f2 22656
91d6fa6a
NC
22657 exp.X_op = O_secrel;
22658 exp.X_add_symbol = symbol;
22659 exp.X_add_number = 0;
22660 emit_expr (&exp, size);
f0927246
NC
22661}
22662#endif
bfae80f2 22663
c19d1205 22664/* MD interface: Symbol and relocation handling. */
bfae80f2 22665
2fc8bdac
ZW
22666/* Return the address within the segment that a PC-relative fixup is
22667 relative to. For ARM, PC-relative fixups applied to instructions
22668 are generally relative to the location of the fixup plus 8 bytes.
22669 Thumb branches are offset by 4, and Thumb loads relative to PC
22670 require special handling. */
bfae80f2 22671
c19d1205 22672long
2fc8bdac 22673md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 22674{
2fc8bdac
ZW
22675 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22676
22677 /* If this is pc-relative and we are going to emit a relocation
22678 then we just want to put out any pipeline compensation that the linker
53baae48
NC
22679 will need. Otherwise we want to use the calculated base.
22680 For WinCE we skip the bias for externals as well, since this
22681 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 22682 if (fixP->fx_pcrel
2fc8bdac 22683 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
22684 || (arm_force_relocation (fixP)
22685#ifdef TE_WINCE
22686 && !S_IS_EXTERNAL (fixP->fx_addsy)
22687#endif
22688 )))
2fc8bdac 22689 base = 0;
bfae80f2 22690
267bf995 22691
c19d1205 22692 switch (fixP->fx_r_type)
bfae80f2 22693 {
2fc8bdac
ZW
22694 /* PC relative addressing on the Thumb is slightly odd as the
22695 bottom two bits of the PC are forced to zero for the
22696 calculation. This happens *after* application of the
22697 pipeline offset. However, Thumb adrl already adjusts for
22698 this, so we need not do it again. */
c19d1205 22699 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 22700 return base & ~3;
c19d1205
ZW
22701
22702 case BFD_RELOC_ARM_THUMB_OFFSET:
22703 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 22704 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 22705 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 22706 return (base + 4) & ~3;
c19d1205 22707
2fc8bdac
ZW
22708 /* Thumb branches are simply offset by +4. */
22709 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22710 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22711 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22712 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 22713 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 22714 return base + 4;
bfae80f2 22715
267bf995 22716 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
22717 if (fixP->fx_addsy
22718 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22719 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 22720 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
22721 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22722 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
22723 return base + 4;
22724
00adf2d4
JB
22725 /* BLX is like branches above, but forces the low two bits of PC to
22726 zero. */
486499d0
CL
22727 case BFD_RELOC_THUMB_PCREL_BLX:
22728 if (fixP->fx_addsy
22729 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22730 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22731 && THUMB_IS_FUNC (fixP->fx_addsy)
22732 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22733 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
22734 return (base + 4) & ~3;
22735
2fc8bdac
ZW
22736 /* ARM mode branches are offset by +8. However, the Windows CE
22737 loader expects the relocation not to take this into account. */
267bf995 22738 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
22739 if (fixP->fx_addsy
22740 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22741 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22742 && ARM_IS_FUNC (fixP->fx_addsy)
22743 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22744 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22745 return base + 8;
267bf995 22746
486499d0
CL
22747 case BFD_RELOC_ARM_PCREL_CALL:
22748 if (fixP->fx_addsy
22749 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22750 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
22751 && THUMB_IS_FUNC (fixP->fx_addsy)
22752 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22753 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 22754 return base + 8;
267bf995 22755
2fc8bdac 22756 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 22757 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 22758 case BFD_RELOC_ARM_PLT32:
c19d1205 22759#ifdef TE_WINCE
5f4273c7 22760 /* When handling fixups immediately, because we have already
477330fc 22761 discovered the value of a symbol, or the address of the frag involved
53baae48 22762 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
22763 see fixup_segment() in write.c
22764 The S_IS_EXTERNAL test handles the case of global symbols.
22765 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
22766 if (fixP->fx_pcrel
22767 && fixP->fx_addsy != NULL
22768 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22769 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22770 return base + 8;
2fc8bdac 22771 return base;
c19d1205 22772#else
2fc8bdac 22773 return base + 8;
c19d1205 22774#endif
2fc8bdac 22775
267bf995 22776
2fc8bdac
ZW
22777 /* ARM mode loads relative to PC are also offset by +8. Unlike
22778 branches, the Windows CE loader *does* expect the relocation
22779 to take this into account. */
22780 case BFD_RELOC_ARM_OFFSET_IMM:
22781 case BFD_RELOC_ARM_OFFSET_IMM8:
22782 case BFD_RELOC_ARM_HWLITERAL:
22783 case BFD_RELOC_ARM_LITERAL:
22784 case BFD_RELOC_ARM_CP_OFF_IMM:
22785 return base + 8;
22786
22787
22788 /* Other PC-relative relocations are un-offset. */
22789 default:
22790 return base;
22791 }
bfae80f2
RE
22792}
22793
8b2d793c
NC
22794static bfd_boolean flag_warn_syms = TRUE;
22795
ae8714c2
NC
22796bfd_boolean
22797arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 22798{
8b2d793c
NC
22799 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22800 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22801 does mean that the resulting code might be very confusing to the reader.
22802 Also this warning can be triggered if the user omits an operand before
22803 an immediate address, eg:
22804
22805 LDR =foo
22806
22807 GAS treats this as an assignment of the value of the symbol foo to a
22808 symbol LDR, and so (without this code) it will not issue any kind of
22809 warning or error message.
22810
22811 Note - ARM instructions are case-insensitive but the strings in the hash
22812 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
22813 lower case too. */
22814 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
22815 {
22816 char * nbuf = strdup (name);
22817 char * p;
22818
22819 for (p = nbuf; *p; p++)
22820 *p = TOLOWER (*p);
22821 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22822 {
22823 static struct hash_control * already_warned = NULL;
22824
22825 if (already_warned == NULL)
22826 already_warned = hash_new ();
22827 /* Only warn about the symbol once. To keep the code
22828 simple we let hash_insert do the lookup for us. */
22829 if (hash_insert (already_warned, name, NULL) == NULL)
ae8714c2 22830 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
22831 }
22832 else
22833 free (nbuf);
22834 }
3739860c 22835
ae8714c2
NC
22836 return FALSE;
22837}
22838
22839/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22840 Otherwise we have no need to default values of symbols. */
22841
22842symbolS *
22843md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22844{
22845#ifdef OBJ_ELF
22846 if (name[0] == '_' && name[1] == 'G'
22847 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22848 {
22849 if (!GOT_symbol)
22850 {
22851 if (symbol_find (name))
22852 as_bad (_("GOT already in the symbol table"));
22853
22854 GOT_symbol = symbol_new (name, undefined_section,
22855 (valueT) 0, & zero_address_frag);
22856 }
22857
22858 return GOT_symbol;
22859 }
22860#endif
22861
c921be7d 22862 return NULL;
bfae80f2
RE
22863}
22864
55cf6793 22865/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
22866 computed as two separate immediate values, added together. We
22867 already know that this value cannot be computed by just one ARM
22868 instruction. */
22869
22870static unsigned int
22871validate_immediate_twopart (unsigned int val,
22872 unsigned int * highpart)
bfae80f2 22873{
c19d1205
ZW
22874 unsigned int a;
22875 unsigned int i;
bfae80f2 22876
c19d1205
ZW
22877 for (i = 0; i < 32; i += 2)
22878 if (((a = rotate_left (val, i)) & 0xff) != 0)
22879 {
22880 if (a & 0xff00)
22881 {
22882 if (a & ~ 0xffff)
22883 continue;
22884 * highpart = (a >> 8) | ((i + 24) << 7);
22885 }
22886 else if (a & 0xff0000)
22887 {
22888 if (a & 0xff000000)
22889 continue;
22890 * highpart = (a >> 16) | ((i + 16) << 7);
22891 }
22892 else
22893 {
9c2799c2 22894 gas_assert (a & 0xff000000);
c19d1205
ZW
22895 * highpart = (a >> 24) | ((i + 8) << 7);
22896 }
bfae80f2 22897
c19d1205
ZW
22898 return (a & 0xff) | (i << 7);
22899 }
bfae80f2 22900
c19d1205 22901 return FAIL;
bfae80f2
RE
22902}
22903
c19d1205
ZW
22904static int
22905validate_offset_imm (unsigned int val, int hwse)
22906{
22907 if ((hwse && val > 255) || val > 4095)
22908 return FAIL;
22909 return val;
22910}
bfae80f2 22911
55cf6793 22912/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
22913 negative immediate constant by altering the instruction. A bit of
22914 a hack really.
22915 MOV <-> MVN
22916 AND <-> BIC
22917 ADC <-> SBC
22918 by inverting the second operand, and
22919 ADD <-> SUB
22920 CMP <-> CMN
22921 by negating the second operand. */
bfae80f2 22922
c19d1205
ZW
22923static int
22924negate_data_op (unsigned long * instruction,
22925 unsigned long value)
bfae80f2 22926{
c19d1205
ZW
22927 int op, new_inst;
22928 unsigned long negated, inverted;
bfae80f2 22929
c19d1205
ZW
22930 negated = encode_arm_immediate (-value);
22931 inverted = encode_arm_immediate (~value);
bfae80f2 22932
c19d1205
ZW
22933 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22934 switch (op)
bfae80f2 22935 {
c19d1205
ZW
22936 /* First negates. */
22937 case OPCODE_SUB: /* ADD <-> SUB */
22938 new_inst = OPCODE_ADD;
22939 value = negated;
22940 break;
bfae80f2 22941
c19d1205
ZW
22942 case OPCODE_ADD:
22943 new_inst = OPCODE_SUB;
22944 value = negated;
22945 break;
bfae80f2 22946
c19d1205
ZW
22947 case OPCODE_CMP: /* CMP <-> CMN */
22948 new_inst = OPCODE_CMN;
22949 value = negated;
22950 break;
bfae80f2 22951
c19d1205
ZW
22952 case OPCODE_CMN:
22953 new_inst = OPCODE_CMP;
22954 value = negated;
22955 break;
bfae80f2 22956
c19d1205
ZW
22957 /* Now Inverted ops. */
22958 case OPCODE_MOV: /* MOV <-> MVN */
22959 new_inst = OPCODE_MVN;
22960 value = inverted;
22961 break;
bfae80f2 22962
c19d1205
ZW
22963 case OPCODE_MVN:
22964 new_inst = OPCODE_MOV;
22965 value = inverted;
22966 break;
bfae80f2 22967
c19d1205
ZW
22968 case OPCODE_AND: /* AND <-> BIC */
22969 new_inst = OPCODE_BIC;
22970 value = inverted;
22971 break;
bfae80f2 22972
c19d1205
ZW
22973 case OPCODE_BIC:
22974 new_inst = OPCODE_AND;
22975 value = inverted;
22976 break;
bfae80f2 22977
c19d1205
ZW
22978 case OPCODE_ADC: /* ADC <-> SBC */
22979 new_inst = OPCODE_SBC;
22980 value = inverted;
22981 break;
bfae80f2 22982
c19d1205
ZW
22983 case OPCODE_SBC:
22984 new_inst = OPCODE_ADC;
22985 value = inverted;
22986 break;
bfae80f2 22987
c19d1205
ZW
22988 /* We cannot do anything. */
22989 default:
22990 return FAIL;
b99bd4ef
NC
22991 }
22992
c19d1205
ZW
22993 if (value == (unsigned) FAIL)
22994 return FAIL;
22995
22996 *instruction &= OPCODE_MASK;
22997 *instruction |= new_inst << DATA_OP_SHIFT;
22998 return value;
b99bd4ef
NC
22999}
23000
ef8d22e6
PB
23001/* Like negate_data_op, but for Thumb-2. */
23002
23003static unsigned int
16dd5e42 23004thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
23005{
23006 int op, new_inst;
23007 int rd;
16dd5e42 23008 unsigned int negated, inverted;
ef8d22e6
PB
23009
23010 negated = encode_thumb32_immediate (-value);
23011 inverted = encode_thumb32_immediate (~value);
23012
23013 rd = (*instruction >> 8) & 0xf;
23014 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23015 switch (op)
23016 {
23017 /* ADD <-> SUB. Includes CMP <-> CMN. */
23018 case T2_OPCODE_SUB:
23019 new_inst = T2_OPCODE_ADD;
23020 value = negated;
23021 break;
23022
23023 case T2_OPCODE_ADD:
23024 new_inst = T2_OPCODE_SUB;
23025 value = negated;
23026 break;
23027
23028 /* ORR <-> ORN. Includes MOV <-> MVN. */
23029 case T2_OPCODE_ORR:
23030 new_inst = T2_OPCODE_ORN;
23031 value = inverted;
23032 break;
23033
23034 case T2_OPCODE_ORN:
23035 new_inst = T2_OPCODE_ORR;
23036 value = inverted;
23037 break;
23038
23039 /* AND <-> BIC. TST has no inverted equivalent. */
23040 case T2_OPCODE_AND:
23041 new_inst = T2_OPCODE_BIC;
23042 if (rd == 15)
23043 value = FAIL;
23044 else
23045 value = inverted;
23046 break;
23047
23048 case T2_OPCODE_BIC:
23049 new_inst = T2_OPCODE_AND;
23050 value = inverted;
23051 break;
23052
23053 /* ADC <-> SBC */
23054 case T2_OPCODE_ADC:
23055 new_inst = T2_OPCODE_SBC;
23056 value = inverted;
23057 break;
23058
23059 case T2_OPCODE_SBC:
23060 new_inst = T2_OPCODE_ADC;
23061 value = inverted;
23062 break;
23063
23064 /* We cannot do anything. */
23065 default:
23066 return FAIL;
23067 }
23068
16dd5e42 23069 if (value == (unsigned int)FAIL)
ef8d22e6
PB
23070 return FAIL;
23071
23072 *instruction &= T2_OPCODE_MASK;
23073 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23074 return value;
23075}
23076
8f06b2d8 23077/* Read a 32-bit thumb instruction from buf. */
0198d5e6 23078
8f06b2d8
PB
23079static unsigned long
23080get_thumb32_insn (char * buf)
23081{
23082 unsigned long insn;
23083 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23084 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23085
23086 return insn;
23087}
23088
a8bc6c78
PB
23089/* We usually want to set the low bit on the address of thumb function
23090 symbols. In particular .word foo - . should have the low bit set.
23091 Generic code tries to fold the difference of two symbols to
23092 a constant. Prevent this and force a relocation when the first symbols
23093 is a thumb function. */
c921be7d
NC
23094
23095bfd_boolean
a8bc6c78
PB
23096arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23097{
23098 if (op == O_subtract
23099 && l->X_op == O_symbol
23100 && r->X_op == O_symbol
23101 && THUMB_IS_FUNC (l->X_add_symbol))
23102 {
23103 l->X_op = O_subtract;
23104 l->X_op_symbol = r->X_add_symbol;
23105 l->X_add_number -= r->X_add_number;
c921be7d 23106 return TRUE;
a8bc6c78 23107 }
c921be7d 23108
a8bc6c78 23109 /* Process as normal. */
c921be7d 23110 return FALSE;
a8bc6c78
PB
23111}
23112
4a42ebbc
RR
23113/* Encode Thumb2 unconditional branches and calls. The encoding
23114 for the 2 are identical for the immediate values. */
23115
23116static void
23117encode_thumb2_b_bl_offset (char * buf, offsetT value)
23118{
23119#define T2I1I2MASK ((1 << 13) | (1 << 11))
23120 offsetT newval;
23121 offsetT newval2;
23122 addressT S, I1, I2, lo, hi;
23123
23124 S = (value >> 24) & 0x01;
23125 I1 = (value >> 23) & 0x01;
23126 I2 = (value >> 22) & 0x01;
23127 hi = (value >> 12) & 0x3ff;
fa94de6b 23128 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
23129 newval = md_chars_to_number (buf, THUMB_SIZE);
23130 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23131 newval |= (S << 10) | hi;
23132 newval2 &= ~T2I1I2MASK;
23133 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23134 md_number_to_chars (buf, newval, THUMB_SIZE);
23135 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23136}
23137
c19d1205 23138void
55cf6793 23139md_apply_fix (fixS * fixP,
c19d1205
ZW
23140 valueT * valP,
23141 segT seg)
23142{
23143 offsetT value = * valP;
23144 offsetT newval;
23145 unsigned int newimm;
23146 unsigned long temp;
23147 int sign;
23148 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 23149
9c2799c2 23150 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 23151
c19d1205 23152 /* Note whether this will delete the relocation. */
4962c51a 23153
c19d1205
ZW
23154 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23155 fixP->fx_done = 1;
b99bd4ef 23156
adbaf948 23157 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 23158 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
23159 for emit_reloc. */
23160 value &= 0xffffffff;
23161 value ^= 0x80000000;
5f4273c7 23162 value -= 0x80000000;
adbaf948
ZW
23163
23164 *valP = value;
c19d1205 23165 fixP->fx_addnumber = value;
b99bd4ef 23166
adbaf948
ZW
23167 /* Same treatment for fixP->fx_offset. */
23168 fixP->fx_offset &= 0xffffffff;
23169 fixP->fx_offset ^= 0x80000000;
23170 fixP->fx_offset -= 0x80000000;
23171
c19d1205 23172 switch (fixP->fx_r_type)
b99bd4ef 23173 {
c19d1205
ZW
23174 case BFD_RELOC_NONE:
23175 /* This will need to go in the object file. */
23176 fixP->fx_done = 0;
23177 break;
b99bd4ef 23178
c19d1205
ZW
23179 case BFD_RELOC_ARM_IMMEDIATE:
23180 /* We claim that this fixup has been processed here,
23181 even if in fact we generate an error because we do
23182 not have a reloc for it, so tc_gen_reloc will reject it. */
23183 fixP->fx_done = 1;
b99bd4ef 23184
77db8e2e 23185 if (fixP->fx_addsy)
b99bd4ef 23186 {
77db8e2e 23187 const char *msg = 0;
b99bd4ef 23188
77db8e2e
NC
23189 if (! S_IS_DEFINED (fixP->fx_addsy))
23190 msg = _("undefined symbol %s used as an immediate value");
23191 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23192 msg = _("symbol %s is in a different section");
23193 else if (S_IS_WEAK (fixP->fx_addsy))
23194 msg = _("symbol %s is weak and may be overridden later");
23195
23196 if (msg)
23197 {
23198 as_bad_where (fixP->fx_file, fixP->fx_line,
23199 msg, S_GET_NAME (fixP->fx_addsy));
23200 break;
23201 }
42e5fcbf
AS
23202 }
23203
c19d1205
ZW
23204 temp = md_chars_to_number (buf, INSN_SIZE);
23205
5e73442d
SL
23206 /* If the offset is negative, we should use encoding A2 for ADR. */
23207 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23208 newimm = negate_data_op (&temp, value);
23209 else
23210 {
23211 newimm = encode_arm_immediate (value);
23212
23213 /* If the instruction will fail, see if we can fix things up by
23214 changing the opcode. */
23215 if (newimm == (unsigned int) FAIL)
23216 newimm = negate_data_op (&temp, value);
bada4342
JW
23217 /* MOV accepts both ARM modified immediate (A1 encoding) and
23218 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23219 When disassembling, MOV is preferred when there is no encoding
23220 overlap. */
23221 if (newimm == (unsigned int) FAIL
23222 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23223 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23224 && !((temp >> SBIT_SHIFT) & 0x1)
23225 && value >= 0 && value <= 0xffff)
23226 {
