]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: add functions to get and set imsm dev size
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
611d9529
MD
91#define IMSM_RESERVED_SECTORS 8192
92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
c2462068
PB
95#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
cdddbdbc
DW
98
99/* Disk configuration info. */
100#define IMSM_MAX_DEVICES 255
101struct imsm_disk {
102 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 103 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 104 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
105#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
106#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
107#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
2432ce9b 108#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
cdddbdbc 109 __u32 status; /* 0xF0 - 0xF3 */
1011e834 110 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
111 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
112#define IMSM_DISK_FILLERS 3
113 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
114};
115
3b451610
AK
116/* map selector for map managment
117 */
238c0a71
AK
118#define MAP_0 0
119#define MAP_1 1
120#define MAP_X -1
3b451610 121
cdddbdbc
DW
122/* RAID map configuration infos. */
123struct imsm_map {
5551b113
CA
124 __u32 pba_of_lba0_lo; /* start address of partition */
125 __u32 blocks_per_member_lo;/* blocks per member */
126 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
127 __u16 blocks_per_strip;
128 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
129#define IMSM_T_STATE_NORMAL 0
130#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
131#define IMSM_T_STATE_DEGRADED 2
132#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
133 __u8 raid_level;
134#define IMSM_T_RAID0 0
135#define IMSM_T_RAID1 1
136#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
137 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
138 __u8 num_domains; /* number of parity domains */
139 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 140 __u8 ddf;
5551b113
CA
141 __u32 pba_of_lba0_hi;
142 __u32 blocks_per_member_hi;
143 __u32 num_data_stripes_hi;
144 __u32 filler[4]; /* expansion area */
7eef0453 145#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 146 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
147 * top byte contains some flags
148 */
cdddbdbc
DW
149} __attribute__ ((packed));
150
151struct imsm_vol {
f8f603f1 152 __u32 curr_migr_unit;
fe7ed8cb 153 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 154 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
155#define MIGR_INIT 0
156#define MIGR_REBUILD 1
157#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
158#define MIGR_GEN_MIGR 3
159#define MIGR_STATE_CHANGE 4
1484e727 160#define MIGR_REPAIR 5
cdddbdbc 161 __u8 migr_type; /* Initializing, Rebuilding, ... */
2432ce9b
AP
162#define RAIDVOL_CLEAN 0
163#define RAIDVOL_DIRTY 1
164#define RAIDVOL_DSRECORD_VALID 2
cdddbdbc 165 __u8 dirty;
fe7ed8cb
DW
166 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
167 __u16 verify_errors; /* number of mismatches */
168 __u16 bad_blocks; /* number of bad blocks during verify */
169 __u32 filler[4];
cdddbdbc
DW
170 struct imsm_map map[1];
171 /* here comes another one if migr_state */
172} __attribute__ ((packed));
173
174struct imsm_dev {
fe7ed8cb 175 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
176 __u32 size_low;
177 __u32 size_high;
fe7ed8cb
DW
178#define DEV_BOOTABLE __cpu_to_le32(0x01)
179#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
180#define DEV_READ_COALESCING __cpu_to_le32(0x04)
181#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
182#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
183#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
184#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
185#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
186#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
187#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
188#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
189#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
190#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
191 __u32 status; /* Persistent RaidDev status */
192 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
193 __u8 migr_priority;
194 __u8 num_sub_vols;
195 __u8 tid;
196 __u8 cng_master_disk;
197 __u16 cache_policy;
198 __u8 cng_state;
199 __u8 cng_sub_state;
2432ce9b
AP
200 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
201
202 /* NVM_EN */
203 __u8 nv_cache_mode;
204 __u8 nv_cache_flags;
205
206 /* Unique Volume Id of the NvCache Volume associated with this volume */
207 __u32 nvc_vol_orig_family_num;
208 __u16 nvc_vol_raid_dev_num;
209
210#define RWH_OFF 0
211#define RWH_DISTRIBUTED 1
212#define RWH_JOURNALING_DRIVE 2
c2462068
PB
213#define RWH_MULTIPLE_DISTRIBUTED 3
214#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
215#define RWH_MULTIPLE_OFF 5
2432ce9b
AP
216 __u8 rwh_policy; /* Raid Write Hole Policy */
217 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
218 __u8 filler1;
219
220#define IMSM_DEV_FILLERS 3
cdddbdbc
DW
221 __u32 filler[IMSM_DEV_FILLERS];
222 struct imsm_vol vol;
223} __attribute__ ((packed));
224
225struct imsm_super {
226 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
227 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
228 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
229 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
230 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
231 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
232 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
233 __u8 num_disks; /* 0x38 Number of configured disks */
234 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
235 __u8 error_log_pos; /* 0x3A */
236 __u8 fill[1]; /* 0x3B */
237 __u32 cache_size; /* 0x3c - 0x40 in mb */
238 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
239 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
240 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
2a24dc1b
PB
241 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
242 * volume IDs for raid_dev created in this array
243 * (starts at 1)
244 */
245 __u16 filler1; /* 0x4E - 0x4F */
246#define IMSM_FILLERS 34
247 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
248 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
249 /* here comes imsm_dev[num_raid_devs] */
604b746f 250 /* here comes BBM logs */
cdddbdbc
DW
251} __attribute__ ((packed));
252
604b746f 253#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
254#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
255#define BBM_LOG_SIGNATURE 0xabadb10c
256
257struct bbm_log_block_addr {
258 __u16 w1;
259 __u32 dw1;
260} __attribute__ ((__packed__));
604b746f
JD
261
262struct bbm_log_entry {
8d67477f
TM
263 __u8 marked_count; /* Number of blocks marked - 1 */
264 __u8 disk_ordinal; /* Disk entry within the imsm_super */
265 struct bbm_log_block_addr defective_block_start;
604b746f
JD
266} __attribute__ ((__packed__));
267
268struct bbm_log {
269 __u32 signature; /* 0xABADB10C */
270 __u32 entry_count;
8d67477f 271 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
604b746f
JD
272} __attribute__ ((__packed__));
273
cdddbdbc 274static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
cdddbdbc 275
b53bfba6
TM
276#define BLOCKS_PER_KB (1024/512)
277
8e59f3d8
AK
278#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
279
280#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
281
de44e46f
PB
282#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
283#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
284 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
285 */
286
8e59f3d8
AK
287#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
288 * be recovered using srcMap */
289#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
290 * already been migrated and must
291 * be recovered from checkpoint area */
2432ce9b 292
c2462068 293#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
2432ce9b 294
8e59f3d8
AK
295struct migr_record {
296 __u32 rec_status; /* Status used to determine how to restart
297 * migration in case it aborts
298 * in some fashion */
299 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
300 __u32 family_num; /* Family number of MPB
301 * containing the RaidDev
302 * that is migrating */
303 __u32 ascending_migr; /* True if migrating in increasing
304 * order of lbas */
305 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
306 __u32 dest_depth_per_unit; /* Num member blocks each destMap
307 * member disk
308 * advances per unit-of-operation */
309 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
310 __u32 dest_1st_member_lba; /* First member lba on first
311 * stripe of destination */
312 __u32 num_migr_units; /* Total num migration units-of-op */
313 __u32 post_migr_vol_cap; /* Size of volume after
314 * migration completes */
315 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
316 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
317 * migration ckpt record was read from
318 * (for recovered migrations) */
319} __attribute__ ((__packed__));
320
ec50f7b6
LM
321struct md_list {
322 /* usage marker:
323 * 1: load metadata
324 * 2: metadata does not match
325 * 4: already checked
326 */
327 int used;
328 char *devname;
329 int found;
330 int container;
331 dev_t st_rdev;
332 struct md_list *next;
333};
334
e7b84f9d 335#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 336
1484e727
DW
337static __u8 migr_type(struct imsm_dev *dev)
338{
339 if (dev->vol.migr_type == MIGR_VERIFY &&
340 dev->status & DEV_VERIFY_AND_FIX)
341 return MIGR_REPAIR;
342 else
343 return dev->vol.migr_type;
344}
345
346static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
347{
348 /* for compatibility with older oroms convert MIGR_REPAIR, into
349 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
350 */
351 if (migr_type == MIGR_REPAIR) {
352 dev->vol.migr_type = MIGR_VERIFY;
353 dev->status |= DEV_VERIFY_AND_FIX;
354 } else {
355 dev->vol.migr_type = migr_type;
356 dev->status &= ~DEV_VERIFY_AND_FIX;
357 }
358}
359
f36a9ecd 360static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 361{
f36a9ecd 362 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 363}
cdddbdbc 364
f36a9ecd
PB
365static unsigned int mpb_sectors(struct imsm_super *mpb,
366 unsigned int sector_size)
87eb16df 367{
f36a9ecd 368 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
369}
370
ba2de7ba
DW
371struct intel_dev {
372 struct imsm_dev *dev;
373 struct intel_dev *next;
f21e18ca 374 unsigned index;
ba2de7ba
DW
375};
376
88654014
LM
377struct intel_hba {
378 enum sys_dev_type type;
379 char *path;
380 char *pci_id;
381 struct intel_hba *next;
382};
383
1a64be56
LM
384enum action {
385 DISK_REMOVE = 1,
386 DISK_ADD
387};
cdddbdbc
DW
388/* internal representation of IMSM metadata */
389struct intel_super {
390 union {
949c47a0
DW
391 void *buf; /* O_DIRECT buffer for reading/writing metadata */
392 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 393 };
8e59f3d8
AK
394 union {
395 void *migr_rec_buf; /* buffer for I/O operations */
396 struct migr_record *migr_rec; /* migration record */
397 };
51d83f5d
AK
398 int clean_migration_record_by_mdmon; /* when reshape is switched to next
399 array, it indicates that mdmon is allowed to clean migration
400 record */
949c47a0 401 size_t len; /* size of the 'buf' allocation */
bbab0940 402 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
403 void *next_buf; /* for realloc'ing buf from the manager */
404 size_t next_len;
c2c087e6 405 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 406 int current_vol; /* index of raid device undergoing creation */
5551b113 407 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 408 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 409 struct intel_dev *devlist;
fa7bb6f8 410 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
411 struct dl {
412 struct dl *next;
413 int index;
414 __u8 serial[MAX_RAID_SERIAL_LEN];
415 int major, minor;
416 char *devname;
b9f594fe 417 struct imsm_disk disk;
cdddbdbc 418 int fd;
0dcecb2e
DW
419 int extent_cnt;
420 struct extent *e; /* for determining freespace @ create */
efb30e7f 421 int raiddisk; /* slot to fill in autolayout */
1a64be56 422 enum action action;
ca0748fa 423 } *disks, *current_disk;
1a64be56
LM
424 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
425 active */
47ee5a45 426 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 427 struct bbm_log *bbm_log;
88654014 428 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 429 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 430 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 431 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
432};
433
434struct intel_disk {
435 struct imsm_disk disk;
436 #define IMSM_UNKNOWN_OWNER (-1)
437 int owner;
438 struct intel_disk *next;
cdddbdbc
DW
439};
440
c2c087e6
DW
441struct extent {
442 unsigned long long start, size;
443};
444
694575e7
KW
445/* definitions of reshape process types */
446enum imsm_reshape_type {
447 CH_TAKEOVER,
b5347799 448 CH_MIGRATION,
7abc9871 449 CH_ARRAY_SIZE,
694575e7
KW
450};
451
88758e9d
DW
452/* definition of messages passed to imsm_process_update */
453enum imsm_update_type {
454 update_activate_spare,
8273f55e 455 update_create_array,
33414a01 456 update_kill_array,
aa534678 457 update_rename_array,
1a64be56 458 update_add_remove_disk,
78b10e66 459 update_reshape_container_disks,
48c5303a 460 update_reshape_migration,
2d40f3a1
AK
461 update_takeover,
462 update_general_migration_checkpoint,
f3871fdc 463 update_size_change,
bbab0940 464 update_prealloc_badblocks_mem,
e6e9dd3f 465 update_rwh_policy,
88758e9d
DW
466};
467
468struct imsm_update_activate_spare {
469 enum imsm_update_type type;
d23fe947 470 struct dl *dl;
88758e9d
DW
471 int slot;
472 int array;
473 struct imsm_update_activate_spare *next;
474};
475
78b10e66 476struct geo_params {
4dd2df09 477 char devnm[32];
78b10e66 478 char *dev_name;
d04f65f4 479 unsigned long long size;
78b10e66
N
480 int level;
481 int layout;
482 int chunksize;
483 int raid_disks;
484};
485
bb025c2f
KW
486enum takeover_direction {
487 R10_TO_R0,
488 R0_TO_R10
489};
490struct imsm_update_takeover {
491 enum imsm_update_type type;
492 int subarray;
493 enum takeover_direction direction;
494};
78b10e66
N
495
496struct imsm_update_reshape {
497 enum imsm_update_type type;
498 int old_raid_disks;
499 int new_raid_disks;
48c5303a
PC
500
501 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
502};
503
504struct imsm_update_reshape_migration {
505 enum imsm_update_type type;
506 int old_raid_disks;
507 int new_raid_disks;
508 /* fields for array migration changes
509 */
510 int subdev;
511 int new_level;
512 int new_layout;
4bba0439 513 int new_chunksize;
48c5303a 514
d195167d 515 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
516};
517
f3871fdc
AK
518struct imsm_update_size_change {
519 enum imsm_update_type type;
520 int subdev;
521 long long new_size;
522};
523
2d40f3a1
AK
524struct imsm_update_general_migration_checkpoint {
525 enum imsm_update_type type;
526 __u32 curr_migr_unit;
527};
528
54c2c1ea
DW
529struct disk_info {
530 __u8 serial[MAX_RAID_SERIAL_LEN];
531};
532
8273f55e
DW
533struct imsm_update_create_array {
534 enum imsm_update_type type;
8273f55e 535 int dev_idx;
6a3e913e 536 struct imsm_dev dev;
8273f55e
DW
537};
538
33414a01
DW
539struct imsm_update_kill_array {
540 enum imsm_update_type type;
541 int dev_idx;
542};
543
aa534678
DW
544struct imsm_update_rename_array {
545 enum imsm_update_type type;
546 __u8 name[MAX_RAID_SERIAL_LEN];
547 int dev_idx;
548};
549
1a64be56 550struct imsm_update_add_remove_disk {
43dad3d6
DW
551 enum imsm_update_type type;
552};
553
bbab0940
TM
554struct imsm_update_prealloc_bb_mem {
555 enum imsm_update_type type;
556};
557
e6e9dd3f
AP
558struct imsm_update_rwh_policy {
559 enum imsm_update_type type;
560 int new_policy;
561 int dev_idx;
562};
563
88654014
LM
564static const char *_sys_dev_type[] = {
565 [SYS_DEV_UNKNOWN] = "Unknown",
566 [SYS_DEV_SAS] = "SAS",
614902f6 567 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
568 [SYS_DEV_NVME] = "NVMe",
569 [SYS_DEV_VMD] = "VMD"
88654014
LM
570};
571
572const char *get_sys_dev_type(enum sys_dev_type type)
573{
574 if (type >= SYS_DEV_MAX)
575 type = SYS_DEV_UNKNOWN;
576
577 return _sys_dev_type[type];
578}
579
580static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
581{
503975b9
N
582 struct intel_hba *result = xmalloc(sizeof(*result));
583
584 result->type = device->type;
585 result->path = xstrdup(device->path);
586 result->next = NULL;
587 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
588 result->pci_id++;
589
88654014
LM
590 return result;
591}
592
593static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
594{
594dc1b8
JS
595 struct intel_hba *result;
596
88654014
LM
597 for (result = hba; result; result = result->next) {
598 if (result->type == device->type && strcmp(result->path, device->path) == 0)
599 break;
600 }
601 return result;
602}
603
b4cf4cba 604static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
605{
606 struct intel_hba *hba;
607
608 /* check if disk attached to Intel HBA */
609 hba = find_intel_hba(super->hba, device);
610 if (hba != NULL)
611 return 1;
612 /* Check if HBA is already attached to super */
613 if (super->hba == NULL) {
614 super->hba = alloc_intel_hba(device);
615 return 1;
6b781d33
AP
616 }
617
618 hba = super->hba;
619 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 620 * Do not support HBA types mixing
6b781d33
AP
621 */
622 if (device->type != hba->type)
88654014 623 return 2;
6b781d33
AP
624
625 /* Multiple same type HBAs can be used if they share the same OROM */
626 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
627
628 if (device_orom != super->orom)
629 return 2;
630
631 while (hba->next)
632 hba = hba->next;
633
634 hba->next = alloc_intel_hba(device);
635 return 1;
88654014
LM
636}
637
638static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
639{
9bc4ae77 640 struct sys_dev *list, *elem;
88654014
LM
641 char *disk_path;
642
643 if ((list = find_intel_devices()) == NULL)
644 return 0;
645
646 if (fd < 0)
647 disk_path = (char *) devname;
648 else
649 disk_path = diskfd_to_devpath(fd);
650
9bc4ae77 651 if (!disk_path)
88654014 652 return 0;
88654014 653
9bc4ae77
N
654 for (elem = list; elem; elem = elem->next)
655 if (path_attached_to_hba(disk_path, elem->path))
88654014 656 return elem;
9bc4ae77 657
88654014
LM
658 if (disk_path != devname)
659 free(disk_path);
88654014
LM
660
661 return NULL;
662}
663
d424212e
N
664static int find_intel_hba_capability(int fd, struct intel_super *super,
665 char *devname);
f2f5c343 666
cdddbdbc
DW
667static struct supertype *match_metadata_desc_imsm(char *arg)
668{
669 struct supertype *st;
670
671 if (strcmp(arg, "imsm") != 0 &&
672 strcmp(arg, "default") != 0
673 )
674 return NULL;
675
503975b9 676 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
677 st->ss = &super_imsm;
678 st->max_devs = IMSM_MAX_DEVICES;
679 st->minor_version = 0;
680 st->sb = NULL;
681 return st;
682}
683
cdddbdbc
DW
684static __u8 *get_imsm_version(struct imsm_super *mpb)
685{
686 return &mpb->sig[MPB_SIG_LEN];
687}
688
949c47a0
DW
689/* retrieve a disk directly from the anchor when the anchor is known to be
690 * up-to-date, currently only at load time
691 */
692static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 693{
949c47a0 694 if (index >= mpb->num_disks)
cdddbdbc
DW
695 return NULL;
696 return &mpb->disk[index];
697}
698
95d07a2c
LM
699/* retrieve the disk description based on a index of the disk
700 * in the sub-array
701 */
702static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 703{
b9f594fe
DW
704 struct dl *d;
705
706 for (d = super->disks; d; d = d->next)
707 if (d->index == index)
95d07a2c
LM
708 return d;
709
710 return NULL;
711}
712/* retrieve a disk from the parsed metadata */
713static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
714{
715 struct dl *dl;
716
717 dl = get_imsm_dl_disk(super, index);
718 if (dl)
719 return &dl->disk;
720
b9f594fe 721 return NULL;
949c47a0
DW
722}
723
724/* generate a checksum directly from the anchor when the anchor is known to be
725 * up-to-date, currently only at load or write_super after coalescing
726 */
727static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
728{
729 __u32 end = mpb->mpb_size / sizeof(end);
730 __u32 *p = (__u32 *) mpb;
731 __u32 sum = 0;
732
5d500228
N
733 while (end--) {
734 sum += __le32_to_cpu(*p);
97f734fd
N
735 p++;
736 }
cdddbdbc 737
5d500228 738 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
739}
740
a965f303
DW
741static size_t sizeof_imsm_map(struct imsm_map *map)
742{
743 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
744}
745
746struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 747{
5e7b0330
AK
748 /* A device can have 2 maps if it is in the middle of a migration.
