]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: use correct map when validating ppl
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
c2c087e6 91#define IMSM_RESERVED_SECTORS 4096
b81221b7 92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
c2462068
PB
95#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
cdddbdbc
DW
98
99/* Disk configuration info. */
100#define IMSM_MAX_DEVICES 255
101struct imsm_disk {
102 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 103 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 104 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
105#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
106#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
107#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 108#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 109 __u32 status; /* 0xF0 - 0xF3 */
1011e834 110 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
111 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
112#define IMSM_DISK_FILLERS 3
113 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
114};
115
3b451610
AK
116/* map selector for map managment
117 */
238c0a71
AK
118#define MAP_0 0
119#define MAP_1 1
120#define MAP_X -1
3b451610 121
cdddbdbc
DW
122/* RAID map configuration infos. */
123struct imsm_map {
5551b113
CA
124 __u32 pba_of_lba0_lo; /* start address of partition */
125 __u32 blocks_per_member_lo;/* blocks per member */
126 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
127 __u16 blocks_per_strip;
128 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
129#define IMSM_T_STATE_NORMAL 0
130#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
131#define IMSM_T_STATE_DEGRADED 2
132#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
133 __u8 raid_level;
134#define IMSM_T_RAID0 0
135#define IMSM_T_RAID1 1
136#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
137 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
138 __u8 num_domains; /* number of parity domains */
139 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 140 __u8 ddf;
5551b113
CA
141 __u32 pba_of_lba0_hi;
142 __u32 blocks_per_member_hi;
143 __u32 num_data_stripes_hi;
144 __u32 filler[4]; /* expansion area */
7eef0453 145#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 146 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
147 * top byte contains some flags
148 */
cdddbdbc
DW
149} __attribute__ ((packed));
150
151struct imsm_vol {
f8f603f1 152 __u32 curr_migr_unit;
fe7ed8cb 153 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 154 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
155#define MIGR_INIT 0
156#define MIGR_REBUILD 1
157#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
158#define MIGR_GEN_MIGR 3
159#define MIGR_STATE_CHANGE 4
1484e727 160#define MIGR_REPAIR 5
cdddbdbc 161 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
162#define RAIDVOL_CLEAN 0
163#define RAIDVOL_DIRTY 1
164#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 165 __u8 dirty;
fe7ed8cb
DW
166 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
167 __u16 verify_errors; /* number of mismatches */
168 __u16 bad_blocks; /* number of bad blocks during verify */
169 __u32 filler[4];
cdddbdbc
DW
170 struct imsm_map map[1];
171 /* here comes another one if migr_state */
172} __attribute__ ((packed));
173
174struct imsm_dev {
fe7ed8cb 175 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
176 __u32 size_low;
177 __u32 size_high;
fe7ed8cb
DW
178#define DEV_BOOTABLE __cpu_to_le32(0x01)
179#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
180#define DEV_READ_COALESCING __cpu_to_le32(0x04)
181#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
182#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
183#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
184#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
185#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
186#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
187#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
188#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
189#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
190#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
191 __u32 status; /* Persistent RaidDev status */
192 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
193 __u8 migr_priority;
194 __u8 num_sub_vols;
195 __u8 tid;
196 __u8 cng_master_disk;
197 __u16 cache_policy;
198 __u8 cng_state;
199 __u8 cng_sub_state;
2432ce9b
AP
200 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
201
202 /* NVM_EN */
203 __u8 nv_cache_mode;
204 __u8 nv_cache_flags;
205
206 /* Unique Volume Id of the NvCache Volume associated with this volume */
207 __u32 nvc_vol_orig_family_num;
208 __u16 nvc_vol_raid_dev_num;
209
210#define RWH_OFF 0
211#define RWH_DISTRIBUTED 1
212#define RWH_JOURNALING_DRIVE 2
c2462068
PB
213#define RWH_MULTIPLE_DISTRIBUTED 3
214#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
215#define RWH_MULTIPLE_OFF 5
2432ce9b
AP
216 __u8 rwh_policy; /* Raid Write Hole Policy */
217 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
218 __u8 filler1;
219
220#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
221 __u32 filler[IMSM_DEV_FILLERS];
222 struct imsm_vol vol;
223} __attribute__ ((packed));
224
225struct imsm_super {
226 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
227 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
228 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
229 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
230 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
231 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
232 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
233 __u8 num_disks; /* 0x38 Number of configured disks */
234 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
235 __u8 error_log_pos; /* 0x3A */
236 __u8 fill[1]; /* 0x3B */
237 __u32 cache_size; /* 0x3c - 0x40 in mb */
238 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
239 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
240 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
241 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
242 * volume IDs for raid_dev created in this array
243 * (starts at 1)
244 */
245 __u16 filler1; /* 0x4E - 0x4F */
246#define IMSM_FILLERS 34
247 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
248 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
249 /* here comes imsm_dev[num_raid_devs] */
604b746f 250 /* here comes BBM logs */
cdddbdbc
DW
251} __attribute__ ((packed));
252
604b746f 253#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
254#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
255#define BBM_LOG_SIGNATURE 0xabadb10c
256
257struct bbm_log_block_addr {
258 __u16 w1;
259 __u32 dw1;
260} __attribute__ ((__packed__));
604b746f
JD
261
262struct bbm_log_entry {
8d67477f
TM
263 __u8 marked_count; /* Number of blocks marked - 1 */
264 __u8 disk_ordinal; /* Disk entry within the imsm_super */
265 struct bbm_log_block_addr defective_block_start;
604b746f
JD
266} __attribute__ ((__packed__));
267
268struct bbm_log {
269 __u32 signature; /* 0xABADB10C */
270 __u32 entry_count;
8d67477f 271 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
604b746f
JD
272} __attribute__ ((__packed__));
273
cdddbdbc 274static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 275
b53bfba6
TM
276#define BLOCKS_PER_KB (1024/512)
277
8e59f3d8
AK
278#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
279
280#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
281
de44e46f
PB
282#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
283#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
284 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
285 */
286
8e59f3d8
AK
287#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
288 * be recovered using srcMap */
289#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
290 * already been migrated and must
291 * be recovered from checkpoint area */
2432ce9b 292
c2462068 293#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 294
8e59f3d8
AK
295struct migr_record {
296 __u32 rec_status; /* Status used to determine how to restart
297 * migration in case it aborts
298 * in some fashion */
299 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
300 __u32 family_num; /* Family number of MPB
301 * containing the RaidDev
302 * that is migrating */
303 __u32 ascending_migr; /* True if migrating in increasing
304 * order of lbas */
305 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
306 __u32 dest_depth_per_unit; /* Num member blocks each destMap
307 * member disk
308 * advances per unit-of-operation */
309 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
310 __u32 dest_1st_member_lba; /* First member lba on first
311 * stripe of destination */
312 __u32 num_migr_units; /* Total num migration units-of-op */
313 __u32 post_migr_vol_cap; /* Size of volume after
314 * migration completes */
315 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
316 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
317 * migration ckpt record was read from
318 * (for recovered migrations) */
319} __attribute__ ((__packed__));
320
ec50f7b6
LM
321struct md_list {
322 /* usage marker:
323 * 1: load metadata
324 * 2: metadata does not match
325 * 4: already checked
326 */
327 int used;
328 char *devname;
329 int found;
330 int container;
331 dev_t st_rdev;
332 struct md_list *next;
333};
334
e7b84f9d 335#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 336
1484e727
DW
337static __u8 migr_type(struct imsm_dev *dev)
338{
339 if (dev->vol.migr_type == MIGR_VERIFY &&
340 dev->status & DEV_VERIFY_AND_FIX)
341 return MIGR_REPAIR;
342 else
343 return dev->vol.migr_type;
344}
345
346static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
347{
348 /* for compatibility with older oroms convert MIGR_REPAIR, into
349 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
350 */
351 if (migr_type == MIGR_REPAIR) {
352 dev->vol.migr_type = MIGR_VERIFY;
353 dev->status |= DEV_VERIFY_AND_FIX;
354 } else {
355 dev->vol.migr_type = migr_type;
356 dev->status &= ~DEV_VERIFY_AND_FIX;
357 }
358}
359
f36a9ecd 360static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 361{
f36a9ecd 362 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 363}
cdddbdbc 364
f36a9ecd
PB
365static unsigned int mpb_sectors(struct imsm_super *mpb,
366 unsigned int sector_size)
87eb16df 367{
f36a9ecd 368 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
369}
370
ba2de7ba
DW
371struct intel_dev {
372 struct imsm_dev *dev;
373 struct intel_dev *next;
f21e18ca 374 unsigned index;
ba2de7ba
DW
375};
376
88654014
LM
377struct intel_hba {
378 enum sys_dev_type type;
379 char *path;
380 char *pci_id;
381 struct intel_hba *next;
382};
383
1a64be56
LM
384enum action {
385 DISK_REMOVE = 1,
386 DISK_ADD
387};
cdddbdbc
DW
388/* internal representation of IMSM metadata */
389struct intel_super {
390 union {
949c47a0
DW
391 void *buf; /* O_DIRECT buffer for reading/writing metadata */
392 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 393 };
8e59f3d8
AK
394 union {
395 void *migr_rec_buf; /* buffer for I/O operations */
396 struct migr_record *migr_rec; /* migration record */
397 };
51d83f5d
AK
398 int clean_migration_record_by_mdmon; /* when reshape is switched to next
399 array, it indicates that mdmon is allowed to clean migration
400 record */
949c47a0 401 size_t len; /* size of the 'buf' allocation */
bbab0940 402 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
403 void *next_buf; /* for realloc'ing buf from the manager */
404 size_t next_len;
c2c087e6 405 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 406 int current_vol; /* index of raid device undergoing creation */
5551b113 407 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 408 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 409 struct intel_dev *devlist;
fa7bb6f8 410 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
411 struct dl {
412 struct dl *next;
413 int index;
414 __u8 serial[MAX_RAID_SERIAL_LEN];
415 int major, minor;
416 char *devname;
b9f594fe 417 struct imsm_disk disk;
cdddbdbc 418 int fd;
0dcecb2e
DW
419 int extent_cnt;
420 struct extent *e; /* for determining freespace @ create */
efb30e7f 421 int raiddisk; /* slot to fill in autolayout */
1a64be56 422 enum action action;
ca0748fa 423 } *disks, *current_disk;
1a64be56
LM
424 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
425 active */
47ee5a45 426 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 427 struct bbm_log *bbm_log;
88654014 428 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 429 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 430 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 431 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
432};
433
434struct intel_disk {
435 struct imsm_disk disk;
436 #define IMSM_UNKNOWN_OWNER (-1)
437 int owner;
438 struct intel_disk *next;
cdddbdbc
DW
439};
440
c2c087e6
DW
441struct extent {
442 unsigned long long start, size;
443};
444
694575e7
KW
445/* definitions of reshape process types */
446enum imsm_reshape_type {
447 CH_TAKEOVER,
b5347799 448 CH_MIGRATION,
7abc9871 449 CH_ARRAY_SIZE,
694575e7
KW
450};
451
88758e9d
DW
452/* definition of messages passed to imsm_process_update */
453enum imsm_update_type {
454 update_activate_spare,
8273f55e 455 update_create_array,
33414a01 456 update_kill_array,
aa534678 457 update_rename_array,
1a64be56 458 update_add_remove_disk,
78b10e66 459 update_reshape_container_disks,
48c5303a 460 update_reshape_migration,
2d40f3a1
AK
461 update_takeover,
462 update_general_migration_checkpoint,
f3871fdc 463 update_size_change,
bbab0940 464 update_prealloc_badblocks_mem,
e6e9dd3f 465 update_rwh_policy,
88758e9d
DW
466};
467
468struct imsm_update_activate_spare {
469 enum imsm_update_type type;
d23fe947 470 struct dl *dl;
88758e9d
DW
471 int slot;
472 int array;
473 struct imsm_update_activate_spare *next;
474};
475
78b10e66 476struct geo_params {
4dd2df09 477 char devnm[32];
78b10e66 478 char *dev_name;
d04f65f4 479 unsigned long long size;
78b10e66
N
480 int level;
481 int layout;
482 int chunksize;
483 int raid_disks;
484};
485
bb025c2f
KW
486enum takeover_direction {
487 R10_TO_R0,
488 R0_TO_R10
489};
490struct imsm_update_takeover {
491 enum imsm_update_type type;
492 int subarray;
493 enum takeover_direction direction;
494};
78b10e66
N
495
496struct imsm_update_reshape {
497 enum imsm_update_type type;
498 int old_raid_disks;
499 int new_raid_disks;
48c5303a
PC
500
501 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
502};
503
504struct imsm_update_reshape_migration {
505 enum imsm_update_type type;
506 int old_raid_disks;
507 int new_raid_disks;
508 /* fields for array migration changes
509 */
510 int subdev;
511 int new_level;
512 int new_layout;
4bba0439 513 int new_chunksize;
48c5303a 514
d195167d 515 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
516};
517
f3871fdc
AK
518struct imsm_update_size_change {
519 enum imsm_update_type type;
520 int subdev;
521 long long new_size;
522};
523
2d40f3a1
AK
524struct imsm_update_general_migration_checkpoint {
525 enum imsm_update_type type;
526 __u32 curr_migr_unit;
527};
528
54c2c1ea
DW
529struct disk_info {
530 __u8 serial[MAX_RAID_SERIAL_LEN];
531};
532
8273f55e
DW
533struct imsm_update_create_array {
534 enum imsm_update_type type;
8273f55e 535 int dev_idx;
6a3e913e 536 struct imsm_dev dev;
8273f55e
DW
537};
538
33414a01
DW
539struct imsm_update_kill_array {
540 enum imsm_update_type type;
541 int dev_idx;
542};
543
aa534678
DW
544struct imsm_update_rename_array {
545 enum imsm_update_type type;
546 __u8 name[MAX_RAID_SERIAL_LEN];
547 int dev_idx;
548};
549
1a64be56 550struct imsm_update_add_remove_disk {
43dad3d6
DW
551 enum imsm_update_type type;
552};
553
bbab0940
TM
554struct imsm_update_prealloc_bb_mem {
555 enum imsm_update_type type;
556};
557
e6e9dd3f
AP
558struct imsm_update_rwh_policy {
559 enum imsm_update_type type;
560 int new_policy;
561 int dev_idx;
562};
563
88654014
LM
564static const char *_sys_dev_type[] = {
565 [SYS_DEV_UNKNOWN] = "Unknown",
566 [SYS_DEV_SAS] = "SAS",
614902f6 567 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
568 [SYS_DEV_NVME] = "NVMe",
569 [SYS_DEV_VMD] = "VMD"
88654014
LM
570};
571
572const char *get_sys_dev_type(enum sys_dev_type type)
573{
574 if (type >= SYS_DEV_MAX)
575 type = SYS_DEV_UNKNOWN;
576
577 return _sys_dev_type[type];
578}
579
580static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
581{
503975b9
N
582 struct intel_hba *result = xmalloc(sizeof(*result));
583
584 result->type = device->type;
585 result->path = xstrdup(device->path);
586 result->next = NULL;
587 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
588 result->pci_id++;
589
88654014
LM
590 return result;
591}
592
593static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
594{
594dc1b8
JS
595 struct intel_hba *result;
596
88654014
LM
597 for (result = hba; result; result = result->next) {
598 if (result->type == device->type && strcmp(result->path, device->path) == 0)
599 break;
600 }
601 return result;
602}
603
b4cf4cba 604static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
605{
606 struct intel_hba *hba;
607
608 /* check if disk attached to Intel HBA */
609 hba = find_intel_hba(super->hba, device);
610 if (hba != NULL)
611 return 1;
612 /* Check if HBA is already attached to super */
613 if (super->hba == NULL) {
614 super->hba = alloc_intel_hba(device);
615 return 1;
6b781d33
AP
616 }
617
618 hba = super->hba;
619 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 620 * Do not support HBA types mixing
6b781d33
AP
621 */
622 if (device->type != hba->type)
88654014 623 return 2;
6b781d33
AP
624
625 /* Multiple same type HBAs can be used if they share the same OROM */
626 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
627
628 if (device_orom != super->orom)
629 return 2;
630
631 while (hba->next)
632 hba = hba->next;
633
634 hba->next = alloc_intel_hba(device);
635 return 1;
88654014
LM
636}
637
638static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
639{
9bc4ae77 640 struct sys_dev *list, *elem;
88654014
LM
641 char *disk_path;
642
643 if ((list = find_intel_devices()) == NULL)
644 return 0;
645
646 if (fd < 0)
647 disk_path = (char *) devname;
648 else
649 disk_path = diskfd_to_devpath(fd);
650
9bc4ae77 651 if (!disk_path)
88654014 652 return 0;
88654014 653
9bc4ae77
N
654 for (elem = list; elem; elem = elem->next)
655 if (path_attached_to_hba(disk_path, elem->path))
88654014 656 return elem;
9bc4ae77 657
88654014
LM
658 if (disk_path != devname)
659 free(disk_path);
88654014
LM
660
661 return NULL;
662}
663
d424212e
N
664static int find_intel_hba_capability(int fd, struct intel_super *super,
665 char *devname);
f2f5c343 666
cdddbdbc
DW
667static struct supertype *match_metadata_desc_imsm(char *arg)
668{
669 struct supertype *st;
670
671 if (strcmp(arg, "imsm") != 0 &&
672 strcmp(arg, "default") != 0
673 )
674 return NULL;
675
503975b9 676 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
677 st->ss = &super_imsm;
678 st->max_devs = IMSM_MAX_DEVICES;
679 st->minor_version = 0;
680 st->sb = NULL;
681 return st;
682}
683
cdddbdbc
DW
684static __u8 *get_imsm_version(struct imsm_super *mpb)
685{
686 return &mpb->sig[MPB_SIG_LEN];
687}
688
949c47a0
DW
689/* retrieve a disk directly from the anchor when the anchor is known to be
690 * up-to-date, currently only at load time
691 */
692static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 693{
949c47a0 694 if (index >= mpb->num_disks)
cdddbdbc
DW
695 return NULL;
696 return &mpb->disk[index];
697}
698
95d07a2c
LM
699/* retrieve the disk description based on a index of the disk
700 * in the sub-array
701 */
702static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 703{
b9f594fe
DW
704 struct dl *d;
705
706 for (d = super->disks; d; d = d->next)
707 if (d->index == index)
95d07a2c
LM
708 return d;
709
710 return NULL;
711}
712/* retrieve a disk from the parsed metadata */
713static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
714{
715 struct dl *dl;
716
717 dl = get_imsm_dl_disk(super, index);
718 if (dl)
719 return &dl->disk;
720
b9f594fe 721 return NULL;
949c47a0
DW
722}
723
724/* generate a checksum directly from the anchor when the anchor is known to be
725 * up-to-date, currently only at load or write_super after coalescing
726 */
727static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
728{
729 __u32 end = mpb->mpb_size / sizeof(end);
730 __u32 *p = (__u32 *) mpb;
731 __u32 sum = 0;
732
5d500228
N
733 while (end--) {
734 sum += __le32_to_cpu(*p);
97f734fd
N
735 p++;
736 }
cdddbdbc 737
5d500228 738 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
739}
740
a965f303
DW
741static size_t sizeof_imsm_map(struct imsm_map *map)
742{
743 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
744}
745
746struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 747{
5e7b0330
AK
748 /* A device can have 2 maps if it is in the middle of a migration.
749 * If second_map is:
238c0a71
AK
750 * MAP_0 - we return the first map
751 * MAP_1 - we return the second map if it exists, else NULL
752 * MAP_X - we return the second map if it exists, else the first
5e7b0330 753 */
a965f303 754 struct imsm_map *map = &dev->vol.map[0];
9535fc47 755 struct imsm_map *map2 = NULL;
a965f303 756
9535fc47
AK
757 if (dev->vol.migr_state)
758 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 759
9535fc47 760 switch (second_map) {
3b451610 761 case MAP_0:
9535fc47 762 break;
3b451610 763 case MAP_1:
9535fc47
AK
764 map = map2;
765 break;
238c0a71 766 case MAP_X:
9535fc47
AK
767 if (map2)
768 map = map2;
769 break;
9535fc47
AK
770 default:
771 map = NULL;
772 }
773 return map;
5e7b0330 774
a965f303 775}
cdddbdbc 776
3393c6af
DW
777/* return the size of the device.
778 * migr_state increases the returned size if map[0] were to be duplicated
779 */
780static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
781{
782 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 783 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
784
785 /* migrating means an additional map */
a965f303 786 if (dev->vol.migr_state)
238c0a71 787 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 788 else if (migr_state)
238c0a71 789 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
790
791 return size;
792}
793
54c2c1ea
DW
794/* retrieve disk serial number list from a metadata update */
795static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
796{
797 void *u = update;
798 struct disk_info *inf;
799
800 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
801 sizeof_imsm_dev(&update->dev, 0);
802
803 return inf;
804}
54c2c1ea 805
949c47a0 806static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
807{
808 int offset;
809 int i;
810 void *_mpb = mpb;
811
949c47a0 812 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
813 return NULL;
814
815 /* devices start after all disks */
816 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
817
818 for (i = 0; i <= index; i++)
819 if (i == index)
820 return _mpb + offset;
821 else
3393c6af 822 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
823
824 return NULL;
825}
826
949c47a0
DW
827static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
828{
ba2de7ba
DW
829 struct intel_dev *dv;
830
949c47a0
DW
831 if (index >= super->anchor->num_raid_devs)
832 return NULL;
ba2de7ba
DW
833 for (dv = super->devlist; dv; dv = dv->next)
834 if (dv->index == index)
835 return dv->dev;
836 return NULL;
949c47a0
DW
837}
838
8d67477f
TM
839static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
840 *addr)
841{
842 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
843 __le16_to_cpu(addr->w1));
844}
845
846static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
847{
848 struct bbm_log_block_addr addr;
849
850 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
851 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
852 return addr;
853}
854
8d67477f
TM
855/* get size of the bbm log */
856static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
857{
858 if (!log || log->entry_count == 0)
859 return 0;
860
861 return sizeof(log->signature) +
862 sizeof(log->entry_count) +
863 log->entry_count * sizeof(struct bbm_log_entry);
864}
6f50473f
TM
865
866/* check if bad block is not partially stored in bbm log */
867static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
868 long long sector, const int length, __u32 *pos)
869{
870 __u32 i;
871
872 for (i = *pos; i < log->entry_count; i++) {
873 struct bbm_log_entry *entry = &log->marked_block_entries[i];
874 unsigned long long bb_start;
875 unsigned long long bb_end;
876
877 bb_start = __le48_to_cpu(&entry->defective_block_start);
878 bb_end = bb_start + (entry->marked_count + 1);
879
880 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
881 (bb_end <= sector + length)) {
882 *pos = i;
883 return 1;
884 }
885 }
886 return 0;
887}
888
889/* record new bad block in bbm log */
890static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
891 long long sector, int length)
892{
893 int new_bb = 0;
894 __u32 pos = 0;
895 struct bbm_log_entry *entry = NULL;
896
897 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
898 struct bbm_log_entry *e = &log->marked_block_entries[pos];
899
900 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
901 (__le48_to_cpu(&e->defective_block_start) == sector)) {
902 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
903 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
904 pos = pos + 1;
905 continue;
906 }
907 entry = e;
908 break;
909 }
910
911 if (entry) {
912 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
913 BBM_LOG_MAX_LBA_ENTRY_VAL;
914 entry->defective_block_start = __cpu_to_le48(sector);
915 entry->marked_count = cnt - 1;
916 if (cnt == length)
917 return 1;
918 sector += cnt;
919 length -= cnt;
920 }
921
922 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
925 return 0;
926
927 while (length > 0) {
928 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
929 BBM_LOG_MAX_LBA_ENTRY_VAL;
930 struct bbm_log_entry *entry =
931 &log->marked_block_entries[log->entry_count];
932
933 entry->defective_block_start = __cpu_to_le48(sector);
934 entry->marked_count = cnt - 1;
935 entry->disk_ordinal = idx;
936
937 sector += cnt;
938 length -= cnt;
939
940 log->entry_count++;
941 }
942
943 return new_bb;
944}
c07a5a4f 945
4c9e8c1e
TM
946/* clear all bad blocks for given disk */
947static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
948{
949 __u32 i = 0;
950
951 while (i < log->entry_count) {
952 struct bbm_log_entry *entries = log->marked_block_entries;
953
954 if (entries[i].disk_ordinal == idx) {
955 if (i < log->entry_count - 1)
956 entries[i] = entries[log->entry_count - 1];
957 log->entry_count--;
958 } else {
959 i++;
960 }
961 }
962}
963
c07a5a4f
TM
964/* clear given bad block */
965static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
966 long long sector, const int length) {
967 __u32 i = 0;
968
969 while (i < log->entry_count) {
970 struct bbm_log_entry *entries = log->marked_block_entries;
971
972 if ((entries[i].disk_ordinal == idx) &&
973 (__le48_to_cpu(&entries[i].defective_block_start) ==
974 sector) && (entries[i].marked_count + 1 == length)) {
975 if (i < log->entry_count - 1)
976 entries[i] = entries[log->entry_count - 1];
977 log->entry_count--;
978 break;
979 }
980 i++;
981 }
982
983 return 1;
984}
8d67477f
TM
985
986/* allocate and load BBM log from metadata */
987static int load_bbm_log(struct intel_super *super)
988{
989 struct imsm_super *mpb = super->anchor;
990 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
991
992 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
993 if (!super->bbm_log)
994 return 1;
995
996 if (bbm_log_size) {
997 struct bbm_log *log = (void *)mpb +
998 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
999
1000 __u32 entry_count;
1001
1002 if (bbm_log_size < sizeof(log->signature) +
1003 sizeof(log->entry_count))
1004 return 2;
1005
1006 entry_count = __le32_to_cpu(log->entry_count);
1007 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1008 (entry_count > BBM_LOG_MAX_ENTRIES))
1009 return 3;
1010
1011 if (bbm_log_size !=
1012 sizeof(log->signature) + sizeof(log->entry_count) +
1013 entry_count * sizeof(struct bbm_log_entry))
1014 return 4;
1015
1016 memcpy(super->bbm_log, log, bbm_log_size);
1017 } else {
1018 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1019 super->bbm_log->entry_count = 0;
1020 }
1021
1022 return 0;
1023}
1024
b12796be
TM
1025/* checks if bad block is within volume boundaries */
1026static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1027 const unsigned long long start_sector,
1028 const unsigned long long size)
1029{
1030 unsigned long long bb_start;
1031 unsigned long long bb_end;
1032
1033 bb_start = __le48_to_cpu(&entry->defective_block_start);
1034 bb_end = bb_start + (entry->marked_count + 1);
1035
1036 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1037 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1038 return 1;
1039
1040 return 0;
1041}
1042
1043/* get list of bad blocks on a drive for a volume */
1044static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1045 const unsigned long long start_sector,
1046 const unsigned long long size,
1047 struct md_bb *bbs)
1048{
1049 __u32 count = 0;
1050 __u32 i;
1051
1052 for (i = 0; i < log->entry_count; i++) {
1053 const struct bbm_log_entry *ent =
1054 &log->marked_block_entries[i];
1055 struct md_bb_entry *bb;
1056
1057 if ((ent->disk_ordinal == idx) &&
1058 is_bad_block_in_volume(ent, start_sector, size)) {
1059
1060 if (!bbs->entries) {
1061 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1062 sizeof(*bb));
1063 if (!bbs->entries)
1064 break;
1065 }
1066
1067 bb = &bbs->entries[count++];
1068 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1069 bb->length = ent->marked_count + 1;
1070 }
1071 }
1072 bbs->count = count;
1073}
1074
98130f40
AK
1075/*
1076 * for second_map:
238c0a71
AK
1077 * == MAP_0 get first map
1078 * == MAP_1 get second map
1079 * == MAP_X than get map according to the current migr_state
98130f40
AK
1080 */
1081static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1082 int slot,
1083 int second_map)
7eef0453
DW
1084{
1085 struct imsm_map *map;
1086
5e7b0330 1087 map = get_imsm_map(dev, second_map);
7eef0453 1088
ff077194
DW
1089 /* top byte identifies disk under rebuild */
1090 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1091}
1092
1093#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1094static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1095{
98130f40 1096 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1097
1098 return ord_to_idx(ord);
7eef0453
DW
1099}
1100
be73972f
DW
1101static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1102{
1103 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1104}
1105
f21e18ca 1106static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1107{
1108 int slot;
1109 __u32 ord;
1110
1111 for (slot = 0; slot < map->num_members; slot++) {
1112 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1113 if (ord_to_idx(ord) == idx)
1114 return slot;
1115 }
1116
1117 return -1;
1118}
1119
cdddbdbc
DW
1120static int get_imsm_raid_level(struct imsm_map *map)
1121{
1122 if (map->raid_level == 1) {
1123 if (map->num_members == 2)
1124 return 1;
1125 else
1126 return 10;
1127 }
1128
1129 return map->raid_level;
1130}
1131
c2c087e6
DW
1132static int cmp_extent(const void *av, const void *bv)
1133{
1134 const struct extent *a = av;
1135 const struct extent *b = bv;
1136 if (a->start < b->start)
1137 return -1;
1138 if (a->start > b->start)
1139 return 1;
1140 return 0;
1141}
1142
0dcecb2e 1143static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1144{
c2c087e6 1145 int memberships = 0;
620b1713 1146 int i;
c2c087e6 1147
949c47a0
DW
1148 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1149 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1150 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1151
620b1713
DW
1152 if (get_imsm_disk_slot(map, dl->index) >= 0)
1153 memberships++;
c2c087e6 1154 }
0dcecb2e
DW
1155
1156 return memberships;
1157}
1158
b81221b7
CA
1159static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1160
5551b113
CA
1161static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1162{
1163 if (lo == 0 || hi == 0)
1164 return 1;
1165 *lo = __le32_to_cpu((unsigned)n);
1166 *hi = __le32_to_cpu((unsigned)(n >> 32));
1167 return 0;
1168}
1169
1170static unsigned long long join_u32(__u32 lo, __u32 hi)
1171{
1172 return (unsigned long long)__le32_to_cpu(lo) |
1173 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1174}
1175
1176static unsigned long long total_blocks(struct imsm_disk *disk)
1177{
1178 if (disk == NULL)
1179 return 0;
1180 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1181}
1182
1183static unsigned long long pba_of_lba0(struct imsm_map *map)
1184{
1185 if (map == NULL)
1186 return 0;
1187 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1188}
1189
1190static unsigned long long blocks_per_member(struct imsm_map *map)
1191{
1192 if (map == NULL)
1193 return 0;
1194 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1195}
1196
1197static unsigned long long num_data_stripes(struct imsm_map *map)
1198{
1199 if (map == NULL)
1200 return 0;
1201 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1202}
1203
1204static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1205{
1206 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1207}
1208
1209static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1210{
1211 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1212}
1213
1214static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1215{
1216 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1217}
1218
1219static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1220{
1221 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1222}
1223
0dcecb2e
DW
1224static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1225{
1226 /* find a list of used extents on the given physical device */
1227 struct extent *rv, *e;
620b1713 1228 int i;
0dcecb2e 1229 int memberships = count_memberships(dl, super);
b276dd33
DW
1230 __u32 reservation;
1231
1232 /* trim the reserved area for spares, so they can join any array
1233 * regardless of whether the OROM has assigned sectors from the
1234 * IMSM_RESERVED_SECTORS region
1235 */
1236 if (dl->index == -1)
b81221b7 1237 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1238 else
1239 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1240
503975b9 1241 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1242 e = rv;
1243
949c47a0
DW
1244 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1245 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1246 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1247
620b1713 1248 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
1249 e->start = pba_of_lba0(map);
1250 e->size = blocks_per_member(map);
620b1713 1251 e++;
c2c087e6
DW
1252 }
1253 }
1254 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1255
1011e834 1256 /* determine the start of the metadata
14e8215b
DW
1257 * when no raid devices are defined use the default
1258 * ...otherwise allow the metadata to truncate the value
1259 * as is the case with older versions of imsm
1260 */
1261 if (memberships) {
1262 struct extent *last = &rv[memberships - 1];
5551b113 1263 unsigned long long remainder;
14e8215b 1264
5551b113 1265 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1266 /* round down to 1k block to satisfy precision of the kernel
1267 * 'size' interface
1268 */
1269 remainder &= ~1UL;
1270 /* make sure remainder is still sane */
f21e18ca 1271 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1272 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1273 if (reservation > remainder)
1274 reservation = remainder;
1275 }
5551b113 1276 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1277 e->size = 0;
1278 return rv;
1279}
1280
14e8215b
DW
1281/* try to determine how much space is reserved for metadata from
1282 * the last get_extents() entry, otherwise fallback to the
1283 * default
1284 */
1285static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1286{
1287 struct extent *e;
1288 int i;
1289 __u32 rv;
1290
1291 /* for spares just return a minimal reservation which will grow
1292 * once the spare is picked up by an array
1293 */
1294 if (dl->index == -1)
1295 return MPB_SECTOR_CNT;
1296
1297 e = get_extents(super, dl);
1298 if (!e)
1299 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1300
1301 /* scroll to last entry */
1302 for (i = 0; e[i].size; i++)
1303 continue;
1304
5551b113 1305 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1306
1307 free(e);
1308
1309 return rv;
1310}
1311
25ed7e59
DW
1312static int is_spare(struct imsm_disk *disk)
1313{
1314 return (disk->status & SPARE_DISK) == SPARE_DISK;
1315}
1316
1317static int is_configured(struct imsm_disk *disk)
1318{
1319 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1320}
1321
1322static int is_failed(struct imsm_disk *disk)
1323{
1324 return (disk->status & FAILED_DISK) == FAILED_DISK;
1325}
1326
2432ce9b
AP
1327static int is_journal(struct imsm_disk *disk)
1328{
1329 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1330}
1331
b53bfba6
TM
1332/* round array size down to closest MB and ensure it splits evenly
1333 * between members
1334 */
1335static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1336 disk_count)
1337{
1338 size /= disk_count;
1339 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1340 size *= disk_count;
1341
1342 return size;
1343}
1344
b81221b7
CA
1345/* try to determine how much space is reserved for metadata from
1346 * the last get_extents() entry on the smallest active disk,
1347 * otherwise fallback to the default
1348 */
1349static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1350{
1351 struct extent *e;
1352 int i;
5551b113
CA
1353 unsigned long long min_active;
1354 __u32 remainder;
b81221b7
CA
1355 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1356 struct dl *dl, *dl_min = NULL;
1357
1358 if (!super)
1359 return rv;
1360
1361 min_active = 0;
1362 for (dl = super->disks; dl; dl = dl->next) {
1363 if (dl->index < 0)
1364 continue;
5551b113
CA
1365 unsigned long long blocks = total_blocks(&dl->disk);
1366 if (blocks < min_active || min_active == 0) {
b81221b7 1367 dl_min = dl;
5551b113 1368 min_active = blocks;
b81221b7
CA
1369 }
1370 }
1371 if (!dl_min)
1372 return rv;
1373
1374 /* find last lba used by subarrays on the smallest active disk */
1375 e = get_extents(super, dl_min);
1376 if (!e)
1377 return rv;
1378 for (i = 0; e[i].size; i++)
1379 continue;
1380
1381 remainder = min_active - e[i].start;
1382 free(e);
1383
1384 /* to give priority to recovery we should not require full
1385 IMSM_RESERVED_SECTORS from the spare */
1386 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1387
1388 /* if real reservation is smaller use that value */
1389 return (remainder < rv) ? remainder : rv;
1390}
1391
fbfdcb06
AO
1392/*
1393 * Return minimum size of a spare and sector size
1394 * that can be used in this array
1395 */
1396int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1397{
1398 struct intel_super *super = st->sb;
1399 struct dl *dl;
1400 struct extent *e;
1401 int i;
fbfdcb06
AO
1402 unsigned long long size = 0;
1403
1404 c->min_size = 0;
4b57ecf6 1405 c->sector_size = 0;
80e7f8c3
AC
1406
1407 if (!super)
fbfdcb06 1408 return -EINVAL;
80e7f8c3
AC
1409 /* find first active disk in array */
1410 dl = super->disks;
1411 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1412 dl = dl->next;
1413 if (!dl)
fbfdcb06 1414 return -EINVAL;
80e7f8c3
AC
1415 /* find last lba used by subarrays */
1416 e = get_extents(super, dl);
1417 if (!e)
fbfdcb06 1418 return -EINVAL;
80e7f8c3
AC
1419 for (i = 0; e[i].size; i++)
1420 continue;
1421 if (i > 0)
fbfdcb06 1422 size = e[i-1].start + e[i-1].size;
80e7f8c3 1423 free(e);
b81221b7 1424
80e7f8c3 1425 /* add the amount of space needed for metadata */
fbfdcb06
AO
1426 size += imsm_min_reserved_sectors(super);
1427
1428 c->min_size = size * 512;
4b57ecf6 1429 c->sector_size = super->sector_size;
b81221b7 1430
fbfdcb06 1431 return 0;
80e7f8c3
AC
1432}
1433
d1e02575
AK
1434static int is_gen_migration(struct imsm_dev *dev);
1435
f36a9ecd
PB
1436#define IMSM_4K_DIV 8
1437
c47b0ff6
AK
1438static __u64 blocks_per_migr_unit(struct intel_super *super,
1439 struct imsm_dev *dev);
1e5c6983 1440
c47b0ff6
AK
1441static void print_imsm_dev(struct intel_super *super,
1442 struct imsm_dev *dev,
1443 char *uuid,
1444 int disk_idx)
cdddbdbc
DW
1445{
1446 __u64 sz;
0d80bb2f 1447 int slot, i;
238c0a71
AK
1448 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1449 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1450 __u32 ord;
cdddbdbc
DW
1451
1452 printf("\n");
1e7bc0ed 1453 printf("[%.16s]:\n", dev->volume);
44470971 1454 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1455 printf(" RAID Level : %d", get_imsm_raid_level(map));
1456 if (map2)
1457 printf(" <-- %d", get_imsm_raid_level(map2));
1458 printf("\n");
1459 printf(" Members : %d", map->num_members);
1460 if (map2)
1461 printf(" <-- %d", map2->num_members);
1462 printf("\n");
0d80bb2f
DW
1463 printf(" Slots : [");
1464 for (i = 0; i < map->num_members; i++) {
238c0a71 1465 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1466 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1467 }
dd8bcb3b
AK
1468 printf("]");
1469 if (map2) {
1470 printf(" <-- [");
1471 for (i = 0; i < map2->num_members; i++) {
238c0a71 1472 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1473 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1474 }
1475 printf("]");
1476 }
1477 printf("\n");
7095bccb
AK
1478 printf(" Failed disk : ");
1479 if (map->failed_disk_num == 0xff)
1480 printf("none");
1481 else
1482 printf("%i", map->failed_disk_num);
1483 printf("\n");
620b1713
DW
1484 slot = get_imsm_disk_slot(map, disk_idx);
1485 if (slot >= 0) {
238c0a71 1486 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1487 printf(" This Slot : %d%s\n", slot,
1488 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1489 } else
cdddbdbc 1490 printf(" This Slot : ?\n");
84918897 1491 printf(" Sector Size : %u\n", super->sector_size);
cdddbdbc
DW
1492 sz = __le32_to_cpu(dev->size_high);
1493 sz <<= 32;
1494 sz += __le32_to_cpu(dev->size_low);
84918897
MK
1495 printf(" Array Size : %llu%s\n",
1496 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1497 human_size(sz * 512));
5551b113 1498 sz = blocks_per_member(map);
84918897
MK
1499 printf(" Per Dev Size : %llu%s\n",
1500 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1501 human_size(sz * 512));
5551b113
CA
1502 printf(" Sector Offset : %llu\n",
1503 pba_of_lba0(map));
1504 printf(" Num Stripes : %llu\n",
1505 num_data_stripes(map));
dd8bcb3b 1506 printf(" Chunk Size : %u KiB",
cdddbdbc 1507 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1508 if (map2)
1509 printf(" <-- %u KiB",
1510 __le16_to_cpu(map2->blocks_per_strip) / 2);
1511 printf("\n");
cdddbdbc 1512 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1513 printf(" Migrate State : ");
1484e727
DW
1514 if (dev->vol.migr_state) {
1515 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1516 printf("initialize\n");
1484e727 1517 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1518 printf("rebuild\n");
1484e727 1519 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1520 printf("check\n");
1484e727 1521 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1522 printf("general migration\n");
1484e727 1523 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1524 printf("state change\n");
1484e727 1525 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1526 printf("repair\n");
1484e727 1527 else
8655a7b1
DW
1528 printf("<unknown:%d>\n", migr_type(dev));
1529 } else
1530 printf("idle\n");
3393c6af
DW
1531 printf(" Map State : %s", map_state_str[map->map_state]);
1532 if (dev->vol.migr_state) {
238c0a71 1533 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1534
b10b37b8 1535 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1536 printf("\n Checkpoint : %u ",
1537 __le32_to_cpu(dev->vol.curr_migr_unit));
089f9d79 1538 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1539 printf("(N/A)");
1540 else
1541 printf("(%llu)", (unsigned long long)
1542 blocks_per_migr_unit(super, dev));
3393c6af
DW
1543 }
1544 printf("\n");
2432ce9b
AP
1545 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1546 "dirty" : "clean");
1547 printf(" RWH Policy : ");
c2462068 1548 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1549 printf("off\n");
1550 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1551 printf("PPL distributed\n");
1552 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1553 printf("PPL journaling drive\n");
c2462068
PB
1554 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1555 printf("Multiple distributed PPLs\n");
1556 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1557 printf("Multiple PPLs on journaling drive\n");
2432ce9b
AP
1558 else
1559 printf("<unknown:%d>\n", dev->rwh_policy);
cdddbdbc
DW
1560}
1561
ef5c214e
MK
1562static void print_imsm_disk(struct imsm_disk *disk,
1563 int index,
1564 __u32 reserved,
1565 unsigned int sector_size) {
1f24f035 1566 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1567 __u64 sz;
1568
0ec1f4e8 1569 if (index < -1 || !disk)
e9d82038
DW
1570 return;
1571
cdddbdbc 1572 printf("\n");
1f24f035 1573 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1574 if (index >= 0)
1575 printf(" Disk%02d Serial : %s\n", index, str);
1576 else
1577 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1578 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1579 is_configured(disk) ? " active" : "",
1580 is_failed(disk) ? " failed" : "",
1581 is_journal(disk) ? " journal" : "");
cdddbdbc 1582 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1583 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1584 printf(" Usable Size : %llu%s\n",
1585 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1586 human_size(sz * 512));
1587}
1588
de44e46f
PB
1589void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1590{
1591 struct migr_record *migr_rec = super->migr_rec;
1592
1593 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1594 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1595 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1596 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1597 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1598 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1599 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1600}
1601
f36a9ecd
PB
1602void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1603{
1604 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1605}
1606
1607void convert_to_4k(struct intel_super *super)
1608{
1609 struct imsm_super *mpb = super->anchor;
1610 struct imsm_disk *disk;
1611 int i;
e4467bc7 1612 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1613
1614 for (i = 0; i < mpb->num_disks ; i++) {
1615 disk = __get_imsm_disk(mpb, i);
1616 /* disk */
1617 convert_to_4k_imsm_disk(disk);
1618 }
1619 for (i = 0; i < mpb->num_raid_devs; i++) {
1620 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1621 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1622 /* dev */
1623 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1624 &dev->size_low, &dev->size_high);
1625 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1626
1627 /* map0 */
1628 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1629 map->blocks_per_strip /= IMSM_4K_DIV;
1630 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1631
1632 if (dev->vol.migr_state) {
1633 /* map1 */
1634 map = get_imsm_map(dev, MAP_1);
1635 set_blocks_per_member(map,
1636 blocks_per_member(map)/IMSM_4K_DIV);
1637 map->blocks_per_strip /= IMSM_4K_DIV;
1638 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1639 }
1640 }
e4467bc7
TM
1641 if (bbm_log_size) {
1642 struct bbm_log *log = (void *)mpb +
1643 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1644 __u32 i;
1645
1646 for (i = 0; i < log->entry_count; i++) {
1647 struct bbm_log_entry *entry =
1648 &log->marked_block_entries[i];
1649
1650 __u8 count = entry->marked_count + 1;
1651 unsigned long long sector =
1652 __le48_to_cpu(&entry->defective_block_start);
1653
1654 entry->defective_block_start =
1655 __cpu_to_le48(sector/IMSM_4K_DIV);
1656 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1657 }
1658 }
f36a9ecd
PB
1659
1660 mpb->check_sum = __gen_imsm_checksum(mpb);
1661}
1662
520e69e2
AK
1663void examine_migr_rec_imsm(struct intel_super *super)
1664{
1665 struct migr_record *migr_rec = super->migr_rec;
1666 struct imsm_super *mpb = super->anchor;
1667 int i;
1668
1669 for (i = 0; i < mpb->num_raid_devs; i++) {
1670 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1671 struct imsm_map *map;
b4ab44d8 1672 int slot = -1;
3136abe5 1673
520e69e2
AK
1674 if (is_gen_migration(dev) == 0)
1675 continue;
1676
1677 printf("\nMigration Record Information:");
3136abe5 1678
44bfe6df
AK
1679 /* first map under migration */
1680 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1681 if (map)
1682 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1683 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1684 printf(" Empty\n ");
1685 printf("Examine one of first two disks in array\n");
1686 break;
1687 }
1688 printf("\n Status : ");
1689 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1690 printf("Normal\n");
1691 else
1692 printf("Contains Data\n");
1693 printf(" Current Unit : %u\n",
1694 __le32_to_cpu(migr_rec->curr_migr_unit));
1695 printf(" Family : %u\n",
1696 __le32_to_cpu(migr_rec->family_num));
1697 printf(" Ascending : %u\n",
1698 __le32_to_cpu(migr_rec->ascending_migr));
1699 printf(" Blocks Per Unit : %u\n",
1700 __le32_to_cpu(migr_rec->blocks_per_unit));
1701 printf(" Dest. Depth Per Unit : %u\n",
1702 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1703 printf(" Checkpoint Area pba : %u\n",
1704 __le32_to_cpu(migr_rec->ckpt_area_pba));
1705 printf(" First member lba : %u\n",
1706 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1707 printf(" Total Number of Units : %u\n",
1708 __le32_to_cpu(migr_rec->num_migr_units));
1709 printf(" Size of volume : %u\n",
1710 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1711 printf(" Expansion space for LBA64 : %u\n",
1712 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1713 printf(" Record was read from : %u\n",
1714 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1715
1716 break;
1717 }
1718}
f36a9ecd 1719
de44e46f
PB
1720void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1721{
1722 struct migr_record *migr_rec = super->migr_rec;
1723
1724 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1725 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1726 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1727 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1728 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1729 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1730 &migr_rec->post_migr_vol_cap,
1731 &migr_rec->post_migr_vol_cap_hi);
1732}
1733
f36a9ecd
PB
1734void convert_from_4k(struct intel_super *super)
1735{
1736 struct imsm_super *mpb = super->anchor;
1737 struct imsm_disk *disk;
1738 int i;
e4467bc7 1739 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1740
1741 for (i = 0; i < mpb->num_disks ; i++) {
1742 disk = __get_imsm_disk(mpb, i);
1743 /* disk */
1744 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1745 }
1746
1747 for (i = 0; i < mpb->num_raid_devs; i++) {
1748 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1749 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1750 /* dev */
1751 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1752 &dev->size_low, &dev->size_high);
1753 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1754
1755 /* map0 */
1756 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1757 map->blocks_per_strip *= IMSM_4K_DIV;
1758 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1759
1760 if (dev->vol.migr_state) {
1761 /* map1 */
1762 map = get_imsm_map(dev, MAP_1);
1763 set_blocks_per_member(map,
1764 blocks_per_member(map)*IMSM_4K_DIV);
1765 map->blocks_per_strip *= IMSM_4K_DIV;
1766 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1767 }
1768 }
e4467bc7
TM
1769 if (bbm_log_size) {
1770 struct bbm_log *log = (void *)mpb +
1771 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1772 __u32 i;
1773
1774 for (i = 0; i < log->entry_count; i++) {
1775 struct bbm_log_entry *entry =
1776 &log->marked_block_entries[i];
1777
1778 __u8 count = entry->marked_count + 1;
1779 unsigned long long sector =
1780 __le48_to_cpu(&entry->defective_block_start);
1781
1782 entry->defective_block_start =
1783 __cpu_to_le48(sector*IMSM_4K_DIV);
1784 entry->marked_count = count*IMSM_4K_DIV - 1;
1785 }
1786 }
f36a9ecd
PB
1787
1788 mpb->check_sum = __gen_imsm_checksum(mpb);
1789}
1790
19482bcc
AK
1791/*******************************************************************************
1792 * function: imsm_check_attributes
1793 * Description: Function checks if features represented by attributes flags
1011e834 1794 * are supported by mdadm.
