]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
net: fec: fix build warnings for 64bits support
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
1a459660 8 * SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
9 */
10
11#include <common.h>
60752ca8 12#include <dm.h>
0b23fb36 13#include <malloc.h>
cf92e05c 14#include <memalign.h>
567173a6 15#include <miiphy.h>
0b23fb36 16#include <net.h>
84f64c8b 17#include <netdev.h>
0b23fb36
IY
18#include "fec_mxc.h"
19
0b23fb36 20#include <asm/io.h>
1221ce45 21#include <linux/errno.h>
e2a66e60 22#include <linux/compiler.h>
0b23fb36 23
567173a6
JT
24#include <asm/arch/clock.h>
25#include <asm/arch/imx-regs.h>
552a848e 26#include <asm/mach-imx/sys_proto.h>
567173a6 27
0b23fb36
IY
28DECLARE_GLOBAL_DATA_PTR;
29
bc1ce150
MV
30/*
31 * Timeout the transfer after 5 mS. This is usually a bit more, since
32 * the code in the tightloops this timeout is used in adds some overhead.
33 */
34#define FEC_XFER_TIMEOUT 5000
35
db5b7f56
FE
36/*
37 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
38 * 64-byte alignment in the DMA RX FEC buffer.
39 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
40 * satisfies the alignment on other SoCs (32-bytes)
41 */
42#define FEC_DMA_RX_MINALIGN 64
43
0b23fb36
IY
44#ifndef CONFIG_MII
45#error "CONFIG_MII has to be defined!"
46#endif
47
5c1ad3e6
EN
48#ifndef CONFIG_FEC_XCV_TYPE
49#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
50#endif
51
be7e87e2
MV
52/*
53 * The i.MX28 operates with packets in big endian. We need to swap them before
54 * sending and after receiving.
55 */
5c1ad3e6
EN
56#ifdef CONFIG_MX28
57#define CONFIG_FEC_MXC_SWAP_PACKET
58#endif
59
60#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61
62/* Check various alignment issues at compile time */
63#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64#error "ARCH_DMA_MINALIGN must be multiple of 16!"
65#endif
66
67#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
69#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
70#endif
71
0b23fb36
IY
72#undef DEBUG
73
5c1ad3e6 74#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
75static void swap_packet(uint32_t *packet, int length)
76{
77 int i;
78
79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 packet[i] = __swab32(packet[i]);
81}
82#endif
83
567173a6
JT
84/* MII-interface related functions */
85static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
86 uint8_t regaddr)
0b23fb36 87{
0b23fb36
IY
88 uint32_t reg; /* convenient holder for the PHY register */
89 uint32_t phy; /* convenient holder for the PHY */
90 uint32_t start;
13947f43 91 int val;
0b23fb36
IY
92
93 /*
94 * reading from any PHY's register is done by properly
95 * programming the FEC's MII data register.
96 */
d133b881 97 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
98 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
99 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
100
101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 102 phy | reg, &eth->mii_data);
0b23fb36 103
567173a6 104 /* wait for the related interrupt */
a60d1e5b 105 start = get_timer(0);
d133b881 106 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
107 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
108 printf("Read MDIO failed...\n");
109 return -1;
110 }
111 }
112
567173a6 113 /* clear mii interrupt bit */
d133b881 114 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36 115
567173a6 116 /* it's now safe to read the PHY's register */
13947f43 117 val = (unsigned short)readl(&eth->mii_data);
567173a6
JT
118 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
119 regaddr, val);
13947f43 120 return val;
0b23fb36
IY
121}
122
575c5cc0 123static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
124{
125 /*
126 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
127 * and do not drop the Preamble.
843a3e58
MR
128 *
129 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
130 * MII_SPEED) register that defines the MDIO output hold time. Earlier
131 * versions are RAZ there, so just ignore the difference and write the
132 * register always.
133 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
134 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
135 * output.
136 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
137 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
138 * holdtime cannot result in a value greater than 3.
4294b248 139 */
843a3e58
MR
140 u32 pclk = imx_get_fecclk();
141 u32 speed = DIV_ROUND_UP(pclk, 5000000);
142 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
6ba45cc0
MN
143#ifdef FEC_QUIRK_ENET_MAC
144 speed--;
145#endif
843a3e58 146 writel(speed << 1 | hold << 8, &eth->mii_speed);
575c5cc0 147 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 148}
0b23fb36 149
567173a6
JT
150static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
151 uint8_t regaddr, uint16_t data)
13947f43 152{
0b23fb36
IY
153 uint32_t reg; /* convenient holder for the PHY register */
154 uint32_t phy; /* convenient holder for the PHY */
155 uint32_t start;
156
567173a6
JT
157 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
158 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
159
160 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 161 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36 162
567173a6 163 /* wait for the MII interrupt */