23227 /* Clear bits[23:20] to change encoding from A1 to A2. */
23228 temp &= 0xff0fffff;
23229 /* Encoding high 4bits imm. Code below will encode the remaining
23230 low 12bits. */
23231 temp |= (value & 0x0000f000) << 4;
23232 newimm = value & 0x00000fff;
23233 }
5e73442d
SL
23234 }
23235
23236 if (newimm == (unsigned int) FAIL)
b99bd4ef 23237 {
c19d1205
ZW
23238 as_bad_where (fixP->fx_file, fixP->fx_line,
23239 _("invalid constant (%lx) after fixup"),
23240 (unsigned long) value);
23241 break;
b99bd4ef 23242 }
b99bd4ef 23243
c19d1205
ZW
23244 newimm |= (temp & 0xfffff000);
23245 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23246 break;
b99bd4ef 23247
c19d1205
ZW
23248 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23249 {
23250 unsigned int highpart = 0;
23251 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 23252
77db8e2e 23253 if (fixP->fx_addsy)
42e5fcbf 23254 {
77db8e2e 23255 const char *msg = 0;
42e5fcbf 23256
77db8e2e
NC
23257 if (! S_IS_DEFINED (fixP->fx_addsy))
23258 msg = _("undefined symbol %s used as an immediate value");
23259 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23260 msg = _("symbol %s is in a different section");
23261 else if (S_IS_WEAK (fixP->fx_addsy))
23262 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 23263
77db8e2e
NC
23264 if (msg)
23265 {
23266 as_bad_where (fixP->fx_file, fixP->fx_line,
23267 msg, S_GET_NAME (fixP->fx_addsy));
23268 break;
23269 }
23270 }
fa94de6b 23271
c19d1205
ZW
23272 newimm = encode_arm_immediate (value);
23273 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 23274
c19d1205
ZW
23275 /* If the instruction will fail, see if we can fix things up by
23276 changing the opcode. */
23277 if (newimm == (unsigned int) FAIL
23278 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23279 {
23280 /* No ? OK - try using two ADD instructions to generate
23281 the value. */
23282 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 23283
c19d1205
ZW
23284 /* Yes - then make sure that the second instruction is
23285 also an add. */
23286 if (newimm != (unsigned int) FAIL)
23287 newinsn = temp;
23288 /* Still No ? Try using a negated value. */
23289 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23290 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23291 /* Otherwise - give up. */
23292 else
23293 {
23294 as_bad_where (fixP->fx_file, fixP->fx_line,
23295 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23296 (long) value);
23297 break;
23298 }
b99bd4ef 23299
c19d1205
ZW
23300 /* Replace the first operand in the 2nd instruction (which
23301 is the PC) with the destination register. We have
23302 already added in the PC in the first instruction and we
23303 do not want to do it again. */
23304 newinsn &= ~ 0xf0000;
23305 newinsn |= ((newinsn & 0x0f000) << 4);
23306 }
b99bd4ef 23307
c19d1205
ZW
23308 newimm |= (temp & 0xfffff000);
23309 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 23310
c19d1205
ZW
23311 highpart |= (newinsn & 0xfffff000);
23312 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23313 }
23314 break;
b99bd4ef 23315
c19d1205 23316 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
23317 if (!fixP->fx_done && seg->use_rela_p)
23318 value = 0;
1a0670f3 23319 /* Fall through. */
00a97672 23320
c19d1205 23321 case BFD_RELOC_ARM_LITERAL:
26d97720 23322 sign = value > 0;
b99bd4ef 23323
c19d1205
ZW
23324 if (value < 0)
23325 value = - value;
b99bd4ef 23326
c19d1205 23327 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 23328 {
c19d1205
ZW
23329 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23330 as_bad_where (fixP->fx_file, fixP->fx_line,
23331 _("invalid literal constant: pool needs to be closer"));
23332 else
23333 as_bad_where (fixP->fx_file, fixP->fx_line,
23334 _("bad immediate value for offset (%ld)"),
23335 (long) value);
23336 break;
f03698e6
RE
23337 }
23338
c19d1205 23339 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23340 if (value == 0)
23341 newval &= 0xfffff000;
23342 else
23343 {
23344 newval &= 0xff7ff000;
23345 newval |= value | (sign ? INDEX_UP : 0);
23346 }
c19d1205
ZW
23347 md_number_to_chars (buf, newval, INSN_SIZE);
23348 break;
b99bd4ef 23349
c19d1205
ZW
23350 case BFD_RELOC_ARM_OFFSET_IMM8:
23351 case BFD_RELOC_ARM_HWLITERAL:
26d97720 23352 sign = value > 0;
b99bd4ef 23353
c19d1205
ZW
23354 if (value < 0)
23355 value = - value;
b99bd4ef 23356
c19d1205 23357 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 23358 {
c19d1205
ZW
23359 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23360 as_bad_where (fixP->fx_file, fixP->fx_line,
23361 _("invalid literal constant: pool needs to be closer"));
23362 else
427d0db6
RM
23363 as_bad_where (fixP->fx_file, fixP->fx_line,
23364 _("bad immediate value for 8-bit offset (%ld)"),
23365 (long) value);
c19d1205 23366 break;
b99bd4ef
NC
23367 }
23368
c19d1205 23369 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
23370 if (value == 0)
23371 newval &= 0xfffff0f0;
23372 else
23373 {
23374 newval &= 0xff7ff0f0;
23375 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23376 }
c19d1205
ZW
23377 md_number_to_chars (buf, newval, INSN_SIZE);
23378 break;
b99bd4ef 23379
c19d1205
ZW
23380 case BFD_RELOC_ARM_T32_OFFSET_U8:
23381 if (value < 0 || value > 1020 || value % 4 != 0)
23382 as_bad_where (fixP->fx_file, fixP->fx_line,
23383 _("bad immediate value for offset (%ld)"), (long) value);
23384 value /= 4;
b99bd4ef 23385
c19d1205 23386 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
23387 newval |= value;
23388 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23389 break;
b99bd4ef 23390
c19d1205
ZW
23391 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23392 /* This is a complicated relocation used for all varieties of Thumb32
23393 load/store instruction with immediate offset:
23394
23395 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 23396 *4, optional writeback(W)
c19d1205
ZW
23397 (doubleword load/store)
23398
23399 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23400 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23401 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23402 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23403 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23404
23405 Uppercase letters indicate bits that are already encoded at
23406 this point. Lowercase letters are our problem. For the
23407 second block of instructions, the secondary opcode nybble
23408 (bits 8..11) is present, and bit 23 is zero, even if this is
23409 a PC-relative operation. */
23410 newval = md_chars_to_number (buf, THUMB_SIZE);
23411 newval <<= 16;
23412 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 23413
c19d1205 23414 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 23415 {
c19d1205
ZW
23416 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23417 if (value >= 0)
23418 newval |= (1 << 23);
23419 else
23420 value = -value;
23421 if (value % 4 != 0)
23422 {
23423 as_bad_where (fixP->fx_file, fixP->fx_line,
23424 _("offset not a multiple of 4"));
23425 break;
23426 }
23427 value /= 4;
216d22bc 23428 if (value > 0xff)
c19d1205
ZW
23429 {
23430 as_bad_where (fixP->fx_file, fixP->fx_line,
23431 _("offset out of range"));
23432 break;
23433 }
23434 newval &= ~0xff;
b99bd4ef 23435 }
c19d1205 23436 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 23437 {
c19d1205
ZW
23438 /* PC-relative, 12-bit offset. */
23439 if (value >= 0)
23440 newval |= (1 << 23);
23441 else
23442 value = -value;
216d22bc 23443 if (value > 0xfff)
c19d1205
ZW
23444 {
23445 as_bad_where (fixP->fx_file, fixP->fx_line,
23446 _("offset out of range"));
23447 break;
23448 }
23449 newval &= ~0xfff;
b99bd4ef 23450 }
c19d1205 23451 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 23452 {
c19d1205
ZW
23453 /* Writeback: 8-bit, +/- offset. */
23454 if (value >= 0)
23455 newval |= (1 << 9);
23456 else
23457 value = -value;
216d22bc 23458 if (value > 0xff)
c19d1205
ZW
23459 {
23460 as_bad_where (fixP->fx_file, fixP->fx_line,
23461 _("offset out of range"));
23462 break;
23463 }
23464 newval &= ~0xff;
b99bd4ef 23465 }
c19d1205 23466 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 23467 {
c19d1205 23468 /* T-instruction: positive 8-bit offset. */
216d22bc 23469 if (value < 0 || value > 0xff)
b99bd4ef 23470 {
c19d1205
ZW
23471 as_bad_where (fixP->fx_file, fixP->fx_line,
23472 _("offset out of range"));
23473 break;
b99bd4ef 23474 }
c19d1205
ZW
23475 newval &= ~0xff;
23476 newval |= value;
b99bd4ef
NC
23477 }
23478 else
b99bd4ef 23479 {
c19d1205
ZW
23480 /* Positive 12-bit or negative 8-bit offset. */
23481 int limit;
23482 if (value >= 0)
b99bd4ef 23483 {
c19d1205
ZW
23484 newval |= (1 << 23);
23485 limit = 0xfff;
23486 }
23487 else
23488 {
23489 value = -value;
23490 limit = 0xff;
23491 }
23492 if (value > limit)
23493 {
23494 as_bad_where (fixP->fx_file, fixP->fx_line,
23495 _("offset out of range"));
23496 break;
b99bd4ef 23497 }
c19d1205 23498 newval &= ~limit;
b99bd4ef 23499 }
b99bd4ef 23500
c19d1205
ZW
23501 newval |= value;
23502 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23503 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23504 break;
404ff6b5 23505
c19d1205
ZW
23506 case BFD_RELOC_ARM_SHIFT_IMM:
23507 newval = md_chars_to_number (buf, INSN_SIZE);
23508 if (((unsigned long) value) > 32
23509 || (value == 32
23510 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23511 {
23512 as_bad_where (fixP->fx_file, fixP->fx_line,
23513 _("shift expression is too large"));
23514 break;
23515 }
404ff6b5 23516
c19d1205
ZW
23517 if (value == 0)
23518 /* Shifts of zero must be done as lsl. */
23519 newval &= ~0x60;
23520 else if (value == 32)
23521 value = 0;
23522 newval &= 0xfffff07f;
23523 newval |= (value & 0x1f) << 7;
23524 md_number_to_chars (buf, newval, INSN_SIZE);
23525 break;
404ff6b5 23526
c19d1205 23527 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 23528 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 23529 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 23530 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
23531 /* We claim that this fixup has been processed here,
23532 even if in fact we generate an error because we do
23533 not have a reloc for it, so tc_gen_reloc will reject it. */
23534 fixP->fx_done = 1;
404ff6b5 23535
c19d1205
ZW
23536 if (fixP->fx_addsy
23537 && ! S_IS_DEFINED (fixP->fx_addsy))
23538 {
23539 as_bad_where (fixP->fx_file, fixP->fx_line,
23540 _("undefined symbol %s used as an immediate value"),
23541 S_GET_NAME (fixP->fx_addsy));
23542 break;
23543 }
404ff6b5 23544
c19d1205
ZW
23545 newval = md_chars_to_number (buf, THUMB_SIZE);
23546 newval <<= 16;
23547 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 23548
16805f35 23549 newimm = FAIL;
bada4342
JW
23550 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23551 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23552 Thumb2 modified immediate encoding (T2). */
23553 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 23554 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
23555 {
23556 newimm = encode_thumb32_immediate (value);
23557 if (newimm == (unsigned int) FAIL)
23558 newimm = thumb32_negate_data_op (&newval, value);
23559 }
bada4342 23560 if (newimm == (unsigned int) FAIL)
92e90b6e 23561 {
bada4342 23562 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 23563 {
bada4342
JW
23564 /* Turn add/sum into addw/subw. */
23565 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23566 newval = (newval & 0xfeffffff) | 0x02000000;
23567 /* No flat 12-bit imm encoding for addsw/subsw. */
23568 if ((newval & 0x00100000) == 0)
40f246e3 23569 {
bada4342
JW
23570 /* 12 bit immediate for addw/subw. */
23571 if (value < 0)
23572 {
23573 value = -value;
23574 newval ^= 0x00a00000;
23575 }
23576 if (value > 0xfff)
23577 newimm = (unsigned int) FAIL;
23578 else
23579 newimm = value;
23580 }
23581 }
23582 else
23583 {
23584 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23585 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23586 disassembling, MOV is preferred when there is no encoding
23587 overlap.
23588 NOTE: MOV is using ORR opcode under Thumb 2 mode. */
23589 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23590 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23591 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23592 && value >= 0 && value <=0xffff)
23593 {
23594 /* Toggle bit[25] to change encoding from T2 to T3. */
23595 newval ^= 1 << 25;
23596 /* Clear bits[19:16]. */
23597 newval &= 0xfff0ffff;
23598 /* Encoding high 4bits imm. Code below will encode the
23599 remaining low 12bits. */
23600 newval |= (value & 0x0000f000) << 4;
23601 newimm = value & 0x00000fff;
40f246e3 23602 }
e9f89963 23603 }
92e90b6e 23604 }
cc8a6dd0 23605
c19d1205 23606 if (newimm == (unsigned int)FAIL)
3631a3c8 23607 {
c19d1205
ZW
23608 as_bad_where (fixP->fx_file, fixP->fx_line,
23609 _("invalid constant (%lx) after fixup"),
23610 (unsigned long) value);
23611 break;
3631a3c8
NC
23612 }
23613
c19d1205
ZW
23614 newval |= (newimm & 0x800) << 15;
23615 newval |= (newimm & 0x700) << 4;
23616 newval |= (newimm & 0x0ff);
cc8a6dd0 23617
c19d1205
ZW
23618 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23619 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23620 break;
a737bd4d 23621
3eb17e6b 23622 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
23623 if (((unsigned long) value) > 0xffff)
23624 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 23625 _("invalid smc expression"));
2fc8bdac 23626 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23627 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23628 md_number_to_chars (buf, newval, INSN_SIZE);
23629 break;
a737bd4d 23630
90ec0d68
MGD
23631 case BFD_RELOC_ARM_HVC:
23632 if (((unsigned long) value) > 0xffff)
23633 as_bad_where (fixP->fx_file, fixP->fx_line,
23634 _("invalid hvc expression"));
23635 newval = md_chars_to_number (buf, INSN_SIZE);
23636 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23637 md_number_to_chars (buf, newval, INSN_SIZE);
23638 break;
23639
c19d1205 23640 case BFD_RELOC_ARM_SWI:
adbaf948 23641 if (fixP->tc_fix_data != 0)
c19d1205
ZW
23642 {
23643 if (((unsigned long) value) > 0xff)
23644 as_bad_where (fixP->fx_file, fixP->fx_line,
23645 _("invalid swi expression"));
2fc8bdac 23646 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
23647 newval |= value;
23648 md_number_to_chars (buf, newval, THUMB_SIZE);
23649 }
23650 else
23651 {
23652 if (((unsigned long) value) > 0x00ffffff)
23653 as_bad_where (fixP->fx_file, fixP->fx_line,
23654 _("invalid swi expression"));
2fc8bdac 23655 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
23656 newval |= value;
23657 md_number_to_chars (buf, newval, INSN_SIZE);
23658 }
23659 break;
a737bd4d 23660
c19d1205
ZW
23661 case BFD_RELOC_ARM_MULTI:
23662 if (((unsigned long) value) > 0xffff)
23663 as_bad_where (fixP->fx_file, fixP->fx_line,
23664 _("invalid expression in load/store multiple"));
23665 newval = value | md_chars_to_number (buf, INSN_SIZE);
23666 md_number_to_chars (buf, newval, INSN_SIZE);
23667 break;
a737bd4d 23668
c19d1205 23669#ifdef OBJ_ELF
39b41c9c 23670 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
23671
23672 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23673 && fixP->fx_addsy
34e77a92 23674 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23675 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23676 && THUMB_IS_FUNC (fixP->fx_addsy))
23677 /* Flip the bl to blx. This is a simple flip
23678 bit here because we generate PCREL_CALL for
23679 unconditional bls. */
23680 {
23681 newval = md_chars_to_number (buf, INSN_SIZE);
23682 newval = newval | 0x10000000;
23683 md_number_to_chars (buf, newval, INSN_SIZE);
23684 temp = 1;
23685 fixP->fx_done = 1;
23686 }
39b41c9c
PB
23687 else
23688 temp = 3;
23689 goto arm_branch_common;
23690
23691 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
23692 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23693 && fixP->fx_addsy
34e77a92 23694 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23695 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23696 && THUMB_IS_FUNC (fixP->fx_addsy))
23697 {
23698 /* This would map to a bl<cond>, b<cond>,
23699 b<always> to a Thumb function. We
23700 need to force a relocation for this particular
23701 case. */
23702 newval = md_chars_to_number (buf, INSN_SIZE);
23703 fixP->fx_done = 0;
23704 }
1a0670f3 23705 /* Fall through. */
267bf995 23706
2fc8bdac 23707 case BFD_RELOC_ARM_PLT32:
c19d1205 23708#endif
39b41c9c
PB
23709 case BFD_RELOC_ARM_PCREL_BRANCH:
23710 temp = 3;
23711 goto arm_branch_common;
a737bd4d 23712
39b41c9c 23713 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 23714
39b41c9c 23715 temp = 1;
267bf995
RR
23716 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23717 && fixP->fx_addsy
34e77a92 23718 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23719 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23720 && ARM_IS_FUNC (fixP->fx_addsy))
23721 {
23722 /* Flip the blx to a bl and warn. */
23723 const char *name = S_GET_NAME (fixP->fx_addsy);
23724 newval = 0xeb000000;
23725 as_warn_where (fixP->fx_file, fixP->fx_line,
23726 _("blx to '%s' an ARM ISA state function changed to bl"),
23727 name);
23728 md_number_to_chars (buf, newval, INSN_SIZE);
23729 temp = 3;
23730 fixP->fx_done = 1;
23731 }
23732
23733#ifdef OBJ_ELF
23734 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 23735 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
23736#endif
23737
39b41c9c 23738 arm_branch_common:
c19d1205 23739 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
23740 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23741 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 23742 also be clear. */
39b41c9c 23743 if (value & temp)
c19d1205 23744 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
23745 _("misaligned branch destination"));
23746 if ((value & (offsetT)0xfe000000) != (offsetT)0
23747 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 23748 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23749
2fc8bdac 23750 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23751 {
2fc8bdac
ZW
23752 newval = md_chars_to_number (buf, INSN_SIZE);
23753 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
23754 /* Set the H bit on BLX instructions. */
23755 if (temp == 1)
23756 {
23757 if (value & 2)
23758 newval |= 0x01000000;
23759 else
23760 newval &= ~0x01000000;
23761 }
2fc8bdac 23762 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 23763 }
c19d1205 23764 break;
a737bd4d 23765
25fe350b
MS
23766 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23767 /* CBZ can only branch forward. */
a737bd4d 23768
738755b0 23769 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
23770 (which, strictly speaking, are prohibited) will be turned into
23771 no-ops.