19482bcc
AK
1795 * Parameters:
1796 * attributes - Attributes read from metadata
1797 * Returns:
1011e834
N
1798 * 0 - passed attributes contains unsupported features flags
1799 * 1 - all features are supported
19482bcc
AK
1800 ******************************************************************************/
1801static int imsm_check_attributes(__u32 attributes)
1802{
1803 int ret_val = 1;
418f9b36
N
1804 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1805
1806 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1807
1808 not_supported &= attributes;
1809 if (not_supported) {
e7b84f9d 1810 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1811 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1812 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1813 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1814 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1815 }
1816 if (not_supported & MPB_ATTRIB_2TB) {
1817 dprintf("\t\tMPB_ATTRIB_2TB\n");
1818 not_supported ^= MPB_ATTRIB_2TB;
1819 }
1820 if (not_supported & MPB_ATTRIB_RAID0) {
1821 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1822 not_supported ^= MPB_ATTRIB_RAID0;
1823 }
1824 if (not_supported & MPB_ATTRIB_RAID1) {
1825 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1826 not_supported ^= MPB_ATTRIB_RAID1;
1827 }
1828 if (not_supported & MPB_ATTRIB_RAID10) {
1829 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1830 not_supported ^= MPB_ATTRIB_RAID10;
1831 }
1832 if (not_supported & MPB_ATTRIB_RAID1E) {
1833 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1834 not_supported ^= MPB_ATTRIB_RAID1E;
1835 }
1836 if (not_supported & MPB_ATTRIB_RAID5) {
1837 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1838 not_supported ^= MPB_ATTRIB_RAID5;
1839 }
1840 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1841 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1842 not_supported ^= MPB_ATTRIB_RAIDCNG;
1843 }
1844 if (not_supported & MPB_ATTRIB_BBM) {
1845 dprintf("\t\tMPB_ATTRIB_BBM\n");
1846 not_supported ^= MPB_ATTRIB_BBM;
1847 }
1848 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1849 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1850 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1851 }
1852 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1853 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1854 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1855 }
1856 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1857 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1858 not_supported ^= MPB_ATTRIB_2TB_DISK;
1859 }
1860 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1861 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1862 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1863 }
1864 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1865 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1866 not_supported ^= MPB_ATTRIB_NEVER_USE;
1867 }
1868
1869 if (not_supported)
1ade5cc1 1870 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1871
1872 ret_val = 0;
1873 }
1874
1875 return ret_val;
1876}
1877
a5d85af7 1878static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1879
cdddbdbc
DW
1880static void examine_super_imsm(struct supertype *st, char *homehost)
1881{
1882 struct intel_super *super = st->sb;
949c47a0 1883 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1884 char str[MAX_SIGNATURE_LENGTH];
1885 int i;
27fd6274
DW
1886 struct mdinfo info;
1887 char nbuf[64];
cdddbdbc 1888 __u32 sum;
14e8215b 1889 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1890 struct dl *dl;
27fd6274 1891
618f4e6d
XN
1892 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1893 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc
DW
1894 printf(" Magic : %s\n", str);
1895 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1896 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1897 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1898 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1899 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1900 printf(" Attributes : ");
1901 if (imsm_check_attributes(mpb->attributes))
1902 printf("All supported\n");
1903 else
1904 printf("not supported\n");
a5d85af7 1905 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1906 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1907 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1908 sum = __le32_to_cpu(mpb->check_sum);
1909 printf(" Checksum : %08x %s\n", sum,
949c47a0 1910 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 1911 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
1912 printf(" Disks : %d\n", mpb->num_disks);
1913 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
1914 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1915 super->disks->index, reserved, super->sector_size);
8d67477f 1916 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
1917 struct bbm_log *log = super->bbm_log;
1918
1919 printf("\n");
1920 printf("Bad Block Management Log:\n");
1921 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1922 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1923 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 1924 }
44470971
DW
1925 for (i = 0; i < mpb->num_raid_devs; i++) {
1926 struct mdinfo info;
1927 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1928
1929 super->current_vol = i;
a5d85af7 1930 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1931 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1932 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1933 }
cdddbdbc
DW
1934 for (i = 0; i < mpb->num_disks; i++) {
1935 if (i == super->disks->index)
1936 continue;
ef5c214e
MK
1937 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1938 super->sector_size);
cdddbdbc 1939 }
94827db3 1940
0ec1f4e8
DW
1941 for (dl = super->disks; dl; dl = dl->next)
1942 if (dl->index == -1)
ef5c214e
MK
1943 print_imsm_disk(&dl->disk, -1, reserved,
1944 super->sector_size);
520e69e2
AK
1945
1946 examine_migr_rec_imsm(super);
cdddbdbc
DW
1947}
1948
061f2c6a 1949static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1950{
27fd6274 1951 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1952 struct mdinfo info;
1953 char nbuf[64];
1e7bc0ed 1954 struct intel_super *super = st->sb;
1e7bc0ed 1955
0d5a423f
DW
1956 if (!super->anchor->num_raid_devs) {
1957 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1958 return;
0d5a423f 1959 }
ff54de6e 1960
a5d85af7 1961 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1962 fname_from_uuid(st, &info, nbuf, ':');
1963 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1964}
1965
1966static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1967{
1968 /* We just write a generic IMSM ARRAY entry */
1969 struct mdinfo info;
1970 char nbuf[64];
1971 char nbuf1[64];
1972 struct intel_super *super = st->sb;
1973 int i;
1974
1975 if (!super->anchor->num_raid_devs)
1976 return;
1977
a5d85af7 1978 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1979 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1980 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1981 struct imsm_dev *dev = get_imsm_dev(super, i);
1982
1983 super->current_vol = i;
a5d85af7 1984 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1985 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1986 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1987 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1988 }
cdddbdbc
DW
1989}
1990
9d84c8ea
DW
1991static void export_examine_super_imsm(struct supertype *st)
1992{
1993 struct intel_super *super = st->sb;
1994 struct imsm_super *mpb = super->anchor;
1995 struct mdinfo info;
1996 char nbuf[64];
1997
a5d85af7 1998 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1999 fname_from_uuid(st, &info, nbuf, ':');
2000 printf("MD_METADATA=imsm\n");
2001 printf("MD_LEVEL=container\n");
2002 printf("MD_UUID=%s\n", nbuf+5);
2003 printf("MD_DEVICES=%u\n", mpb->num_disks);
2004}
2005
74db60b0
N
2006static int copy_metadata_imsm(struct supertype *st, int from, int to)
2007{
f36a9ecd 2008 /* The second last sector of the device contains
74db60b0
N
2009 * the "struct imsm_super" metadata.
2010 * This contains mpb_size which is the size in bytes of the
2011 * extended metadata. This is located immediately before
2012 * the imsm_super.
2013 * We want to read all that, plus the last sector which
2014 * may contain a migration record, and write it all
2015 * to the target.
2016 */
2017 void *buf;
2018 unsigned long long dsize, offset;
2019 int sectors;
2020 struct imsm_super *sb;
f36a9ecd
PB
2021 struct intel_super *super = st->sb;
2022 unsigned int sector_size = super->sector_size;
2023 unsigned int written = 0;
74db60b0 2024
de44e46f 2025 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
74db60b0
N
2026 return 1;
2027
2028 if (!get_dev_size(from, NULL, &dsize))
2029 goto err;
2030
f36a9ecd 2031 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
74db60b0 2032 goto err;
466070ad 2033 if ((unsigned int)read(from, buf, sector_size) != sector_size)
74db60b0
N
2034 goto err;
2035 sb = buf;
2036 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2037 goto err;
2038
f36a9ecd
PB
2039 sectors = mpb_sectors(sb, sector_size) + 2;
2040 offset = dsize - sectors * sector_size;
74db60b0
N
2041 if (lseek64(from, offset, 0) < 0 ||
2042 lseek64(to, offset, 0) < 0)
2043 goto err;
f36a9ecd
PB
2044 while (written < sectors * sector_size) {
2045 int n = sectors*sector_size - written;
74db60b0
N
2046 if (n > 4096)
2047 n = 4096;
2048 if (read(from, buf, n) != n)
2049 goto err;
2050 if (write(to, buf, n) != n)
2051 goto err;
2052 written += n;
2053 }
2054 free(buf);
2055 return 0;
2056err:
2057 free(buf);
2058 return 1;
2059}
2060
cdddbdbc
DW
2061static void detail_super_imsm(struct supertype *st, char *homehost)
2062{
3ebe00a1
DW
2063 struct mdinfo info;
2064 char nbuf[64];
2065
a5d85af7 2066 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2067 fname_from_uuid(st, &info, nbuf, ':');
65884368 2068 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2069}
2070
2071static void brief_detail_super_imsm(struct supertype *st)
2072{
ff54de6e
N
2073 struct mdinfo info;
2074 char nbuf[64];
a5d85af7 2075 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2076 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2077 printf(" UUID=%s", nbuf + 5);
cdddbdbc 2078}
d665cc31
DW
2079
2080static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2081static void fd2devname(int fd, char *name);
2082
120dc887 2083static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2084{
120dc887
LM
2085 /* dump an unsorted list of devices attached to AHCI Intel storage
2086 * controller, as well as non-connected ports
d665cc31
DW
2087 */
2088 int hba_len = strlen(hba_path) + 1;
2089 struct dirent *ent;
2090 DIR *dir;
2091 char *path = NULL;
2092 int err = 0;
2093 unsigned long port_mask = (1 << port_count) - 1;
2094
f21e18ca 2095 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2096 if (verbose > 0)
e7b84f9d 2097 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2098 return 2;
2099 }
2100
2101 /* scroll through /sys/dev/block looking for devices attached to
2102 * this hba
2103 */
2104 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2105 if (!dir)
2106 return 1;
2107
2108 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2109 int fd;
2110 char model[64];
2111 char vendor[64];
2112 char buf[1024];
2113 int major, minor;
2114 char *device;
2115 char *c;
2116 int port;
2117 int type;
2118
2119 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2120 continue;
2121 path = devt_to_devpath(makedev(major, minor));
2122 if (!path)
2123 continue;
2124 if (!path_attached_to_hba(path, hba_path)) {
2125 free(path);
2126 path = NULL;
2127 continue;
2128 }
2129
2130 /* retrieve the scsi device type */
2131 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 2132 if (verbose > 0)
e7b84f9d 2133 pr_err("failed to allocate 'device'\n");
d665cc31
DW
2134 err = 2;
2135 break;
2136 }
2137 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 2138 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 2139 if (verbose > 0)
e7b84f9d 2140 pr_err("failed to read device type for %s\n",
d665cc31
DW
2141 path);
2142 err = 2;
2143 free(device);
2144 break;
2145 }
2146 type = strtoul(buf, NULL, 10);
2147
2148 /* if it's not a disk print the vendor and model */
2149 if (!(type == 0 || type == 7 || type == 14)) {
2150 vendor[0] = '\0';
2151 model[0] = '\0';
2152 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 2153 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2154 strncpy(vendor, buf, sizeof(vendor));
2155 vendor[sizeof(vendor) - 1] = '\0';
2156 c = (char *) &vendor[sizeof(vendor) - 1];
2157 while (isspace(*c) || *c == '\0')
2158 *c-- = '\0';
2159
2160 }
2161 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 2162 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2163 strncpy(model, buf, sizeof(model));
2164 model[sizeof(model) - 1] = '\0';
2165 c = (char *) &model[sizeof(model) - 1];
2166 while (isspace(*c) || *c == '\0')
2167 *c-- = '\0';
2168 }
2169
2170 if (vendor[0] && model[0])
2171 sprintf(buf, "%.64s %.64s", vendor, model);
2172 else
2173 switch (type) { /* numbers from hald/linux/device.c */
2174 case 1: sprintf(buf, "tape"); break;
2175 case 2: sprintf(buf, "printer"); break;
2176 case 3: sprintf(buf, "processor"); break;
2177 case 4:
2178 case 5: sprintf(buf, "cdrom"); break;
2179 case 6: sprintf(buf, "scanner"); break;
2180 case 8: sprintf(buf, "media_changer"); break;
2181 case 9: sprintf(buf, "comm"); break;
2182 case 12: sprintf(buf, "raid"); break;
2183 default: sprintf(buf, "unknown");
2184 }
2185 } else
2186 buf[0] = '\0';
2187 free(device);
2188
2189 /* chop device path to 'host%d' and calculate the port number */
2190 c = strchr(&path[hba_len], '/');
4e5e717d 2191 if (!c) {
ba728be7 2192 if (verbose > 0)
e7b84f9d 2193 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2194 err = 2;
2195 break;
2196 }
d665cc31 2197 *c = '\0';
0858eccf
AP
2198 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2199 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2200 port -= host_base;
2201 else {
ba728be7 2202 if (verbose > 0) {
d665cc31 2203 *c = '/'; /* repair the full string */
e7b84f9d 2204 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2205 path);
2206 }
2207 err = 2;
2208 break;
2209 }
2210
2211 /* mark this port as used */
2212 port_mask &= ~(1 << port);
2213
2214 /* print out the device information */
2215 if (buf[0]) {
2216 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2217 continue;
2218 }
2219
2220 fd = dev_open(ent->d_name, O_RDONLY);
2221 if (fd < 0)
2222 printf(" Port%d : - disk info unavailable -\n", port);
2223 else {
2224 fd2devname(fd, buf);
2225 printf(" Port%d : %s", port, buf);
2226 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 2227 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 2228 else
664d5325 2229 printf(" ()\n");
4dab422a 2230 close(fd);
d665cc31 2231 }
d665cc31
DW
2232 free(path);
2233 path = NULL;
2234 }
2235 if (path)
2236 free(path);
2237 if (dir)
2238 closedir(dir);
2239 if (err == 0) {
2240 int i;
2241
2242 for (i = 0; i < port_count; i++)
2243 if (port_mask & (1 << i))
2244 printf(" Port%d : - no device attached -\n", i);
2245 }
2246
2247 return err;
2248}
2249
b5eece69 2250static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
2251{
2252 struct dirent *ent;
2253 DIR *dir;
2254 char path[292];
2255 char link[256];
2256 char *c, *rp;
2257
2258 if (hba->type != SYS_DEV_VMD)
b5eece69 2259 return 1;
60f0f54d
PB
2260
2261 /* scroll through /sys/dev/block looking for devices attached to
2262 * this hba
2263 */
2264 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 2265 if (!dir)
b5eece69 2266 return 1;
b9135011
JS
2267
2268 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
2269 int n;
2270
2271 /* is 'ent' a device? check that the 'subsystem' link exists and
2272 * that its target matches 'bus'
2273 */
2274 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2275 ent->d_name);
2276 n = readlink(path, link, sizeof(link));
2277 if (n < 0 || n >= (int)sizeof(link))
2278 continue;
2279 link[n] = '\0';
2280 c = strrchr(link, '/');
2281 if (!c)
2282 continue;
2283 if (strncmp("pci", c+1, strlen("pci")) != 0)
2284 continue;
2285
2286 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
60f0f54d
PB
2287
2288 rp = realpath(path, NULL);
2289 if (!rp)
2290 continue;
2291
2292 if (path_attached_to_hba(rp, hba->path)) {
2293 printf(" NVMe under VMD : %s\n", rp);
2294 }
2295 free(rp);
2296 }
2297
b9135011 2298 closedir(dir);
b5eece69 2299 return 0;
60f0f54d
PB
2300}
2301
120dc887
LM
2302static void print_found_intel_controllers(struct sys_dev *elem)
2303{
2304 for (; elem; elem = elem->next) {
e7b84f9d 2305 pr_err("found Intel(R) ");
120dc887
LM
2306 if (elem->type == SYS_DEV_SATA)
2307 fprintf(stderr, "SATA ");
155cbb4c
LM
2308 else if (elem->type == SYS_DEV_SAS)
2309 fprintf(stderr, "SAS ");
0858eccf
AP
2310 else if (elem->type == SYS_DEV_NVME)
2311 fprintf(stderr, "NVMe ");
60f0f54d
PB
2312
2313 if (elem->type == SYS_DEV_VMD)
2314 fprintf(stderr, "VMD domain");
2315 else
2316 fprintf(stderr, "RAID controller");
2317
120dc887
LM
2318 if (elem->pci_id)
2319 fprintf(stderr, " at %s", elem->pci_id);
2320 fprintf(stderr, ".\n");
2321 }
2322 fflush(stderr);
2323}
2324
120dc887
LM
2325static int ahci_get_port_count(const char *hba_path, int *port_count)
2326{
2327 struct dirent *ent;
2328 DIR *dir;
2329 int host_base = -1;
2330
2331 *port_count = 0;
2332 if ((dir = opendir(hba_path)) == NULL)
2333 return -1;
2334
2335 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2336 int host;
2337
0858eccf
AP
2338 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2339 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2340 continue;
2341 if (*port_count == 0)
2342 host_base = host;
2343 else if (host < host_base)
2344 host_base = host;
2345
2346 if (host + 1 > *port_count + host_base)
2347 *port_count = host + 1 - host_base;
2348 }
2349 closedir(dir);
2350 return host_base;
2351}
2352
a891a3c2
LM
2353static void print_imsm_capability(const struct imsm_orom *orom)
2354{
0858eccf
AP
2355 printf(" Platform : Intel(R) ");
2356 if (orom->capabilities == 0 && orom->driver_features == 0)
2357 printf("Matrix Storage Manager\n");
2358 else
2359 printf("Rapid Storage Technology%s\n",
2360 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2361 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2362 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2363 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2364 printf(" RAID Levels :%s%s%s%s%s\n",
2365 imsm_orom_has_raid0(orom) ? " raid0" : "",
2366 imsm_orom_has_raid1(orom) ? " raid1" : "",
2367 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2368 imsm_orom_has_raid10(orom) ? " raid10" : "",
2369 imsm_orom_has_raid5(orom) ? " raid5" : "");
2370 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2371 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2372 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2373 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2374 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2375 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2376 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2377 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2378 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2379 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2380 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2381 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2382 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2383 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2384 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2385 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2386 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2387 printf(" 2TB volumes :%s supported\n",
2388 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2389 printf(" 2TB disks :%s supported\n",
2390 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2391 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2392 printf(" Max Volumes : %d per array, %d per %s\n",
2393 orom->vpa, orom->vphba,
2394 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2395 return;
2396}
2397
e50cf220
MN
2398static void print_imsm_capability_export(const struct imsm_orom *orom)
2399{
2400 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2401 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2402 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2403 orom->hotfix_ver, orom->build);
e50cf220
MN
2404 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2405 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2406 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2407 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2408 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2409 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2410 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2411 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2412 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2413 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2414 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2415 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2416 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2417 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2418 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2419 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2420 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2421 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2422 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2423 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2424 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2425 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2426 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2427 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2428 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2429 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2430 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2431 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2432}
2433
9eafa1de 2434static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2435{
2436 /* There are two components to imsm platform support, the ahci SATA
2437 * controller and the option-rom. To find the SATA controller we
2438 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2439 * controller with the Intel vendor id is present. This approach
2440 * allows mdadm to leverage the kernel's ahci detection logic, with the
2441 * caveat that if ahci.ko is not loaded mdadm will not be able to
2442 * detect platform raid capabilities. The option-rom resides in a
2443 * platform "Adapter ROM". We scan for its signature to retrieve the
2444 * platform capabilities. If raid support is disabled in the BIOS the
2445 * option-rom capability structure will not be available.
2446 */
d665cc31 2447 struct sys_dev *list, *hba;
d665cc31
DW
2448 int host_base = 0;
2449 int port_count = 0;
9eafa1de 2450 int result=1;
d665cc31 2451
5615172f 2452 if (enumerate_only) {
a891a3c2 2453 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2454 return 0;
a891a3c2
LM
2455 list = find_intel_devices();
2456 if (!list)
2457 return 2;
2458 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2459 if (find_imsm_capability(hba)) {
2460 result = 0;
a891a3c2
LM
2461 break;
2462 }
9eafa1de 2463 else
6b781d33 2464 result = 2;
a891a3c2 2465 }
a891a3c2 2466 return result;
5615172f
DW
2467 }
2468
155cbb4c
LM
2469 list = find_intel_devices();
2470 if (!list) {
ba728be7 2471 if (verbose > 0)
7a862a02 2472 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2473 return 2;
ba728be7 2474 } else if (verbose > 0)
155cbb4c 2475 print_found_intel_controllers(list);
d665cc31 2476
a891a3c2 2477 for (hba = list; hba; hba = hba->next) {
0858eccf 2478 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2479 continue;
0858eccf 2480 if (!find_imsm_capability(hba)) {
60f0f54d 2481 char buf[PATH_MAX];
e7b84f9d 2482 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2483 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2484 get_sys_dev_type(hba->type));
0858eccf
AP
2485 continue;
2486 }
2487 result = 0;
2488 }
2489
2490 if (controller_path && result == 1) {
2491 pr_err("no active Intel(R) RAID controller found under %s\n",
2492 controller_path);
2493 return result;
2494 }
2495
5e1d6128 2496 const struct orom_entry *entry;
0858eccf 2497
5e1d6128 2498 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2499 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2500 print_imsm_capability(&entry->orom);
32716c51
PB
2501 printf(" 3rd party NVMe :%s supported\n",
2502 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2503 for (hba = list; hba; hba = hba->next) {
2504 if (hba->type == SYS_DEV_VMD) {
2505 char buf[PATH_MAX];
60f0f54d
PB
2506 printf(" I/O Controller : %s (%s)\n",
2507 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2508 if (print_vmd_attached_devs(hba)) {
2509 if (verbose > 0)
2510 pr_err("failed to get devices attached to VMD domain.\n");
2511 result |= 2;
2512 }
60f0f54d
PB
2513 }
2514 }
07cb1e57 2515 printf("\n");
60f0f54d
PB
2516 continue;
2517 }
0858eccf 2518
60f0f54d
PB
2519 print_imsm_capability(&entry->orom);
2520 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2521 for (hba = list; hba; hba = hba->next) {
2522 if (hba->type == SYS_DEV_NVME)
2523 printf(" NVMe Device : %s\n", hba->path);
2524 }
60f0f54d 2525 printf("\n");
0858eccf
AP
2526 continue;
2527 }
2528
2529 struct devid_list *devid;
5e1d6128 2530 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2531 hba = device_by_id(devid->devid);
2532 if (!hba)
2533 continue;
2534
9eafa1de
MN
2535 printf(" I/O Controller : %s (%s)\n",
2536 hba->path, get_sys_dev_type(hba->type));
2537 if (hba->type == SYS_DEV_SATA) {
2538 host_base = ahci_get_port_count(hba->path, &port_count);
2539 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2540 if (verbose > 0)
7a862a02 2541 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2542 result |= 2;
2543 }
120dc887
LM
2544 }
2545 }
0858eccf 2546 printf("\n");
d665cc31 2547 }
155cbb4c 2548
120dc887 2549 return result;
d665cc31 2550}
e50cf220 2551
9eafa1de 2552static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2553{
e50cf220
MN
2554 struct sys_dev *list, *hba;
2555 int result=1;
2556
2557 list = find_intel_devices();
2558 if (!list) {
2559 if (verbose > 0)
2560 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2561 result = 2;
e50cf220
MN
2562 return result;
2563 }
2564
2565 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2566 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2567 continue;
60f0f54d
PB
2568 if (!find_imsm_capability(hba) && verbose > 0) {
2569 char buf[PATH_MAX];
2570 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2571 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2572 }
0858eccf 2573 else
e50cf220 2574 result = 0;
e50cf220
MN
2575 }
2576
5e1d6128 2577 const struct orom_entry *entry;
0858eccf 2578
60f0f54d
PB
2579 for (entry = orom_entries; entry; entry = entry->next) {
2580 if (entry->type == SYS_DEV_VMD) {
2581 for (hba = list; hba; hba = hba->next)
2582 print_imsm_capability_export(&entry->orom);
2583 continue;
2584 }
5e1d6128 2585 print_imsm_capability_export(&entry->orom);
60f0f54d 2586 }
0858eccf 2587
e50cf220
MN
2588 return result;
2589}
2590
cdddbdbc
DW
2591static int match_home_imsm(struct supertype *st, char *homehost)
2592{
5115ca67
DW
2593 /* the imsm metadata format does not specify any host
2594 * identification information. We return -1 since we can never
2595 * confirm nor deny whether a given array is "meant" for this
148acb7b 2596 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2597 * exclude member disks that do not belong, and we rely on
2598 * mdadm.conf to specify the arrays that should be assembled.
2599 * Auto-assembly may still pick up "foreign" arrays.
2600 */
cdddbdbc 2601
9362c1c8 2602 return -1;
cdddbdbc
DW
2603}
2604
2605static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2606{
51006d85
N
2607 /* The uuid returned here is used for:
2608 * uuid to put into bitmap file (Create, Grow)
2609 * uuid for backup header when saving critical section (Grow)
2610 * comparing uuids when re-adding a device into an array
2611 * In these cases the uuid required is that of the data-array,
2612 * not the device-set.
2613 * uuid to recognise same set when adding a missing device back
2614 * to an array. This is a uuid for the device-set.
1011e834 2615 *
51006d85
N
2616 * For each of these we can make do with a truncated
2617 * or hashed uuid rather than the original, as long as
2618 * everyone agrees.
2619 * In each case the uuid required is that of the data-array,
2620 * not the device-set.
43dad3d6 2621 */
51006d85
N
2622 /* imsm does not track uuid's so we synthesis one using sha1 on
2623 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2624 * - the orig_family_num of the container
51006d85
N
2625 * - the index number of the volume
2626 * - the 'serial' number of the volume.
2627 * Hopefully these are all constant.
2628 */
2629 struct intel_super *super = st->sb;
43dad3d6 2630
51006d85
N
2631 char buf[20];
2632 struct sha1_ctx ctx;
2633 struct imsm_dev *dev = NULL;
148acb7b 2634 __u32 family_num;
51006d85 2635
148acb7b
DW
2636 /* some mdadm versions failed to set ->orig_family_num, in which
2637 * case fall back to ->family_num. orig_family_num will be
2638 * fixed up with the first metadata update.
2639 */
2640 family_num = super->anchor->orig_family_num;
2641 if (family_num == 0)
2642 family_num = super->anchor->family_num;
51006d85 2643 sha1_init_ctx(&ctx);
92bd8f8d 2644 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2645 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2646 if (super->current_vol >= 0)
2647 dev = get_imsm_dev(super, super->current_vol);
2648 if (dev) {
2649 __u32 vol = super->current_vol;
2650 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2651 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2652 }
2653 sha1_finish_ctx(&ctx, buf);
2654 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2655}
2656
0d481d37 2657#if 0
4f5bc454
DW
2658static void
2659get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2660{
cdddbdbc
DW
2661 __u8 *v = get_imsm_version(mpb);
2662 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2663 char major[] = { 0, 0, 0 };
2664 char minor[] = { 0 ,0, 0 };
2665 char patch[] = { 0, 0, 0 };
2666 char *ver_parse[] = { major, minor, patch };
2667 int i, j;
2668
2669 i = j = 0;
2670 while (*v != '\0' && v < end) {
2671 if (*v != '.' && j < 2)
2672 ver_parse[i][j++] = *v;
2673 else {
2674 i++;
2675 j = 0;
2676 }
2677 v++;
2678 }
2679
4f5bc454
DW
2680 *m = strtol(minor, NULL, 0);
2681 *p = strtol(patch, NULL, 0);
2682}
0d481d37 2683#endif
4f5bc454 2684
1e5c6983
DW
2685static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2686{
2687 /* migr_strip_size when repairing or initializing parity */
238c0a71 2688 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2689 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2690
2691 switch (get_imsm_raid_level(map)) {
2692 case 5:
2693 case 10:
2694 return chunk;
2695 default:
2696 return 128*1024 >> 9;
2697 }
2698}
2699
2700static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2701{
2702 /* migr_strip_size when rebuilding a degraded disk, no idea why
2703 * this is different than migr_strip_size_resync(), but it's good
2704 * to be compatible
2705 */
238c0a71 2706 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2707 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2708
2709 switch (get_imsm_raid_level(map)) {
2710 case 1:
2711 case 10:
2712 if (map->num_members % map->num_domains == 0)
2713 return 128*1024 >> 9;
2714 else
2715 return chunk;
2716 case 5:
2717 return max((__u32) 64*1024 >> 9, chunk);
2718 default:
2719 return 128*1024 >> 9;
2720 }
2721}
2722
2723static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2724{
238c0a71
AK
2725 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2726 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2727 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2728 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2729
2730 return max((__u32) 1, hi_chunk / lo_chunk);
2731}
2732
2733static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2734{
238c0a71 2735 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2736 int level = get_imsm_raid_level(lo);
2737
2738 if (level == 1 || level == 10) {
238c0a71 2739 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2740
2741 return hi->num_domains;
2742 } else
2743 return num_stripes_per_unit_resync(dev);
2744}
2745
98130f40 2746static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2747{
2748 /* named 'imsm_' because raid0, raid1 and raid10
2749 * counter-intuitively have the same number of data disks
2750 */
98130f40 2751 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2752
2753 switch (get_imsm_raid_level(map)) {
2754 case 0:
36fd8ccc
AK
2755 return map->num_members;
2756 break;
1e5c6983
DW
2757 case 1:
2758 case 10:
36fd8ccc 2759 return map->num_members/2;
1e5c6983
DW
2760 case 5:
2761 return map->num_members - 1;
2762 default:
1ade5cc1 2763 dprintf("unsupported raid level\n");
1e5c6983
DW
2764 return 0;
2765 }
2766}
2767
2768static __u32 parity_segment_depth(struct imsm_dev *dev)
2769{
238c0a71 2770 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2771 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2772
2773 switch(get_imsm_raid_level(map)) {
2774 case 1:
2775 case 10:
2776 return chunk * map->num_domains;
2777 case 5:
2778 return chunk * map->num_members;
2779 default:
2780 return chunk;
2781 }
2782}
2783
2784static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2785{
238c0a71 2786 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2787 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2788 __u32 strip = block / chunk;
2789
2790 switch (get_imsm_raid_level(map)) {
2791 case 1:
2792 case 10: {
2793 __u32 vol_strip = (strip * map->num_domains) + 1;
2794 __u32 vol_stripe = vol_strip / map->num_members;
2795
2796 return vol_stripe * chunk + block % chunk;
2797 } case 5: {
2798 __u32 stripe = strip / (map->num_members - 1);
2799
2800 return stripe * chunk + block % chunk;
2801 }
2802 default:
2803 return 0;
2804 }
2805}
2806
c47b0ff6
AK
2807static __u64 blocks_per_migr_unit(struct intel_super *super,
2808 struct imsm_dev *dev)
1e5c6983
DW
2809{
2810 /* calculate the conversion factor between per member 'blocks'
2811 * (md/{resync,rebuild}_start) and imsm migration units, return
2812 * 0 for the 'not migrating' and 'unsupported migration' cases
2813 */
2814 if (!dev->vol.migr_state)
2815 return 0;
2816
2817 switch (migr_type(dev)) {
c47b0ff6
AK
2818 case MIGR_GEN_MIGR: {
2819 struct migr_record *migr_rec = super->migr_rec;
2820 return __le32_to_cpu(migr_rec->blocks_per_unit);
2821 }
1e5c6983
DW
2822 case MIGR_VERIFY:
2823 case MIGR_REPAIR:
2824 case MIGR_INIT: {
238c0a71 2825 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2826 __u32 stripes_per_unit;
2827 __u32 blocks_per_unit;
2828 __u32 parity_depth;
2829 __u32 migr_chunk;
2830 __u32 block_map;
2831 __u32 block_rel;
2832 __u32 segment;
2833 __u32 stripe;
2834 __u8 disks;
2835
2836 /* yes, this is really the translation of migr_units to
2837 * per-member blocks in the 'resync' case
2838 */
2839 stripes_per_unit = num_stripes_per_unit_resync(dev);
2840 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2841 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2842 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2843 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2844 segment = blocks_per_unit / stripe;
2845 block_rel = blocks_per_unit - segment * stripe;
2846 parity_depth = parity_segment_depth(dev);
2847 block_map = map_migr_block(dev, block_rel);
2848 return block_map + parity_depth * segment;
2849 }
2850 case MIGR_REBUILD: {
2851 __u32 stripes_per_unit;
2852 __u32 migr_chunk;
2853
2854 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2855 migr_chunk = migr_strip_blocks_rebuild(dev);
2856 return migr_chunk * stripes_per_unit;
2857 }
1e5c6983
DW
2858 case MIGR_STATE_CHANGE:
2859 default:
2860 return 0;
2861 }
2862}
2863
c2c087e6
DW
2864static int imsm_level_to_layout(int level)
2865{
2866 switch (level) {
2867 case 0:
2868 case 1:
2869 return 0;
2870 case 5:
2871 case 6:
a380c027 2872 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2873 case 10:
c92a2527 2874 return 0x102;
c2c087e6 2875 }
a18a888e 2876 return UnSet;
c2c087e6
DW
2877}
2878
8e59f3d8
AK
2879/*******************************************************************************
2880 * Function: read_imsm_migr_rec
2881 * Description: Function reads imsm migration record from last sector of disk
2882 * Parameters:
2883 * fd : disk descriptor
2884 * super : metadata info
2885 * Returns:
2886 * 0 : success,
2887 * -1 : fail
2888 ******************************************************************************/
2889static int read_imsm_migr_rec(int fd, struct intel_super *super)
2890{
2891 int ret_val = -1;
de44e46f 2892 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
2893 unsigned long long dsize;
2894
2895 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2896 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2897 SEEK_SET) < 0) {
e7b84f9d
N
2898 pr_err("Cannot seek to anchor block: %s\n",
2899 strerror(errno));
8e59f3d8
AK
2900 goto out;
2901 }
466070ad 2902 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
2903 MIGR_REC_BUF_SECTORS*sector_size) !=
2904 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2905 pr_err("Cannot read migr record block: %s\n",
2906 strerror(errno));
8e59f3d8
AK
2907 goto out;
2908 }
2909 ret_val = 0;
de44e46f
PB
2910 if (sector_size == 4096)
2911 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
2912
2913out:
2914 return ret_val;
2915}
2916
3136abe5
AK
2917static struct imsm_dev *imsm_get_device_during_migration(
2918 struct intel_super *super)
2919{
2920
2921 struct intel_dev *dv;
2922
2923 for (dv = super->devlist; dv; dv = dv->next) {
2924 if (is_gen_migration(dv->dev))
2925 return dv->dev;
2926 }
2927 return NULL;
2928}
2929
8e59f3d8
AK
2930/*******************************************************************************
2931 * Function: load_imsm_migr_rec
2932 * Description: Function reads imsm migration record (it is stored at the last
2933 * sector of disk)
2934 * Parameters:
2935 * super : imsm internal array info
2936 * info : general array info
2937 * Returns:
2938 * 0 : success
2939 * -1 : fail
4c965cc9 2940 * -2 : no migration in progress
8e59f3d8
AK
2941 ******************************************************************************/
2942static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2943{
2944 struct mdinfo *sd;
594dc1b8 2945 struct dl *dl;
8e59f3d8
AK
2946 char nm[30];
2947 int retval = -1;
2948 int fd = -1;
3136abe5 2949 struct imsm_dev *dev;
594dc1b8 2950 struct imsm_map *map;
b4ab44d8 2951 int slot = -1;
3136abe5
AK
2952
2953 /* find map under migration */
2954 dev = imsm_get_device_during_migration(super);
2955 /* nothing to load,no migration in progress?
2956 */
2957 if (dev == NULL)
4c965cc9 2958 return -2;
8e59f3d8
AK
2959
2960 if (info) {
2961 for (sd = info->devs ; sd ; sd = sd->next) {
2962 /* read only from one of the first two slots */
12fe93e9
TM
2963 if ((sd->disk.raid_disk < 0) ||
2964 (sd->disk.raid_disk > 1))
8e59f3d8 2965 continue;
3136abe5 2966
8e59f3d8
AK
2967 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2968 fd = dev_open(nm, O_RDONLY);
2969 if (fd >= 0)
2970 break;
2971 }
2972 }
2973 if (fd < 0) {
12fe93e9 2974 map = get_imsm_map(dev, MAP_0);
8e59f3d8 2975 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2976 /* skip spare and failed disks
2977 */
2978 if (dl->index < 0)
2979 continue;
8e59f3d8 2980 /* read only from one of the first two slots */
3136abe5
AK
2981 if (map)
2982 slot = get_imsm_disk_slot(map, dl->index);
089f9d79 2983 if (map == NULL || slot > 1 || slot < 0)
8e59f3d8
AK
2984 continue;
2985 sprintf(nm, "%d:%d", dl->major, dl->minor);
2986 fd = dev_open(nm, O_RDONLY);
2987 if (fd >= 0)
2988 break;
2989 }
2990 }
2991 if (fd < 0)
2992 goto out;
2993 retval = read_imsm_migr_rec(fd, super);
2994
2995out:
2996 if (fd >= 0)
2997 close(fd);
2998 return retval;
2999}
3000
c17608ea
AK
3001/*******************************************************************************
3002 * function: imsm_create_metadata_checkpoint_update
3003 * Description: It creates update for checkpoint change.
3004 * Parameters:
3005 * super : imsm internal array info
3006 * u : pointer to prepared update
3007 * Returns:
3008 * Uptate length.
3009 * If length is equal to 0, input pointer u contains no update
3010 ******************************************************************************/
3011static int imsm_create_metadata_checkpoint_update(
3012 struct intel_super *super,
3013 struct imsm_update_general_migration_checkpoint **u)
3014{
3015
3016 int update_memory_size = 0;
3017
1ade5cc1 3018 dprintf("(enter)\n");
c17608ea
AK
3019
3020 if (u == NULL)
3021 return 0;
3022 *u = NULL;
3023
3024 /* size of all update data without anchor */
3025 update_memory_size =
3026 sizeof(struct imsm_update_general_migration_checkpoint);
3027
503975b9 3028 *u = xcalloc(1, update_memory_size);
c17608ea 3029 if (*u == NULL) {
1ade5cc1 3030 dprintf("error: cannot get memory\n");
c17608ea
AK
3031 return 0;
3032 }
3033 (*u)->type = update_general_migration_checkpoint;
3034 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 3035 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
3036
3037 return update_memory_size;
3038}
3039
c17608ea
AK
3040static void imsm_update_metadata_locally(struct supertype *st,
3041 void *buf, int len);
3042
687629c2
AK
3043/*******************************************************************************
3044 * Function: write_imsm_migr_rec
3045 * Description: Function writes imsm migration record
3046 * (at the last sector of disk)
3047 * Parameters:
3048 * super : imsm internal array info
3049 * Returns:
3050 * 0 : success
3051 * -1 : if fail
3052 ******************************************************************************/
3053static int write_imsm_migr_rec(struct supertype *st)
3054{
3055 struct intel_super *super = st->sb;
de44e46f 3056 unsigned int sector_size = super->sector_size;
687629c2
AK
3057 unsigned long long dsize;
3058 char nm[30];
3059 int fd = -1;
3060 int retval = -1;
3061 struct dl *sd;
c17608ea
AK
3062 int len;
3063 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3064 struct imsm_dev *dev;
594dc1b8 3065 struct imsm_map *map;
3136abe5
AK
3066
3067 /* find map under migration */
3068 dev = imsm_get_device_during_migration(super);
3069 /* if no migration, write buffer anyway to clear migr_record
3070 * on disk based on first available device
3071 */
3072 if (dev == NULL)
3073 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3074 super->current_vol);
3075
44bfe6df 3076 map = get_imsm_map(dev, MAP_0);
687629c2 3077
de44e46f
PB
3078 if (sector_size == 4096)
3079 convert_to_4k_imsm_migr_rec(super);
687629c2 3080 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3081 int slot = -1;
3136abe5
AK
3082
3083 /* skip failed and spare devices */
3084 if (sd->index < 0)
3085 continue;
687629c2 3086 /* write to 2 first slots only */
3136abe5
AK
3087 if (map)
3088 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3089 if (map == NULL || slot > 1 || slot < 0)
687629c2 3090 continue;
3136abe5 3091
687629c2
AK
3092 sprintf(nm, "%d:%d", sd->major, sd->minor);
3093 fd = dev_open(nm, O_RDWR);
3094 if (fd < 0)
3095 continue;
3096 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3097 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3098 SEEK_SET) < 0) {
e7b84f9d
N
3099 pr_err("Cannot seek to anchor block: %s\n",
3100 strerror(errno));
687629c2
AK
3101 goto out;
3102 }
466070ad 3103 if ((unsigned int)write(fd, super->migr_rec_buf,
de44e46f
PB
3104 MIGR_REC_BUF_SECTORS*sector_size) !=
3105 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3106 pr_err("Cannot write migr record block: %s\n",
3107 strerror(errno));
687629c2
AK
3108 goto out;
3109 }
3110 close(fd);
3111 fd = -1;
3112 }
de44e46f
PB
3113 if (sector_size == 4096)
3114 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3115 /* update checkpoint information in metadata */
3116 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3117 if (len <= 0) {
3118 dprintf("imsm: Cannot prepare update\n");
3119 goto out;
3120 }
3121 /* update metadata locally */
3122 imsm_update_metadata_locally(st, u, len);
3123 /* and possibly remotely */
3124 if (st->update_tail) {
3125 append_metadata_update(st, u, len);
3126 /* during reshape we do all work inside metadata handler
3127 * manage_reshape(), so metadata update has to be triggered
3128 * insida it
3129 */
3130 flush_metadata_updates(st);
3131 st->update_tail = &st->updates;
3132 } else
3133 free(u);
687629c2
AK
3134
3135 retval = 0;
3136 out:
3137 if (fd >= 0)
3138 close(fd);
3139 return retval;
3140}
3141
e2962bfc
AK
3142/* spare/missing disks activations are not allowe when
3143 * array/container performs reshape operation, because
3144 * all arrays in container works on the same disks set
3145 */
3146int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3147{
3148 int rv = 0;
3149 struct intel_dev *i_dev;
3150 struct imsm_dev *dev;
3151
3152 /* check whole container
3153 */
3154 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3155 dev = i_dev->dev;
3ad25638 3156 if (is_gen_migration(dev)) {
e2962bfc
AK
3157 /* No repair during any migration in container
3158 */
3159 rv = 1;
3160 break;
3161 }
3162 }
3163 return rv;
3164}
c41e00b2
AK
3165static unsigned long long imsm_component_size_aligment_check(int level,
3166 int chunk_size,
f36a9ecd 3167 unsigned int sector_size,
c41e00b2
AK
3168 unsigned long long component_size)
3169{
3170 unsigned int component_size_alligment;
3171
3172 /* check component size aligment
3173 */
f36a9ecd 3174 component_size_alligment = component_size % (chunk_size/sector_size);
c41e00b2 3175
1ade5cc1 3176 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
3177 level, chunk_size, component_size,
3178 component_size_alligment);
3179
3180 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3181 dprintf("imsm: reported component size alligned from %llu ",
3182 component_size);
3183 component_size -= component_size_alligment;
1ade5cc1 3184 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
3185 component_size, component_size_alligment);
3186 }
3187
3188 return component_size;
3189}
e2962bfc 3190
2432ce9b
AP
3191static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3192{
3193 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3194 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3195
3196 return pba_of_lba0(map) +
3197 (num_data_stripes(map) * map->blocks_per_strip);
3198}
3199
a5d85af7 3200static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3201{
3202 struct intel_super *super = st->sb;
c47b0ff6 3203 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3204 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3205 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3206 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3207 struct imsm_map *map_to_analyse = map;
efb30e7f 3208 struct dl *dl;
a5d85af7 3209 int map_disks = info->array.raid_disks;
bf5a934a 3210
95eeceeb 3211 memset(info, 0, sizeof(*info));
b335e593
AK
3212 if (prev_map)
3213 map_to_analyse = prev_map;
3214
ca0748fa 3215 dl = super->current_disk;
9894ec0d 3216
bf5a934a 3217 info->container_member = super->current_vol;
cd0430a1 3218 info->array.raid_disks = map->num_members;
b335e593 3219 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3220 info->array.layout = imsm_level_to_layout(info->array.level);
3221 info->array.md_minor = -1;
3222 info->array.ctime = 0;
3223 info->array.utime = 0;
b335e593
AK
3224 info->array.chunk_size =
3225 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3226 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
da9b4a62
DW
3227 info->custom_array_size = __le32_to_cpu(dev->size_high);
3228 info->custom_array_size <<= 32;
3229 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
3230 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3231
3f510843 3232 if (is_gen_migration(dev)) {
3f83228a 3233 info->reshape_active = 1;
b335e593
AK
3234 info->new_level = get_imsm_raid_level(map);
3235 info->new_layout = imsm_level_to_layout(info->new_level);
3236 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3237 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3238 if (info->delta_disks) {
3239 /* this needs to be applied to every array
3240 * in the container.
3241 */
81219e70 3242 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3243 }
3f83228a
N
3244 /* We shape information that we give to md might have to be
3245 * modify to cope with md's requirement for reshaping arrays.
3246 * For example, when reshaping a RAID0, md requires it to be
3247 * presented as a degraded RAID4.
3248 * Also if a RAID0 is migrating to a RAID5 we need to specify
3249 * the array as already being RAID5, but the 'before' layout
3250 * is a RAID4-like layout.