749 * If second_map is:
238c0a71
AK
750 * MAP_0 - we return the first map
751 * MAP_1 - we return the second map if it exists, else NULL
752 * MAP_X - we return the second map if it exists, else the first
5e7b0330 753 */
a965f303 754 struct imsm_map *map = &dev->vol.map[0];
9535fc47 755 struct imsm_map *map2 = NULL;
a965f303 756
9535fc47
AK
757 if (dev->vol.migr_state)
758 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 759
9535fc47 760 switch (second_map) {
3b451610 761 case MAP_0:
9535fc47 762 break;
3b451610 763 case MAP_1:
9535fc47
AK
764 map = map2;
765 break;
238c0a71 766 case MAP_X:
9535fc47
AK
767 if (map2)
768 map = map2;
769 break;
9535fc47
AK
770 default:
771 map = NULL;
772 }
773 return map;
5e7b0330 774
a965f303 775}
cdddbdbc 776
3393c6af
DW
777/* return the size of the device.
778 * migr_state increases the returned size if map[0] were to be duplicated
779 */
780static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
781{
782 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 783 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
784
785 /* migrating means an additional map */
a965f303 786 if (dev->vol.migr_state)
238c0a71 787 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 788 else if (migr_state)
238c0a71 789 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
790
791 return size;
792}
793
54c2c1ea
DW
794/* retrieve disk serial number list from a metadata update */
795static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
796{
797 void *u = update;
798 struct disk_info *inf;
799
800 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
801 sizeof_imsm_dev(&update->dev, 0);
802
803 return inf;
804}
54c2c1ea 805
949c47a0 806static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
807{
808 int offset;
809 int i;
810 void *_mpb = mpb;
811
949c47a0 812 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
813 return NULL;
814
815 /* devices start after all disks */
816 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
817
818 for (i = 0; i <= index; i++)
819 if (i == index)
820 return _mpb + offset;
821 else
3393c6af 822 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
823
824 return NULL;
825}
826
949c47a0
DW
827static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
828{
ba2de7ba
DW
829 struct intel_dev *dv;
830
949c47a0
DW
831 if (index >= super->anchor->num_raid_devs)
832 return NULL;
ba2de7ba
DW
833 for (dv = super->devlist; dv; dv = dv->next)
834 if (dv->index == index)
835 return dv->dev;
836 return NULL;
949c47a0
DW
837}
838
8d67477f
TM
839static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
840 *addr)
841{
842 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
843 __le16_to_cpu(addr->w1));
844}
845
846static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
847{
848 struct bbm_log_block_addr addr;
849
850 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
851 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
852 return addr;
853}
854
8d67477f
TM
855/* get size of the bbm log */
856static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
857{
858 if (!log || log->entry_count == 0)
859 return 0;
860
861 return sizeof(log->signature) +
862 sizeof(log->entry_count) +
863 log->entry_count * sizeof(struct bbm_log_entry);
864}
6f50473f
TM
865
866/* check if bad block is not partially stored in bbm log */
867static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
868 long long sector, const int length, __u32 *pos)
869{
870 __u32 i;
871
872 for (i = *pos; i < log->entry_count; i++) {
873 struct bbm_log_entry *entry = &log->marked_block_entries[i];
874 unsigned long long bb_start;
875 unsigned long long bb_end;
876
877 bb_start = __le48_to_cpu(&entry->defective_block_start);
878 bb_end = bb_start + (entry->marked_count + 1);
879
880 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
881 (bb_end <= sector + length)) {
882 *pos = i;
883 return 1;
884 }
885 }
886 return 0;
887}
888
889/* record new bad block in bbm log */
890static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
891 long long sector, int length)
892{
893 int new_bb = 0;
894 __u32 pos = 0;
895 struct bbm_log_entry *entry = NULL;
896
897 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
898 struct bbm_log_entry *e = &log->marked_block_entries[pos];
899
900 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
901 (__le48_to_cpu(&e->defective_block_start) == sector)) {
902 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
903 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
904 pos = pos + 1;
905 continue;
906 }
907 entry = e;
908 break;
909 }
910
911 if (entry) {
912 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
913 BBM_LOG_MAX_LBA_ENTRY_VAL;
914 entry->defective_block_start = __cpu_to_le48(sector);
915 entry->marked_count = cnt - 1;
916 if (cnt == length)
917 return 1;
918 sector += cnt;
919 length -= cnt;
920 }
921
922 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
925 return 0;
926
927 while (length > 0) {
928 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
929 BBM_LOG_MAX_LBA_ENTRY_VAL;
930 struct bbm_log_entry *entry =
931 &log->marked_block_entries[log->entry_count];
932
933 entry->defective_block_start = __cpu_to_le48(sector);
934 entry->marked_count = cnt - 1;
935 entry->disk_ordinal = idx;
936
937 sector += cnt;
938 length -= cnt;
939
940 log->entry_count++;
941 }
942
943 return new_bb;
944}
c07a5a4f 945
4c9e8c1e
TM
946/* clear all bad blocks for given disk */
947static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
948{
949 __u32 i = 0;
950
951 while (i < log->entry_count) {
952 struct bbm_log_entry *entries = log->marked_block_entries;
953
954 if (entries[i].disk_ordinal == idx) {
955 if (i < log->entry_count - 1)
956 entries[i] = entries[log->entry_count - 1];
957 log->entry_count--;
958 } else {
959 i++;
960 }
961 }
962}
963
c07a5a4f
TM
964/* clear given bad block */
965static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
966 long long sector, const int length) {
967 __u32 i = 0;
968
969 while (i < log->entry_count) {
970 struct bbm_log_entry *entries = log->marked_block_entries;
971
972 if ((entries[i].disk_ordinal == idx) &&
973 (__le48_to_cpu(&entries[i].defective_block_start) ==
974 sector) && (entries[i].marked_count + 1 == length)) {
975 if (i < log->entry_count - 1)
976 entries[i] = entries[log->entry_count - 1];
977 log->entry_count--;
978 break;
979 }
980 i++;
981 }
982
983 return 1;
984}
8d67477f
TM
985
986/* allocate and load BBM log from metadata */
987static int load_bbm_log(struct intel_super *super)
988{
989 struct imsm_super *mpb = super->anchor;
990 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
991
992 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
993 if (!super->bbm_log)
994 return 1;
995
996 if (bbm_log_size) {
997 struct bbm_log *log = (void *)mpb +
998 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
999
1000 __u32 entry_count;
1001
1002 if (bbm_log_size < sizeof(log->signature) +
1003 sizeof(log->entry_count))
1004 return 2;
1005
1006 entry_count = __le32_to_cpu(log->entry_count);
1007 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1008 (entry_count > BBM_LOG_MAX_ENTRIES))
1009 return 3;
1010
1011 if (bbm_log_size !=
1012 sizeof(log->signature) + sizeof(log->entry_count) +
1013 entry_count * sizeof(struct bbm_log_entry))
1014 return 4;
1015
1016 memcpy(super->bbm_log, log, bbm_log_size);
1017 } else {
1018 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1019 super->bbm_log->entry_count = 0;
1020 }
1021
1022 return 0;
1023}
1024
b12796be
TM
1025/* checks if bad block is within volume boundaries */
1026static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1027 const unsigned long long start_sector,
1028 const unsigned long long size)
1029{
1030 unsigned long long bb_start;
1031 unsigned long long bb_end;
1032
1033 bb_start = __le48_to_cpu(&entry->defective_block_start);
1034 bb_end = bb_start + (entry->marked_count + 1);
1035
1036 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1037 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1038 return 1;
1039
1040 return 0;
1041}
1042
1043/* get list of bad blocks on a drive for a volume */
1044static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1045 const unsigned long long start_sector,
1046 const unsigned long long size,
1047 struct md_bb *bbs)
1048{
1049 __u32 count = 0;
1050 __u32 i;
1051
1052 for (i = 0; i < log->entry_count; i++) {
1053 const struct bbm_log_entry *ent =
1054 &log->marked_block_entries[i];
1055 struct md_bb_entry *bb;
1056
1057 if ((ent->disk_ordinal == idx) &&
1058 is_bad_block_in_volume(ent, start_sector, size)) {
1059
1060 if (!bbs->entries) {
1061 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1062 sizeof(*bb));
1063 if (!bbs->entries)
1064 break;
1065 }
1066
1067 bb = &bbs->entries[count++];
1068 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1069 bb->length = ent->marked_count + 1;
1070 }
1071 }
1072 bbs->count = count;
1073}
1074
98130f40
AK
1075/*
1076 * for second_map:
238c0a71
AK
1077 * == MAP_0 get first map
1078 * == MAP_1 get second map
1079 * == MAP_X than get map according to the current migr_state
98130f40
AK
1080 */
1081static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1082 int slot,
1083 int second_map)
7eef0453
DW
1084{
1085 struct imsm_map *map;
1086
5e7b0330 1087 map = get_imsm_map(dev, second_map);
7eef0453 1088
ff077194
DW
1089 /* top byte identifies disk under rebuild */
1090 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1091}
1092
1093#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1094static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1095{
98130f40 1096 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1097
1098 return ord_to_idx(ord);
7eef0453
DW
1099}
1100
be73972f
DW
1101static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1102{
1103 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1104}
1105
f21e18ca 1106static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1107{
1108 int slot;
1109 __u32 ord;
1110
1111 for (slot = 0; slot < map->num_members; slot++) {
1112 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1113 if (ord_to_idx(ord) == idx)
1114 return slot;
1115 }
1116
1117 return -1;
1118}
1119
cdddbdbc
DW
1120static int get_imsm_raid_level(struct imsm_map *map)
1121{
1122 if (map->raid_level == 1) {
1123 if (map->num_members == 2)
1124 return 1;
1125 else
1126 return 10;
1127 }
1128
1129 return map->raid_level;
1130}
1131
c2c087e6
DW
1132static int cmp_extent(const void *av, const void *bv)
1133{
1134 const struct extent *a = av;
1135 const struct extent *b = bv;
1136 if (a->start < b->start)
1137 return -1;
1138 if (a->start > b->start)
1139 return 1;
1140 return 0;
1141}
1142
0dcecb2e 1143static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1144{
c2c087e6 1145 int memberships = 0;
620b1713 1146 int i;
c2c087e6 1147
949c47a0
DW
1148 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1149 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1150 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1151
620b1713
DW
1152 if (get_imsm_disk_slot(map, dl->index) >= 0)
1153 memberships++;
c2c087e6 1154 }
0dcecb2e
DW
1155
1156 return memberships;
1157}
1158
b81221b7
CA
1159static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1160
5551b113
CA
1161static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1162{
1163 if (lo == 0 || hi == 0)
1164 return 1;
1165 *lo = __le32_to_cpu((unsigned)n);
1166 *hi = __le32_to_cpu((unsigned)(n >> 32));
1167 return 0;
1168}
1169
1170static unsigned long long join_u32(__u32 lo, __u32 hi)
1171{
1172 return (unsigned long long)__le32_to_cpu(lo) |
1173 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1174}
1175
1176static unsigned long long total_blocks(struct imsm_disk *disk)
1177{
1178 if (disk == NULL)
1179 return 0;
1180 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1181}
1182
1183static unsigned long long pba_of_lba0(struct imsm_map *map)
1184{
1185 if (map == NULL)
1186 return 0;
1187 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1188}
1189
1190static unsigned long long blocks_per_member(struct imsm_map *map)
1191{
1192 if (map == NULL)
1193 return 0;
1194 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1195}
1196
1197static unsigned long long num_data_stripes(struct imsm_map *map)
1198{
1199 if (map == NULL)
1200 return 0;
1201 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1202}
1203
fcc2c9da
MD
1204static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1205{
1206 if (dev == NULL)
1207 return 0;
1208 return join_u32(dev->size_low, dev->size_high);
1209}
1210
5551b113
CA
1211static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1212{
1213 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1214}
1215
1216static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1217{
1218 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1219}
1220
1221static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1222{
1223 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1224}
1225
1226static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1227{
1228 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1229}
1230
fcc2c9da
MD
1231static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1232{
1233 split_ull(n, &dev->size_low, &dev->size_high);
1234}
1235
0dcecb2e
DW
1236static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1237{
1238 /* find a list of used extents on the given physical device */
1239 struct extent *rv, *e;
620b1713 1240 int i;
0dcecb2e 1241 int memberships = count_memberships(dl, super);
b276dd33
DW
1242 __u32 reservation;
1243
1244 /* trim the reserved area for spares, so they can join any array
1245 * regardless of whether the OROM has assigned sectors from the
1246 * IMSM_RESERVED_SECTORS region
1247 */
1248 if (dl->index == -1)
b81221b7 1249 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1250 else
1251 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1252
503975b9 1253 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1254 e = rv;
1255
949c47a0
DW
1256 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1257 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1258 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1259
620b1713 1260 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
1261 e->start = pba_of_lba0(map);
1262 e->size = blocks_per_member(map);
620b1713 1263 e++;
c2c087e6
DW
1264 }
1265 }
1266 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1267
1011e834 1268 /* determine the start of the metadata
14e8215b
DW
1269 * when no raid devices are defined use the default
1270 * ...otherwise allow the metadata to truncate the value
1271 * as is the case with older versions of imsm
1272 */
1273 if (memberships) {
1274 struct extent *last = &rv[memberships - 1];
5551b113 1275 unsigned long long remainder;
14e8215b 1276
5551b113 1277 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1278 /* round down to 1k block to satisfy precision of the kernel
1279 * 'size' interface
1280 */
1281 remainder &= ~1UL;
1282 /* make sure remainder is still sane */
f21e18ca 1283 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1284 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1285 if (reservation > remainder)
1286 reservation = remainder;
1287 }
5551b113 1288 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1289 e->size = 0;
1290 return rv;
1291}
1292
14e8215b
DW
1293/* try to determine how much space is reserved for metadata from
1294 * the last get_extents() entry, otherwise fallback to the
1295 * default
1296 */
1297static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1298{
1299 struct extent *e;
1300 int i;
1301 __u32 rv;
1302
1303 /* for spares just return a minimal reservation which will grow
1304 * once the spare is picked up by an array
1305 */
1306 if (dl->index == -1)
1307 return MPB_SECTOR_CNT;
1308
1309 e = get_extents(super, dl);
1310 if (!e)
1311 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1312
1313 /* scroll to last entry */
1314 for (i = 0; e[i].size; i++)
1315 continue;
1316
5551b113 1317 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1318
1319 free(e);
1320
1321 return rv;
1322}
1323
25ed7e59
DW
1324static int is_spare(struct imsm_disk *disk)
1325{
1326 return (disk->status & SPARE_DISK) == SPARE_DISK;
1327}
1328
1329static int is_configured(struct imsm_disk *disk)
1330{
1331 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1332}
1333
1334static int is_failed(struct imsm_disk *disk)
1335{
1336 return (disk->status & FAILED_DISK) == FAILED_DISK;
1337}
1338
2432ce9b
AP
1339static int is_journal(struct imsm_disk *disk)
1340{
1341 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1342}
1343
b53bfba6
TM
1344/* round array size down to closest MB and ensure it splits evenly
1345 * between members
1346 */
1347static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1348 disk_count)
1349{
1350 size /= disk_count;
1351 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1352 size *= disk_count;
1353
1354 return size;
1355}
1356
8b9cd157
MK
1357static int able_to_resync(int raid_level, int missing_disks)
1358{
1359 int max_missing_disks = 0;
1360
1361 switch (raid_level) {
1362 case 10:
1363 max_missing_disks = 1;
1364 break;
1365 default:
1366 max_missing_disks = 0;
1367 }
1368 return missing_disks <= max_missing_disks;
1369}
1370
b81221b7
CA
1371/* try to determine how much space is reserved for metadata from
1372 * the last get_extents() entry on the smallest active disk,
1373 * otherwise fallback to the default
1374 */
1375static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1376{
1377 struct extent *e;
1378 int i;
5551b113
CA
1379 unsigned long long min_active;
1380 __u32 remainder;
b81221b7
CA
1381 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1382 struct dl *dl, *dl_min = NULL;
1383
1384 if (!super)
1385 return rv;
1386
1387 min_active = 0;
1388 for (dl = super->disks; dl; dl = dl->next) {
1389 if (dl->index < 0)
1390 continue;
5551b113
CA
1391 unsigned long long blocks = total_blocks(&dl->disk);
1392 if (blocks < min_active || min_active == 0) {
b81221b7 1393 dl_min = dl;
5551b113 1394 min_active = blocks;
b81221b7
CA
1395 }
1396 }
1397 if (!dl_min)
1398 return rv;
1399
1400 /* find last lba used by subarrays on the smallest active disk */
1401 e = get_extents(super, dl_min);
1402 if (!e)
1403 return rv;
1404 for (i = 0; e[i].size; i++)
1405 continue;
1406
1407 remainder = min_active - e[i].start;
1408 free(e);
1409
1410 /* to give priority to recovery we should not require full
1411 IMSM_RESERVED_SECTORS from the spare */
1412 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1413
1414 /* if real reservation is smaller use that value */
1415 return (remainder < rv) ? remainder : rv;
1416}
1417
fbfdcb06
AO
1418/*
1419 * Return minimum size of a spare and sector size
1420 * that can be used in this array
1421 */
1422int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
80e7f8c3
AC
1423{
1424 struct intel_super *super = st->sb;
1425 struct dl *dl;
1426 struct extent *e;
1427 int i;
fbfdcb06
AO
1428 unsigned long long size = 0;
1429
1430 c->min_size = 0;
4b57ecf6 1431 c->sector_size = 0;
80e7f8c3
AC
1432
1433 if (!super)
fbfdcb06 1434 return -EINVAL;
80e7f8c3
AC
1435 /* find first active disk in array */
1436 dl = super->disks;
1437 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1438 dl = dl->next;
1439 if (!dl)
fbfdcb06 1440 return -EINVAL;
80e7f8c3
AC
1441 /* find last lba used by subarrays */
1442 e = get_extents(super, dl);
1443 if (!e)
fbfdcb06 1444 return -EINVAL;
80e7f8c3
AC
1445 for (i = 0; e[i].size; i++)
1446 continue;
1447 if (i > 0)
fbfdcb06 1448 size = e[i-1].start + e[i-1].size;
80e7f8c3 1449 free(e);
b81221b7 1450
80e7f8c3 1451 /* add the amount of space needed for metadata */
fbfdcb06
AO
1452 size += imsm_min_reserved_sectors(super);
1453
1454 c->min_size = size * 512;
4b57ecf6 1455 c->sector_size = super->sector_size;
b81221b7 1456
fbfdcb06 1457 return 0;
80e7f8c3
AC
1458}
1459
d1e02575
AK
1460static int is_gen_migration(struct imsm_dev *dev);
1461
f36a9ecd
PB
1462#define IMSM_4K_DIV 8
1463
c47b0ff6
AK
1464static __u64 blocks_per_migr_unit(struct intel_super *super,
1465 struct imsm_dev *dev);
1e5c6983 1466
c47b0ff6
AK
1467static void print_imsm_dev(struct intel_super *super,
1468 struct imsm_dev *dev,
1469 char *uuid,
1470 int disk_idx)
cdddbdbc
DW
1471{
1472 __u64 sz;
0d80bb2f 1473 int slot, i;
238c0a71
AK
1474 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1475 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1476 __u32 ord;