a60d1e5b 164 start = get_timer(0);
d133b881 165 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
166 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
167 printf("Write MDIO failed...\n");
168 return -1;
169 }
170 }
171
567173a6 172 /* clear MII interrupt bit */
d133b881 173 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
174 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
175 regaddr, data);
0b23fb36
IY
176
177 return 0;
178}
179
567173a6
JT
180static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
181 int regaddr)
13947f43 182{
567173a6 183 return fec_mdio_read(bus->priv, phyaddr, regaddr);
13947f43
TK
184}
185
567173a6
JT
186static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
187 int regaddr, u16 data)
13947f43 188{
567173a6 189 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
13947f43
TK
190}
191
192#ifndef CONFIG_PHYLIB
0b23fb36
IY
193static int miiphy_restart_aneg(struct eth_device *dev)
194{
b774fe9d
SB
195 int ret = 0;
196#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 197 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 198 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 199
0b23fb36
IY
200 /*
201 * Wake up from sleep if necessary
202 * Reset PHY, then delay 300ns
203 */
cb17b92d 204#ifdef CONFIG_MX27
13947f43 205 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 206#endif
13947f43 207 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
208 udelay(1000);
209
567173a6 210 /* Set the auto-negotiation advertisement register bits */
13947f43 211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
567173a6
JT
212 LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 214 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
567173a6 215 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
216
217 if (fec->mii_postcall)
218 ret = fec->mii_postcall(fec->phy_id);
219
b774fe9d 220#endif
2e5f4421 221 return ret;
0b23fb36
IY
222}
223
0750701a 224#ifndef CONFIG_FEC_FIXED_SPEED
0b23fb36
IY
225static int miiphy_wait_aneg(struct eth_device *dev)
226{
227 uint32_t start;
13947f43 228 int status;
9e27e9dc 229 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 230 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36 231
567173a6 232 /* Wait for AN completion */
a60d1e5b 233 start = get_timer(0);
0b23fb36
IY
234 do {
235 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
236 printf("%s: Autonegotiation timeout\n", dev->name);
237 return -1;
238 }
239
13947f43
TK
240 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
241 if (status < 0) {
242 printf("%s: Autonegotiation failed. status: %d\n",
567173a6 243 dev->name, status);
0b23fb36
IY
244 return -1;
245 }
8ef583a0 246 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
247
248 return 0;
249}
0750701a 250#endif /* CONFIG_FEC_FIXED_SPEED */
13947f43
TK
251#endif
252
0b23fb36
IY
253static int fec_rx_task_enable(struct fec_priv *fec)
254{
c0b5a3bb 255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
256 return 0;
257}
258
259static int fec_rx_task_disable(struct fec_priv *fec)
260{
261 return 0;
262}
263
264static int fec_tx_task_enable(struct fec_priv *fec)
265{
c0b5a3bb 266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
267 return 0;
268}
269
270static int fec_tx_task_disable(struct fec_priv *fec)
271{
272 return 0;
273}
274
275/**
276 * Initialize receive task's buffer descriptors
277 * @param[in] fec all we know about the device yet
278 * @param[in] count receive buffer count to be allocated
5c1ad3e6 279 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
280 * @return 0 on success
281 *
79e5f27b 282 * Init all RX descriptors to default values.
0b23fb36 283 */
79e5f27b 284static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 285{
5c1ad3e6 286 uint32_t size;
f24e482a 287 ulong data;
5c1ad3e6
EN
288 int i;
289
0b23fb36 290 /*
79e5f27b
MV
291 * Reload the RX descriptors with default values and wipe
292 * the RX buffers.
0b23fb36 293 */
5c1ad3e6
EN
294 size = roundup(dsize, ARCH_DMA_MINALIGN);
295 for (i = 0; i < count; i++) {
f24e482a
YL
296 data = fec->rbd_base[i].data_pointer;
297 memset((void *)data, 0, dsize);
298 flush_dcache_range(data, data + size);
79e5f27b
MV
299
300 fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 fec->rbd_base[i].data_length = 0;
5c1ad3e6
EN
302 }
303
304 /* Mark the last RBD to close the ring. */
79e5f27b 305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
0b23fb36
IY
306 fec->rbd_index = 0;
307
f24e482a
YL
308 flush_dcache_range((ulong)fec->rbd_base,
309 (ulong)fec->rbd_base + size);
0b23fb36
IY
310}
311
312/**
313 * Initialize transmit task's buffer descriptors
314 * @param[in] fec all we know about the device yet
315 *
316 * Transmit buffers are created externally. We only have to init the BDs here.\n
317 * Note: There is a race condition in the hardware. When only one BD is in
318 * use it must be marked with the WRAP bit to use it for every transmitt.
319 * This bit in combination with the READY bit results into double transmit
320 * of each data buffer. It seems the state machine checks READY earlier then
321 * resetting it after the first transfer.
322 * Using two BDs solves this issue.
323 */
324static void fec_tbd_init(struct fec_priv *fec)
325{
f24e482a 326 ulong addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
327 unsigned size = roundup(2 * sizeof(struct fec_bd),
328 ARCH_DMA_MINALIGN);
79e5f27b
MV