738755b0
MS
23772
23773 FIXME: It may be better to remove the instruction completely and
23774 perform relaxation. */
23775 if (value == -2)
2fc8bdac
ZW
23776 {
23777 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 23778 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
23779 md_number_to_chars (buf, newval, THUMB_SIZE);
23780 }
738755b0
MS
23781 else
23782 {
23783 if (value & ~0x7e)
08f10d51 23784 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 23785
477330fc 23786 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
23787 {
23788 newval = md_chars_to_number (buf, THUMB_SIZE);
23789 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23790 md_number_to_chars (buf, newval, THUMB_SIZE);
23791 }
23792 }
c19d1205 23793 break;
a737bd4d 23794
c19d1205 23795 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 23796 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 23797 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23798
2fc8bdac
ZW
23799 if (fixP->fx_done || !seg->use_rela_p)
23800 {
23801 newval = md_chars_to_number (buf, THUMB_SIZE);
23802 newval |= (value & 0x1ff) >> 1;
23803 md_number_to_chars (buf, newval, THUMB_SIZE);
23804 }
c19d1205 23805 break;
a737bd4d 23806
c19d1205 23807 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 23808 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 23809 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 23810
2fc8bdac
ZW
23811 if (fixP->fx_done || !seg->use_rela_p)
23812 {
23813 newval = md_chars_to_number (buf, THUMB_SIZE);
23814 newval |= (value & 0xfff) >> 1;
23815 md_number_to_chars (buf, newval, THUMB_SIZE);
23816 }
c19d1205 23817 break;
a737bd4d 23818
c19d1205 23819 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
23820 if (fixP->fx_addsy
23821 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23822 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23823 && ARM_IS_FUNC (fixP->fx_addsy)
23824 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23825 {
23826 /* Force a relocation for a branch 20 bits wide. */
23827 fixP->fx_done = 0;
23828 }
08f10d51 23829 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
23830 as_bad_where (fixP->fx_file, fixP->fx_line,
23831 _("conditional branch out of range"));
404ff6b5 23832
2fc8bdac
ZW
23833 if (fixP->fx_done || !seg->use_rela_p)
23834 {
23835 offsetT newval2;
23836 addressT S, J1, J2, lo, hi;
404ff6b5 23837
2fc8bdac
ZW
23838 S = (value & 0x00100000) >> 20;
23839 J2 = (value & 0x00080000) >> 19;
23840 J1 = (value & 0x00040000) >> 18;
23841 hi = (value & 0x0003f000) >> 12;
23842 lo = (value & 0x00000ffe) >> 1;
6c43fab6 23843
2fc8bdac
ZW
23844 newval = md_chars_to_number (buf, THUMB_SIZE);
23845 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23846 newval |= (S << 10) | hi;
23847 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23848 md_number_to_chars (buf, newval, THUMB_SIZE);
23849 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23850 }
c19d1205 23851 break;
6c43fab6 23852
c19d1205 23853 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
23854 /* If there is a blx from a thumb state function to
23855 another thumb function flip this to a bl and warn
23856 about it. */
23857
23858 if (fixP->fx_addsy
34e77a92 23859 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23860 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23861 && THUMB_IS_FUNC (fixP->fx_addsy))
23862 {
23863 const char *name = S_GET_NAME (fixP->fx_addsy);
23864 as_warn_where (fixP->fx_file, fixP->fx_line,
23865 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23866 name);
23867 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23868 newval = newval | 0x1000;
23869 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23870 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23871 fixP->fx_done = 1;
23872 }
23873
23874
23875 goto thumb_bl_common;
23876
c19d1205 23877 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
23878 /* A bl from Thumb state ISA to an internal ARM state function
23879 is converted to a blx. */
23880 if (fixP->fx_addsy
23881 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 23882 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
23883 && ARM_IS_FUNC (fixP->fx_addsy)
23884 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23885 {
23886 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23887 newval = newval & ~0x1000;
23888 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23889 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23890 fixP->fx_done = 1;
23891 }
23892
23893 thumb_bl_common:
23894
2fc8bdac
ZW
23895 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23896 /* For a BLX instruction, make sure that the relocation is rounded up
23897 to a word boundary. This follows the semantics of the instruction
23898 which specifies that bit 1 of the target address will come from bit
23899 1 of the base address. */
d406f3e4
JB
23900 value = (value + 3) & ~ 3;
23901
23902#ifdef OBJ_ELF
23903 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23904 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23905 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23906#endif
404ff6b5 23907
2b2f5df9
NC
23908 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23909 {
fc289b0a 23910 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
23911 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23912 else if ((value & ~0x1ffffff)
23913 && ((value & ~0x1ffffff) != ~0x1ffffff))
23914 as_bad_where (fixP->fx_file, fixP->fx_line,
23915 _("Thumb2 branch out of range"));
23916 }
4a42ebbc
RR
23917
23918 if (fixP->fx_done || !seg->use_rela_p)
23919 encode_thumb2_b_bl_offset (buf, value);
23920
c19d1205 23921 break;
404ff6b5 23922
c19d1205 23923 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
23924 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23925 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 23926
2fc8bdac 23927 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 23928 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 23929
2fc8bdac 23930 break;
a737bd4d 23931
2fc8bdac
ZW
23932 case BFD_RELOC_8:
23933 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 23934 *buf = value;
c19d1205 23935 break;
a737bd4d 23936
c19d1205 23937 case BFD_RELOC_16:
2fc8bdac 23938 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 23939 md_number_to_chars (buf, value, 2);
c19d1205 23940 break;
a737bd4d 23941
c19d1205 23942#ifdef OBJ_ELF
0855e32b
NS
23943 case BFD_RELOC_ARM_TLS_CALL:
23944 case BFD_RELOC_ARM_THM_TLS_CALL:
23945 case BFD_RELOC_ARM_TLS_DESCSEQ:
23946 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 23947 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
23948 case BFD_RELOC_ARM_TLS_GD32:
23949 case BFD_RELOC_ARM_TLS_LE32:
23950 case BFD_RELOC_ARM_TLS_IE32:
23951 case BFD_RELOC_ARM_TLS_LDM32:
23952 case BFD_RELOC_ARM_TLS_LDO32:
23953 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 23954 break;
6c43fab6 23955
c19d1205
ZW
23956 case BFD_RELOC_ARM_GOT32:
23957 case BFD_RELOC_ARM_GOTOFF:
c19d1205 23958 break;
b43420e6
NC
23959
23960 case BFD_RELOC_ARM_GOT_PREL:
23961 if (fixP->fx_done || !seg->use_rela_p)
477330fc 23962 md_number_to_chars (buf, value, 4);
b43420e6
NC
23963 break;
23964
9a6f4e97
NS
23965 case BFD_RELOC_ARM_TARGET2:
23966 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
23967 addend here for REL targets, because it won't be written out
23968 during reloc processing later. */
9a6f4e97
NS
23969 if (fixP->fx_done || !seg->use_rela_p)
23970 md_number_to_chars (buf, fixP->fx_offset, 4);
23971 break;
c19d1205 23972#endif
6c43fab6 23973
c19d1205
ZW
23974 case BFD_RELOC_RVA:
23975 case BFD_RELOC_32:
23976 case BFD_RELOC_ARM_TARGET1:
23977 case BFD_RELOC_ARM_ROSEGREL32:
23978 case BFD_RELOC_ARM_SBREL32:
23979 case BFD_RELOC_32_PCREL:
f0927246
NC
23980#ifdef TE_PE
23981 case BFD_RELOC_32_SECREL:
23982#endif
2fc8bdac 23983 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
23984#ifdef TE_WINCE
23985 /* For WinCE we only do this for pcrel fixups. */
23986 if (fixP->fx_done || fixP->fx_pcrel)
23987#endif
23988 md_number_to_chars (buf, value, 4);
c19d1205 23989 break;
6c43fab6 23990
c19d1205
ZW
23991#ifdef OBJ_ELF
23992 case BFD_RELOC_ARM_PREL31:
2fc8bdac 23993 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
23994 {
23995 newval = md_chars_to_number (buf, 4) & 0x80000000;
23996 if ((value ^ (value >> 1)) & 0x40000000)
23997 {
23998 as_bad_where (fixP->fx_file, fixP->fx_line,
23999 _("rel31 relocation overflow"));
24000 }
24001 newval |= value & 0x7fffffff;
24002 md_number_to_chars (buf, newval, 4);
24003 }
24004 break;
c19d1205 24005#endif
a737bd4d 24006
c19d1205 24007 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 24008 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
9db2f6b4
RL
24009 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24010 newval = md_chars_to_number (buf, INSN_SIZE);
24011 else
24012 newval = get_thumb32_insn (buf);
24013 if ((newval & 0x0f200f00) == 0x0d000900)
24014 {
24015 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24016 has permitted values that are multiples of 2, in the range 0
24017 to 510. */
24018 if (value < -510 || value > 510 || (value & 1))
24019 as_bad_where (fixP->fx_file, fixP->fx_line,
24020 _("co-processor offset out of range"));
24021 }
24022 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
24023 as_bad_where (fixP->fx_file, fixP->fx_line,
24024 _("co-processor offset out of range"));
24025 cp_off_common:
26d97720 24026 sign = value > 0;
c19d1205
ZW
24027 if (value < 0)
24028 value = -value;
8f06b2d8
PB
24029 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24030 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24031 newval = md_chars_to_number (buf, INSN_SIZE);
24032 else
24033 newval = get_thumb32_insn (buf);
26d97720
NS
24034 if (value == 0)
24035 newval &= 0xffffff00;
24036 else
24037 {
24038 newval &= 0xff7fff00;
9db2f6b4
RL
24039 if ((newval & 0x0f200f00) == 0x0d000900)
24040 {
24041 /* This is a fp16 vstr/vldr.
24042
24043 It requires the immediate offset in the instruction is shifted
24044 left by 1 to be a half-word offset.
24045
24046 Here, left shift by 1 first, and later right shift by 2
24047 should get the right offset. */
24048 value <<= 1;
24049 }
26d97720
NS
24050 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24051 }
8f06b2d8
PB
24052 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24053 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24054 md_number_to_chars (buf, newval, INSN_SIZE);
24055 else
24056 put_thumb32_insn (buf, newval);
c19d1205 24057 break;
a737bd4d 24058
c19d1205 24059 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 24060 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
24061 if (value < -255 || value > 255)
24062 as_bad_where (fixP->fx_file, fixP->fx_line,
24063 _("co-processor offset out of range"));
df7849c5 24064 value *= 4;
c19d1205 24065 goto cp_off_common;
6c43fab6 24066
c19d1205
ZW
24067 case BFD_RELOC_ARM_THUMB_OFFSET:
24068 newval = md_chars_to_number (buf, THUMB_SIZE);
24069 /* Exactly what ranges, and where the offset is inserted depends
24070 on the type of instruction, we can establish this from the
24071 top 4 bits. */
24072 switch (newval >> 12)
24073 {
24074 case 4: /* PC load. */
24075 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24076 forced to zero for these loads; md_pcrel_from has already
24077 compensated for this. */
24078 if (value & 3)
24079 as_bad_where (fixP->fx_file, fixP->fx_line,
24080 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
24081 (((unsigned long) fixP->fx_frag->fr_address
24082 + (unsigned long) fixP->fx_where) & ~3)
24083 + (unsigned long) value);
a737bd4d 24084
c19d1205
ZW
24085 if (value & ~0x3fc)
24086 as_bad_where (fixP->fx_file, fixP->fx_line,
24087 _("invalid offset, value too big (0x%08lX)"),
24088 (long) value);
a737bd4d 24089
c19d1205
ZW
24090 newval |= value >> 2;
24091 break;
a737bd4d 24092
c19d1205
ZW
24093 case 9: /* SP load/store. */
24094 if (value & ~0x3fc)
24095 as_bad_where (fixP->fx_file, fixP->fx_line,
24096 _("invalid offset, value too big (0x%08lX)"),
24097 (long) value);
24098 newval |= value >> 2;
24099 break;
6c43fab6 24100
c19d1205
ZW
24101 case 6: /* Word load/store. */
24102 if (value & ~0x7c)
24103 as_bad_where (fixP->fx_file, fixP->fx_line,
24104 _("invalid offset, value too big (0x%08lX)"),
24105 (long) value);
24106 newval |= value << 4; /* 6 - 2. */
24107 break;
a737bd4d 24108
c19d1205
ZW
24109 case 7: /* Byte load/store. */
24110 if (value & ~0x1f)
24111 as_bad_where (fixP->fx_file, fixP->fx_line,
24112 _("invalid offset, value too big (0x%08lX)"),
24113 (long) value);
24114 newval |= value << 6;
24115 break;
a737bd4d 24116
c19d1205
ZW
24117 case 8: /* Halfword load/store. */
24118 if (value & ~0x3e)
24119 as_bad_where (fixP->fx_file, fixP->fx_line,
24120 _("invalid offset, value too big (0x%08lX)"),
24121 (long) value);
24122 newval |= value << 5; /* 6 - 1. */
24123 break;
a737bd4d 24124
c19d1205
ZW
24125 default:
24126 as_bad_where (fixP->fx_file, fixP->fx_line,
24127 "Unable to process relocation for thumb opcode: %lx",
24128 (unsigned long) newval);
24129 break;
24130 }
24131 md_number_to_chars (buf, newval, THUMB_SIZE);
24132 break;
a737bd4d 24133
c19d1205
ZW
24134 case BFD_RELOC_ARM_THUMB_ADD:
24135 /* This is a complicated relocation, since we use it for all of
24136 the following immediate relocations:
a737bd4d 24137
c19d1205
ZW
24138 3bit ADD/SUB
24139 8bit ADD/SUB
24140 9bit ADD/SUB SP word-aligned
24141 10bit ADD PC/SP word-aligned
a737bd4d 24142
c19d1205
ZW
24143 The type of instruction being processed is encoded in the
24144 instruction field:
a737bd4d 24145
c19d1205
ZW
24146 0x8000 SUB
24147 0x00F0 Rd
24148 0x000F Rs
24149 */
24150 newval = md_chars_to_number (buf, THUMB_SIZE);
24151 {
24152 int rd = (newval >> 4) & 0xf;
24153 int rs = newval & 0xf;
24154 int subtract = !!(newval & 0x8000);
a737bd4d 24155
c19d1205
ZW
24156 /* Check for HI regs, only very restricted cases allowed:
24157 Adjusting SP, and using PC or SP to get an address. */
24158 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24159 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24160 as_bad_where (fixP->fx_file, fixP->fx_line,
24161 _("invalid Hi register with immediate"));
a737bd4d 24162
c19d1205
ZW
24163 /* If value is negative, choose the opposite instruction. */
24164 if (value < 0)
24165 {
24166 value = -value;
24167 subtract = !subtract;
24168 if (value < 0)
24169 as_bad_where (fixP->fx_file, fixP->fx_line,
24170 _("immediate value out of range"));
24171 }
a737bd4d 24172
c19d1205
ZW
24173 if (rd == REG_SP)
24174 {
75c11999 24175 if (value & ~0x1fc)
c19d1205
ZW
24176 as_bad_where (fixP->fx_file, fixP->fx_line,
24177 _("invalid immediate for stack address calculation"));
24178 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24179 newval |= value >> 2;
24180 }
24181 else if (rs == REG_PC || rs == REG_SP)
24182 {
c12d2c9d
NC
24183 /* PR gas/18541. If the addition is for a defined symbol
24184 within range of an ADR instruction then accept it. */
24185 if (subtract
24186 && value == 4
24187 && fixP->fx_addsy != NULL)
24188 {
24189 subtract = 0;
24190
24191 if (! S_IS_DEFINED (fixP->fx_addsy)
24192 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24193 || S_IS_WEAK (fixP->fx_addsy))
24194 {
24195 as_bad_where (fixP->fx_file, fixP->fx_line,
24196 _("address calculation needs a strongly defined nearby symbol"));
24197 }
24198 else
24199 {
24200 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24201
24202 /* Round up to the next 4-byte boundary. */
24203 if (v & 3)
24204 v = (v + 3) & ~ 3;
24205 else
24206 v += 4;
24207 v = S_GET_VALUE (fixP->fx_addsy) - v;
24208
24209 if (v & ~0x3fc)
24210 {
24211 as_bad_where (fixP->fx_file, fixP->fx_line,
24212 _("symbol too far away"));
24213 }
24214 else
24215 {
24216 fixP->fx_done = 1;
24217 value = v;
24218 }
24219 }
24220 }
24221
c19d1205
ZW
24222 if (subtract || value & ~0x3fc)
24223 as_bad_where (fixP->fx_file, fixP->fx_line,
24224 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 24225 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
24226 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24227 newval |= rd << 8;
24228 newval |= value >> 2;
24229 }
24230 else if (rs == rd)
24231 {
24232 if (value & ~0xff)
24233 as_bad_where (fixP->fx_file, fixP->fx_line,
24234 _("immediate value out of range"));
24235 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24236 newval |= (rd << 8) | value;
24237 }
24238 else
24239 {
24240 if (value & ~0x7)
24241 as_bad_where (fixP->fx_file, fixP->fx_line,
24242 _("immediate value out of range"));
24243 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24244 newval |= rd | (rs << 3) | (value << 6);
24245 }
24246 }
24247 md_number_to_chars (buf, newval, THUMB_SIZE);
24248 break;
a737bd4d 24249
c19d1205
ZW
24250 case BFD_RELOC_ARM_THUMB_IMM:
24251 newval = md_chars_to_number (buf, THUMB_SIZE);
24252 if (value < 0 || value > 255)
24253 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 24254 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
24255 (long) value);
24256 newval |= value;
24257 md_number_to_chars (buf, newval, THUMB_SIZE);
24258 break;
a737bd4d 24259
c19d1205
ZW
24260 case BFD_RELOC_ARM_THUMB_SHIFT:
24261 /* 5bit shift value (0..32). LSL cannot take 32. */
24262 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24263 temp = newval & 0xf800;
24264 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24265 as_bad_where (fixP->fx_file, fixP->fx_line,
24266 _("invalid shift value: %ld"), (long) value);
24267 /* Shifts of zero must be encoded as LSL. */
24268 if (value == 0)
24269 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24270 /* Shifts of 32 are encoded as zero. */
24271 else if (value == 32)
24272 value = 0;
24273 newval |= value << 6;
24274 md_number_to_chars (buf, newval, THUMB_SIZE);
24275 break;
a737bd4d 24276
c19d1205
ZW
24277 case BFD_RELOC_VTABLE_INHERIT:
24278 case BFD_RELOC_VTABLE_ENTRY:
24279 fixP->fx_done = 0;
24280 return;
6c43fab6 24281
b6895b4f
PB
24282 case BFD_RELOC_ARM_MOVW:
24283 case BFD_RELOC_ARM_MOVT:
24284 case BFD_RELOC_ARM_THUMB_MOVW:
24285 case BFD_RELOC_ARM_THUMB_MOVT:
24286 if (fixP->fx_done || !seg->use_rela_p)
24287 {
24288 /* REL format relocations are limited to a 16-bit addend. */
24289 if (!fixP->fx_done)
24290 {
39623e12 24291 if (value < -0x8000 || value > 0x7fff)
b6895b4f 24292 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 24293 _("offset out of range"));
b6895b4f
PB
24294 }
24295 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24296 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24297 {
24298 value >>= 16;
24299 }
24300
24301 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24302 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24303 {
24304 newval = get_thumb32_insn (buf);
24305 newval &= 0xfbf08f00;
24306 newval |= (value & 0xf000) << 4;
24307 newval |= (value & 0x0800) << 15;
24308 newval |= (value & 0x0700) << 4;
24309 newval |= (value & 0x00ff);
24310 put_thumb32_insn (buf, newval);
24311 }
24312 else
24313 {
24314 newval = md_chars_to_number (buf, 4);
24315 newval &= 0xfff0f000;
24316 newval |= value & 0x0fff;
24317 newval |= (value & 0xf000) << 4;
24318 md_number_to_chars (buf, newval, 4);
24319 }
24320 }
24321 return;
24322
72d98d16
MG
24323 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24324 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24325 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24326 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24327 gas_assert (!fixP->fx_done);
24328 {
24329 bfd_vma insn;
24330 bfd_boolean is_mov;
24331 bfd_vma encoded_addend = value;
24332
24333 /* Check that addend can be encoded in instruction. */
24334 if (!seg->use_rela_p && (value < 0 || value > 255))
24335 as_bad_where (fixP->fx_file, fixP->fx_line,
24336 _("the offset 0x%08lX is not representable"),
24337 (unsigned long) encoded_addend);
24338
24339 /* Extract the instruction. */
24340 insn = md_chars_to_number (buf, THUMB_SIZE);
24341 is_mov = (insn & 0xf800) == 0x2000;
24342
24343 /* Encode insn. */
24344 if (is_mov)
24345 {
24346 if (!seg->use_rela_p)
24347 insn |= encoded_addend;
24348 }
24349 else
24350 {
24351 int rd, rs;
24352
24353 /* Extract the instruction. */
24354 /* Encoding is the following
24355 0x8000 SUB
24356 0x00F0 Rd
24357 0x000F Rs
24358 */
24359 /* The following conditions must be true :
24360 - ADD
24361 - Rd == Rs
24362 - Rd <= 7
24363 */
24364 rd = (insn >> 4) & 0xf;
24365 rs = insn & 0xf;
24366 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24367 as_bad_where (fixP->fx_file, fixP->fx_line,
24368 _("Unable to process relocation for thumb opcode: %lx"),
24369 (unsigned long) insn);
24370
24371 /* Encode as ADD immediate8 thumb 1 code. */
24372 insn = 0x3000 | (rd << 8);
24373
24374 /* Place the encoded addend into the first 8 bits of the
24375 instruction. */
24376 if (!seg->use_rela_p)
24377 insn |= encoded_addend;
24378 }
24379
24380 /* Update the instruction. */
24381 md_number_to_chars (buf, insn, THUMB_SIZE);
24382 }
24383 break;
24384
4962c51a
MS
24385 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24386 case BFD_RELOC_ARM_ALU_PC_G0:
24387 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24388 case BFD_RELOC_ARM_ALU_PC_G1:
24389 case BFD_RELOC_ARM_ALU_PC_G2:
24390 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24391 case BFD_RELOC_ARM_ALU_SB_G0:
24392 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24393 case BFD_RELOC_ARM_ALU_SB_G1:
24394 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 24395 gas_assert (!fixP->fx_done);
4962c51a
MS
24396 if (!seg->use_rela_p)
24397 {
477330fc
RM
24398 bfd_vma insn;
24399 bfd_vma encoded_addend;
24400 bfd_vma addend_abs = abs (value);
24401
24402 /* Check that the absolute value of the addend can be
24403 expressed as an 8-bit constant plus a rotation. */
24404 encoded_addend = encode_arm_immediate (addend_abs);
24405 if (encoded_addend == (unsigned int) FAIL)
4962c51a 24406 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24407 _("the offset 0x%08lX is not representable"),
24408 (unsigned long) addend_abs);
24409
24410 /* Extract the instruction. */
24411 insn = md_chars_to_number (buf, INSN_SIZE);
24412
24413 /* If the addend is positive, use an ADD instruction.