cdddbdbc
DW
1477
1478 printf("\n");
1e7bc0ed 1479 printf("[%.16s]:\n", dev->volume);
44470971 1480 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1481 printf(" RAID Level : %d", get_imsm_raid_level(map));
1482 if (map2)
1483 printf(" <-- %d", get_imsm_raid_level(map2));
1484 printf("\n");
1485 printf(" Members : %d", map->num_members);
1486 if (map2)
1487 printf(" <-- %d", map2->num_members);
1488 printf("\n");
0d80bb2f
DW
1489 printf(" Slots : [");
1490 for (i = 0; i < map->num_members; i++) {
238c0a71 1491 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1492 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1493 }
dd8bcb3b
AK
1494 printf("]");
1495 if (map2) {
1496 printf(" <-- [");
1497 for (i = 0; i < map2->num_members; i++) {
238c0a71 1498 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1499 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1500 }
1501 printf("]");
1502 }
1503 printf("\n");
7095bccb
AK
1504 printf(" Failed disk : ");
1505 if (map->failed_disk_num == 0xff)
1506 printf("none");
1507 else
1508 printf("%i", map->failed_disk_num);
1509 printf("\n");
620b1713
DW
1510 slot = get_imsm_disk_slot(map, disk_idx);
1511 if (slot >= 0) {
238c0a71 1512 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1513 printf(" This Slot : %d%s\n", slot,
1514 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1515 } else
cdddbdbc 1516 printf(" This Slot : ?\n");
84918897 1517 printf(" Sector Size : %u\n", super->sector_size);
fcc2c9da 1518 sz = imsm_dev_size(dev);
84918897
MK
1519 printf(" Array Size : %llu%s\n",
1520 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1521 human_size(sz * 512));
5551b113 1522 sz = blocks_per_member(map);
84918897
MK
1523 printf(" Per Dev Size : %llu%s\n",
1524 (unsigned long long)sz * 512 / super->sector_size,
cdddbdbc 1525 human_size(sz * 512));
5551b113
CA
1526 printf(" Sector Offset : %llu\n",
1527 pba_of_lba0(map));
1528 printf(" Num Stripes : %llu\n",
1529 num_data_stripes(map));
dd8bcb3b 1530 printf(" Chunk Size : %u KiB",
cdddbdbc 1531 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1532 if (map2)
1533 printf(" <-- %u KiB",
1534 __le16_to_cpu(map2->blocks_per_strip) / 2);
1535 printf("\n");
cdddbdbc 1536 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1537 printf(" Migrate State : ");
1484e727
DW
1538 if (dev->vol.migr_state) {
1539 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1540 printf("initialize\n");
1484e727 1541 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1542 printf("rebuild\n");
1484e727 1543 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1544 printf("check\n");
1484e727 1545 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1546 printf("general migration\n");
1484e727 1547 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1548 printf("state change\n");
1484e727 1549 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1550 printf("repair\n");
1484e727 1551 else
8655a7b1
DW
1552 printf("<unknown:%d>\n", migr_type(dev));
1553 } else
1554 printf("idle\n");
3393c6af
DW
1555 printf(" Map State : %s", map_state_str[map->map_state]);
1556 if (dev->vol.migr_state) {
238c0a71 1557 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1558
b10b37b8 1559 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1560 printf("\n Checkpoint : %u ",
1561 __le32_to_cpu(dev->vol.curr_migr_unit));
089f9d79 1562 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1563 printf("(N/A)");
1564 else
1565 printf("(%llu)", (unsigned long long)
1566 blocks_per_migr_unit(super, dev));
3393c6af
DW
1567 }
1568 printf("\n");
2432ce9b
AP
1569 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1570 "dirty" : "clean");
1571 printf(" RWH Policy : ");
c2462068 1572 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
2432ce9b
AP
1573 printf("off\n");
1574 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1575 printf("PPL distributed\n");
1576 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1577 printf("PPL journaling drive\n");
c2462068
PB
1578 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1579 printf("Multiple distributed PPLs\n");
1580 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1581 printf("Multiple PPLs on journaling drive\n");
2432ce9b
AP
1582 else
1583 printf("<unknown:%d>\n", dev->rwh_policy);
cdddbdbc
DW
1584}
1585
ef5c214e
MK
1586static void print_imsm_disk(struct imsm_disk *disk,
1587 int index,
1588 __u32 reserved,
1589 unsigned int sector_size) {
1f24f035 1590 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1591 __u64 sz;
1592
0ec1f4e8 1593 if (index < -1 || !disk)
e9d82038
DW
1594 return;
1595
cdddbdbc 1596 printf("\n");
1f24f035 1597 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1598 if (index >= 0)
1599 printf(" Disk%02d Serial : %s\n", index, str);
1600 else
1601 printf(" Disk Serial : %s\n", str);
2432ce9b
AP
1602 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1603 is_configured(disk) ? " active" : "",
1604 is_failed(disk) ? " failed" : "",
1605 is_journal(disk) ? " journal" : "");
cdddbdbc 1606 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1607 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1608 printf(" Usable Size : %llu%s\n",
1609 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1610 human_size(sz * 512));
1611}
1612
de44e46f
PB
1613void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1614{
1615 struct migr_record *migr_rec = super->migr_rec;
1616
1617 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1618 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1619 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1620 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1621 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1622 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1623 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1624}
1625
f36a9ecd
PB
1626void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1627{
1628 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1629}
1630
1631void convert_to_4k(struct intel_super *super)
1632{
1633 struct imsm_super *mpb = super->anchor;
1634 struct imsm_disk *disk;
1635 int i;
e4467bc7 1636 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1637
1638 for (i = 0; i < mpb->num_disks ; i++) {
1639 disk = __get_imsm_disk(mpb, i);
1640 /* disk */
1641 convert_to_4k_imsm_disk(disk);
1642 }
1643 for (i = 0; i < mpb->num_raid_devs; i++) {
1644 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1645 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1646 /* dev */
fcc2c9da 1647 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
f36a9ecd
PB
1648 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1649
1650 /* map0 */
1651 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1652 map->blocks_per_strip /= IMSM_4K_DIV;
1653 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1654
1655 if (dev->vol.migr_state) {
1656 /* map1 */
1657 map = get_imsm_map(dev, MAP_1);
1658 set_blocks_per_member(map,
1659 blocks_per_member(map)/IMSM_4K_DIV);
1660 map->blocks_per_strip /= IMSM_4K_DIV;
1661 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1662 }
1663 }
e4467bc7
TM
1664 if (bbm_log_size) {
1665 struct bbm_log *log = (void *)mpb +
1666 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1667 __u32 i;
1668
1669 for (i = 0; i < log->entry_count; i++) {
1670 struct bbm_log_entry *entry =
1671 &log->marked_block_entries[i];
1672
1673 __u8 count = entry->marked_count + 1;
1674 unsigned long long sector =
1675 __le48_to_cpu(&entry->defective_block_start);
1676
1677 entry->defective_block_start =
1678 __cpu_to_le48(sector/IMSM_4K_DIV);
1679 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1680 }
1681 }
f36a9ecd
PB
1682
1683 mpb->check_sum = __gen_imsm_checksum(mpb);
1684}
1685
520e69e2
AK
1686void examine_migr_rec_imsm(struct intel_super *super)
1687{
1688 struct migr_record *migr_rec = super->migr_rec;
1689 struct imsm_super *mpb = super->anchor;
1690 int i;
1691
1692 for (i = 0; i < mpb->num_raid_devs; i++) {
1693 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1694 struct imsm_map *map;
b4ab44d8 1695 int slot = -1;
3136abe5 1696
520e69e2
AK
1697 if (is_gen_migration(dev) == 0)
1698 continue;
1699
1700 printf("\nMigration Record Information:");
3136abe5 1701
44bfe6df
AK
1702 /* first map under migration */
1703 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1704 if (map)
1705 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1706 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1707 printf(" Empty\n ");
1708 printf("Examine one of first two disks in array\n");
1709 break;
1710 }
1711 printf("\n Status : ");
1712 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1713 printf("Normal\n");
1714 else
1715 printf("Contains Data\n");
1716 printf(" Current Unit : %u\n",
1717 __le32_to_cpu(migr_rec->curr_migr_unit));
1718 printf(" Family : %u\n",
1719 __le32_to_cpu(migr_rec->family_num));
1720 printf(" Ascending : %u\n",
1721 __le32_to_cpu(migr_rec->ascending_migr));
1722 printf(" Blocks Per Unit : %u\n",
1723 __le32_to_cpu(migr_rec->blocks_per_unit));
1724 printf(" Dest. Depth Per Unit : %u\n",
1725 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1726 printf(" Checkpoint Area pba : %u\n",
1727 __le32_to_cpu(migr_rec->ckpt_area_pba));
1728 printf(" First member lba : %u\n",
1729 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1730 printf(" Total Number of Units : %u\n",
1731 __le32_to_cpu(migr_rec->num_migr_units));
1732 printf(" Size of volume : %u\n",
1733 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1734 printf(" Expansion space for LBA64 : %u\n",
1735 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1736 printf(" Record was read from : %u\n",
1737 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1738
1739 break;
1740 }
1741}
f36a9ecd 1742
de44e46f
PB
1743void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1744{
1745 struct migr_record *migr_rec = super->migr_rec;
1746
1747 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1748 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1749 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1750 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1751 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1752 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1753 &migr_rec->post_migr_vol_cap,
1754 &migr_rec->post_migr_vol_cap_hi);
1755}
1756
f36a9ecd
PB
1757void convert_from_4k(struct intel_super *super)
1758{
1759 struct imsm_super *mpb = super->anchor;
1760 struct imsm_disk *disk;
1761 int i;
e4467bc7 1762 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1763
1764 for (i = 0; i < mpb->num_disks ; i++) {
1765 disk = __get_imsm_disk(mpb, i);
1766 /* disk */
1767 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1768 }
1769
1770 for (i = 0; i < mpb->num_raid_devs; i++) {
1771 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1772 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1773 /* dev */
fcc2c9da 1774 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
f36a9ecd
PB
1775 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1776
1777 /* map0 */
1778 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1779 map->blocks_per_strip *= IMSM_4K_DIV;
1780 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1781
1782 if (dev->vol.migr_state) {
1783 /* map1 */
1784 map = get_imsm_map(dev, MAP_1);
1785 set_blocks_per_member(map,
1786 blocks_per_member(map)*IMSM_4K_DIV);
1787 map->blocks_per_strip *= IMSM_4K_DIV;
1788 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1789 }
1790 }
e4467bc7
TM
1791 if (bbm_log_size) {
1792 struct bbm_log *log = (void *)mpb +
1793 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1794 __u32 i;
1795
1796 for (i = 0; i < log->entry_count; i++) {
1797 struct bbm_log_entry *entry =
1798 &log->marked_block_entries[i];
1799
1800 __u8 count = entry->marked_count + 1;
1801 unsigned long long sector =
1802 __le48_to_cpu(&entry->defective_block_start);
1803
1804 entry->defective_block_start =
1805 __cpu_to_le48(sector*IMSM_4K_DIV);
1806 entry->marked_count = count*IMSM_4K_DIV - 1;
1807 }
1808 }
f36a9ecd
PB
1809
1810 mpb->check_sum = __gen_imsm_checksum(mpb);
1811}
1812
19482bcc
AK
1813/*******************************************************************************
1814 * function: imsm_check_attributes
1815 * Description: Function checks if features represented by attributes flags
1011e834 1816 * are supported by mdadm.
19482bcc
AK
1817 * Parameters:
1818 * attributes - Attributes read from metadata
1819 * Returns:
1011e834
N
1820 * 0 - passed attributes contains unsupported features flags
1821 * 1 - all features are supported
19482bcc
AK
1822 ******************************************************************************/
1823static int imsm_check_attributes(__u32 attributes)
1824{
1825 int ret_val = 1;
418f9b36
N
1826 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1827
1828 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1829
1830 not_supported &= attributes;
1831 if (not_supported) {
e7b84f9d 1832 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1833 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1834 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1835 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1836 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1837 }
1838 if (not_supported & MPB_ATTRIB_2TB) {
1839 dprintf("\t\tMPB_ATTRIB_2TB\n");
1840 not_supported ^= MPB_ATTRIB_2TB;
1841 }
1842 if (not_supported & MPB_ATTRIB_RAID0) {
1843 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1844 not_supported ^= MPB_ATTRIB_RAID0;
1845 }
1846 if (not_supported & MPB_ATTRIB_RAID1) {
1847 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1848 not_supported ^= MPB_ATTRIB_RAID1;
1849 }
1850 if (not_supported & MPB_ATTRIB_RAID10) {
1851 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1852 not_supported ^= MPB_ATTRIB_RAID10;
1853 }
1854 if (not_supported & MPB_ATTRIB_RAID1E) {
1855 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1856 not_supported ^= MPB_ATTRIB_RAID1E;
1857 }
1858 if (not_supported & MPB_ATTRIB_RAID5) {
1859 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1860 not_supported ^= MPB_ATTRIB_RAID5;
1861 }
1862 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1863 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1864 not_supported ^= MPB_ATTRIB_RAIDCNG;
1865 }
1866 if (not_supported & MPB_ATTRIB_BBM) {
1867 dprintf("\t\tMPB_ATTRIB_BBM\n");
1868 not_supported ^= MPB_ATTRIB_BBM;
1869 }
1870 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1871 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1872 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1873 }
1874 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1875 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1876 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1877 }
1878 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1879 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1880 not_supported ^= MPB_ATTRIB_2TB_DISK;
1881 }
1882 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1883 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1884 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1885 }
1886 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1887 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1888 not_supported ^= MPB_ATTRIB_NEVER_USE;
1889 }
1890
1891 if (not_supported)
1ade5cc1 1892 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1893
1894 ret_val = 0;
1895 }
1896
1897 return ret_val;
1898}
1899
a5d85af7 1900static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1901
cdddbdbc
DW
1902static void examine_super_imsm(struct supertype *st, char *homehost)
1903{
1904 struct intel_super *super = st->sb;
949c47a0 1905 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1906 char str[MAX_SIGNATURE_LENGTH];
1907 int i;
27fd6274
DW
1908 struct mdinfo info;
1909 char nbuf[64];
cdddbdbc 1910 __u32 sum;
14e8215b 1911 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1912 struct dl *dl;
27fd6274 1913
618f4e6d
XN
1914 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1915 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc
DW
1916 printf(" Magic : %s\n", str);
1917 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1918 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1919 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1920 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1921 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1922 printf(" Attributes : ");
1923 if (imsm_check_attributes(mpb->attributes))
1924 printf("All supported\n");
1925 else
1926 printf("not supported\n");
a5d85af7 1927 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1928 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1929 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1930 sum = __le32_to_cpu(mpb->check_sum);
1931 printf(" Checksum : %08x %s\n", sum,
949c47a0 1932 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 1933 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
1934 printf(" Disks : %d\n", mpb->num_disks);
1935 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
1936 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1937 super->disks->index, reserved, super->sector_size);
8d67477f 1938 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
1939 struct bbm_log *log = super->bbm_log;
1940
1941 printf("\n");
1942 printf("Bad Block Management Log:\n");
1943 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1944 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1945 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 1946 }
44470971
DW
1947 for (i = 0; i < mpb->num_raid_devs; i++) {
1948 struct mdinfo info;
1949 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1950
1951 super->current_vol = i;
a5d85af7 1952 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1953 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1954 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1955 }
cdddbdbc
DW
1956 for (i = 0; i < mpb->num_disks; i++) {
1957 if (i == super->disks->index)
1958 continue;
ef5c214e
MK
1959 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1960 super->sector_size);
cdddbdbc 1961 }
94827db3 1962
0ec1f4e8
DW
1963 for (dl = super->disks; dl; dl = dl->next)
1964 if (dl->index == -1)
ef5c214e
MK
1965 print_imsm_disk(&dl->disk, -1, reserved,
1966 super->sector_size);
520e69e2
AK
1967
1968 examine_migr_rec_imsm(super);
cdddbdbc
DW
1969}
1970
061f2c6a 1971static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1972{
27fd6274 1973 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1974 struct mdinfo info;
1975 char nbuf[64];
1e7bc0ed 1976 struct intel_super *super = st->sb;
1e7bc0ed 1977
0d5a423f
DW
1978 if (!super->anchor->num_raid_devs) {
1979 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1980 return;
0d5a423f 1981 }
ff54de6e 1982
a5d85af7 1983 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1984 fname_from_uuid(st, &info, nbuf, ':');
1985 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1986}
1987
1988static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1989{
1990 /* We just write a generic IMSM ARRAY entry */
1991 struct mdinfo info;
1992 char nbuf[64];
1993 char nbuf1[64];
1994 struct intel_super *super = st->sb;
1995 int i;
1996
1997 if (!super->anchor->num_raid_devs)
1998 return;
1999
a5d85af7 2000 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2001 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
2002 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2003 struct imsm_dev *dev = get_imsm_dev(super, i);
2004
2005 super->current_vol = i;
a5d85af7 2006 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2007 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 2008 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 2009 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 2010 }
cdddbdbc
DW
2011}
2012
9d84c8ea
DW
2013static void export_examine_super_imsm(struct supertype *st)
2014{
2015 struct intel_super *super = st->sb;
2016 struct imsm_super *mpb = super->anchor;
2017 struct mdinfo info;
2018 char nbuf[64];
2019
a5d85af7 2020 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
2021 fname_from_uuid(st, &info, nbuf, ':');
2022 printf("MD_METADATA=imsm\n");
2023 printf("MD_LEVEL=container\n");
2024 printf("MD_UUID=%s\n", nbuf+5);
2025 printf("MD_DEVICES=%u\n", mpb->num_disks);
2026}
2027
74db60b0
N
2028static int copy_metadata_imsm(struct supertype *st, int from, int to)
2029{
f36a9ecd 2030 /* The second last sector of the device contains
74db60b0
N
2031 * the "struct imsm_super" metadata.