3251 */
3252 switch (info->array.level) {
3253 case 0:
3254 switch(info->new_level) {
3255 case 0:
3256 /* conversion is happening as RAID4 */
3257 info->array.level = 4;
3258 info->array.raid_disks += 1;
3259 break;
3260 case 5:
3261 /* conversion is happening as RAID5 */
3262 info->array.level = 5;
3263 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3264 info->delta_disks -= 1;
3265 break;
3266 default:
3267 /* FIXME error message */
3268 info->array.level = UnSet;
3269 break;
3270 }
3271 break;
3272 }
b335e593
AK
3273 } else {
3274 info->new_level = UnSet;
3275 info->new_layout = UnSet;
3276 info->new_chunk = info->array.chunk_size;
3f83228a 3277 info->delta_disks = 0;
b335e593 3278 }
ca0748fa 3279
efb30e7f
DW
3280 if (dl) {
3281 info->disk.major = dl->major;
3282 info->disk.minor = dl->minor;
ca0748fa 3283 info->disk.number = dl->index;
656b6b5a
N
3284 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3285 dl->index);
efb30e7f 3286 }
bf5a934a 3287
5551b113 3288 info->data_offset = pba_of_lba0(map_to_analyse);
06fb291a
PB
3289
3290 if (info->array.level == 5) {
3291 info->component_size = num_data_stripes(map_to_analyse) *
3292 map_to_analyse->blocks_per_strip;
3293 } else {
3294 info->component_size = blocks_per_member(map_to_analyse);
3295 }
139dae11 3296
c41e00b2
AK
3297 info->component_size = imsm_component_size_aligment_check(
3298 info->array.level,
3299 info->array.chunk_size,
f36a9ecd 3300 super->sector_size,
c41e00b2 3301 info->component_size);
5e46202e 3302 info->bb.supported = 1;
139dae11 3303
301406c9 3304 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3305 info->recovery_start = MaxSector;
bf5a934a 3306
c2462068
PB
3307 if (info->array.level == 5 &&
3308 (dev->rwh_policy == RWH_DISTRIBUTED ||
3309 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3310 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3311 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3312 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3313 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3314 else
3315 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3316 >> 9;
2432ce9b
AP
3317 } else if (info->array.level <= 0) {
3318 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3319 } else {
3320 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3321 }
3322
d2e6d5d6 3323 info->reshape_progress = 0;
b6796ce1 3324 info->resync_start = MaxSector;
b9172665 3325 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3326 !(info->array.state & 1)) &&
b9172665 3327 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3328 info->resync_start = 0;
b6796ce1
AK
3329 }
3330 if (dev->vol.migr_state) {
1e5c6983
DW
3331 switch (migr_type(dev)) {
3332 case MIGR_REPAIR:
3333 case MIGR_INIT: {
c47b0ff6
AK
3334 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3335 dev);
1e5c6983
DW
3336 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3337
3338 info->resync_start = blocks_per_unit * units;
3339 break;
3340 }
d2e6d5d6 3341 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3342 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3343 dev);
3344 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
3345 unsigned long long array_blocks;
3346 int used_disks;
d2e6d5d6 3347
befb629b
AK
3348 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3349 (units <
3350 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3351 (super->migr_rec->rec_status ==
3352 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3353 units++;
3354
d2e6d5d6 3355 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3356
7a862a02 3357 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3358 (unsigned long long)units,
3359 (unsigned long long)blocks_per_unit,
3360 info->reshape_progress);
75156c46 3361
238c0a71 3362 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 3363 if (used_disks > 0) {
5551b113 3364 array_blocks = blocks_per_member(map) *
75156c46 3365 used_disks;
b53bfba6
TM
3366 info->custom_array_size =
3367 round_size_to_mb(array_blocks,
3368 used_disks);
3369
75156c46 3370 }
d2e6d5d6 3371 }
1e5c6983
DW
3372 case MIGR_VERIFY:
3373 /* we could emulate the checkpointing of
3374 * 'sync_action=check' migrations, but for now
3375 * we just immediately complete them
3376 */
3377 case MIGR_REBUILD:
3378 /* this is handled by container_content_imsm() */
1e5c6983
DW
3379 case MIGR_STATE_CHANGE:
3380 /* FIXME handle other migrations */
3381 default:
3382 /* we are not dirty, so... */
3383 info->resync_start = MaxSector;
3384 }
b6796ce1 3385 }
301406c9
DW
3386
3387 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3388 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3389
f35f2525
N
3390 info->array.major_version = -1;
3391 info->array.minor_version = -2;
4dd2df09 3392 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3393 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3394 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3395
3396 if (dmap) {
3397 int i, j;
3398 for (i=0; i<map_disks; i++) {
3399 dmap[i] = 0;
3400 if (i < info->array.raid_disks) {
3401 struct imsm_disk *dsk;
238c0a71 3402 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3403 dsk = get_imsm_disk(super, j);
3404 if (dsk && (dsk->status & CONFIGURED_DISK))
3405 dmap[i] = 1;
3406 }
3407 }
3408 }
81ac8b4d 3409}
bf5a934a 3410
3b451610
AK
3411static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3412 int failed, int look_in_map);
3413
3414static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3415 int look_in_map);
3416
3417static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3418{
3419 if (is_gen_migration(dev)) {
3420 int failed;
3421 __u8 map_state;
3422 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3423
3424 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3425 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3426 if (map2->map_state != map_state) {
3427 map2->map_state = map_state;
3428 super->updates_pending++;
3429 }
3430 }
3431}
97b4d0e9
DW
3432
3433static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3434{
3435 struct dl *d;
3436
3437 for (d = super->missing; d; d = d->next)
3438 if (d->index == index)
3439 return &d->disk;
3440 return NULL;
3441}
3442
a5d85af7 3443static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3444{
3445 struct intel_super *super = st->sb;
4f5bc454 3446 struct imsm_disk *disk;
a5d85af7 3447 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3448 int max_enough = -1;
3449 int i;
3450 struct imsm_super *mpb;
4f5bc454 3451
bf5a934a 3452 if (super->current_vol >= 0) {
a5d85af7 3453 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3454 return;
3455 }
95eeceeb 3456 memset(info, 0, sizeof(*info));
d23fe947
DW
3457
3458 /* Set raid_disks to zero so that Assemble will always pull in valid
3459 * spares
3460 */
3461 info->array.raid_disks = 0;
cdddbdbc
DW
3462 info->array.level = LEVEL_CONTAINER;
3463 info->array.layout = 0;
3464 info->array.md_minor = -1;
1011e834 3465 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3466 info->array.utime = 0;
3467 info->array.chunk_size = 0;
3468
3469 info->disk.major = 0;
3470 info->disk.minor = 0;
cdddbdbc 3471 info->disk.raid_disk = -1;
c2c087e6 3472 info->reshape_active = 0;
f35f2525
N
3473 info->array.major_version = -1;
3474 info->array.minor_version = -2;
c2c087e6 3475 strcpy(info->text_version, "imsm");
a67dd8cc 3476 info->safe_mode_delay = 0;
c2c087e6
DW
3477 info->disk.number = -1;
3478 info->disk.state = 0;
c5afc314 3479 info->name[0] = 0;
921d9e16 3480 info->recovery_start = MaxSector;
3ad25638 3481 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3482 info->bb.supported = 1;
c2c087e6 3483
97b4d0e9 3484 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3485 mpb = super->anchor;
b7d81a38 3486 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3487
ab3cb6b3
N
3488 for (i = 0; i < mpb->num_raid_devs; i++) {
3489 struct imsm_dev *dev = get_imsm_dev(super, i);
3490 int failed, enough, j, missing = 0;
3491 struct imsm_map *map;
3492 __u8 state;
97b4d0e9 3493
3b451610
AK
3494 failed = imsm_count_failed(super, dev, MAP_0);
3495 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3496 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3497
3498 /* any newly missing disks?
3499 * (catches single-degraded vs double-degraded)
3500 */
3501 for (j = 0; j < map->num_members; j++) {
238c0a71 3502 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3503 __u32 idx = ord_to_idx(ord);
3504
3505 if (!(ord & IMSM_ORD_REBUILD) &&
3506 get_imsm_missing(super, idx)) {
3507 missing = 1;
3508 break;
3509 }
97b4d0e9 3510 }
ab3cb6b3
N
3511
3512 if (state == IMSM_T_STATE_FAILED)
3513 enough = -1;
3514 else if (state == IMSM_T_STATE_DEGRADED &&
3515 (state != map->map_state || missing))
3516 enough = 0;
3517 else /* we're normal, or already degraded */
3518 enough = 1;
d2bde6d3
AK
3519 if (is_gen_migration(dev) && missing) {
3520 /* during general migration we need all disks
3521 * that process is running on.
3522 * No new missing disk is allowed.
3523 */
3524 max_enough = -1;
3525 enough = -1;
3526 /* no more checks necessary
3527 */
3528 break;
3529 }
ab3cb6b3
N
3530 /* in the missing/failed disk case check to see
3531 * if at least one array is runnable
3532 */
3533 max_enough = max(max_enough, enough);
3534 }
1ade5cc1 3535 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3536 info->container_enough = max_enough;
97b4d0e9 3537
4a04ec6c 3538 if (super->disks) {
14e8215b
DW
3539 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3540
b9f594fe 3541 disk = &super->disks->disk;
5551b113 3542 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3543 info->component_size = reserved;
25ed7e59 3544 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3545 /* we don't change info->disk.raid_disk here because
3546 * this state will be finalized in mdmon after we have
3547 * found the 'most fresh' version of the metadata
3548 */
25ed7e59 3549 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3550 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3551 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3552 }
a575e2a7
DW
3553
3554 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3555 * ->compare_super may have updated the 'num_raid_devs' field for spares
3556 */
3557 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3558 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3559 else
3560 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3561
3562 /* I don't know how to compute 'map' on imsm, so use safe default */
3563 if (map) {
3564 int i;
3565 for (i = 0; i < map_disks; i++)
3566 map[i] = 1;
3567 }
3568
cdddbdbc
DW
3569}
3570
5c4cd5da
AC
3571/* allocates memory and fills disk in mdinfo structure
3572 * for each disk in array */
3573struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3574{
594dc1b8 3575 struct mdinfo *mddev;
5c4cd5da
AC
3576 struct intel_super *super = st->sb;
3577 struct imsm_disk *disk;
3578 int count = 0;
3579 struct dl *dl;
3580 if (!super || !super->disks)
3581 return NULL;
3582 dl = super->disks;
503975b9 3583 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3584 while (dl) {
3585 struct mdinfo *tmp;
3586 disk = &dl->disk;
503975b9 3587 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3588 if (mddev->devs)
3589 tmp->next = mddev->devs;
3590 mddev->devs = tmp;
3591 tmp->disk.number = count++;
3592 tmp->disk.major = dl->major;
3593 tmp->disk.minor = dl->minor;
3594 tmp->disk.state = is_configured(disk) ?
3595 (1 << MD_DISK_ACTIVE) : 0;
3596 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3597 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3598 tmp->disk.raid_disk = -1;
3599 dl = dl->next;
3600 }
3601 return mddev;
3602}
3603
cdddbdbc
DW
3604static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3605 char *update, char *devname, int verbose,
3606 int uuid_set, char *homehost)
3607{
f352c545
DW
3608 /* For 'assemble' and 'force' we need to return non-zero if any
3609 * change was made. For others, the return value is ignored.
3610 * Update options are:
3611 * force-one : This device looks a bit old but needs to be included,
3612 * update age info appropriately.
3613 * assemble: clear any 'faulty' flag to allow this device to
3614 * be assembled.
3615 * force-array: Array is degraded but being forced, mark it clean
3616 * if that will be needed to assemble it.
3617 *
3618 * newdev: not used ????
3619 * grow: Array has gained a new device - this is currently for
3620 * linear only
3621 * resync: mark as dirty so a resync will happen.
3622 * name: update the name - preserving the homehost
6e46bf34 3623 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3624 *
3625 * Following are not relevant for this imsm:
3626 * sparc2.2 : update from old dodgey metadata
3627 * super-minor: change the preferred_minor number
3628 * summaries: update redundant counters.
f352c545
DW
3629 * homehost: update the recorded homehost
3630 * _reshape_progress: record new reshape_progress position.
3631 */
6e46bf34
DW
3632 int rv = 1;
3633 struct intel_super *super = st->sb;
3634 struct imsm_super *mpb;
f352c545 3635
6e46bf34
DW
3636 /* we can only update container info */
3637 if (!super || super->current_vol >= 0 || !super->anchor)
3638 return 1;
3639
3640 mpb = super->anchor;
3641
81a5b4f5
N
3642 if (strcmp(update, "uuid") == 0) {
3643 /* We take this to mean that the family_num should be updated.
3644 * However that is much smaller than the uuid so we cannot really
3645 * allow an explicit uuid to be given. And it is hard to reliably
3646 * know if one was.
3647 * So if !uuid_set we know the current uuid is random and just used
3648 * the first 'int' and copy it to the other 3 positions.
3649 * Otherwise we require the 4 'int's to be the same as would be the
3650 * case if we are using a random uuid. So an explicit uuid will be
3651 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3652 */
81a5b4f5
N
3653 if (!uuid_set) {
3654 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3655 rv = 0;
81a5b4f5
N
3656 } else {
3657 if (info->uuid[0] != info->uuid[1] ||
3658 info->uuid[1] != info->uuid[2] ||
3659 info->uuid[2] != info->uuid[3])
3660 rv = -1;
3661 else
3662 rv = 0;
6e46bf34 3663 }
81a5b4f5
N
3664 if (rv == 0)
3665 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3666 } else if (strcmp(update, "assemble") == 0)
3667 rv = 0;
3668 else
1e2b2765 3669 rv = -1;
f352c545 3670
6e46bf34
DW
3671 /* successful update? recompute checksum */
3672 if (rv == 0)
3673 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3674
3675 return rv;
cdddbdbc
DW
3676}
3677
c2c087e6 3678static size_t disks_to_mpb_size(int disks)
cdddbdbc 3679{
c2c087e6 3680 size_t size;
cdddbdbc 3681
c2c087e6
DW
3682 size = sizeof(struct imsm_super);
3683 size += (disks - 1) * sizeof(struct imsm_disk);
3684 size += 2 * sizeof(struct imsm_dev);
3685 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3686 size += (4 - 2) * sizeof(struct imsm_map);
3687 /* 4 possible disk_ord_tbl's */
3688 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3689 /* maximum bbm log */
3690 size += sizeof(struct bbm_log);
c2c087e6
DW
3691
3692 return size;
3693}
3694
387fcd59
N
3695static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3696 unsigned long long data_offset)
c2c087e6
DW
3697{
3698 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3699 return 0;
3700
3701 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3702}
3703
ba2de7ba
DW
3704static void free_devlist(struct intel_super *super)
3705{
3706 struct intel_dev *dv;
3707
3708 while (super->devlist) {
3709 dv = super->devlist->next;
3710 free(super->devlist->dev);
3711 free(super->devlist);
3712 super->devlist = dv;
3713 }
3714}
3715
3716static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3717{
3718 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3719}
3720
cdddbdbc
DW
3721static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3722{
3723 /*
3724 * return:
3725 * 0 same, or first was empty, and second was copied
3726 * 1 second had wrong number
3727 * 2 wrong uuid
3728 * 3 wrong other info
3729 */
3730 struct intel_super *first = st->sb;
3731 struct intel_super *sec = tst->sb;
3732
5d500228
N
3733 if (!first) {
3734 st->sb = tst->sb;
3735 tst->sb = NULL;
3736 return 0;
3737 }
8603ea6f
LM
3738 /* in platform dependent environment test if the disks
3739 * use the same Intel hba
cb8f6859 3740 * If not on Intel hba at all, allow anything.
8603ea6f 3741 */
6b781d33
AP
3742 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3743 if (first->hba->type != sec->hba->type) {
8603ea6f 3744 fprintf(stderr,
6b781d33
AP
3745 "HBAs of devices do not match %s != %s\n",
3746 get_sys_dev_type(first->hba->type),
3747 get_sys_dev_type(sec->hba->type));
3748 return 3;
3749 }
3750 if (first->orom != sec->orom) {
3751 fprintf(stderr,
3752 "HBAs of devices do not match %s != %s\n",
3753 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3754 return 3;
3755 }
3756 }
cdddbdbc 3757
d23fe947
DW
3758 /* if an anchor does not have num_raid_devs set then it is a free
3759 * floating spare
3760 */
3761 if (first->anchor->num_raid_devs > 0 &&
3762 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3763 /* Determine if these disks might ever have been
3764 * related. Further disambiguation can only take place
3765 * in load_super_imsm_all
3766 */
3767 __u32 first_family = first->anchor->orig_family_num;
3768 __u32 sec_family = sec->anchor->orig_family_num;
3769
f796af5d
DW
3770 if (memcmp(first->anchor->sig, sec->anchor->sig,
3771 MAX_SIGNATURE_LENGTH) != 0)
3772 return 3;
3773
a2b97981
DW
3774 if (first_family == 0)
3775 first_family = first->anchor->family_num;
3776 if (sec_family == 0)
3777 sec_family = sec->anchor->family_num;
3778
3779 if (first_family != sec_family)
d23fe947 3780 return 3;
f796af5d 3781
d23fe947 3782 }
cdddbdbc 3783
3e372e5a
DW
3784 /* if 'first' is a spare promote it to a populated mpb with sec's
3785 * family number
3786 */
3787 if (first->anchor->num_raid_devs == 0 &&
3788 sec->anchor->num_raid_devs > 0) {
78d30f94 3789 int i;
ba2de7ba
DW
3790 struct intel_dev *dv;
3791 struct imsm_dev *dev;
78d30f94
DW
3792
3793 /* we need to copy raid device info from sec if an allocation
3794 * fails here we don't associate the spare
3795 */
3796 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3797 dv = xmalloc(sizeof(*dv));
3798 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3799 dv->dev = dev;
3800 dv->index = i;
3801 dv->next = first->devlist;
3802 first->devlist = dv;
78d30f94 3803 }
709743c5 3804 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3805 /* allocation failure */
3806 free_devlist(first);
e12b3daa 3807 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3808 return 3;
78d30f94 3809 }
3e372e5a 3810 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3811 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3812 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3813 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3814 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3815 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3816 }
3817
cdddbdbc
DW
3818 return 0;
3819}
3820
0030e8d6
DW
3821static void fd2devname(int fd, char *name)
3822{
3823 struct stat st;
3824 char path[256];
33a6535d 3825 char dname[PATH_MAX];
0030e8d6
DW
3826 char *nm;
3827 int rv;
3828
3829 name[0] = '\0';
3830 if (fstat(fd, &st) != 0)
3831 return;
3832 sprintf(path, "/sys/dev/block/%d:%d",
3833 major(st.st_rdev), minor(st.st_rdev));
3834
9cf014ec 3835 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3836 if (rv <= 0)
3837 return;
9587c373 3838
0030e8d6
DW
3839 dname[rv] = '\0';
3840 nm = strrchr(dname, '/');
7897de29
JS
3841 if (nm) {
3842 nm++;
3843 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3844 }
0030e8d6
DW
3845}
3846
21e9380b
AP
3847static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3848{
3849 char path[60];
3850 char *name = fd2kname(fd);
3851
3852 if (!name)
3853 return 1;
3854
3855 if (strncmp(name, "nvme", 4) != 0)
3856 return 1;
3857
3858 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3859
3860 return load_sys(path, buf, buf_len);
3861}
3862
cdddbdbc
DW
3863extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3864
3865static int imsm_read_serial(int fd, char *devname,
3866 __u8 serial[MAX_RAID_SERIAL_LEN])
3867{
21e9380b 3868 char buf[50];
cdddbdbc 3869 int rv;
1f24f035 3870 int len;
316e2bf4
DW
3871 char *dest;
3872 char *src;
21e9380b
AP
3873 unsigned int i;
3874
3875 memset(buf, 0, sizeof(buf));
cdddbdbc 3876
21e9380b 3877 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 3878
21e9380b
AP
3879 if (rv)
3880 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 3881
40ebbb9c 3882 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3883 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3884 fd2devname(fd, (char *) serial);
0030e8d6
DW
3885 return 0;
3886 }
3887
cdddbdbc
DW
3888 if (rv != 0) {
3889 if (devname)
e7b84f9d
N
3890 pr_err("Failed to retrieve serial for %s\n",
3891 devname);
cdddbdbc
DW
3892 return rv;
3893 }
3894
316e2bf4
DW
3895 /* trim all whitespace and non-printable characters and convert
3896 * ':' to ';'
3897 */
21e9380b
AP
3898 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3899 src = &buf[i];
316e2bf4
DW
3900 if (*src > 0x20) {
3901 /* ':' is reserved for use in placeholder serial
3902 * numbers for missing disks
3903 */
3904 if (*src == ':')
3905 *dest++ = ';';
3906 else
3907 *dest++ = *src;
3908 }
3909 }
21e9380b
AP
3910 len = dest - buf;
3911 dest = buf;
316e2bf4
DW
3912
3913 /* truncate leading characters */
3914 if (len > MAX_RAID_SERIAL_LEN) {
3915 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3916 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3917 }
5c3db629 3918
5c3db629 3919 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3920 memcpy(serial, dest, len);
cdddbdbc
DW
3921
3922 return 0;
3923}
3924
1f24f035
DW
3925static int serialcmp(__u8 *s1, __u8 *s2)
3926{
3927 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3928}
3929
3930static void serialcpy(__u8 *dest, __u8 *src)
3931{
3932 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3933}
3934
54c2c1ea
DW
3935static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3936{
3937 struct dl *dl;
3938
3939 for (dl = super->disks; dl; dl = dl->next)
3940 if (serialcmp(dl->serial, serial) == 0)
3941 break;
3942
3943 return dl;
3944}
3945
a2b97981
DW
3946static struct imsm_disk *
3947__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3948{
3949 int i;
3950
3951 for (i = 0; i < mpb->num_disks; i++) {
3952 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3953
3954 if (serialcmp(disk->serial, serial) == 0) {
3955 if (idx)
3956 *idx = i;
3957 return disk;
3958 }
3959 }
3960
3961 return NULL;
3962}
3963
cdddbdbc
DW
3964static int
3965load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3966{
a2b97981 3967 struct imsm_disk *disk;
cdddbdbc
DW
3968 struct dl *dl;
3969 struct stat stb;
cdddbdbc 3970 int rv;
a2b97981 3971 char name[40];
d23fe947
DW
3972 __u8 serial[MAX_RAID_SERIAL_LEN];
3973
3974 rv = imsm_read_serial(fd, devname, serial);
3975
3976 if (rv != 0)
3977 return 2;
3978
503975b9 3979 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3980
a2b97981
DW
3981 fstat(fd, &stb);
3982 dl->major = major(stb.st_rdev);
3983 dl->minor = minor(stb.st_rdev);
3984 dl->next = super->disks;
3985 dl->fd = keep_fd ? fd : -1;
3986 assert(super->disks == NULL);
3987 super->disks = dl;
3988 serialcpy(dl->serial, serial);
3989 dl->index = -2;
3990 dl->e = NULL;
3991 fd2devname(fd, name);
3992 if (devname)
503975b9 3993 dl->devname = xstrdup(devname);
a2b97981 3994 else
503975b9 3995 dl->devname = xstrdup(name);
cdddbdbc 3996
d23fe947 3997 /* look up this disk's index in the current anchor */
a2b97981
DW
3998 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3999 if (disk) {
4000 dl->disk = *disk;
4001 /* only set index on disks that are a member of a
4002 * populated contianer, i.e. one with raid_devs
4003 */
4004 if (is_failed(&dl->disk))
3f6efecc 4005 dl->index = -2;
2432ce9b 4006 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4007 dl->index = -1;
3f6efecc
DW
4008 }
4009
949c47a0
DW
4010 return 0;
4011}
4012
0c046afd
DW
4013/* When migrating map0 contains the 'destination' state while map1
4014 * contains the current state. When not migrating map0 contains the
4015 * current state. This routine assumes that map[0].map_state is set to
4016 * the current array state before being called.
4017 *
4018 * Migration is indicated by one of the following states
4019 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4020 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4021 * map1state=unitialized)
1484e727 4022 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4023 * map1state=normal)
e3bba0e0 4024 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4025 * map1state=degraded)
8e59f3d8
AK
4026 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4027 * map1state=normal)
0c046afd 4028 */
8e59f3d8
AK
4029static void migrate(struct imsm_dev *dev, struct intel_super *super,
4030 __u8 to_state, int migr_type)
3393c6af 4031{
0c046afd 4032 struct imsm_map *dest;
238c0a71 4033 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4034
0c046afd 4035 dev->vol.migr_state = 1;
1484e727 4036 set_migr_type(dev, migr_type);
f8f603f1 4037 dev->vol.curr_migr_unit = 0;
238c0a71 4038 dest = get_imsm_map(dev, MAP_1);
0c046afd 4039
0556e1a2 4040 /* duplicate and then set the target end state in map[0] */
3393c6af 4041 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4042 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4043 __u32 ord;
4044 int i;
4045
4046 for (i = 0; i < src->num_members; i++) {
4047 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4048 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4049 }
4050 }
4051
8e59f3d8
AK
4052 if (migr_type == MIGR_GEN_MIGR)
4053 /* Clear migration record */
4054 memset(super->migr_rec, 0, sizeof(struct migr_record));
4055
0c046afd 4056 src->map_state = to_state;
949c47a0 4057}
f8f603f1 4058
809da78e
AK
4059static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4060 __u8 map_state)
f8f603f1 4061{
238c0a71
AK
4062 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4063 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4064 MAP_0 : MAP_1);
28bce06f 4065 int i, j;
0556e1a2
DW
4066
4067 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4068 * completed in the last migration.
4069 *
28bce06f 4070 * FIXME add support for raid-level-migration
0556e1a2 4071 */
089f9d79
JS
4072 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4073 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4074 /* when final map state is other than expected
4075 * merge maps (not for migration)
4076 */
4077 int failed;
4078
4079 for (i = 0; i < prev->num_members; i++)
4080 for (j = 0; j < map->num_members; j++)
4081 /* during online capacity expansion
4082 * disks position can be changed
4083 * if takeover is used
4084 */
4085 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4086 ord_to_idx(prev->disk_ord_tbl[i])) {
4087 map->disk_ord_tbl[j] |=
4088 prev->disk_ord_tbl[i];
4089 break;
4090 }
4091 failed = imsm_count_failed(super, dev, MAP_0);
4092 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4093 }
f8f603f1
DW
4094
4095 dev->vol.migr_state = 0;
ea672ee1 4096 set_migr_type(dev, 0);
f8f603f1
DW
4097 dev->vol.curr_migr_unit = 0;
4098 map->map_state = map_state;
4099}
949c47a0
DW
4100
4101static int parse_raid_devices(struct intel_super *super)
4102{
4103 int i;
4104 struct imsm_dev *dev_new;
4d7b1503 4105 size_t len, len_migr;
401d313b 4106 size_t max_len = 0;
4d7b1503
DW
4107 size_t space_needed = 0;
4108 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4109
4110 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4111 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4112 struct intel_dev *dv;
949c47a0 4113
4d7b1503
DW
4114 len = sizeof_imsm_dev(dev_iter, 0);
4115 len_migr = sizeof_imsm_dev(dev_iter, 1);
4116 if (len_migr > len)
4117 space_needed += len_migr - len;
ca9de185 4118
503975b9 4119 dv = xmalloc(sizeof(*dv));
401d313b
AK
4120 if (max_len < len_migr)
4121 max_len = len_migr;
4122 if (max_len > len_migr)
4123 space_needed += max_len - len_migr;
503975b9 4124 dev_new = xmalloc(max_len);
949c47a0 4125 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4126 dv->dev = dev_new;
4127 dv->index = i;
4128 dv->next = super->devlist;
4129 super->devlist = dv;
949c47a0 4130 }
cdddbdbc 4131
4d7b1503
DW
4132 /* ensure that super->buf is large enough when all raid devices
4133 * are migrating
4134 */
4135 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4136 void *buf;
4137
f36a9ecd
PB
4138 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4139 super->sector_size);
4140 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4141 return 1;
4142
1f45a8ad
DW
4143 memcpy(buf, super->buf, super->len);
4144 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4145 free(super->buf);
4146 super->buf = buf;
4147 super->len = len;
4148 }
ca9de185 4149
bbab0940
TM
4150 super->extra_space += space_needed;
4151
cdddbdbc
DW
4152 return 0;
4153}
4154
e2f41b2c
AK
4155/*******************************************************************************
4156 * Function: check_mpb_migr_compatibility
4157 * Description: Function checks for unsupported migration features:
4158 * - migration optimization area (pba_of_lba0)
4159 * - descending reshape (ascending_migr)
4160 * Parameters:
4161 * super : imsm metadata information
4162 * Returns:
4163 * 0 : migration is compatible
4164 * -1 : migration is not compatible
4165 ******************************************************************************/
4166int check_mpb_migr_compatibility(struct intel_super *super)
4167{
4168 struct imsm_map *map0, *map1;
4169 struct migr_record *migr_rec = super->migr_rec;
4170 int i;
4171
4172 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4173 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4174
4175 if (dev_iter &&
4176 dev_iter->vol.migr_state == 1 &&
4177 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4178 /* This device is migrating */
238c0a71
AK
4179 map0 = get_imsm_map(dev_iter, MAP_0);
4180 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4181 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4182 /* migration optimization area was used */
4183 return -1;
fc54fe7a
JS
4184 if (migr_rec->ascending_migr == 0 &&
4185 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4186 /* descending reshape not supported yet */
4187 return -1;
4188 }
4189 }
4190 return 0;
4191}
4192
d23fe947 4193static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4194
cdddbdbc 4195/* load_imsm_mpb - read matrix metadata
f2f5c343 4196 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4197 */
4198static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4199{
4200 unsigned long long dsize;
cdddbdbc 4201 unsigned long long sectors;
f36a9ecd 4202 unsigned int sector_size = super->sector_size;
cdddbdbc 4203 struct stat;
6416d527 4204 struct imsm_super *anchor;
cdddbdbc
DW
4205 __u32 check_sum;
4206
cdddbdbc 4207 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4208 if (dsize < 2*sector_size) {
64436f06 4209 if (devname)
e7b84f9d
N
4210 pr_err("%s: device to small for imsm\n",
4211 devname);
64436f06
N
4212 return 1;
4213 }
cdddbdbc 4214
f36a9ecd 4215 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4216 if (devname)
e7b84f9d
N
4217 pr_err("Cannot seek to anchor block on %s: %s\n",
4218 devname, strerror(errno));
cdddbdbc
DW
4219 return 1;
4220 }
4221
f36a9ecd 4222 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4223 if (devname)
7a862a02 4224 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4225 return 1;
4226 }
466070ad 4227 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4228 if (devname)
e7b84f9d
N
4229 pr_err("Cannot read anchor block on %s: %s\n",
4230 devname, strerror(errno));
6416d527 4231 free(anchor);
cdddbdbc
DW
4232 return 1;
4233 }
4234
6416d527 4235 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4236 if (devname)
e7b84f9d 4237 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4238 free(anchor);
cdddbdbc
DW
4239 return 2;
4240 }
4241
d23fe947 4242 __free_imsm(super, 0);
f2f5c343
LM
4243 /* reload capability and hba */
4244
4245 /* capability and hba must be updated with new super allocation */
d424212e 4246 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4247 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4248 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4249 if (devname)
e7b84f9d
N
4250 pr_err("unable to allocate %zu byte mpb buffer\n",
4251 super->len);
6416d527 4252 free(anchor);
cdddbdbc
DW
4253 return 2;
4254 }
f36a9ecd 4255 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4256
f36a9ecd 4257 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4258 free(anchor);
8e59f3d8 4259
85337573
AO
4260 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4261 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4262 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4263 free(super->buf);
4264 return 2;
4265 }
51d83f5d 4266 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4267
949c47a0 4268 if (!sectors) {
ecf45690
DW
4269 check_sum = __gen_imsm_checksum(super->anchor);
4270 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4271 if (devname)
e7b84f9d
N
4272 pr_err("IMSM checksum %x != %x on %s\n",
4273 check_sum,
4274 __le32_to_cpu(super->anchor->check_sum),
4275 devname);
ecf45690
DW
4276 return 2;
4277 }
4278
a2b97981 4279 return 0;
949c47a0 4280 }
cdddbdbc
DW
4281
4282 /* read the extended mpb */
f36a9ecd 4283 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4284 if (devname)
e7b84f9d
N
4285 pr_err("Cannot seek to extended mpb on %s: %s\n",
4286 devname, strerror(errno));
cdddbdbc
DW
4287 return 1;
4288 }
4289
f36a9ecd
PB
4290 if ((unsigned int)read(fd, super->buf + sector_size,
4291 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4292 if (devname)
e7b84f9d
N
4293 pr_err("Cannot read extended mpb on %s: %s\n",
4294 devname, strerror(errno));
cdddbdbc
DW
4295 return 2;
4296 }
4297
949c47a0
DW
4298 check_sum = __gen_imsm_checksum(super->anchor);
4299 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4300 if (devname)
e7b84f9d
N
4301 pr_err("IMSM checksum %x != %x on %s\n",
4302 check_sum, __le32_to_cpu(super->anchor->check_sum),
4303 devname);
db575f3b 4304 return 3;
cdddbdbc
DW
4305 }
4306
a2b97981
DW
4307 return 0;
4308}
4309
8e59f3d8
AK
4310static int read_imsm_migr_rec(int fd, struct intel_super *super);
4311
97f81ee2
CA
4312/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4313static void clear_hi(struct intel_super *super)
4314{
4315 struct imsm_super *mpb = super->anchor;
4316 int i, n;
4317 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4318 return;
4319 for (i = 0; i < mpb->num_disks; ++i) {
4320 struct imsm_disk *disk = &mpb->disk[i];
4321 disk->total_blocks_hi = 0;
4322 }
4323 for (i = 0; i < mpb->num_raid_devs; ++i) {
4324 struct imsm_dev *dev = get_imsm_dev(super, i);
4325 if (!dev)
4326 return;
4327 for (n = 0; n < 2; ++n) {
4328 struct imsm_map *map = get_imsm_map(dev, n);
4329 if (!map)
4330 continue;
4331 map->pba_of_lba0_hi = 0;
4332 map->blocks_per_member_hi = 0;
4333 map->num_data_stripes_hi = 0;
4334 }
4335 }
4336}
4337
a2b97981
DW
4338static int
4339load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4340{
4341 int err;
4342
4343 err = load_imsm_mpb(fd, super, devname);
4344 if (err)
4345 return err;
f36a9ecd
PB
4346 if (super->sector_size == 4096)
4347 convert_from_4k(super);
a2b97981
DW
4348 err = load_imsm_disk(fd, super, devname, keep_fd);
4349 if (err)
4350 return err;
4351 err = parse_raid_devices(super);
8d67477f
TM
4352 if (err)
4353 return err;
4354 err = load_bbm_log(super);
97f81ee2 4355 clear_hi(super);
a2b97981 4356 return err;
cdddbdbc
DW
4357}
4358
ae6aad82
DW
4359static void __free_imsm_disk(struct dl *d)
4360{
4361 if (d->fd >= 0)
4362 close(d->fd);
4363 if (d->devname)
4364 free(d->devname);
0dcecb2e
DW
4365 if (d->e)
4366 free(d->e);
ae6aad82
DW
4367 free(d);
4368
4369}
1a64be56 4370
cdddbdbc
DW
4371static void free_imsm_disks(struct intel_super *super)
4372{
47ee5a45 4373 struct dl *d;
cdddbdbc 4374
47ee5a45
DW
4375 while (super->disks) {
4376 d = super->disks;
cdddbdbc 4377 super->disks = d->next;
ae6aad82 4378 __free_imsm_disk(d);
cdddbdbc 4379 }
cb82edca
AK
4380 while (super->disk_mgmt_list) {
4381 d = super->disk_mgmt_list;
4382 super->disk_mgmt_list = d->next;
4383 __free_imsm_disk(d);
4384 }
47ee5a45
DW
4385 while (super->missing) {
4386 d = super->missing;
4387 super->missing = d->next;
4388 __free_imsm_disk(d);
4389 }
4390
cdddbdbc
DW
4391}
4392
9ca2c81c 4393/* free all the pieces hanging off of a super pointer */
d23fe947 4394static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4395{
88654014
LM
4396 struct intel_hba *elem, *next;
4397
9ca2c81c 4398 if (super->buf) {
949c47a0 4399 free(super->buf);
9ca2c81c
DW
4400 super->buf = NULL;
4401 }
f2f5c343
LM
4402 /* unlink capability description */
4403 super->orom = NULL;
8e59f3d8
AK
4404 if (super->migr_rec_buf) {
4405 free(super->migr_rec_buf);
4406 super->migr_rec_buf = NULL;
4407 }
d23fe947
DW
4408 if (free_disks)
4409 free_imsm_disks(super);
ba2de7ba 4410 free_devlist(super);
88654014
LM
4411 elem = super->hba;
4412 while (elem) {
4413 if (elem->path)
4414 free((void *)elem->path);
4415 next = elem->next;
4416 free(elem);
4417 elem = next;
88c32bb1 4418 }
8d67477f
TM
4419 if (super->bbm_log)
4420 free(super->bbm_log);
88654014 4421 super->hba = NULL;
cdddbdbc
DW
4422}
4423
9ca2c81c
DW
4424static void free_imsm(struct intel_super *super)
4425{
d23fe947 4426 __free_imsm(super, 1);
928f1424 4427 free(super->bb.entries);
9ca2c81c
DW
4428 free(super);
4429}
cdddbdbc
DW
4430
4431static void free_super_imsm(struct supertype *st)
4432{
4433 struct intel_super *super = st->sb;
4434
4435 if (!super)
4436 return;
4437
4438 free_imsm(super);
4439 st->sb = NULL;
4440}
4441
49133e57 4442static struct intel_super *alloc_super(void)
c2c087e6 4443{
503975b9 4444 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4445
503975b9
N
4446 super->current_vol = -1;
4447 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4448
4449 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4450 sizeof(struct md_bb_entry));
4451 if (!super->bb.entries) {
4452 free(super);
4453 return NULL;
4454 }
4455
c2c087e6
DW
4456 return super;
4457}
4458
f0f5a016
LM
4459/*
4460 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4461 */
d424212e 4462static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4463{
4464 struct sys_dev *hba_name;
4465 int rv = 0;
4466
089f9d79 4467 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4468 super->orom = NULL;
f0f5a016
LM
4469 super->hba = NULL;
4470 return 0;
4471 }
4472 hba_name = find_disk_attached_hba(fd, NULL);
4473 if (!hba_name) {
d424212e 4474 if (devname)
e7b84f9d
N
4475 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4476 devname);
f0f5a016
LM
4477 return 1;
4478 }
4479 rv = attach_hba_to_super(super, hba_name);
4480 if (rv == 2) {
d424212e
N
4481 if (devname) {
4482 struct intel_hba *hba = super->hba;
f0f5a016 4483
60f0f54d
PB
4484 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4485 " but the container is assigned to Intel(R) %s %s (",
d424212e 4486 devname,
614902f6 4487 get_sys_dev_type(hba_name->type),
60f0f54d 4488 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4489 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4490 get_sys_dev_type(super->hba->type),
4491 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4492
f0f5a016
LM
4493 while (hba) {
4494 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4495 if (hba->next)
4496 fprintf(stderr, ", ");
4497 hba = hba->next;
4498 }
6b781d33 4499 fprintf(stderr, ").\n"
60f0f54d
PB
4500 " Mixing devices attached to different %s is not allowed.\n",
4501 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
f0f5a016 4502 }
f0f5a016
LM
4503 return 2;
4504 }
6b781d33 4505 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4506 if (!super->orom)
4507 return 3;
614902f6 4508
f0f5a016
LM
4509 return 0;
4510}
4511
47ee5a45
DW
4512/* find_missing - helper routine for load_super_imsm_all that identifies
4513 * disks that have disappeared from the system. This routine relies on
4514 * the mpb being uptodate, which it is at load time.
4515 */
4516static int find_missing(struct intel_super *super)
4517{
4518 int i;
4519 struct imsm_super *mpb = super->anchor;
4520 struct dl *dl;
4521 struct imsm_disk *disk;
47ee5a45
DW
4522
4523 for (i = 0; i < mpb->num_disks; i++) {
4524 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4525 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4526 if (dl)
4527 continue;
47ee5a45 4528
503975b9 4529 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4530 dl->major = 0;
4531 dl->minor = 0;
4532 dl->fd = -1;
503975b9 4533 dl->devname = xstrdup("missing");
47ee5a45
DW
4534 dl->index = i;
4535 serialcpy(dl->serial, disk->serial);
4536 dl->disk = *disk;
689c9bf3 4537 dl->e = NULL;
47ee5a45
DW
4538 dl->next = super->missing;
4539 super->missing = dl;
4540 }
4541
4542 return 0;
4543}
4544
a2b97981
DW
4545static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4546{
4547 struct intel_disk *idisk = disk_list;
4548
4549 while (idisk) {
4550 if (serialcmp(idisk->disk.serial, serial) == 0)
4551 break;
4552 idisk = idisk->next;
4553 }
4554
4555 return idisk;
4556}
4557
4558static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4559 struct intel_super *super,
4560 struct intel_disk **disk_list)
4561{
4562 struct imsm_disk *d = &super->disks->disk;
4563 struct imsm_super *mpb = super->anchor;
4564 int i, j;
4565
4566 for (i = 0; i < tbl_size; i++) {
4567 struct imsm_super *tbl_mpb = table[i]->anchor;
4568 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4569
4570 if (tbl_mpb->family_num == mpb->family_num) {
4571 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4572 dprintf("mpb from %d:%d matches %d:%d\n",
4573 super->disks->major,
a2b97981
DW
4574 super->disks->minor,
4575 table[i]->disks->major,
4576 table[i]->disks->minor);
4577 break;
4578 }
4579
4580 if (((is_configured(d) && !is_configured(tbl_d)) ||
4581 is_configured(d) == is_configured(tbl_d)) &&
4582 tbl_mpb->generation_num < mpb->generation_num) {
4583 /* current version of the mpb is a
4584 * better candidate than the one in
4585 * super_table, but copy over "cross
4586 * generational" status
4587 */
4588 struct intel_disk *idisk;
4589
1ade5cc1
N
4590 dprintf("mpb from %d:%d replaces %d:%d\n",
4591 super->disks->major,
a2b97981
DW
4592 super->disks->minor,
4593 table[i]->disks->major,
4594 table[i]->disks->minor);
4595
4596 idisk = disk_list_get(tbl_d->serial, *disk_list);
4597 if (idisk && is_failed(&idisk->disk))
4598 tbl_d->status |= FAILED_DISK;
4599 break;
4600 } else {
4601 struct intel_disk *idisk;
4602 struct imsm_disk *disk;
4603
4604 /* tbl_mpb is more up to date, but copy
4605 * over cross generational status before
4606 * returning
4607 */
4608 disk = __serial_to_disk(d->serial, mpb, NULL);
4609 if (disk && is_failed(disk))
4610 d->status |= FAILED_DISK;
4611
4612 idisk = disk_list_get(d->serial, *disk_list);
4613 if (idisk) {
4614 idisk->owner = i;
4615 if (disk && is_configured(disk))
4616 idisk->disk.status |= CONFIGURED_DISK;
4617 }
4618
1ade5cc1
N
4619 dprintf("mpb from %d:%d prefer %d:%d\n",
4620 super->disks->major,
a2b97981
DW
4621 super->disks->minor,
4622 table[i]->disks->major,
4623 table[i]->disks->minor);
4624
4625 return tbl_size;
4626 }
4627 }
4628 }
4629
4630 if (i >= tbl_size)
4631 table[tbl_size++] = super;
4632 else
4633 table[i] = super;
4634
4635 /* update/extend the merged list of imsm_disk records */
4636 for (j = 0; j < mpb->num_disks; j++) {
4637 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4638 struct intel_disk *idisk;
4639
4640 idisk = disk_list_get(disk->serial, *disk_list);
4641 if (idisk) {
4642 idisk->disk.status |= disk->status;
4643 if (is_configured(&idisk->disk) ||
4644 is_failed(&idisk->disk))
4645 idisk->disk.status &= ~(SPARE_DISK);
4646 } else {
503975b9 4647 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4648 idisk->owner = IMSM_UNKNOWN_OWNER;
4649 idisk->disk = *disk;
4650 idisk->next = *disk_list;
4651 *disk_list = idisk;
4652 }
4653
4654 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4655 idisk->owner = i;
4656 }
4657
4658 return tbl_size;
4659}
4660
4661static struct intel_super *
4662validate_members(struct intel_super *super, struct intel_disk *disk_list,
4663 const int owner)
4664{
4665 struct imsm_super *mpb = super->anchor;
4666 int ok_count = 0;
4667 int i;
4668
4669 for (i = 0; i < mpb->num_disks; i++) {
4670 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4671 struct intel_disk *idisk;
4672
4673 idisk = disk_list_get(disk->serial, disk_list);
4674 if (idisk) {
4675 if (idisk->owner == owner ||
4676 idisk->owner == IMSM_UNKNOWN_OWNER)
4677 ok_count++;
4678 else
1ade5cc1
N
4679 dprintf("'%.16s' owner %d != %d\n",
4680 disk->serial, idisk->owner,
a2b97981
DW
4681 owner);
4682 } else {
1ade5cc1
N
4683 dprintf("unknown disk %x [%d]: %.16s\n",
4684 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4685 disk->serial);
4686 break;
4687 }
4688 }
4689
4690 if (ok_count == mpb->num_disks)
4691 return super;
4692 return NULL;
4693}
4694
4695static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4696{
4697 struct intel_super *s;
4698
4699 for (s = super_list; s; s = s->next) {
4700 if (family_num != s->anchor->family_num)
4701 continue;
e12b3daa 4702 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4703 __le32_to_cpu(family_num), s->disks->devname);
4704 }
4705}
4706
4707static struct intel_super *
4708imsm_thunderdome(struct intel_super **super_list, int len)
4709{
4710 struct intel_super *super_table[len];
4711 struct intel_disk *disk_list = NULL;
4712 struct intel_super *champion, *spare;
4713 struct intel_super *s, **del;
4714 int tbl_size = 0;
4715 int conflict;
4716 int i;
4717
4718 memset(super_table, 0, sizeof(super_table));
4719 for (s = *super_list; s; s = s->next)
4720 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4721
4722 for (i = 0; i < tbl_size; i++) {
4723 struct imsm_disk *d;
4724 struct intel_disk *idisk;
4725 struct imsm_super *mpb = super_table[i]->anchor;
4726
4727 s = super_table[i];
4728 d = &s->disks->disk;
4729
4730 /* 'd' must appear in merged disk list for its
4731 * configuration to be valid
4732 */
4733 idisk = disk_list_get(d->serial, disk_list);
4734 if (idisk && idisk->owner == i)
4735 s = validate_members(s, disk_list, i);
4736 else
4737 s = NULL;
4738
4739 if (!s)
1ade5cc1
N
4740 dprintf("marking family: %#x from %d:%d offline\n",
4741 mpb->family_num,
a2b97981
DW
4742 super_table[i]->disks->major,
4743 super_table[i]->disks->minor);
4744 super_table[i] = s;
4745 }
4746
4747 /* This is where the mdadm implementation differs from the Windows
4748 * driver which has no strict concept of a container. We can only
4749 * assemble one family from a container, so when returning a prodigal
4750 * array member to this system the code will not be able to disambiguate
4751 * the container contents that should be assembled ("foreign" versus
4752 * "local"). It requires user intervention to set the orig_family_num
4753 * to a new value to establish a new container. The Windows driver in
4754 * this situation fixes up the volume name in place and manages the
4755 * foreign array as an independent entity.