329
330 memset(fec->tbd_base, 0, size);
331 fec->tbd_base[0].status = 0;
332 fec->tbd_base[1].status = FEC_TBD_WRAP;
0b23fb36 333 fec->tbd_index = 0;
79e5f27b 334 flush_dcache_range(addr, addr + size);
0b23fb36
IY
335}
336
337/**
338 * Mark the given read buffer descriptor as free
339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
567173a6 340 * @param[in] prbd buffer descriptor to mark free again
0b23fb36 341 */
567173a6 342static void fec_rbd_clean(int last, struct fec_bd *prbd)
0b23fb36 343{
5c1ad3e6 344 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 345 if (last)
5c1ad3e6 346 flags |= FEC_RBD_WRAP;
567173a6
JT
347 writew(flags, &prbd->status);
348 writew(0, &prbd->data_length);
0b23fb36
IY
349}
350
f54183e6 351static int fec_get_hwaddr(int dev_id, unsigned char *mac)
0b23fb36 352{
be252b65 353 imx_get_mac_from_fuse(dev_id, mac);
0adb5b76 354 return !is_valid_ethaddr(mac);
0b23fb36
IY
355}
356
60752ca8
JT
357#ifdef CONFIG_DM_ETH
358static int fecmxc_set_hwaddr(struct udevice *dev)
359#else
4294b248 360static int fec_set_hwaddr(struct eth_device *dev)
60752ca8 361#endif
0b23fb36 362{
60752ca8
JT
363#ifdef CONFIG_DM_ETH
364 struct fec_priv *fec = dev_get_priv(dev);
365 struct eth_pdata *pdata = dev_get_platdata(dev);
366 uchar *mac = pdata->enetaddr;
367#else
4294b248 368 uchar *mac = dev->enetaddr;
0b23fb36 369 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 370#endif
0b23fb36
IY
371
372 writel(0, &fec->eth->iaddr1);
373 writel(0, &fec->eth->iaddr2);
374 writel(0, &fec->eth->gaddr1);
375 writel(0, &fec->eth->gaddr2);
376
567173a6 377 /* Set physical address */
0b23fb36 378 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
567173a6 379 &fec->eth->paddr1);
0b23fb36
IY
380 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
381
382 return 0;
383}
384
567173a6 385/* Do initial configuration of the FEC registers */
a5990b26
MV
386static void fec_reg_setup(struct fec_priv *fec)
387{
388 uint32_t rcntrl;
389
567173a6 390 /* Set interrupt mask register */
a5990b26
MV
391 writel(0x00000000, &fec->eth->imask);
392
567173a6 393 /* Clear FEC-Lite interrupt event register(IEVENT) */
a5990b26
MV
394 writel(0xffffffff, &fec->eth->ievent);
395
567173a6 396 /* Set FEC-Lite receive control register(R_CNTRL): */
a5990b26
MV
397
398 /* Start with frame length = 1518, common for all modes. */
399 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 400 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
401 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
402 if (fec->xcv_type == RGMII)
a5990b26
MV
403 rcntrl |= FEC_RCNTRL_RGMII;
404 else if (fec->xcv_type == RMII)
405 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
406
407 writel(rcntrl, &fec->eth->r_cntrl);
408}
409
0b23fb36
IY
410/**
411 * Start the FEC engine
412 * @param[in] dev Our device to handle
413 */
60752ca8
JT
414#ifdef CONFIG_DM_ETH
415static int fec_open(struct udevice *dev)
416#else
0b23fb36 417static int fec_open(struct eth_device *edev)
60752ca8 418#endif
0b23fb36 419{
60752ca8
JT
420#ifdef CONFIG_DM_ETH
421 struct fec_priv *fec = dev_get_priv(dev);
422#else
0b23fb36 423 struct fec_priv *fec = (struct fec_priv *)edev->priv;
60752ca8 424#endif
28774cba 425 int speed;
f24e482a 426 ulong addr, size;
5c1ad3e6 427 int i;
0b23fb36
IY
428
429 debug("fec_open: fec_open(dev)\n");
430 /* full-duplex, heartbeat disabled */
431 writel(1 << 2, &fec->eth->x_cntrl);
432 fec->rbd_index = 0;
433
5c1ad3e6
EN
434 /* Invalidate all descriptors */
435 for (i = 0; i < FEC_RBD_NUM - 1; i++)
436 fec_rbd_clean(0, &fec->rbd_base[i]);
437 fec_rbd_clean(1, &fec->rbd_base[i]);
438
439 /* Flush the descriptors into RAM */
440 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
441 ARCH_DMA_MINALIGN);
f24e482a 442 addr = (ulong)fec->rbd_base;
5c1ad3e6
EN
443 flush_dcache_range(addr, addr + size);
444
28774cba 445#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
446 /* Enable ENET HW endian SWAP */
447 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
567173a6 448 &fec->eth->ecntrl);
2ef2b950
JL
449 /* Enable ENET store and forward mode */
450 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
567173a6 451 &fec->eth->x_wmrk);
2ef2b950 452#endif
567173a6 453 /* Enable FEC-Lite controller */
cb17b92d 454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
567173a6
JT
455 &fec->eth->ecntrl);
456
7df51fd8 457#if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
740d6ae5 458 udelay(100);
740d6ae5 459
567173a6 460 /* setup the MII gasket for RMII mode */
740d6ae5
JR
461 /* disable the gasket */
462 writew(0, &fec->eth->miigsk_enr);
463
464 /* wait for the gasket to be disabled */
465 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
466 udelay(2);
467
468 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
469 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
470
471 /* re-enable the gasket */
472 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
473
474 /* wait until MII gasket is ready */
475 int max_loops = 10;
476 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
477 if (--max_loops <= 0) {
478 printf("WAIT for MII Gasket ready timed out\n");
479 break;
480 }
481 }
482#endif
0b23fb36 483
13947f43 484#ifdef CONFIG_PHYLIB
4dc27eed 485 {
13947f43 486 /* Start up the PHY */
11af8d65
TT
487 int ret = phy_startup(fec->phydev);
488
489 if (ret) {
490 printf("Could not initialize PHY %s\n",