2032 * This contains mpb_size which is the size in bytes of the
2033 * extended metadata. This is located immediately before
2034 * the imsm_super.
2035 * We want to read all that, plus the last sector which
2036 * may contain a migration record, and write it all
2037 * to the target.
2038 */
2039 void *buf;
2040 unsigned long long dsize, offset;
2041 int sectors;
2042 struct imsm_super *sb;
f36a9ecd
PB
2043 struct intel_super *super = st->sb;
2044 unsigned int sector_size = super->sector_size;
2045 unsigned int written = 0;
74db60b0 2046
de44e46f 2047 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
74db60b0
N
2048 return 1;
2049
2050 if (!get_dev_size(from, NULL, &dsize))
2051 goto err;
2052
f36a9ecd 2053 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
74db60b0 2054 goto err;
466070ad 2055 if ((unsigned int)read(from, buf, sector_size) != sector_size)
74db60b0
N
2056 goto err;
2057 sb = buf;
2058 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2059 goto err;
2060
f36a9ecd
PB
2061 sectors = mpb_sectors(sb, sector_size) + 2;
2062 offset = dsize - sectors * sector_size;
74db60b0
N
2063 if (lseek64(from, offset, 0) < 0 ||
2064 lseek64(to, offset, 0) < 0)
2065 goto err;
f36a9ecd
PB
2066 while (written < sectors * sector_size) {
2067 int n = sectors*sector_size - written;
74db60b0
N
2068 if (n > 4096)
2069 n = 4096;
2070 if (read(from, buf, n) != n)
2071 goto err;
2072 if (write(to, buf, n) != n)
2073 goto err;
2074 written += n;
2075 }
2076 free(buf);
2077 return 0;
2078err:
2079 free(buf);
2080 return 1;
2081}
2082
cdddbdbc
DW
2083static void detail_super_imsm(struct supertype *st, char *homehost)
2084{
3ebe00a1
DW
2085 struct mdinfo info;
2086 char nbuf[64];
2087
a5d85af7 2088 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2089 fname_from_uuid(st, &info, nbuf, ':');
65884368 2090 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
2091}
2092
2093static void brief_detail_super_imsm(struct supertype *st)
2094{
ff54de6e
N
2095 struct mdinfo info;
2096 char nbuf[64];
a5d85af7 2097 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 2098 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 2099 printf(" UUID=%s", nbuf + 5);
cdddbdbc 2100}
d665cc31
DW
2101
2102static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2103static void fd2devname(int fd, char *name);
2104
120dc887 2105static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2106{
120dc887
LM
2107 /* dump an unsorted list of devices attached to AHCI Intel storage
2108 * controller, as well as non-connected ports
d665cc31
DW
2109 */
2110 int hba_len = strlen(hba_path) + 1;
2111 struct dirent *ent;
2112 DIR *dir;
2113 char *path = NULL;
2114 int err = 0;
2115 unsigned long port_mask = (1 << port_count) - 1;
2116
f21e18ca 2117 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2118 if (verbose > 0)
e7b84f9d 2119 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2120 return 2;
2121 }
2122
2123 /* scroll through /sys/dev/block looking for devices attached to
2124 * this hba
2125 */
2126 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2127 if (!dir)
2128 return 1;
2129
2130 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2131 int fd;
2132 char model[64];
2133 char vendor[64];
2134 char buf[1024];
2135 int major, minor;
2136 char *device;
2137 char *c;
2138 int port;
2139 int type;
2140
2141 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2142 continue;
2143 path = devt_to_devpath(makedev(major, minor));
2144 if (!path)
2145 continue;
2146 if (!path_attached_to_hba(path, hba_path)) {
2147 free(path);
2148 path = NULL;
2149 continue;
2150 }
2151
2152 /* retrieve the scsi device type */
2153 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 2154 if (verbose > 0)
e7b84f9d 2155 pr_err("failed to allocate 'device'\n");
d665cc31
DW
2156 err = 2;
2157 break;
2158 }
2159 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 2160 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 2161 if (verbose > 0)
e7b84f9d 2162 pr_err("failed to read device type for %s\n",
d665cc31
DW
2163 path);
2164 err = 2;
2165 free(device);
2166 break;
2167 }
2168 type = strtoul(buf, NULL, 10);
2169
2170 /* if it's not a disk print the vendor and model */
2171 if (!(type == 0 || type == 7 || type == 14)) {
2172 vendor[0] = '\0';
2173 model[0] = '\0';
2174 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 2175 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2176 strncpy(vendor, buf, sizeof(vendor));
2177 vendor[sizeof(vendor) - 1] = '\0';
2178 c = (char *) &vendor[sizeof(vendor) - 1];
2179 while (isspace(*c) || *c == '\0')
2180 *c-- = '\0';
2181
2182 }
2183 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 2184 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2185 strncpy(model, buf, sizeof(model));
2186 model[sizeof(model) - 1] = '\0';
2187 c = (char *) &model[sizeof(model) - 1];
2188 while (isspace(*c) || *c == '\0')
2189 *c-- = '\0';
2190 }
2191
2192 if (vendor[0] && model[0])
2193 sprintf(buf, "%.64s %.64s", vendor, model);
2194 else
2195 switch (type) { /* numbers from hald/linux/device.c */
2196 case 1: sprintf(buf, "tape"); break;
2197 case 2: sprintf(buf, "printer"); break;
2198 case 3: sprintf(buf, "processor"); break;
2199 case 4:
2200 case 5: sprintf(buf, "cdrom"); break;
2201 case 6: sprintf(buf, "scanner"); break;
2202 case 8: sprintf(buf, "media_changer"); break;
2203 case 9: sprintf(buf, "comm"); break;
2204 case 12: sprintf(buf, "raid"); break;
2205 default: sprintf(buf, "unknown");
2206 }
2207 } else
2208 buf[0] = '\0';
2209 free(device);
2210
2211 /* chop device path to 'host%d' and calculate the port number */
2212 c = strchr(&path[hba_len], '/');
4e5e717d 2213 if (!c) {
ba728be7 2214 if (verbose > 0)
e7b84f9d 2215 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2216 err = 2;
2217 break;
2218 }
d665cc31 2219 *c = '\0';
0858eccf
AP
2220 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2221 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2222 port -= host_base;
2223 else {
ba728be7 2224 if (verbose > 0) {
d665cc31 2225 *c = '/'; /* repair the full string */
e7b84f9d 2226 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2227 path);
2228 }
2229 err = 2;
2230 break;
2231 }
2232
2233 /* mark this port as used */
2234 port_mask &= ~(1 << port);
2235
2236 /* print out the device information */
2237 if (buf[0]) {
2238 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2239 continue;
2240 }
2241
2242 fd = dev_open(ent->d_name, O_RDONLY);
2243 if (fd < 0)
2244 printf(" Port%d : - disk info unavailable -\n", port);
2245 else {
2246 fd2devname(fd, buf);
2247 printf(" Port%d : %s", port, buf);
2248 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 2249 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 2250 else
664d5325 2251 printf(" ()\n");
4dab422a 2252 close(fd);
d665cc31 2253 }
d665cc31
DW
2254 free(path);
2255 path = NULL;
2256 }
2257 if (path)
2258 free(path);
2259 if (dir)
2260 closedir(dir);
2261 if (err == 0) {
2262 int i;
2263
2264 for (i = 0; i < port_count; i++)
2265 if (port_mask & (1 << i))
2266 printf(" Port%d : - no device attached -\n", i);
2267 }
2268
2269 return err;
2270}
2271
b5eece69 2272static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
2273{
2274 struct dirent *ent;
2275 DIR *dir;
2276 char path[292];
2277 char link[256];
2278 char *c, *rp;
2279
2280 if (hba->type != SYS_DEV_VMD)
b5eece69 2281 return 1;
60f0f54d
PB
2282
2283 /* scroll through /sys/dev/block looking for devices attached to
2284 * this hba
2285 */
2286 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 2287 if (!dir)
b5eece69 2288 return 1;
b9135011
JS
2289
2290 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
2291 int n;
2292
2293 /* is 'ent' a device? check that the 'subsystem' link exists and
2294 * that its target matches 'bus'
2295 */
2296 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2297 ent->d_name);
2298 n = readlink(path, link, sizeof(link));
2299 if (n < 0 || n >= (int)sizeof(link))
2300 continue;
2301 link[n] = '\0';
2302 c = strrchr(link, '/');
2303 if (!c)
2304 continue;
2305 if (strncmp("pci", c+1, strlen("pci")) != 0)
2306 continue;
2307
2308 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
60f0f54d
PB
2309
2310 rp = realpath(path, NULL);
2311 if (!rp)
2312 continue;
2313
2314 if (path_attached_to_hba(rp, hba->path)) {
2315 printf(" NVMe under VMD : %s\n", rp);
2316 }
2317 free(rp);
2318 }
2319
b9135011 2320 closedir(dir);
b5eece69 2321 return 0;
60f0f54d
PB
2322}
2323
120dc887
LM
2324static void print_found_intel_controllers(struct sys_dev *elem)
2325{
2326 for (; elem; elem = elem->next) {
e7b84f9d 2327 pr_err("found Intel(R) ");
120dc887
LM
2328 if (elem->type == SYS_DEV_SATA)
2329 fprintf(stderr, "SATA ");
155cbb4c
LM
2330 else if (elem->type == SYS_DEV_SAS)
2331 fprintf(stderr, "SAS ");
0858eccf
AP
2332 else if (elem->type == SYS_DEV_NVME)
2333 fprintf(stderr, "NVMe ");
60f0f54d
PB
2334
2335 if (elem->type == SYS_DEV_VMD)
2336 fprintf(stderr, "VMD domain");
2337 else
2338 fprintf(stderr, "RAID controller");
2339
120dc887
LM
2340 if (elem->pci_id)
2341 fprintf(stderr, " at %s", elem->pci_id);
2342 fprintf(stderr, ".\n");
2343 }
2344 fflush(stderr);
2345}
2346
120dc887
LM
2347static int ahci_get_port_count(const char *hba_path, int *port_count)
2348{
2349 struct dirent *ent;
2350 DIR *dir;
2351 int host_base = -1;
2352
2353 *port_count = 0;
2354 if ((dir = opendir(hba_path)) == NULL)
2355 return -1;
2356
2357 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2358 int host;
2359
0858eccf
AP
2360 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2361 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2362 continue;
2363 if (*port_count == 0)
2364 host_base = host;
2365 else if (host < host_base)
2366 host_base = host;
2367
2368 if (host + 1 > *port_count + host_base)
2369 *port_count = host + 1 - host_base;
2370 }
2371 closedir(dir);
2372 return host_base;
2373}
2374
a891a3c2
LM
2375static void print_imsm_capability(const struct imsm_orom *orom)
2376{
0858eccf
AP
2377 printf(" Platform : Intel(R) ");
2378 if (orom->capabilities == 0 && orom->driver_features == 0)
2379 printf("Matrix Storage Manager\n");
ab0c6bb9
AP
2380 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2381 printf("Virtual RAID on CPU\n");
0858eccf
AP
2382 else
2383 printf("Rapid Storage Technology%s\n",
2384 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2385 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2386 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2387 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2388 printf(" RAID Levels :%s%s%s%s%s\n",
2389 imsm_orom_has_raid0(orom) ? " raid0" : "",
2390 imsm_orom_has_raid1(orom) ? " raid1" : "",
2391 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2392 imsm_orom_has_raid10(orom) ? " raid10" : "",
2393 imsm_orom_has_raid5(orom) ? " raid5" : "");
2394 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2395 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2396 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2397 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2398 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2399 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2400 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2401 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2402 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2403 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2404 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2405 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2406 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2407 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2408 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2409 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2410 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2411 printf(" 2TB volumes :%s supported\n",
2412 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2413 printf(" 2TB disks :%s supported\n",
2414 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2415 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2416 printf(" Max Volumes : %d per array, %d per %s\n",
2417 orom->vpa, orom->vphba,
2418 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2419 return;
2420}
2421
e50cf220
MN
2422static void print_imsm_capability_export(const struct imsm_orom *orom)
2423{
2424 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2425 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2426 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2427 orom->hotfix_ver, orom->build);
e50cf220
MN
2428 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2429 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2430 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2431 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2432 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2433 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2434 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2435 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2436 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2437 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2438 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2439 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2440 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2441 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2442 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2443 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2444 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2445 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2446 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2447 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2448 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2449 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2450 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2451 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2452 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2453 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2454 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2455 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2456}
2457
9eafa1de 2458static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2459{
2460 /* There are two components to imsm platform support, the ahci SATA
2461 * controller and the option-rom. To find the SATA controller we
2462 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2463 * controller with the Intel vendor id is present. This approach
2464 * allows mdadm to leverage the kernel's ahci detection logic, with the
2465 * caveat that if ahci.ko is not loaded mdadm will not be able to
2466 * detect platform raid capabilities. The option-rom resides in a
2467 * platform "Adapter ROM". We scan for its signature to retrieve the
2468 * platform capabilities. If raid support is disabled in the BIOS the
2469 * option-rom capability structure will not be available.
2470 */
d665cc31 2471 struct sys_dev *list, *hba;
d665cc31
DW
2472 int host_base = 0;
2473 int port_count = 0;
9eafa1de 2474 int result=1;
d665cc31 2475
5615172f 2476 if (enumerate_only) {
a891a3c2 2477 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2478 return 0;
a891a3c2
LM
2479 list = find_intel_devices();
2480 if (!list)
2481 return 2;
2482 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2483 if (find_imsm_capability(hba)) {
2484 result = 0;
a891a3c2
LM
2485 break;
2486 }
9eafa1de 2487 else
6b781d33 2488 result = 2;
a891a3c2 2489 }
a891a3c2 2490 return result;
5615172f
DW
2491 }
2492
155cbb4c
LM
2493 list = find_intel_devices();
2494 if (!list) {
ba728be7 2495 if (verbose > 0)
7a862a02 2496 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2497 return 2;
ba728be7 2498 } else if (verbose > 0)
155cbb4c 2499 print_found_intel_controllers(list);
d665cc31 2500
a891a3c2 2501 for (hba = list; hba; hba = hba->next) {
0858eccf 2502 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2503 continue;
0858eccf 2504 if (!find_imsm_capability(hba)) {
60f0f54d 2505 char buf[PATH_MAX];
e7b84f9d 2506 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2507 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2508 get_sys_dev_type(hba->type));
0858eccf
AP
2509 continue;
2510 }
2511 result = 0;
2512 }
2513
2514 if (controller_path && result == 1) {
2515 pr_err("no active Intel(R) RAID controller found under %s\n",
2516 controller_path);
2517 return result;
2518 }
2519
5e1d6128 2520 const struct orom_entry *entry;
0858eccf 2521
5e1d6128 2522 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2523 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2524 print_imsm_capability(&entry->orom);
32716c51
PB
2525 printf(" 3rd party NVMe :%s supported\n",
2526 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2527 for (hba = list; hba; hba = hba->next) {
2528 if (hba->type == SYS_DEV_VMD) {
2529 char buf[PATH_MAX];
60f0f54d
PB
2530 printf(" I/O Controller : %s (%s)\n",
2531 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2532 if (print_vmd_attached_devs(hba)) {
2533 if (verbose > 0)
2534 pr_err("failed to get devices attached to VMD domain.\n");
2535 result |= 2;
2536 }
60f0f54d
PB
2537 }
2538 }
07cb1e57 2539 printf("\n");
60f0f54d
PB
2540 continue;
2541 }
0858eccf 2542
60f0f54d
PB
2543 print_imsm_capability(&entry->orom);
2544 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2545 for (hba = list; hba; hba = hba->next) {
2546 if (hba->type == SYS_DEV_NVME)
2547 printf(" NVMe Device : %s\n", hba->path);
2548 }
60f0f54d 2549 printf("\n");
0858eccf
AP
2550 continue;
2551 }
2552
2553 struct devid_list *devid;
5e1d6128 2554 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2555 hba = device_by_id(devid->devid);
2556 if (!hba)
2557 continue;
2558
9eafa1de
MN
2559 printf(" I/O Controller : %s (%s)\n",
2560 hba->path, get_sys_dev_type(hba->type));
2561 if (hba->type == SYS_DEV_SATA) {
2562 host_base = ahci_get_port_count(hba->path, &port_count);
2563 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2564 if (verbose > 0)
7a862a02 2565 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2566 result |= 2;
2567 }
120dc887
LM
2568 }
2569 }
0858eccf 2570 printf("\n");
d665cc31 2571 }
155cbb4c 2572
120dc887 2573 return result;
d665cc31 2574}
e50cf220 2575
9eafa1de 2576static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2577{
e50cf220
MN
2578 struct sys_dev *list, *hba;
2579 int result=1;
2580
2581 list = find_intel_devices();
2582 if (!list) {
2583 if (verbose > 0)
2584 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2585 result = 2;
e50cf220
MN
2586 return result;
2587 }
2588
2589 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2590 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2591 continue;
60f0f54d
PB
2592 if (!find_imsm_capability(hba) && verbose > 0) {
2593 char buf[PATH_MAX];
2594 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2595 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2596 }
0858eccf 2597 else
e50cf220 2598 result = 0;
e50cf220
MN
2599 }
2600
5e1d6128 2601 const struct orom_entry *entry;
0858eccf 2602
60f0f54d
PB
2603 for (entry = orom_entries; entry; entry = entry->next) {
2604 if (entry->type == SYS_DEV_VMD) {
2605 for (hba = list; hba; hba = hba->next)
2606 print_imsm_capability_export(&entry->orom);
2607 continue;
2608 }
5e1d6128 2609 print_imsm_capability_export(&entry->orom);
60f0f54d 2610 }
0858eccf 2611
e50cf220
MN
2612 return result;
2613}
2614
cdddbdbc
DW
2615static int match_home_imsm(struct supertype *st, char *homehost)
2616{
5115ca67
DW
2617 /* the imsm metadata format does not specify any host
2618 * identification information. We return -1 since we can never
2619 * confirm nor deny whether a given array is "meant" for this
148acb7b 2620 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2621 * exclude member disks that do not belong, and we rely on
2622 * mdadm.conf to specify the arrays that should be assembled.