4756 */
4757 s = NULL;
4758 spare = NULL;
4759 conflict = 0;
4760 for (i = 0; i < tbl_size; i++) {
4761 struct intel_super *tbl_ent = super_table[i];
4762 int is_spare = 0;
4763
4764 if (!tbl_ent)
4765 continue;
4766
4767 if (tbl_ent->anchor->num_raid_devs == 0) {
4768 spare = tbl_ent;
4769 is_spare = 1;
4770 }
4771
4772 if (s && !is_spare) {
4773 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4774 conflict++;
4775 } else if (!s && !is_spare)
4776 s = tbl_ent;
4777 }
4778
4779 if (!s)
4780 s = spare;
4781 if (!s) {
4782 champion = NULL;
4783 goto out;
4784 }
4785 champion = s;
4786
4787 if (conflict)
7a862a02 4788 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4789 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4790
4791 /* collect all dl's onto 'champion', and update them to
4792 * champion's version of the status
4793 */
4794 for (s = *super_list; s; s = s->next) {
4795 struct imsm_super *mpb = champion->anchor;
4796 struct dl *dl = s->disks;
4797
4798 if (s == champion)
4799 continue;
4800
5d7b407a
CA
4801 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4802
a2b97981
DW
4803 for (i = 0; i < mpb->num_disks; i++) {
4804 struct imsm_disk *disk;
4805
4806 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4807 if (disk) {
4808 dl->disk = *disk;
4809 /* only set index on disks that are a member of
4810 * a populated contianer, i.e. one with
4811 * raid_devs
4812 */
4813 if (is_failed(&dl->disk))
4814 dl->index = -2;
4815 else if (is_spare(&dl->disk))
4816 dl->index = -1;
4817 break;
4818 }
4819 }
4820
4821 if (i >= mpb->num_disks) {
4822 struct intel_disk *idisk;
4823
4824 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4825 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4826 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4827 dl->index = -1;
4828 else {
4829 dl->index = -2;
4830 continue;
4831 }
4832 }
4833
4834 dl->next = champion->disks;
4835 champion->disks = dl;
4836 s->disks = NULL;
4837 }
4838
4839 /* delete 'champion' from super_list */
4840 for (del = super_list; *del; ) {
4841 if (*del == champion) {
4842 *del = (*del)->next;
4843 break;
4844 } else
4845 del = &(*del)->next;
4846 }
4847 champion->next = NULL;
4848
4849 out:
4850 while (disk_list) {
4851 struct intel_disk *idisk = disk_list;
4852
4853 disk_list = disk_list->next;
4854 free(idisk);
4855 }
4856
4857 return champion;
4858}
4859
9587c373
LM
4860static int
4861get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4862static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4863 int major, int minor, int keep_fd);
ec50f7b6
LM
4864static int
4865get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4866 int *max, int keep_fd);
4867
cdddbdbc 4868static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4869 char *devname, struct md_list *devlist,
4870 int keep_fd)
cdddbdbc 4871{
a2b97981
DW
4872 struct intel_super *super_list = NULL;
4873 struct intel_super *super = NULL;
a2b97981 4874 int err = 0;
9587c373 4875 int i = 0;
dab4a513 4876
9587c373
LM
4877 if (fd >= 0)
4878 /* 'fd' is an opened container */
4879 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4880 else
ec50f7b6
LM
4881 /* get super block from devlist devices */
4882 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4883 if (err)
1602d52c 4884 goto error;
a2b97981
DW
4885 /* all mpbs enter, maybe one leaves */
4886 super = imsm_thunderdome(&super_list, i);
4887 if (!super) {
4888 err = 1;
4889 goto error;
cdddbdbc
DW
4890 }
4891
47ee5a45
DW
4892 if (find_missing(super) != 0) {
4893 free_imsm(super);
a2b97981
DW
4894 err = 2;
4895 goto error;
47ee5a45 4896 }
8e59f3d8
AK
4897
4898 /* load migration record */
4899 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4900 if (err == -1) {
4901 /* migration is in progress,
4902 * but migr_rec cannot be loaded,
4903 */
8e59f3d8
AK
4904 err = 4;
4905 goto error;
4906 }
e2f41b2c
AK
4907
4908 /* Check migration compatibility */
089f9d79 4909 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4910 pr_err("Unsupported migration detected");
e2f41b2c
AK
4911 if (devname)
4912 fprintf(stderr, " on %s\n", devname);
4913 else
4914 fprintf(stderr, " (IMSM).\n");
4915
4916 err = 5;
4917 goto error;
4918 }
4919
a2b97981
DW
4920 err = 0;
4921
4922 error:
4923 while (super_list) {
4924 struct intel_super *s = super_list;
4925
4926 super_list = super_list->next;
4927 free_imsm(s);
4928 }
9587c373 4929
a2b97981
DW
4930 if (err)
4931 return err;
f7e7067b 4932
cdddbdbc 4933 *sbp = super;
9587c373 4934 if (fd >= 0)
4dd2df09 4935 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4936 else
4dd2df09 4937 st->container_devnm[0] = 0;
a2b97981 4938 if (err == 0 && st->ss == NULL) {
bf5a934a 4939 st->ss = &super_imsm;
cdddbdbc
DW
4940 st->minor_version = 0;
4941 st->max_devs = IMSM_MAX_DEVICES;
4942 }
cdddbdbc
DW
4943 return 0;
4944}
2b959fbf 4945
ec50f7b6
LM
4946static int
4947get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4948 int *max, int keep_fd)
4949{
4950 struct md_list *tmpdev;
4951 int err = 0;
4952 int i = 0;
9587c373 4953
ec50f7b6
LM
4954 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4955 if (tmpdev->used != 1)
4956 continue;
4957 if (tmpdev->container == 1) {
ca9de185 4958 int lmax = 0;
ec50f7b6
LM
4959 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4960 if (fd < 0) {
e7b84f9d 4961 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4962 tmpdev->devname, strerror(errno));
4963 err = 8;
4964 goto error;
4965 }
4966 err = get_sra_super_block(fd, super_list,
4967 tmpdev->devname, &lmax,
4968 keep_fd);
4969 i += lmax;
4970 close(fd);
4971 if (err) {
4972 err = 7;
4973 goto error;
4974 }
4975 } else {
4976 int major = major(tmpdev->st_rdev);
4977 int minor = minor(tmpdev->st_rdev);
4978 err = get_super_block(super_list,
4dd2df09 4979 NULL,
ec50f7b6
LM
4980 tmpdev->devname,
4981 major, minor,
4982 keep_fd);
4983 i++;
4984 if (err) {
4985 err = 6;
4986 goto error;
4987 }
4988 }
4989 }
4990 error:
4991 *max = i;
4992 return err;
4993}
9587c373 4994
4dd2df09 4995static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4996 int major, int minor, int keep_fd)
4997{
594dc1b8 4998 struct intel_super *s;
9587c373
LM
4999 char nm[32];
5000 int dfd = -1;
9587c373
LM
5001 int err = 0;
5002 int retry;
5003
5004 s = alloc_super();
5005 if (!s) {
5006 err = 1;
5007 goto error;
5008 }
5009
5010 sprintf(nm, "%d:%d", major, minor);
5011 dfd = dev_open(nm, O_RDWR);
5012 if (dfd < 0) {
5013 err = 2;
5014 goto error;
5015 }
5016
fa7bb6f8 5017 get_dev_sector_size(dfd, NULL, &s->sector_size);
cb8f6859 5018 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5019 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5020
5021 /* retry the load if we might have raced against mdmon */
4dd2df09 5022 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
5023 for (retry = 0; retry < 3; retry++) {
5024 usleep(3000);
5025 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5026 if (err != 3)
5027 break;
5028 }
5029 error:
5030 if (!err) {
5031 s->next = *super_list;
5032 *super_list = s;
5033 } else {
5034 if (s)
8d67477f 5035 free_imsm(s);
36614e95 5036 if (dfd >= 0)
9587c373
LM
5037 close(dfd);
5038 }
089f9d79 5039 if (dfd >= 0 && !keep_fd)
9587c373
LM
5040 close(dfd);
5041 return err;
5042
5043}
5044
5045static int
5046get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5047{
5048 struct mdinfo *sra;
4dd2df09 5049 char *devnm;
9587c373
LM
5050 struct mdinfo *sd;
5051 int err = 0;
5052 int i = 0;
4dd2df09 5053 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5054 if (!sra)
5055 return 1;
5056
5057 if (sra->array.major_version != -1 ||
5058 sra->array.minor_version != -2 ||
5059 strcmp(sra->text_version, "imsm") != 0) {
5060 err = 1;
5061 goto error;
5062 }
5063 /* load all mpbs */
4dd2df09 5064 devnm = fd2devnm(fd);
9587c373 5065 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5066 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5067 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5068 err = 7;
5069 goto error;
5070 }
5071 }
5072 error:
5073 sysfs_free(sra);
5074 *max = i;
5075 return err;
5076}
5077
2b959fbf
N
5078static int load_container_imsm(struct supertype *st, int fd, char *devname)
5079{
ec50f7b6 5080 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5081}
cdddbdbc
DW
5082
5083static int load_super_imsm(struct supertype *st, int fd, char *devname)
5084{
5085 struct intel_super *super;
5086 int rv;
8a3544f8 5087 int retry;
cdddbdbc 5088
357ac106 5089 if (test_partition(fd))
691c6ee1
N
5090 /* IMSM not allowed on partitions */
5091 return 1;
5092
37424f13
DW
5093 free_super_imsm(st);
5094
49133e57 5095 super = alloc_super();
fa7bb6f8 5096 get_dev_sector_size(fd, NULL, &super->sector_size);
8d67477f
TM
5097 if (!super)
5098 return 1;
ea2bc72b
LM
5099 /* Load hba and capabilities if they exist.
5100 * But do not preclude loading metadata in case capabilities or hba are
5101 * non-compliant and ignore_hw_compat is set.
5102 */
d424212e 5103 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5104 /* no orom/efi or non-intel hba of the disk */
089f9d79 5105 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5106 if (devname)
e7b84f9d 5107 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5108 free_imsm(super);
5109 return 2;
5110 }
a2b97981 5111 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5112
8a3544f8
AP
5113 /* retry the load if we might have raced against mdmon */
5114 if (rv == 3) {
f96b1302
AP
5115 struct mdstat_ent *mdstat = NULL;
5116 char *name = fd2kname(fd);
5117
5118 if (name)
5119 mdstat = mdstat_by_component(name);
8a3544f8
AP
5120
5121 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5122 for (retry = 0; retry < 3; retry++) {
5123 usleep(3000);
5124 rv = load_and_parse_mpb(fd, super, devname, 0);
5125 if (rv != 3)
5126 break;
5127 }
5128 }
5129
5130 free_mdstat(mdstat);
5131 }
5132
cdddbdbc
DW
5133 if (rv) {
5134 if (devname)
7a862a02 5135 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5136 free_imsm(super);
5137 return rv;
5138 }
5139
5140 st->sb = super;
5141 if (st->ss == NULL) {
5142 st->ss = &super_imsm;
5143 st->minor_version = 0;
5144 st->max_devs = IMSM_MAX_DEVICES;
5145 }
8e59f3d8
AK
5146
5147 /* load migration record */
2e062e82
AK
5148 if (load_imsm_migr_rec(super, NULL) == 0) {
5149 /* Check for unsupported migration features */
5150 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5151 pr_err("Unsupported migration detected");
2e062e82
AK
5152 if (devname)
5153 fprintf(stderr, " on %s\n", devname);
5154 else
5155 fprintf(stderr, " (IMSM).\n");
5156 return 3;
5157 }
e2f41b2c
AK
5158 }
5159
cdddbdbc
DW
5160 return 0;
5161}
5162
ef6ffade
DW
5163static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5164{
5165 if (info->level == 1)
5166 return 128;
5167 return info->chunk_size >> 9;
5168}
5169
5551b113
CA
5170static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5171 unsigned long long size)
fcfd9599 5172{
4025c288 5173 if (info->level == 1)
5551b113 5174 return size * 2;
4025c288 5175 else
5551b113 5176 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5177}
5178
4d1313e9
DW
5179static void imsm_update_version_info(struct intel_super *super)
5180{
5181 /* update the version and attributes */
5182 struct imsm_super *mpb = super->anchor;
5183 char *version;
5184 struct imsm_dev *dev;
5185 struct imsm_map *map;
5186 int i;
5187
5188 for (i = 0; i < mpb->num_raid_devs; i++) {
5189 dev = get_imsm_dev(super, i);
238c0a71 5190 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5191 if (__le32_to_cpu(dev->size_high) > 0)
5192 mpb->attributes |= MPB_ATTRIB_2TB;
5193
5194 /* FIXME detect when an array spans a port multiplier */
5195 #if 0
5196 mpb->attributes |= MPB_ATTRIB_PM;
5197 #endif
5198
5199 if (mpb->num_raid_devs > 1 ||
5200 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5201 version = MPB_VERSION_ATTRIBS;
5202 switch (get_imsm_raid_level(map)) {
5203 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5204 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5205 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5206 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5207 }
5208 } else {
5209 if (map->num_members >= 5)
5210 version = MPB_VERSION_5OR6_DISK_ARRAY;
5211 else if (dev->status == DEV_CLONE_N_GO)
5212 version = MPB_VERSION_CNG;
5213 else if (get_imsm_raid_level(map) == 5)
5214 version = MPB_VERSION_RAID5;
5215 else if (map->num_members >= 3)
5216 version = MPB_VERSION_3OR4_DISK_ARRAY;
5217 else if (get_imsm_raid_level(map) == 1)
5218 version = MPB_VERSION_RAID1;
5219 else
5220 version = MPB_VERSION_RAID0;
5221 }
5222 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5223 }
5224}
5225
aa534678
DW
5226static int check_name(struct intel_super *super, char *name, int quiet)
5227{
5228 struct imsm_super *mpb = super->anchor;
5229 char *reason = NULL;
5230 int i;
5231
5232 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5233 reason = "must be 16 characters or less";
5234
5235 for (i = 0; i < mpb->num_raid_devs; i++) {
5236 struct imsm_dev *dev = get_imsm_dev(super, i);
5237
5238 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5239 reason = "already exists";
5240 break;
5241 }
5242 }
5243
5244 if (reason && !quiet)
e7b84f9d 5245 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5246
5247 return !reason;
5248}
5249
8b353278 5250static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5251 struct shape *s, char *name,
83cd1e97
N
5252 char *homehost, int *uuid,
5253 long long data_offset)
cdddbdbc 5254{
c2c087e6
DW
5255 /* We are creating a volume inside a pre-existing container.
5256 * so st->sb is already set.
5257 */
5258 struct intel_super *super = st->sb;
f36a9ecd 5259 unsigned int sector_size = super->sector_size;
949c47a0 5260 struct imsm_super *mpb = super->anchor;
ba2de7ba 5261 struct intel_dev *dv;
c2c087e6
DW
5262 struct imsm_dev *dev;
5263 struct imsm_vol *vol;
5264 struct imsm_map *map;
5265 int idx = mpb->num_raid_devs;
5266 int i;
5267 unsigned long long array_blocks;
2c092cad 5268 size_t size_old, size_new;
5551b113 5269 unsigned long long num_data_stripes;
b53bfba6
TM
5270 unsigned int data_disks;
5271 unsigned long long size_per_member;
cdddbdbc 5272
88c32bb1 5273 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5274 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5275 return 0;
5276 }
5277
2c092cad
DW
5278 /* ensure the mpb is large enough for the new data */
5279 size_old = __le32_to_cpu(mpb->mpb_size);
5280 size_new = disks_to_mpb_size(info->nr_disks);
5281 if (size_new > size_old) {
5282 void *mpb_new;
f36a9ecd 5283 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5284
f36a9ecd 5285 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5286 pr_err("could not allocate new mpb\n");
2c092cad
DW
5287 return 0;
5288 }
85337573
AO
5289 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5290 MIGR_REC_BUF_SECTORS*
5291 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5292 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5293 free(super->buf);
5294 free(super);
ea944c8f 5295 free(mpb_new);
8e59f3d8
AK
5296 return 0;
5297 }
2c092cad
DW
5298 memcpy(mpb_new, mpb, size_old);
5299 free(mpb);
5300 mpb = mpb_new;
949c47a0 5301 super->anchor = mpb_new;
2c092cad
DW
5302 mpb->mpb_size = __cpu_to_le32(size_new);
5303 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5304 super->len = size_round;
2c092cad 5305 }
bf5a934a 5306 super->current_vol = idx;
3960e579
DW
5307
5308 /* handle 'failed_disks' by either:
5309 * a) create dummy disk entries in the table if this the first
5310 * volume in the array. We add them here as this is the only
5311 * opportunity to add them. add_to_super_imsm_volume()
5312 * handles the non-failed disks and continues incrementing
5313 * mpb->num_disks.
5314 * b) validate that 'failed_disks' matches the current number
5315 * of missing disks if the container is populated
d23fe947 5316 */
3960e579 5317 if (super->current_vol == 0) {
d23fe947 5318 mpb->num_disks = 0;
3960e579
DW
5319 for (i = 0; i < info->failed_disks; i++) {
5320 struct imsm_disk *disk;
5321
5322 mpb->num_disks++;
5323 disk = __get_imsm_disk(mpb, i);
5324 disk->status = CONFIGURED_DISK | FAILED_DISK;
5325 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5326 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5327 "missing:%d", (__u8)i);
3960e579
DW
5328 }
5329 find_missing(super);
5330 } else {
5331 int missing = 0;
5332 struct dl *d;
5333
5334 for (d = super->missing; d; d = d->next)
5335 missing++;
5336 if (info->failed_disks > missing) {
e7b84f9d 5337 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5338 return 0;
5339 }
5340 }
5a038140 5341
aa534678
DW
5342 if (!check_name(super, name, 0))
5343 return 0;
503975b9
N
5344 dv = xmalloc(sizeof(*dv));
5345 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 5346 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 5347 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5348 info->layout, info->chunk_size,
b53bfba6
TM
5349 s->size * BLOCKS_PER_KB);
5350 data_disks = get_data_disks(info->level, info->layout,
5351 info->raid_disks);
5352 array_blocks = round_size_to_mb(array_blocks, data_disks);
5353 size_per_member = array_blocks / data_disks;
979d38be 5354
c2c087e6
DW
5355 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5356 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 5357 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5358 vol = &dev->vol;
5359 vol->migr_state = 0;
1484e727 5360 set_migr_type(dev, MIGR_INIT);
3960e579 5361 vol->dirty = !info->state;
f8f603f1 5362 vol->curr_migr_unit = 0;
238c0a71 5363 map = get_imsm_map(dev, MAP_0);
5551b113 5364 set_pba_of_lba0(map, super->create_offset);
b53bfba6
TM
5365 set_blocks_per_member(map, info_to_blocks_per_member(info,
5366 size_per_member /
5367 BLOCKS_PER_KB));
ef6ffade 5368 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5369 map->failed_disk_num = ~0;
bf4442ab 5370 if (info->level > 0)
fffaf1ff
N
5371 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5372 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5373 else
5374 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5375 IMSM_T_STATE_NORMAL;
252d23c0 5376 map->ddf = 1;
ef6ffade
DW
5377
5378 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5379 free(dev);
5380 free(dv);
7a862a02 5381 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5382 return 0;
5383 }
81062a36
DW
5384
5385 map->raid_level = info->level;
4d1313e9 5386 if (info->level == 10) {
c2c087e6 5387 map->raid_level = 1;
4d1313e9 5388 map->num_domains = info->raid_disks / 2;
81062a36
DW
5389 } else if (info->level == 1)
5390 map->num_domains = info->raid_disks;
5391 else
ff596308 5392 map->num_domains = 1;
81062a36 5393
5551b113 5394 /* info->size is only int so use the 'size' parameter instead */
b53bfba6 5395 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5551b113
CA
5396 num_data_stripes /= map->num_domains;
5397 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5398
c2c087e6
DW
5399 map->num_members = info->raid_disks;
5400 for (i = 0; i < map->num_members; i++) {
5401 /* initialized in add_to_super */
4eb26970 5402 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5403 }
949c47a0 5404 mpb->num_raid_devs++;
2a24dc1b
PB
5405 mpb->num_raid_devs_created++;
5406 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5407
b7580566 5408 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5409 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5410 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5411 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5412 } else {
5413 free(dev);
5414 free(dv);
5415 pr_err("imsm does not support consistency policy %s\n",
5416 map_num(consistency_policies, s->consistency_policy));
5417 return 0;
5418 }
5419
ba2de7ba
DW
5420 dv->dev = dev;
5421 dv->index = super->current_vol;
5422 dv->next = super->devlist;
5423 super->devlist = dv;
c2c087e6 5424
4d1313e9
DW
5425 imsm_update_version_info(super);
5426
c2c087e6 5427 return 1;
cdddbdbc
DW
5428}
5429
bf5a934a 5430static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5431 struct shape *s, char *name,
83cd1e97
N
5432 char *homehost, int *uuid,
5433 unsigned long long data_offset)
bf5a934a
DW
5434{
5435 /* This is primarily called by Create when creating a new array.
5436 * We will then get add_to_super called for each component, and then
5437 * write_init_super called to write it out to each device.
5438 * For IMSM, Create can create on fresh devices or on a pre-existing
5439 * array.
5440 * To create on a pre-existing array a different method will be called.
5441 * This one is just for fresh drives.
5442 */
5443 struct intel_super *super;
5444 struct imsm_super *mpb;
5445 size_t mpb_size;
4d1313e9 5446 char *version;
bf5a934a 5447
83cd1e97 5448 if (data_offset != INVALID_SECTORS) {
ed503f89 5449 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5450 return 0;
5451 }
5452
bf5a934a 5453 if (st->sb)
5308f117 5454 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5455 data_offset);
e683ca88
DW
5456
5457 if (info)
5458 mpb_size = disks_to_mpb_size(info->nr_disks);
5459 else
f36a9ecd 5460 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5461
49133e57 5462 super = alloc_super();
f36a9ecd
PB
5463 if (super &&
5464 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5465 free_imsm(super);
e683ca88
DW
5466 super = NULL;
5467 }
5468 if (!super) {
1ade5cc1 5469 pr_err("could not allocate superblock\n");
bf5a934a
DW
5470 return 0;
5471 }
de44e46f
PB
5472 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5473 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5474 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5475 free(super->buf);
8d67477f 5476 free_imsm(super);
8e59f3d8
AK
5477 return 0;
5478 }
e683ca88 5479 memset(super->buf, 0, mpb_size);
ef649044 5480 mpb = super->buf;
e683ca88
DW
5481 mpb->mpb_size = __cpu_to_le32(mpb_size);
5482 st->sb = super;
5483
5484 if (info == NULL) {
5485 /* zeroing superblock */
5486 return 0;
5487 }
bf5a934a 5488
4d1313e9
DW
5489 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5490
5491 version = (char *) mpb->sig;
5492 strcpy(version, MPB_SIGNATURE);
5493 version += strlen(MPB_SIGNATURE);
5494 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5495
bf5a934a
DW
5496 return 1;
5497}
5498
f2cc4f7d
AO
5499static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5500{
5501 unsigned int member_sector_size;
5502
5503 if (dl->fd < 0) {
5504 pr_err("Invalid file descriptor for %s\n", dl->devname);
5505 return 0;
5506 }
5507
5508 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5509 return 0;
5510 if (member_sector_size != super->sector_size)
5511 return 0;
5512 return 1;
5513}
5514
f20c3968 5515static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5516 int fd, char *devname)
5517{
5518 struct intel_super *super = st->sb;
d23fe947 5519 struct imsm_super *mpb = super->anchor;
3960e579 5520 struct imsm_disk *_disk;
bf5a934a
DW
5521 struct imsm_dev *dev;
5522 struct imsm_map *map;
3960e579 5523 struct dl *dl, *df;
4eb26970 5524 int slot;
bf5a934a 5525
949c47a0 5526 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5527 map = get_imsm_map(dev, MAP_0);
bf5a934a 5528
208933a7 5529 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5530 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5531 devname);
5532 return 1;
5533 }
5534
efb30e7f
DW
5535 if (fd == -1) {
5536 /* we're doing autolayout so grab the pre-marked (in
5537 * validate_geometry) raid_disk
5538 */
5539 for (dl = super->disks; dl; dl = dl->next)
5540 if (dl->raiddisk == dk->raid_disk)
5541 break;
5542 } else {
5543 for (dl = super->disks; dl ; dl = dl->next)
5544 if (dl->major == dk->major &&
5545 dl->minor == dk->minor)
5546 break;
5547 }
d23fe947 5548
208933a7 5549 if (!dl) {
e7b84f9d 5550 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5551 return 1;
208933a7 5552 }
bf5a934a 5553
f2cc4f7d
AO
5554 if (!drive_validate_sector_size(super, dl)) {
5555 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5556 return 1;
5557 }
5558
d23fe947
DW
5559 /* add a pristine spare to the metadata */
5560 if (dl->index < 0) {
5561 dl->index = super->anchor->num_disks;
5562 super->anchor->num_disks++;
5563 }
4eb26970
DW
5564 /* Check the device has not already been added */
5565 slot = get_imsm_disk_slot(map, dl->index);
5566 if (slot >= 0 &&
238c0a71 5567 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5568 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5569 devname);
5570 return 1;
5571 }
656b6b5a 5572 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5573 dl->disk.status = CONFIGURED_DISK;
d23fe947 5574
3960e579
DW
5575 /* update size of 'missing' disks to be at least as large as the
5576 * largest acitve member (we only have dummy missing disks when
5577 * creating the first volume)
5578 */
5579 if (super->current_vol == 0) {
5580 for (df = super->missing; df; df = df->next) {
5551b113
CA
5581 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5582 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5583 _disk = __get_imsm_disk(mpb, df->index);
5584 *_disk = df->disk;
5585 }
5586 }
5587
5588 /* refresh unset/failed slots to point to valid 'missing' entries */
5589 for (df = super->missing; df; df = df->next)
5590 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5591 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5592
5593 if ((ord & IMSM_ORD_REBUILD) == 0)
5594 continue;
5595 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5596 if (is_gen_migration(dev)) {
238c0a71
AK
5597 struct imsm_map *map2 = get_imsm_map(dev,
5598 MAP_1);
0a108d63 5599 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5600 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5601 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5602 slot2,
5603 MAP_1);
1ace8403
AK
5604 if ((unsigned)df->index ==
5605 ord_to_idx(ord2))
5606 set_imsm_ord_tbl_ent(map2,
0a108d63 5607 slot2,
1ace8403
AK
5608 df->index |
5609 IMSM_ORD_REBUILD);
5610 }
5611 }
3960e579
DW
5612 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5613 break;
5614 }
5615
d23fe947
DW
5616 /* if we are creating the first raid device update the family number */
5617 if (super->current_vol == 0) {
5618 __u32 sum;
5619 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5620
3960e579 5621 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5622 if (!_dev || !_disk) {
e7b84f9d 5623 pr_err("BUG mpb setup error\n");
791b666a
AW
5624 return 1;
5625 }
d23fe947
DW
5626 *_dev = *dev;
5627 *_disk = dl->disk;
148acb7b
DW
5628 sum = random32();
5629 sum += __gen_imsm_checksum(mpb);
d23fe947 5630 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5631 mpb->orig_family_num = mpb->family_num;
d23fe947 5632 }
ca0748fa 5633 super->current_disk = dl;
f20c3968 5634 return 0;
bf5a934a
DW
5635}
5636
a8619d23
AK
5637/* mark_spare()
5638 * Function marks disk as spare and restores disk serial
5639 * in case it was previously marked as failed by takeover operation
5640 * reruns:
5641 * -1 : critical error
5642 * 0 : disk is marked as spare but serial is not set
5643 * 1 : success
5644 */
5645int mark_spare(struct dl *disk)
5646{
5647 __u8 serial[MAX_RAID_SERIAL_LEN];
5648 int ret_val = -1;
5649
5650 if (!disk)
5651 return ret_val;
5652
5653 ret_val = 0;
5654 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5655 /* Restore disk serial number, because takeover marks disk
5656 * as failed and adds to serial ':0' before it becomes
5657 * a spare disk.
5658 */
5659 serialcpy(disk->serial, serial);
5660 serialcpy(disk->disk.serial, serial);
5661 ret_val = 1;
5662 }
5663 disk->disk.status = SPARE_DISK;
5664 disk->index = -1;
5665
5666 return ret_val;
5667}
88654014 5668
f20c3968 5669static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5670 int fd, char *devname,
5671 unsigned long long data_offset)
cdddbdbc 5672{
c2c087e6 5673 struct intel_super *super = st->sb;
c2c087e6
DW
5674 struct dl *dd;
5675 unsigned long long size;
fa7bb6f8 5676 unsigned int member_sector_size;
f2f27e63 5677 __u32 id;
c2c087e6
DW
5678 int rv;
5679 struct stat stb;
5680
88654014
LM
5681 /* If we are on an RAID enabled platform check that the disk is
5682 * attached to the raid controller.
5683 * We do not need to test disks attachment for container based additions,
5684 * they shall be already tested when container was created/assembled.
88c32bb1 5685 */
d424212e 5686 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5687 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5688 if (rv != 0) {
5689 dprintf("capability: %p fd: %d ret: %d\n",
5690 super->orom, fd, rv);
5691 return 1;
88c32bb1
DW
5692 }
5693
f20c3968
DW
5694 if (super->current_vol >= 0)
5695 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5696
c2c087e6 5697 fstat(fd, &stb);
503975b9 5698 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5699 dd->major = major(stb.st_rdev);
5700 dd->minor = minor(stb.st_rdev);
503975b9 5701 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5702 dd->fd = fd;
689c9bf3 5703 dd->e = NULL;
1a64be56 5704 dd->action = DISK_ADD;
c2c087e6 5705 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5706 if (rv) {
e7b84f9d 5707 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5708 if (dd->devname)
5709 free(dd->devname);
949c47a0 5710 free(dd);
0030e8d6 5711 abort();
c2c087e6 5712 }
20bee0f8
PB
5713 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5714 (super->hba->type == SYS_DEV_VMD))) {
5715 int i;
5716 char *devpath = diskfd_to_devpath(fd);
5717 char controller_path[PATH_MAX];
5718
5719 if (!devpath) {
5720 pr_err("failed to get devpath, aborting\n");
5721 if (dd->devname)
5722 free(dd->devname);
5723 free(dd);
5724 return 1;
5725 }
5726
5727 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5728 free(devpath);
5729
5730 if (devpath_to_vendor(controller_path) == 0x8086) {
5731 /*
5732 * If Intel's NVMe drive has serial ended with
5733 * "-A","-B","-1" or "-2" it means that this is "x8"
5734 * device (double drive on single PCIe card).
5735 * User should be warned about potential data loss.
5736 */
5737 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5738 /* Skip empty character at the end */
5739 if (dd->serial[i] == 0)
5740 continue;
5741
5742 if (((dd->serial[i] == 'A') ||
5743 (dd->serial[i] == 'B') ||
5744 (dd->serial[i] == '1') ||
5745 (dd->serial[i] == '2')) &&
5746 (dd->serial[i-1] == '-'))
5747 pr_err("\tThe action you are about to take may put your data at risk.\n"
5748 "\tPlease note that x8 devices may consist of two separate x4 devices "
5749 "located on a single PCIe port.\n"
5750 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5751 break;
5752 }
32716c51
PB
5753 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5754 !imsm_orom_has_tpv_support(super->orom)) {
5755 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5756 "\tPlease refer to Intel(R) RSTe user guide.\n");
5757 free(dd->devname);
5758 free(dd);
5759 return 1;
20bee0f8
PB
5760 }
5761 }
c2c087e6 5762
c2c087e6 5763 get_dev_size(fd, NULL, &size);
fa7bb6f8
PB
5764 get_dev_sector_size(fd, NULL, &member_sector_size);
5765
5766 if (super->sector_size == 0) {
5767 /* this a first device, so sector_size is not set yet */
5768 super->sector_size = member_sector_size;
fa7bb6f8
PB
5769 }
5770
71e5411e 5771 /* clear migr_rec when adding disk to container */
85337573
AO
5772 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5773 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 5774 SEEK_SET) >= 0) {
466070ad 5775 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
5776 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5777 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
5778 perror("Write migr_rec failed");
5779 }
5780
c2c087e6 5781 size /= 512;
1f24f035 5782 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5783 set_total_blocks(&dd->disk, size);
5784 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5785 struct imsm_super *mpb = super->anchor;
5786 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5787 }
a8619d23 5788 mark_spare(dd);
c2c087e6 5789 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5790 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5791 else
b9f594fe 5792 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5793
5794 if (st->update_tail) {
1a64be56
LM
5795 dd->next = super->disk_mgmt_list;
5796 super->disk_mgmt_list = dd;
43dad3d6
DW
5797 } else {
5798 dd->next = super->disks;
5799 super->disks = dd;
ceaf0ee1 5800 super->updates_pending++;
43dad3d6 5801 }
f20c3968
DW
5802
5803 return 0;
cdddbdbc
DW
5804}
5805
1a64be56
LM
5806static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5807{
5808 struct intel_super *super = st->sb;
5809 struct dl *dd;
5810
5811 /* remove from super works only in mdmon - for communication
5812 * manager - monitor. Check if communication memory buffer
5813 * is prepared.
5814 */
5815 if (!st->update_tail) {
1ade5cc1 5816 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5817 return 1;
5818 }
503975b9 5819 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5820 dd->major = dk->major;
5821 dd->minor = dk->minor;
1a64be56 5822 dd->fd = -1;
a8619d23 5823 mark_spare(dd);
1a64be56
LM
5824 dd->action = DISK_REMOVE;
5825
5826 dd->next = super->disk_mgmt_list;
5827 super->disk_mgmt_list = dd;
5828
1a64be56
LM
5829 return 0;
5830}
5831
f796af5d
DW
5832static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5833
5834static union {
f36a9ecd 5835 char buf[MAX_SECTOR_SIZE];
f796af5d 5836 struct imsm_super anchor;
f36a9ecd 5837} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 5838
d23fe947
DW
5839/* spare records have their own family number and do not have any defined raid
5840 * devices
5841 */
5842static int write_super_imsm_spares(struct intel_super *super, int doclose)
5843{
d23fe947 5844 struct imsm_super *mpb = super->anchor;
f796af5d 5845 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5846 __u32 sum;
5847 struct dl *d;
5848
68641cdb
JS
5849 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5850 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5851 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5852 spare->num_disks = 1;
5853 spare->num_raid_devs = 0;
5854 spare->cache_size = mpb->cache_size;
5855 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5856
5857 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5858 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5859
5860 for (d = super->disks; d; d = d->next) {
8796fdc4 5861 if (d->index != -1)
d23fe947
DW
5862 continue;
5863
f796af5d 5864 spare->disk[0] = d->disk;
027c374f
CA
5865 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5866 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5867
f36a9ecd
PB
5868 if (super->sector_size == 4096)
5869 convert_to_4k_imsm_disk(&spare->disk[0]);
5870
f796af5d
DW
5871 sum = __gen_imsm_checksum(spare);
5872 spare->family_num = __cpu_to_le32(sum);
5873 spare->orig_family_num = 0;
5874 sum = __gen_imsm_checksum(spare);
5875 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5876
f796af5d 5877 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5878 pr_err("failed for device %d:%d %s\n",
5879 d->major, d->minor, strerror(errno));
e74255d9 5880 return 1;
d23fe947
DW
5881 }
5882 if (doclose) {
5883 close(d->fd);
5884 d->fd = -1;
5885 }
5886 }
5887
e74255d9 5888 return 0;
d23fe947
DW
5889}
5890
36988a3d 5891static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5892{
36988a3d 5893 struct intel_super *super = st->sb;
f36a9ecd 5894 unsigned int sector_size = super->sector_size;
949c47a0 5895 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5896 struct dl *d;
5897 __u32 generation;
5898 __u32 sum;
d23fe947 5899 int spares = 0;
949c47a0 5900 int i;
a48ac0a8 5901 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5902 int num_disks = 0;
146c6260 5903 int clear_migration_record = 1;
bbab0940 5904 __u32 bbm_log_size;
cdddbdbc 5905
c2c087e6
DW
5906 /* 'generation' is incremented everytime the metadata is written */
5907 generation = __le32_to_cpu(mpb->generation_num);
5908 generation++;
5909 mpb->generation_num = __cpu_to_le32(generation);
5910
148acb7b
DW
5911 /* fix up cases where previous mdadm releases failed to set
5912 * orig_family_num
5913 */
5914 if (mpb->orig_family_num == 0)
5915 mpb->orig_family_num = mpb->family_num;
5916
d23fe947 5917 for (d = super->disks; d; d = d->next) {
8796fdc4 5918 if (d->index == -1)
d23fe947 5919 spares++;
36988a3d 5920 else {
d23fe947 5921 mpb->disk[d->index] = d->disk;
36988a3d
AK
5922 num_disks++;
5923 }
d23fe947 5924 }
36988a3d 5925 for (d = super->missing; d; d = d->next) {
47ee5a45 5926 mpb->disk[d->index] = d->disk;
36988a3d
AK
5927 num_disks++;
5928 }
5929 mpb->num_disks = num_disks;
5930 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5931
949c47a0
DW
5932 for (i = 0; i < mpb->num_raid_devs; i++) {
5933 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5934 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5935 if (dev && dev2) {
5936 imsm_copy_dev(dev, dev2);
5937 mpb_size += sizeof_imsm_dev(dev, 0);
5938 }
146c6260
AK
5939 if (is_gen_migration(dev2))
5940 clear_migration_record = 0;
949c47a0 5941 }
bbab0940
TM
5942
5943 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5944
5945 if (bbm_log_size) {
5946 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5947 mpb->attributes |= MPB_ATTRIB_BBM;
5948 } else
5949 mpb->attributes &= ~MPB_ATTRIB_BBM;
5950
5951 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5952 mpb_size += bbm_log_size;
a48ac0a8 5953 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5954
bbab0940
TM
5955#ifdef DEBUG
5956 assert(super->len == 0 || mpb_size <= super->len);
5957#endif
5958
c2c087e6 5959 /* recalculate checksum */
949c47a0 5960 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5961 mpb->check_sum = __cpu_to_le32(sum);
5962
51d83f5d
AK
5963 if (super->clean_migration_record_by_mdmon) {
5964 clear_migration_record = 1;
5965 super->clean_migration_record_by_mdmon = 0;
5966 }
146c6260 5967 if (clear_migration_record)
de44e46f 5968 memset(super->migr_rec_buf, 0,
85337573 5969 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 5970
f36a9ecd
PB
5971 if (sector_size == 4096)
5972 convert_to_4k(super);
5973
d23fe947 5974 /* write the mpb for disks that compose raid devices */
c2c087e6 5975 for (d = super->disks; d ; d = d->next) {
86c54047 5976 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5977 continue;
30602f53 5978
146c6260
AK
5979 if (clear_migration_record) {
5980 unsigned long long dsize;
5981
5982 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
5983 if (lseek64(d->fd, dsize - sector_size,
5984 SEEK_SET) >= 0) {
466070ad
PB
5985 if ((unsigned int)write(d->fd,
5986 super->migr_rec_buf,
de44e46f
PB
5987 MIGR_REC_BUF_SECTORS*sector_size) !=
5988 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 5989 perror("Write migr_rec failed");
146c6260
AK
5990 }
5991 }
51d83f5d
AK
5992
5993 if (store_imsm_mpb(d->fd, mpb))
5994 fprintf(stderr,
1ade5cc1
N
5995 "failed for device %d:%d (fd: %d)%s\n",
5996 d->major, d->minor,
51d83f5d
AK
5997 d->fd, strerror(errno));
5998
c2c087e6
DW
5999 if (doclose) {
6000 close(d->fd);
6001 d->fd = -1;
6002 }
6003 }
6004
d23fe947
DW
6005 if (spares)
6006 return write_super_imsm_spares(super, doclose);
6007
e74255d9 6008 return 0;
c2c087e6
DW
6009}
6010
9b1fb677 6011static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6012{
6013 size_t len;
6014 struct imsm_update_create_array *u;
6015 struct intel_super *super = st->sb;
9b1fb677 6016 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6017 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6018 struct disk_info *inf;
6019 struct imsm_disk *disk;
6020 int i;
43dad3d6 6021
54c2c1ea
DW
6022 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6023 sizeof(*inf) * map->num_members;
503975b9 6024 u = xmalloc(len);
43dad3d6 6025 u->type = update_create_array;
9b1fb677 6026 u->dev_idx = dev_idx;
43dad3d6 6027 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6028 inf = get_disk_info(u);
6029 for (i = 0; i < map->num_members; i++) {
238c0a71 6030 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6031
54c2c1ea 6032 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6033 if (!disk)
6034 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6035 serialcpy(inf[i].serial, disk->serial);
6036 }
43dad3d6
DW
6037 append_metadata_update(st, u, len);
6038
6039 return 0;
6040}
6041
1a64be56 6042static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6043{
6044 struct intel_super *super = st->sb;
6045 size_t len;
1a64be56 6046 struct imsm_update_add_remove_disk *u;
43dad3d6 6047
1a64be56 6048 if (!super->disk_mgmt_list)
43dad3d6
DW
6049 return 0;
6050
6051 len = sizeof(*u);
503975b9 6052 u = xmalloc(len);
1a64be56 6053 u->type = update_add_remove_disk;
43dad3d6
DW
6054 append_metadata_update(st, u, len);
6055
6056 return 0;
6057}
2432ce9b
AP
6058
6059__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6060
6061static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6062{
6063 struct intel_super *super = st->sb;
6064 void *buf;
6065 struct ppl_header *ppl_hdr;
6066 int ret;
6067
b2514242
PB
6068 /* first clear entire ppl space */
6069 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6070 if (ret)
6071 return ret;
6072
6073 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6074 if (ret) {
6075 pr_err("Failed to allocate PPL header buffer\n");
6076 return ret;
6077 }
6078
6079 memset(buf, 0, PPL_HEADER_SIZE);
6080 ppl_hdr = buf;
6081 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6082 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6083
6084 if (info->mismatch_cnt) {
6085 /*
6086 * We are overwriting an invalid ppl. Make one entry with wrong
6087 * checksum to prevent the kernel from skipping resync.
6088 */
6089 ppl_hdr->entries_count = __cpu_to_le32(1);
6090 ppl_hdr->entries[0].checksum = ~0;
6091 }
6092
2432ce9b
AP
6093 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6094
6095 if (lseek64(fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6096 ret = errno;
6097 perror("Failed to seek to PPL header location");
6098 }
6099
6100 if (!ret && write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6101 ret = errno;
6102 perror("Write PPL header failed");
6103 }
6104
6105 if (!ret)
6106 fsync(fd);
6107
6108 free(buf);
6109 return ret;
6110}
6111
6112static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6113 struct mdinfo *disk)
6114{
6115 struct intel_super *super = st->sb;
6116 struct dl *d;
6117 void *buf;
6118 int ret = 0;
6119 struct ppl_header *ppl_hdr;
6120 __u32 crc;
6121 struct imsm_dev *dev;
2432ce9b 6122 __u32 idx;
44b6b876
PB
6123 unsigned int i;
6124 unsigned long long ppl_offset = 0;
6125 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6126
6127 if (disk->disk.raid_disk < 0)
6128 return 0;
6129
44b6b876 6130 if (posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE)) {
2432ce9b
AP
6131 pr_err("Failed to allocate PPL header buffer\n");
6132 return -1;
6133 }
6134
6135 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6136 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6137 d = get_imsm_dl_disk(super, idx);
6138
6139 if (!d || d->index < 0 || is_failed(&d->disk))
6140 goto out;
6141
44b6b876
PB
6142 ret = 1;
6143 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
6144 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6145
44b6b876
PB
6146 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6147 SEEK_SET) < 0) {
6148 perror("Failed to seek to PPL header location");
6149 ret = -1;
6150 goto out;
6151 }
2432ce9b 6152
44b6b876
PB
6153 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6154 perror("Read PPL header failed");
6155 ret = -1;
6156 goto out;
6157 }
2432ce9b 6158
44b6b876 6159 ppl_hdr = buf;
2432ce9b 6160
44b6b876
PB
6161 crc = __le32_to_cpu(ppl_hdr->checksum);
6162 ppl_hdr->checksum = 0;
6163
6164 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6165 dprintf("Wrong PPL header checksum on %s\n",
6166 d->devname);
6167 goto out;
6168 }
6169
6170 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6171 /* previous was newest, it was already checked */
6172 goto out;
6173 }
6174
6175 if ((__le32_to_cpu(ppl_hdr->signature) !=
6176 super->anchor->orig_family_num)) {
6177 dprintf("Wrong PPL header signature on %s\n",
6178 d->devname);
6179 ret = 1;
6180 goto out;
6181 }
6182
6183 ret = 0;
6184 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6185
44b6b876
PB
6186 ppl_offset += PPL_HEADER_SIZE;
6187 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6188 ppl_offset +=
6189 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
2432ce9b
AP
6190 }
6191
6192out:
6193 free(buf);
6194
54148aba
PB
6195 /*
6196 * Update metadata to use mutliple PPLs area (1MB).