491 fec->phydev->dev->name);
492 return ret;
493 }
13947f43 494 speed = fec->phydev->speed;
13947f43 495 }
0750701a
HS
496#elif CONFIG_FEC_FIXED_SPEED
497 speed = CONFIG_FEC_FIXED_SPEED;
13947f43 498#else
0b23fb36 499 miiphy_wait_aneg(edev);
28774cba 500 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 501 miiphy_duplex(edev->name, fec->phy_id);
13947f43 502#endif
0b23fb36 503
28774cba
TK
504#ifdef FEC_QUIRK_ENET_MAC
505 {
506 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 507 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
508 if (speed == _1000BASET)
509 ecr |= FEC_ECNTRL_SPEED;
510 else if (speed != _100BASET)
511 rcr |= FEC_RCNTRL_RMII_10T;
512 writel(ecr, &fec->eth->ecntrl);
513 writel(rcr, &fec->eth->r_cntrl);
514 }
515#endif
516 debug("%s:Speed=%i\n", __func__, speed);
517
567173a6 518 /* Enable SmartDMA receive task */
0b23fb36
IY
519 fec_rx_task_enable(fec);
520
521 udelay(100000);
522 return 0;
523}
524
60752ca8
JT
525#ifdef CONFIG_DM_ETH
526static int fecmxc_init(struct udevice *dev)
527#else
567173a6 528static int fec_init(struct eth_device *dev, bd_t *bd)
60752ca8 529#endif
0b23fb36 530{
60752ca8
JT
531#ifdef CONFIG_DM_ETH
532 struct fec_priv *fec = dev_get_priv(dev);
533#else
0b23fb36 534 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 535#endif
f24e482a
YL
536 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
537 u8 *i;
538 ulong addr;
0b23fb36 539
e9319f11 540 /* Initialize MAC address */
60752ca8
JT
541#ifdef CONFIG_DM_ETH
542 fecmxc_set_hwaddr(dev);
543#else
e9319f11 544 fec_set_hwaddr(dev);
60752ca8 545#endif
e9319f11 546
567173a6 547 /* Setup transmit descriptors, there are two in total. */
79e5f27b 548 fec_tbd_init(fec);
0b23fb36 549
79e5f27b
MV
550 /* Setup receive descriptors. */
551 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
0b23fb36 552
a5990b26 553 fec_reg_setup(fec);
9eb3770b 554
f41471e6 555 if (fec->xcv_type != SEVENWIRE)
575c5cc0 556 fec_mii_setspeed(fec->bus->priv);
9eb3770b 557
567173a6 558 /* Set Opcode/Pause Duration Register */
0b23fb36
IY
559 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
560 writel(0x2, &fec->eth->x_wmrk);
567173a6
JT
561
562 /* Set multicast address filter */
0b23fb36
IY
563 writel(0x00000000, &fec->eth->gaddr1);
564 writel(0x00000000, &fec->eth->gaddr2);
565
238a53c7
PF
566 /* Do not access reserved register */
567 if (!is_mx6ul() && !is_mx6ull() && !is_mx8m()) {
fbecbaa1
PF
568 /* clear MIB RAM */
569 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
570 writel(0, i);
0b23fb36 571
fbecbaa1
PF
572 /* FIFO receive start register */
573 writel(0x520, &fec->eth->r_fstart);
574 }
0b23fb36
IY
575
576 /* size and address of each buffer */
577 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
f24e482a
YL
578
579 addr = (ulong)fec->tbd_base;
580 writel((uint32_t)addr, &fec->eth->etdsr);
581
582 addr = (ulong)fec->rbd_base;
583 writel((uint32_t)addr, &fec->eth->erdsr);
0b23fb36 584
13947f43 585#ifndef CONFIG_PHYLIB
0b23fb36
IY
586 if (fec->xcv_type != SEVENWIRE)
587 miiphy_restart_aneg(dev);
13947f43 588#endif
0b23fb36
IY
589 fec_open(dev);
590 return 0;
591}
592
593/**
594 * Halt the FEC engine
595 * @param[in] dev Our device to handle
596 */
60752ca8
JT
597#ifdef CONFIG_DM_ETH
598static void fecmxc_halt(struct udevice *dev)
599#else
0b23fb36 600static void fec_halt(struct eth_device *dev)
60752ca8 601#endif
0b23fb36 602{
60752ca8
JT
603#ifdef CONFIG_DM_ETH
604 struct fec_priv *fec = dev_get_priv(dev);
605#else
9e27e9dc 606 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 607#endif
0b23fb36
IY
608 int counter = 0xffff;
609
567173a6 610 /* issue graceful stop command to the FEC transmitter if necessary */
cb17b92d 611 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
567173a6 612 &fec->eth->x_cntrl);
0b23fb36
IY
613
614 debug("eth_halt: wait for stop regs\n");
567173a6 615 /* wait for graceful stop to register */
0b23fb36 616 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 617 udelay(1);
0b23fb36 618
567173a6 619 /* Disable SmartDMA tasks */
0b23fb36
IY
620 fec_tx_task_disable(fec);
621 fec_rx_task_disable(fec);
622
623 /*
624 * Disable the Ethernet Controller
625 * Note: this will also reset the BD index counter!
626 */
740d6ae5 627 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
567173a6 628 &fec->eth->ecntrl);
0b23fb36
IY
629 fec->rbd_index = 0;
630 fec->tbd_index = 0;
0b23fb36
IY
631 debug("eth_halt: done\n");
632}
633
634/**
635 * Transmit one frame
636 * @param[in] dev Our ethernet device to handle
637 * @param[in] packet Pointer to the data to be transmitted
638 * @param[in] length Data count in bytes
639 * @return 0 on success
640 */
60752ca8
JT
641#ifdef CONFIG_DM_ETH
642static int fecmxc_send(struct udevice *dev, void *packet, int length)
643#else
442dac4c 644static int fec_send(struct eth_device *dev, void *packet, int length)
60752ca8 645#endif
0b23fb36
IY
646{
647 unsigned int status;
f24e482a
YL
648 u32 size;
649 ulong addr, end;
bc1ce150
MV
650 int timeout = FEC_XFER_TIMEOUT;
651 int ret = 0;
0b23fb36
IY
652
653 /*
654 * This routine transmits one frame. This routine only accepts
655 * 6-byte Ethernet addresses.
656 */
60752ca8
JT
657#ifdef CONFIG_DM_ETH
658 struct fec_priv *fec = dev_get_priv(dev);
659#else
0b23fb36 660 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 661#endif
0b23fb36
IY
662
663 /*
664 * Check for valid length of data.