2623 * Auto-assembly may still pick up "foreign" arrays.
2624 */
cdddbdbc 2625
9362c1c8 2626 return -1;
cdddbdbc
DW
2627}
2628
2629static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2630{
51006d85
N
2631 /* The uuid returned here is used for:
2632 * uuid to put into bitmap file (Create, Grow)
2633 * uuid for backup header when saving critical section (Grow)
2634 * comparing uuids when re-adding a device into an array
2635 * In these cases the uuid required is that of the data-array,
2636 * not the device-set.
2637 * uuid to recognise same set when adding a missing device back
2638 * to an array. This is a uuid for the device-set.
1011e834 2639 *
51006d85
N
2640 * For each of these we can make do with a truncated
2641 * or hashed uuid rather than the original, as long as
2642 * everyone agrees.
2643 * In each case the uuid required is that of the data-array,
2644 * not the device-set.
43dad3d6 2645 */
51006d85
N
2646 /* imsm does not track uuid's so we synthesis one using sha1 on
2647 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2648 * - the orig_family_num of the container
51006d85
N
2649 * - the index number of the volume
2650 * - the 'serial' number of the volume.
2651 * Hopefully these are all constant.
2652 */
2653 struct intel_super *super = st->sb;
43dad3d6 2654
51006d85
N
2655 char buf[20];
2656 struct sha1_ctx ctx;
2657 struct imsm_dev *dev = NULL;
148acb7b 2658 __u32 family_num;
51006d85 2659
148acb7b
DW
2660 /* some mdadm versions failed to set ->orig_family_num, in which
2661 * case fall back to ->family_num. orig_family_num will be
2662 * fixed up with the first metadata update.
2663 */
2664 family_num = super->anchor->orig_family_num;
2665 if (family_num == 0)
2666 family_num = super->anchor->family_num;
51006d85 2667 sha1_init_ctx(&ctx);
92bd8f8d 2668 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2669 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2670 if (super->current_vol >= 0)
2671 dev = get_imsm_dev(super, super->current_vol);
2672 if (dev) {
2673 __u32 vol = super->current_vol;
2674 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2675 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2676 }
2677 sha1_finish_ctx(&ctx, buf);
2678 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2679}
2680
0d481d37 2681#if 0
4f5bc454
DW
2682static void
2683get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2684{
cdddbdbc
DW
2685 __u8 *v = get_imsm_version(mpb);
2686 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2687 char major[] = { 0, 0, 0 };
2688 char minor[] = { 0 ,0, 0 };
2689 char patch[] = { 0, 0, 0 };
2690 char *ver_parse[] = { major, minor, patch };
2691 int i, j;
2692
2693 i = j = 0;
2694 while (*v != '\0' && v < end) {
2695 if (*v != '.' && j < 2)
2696 ver_parse[i][j++] = *v;
2697 else {
2698 i++;
2699 j = 0;
2700 }
2701 v++;
2702 }
2703
4f5bc454
DW
2704 *m = strtol(minor, NULL, 0);
2705 *p = strtol(patch, NULL, 0);
2706}
0d481d37 2707#endif
4f5bc454 2708
1e5c6983
DW
2709static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2710{
2711 /* migr_strip_size when repairing or initializing parity */
238c0a71 2712 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2713 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2714
2715 switch (get_imsm_raid_level(map)) {
2716 case 5:
2717 case 10:
2718 return chunk;
2719 default:
2720 return 128*1024 >> 9;
2721 }
2722}
2723
2724static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2725{
2726 /* migr_strip_size when rebuilding a degraded disk, no idea why
2727 * this is different than migr_strip_size_resync(), but it's good
2728 * to be compatible
2729 */
238c0a71 2730 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2731 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2732
2733 switch (get_imsm_raid_level(map)) {
2734 case 1:
2735 case 10:
2736 if (map->num_members % map->num_domains == 0)
2737 return 128*1024 >> 9;
2738 else
2739 return chunk;
2740 case 5:
2741 return max((__u32) 64*1024 >> 9, chunk);
2742 default:
2743 return 128*1024 >> 9;
2744 }
2745}
2746
2747static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2748{
238c0a71
AK
2749 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2750 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2751 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2752 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2753
2754 return max((__u32) 1, hi_chunk / lo_chunk);
2755}
2756
2757static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2758{
238c0a71 2759 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2760 int level = get_imsm_raid_level(lo);
2761
2762 if (level == 1 || level == 10) {
238c0a71 2763 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2764
2765 return hi->num_domains;
2766 } else
2767 return num_stripes_per_unit_resync(dev);
2768}
2769
98130f40 2770static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2771{
2772 /* named 'imsm_' because raid0, raid1 and raid10
2773 * counter-intuitively have the same number of data disks
2774 */
98130f40 2775 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2776
2777 switch (get_imsm_raid_level(map)) {
2778 case 0:
36fd8ccc
AK
2779 return map->num_members;
2780 break;
1e5c6983
DW
2781 case 1:
2782 case 10:
36fd8ccc 2783 return map->num_members/2;
1e5c6983
DW
2784 case 5:
2785 return map->num_members - 1;
2786 default:
1ade5cc1 2787 dprintf("unsupported raid level\n");
1e5c6983
DW
2788 return 0;
2789 }
2790}
2791
2792static __u32 parity_segment_depth(struct imsm_dev *dev)
2793{
238c0a71 2794 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2795 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2796
2797 switch(get_imsm_raid_level(map)) {
2798 case 1:
2799 case 10:
2800 return chunk * map->num_domains;
2801 case 5:
2802 return chunk * map->num_members;
2803 default:
2804 return chunk;
2805 }
2806}
2807
2808static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2809{
238c0a71 2810 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2811 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2812 __u32 strip = block / chunk;
2813
2814 switch (get_imsm_raid_level(map)) {
2815 case 1:
2816 case 10: {
2817 __u32 vol_strip = (strip * map->num_domains) + 1;
2818 __u32 vol_stripe = vol_strip / map->num_members;
2819
2820 return vol_stripe * chunk + block % chunk;
2821 } case 5: {
2822 __u32 stripe = strip / (map->num_members - 1);
2823
2824 return stripe * chunk + block % chunk;
2825 }
2826 default:
2827 return 0;
2828 }
2829}
2830
c47b0ff6
AK
2831static __u64 blocks_per_migr_unit(struct intel_super *super,
2832 struct imsm_dev *dev)
1e5c6983
DW
2833{
2834 /* calculate the conversion factor between per member 'blocks'
2835 * (md/{resync,rebuild}_start) and imsm migration units, return
2836 * 0 for the 'not migrating' and 'unsupported migration' cases
2837 */
2838 if (!dev->vol.migr_state)
2839 return 0;
2840
2841 switch (migr_type(dev)) {
c47b0ff6
AK
2842 case MIGR_GEN_MIGR: {
2843 struct migr_record *migr_rec = super->migr_rec;
2844 return __le32_to_cpu(migr_rec->blocks_per_unit);
2845 }
1e5c6983
DW
2846 case MIGR_VERIFY:
2847 case MIGR_REPAIR:
2848 case MIGR_INIT: {
238c0a71 2849 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2850 __u32 stripes_per_unit;
2851 __u32 blocks_per_unit;
2852 __u32 parity_depth;
2853 __u32 migr_chunk;
2854 __u32 block_map;
2855 __u32 block_rel;
2856 __u32 segment;
2857 __u32 stripe;
2858 __u8 disks;
2859
2860 /* yes, this is really the translation of migr_units to
2861 * per-member blocks in the 'resync' case
2862 */
2863 stripes_per_unit = num_stripes_per_unit_resync(dev);
2864 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2865 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2866 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2867 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2868 segment = blocks_per_unit / stripe;
2869 block_rel = blocks_per_unit - segment * stripe;
2870 parity_depth = parity_segment_depth(dev);
2871 block_map = map_migr_block(dev, block_rel);
2872 return block_map + parity_depth * segment;
2873 }
2874 case MIGR_REBUILD: {
2875 __u32 stripes_per_unit;
2876 __u32 migr_chunk;
2877
2878 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2879 migr_chunk = migr_strip_blocks_rebuild(dev);
2880 return migr_chunk * stripes_per_unit;
2881 }
1e5c6983
DW
2882 case MIGR_STATE_CHANGE:
2883 default:
2884 return 0;
2885 }
2886}
2887
c2c087e6
DW
2888static int imsm_level_to_layout(int level)
2889{
2890 switch (level) {
2891 case 0:
2892 case 1:
2893 return 0;
2894 case 5:
2895 case 6:
a380c027 2896 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2897 case 10:
c92a2527 2898 return 0x102;
c2c087e6 2899 }
a18a888e 2900 return UnSet;
c2c087e6
DW
2901}
2902
8e59f3d8
AK
2903/*******************************************************************************
2904 * Function: read_imsm_migr_rec
2905 * Description: Function reads imsm migration record from last sector of disk
2906 * Parameters:
2907 * fd : disk descriptor
2908 * super : metadata info
2909 * Returns:
2910 * 0 : success,
2911 * -1 : fail
2912 ******************************************************************************/
2913static int read_imsm_migr_rec(int fd, struct intel_super *super)
2914{
2915 int ret_val = -1;
de44e46f 2916 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
2917 unsigned long long dsize;
2918
2919 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2920 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2921 SEEK_SET) < 0) {
e7b84f9d
N
2922 pr_err("Cannot seek to anchor block: %s\n",
2923 strerror(errno));
8e59f3d8
AK
2924 goto out;
2925 }
466070ad 2926 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
2927 MIGR_REC_BUF_SECTORS*sector_size) !=
2928 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2929 pr_err("Cannot read migr record block: %s\n",
2930 strerror(errno));
8e59f3d8
AK
2931 goto out;
2932 }
2933 ret_val = 0;
de44e46f
PB
2934 if (sector_size == 4096)
2935 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
2936
2937out:
2938 return ret_val;
2939}
2940
3136abe5
AK
2941static struct imsm_dev *imsm_get_device_during_migration(
2942 struct intel_super *super)
2943{
2944
2945 struct intel_dev *dv;
2946
2947 for (dv = super->devlist; dv; dv = dv->next) {
2948 if (is_gen_migration(dv->dev))
2949 return dv->dev;
2950 }
2951 return NULL;
2952}
2953
8e59f3d8
AK
2954/*******************************************************************************
2955 * Function: load_imsm_migr_rec
2956 * Description: Function reads imsm migration record (it is stored at the last
2957 * sector of disk)
2958 * Parameters:
2959 * super : imsm internal array info
2960 * info : general array info
2961 * Returns:
2962 * 0 : success
2963 * -1 : fail
4c965cc9 2964 * -2 : no migration in progress
8e59f3d8
AK
2965 ******************************************************************************/
2966static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2967{
2968 struct mdinfo *sd;
594dc1b8 2969 struct dl *dl;
8e59f3d8
AK
2970 char nm[30];
2971 int retval = -1;
2972 int fd = -1;
3136abe5 2973 struct imsm_dev *dev;
594dc1b8 2974 struct imsm_map *map;
b4ab44d8 2975 int slot = -1;
3136abe5
AK
2976
2977 /* find map under migration */
2978 dev = imsm_get_device_during_migration(super);
2979 /* nothing to load,no migration in progress?
2980 */
2981 if (dev == NULL)
4c965cc9 2982 return -2;
8e59f3d8
AK
2983
2984 if (info) {
2985 for (sd = info->devs ; sd ; sd = sd->next) {
2986 /* read only from one of the first two slots */
12fe93e9
TM
2987 if ((sd->disk.raid_disk < 0) ||
2988 (sd->disk.raid_disk > 1))
8e59f3d8 2989 continue;
3136abe5 2990
8e59f3d8
AK
2991 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2992 fd = dev_open(nm, O_RDONLY);
2993 if (fd >= 0)
2994 break;
2995 }
2996 }
2997 if (fd < 0) {
12fe93e9 2998 map = get_imsm_map(dev, MAP_0);
8e59f3d8 2999 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
3000 /* skip spare and failed disks
3001 */
3002 if (dl->index < 0)
3003 continue;
8e59f3d8 3004 /* read only from one of the first two slots */
3136abe5
AK
3005 if (map)
3006 slot = get_imsm_disk_slot(map, dl->index);
089f9d79 3007 if (map == NULL || slot > 1 || slot < 0)
8e59f3d8
AK
3008 continue;
3009 sprintf(nm, "%d:%d", dl->major, dl->minor);
3010 fd = dev_open(nm, O_RDONLY);
3011 if (fd >= 0)
3012 break;
3013 }
3014 }
3015 if (fd < 0)
3016 goto out;
3017 retval = read_imsm_migr_rec(fd, super);
3018
3019out:
3020 if (fd >= 0)
3021 close(fd);
3022 return retval;
3023}
3024
c17608ea
AK
3025/*******************************************************************************
3026 * function: imsm_create_metadata_checkpoint_update
3027 * Description: It creates update for checkpoint change.
3028 * Parameters:
3029 * super : imsm internal array info
3030 * u : pointer to prepared update
3031 * Returns:
3032 * Uptate length.
3033 * If length is equal to 0, input pointer u contains no update
3034 ******************************************************************************/
3035static int imsm_create_metadata_checkpoint_update(
3036 struct intel_super *super,
3037 struct imsm_update_general_migration_checkpoint **u)
3038{
3039
3040 int update_memory_size = 0;
3041
1ade5cc1 3042 dprintf("(enter)\n");
c17608ea
AK
3043
3044 if (u == NULL)
3045 return 0;
3046 *u = NULL;
3047
3048 /* size of all update data without anchor */
3049 update_memory_size =
3050 sizeof(struct imsm_update_general_migration_checkpoint);
3051
503975b9 3052 *u = xcalloc(1, update_memory_size);
c17608ea 3053 if (*u == NULL) {
1ade5cc1 3054 dprintf("error: cannot get memory\n");
c17608ea
AK
3055 return 0;
3056 }
3057 (*u)->type = update_general_migration_checkpoint;
3058 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 3059 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
3060
3061 return update_memory_size;
3062}
3063
c17608ea
AK
3064static void imsm_update_metadata_locally(struct supertype *st,
3065 void *buf, int len);
3066
687629c2
AK
3067/*******************************************************************************
3068 * Function: write_imsm_migr_rec
3069 * Description: Function writes imsm migration record
3070 * (at the last sector of disk)
3071 * Parameters:
3072 * super : imsm internal array info
3073 * Returns:
3074 * 0 : success
3075 * -1 : if fail
3076 ******************************************************************************/
3077static int write_imsm_migr_rec(struct supertype *st)
3078{
3079 struct intel_super *super = st->sb;
de44e46f 3080 unsigned int sector_size = super->sector_size;
687629c2
AK
3081 unsigned long long dsize;
3082 char nm[30];
3083 int fd = -1;
3084 int retval = -1;
3085 struct dl *sd;
c17608ea
AK
3086 int len;
3087 struct imsm_update_general_migration_checkpoint *u;
3136abe5 3088 struct imsm_dev *dev;
594dc1b8 3089 struct imsm_map *map;
3136abe5
AK
3090
3091 /* find map under migration */
3092 dev = imsm_get_device_during_migration(super);
3093 /* if no migration, write buffer anyway to clear migr_record
3094 * on disk based on first available device
3095 */
3096 if (dev == NULL)
3097 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3098 super->current_vol);
3099
44bfe6df 3100 map = get_imsm_map(dev, MAP_0);
687629c2 3101
de44e46f
PB
3102 if (sector_size == 4096)
3103 convert_to_4k_imsm_migr_rec(super);
687629c2 3104 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3105 int slot = -1;
3136abe5
AK
3106
3107 /* skip failed and spare devices */
3108 if (sd->index < 0)
3109 continue;
687629c2 3110 /* write to 2 first slots only */
3136abe5
AK
3111 if (map)
3112 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3113 if (map == NULL || slot > 1 || slot < 0)
687629c2 3114 continue;
3136abe5 3115
687629c2
AK
3116 sprintf(nm, "%d:%d", sd->major, sd->minor);
3117 fd = dev_open(nm, O_RDWR);
3118 if (fd < 0)
3119 continue;
3120 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3121 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3122 SEEK_SET) < 0) {
e7b84f9d
N
3123 pr_err("Cannot seek to anchor block: %s\n",
3124 strerror(errno));
687629c2
AK
3125 goto out;
3126 }
466070ad 3127 if ((unsigned int)write(fd, super->migr_rec_buf,
de44e46f
PB
3128 MIGR_REC_BUF_SECTORS*sector_size) !=
3129 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3130 pr_err("Cannot write migr record block: %s\n",
3131 strerror(errno));
687629c2
AK
3132 goto out;
3133 }
3134 close(fd);
3135 fd = -1;
3136 }
de44e46f
PB
3137 if (sector_size == 4096)
3138 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3139 /* update checkpoint information in metadata */
3140 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3141 if (len <= 0) {
3142 dprintf("imsm: Cannot prepare update\n");
3143 goto out;
3144 }
3145 /* update metadata locally */
3146 imsm_update_metadata_locally(st, u, len);
3147 /* and possibly remotely */
3148 if (st->update_tail) {
3149 append_metadata_update(st, u, len);
3150 /* during reshape we do all work inside metadata handler
3151 * manage_reshape(), so metadata update has to be triggered
3152 * insida it
3153 */
3154 flush_metadata_updates(st);
3155 st->update_tail = &st->updates;
3156 } else
3157 free(u);
687629c2
AK
3158
3159 retval = 0;
3160 out:
3161 if (fd >= 0)
3162 close(fd);
3163 return retval;
3164}
3165
e2962bfc
AK
3166/* spare/missing disks activations are not allowe when
3167 * array/container performs reshape operation, because
3168 * all arrays in container works on the same disks set
3169 */
3170int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3171{
3172 int rv = 0;
3173 struct intel_dev *i_dev;
3174 struct imsm_dev *dev;
3175
3176 /* check whole container
3177 */
3178 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3179 dev = i_dev->dev;
3ad25638 3180 if (is_gen_migration(dev)) {
e2962bfc
AK
3181 /* No repair during any migration in container
3182 */
3183 rv = 1;
3184 break;
3185 }
3186 }
3187 return rv;
3188}
c41e00b2
AK
3189static unsigned long long imsm_component_size_aligment_check(int level,
3190 int chunk_size,
f36a9ecd 3191 unsigned int sector_size,
c41e00b2
AK
3192 unsigned long long component_size)
3193{
3194 unsigned int component_size_alligment;
3195
3196 /* check component size aligment
3197 */
f36a9ecd 3198 component_size_alligment = component_size % (chunk_size/sector_size);
c41e00b2 3199
1ade5cc1 3200 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
3201 level, chunk_size, component_size,
3202 component_size_alligment);
3203
3204 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3205 dprintf("imsm: reported component size alligned from %llu ",
3206 component_size);
3207 component_size -= component_size_alligment;
1ade5cc1 3208 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
3209 component_size, component_size_alligment);
3210 }
3211
3212 return component_size;
3213}
e2962bfc 3214
2432ce9b
AP
3215static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3216{
3217 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3218 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3219
3220 return pba_of_lba0(map) +
3221 (num_data_stripes(map) * map->blocks_per_strip);
3222}
3223
a5d85af7 3224static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3225{
3226 struct intel_super *super = st->sb;
c47b0ff6 3227 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3228 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3229 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3230 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3231 struct imsm_map *map_to_analyse = map;
efb30e7f 3232 struct dl *dl;
a5d85af7 3233 int map_disks = info->array.raid_disks;
bf5a934a 3234
95eeceeb 3235 memset(info, 0, sizeof(*info));
b335e593
AK
3236 if (prev_map)
3237 map_to_analyse = prev_map;
3238
ca0748fa 3239 dl = super->current_disk;
9894ec0d 3240
bf5a934a 3241 info->container_member = super->current_vol;
cd0430a1 3242 info->array.raid_disks = map->num_members;
b335e593 3243 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3244 info->array.layout = imsm_level_to_layout(info->array.level);
3245 info->array.md_minor = -1;
3246 info->array.ctime = 0;
3247 info->array.utime = 0;
b335e593
AK
3248 info->array.chunk_size =
3249 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2432ce9b 3250 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
fcc2c9da 3251 info->custom_array_size = imsm_dev_size(dev);
3ad25638
AK
3252 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3253
3f510843 3254 if (is_gen_migration(dev)) {
3f83228a 3255 info->reshape_active = 1;
b335e593
AK
3256 info->new_level = get_imsm_raid_level(map);
3257 info->new_layout = imsm_level_to_layout(info->new_level);
3258 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3259 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3260 if (info->delta_disks) {
3261 /* this needs to be applied to every array
3262 * in the container.