6197 * This is done once for all RAID members
6198 */
6199 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6200 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6201 char subarray[20];
6202 struct mdinfo *member_dev;
6203
6204 sprintf(subarray, "%d", info->container_member);
6205
6206 if (mdmon_running(st->container_devnm))
6207 st->update_tail = &st->updates;
6208
6209 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6210 pr_err("Failed to update subarray %s\n",
6211 subarray);
6212 } else {
6213 if (st->update_tail)
6214 flush_metadata_updates(st);
6215 else
6216 st->ss->sync_metadata(st);
6217 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6218 for (member_dev = info->devs; member_dev;
6219 member_dev = member_dev->next)
6220 member_dev->ppl_size =
6221 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6222 }
6223 }
6224
b23d0750 6225 if (ret == 1) {
2fc0fc63
AP
6226 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6227
50b9c10d
PB
6228 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6229 (map->map_state == IMSM_T_STATE_NORMAL &&
6230 !(dev->vol.dirty & RAIDVOL_DIRTY)))
b23d0750
AP
6231 ret = st->ss->write_init_ppl(st, info, d->fd);
6232 else
6233 info->mismatch_cnt++;
6234 }
2432ce9b
AP
6235
6236 return ret;
6237}
6238
2432ce9b
AP
6239static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6240{
6241 struct intel_super *super = st->sb;
6242 struct dl *d;
6243 int ret = 0;
6244
6245 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6246 info->array.level != 5)
6247 return 0;
6248
6249 for (d = super->disks; d ; d = d->next) {
6250 if (d->index < 0 || is_failed(&d->disk))
6251 continue;
6252
6253 ret = st->ss->write_init_ppl(st, info, d->fd);
6254 if (ret)
6255 break;
6256 }
6257
6258 return ret;
6259}
43dad3d6 6260
c2c087e6
DW
6261static int write_init_super_imsm(struct supertype *st)
6262{
9b1fb677
DW
6263 struct intel_super *super = st->sb;
6264 int current_vol = super->current_vol;
2432ce9b
AP
6265 int rv = 0;
6266 struct mdinfo info;
6267
6268 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6269
6270 /* we are done with current_vol reset it to point st at the container */
6271 super->current_vol = -1;
6272
8273f55e 6273 if (st->update_tail) {
43dad3d6
DW
6274 /* queue the recently created array / added disk
6275 * as a metadata update */
8273f55e 6276
43dad3d6 6277 /* determine if we are creating a volume or adding a disk */
9b1fb677 6278 if (current_vol < 0) {
1a64be56
LM
6279 /* in the mgmt (add/remove) disk case we are running
6280 * in mdmon context, so don't close fd's
43dad3d6 6281 */
2432ce9b
AP
6282 rv = mgmt_disk(st);
6283 } else {
6284 rv = write_init_ppl_imsm_all(st, &info);
6285 if (!rv)
6286 rv = create_array(st, current_vol);
6287 }
d682f344
N
6288 } else {
6289 struct dl *d;
6290 for (d = super->disks; d; d = d->next)
ba728be7 6291 Kill(d->devname, NULL, 0, -1, 1);
2432ce9b
AP
6292 if (current_vol >= 0)
6293 rv = write_init_ppl_imsm_all(st, &info);
6294 if (!rv)
6295 rv = write_super_imsm(st, 1);
d682f344 6296 }
2432ce9b
AP
6297
6298 return rv;
cdddbdbc
DW
6299}
6300
e683ca88 6301static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6302{
e683ca88
DW
6303 struct intel_super *super = st->sb;
6304 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6305
e683ca88 6306 if (!mpb)
ad97895e
DW
6307 return 1;
6308
f36a9ecd
PB
6309 if (super->sector_size == 4096)
6310 convert_to_4k(super);
e683ca88 6311 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6312}
6313
cdddbdbc
DW
6314static int validate_geometry_imsm_container(struct supertype *st, int level,
6315 int layout, int raiddisks, int chunk,
af4348dd
N
6316 unsigned long long size,
6317 unsigned long long data_offset,
6318 char *dev,
2c514b71
NB
6319 unsigned long long *freesize,
6320 int verbose)
cdddbdbc 6321{
c2c087e6
DW
6322 int fd;
6323 unsigned long long ldsize;
594dc1b8 6324 struct intel_super *super;
f2f5c343 6325 int rv = 0;
cdddbdbc 6326
c2c087e6
DW
6327 if (level != LEVEL_CONTAINER)
6328 return 0;
6329 if (!dev)
6330 return 1;
6331
6332 fd = open(dev, O_RDONLY|O_EXCL, 0);
6333 if (fd < 0) {
ba728be7 6334 if (verbose > 0)
e7b84f9d 6335 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6336 dev, strerror(errno));
c2c087e6
DW
6337 return 0;
6338 }
6339 if (!get_dev_size(fd, dev, &ldsize)) {
6340 close(fd);
6341 return 0;
6342 }
f2f5c343
LM
6343
6344 /* capabilities retrieve could be possible
6345 * note that there is no fd for the disks in array.
6346 */
6347 super = alloc_super();
8d67477f
TM
6348 if (!super) {
6349 close(fd);
6350 return 0;
6351 }
fa7bb6f8
PB
6352 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6353 close(fd);
6354 free_imsm(super);
6355 return 0;
6356 }
6357
ba728be7 6358 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6359 if (rv != 0) {
6360#if DEBUG
6361 char str[256];
6362 fd2devname(fd, str);
1ade5cc1 6363 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6364 fd, str, super->orom, rv, raiddisks);
6365#endif
6366 /* no orom/efi or non-intel hba of the disk */
6367 close(fd);
6368 free_imsm(super);
6369 return 0;
6370 }
c2c087e6 6371 close(fd);
9126b9a8
CA
6372 if (super->orom) {
6373 if (raiddisks > super->orom->tds) {
6374 if (verbose)
7a862a02 6375 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
6376 raiddisks, super->orom->tds);
6377 free_imsm(super);
6378 return 0;
6379 }
6380 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6381 (ldsize >> 9) >> 32 > 0) {
6382 if (verbose)
e7b84f9d 6383 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
6384 free_imsm(super);
6385 return 0;
6386 }
f2f5c343 6387 }
c2c087e6 6388
af4348dd 6389 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 6390 free_imsm(super);
c2c087e6
DW
6391
6392 return 1;
cdddbdbc
DW
6393}
6394
0dcecb2e
DW
6395static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6396{
6397 const unsigned long long base_start = e[*idx].start;
6398 unsigned long long end = base_start + e[*idx].size;
6399 int i;
6400
6401 if (base_start == end)
6402 return 0;
6403
6404 *idx = *idx + 1;
6405 for (i = *idx; i < num_extents; i++) {
6406 /* extend overlapping extents */
6407 if (e[i].start >= base_start &&
6408 e[i].start <= end) {
6409 if (e[i].size == 0)
6410 return 0;
6411 if (e[i].start + e[i].size > end)
6412 end = e[i].start + e[i].size;
6413 } else if (e[i].start > end) {
6414 *idx = i;
6415 break;
6416 }
6417 }
6418
6419 return end - base_start;
6420}
6421
6422static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6423{
6424 /* build a composite disk with all known extents and generate a new
6425 * 'maxsize' given the "all disks in an array must share a common start
6426 * offset" constraint
6427 */
503975b9 6428 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6429 struct dl *dl;
6430 int i, j;
6431 int start_extent;
6432 unsigned long long pos;
b9d77223 6433 unsigned long long start = 0;
0dcecb2e
DW
6434 unsigned long long maxsize;
6435 unsigned long reserve;
6436
0dcecb2e
DW
6437 /* coalesce and sort all extents. also, check to see if we need to
6438 * reserve space between member arrays
6439 */
6440 j = 0;
6441 for (dl = super->disks; dl; dl = dl->next) {
6442 if (!dl->e)
6443 continue;
6444 for (i = 0; i < dl->extent_cnt; i++)
6445 e[j++] = dl->e[i];
6446 }
6447 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6448
6449 /* merge extents */
6450 i = 0;
6451 j = 0;
6452 while (i < sum_extents) {
6453 e[j].start = e[i].start;
6454 e[j].size = find_size(e, &i, sum_extents);
6455 j++;
6456 if (e[j-1].size == 0)
6457 break;
6458 }
6459
6460 pos = 0;
6461 maxsize = 0;
6462 start_extent = 0;
6463 i = 0;
6464 do {
6465 unsigned long long esize;
6466
6467 esize = e[i].start - pos;
6468 if (esize >= maxsize) {
6469 maxsize = esize;
6470 start = pos;
6471 start_extent = i;
6472 }
6473 pos = e[i].start + e[i].size;
6474 i++;
6475 } while (e[i-1].size);
6476 free(e);
6477
a7dd165b
DW
6478 if (maxsize == 0)
6479 return 0;
6480
6481 /* FIXME assumes volume at offset 0 is the first volume in a
6482 * container
6483 */
0dcecb2e
DW
6484 if (start_extent > 0)
6485 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6486 else
6487 reserve = 0;
6488
6489 if (maxsize < reserve)
a7dd165b 6490 return 0;
0dcecb2e 6491
5551b113 6492 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6493 if (start + reserve > super->create_offset)
a7dd165b 6494 return 0; /* start overflows create_offset */
0dcecb2e
DW
6495 super->create_offset = start + reserve;
6496
6497 return maxsize - reserve;
6498}
6499
88c32bb1
DW
6500static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6501{
6502 if (level < 0 || level == 6 || level == 4)
6503 return 0;
6504
6505 /* if we have an orom prevent invalid raid levels */
6506 if (orom)
6507 switch (level) {
6508 case 0: return imsm_orom_has_raid0(orom);
6509 case 1:
6510 if (raiddisks > 2)
6511 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6512 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6513 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6514 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6515 }
6516 else
6517 return 1; /* not on an Intel RAID platform so anything goes */
6518
6519 return 0;
6520}
6521
ca9de185
LM
6522static int
6523active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6524 int dpa, int verbose)
6525{
6526 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6527 struct mdstat_ent *memb;
ca9de185
LM
6528 int count = 0;
6529 int num = 0;
594dc1b8 6530 struct md_list *dv;
ca9de185
LM
6531 int found;
6532
6533 for (memb = mdstat ; memb ; memb = memb->next) {
6534 if (memb->metadata_version &&
fc54fe7a 6535 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6536 (strcmp(&memb->metadata_version[9], name) == 0) &&
6537 !is_subarray(memb->metadata_version+9) &&
6538 memb->members) {
6539 struct dev_member *dev = memb->members;
6540 int fd = -1;
6541 while(dev && (fd < 0)) {
503975b9
N
6542 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6543 num = sprintf(path, "%s%s", "/dev/", dev->name);
6544 if (num > 0)
6545 fd = open(path, O_RDONLY, 0);
089f9d79 6546 if (num <= 0 || fd < 0) {
676e87a8 6547 pr_vrb("Cannot open %s: %s\n",
503975b9 6548 dev->name, strerror(errno));
ca9de185 6549 }
503975b9 6550 free(path);
ca9de185
LM
6551 dev = dev->next;
6552 }
6553 found = 0;
089f9d79 6554 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6555 struct mdstat_ent *vol;
6556 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6557 if (vol->active > 0 &&
ca9de185 6558 vol->metadata_version &&
9581efb1 6559 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6560 found++;
6561 count++;
6562 }
6563 }
6564 if (*devlist && (found < dpa)) {
503975b9 6565 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6566 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6567 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6568 dv->found = found;
6569 dv->used = 0;
6570 dv->next = *devlist;
6571 *devlist = dv;
ca9de185
LM
6572 }
6573 }
6574 if (fd >= 0)
6575 close(fd);
6576 }
6577 }
6578 free_mdstat(mdstat);
6579 return count;
6580}
6581
6582#ifdef DEBUG_LOOP
6583static struct md_list*
6584get_loop_devices(void)
6585{
6586 int i;
6587 struct md_list *devlist = NULL;
594dc1b8 6588 struct md_list *dv;
ca9de185
LM
6589
6590 for(i = 0; i < 12; i++) {
503975b9
N
6591 dv = xcalloc(1, sizeof(*dv));
6592 dv->devname = xmalloc(40);
ca9de185
LM
6593 sprintf(dv->devname, "/dev/loop%d", i);
6594 dv->next = devlist;
6595 devlist = dv;
6596 }
6597 return devlist;
6598}
6599#endif
6600
6601static struct md_list*
6602get_devices(const char *hba_path)
6603{
6604 struct md_list *devlist = NULL;
594dc1b8 6605 struct md_list *dv;
ca9de185
LM
6606 struct dirent *ent;
6607 DIR *dir;
6608 int err = 0;
6609
6610#if DEBUG_LOOP
6611 devlist = get_loop_devices();
6612 return devlist;
6613#endif
6614 /* scroll through /sys/dev/block looking for devices attached to
6615 * this hba
6616 */
6617 dir = opendir("/sys/dev/block");
6618 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6619 int fd;
6620 char buf[1024];
6621 int major, minor;
6622 char *path = NULL;
6623 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6624 continue;
6625 path = devt_to_devpath(makedev(major, minor));
6626 if (!path)
6627 continue;
6628 if (!path_attached_to_hba(path, hba_path)) {
6629 free(path);
6630 path = NULL;
6631 continue;
6632 }
6633 free(path);
6634 path = NULL;
6635 fd = dev_open(ent->d_name, O_RDONLY);
6636 if (fd >= 0) {
6637 fd2devname(fd, buf);
6638 close(fd);
6639 } else {
e7b84f9d 6640 pr_err("cannot open device: %s\n",
ca9de185
LM
6641 ent->d_name);
6642 continue;
6643 }
6644
503975b9
N
6645 dv = xcalloc(1, sizeof(*dv));
6646 dv->devname = xstrdup(buf);
ca9de185
LM
6647 dv->next = devlist;
6648 devlist = dv;
6649 }
6650 if (err) {
6651 while(devlist) {
6652 dv = devlist;
6653 devlist = devlist->next;
6654 free(dv->devname);
6655 free(dv);
6656 }
6657 }
562aa102 6658 closedir(dir);
ca9de185
LM
6659 return devlist;
6660}
6661
6662static int
6663count_volumes_list(struct md_list *devlist, char *homehost,
6664 int verbose, int *found)
6665{
6666 struct md_list *tmpdev;
6667 int count = 0;
594dc1b8 6668 struct supertype *st;
ca9de185
LM
6669
6670 /* first walk the list of devices to find a consistent set
6671 * that match the criterea, if that is possible.
6672 * We flag the ones we like with 'used'.
6673 */
6674 *found = 0;
6675 st = match_metadata_desc_imsm("imsm");
6676 if (st == NULL) {
676e87a8 6677 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6678 return 0;
6679 }
6680
6681 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6682 char *devname = tmpdev->devname;
0a6bff09 6683 dev_t rdev;
ca9de185
LM
6684 struct supertype *tst;
6685 int dfd;
6686 if (tmpdev->used > 1)
6687 continue;
6688 tst = dup_super(st);
6689 if (tst == NULL) {
676e87a8 6690 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6691 goto err_1;
6692 }
6693 tmpdev->container = 0;
6694 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6695 if (dfd < 0) {
1ade5cc1 6696 dprintf("cannot open device %s: %s\n",
ca9de185
LM
6697 devname, strerror(errno));
6698 tmpdev->used = 2;
0a6bff09 6699 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
6700 tmpdev->used = 2;
6701 } else if (must_be_container(dfd)) {
6702 struct supertype *cst;
6703 cst = super_by_fd(dfd, NULL);
6704 if (cst == NULL) {
1ade5cc1 6705 dprintf("cannot recognize container type %s\n",
ca9de185
LM
6706 devname);
6707 tmpdev->used = 2;
6708 } else if (tst->ss != st->ss) {
1ade5cc1 6709 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
6710 devname);
6711 tmpdev->used = 2;
6712 } else if (!tst->ss->load_container ||
6713 tst->ss->load_container(tst, dfd, NULL))
6714 tmpdev->used = 2;
6715 else {
6716 tmpdev->container = 1;
6717 }
6718 if (cst)
6719 cst->ss->free_super(cst);
6720 } else {
0a6bff09 6721 tmpdev->st_rdev = rdev;
ca9de185 6722 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 6723 dprintf("no RAID superblock on %s\n",
ca9de185
LM
6724 devname);
6725 tmpdev->used = 2;
6726 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 6727 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
6728 tst->ss->name, devname);
6729 tmpdev->used = 2;
6730 }
6731 }
6732 if (dfd >= 0)
6733 close(dfd);
6734 if (tmpdev->used == 2 || tmpdev->used == 4) {
6735 /* Ignore unrecognised devices during auto-assembly */
6736 goto loop;
6737 }
6738 else {
6739 struct mdinfo info;
6740 tst->ss->getinfo_super(tst, &info, NULL);
6741
6742 if (st->minor_version == -1)
6743 st->minor_version = tst->minor_version;
6744
6745 if (memcmp(info.uuid, uuid_zero,
6746 sizeof(int[4])) == 0) {
6747 /* this is a floating spare. It cannot define
6748 * an array unless there are no more arrays of
6749 * this type to be found. It can be included
6750 * in an array of this type though.
6751 */
6752 tmpdev->used = 3;
6753 goto loop;
6754 }
6755
6756 if (st->ss != tst->ss ||
6757 st->minor_version != tst->minor_version ||
6758 st->ss->compare_super(st, tst) != 0) {
6759 /* Some mismatch. If exactly one array matches this host,
6760 * we can resolve on that one.
6761 * Or, if we are auto assembling, we just ignore the second
6762 * for now.
6763 */
1ade5cc1 6764 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
6765 devname);
6766 goto loop;
6767 }
6768 tmpdev->used = 1;
6769 *found = 1;
6770 dprintf("found: devname: %s\n", devname);
6771 }
6772 loop:
6773 if (tst)
6774 tst->ss->free_super(tst);
6775 }
6776 if (*found != 0) {
6777 int err;
6778 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6779 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6780 for (iter = head; iter; iter = iter->next) {
6781 dprintf("content->text_version: %s vol\n",
6782 iter->text_version);
6783 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6784 /* do not assemble arrays with unsupported
6785 configurations */
1ade5cc1 6786 dprintf("Cannot activate member %s.\n",
ca9de185
LM
6787 iter->text_version);
6788 } else
6789 count++;
6790 }
6791 sysfs_free(head);
6792
6793 } else {
1ade5cc1 6794 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
6795 err, st->sb);
6796 }
6797 } else {
1ade5cc1 6798 dprintf("no more devices to examine\n");
ca9de185
LM
6799 }
6800
6801 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 6802 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
6803 if (count) {
6804 if (count < tmpdev->found)
6805 count = 0;
6806 else
6807 count -= tmpdev->found;
6808 }
6809 }
6810 if (tmpdev->used == 1)
6811 tmpdev->used = 4;
6812 }
6813 err_1:
6814 if (st)
6815 st->ss->free_super(st);
6816 return count;
6817}
6818
d3c11416
AO
6819static int __count_volumes(char *hba_path, int dpa, int verbose,
6820 int cmp_hba_path)
ca9de185 6821{
72a45777 6822 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 6823 int count = 0;
72a45777
PB
6824 const struct orom_entry *entry;
6825 struct devid_list *dv, *devid_list;
ca9de185 6826
d3c11416 6827 if (!hba_path)
ca9de185
LM
6828 return 0;
6829
72a45777 6830 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
6831 if (strstr(idev->path, hba_path))
6832 break;
72a45777
PB
6833 }
6834
6835 if (!idev || !idev->dev_id)
ca9de185 6836 return 0;
72a45777
PB
6837
6838 entry = get_orom_entry_by_device_id(idev->dev_id);
6839
6840 if (!entry || !entry->devid_list)
6841 return 0;
6842
6843 devid_list = entry->devid_list;
6844 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 6845 struct md_list *devlist;
d3c11416
AO
6846 struct sys_dev *device = NULL;
6847 char *hpath;
72a45777
PB
6848 int found = 0;
6849
d3c11416
AO
6850 if (cmp_hba_path)
6851 device = device_by_id_and_path(dv->devid, hba_path);
6852 else
6853 device = device_by_id(dv->devid);
6854
72a45777 6855 if (device)
d3c11416 6856 hpath = device->path;
72a45777
PB
6857 else
6858 return 0;
6859
d3c11416 6860 devlist = get_devices(hpath);
72a45777
PB
6861 /* if no intel devices return zero volumes */
6862 if (devlist == NULL)
6863 return 0;
6864
d3c11416
AO
6865 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6866 verbose);
6867 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
6868 if (devlist == NULL)
6869 return 0;
6870 do {
6871 found = 0;
6872 count += count_volumes_list(devlist,
6873 NULL,
6874 verbose,
6875 &found);
6876 dprintf("found %d count: %d\n", found, count);
6877 } while (found);
6878
d3c11416 6879 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
6880
6881 while (devlist) {
6882 struct md_list *dv = devlist;
6883 devlist = devlist->next;
6884 free(dv->devname);
6885 free(dv);
6886 }
ca9de185
LM
6887 }
6888 return count;
6889}
6890
d3c11416
AO
6891static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6892{
6893 if (!hba)
6894 return 0;
6895 if (hba->type == SYS_DEV_VMD) {
6896 struct sys_dev *dev;
6897 int count = 0;
6898
6899 for (dev = find_intel_devices(); dev; dev = dev->next) {
6900 if (dev->type == SYS_DEV_VMD)
6901 count += __count_volumes(dev->path, dpa,
6902 verbose, 1);
6903 }
6904 return count;
6905 }
6906 return __count_volumes(hba->path, dpa, verbose, 0);
6907}
6908
cd9d1ac7
DW
6909static int imsm_default_chunk(const struct imsm_orom *orom)
6910{
6911 /* up to 512 if the plaform supports it, otherwise the platform max.
6912 * 128 if no platform detected
6913 */
6914 int fs = max(7, orom ? fls(orom->sss) : 0);
6915
6916 return min(512, (1 << fs));
6917}
73408129 6918
6592ce37
DW
6919static int
6920validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6921 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6922{
660260d0
DW
6923 /* check/set platform and metadata limits/defaults */
6924 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 6925 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 6926 super->orom->dpa);
73408129
LM
6927 return 0;
6928 }
6929
5d500228 6930 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6931 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 6932 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
6933 level, raiddisks, raiddisks > 1 ? "s" : "");
6934 return 0;
6935 }
cd9d1ac7 6936
7ccc4cc4 6937 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
6938 *chunk = imsm_default_chunk(super->orom);
6939
7ccc4cc4 6940 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 6941 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 6942 return 0;
6592ce37 6943 }
cd9d1ac7 6944
6592ce37
DW
6945 if (layout != imsm_level_to_layout(level)) {
6946 if (level == 5)
676e87a8 6947 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 6948 else if (level == 10)
676e87a8 6949 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 6950 else
676e87a8 6951 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
6952 layout, level);
6953 return 0;
6954 }
2cc699af 6955
7ccc4cc4 6956 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 6957 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 6958 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
6959 return 0;
6960 }
614902f6 6961
6592ce37
DW
6962 return 1;
6963}
6964
1011e834 6965/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
6966 * FIX ME add ahci details
6967 */
8b353278 6968static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 6969 int layout, int raiddisks, int *chunk,
af4348dd
N
6970 unsigned long long size,
6971 unsigned long long data_offset,
6972 char *dev,
2c514b71
NB
6973 unsigned long long *freesize,
6974 int verbose)
cdddbdbc 6975{
9e04ac1c 6976 dev_t rdev;
c2c087e6 6977 struct intel_super *super = st->sb;
b2916f25 6978 struct imsm_super *mpb;
c2c087e6
DW
6979 struct dl *dl;
6980 unsigned long long pos = 0;
6981 unsigned long long maxsize;
6982 struct extent *e;
6983 int i;
cdddbdbc 6984
88c32bb1
DW
6985 /* We must have the container info already read in. */
6986 if (!super)
c2c087e6
DW
6987 return 0;
6988
b2916f25
JS
6989 mpb = super->anchor;
6990
2cc699af 6991 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 6992 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 6993 return 0;
d54559f0 6994 }
c2c087e6
DW
6995 if (!dev) {
6996 /* General test: make sure there is space for
2da8544a
DW
6997 * 'raiddisks' device extents of size 'size' at a given
6998 * offset
c2c087e6 6999 */
e46273eb 7000 unsigned long long minsize = size;
b7528a20 7001 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7002 int dcnt = 0;
7003 if (minsize == 0)
7004 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7005 for (dl = super->disks; dl ; dl = dl->next) {
7006 int found = 0;
7007
bf5a934a 7008 pos = 0;
c2c087e6
DW
7009 i = 0;
7010 e = get_extents(super, dl);
7011 if (!e) continue;
7012 do {
7013 unsigned long long esize;
7014 esize = e[i].start - pos;
7015 if (esize >= minsize)
7016 found = 1;
b7528a20 7017 if (found && start_offset == MaxSector) {
2da8544a
DW
7018 start_offset = pos;
7019 break;
7020 } else if (found && pos != start_offset) {
7021 found = 0;
7022 break;
7023 }
c2c087e6
DW
7024 pos = e[i].start + e[i].size;
7025 i++;
7026 } while (e[i-1].size);
7027 if (found)
7028 dcnt++;
7029 free(e);
7030 }
7031 if (dcnt < raiddisks) {
2c514b71 7032 if (verbose)
7a862a02 7033 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7034 dcnt, raiddisks);
c2c087e6
DW
7035 return 0;
7036 }
7037 return 1;
7038 }
0dcecb2e 7039
c2c087e6 7040 /* This device must be a member of the set */
9e04ac1c 7041 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7042 return 0;
7043 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7044 if (dl->major == (int)major(rdev) &&
7045 dl->minor == (int)minor(rdev))
c2c087e6
DW
7046 break;
7047 }
7048 if (!dl) {
2c514b71 7049 if (verbose)
7a862a02 7050 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7051 return 0;
a20d2ba5
DW
7052 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7053 /* If a volume is present then the current creation attempt
7054 * cannot incorporate new spares because the orom may not
7055 * understand this configuration (all member disks must be
7056 * members of each array in the container).
7057 */
7a862a02
N
7058 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7059 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7060 return 0;
5fe62b94
WD
7061 } else if (super->orom && mpb->num_raid_devs > 0 &&
7062 mpb->num_disks != raiddisks) {
7a862a02 7063 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7064 return 0;
c2c087e6 7065 }
0dcecb2e
DW
7066
7067 /* retrieve the largest free space block */
c2c087e6
DW
7068 e = get_extents(super, dl);
7069 maxsize = 0;
7070 i = 0;
0dcecb2e
DW
7071 if (e) {
7072 do {
7073 unsigned long long esize;
7074
7075 esize = e[i].start - pos;
7076 if (esize >= maxsize)
7077 maxsize = esize;
7078 pos = e[i].start + e[i].size;
7079 i++;
7080 } while (e[i-1].size);
7081 dl->e = e;
7082 dl->extent_cnt = i;
7083 } else {
7084 if (verbose)
e7b84f9d 7085 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7086 dev);
7087 return 0;
7088 }
7089 if (maxsize < size) {
7090 if (verbose)
e7b84f9d 7091 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7092 dev, maxsize, size);
7093 return 0;
7094 }
7095
7096 /* count total number of extents for merge */
7097 i = 0;
7098 for (dl = super->disks; dl; dl = dl->next)
7099 if (dl->e)
7100 i += dl->extent_cnt;
7101
7102 maxsize = merge_extents(super, i);
3baa56ab
LO
7103
7104 if (!check_env("IMSM_NO_PLATFORM") &&
7105 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7106 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
7107 return 0;
7108 }
7109
a7dd165b 7110 if (maxsize < size || maxsize == 0) {
b3071342
LD
7111 if (verbose) {
7112 if (maxsize == 0)
7a862a02 7113 pr_err("no free space left on device. Aborting...\n");
b3071342 7114 else
7a862a02 7115 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7116 maxsize, size);
7117 }
0dcecb2e 7118 return 0;
0dcecb2e
DW
7119 }
7120
c2c087e6
DW
7121 *freesize = maxsize;
7122
ca9de185 7123 if (super->orom) {
72a45777 7124 int count = count_volumes(super->hba,
ca9de185
LM
7125 super->orom->dpa, verbose);
7126 if (super->orom->vphba <= count) {
676e87a8 7127 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7128 super->orom->vphba);
7129 return 0;
7130 }
7131 }
c2c087e6 7132 return 1;
cdddbdbc
DW
7133}
7134
13bcac90 7135static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
7136 unsigned long long size, int chunk,
7137 unsigned long long *freesize)
7138{
7139 struct intel_super *super = st->sb;
7140 struct imsm_super *mpb = super->anchor;
7141 struct dl *dl;
7142 int i;
7143 int extent_cnt;
7144 struct extent *e;
7145 unsigned long long maxsize;
7146 unsigned long long minsize;
7147 int cnt;
7148 int used;
7149
7150 /* find the largest common start free region of the possible disks */
7151 used = 0;
7152 extent_cnt = 0;
7153 cnt = 0;
7154 for (dl = super->disks; dl; dl = dl->next) {
7155 dl->raiddisk = -1;
7156
7157 if (dl->index >= 0)
7158 used++;
7159
7160 /* don't activate new spares if we are orom constrained
7161 * and there is already a volume active in the container
7162 */
7163 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7164 continue;
7165
7166 e = get_extents(super, dl);
7167 if (!e)
7168 continue;
7169 for (i = 1; e[i-1].size; i++)
7170 ;
7171 dl->e = e;
7172 dl->extent_cnt = i;
7173 extent_cnt += i;
7174 cnt++;
7175 }
7176
7177 maxsize = merge_extents(super, extent_cnt);
7178 minsize = size;
7179 if (size == 0)
612e59d8
CA
7180 /* chunk is in K */
7181 minsize = chunk * 2;
efb30e7f
DW
7182
7183 if (cnt < raiddisks ||
7184 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
7185 maxsize < minsize ||
7186 maxsize == 0) {
e7b84f9d 7187 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
7188 return 0; /* No enough free spaces large enough */
7189 }
7190
7191 if (size == 0) {
7192 size = maxsize;
7193 if (chunk) {
612e59d8
CA
7194 size /= 2 * chunk;
7195 size *= 2 * chunk;
efb30e7f 7196 }
f878b242
LM
7197 maxsize = size;
7198 }
7199 if (!check_env("IMSM_NO_PLATFORM") &&
7200 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7201 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 7202 return 0;
efb30e7f 7203 }
efb30e7f
DW
7204 cnt = 0;
7205 for (dl = super->disks; dl; dl = dl->next)
7206 if (dl->e)
7207 dl->raiddisk = cnt++;
7208
7209 *freesize = size;
7210
13bcac90
AK
7211 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7212
efb30e7f
DW
7213 return 1;
7214}
7215
13bcac90
AK
7216static int reserve_space(struct supertype *st, int raiddisks,
7217 unsigned long long size, int chunk,
7218 unsigned long long *freesize)
7219{
7220 struct intel_super *super = st->sb;
7221 struct dl *dl;
7222 int cnt;
7223 int rv = 0;
7224
7225 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7226 if (rv) {
7227 cnt = 0;
7228 for (dl = super->disks; dl; dl = dl->next)
7229 if (dl->e)
7230 dl->raiddisk = cnt++;
7231 rv = 1;
7232 }
7233
7234 return rv;
7235}
7236
bf5a934a 7237static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7238 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7239 unsigned long long data_offset,
bf5a934a 7240 char *dev, unsigned long long *freesize,
5308f117 7241 int consistency_policy, int verbose)
bf5a934a
DW
7242{
7243 int fd, cfd;
7244 struct mdinfo *sra;
20cbe8d2 7245 int is_member = 0;
bf5a934a 7246
d54559f0
LM
7247 /* load capability
7248 * if given unused devices create a container
bf5a934a
DW
7249 * if given given devices in a container create a member volume
7250 */
7251 if (level == LEVEL_CONTAINER) {
7252 /* Must be a fresh device to add to a container */
7253 return validate_geometry_imsm_container(st, level, layout,
c21e737b 7254 raiddisks,
7ccc4cc4 7255 *chunk,
af4348dd 7256 size, data_offset,
bf5a934a
DW
7257 dev, freesize,
7258 verbose);
7259 }
9587c373 7260
8592f29d 7261 if (!dev) {
e91a3bad 7262 if (st->sb) {
ca9de185 7263 struct intel_super *super = st->sb;
e91a3bad 7264 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 7265 raiddisks, chunk, size,
e91a3bad
LM
7266 verbose))
7267 return 0;
efb30e7f
DW
7268 /* we are being asked to automatically layout a
7269 * new volume based on the current contents of
7270 * the container. If the the parameters can be
7271 * satisfied reserve_space will record the disks,
7272 * start offset, and size of the volume to be
7273 * created. add_to_super and getinfo_super
7274 * detect when autolayout is in progress.
7275 */
ca9de185
LM
7276 /* assuming that freesize is always given when array is
7277 created */
7278 if (super->orom && freesize) {
7279 int count;
72a45777 7280 count = count_volumes(super->hba,
ca9de185
LM
7281 super->orom->dpa, verbose);
7282 if (super->orom->vphba <= count) {
676e87a8 7283 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7284 super->orom->vphba);
7285 return 0;
7286 }
7287 }
e91a3bad
LM
7288 if (freesize)
7289 return reserve_space(st, raiddisks, size,
7ccc4cc4 7290 *chunk, freesize);
8592f29d
N
7291 }
7292 return 1;
7293 }
bf5a934a
DW
7294 if (st->sb) {
7295 /* creating in a given container */
7296 return validate_geometry_imsm_volume(st, level, layout,
7297 raiddisks, chunk, size,
af4348dd 7298 data_offset,
bf5a934a
DW
7299 dev, freesize, verbose);
7300 }
7301
bf5a934a
DW
7302 /* This device needs to be a device in an 'imsm' container */
7303 fd = open(dev, O_RDONLY|O_EXCL, 0);
7304 if (fd >= 0) {
7305 if (verbose)
e7b84f9d
N
7306 pr_err("Cannot create this array on device %s\n",
7307 dev);
bf5a934a
DW
7308 close(fd);
7309 return 0;
7310 }
7311 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7312 if (verbose)
e7b84f9d 7313 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
7314 dev, strerror(errno));
7315 return 0;
7316 }
7317 /* Well, it is in use by someone, maybe an 'imsm' container. */
7318 cfd = open_container(fd);
20cbe8d2 7319 close(fd);
bf5a934a 7320 if (cfd < 0) {
bf5a934a 7321 if (verbose)
e7b84f9d 7322 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
7323 dev);
7324 return 0;
7325 }
4dd2df09 7326 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7327 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7328 strcmp(sra->text_version, "imsm") == 0)
7329 is_member = 1;
7330 sysfs_free(sra);
7331 if (is_member) {
bf5a934a
DW
7332 /* This is a member of a imsm container. Load the container
7333 * and try to create a volume
7334 */
7335 struct intel_super *super;
7336
ec50f7b6 7337 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7338 st->sb = super;
4dd2df09 7339 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7340 close(cfd);
7341 return validate_geometry_imsm_volume(st, level, layout,
7342 raiddisks, chunk,
af4348dd 7343 size, data_offset, dev,
ecbd9e81
N
7344 freesize, 1)
7345 ? 1 : -1;
bf5a934a 7346 }
20cbe8d2 7347 }
bf5a934a 7348
20cbe8d2 7349 if (verbose)
e7b84f9d 7350 pr_err("failed container membership check\n");
20cbe8d2
AW
7351
7352 close(cfd);
7353 return 0;
bf5a934a 7354}
0bd16cf2 7355
30f58b22 7356static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7357{
7358 struct intel_super *super = st->sb;
7359
30f58b22
DW
7360 if (level && *level == UnSet)
7361 *level = LEVEL_CONTAINER;
7362
7363 if (level && layout && *layout == UnSet)
7364 *layout = imsm_level_to_layout(*level);
0bd16cf2 7365
cd9d1ac7
DW
7366 if (chunk && (*chunk == UnSet || *chunk == 0))
7367 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7368}
7369
33414a01
DW
7370static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7371
7372static int kill_subarray_imsm(struct supertype *st)
7373{
7374 /* remove the subarray currently referenced by ->current_vol */
7375 __u8 i;
7376 struct intel_dev **dp;
7377 struct intel_super *super = st->sb;
7378 __u8 current_vol = super->current_vol;
7379 struct imsm_super *mpb = super->anchor;
7380
7381 if (super->current_vol < 0)
7382 return 2;
7383 super->current_vol = -1; /* invalidate subarray cursor */
7384
7385 /* block deletions that would change the uuid of active subarrays
7386 *
7387 * FIXME when immutable ids are available, but note that we'll
7388 * also need to fixup the invalidated/active subarray indexes in
7389 * mdstat
7390 */
7391 for (i = 0; i < mpb->num_raid_devs; i++) {
7392 char subarray[4];
7393
7394 if (i < current_vol)
7395 continue;
7396 sprintf(subarray, "%u", i);
4dd2df09 7397 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7398 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7399 current_vol, i);
33414a01
DW
7400
7401 return 2;
7402 }
7403 }
7404
7405 if (st->update_tail) {
503975b9 7406 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7407
33414a01
DW
7408 u->type = update_kill_array;
7409 u->dev_idx = current_vol;
7410 append_metadata_update(st, u, sizeof(*u));
7411
7412 return 0;
7413 }
7414
7415 for (dp = &super->devlist; *dp;)
7416 if ((*dp)->index == current_vol) {
7417 *dp = (*dp)->next;
7418 } else {
7419 handle_missing(super, (*dp)->dev);
7420 if ((*dp)->index > current_vol)
7421 (*dp)->index--;
7422 dp = &(*dp)->next;
7423 }
7424
7425 /* no more raid devices, all active components are now spares,
7426 * but of course failed are still failed
7427 */
7428 if (--mpb->num_raid_devs == 0) {
7429 struct dl *d;
7430
7431 for (d = super->disks; d; d = d->next)
a8619d23
AK
7432 if (d->index > -2)
7433 mark_spare(d);
33414a01
DW
7434 }
7435
7436 super->updates_pending++;
7437
7438 return 0;
7439}
aa534678 7440
a951a4f7 7441static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7442 char *update, struct mddev_ident *ident)
aa534678
DW
7443{
7444 /* update the subarray currently referenced by ->current_vol */
7445 struct intel_super *super = st->sb;
7446 struct imsm_super *mpb = super->anchor;
7447
aa534678
DW
7448 if (strcmp(update, "name") == 0) {
7449 char *name = ident->name;
a951a4f7
N
7450 char *ep;
7451 int vol;
aa534678 7452
4dd2df09 7453 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7454 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7455 return 2;
7456 }
7457
7458 if (!check_name(super, name, 0))
7459 return 2;
7460
a951a4f7
N
7461 vol = strtoul(subarray, &ep, 10);
7462 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7463 return 2;
7464
aa534678 7465 if (st->update_tail) {
503975b9 7466 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7467
aa534678 7468 u->type = update_rename_array;
a951a4f7 7469 u->dev_idx = vol;
618f4e6d
XN
7470 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7471 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7472 append_metadata_update(st, u, sizeof(*u));
7473 } else {
7474 struct imsm_dev *dev;
7475 int i;
7476
a951a4f7 7477 dev = get_imsm_dev(super, vol);
618f4e6d
XN
7478 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7479 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7480 for (i = 0; i < mpb->num_raid_devs; i++) {
7481 dev = get_imsm_dev(super, i);
7482 handle_missing(super, dev);
7483 }
7484 super->updates_pending++;
7485 }
e6e9dd3f
AP
7486 } else if (strcmp(update, "ppl") == 0 ||
7487 strcmp(update, "no-ppl") == 0) {
7488 int new_policy;
7489 char *ep;
7490 int vol = strtoul(subarray, &ep, 10);
7491
7492 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7493 return 2;
7494
7495 if (strcmp(update, "ppl") == 0)
c2462068 7496 new_policy = RWH_MULTIPLE_DISTRIBUTED;
e6e9dd3f 7497 else
c2462068 7498 new_policy = RWH_MULTIPLE_OFF;
e6e9dd3f
AP
7499
7500 if (st->update_tail) {
7501 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7502
7503 u->type = update_rwh_policy;
7504 u->dev_idx = vol;
7505 u->new_policy = new_policy;
7506 append_metadata_update(st, u, sizeof(*u));
7507 } else {
7508 struct imsm_dev *dev;
7509
7510 dev = get_imsm_dev(super, vol);
7511 dev->rwh_policy = new_policy;
7512 super->updates_pending++;
7513 }
aa534678
DW
7514 } else
7515 return 2;
7516
7517 return 0;
7518}
bf5a934a 7519
28bce06f
AK
7520static int is_gen_migration(struct imsm_dev *dev)
7521{
7534230b
AK
7522 if (dev == NULL)
7523 return 0;
7524
28bce06f
AK
7525 if (!dev->vol.migr_state)
7526 return 0;
7527
7528 if (migr_type(dev) == MIGR_GEN_MIGR)
7529 return 1;
7530
7531 return 0;
7532}
7533
1e5c6983
DW
7534static int is_rebuilding(struct imsm_dev *dev)
7535{
7536 struct imsm_map *migr_map;
7537
7538 if (!dev->vol.migr_state)
7539 return 0;
7540
7541 if (migr_type(dev) != MIGR_REBUILD)
7542 return 0;
7543
238c0a71 7544 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7545
7546 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7547 return 1;
7548 else
7549 return 0;
7550}
7551
6ce1fbf1
AK
7552static int is_initializing(struct imsm_dev *dev)
7553{
7554 struct imsm_map *migr_map;
7555
7556 if (!dev->vol.migr_state)
7557 return 0;
7558
7559 if (migr_type(dev) != MIGR_INIT)
7560 return 0;
7561
238c0a71 7562 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7563
7564 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7565 return 1;
7566
7567 return 0;
6ce1fbf1
AK
7568}
7569
c47b0ff6
AK
7570static void update_recovery_start(struct intel_super *super,
7571 struct imsm_dev *dev,
7572 struct mdinfo *array)
1e5c6983
DW
7573{
7574 struct mdinfo *rebuild = NULL;
7575 struct mdinfo *d;
7576 __u32 units;
7577
7578 if (!is_rebuilding(dev))
7579 return;
7580
7581 /* Find the rebuild target, but punt on the dual rebuild case */
7582 for (d = array->devs; d; d = d->next)
7583 if (d->recovery_start == 0) {
7584 if (rebuild)
7585 return;
7586 rebuild = d;
7587 }
7588
4363fd80
DW
7589 if (!rebuild) {
7590 /* (?) none of the disks are marked with
7591 * IMSM_ORD_REBUILD, so assume they are missing and the
7592 * disk_ord_tbl was not correctly updated
7593 */
1ade5cc1 7594 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7595 return;
7596 }
7597
1e5c6983 7598 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 7599 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7600}
7601
276d77db 7602static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 7603
00bbdbda 7604static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7605{
4f5bc454
DW
7606 /* Given a container loaded by load_super_imsm_all,
7607 * extract information about all the arrays into
7608 * an mdinfo tree.
00bbdbda 7609 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7610 *
7611 * For each imsm_dev create an mdinfo, fill it in,
7612 * then look for matching devices in super->disks
7613 * and create appropriate device mdinfo.