665 */
666 if ((length > 1500) || (length <= 0)) {
4294b248 667 printf("Payload (%d) too large\n", length);
0b23fb36
IY
668 return -1;
669 }
670
671 /*
5c1ad3e6
EN
672 * Setup the transmit buffer. We are always using the first buffer for
673 * transmission, the second will be empty and only used to stop the DMA
674 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 675 */
5c1ad3e6 676#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
677 swap_packet((uint32_t *)packet, length);
678#endif
5c1ad3e6 679
f24e482a 680 addr = (ulong)packet;
efe24d2e
MV
681 end = roundup(addr + length, ARCH_DMA_MINALIGN);
682 addr &= ~(ARCH_DMA_MINALIGN - 1);
683 flush_dcache_range(addr, end);
5c1ad3e6 684
0b23fb36 685 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
f24e482a 686 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
5c1ad3e6 687
0b23fb36
IY
688 /*
689 * update BD's status now
690 * This block:
691 * - is always the last in a chain (means no chain)
692 * - should transmitt the CRC
693 * - might be the last BD in the list, so the address counter should
694 * wrap (-> keep the WRAP flag)
695 */
696 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
697 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
698 writew(status, &fec->tbd_base[fec->tbd_index].status);
699
5c1ad3e6
EN
700 /*
701 * Flush data cache. This code flushes both TX descriptors to RAM.
702 * After this code, the descriptors will be safely in RAM and we
703 * can start DMA.
704 */
705 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
f24e482a 706 addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
707 flush_dcache_range(addr, addr + size);
708
ab94cd49
MV
709 /*
710 * Below we read the DMA descriptor's last four bytes back from the
711 * DRAM. This is important in order to make sure that all WRITE
712 * operations on the bus that were triggered by previous cache FLUSH
713 * have completed.
714 *
715 * Otherwise, on MX28, it is possible to observe a corruption of the
716 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
717 * for the bus structure of MX28. The scenario is as follows:
718 *
719 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
720 * to DRAM due to flush_dcache_range()
721 * 2) ARM core writes the FEC registers via AHB_ARB2
722 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
723 *
724 * Note that 2) does sometimes finish before 1) due to reordering of
725 * WRITE accesses on the AHB bus, therefore triggering 3) before the
726 * DMA descriptor is fully written into DRAM. This results in occasional
727 * corruption of the DMA descriptor.
728 */
729 readl(addr + size - 4);
730
567173a6 731 /* Enable SmartDMA transmit task */
0b23fb36
IY
732 fec_tx_task_enable(fec);
733
734 /*
5c1ad3e6
EN
735 * Wait until frame is sent. On each turn of the wait cycle, we must
736 * invalidate data cache to see what's really in RAM. Also, we need
737 * barrier here.
0b23fb36 738 */
67449098 739 while (--timeout) {
c0b5a3bb 740 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 741 break;
0b23fb36 742 }
5c1ad3e6 743
f599288d 744 if (!timeout) {
67449098 745 ret = -EINVAL;
f599288d
FE
746 goto out;
747 }
748
749 /*
750 * The TDAR bit is cleared when the descriptors are all out from TX
751 * but on mx6solox we noticed that the READY bit is still not cleared
752 * right after TDAR.
753 * These are two distinct signals, and in IC simulation, we found that
754 * TDAR always gets cleared prior than the READY bit of last BD becomes
755 * cleared.
756 * In mx6solox, we use a later version of FEC IP. It looks like that
757 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
758 * version.
759 *
760 * Fix this by polling the READY bit of BD after the TDAR polling,
761 * which covers the mx6solox case and does not harm the other SoCs.
762 */
763 timeout = FEC_XFER_TIMEOUT;
764 while (--timeout) {
765 invalidate_dcache_range(addr, addr + size);
766 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
767 FEC_TBD_READY))
768 break;
769 }
67449098 770
f599288d 771 if (!timeout)
67449098
MV
772 ret = -EINVAL;
773
f599288d 774out:
67449098 775 debug("fec_send: status 0x%x index %d ret %i\n",
567173a6
JT
776 readw(&fec->tbd_base[fec->tbd_index].status),
777 fec->tbd_index, ret);
0b23fb36
IY
778 /* for next transmission use the other buffer */
779 if (fec->tbd_index)
780 fec->tbd_index = 0;
781 else
782 fec->tbd_index = 1;
783
bc1ce150 784 return ret;
0b23fb36
IY
785}
786
787/**
788 * Pull one frame from the card
789 * @param[in] dev Our ethernet device to handle
790 * @return Length of packet read
791 */
60752ca8
JT
792#ifdef CONFIG_DM_ETH
793static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
794#else
0b23fb36 795static int fec_recv(struct eth_device *dev)
60752ca8 796#endif
0b23fb36 797{
60752ca8
JT
798#ifdef CONFIG_DM_ETH
799 struct fec_priv *fec = dev_get_priv(dev);
800#else
0b23fb36 801 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 802#endif
0b23fb36
IY
803 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
804 unsigned long ievent;
805 int frame_length, len = 0;
0b23fb36 806 uint16_t bd_status;
f24e482a 807 ulong addr, size, end;
5c1ad3e6 808 int i;
fd37f195 809 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
0b23fb36 810
567173a6 811 /* Check if any critical events have happened */
0b23fb36
IY
812 ievent = readl(&fec->eth->ievent);
813 writel(ievent, &fec->eth->ievent);
eda959f3 814 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36 815 if (ievent & FEC_IEVENT_BABR) {
60752ca8
JT
816#ifdef CONFIG_DM_ETH
817 fecmxc_halt(dev);
818 fecmxc_init(dev);
819#else
0b23fb36
IY
820 fec_halt(dev);
821 fec_init(dev, fec->bd);
60752ca8 822#endif
0b23fb36
IY
823 printf("some error: 0x%08lx\n", ievent);
824 return 0;
825 }
826 if (ievent & FEC_IEVENT_HBERR) {
827 /* Heartbeat error */
828 writel(0x00000001 | readl(&fec->eth->x_cntrl),
567173a6 829 &fec->eth->x_cntrl);
0b23fb36
IY
830 }
831 if (ievent & FEC_IEVENT_GRA) {
832 /* Graceful stop complete */
833 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
60752ca8
JT
834#ifdef CONFIG_DM_ETH
835 fecmxc_halt(dev);
836#else
0b23fb36 837 fec_halt(dev);
60752ca8 838#endif
0b23fb36 839 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
567173a6 840 &fec->eth->x_cntrl);
60752ca8
JT
841#ifdef CONFIG_DM_ETH
842 fecmxc_init(dev);
843#else
0b23fb36 844 fec_init(dev, fec->bd);
60752ca8 845#endif
0b23fb36
IY
846 }
847 }
848
849 /*
5c1ad3e6
EN
850 * Read the buffer status. Before the status can be read, the data cache
851 * must be invalidated, because the data in RAM might have been changed
852 * by DMA. The descriptors are properly aligned to cachelines so there's
853 * no need to worry they'd overlap.