3263 */
81219e70 3264 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3265 }
3f83228a
N
3266 /* We shape information that we give to md might have to be
3267 * modify to cope with md's requirement for reshaping arrays.
3268 * For example, when reshaping a RAID0, md requires it to be
3269 * presented as a degraded RAID4.
3270 * Also if a RAID0 is migrating to a RAID5 we need to specify
3271 * the array as already being RAID5, but the 'before' layout
3272 * is a RAID4-like layout.
3273 */
3274 switch (info->array.level) {
3275 case 0:
3276 switch(info->new_level) {
3277 case 0:
3278 /* conversion is happening as RAID4 */
3279 info->array.level = 4;
3280 info->array.raid_disks += 1;
3281 break;
3282 case 5:
3283 /* conversion is happening as RAID5 */
3284 info->array.level = 5;
3285 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3286 info->delta_disks -= 1;
3287 break;
3288 default:
3289 /* FIXME error message */
3290 info->array.level = UnSet;
3291 break;
3292 }
3293 break;
3294 }
b335e593
AK
3295 } else {
3296 info->new_level = UnSet;
3297 info->new_layout = UnSet;
3298 info->new_chunk = info->array.chunk_size;
3f83228a 3299 info->delta_disks = 0;
b335e593 3300 }
ca0748fa 3301
efb30e7f
DW
3302 if (dl) {
3303 info->disk.major = dl->major;
3304 info->disk.minor = dl->minor;
ca0748fa 3305 info->disk.number = dl->index;
656b6b5a
N
3306 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3307 dl->index);
efb30e7f 3308 }
bf5a934a 3309
5551b113 3310 info->data_offset = pba_of_lba0(map_to_analyse);
06fb291a
PB
3311
3312 if (info->array.level == 5) {
3313 info->component_size = num_data_stripes(map_to_analyse) *
3314 map_to_analyse->blocks_per_strip;
3315 } else {
3316 info->component_size = blocks_per_member(map_to_analyse);
3317 }
139dae11 3318
c41e00b2
AK
3319 info->component_size = imsm_component_size_aligment_check(
3320 info->array.level,
3321 info->array.chunk_size,
f36a9ecd 3322 super->sector_size,
c41e00b2 3323 info->component_size);
5e46202e 3324 info->bb.supported = 1;
139dae11 3325
301406c9 3326 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3327 info->recovery_start = MaxSector;
bf5a934a 3328
c2462068
PB
3329 if (info->array.level == 5 &&
3330 (dev->rwh_policy == RWH_DISTRIBUTED ||
3331 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
2432ce9b
AP
3332 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3333 info->ppl_sector = get_ppl_sector(super, super->current_vol);
c2462068
PB
3334 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3335 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3336 else
3337 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3338 >> 9;
2432ce9b
AP
3339 } else if (info->array.level <= 0) {
3340 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3341 } else {
3342 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3343 }
3344
d2e6d5d6 3345 info->reshape_progress = 0;
b6796ce1 3346 info->resync_start = MaxSector;
b9172665 3347 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2432ce9b 3348 !(info->array.state & 1)) &&
b9172665 3349 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3350 info->resync_start = 0;
b6796ce1
AK
3351 }
3352 if (dev->vol.migr_state) {
1e5c6983
DW
3353 switch (migr_type(dev)) {
3354 case MIGR_REPAIR:
3355 case MIGR_INIT: {
c47b0ff6
AK
3356 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3357 dev);
1e5c6983
DW
3358 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3359
3360 info->resync_start = blocks_per_unit * units;
3361 break;
3362 }
d2e6d5d6 3363 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3364 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3365 dev);
3366 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
3367 unsigned long long array_blocks;
3368 int used_disks;
d2e6d5d6 3369
befb629b
AK
3370 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3371 (units <
3372 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3373 (super->migr_rec->rec_status ==
3374 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3375 units++;
3376
d2e6d5d6 3377 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3378
7a862a02 3379 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3380 (unsigned long long)units,
3381 (unsigned long long)blocks_per_unit,
3382 info->reshape_progress);
75156c46 3383
238c0a71 3384 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 3385 if (used_disks > 0) {
5551b113 3386 array_blocks = blocks_per_member(map) *
75156c46 3387 used_disks;
b53bfba6
TM
3388 info->custom_array_size =
3389 round_size_to_mb(array_blocks,
3390 used_disks);
3391
75156c46 3392 }
d2e6d5d6 3393 }
1e5c6983
DW
3394 case MIGR_VERIFY:
3395 /* we could emulate the checkpointing of
3396 * 'sync_action=check' migrations, but for now
3397 * we just immediately complete them
3398 */
3399 case MIGR_REBUILD:
3400 /* this is handled by container_content_imsm() */
1e5c6983
DW
3401 case MIGR_STATE_CHANGE:
3402 /* FIXME handle other migrations */
3403 default:
3404 /* we are not dirty, so... */
3405 info->resync_start = MaxSector;
3406 }
b6796ce1 3407 }
301406c9
DW
3408
3409 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3410 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3411
f35f2525
N
3412 info->array.major_version = -1;
3413 info->array.minor_version = -2;
4dd2df09 3414 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3415 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3416 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3417
3418 if (dmap) {
3419 int i, j;
3420 for (i=0; i<map_disks; i++) {
3421 dmap[i] = 0;
3422 if (i < info->array.raid_disks) {
3423 struct imsm_disk *dsk;
238c0a71 3424 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3425 dsk = get_imsm_disk(super, j);
3426 if (dsk && (dsk->status & CONFIGURED_DISK))
3427 dmap[i] = 1;
3428 }
3429 }
3430 }
81ac8b4d 3431}
bf5a934a 3432
3b451610
AK
3433static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3434 int failed, int look_in_map);
3435
3436static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3437 int look_in_map);
3438
3439static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3440{
3441 if (is_gen_migration(dev)) {
3442 int failed;
3443 __u8 map_state;
3444 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3445
3446 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3447 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3448 if (map2->map_state != map_state) {
3449 map2->map_state = map_state;
3450 super->updates_pending++;
3451 }
3452 }
3453}
97b4d0e9
DW
3454
3455static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3456{
3457 struct dl *d;
3458
3459 for (d = super->missing; d; d = d->next)
3460 if (d->index == index)
3461 return &d->disk;
3462 return NULL;
3463}
3464
a5d85af7 3465static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3466{
3467 struct intel_super *super = st->sb;
4f5bc454 3468 struct imsm_disk *disk;
a5d85af7 3469 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3470 int max_enough = -1;
3471 int i;
3472 struct imsm_super *mpb;
4f5bc454 3473
bf5a934a 3474 if (super->current_vol >= 0) {
a5d85af7 3475 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3476 return;
3477 }
95eeceeb 3478 memset(info, 0, sizeof(*info));
d23fe947
DW
3479
3480 /* Set raid_disks to zero so that Assemble will always pull in valid
3481 * spares
3482 */
3483 info->array.raid_disks = 0;
cdddbdbc
DW
3484 info->array.level = LEVEL_CONTAINER;
3485 info->array.layout = 0;
3486 info->array.md_minor = -1;
1011e834 3487 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3488 info->array.utime = 0;
3489 info->array.chunk_size = 0;
3490
3491 info->disk.major = 0;
3492 info->disk.minor = 0;
cdddbdbc 3493 info->disk.raid_disk = -1;
c2c087e6 3494 info->reshape_active = 0;
f35f2525
N
3495 info->array.major_version = -1;
3496 info->array.minor_version = -2;
c2c087e6 3497 strcpy(info->text_version, "imsm");
a67dd8cc 3498 info->safe_mode_delay = 0;
c2c087e6
DW
3499 info->disk.number = -1;
3500 info->disk.state = 0;
c5afc314 3501 info->name[0] = 0;
921d9e16 3502 info->recovery_start = MaxSector;
3ad25638 3503 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3504 info->bb.supported = 1;
c2c087e6 3505
97b4d0e9 3506 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3507 mpb = super->anchor;
b7d81a38 3508 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3509
ab3cb6b3
N
3510 for (i = 0; i < mpb->num_raid_devs; i++) {
3511 struct imsm_dev *dev = get_imsm_dev(super, i);
3512 int failed, enough, j, missing = 0;
3513 struct imsm_map *map;
3514 __u8 state;
97b4d0e9 3515
3b451610
AK
3516 failed = imsm_count_failed(super, dev, MAP_0);
3517 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3518 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3519
3520 /* any newly missing disks?
3521 * (catches single-degraded vs double-degraded)
3522 */
3523 for (j = 0; j < map->num_members; j++) {
238c0a71 3524 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3525 __u32 idx = ord_to_idx(ord);
3526
20dc76d1
MT
3527 if (super->disks && super->disks->index == (int)idx)
3528 info->disk.raid_disk = j;
3529
ab3cb6b3
N
3530 if (!(ord & IMSM_ORD_REBUILD) &&
3531 get_imsm_missing(super, idx)) {
3532 missing = 1;
3533 break;
3534 }
97b4d0e9 3535 }
ab3cb6b3
N
3536
3537 if (state == IMSM_T_STATE_FAILED)
3538 enough = -1;
3539 else if (state == IMSM_T_STATE_DEGRADED &&
3540 (state != map->map_state || missing))
3541 enough = 0;
3542 else /* we're normal, or already degraded */
3543 enough = 1;
d2bde6d3
AK
3544 if (is_gen_migration(dev) && missing) {
3545 /* during general migration we need all disks
3546 * that process is running on.
3547 * No new missing disk is allowed.
3548 */
3549 max_enough = -1;
3550 enough = -1;
3551 /* no more checks necessary
3552 */
3553 break;
3554 }
ab3cb6b3
N
3555 /* in the missing/failed disk case check to see
3556 * if at least one array is runnable
3557 */
3558 max_enough = max(max_enough, enough);
3559 }
1ade5cc1 3560 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3561 info->container_enough = max_enough;
97b4d0e9 3562
4a04ec6c 3563 if (super->disks) {
14e8215b
DW
3564 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3565
b9f594fe 3566 disk = &super->disks->disk;
5551b113 3567 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3568 info->component_size = reserved;
25ed7e59 3569 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3570 /* we don't change info->disk.raid_disk here because
3571 * this state will be finalized in mdmon after we have
3572 * found the 'most fresh' version of the metadata
3573 */
25ed7e59 3574 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2432ce9b
AP
3575 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3576 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3577 }
a575e2a7
DW
3578
3579 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3580 * ->compare_super may have updated the 'num_raid_devs' field for spares
3581 */
3582 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3583 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3584 else
3585 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3586
3587 /* I don't know how to compute 'map' on imsm, so use safe default */
3588 if (map) {
3589 int i;
3590 for (i = 0; i < map_disks; i++)
3591 map[i] = 1;
3592 }
3593
cdddbdbc
DW
3594}
3595
5c4cd5da
AC
3596/* allocates memory and fills disk in mdinfo structure
3597 * for each disk in array */
3598struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3599{
594dc1b8 3600 struct mdinfo *mddev;
5c4cd5da
AC
3601 struct intel_super *super = st->sb;
3602 struct imsm_disk *disk;
3603 int count = 0;
3604 struct dl *dl;
3605 if (!super || !super->disks)
3606 return NULL;
3607 dl = super->disks;
503975b9 3608 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3609 while (dl) {
3610 struct mdinfo *tmp;
3611 disk = &dl->disk;
503975b9 3612 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3613 if (mddev->devs)
3614 tmp->next = mddev->devs;
3615 mddev->devs = tmp;
3616 tmp->disk.number = count++;
3617 tmp->disk.major = dl->major;
3618 tmp->disk.minor = dl->minor;
3619 tmp->disk.state = is_configured(disk) ?
3620 (1 << MD_DISK_ACTIVE) : 0;
3621 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3622 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3623 tmp->disk.raid_disk = -1;
3624 dl = dl->next;
3625 }
3626 return mddev;
3627}
3628
cdddbdbc
DW
3629static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3630 char *update, char *devname, int verbose,
3631 int uuid_set, char *homehost)
3632{
f352c545
DW
3633 /* For 'assemble' and 'force' we need to return non-zero if any
3634 * change was made. For others, the return value is ignored.
3635 * Update options are:
3636 * force-one : This device looks a bit old but needs to be included,
3637 * update age info appropriately.
3638 * assemble: clear any 'faulty' flag to allow this device to
3639 * be assembled.
3640 * force-array: Array is degraded but being forced, mark it clean
3641 * if that will be needed to assemble it.
3642 *
3643 * newdev: not used ????
3644 * grow: Array has gained a new device - this is currently for
3645 * linear only
3646 * resync: mark as dirty so a resync will happen.
3647 * name: update the name - preserving the homehost
6e46bf34 3648 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3649 *
3650 * Following are not relevant for this imsm:
3651 * sparc2.2 : update from old dodgey metadata
3652 * super-minor: change the preferred_minor number
3653 * summaries: update redundant counters.
f352c545
DW
3654 * homehost: update the recorded homehost
3655 * _reshape_progress: record new reshape_progress position.
3656 */
6e46bf34
DW
3657 int rv = 1;
3658 struct intel_super *super = st->sb;
3659 struct imsm_super *mpb;
f352c545 3660
6e46bf34
DW
3661 /* we can only update container info */
3662 if (!super || super->current_vol >= 0 || !super->anchor)
3663 return 1;
3664
3665 mpb = super->anchor;
3666
81a5b4f5
N
3667 if (strcmp(update, "uuid") == 0) {
3668 /* We take this to mean that the family_num should be updated.
3669 * However that is much smaller than the uuid so we cannot really
3670 * allow an explicit uuid to be given. And it is hard to reliably
3671 * know if one was.
3672 * So if !uuid_set we know the current uuid is random and just used
3673 * the first 'int' and copy it to the other 3 positions.
3674 * Otherwise we require the 4 'int's to be the same as would be the
3675 * case if we are using a random uuid. So an explicit uuid will be
3676 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3677 */
81a5b4f5
N
3678 if (!uuid_set) {
3679 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3680 rv = 0;
81a5b4f5
N
3681 } else {
3682 if (info->uuid[0] != info->uuid[1] ||
3683 info->uuid[1] != info->uuid[2] ||
3684 info->uuid[2] != info->uuid[3])
3685 rv = -1;
3686 else
3687 rv = 0;
6e46bf34 3688 }
81a5b4f5
N
3689 if (rv == 0)
3690 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3691 } else if (strcmp(update, "assemble") == 0)
3692 rv = 0;
3693 else
1e2b2765 3694 rv = -1;
f352c545 3695
6e46bf34
DW
3696 /* successful update? recompute checksum */
3697 if (rv == 0)
3698 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3699
3700 return rv;
cdddbdbc
DW
3701}
3702
c2c087e6 3703static size_t disks_to_mpb_size(int disks)
cdddbdbc 3704{
c2c087e6 3705 size_t size;
cdddbdbc 3706
c2c087e6
DW
3707 size = sizeof(struct imsm_super);
3708 size += (disks - 1) * sizeof(struct imsm_disk);
3709 size += 2 * sizeof(struct imsm_dev);
3710 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3711 size += (4 - 2) * sizeof(struct imsm_map);
3712 /* 4 possible disk_ord_tbl's */
3713 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3714 /* maximum bbm log */
3715 size += sizeof(struct bbm_log);
c2c087e6
DW
3716
3717 return size;
3718}
3719
387fcd59
N
3720static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3721 unsigned long long data_offset)
c2c087e6
DW
3722{
3723 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3724 return 0;
3725
3726 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3727}
3728
ba2de7ba
DW
3729static void free_devlist(struct intel_super *super)
3730{
3731 struct intel_dev *dv;
3732
3733 while (super->devlist) {
3734 dv = super->devlist->next;
3735 free(super->devlist->dev);
3736 free(super->devlist);
3737 super->devlist = dv;
3738 }
3739}
3740
3741static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3742{
3743 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3744}
3745
cdddbdbc
DW
3746static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3747{
3748 /*
3749 * return:
3750 * 0 same, or first was empty, and second was copied
3751 * 1 second had wrong number
3752 * 2 wrong uuid
3753 * 3 wrong other info
3754 */
3755 struct intel_super *first = st->sb;
3756 struct intel_super *sec = tst->sb;
3757
5d500228
N
3758 if (!first) {
3759 st->sb = tst->sb;
3760 tst->sb = NULL;
3761 return 0;
3762 }
8603ea6f
LM
3763 /* in platform dependent environment test if the disks
3764 * use the same Intel hba
cb8f6859 3765 * If not on Intel hba at all, allow anything.