7614 */
7615 struct intel_super *super = st->sb;
949c47a0 7616 struct imsm_super *mpb = super->anchor;
4f5bc454 7617 struct mdinfo *rest = NULL;
00bbdbda 7618 unsigned int i;
81219e70 7619 int sb_errors = 0;
abef11a3
AK
7620 struct dl *d;
7621 int spare_disks = 0;
cdddbdbc 7622
19482bcc
AK
7623 /* do not assemble arrays when not all attributes are supported */
7624 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7625 sb_errors = 1;
7a862a02 7626 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7627 }
7628
abef11a3
AK
7629 /* count spare devices, not used in maps
7630 */
7631 for (d = super->disks; d; d = d->next)
7632 if (d->index == -1)
7633 spare_disks++;
7634
4f5bc454 7635 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7636 struct imsm_dev *dev;
7637 struct imsm_map *map;
86e3692b 7638 struct imsm_map *map2;
4f5bc454 7639 struct mdinfo *this;
a6482415 7640 int slot;
a6482415 7641 int chunk;
00bbdbda
N
7642 char *ep;
7643
7644 if (subarray &&
7645 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7646 continue;
7647
7648 dev = get_imsm_dev(super, i);
238c0a71
AK
7649 map = get_imsm_map(dev, MAP_0);
7650 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 7651
1ce0101c
DW
7652 /* do not publish arrays that are in the middle of an
7653 * unsupported migration
7654 */
7655 if (dev->vol.migr_state &&
28bce06f 7656 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 7657 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
7658 dev->volume);
7659 continue;
7660 }
2db86302
LM
7661 /* do not publish arrays that are not support by controller's
7662 * OROM/EFI
7663 */
1ce0101c 7664
503975b9 7665 this = xmalloc(sizeof(*this));
4f5bc454 7666
301406c9 7667 super->current_vol = i;
a5d85af7 7668 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 7669 this->next = rest;
a6482415 7670 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
7671 /* mdadm does not support all metadata features- set the bit in all arrays state */
7672 if (!validate_geometry_imsm_orom(super,
7673 get_imsm_raid_level(map), /* RAID level */
7674 imsm_level_to_layout(get_imsm_raid_level(map)),
7675 map->num_members, /* raid disks */
2cc699af 7676 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 7677 1 /* verbose */)) {
7a862a02 7678 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
7679 dev->volume);
7680 this->array.state |=
7681 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7682 (1<<MD_SB_BLOCK_VOLUME);
7683 }
81219e70
LM
7684
7685 /* if array has bad blocks, set suitable bit in all arrays state */
7686 if (sb_errors)
7687 this->array.state |=
7688 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7689 (1<<MD_SB_BLOCK_VOLUME);
7690
4f5bc454 7691 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 7692 unsigned long long recovery_start;
4f5bc454
DW
7693 struct mdinfo *info_d;
7694 struct dl *d;
7695 int idx;
9a1608e5 7696 int skip;
7eef0453 7697 __u32 ord;
4f5bc454 7698
9a1608e5 7699 skip = 0;
238c0a71
AK
7700 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7701 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
7702 for (d = super->disks; d ; d = d->next)
7703 if (d->index == idx)
0fbd635c 7704 break;
4f5bc454 7705
1e5c6983 7706 recovery_start = MaxSector;
4f5bc454 7707 if (d == NULL)
9a1608e5 7708 skip = 1;
25ed7e59 7709 if (d && is_failed(&d->disk))
9a1608e5 7710 skip = 1;
7eef0453 7711 if (ord & IMSM_ORD_REBUILD)
1e5c6983 7712 recovery_start = 0;
9a1608e5 7713
1011e834 7714 /*
9a1608e5 7715 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
7716 * reset resync start to avoid a dirty-degraded
7717 * situation when performing the intial sync
9a1608e5
DW
7718 *
7719 * FIXME handle dirty degraded
7720 */
2432ce9b
AP
7721 if ((skip || recovery_start == 0) &&
7722 !(dev->vol.dirty & RAIDVOL_DIRTY))
b7528a20 7723 this->resync_start = MaxSector;
9a1608e5
DW
7724 if (skip)
7725 continue;
4f5bc454 7726
503975b9 7727 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
7728 info_d->next = this->devs;
7729 this->devs = info_d;
7730
4f5bc454
DW
7731 info_d->disk.number = d->index;
7732 info_d->disk.major = d->major;
7733 info_d->disk.minor = d->minor;
7734 info_d->disk.raid_disk = slot;
1e5c6983 7735 info_d->recovery_start = recovery_start;
86e3692b
AK
7736 if (map2) {
7737 if (slot < map2->num_members)
7738 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7739 else
7740 this->array.spare_disks++;
86e3692b
AK
7741 } else {
7742 if (slot < map->num_members)
7743 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7744 else
7745 this->array.spare_disks++;
86e3692b 7746 }
1e5c6983
DW
7747 if (info_d->recovery_start == MaxSector)
7748 this->array.working_disks++;
4f5bc454
DW
7749
7750 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 7751 info_d->data_offset = pba_of_lba0(map);
06fb291a
PB
7752
7753 if (map->raid_level == 5) {
7754 info_d->component_size =
7755 num_data_stripes(map) *
7756 map->blocks_per_strip;
2432ce9b
AP
7757 info_d->ppl_sector = this->ppl_sector;
7758 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
7759 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
7760 recovery_start == 0)
7761 this->resync_start = 0;
06fb291a
PB
7762 } else {
7763 info_d->component_size = blocks_per_member(map);
7764 }
b12796be 7765
5e46202e 7766 info_d->bb.supported = 1;
b12796be
TM
7767 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7768 info_d->data_offset,
7769 info_d->component_size,
7770 &info_d->bb);
4f5bc454 7771 }
1e5c6983 7772 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 7773 update_recovery_start(super, dev, this);
abef11a3 7774 this->array.spare_disks += spare_disks;
276d77db
AK
7775
7776 /* check for reshape */
7777 if (this->reshape_active == 1)
7778 recover_backup_imsm(st, this);
9a1608e5 7779 rest = this;
4f5bc454
DW
7780 }
7781
7782 return rest;
cdddbdbc
DW
7783}
7784
3b451610
AK
7785static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7786 int failed, int look_in_map)
c2a1e7da 7787{
3b451610
AK
7788 struct imsm_map *map;
7789
7790 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
7791
7792 if (!failed)
1011e834 7793 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 7794 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
7795
7796 switch (get_imsm_raid_level(map)) {
7797 case 0:
7798 return IMSM_T_STATE_FAILED;
7799 break;
7800 case 1:
7801 if (failed < map->num_members)
7802 return IMSM_T_STATE_DEGRADED;
7803 else
7804 return IMSM_T_STATE_FAILED;
7805 break;
7806 case 10:
7807 {
7808 /**
c92a2527
DW
7809 * check to see if any mirrors have failed, otherwise we
7810 * are degraded. Even numbered slots are mirrored on
7811 * slot+1
c2a1e7da 7812 */
c2a1e7da 7813 int i;
d9b420a5
N
7814 /* gcc -Os complains that this is unused */
7815 int insync = insync;
c2a1e7da
DW
7816
7817 for (i = 0; i < map->num_members; i++) {
238c0a71 7818 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
7819 int idx = ord_to_idx(ord);
7820 struct imsm_disk *disk;
c2a1e7da 7821
c92a2527 7822 /* reset the potential in-sync count on even-numbered
1011e834 7823 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
7824 */
7825 if ((i & 1) == 0)
7826 insync = 2;
c2a1e7da 7827
c92a2527 7828 disk = get_imsm_disk(super, idx);
25ed7e59 7829 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 7830 insync--;
c2a1e7da 7831
c92a2527
DW
7832 /* no in-sync disks left in this mirror the
7833 * array has failed
7834 */
7835 if (insync == 0)
7836 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
7837 }
7838
7839 return IMSM_T_STATE_DEGRADED;
7840 }
7841 case 5:
7842 if (failed < 2)
7843 return IMSM_T_STATE_DEGRADED;
7844 else
7845 return IMSM_T_STATE_FAILED;
7846 break;
7847 default:
7848 break;
7849 }
7850
7851 return map->map_state;
7852}
7853
3b451610
AK
7854static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7855 int look_in_map)
c2a1e7da
DW
7856{
7857 int i;
7858 int failed = 0;
7859 struct imsm_disk *disk;
d5985138
AK
7860 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7861 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 7862 struct imsm_map *map_for_loop;
0556e1a2
DW
7863 __u32 ord;
7864 int idx;
d5985138 7865 int idx_1;
c2a1e7da 7866
0556e1a2
DW
7867 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7868 * disks that are being rebuilt. New failures are recorded to
7869 * map[0]. So we look through all the disks we started with and
7870 * see if any failures are still present, or if any new ones
7871 * have arrived
0556e1a2 7872 */
d5985138
AK
7873 map_for_loop = map;
7874 if (prev && (map->num_members < prev->num_members))
7875 map_for_loop = prev;
68fe4598
LD
7876
7877 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 7878 idx_1 = -255;
238c0a71
AK
7879 /* when MAP_X is passed both maps failures are counted
7880 */
d5985138 7881 if (prev &&
089f9d79
JS
7882 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7883 i < prev->num_members) {
d5985138
AK
7884 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7885 idx_1 = ord_to_idx(ord);
c2a1e7da 7886
d5985138
AK
7887 disk = get_imsm_disk(super, idx_1);
7888 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7889 failed++;
7890 }
089f9d79
JS
7891 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7892 i < map->num_members) {
d5985138
AK
7893 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7894 idx = ord_to_idx(ord);
7895
7896 if (idx != idx_1) {
7897 disk = get_imsm_disk(super, idx);
7898 if (!disk || is_failed(disk) ||
7899 ord & IMSM_ORD_REBUILD)
7900 failed++;
7901 }
7902 }
c2a1e7da
DW
7903 }
7904
7905 return failed;
845dea95
NB
7906}
7907
97b4d0e9
DW
7908static int imsm_open_new(struct supertype *c, struct active_array *a,
7909 char *inst)
7910{
7911 struct intel_super *super = c->sb;
7912 struct imsm_super *mpb = super->anchor;
bbab0940 7913 struct imsm_update_prealloc_bb_mem u;
9587c373 7914
97b4d0e9 7915 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7916 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7917 return -ENODEV;
7918 }
7919
7920 dprintf("imsm: open_new %s\n", inst);
7921 a->info.container_member = atoi(inst);
bbab0940
TM
7922
7923 u.type = update_prealloc_badblocks_mem;
7924 imsm_update_metadata_locally(c, &u, sizeof(u));
7925
97b4d0e9
DW
7926 return 0;
7927}
7928
0c046afd
DW
7929static int is_resyncing(struct imsm_dev *dev)
7930{
7931 struct imsm_map *migr_map;
7932
7933 if (!dev->vol.migr_state)
7934 return 0;
7935
1484e727
DW
7936 if (migr_type(dev) == MIGR_INIT ||
7937 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
7938 return 1;
7939
4c9bc37b
AK
7940 if (migr_type(dev) == MIGR_GEN_MIGR)
7941 return 0;
7942
238c0a71 7943 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 7944
089f9d79
JS
7945 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7946 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
7947 return 1;
7948 else
7949 return 0;
7950}
7951
0556e1a2 7952/* return true if we recorded new information */
4c9e8c1e
TM
7953static int mark_failure(struct intel_super *super,
7954 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 7955{
0556e1a2
DW
7956 __u32 ord;
7957 int slot;
7958 struct imsm_map *map;
86c54047
DW
7959 char buf[MAX_RAID_SERIAL_LEN+3];
7960 unsigned int len, shift = 0;
0556e1a2
DW
7961
7962 /* new failures are always set in map[0] */
238c0a71 7963 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
7964
7965 slot = get_imsm_disk_slot(map, idx);
7966 if (slot < 0)
7967 return 0;
7968
7969 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 7970 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
7971 return 0;
7972
7d0c5e24
LD
7973 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7974 buf[MAX_RAID_SERIAL_LEN] = '\000';
7975 strcat(buf, ":0");
86c54047
DW
7976 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7977 shift = len - MAX_RAID_SERIAL_LEN + 1;
7978 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7979
f2f27e63 7980 disk->status |= FAILED_DISK;
0556e1a2 7981 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
7982 /* mark failures in second map if second map exists and this disk
7983 * in this slot.
7984 * This is valid for migration, initialization and rebuild
7985 */
7986 if (dev->vol.migr_state) {
238c0a71 7987 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
7988 int slot2 = get_imsm_disk_slot(map2, idx);
7989
089f9d79 7990 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 7991 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
7992 idx | IMSM_ORD_REBUILD);
7993 }
f21e18ca 7994 if (map->failed_disk_num == 0xff)
0556e1a2 7995 map->failed_disk_num = slot;
4c9e8c1e
TM
7996
7997 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7998
0556e1a2
DW
7999 return 1;
8000}
8001
4c9e8c1e
TM
8002static void mark_missing(struct intel_super *super,
8003 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8004{
4c9e8c1e 8005 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8006
8007 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8008 return;
8009
47ee5a45
DW
8010 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8011 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8012}
8013
33414a01
DW
8014static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8015{
33414a01 8016 struct dl *dl;
33414a01
DW
8017
8018 if (!super->missing)
8019 return;
33414a01 8020
79b68f1b
PC
8021 /* When orom adds replacement for missing disk it does
8022 * not remove entry of missing disk, but just updates map with
8023 * new added disk. So it is not enough just to test if there is
8024 * any missing disk, we have to look if there are any failed disks
8025 * in map to stop migration */
8026
33414a01 8027 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8028 /* end process for initialization and rebuild only
8029 */
8030 if (is_gen_migration(dev) == 0) {
fb12a745 8031 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8032
fb12a745
TM
8033 if (failed) {
8034 __u8 map_state;
8035 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8036 struct imsm_map *map1;
8037 int i, ord, ord_map1;
8038 int rebuilt = 1;
3d59f0c0 8039
fb12a745
TM
8040 for (i = 0; i < map->num_members; i++) {
8041 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8042 if (!(ord & IMSM_ORD_REBUILD))
8043 continue;
8044
8045 map1 = get_imsm_map(dev, MAP_1);
8046 if (!map1)
8047 continue;
8048
8049 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8050 if (ord_map1 & IMSM_ORD_REBUILD)
8051 rebuilt = 0;
8052 }
8053
8054 if (rebuilt) {
8055 map_state = imsm_check_degraded(super, dev,
8056 failed, MAP_0);
8057 end_migration(dev, super, map_state);
8058 }
8059 }
3d59f0c0 8060 }
33414a01 8061 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8062 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8063 super->updates_pending++;
8064}
8065
f3871fdc
AK
8066static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8067 long long new_size)
70bdf0dc 8068{
238c0a71 8069 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
8070 unsigned long long array_blocks;
8071 struct imsm_map *map;
8072
8073 if (used_disks == 0) {
8074 /* when problems occures
8075 * return current array_blocks value
8076 */
8077 array_blocks = __le32_to_cpu(dev->size_high);
8078 array_blocks = array_blocks << 32;
8079 array_blocks += __le32_to_cpu(dev->size_low);
8080
8081 return array_blocks;
8082 }
8083
8084 /* set array size in metadata
8085 */
f3871fdc
AK
8086 if (new_size <= 0) {
8087 /* OLCE size change is caused by added disks
8088 */
8089 map = get_imsm_map(dev, MAP_0);
8090 array_blocks = blocks_per_member(map) * used_disks;
8091 } else {
8092 /* Online Volume Size Change
8093 * Using available free space
8094 */
8095 array_blocks = new_size;
8096 }
70bdf0dc 8097
b53bfba6 8098 array_blocks = round_size_to_mb(array_blocks, used_disks);
70bdf0dc
AK
8099 dev->size_low = __cpu_to_le32((__u32)array_blocks);
8100 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
8101
8102 return array_blocks;
8103}
8104
28bce06f
AK
8105static void imsm_set_disk(struct active_array *a, int n, int state);
8106
0e2d1a4e
AK
8107static void imsm_progress_container_reshape(struct intel_super *super)
8108{
8109 /* if no device has a migr_state, but some device has a
8110 * different number of members than the previous device, start
8111 * changing the number of devices in this device to match
8112 * previous.
8113 */
8114 struct imsm_super *mpb = super->anchor;
8115 int prev_disks = -1;
8116 int i;
1dfaa380 8117 int copy_map_size;
0e2d1a4e
AK
8118
8119 for (i = 0; i < mpb->num_raid_devs; i++) {
8120 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8121 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8122 struct imsm_map *map2;
8123 int prev_num_members;
0e2d1a4e
AK
8124
8125 if (dev->vol.migr_state)
8126 return;
8127
8128 if (prev_disks == -1)
8129 prev_disks = map->num_members;
8130 if (prev_disks == map->num_members)
8131 continue;
8132
8133 /* OK, this array needs to enter reshape mode.
8134 * i.e it needs a migr_state
8135 */
8136
1dfaa380 8137 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8138 prev_num_members = map->num_members;
8139 map->num_members = prev_disks;
8140 dev->vol.migr_state = 1;
8141 dev->vol.curr_migr_unit = 0;
ea672ee1 8142 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8143 for (i = prev_num_members;
8144 i < map->num_members; i++)
8145 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8146 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8147 /* Copy the current map */
1dfaa380 8148 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8149 map2->num_members = prev_num_members;
8150
f3871fdc 8151 imsm_set_array_size(dev, -1);
51d83f5d 8152 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8153 super->updates_pending++;
8154 }
8155}
8156
aad6f216 8157/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8158 * states are handled in imsm_set_disk() with one exception, when a
8159 * resync is stopped due to a new failure this routine will set the
8160 * 'degraded' state for the array.
8161 */
01f157d7 8162static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8163{
8164 int inst = a->info.container_member;
8165 struct intel_super *super = a->container->sb;
949c47a0 8166 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8167 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8168 int failed = imsm_count_failed(super, dev, MAP_0);
8169 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8170 __u32 blocks_per_unit;
a862209d 8171
1af97990
AK
8172 if (dev->vol.migr_state &&
8173 dev->vol.migr_type == MIGR_GEN_MIGR) {
8174 /* array state change is blocked due to reshape action
aad6f216
N
8175 * We might need to
8176 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8177 * - finish the reshape (if last_checkpoint is big and action != reshape)
8178 * - update curr_migr_unit
1af97990 8179 */
aad6f216
N
8180 if (a->curr_action == reshape) {
8181 /* still reshaping, maybe update curr_migr_unit */
633b5610 8182 goto mark_checkpoint;
aad6f216
N
8183 } else {
8184 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8185 /* for some reason we aborted the reshape.
b66e591b
AK
8186 *
8187 * disable automatic metadata rollback
8188 * user action is required to recover process
aad6f216 8189 */
b66e591b 8190 if (0) {
238c0a71
AK
8191 struct imsm_map *map2 =
8192 get_imsm_map(dev, MAP_1);
8193 dev->vol.migr_state = 0;
8194 set_migr_type(dev, 0);
8195 dev->vol.curr_migr_unit = 0;
8196 memcpy(map, map2,
8197 sizeof_imsm_map(map2));
8198 super->updates_pending++;
b66e591b 8199 }
aad6f216
N
8200 }
8201 if (a->last_checkpoint >= a->info.component_size) {
8202 unsigned long long array_blocks;
8203 int used_disks;
e154ced3 8204 struct mdinfo *mdi;
aad6f216 8205
238c0a71 8206 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
8207 if (used_disks > 0) {
8208 array_blocks =
5551b113 8209 blocks_per_member(map) *
d55adef9 8210 used_disks;
b53bfba6
TM
8211 array_blocks =
8212 round_size_to_mb(array_blocks,
8213 used_disks);
d55adef9
AK
8214 a->info.custom_array_size = array_blocks;
8215 /* encourage manager to update array
8216 * size
8217 */
e154ced3 8218
d55adef9 8219 a->check_reshape = 1;
633b5610 8220 }
e154ced3
AK
8221 /* finalize online capacity expansion/reshape */
8222 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8223 imsm_set_disk(a,
8224 mdi->disk.raid_disk,
8225 mdi->curr_state);
8226
0e2d1a4e 8227 imsm_progress_container_reshape(super);
e154ced3 8228 }
aad6f216 8229 }
1af97990
AK
8230 }
8231
47ee5a45 8232 /* before we activate this array handle any missing disks */
33414a01
DW
8233 if (consistent == 2)
8234 handle_missing(super, dev);
1e5c6983 8235
0c046afd 8236 if (consistent == 2 &&
b7941fd6 8237 (!is_resync_complete(&a->info) ||
0c046afd
DW
8238 map_state != IMSM_T_STATE_NORMAL ||
8239 dev->vol.migr_state))
01f157d7 8240 consistent = 0;
272906ef 8241
b7941fd6 8242 if (is_resync_complete(&a->info)) {
0c046afd 8243 /* complete intialization / resync,
0556e1a2
DW
8244 * recovery and interrupted recovery is completed in
8245 * ->set_disk
0c046afd
DW
8246 */
8247 if (is_resyncing(dev)) {
8248 dprintf("imsm: mark resync done\n");
809da78e 8249 end_migration(dev, super, map_state);
115c3803 8250 super->updates_pending++;
484240d8 8251 a->last_checkpoint = 0;
115c3803 8252 }
b9172665
AK
8253 } else if ((!is_resyncing(dev) && !failed) &&
8254 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8255 /* mark the start of the init process if nothing is failed */
b7941fd6 8256 dprintf("imsm: mark resync start\n");
1484e727 8257 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8258 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8259 else
8e59f3d8 8260 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8261 super->updates_pending++;
115c3803 8262 }
a862209d 8263
633b5610 8264mark_checkpoint:
5b83bacf
AK
8265 /* skip checkpointing for general migration,
8266 * it is controlled in mdadm
8267 */
8268 if (is_gen_migration(dev))
8269 goto skip_mark_checkpoint;
8270
1e5c6983 8271 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 8272 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8273 if (blocks_per_unit) {
1e5c6983
DW
8274 __u32 units32;
8275 __u64 units;
8276
4f0a7acc 8277 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
8278 units32 = units;
8279
8280 /* check that we did not overflow 32-bits, and that
8281 * curr_migr_unit needs updating
8282 */
8283 if (units32 == units &&
bfd80a56 8284 units32 != 0 &&
1e5c6983
DW
8285 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8286 dprintf("imsm: mark checkpoint (%u)\n", units32);
8287 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8288 super->updates_pending++;
8289 }
8290 }
f8f603f1 8291
5b83bacf 8292skip_mark_checkpoint:
3393c6af 8293 /* mark dirty / clean */
2432ce9b
AP
8294 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8295 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8296 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8297 if (consistent) {
8298 dev->vol.dirty = RAIDVOL_CLEAN;
8299 } else {
8300 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8301 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8302 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8303 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8304 }
a862209d
DW
8305 super->updates_pending++;
8306 }
28bce06f 8307
01f157d7 8308 return consistent;
a862209d
DW
8309}
8310
6f50473f
TM
8311static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8312{
8313 int inst = a->info.container_member;
8314 struct intel_super *super = a->container->sb;
8315 struct imsm_dev *dev = get_imsm_dev(super, inst);
8316 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8317
8318 if (slot > map->num_members) {
8319 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8320 slot, map->num_members - 1);
8321 return -1;
8322 }
8323
8324 if (slot < 0)
8325 return -1;
8326
8327 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8328}
8329
8d45d196 8330static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8331{
8d45d196
DW
8332 int inst = a->info.container_member;
8333 struct intel_super *super = a->container->sb;
949c47a0 8334 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8335 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8336 struct imsm_disk *disk;
7ce05701
LD
8337 struct mdinfo *mdi;
8338 int recovery_not_finished = 0;
0c046afd 8339 int failed;
6f50473f 8340 int ord;
0c046afd 8341 __u8 map_state;
fb12a745
TM
8342 int rebuild_done = 0;
8343 int i;
8d45d196 8344
fb12a745 8345 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8346 if (ord < 0)
8d45d196
DW
8347 return;
8348
4e6e574a 8349 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8350 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8351
5802a811 8352 /* check for new failures */
0556e1a2 8353 if (state & DS_FAULTY) {
4c9e8c1e 8354 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8355 super->updates_pending++;
8d45d196 8356 }
47ee5a45 8357
19859edc 8358 /* check if in_sync */
0556e1a2 8359 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8360 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8361
8362 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8363 rebuild_done = 1;
19859edc
DW
8364 super->updates_pending++;
8365 }
8d45d196 8366
3b451610
AK
8367 failed = imsm_count_failed(super, dev, MAP_0);
8368 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8369
0c046afd 8370 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8371 dprintf("imsm: Detected transition to state ");
8372 switch (map_state) {
8373 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8374 dprintf("normal: ");
8375 if (is_rebuilding(dev)) {
1ade5cc1 8376 dprintf_cont("while rebuilding");
7ce05701
LD
8377 /* check if recovery is really finished */
8378 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8379 if (mdi->recovery_start != MaxSector) {
8380 recovery_not_finished = 1;
8381 break;
8382 }
8383 if (recovery_not_finished) {
1ade5cc1
N
8384 dprintf_cont("\n");
8385 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8386 if (a->last_checkpoint < mdi->recovery_start) {
8387 a->last_checkpoint = mdi->recovery_start;
8388 super->updates_pending++;
8389 }
8390 break;
8391 }
94002678 8392 end_migration(dev, super, map_state);
238c0a71 8393 map = get_imsm_map(dev, MAP_0);
94002678
AK
8394 map->failed_disk_num = ~0;
8395 super->updates_pending++;
8396 a->last_checkpoint = 0;
8397 break;
8398 }
8399 if (is_gen_migration(dev)) {
1ade5cc1 8400 dprintf_cont("while general migration");
bf2f0071 8401 if (a->last_checkpoint >= a->info.component_size)
809da78e 8402 end_migration(dev, super, map_state);
94002678
AK
8403 else
8404 map->map_state = map_state;
238c0a71 8405 map = get_imsm_map(dev, MAP_0);
28bce06f 8406 map->failed_disk_num = ~0;
94002678 8407 super->updates_pending++;
bf2f0071 8408 break;
94002678
AK
8409 }
8410 break;
8411 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8412 dprintf_cont("degraded: ");
089f9d79 8413 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8414 dprintf_cont("mark degraded");
94002678
AK
8415 map->map_state = map_state;
8416 super->updates_pending++;
8417 a->last_checkpoint = 0;
8418 break;
8419 }
8420 if (is_rebuilding(dev)) {
1ade5cc1 8421 dprintf_cont("while rebuilding.");
94002678 8422 if (map->map_state != map_state) {
1ade5cc1 8423 dprintf_cont(" Map state change");
94002678
AK
8424 end_migration(dev, super, map_state);
8425 super->updates_pending++;
fb12a745
TM
8426 } else if (!rebuild_done) {
8427 break;
8428 }
8429
8430 /* check if recovery is really finished */
8431 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8432 if (mdi->recovery_start != MaxSector) {
8433 recovery_not_finished = 1;
8434 break;
8435 }
8436 if (recovery_not_finished) {
8437 dprintf_cont("\n");
8438 dprintf("Rebuild has not finished yet, state not changed");
8439 if (a->last_checkpoint < mdi->recovery_start) {
8440 a->last_checkpoint =
8441 mdi->recovery_start;
8442 super->updates_pending++;
8443 }
8444 break;
94002678 8445 }
fb12a745
TM
8446
8447 dprintf_cont(" Rebuild done, still degraded");
8448 dev->vol.migr_state = 0;
8449 set_migr_type(dev, 0);
8450 dev->vol.curr_migr_unit = 0;
8451
8452 for (i = 0; i < map->num_members; i++) {
8453 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8454
8455 if (idx & IMSM_ORD_REBUILD)
8456 map->failed_disk_num = i;
8457 }
8458 super->updates_pending++;
94002678
AK
8459 break;
8460 }
8461 if (is_gen_migration(dev)) {
1ade5cc1 8462 dprintf_cont("while general migration");
bf2f0071 8463 if (a->last_checkpoint >= a->info.component_size)
809da78e 8464 end_migration(dev, super, map_state);
94002678
AK
8465 else {
8466 map->map_state = map_state;
3b451610 8467 manage_second_map(super, dev);
94002678
AK
8468 }
8469 super->updates_pending++;
bf2f0071 8470 break;
28bce06f 8471 }
6ce1fbf1 8472 if (is_initializing(dev)) {
1ade5cc1 8473 dprintf_cont("while initialization.");
6ce1fbf1
AK
8474 map->map_state = map_state;
8475 super->updates_pending++;
8476 break;
8477 }
94002678
AK
8478 break;
8479 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8480 dprintf_cont("failed: ");
94002678 8481 if (is_gen_migration(dev)) {
1ade5cc1 8482 dprintf_cont("while general migration");
94002678
AK
8483 map->map_state = map_state;
8484 super->updates_pending++;
8485 break;
8486 }
8487 if (map->map_state != map_state) {
1ade5cc1 8488 dprintf_cont("mark failed");
94002678
AK
8489 end_migration(dev, super, map_state);
8490 super->updates_pending++;
8491 a->last_checkpoint = 0;
8492 break;
8493 }
8494 break;
8495 default:
1ade5cc1 8496 dprintf_cont("state %i\n", map_state);
5802a811 8497 }
1ade5cc1 8498 dprintf_cont("\n");
845dea95
NB
8499}
8500
f796af5d 8501static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8502{
f796af5d 8503 void *buf = mpb;
c2a1e7da
DW
8504 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8505 unsigned long long dsize;
8506 unsigned long long sectors;
f36a9ecd 8507 unsigned int sector_size;
c2a1e7da 8508
f36a9ecd 8509 get_dev_sector_size(fd, NULL, &sector_size);
c2a1e7da
DW
8510 get_dev_size(fd, NULL, &dsize);
8511
f36a9ecd 8512 if (mpb_size > sector_size) {
272f648f 8513 /* -1 to account for anchor */
f36a9ecd 8514 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8515
272f648f 8516 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8517 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8518 SEEK_SET) < 0)
272f648f 8519 return 1;
c2a1e7da 8520
f36a9ecd
PB
8521 if ((unsigned long long)write(fd, buf + sector_size,
8522 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8523 return 1;
8524 }
c2a1e7da 8525
272f648f 8526 /* first block is stored on second to last sector of the disk */
f36a9ecd 8527 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8528 return 1;
8529
466070ad 8530 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8531 return 1;
8532
c2a1e7da
DW
8533 return 0;
8534}
8535
2e735d19 8536static void imsm_sync_metadata(struct supertype *container)
845dea95 8537{
2e735d19 8538 struct intel_super *super = container->sb;
c2a1e7da 8539
1a64be56 8540 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8541 if (!super->updates_pending)
8542 return;
8543
36988a3d 8544 write_super_imsm(container, 0);
c2a1e7da
DW
8545
8546 super->updates_pending = 0;
845dea95
NB
8547}
8548
272906ef
DW
8549static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8550{
8551 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8552 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8553 struct dl *dl;
8554
8555 for (dl = super->disks; dl; dl = dl->next)
8556 if (dl->index == i)
8557 break;
8558
25ed7e59 8559 if (dl && is_failed(&dl->disk))
272906ef
DW
8560 dl = NULL;
8561
8562 if (dl)
1ade5cc1 8563 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8564
8565 return dl;
8566}
8567
a20d2ba5 8568static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8569 struct active_array *a, int activate_new,
8570 struct mdinfo *additional_test_list)
272906ef
DW
8571{
8572 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8573 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8574 struct imsm_super *mpb = super->anchor;
8575 struct imsm_map *map;
272906ef
DW
8576 unsigned long long pos;
8577 struct mdinfo *d;
8578 struct extent *ex;
a20d2ba5 8579 int i, j;
272906ef 8580 int found;
569cc43f
DW
8581 __u32 array_start = 0;
8582 __u32 array_end = 0;
272906ef 8583 struct dl *dl;
6c932028 8584 struct mdinfo *test_list;
272906ef
DW
8585
8586 for (dl = super->disks; dl; dl = dl->next) {
8587 /* If in this array, skip */
8588 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8589 if (d->state_fd >= 0 &&
8590 d->disk.major == dl->major &&
272906ef 8591 d->disk.minor == dl->minor) {
8ba77d32
AK
8592 dprintf("%x:%x already in array\n",
8593 dl->major, dl->minor);
272906ef
DW
8594 break;
8595 }
8596 if (d)
8597 continue;
6c932028
AK
8598 test_list = additional_test_list;
8599 while (test_list) {
8600 if (test_list->disk.major == dl->major &&
8601 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8602 dprintf("%x:%x already in additional test list\n",
8603 dl->major, dl->minor);
8604 break;
8605 }
6c932028 8606 test_list = test_list->next;
8ba77d32 8607 }
6c932028 8608 if (test_list)
8ba77d32 8609 continue;
272906ef 8610
e553d2a4 8611 /* skip in use or failed drives */
25ed7e59 8612 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8613 dl->index == -2) {
8614 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8615 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8616 continue;
8617 }
8618
a20d2ba5
DW
8619 /* skip pure spares when we are looking for partially
8620 * assimilated drives
8621 */
8622 if (dl->index == -1 && !activate_new)
8623 continue;
8624
f2cc4f7d
AO
8625 if (!drive_validate_sector_size(super, dl))
8626 continue;
8627
272906ef 8628 /* Does this unused device have the requisite free space?
a20d2ba5 8629 * It needs to be able to cover all member volumes
272906ef
DW
8630 */
8631 ex = get_extents(super, dl);
8632 if (!ex) {
8633 dprintf("cannot get extents\n");
8634 continue;
8635 }
a20d2ba5
DW
8636 for (i = 0; i < mpb->num_raid_devs; i++) {
8637 dev = get_imsm_dev(super, i);
238c0a71 8638 map = get_imsm_map(dev, MAP_0);
272906ef 8639
a20d2ba5
DW
8640 /* check if this disk is already a member of
8641 * this array
272906ef 8642 */
620b1713 8643 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8644 continue;
8645
8646 found = 0;
8647 j = 0;
8648 pos = 0;
5551b113 8649 array_start = pba_of_lba0(map);
329c8278 8650 array_end = array_start +
5551b113 8651 blocks_per_member(map) - 1;
a20d2ba5
DW
8652
8653 do {
8654 /* check that we can start at pba_of_lba0 with
8655 * blocks_per_member of space
8656 */
329c8278 8657 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
8658 found = 1;
8659 break;
8660 }
8661 pos = ex[j].start + ex[j].size;
8662 j++;
8663 } while (ex[j-1].size);
8664
8665 if (!found)
272906ef 8666 break;
a20d2ba5 8667 }
272906ef
DW
8668
8669 free(ex);
a20d2ba5 8670 if (i < mpb->num_raid_devs) {
329c8278
DW
8671 dprintf("%x:%x does not have %u to %u available\n",
8672 dl->major, dl->minor, array_start, array_end);
272906ef
DW
8673 /* No room */
8674 continue;
a20d2ba5
DW
8675 }
8676 return dl;
272906ef
DW
8677 }
8678
8679 return dl;
8680}
8681
95d07a2c
LM
8682static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8683{
8684 struct imsm_dev *dev2;
8685 struct imsm_map *map;
8686 struct dl *idisk;
8687 int slot;
8688 int idx;
8689 __u8 state;
8690
8691 dev2 = get_imsm_dev(cont->sb, dev_idx);
8692 if (dev2) {
238c0a71 8693 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 8694 if (state == IMSM_T_STATE_FAILED) {
238c0a71 8695 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
8696 if (!map)
8697 return 1;
8698 for (slot = 0; slot < map->num_members; slot++) {
8699 /*
8700 * Check if failed disks are deleted from intel
8701 * disk list or are marked to be deleted
8702 */
238c0a71 8703 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
8704 idisk = get_imsm_dl_disk(cont->sb, idx);
8705 /*
8706 * Do not rebuild the array if failed disks
8707 * from failed sub-array are not removed from
8708 * container.
8709 */
8710 if (idisk &&
8711 is_failed(&idisk->disk) &&
8712 (idisk->action != DISK_REMOVE))
8713 return 0;
8714 }
8715 }
8716 }
8717 return 1;
8718}
8719
88758e9d
DW
8720static struct mdinfo *imsm_activate_spare(struct active_array *a,
8721 struct metadata_update **updates)
8722{
8723 /**
d23fe947
DW
8724 * Find a device with unused free space and use it to replace a
8725 * failed/vacant region in an array. We replace failed regions one a
8726 * array at a time. The result is that a new spare disk will be added
8727 * to the first failed array and after the monitor has finished
8728 * propagating failures the remainder will be consumed.
88758e9d 8729 *
d23fe947
DW
8730 * FIXME add a capability for mdmon to request spares from another
8731 * container.
88758e9d
DW
8732 */
8733
8734 struct intel_super *super = a->container->sb;
88758e9d 8735 int inst = a->info.container_member;
949c47a0 8736 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8737 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
8738 int failed = a->info.array.raid_disks;
8739 struct mdinfo *rv = NULL;
8740 struct mdinfo *d;
8741 struct mdinfo *di;
8742 struct metadata_update *mu;
8743 struct dl *dl;
8744 struct imsm_update_activate_spare *u;
8745 int num_spares = 0;
8746 int i;
95d07a2c 8747 int allowed;
88758e9d
DW
8748
8749 for (d = a->info.devs ; d ; d = d->next) {
8750 if ((d->curr_state & DS_FAULTY) &&
8751 d->state_fd >= 0)
8752 /* wait for Removal to happen */
8753 return NULL;
8754 if (d->state_fd >= 0)
8755 failed--;
8756 }
8757
8758 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8759 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 8760
e2962bfc
AK
8761 if (imsm_reshape_blocks_arrays_changes(super))
8762 return NULL;
1af97990 8763
fc8ca064
AK
8764 /* Cannot activate another spare if rebuild is in progress already
8765 */
8766 if (is_rebuilding(dev)) {
7a862a02 8767 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
8768 return NULL;
8769 }
8770
89c67882
AK
8771 if (a->info.array.level == 4)
8772 /* No repair for takeovered array
8773 * imsm doesn't support raid4
8774 */
8775 return NULL;
8776
3b451610
AK
8777 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8778 IMSM_T_STATE_DEGRADED)
88758e9d
DW
8779 return NULL;
8780
83ca7d45
AP
8781 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8782 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8783 return NULL;
8784 }
8785
95d07a2c
LM
8786 /*
8787 * If there are any failed disks check state of the other volume.
8788 * Block rebuild if the another one is failed until failed disks
8789 * are removed from container.
8790 */
8791 if (failed) {
7a862a02 8792 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 8793 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
8794 /* check if states of the other volumes allow for rebuild */
8795 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8796 if (i != inst) {
8797 allowed = imsm_rebuild_allowed(a->container,
8798 i, failed);
8799 if (!allowed)
8800 return NULL;
8801 }
8802 }
8803 }
8804
88758e9d 8805 /* For each slot, if it is not working, find a spare */
88758e9d
DW
8806 for (i = 0; i < a->info.array.raid_disks; i++) {
8807 for (d = a->info.devs ; d ; d = d->next)
8808 if (d->disk.raid_disk == i)
8809 break;
8810 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8811 if (d && (d->state_fd >= 0))
8812 continue;
8813
272906ef 8814 /*
a20d2ba5
DW
8815 * OK, this device needs recovery. Try to re-add the
8816 * previous occupant of this slot, if this fails see if
8817 * we can continue the assimilation of a spare that was
8818 * partially assimilated, finally try to activate a new
8819 * spare.
272906ef
DW
8820 */
8821 dl = imsm_readd(super, i, a);
8822 if (!dl)
b303fe21 8823 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 8824 if (!dl)
b303fe21 8825 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
8826 if (!dl)
8827 continue;
1011e834 8828
272906ef 8829 /* found a usable disk with enough space */
503975b9 8830 di = xcalloc(1, sizeof(*di));
272906ef
DW
8831
8832 /* dl->index will be -1 in the case we are activating a
8833 * pristine spare. imsm_process_update() will create a
8834 * new index in this case. Once a disk is found to be
8835 * failed in all member arrays it is kicked from the
8836 * metadata
8837 */
8838 di->disk.number = dl->index;
d23fe947 8839
272906ef
DW
8840 /* (ab)use di->devs to store a pointer to the device
8841 * we chose
8842 */
8843 di->devs = (struct mdinfo *) dl;
8844
8845 di->disk.raid_disk = i;
8846 di->disk.major = dl->major;
8847 di->disk.minor = dl->minor;
8848 di->disk.state = 0;
d23534e4 8849 di->recovery_start = 0;
5551b113 8850 di->data_offset = pba_of_lba0(map);
272906ef
DW
8851 di->component_size = a->info.component_size;
8852 di->container_member = inst;
5e46202e 8853 di->bb.supported = 1;
2c8890e9 8854 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 8855 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 8856 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 8857 }
148acb7b 8858 super->random = random32();
272906ef
DW
8859 di->next = rv;
8860 rv = di;
8861 num_spares++;
8862 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8863 i, di->data_offset);
88758e9d
DW
8864 }
8865
8866 if (!rv)
8867 /* No spares found */
8868 return rv;
8869 /* Now 'rv' has a list of devices to return.
8870 * Create a metadata_update record to update the
8871 * disk_ord_tbl for the array
8872 */
503975b9 8873 mu = xmalloc(sizeof(*mu));
1011e834 8874 mu->buf = xcalloc(num_spares,
503975b9 8875 sizeof(struct imsm_update_activate_spare));
88758e9d 8876 mu->space = NULL;
cb23f1f4 8877 mu->space_list = NULL;
88758e9d
DW
8878 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8879 mu->next = *updates;
8880 u = (struct imsm_update_activate_spare *) mu->buf;
8881
8882 for (di = rv ; di ; di = di->next) {
8883 u->type = update_activate_spare;
d23fe947
DW
8884 u->dl = (struct dl *) di->devs;
8885 di->devs = NULL;
88758e9d
DW
8886 u->slot = di->disk.raid_disk;
8887 u->array = inst;
8888 u->next = u + 1;
8889 u++;
8890 }
8891 (u-1)->next = NULL;
8892 *updates = mu;
8893
8894 return rv;
8895}
8896
54c2c1ea 8897static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 8898{
54c2c1ea 8899 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
8900 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8901 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
8902 struct disk_info *inf = get_disk_info(u);
8903 struct imsm_disk *disk;
8273f55e
DW
8904 int i;
8905 int j;
8273f55e 8906
54c2c1ea 8907 for (i = 0; i < map->num_members; i++) {
238c0a71 8908 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
8909 for (j = 0; j < new_map->num_members; j++)
8910 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
8911 return 1;
8912 }
8913
8914 return 0;
8915}
8916
1a64be56
LM
8917static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8918{
594dc1b8
JS
8919 struct dl *dl;
8920
1a64be56 8921 for (dl = super->disks; dl; dl = dl->next)
089f9d79 8922 if (dl->major == major && dl->minor == minor)
1a64be56
LM
8923 return dl;
8924 return NULL;
8925}
8926
8927static int remove_disk_super(struct intel_super *super, int major, int minor)
8928{
594dc1b8 8929 struct dl *prev;
1a64be56
LM
8930 struct dl *dl;
8931
8932 prev = NULL;
8933 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 8934 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
8935 /* remove */
8936 if (prev)
8937 prev->next = dl->next;
8938 else
8939 super->disks = dl->next;
8940 dl->next = NULL;
8941 __free_imsm_disk(dl);
1ade5cc1 8942 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
8943 break;
8944 }
8945 prev = dl;
8946 }
8947 return 0;
8948}
8949
f21e18ca 8950static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 8951
1a64be56
LM
8952static int add_remove_disk_update(struct intel_super *super)
8953{
8954 int check_degraded = 0;
594dc1b8
JS
8955 struct dl *disk;
8956
1a64be56
LM
8957 /* add/remove some spares to/from the metadata/contrainer */
8958 while (super->disk_mgmt_list) {
8959 struct dl *disk_cfg;
8960
8961 disk_cfg = super->disk_mgmt_list;
8962 super->disk_mgmt_list = disk_cfg->next;
8963 disk_cfg->next = NULL;
8964
8965 if (disk_cfg->action == DISK_ADD) {
8966 disk_cfg->next = super->disks;
8967 super->disks = disk_cfg;
8968 check_degraded = 1;
1ade5cc1
N
8969 dprintf("added %x:%x\n",
8970 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
8971 } else if (disk_cfg->action == DISK_REMOVE) {
8972 dprintf("Disk remove action processed: %x.%x\n",
8973 disk_cfg->major, disk_cfg->minor);
8974 disk = get_disk_super(super,
8975 disk_cfg->major,
8976 disk_cfg->minor);
8977 if (disk) {
8978 /* store action status */
8979 disk->action = DISK_REMOVE;
8980 /* remove spare disks only */
8981 if (disk->index == -1) {
8982 remove_disk_super(super,
8983 disk_cfg->major,
8984 disk_cfg->minor);
8985 }
8986 }
8987 /* release allocate disk structure */
8988 __free_imsm_disk(disk_cfg);
8989 }
8990 }
8991 return check_degraded;
8992}
8993
a29911da
PC
8994static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8995 struct intel_super *super,
8996 void ***space_list)
8997{
8998 struct intel_dev *id;
8999 void **tofree = NULL;
9000 int ret_val = 0;
9001
1ade5cc1 9002 dprintf("(enter)\n");
089f9d79 9003 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9004 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9005 return ret_val;
9006 }
089f9d79 9007 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9008 dprintf("imsm: Error: Memory is not allocated\n");
9009 return ret_val;
9010 }
9011
9012 for (id = super->devlist ; id; id = id->next) {
9013 if (id->index == (unsigned)u->subdev) {
9014 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9015 struct imsm_map *map;
9016 struct imsm_dev *new_dev =
9017 (struct imsm_dev *)*space_list;
238c0a71 9018 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9019 int to_state;
9020 struct dl *new_disk;
9021
9022 if (new_dev == NULL)
9023 return ret_val;
9024 *space_list = **space_list;
9025 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9026 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9027 if (migr_map) {
9028 dprintf("imsm: Error: migration in progress");
9029 return ret_val;
9030 }
9031
9032 to_state = map->map_state;
9033 if ((u->new_level == 5) && (map->raid_level == 0)) {
9034 map->num_members++;
9035 /* this should not happen */
9036 if (u->new_disks[0] < 0) {
9037 map->failed_disk_num =
9038 map->num_members - 1;
9039 to_state = IMSM_T_STATE_DEGRADED;
9040 } else
9041 to_state = IMSM_T_STATE_NORMAL;
9042 }
8e59f3d8 9043 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9044 if (u->new_level > -1)
9045 map->raid_level = u->new_level;
238c0a71 9046 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9047 if ((u->new_level == 5) &&
9048 (migr_map->raid_level == 0)) {
9049 int ord = map->num_members - 1;
9050 migr_map->num_members--;
9051 if (u->new_disks[0] < 0)
9052 ord |= IMSM_ORD_REBUILD;
9053 set_imsm_ord_tbl_ent(map,
9054 map->num_members - 1,
9055 ord);
9056 }
9057 id->dev = new_dev;
9058 tofree = (void **)dev;
9059
4bba0439
PC
9060 /* update chunk size
9061 */
06fb291a
PB
9062 if (u->new_chunksize > 0) {
9063 unsigned long long num_data_stripes;
9064 int used_disks =
9065 imsm_num_data_members(dev, MAP_0);
9066
9067 if (used_disks == 0)
9068 return ret_val;
9069
4bba0439
PC
9070 map->blocks_per_strip =
9071 __cpu_to_le16(u->new_chunksize * 2);
06fb291a
PB
9072 num_data_stripes =
9073 (join_u32(dev->size_low, dev->size_high)
9074 / used_disks);
9075 num_data_stripes /= map->blocks_per_strip;
9076 num_data_stripes /= map->num_domains;
9077 set_num_data_stripes(map, num_data_stripes);
9078 }
4bba0439 9079
a29911da
PC
9080 /* add disk
9081 */
089f9d79
JS
9082 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9083 migr_map->raid_level == map->raid_level)
a29911da
PC
9084 goto skip_disk_add;
9085
9086 if (u->new_disks[0] >= 0) {
9087 /* use passes spare
9088 */
9089 new_disk = get_disk_super(super,
9090 major(u->new_disks[0]),
9091 minor(u->new_disks[0]));
7a862a02 9092 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9093 major(u->new_disks[0]),
9094 minor(u->new_disks[0]),
9095 new_disk, new_disk->index);
9096 if (new_disk == NULL)
9097 goto error_disk_add;
9098
9099 new_disk->index = map->num_members - 1;
9100 /* slot to fill in autolayout
9101 */
9102 new_disk->raiddisk = new_disk->index;
9103 new_disk->disk.status |= CONFIGURED_DISK;
9104 new_disk->disk.status &= ~SPARE_DISK;
9105 } else
9106 goto error_disk_add;
9107
9108skip_disk_add:
9109 *tofree = *space_list;
9110 /* calculate new size
9111 */
f3871fdc 9112 imsm_set_array_size(new_dev, -1);
a29911da
PC
9113
9114 ret_val = 1;
9115 }
9116 }
9117
9118 if (tofree)
9119 *space_list = tofree;
9120 return ret_val;
9121
9122error_disk_add:
9123 dprintf("Error: imsm: Cannot find disk.\n");
9124 return ret_val;
9125}
9126
f3871fdc
AK
9127static int apply_size_change_update(struct imsm_update_size_change *u,
9128 struct intel_super *super)
9129{
9130 struct intel_dev *id;
9131 int ret_val = 0;
9132
1ade5cc1 9133 dprintf("(enter)\n");
089f9d79 9134 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9135 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9136 return ret_val;
9137 }
9138
9139 for (id = super->devlist ; id; id = id->next) {
9140 if (id->index == (unsigned)u->subdev) {
9141 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9142 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9143 int used_disks = imsm_num_data_members(dev, MAP_0);
9144 unsigned long long blocks_per_member;
06fb291a 9145 unsigned long long num_data_stripes;
f3871fdc
AK
9146
9147 /* calculate new size
9148 */
9149 blocks_per_member = u->new_size / used_disks;
06fb291a
PB
9150 num_data_stripes = blocks_per_member /
9151 map->blocks_per_strip;
9152 num_data_stripes /= map->num_domains;
9153 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
9154 u->new_size, blocks_per_member,
9155 num_data_stripes);
f3871fdc 9156 set_blocks_per_member(map, blocks_per_member);
06fb291a 9157 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
9158 imsm_set_array_size(dev, u->new_size);
9159
9160 ret_val = 1;
9161 break;
9162 }
9163 }
9164
9165 return ret_val;
9166}
9167
061d7da3 9168static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9169 struct intel_super *super,
061d7da3
LO
9170 struct active_array *active_array)
9171{
9172 struct imsm_super *mpb = super->anchor;
9173 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9174 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9175 struct imsm_map *migr_map;
9176 struct active_array *a;
9177 struct imsm_disk *disk;
9178 __u8 to_state;
9179 struct dl *dl;
9180 unsigned int found;
9181 int failed;
5961eeec 9182 int victim;
061d7da3 9183 int i;
5961eeec 9184 int second_map_created = 0;
061d7da3 9185
5961eeec 9186 for (; u; u = u->next) {
238c0a71 9187 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9188
5961eeec 9189 if (victim < 0)
9190 return 0;
061d7da3 9191
5961eeec 9192 for (dl = super->disks; dl; dl = dl->next)
9193 if (dl == u->dl)
9194 break;
061d7da3 9195
5961eeec 9196 if (!dl) {
7a862a02 9197 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9198 u->dl->index);
9199 return 0;
9200 }
061d7da3 9201
5961eeec 9202 /* count failures (excluding rebuilds and the victim)
9203 * to determine map[0] state
9204 */
9205 failed = 0;
9206 for (i = 0; i < map->num_members; i++) {
9207 if (i == u->slot)
9208 continue;
9209 disk = get_imsm_disk(super,
238c0a71 9210 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9211 if (!disk || is_failed(disk))
9212 failed++;
9213 }
061d7da3 9214
5961eeec 9215 /* adding a pristine spare, assign a new index */
9216 if (dl->index < 0) {
9217 dl->index = super->anchor->num_disks;
9218 super->anchor->num_disks++;
9219 }
9220 disk = &dl->disk;
9221 disk->status |= CONFIGURED_DISK;
9222 disk->status &= ~SPARE_DISK;
9223
9224 /* mark rebuild */
238c0a71 9225 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9226 if (!second_map_created) {
9227 second_map_created = 1;
9228 map->map_state = IMSM_T_STATE_DEGRADED;
9229 migrate(dev, super, to_state, MIGR_REBUILD);
9230 } else
9231 map->map_state = to_state;
238c0a71 9232 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9233 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9234 set_imsm_ord_tbl_ent(migr_map, u->slot,
9235 dl->index | IMSM_ORD_REBUILD);
9236
9237 /* update the family_num to mark a new container
9238 * generation, being careful to record the existing
9239 * family_num in orig_family_num to clean up after
9240 * earlier mdadm versions that neglected to set it.