24414 Otherwise use a SUB. Take care not to destroy the S bit. */
24415 insn &= 0xff1fffff;
24416 if (value < 0)
24417 insn |= 1 << 22;
24418 else
24419 insn |= 1 << 23;
24420
24421 /* Place the encoded addend into the first 12 bits of the
24422 instruction. */
24423 insn &= 0xfffff000;
24424 insn |= encoded_addend;
24425
24426 /* Update the instruction. */
24427 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
24428 }
24429 break;
24430
24431 case BFD_RELOC_ARM_LDR_PC_G0:
24432 case BFD_RELOC_ARM_LDR_PC_G1:
24433 case BFD_RELOC_ARM_LDR_PC_G2:
24434 case BFD_RELOC_ARM_LDR_SB_G0:
24435 case BFD_RELOC_ARM_LDR_SB_G1:
24436 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 24437 gas_assert (!fixP->fx_done);
4962c51a 24438 if (!seg->use_rela_p)
477330fc
RM
24439 {
24440 bfd_vma insn;
24441 bfd_vma addend_abs = abs (value);
4962c51a 24442
477330fc
RM
24443 /* Check that the absolute value of the addend can be
24444 encoded in 12 bits. */
24445 if (addend_abs >= 0x1000)
4962c51a 24446 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24447 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24448 (unsigned long) addend_abs);
24449
24450 /* Extract the instruction. */
24451 insn = md_chars_to_number (buf, INSN_SIZE);
24452
24453 /* If the addend is negative, clear bit 23 of the instruction.
24454 Otherwise set it. */
24455 if (value < 0)
24456 insn &= ~(1 << 23);
24457 else
24458 insn |= 1 << 23;
24459
24460 /* Place the absolute value of the addend into the first 12 bits
24461 of the instruction. */
24462 insn &= 0xfffff000;
24463 insn |= addend_abs;
24464
24465 /* Update the instruction. */
24466 md_number_to_chars (buf, insn, INSN_SIZE);
24467 }
4962c51a
MS
24468 break;
24469
24470 case BFD_RELOC_ARM_LDRS_PC_G0:
24471 case BFD_RELOC_ARM_LDRS_PC_G1:
24472 case BFD_RELOC_ARM_LDRS_PC_G2:
24473 case BFD_RELOC_ARM_LDRS_SB_G0:
24474 case BFD_RELOC_ARM_LDRS_SB_G1:
24475 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 24476 gas_assert (!fixP->fx_done);
4962c51a 24477 if (!seg->use_rela_p)
477330fc
RM
24478 {
24479 bfd_vma insn;
24480 bfd_vma addend_abs = abs (value);
4962c51a 24481
477330fc
RM
24482 /* Check that the absolute value of the addend can be
24483 encoded in 8 bits. */
24484 if (addend_abs >= 0x100)
4962c51a 24485 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24486 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24487 (unsigned long) addend_abs);
24488
24489 /* Extract the instruction. */
24490 insn = md_chars_to_number (buf, INSN_SIZE);
24491
24492 /* If the addend is negative, clear bit 23 of the instruction.
24493 Otherwise set it. */
24494 if (value < 0)
24495 insn &= ~(1 << 23);
24496 else
24497 insn |= 1 << 23;
24498
24499 /* Place the first four bits of the absolute value of the addend
24500 into the first 4 bits of the instruction, and the remaining
24501 four into bits 8 .. 11. */
24502 insn &= 0xfffff0f0;
24503 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24504
24505 /* Update the instruction. */
24506 md_number_to_chars (buf, insn, INSN_SIZE);
24507 }
4962c51a
MS
24508 break;
24509
24510 case BFD_RELOC_ARM_LDC_PC_G0:
24511 case BFD_RELOC_ARM_LDC_PC_G1:
24512 case BFD_RELOC_ARM_LDC_PC_G2:
24513 case BFD_RELOC_ARM_LDC_SB_G0:
24514 case BFD_RELOC_ARM_LDC_SB_G1:
24515 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 24516 gas_assert (!fixP->fx_done);
4962c51a 24517 if (!seg->use_rela_p)
477330fc
RM
24518 {
24519 bfd_vma insn;
24520 bfd_vma addend_abs = abs (value);
4962c51a 24521
477330fc
RM
24522 /* Check that the absolute value of the addend is a multiple of
24523 four and, when divided by four, fits in 8 bits. */
24524 if (addend_abs & 0x3)
4962c51a 24525 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24526 _("bad offset 0x%08lX (must be word-aligned)"),
24527 (unsigned long) addend_abs);
4962c51a 24528
477330fc 24529 if ((addend_abs >> 2) > 0xff)
4962c51a 24530 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
24531 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24532 (unsigned long) addend_abs);
24533
24534 /* Extract the instruction. */
24535 insn = md_chars_to_number (buf, INSN_SIZE);
24536
24537 /* If the addend is negative, clear bit 23 of the instruction.
24538 Otherwise set it. */
24539 if (value < 0)
24540 insn &= ~(1 << 23);
24541 else
24542 insn |= 1 << 23;
24543
24544 /* Place the addend (divided by four) into the first eight
24545 bits of the instruction. */
24546 insn &= 0xfffffff0;
24547 insn |= addend_abs >> 2;
24548
24549 /* Update the instruction. */
24550 md_number_to_chars (buf, insn, INSN_SIZE);
24551 }
4962c51a
MS
24552 break;
24553
845b51d6
PB
24554 case BFD_RELOC_ARM_V4BX:
24555 /* This will need to go in the object file. */
24556 fixP->fx_done = 0;
24557 break;
24558
c19d1205
ZW
24559 case BFD_RELOC_UNUSED:
24560 default:
24561 as_bad_where (fixP->fx_file, fixP->fx_line,
24562 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24563 }
6c43fab6
RE
24564}
24565
c19d1205
ZW
24566/* Translate internal representation of relocation info to BFD target
24567 format. */
a737bd4d 24568
c19d1205 24569arelent *
00a97672 24570tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 24571{
c19d1205
ZW
24572 arelent * reloc;
24573 bfd_reloc_code_real_type code;
a737bd4d 24574
325801bd 24575 reloc = XNEW (arelent);
a737bd4d 24576
325801bd 24577 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
24578 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24579 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 24580
2fc8bdac 24581 if (fixp->fx_pcrel)
00a97672
RS
24582 {
24583 if (section->use_rela_p)
24584 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24585 else
24586 fixp->fx_offset = reloc->address;
24587 }
c19d1205 24588 reloc->addend = fixp->fx_offset;
a737bd4d 24589
c19d1205 24590 switch (fixp->fx_r_type)
a737bd4d 24591 {
c19d1205
ZW
24592 case BFD_RELOC_8:
24593 if (fixp->fx_pcrel)
24594 {
24595 code = BFD_RELOC_8_PCREL;
24596 break;
24597 }
1a0670f3 24598 /* Fall through. */
a737bd4d 24599
c19d1205
ZW
24600 case BFD_RELOC_16:
24601 if (fixp->fx_pcrel)
24602 {
24603 code = BFD_RELOC_16_PCREL;
24604 break;
24605 }
1a0670f3 24606 /* Fall through. */
6c43fab6 24607
c19d1205
ZW
24608 case BFD_RELOC_32:
24609 if (fixp->fx_pcrel)
24610 {
24611 code = BFD_RELOC_32_PCREL;
24612 break;
24613 }
1a0670f3 24614 /* Fall through. */
a737bd4d 24615
b6895b4f
PB
24616 case BFD_RELOC_ARM_MOVW:
24617 if (fixp->fx_pcrel)
24618 {
24619 code = BFD_RELOC_ARM_MOVW_PCREL;
24620 break;
24621 }
1a0670f3 24622 /* Fall through. */
b6895b4f
PB
24623
24624 case BFD_RELOC_ARM_MOVT:
24625 if (fixp->fx_pcrel)
24626 {
24627 code = BFD_RELOC_ARM_MOVT_PCREL;
24628 break;
24629 }
1a0670f3 24630 /* Fall through. */
b6895b4f
PB
24631
24632 case BFD_RELOC_ARM_THUMB_MOVW:
24633 if (fixp->fx_pcrel)
24634 {
24635 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24636 break;
24637 }
1a0670f3 24638 /* Fall through. */
b6895b4f
PB
24639
24640 case BFD_RELOC_ARM_THUMB_MOVT:
24641 if (fixp->fx_pcrel)
24642 {
24643 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24644 break;
24645 }
1a0670f3 24646 /* Fall through. */
b6895b4f 24647
c19d1205
ZW
24648 case BFD_RELOC_NONE:
24649 case BFD_RELOC_ARM_PCREL_BRANCH:
24650 case BFD_RELOC_ARM_PCREL_BLX:
24651 case BFD_RELOC_RVA:
24652 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24653 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24654 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24655 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24656 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24657 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
24658 case BFD_RELOC_VTABLE_ENTRY:
24659 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
24660#ifdef TE_PE
24661 case BFD_RELOC_32_SECREL:
24662#endif
c19d1205
ZW
24663 code = fixp->fx_r_type;
24664 break;
a737bd4d 24665
00adf2d4
JB
24666 case BFD_RELOC_THUMB_PCREL_BLX:
24667#ifdef OBJ_ELF
24668 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24669 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24670 else
24671#endif
24672 code = BFD_RELOC_THUMB_PCREL_BLX;
24673 break;
24674
c19d1205
ZW
24675 case BFD_RELOC_ARM_LITERAL:
24676 case BFD_RELOC_ARM_HWLITERAL:
24677 /* If this is called then the a literal has
24678 been referenced across a section boundary. */
24679 as_bad_where (fixp->fx_file, fixp->fx_line,
24680 _("literal referenced across section boundary"));
24681 return NULL;
a737bd4d 24682
c19d1205 24683#ifdef OBJ_ELF
0855e32b
NS
24684 case BFD_RELOC_ARM_TLS_CALL:
24685 case BFD_RELOC_ARM_THM_TLS_CALL:
24686 case BFD_RELOC_ARM_TLS_DESCSEQ:
24687 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
24688 case BFD_RELOC_ARM_GOT32:
24689 case BFD_RELOC_ARM_GOTOFF:
b43420e6 24690 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
24691 case BFD_RELOC_ARM_PLT32:
24692 case BFD_RELOC_ARM_TARGET1:
24693 case BFD_RELOC_ARM_ROSEGREL32:
24694 case BFD_RELOC_ARM_SBREL32:
24695 case BFD_RELOC_ARM_PREL31:
24696 case BFD_RELOC_ARM_TARGET2:
c19d1205 24697 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
24698 case BFD_RELOC_ARM_PCREL_CALL:
24699 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
24700 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24701 case BFD_RELOC_ARM_ALU_PC_G0:
24702 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24703 case BFD_RELOC_ARM_ALU_PC_G1:
24704 case BFD_RELOC_ARM_ALU_PC_G2:
24705 case BFD_RELOC_ARM_LDR_PC_G0:
24706 case BFD_RELOC_ARM_LDR_PC_G1:
24707 case BFD_RELOC_ARM_LDR_PC_G2:
24708 case BFD_RELOC_ARM_LDRS_PC_G0:
24709 case BFD_RELOC_ARM_LDRS_PC_G1:
24710 case BFD_RELOC_ARM_LDRS_PC_G2:
24711 case BFD_RELOC_ARM_LDC_PC_G0:
24712 case BFD_RELOC_ARM_LDC_PC_G1:
24713 case BFD_RELOC_ARM_LDC_PC_G2:
24714 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24715 case BFD_RELOC_ARM_ALU_SB_G0:
24716 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24717 case BFD_RELOC_ARM_ALU_SB_G1:
24718 case BFD_RELOC_ARM_ALU_SB_G2:
24719 case BFD_RELOC_ARM_LDR_SB_G0:
24720 case BFD_RELOC_ARM_LDR_SB_G1:
24721 case BFD_RELOC_ARM_LDR_SB_G2:
24722 case BFD_RELOC_ARM_LDRS_SB_G0:
24723 case BFD_RELOC_ARM_LDRS_SB_G1:
24724 case BFD_RELOC_ARM_LDRS_SB_G2:
24725 case BFD_RELOC_ARM_LDC_SB_G0:
24726 case BFD_RELOC_ARM_LDC_SB_G1:
24727 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 24728 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
24729 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24730 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24731 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24732 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
c19d1205
ZW
24733 code = fixp->fx_r_type;
24734 break;
a737bd4d 24735
0855e32b 24736 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 24737 case BFD_RELOC_ARM_TLS_GD32:
75c11999 24738 case BFD_RELOC_ARM_TLS_LE32:
c19d1205
ZW
24739 case BFD_RELOC_ARM_TLS_IE32:
24740 case BFD_RELOC_ARM_TLS_LDM32:
24741 /* BFD will include the symbol's address in the addend.
24742 But we don't want that, so subtract it out again here. */
24743 if (!S_IS_COMMON (fixp->fx_addsy))
24744 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24745 code = fixp->fx_r_type;
24746 break;
24747#endif
a737bd4d 24748
c19d1205
ZW
24749 case BFD_RELOC_ARM_IMMEDIATE:
24750 as_bad_where (fixp->fx_file, fixp->fx_line,
24751 _("internal relocation (type: IMMEDIATE) not fixed up"));
24752 return NULL;
a737bd4d 24753
c19d1205
ZW
24754 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24755 as_bad_where (fixp->fx_file, fixp->fx_line,
24756 _("ADRL used for a symbol not defined in the same file"));
24757 return NULL;
a737bd4d 24758
c19d1205 24759 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
24760 if (section->use_rela_p)
24761 {
24762 code = fixp->fx_r_type;
24763 break;
24764 }
24765
c19d1205
ZW
24766 if (fixp->fx_addsy != NULL
24767 && !S_IS_DEFINED (fixp->fx_addsy)
24768 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 24769 {
c19d1205
ZW
24770 as_bad_where (fixp->fx_file, fixp->fx_line,
24771 _("undefined local label `%s'"),
24772 S_GET_NAME (fixp->fx_addsy));
24773 return NULL;
a737bd4d
NC
24774 }
24775
c19d1205
ZW
24776 as_bad_where (fixp->fx_file, fixp->fx_line,
24777 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24778 return NULL;
a737bd4d 24779
c19d1205
ZW
24780 default:
24781 {
e0471c16 24782 const char * type;
6c43fab6 24783
c19d1205
ZW
24784 switch (fixp->fx_r_type)
24785 {
24786 case BFD_RELOC_NONE: type = "NONE"; break;
24787 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24788 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 24789 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
24790 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24791 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24792 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 24793 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 24794 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
24795 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24796 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24797 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24798 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24799 default: type = _("<unknown>"); break;
24800 }
24801 as_bad_where (fixp->fx_file, fixp->fx_line,
24802 _("cannot represent %s relocation in this object file format"),
24803 type);
24804 return NULL;
24805 }
a737bd4d 24806 }
6c43fab6 24807
c19d1205
ZW
24808#ifdef OBJ_ELF
24809 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24810 && GOT_symbol
24811 && fixp->fx_addsy == GOT_symbol)
24812 {
24813 code = BFD_RELOC_ARM_GOTPC;
24814 reloc->addend = fixp->fx_offset = reloc->address;
24815 }
24816#endif
6c43fab6 24817
c19d1205 24818 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 24819
c19d1205
ZW
24820 if (reloc->howto == NULL)
24821 {
24822 as_bad_where (fixp->fx_file, fixp->fx_line,
24823 _("cannot represent %s relocation in this object file format"),
24824 bfd_get_reloc_code_name (code));
24825 return NULL;
24826 }
6c43fab6 24827
c19d1205
ZW
24828 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24829 vtable entry to be used in the relocation's section offset. */
24830 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24831 reloc->address = fixp->fx_offset;
6c43fab6 24832
c19d1205 24833 return reloc;
6c43fab6
RE
24834}
24835
c19d1205 24836/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 24837
c19d1205
ZW
24838void
24839cons_fix_new_arm (fragS * frag,
24840 int where,
24841 int size,
62ebcb5c
AM
24842 expressionS * exp,
24843 bfd_reloc_code_real_type reloc)
6c43fab6 24844{
c19d1205 24845 int pcrel = 0;
6c43fab6 24846
c19d1205
ZW
24847 /* Pick a reloc.
24848 FIXME: @@ Should look at CPU word size. */
24849 switch (size)
24850 {
24851 case 1:
62ebcb5c 24852 reloc = BFD_RELOC_8;
c19d1205
ZW
24853 break;
24854 case 2:
62ebcb5c 24855 reloc = BFD_RELOC_16;
c19d1205
ZW
24856 break;
24857 case 4:
24858 default:
62ebcb5c 24859 reloc = BFD_RELOC_32;
c19d1205
ZW
24860 break;
24861 case 8:
62ebcb5c 24862 reloc = BFD_RELOC_64;
c19d1205
ZW
24863 break;
24864 }
6c43fab6 24865
f0927246
NC
24866#ifdef TE_PE
24867 if (exp->X_op == O_secrel)
24868 {
24869 exp->X_op = O_symbol;
62ebcb5c 24870 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
24871 }
24872#endif
24873
62ebcb5c 24874 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 24875}
6c43fab6 24876
4343666d 24877#if defined (OBJ_COFF)
c19d1205
ZW
24878void
24879arm_validate_fix (fixS * fixP)
6c43fab6 24880{
c19d1205
ZW
24881 /* If the destination of the branch is a defined symbol which does not have
24882 the THUMB_FUNC attribute, then we must be calling a function which has
24883 the (interfacearm) attribute. We look for the Thumb entry point to that
24884 function and change the branch to refer to that function instead. */
24885 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24886 && fixP->fx_addsy != NULL
24887 && S_IS_DEFINED (fixP->fx_addsy)
24888 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 24889 {
c19d1205 24890 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 24891 }
c19d1205
ZW
24892}
24893#endif
6c43fab6 24894
267bf995 24895
c19d1205
ZW
24896int
24897arm_force_relocation (struct fix * fixp)
24898{
24899#if defined (OBJ_COFF) && defined (TE_PE)
24900 if (fixp->fx_r_type == BFD_RELOC_RVA)
24901 return 1;
24902#endif
6c43fab6 24903
267bf995
RR
24904 /* In case we have a call or a branch to a function in ARM ISA mode from
24905 a thumb function or vice-versa force the relocation. These relocations
24906 are cleared off for some cores that might have blx and simple transformations
24907 are possible. */
24908
24909#ifdef OBJ_ELF
24910 switch (fixp->fx_r_type)
24911 {
24912 case BFD_RELOC_ARM_PCREL_JUMP:
24913 case BFD_RELOC_ARM_PCREL_CALL:
24914 case BFD_RELOC_THUMB_PCREL_BLX:
24915 if (THUMB_IS_FUNC (fixp->fx_addsy))
24916 return 1;
24917 break;
24918
24919 case BFD_RELOC_ARM_PCREL_BLX:
24920 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24921 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24922 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24923 if (ARM_IS_FUNC (fixp->fx_addsy))
24924 return 1;
24925 break;
24926
24927 default:
24928 break;
24929 }
24930#endif
24931
b5884301
PB
24932 /* Resolve these relocations even if the symbol is extern or weak.
24933 Technically this is probably wrong due to symbol preemption.
24934 In practice these relocations do not have enough range to be useful
24935 at dynamic link time, and some code (e.g. in the Linux kernel)
24936 expects these references to be resolved. */
c19d1205
ZW
24937 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
24938 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 24939 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 24940 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
24941 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24942 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
24943 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 24944 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
24945 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
24946 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
24947 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
24948 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
24949 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
24950 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 24951 return 0;
a737bd4d 24952
4962c51a
MS
24953 /* Always leave these relocations for the linker. */
24954 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24955 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24956 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24957 return 1;
24958
f0291e4c
PB
24959 /* Always generate relocations against function symbols. */
24960 if (fixp->fx_r_type == BFD_RELOC_32
24961 && fixp->fx_addsy
24962 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
24963 return 1;
24964
c19d1205 24965 return generic_force_reloc (fixp);
404ff6b5
AH
24966}
24967
0ffdc86c 24968#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
24969/* Relocations against function names must be left unadjusted,
24970 so that the linker can use this information to generate interworking
24971 stubs. The MIPS version of this function
c19d1205
ZW
24972 also prevents relocations that are mips-16 specific, but I do not
24973 know why it does this.