854 *
855 * WARNING: By invalidating the descriptor here, we also invalidate
856 * the descriptors surrounding this one. Therefore we can NOT change the
857 * contents of this descriptor nor the surrounding ones. The problem is
858 * that in order to mark the descriptor as processed, we need to change
859 * the descriptor. The solution is to mark the whole cache line when all
860 * descriptors in the cache line are processed.
0b23fb36 861 */
f24e482a 862 addr = (ulong)rbd;
5c1ad3e6
EN
863 addr &= ~(ARCH_DMA_MINALIGN - 1);
864 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
865 invalidate_dcache_range(addr, addr + size);
866
0b23fb36
IY
867 bd_status = readw(&rbd->status);
868 debug("fec_recv: status 0x%x\n", bd_status);
869
870 if (!(bd_status & FEC_RBD_EMPTY)) {
871 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
567173a6
JT
872 ((readw(&rbd->data_length) - 4) > 14)) {
873 /* Get buffer address and size */
b189584b 874 addr = readl(&rbd->data_pointer);
0b23fb36 875 frame_length = readw(&rbd->data_length) - 4;
567173a6 876 /* Invalidate data cache over the buffer */
efe24d2e
MV
877 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
878 addr &= ~(ARCH_DMA_MINALIGN - 1);
879 invalidate_dcache_range(addr, end);
5c1ad3e6 880
567173a6 881 /* Fill the buffer and pass it to upper layers */
5c1ad3e6 882#ifdef CONFIG_FEC_MXC_SWAP_PACKET
b189584b 883 swap_packet((uint32_t *)addr, frame_length);
be7e87e2 884#endif
b189584b 885 memcpy(buff, (char *)addr, frame_length);
1fd92db8 886 net_process_received_packet(buff, frame_length);
0b23fb36
IY
887 len = frame_length;
888 } else {
889 if (bd_status & FEC_RBD_ERR)
f24e482a
YL
890 debug("error frame: 0x%08lx 0x%08x\n",
891 addr, bd_status);
0b23fb36 892 }
5c1ad3e6 893
0b23fb36 894 /*
5c1ad3e6
EN
895 * Free the current buffer, restart the engine and move forward
896 * to the next buffer. Here we check if the whole cacheline of
897 * descriptors was already processed and if so, we mark it free
898 * as whole.
0b23fb36 899 */
5c1ad3e6
EN
900 size = RXDESC_PER_CACHELINE - 1;
901 if ((fec->rbd_index & size) == size) {
902 i = fec->rbd_index - size;
f24e482a 903 addr = (ulong)&fec->rbd_base[i];
5c1ad3e6
EN
904 for (; i <= fec->rbd_index ; i++) {
905 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
906 &fec->rbd_base[i]);
907 }
908 flush_dcache_range(addr,
567173a6 909 addr + ARCH_DMA_MINALIGN);
5c1ad3e6
EN
910 }
911
0b23fb36
IY
912 fec_rx_task_enable(fec);
913 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
914 }
915 debug("fec_recv: stop\n");
916
917 return len;
918}
919
ef8e3a3b
TK
920static void fec_set_dev_name(char *dest, int dev_id)
921{
922 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
923}
924
79e5f27b
MV
925static int fec_alloc_descs(struct fec_priv *fec)
926{
927 unsigned int size;
928 int i;
929 uint8_t *data;
f24e482a 930 ulong addr;
79e5f27b
MV
931
932 /* Allocate TX descriptors. */
933 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
934 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
935 if (!fec->tbd_base)
936 goto err_tx;
937
938 /* Allocate RX descriptors. */
939 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
940 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
941 if (!fec->rbd_base)
942 goto err_rx;
943
944 memset(fec->rbd_base, 0, size);
945
946 /* Allocate RX buffers. */
947
948 /* Maximum RX buffer size. */
db5b7f56 949 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
79e5f27b 950 for (i = 0; i < FEC_RBD_NUM; i++) {
db5b7f56 951 data = memalign(FEC_DMA_RX_MINALIGN, size);
79e5f27b
MV
952 if (!data) {
953 printf("%s: error allocating rxbuf %d\n", __func__, i);
954 goto err_ring;
955 }
956
957 memset(data, 0, size);
958
f24e482a
YL
959 addr = (ulong)data;
960 fec->rbd_base[i].data_pointer = (uint32_t)addr;
79e5f27b
MV
961 fec->rbd_base[i].status = FEC_RBD_EMPTY;
962 fec->rbd_base[i].data_length = 0;
963 /* Flush the buffer to memory. */
f24e482a 964 flush_dcache_range(addr, addr + size);
79e5f27b
MV
965 }
966
967 /* Mark the last RBD to close the ring. */
968 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
969
970 fec->rbd_index = 0;
971 fec->tbd_index = 0;
972
973 return 0;
974
975err_ring:
f24e482a
YL
976 for (; i >= 0; i--) {
977 addr = fec->rbd_base[i].data_pointer;
978 free((void *)addr);
979 }
79e5f27b
MV
980 free(fec->rbd_base);
981err_rx:
982 free(fec->tbd_base);
983err_tx:
984 return -ENOMEM;
985}
986
987static void fec_free_descs(struct fec_priv *fec)
988{
989 int i;
f24e482a 990 ulong addr;
79e5f27b 991
f24e482a
YL
992 for (i = 0; i < FEC_RBD_NUM; i++) {