9241 */
9242 if (mpb->orig_family_num == 0)
9243 mpb->orig_family_num = mpb->family_num;
9244 mpb->family_num += super->random;
9245
9246 /* count arrays using the victim in the metadata */
9247 found = 0;
9248 for (a = active_array; a ; a = a->next) {
9249 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9250 map = get_imsm_map(dev, MAP_0);
061d7da3 9251
5961eeec 9252 if (get_imsm_disk_slot(map, victim) >= 0)
9253 found++;
9254 }
061d7da3 9255
5961eeec 9256 /* delete the victim if it is no longer being
9257 * utilized anywhere
061d7da3 9258 */
5961eeec 9259 if (!found) {
9260 struct dl **dlp;
061d7da3 9261
5961eeec 9262 /* We know that 'manager' isn't touching anything,
9263 * so it is safe to delete
9264 */
9265 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9266 if ((*dlp)->index == victim)
9267 break;
5961eeec 9268
9269 /* victim may be on the missing list */
9270 if (!*dlp)
9271 for (dlp = &super->missing; *dlp;
9272 dlp = &(*dlp)->next)
9273 if ((*dlp)->index == victim)
9274 break;
9275 imsm_delete(super, dlp, victim);
9276 }
061d7da3
LO
9277 }
9278
9279 return 1;
9280}
a29911da 9281
2e5dc010
N
9282static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9283 struct intel_super *super,
9284 void ***space_list)
9285{
9286 struct dl *new_disk;
9287 struct intel_dev *id;
9288 int i;
9289 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9290 int disk_count = u->old_raid_disks;
2e5dc010
N
9291 void **tofree = NULL;
9292 int devices_to_reshape = 1;
9293 struct imsm_super *mpb = super->anchor;
9294 int ret_val = 0;
d098291a 9295 unsigned int dev_id;
2e5dc010 9296
1ade5cc1 9297 dprintf("(enter)\n");
2e5dc010
N
9298
9299 /* enable spares to use in array */
9300 for (i = 0; i < delta_disks; i++) {
9301 new_disk = get_disk_super(super,
9302 major(u->new_disks[i]),
9303 minor(u->new_disks[i]));
7a862a02 9304 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9305 major(u->new_disks[i]), minor(u->new_disks[i]),
9306 new_disk, new_disk->index);
089f9d79
JS
9307 if (new_disk == NULL ||
9308 (new_disk->index >= 0 &&
9309 new_disk->index < u->old_raid_disks))
2e5dc010 9310 goto update_reshape_exit;
ee4beede 9311 new_disk->index = disk_count++;
2e5dc010
N
9312 /* slot to fill in autolayout
9313 */
9314 new_disk->raiddisk = new_disk->index;
9315 new_disk->disk.status |=
9316 CONFIGURED_DISK;
9317 new_disk->disk.status &= ~SPARE_DISK;
9318 }
9319
ed7333bd
AK
9320 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9321 mpb->num_raid_devs);
2e5dc010
N
9322 /* manage changes in volume
9323 */
d098291a 9324 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9325 void **sp = *space_list;
9326 struct imsm_dev *newdev;
9327 struct imsm_map *newmap, *oldmap;
9328
d098291a
AK
9329 for (id = super->devlist ; id; id = id->next) {
9330 if (id->index == dev_id)
9331 break;
9332 }
9333 if (id == NULL)
9334 break;
2e5dc010
N
9335 if (!sp)
9336 continue;
9337 *space_list = *sp;
9338 newdev = (void*)sp;
9339 /* Copy the dev, but not (all of) the map */
9340 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9341 oldmap = get_imsm_map(id->dev, MAP_0);
9342 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9343 /* Copy the current map */
9344 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9345 /* update one device only
9346 */
9347 if (devices_to_reshape) {
ed7333bd
AK
9348 dprintf("imsm: modifying subdev: %i\n",
9349 id->index);
2e5dc010
N
9350 devices_to_reshape--;
9351 newdev->vol.migr_state = 1;
9352 newdev->vol.curr_migr_unit = 0;
ea672ee1 9353 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9354 newmap->num_members = u->new_raid_disks;
9355 for (i = 0; i < delta_disks; i++) {
9356 set_imsm_ord_tbl_ent(newmap,
9357 u->old_raid_disks + i,
9358 u->old_raid_disks + i);
9359 }
9360 /* New map is correct, now need to save old map
9361 */
238c0a71 9362 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9363 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9364
f3871fdc 9365 imsm_set_array_size(newdev, -1);
2e5dc010
N
9366 }
9367
9368 sp = (void **)id->dev;
9369 id->dev = newdev;
9370 *sp = tofree;
9371 tofree = sp;
8e59f3d8
AK
9372
9373 /* Clear migration record */
9374 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9375 }
819bc634
AK
9376 if (tofree)
9377 *space_list = tofree;
2e5dc010
N
9378 ret_val = 1;
9379
9380update_reshape_exit:
9381
9382 return ret_val;
9383}
9384
bb025c2f 9385static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9386 struct intel_super *super,
9387 void ***space_list)
bb025c2f
KW
9388{
9389 struct imsm_dev *dev = NULL;
8ca6df95
KW
9390 struct intel_dev *dv;
9391 struct imsm_dev *dev_new;
bb025c2f
KW
9392 struct imsm_map *map;
9393 struct dl *dm, *du;
8ca6df95 9394 int i;
bb025c2f
KW
9395
9396 for (dv = super->devlist; dv; dv = dv->next)
9397 if (dv->index == (unsigned int)u->subarray) {
9398 dev = dv->dev;
9399 break;
9400 }
9401
9402 if (dev == NULL)
9403 return 0;
9404
238c0a71 9405 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9406
9407 if (u->direction == R10_TO_R0) {
06fb291a
PB
9408 unsigned long long num_data_stripes;
9409
9410 map->num_domains = 1;
9411 num_data_stripes = blocks_per_member(map);
9412 num_data_stripes /= map->blocks_per_strip;
9413 num_data_stripes /= map->num_domains;
9414 set_num_data_stripes(map, num_data_stripes);
9415
43d5ec18 9416 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9417 if (imsm_count_failed(super, dev, MAP_0) !=
9418 (map->num_members / 2))
43d5ec18
KW
9419 return 0;
9420
bb025c2f
KW
9421 /* iterate through devices to mark removed disks as spare */
9422 for (dm = super->disks; dm; dm = dm->next) {
9423 if (dm->disk.status & FAILED_DISK) {
9424 int idx = dm->index;
9425 /* update indexes on the disk list */
9426/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9427 the index values will end up being correct.... NB */
9428 for (du = super->disks; du; du = du->next)
9429 if (du->index > idx)
9430 du->index--;
9431 /* mark as spare disk */
a8619d23 9432 mark_spare(dm);
bb025c2f
KW
9433 }
9434 }
bb025c2f
KW
9435 /* update map */
9436 map->num_members = map->num_members / 2;
9437 map->map_state = IMSM_T_STATE_NORMAL;
9438 map->num_domains = 1;
9439 map->raid_level = 0;
9440 map->failed_disk_num = -1;
9441 }
9442
8ca6df95
KW
9443 if (u->direction == R0_TO_R10) {
9444 void **space;
9445 /* update slots in current disk list */
9446 for (dm = super->disks; dm; dm = dm->next) {
9447 if (dm->index >= 0)
9448 dm->index *= 2;
9449 }
9450 /* create new *missing* disks */
9451 for (i = 0; i < map->num_members; i++) {
9452 space = *space_list;
9453 if (!space)
9454 continue;
9455 *space_list = *space;
9456 du = (void *)space;
9457 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9458 du->fd = -1;
9459 du->minor = 0;
9460 du->major = 0;
9461 du->index = (i * 2) + 1;
9462 sprintf((char *)du->disk.serial,
9463 " MISSING_%d", du->index);
9464 sprintf((char *)du->serial,
9465 "MISSING_%d", du->index);
9466 du->next = super->missing;
9467 super->missing = du;
9468 }
9469 /* create new dev and map */
9470 space = *space_list;
9471 if (!space)
9472 return 0;
9473 *space_list = *space;
9474 dev_new = (void *)space;
9475 memcpy(dev_new, dev, sizeof(*dev));
9476 /* update new map */
238c0a71 9477 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 9478 map->num_members = map->num_members * 2;
1a2487c2 9479 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
9480 map->num_domains = 2;
9481 map->raid_level = 1;
9482 /* replace dev<->dev_new */
9483 dv->dev = dev_new;
9484 }
bb025c2f
KW
9485 /* update disk order table */
9486 for (du = super->disks; du; du = du->next)
9487 if (du->index >= 0)
9488 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9489 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9490 if (du->index >= 0) {
9491 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9492 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9493 }
bb025c2f
KW
9494
9495 return 1;
9496}
9497
e8319a19
DW
9498static void imsm_process_update(struct supertype *st,
9499 struct metadata_update *update)
9500{
9501 /**
9502 * crack open the metadata_update envelope to find the update record
9503 * update can be one of:
d195167d
AK
9504 * update_reshape_container_disks - all the arrays in the container
9505 * are being reshaped to have more devices. We need to mark
9506 * the arrays for general migration and convert selected spares
9507 * into active devices.
9508 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9509 * device in an array, update the disk_ord_tbl. If this disk is
9510 * present in all member arrays then also clear the SPARE_DISK
9511 * flag
d195167d
AK
9512 * update_create_array
9513 * update_kill_array
9514 * update_rename_array
9515 * update_add_remove_disk
e8319a19
DW
9516 */
9517 struct intel_super *super = st->sb;
4d7b1503 9518 struct imsm_super *mpb;
e8319a19
DW
9519 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9520
4d7b1503
DW
9521 /* update requires a larger buf but the allocation failed */
9522 if (super->next_len && !super->next_buf) {
9523 super->next_len = 0;
9524 return;
9525 }
9526
9527 if (super->next_buf) {
9528 memcpy(super->next_buf, super->buf, super->len);
9529 free(super->buf);
9530 super->len = super->next_len;
9531 super->buf = super->next_buf;
9532
9533 super->next_len = 0;
9534 super->next_buf = NULL;
9535 }
9536
9537 mpb = super->anchor;
9538
e8319a19 9539 switch (type) {
0ec5d470
AK
9540 case update_general_migration_checkpoint: {
9541 struct intel_dev *id;
9542 struct imsm_update_general_migration_checkpoint *u =
9543 (void *)update->buf;
9544
1ade5cc1 9545 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9546
9547 /* find device under general migration */
9548 for (id = super->devlist ; id; id = id->next) {
9549 if (is_gen_migration(id->dev)) {
9550 id->dev->vol.curr_migr_unit =
9551 __cpu_to_le32(u->curr_migr_unit);
9552 super->updates_pending++;
9553 }
9554 }
9555 break;
9556 }
bb025c2f
KW
9557 case update_takeover: {
9558 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9559 if (apply_takeover_update(u, super, &update->space_list)) {
9560 imsm_update_version_info(super);
bb025c2f 9561 super->updates_pending++;
1a2487c2 9562 }
bb025c2f
KW
9563 break;
9564 }
9565
78b10e66 9566 case update_reshape_container_disks: {
d195167d 9567 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9568 if (apply_reshape_container_disks_update(
9569 u, super, &update->space_list))
9570 super->updates_pending++;
78b10e66
N
9571 break;
9572 }
48c5303a 9573 case update_reshape_migration: {
a29911da
PC
9574 struct imsm_update_reshape_migration *u = (void *)update->buf;
9575 if (apply_reshape_migration_update(
9576 u, super, &update->space_list))
9577 super->updates_pending++;
48c5303a
PC
9578 break;
9579 }
f3871fdc
AK
9580 case update_size_change: {
9581 struct imsm_update_size_change *u = (void *)update->buf;
9582 if (apply_size_change_update(u, super))
9583 super->updates_pending++;
9584 break;
9585 }
e8319a19 9586 case update_activate_spare: {
1011e834 9587 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
9588 if (apply_update_activate_spare(u, super, st->arrays))
9589 super->updates_pending++;
8273f55e
DW
9590 break;
9591 }
9592 case update_create_array: {
9593 /* someone wants to create a new array, we need to be aware of
9594 * a few races/collisions:
9595 * 1/ 'Create' called by two separate instances of mdadm
9596 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9597 * devices that have since been assimilated via
9598 * activate_spare.
9599 * In the event this update can not be carried out mdadm will
9600 * (FIX ME) notice that its update did not take hold.
9601 */
9602 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9603 struct intel_dev *dv;
8273f55e
DW
9604 struct imsm_dev *dev;
9605 struct imsm_map *map, *new_map;
9606 unsigned long long start, end;
9607 unsigned long long new_start, new_end;
9608 int i;
54c2c1ea
DW
9609 struct disk_info *inf;
9610 struct dl *dl;
8273f55e
DW
9611
9612 /* handle racing creates: first come first serve */
9613 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 9614 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 9615 goto create_error;
8273f55e
DW
9616 }
9617
9618 /* check update is next in sequence */
9619 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
9620 dprintf("can not create array %d expected index %d\n",
9621 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 9622 goto create_error;
8273f55e
DW
9623 }
9624
238c0a71 9625 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
9626 new_start = pba_of_lba0(new_map);
9627 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 9628 inf = get_disk_info(u);
8273f55e
DW
9629
9630 /* handle activate_spare versus create race:
9631 * check to make sure that overlapping arrays do not include
9632 * overalpping disks
9633 */
9634 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 9635 dev = get_imsm_dev(super, i);
238c0a71 9636 map = get_imsm_map(dev, MAP_0);
5551b113
CA
9637 start = pba_of_lba0(map);
9638 end = start + blocks_per_member(map);
8273f55e
DW
9639 if ((new_start >= start && new_start <= end) ||
9640 (start >= new_start && start <= new_end))
54c2c1ea
DW
9641 /* overlap */;
9642 else
9643 continue;
9644
9645 if (disks_overlap(super, i, u)) {
1ade5cc1 9646 dprintf("arrays overlap\n");
ba2de7ba 9647 goto create_error;
8273f55e
DW
9648 }
9649 }
8273f55e 9650
949c47a0
DW
9651 /* check that prepare update was successful */
9652 if (!update->space) {
1ade5cc1 9653 dprintf("prepare update failed\n");
ba2de7ba 9654 goto create_error;
949c47a0
DW
9655 }
9656
54c2c1ea
DW
9657 /* check that all disks are still active before committing
9658 * changes. FIXME: could we instead handle this by creating a
9659 * degraded array? That's probably not what the user expects,
9660 * so better to drop this update on the floor.
9661 */
9662 for (i = 0; i < new_map->num_members; i++) {
9663 dl = serial_to_dl(inf[i].serial, super);
9664 if (!dl) {
1ade5cc1 9665 dprintf("disk disappeared\n");
ba2de7ba 9666 goto create_error;
54c2c1ea 9667 }
949c47a0
DW
9668 }
9669
8273f55e 9670 super->updates_pending++;
54c2c1ea
DW
9671
9672 /* convert spares to members and fixup ord_tbl */
9673 for (i = 0; i < new_map->num_members; i++) {
9674 dl = serial_to_dl(inf[i].serial, super);
9675 if (dl->index == -1) {
9676 dl->index = mpb->num_disks;
9677 mpb->num_disks++;
9678 dl->disk.status |= CONFIGURED_DISK;
9679 dl->disk.status &= ~SPARE_DISK;
9680 }
9681 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9682 }
9683
ba2de7ba
DW
9684 dv = update->space;
9685 dev = dv->dev;
949c47a0
DW
9686 update->space = NULL;
9687 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
9688 dv->index = u->dev_idx;
9689 dv->next = super->devlist;
9690 super->devlist = dv;
8273f55e 9691 mpb->num_raid_devs++;
8273f55e 9692
4d1313e9 9693 imsm_update_version_info(super);
8273f55e 9694 break;
ba2de7ba
DW
9695 create_error:
9696 /* mdmon knows how to release update->space, but not
9697 * ((struct intel_dev *) update->space)->dev
9698 */
9699 if (update->space) {
9700 dv = update->space;
9701 free(dv->dev);
9702 }
8273f55e 9703 break;
e8319a19 9704 }
33414a01
DW
9705 case update_kill_array: {
9706 struct imsm_update_kill_array *u = (void *) update->buf;
9707 int victim = u->dev_idx;
9708 struct active_array *a;
9709 struct intel_dev **dp;
9710 struct imsm_dev *dev;
9711
9712 /* sanity check that we are not affecting the uuid of
9713 * active arrays, or deleting an active array
9714 *
9715 * FIXME when immutable ids are available, but note that
9716 * we'll also need to fixup the invalidated/active
9717 * subarray indexes in mdstat
9718 */
9719 for (a = st->arrays; a; a = a->next)
9720 if (a->info.container_member >= victim)
9721 break;
9722 /* by definition if mdmon is running at least one array
9723 * is active in the container, so checking
9724 * mpb->num_raid_devs is just extra paranoia
9725 */
9726 dev = get_imsm_dev(super, victim);
9727 if (a || !dev || mpb->num_raid_devs == 1) {
9728 dprintf("failed to delete subarray-%d\n", victim);
9729 break;
9730 }
9731
9732 for (dp = &super->devlist; *dp;)
f21e18ca 9733 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
9734 *dp = (*dp)->next;
9735 } else {
f21e18ca 9736 if ((*dp)->index > (unsigned)victim)
33414a01
DW
9737 (*dp)->index--;
9738 dp = &(*dp)->next;
9739 }
9740 mpb->num_raid_devs--;
9741 super->updates_pending++;
9742 break;
9743 }
aa534678
DW
9744 case update_rename_array: {
9745 struct imsm_update_rename_array *u = (void *) update->buf;
9746 char name[MAX_RAID_SERIAL_LEN+1];
9747 int target = u->dev_idx;
9748 struct active_array *a;
9749 struct imsm_dev *dev;
9750
9751 /* sanity check that we are not affecting the uuid of
9752 * an active array
9753 */
9754 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9755 name[MAX_RAID_SERIAL_LEN] = '\0';
9756 for (a = st->arrays; a; a = a->next)
9757 if (a->info.container_member == target)
9758 break;
9759 dev = get_imsm_dev(super, u->dev_idx);
9760 if (a || !dev || !check_name(super, name, 1)) {
9761 dprintf("failed to rename subarray-%d\n", target);
9762 break;
9763 }
9764
cdbe98cd 9765 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
9766 super->updates_pending++;
9767 break;
9768 }
1a64be56 9769 case update_add_remove_disk: {
43dad3d6 9770 /* we may be able to repair some arrays if disks are
095b8088 9771 * being added, check the status of add_remove_disk
1a64be56
LM
9772 * if discs has been added.
9773 */
9774 if (add_remove_disk_update(super)) {
43dad3d6 9775 struct active_array *a;
072b727f
DW
9776
9777 super->updates_pending++;
1a64be56 9778 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
9779 a->check_degraded = 1;
9780 }
43dad3d6 9781 break;
e8319a19 9782 }
bbab0940
TM
9783 case update_prealloc_badblocks_mem:
9784 break;
e6e9dd3f
AP
9785 case update_rwh_policy: {
9786 struct imsm_update_rwh_policy *u = (void *)update->buf;
9787 int target = u->dev_idx;
9788 struct imsm_dev *dev = get_imsm_dev(super, target);
9789 if (!dev) {
9790 dprintf("could not find subarray-%d\n", target);
9791 break;
9792 }
9793
9794 if (dev->rwh_policy != u->new_policy) {
9795 dev->rwh_policy = u->new_policy;
9796 super->updates_pending++;
9797 }
9798 break;
9799 }
1a64be56 9800 default:
7a862a02 9801 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 9802 }
e8319a19 9803}
88758e9d 9804
bc0b9d34
PC
9805static struct mdinfo *get_spares_for_grow(struct supertype *st);
9806
5fe6f031
N
9807static int imsm_prepare_update(struct supertype *st,
9808 struct metadata_update *update)
8273f55e 9809{
949c47a0 9810 /**
4d7b1503
DW
9811 * Allocate space to hold new disk entries, raid-device entries or a new
9812 * mpb if necessary. The manager synchronously waits for updates to
9813 * complete in the monitor, so new mpb buffers allocated here can be
9814 * integrated by the monitor thread without worrying about live pointers
9815 * in the manager thread.
8273f55e 9816 */
095b8088 9817 enum imsm_update_type type;
4d7b1503 9818 struct intel_super *super = st->sb;
f36a9ecd 9819 unsigned int sector_size = super->sector_size;
4d7b1503
DW
9820 struct imsm_super *mpb = super->anchor;
9821 size_t buf_len;
9822 size_t len = 0;
949c47a0 9823
095b8088
N
9824 if (update->len < (int)sizeof(type))
9825 return 0;
9826
9827 type = *(enum imsm_update_type *) update->buf;
9828
949c47a0 9829 switch (type) {
0ec5d470 9830 case update_general_migration_checkpoint:
095b8088
N
9831 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9832 return 0;
1ade5cc1 9833 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 9834 break;
abedf5fc
KW
9835 case update_takeover: {
9836 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
9837 if (update->len < (int)sizeof(*u))
9838 return 0;
abedf5fc
KW
9839 if (u->direction == R0_TO_R10) {
9840 void **tail = (void **)&update->space_list;
9841 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 9842 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
9843 int num_members = map->num_members;
9844 void *space;
9845 int size, i;
abedf5fc
KW
9846 /* allocate memory for added disks */
9847 for (i = 0; i < num_members; i++) {
9848 size = sizeof(struct dl);
503975b9 9849 space = xmalloc(size);
abedf5fc
KW
9850 *tail = space;
9851 tail = space;
9852 *tail = NULL;
9853 }
9854 /* allocate memory for new device */
9855 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9856 (num_members * sizeof(__u32));
503975b9
N
9857 space = xmalloc(size);
9858 *tail = space;
9859 tail = space;
9860 *tail = NULL;
9861 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
9862 }
9863
9864 break;
9865 }
78b10e66 9866 case update_reshape_container_disks: {
d195167d
AK
9867 /* Every raid device in the container is about to
9868 * gain some more devices, and we will enter a
9869 * reconfiguration.
9870 * So each 'imsm_map' will be bigger, and the imsm_vol
9871 * will now hold 2 of them.
9872 * Thus we need new 'struct imsm_dev' allocations sized
9873 * as sizeof_imsm_dev but with more devices in both maps.
9874 */
9875 struct imsm_update_reshape *u = (void *)update->buf;
9876 struct intel_dev *dl;
9877 void **space_tail = (void**)&update->space_list;
9878
095b8088
N
9879 if (update->len < (int)sizeof(*u))
9880 return 0;
9881
1ade5cc1 9882 dprintf("for update_reshape\n");
d195167d
AK
9883
9884 for (dl = super->devlist; dl; dl = dl->next) {
9885 int size = sizeof_imsm_dev(dl->dev, 1);
9886 void *s;
d677e0b8
AK
9887 if (u->new_raid_disks > u->old_raid_disks)
9888 size += sizeof(__u32)*2*
9889 (u->new_raid_disks - u->old_raid_disks);
503975b9 9890 s = xmalloc(size);
d195167d
AK
9891 *space_tail = s;
9892 space_tail = s;
9893 *space_tail = NULL;
9894 }
9895
9896 len = disks_to_mpb_size(u->new_raid_disks);
9897 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
9898 break;
9899 }
48c5303a 9900 case update_reshape_migration: {
bc0b9d34
PC
9901 /* for migration level 0->5 we need to add disks
9902 * so the same as for container operation we will copy
9903 * device to the bigger location.
9904 * in memory prepared device and new disk area are prepared
9905 * for usage in process update
9906 */
9907 struct imsm_update_reshape_migration *u = (void *)update->buf;
9908 struct intel_dev *id;
9909 void **space_tail = (void **)&update->space_list;
9910 int size;
9911 void *s;
9912 int current_level = -1;
9913
095b8088
N
9914 if (update->len < (int)sizeof(*u))
9915 return 0;
9916
1ade5cc1 9917 dprintf("for update_reshape\n");
bc0b9d34
PC
9918
9919 /* add space for bigger array in update
9920 */
9921 for (id = super->devlist; id; id = id->next) {
9922 if (id->index == (unsigned)u->subdev) {
9923 size = sizeof_imsm_dev(id->dev, 1);
9924 if (u->new_raid_disks > u->old_raid_disks)
9925 size += sizeof(__u32)*2*
9926 (u->new_raid_disks - u->old_raid_disks);
503975b9 9927 s = xmalloc(size);
bc0b9d34
PC
9928 *space_tail = s;
9929 space_tail = s;
9930 *space_tail = NULL;
9931 break;
9932 }
9933 }
9934 if (update->space_list == NULL)
9935 break;
9936
9937 /* add space for disk in update
9938 */
9939 size = sizeof(struct dl);
503975b9 9940 s = xmalloc(size);
bc0b9d34
PC
9941 *space_tail = s;
9942 space_tail = s;
9943 *space_tail = NULL;
9944
9945 /* add spare device to update
9946 */
9947 for (id = super->devlist ; id; id = id->next)
9948 if (id->index == (unsigned)u->subdev) {
9949 struct imsm_dev *dev;
9950 struct imsm_map *map;
9951
9952 dev = get_imsm_dev(super, u->subdev);
238c0a71 9953 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
9954 current_level = map->raid_level;
9955 break;
9956 }
089f9d79 9957 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
9958 struct mdinfo *spares;
9959
9960 spares = get_spares_for_grow(st);
9961 if (spares) {
9962 struct dl *dl;
9963 struct mdinfo *dev;
9964
9965 dev = spares->devs;
9966 if (dev) {
9967 u->new_disks[0] =
9968 makedev(dev->disk.major,
9969 dev->disk.minor);
9970 dl = get_disk_super(super,
9971 dev->disk.major,
9972 dev->disk.minor);
9973 dl->index = u->old_raid_disks;
9974 dev = dev->next;
9975 }
9976 sysfs_free(spares);
9977 }
9978 }
9979 len = disks_to_mpb_size(u->new_raid_disks);
9980 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
9981 break;
9982 }
f3871fdc 9983 case update_size_change: {
095b8088
N
9984 if (update->len < (int)sizeof(struct imsm_update_size_change))
9985 return 0;
9986 break;
9987 }
9988 case update_activate_spare: {
9989 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9990 return 0;
f3871fdc
AK
9991 break;
9992 }
949c47a0
DW
9993 case update_create_array: {
9994 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9995 struct intel_dev *dv;
54c2c1ea 9996 struct imsm_dev *dev = &u->dev;
238c0a71 9997 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
9998 struct dl *dl;
9999 struct disk_info *inf;
10000 int i;
10001 int activate = 0;
949c47a0 10002
095b8088
N
10003 if (update->len < (int)sizeof(*u))
10004 return 0;
10005
54c2c1ea
DW
10006 inf = get_disk_info(u);
10007 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10008 /* allocate a new super->devlist entry */
503975b9
N
10009 dv = xmalloc(sizeof(*dv));
10010 dv->dev = xmalloc(len);
10011 update->space = dv;
949c47a0 10012
54c2c1ea
DW
10013 /* count how many spares will be converted to members */
10014 for (i = 0; i < map->num_members; i++) {
10015 dl = serial_to_dl(inf[i].serial, super);
10016 if (!dl) {
10017 /* hmm maybe it failed?, nothing we can do about
10018 * it here
10019 */
10020 continue;
10021 }
10022 if (count_memberships(dl, super) == 0)
10023 activate++;
10024 }
10025 len += activate * sizeof(struct imsm_disk);
949c47a0 10026 break;
095b8088
N
10027 }
10028 case update_kill_array: {
10029 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10030 return 0;
949c47a0
DW
10031 break;
10032 }
095b8088
N
10033 case update_rename_array: {
10034 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10035 return 0;
10036 break;
10037 }
10038 case update_add_remove_disk:
10039 /* no update->len needed */
10040 break;
bbab0940
TM
10041 case update_prealloc_badblocks_mem:
10042 super->extra_space += sizeof(struct bbm_log) -
10043 get_imsm_bbm_log_size(super->bbm_log);
10044 break;
e6e9dd3f
AP
10045 case update_rwh_policy: {
10046 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10047 return 0;
10048 break;
10049 }
095b8088
N
10050 default:
10051 return 0;
949c47a0 10052 }
8273f55e 10053
4d7b1503
DW
10054 /* check if we need a larger metadata buffer */
10055 if (super->next_buf)
10056 buf_len = super->next_len;
10057 else
10058 buf_len = super->len;
10059
bbab0940 10060 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10061 /* ok we need a larger buf than what is currently allocated
10062 * if this allocation fails process_update will notice that
10063 * ->next_len is set and ->next_buf is NULL
10064 */
bbab0940
TM
10065 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10066 super->extra_space + len, sector_size);
4d7b1503
DW
10067 if (super->next_buf)
10068 free(super->next_buf);
10069
10070 super->next_len = buf_len;
f36a9ecd 10071 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10072 memset(super->next_buf, 0, buf_len);
10073 else
4d7b1503
DW
10074 super->next_buf = NULL;
10075 }
5fe6f031 10076 return 1;
8273f55e
DW
10077}
10078
ae6aad82 10079/* must be called while manager is quiesced */
f21e18ca 10080static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10081{
10082 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10083 struct dl *iter;
10084 struct imsm_dev *dev;
10085 struct imsm_map *map;
4c9e8c1e 10086 unsigned int i, j, num_members;
fb12a745 10087 __u32 ord, ord_map0;
4c9e8c1e 10088 struct bbm_log *log = super->bbm_log;
ae6aad82 10089
1ade5cc1 10090 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10091
10092 /* shift all indexes down one */
10093 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10094 if (iter->index > (int)index)
ae6aad82 10095 iter->index--;
47ee5a45 10096 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10097 if (iter->index > (int)index)
47ee5a45 10098 iter->index--;
ae6aad82
DW
10099
10100 for (i = 0; i < mpb->num_raid_devs; i++) {
10101 dev = get_imsm_dev(super, i);
238c0a71 10102 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10103 num_members = map->num_members;
10104 for (j = 0; j < num_members; j++) {
10105 /* update ord entries being careful not to propagate
10106 * ord-flags to the first map
10107 */
238c0a71 10108 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10109 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10110
24565c9a
DW
10111 if (ord_to_idx(ord) <= index)
10112 continue;
ae6aad82 10113
238c0a71 10114 map = get_imsm_map(dev, MAP_0);
fb12a745 10115 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10116 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10117 if (map)
10118 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10119 }
10120 }
10121
4c9e8c1e
TM
10122 for (i = 0; i < log->entry_count; i++) {
10123 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10124
10125 if (entry->disk_ordinal <= index)
10126 continue;
10127 entry->disk_ordinal--;
10128 }
10129
ae6aad82
DW
10130 mpb->num_disks--;
10131 super->updates_pending++;
24565c9a
DW
10132 if (*dlp) {
10133 struct dl *dl = *dlp;
10134
10135 *dlp = (*dlp)->next;
10136 __free_imsm_disk(dl);
10137 }
ae6aad82 10138}
9a717282
AK
10139
10140static void close_targets(int *targets, int new_disks)
10141{
10142 int i;
10143
10144 if (!targets)
10145 return;
10146
10147 for (i = 0; i < new_disks; i++) {
10148 if (targets[i] >= 0) {
10149 close(targets[i]);
10150 targets[i] = -1;
10151 }
10152 }
10153}
10154
10155static int imsm_get_allowed_degradation(int level, int raid_disks,
10156 struct intel_super *super,
10157 struct imsm_dev *dev)
10158{
10159 switch (level) {
bf5cf7c7 10160 case 1:
9a717282
AK
10161 case 10:{
10162 int ret_val = 0;
10163 struct imsm_map *map;
10164 int i;
10165
10166 ret_val = raid_disks/2;
10167 /* check map if all disks pairs not failed
10168 * in both maps
10169 */
238c0a71 10170 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10171 for (i = 0; i < ret_val; i++) {
10172 int degradation = 0;
10173 if (get_imsm_disk(super, i) == NULL)
10174 degradation++;
10175 if (get_imsm_disk(super, i + 1) == NULL)
10176 degradation++;
10177 if (degradation == 2)
10178 return 0;
10179 }
238c0a71 10180 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10181 /* if there is no second map
10182 * result can be returned
10183 */
10184 if (map == NULL)
10185 return ret_val;
10186 /* check degradation in second map
10187 */
10188 for (i = 0; i < ret_val; i++) {
10189 int degradation = 0;
10190 if (get_imsm_disk(super, i) == NULL)
10191 degradation++;
10192 if (get_imsm_disk(super, i + 1) == NULL)
10193 degradation++;
10194 if (degradation == 2)
10195 return 0;
10196 }
10197 return ret_val;
10198 }
10199 case 5:
10200 return 1;
10201 case 6:
10202 return 2;
10203 default:
10204 return 0;
10205 }
10206}
10207
687629c2
AK
10208/*******************************************************************************
10209 * Function: open_backup_targets
10210 * Description: Function opens file descriptors for all devices given in
10211 * info->devs
10212 * Parameters:
10213 * info : general array info
10214 * raid_disks : number of disks
10215 * raid_fds : table of device's file descriptors
9a717282
AK
10216 * super : intel super for raid10 degradation check
10217 * dev : intel device for raid10 degradation check
687629c2
AK
10218 * Returns:
10219 * 0 : success
10220 * -1 : fail
10221 ******************************************************************************/
9a717282
AK
10222int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10223 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
10224{
10225 struct mdinfo *sd;
f627f5ad 10226 int i;
9a717282 10227 int opened = 0;
f627f5ad
AK
10228
10229 for (i = 0; i < raid_disks; i++)
10230 raid_fds[i] = -1;
687629c2
AK
10231
10232 for (sd = info->devs ; sd ; sd = sd->next) {
10233 char *dn;
10234
10235 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10236 dprintf("disk is faulty!!\n");
10237 continue;
10238 }
10239
089f9d79 10240 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
687629c2
AK
10241 continue;
10242
10243 dn = map_dev(sd->disk.major,
10244 sd->disk.minor, 1);
10245 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10246 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 10247 pr_err("cannot open component\n");
9a717282 10248 continue;
687629c2 10249 }
9a717282
AK
10250 opened++;
10251 }
10252 /* check if maximum array degradation level is not exceeded
10253 */
10254 if ((raid_disks - opened) >
089f9d79
JS
10255 imsm_get_allowed_degradation(info->new_level, raid_disks,
10256 super, dev)) {
e12b3daa 10257 pr_err("Not enough disks can be opened.\n");
9a717282
AK
10258 close_targets(raid_fds, raid_disks);
10259 return -2;
687629c2
AK
10260 }
10261 return 0;
10262}
10263
d31ad643
PB
10264/*******************************************************************************
10265 * Function: validate_container_imsm
10266 * Description: This routine validates container after assemble,
10267 * eg. if devices in container are under the same controller.
10268 *
10269 * Parameters:
10270 * info : linked list with info about devices used in array
10271 * Returns:
10272 * 1 : HBA mismatch
10273 * 0 : Success
10274 ******************************************************************************/
10275int validate_container_imsm(struct mdinfo *info)
10276{
6b781d33
AP
10277 if (check_env("IMSM_NO_PLATFORM"))
10278 return 0;
d31ad643 10279
6b781d33
AP
10280 struct sys_dev *idev;
10281 struct sys_dev *hba = NULL;
10282 struct sys_dev *intel_devices = find_intel_devices();
10283 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10284 info->disk.minor));
10285
10286 for (idev = intel_devices; idev; idev = idev->next) {
10287 if (dev_path && strstr(dev_path, idev->path)) {
10288 hba = idev;
10289 break;
d31ad643 10290 }
6b781d33
AP
10291 }
10292 if (dev_path)
d31ad643
PB
10293 free(dev_path);
10294
6b781d33
AP
10295 if (!hba) {
10296 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10297 devid2kname(makedev(info->disk.major, info->disk.minor)));
10298 return 1;
10299 }
10300
10301 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10302 struct mdinfo *dev;
10303
10304 for (dev = info->next; dev; dev = dev->next) {
10305 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10306
10307 struct sys_dev *hba2 = NULL;
10308 for (idev = intel_devices; idev; idev = idev->next) {
10309 if (dev_path && strstr(dev_path, idev->path)) {
10310 hba2 = idev;
10311 break;
d31ad643
PB
10312 }
10313 }
6b781d33
AP
10314 if (dev_path)
10315 free(dev_path);
10316
10317 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10318 get_orom_by_device_id(hba2->dev_id);
10319
10320 if (hba2 && hba->type != hba2->type) {
10321 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10322 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10323 return 1;
10324 }
10325
07cb1e57 10326 if (orom != orom2) {
6b781d33
AP
10327 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10328 " This operation is not supported and can lead to data loss.\n");
10329 return 1;
10330 }
10331
10332 if (!orom) {
10333 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10334 " This operation is not supported and can lead to data loss.\n");
10335 return 1;
10336 }
d31ad643 10337 }
6b781d33 10338
d31ad643
PB
10339 return 0;
10340}
32141c17 10341
6f50473f
TM
10342/*******************************************************************************
10343* Function: imsm_record_badblock
10344* Description: This routine stores new bad block record in BBM log
10345*
10346* Parameters:
10347* a : array containing a bad block
10348* slot : disk number containing a bad block
10349* sector : bad block sector
10350* length : bad block sectors range
10351* Returns:
10352* 1 : Success
10353* 0 : Error
10354******************************************************************************/
10355static int imsm_record_badblock(struct active_array *a, int slot,
10356 unsigned long long sector, int length)
10357{
10358 struct intel_super *super = a->container->sb;
10359 int ord;
10360 int ret;
10361
10362 ord = imsm_disk_slot_to_ord(a, slot);
10363 if (ord < 0)
10364 return 0;
10365
10366 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10367 length);
10368 if (ret)
10369 super->updates_pending++;
10370
10371 return ret;
10372}
c07a5a4f
TM
10373/*******************************************************************************
10374* Function: imsm_clear_badblock
10375* Description: This routine clears bad block record from BBM log
10376*
10377* Parameters:
10378* a : array containing a bad block
10379* slot : disk number containing a bad block
10380* sector : bad block sector
10381* length : bad block sectors range
10382* Returns:
10383* 1 : Success
10384* 0 : Error
10385******************************************************************************/
10386static int imsm_clear_badblock(struct active_array *a, int slot,
10387 unsigned long long sector, int length)
10388{
10389 struct intel_super *super = a->container->sb;
10390 int ord;
10391 int ret;
10392
10393 ord = imsm_disk_slot_to_ord(a, slot);
10394 if (ord < 0)
10395 return 0;
10396
10397 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10398 if (ret)
10399 super->updates_pending++;
10400
10401 return ret;
10402}
928f1424
TM
10403/*******************************************************************************
10404* Function: imsm_get_badblocks
10405* Description: This routine get list of bad blocks for an array
10406*
10407* Parameters:
10408* a : array
10409* slot : disk number
10410* Returns:
10411* bb : structure containing bad blocks
10412* NULL : error
10413******************************************************************************/
10414static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10415{
10416 int inst = a->info.container_member;
10417 struct intel_super *super = a->container->sb;
10418 struct imsm_dev *dev = get_imsm_dev(super, inst);
10419 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10420 int ord;
10421
10422 ord = imsm_disk_slot_to_ord(a, slot);
10423 if (ord < 0)
10424 return NULL;
10425
10426 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10427 blocks_per_member(map), &super->bb);
10428
10429 return &super->bb;
10430}
27156a57
TM
10431/*******************************************************************************
10432* Function: examine_badblocks_imsm
10433* Description: Prints list of bad blocks on a disk to the standard output
10434*
10435* Parameters:
10436* st : metadata handler
10437* fd : open file descriptor for device
10438* devname : device name
10439* Returns:
10440* 0 : Success
10441* 1 : Error
10442******************************************************************************/
10443static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10444{
10445 struct intel_super *super = st->sb;
10446 struct bbm_log *log = super->bbm_log;
10447 struct dl *d = NULL;
10448 int any = 0;
10449
10450 for (d = super->disks; d ; d = d->next) {
10451 if (strcmp(d->devname, devname) == 0)
10452 break;
10453 }
10454
10455 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10456 pr_err("%s doesn't appear to be part of a raid array\n",
10457 devname);
10458 return 1;
10459 }
10460
10461 if (log != NULL) {
10462 unsigned int i;
10463 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10464
10465 for (i = 0; i < log->entry_count; i++) {
10466 if (entry[i].disk_ordinal == d->index) {
10467 unsigned long long sector = __le48_to_cpu(
10468 &entry[i].defective_block_start);
10469 int cnt = entry[i].marked_count + 1;
10470
10471 if (!any) {
10472 printf("Bad-blocks on %s:\n", devname);
10473 any = 1;
10474 }
10475
10476 printf("%20llu for %d sectors\n", sector, cnt);
10477 }
10478 }
10479 }
10480
10481 if (!any)
10482 printf("No bad-blocks list configured on %s\n", devname);
10483
10484 return 0;
10485}
687629c2
AK
10486/*******************************************************************************
10487 * Function: init_migr_record_imsm
10488 * Description: Function inits imsm migration record
10489 * Parameters:
10490 * super : imsm internal array info
10491 * dev : device under migration
10492 * info : general array info to find the smallest device
10493 * Returns:
10494 * none
10495 ******************************************************************************/
10496void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10497 struct mdinfo *info)
10498{
10499 struct intel_super *super = st->sb;
10500 struct migr_record *migr_rec = super->migr_rec;
10501 int new_data_disks;
10502 unsigned long long dsize, dev_sectors;
10503 long long unsigned min_dev_sectors = -1LLU;
10504 struct mdinfo *sd;
10505 char nm[30];
10506 int fd;
238c0a71
AK
10507 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10508 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10509 unsigned long long num_migr_units;
3ef4403c 10510 unsigned long long array_blocks;
687629c2
AK
10511
10512 memset(migr_rec, 0, sizeof(struct migr_record));
10513 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10514
10515 /* only ascending reshape supported now */
10516 migr_rec->ascending_migr = __cpu_to_le32(1);
10517
10518 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10519 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10520 migr_rec->dest_depth_per_unit *=
10521 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 10522 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
10523 migr_rec->blocks_per_unit =
10524 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10525 migr_rec->dest_depth_per_unit =
10526 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10527 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10528 num_migr_units =
10529 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10530
10531 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10532 num_migr_units++;
10533 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10534
10535 migr_rec->post_migr_vol_cap = dev->size_low;
10536 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10537
687629c2
AK
10538 /* Find the smallest dev */
10539 for (sd = info->devs ; sd ; sd = sd->next) {
10540 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10541 fd = dev_open(nm, O_RDONLY);
10542 if (fd < 0)
10543 continue;
10544 get_dev_size(fd, NULL, &dsize);
10545 dev_sectors = dsize / 512;
10546 if (dev_sectors < min_dev_sectors)
10547 min_dev_sectors = dev_sectors;
10548 close(fd);
10549 }
10550 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10551 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10552
10553 write_imsm_migr_rec(st);
10554
10555 return;
10556}
10557
10558/*******************************************************************************
10559 * Function: save_backup_imsm
10560 * Description: Function saves critical data stripes to Migration Copy Area
10561 * and updates the current migration unit status.
10562 * Use restore_stripes() to form a destination stripe,
10563 * and to write it to the Copy Area.
10564 * Parameters:
10565 * st : supertype information
aea93171 10566 * dev : imsm device that backup is saved for
687629c2
AK
10567 * info : general array info
10568 * buf : input buffer
687629c2
AK
10569 * length : length of data to backup (blocks_per_unit)
10570 * Returns:
10571 * 0 : success
10572 *, -1 : fail
10573 ******************************************************************************/
10574int save_backup_imsm(struct supertype *st,
10575 struct imsm_dev *dev,
10576 struct mdinfo *info,
10577 void *buf,
687629c2
AK
10578 int length)
10579{
10580 int rv = -1;
10581 struct intel_super *super = st->sb;
594dc1b8
JS
10582 unsigned long long *target_offsets;
10583 int *targets;
687629c2 10584 int i;
238c0a71 10585 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10586 int new_disks = map_dest->num_members;
ab724b98
AK
10587 int dest_layout = 0;
10588 int dest_chunk;
d1877f69 10589 unsigned long long start;
238c0a71 10590 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 10591
503975b9 10592 targets = xmalloc(new_disks * sizeof(int));
687629c2 10593
7e45b550
AK
10594 for (i = 0; i < new_disks; i++)
10595 targets[i] = -1;
10596
503975b9 10597 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10598
d1877f69 10599 start = info->reshape_progress * 512;
687629c2 10600 for (i = 0; i < new_disks; i++) {
687629c2
AK
10601 target_offsets[i] = (unsigned long long)
10602 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
10603 /* move back copy area adderss, it will be moved forward
10604 * in restore_stripes() using start input variable
10605 */
10606 target_offsets[i] -= start/data_disks;
687629c2
AK
10607 }
10608
9a717282
AK
10609 if (open_backup_targets(info, new_disks, targets,
10610 super, dev))
687629c2
AK
10611 goto abort;
10612
68eb8bc6 10613 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10614 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10615
687629c2
AK
10616 if (restore_stripes(targets, /* list of dest devices */
10617 target_offsets, /* migration record offsets */
10618 new_disks,
ab724b98
AK
10619 dest_chunk,
10620 map_dest->raid_level,
10621 dest_layout,
10622 -1, /* source backup file descriptor */
10623 0, /* input buf offset
10624 * always 0 buf is already offseted */
d1877f69 10625 start,
687629c2
AK
10626 length,
10627 buf) != 0) {
e7b84f9d 10628 pr_err("Error restoring stripes\n");
687629c2
AK
10629 goto abort;
10630 }
10631
10632 rv = 0;
10633
10634abort:
10635 if (targets) {
9a717282 10636 close_targets(targets, new_disks);
687629c2
AK
10637 free(targets);
10638 }
10639 free(target_offsets);
10640
10641 return rv;
10642}
10643
10644/*******************************************************************************
10645 * Function: save_checkpoint_imsm
10646 * Description: Function called for current unit status update
10647 * in the migration record. It writes it to disk.