404ff6b5 24974
c19d1205
ZW
24975 FIXME:
24976 There is one other problem that ought to be addressed here, but
24977 which currently is not: Taking the address of a label (rather
24978 than a function) and then later jumping to that address. Such
24979 addresses also ought to have their bottom bit set (assuming that
24980 they reside in Thumb code), but at the moment they will not. */
404ff6b5 24981
c19d1205
ZW
24982bfd_boolean
24983arm_fix_adjustable (fixS * fixP)
404ff6b5 24984{
c19d1205
ZW
24985 if (fixP->fx_addsy == NULL)
24986 return 1;
404ff6b5 24987
e28387c3
PB
24988 /* Preserve relocations against symbols with function type. */
24989 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 24990 return FALSE;
e28387c3 24991
c19d1205
ZW
24992 if (THUMB_IS_FUNC (fixP->fx_addsy)
24993 && fixP->fx_subsy == NULL)
c921be7d 24994 return FALSE;
a737bd4d 24995
c19d1205
ZW
24996 /* We need the symbol name for the VTABLE entries. */
24997 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
24998 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 24999 return FALSE;
404ff6b5 25000
c19d1205
ZW
25001 /* Don't allow symbols to be discarded on GOT related relocs. */
25002 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25003 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25004 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25005 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
25006 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25007 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
25008 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
25009 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
25010 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25011 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25012 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25013 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25014 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 25015 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 25016 return FALSE;
a737bd4d 25017
4962c51a
MS
25018 /* Similarly for group relocations. */
25019 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25020 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25021 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 25022 return FALSE;
4962c51a 25023
79947c54
CD
25024 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25025 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25026 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25027 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25028 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25029 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25030 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25031 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25032 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 25033 return FALSE;
79947c54 25034
72d98d16
MG
25035 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25036 offsets, so keep these symbols. */
25037 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25038 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25039 return FALSE;
25040
c921be7d 25041 return TRUE;
a737bd4d 25042}
0ffdc86c
NC
25043#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25044
25045#ifdef OBJ_ELF
c19d1205
ZW
25046const char *
25047elf32_arm_target_format (void)
404ff6b5 25048{
c19d1205
ZW
25049#ifdef TE_SYMBIAN
25050 return (target_big_endian
25051 ? "elf32-bigarm-symbian"
25052 : "elf32-littlearm-symbian");
25053#elif defined (TE_VXWORKS)
25054 return (target_big_endian
25055 ? "elf32-bigarm-vxworks"
25056 : "elf32-littlearm-vxworks");
b38cadfb
NC
25057#elif defined (TE_NACL)
25058 return (target_big_endian
25059 ? "elf32-bigarm-nacl"
25060 : "elf32-littlearm-nacl");
c19d1205
ZW
25061#else
25062 if (target_big_endian)
25063 return "elf32-bigarm";
25064 else
25065 return "elf32-littlearm";
25066#endif
404ff6b5
AH
25067}
25068
c19d1205
ZW
25069void
25070armelf_frob_symbol (symbolS * symp,
25071 int * puntp)
404ff6b5 25072{
c19d1205
ZW
25073 elf_frob_symbol (symp, puntp);
25074}
25075#endif
404ff6b5 25076
c19d1205 25077/* MD interface: Finalization. */
a737bd4d 25078
c19d1205
ZW
25079void
25080arm_cleanup (void)
25081{
25082 literal_pool * pool;
a737bd4d 25083
e07e6e58
NC
25084 /* Ensure that all the IT blocks are properly closed. */
25085 check_it_blocks_finished ();
25086
c19d1205
ZW
25087 for (pool = list_of_pools; pool; pool = pool->next)
25088 {
5f4273c7 25089 /* Put it at the end of the relevant section. */
c19d1205
ZW
25090 subseg_set (pool->section, pool->sub_section);
25091#ifdef OBJ_ELF
25092 arm_elf_change_section ();
25093#endif
25094 s_ltorg (0);
25095 }
404ff6b5
AH
25096}
25097
cd000bff
DJ
25098#ifdef OBJ_ELF
25099/* Remove any excess mapping symbols generated for alignment frags in
25100 SEC. We may have created a mapping symbol before a zero byte
25101 alignment; remove it if there's a mapping symbol after the
25102 alignment. */
25103static void
25104check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25105 void *dummy ATTRIBUTE_UNUSED)
25106{
25107 segment_info_type *seginfo = seg_info (sec);
25108 fragS *fragp;
25109
25110 if (seginfo == NULL || seginfo->frchainP == NULL)
25111 return;
25112
25113 for (fragp = seginfo->frchainP->frch_root;
25114 fragp != NULL;
25115 fragp = fragp->fr_next)
25116 {
25117 symbolS *sym = fragp->tc_frag_data.last_map;
25118 fragS *next = fragp->fr_next;
25119
25120 /* Variable-sized frags have been converted to fixed size by
25121 this point. But if this was variable-sized to start with,
25122 there will be a fixed-size frag after it. So don't handle
25123 next == NULL. */
25124 if (sym == NULL || next == NULL)
25125 continue;
25126
25127 if (S_GET_VALUE (sym) < next->fr_address)
25128 /* Not at the end of this frag. */
25129 continue;
25130 know (S_GET_VALUE (sym) == next->fr_address);
25131
25132 do
25133 {
25134 if (next->tc_frag_data.first_map != NULL)
25135 {
25136 /* Next frag starts with a mapping symbol. Discard this
25137 one. */
25138 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25139 break;
25140 }
25141
25142 if (next->fr_next == NULL)
25143 {
25144 /* This mapping symbol is at the end of the section. Discard
25145 it. */
25146 know (next->fr_fix == 0 && next->fr_var == 0);
25147 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25148 break;
25149 }
25150
25151 /* As long as we have empty frags without any mapping symbols,
25152 keep looking. */
25153 /* If the next frag is non-empty and does not start with a
25154 mapping symbol, then this mapping symbol is required. */
25155 if (next->fr_address != next->fr_next->fr_address)
25156 break;
25157
25158 next = next->fr_next;
25159 }
25160 while (next != NULL);
25161 }
25162}
25163#endif
25164
c19d1205
ZW
25165/* Adjust the symbol table. This marks Thumb symbols as distinct from
25166 ARM ones. */
404ff6b5 25167
c19d1205
ZW
25168void
25169arm_adjust_symtab (void)
404ff6b5 25170{
c19d1205
ZW
25171#ifdef OBJ_COFF
25172 symbolS * sym;
404ff6b5 25173
c19d1205
ZW
25174 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25175 {
25176 if (ARM_IS_THUMB (sym))
25177 {
25178 if (THUMB_IS_FUNC (sym))
25179 {
25180 /* Mark the symbol as a Thumb function. */
25181 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25182 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25183 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 25184
c19d1205
ZW
25185 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25186 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25187 else
25188 as_bad (_("%s: unexpected function type: %d"),
25189 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25190 }
25191 else switch (S_GET_STORAGE_CLASS (sym))
25192 {
25193 case C_EXT:
25194 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25195 break;
25196 case C_STAT:
25197 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25198 break;
25199 case C_LABEL:
25200 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25201 break;
25202 default:
25203 /* Do nothing. */
25204 break;
25205 }
25206 }
a737bd4d 25207
c19d1205
ZW
25208 if (ARM_IS_INTERWORK (sym))
25209 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 25210 }
c19d1205
ZW
25211#endif
25212#ifdef OBJ_ELF
25213 symbolS * sym;
25214 char bind;
404ff6b5 25215
c19d1205 25216 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 25217 {
c19d1205
ZW
25218 if (ARM_IS_THUMB (sym))
25219 {
25220 elf_symbol_type * elf_sym;
404ff6b5 25221
c19d1205
ZW
25222 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25223 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 25224
b0796911
PB
25225 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25226 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
25227 {
25228 /* If it's a .thumb_func, declare it as so,
25229 otherwise tag label as .code 16. */
25230 if (THUMB_IS_FUNC (sym))
39d911fc
TP
25231 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25232 ST_BRANCH_TO_THUMB);
3ba67470 25233 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
25234 elf_sym->internal_elf_sym.st_info =
25235 ELF_ST_INFO (bind, STT_ARM_16BIT);
25236 }
25237 }
25238 }
cd000bff
DJ
25239
25240 /* Remove any overlapping mapping symbols generated by alignment frags. */
25241 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
25242 /* Now do generic ELF adjustments. */
25243 elf_adjust_symtab ();
c19d1205 25244#endif
404ff6b5
AH
25245}
25246
c19d1205 25247/* MD interface: Initialization. */
404ff6b5 25248
a737bd4d 25249static void
c19d1205 25250set_constant_flonums (void)
a737bd4d 25251{
c19d1205 25252 int i;
404ff6b5 25253
c19d1205
ZW
25254 for (i = 0; i < NUM_FLOAT_VALS; i++)
25255 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25256 abort ();
a737bd4d 25257}
404ff6b5 25258
3e9e4fcf
JB
25259/* Auto-select Thumb mode if it's the only available instruction set for the
25260 given architecture. */
25261
25262static void
25263autoselect_thumb_from_cpu_variant (void)
25264{
25265 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25266 opcode_select (16);
25267}
25268
c19d1205
ZW
25269void
25270md_begin (void)
a737bd4d 25271{
c19d1205
ZW
25272 unsigned mach;
25273 unsigned int i;
404ff6b5 25274
c19d1205
ZW
25275 if ( (arm_ops_hsh = hash_new ()) == NULL
25276 || (arm_cond_hsh = hash_new ()) == NULL
25277 || (arm_shift_hsh = hash_new ()) == NULL
25278 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 25279 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 25280 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
25281 || (arm_reloc_hsh = hash_new ()) == NULL
25282 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
25283 as_fatal (_("virtual memory exhausted"));
25284
25285 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 25286 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 25287 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 25288 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 25289 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 25290 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 25291 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25292 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 25293 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 25294 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 25295 (void *) (v7m_psrs + i));
c19d1205 25296 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 25297 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
25298 for (i = 0;
25299 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25300 i++)
d3ce72d0 25301 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 25302 (void *) (barrier_opt_names + i));
c19d1205 25303#ifdef OBJ_ELF
3da1d841
NC
25304 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25305 {
25306 struct reloc_entry * entry = reloc_names + i;
25307
25308 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25309 /* This makes encode_branch() use the EABI versions of this relocation. */
25310 entry->reloc = BFD_RELOC_UNUSED;
25311
25312 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25313 }
c19d1205
ZW
25314#endif
25315
25316 set_constant_flonums ();
404ff6b5 25317
c19d1205
ZW
25318 /* Set the cpu variant based on the command-line options. We prefer
25319 -mcpu= over -march= if both are set (as for GCC); and we prefer
25320 -mfpu= over any other way of setting the floating point unit.
25321 Use of legacy options with new options are faulted. */
e74cfd16 25322 if (legacy_cpu)
404ff6b5 25323 {
e74cfd16 25324 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
25325 as_bad (_("use of old and new-style options to set CPU type"));
25326
25327 mcpu_cpu_opt = legacy_cpu;
404ff6b5 25328 }
e74cfd16 25329 else if (!mcpu_cpu_opt)
c168ce07
TP
25330 {
25331 mcpu_cpu_opt = march_cpu_opt;
25332 dyn_mcpu_ext_opt = dyn_march_ext_opt;
25333 /* Avoid double free in arm_md_end. */
25334 dyn_march_ext_opt = NULL;
25335 }
404ff6b5 25336
e74cfd16 25337 if (legacy_fpu)
c19d1205 25338 {
e74cfd16 25339 if (mfpu_opt)
c19d1205 25340 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
25341
25342 mfpu_opt = legacy_fpu;
25343 }
e74cfd16 25344 else if (!mfpu_opt)
03b1477f 25345 {
45eb4c1b
NS
25346#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25347 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
25348 /* Some environments specify a default FPU. If they don't, infer it
25349 from the processor. */
e74cfd16 25350 if (mcpu_fpu_opt)
03b1477f
RE
25351 mfpu_opt = mcpu_fpu_opt;
25352 else
25353 mfpu_opt = march_fpu_opt;
39c2da32 25354#else
e74cfd16 25355 mfpu_opt = &fpu_default;
39c2da32 25356#endif
03b1477f
RE
25357 }
25358
e74cfd16 25359 if (!mfpu_opt)
03b1477f 25360 {
493cb6ef 25361 if (mcpu_cpu_opt != NULL)
e74cfd16 25362 mfpu_opt = &fpu_default;
493cb6ef 25363 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 25364 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 25365 else
e74cfd16 25366 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
25367 }
25368
ee065d83 25369#ifdef CPU_DEFAULT
e74cfd16 25370 if (!mcpu_cpu_opt)
ee065d83 25371 {
e74cfd16
PB
25372 mcpu_cpu_opt = &cpu_default;
25373 selected_cpu = cpu_default;
ee065d83 25374 }
c168ce07
TP
25375 else if (dyn_mcpu_ext_opt)
25376 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
62785b09
TP
25377 else
25378 selected_cpu = *mcpu_cpu_opt;
e74cfd16 25379#else
c168ce07
TP
25380 if (mcpu_cpu_opt && dyn_mcpu_ext_opt)
25381 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25382 else if (mcpu_cpu_opt)
e74cfd16 25383 selected_cpu = *mcpu_cpu_opt;
ee065d83 25384 else
e74cfd16 25385 mcpu_cpu_opt = &arm_arch_any;
ee065d83 25386#endif
03b1477f 25387
e74cfd16 25388 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
c168ce07
TP
25389 if (dyn_mcpu_ext_opt)
25390 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
03b1477f 25391
3e9e4fcf
JB
25392 autoselect_thumb_from_cpu_variant ();
25393
e74cfd16 25394 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 25395
f17c130b 25396#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 25397 {
7cc69913
NC
25398 unsigned int flags = 0;
25399
25400#if defined OBJ_ELF
25401 flags = meabi_flags;
d507cf36
PB
25402
25403 switch (meabi_flags)
33a392fb 25404 {
d507cf36 25405 case EF_ARM_EABI_UNKNOWN:
7cc69913 25406#endif
d507cf36
PB
25407 /* Set the flags in the private structure. */
25408 if (uses_apcs_26) flags |= F_APCS26;
25409 if (support_interwork) flags |= F_INTERWORK;
25410 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 25411 if (pic_code) flags |= F_PIC;
e74cfd16 25412 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
25413 flags |= F_SOFT_FLOAT;
25414
d507cf36
PB
25415 switch (mfloat_abi_opt)
25416 {
25417 case ARM_FLOAT_ABI_SOFT:
25418 case ARM_FLOAT_ABI_SOFTFP:
25419 flags |= F_SOFT_FLOAT;
25420 break;
33a392fb 25421
d507cf36
PB
25422 case ARM_FLOAT_ABI_HARD:
25423 if (flags & F_SOFT_FLOAT)
25424 as_bad (_("hard-float conflicts with specified fpu"));
25425 break;
25426 }
03b1477f 25427
e74cfd16
PB
25428 /* Using pure-endian doubles (even if soft-float). */
25429 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 25430 flags |= F_VFP_FLOAT;
f17c130b 25431
fde78edd 25432#if defined OBJ_ELF
e74cfd16 25433 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 25434 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
25435 break;
25436
8cb51566 25437 case EF_ARM_EABI_VER4:
3a4a14e9 25438 case EF_ARM_EABI_VER5:
c19d1205 25439 /* No additional flags to set. */
d507cf36
PB
25440 break;
25441
25442 default:
25443 abort ();
25444 }
7cc69913 25445#endif
b99bd4ef
NC
25446 bfd_set_private_flags (stdoutput, flags);
25447
25448 /* We have run out flags in the COFF header to encode the
25449 status of ATPCS support, so instead we create a dummy,
c19d1205 25450 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
25451 if (atpcs)
25452 {
25453 asection * sec;
25454
25455 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25456
25457 if (sec != NULL)
25458 {
25459 bfd_set_section_flags
25460 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25461 bfd_set_section_size (stdoutput, sec, 0);
25462 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25463 }
25464 }
7cc69913 25465 }
f17c130b 25466#endif
b99bd4ef
NC
25467
25468 /* Record the CPU type as well. */
2d447fca
JM
25469 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25470 mach = bfd_mach_arm_iWMMXt2;
25471 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 25472 mach = bfd_mach_arm_iWMMXt;
e74cfd16 25473 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 25474 mach = bfd_mach_arm_XScale;
e74cfd16 25475 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 25476 mach = bfd_mach_arm_ep9312;
e74cfd16 25477 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 25478 mach = bfd_mach_arm_5TE;
e74cfd16 25479 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 25480 {
e74cfd16 25481 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25482 mach = bfd_mach_arm_5T;
25483 else
25484 mach = bfd_mach_arm_5;
25485 }
e74cfd16 25486 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 25487 {
e74cfd16 25488 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
25489 mach = bfd_mach_arm_4T;
25490 else
25491 mach = bfd_mach_arm_4;
25492 }
e74cfd16 25493 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 25494 mach = bfd_mach_arm_3M;
e74cfd16
PB
25495 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25496 mach = bfd_mach_arm_3;
25497 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25498 mach = bfd_mach_arm_2a;
25499 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25500 mach = bfd_mach_arm_2;
25501 else
25502 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
25503
25504 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25505}
25506
c19d1205 25507/* Command line processing. */
b99bd4ef 25508
c19d1205
ZW
25509/* md_parse_option
25510 Invocation line includes a switch not recognized by the base assembler.
25511 See if it's a processor-specific option.
b99bd4ef 25512
c19d1205
ZW
25513 This routine is somewhat complicated by the need for backwards
25514 compatibility (since older releases of gcc can't be changed).
25515 The new options try to make the interface as compatible as
25516 possible with GCC.
b99bd4ef 25517
c19d1205 25518 New options (supported) are:
b99bd4ef 25519
c19d1205
ZW
25520 -mcpu=<cpu name> Assemble for selected processor
25521 -march=<architecture name> Assemble for selected architecture
25522 -mfpu=<fpu architecture> Assemble for selected FPU.
25523 -EB/-mbig-endian Big-endian
25524 -EL/-mlittle-endian Little-endian
25525 -k Generate PIC code
25526 -mthumb Start in Thumb mode
25527 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 25528
278df34e 25529 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 25530 -m[no-]warn-syms Warn when symbols match instructions
267bf995 25531
c19d1205 25532 For now we will also provide support for:
b99bd4ef 25533
c19d1205
ZW
25534 -mapcs-32 32-bit Program counter
25535 -mapcs-26 26-bit Program counter
25536 -macps-float Floats passed in FP registers
25537 -mapcs-reentrant Reentrant code
25538 -matpcs
25539 (sometime these will probably be replaced with -mapcs=<list of options>
25540 and -matpcs=<list of options>)
b99bd4ef 25541
c19d1205
ZW
25542 The remaining options are only supported for back-wards compatibility.
25543 Cpu variants, the arm part is optional:
25544 -m[arm]1 Currently not supported.