993 addr = fec->rbd_base[i].data_pointer;
994 free((void *)addr);
995 }
79e5f27b
MV
996 free(fec->rbd_base);
997 free(fec->tbd_base);
998}
999
cb5761f7
LW
1000#ifdef CONFIG_DM_ETH
1001struct mii_dev *fec_get_miibus(struct udevice *dev, int dev_id)
1002#else
60752ca8 1003struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
cb5761f7 1004#endif
60752ca8 1005{
cb5761f7
LW
1006#ifdef CONFIG_DM_ETH
1007 struct fec_priv *priv = dev_get_priv(dev);
1008 struct ethernet_regs *eth = priv->eth;
1009#else
f24e482a 1010 struct ethernet_regs *eth = (struct ethernet_regs *)(ulong)base_addr;
cb5761f7 1011#endif
60752ca8
JT
1012 struct mii_dev *bus;
1013 int ret;
1014
1015 bus = mdio_alloc();
1016 if (!bus) {
1017 printf("mdio_alloc failed\n");
1018 return NULL;
1019 }
1020 bus->read = fec_phy_read;
1021 bus->write = fec_phy_write;
1022 bus->priv = eth;
1023 fec_set_dev_name(bus->name, dev_id);
1024
1025 ret = mdio_register(bus);
1026 if (ret) {
1027 printf("mdio_register failed\n");
1028 free(bus);
1029 return NULL;
1030 }
1031 fec_mii_setspeed(eth);
1032 return bus;
1033}
1034
1035#ifndef CONFIG_DM_ETH
fe428b90
TK
1036#ifdef CONFIG_PHYLIB
1037int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1038 struct mii_dev *bus, struct phy_device *phydev)
1039#else
1040static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1041 struct mii_dev *bus, int phy_id)
1042#endif
0b23fb36 1043{
0b23fb36 1044 struct eth_device *edev;
9e27e9dc 1045 struct fec_priv *fec;
0b23fb36 1046 unsigned char ethaddr[6];
979a5893 1047 char mac[16];
e382fb48
MV
1048 uint32_t start;
1049 int ret = 0;
0b23fb36
IY
1050
1051 /* create and fill edev struct */
1052 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1053 if (!edev) {
9e27e9dc 1054 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
1055 ret = -ENOMEM;
1056 goto err1;
9e27e9dc
MV
1057 }
1058
1059 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1060 if (!fec) {
1061 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
1062 ret = -ENOMEM;
1063 goto err2;
0b23fb36 1064 }
9e27e9dc 1065
de0b9576 1066 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
1067 memset(fec, 0, sizeof(*fec));
1068
79e5f27b
MV
1069 ret = fec_alloc_descs(fec);
1070 if (ret)
1071 goto err3;
1072
0b23fb36
IY
1073 edev->priv = fec;
1074 edev->init = fec_init;
1075 edev->send = fec_send;
1076 edev->recv = fec_recv;
1077 edev->halt = fec_halt;
fb57ec97 1078 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 1079
f24e482a 1080 fec->eth = (struct ethernet_regs *)(ulong)base_addr;
0b23fb36
IY
1081 fec->bd = bd;
1082
392b8502 1083 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
1084
1085 /* Reset chip. */
cb17b92d 1086 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
1087 start = get_timer(0);
1088 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1089 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
3450a859 1090 printf("FEC MXC: Timeout resetting chip\n");
79e5f27b 1091 goto err4;
e382fb48 1092 }
0b23fb36 1093 udelay(10);
e382fb48 1094 }
0b23fb36 1095
a5990b26 1096 fec_reg_setup(fec);
ef8e3a3b
TK
1097 fec_set_dev_name(edev->name, dev_id);
1098 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fe428b90
TK
1099 fec->bus = bus;
1100 fec_mii_setspeed(bus->priv);
1101#ifdef CONFIG_PHYLIB
1102 fec->phydev = phydev;
1103 phy_connect_dev(phydev, edev);
1104 /* Configure phy */
1105 phy_config(phydev);
1106#else
9e27e9dc 1107 fec->phy_id = phy_id;
fe428b90
TK
1108#endif
1109 eth_register(edev);
979a5893
AD
1110 /* only support one eth device, the index number pointed by dev_id */
1111 edev->index = fec->dev_id;
fe428b90 1112
f01e4e1e
AD
1113 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1114 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
fe428b90 1115 memcpy(edev->enetaddr, ethaddr, 6);
979a5893
AD
1116 if (fec->dev_id)
1117 sprintf(mac, "eth%daddr", fec->dev_id);
1118 else
1119 strcpy(mac, "ethaddr");
00caae6d 1120 if (!env_get(mac))
fd1e959e 1121 eth_env_set_enetaddr(mac, ethaddr);
fe428b90
TK
1122 }
1123 return ret;
79e5f27b
MV
1124err4:
1125 fec_free_descs(fec);
fe428b90
TK
1126err3:
1127 free(fec);
1128err2:
1129 free(edev);
1130err1:
1131 return ret;
1132}
1133
fe428b90
TK
1134int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1135{
1136 uint32_t base_mii;
1137 struct mii_dev *bus = NULL;
1138#ifdef CONFIG_PHYLIB
1139 struct phy_device *phydev = NULL;
1140#endif
1141 int ret;
1142
5c1ad3e6 1143#ifdef CONFIG_MX28
13947f43
TK
1144 /*
1145 * The i.MX28 has two ethernet interfaces, but they are not equal.
1146 * Only the first one can access the MDIO bus.