10648 * Parameters:
10649 * super : imsm internal array info
10650 * info : general array info
10651 * Returns:
10652 * 0: success
10653 * 1: failure
0228d92c
AK
10654 * 2: failure, means no valid migration record
10655 * / no general migration in progress /
687629c2
AK
10656 ******************************************************************************/
10657int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10658{
10659 struct intel_super *super = st->sb;
f8b72ef5
AK
10660 unsigned long long blocks_per_unit;
10661 unsigned long long curr_migr_unit;
10662
2e062e82 10663 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 10664 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10665 return 1;
10666 }
10667
f8b72ef5
AK
10668 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10669 if (blocks_per_unit == 0) {
0228d92c
AK
10670 dprintf("imsm: no migration in progress.\n");
10671 return 2;
687629c2 10672 }
f8b72ef5
AK
10673 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10674 /* check if array is alligned to copy area
10675 * if it is not alligned, add one to current migration unit value
10676 * this can happend on array reshape finish only
10677 */
10678 if (info->reshape_progress % blocks_per_unit)
10679 curr_migr_unit++;
687629c2
AK
10680
10681 super->migr_rec->curr_migr_unit =
f8b72ef5 10682 __cpu_to_le32(curr_migr_unit);
687629c2
AK
10683 super->migr_rec->rec_status = __cpu_to_le32(state);
10684 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
10685 __cpu_to_le32(curr_migr_unit *
10686 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 10687 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10688 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10689 return 1;
10690 }
10691
10692 return 0;
10693}
10694
276d77db
AK
10695/*******************************************************************************
10696 * Function: recover_backup_imsm
10697 * Description: Function recovers critical data from the Migration Copy Area
10698 * while assembling an array.
10699 * Parameters:
10700 * super : imsm internal array info
10701 * info : general array info
10702 * Returns:
10703 * 0 : success (or there is no data to recover)
10704 * 1 : fail
10705 ******************************************************************************/
10706int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10707{
10708 struct intel_super *super = st->sb;
10709 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 10710 struct imsm_map *map_dest;
276d77db
AK
10711 struct intel_dev *id = NULL;
10712 unsigned long long read_offset;
10713 unsigned long long write_offset;
10714 unsigned unit_len;
10715 int *targets = NULL;
10716 int new_disks, i, err;
10717 char *buf = NULL;
10718 int retval = 1;
f36a9ecd 10719 unsigned int sector_size = super->sector_size;
276d77db
AK
10720 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10721 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 10722 char buffer[20];
6c3560c0 10723 int skipped_disks = 0;
276d77db
AK
10724
10725 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10726 if (err < 1)
10727 return 1;
10728
10729 /* recover data only during assemblation */
10730 if (strncmp(buffer, "inactive", 8) != 0)
10731 return 0;
10732 /* no data to recover */
10733 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10734 return 0;
10735 if (curr_migr_unit >= num_migr_units)
10736 return 1;
10737
10738 /* find device during reshape */
10739 for (id = super->devlist; id; id = id->next)
10740 if (is_gen_migration(id->dev))
10741 break;
10742 if (id == NULL)
10743 return 1;
10744
238c0a71 10745 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
10746 new_disks = map_dest->num_members;
10747
10748 read_offset = (unsigned long long)
10749 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10750
10751 write_offset = ((unsigned long long)
10752 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 10753 pba_of_lba0(map_dest)) * 512;
276d77db
AK
10754
10755 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 10756 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 10757 goto abort;
503975b9 10758 targets = xcalloc(new_disks, sizeof(int));
276d77db 10759
9a717282 10760 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 10761 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
10762 goto abort;
10763 }
276d77db
AK
10764
10765 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
10766 if (targets[i] < 0) {
10767 skipped_disks++;
10768 continue;
10769 }
276d77db 10770 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
10771 pr_err("Cannot seek to block: %s\n",
10772 strerror(errno));
137debce
AK
10773 skipped_disks++;
10774 continue;
276d77db 10775 }
9ec11d1a 10776 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10777 pr_err("Cannot read copy area block: %s\n",
10778 strerror(errno));
137debce
AK
10779 skipped_disks++;
10780 continue;
276d77db
AK
10781 }
10782 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
10783 pr_err("Cannot seek to block: %s\n",
10784 strerror(errno));
137debce
AK
10785 skipped_disks++;
10786 continue;
276d77db 10787 }
9ec11d1a 10788 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10789 pr_err("Cannot restore block: %s\n",
10790 strerror(errno));
137debce
AK
10791 skipped_disks++;
10792 continue;
276d77db
AK
10793 }
10794 }
10795
137debce
AK
10796 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10797 new_disks,
10798 super,
10799 id->dev)) {
7a862a02 10800 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
10801 goto abort;
10802 }
10803
befb629b
AK
10804 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10805 /* ignore error == 2, this can mean end of reshape here
10806 */
7a862a02 10807 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 10808 } else
276d77db 10809 retval = 0;
276d77db
AK
10810
10811abort:
10812 if (targets) {
10813 for (i = 0; i < new_disks; i++)
10814 if (targets[i])
10815 close(targets[i]);
10816 free(targets);
10817 }
10818 free(buf);
10819 return retval;
10820}
10821
2cda7640
ML
10822static char disk_by_path[] = "/dev/disk/by-path/";
10823
10824static const char *imsm_get_disk_controller_domain(const char *path)
10825{
2cda7640 10826 char disk_path[PATH_MAX];
96234762
LM
10827 char *drv=NULL;
10828 struct stat st;
2cda7640 10829
6d8d290a 10830 strcpy(disk_path, disk_by_path);
96234762
LM
10831 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10832 if (stat(disk_path, &st) == 0) {
10833 struct sys_dev* hba;
594dc1b8 10834 char *path;
96234762
LM
10835
10836 path = devt_to_devpath(st.st_rdev);
10837 if (path == NULL)
10838 return "unknown";
10839 hba = find_disk_attached_hba(-1, path);
10840 if (hba && hba->type == SYS_DEV_SAS)
10841 drv = "isci";
10842 else if (hba && hba->type == SYS_DEV_SATA)
10843 drv = "ahci";
c6839718
MT
10844 else if (hba && hba->type == SYS_DEV_VMD)
10845 drv = "vmd";
10846 else if (hba && hba->type == SYS_DEV_NVME)
10847 drv = "nvme";
1011e834 10848 else
96234762
LM
10849 drv = "unknown";
10850 dprintf("path: %s hba: %s attached: %s\n",
10851 path, (hba) ? hba->path : "NULL", drv);
10852 free(path);
2cda7640 10853 }
96234762 10854 return drv;
2cda7640
ML
10855}
10856
4dd2df09 10857static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 10858{
4dd2df09 10859 static char devnm[32];
78b10e66
N
10860 char subdev_name[20];
10861 struct mdstat_ent *mdstat;
10862
10863 sprintf(subdev_name, "%d", subdev);
10864 mdstat = mdstat_by_subdev(subdev_name, container);
10865 if (!mdstat)
4dd2df09 10866 return NULL;
78b10e66 10867
4dd2df09 10868 strcpy(devnm, mdstat->devnm);
78b10e66 10869 free_mdstat(mdstat);
4dd2df09 10870 return devnm;
78b10e66
N
10871}
10872
10873static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10874 struct geo_params *geo,
fbf3d202
AK
10875 int *old_raid_disks,
10876 int direction)
78b10e66 10877{
694575e7
KW
10878 /* currently we only support increasing the number of devices
10879 * for a container. This increases the number of device for each
10880 * member array. They must all be RAID0 or RAID5.
10881 */
78b10e66
N
10882 int ret_val = 0;
10883 struct mdinfo *info, *member;
10884 int devices_that_can_grow = 0;
10885
7a862a02 10886 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 10887
d04f65f4 10888 if (geo->size > 0 ||
78b10e66
N
10889 geo->level != UnSet ||
10890 geo->layout != UnSet ||
10891 geo->chunksize != 0 ||
10892 geo->raid_disks == UnSet) {
7a862a02 10893 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
10894 return ret_val;
10895 }
10896
fbf3d202 10897 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 10898 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
10899 return ret_val;
10900 }
10901
78b10e66
N
10902 info = container_content_imsm(st, NULL);
10903 for (member = info; member; member = member->next) {
4dd2df09 10904 char *result;
78b10e66
N
10905
10906 dprintf("imsm: checking device_num: %i\n",
10907 member->container_member);
10908
d7d205bd 10909 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
10910 /* we work on container for Online Capacity Expansion
10911 * only so raid_disks has to grow
10912 */
7a862a02 10913 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
10914 break;
10915 }
10916
089f9d79 10917 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
10918 /* we cannot use this container with other raid level
10919 */
7a862a02 10920 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
10921 info->array.level);
10922 break;
10923 } else {
10924 /* check for platform support
10925 * for this raid level configuration
10926 */
10927 struct intel_super *super = st->sb;
10928 if (!is_raid_level_supported(super->orom,
10929 member->array.level,
10930 geo->raid_disks)) {
7a862a02 10931 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
10932 info->array.level,
10933 geo->raid_disks,
10934 geo->raid_disks > 1 ? "s" : "");
10935 break;
10936 }
2a4a08e7
AK
10937 /* check if component size is aligned to chunk size
10938 */
10939 if (info->component_size %
10940 (info->array.chunk_size/512)) {
7a862a02 10941 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
10942 break;
10943 }
78b10e66
N
10944 }
10945
10946 if (*old_raid_disks &&
10947 info->array.raid_disks != *old_raid_disks)
10948 break;
10949 *old_raid_disks = info->array.raid_disks;
10950
10951 /* All raid5 and raid0 volumes in container
10952 * have to be ready for Online Capacity Expansion
10953 * so they need to be assembled. We have already
10954 * checked that no recovery etc is happening.
10955 */
4dd2df09
N
10956 result = imsm_find_array_devnm_by_subdev(member->container_member,
10957 st->container_devnm);
10958 if (result == NULL) {
78b10e66
N
10959 dprintf("imsm: cannot find array\n");
10960 break;
10961 }
10962 devices_that_can_grow++;
10963 }
10964 sysfs_free(info);
10965 if (!member && devices_that_can_grow)
10966 ret_val = 1;
10967
10968 if (ret_val)
1ade5cc1 10969 dprintf("Container operation allowed\n");
78b10e66 10970 else
1ade5cc1 10971 dprintf("Error: %i\n", ret_val);
78b10e66
N
10972
10973 return ret_val;
10974}
10975
10976/* Function: get_spares_for_grow
10977 * Description: Allocates memory and creates list of spare devices
1011e834 10978 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
10979 * Parameters: Pointer to the supertype structure
10980 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 10981 * NULL if fail
78b10e66
N
10982 */
10983static struct mdinfo *get_spares_for_grow(struct supertype *st)
10984{
fbfdcb06
AO
10985 struct spare_criteria sc;
10986
10987 get_spare_criteria_imsm(st, &sc);
10988 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
10989}
10990
10991/******************************************************************************
10992 * function: imsm_create_metadata_update_for_reshape
10993 * Function creates update for whole IMSM container.
10994 *
10995 ******************************************************************************/
10996static int imsm_create_metadata_update_for_reshape(
10997 struct supertype *st,
10998 struct geo_params *geo,
10999 int old_raid_disks,
11000 struct imsm_update_reshape **updatep)
11001{
11002 struct intel_super *super = st->sb;
11003 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11004 int update_memory_size;
11005 struct imsm_update_reshape *u;
11006 struct mdinfo *spares;
78b10e66 11007 int i;
594dc1b8 11008 int delta_disks;
bbd24d86 11009 struct mdinfo *dev;
78b10e66 11010
1ade5cc1 11011 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11012
11013 delta_disks = geo->raid_disks - old_raid_disks;
11014
11015 /* size of all update data without anchor */
11016 update_memory_size = sizeof(struct imsm_update_reshape);
11017
11018 /* now add space for spare disks that we need to add. */
11019 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11020
503975b9 11021 u = xcalloc(1, update_memory_size);
78b10e66
N
11022 u->type = update_reshape_container_disks;
11023 u->old_raid_disks = old_raid_disks;
11024 u->new_raid_disks = geo->raid_disks;
11025
11026 /* now get spare disks list
11027 */
11028 spares = get_spares_for_grow(st);
11029
d7be7d87 11030 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11031 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11032 i = -1;
78b10e66
N
11033 goto abort;
11034 }
11035
11036 /* we have got spares
11037 * update disk list in imsm_disk list table in anchor
11038 */
11039 dprintf("imsm: %i spares are available.\n\n",
11040 spares->array.spare_disks);
11041
bbd24d86 11042 dev = spares->devs;
78b10e66 11043 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11044 struct dl *dl;
11045
bbd24d86
AK
11046 if (dev == NULL)
11047 break;
78b10e66
N
11048 u->new_disks[i] = makedev(dev->disk.major,
11049 dev->disk.minor);
11050 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11051 dl->index = mpb->num_disks;
11052 mpb->num_disks++;
bbd24d86 11053 dev = dev->next;
78b10e66 11054 }
78b10e66
N
11055
11056abort:
11057 /* free spares
11058 */
11059 sysfs_free(spares);
11060
d677e0b8 11061 dprintf("imsm: reshape update preparation :");
78b10e66 11062 if (i == delta_disks) {
1ade5cc1 11063 dprintf_cont(" OK\n");
78b10e66
N
11064 *updatep = u;
11065 return update_memory_size;
11066 }
11067 free(u);
1ade5cc1 11068 dprintf_cont(" Error\n");
78b10e66
N
11069
11070 return 0;
11071}
11072
f3871fdc
AK
11073/******************************************************************************
11074 * function: imsm_create_metadata_update_for_size_change()
11075 * Creates update for IMSM array for array size change.
11076 *
11077 ******************************************************************************/
11078static int imsm_create_metadata_update_for_size_change(
11079 struct supertype *st,
11080 struct geo_params *geo,
11081 struct imsm_update_size_change **updatep)
11082{
11083 struct intel_super *super = st->sb;
594dc1b8
JS
11084 int update_memory_size;
11085 struct imsm_update_size_change *u;
f3871fdc 11086
1ade5cc1 11087 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11088
11089 /* size of all update data without anchor */
11090 update_memory_size = sizeof(struct imsm_update_size_change);
11091
503975b9 11092 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11093 u->type = update_size_change;
11094 u->subdev = super->current_vol;
11095 u->new_size = geo->size;
11096
11097 dprintf("imsm: reshape update preparation : OK\n");
11098 *updatep = u;
11099
11100 return update_memory_size;
11101}
11102
48c5303a
PC
11103/******************************************************************************
11104 * function: imsm_create_metadata_update_for_migration()
11105 * Creates update for IMSM array.
11106 *
11107 ******************************************************************************/
11108static int imsm_create_metadata_update_for_migration(
11109 struct supertype *st,
11110 struct geo_params *geo,
11111 struct imsm_update_reshape_migration **updatep)
11112{
11113 struct intel_super *super = st->sb;
594dc1b8
JS
11114 int update_memory_size;
11115 struct imsm_update_reshape_migration *u;
48c5303a
PC
11116 struct imsm_dev *dev;
11117 int previous_level = -1;
11118
1ade5cc1 11119 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11120
11121 /* size of all update data without anchor */
11122 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11123
503975b9 11124 u = xcalloc(1, update_memory_size);
48c5303a
PC
11125 u->type = update_reshape_migration;
11126 u->subdev = super->current_vol;
11127 u->new_level = geo->level;
11128 u->new_layout = geo->layout;
11129 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11130 u->new_disks[0] = -1;
4bba0439 11131 u->new_chunksize = -1;
48c5303a
PC
11132
11133 dev = get_imsm_dev(super, u->subdev);
11134 if (dev) {
11135 struct imsm_map *map;
11136
238c0a71 11137 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
11138 if (map) {
11139 int current_chunk_size =
11140 __le16_to_cpu(map->blocks_per_strip) / 2;
11141
11142 if (geo->chunksize != current_chunk_size) {
11143 u->new_chunksize = geo->chunksize / 1024;
7a862a02 11144 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
11145 current_chunk_size, u->new_chunksize);
11146 }
48c5303a 11147 previous_level = map->raid_level;
4bba0439 11148 }
48c5303a 11149 }
089f9d79 11150 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11151 struct mdinfo *spares = NULL;
11152
11153 u->new_raid_disks++;
11154 spares = get_spares_for_grow(st);
089f9d79 11155 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11156 free(u);
11157 sysfs_free(spares);
11158 update_memory_size = 0;
565cc99e 11159 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11160 return 0;
11161 }
11162 sysfs_free(spares);
11163 }
11164 dprintf("imsm: reshape update preparation : OK\n");
11165 *updatep = u;
11166
11167 return update_memory_size;
11168}
11169
8dd70bce
AK
11170static void imsm_update_metadata_locally(struct supertype *st,
11171 void *buf, int len)
11172{
11173 struct metadata_update mu;
11174
11175 mu.buf = buf;
11176 mu.len = len;
11177 mu.space = NULL;
11178 mu.space_list = NULL;
11179 mu.next = NULL;
5fe6f031
N
11180 if (imsm_prepare_update(st, &mu))
11181 imsm_process_update(st, &mu);
8dd70bce
AK
11182
11183 while (mu.space_list) {
11184 void **space = mu.space_list;
11185 mu.space_list = *space;
11186 free(space);
11187 }
11188}
78b10e66 11189
471bceb6 11190/***************************************************************************
694575e7 11191* Function: imsm_analyze_change
471bceb6 11192* Description: Function analyze change for single volume
1011e834 11193* and validate if transition is supported
fbf3d202
AK
11194* Parameters: Geometry parameters, supertype structure,
11195* metadata change direction (apply/rollback)
694575e7 11196* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11197****************************************************************************/
11198enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11199 struct geo_params *geo,
11200 int direction)
694575e7 11201{
471bceb6
KW
11202 struct mdinfo info;
11203 int change = -1;
11204 int check_devs = 0;
c21e737b 11205 int chunk;
67a2db32
AK
11206 /* number of added/removed disks in operation result */
11207 int devNumChange = 0;
11208 /* imsm compatible layout value for array geometry verification */
11209 int imsm_layout = -1;
7abc9871
AK
11210 int data_disks;
11211 struct imsm_dev *dev;
11212 struct intel_super *super;
d04f65f4 11213 unsigned long long current_size;
65d38cca 11214 unsigned long long free_size;
d04f65f4 11215 unsigned long long max_size;
65d38cca 11216 int rv;
471bceb6
KW
11217
11218 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11219 if (geo->level != info.array.level && geo->level >= 0 &&
11220 geo->level != UnSet) {
471bceb6
KW
11221 switch (info.array.level) {
11222 case 0:
11223 if (geo->level == 5) {
b5347799 11224 change = CH_MIGRATION;
e13ce846 11225 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11226 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11227 change = -1;
11228 goto analyse_change_exit;
11229 }
67a2db32 11230 imsm_layout = geo->layout;
471bceb6 11231 check_devs = 1;
e91a3bad
LM
11232 devNumChange = 1; /* parity disk added */
11233 } else if (geo->level == 10) {
471bceb6
KW
11234 change = CH_TAKEOVER;
11235 check_devs = 1;
e91a3bad 11236 devNumChange = 2; /* two mirrors added */
67a2db32 11237 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11238 }
dfe77a9e
KW
11239 break;
11240 case 1:
471bceb6
KW
11241 case 10:
11242 if (geo->level == 0) {
11243 change = CH_TAKEOVER;
11244 check_devs = 1;
e91a3bad 11245 devNumChange = -(geo->raid_disks/2);
67a2db32 11246 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11247 }
11248 break;
11249 }
11250 if (change == -1) {
7a862a02 11251 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11252 info.array.level, geo->level);
471bceb6
KW
11253 goto analyse_change_exit;
11254 }
11255 } else
11256 geo->level = info.array.level;
11257
089f9d79
JS
11258 if (geo->layout != info.array.layout &&
11259 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11260 change = CH_MIGRATION;
089f9d79
JS
11261 if (info.array.layout == 0 && info.array.level == 5 &&
11262 geo->layout == 5) {
471bceb6 11263 /* reshape 5 -> 4 */
089f9d79
JS
11264 } else if (info.array.layout == 5 && info.array.level == 5 &&
11265 geo->layout == 0) {
471bceb6
KW
11266 /* reshape 4 -> 5 */
11267 geo->layout = 0;
11268 geo->level = 5;
11269 } else {
7a862a02 11270 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11271 info.array.layout, geo->layout);
471bceb6
KW
11272 change = -1;
11273 goto analyse_change_exit;
11274 }
67a2db32 11275 } else {
471bceb6 11276 geo->layout = info.array.layout;
67a2db32
AK
11277 if (imsm_layout == -1)
11278 imsm_layout = info.array.layout;
11279 }
471bceb6 11280
089f9d79
JS
11281 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11282 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11283 if (info.array.level == 10) {
11284 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11285 change = -1;
11286 goto analyse_change_exit;
1e9b2c3f
PB
11287 } else if (info.component_size % (geo->chunksize/512)) {
11288 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11289 geo->chunksize/1024, info.component_size/2);
11290 change = -1;
11291 goto analyse_change_exit;
2d2b0eb7 11292 }
b5347799 11293 change = CH_MIGRATION;
2d2b0eb7 11294 } else {
471bceb6 11295 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11296 }
471bceb6 11297
c21e737b 11298 chunk = geo->chunksize / 1024;
7abc9871
AK
11299
11300 super = st->sb;
11301 dev = get_imsm_dev(super, super->current_vol);
11302 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 11303 /* compute current size per disk member
7abc9871 11304 */
c41e00b2
AK
11305 current_size = info.custom_array_size / data_disks;
11306
089f9d79 11307 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11308 /* align component size
11309 */
11310 geo->size = imsm_component_size_aligment_check(
11311 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11312 chunk * 1024, super->sector_size,
c41e00b2 11313 geo->size * 2);
65d0b4ce 11314 if (geo->size == 0) {
7a862a02 11315 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11316 current_size);
11317 goto analyse_change_exit;
11318 }
c41e00b2 11319 }
7abc9871 11320
089f9d79 11321 if (current_size != geo->size && geo->size > 0) {
7abc9871 11322 if (change != -1) {
7a862a02 11323 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11324 change = -1;
11325 goto analyse_change_exit;
11326 }
11327 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11328 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11329 super->current_vol, st->devnm);
7abc9871
AK
11330 goto analyse_change_exit;
11331 }
65d38cca
LD
11332 /* check the maximum available size
11333 */
11334 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11335 0, chunk, &free_size);
11336 if (rv == 0)
11337 /* Cannot find maximum available space
11338 */
11339 max_size = 0;
11340 else {
11341 max_size = free_size + current_size;
11342 /* align component size
11343 */
11344 max_size = imsm_component_size_aligment_check(
11345 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11346 chunk * 1024, super->sector_size,
65d38cca
LD
11347 max_size);
11348 }
d04f65f4 11349 if (geo->size == MAX_SIZE) {
b130333f
AK
11350 /* requested size change to the maximum available size
11351 */
65d38cca 11352 if (max_size == 0) {
7a862a02 11353 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11354 change = -1;
11355 goto analyse_change_exit;
65d38cca
LD
11356 } else
11357 geo->size = max_size;
c41e00b2 11358 }
b130333f 11359
681b7ae2 11360 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11361 /* accept size for rollback only
11362 */
11363 } else {
11364 /* round size due to metadata compatibility
11365 */
11366 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11367 << SECT_PER_MB_SHIFT;
11368 dprintf("Prepare update for size change to %llu\n",
11369 geo->size );
11370 if (current_size >= geo->size) {
7a862a02 11371 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11372 current_size, geo->size);
fbf3d202
AK
11373 goto analyse_change_exit;
11374 }
65d38cca 11375 if (max_size && geo->size > max_size) {
7a862a02 11376 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11377 max_size, geo->size);
65d38cca
LD
11378 goto analyse_change_exit;
11379 }
7abc9871
AK
11380 }
11381 geo->size *= data_disks;
11382 geo->raid_disks = dev->vol.map->num_members;
11383 change = CH_ARRAY_SIZE;
11384 }
471bceb6
KW
11385 if (!validate_geometry_imsm(st,
11386 geo->level,
67a2db32 11387 imsm_layout,
e91a3bad 11388 geo->raid_disks + devNumChange,
c21e737b 11389 &chunk,
af4348dd 11390 geo->size, INVALID_SECTORS,
5308f117 11391 0, 0, info.consistency_policy, 1))
471bceb6
KW
11392 change = -1;
11393
11394 if (check_devs) {
11395 struct intel_super *super = st->sb;
11396 struct imsm_super *mpb = super->anchor;
11397
11398 if (mpb->num_raid_devs > 1) {
7a862a02 11399 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 11400 geo->dev_name);
471bceb6
KW
11401 change = -1;
11402 }
11403 }
11404
11405analyse_change_exit:
089f9d79
JS
11406 if (direction == ROLLBACK_METADATA_CHANGES &&
11407 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11408 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11409 change = -1;
11410 }
471bceb6 11411 return change;
694575e7
KW
11412}
11413
bb025c2f
KW
11414int imsm_takeover(struct supertype *st, struct geo_params *geo)
11415{
11416 struct intel_super *super = st->sb;
11417 struct imsm_update_takeover *u;
11418
503975b9 11419 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11420
11421 u->type = update_takeover;
11422 u->subarray = super->current_vol;
11423
11424 /* 10->0 transition */
11425 if (geo->level == 0)
11426 u->direction = R10_TO_R0;
11427
0529c688
KW
11428 /* 0->10 transition */
11429 if (geo->level == 10)
11430 u->direction = R0_TO_R10;
11431
bb025c2f
KW
11432 /* update metadata locally */
11433 imsm_update_metadata_locally(st, u,
11434 sizeof(struct imsm_update_takeover));
11435 /* and possibly remotely */
11436 if (st->update_tail)
11437 append_metadata_update(st, u,
11438 sizeof(struct imsm_update_takeover));
11439 else
11440 free(u);
11441
11442 return 0;
11443}
11444
d04f65f4
N
11445static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11446 int level,
78b10e66 11447 int layout, int chunksize, int raid_disks,
41784c88 11448 int delta_disks, char *backup, char *dev,
016e00f5 11449 int direction, int verbose)
78b10e66 11450{
78b10e66
N
11451 int ret_val = 1;
11452 struct geo_params geo;
11453
1ade5cc1 11454 dprintf("(enter)\n");
78b10e66 11455
71204a50 11456 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11457
11458 geo.dev_name = dev;
4dd2df09 11459 strcpy(geo.devnm, st->devnm);
78b10e66
N
11460 geo.size = size;
11461 geo.level = level;
11462 geo.layout = layout;
11463 geo.chunksize = chunksize;
11464 geo.raid_disks = raid_disks;
41784c88
AK
11465 if (delta_disks != UnSet)
11466 geo.raid_disks += delta_disks;
78b10e66 11467
1ade5cc1
N
11468 dprintf("for level : %i\n", geo.level);
11469 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
11470
11471 if (experimental() == 0)
11472 return ret_val;
11473
4dd2df09 11474 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11475 /* On container level we can only increase number of devices. */
11476 dprintf("imsm: info: Container operation\n");
78b10e66 11477 int old_raid_disks = 0;
6dc0be30 11478
78b10e66 11479 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11480 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11481 struct imsm_update_reshape *u = NULL;
11482 int len;
11483
11484 len = imsm_create_metadata_update_for_reshape(
11485 st, &geo, old_raid_disks, &u);
11486
ed08d51c
AK
11487 if (len <= 0) {
11488 dprintf("imsm: Cannot prepare update\n");
11489 goto exit_imsm_reshape_super;
11490 }
11491
8dd70bce
AK
11492 ret_val = 0;
11493 /* update metadata locally */
11494 imsm_update_metadata_locally(st, u, len);
11495 /* and possibly remotely */
11496 if (st->update_tail)
11497 append_metadata_update(st, u, len);
11498 else
ed08d51c 11499 free(u);
8dd70bce 11500
694575e7 11501 } else {
7a862a02 11502 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11503 }
11504 } else {
11505 /* On volume level we support following operations
471bceb6
KW
11506 * - takeover: raid10 -> raid0; raid0 -> raid10
11507 * - chunk size migration
11508 * - migration: raid5 -> raid0; raid0 -> raid5
11509 */
11510 struct intel_super *super = st->sb;
11511 struct intel_dev *dev = super->devlist;
4dd2df09 11512 int change;
694575e7 11513 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11514 /* find requested device */
11515 while (dev) {
1011e834 11516 char *devnm =
4dd2df09
N
11517 imsm_find_array_devnm_by_subdev(
11518 dev->index, st->container_devnm);
11519 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11520 break;
11521 dev = dev->next;
11522 }
11523 if (dev == NULL) {
4dd2df09
N
11524 pr_err("Cannot find %s (%s) subarray\n",
11525 geo.dev_name, geo.devnm);
471bceb6
KW
11526 goto exit_imsm_reshape_super;
11527 }
11528 super->current_vol = dev->index;
fbf3d202 11529 change = imsm_analyze_change(st, &geo, direction);
694575e7 11530 switch (change) {
471bceb6 11531 case CH_TAKEOVER:
bb025c2f 11532 ret_val = imsm_takeover(st, &geo);
694575e7 11533 break;
48c5303a
PC
11534 case CH_MIGRATION: {
11535 struct imsm_update_reshape_migration *u = NULL;
11536 int len =
11537 imsm_create_metadata_update_for_migration(
11538 st, &geo, &u);
11539 if (len < 1) {
7a862a02 11540 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11541 break;
11542 }
471bceb6 11543 ret_val = 0;
48c5303a
PC
11544 /* update metadata locally */
11545 imsm_update_metadata_locally(st, u, len);
11546 /* and possibly remotely */
11547 if (st->update_tail)
11548 append_metadata_update(st, u, len);
11549 else
11550 free(u);
11551 }
11552 break;
7abc9871 11553 case CH_ARRAY_SIZE: {
f3871fdc
AK
11554 struct imsm_update_size_change *u = NULL;
11555 int len =
11556 imsm_create_metadata_update_for_size_change(
11557 st, &geo, &u);
11558 if (len < 1) {
7a862a02 11559 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11560 break;
11561 }
11562 ret_val = 0;
11563 /* update metadata locally */
11564 imsm_update_metadata_locally(st, u, len);
11565 /* and possibly remotely */
11566 if (st->update_tail)
11567 append_metadata_update(st, u, len);
11568 else
11569 free(u);
7abc9871
AK
11570 }
11571 break;
471bceb6
KW
11572 default:
11573 ret_val = 1;
694575e7 11574 }
694575e7 11575 }
78b10e66 11576
ed08d51c 11577exit_imsm_reshape_super:
78b10e66
N
11578 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11579 return ret_val;
11580}
2cda7640 11581
0febb20c
AO
11582#define COMPLETED_OK 0
11583#define COMPLETED_NONE 1
11584#define COMPLETED_DELAYED 2
11585
11586static int read_completed(int fd, unsigned long long *val)
11587{
11588 int ret;
11589 char buf[50];
11590
11591 ret = sysfs_fd_get_str(fd, buf, 50);
11592 if (ret < 0)
11593 return ret;
11594
11595 ret = COMPLETED_OK;
11596 if (strncmp(buf, "none", 4) == 0) {
11597 ret = COMPLETED_NONE;
11598 } else if (strncmp(buf, "delayed", 7) == 0) {
11599 ret = COMPLETED_DELAYED;
11600 } else {
11601 char *ep;
11602 *val = strtoull(buf, &ep, 0);
11603 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11604 ret = -1;
11605 }
11606 return ret;
11607}
11608
eee67a47
AK
11609/*******************************************************************************
11610 * Function: wait_for_reshape_imsm
11611 * Description: Function writes new sync_max value and waits until
11612 * reshape process reach new position
11613 * Parameters:
11614 * sra : general array info
eee67a47
AK
11615 * ndata : number of disks in new array's layout
11616 * Returns:
11617 * 0 : success,
11618 * 1 : there is no reshape in progress,
11619 * -1 : fail
11620 ******************************************************************************/
ae9f01f8 11621int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 11622{
85ca499c 11623 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 11624 int retry = 3;
eee67a47 11625 unsigned long long completed;
ae9f01f8
AK
11626 /* to_complete : new sync_max position */
11627 unsigned long long to_complete = sra->reshape_progress;
11628 unsigned long long position_to_set = to_complete / ndata;
eee67a47 11629
ae9f01f8 11630 if (fd < 0) {
1ade5cc1 11631 dprintf("cannot open reshape_position\n");
eee67a47 11632 return 1;
ae9f01f8 11633 }
eee67a47 11634
df2647fa
PB
11635 do {
11636 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11637 if (!retry) {
11638 dprintf("cannot read reshape_position (no reshape in progres)\n");
11639 close(fd);
11640 return 1;
11641 }
11642 usleep(30000);
11643 } else
11644 break;
11645 } while (retry--);
eee67a47 11646
85ca499c 11647 if (completed > position_to_set) {
1ade5cc1 11648 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 11649 to_complete, position_to_set);
ae9f01f8
AK
11650 close(fd);
11651 return -1;
11652 }
11653 dprintf("Position set: %llu\n", position_to_set);
11654 if (sysfs_set_num(sra, NULL, "sync_max",
11655 position_to_set) != 0) {
1ade5cc1 11656 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
11657 position_to_set);
11658 close(fd);
11659 return -1;
eee67a47
AK
11660 }
11661
eee67a47 11662 do {
0febb20c 11663 int rc;
eee67a47 11664 char action[20];
5ff3a780 11665 int timeout = 3000;
0febb20c 11666
5ff3a780 11667 sysfs_wait(fd, &timeout);
a47e44fb
AK
11668 if (sysfs_get_str(sra, NULL, "sync_action",
11669 action, 20) > 0 &&
d7d3809a 11670 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
11671 if (strncmp(action, "idle", 4) == 0)
11672 break;
d7d3809a
AP
11673 close(fd);
11674 return -1;
11675 }
0febb20c
AO
11676
11677 rc = read_completed(fd, &completed);
11678 if (rc < 0) {
1ade5cc1 11679 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
11680 close(fd);
11681 return 1;
0febb20c
AO
11682 } else if (rc == COMPLETED_NONE)
11683 break;
85ca499c 11684 } while (completed < position_to_set);
b2be2b62 11685
eee67a47
AK
11686 close(fd);
11687 return 0;
eee67a47
AK
11688}
11689
b915c95f
AK
11690/*******************************************************************************
11691 * Function: check_degradation_change
11692 * Description: Check that array hasn't become failed.
11693 * Parameters:
11694 * info : for sysfs access
11695 * sources : source disks descriptors
11696 * degraded: previous degradation level
11697 * Returns:
11698 * degradation level
11699 ******************************************************************************/
11700int check_degradation_change(struct mdinfo *info,
11701 int *sources,
11702 int degraded)
11703{
11704 unsigned long long new_degraded;
e1993023
LD
11705 int rv;
11706
11707 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 11708 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
11709 /* check each device to ensure it is still working */
11710 struct mdinfo *sd;
11711 new_degraded = 0;
11712 for (sd = info->devs ; sd ; sd = sd->next) {
11713 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11714 continue;
11715 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
11716 char sbuf[100];
11717
b915c95f 11718 if (sysfs_get_str(info,
cf52eff5 11719 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
11720 strstr(sbuf, "faulty") ||
11721 strstr(sbuf, "in_sync") == NULL) {
11722 /* this device is dead */
11723 sd->disk.state = (1<<MD_DISK_FAULTY);
11724 if (sd->disk.raid_disk >= 0 &&
11725 sources[sd->disk.raid_disk] >= 0) {
11726 close(sources[
11727 sd->disk.raid_disk]);
11728 sources[sd->disk.raid_disk] =
11729 -1;
11730 }
11731 new_degraded++;
11732 }
11733 }
11734 }
11735 }
11736
11737 return new_degraded;
11738}
11739
10f22854
AK
11740/*******************************************************************************
11741 * Function: imsm_manage_reshape
11742 * Description: Function finds array under reshape and it manages reshape
11743 * process. It creates stripes backups (if required) and sets
942e1cdb 11744 * checkpoints.
10f22854
AK
11745 * Parameters:
11746 * afd : Backup handle (nattive) - not used
11747 * sra : general array info
11748 * reshape : reshape parameters - not used
11749 * st : supertype structure
11750 * blocks : size of critical section [blocks]
11751 * fds : table of source device descriptor
11752 * offsets : start of array (offest per devices)
11753 * dests : not used
11754 * destfd : table of destination device descriptor
11755 * destoffsets : table of destination offsets (per device)
11756 * Returns:
11757 * 1 : success, reshape is done
11758 * 0 : fail
11759 ******************************************************************************/
999b4972
N
11760static int imsm_manage_reshape(
11761 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 11762 struct supertype *st, unsigned long backup_blocks,
999b4972
N
11763 int *fds, unsigned long long *offsets,
11764 int dests, int *destfd, unsigned long long *destoffsets)
11765{
10f22854
AK
11766 int ret_val = 0;
11767 struct intel_super *super = st->sb;
594dc1b8 11768 struct intel_dev *dv;
de44e46f 11769 unsigned int sector_size = super->sector_size;
10f22854 11770 struct imsm_dev *dev = NULL;
a6b6d984 11771 struct imsm_map *map_src;
10f22854
AK
11772 int migr_vol_qan = 0;
11773 int ndata, odata; /* [bytes] */
11774 int chunk; /* [bytes] */
11775 struct migr_record *migr_rec;
11776 char *buf = NULL;
11777 unsigned int buf_size; /* [bytes] */
11778 unsigned long long max_position; /* array size [bytes] */
11779 unsigned long long next_step; /* [blocks]/[bytes] */
11780 unsigned long long old_data_stripe_length;
10f22854
AK
11781 unsigned long long start_src; /* [bytes] */
11782 unsigned long long start; /* [bytes] */
11783 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 11784 int degraded = 0;
ab724b98 11785 int source_layout = 0;
10f22854 11786
79a16a9b
JS
11787 if (!sra)
11788 return ret_val;
11789
11790 if (!fds || !offsets)
10f22854
AK
11791 goto abort;
11792
11793 /* Find volume during the reshape */
11794 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
11795 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
11796 dv->dev->vol.migr_state == 1) {
10f22854
AK
11797 dev = dv->dev;
11798 migr_vol_qan++;
11799 }
11800 }
11801 /* Only one volume can migrate at the same time */
11802 if (migr_vol_qan != 1) {
676e87a8 11803 pr_err("%s", migr_vol_qan ?
10f22854
AK
11804 "Number of migrating volumes greater than 1\n" :
11805 "There is no volume during migrationg\n");
11806 goto abort;
11807 }
11808
238c0a71 11809 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
11810 if (map_src == NULL)
11811 goto abort;
10f22854 11812
238c0a71
AK
11813 ndata = imsm_num_data_members(dev, MAP_0);
11814 odata = imsm_num_data_members(dev, MAP_1);
10f22854 11815
7b1ab482 11816 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
11817 old_data_stripe_length = odata * chunk;
11818
11819 migr_rec = super->migr_rec;
11820
10f22854
AK
11821 /* initialize migration record for start condition */
11822 if (sra->reshape_progress == 0)
11823 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
11824 else {
11825 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 11826 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
11827 goto abort;
11828 }
6a75c8ca
AK
11829 /* Save checkpoint to update migration record for current
11830 * reshape position (in md). It can be farther than current
11831 * reshape position in metadata.
11832 */
11833 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11834 /* ignore error == 2, this can mean end of reshape here
11835 */
7a862a02 11836 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
11837 goto abort;
11838 }
b2c59438 11839 }
10f22854
AK
11840
11841 /* size for data */
11842 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11843 /* extend buffer size for parity disk */
11844 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11845 /* add space for stripe aligment */
11846 buf_size += old_data_stripe_length;
de44e46f
PB
11847 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11848 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
11849 goto abort;
11850 }
11851
3ef4403c 11852 max_position = sra->component_size * ndata;
68eb8bc6 11853 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
11854
11855 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11856 __le32_to_cpu(migr_rec->num_migr_units)) {
11857 /* current reshape position [blocks] */
11858 unsigned long long current_position =
11859 __le32_to_cpu(migr_rec->blocks_per_unit)
11860 * __le32_to_cpu(migr_rec->curr_migr_unit);
11861 unsigned long long border;
11862
b915c95f
AK
11863 /* Check that array hasn't become failed.
11864 */
11865 degraded = check_degradation_change(sra, fds, degraded);
11866 if (degraded > 1) {
7a862a02 11867 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
11868 goto abort;
11869 }
11870
10f22854
AK
11871 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11872
11873 if ((current_position + next_step) > max_position)
11874 next_step = max_position - current_position;
11875
92144abf 11876 start = current_position * 512;
10f22854 11877
942e1cdb 11878 /* align reading start to old geometry */
10f22854
AK
11879 start_buf_shift = start % old_data_stripe_length;
11880 start_src = start - start_buf_shift;
11881
11882 border = (start_src / odata) - (start / ndata);
11883 border /= 512;
11884 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11885 /* save critical stripes to buf
11886 * start - start address of current unit
11887 * to backup [bytes]
11888 * start_src - start address of current unit
11889 * to backup alligned to source array
11890 * [bytes]
11891 */
594dc1b8 11892 unsigned long long next_step_filler;
10f22854
AK
11893 unsigned long long copy_length = next_step * 512;
11894
11895 /* allign copy area length to stripe in old geometry */
11896 next_step_filler = ((copy_length + start_buf_shift)
11897 % old_data_stripe_length);
11898 if (next_step_filler)
11899 next_step_filler = (old_data_stripe_length
11900 - next_step_filler);
7a862a02 11901 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
11902 start, start_src, copy_length,
11903 start_buf_shift, next_step_filler);
11904
11905 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
11906 chunk, map_src->raid_level,
11907 source_layout, 0, NULL, start_src,
10f22854
AK
11908 copy_length +
11909 next_step_filler + start_buf_shift,
11910 buf)) {
7a862a02 11911 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
11912 goto abort;
11913 }
11914 /* Convert data to destination format and store it
11915 * in backup general migration area
11916 */
11917 if (save_backup_imsm(st, dev, sra,
aea93171 11918 buf + start_buf_shift, copy_length)) {
7a862a02 11919 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
11920 goto abort;
11921 }
11922 if (save_checkpoint_imsm(st, sra,
11923 UNIT_SRC_IN_CP_AREA)) {
7a862a02 11924 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
11925 goto abort;
11926 }
8016a6d4
AK
11927 } else {
11928 /* set next step to use whole border area */
11929 border /= next_step;
11930 if (border > 1)
11931 next_step *= border;
10f22854
AK
11932 }
11933 /* When data backed up, checkpoint stored,
11934 * kick the kernel to reshape unit of data
11935 */
11936 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
11937 /* limit next step to array max position */
11938 if (next_step > max_position)
11939 next_step = max_position;
10f22854
AK
11940 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11941 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 11942 sra->reshape_progress = next_step;
10f22854
AK
11943
11944 /* wait until reshape finish */
c85338c6 11945 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
11946 dprintf("wait_for_reshape_imsm returned error!\n");
11947 goto abort;
11948 }
84d11e6c
N
11949 if (sigterm)
11950 goto abort;
10f22854 11951
0228d92c
AK
11952 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11953 /* ignore error == 2, this can mean end of reshape here
11954 */
7a862a02 11955 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
11956 goto abort;
11957 }
11958
11959 }
11960
71e5411e
PB
11961 /* clear migr_rec on disks after successful migration */
11962 struct dl *d;
11963
85337573 11964 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
11965 for (d = super->disks; d; d = d->next) {
11966 if (d->index < 0 || is_failed(&d->disk))
11967 continue;
11968 unsigned long long dsize;
11969
11970 get_dev_size(d->fd, NULL, &dsize);
de44e46f 11971 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 11972 SEEK_SET) >= 0) {
466070ad 11973 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
11974 MIGR_REC_BUF_SECTORS*sector_size) !=
11975 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
11976 perror("Write migr_rec failed");
11977 }
11978 }
11979
10f22854
AK
11980 /* return '1' if done */
11981 ret_val = 1;
11982abort:
11983 free(buf);
942e1cdb
N
11984 /* See Grow.c: abort_reshape() for further explanation */
11985 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11986 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11987 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
11988
11989 return ret_val;
999b4972 11990}
0c21b485 11991
cdddbdbc 11992struct superswitch super_imsm = {
cdddbdbc
DW
11993 .examine_super = examine_super_imsm,
11994 .brief_examine_super = brief_examine_super_imsm,
4737ae25 11995 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 11996 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
11997 .detail_super = detail_super_imsm,
11998 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 11999 .write_init_super = write_init_super_imsm,
0e600426
N
12000 .validate_geometry = validate_geometry_imsm,
12001 .add_to_super = add_to_super_imsm,
1a64be56 12002 .remove_from_super = remove_from_super_imsm,
d665cc31 12003 .detail_platform = detail_platform_imsm,
e50cf220 12004 .export_detail_platform = export_detail_platform_imsm,
33414a01 12005 .kill_subarray = kill_subarray_imsm,
aa534678 12006 .update_subarray = update_subarray_imsm,
2b959fbf 12007 .load_container = load_container_imsm,
71204a50
N
12008 .default_geometry = default_geometry_imsm,
12009 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12010 .reshape_super = imsm_reshape_super,
12011 .manage_reshape = imsm_manage_reshape,
9e2d750d 12012 .recover_backup = recover_backup_imsm,
74db60b0 12013 .copy_metadata = copy_metadata_imsm,
27156a57 12014 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12015 .match_home = match_home_imsm,
12016 .uuid_from_super= uuid_from_super_imsm,
12017 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12018 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12019 .update_super = update_super_imsm,
12020
12021 .avail_size = avail_size_imsm,
fbfdcb06 12022 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12023
12024 .compare_super = compare_super_imsm,
12025
12026 .load_super = load_super_imsm,
bf5a934a 12027 .init_super = init_super_imsm,
e683ca88 12028 .store_super = store_super_imsm,
cdddbdbc
DW
12029 .free_super = free_super_imsm,
12030 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12031 .container_content = container_content_imsm,
0c21b485 12032 .validate_container = validate_container_imsm,
cdddbdbc 12033
2432ce9b
AP
12034 .write_init_ppl = write_init_ppl_imsm,
12035 .validate_ppl = validate_ppl_imsm,
12036
cdddbdbc 12037 .external = 1,
4cce4069 12038 .name = "imsm",
845dea95
NB
12039
12040/* for mdmon */
12041 .open_new = imsm_open_new,
ed9d66aa 12042 .set_array_state= imsm_set_array_state,
845dea95
NB
12043 .set_disk = imsm_set_disk,
12044 .sync_metadata = imsm_sync_metadata,
88758e9d 12045 .activate_spare = imsm_activate_spare,
e8319a19 12046 .process_update = imsm_process_update,
8273f55e 12047 .prepare_update = imsm_prepare_update,
6f50473f 12048 .record_bad_block = imsm_record_badblock,
c07a5a4f 12049 .clear_bad_block = imsm_clear_badblock,
928f1424 12050 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 12051};