8603ea6f 3766 */
6b781d33
AP
3767 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3768 if (first->hba->type != sec->hba->type) {
8603ea6f 3769 fprintf(stderr,
6b781d33
AP
3770 "HBAs of devices do not match %s != %s\n",
3771 get_sys_dev_type(first->hba->type),
3772 get_sys_dev_type(sec->hba->type));
3773 return 3;
3774 }
3775 if (first->orom != sec->orom) {
3776 fprintf(stderr,
3777 "HBAs of devices do not match %s != %s\n",
3778 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3779 return 3;
3780 }
3781 }
cdddbdbc 3782
d23fe947
DW
3783 /* if an anchor does not have num_raid_devs set then it is a free
3784 * floating spare
3785 */
3786 if (first->anchor->num_raid_devs > 0 &&
3787 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3788 /* Determine if these disks might ever have been
3789 * related. Further disambiguation can only take place
3790 * in load_super_imsm_all
3791 */
3792 __u32 first_family = first->anchor->orig_family_num;
3793 __u32 sec_family = sec->anchor->orig_family_num;
3794
f796af5d
DW
3795 if (memcmp(first->anchor->sig, sec->anchor->sig,
3796 MAX_SIGNATURE_LENGTH) != 0)
3797 return 3;
3798
a2b97981
DW
3799 if (first_family == 0)
3800 first_family = first->anchor->family_num;
3801 if (sec_family == 0)
3802 sec_family = sec->anchor->family_num;
3803
3804 if (first_family != sec_family)
d23fe947 3805 return 3;
f796af5d 3806
d23fe947 3807 }
cdddbdbc 3808
3e372e5a
DW
3809 /* if 'first' is a spare promote it to a populated mpb with sec's
3810 * family number
3811 */
3812 if (first->anchor->num_raid_devs == 0 &&
3813 sec->anchor->num_raid_devs > 0) {
78d30f94 3814 int i;
ba2de7ba
DW
3815 struct intel_dev *dv;
3816 struct imsm_dev *dev;
78d30f94
DW
3817
3818 /* we need to copy raid device info from sec if an allocation
3819 * fails here we don't associate the spare
3820 */
3821 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3822 dv = xmalloc(sizeof(*dv));
3823 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3824 dv->dev = dev;
3825 dv->index = i;
3826 dv->next = first->devlist;
3827 first->devlist = dv;
78d30f94 3828 }
709743c5 3829 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3830 /* allocation failure */
3831 free_devlist(first);
e12b3daa 3832 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3833 return 3;
78d30f94 3834 }
3e372e5a 3835 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3836 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3837 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3838 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3839 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3840 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3841 }
3842
cdddbdbc
DW
3843 return 0;
3844}
3845
0030e8d6
DW
3846static void fd2devname(int fd, char *name)
3847{
3848 struct stat st;
3849 char path[256];
33a6535d 3850 char dname[PATH_MAX];
0030e8d6
DW
3851 char *nm;
3852 int rv;
3853
3854 name[0] = '\0';
3855 if (fstat(fd, &st) != 0)
3856 return;
3857 sprintf(path, "/sys/dev/block/%d:%d",
3858 major(st.st_rdev), minor(st.st_rdev));
3859
9cf014ec 3860 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3861 if (rv <= 0)
3862 return;
9587c373 3863
0030e8d6
DW
3864 dname[rv] = '\0';
3865 nm = strrchr(dname, '/');
7897de29
JS
3866 if (nm) {
3867 nm++;
3868 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3869 }
0030e8d6
DW
3870}
3871
21e9380b
AP
3872static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3873{
3874 char path[60];
3875 char *name = fd2kname(fd);
3876
3877 if (!name)
3878 return 1;
3879
3880 if (strncmp(name, "nvme", 4) != 0)
3881 return 1;
3882
3883 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3884
3885 return load_sys(path, buf, buf_len);
3886}
3887
cdddbdbc
DW
3888extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3889
3890static int imsm_read_serial(int fd, char *devname,
3891 __u8 serial[MAX_RAID_SERIAL_LEN])
3892{
21e9380b 3893 char buf[50];
cdddbdbc 3894 int rv;
1f24f035 3895 int len;
316e2bf4
DW
3896 char *dest;
3897 char *src;
21e9380b
AP
3898 unsigned int i;
3899
3900 memset(buf, 0, sizeof(buf));
cdddbdbc 3901
21e9380b 3902 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 3903
21e9380b
AP
3904 if (rv)
3905 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 3906
40ebbb9c 3907 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3908 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3909 fd2devname(fd, (char *) serial);
0030e8d6
DW
3910 return 0;
3911 }
3912
cdddbdbc
DW
3913 if (rv != 0) {
3914 if (devname)
e7b84f9d
N
3915 pr_err("Failed to retrieve serial for %s\n",
3916 devname);
cdddbdbc
DW
3917 return rv;
3918 }
3919
316e2bf4
DW
3920 /* trim all whitespace and non-printable characters and convert
3921 * ':' to ';'
3922 */
21e9380b
AP
3923 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3924 src = &buf[i];
316e2bf4
DW
3925 if (*src > 0x20) {
3926 /* ':' is reserved for use in placeholder serial
3927 * numbers for missing disks
3928 */
3929 if (*src == ':')
3930 *dest++ = ';';
3931 else
3932 *dest++ = *src;
3933 }
3934 }
21e9380b
AP
3935 len = dest - buf;
3936 dest = buf;
316e2bf4
DW
3937
3938 /* truncate leading characters */
3939 if (len > MAX_RAID_SERIAL_LEN) {
3940 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3941 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3942 }
5c3db629 3943
5c3db629 3944 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3945 memcpy(serial, dest, len);
cdddbdbc
DW
3946
3947 return 0;
3948}
3949
1f24f035
DW
3950static int serialcmp(__u8 *s1, __u8 *s2)
3951{
3952 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3953}
3954
3955static void serialcpy(__u8 *dest, __u8 *src)
3956{
3957 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3958}
3959
54c2c1ea
DW
3960static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3961{
3962 struct dl *dl;
3963
3964 for (dl = super->disks; dl; dl = dl->next)
3965 if (serialcmp(dl->serial, serial) == 0)
3966 break;
3967
3968 return dl;
3969}
3970
a2b97981
DW
3971static struct imsm_disk *
3972__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3973{
3974 int i;
3975
3976 for (i = 0; i < mpb->num_disks; i++) {
3977 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3978
3979 if (serialcmp(disk->serial, serial) == 0) {
3980 if (idx)
3981 *idx = i;
3982 return disk;
3983 }
3984 }
3985
3986 return NULL;
3987}
3988
cdddbdbc
DW
3989static int
3990load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3991{
a2b97981 3992 struct imsm_disk *disk;
cdddbdbc
DW
3993 struct dl *dl;
3994 struct stat stb;
cdddbdbc 3995 int rv;
a2b97981 3996 char name[40];
d23fe947
DW
3997 __u8 serial[MAX_RAID_SERIAL_LEN];
3998
3999 rv = imsm_read_serial(fd, devname, serial);
4000
4001 if (rv != 0)
4002 return 2;
4003
503975b9 4004 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 4005
a2b97981
DW
4006 fstat(fd, &stb);
4007 dl->major = major(stb.st_rdev);
4008 dl->minor = minor(stb.st_rdev);
4009 dl->next = super->disks;
4010 dl->fd = keep_fd ? fd : -1;
4011 assert(super->disks == NULL);
4012 super->disks = dl;
4013 serialcpy(dl->serial, serial);
4014 dl->index = -2;
4015 dl->e = NULL;
4016 fd2devname(fd, name);
4017 if (devname)
503975b9 4018 dl->devname = xstrdup(devname);
a2b97981 4019 else
503975b9 4020 dl->devname = xstrdup(name);
cdddbdbc 4021
d23fe947 4022 /* look up this disk's index in the current anchor */
a2b97981
DW
4023 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4024 if (disk) {
4025 dl->disk = *disk;
4026 /* only set index on disks that are a member of a
4027 * populated contianer, i.e. one with raid_devs
4028 */
4029 if (is_failed(&dl->disk))
3f6efecc 4030 dl->index = -2;
2432ce9b 4031 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
a2b97981 4032 dl->index = -1;
3f6efecc
DW
4033 }
4034
949c47a0
DW
4035 return 0;
4036}
4037
0c046afd
DW
4038/* When migrating map0 contains the 'destination' state while map1
4039 * contains the current state. When not migrating map0 contains the
4040 * current state. This routine assumes that map[0].map_state is set to
4041 * the current array state before being called.
4042 *
4043 * Migration is indicated by one of the following states
4044 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 4045 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 4046 * map1state=unitialized)
1484e727 4047 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 4048 * map1state=normal)
e3bba0e0 4049 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 4050 * map1state=degraded)
8e59f3d8
AK
4051 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4052 * map1state=normal)
0c046afd 4053 */
8e59f3d8
AK
4054static void migrate(struct imsm_dev *dev, struct intel_super *super,
4055 __u8 to_state, int migr_type)
3393c6af 4056{
0c046afd 4057 struct imsm_map *dest;
238c0a71 4058 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 4059
0c046afd 4060 dev->vol.migr_state = 1;
1484e727 4061 set_migr_type(dev, migr_type);
f8f603f1 4062 dev->vol.curr_migr_unit = 0;
238c0a71 4063 dest = get_imsm_map(dev, MAP_1);
0c046afd 4064
0556e1a2 4065 /* duplicate and then set the target end state in map[0] */
3393c6af 4066 memcpy(dest, src, sizeof_imsm_map(src));
fb12a745 4067 if (migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
4068 __u32 ord;
4069 int i;
4070
4071 for (i = 0; i < src->num_members; i++) {
4072 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4073 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4074 }
4075 }
4076
8e59f3d8
AK
4077 if (migr_type == MIGR_GEN_MIGR)
4078 /* Clear migration record */
4079 memset(super->migr_rec, 0, sizeof(struct migr_record));
4080
0c046afd 4081 src->map_state = to_state;
949c47a0 4082}
f8f603f1 4083
809da78e
AK
4084static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4085 __u8 map_state)
f8f603f1 4086{
238c0a71
AK
4087 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4088 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4089 MAP_0 : MAP_1);
28bce06f 4090 int i, j;
0556e1a2
DW
4091
4092 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4093 * completed in the last migration.
4094 *
28bce06f 4095 * FIXME add support for raid-level-migration
0556e1a2 4096 */
089f9d79
JS
4097 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4098 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
4099 /* when final map state is other than expected
4100 * merge maps (not for migration)
4101 */
4102 int failed;
4103
4104 for (i = 0; i < prev->num_members; i++)
4105 for (j = 0; j < map->num_members; j++)
4106 /* during online capacity expansion
4107 * disks position can be changed
4108 * if takeover is used
4109 */
4110 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4111 ord_to_idx(prev->disk_ord_tbl[i])) {
4112 map->disk_ord_tbl[j] |=
4113 prev->disk_ord_tbl[i];
4114 break;
4115 }
4116 failed = imsm_count_failed(super, dev, MAP_0);
4117 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4118 }
f8f603f1
DW
4119
4120 dev->vol.migr_state = 0;
ea672ee1 4121 set_migr_type(dev, 0);
f8f603f1
DW
4122 dev->vol.curr_migr_unit = 0;
4123 map->map_state = map_state;
4124}
949c47a0
DW
4125
4126static int parse_raid_devices(struct intel_super *super)
4127{
4128 int i;
4129 struct imsm_dev *dev_new;
4d7b1503 4130 size_t len, len_migr;
401d313b 4131 size_t max_len = 0;
4d7b1503
DW
4132 size_t space_needed = 0;
4133 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4134
4135 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4136 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4137 struct intel_dev *dv;
949c47a0 4138
4d7b1503
DW
4139 len = sizeof_imsm_dev(dev_iter, 0);
4140 len_migr = sizeof_imsm_dev(dev_iter, 1);
4141 if (len_migr > len)
4142 space_needed += len_migr - len;
ca9de185 4143
503975b9 4144 dv = xmalloc(sizeof(*dv));
401d313b
AK
4145 if (max_len < len_migr)
4146 max_len = len_migr;
4147 if (max_len > len_migr)
4148 space_needed += max_len - len_migr;
503975b9 4149 dev_new = xmalloc(max_len);
949c47a0 4150 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4151 dv->dev = dev_new;
4152 dv->index = i;
4153 dv->next = super->devlist;
4154 super->devlist = dv;
949c47a0 4155 }
cdddbdbc 4156
4d7b1503
DW
4157 /* ensure that super->buf is large enough when all raid devices
4158 * are migrating
4159 */
4160 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4161 void *buf;
4162
f36a9ecd
PB
4163 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4164 super->sector_size);
4165 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4166 return 1;
4167
1f45a8ad
DW
4168 memcpy(buf, super->buf, super->len);
4169 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4170 free(super->buf);
4171 super->buf = buf;
4172 super->len = len;
4173 }
ca9de185 4174
bbab0940
TM
4175 super->extra_space += space_needed;
4176
cdddbdbc
DW
4177 return 0;
4178}
4179
e2f41b2c
AK
4180/*******************************************************************************
4181 * Function: check_mpb_migr_compatibility
4182 * Description: Function checks for unsupported migration features:
4183 * - migration optimization area (pba_of_lba0)
4184 * - descending reshape (ascending_migr)
4185 * Parameters:
4186 * super : imsm metadata information
4187 * Returns:
4188 * 0 : migration is compatible
4189 * -1 : migration is not compatible
4190 ******************************************************************************/
4191int check_mpb_migr_compatibility(struct intel_super *super)
4192{
4193 struct imsm_map *map0, *map1;
4194 struct migr_record *migr_rec = super->migr_rec;
4195 int i;
4196
4197 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4198 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4199
4200 if (dev_iter &&
4201 dev_iter->vol.migr_state == 1 &&
4202 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4203 /* This device is migrating */
238c0a71
AK
4204 map0 = get_imsm_map(dev_iter, MAP_0);
4205 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4206 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4207 /* migration optimization area was used */
4208 return -1;
fc54fe7a
JS
4209 if (migr_rec->ascending_migr == 0 &&
4210 migr_rec->dest_depth_per_unit > 0)
e2f41b2c
AK
4211 /* descending reshape not supported yet */
4212 return -1;
4213 }
4214 }
4215 return 0;
4216}
4217
d23fe947 4218static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4219
cdddbdbc 4220/* load_imsm_mpb - read matrix metadata
f2f5c343 4221 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4222 */
4223static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4224{
4225 unsigned long long dsize;
cdddbdbc 4226 unsigned long long sectors;
f36a9ecd 4227 unsigned int sector_size = super->sector_size;
cdddbdbc 4228 struct stat;
6416d527 4229 struct imsm_super *anchor;
cdddbdbc
DW
4230 __u32 check_sum;
4231
cdddbdbc 4232 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4233 if (dsize < 2*sector_size) {
64436f06 4234 if (devname)
e7b84f9d
N
4235 pr_err("%s: device to small for imsm\n",
4236 devname);
64436f06
N
4237 return 1;
4238 }
cdddbdbc 4239
f36a9ecd 4240 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4241 if (devname)
e7b84f9d
N
4242 pr_err("Cannot seek to anchor block on %s: %s\n",
4243 devname, strerror(errno));
cdddbdbc
DW
4244 return 1;
4245 }
4246
f36a9ecd 4247 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4248 if (devname)
7a862a02 4249 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4250 return 1;
4251 }
466070ad 4252 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4253 if (devname)
e7b84f9d
N
4254 pr_err("Cannot read anchor block on %s: %s\n",
4255 devname, strerror(errno));
6416d527 4256 free(anchor);
cdddbdbc
DW
4257 return 1;
4258 }
4259
6416d527 4260 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4261 if (devname)
e7b84f9d 4262 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4263 free(anchor);
cdddbdbc
DW
4264 return 2;
4265 }
4266
d23fe947 4267 __free_imsm(super, 0);
f2f5c343
LM
4268 /* reload capability and hba */
4269
4270 /* capability and hba must be updated with new super allocation */
d424212e 4271 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4272 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4273 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4274 if (devname)
e7b84f9d
N
4275 pr_err("unable to allocate %zu byte mpb buffer\n",
4276 super->len);
6416d527 4277 free(anchor);
cdddbdbc
DW
4278 return 2;
4279 }
f36a9ecd 4280 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4281
f36a9ecd 4282 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4283 free(anchor);
8e59f3d8 4284
85337573
AO
4285 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4286 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 4287 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4288 free(super->buf);
4289 return 2;
4290 }
51d83f5d 4291 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4292
949c47a0 4293 if (!sectors) {
ecf45690
DW
4294 check_sum = __gen_imsm_checksum(super->anchor);
4295 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4296 if (devname)
e7b84f9d
N
4297 pr_err("IMSM checksum %x != %x on %s\n",
4298 check_sum,
4299 __le32_to_cpu(super->anchor->check_sum),
4300 devname);
ecf45690
DW
4301 return 2;
4302 }
4303
a2b97981 4304 return 0;
949c47a0 4305 }
cdddbdbc
DW
4306
4307 /* read the extended mpb */
f36a9ecd 4308 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4309 if (devname)
e7b84f9d
N
4310 pr_err("Cannot seek to extended mpb on %s: %s\n",
4311 devname, strerror(errno));
cdddbdbc
DW
4312 return 1;
4313 }
4314