25545 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25546 -m[arm]3 Arm 3 processor
25547 -m[arm]6[xx], Arm 6 processors
25548 -m[arm]7[xx][t][[d]m] Arm 7 processors
25549 -m[arm]8[10] Arm 8 processors
25550 -m[arm]9[20][tdmi] Arm 9 processors
25551 -mstrongarm[110[0]] StrongARM processors
25552 -mxscale XScale processors
25553 -m[arm]v[2345[t[e]]] Arm architectures
25554 -mall All (except the ARM1)
25555 FP variants:
25556 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25557 -mfpe-old (No float load/store multiples)
25558 -mvfpxd VFP Single precision
25559 -mvfp All VFP
25560 -mno-fpu Disable all floating point instructions
b99bd4ef 25561
c19d1205
ZW
25562 The following CPU names are recognized:
25563 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25564 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25565 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25566 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25567 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25568 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25569 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 25570
c19d1205 25571 */
b99bd4ef 25572
c19d1205 25573const char * md_shortopts = "m:k";
b99bd4ef 25574
c19d1205
ZW
25575#ifdef ARM_BI_ENDIAN
25576#define OPTION_EB (OPTION_MD_BASE + 0)
25577#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 25578#else
c19d1205
ZW
25579#if TARGET_BYTES_BIG_ENDIAN
25580#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 25581#else
c19d1205
ZW
25582#define OPTION_EL (OPTION_MD_BASE + 1)
25583#endif
b99bd4ef 25584#endif
845b51d6 25585#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 25586
c19d1205 25587struct option md_longopts[] =
b99bd4ef 25588{
c19d1205
ZW
25589#ifdef OPTION_EB
25590 {"EB", no_argument, NULL, OPTION_EB},
25591#endif
25592#ifdef OPTION_EL
25593 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 25594#endif
845b51d6 25595 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
25596 {NULL, no_argument, NULL, 0}
25597};
b99bd4ef 25598
c19d1205 25599size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 25600
c19d1205 25601struct arm_option_table
b99bd4ef 25602{
0198d5e6
TC
25603 const char * option; /* Option name to match. */
25604 const char * help; /* Help information. */
25605 int * var; /* Variable to change. */
25606 int value; /* What to change it to. */
25607 const char * deprecated; /* If non-null, print this message. */
c19d1205 25608};
b99bd4ef 25609
c19d1205
ZW
25610struct arm_option_table arm_opts[] =
25611{
25612 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25613 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25614 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25615 &support_interwork, 1, NULL},
25616 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25617 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25618 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25619 1, NULL},
25620 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25621 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25622 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25623 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25624 NULL},
b99bd4ef 25625
c19d1205
ZW
25626 /* These are recognized by the assembler, but have no affect on code. */
25627 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25628 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
25629
25630 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25631 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25632 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
25633 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25634 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
25635 {NULL, NULL, NULL, 0, NULL}
25636};
25637
25638struct arm_legacy_option_table
25639{
0198d5e6
TC
25640 const char * option; /* Option name to match. */
25641 const arm_feature_set ** var; /* Variable to change. */
25642 const arm_feature_set value; /* What to change it to. */
25643 const char * deprecated; /* If non-null, print this message. */
e74cfd16 25644};
b99bd4ef 25645
e74cfd16
PB
25646const struct arm_legacy_option_table arm_legacy_opts[] =
25647{
c19d1205
ZW
25648 /* DON'T add any new processors to this list -- we want the whole list
25649 to go away... Add them to the processors table instead. */
e74cfd16
PB
25650 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25651 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25652 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25653 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25654 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25655 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25656 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25657 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25658 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25659 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25660 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25661 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25662 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25663 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25664 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25665 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25666 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25667 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25668 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25669 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25670 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25671 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25672 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25673 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25674 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25675 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25676 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25677 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25678 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25679 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25680 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25681 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25682 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25683 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25684 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25685 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25686 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25687 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25688 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25689 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25690 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25691 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25692 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25693 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25694 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25695 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25696 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25697 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25698 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25699 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25700 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25701 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25702 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25703 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25704 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25705 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25706 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25707 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25708 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25709 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25710 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25711 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25712 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25713 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25714 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25715 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25716 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25717 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25718 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25719 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25720 N_("use -mcpu=strongarm110")},
e74cfd16 25721 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25722 N_("use -mcpu=strongarm1100")},
e74cfd16 25723 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 25724 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
25725 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25726 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25727 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 25728
c19d1205 25729 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
25730 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25731 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25732 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25733 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25734 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25735 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25736 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25737 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25738 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25739 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25740 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25741 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25742 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25743 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25744 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25745 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25746 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25747 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 25748
c19d1205 25749 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
25750 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25751 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25752 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25753 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 25754 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 25755
e74cfd16 25756 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 25757};
7ed4c4c5 25758
c19d1205 25759struct arm_cpu_option_table
7ed4c4c5 25760{
0198d5e6
TC
25761 const char * name;
25762 size_t name_len;
25763 const arm_feature_set value;
25764 const arm_feature_set ext;
c19d1205
ZW
25765 /* For some CPUs we assume an FPU unless the user explicitly sets
25766 -mfpu=... */
0198d5e6 25767 const arm_feature_set default_fpu;
ee065d83
PB
25768 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25769 case. */
0198d5e6 25770 const char * canonical_name;
c19d1205 25771};
7ed4c4c5 25772
c19d1205
ZW
25773/* This list should, at a minimum, contain all the cpu names
25774 recognized by GCC. */
996b5569 25775#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 25776
e74cfd16 25777static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 25778{
996b5569
TP
25779 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25780 ARM_ARCH_NONE,
25781 FPU_ARCH_FPA),
25782 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25783 ARM_ARCH_NONE,
25784 FPU_ARCH_FPA),
25785 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25786 ARM_ARCH_NONE,
25787 FPU_ARCH_FPA),
25788 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25789 ARM_ARCH_NONE,
25790 FPU_ARCH_FPA),
25791 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25792 ARM_ARCH_NONE,
25793 FPU_ARCH_FPA),
25794 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25795 ARM_ARCH_NONE,
25796 FPU_ARCH_FPA),
25797 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25798 ARM_ARCH_NONE,
25799 FPU_ARCH_FPA),
25800 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25801 ARM_ARCH_NONE,
25802 FPU_ARCH_FPA),
25803 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25804 ARM_ARCH_NONE,
25805 FPU_ARCH_FPA),
25806 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25807 ARM_ARCH_NONE,
25808 FPU_ARCH_FPA),
25809 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25810 ARM_ARCH_NONE,
25811 FPU_ARCH_FPA),
25812 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25813 ARM_ARCH_NONE,
25814 FPU_ARCH_FPA),
25815 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25816 ARM_ARCH_NONE,
25817 FPU_ARCH_FPA),
25818 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25819 ARM_ARCH_NONE,
25820 FPU_ARCH_FPA),
25821 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25822 ARM_ARCH_NONE,
25823 FPU_ARCH_FPA),
25824 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25825 ARM_ARCH_NONE,
25826 FPU_ARCH_FPA),
25827 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25828 ARM_ARCH_NONE,
25829 FPU_ARCH_FPA),
25830 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25831 ARM_ARCH_NONE,
25832 FPU_ARCH_FPA),
25833 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25834 ARM_ARCH_NONE,
25835 FPU_ARCH_FPA),
25836 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25837 ARM_ARCH_NONE,
25838 FPU_ARCH_FPA),
25839 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25840 ARM_ARCH_NONE,
25841 FPU_ARCH_FPA),
25842 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25843 ARM_ARCH_NONE,
25844 FPU_ARCH_FPA),
25845 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25846 ARM_ARCH_NONE,
25847 FPU_ARCH_FPA),
25848 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25849 ARM_ARCH_NONE,
25850 FPU_ARCH_FPA),
25851 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25852 ARM_ARCH_NONE,
25853 FPU_ARCH_FPA),
25854 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25855 ARM_ARCH_NONE,
25856 FPU_ARCH_FPA),
25857 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25858 ARM_ARCH_NONE,
25859 FPU_ARCH_FPA),
25860 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25861 ARM_ARCH_NONE,
25862 FPU_ARCH_FPA),
25863 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25864 ARM_ARCH_NONE,
25865 FPU_ARCH_FPA),
25866 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25867 ARM_ARCH_NONE,
25868 FPU_ARCH_FPA),
25869 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25870 ARM_ARCH_NONE,
25871 FPU_ARCH_FPA),
25872 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
25873 ARM_ARCH_NONE,
25874 FPU_ARCH_FPA),
25875 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
25876 ARM_ARCH_NONE,
25877 FPU_ARCH_FPA),
25878 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
25879 ARM_ARCH_NONE,
25880 FPU_ARCH_FPA),
25881 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
25882 ARM_ARCH_NONE,
25883 FPU_ARCH_FPA),
25884 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
25885 ARM_ARCH_NONE,
25886 FPU_ARCH_FPA),
25887 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
25888 ARM_ARCH_NONE,
25889 FPU_ARCH_FPA),
25890 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
25891 ARM_ARCH_NONE,
25892 FPU_ARCH_FPA),
25893 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
25894 ARM_ARCH_NONE,
25895 FPU_ARCH_FPA),
25896 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
25897 ARM_ARCH_NONE,
25898 FPU_ARCH_FPA),
25899 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
25900 ARM_ARCH_NONE,
25901 FPU_ARCH_FPA),
25902 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
25903 ARM_ARCH_NONE,
25904 FPU_ARCH_FPA),
25905 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
25906 ARM_ARCH_NONE,
25907 FPU_ARCH_FPA),
25908 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
25909 ARM_ARCH_NONE,
25910 FPU_ARCH_FPA),
25911 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
25912 ARM_ARCH_NONE,
25913 FPU_ARCH_FPA),
25914 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
25915 ARM_ARCH_NONE,
25916 FPU_ARCH_FPA),
25917
c19d1205
ZW
25918 /* For V5 or later processors we default to using VFP; but the user
25919 should really set the FPU type explicitly. */
996b5569
TP
25920 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
25921 ARM_ARCH_NONE,
25922 FPU_ARCH_VFP_V2),
25923 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
25924 ARM_ARCH_NONE,
25925 FPU_ARCH_VFP_V2),
25926 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25927 ARM_ARCH_NONE,
25928 FPU_ARCH_VFP_V2),
25929 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25930 ARM_ARCH_NONE,
25931 FPU_ARCH_VFP_V2),
25932 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
25933 ARM_ARCH_NONE,
25934 FPU_ARCH_VFP_V2),
25935 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
25936 ARM_ARCH_NONE,
25937 FPU_ARCH_VFP_V2),
25938 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
25939 ARM_ARCH_NONE,
25940 FPU_ARCH_VFP_V2),
25941 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
25942 ARM_ARCH_NONE,
25943 FPU_ARCH_VFP_V2),
25944 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
25945 ARM_ARCH_NONE,
25946 FPU_ARCH_VFP_V2),
25947 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
25948 ARM_ARCH_NONE,
25949 FPU_ARCH_VFP_V2),
25950 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
25951 ARM_ARCH_NONE,
25952 FPU_ARCH_VFP_V2),
25953 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
25954 ARM_ARCH_NONE,
25955 FPU_ARCH_VFP_V2),
25956 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
25957 ARM_ARCH_NONE,
25958 FPU_ARCH_VFP_V1),
25959 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
25960 ARM_ARCH_NONE,
25961 FPU_ARCH_VFP_V1),
25962 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
25963 ARM_ARCH_NONE,
25964 FPU_ARCH_VFP_V2),
25965 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
25966 ARM_ARCH_NONE,
25967 FPU_ARCH_VFP_V2),
25968 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
25969 ARM_ARCH_NONE,
25970 FPU_ARCH_VFP_V1),
25971 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
25972 ARM_ARCH_NONE,
25973 FPU_ARCH_VFP_V2),
25974 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
25975 ARM_ARCH_NONE,
25976 FPU_ARCH_VFP_V2),
25977 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
25978 ARM_ARCH_NONE,
25979 FPU_ARCH_VFP_V2),
25980 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
25981 ARM_ARCH_NONE,
25982 FPU_ARCH_VFP_V2),
25983 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
25984 ARM_ARCH_NONE,
25985 FPU_ARCH_VFP_V2),
25986 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
25987 ARM_ARCH_NONE,
25988 FPU_ARCH_VFP_V2),
25989 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
25990 ARM_ARCH_NONE,
25991 FPU_ARCH_VFP_V2),
25992 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
25993 ARM_ARCH_NONE,
25994 FPU_ARCH_VFP_V2),
25995 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
25996 ARM_ARCH_NONE,
25997 FPU_ARCH_VFP_V2),
25998 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
25999 ARM_ARCH_NONE,
26000 FPU_NONE),
26001 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26002 ARM_ARCH_NONE,
26003 FPU_NONE),
26004 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26005 ARM_ARCH_NONE,
26006 FPU_ARCH_VFP_V2),
26007 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26008 ARM_ARCH_NONE,
26009 FPU_ARCH_VFP_V2),
26010 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26011 ARM_ARCH_NONE,
26012 FPU_ARCH_VFP_V2),
26013 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26014 ARM_ARCH_NONE,
26015 FPU_NONE),
26016 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26017 ARM_ARCH_NONE,
26018 FPU_NONE),
26019 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26020 ARM_ARCH_NONE,
26021 FPU_ARCH_VFP_V2),
26022 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26023 ARM_ARCH_NONE,
26024 FPU_NONE),
26025 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26026 ARM_ARCH_NONE,
26027 FPU_ARCH_VFP_V2),
26028 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26029 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26030 FPU_NONE),
26031 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26032 ARM_ARCH_NONE,
26033 FPU_ARCH_NEON_VFP_V4),
26034 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26035 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26036 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26037 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26038 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26039 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26040 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26041 ARM_ARCH_NONE,
26042 FPU_ARCH_NEON_VFP_V4),
26043 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26044 ARM_ARCH_NONE,
26045 FPU_ARCH_NEON_VFP_V4),
26046 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26047 ARM_ARCH_NONE,
26048 FPU_ARCH_NEON_VFP_V4),
26049 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26050 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26051 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26052 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26053 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26054 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26055 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26056 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26057 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26058 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26059 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26060 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26061 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26062 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26063 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26064 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26065 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26066 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26067 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26068 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26069 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
26070 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26071 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 26072 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
26073 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26074 ARM_ARCH_NONE,
26075 FPU_NONE),
26076 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26077 ARM_ARCH_NONE,
26078 FPU_ARCH_VFP_V3D16),
26079 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26080 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26081 FPU_NONE),
26082 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26083 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26084 FPU_ARCH_VFP_V3D16),
26085 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26086 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26087 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
26088 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26089 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26090 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
26091 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26092 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26093 FPU_NONE),
26094 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26095 ARM_ARCH_NONE,
26096 FPU_NONE),
26097 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26098 ARM_ARCH_NONE,
26099 FPU_NONE),
26100 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26101 ARM_ARCH_NONE,
26102 FPU_NONE),
26103 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26104 ARM_ARCH_NONE,
26105 FPU_NONE),
26106 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26107 ARM_ARCH_NONE,
26108 FPU_NONE),
26109 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26110 ARM_ARCH_NONE,
26111 FPU_NONE),
26112 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26113 ARM_ARCH_NONE,
26114 FPU_NONE),
26115 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26116 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26117 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
6b21c2bf 26118
c19d1205 26119 /* ??? XSCALE is really an architecture. */
996b5569
TP
26120 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26121 ARM_ARCH_NONE,
26122 FPU_ARCH_VFP_V2),
26123
c19d1205 26124 /* ??? iwmmxt is not a processor. */
996b5569
TP
26125 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26126 ARM_ARCH_NONE,
26127 FPU_ARCH_VFP_V2),
26128 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26129 ARM_ARCH_NONE,
26130 FPU_ARCH_VFP_V2),
26131 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26132 ARM_ARCH_NONE,
26133 FPU_ARCH_VFP_V2),
26134
0198d5e6 26135 /* Maverick. */
996b5569
TP
26136 ARM_CPU_OPT ("ep9312", "ARM920T",
26137 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26138 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26139
da4339ed 26140 /* Marvell processors. */
996b5569
TP
26141 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26142 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26143 FPU_ARCH_VFP_V3D16),
26144 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26145 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26146 FPU_ARCH_NEON_VFP_V4),
da4339ed 26147
996b5569
TP
26148 /* APM X-Gene family. */
26149 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26150 ARM_ARCH_NONE,
26151 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26152 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26153 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26154 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26155
26156 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 26157};
f3bad469 26158#undef ARM_CPU_OPT
7ed4c4c5 26159
c19d1205 26160struct arm_arch_option_table
7ed4c4c5 26161{
0198d5e6
TC
26162 const char * name;
26163 size_t name_len;
26164 const arm_feature_set value;
26165 const arm_feature_set default_fpu;
c19d1205 26166};
7ed4c4c5 26167
c19d1205
ZW
26168/* This list should, at a minimum, contain all the architecture names
26169 recognized by GCC. */
f3bad469 26170#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
0198d5e6 26171
e74cfd16 26172static const struct arm_arch_option_table arm_archs[] =
c19d1205 26173{
f3bad469
MGD
26174 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26175 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26176 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26177 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26178 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26179 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26180 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26181 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26182 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26183 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26184 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26185 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26186 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26187 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
26188 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
26189 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
26190 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
26191 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
26192 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
26193 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
26194 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
f33026a9
MW
26195 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26196 kept to preserve existing behaviour. */
26197 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26198 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
f3bad469
MGD
26199 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
26200 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
26201 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
f33026a9
MW
26202 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26203 kept to preserve existing behaviour. */
26204 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26205 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
f3bad469
MGD
26206 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26207 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26208 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
26209 /* The official spelling of the ARMv7 profile variants is the dashed form.