1147 */
fe428b90 1148 base_mii = MXS_ENET0_BASE;
13947f43 1149#else
fe428b90 1150 base_mii = addr;
13947f43 1151#endif
fe428b90
TK
1152 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1153 bus = fec_get_miibus(base_mii, dev_id);
1154 if (!bus)
1155 return -ENOMEM;
4dc27eed 1156#ifdef CONFIG_PHYLIB
fe428b90 1157 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
4dc27eed 1158 if (!phydev) {
845a57b4 1159 mdio_unregister(bus);
4dc27eed 1160 free(bus);
fe428b90 1161 return -ENOMEM;
4dc27eed 1162 }
fe428b90
TK
1163 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1164#else
1165 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
4dc27eed 1166#endif
fe428b90
TK
1167 if (ret) {
1168#ifdef CONFIG_PHYLIB
1169 free(phydev);
1170#endif
845a57b4 1171 mdio_unregister(bus);
fe428b90
TK
1172 free(bus);
1173 }
e382fb48 1174 return ret;
eef24480 1175}
0b23fb36 1176
eef24480
TK
1177#ifdef CONFIG_FEC_MXC_PHYADDR
1178int fecmxc_initialize(bd_t *bd)
1179{
1180 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1181 IMX_FEC_BASE);
0b23fb36 1182}
eef24480 1183#endif
2e5f4421 1184
13947f43 1185#ifndef CONFIG_PHYLIB
2e5f4421
MV
1186int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1187{
1188 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1189 fec->mii_postcall = cb;
1190 return 0;
1191}
13947f43 1192#endif
60752ca8
JT
1193
1194#else
1195
1ed2570f
JT
1196static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1197{
1198 struct fec_priv *priv = dev_get_priv(dev);
1199 struct eth_pdata *pdata = dev_get_platdata(dev);
1200
1201 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1202}
1203
60752ca8
JT
1204static const struct eth_ops fecmxc_ops = {
1205 .start = fecmxc_init,
1206 .send = fecmxc_send,
1207 .recv = fecmxc_recv,
1208 .stop = fecmxc_halt,
1209 .write_hwaddr = fecmxc_set_hwaddr,
1ed2570f 1210 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
60752ca8
JT
1211};
1212
1213static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1214{
1215 struct phy_device *phydev;
1216 int mask = 0xffffffff;
1217
1218#ifdef CONFIG_PHYLIB
1219 mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1220#endif
1221
1222 phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1223 if (!phydev)
1224 return -ENODEV;
1225
1226 phy_connect_dev(phydev, dev);
1227
1228 priv->phydev = phydev;
1229 phy_config(phydev);
1230
1231 return 0;
1232}
1233
1234static int fecmxc_probe(struct udevice *dev)
1235{
1236 struct eth_pdata *pdata = dev_get_platdata(dev);
1237 struct fec_priv *priv = dev_get_priv(dev);
1238 struct mii_dev *bus = NULL;
1239 int dev_id = -1;
60752ca8
JT
1240 uint32_t start;
1241 int ret;
1242
1243 ret = fec_alloc_descs(priv);
1244 if (ret)
1245 return ret;
1246
60752ca8 1247 /* Reset chip. */
567173a6
JT
1248 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1249 &priv->eth->ecntrl);
60752ca8
JT
1250 start = get_timer(0);
1251 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1252 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1253 printf("FEC MXC: Timeout reseting chip\n");
1254 goto err_timeout;
1255 }
1256 udelay(10);
1257 }
1258
1259 fec_reg_setup(priv);
60752ca8
JT
1260 priv->dev_id = (dev_id == -1) ? 0 : dev_id;
1261
306dd7da
LW
1262 bus = fec_get_miibus(dev, dev_id);
1263 if (!bus) {
1264 ret = -ENOMEM;
1265 goto err_mii;
1266 }
1267
1268 priv->bus = bus;
1269 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1270 priv->interface = pdata->phy_interface;
1271 ret = fec_phy_init(priv, dev);
1272 if (ret)
1273 goto err_phy;
1274
60752ca8
JT
1275 return 0;
1276
1277err_timeout:
1278 free(priv->phydev);
1279err_phy:
1280 mdio_unregister(bus);
1281 free(bus);
1282err_mii:
1283 fec_free_descs(priv);
1284 return ret;
1285}
1286
1287static int fecmxc_remove(struct udevice *dev)
1288{
1289 struct fec_priv *priv = dev_get_priv(dev);
1290
1291 free(priv->phydev);
1292 fec_free_descs(priv);
1293 mdio_unregister(priv->bus);
1294 mdio_free(priv->bus);
1295
1296 return 0;
1297}
1298
1299static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1300{
1301 struct eth_pdata *pdata = dev_get_platdata(dev);
1302 struct fec_priv *priv = dev_get_priv(dev);
1303 const char *phy_mode;
1304
a821c4af 1305 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
60752ca8
JT
1306 priv->eth = (struct ethernet_regs *)pdata->iobase;
1307
1308 pdata->phy_interface = -1;
e160f7d4
SG
1309 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1310 NULL);
60752ca8
JT
1311 if (phy_mode)
1312 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1313 if (pdata->phy_interface == -1) {
1314 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1315 return -EINVAL;
1316 }
1317
1318 /* TODO
1319 * Need to get the reset-gpio and related properties from DT
1320 * and implemet the enet reset code on .probe call
1321 */
1322
1323 return 0;
1324}
1325
1326static const struct udevice_id fecmxc_ids[] = {
1327 { .compatible = "fsl,imx6q-fec" },
1328 { }
1329};
1330
1331U_BOOT_DRIVER(fecmxc_gem) = {
1332 .name = "fecmxc",
1333 .id = UCLASS_ETH,
1334 .of_match = fecmxc_ids,
1335 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1336 .probe = fecmxc_probe,
1337 .remove = fecmxc_remove,
1338 .ops = &fecmxc_ops,
1339 .priv_auto_alloc_size = sizeof(struct fec_priv),
1340 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1341};
1342#endif