26210 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469 26211 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
c9fb6e58 26212 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
f3bad469
MGD
26213 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26214 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26215 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26216 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26217 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26218 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
ff8646ee 26219 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
4ed7ed8d 26220 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
bca38921 26221 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
a5932920 26222 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
56a1b672 26223 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
a12fd8e1 26224 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
ced40572 26225 ARM_ARCH_OPT ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP),
dec41383 26226 ARM_ARCH_OPT ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP),
f3bad469
MGD
26227 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26228 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26229 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
26230 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 26231};
f3bad469 26232#undef ARM_ARCH_OPT
7ed4c4c5 26233
69133863 26234/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 26235
69133863 26236struct arm_option_extension_value_table
c19d1205 26237{
0198d5e6
TC
26238 const char * name;
26239 size_t name_len;
26240 const arm_feature_set merge_value;
26241 const arm_feature_set clear_value;
d942732e
TP
26242 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26243 indicates that an extension is available for all architectures while
26244 ARM_ANY marks an empty entry. */
0198d5e6 26245 const arm_feature_set allowed_archs[2];
c19d1205 26246};
7ed4c4c5 26247
0198d5e6
TC
26248/* The following table must be in alphabetical order with a NULL last entry. */
26249
d942732e
TP
26250#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26251#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 26252
69133863 26253static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 26254{
823d2571
TG
26255 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26256 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 26257 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
26258 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26259 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
26260 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26261 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26262 ARM_ARCH_V8_2A),
15afaa63
TP
26263 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26264 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26265 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
26266 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26267 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
26268 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26269 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26270 ARM_ARCH_V8_2A),
01f48020
TC
26271 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26272 | ARM_EXT2_FP16_FML),
26273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26274 | ARM_EXT2_FP16_FML),
26275 ARM_ARCH_V8_2A),
d942732e 26276 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 26277 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
26278 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26279 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
26280 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26281 Thumb divide instruction. Due to this having the same name as the
26282 previous entry, this will be ignored when doing command-line parsing and
26283 only considered by build attribute selection code. */
26284 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26285 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26286 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 26287 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 26288 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 26289 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 26290 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 26291 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
26292 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26293 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 26294 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
26295 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26296 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
26297 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26298 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26299 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
26300 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26301 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 26302 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
4d1464f2
MW
26303 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26304 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 26305 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
26306 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26307 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 26308 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
d942732e 26309 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 26310 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
26311 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26312 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
26313 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26314 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26315 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
26316 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26317 | ARM_EXT_DIV),
26318 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26319 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26320 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
26321 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26322 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 26323};
f3bad469 26324#undef ARM_EXT_OPT
69133863
MGD
26325
26326/* ISA floating-point and Advanced SIMD extensions. */
26327struct arm_option_fpu_value_table
26328{
0198d5e6
TC
26329 const char * name;
26330 const arm_feature_set value;
c19d1205 26331};
7ed4c4c5 26332
c19d1205
ZW
26333/* This list should, at a minimum, contain all the fpu names
26334 recognized by GCC. */
69133863 26335static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
26336{
26337 {"softfpa", FPU_NONE},
26338 {"fpe", FPU_ARCH_FPE},
26339 {"fpe2", FPU_ARCH_FPE},
26340 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26341 {"fpa", FPU_ARCH_FPA},
26342 {"fpa10", FPU_ARCH_FPA},
26343 {"fpa11", FPU_ARCH_FPA},
26344 {"arm7500fe", FPU_ARCH_FPA},
26345 {"softvfp", FPU_ARCH_VFP},
26346 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26347 {"vfp", FPU_ARCH_VFP_V2},
26348 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 26349 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
26350 {"vfp10", FPU_ARCH_VFP_V2},
26351 {"vfp10-r0", FPU_ARCH_VFP_V1},
26352 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
26353 {"vfpv2", FPU_ARCH_VFP_V2},
26354 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 26355 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 26356 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
26357 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26358 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26359 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
26360 {"arm1020t", FPU_ARCH_VFP_V1},
26361 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 26362 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
26363 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26364 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 26365 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 26366 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 26367 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
26368 {"vfpv4", FPU_ARCH_VFP_V4},
26369 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 26370 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
26371 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26372 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 26373 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
26374 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26375 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26376 {"crypto-neon-fp-armv8",
26377 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 26378 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
26379 {"crypto-neon-fp-armv8.1",
26380 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
26381 {NULL, ARM_ARCH_NONE}
26382};
26383
26384struct arm_option_value_table
26385{
e0471c16 26386 const char *name;
e74cfd16 26387 long value;
c19d1205 26388};
7ed4c4c5 26389
e74cfd16 26390static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
26391{
26392 {"hard", ARM_FLOAT_ABI_HARD},
26393 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26394 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 26395 {NULL, 0}
c19d1205 26396};
7ed4c4c5 26397
c19d1205 26398#ifdef OBJ_ELF
3a4a14e9 26399/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 26400static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
26401{
26402 {"gnu", EF_ARM_EABI_UNKNOWN},
26403 {"4", EF_ARM_EABI_VER4},
3a4a14e9 26404 {"5", EF_ARM_EABI_VER5},
e74cfd16 26405 {NULL, 0}
c19d1205
ZW
26406};
26407#endif
7ed4c4c5 26408
c19d1205
ZW
26409struct arm_long_option_table
26410{
0198d5e6 26411 const char * option; /* Substring to match. */
e0471c16 26412 const char * help; /* Help information. */
17b9d67d 26413 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 26414 const char * deprecated; /* If non-null, print this message. */
c19d1205 26415};
7ed4c4c5 26416
c921be7d 26417static bfd_boolean
c168ce07
TP
26418arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26419 arm_feature_set **ext_set_p)
7ed4c4c5 26420{
69133863 26421 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
26422 extensions being added before being removed. We achieve this by having
26423 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 26424 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 26425 or removing it (0) and only allowing it to change in the order
69133863
MGD
26426 -1 -> 1 -> 0. */
26427 const struct arm_option_extension_value_table * opt = NULL;
d942732e 26428 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
26429 int adding_value = -1;
26430
c168ce07
TP
26431 if (!*ext_set_p)
26432 {
26433 *ext_set_p = XNEW (arm_feature_set);
26434 **ext_set_p = arm_arch_none;
26435 }
e74cfd16 26436
c19d1205 26437 while (str != NULL && *str != 0)
7ed4c4c5 26438 {
82b8a785 26439 const char *ext;
f3bad469 26440 size_t len;
7ed4c4c5 26441
c19d1205
ZW
26442 if (*str != '+')
26443 {
26444 as_bad (_("invalid architectural extension"));
c921be7d 26445 return FALSE;
c19d1205 26446 }
7ed4c4c5 26447
c19d1205
ZW
26448 str++;
26449 ext = strchr (str, '+');
7ed4c4c5 26450
c19d1205 26451 if (ext != NULL)
f3bad469 26452 len = ext - str;
c19d1205 26453 else
f3bad469 26454 len = strlen (str);
7ed4c4c5 26455
f3bad469 26456 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
26457 {
26458 if (adding_value != 0)
26459 {
26460 adding_value = 0;
26461 opt = arm_extensions;
26462 }
26463
f3bad469 26464 len -= 2;
69133863
MGD
26465 str += 2;
26466 }
f3bad469 26467 else if (len > 0)
69133863
MGD
26468 {
26469 if (adding_value == -1)
26470 {
26471 adding_value = 1;
26472 opt = arm_extensions;
26473 }
26474 else if (adding_value != 1)
26475 {
26476 as_bad (_("must specify extensions to add before specifying "
26477 "those to remove"));
26478 return FALSE;
26479 }
26480 }
26481
f3bad469 26482 if (len == 0)
c19d1205
ZW
26483 {
26484 as_bad (_("missing architectural extension"));
c921be7d 26485 return FALSE;
c19d1205 26486 }
7ed4c4c5 26487
69133863
MGD
26488 gas_assert (adding_value != -1);
26489 gas_assert (opt != NULL);
26490
26491 /* Scan over the options table trying to find an exact match. */
26492 for (; opt->name != NULL; opt++)
f3bad469 26493 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26494 {
d942732e
TP
26495 int i, nb_allowed_archs =
26496 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 26497 /* Check we can apply the extension to this architecture. */
d942732e
TP
26498 for (i = 0; i < nb_allowed_archs; i++)
26499 {
26500 /* Empty entry. */
26501 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26502 continue;
c168ce07 26503 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
26504 break;
26505 }
26506 if (i == nb_allowed_archs)
69133863
MGD
26507 {
26508 as_bad (_("extension does not apply to the base architecture"));
26509 return FALSE;
26510 }
26511
26512 /* Add or remove the extension. */
26513 if (adding_value)
c168ce07
TP
26514 ARM_MERGE_FEATURE_SETS (**ext_set_p, **ext_set_p,
26515 opt->merge_value);
69133863 26516 else
c168ce07 26517 ARM_CLEAR_FEATURE (**ext_set_p, **ext_set_p, opt->clear_value);
69133863 26518
3d030cdb
TP
26519 /* Allowing Thumb division instructions for ARMv7 in autodetection
26520 rely on this break so that duplicate extensions (extensions
26521 with the same name as a previous extension in the list) are not
26522 considered for command-line parsing. */
c19d1205
ZW
26523 break;
26524 }
7ed4c4c5 26525
c19d1205
ZW
26526 if (opt->name == NULL)
26527 {
69133863
MGD
26528 /* Did we fail to find an extension because it wasn't specified in
26529 alphabetical order, or because it does not exist? */
26530
26531 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 26532 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
26533 break;
26534
26535 if (opt->name == NULL)
26536 as_bad (_("unknown architectural extension `%s'"), str);
26537 else
26538 as_bad (_("architectural extensions must be specified in "
26539 "alphabetical order"));
26540
c921be7d 26541 return FALSE;
c19d1205 26542 }
69133863
MGD
26543 else
26544 {
26545 /* We should skip the extension we've just matched the next time
26546 round. */
26547 opt++;
26548 }
7ed4c4c5 26549
c19d1205
ZW
26550 str = ext;
26551 };
7ed4c4c5 26552
c921be7d 26553 return TRUE;
c19d1205 26554}
7ed4c4c5 26555
c921be7d 26556static bfd_boolean
17b9d67d 26557arm_parse_cpu (const char *str)
7ed4c4c5 26558{
f3bad469 26559 const struct arm_cpu_option_table *opt;
82b8a785 26560 const char *ext = strchr (str, '+');
f3bad469 26561 size_t len;
7ed4c4c5 26562
c19d1205 26563 if (ext != NULL)
f3bad469 26564 len = ext - str;
7ed4c4c5 26565 else
f3bad469 26566 len = strlen (str);
7ed4c4c5 26567
f3bad469 26568 if (len == 0)
7ed4c4c5 26569 {
c19d1205 26570 as_bad (_("missing cpu name `%s'"), str);
c921be7d 26571 return FALSE;
7ed4c4c5
NC
26572 }
26573
c19d1205 26574 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 26575 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26576 {
c168ce07
TP
26577 mcpu_cpu_opt = &opt->value;
26578 if (!dyn_mcpu_ext_opt)
26579 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
26580 *dyn_mcpu_ext_opt = opt->ext;
e74cfd16 26581 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 26582 if (opt->canonical_name)
ef8e6722
JW
26583 {
26584 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26585 strcpy (selected_cpu_name, opt->canonical_name);
26586 }
ee065d83
PB
26587 else
26588 {
f3bad469 26589 size_t i;
c921be7d 26590
ef8e6722
JW
26591 if (len >= sizeof selected_cpu_name)
26592 len = (sizeof selected_cpu_name) - 1;
26593
f3bad469 26594 for (i = 0; i < len; i++)
ee065d83
PB
26595 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26596 selected_cpu_name[i] = 0;
26597 }
7ed4c4c5 26598
c19d1205 26599 if (ext != NULL)
c168ce07 26600 return arm_parse_extension (ext, mcpu_cpu_opt, &dyn_mcpu_ext_opt);
7ed4c4c5 26601
c921be7d 26602 return TRUE;
c19d1205 26603 }
7ed4c4c5 26604
c19d1205 26605 as_bad (_("unknown cpu `%s'"), str);
c921be7d 26606 return FALSE;
7ed4c4c5
NC
26607}
26608
c921be7d 26609static bfd_boolean
17b9d67d 26610arm_parse_arch (const char *str)
7ed4c4c5 26611{
e74cfd16 26612 const struct arm_arch_option_table *opt;
82b8a785 26613 const char *ext = strchr (str, '+');
f3bad469 26614 size_t len;
7ed4c4c5 26615
c19d1205 26616 if (ext != NULL)
f3bad469 26617 len = ext - str;
7ed4c4c5 26618 else
f3bad469 26619 len = strlen (str);
7ed4c4c5 26620
f3bad469 26621 if (len == 0)
7ed4c4c5 26622 {
c19d1205 26623 as_bad (_("missing architecture name `%s'"), str);
c921be7d 26624 return FALSE;
7ed4c4c5
NC
26625 }
26626
c19d1205 26627 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 26628 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 26629 {
e74cfd16
PB
26630 march_cpu_opt = &opt->value;
26631 march_fpu_opt = &opt->default_fpu;
5f4273c7 26632 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 26633
c19d1205 26634 if (ext != NULL)
c168ce07 26635 return arm_parse_extension (ext, march_cpu_opt, &dyn_march_ext_opt);
7ed4c4c5 26636
c921be7d 26637 return TRUE;
c19d1205
ZW
26638 }
26639
26640 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 26641 return FALSE;
7ed4c4c5 26642}
eb043451 26643
c921be7d 26644static bfd_boolean
17b9d67d 26645arm_parse_fpu (const char * str)
c19d1205 26646{
69133863 26647 const struct arm_option_fpu_value_table * opt;
b99bd4ef 26648
c19d1205
ZW
26649 for (opt = arm_fpus; opt->name != NULL; opt++)
26650 if (streq (opt->name, str))
26651 {
e74cfd16 26652 mfpu_opt = &opt->value;
c921be7d 26653 return TRUE;
c19d1205 26654 }
b99bd4ef 26655
c19d1205 26656 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 26657 return FALSE;
c19d1205
ZW
26658}
26659
c921be7d 26660static bfd_boolean
17b9d67d 26661arm_parse_float_abi (const char * str)
b99bd4ef 26662{
e74cfd16 26663 const struct arm_option_value_table * opt;
b99bd4ef 26664
c19d1205
ZW
26665 for (opt = arm_float_abis; opt->name != NULL; opt++)
26666 if (streq (opt->name, str))
26667 {
26668 mfloat_abi_opt = opt->value;
c921be7d 26669 return TRUE;
c19d1205 26670 }
cc8a6dd0 26671
c19d1205 26672 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 26673 return FALSE;
c19d1205 26674}
b99bd4ef 26675
c19d1205 26676#ifdef OBJ_ELF
c921be7d 26677static bfd_boolean
17b9d67d 26678arm_parse_eabi (const char * str)
c19d1205 26679{
e74cfd16 26680 const struct arm_option_value_table *opt;
cc8a6dd0 26681
c19d1205
ZW
26682 for (opt = arm_eabis; opt->name != NULL; opt++)
26683 if (streq (opt->name, str))
26684 {
26685 meabi_flags = opt->value;
c921be7d 26686 return TRUE;
c19d1205
ZW
26687 }
26688 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 26689 return FALSE;
c19d1205
ZW
26690}
26691#endif
cc8a6dd0 26692
c921be7d 26693static bfd_boolean
17b9d67d 26694arm_parse_it_mode (const char * str)
e07e6e58 26695{
c921be7d 26696 bfd_boolean ret = TRUE;
e07e6e58
NC
26697
26698 if (streq ("arm", str))
26699 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26700 else if (streq ("thumb", str))
26701 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26702 else if (streq ("always", str))
26703 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26704 else if (streq ("never", str))
26705 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26706 else
26707 {
26708 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 26709 "arm, thumb, always, or never."), str);
c921be7d 26710 ret = FALSE;
e07e6e58
NC
26711 }
26712
26713 return ret;
26714}
26715
2e6976a8 26716static bfd_boolean
17b9d67d 26717arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
26718{
26719 codecomposer_syntax = TRUE;
26720 arm_comment_chars[0] = ';';
26721 arm_line_separator_chars[0] = 0;
26722 return TRUE;
26723}
26724
c19d1205
ZW
26725struct arm_long_option_table arm_long_opts[] =
26726{
26727 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26728 arm_parse_cpu, NULL},
26729 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26730 arm_parse_arch, NULL},
26731 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26732 arm_parse_fpu, NULL},
26733 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26734 arm_parse_float_abi, NULL},
26735#ifdef OBJ_ELF
7fac0536 26736 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
26737 arm_parse_eabi, NULL},
26738#endif
e07e6e58
NC
26739 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26740 arm_parse_it_mode, NULL},
2e6976a8
DG
26741 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26742 arm_ccs_mode, NULL},
c19d1205
ZW
26743 {NULL, NULL, 0, NULL}
26744};
cc8a6dd0 26745
c19d1205 26746int
17b9d67d 26747md_parse_option (int c, const char * arg)
c19d1205
ZW
26748{
26749 struct arm_option_table *opt;
e74cfd16 26750 const struct arm_legacy_option_table *fopt;
c19d1205 26751 struct arm_long_option_table *lopt;
b99bd4ef 26752
c19d1205 26753 switch (c)
b99bd4ef 26754 {
c19d1205
ZW
26755#ifdef OPTION_EB
26756 case OPTION_EB:
26757 target_big_endian = 1;
26758 break;
26759#endif
cc8a6dd0 26760
c19d1205
ZW
26761#ifdef OPTION_EL
26762 case OPTION_EL:
26763 target_big_endian = 0;
26764 break;
26765#endif
b99bd4ef 26766
845b51d6
PB
26767 case OPTION_FIX_V4BX:
26768 fix_v4bx = TRUE;
26769 break;
26770
c19d1205
ZW
26771 case 'a':
26772 /* Listing option. Just ignore these, we don't support additional
26773 ones. */
26774 return 0;
b99bd4ef 26775
c19d1205
ZW
26776 default:
26777 for (opt = arm_opts; opt->option != NULL; opt++)
26778 {
26779 if (c == opt->option[0]
26780 && ((arg == NULL && opt->option[1] == 0)
26781 || streq (arg, opt->option + 1)))
26782 {
c19d1205 26783 /* If the option is deprecated, tell the user. */
278df34e 26784 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
26785 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26786 arg ? arg : "", _(opt->deprecated));
b99bd4ef 26787
c19d1205
ZW
26788 if (opt->var != NULL)
26789 *opt->var = opt->value;
cc8a6dd0 26790
c19d1205
ZW
26791 return 1;
26792 }
26793 }
b99bd4ef 26794
e74cfd16
PB
26795 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26796 {
26797 if (c == fopt->option[0]
26798 && ((arg == NULL && fopt->option[1] == 0)
26799 || streq (arg, fopt->option + 1)))
26800 {
e74cfd16 26801 /* If the option is deprecated, tell the user. */
278df34e 26802 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
26803 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26804 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
26805
26806 if (fopt->var != NULL)
26807 *fopt->var = &fopt->value;
26808
26809 return 1;
26810 }
26811 }
26812
c19d1205
ZW
26813 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26814 {
26815 /* These options are expected to have an argument. */
26816 if (c == lopt->option[0]
26817 && arg != NULL
26818 && strncmp (arg, lopt->option + 1,
26819 strlen (lopt->option + 1)) == 0)
26820 {
c19d1205 26821 /* If the option is deprecated, tell the user. */
278df34e 26822 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
26823 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26824 _(lopt->deprecated));
b99bd4ef 26825
c19d1205
ZW
26826 /* Call the sup-option parser. */
26827 return lopt->func (arg + strlen (lopt->option) - 1);
26828 }
26829 }
a737bd4d 26830
c19d1205
ZW
26831 return 0;
26832 }
a394c00f 26833
c19d1205
ZW
26834 return 1;
26835}
a394c00f 26836
c19d1205
ZW
26837void
26838md_show_usage (FILE * fp)
a394c00f 26839{
c19d1205
ZW
26840 struct arm_option_table *opt;
26841 struct arm_long_option_table *lopt;
a394c00f 26842
c19d1205 26843 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 26844
c19d1205
ZW
26845 for (opt = arm_opts; opt->option != NULL; opt++)
26846 if (opt->help != NULL)
26847 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 26848
c19d1205
ZW
26849 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26850 if (lopt->help != NULL)
26851 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 26852
c19d1205
ZW
26853#ifdef OPTION_EB
26854 fprintf (fp, _("\
26855 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
26856#endif
26857
c19d1205
ZW
26858#ifdef OPTION_EL
26859 fprintf (fp, _("\
26860 -EL assemble code for a little-endian cpu\n"));
a737bd4d 26861#endif
845b51d6
PB
26862
26863 fprintf (fp, _("\
26864 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 26865}
ee065d83 26866
ee065d83 26867#ifdef OBJ_ELF
0198d5e6 26868
62b3e311
PB
26869typedef struct
26870{
26871 int val;
26872 arm_feature_set flags;
26873} cpu_arch_ver_table;
26874
2c6b98ea
TP
26875/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
26876 chronologically for architectures, with an exception for ARMv6-M and
26877 ARMv6S-M due to legacy reasons. No new architecture should have a
26878 special case. This allows for build attribute selection results to be
26879 stable when new architectures are added. */
62b3e311
PB
26880static const cpu_arch_ver_table cpu_arch_ver[] =
26881{
2c6b98ea
TP
26882 {0, ARM_ARCH_V1},
26883 {0, ARM_ARCH_V2},
26884 {0, ARM_ARCH_V2S},
26885 {0, ARM_ARCH_V3},
26886 {0, ARM_ARCH_V3M},
26887 {1, ARM_ARCH_V4xM},
62b3e311 26888 {1, ARM_ARCH_V4},
2c6b98ea 26889 {2, ARM_ARCH_V4TxM},
62b3e311 26890 {2, ARM_ARCH_V4T},
2c6b98ea 26891 {3, ARM_ARCH_V5xM},
62b3e311 26892 {3, ARM_ARCH_V5},
2c6b98ea 26893 {3, ARM_ARCH_V5TxM},
ee3c0378 26894 {3, ARM_ARCH_V5T},
2c6b98ea 26895 {4, ARM_ARCH_V5TExP},
62b3e311
PB
26896 {4, ARM_ARCH_V5TE},
26897 {5, ARM_ARCH_V5TEJ},
26898 {6, ARM_ARCH_V6},
f4c65163 26899 {7, ARM_ARCH_V6Z},
2c6b98ea
TP
26900 {7, ARM_ARCH_V6KZ},
26901 {9, ARM_ARCH_V6K},
26902 {8, ARM_ARCH_V6T2},
26903 {8, ARM_ARCH_V6KT2},
26904 {8, ARM_ARCH_V6ZT2},
26905 {8, ARM_ARCH_V6KZT2},
26906
26907 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
26908 always selected build attributes to match those of ARMv6-M
26909 (resp. ARMv6S-M). However, due to these architectures being a strict
26910 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
26911 would be selected when fully respecting chronology of architectures.
26912 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
26913 move them before ARMv7 architectures. */
91e22acd 26914 {11, ARM_ARCH_V6M},
b2a5fbdc 26915 {12, ARM_ARCH_V6SM},
2c6b98ea
TP
26916
26917 {10, ARM_ARCH_V7},
26918 {10, ARM_ARCH_V7A},
62b3e311
PB
26919 {10, ARM_ARCH_V7R},
26920 {10, ARM_ARCH_V7M},
2c6b98ea
TP
26921 {10, ARM_ARCH_V7VE},
26922 {13, ARM_ARCH_V7EM},
bca38921 26923 {14, ARM_ARCH_V8A},
2c6b98ea
TP
26924 {14, ARM_ARCH_V8_1A},
26925 {14, ARM_ARCH_V8_2A},
26926 {14, ARM_ARCH_V8_3A},
ff8646ee 26927 {16, ARM_ARCH_V8M_BASE},
4ed7ed8d 26928 {17, ARM_ARCH_V8M_MAIN},
ced40572 26929 {15, ARM_ARCH_V8R},
dec41383 26930 {16, ARM_ARCH_V8_4A},
2c6b98ea 26931 {-1, ARM_ARCH_NONE}
62b3e311
PB
26932};
26933
ee3c0378 26934/* Set an attribute if it has not already been set by the user. */
0198d5e6 26935
ee3c0378
AS
26936static void
26937aeabi_set_attribute_int (int tag, int value)
26938{
26939 if (tag < 1
26940 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26941 || !attributes_set_explicitly[tag])
26942 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
26943}
26944
26945static void
26946aeabi_set_attribute_string (int tag, const char *value)
26947{
26948 if (tag < 1
26949 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26950 || !attributes_set_explicitly[tag])
26951 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
26952}
26953
2c6b98ea
TP
26954/* Return whether features in the *NEEDED feature set are available via
26955 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 26956
2c6b98ea
TP
26957static bfd_boolean
26958have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
26959 const arm_feature_set *needed)
26960{
26961 int i, nb_allowed_archs;
26962 arm_feature_set ext_fset;
26963 const struct arm_option_extension_value_table *opt;
26964
26965 ext_fset = arm_arch_none;
26966 for (opt = arm_extensions; opt->name != NULL; opt++)
26967 {
26968 /* Extension does not provide any feature we need. */
26969 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
26970 continue;
26971
26972 nb_allowed_archs =
26973 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26974 for (i = 0; i < nb_allowed_archs; i++)
26975 {
26976 /* Empty entry. */
26977 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
26978 break;
26979
26980 /* Extension is available, add it. */
26981 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
26982 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
26983 }
26984 }
26985
26986 /* Can we enable all features in *needed? */
26987 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
26988}
26989
26990/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
26991 a given architecture feature set *ARCH_EXT_FSET including extension feature
26992 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
26993 - if true, check for an exact match of the architecture modulo extensions;
26994 - otherwise, select build attribute value of the first superset
26995 architecture released so that results remains stable when new architectures
26996 are added.
26997 For -march/-mcpu=all the build attribute value of the most featureful
26998 architecture is returned. Tag_CPU_arch_profile result is returned in
26999 PROFILE. */
0198d5e6 27000
2c6b98ea
TP
27001static int
27002get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27003 const arm_feature_set *ext_fset,
27004 char *profile, int exact_match)
27005{
27006 arm_feature_set arch_fset;
27007 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27008
27009 /* Select most featureful architecture with all its extensions if building
27010 for -march=all as the feature sets used to set build attributes. */
27011 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27012 {
27013 /* Force revisiting of decision for each new architecture. */
27014 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
27015 *profile = 'A';
27016 return TAG_CPU_ARCH_V8;
27017 }
27018
27019 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27020
27021 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27022 {
27023 arm_feature_set known_arch_fset;
27024
27025 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27026 if (exact_match)
27027 {
27028 /* Base architecture match user-specified architecture and
27029 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27030 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27031 {
27032 p_ver_ret = p_ver;
27033 goto found;
27034 }
27035 /* Base architecture match user-specified architecture only
27036 (eg. ARMv6-M in the same case as above). Record it in case we
27037 find a match with above condition. */
27038 else if (p_ver_ret == NULL
27039 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27040 p_ver_ret = p_ver;
27041 }
27042 else
27043 {
27044
27045 /* Architecture has all features wanted. */
27046 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27047 {
27048 arm_feature_set added_fset;
27049
27050 /* Compute features added by this architecture over the one
27051 recorded in p_ver_ret. */
27052 if (p_ver_ret != NULL)
27053 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27054 p_ver_ret->flags);
27055 /* First architecture that match incl. with extensions, or the
27056 only difference in features over the recorded match is
27057 features that were optional and are now mandatory. */
27058 if (p_ver_ret == NULL
27059 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27060 {
27061 p_ver_ret = p_ver;
27062 goto found;
27063 }
27064 }
27065 else if (p_ver_ret == NULL)
27066 {
27067 arm_feature_set needed_ext_fset;
27068
27069 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27070
27071 /* Architecture has all features needed when using some
27072 extensions. Record it and continue searching in case there
27073 exist an architecture providing all needed features without
27074 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27075 OS extension). */
27076 if (have_ext_for_needed_feat_p (&known_arch_fset,
27077 &needed_ext_fset))
27078 p_ver_ret = p_ver;
27079 }
27080 }
27081 }
27082
27083 if (p_ver_ret == NULL)
27084 return -1;
27085
27086found:
27087 /* Tag_CPU_arch_profile. */
27088 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27089 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27090 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27091 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27092 *profile = 'A';
27093 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27094 *profile = 'R';
27095 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27096 *profile = 'M';
27097 else
27098 *profile = '\0';
27099 return p_ver_ret->val;
27100}
27101
ee065d83 27102/* Set the public EABI object attributes. */
0198d5e6 27103
c168ce07 27104static void
ee065d83
PB
27105aeabi_set_public_attributes (void)
27106{
b90d5ba0 27107 char profile = '\0';
2c6b98ea 27108 int arch = -1;
90ec0d68 27109 int virt_sec = 0;
bca38921 27110 int fp16_optional = 0;
2c6b98ea
TP
27111 int skip_exact_match = 0;
27112 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 27113
54bab281
TP
27114 /* Autodetection mode, choose the architecture based the instructions
27115 actually used. */
27116 if (no_cpu_selected ())
27117 {
27118 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 27119
54bab281
TP
27120 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27121 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 27122
54bab281
TP
27123 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27124 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 27125
54bab281
TP
27126 /* Code run during relaxation relies on selected_cpu being set. */
27127 selected_cpu = flags;
27128 }
27129 /* Otherwise, choose the architecture based on the capabilities of the
27130 requested cpu. */
27131 else
27132 flags = selected_cpu;
27133 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
7f78eb34 27134
ddd7f988 27135 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
27136 if (object_arch)
27137 {
2c6b98ea
TP
27138 ARM_CLEAR_FEATURE (flags_arch, *object_arch, fpu_any);
27139 flags_ext = arm_arch_none;
7a1d4c38 27140 }
2c6b98ea 27141 else
62b3e311 27142 {
2c6b98ea
TP
27143 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27144 flags_ext = dyn_mcpu_ext_opt ? *dyn_mcpu_ext_opt : arm_arch_none;
27145 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
27146 }
27147
27148 /* When this function is run again after relaxation has happened there is no
27149 way to determine whether an architecture or CPU was specified by the user:
27150 - selected_cpu is set above for relaxation to work;
27151 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27152 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27153 Therefore, if not in -march=all case we first try an exact match and fall
27154 back to autodetection. */
27155 if (!skip_exact_match)
27156 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27157 if (arch == -1)
27158 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27159 if (arch == -1)
27160 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 27161
ee065d83
PB
27162 /* Tag_CPU_name. */
27163 if (selected_cpu_name[0])
27164 {
91d6fa6a 27165 char *q;
ee065d83 27166
91d6fa6a
NC
27167 q = selected_cpu_name;
27168 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
27169 {
27170 int i;
5f4273c7 27171
91d6fa6a
NC
27172 q += 4;
27173 for (i = 0; q[i]; i++)
27174 q[i] = TOUPPER (q[i]);
ee065d83 27175 }
91d6fa6a 27176 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 27177 }
62f3b8c8 27178
ee065d83 27179 /* Tag_CPU_arch. */
ee3c0378 27180 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 27181
62b3e311 27182 /* Tag_CPU_arch_profile. */
69239280
MGD
27183 if (profile != '\0')
27184 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 27185
15afaa63 27186 /* Tag_DSP_extension. */
6c290d53
TP
27187 if (dyn_mcpu_ext_opt && ARM_CPU_HAS_FEATURE (*dyn_mcpu_ext_opt, arm_ext_dsp))
27188 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 27189
2c6b98ea 27190 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 27191 /* Tag_ARM_ISA_use. */
ee3c0378 27192 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 27193 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 27194 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 27195
ee065d83 27196 /* Tag_THUMB_ISA_use. */
ee3c0378 27197 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 27198 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
27199 {
27200 int thumb_isa_use;
27201
27202 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 27203 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
27204 thumb_isa_use = 3;
27205 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27206 thumb_isa_use = 2;
27207 else
27208 thumb_isa_use = 1;
27209 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27210 }
62f3b8c8 27211
ee065d83 27212 /* Tag_VFP_arch. */
a715796b
TG
27213 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27214 aeabi_set_attribute_int (Tag_VFP_arch,
27215 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27216 ? 7 : 8);
bca38921 27217 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
27218 aeabi_set_attribute_int (Tag_VFP_arch,
27219 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27220 ? 5 : 6);
27221 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
27222 {
27223 fp16_optional = 1;
27224 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27225 }
ada65aa3 27226 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
27227 {
27228 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27229 fp16_optional = 1;
27230 }
ee3c0378
AS
27231 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27232 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27233 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 27234 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 27235 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 27236
4547cb56
NC
27237 /* Tag_ABI_HardFP_use. */
27238 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27239 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27240 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27241
ee065d83 27242 /* Tag_WMMX_arch. */
ee3c0378
AS
27243 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27244 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27245 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27246 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 27247
ee3c0378 27248 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
27249 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27250 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27251 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
27252 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27253 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27254 {
27255 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27256 {
27257 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27258 }
27259 else
27260 {
27261 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27262 fp16_optional = 1;
27263 }
27264 }
fa94de6b 27265
ee3c0378 27266 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 27267 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 27268 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 27269
69239280
MGD
27270 /* Tag_DIV_use.
27271
27272 We set Tag_DIV_use to two when integer divide instructions have been used
27273 in ARM state, or when Thumb integer divide instructions have been used,
27274 but we have no architecture profile set, nor have we any ARM instructions.
27275
4ed7ed8d
TP
27276 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27277 by the base architecture.
bca38921 27278
69239280 27279 For new architectures we will have to check these tests. */
ced40572 27280 gas_assert (arch <= TAG_CPU_ARCH_V8M_MAIN);
4ed7ed8d
TP
27281 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27282 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
27283 aeabi_set_attribute_int (Tag_DIV_use, 0);
27284 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27285 || (profile == '\0'
27286 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27287 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 27288 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
27289
27290 /* Tag_MP_extension_use. */
27291 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27292 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
27293
27294 /* Tag Virtualization_use. */
27295 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
27296 virt_sec |= 1;
27297 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27298 virt_sec |= 2;
27299 if (virt_sec != 0)
27300 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
27301}
27302
c168ce07
TP
27303/* Post relaxation hook. Recompute ARM attributes now that relaxation is
27304 finished and free extension feature bits which will not be used anymore. */
0198d5e6 27305
c168ce07
TP
27306void
27307arm_md_post_relax (void)
27308{
27309 aeabi_set_public_attributes ();
27310 XDELETE (dyn_mcpu_ext_opt);
27311 dyn_mcpu_ext_opt = NULL;
27312 XDELETE (dyn_march_ext_opt);
27313 dyn_march_ext_opt = NULL;
27314}
27315
104d59d1 27316/* Add the default contents for the .ARM.attributes section. */
0198d5e6 27317
ee065d83
PB
27318void
27319arm_md_end (void)
27320{
ee065d83
PB
27321 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27322 return;
27323
27324 aeabi_set_public_attributes ();
ee065d83 27325}
8463be01 27326#endif /* OBJ_ELF */
ee065d83 27327
ee065d83
PB
27328/* Parse a .cpu directive. */
27329
27330static void
27331s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27332{
e74cfd16 27333 const struct arm_cpu_option_table *opt;
ee065d83
PB
27334 char *name;
27335 char saved_char;
27336
27337 name = input_line_pointer;
5f4273c7 27338 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27339 input_line_pointer++;
27340 saved_char = *input_line_pointer;
27341 *input_line_pointer = 0;
27342
27343 /* Skip the first "all" entry. */
27344 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27345 if (streq (opt->name, name))
27346 {
c168ce07
TP
27347 mcpu_cpu_opt = &opt->value;
27348 if (!dyn_mcpu_ext_opt)
27349 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27350 *dyn_mcpu_ext_opt = opt->ext;
27351 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
ee065d83 27352 if (opt->canonical_name)
5f4273c7 27353 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
27354 else
27355 {
27356 int i;
27357 for (i = 0; opt->name[i]; i++)
27358 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 27359
ee065d83
PB
27360 selected_cpu_name[i] = 0;
27361 }
e74cfd16 27362 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
c168ce07
TP
27363 if (dyn_mcpu_ext_opt)
27364 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
ee065d83
PB
27365 *input_line_pointer = saved_char;
27366 demand_empty_rest_of_line ();
27367 return;
27368 }
27369 as_bad (_("unknown cpu `%s'"), name);
27370 *input_line_pointer = saved_char;
27371 ignore_rest_of_line ();
27372}
27373
ee065d83
PB
27374/* Parse a .arch directive. */
27375
27376static void
27377s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27378{
e74cfd16 27379 const struct arm_arch_option_table *opt;
ee065d83
PB
27380 char saved_char;
27381 char *name;
27382
27383 name = input_line_pointer;
5f4273c7 27384 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27385 input_line_pointer++;
27386 saved_char = *input_line_pointer;
27387 *input_line_pointer = 0;
27388
27389 /* Skip the first "all" entry. */
27390 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27391 if (streq (opt->name, name))
27392 {
e74cfd16 27393 mcpu_cpu_opt = &opt->value;
c168ce07
TP
27394 XDELETE (dyn_mcpu_ext_opt);
27395 dyn_mcpu_ext_opt = NULL;
27396 selected_cpu = *mcpu_cpu_opt;
5f4273c7 27397 strcpy (selected_cpu_name, opt->name);
c168ce07 27398 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
ee065d83
PB
27399 *input_line_pointer = saved_char;
27400 demand_empty_rest_of_line ();
27401 return;
27402 }
27403
27404 as_bad (_("unknown architecture `%s'\n"), name);
27405 *input_line_pointer = saved_char;
27406 ignore_rest_of_line ();
27407}
27408
7a1d4c38
PB
27409/* Parse a .object_arch directive. */
27410
27411static void
27412s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27413{
27414 const struct arm_arch_option_table *opt;
27415 char saved_char;
27416 char *name;
27417
27418 name = input_line_pointer;
5f4273c7 27419 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
27420 input_line_pointer++;
27421 saved_char = *input_line_pointer;
27422 *input_line_pointer = 0;
27423
27424 /* Skip the first "all" entry. */
27425 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27426 if (streq (opt->name, name))
27427 {
27428 object_arch = &opt->value;
27429 *input_line_pointer = saved_char;
27430 demand_empty_rest_of_line ();
27431 return;
27432 }
27433
27434 as_bad (_("unknown architecture `%s'\n"), name);
27435 *input_line_pointer = saved_char;
27436 ignore_rest_of_line ();
27437}
27438
69133863
MGD
27439/* Parse a .arch_extension directive. */
27440
27441static void
27442s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27443{
27444 const struct arm_option_extension_value_table *opt;
d942732e 27445 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
27446 char saved_char;
27447 char *name;
27448 int adding_value = 1;
27449
27450 name = input_line_pointer;
27451 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27452 input_line_pointer++;
27453 saved_char = *input_line_pointer;
27454 *input_line_pointer = 0;
27455
27456 if (strlen (name) >= 2
27457 && strncmp (name, "no", 2) == 0)
27458 {
27459 adding_value = 0;
27460 name += 2;
27461 }
27462
27463 for (opt = arm_extensions; opt->name != NULL; opt++)
27464 if (streq (opt->name, name))
27465 {
d942732e
TP
27466 int i, nb_allowed_archs =
27467 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27468 for (i = 0; i < nb_allowed_archs; i++)
27469 {
27470 /* Empty entry. */
27471 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27472 continue;
27473 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *mcpu_cpu_opt))
27474 break;
27475 }
27476
27477 if (i == nb_allowed_archs)
69133863
MGD
27478 {
27479 as_bad (_("architectural extension `%s' is not allowed for the "
27480 "current base architecture"), name);
27481 break;
27482 }
27483
c168ce07
TP
27484 if (!dyn_mcpu_ext_opt)
27485 {
27486 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27487 *dyn_mcpu_ext_opt = arm_arch_none;
27488 }
69133863 27489 if (adding_value)
c168ce07 27490 ARM_MERGE_FEATURE_SETS (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
5a70a223 27491 opt->merge_value);
69133863 27492 else
c168ce07
TP
27493 ARM_CLEAR_FEATURE (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27494 opt->clear_value);
69133863 27495
c168ce07
TP
27496 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27497 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
69133863
MGD
27498 *input_line_pointer = saved_char;
27499 demand_empty_rest_of_line ();
3d030cdb
TP
27500 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27501 on this return so that duplicate extensions (extensions with the
27502 same name as a previous extension in the list) are not considered
27503 for command-line parsing. */
69133863
MGD
27504 return;
27505 }
27506
27507 if (opt->name == NULL)
e673710a 27508 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
27509
27510 *input_line_pointer = saved_char;
27511 ignore_rest_of_line ();
27512}
27513
ee065d83
PB
27514/* Parse a .fpu directive. */
27515
27516static void
27517s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27518{
69133863 27519 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
27520 char saved_char;
27521 char *name;
27522
27523 name = input_line_pointer;
5f4273c7 27524 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
27525 input_line_pointer++;
27526 saved_char = *input_line_pointer;
27527 *input_line_pointer = 0;
5f4273c7 27528
ee065d83
PB
27529 for (opt = arm_fpus; opt->name != NULL; opt++)
27530 if (streq (opt->name, name))
27531 {
e74cfd16
PB
27532 mfpu_opt = &opt->value;
27533 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
c168ce07
TP
27534 if (dyn_mcpu_ext_opt)
27535 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
ee065d83
PB
27536 *input_line_pointer = saved_char;
27537 demand_empty_rest_of_line ();
27538 return;
27539 }
27540
27541 as_bad (_("unknown floating point format `%s'\n"), name);
27542 *input_line_pointer = saved_char;
27543 ignore_rest_of_line ();
27544}
ee065d83 27545
794ba86a 27546/* Copy symbol information. */
f31fef98 27547
794ba86a
DJ
27548void
27549arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27550{
27551 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27552}
e04befd0 27553
f31fef98 27554#ifdef OBJ_ELF
e04befd0
AS
27555/* Given a symbolic attribute NAME, return the proper integer value.
27556 Returns -1 if the attribute is not known. */
f31fef98 27557
e04befd0
AS
27558int
27559arm_convert_symbolic_attribute (const char *name)
27560{
f31fef98
NC
27561 static const struct
27562 {
27563 const char * name;
27564 const int tag;
27565 }
27566 attribute_table[] =
27567 {
27568 /* When you modify this table you should
27569 also modify the list in doc/c-arm.texi. */
e04befd0 27570#define T(tag) {#tag, tag}
f31fef98
NC
27571 T (Tag_CPU_raw_name),
27572 T (Tag_CPU_name),
27573 T (Tag_CPU_arch),
27574 T (Tag_CPU_arch_profile),
27575 T (Tag_ARM_ISA_use),
27576 T (Tag_THUMB_ISA_use),
75375b3e 27577 T (Tag_FP_arch),
f31fef98
NC
27578 T (Tag_VFP_arch),
27579 T (Tag_WMMX_arch),
27580 T (Tag_Advanced_SIMD_arch),
27581 T (Tag_PCS_config),
27582 T (Tag_ABI_PCS_R9_use),
27583 T (Tag_ABI_PCS_RW_data),
27584 T (Tag_ABI_PCS_RO_data),
27585 T (Tag_ABI_PCS_GOT_use),
27586 T (Tag_ABI_PCS_wchar_t),
27587 T (Tag_ABI_FP_rounding),
27588 T (Tag_ABI_FP_denormal),
27589 T (Tag_ABI_FP_exceptions),
27590 T (Tag_ABI_FP_user_exceptions),
27591 T (Tag_ABI_FP_number_model),
75375b3e 27592 T (Tag_ABI_align_needed),
f31fef98 27593 T (Tag_ABI_align8_needed),
75375b3e 27594 T (Tag_ABI_align_preserved),
f31fef98
NC
27595 T (Tag_ABI_align8_preserved),
27596 T (Tag_ABI_enum_size),
27597 T (Tag_ABI_HardFP_use),
27598 T (Tag_ABI_VFP_args),
27599 T (Tag_ABI_WMMX_args),
27600 T (Tag_ABI_optimization_goals),
27601 T (Tag_ABI_FP_optimization_goals),
27602 T (Tag_compatibility),
27603 T (Tag_CPU_unaligned_access),
75375b3e 27604 T (Tag_FP_HP_extension),
f31fef98
NC
27605 T (Tag_VFP_HP_extension),
27606 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
27607 T (Tag_MPextension_use),
27608 T (Tag_DIV_use),
f31fef98
NC
27609 T (Tag_nodefaults),
27610 T (Tag_also_compatible_with),
27611 T (Tag_conformance),
27612 T (Tag_T2EE_use),
27613 T (Tag_Virtualization_use),
15afaa63 27614 T (Tag_DSP_extension),
cd21e546 27615 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 27616#undef T
f31fef98 27617 };
e04befd0
AS
27618 unsigned int i;
27619
27620 if (name == NULL)
27621 return -1;
27622
f31fef98 27623 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 27624 if (streq (name, attribute_table[i].name))
e04befd0
AS
27625 return attribute_table[i].tag;
27626
27627 return -1;
27628}
267bf995 27629
93ef582d
NC
27630/* Apply sym value for relocations only in the case that they are for
27631 local symbols in the same segment as the fixup and you have the
27632 respective architectural feature for blx and simple switches. */
0198d5e6 27633
267bf995 27634int
93ef582d 27635arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
27636{
27637 if (fixP->fx_addsy
27638 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
27639 /* PR 17444: If the local symbol is in a different section then a reloc
27640 will always be generated for it, so applying the symbol value now
27641 will result in a double offset being stored in the relocation. */
27642 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 27643 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
27644 {
27645 switch (fixP->fx_r_type)
27646 {
27647 case BFD_RELOC_ARM_PCREL_BLX:
27648 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27649 if (ARM_IS_FUNC (fixP->fx_addsy))
27650 return 1;
27651 break;
27652
27653 case BFD_RELOC_ARM_PCREL_CALL:
27654 case BFD_RELOC_THUMB_PCREL_BLX:
27655 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 27656 return 1;
267bf995
RR
27657 break;
27658
27659 default:
27660 break;
27661 }
27662
27663 }
27664 return 0;
27665}
f31fef98 27666#endif /* OBJ_ELF */