f36a9ecd
PB
4315 if ((unsigned int)read(fd, super->buf + sector_size,
4316 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4317 if (devname)
e7b84f9d
N
4318 pr_err("Cannot read extended mpb on %s: %s\n",
4319 devname, strerror(errno));
cdddbdbc
DW
4320 return 2;
4321 }
4322
949c47a0
DW
4323 check_sum = __gen_imsm_checksum(super->anchor);
4324 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4325 if (devname)
e7b84f9d
N
4326 pr_err("IMSM checksum %x != %x on %s\n",
4327 check_sum, __le32_to_cpu(super->anchor->check_sum),
4328 devname);
db575f3b 4329 return 3;
cdddbdbc
DW
4330 }
4331
a2b97981
DW
4332 return 0;
4333}
4334
8e59f3d8
AK
4335static int read_imsm_migr_rec(int fd, struct intel_super *super);
4336
97f81ee2
CA
4337/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4338static void clear_hi(struct intel_super *super)
4339{
4340 struct imsm_super *mpb = super->anchor;
4341 int i, n;
4342 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4343 return;
4344 for (i = 0; i < mpb->num_disks; ++i) {
4345 struct imsm_disk *disk = &mpb->disk[i];
4346 disk->total_blocks_hi = 0;
4347 }
4348 for (i = 0; i < mpb->num_raid_devs; ++i) {
4349 struct imsm_dev *dev = get_imsm_dev(super, i);
4350 if (!dev)
4351 return;
4352 for (n = 0; n < 2; ++n) {
4353 struct imsm_map *map = get_imsm_map(dev, n);
4354 if (!map)
4355 continue;
4356 map->pba_of_lba0_hi = 0;
4357 map->blocks_per_member_hi = 0;
4358 map->num_data_stripes_hi = 0;
4359 }
4360 }
4361}
4362
a2b97981
DW
4363static int
4364load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4365{
4366 int err;
4367
4368 err = load_imsm_mpb(fd, super, devname);
4369 if (err)
4370 return err;
f36a9ecd
PB
4371 if (super->sector_size == 4096)
4372 convert_from_4k(super);
a2b97981
DW
4373 err = load_imsm_disk(fd, super, devname, keep_fd);
4374 if (err)
4375 return err;
4376 err = parse_raid_devices(super);
8d67477f
TM
4377 if (err)
4378 return err;
4379 err = load_bbm_log(super);
97f81ee2 4380 clear_hi(super);
a2b97981 4381 return err;
cdddbdbc
DW
4382}
4383
ae6aad82
DW
4384static void __free_imsm_disk(struct dl *d)
4385{
4386 if (d->fd >= 0)
4387 close(d->fd);
4388 if (d->devname)
4389 free(d->devname);
0dcecb2e
DW
4390 if (d->e)
4391 free(d->e);
ae6aad82
DW
4392 free(d);
4393
4394}
1a64be56 4395
cdddbdbc
DW
4396static void free_imsm_disks(struct intel_super *super)
4397{
47ee5a45 4398 struct dl *d;
cdddbdbc 4399
47ee5a45
DW
4400 while (super->disks) {
4401 d = super->disks;
cdddbdbc 4402 super->disks = d->next;
ae6aad82 4403 __free_imsm_disk(d);
cdddbdbc 4404 }
cb82edca
AK
4405 while (super->disk_mgmt_list) {
4406 d = super->disk_mgmt_list;
4407 super->disk_mgmt_list = d->next;
4408 __free_imsm_disk(d);
4409 }
47ee5a45
DW
4410 while (super->missing) {
4411 d = super->missing;
4412 super->missing = d->next;
4413 __free_imsm_disk(d);
4414 }
4415
cdddbdbc
DW
4416}
4417
9ca2c81c 4418/* free all the pieces hanging off of a super pointer */
d23fe947 4419static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4420{
88654014
LM
4421 struct intel_hba *elem, *next;
4422
9ca2c81c 4423 if (super->buf) {
949c47a0 4424 free(super->buf);
9ca2c81c
DW
4425 super->buf = NULL;
4426 }
f2f5c343
LM
4427 /* unlink capability description */
4428 super->orom = NULL;
8e59f3d8
AK
4429 if (super->migr_rec_buf) {
4430 free(super->migr_rec_buf);
4431 super->migr_rec_buf = NULL;
4432 }
d23fe947
DW
4433 if (free_disks)
4434 free_imsm_disks(super);
ba2de7ba 4435 free_devlist(super);
88654014
LM
4436 elem = super->hba;
4437 while (elem) {
4438 if (elem->path)
4439 free((void *)elem->path);
4440 next = elem->next;
4441 free(elem);
4442 elem = next;
88c32bb1 4443 }
8d67477f
TM
4444 if (super->bbm_log)
4445 free(super->bbm_log);
88654014 4446 super->hba = NULL;
cdddbdbc
DW
4447}
4448
9ca2c81c
DW
4449static void free_imsm(struct intel_super *super)
4450{
d23fe947 4451 __free_imsm(super, 1);
928f1424 4452 free(super->bb.entries);
9ca2c81c
DW
4453 free(super);
4454}
cdddbdbc
DW
4455
4456static void free_super_imsm(struct supertype *st)
4457{
4458 struct intel_super *super = st->sb;
4459
4460 if (!super)
4461 return;
4462
4463 free_imsm(super);
4464 st->sb = NULL;
4465}
4466
49133e57 4467static struct intel_super *alloc_super(void)
c2c087e6 4468{
503975b9 4469 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4470
503975b9
N
4471 super->current_vol = -1;
4472 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4473
4474 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4475 sizeof(struct md_bb_entry));
4476 if (!super->bb.entries) {
4477 free(super);
4478 return NULL;
4479 }
4480
c2c087e6
DW
4481 return super;
4482}
4483
f0f5a016
LM
4484/*
4485 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4486 */
d424212e 4487static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4488{
4489 struct sys_dev *hba_name;
4490 int rv = 0;
4491
089f9d79 4492 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4493 super->orom = NULL;
f0f5a016
LM
4494 super->hba = NULL;
4495 return 0;
4496 }
4497 hba_name = find_disk_attached_hba(fd, NULL);
4498 if (!hba_name) {
d424212e 4499 if (devname)
e7b84f9d
N
4500 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4501 devname);
f0f5a016
LM
4502 return 1;
4503 }
4504 rv = attach_hba_to_super(super, hba_name);
4505 if (rv == 2) {
d424212e
N
4506 if (devname) {
4507 struct intel_hba *hba = super->hba;
f0f5a016 4508
60f0f54d
PB
4509 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4510 " but the container is assigned to Intel(R) %s %s (",
d424212e 4511 devname,
614902f6 4512 get_sys_dev_type(hba_name->type),
60f0f54d 4513 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4514 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4515 get_sys_dev_type(super->hba->type),
4516 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4517
f0f5a016
LM
4518 while (hba) {
4519 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4520 if (hba->next)
4521 fprintf(stderr, ", ");
4522 hba = hba->next;
4523 }
6b781d33 4524 fprintf(stderr, ").\n"
cca67208 4525 " Mixing devices attached to different controllers is not allowed.\n");
f0f5a016 4526 }
f0f5a016
LM
4527 return 2;
4528 }
6b781d33 4529 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4530 if (!super->orom)
4531 return 3;
614902f6 4532
f0f5a016
LM
4533 return 0;
4534}
4535
47ee5a45
DW
4536/* find_missing - helper routine for load_super_imsm_all that identifies
4537 * disks that have disappeared from the system. This routine relies on
4538 * the mpb being uptodate, which it is at load time.
4539 */
4540static int find_missing(struct intel_super *super)
4541{
4542 int i;
4543 struct imsm_super *mpb = super->anchor;
4544 struct dl *dl;
4545 struct imsm_disk *disk;
47ee5a45
DW
4546
4547 for (i = 0; i < mpb->num_disks; i++) {
4548 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4549 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4550 if (dl)
4551 continue;
47ee5a45 4552
503975b9 4553 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4554 dl->major = 0;
4555 dl->minor = 0;
4556 dl->fd = -1;
503975b9 4557 dl->devname = xstrdup("missing");
47ee5a45
DW
4558 dl->index = i;
4559 serialcpy(dl->serial, disk->serial);
4560 dl->disk = *disk;
689c9bf3 4561 dl->e = NULL;
47ee5a45
DW
4562 dl->next = super->missing;
4563 super->missing = dl;
4564 }
4565
4566 return 0;
4567}
4568
a2b97981
DW
4569static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4570{
4571 struct intel_disk *idisk = disk_list;
4572
4573 while (idisk) {
4574 if (serialcmp(idisk->disk.serial, serial) == 0)
4575 break;
4576 idisk = idisk->next;
4577 }
4578
4579 return idisk;
4580}
4581
4582static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4583 struct intel_super *super,
4584 struct intel_disk **disk_list)
4585{
4586 struct imsm_disk *d = &super->disks->disk;
4587 struct imsm_super *mpb = super->anchor;
4588 int i, j;
4589
4590 for (i = 0; i < tbl_size; i++) {
4591 struct imsm_super *tbl_mpb = table[i]->anchor;
4592 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4593
4594 if (tbl_mpb->family_num == mpb->family_num) {
4595 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4596 dprintf("mpb from %d:%d matches %d:%d\n",
4597 super->disks->major,
a2b97981
DW
4598 super->disks->minor,
4599 table[i]->disks->major,
4600 table[i]->disks->minor);
4601 break;
4602 }
4603
4604 if (((is_configured(d) && !is_configured(tbl_d)) ||
4605 is_configured(d) == is_configured(tbl_d)) &&
4606 tbl_mpb->generation_num < mpb->generation_num) {
4607 /* current version of the mpb is a
4608 * better candidate than the one in
4609 * super_table, but copy over "cross
4610 * generational" status
4611 */
4612 struct intel_disk *idisk;
4613
1ade5cc1
N
4614 dprintf("mpb from %d:%d replaces %d:%d\n",
4615 super->disks->major,
a2b97981
DW
4616 super->disks->minor,
4617 table[i]->disks->major,
4618 table[i]->disks->minor);
4619
4620 idisk = disk_list_get(tbl_d->serial, *disk_list);
4621 if (idisk && is_failed(&idisk->disk))
4622 tbl_d->status |= FAILED_DISK;
4623 break;
4624 } else {
4625 struct intel_disk *idisk;
4626 struct imsm_disk *disk;
4627
4628 /* tbl_mpb is more up to date, but copy
4629 * over cross generational status before
4630 * returning
4631 */
4632 disk = __serial_to_disk(d->serial, mpb, NULL);
4633 if (disk && is_failed(disk))
4634 d->status |= FAILED_DISK;
4635
4636 idisk = disk_list_get(d->serial, *disk_list);
4637 if (idisk) {
4638 idisk->owner = i;
4639 if (disk && is_configured(disk))
4640 idisk->disk.status |= CONFIGURED_DISK;
4641 }
4642
1ade5cc1
N
4643 dprintf("mpb from %d:%d prefer %d:%d\n",
4644 super->disks->major,
a2b97981
DW
4645 super->disks->minor,
4646 table[i]->disks->major,
4647 table[i]->disks->minor);
4648
4649 return tbl_size;
4650 }
4651 }
4652 }
4653
4654 if (i >= tbl_size)
4655 table[tbl_size++] = super;
4656 else
4657 table[i] = super;
4658
4659 /* update/extend the merged list of imsm_disk records */
4660 for (j = 0; j < mpb->num_disks; j++) {
4661 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4662 struct intel_disk *idisk;
4663
4664 idisk = disk_list_get(disk->serial, *disk_list);
4665 if (idisk) {
4666 idisk->disk.status |= disk->status;
4667 if (is_configured(&idisk->disk) ||
4668 is_failed(&idisk->disk))
4669 idisk->disk.status &= ~(SPARE_DISK);
4670 } else {
503975b9 4671 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4672 idisk->owner = IMSM_UNKNOWN_OWNER;
4673 idisk->disk = *disk;
4674 idisk->next = *disk_list;
4675 *disk_list = idisk;
4676 }
4677
4678 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4679 idisk->owner = i;
4680 }
4681
4682 return tbl_size;
4683}
4684
4685static struct intel_super *
4686validate_members(struct intel_super *super, struct intel_disk *disk_list,
4687 const int owner)
4688{
4689 struct imsm_super *mpb = super->anchor;
4690 int ok_count = 0;
4691 int i;
4692
4693 for (i = 0; i < mpb->num_disks; i++) {
4694 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4695 struct intel_disk *idisk;
4696
4697 idisk = disk_list_get(disk->serial, disk_list);
4698 if (idisk) {
4699 if (idisk->owner == owner ||
4700 idisk->owner == IMSM_UNKNOWN_OWNER)
4701 ok_count++;
4702 else
1ade5cc1
N
4703 dprintf("'%.16s' owner %d != %d\n",
4704 disk->serial, idisk->owner,
a2b97981
DW
4705 owner);
4706 } else {
1ade5cc1
N
4707 dprintf("unknown disk %x [%d]: %.16s\n",
4708 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4709 disk->serial);
4710 break;
4711 }
4712 }
4713
4714 if (ok_count == mpb->num_disks)
4715 return super;
4716 return NULL;
4717}
4718
4719static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4720{
4721 struct intel_super *s;
4722
4723 for (s = super_list; s; s = s->next) {
4724 if (family_num != s->anchor->family_num)
4725 continue;
e12b3daa 4726 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4727 __le32_to_cpu(family_num), s->disks->devname);
4728 }
4729}
4730
4731static struct intel_super *
4732imsm_thunderdome(struct intel_super **super_list, int len)
4733{
4734 struct intel_super *super_table[len];
4735 struct intel_disk *disk_list = NULL;
4736 struct intel_super *champion, *spare;
4737 struct intel_super *s, **del;
4738 int tbl_size = 0;
4739 int conflict;
4740 int i;
4741
4742 memset(super_table, 0, sizeof(super_table));
4743 for (s = *super_list; s; s = s->next)
4744 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4745
4746 for (i = 0; i < tbl_size; i++) {
4747 struct imsm_disk *d;
4748 struct intel_disk *idisk;
4749 struct imsm_super *mpb = super_table[i]->anchor;
4750
4751 s = super_table[i];
4752 d = &s->disks->disk;
4753
4754 /* 'd' must appear in merged disk list for its
4755 * configuration to be valid
4756 */
4757 idisk = disk_list_get(d->serial, disk_list);
4758 if (idisk && idisk->owner == i)
4759 s = validate_members(s, disk_list, i);
4760 else
4761 s = NULL;
4762
4763 if (!s)
1ade5cc1
N
4764 dprintf("marking family: %#x from %d:%d offline\n",
4765 mpb->family_num,
a2b97981
DW
4766 super_table[i]->disks->major,
4767 super_table[i]->disks->minor);
4768 super_table[i] = s;
4769 }
4770
4771 /* This is where the mdadm implementation differs from the Windows
4772 * driver which has no strict concept of a container. We can only
4773 * assemble one family from a container, so when returning a prodigal
4774 * array member to this system the code will not be able to disambiguate
4775 * the container contents that should be assembled ("foreign" versus
4776 * "local"). It requires user intervention to set the orig_family_num
4777 * to a new value to establish a new container. The Windows driver in
4778 * this situation fixes up the volume name in place and manages the
4779 * foreign array as an independent entity.
4780 */
4781 s = NULL;
4782 spare = NULL;
4783 conflict = 0;
4784 for (i = 0; i < tbl_size; i++) {
4785 struct intel_super *tbl_ent = super_table[i];
4786 int is_spare = 0;
4787
4788 if (!tbl_ent)
4789 continue;
4790
4791 if (tbl_ent->anchor->num_raid_devs == 0) {
4792 spare = tbl_ent;
4793 is_spare = 1;
4794 }
4795
4796 if (s && !is_spare) {
4797 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4798 conflict++;
4799 } else if (!s && !is_spare)
4800 s = tbl_ent;
4801 }
4802
4803 if (!s)
4804 s = spare;
4805 if (!s) {
4806 champion = NULL;
4807 goto out;
4808 }
4809 champion = s;
4810
4811 if (conflict)
7a862a02 4812 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4813 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4814
4815 /* collect all dl's onto 'champion', and update them to
4816 * champion's version of the status
4817 */
4818 for (s = *super_list; s; s = s->next) {
4819 struct imsm_super *mpb = champion->anchor;
4820 struct dl *dl = s->disks;
4821
4822 if (s == champion)
4823 continue;
4824
5d7b407a
CA
4825 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4826
a2b97981
DW
4827 for (i = 0; i < mpb->num_disks; i++) {
4828 struct imsm_disk *disk;
4829
4830 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4831 if (disk) {
4832 dl->disk = *disk;
4833 /* only set index on disks that are a member of
4834 * a populated contianer, i.e. one with
4835 * raid_devs
4836 */
4837 if (is_failed(&dl->disk))
4838 dl->index = -2;
4839 else if (is_spare(&dl->disk))
4840 dl->index = -1;
4841 break;
4842 }
4843 }
4844
4845 if (i >= mpb->num_disks) {
4846 struct intel_disk *idisk;
4847
4848 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4849 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4850 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4851 dl->index = -1;
4852 else {
4853 dl->index = -2;
4854 continue;
4855 }
4856 }
4857
4858 dl->next = champion->disks;
4859 champion->disks = dl;
4860 s->disks = NULL;
4861 }
4862
4863 /* delete 'champion' from super_list */
4864 for (del = super_list; *del; ) {
4865 if (*del == champion) {
4866 *del = (*del)->next;
4867 break;
4868 } else
4869 del = &(*del)->next;
4870 }
4871 champion->next = NULL;
4872
4873 out:
4874 while (disk_list) {
4875 struct intel_disk *idisk = disk_list;
4876
4877 disk_list = disk_list->next;
4878 free(idisk);
4879 }
4880
4881 return champion;
4882}
4883
9587c373
LM
4884static int
4885get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4886static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4887 int major, int minor, int keep_fd);
ec50f7b6
LM
4888static int
4889get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4890 int *max, int keep_fd);
4891
cdddbdbc 4892static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4893 char *devname, struct md_list *devlist,
4894 int keep_fd)
cdddbdbc 4895{
a2b97981
DW
4896 struct intel_super *super_list = NULL;
4897 struct intel_super *super = NULL;
a2b97981 4898 int err = 0;
9587c373 4899 int i = 0;
dab4a513 4900
9587c373
LM
4901 if (fd >= 0)
4902 /* 'fd' is an opened container */
4903 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4904 else
ec50f7b6
LM
4905 /* get super block from devlist devices */
4906 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4907 if (err)
1602d52c 4908 goto error;
a2b97981
DW
4909 /* all mpbs enter, maybe one leaves */
4910 super = imsm_thunderdome(&super_list, i);
4911 if (!super) {
4912 err = 1;
4913 goto error;
cdddbdbc
DW
4914 }
4915
47ee5a45
DW
4916 if (find_missing(super) != 0) {
4917 free_imsm(super);
a2b97981
DW
4918 err = 2;
4919 goto error;
47ee5a45 4920 }
8e59f3d8
AK
4921
4922 /* load migration record */
4923 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4924 if (err == -1) {
4925 /* migration is in progress,
4926 * but migr_rec cannot be loaded,
4927 */
8e59f3d8
AK
4928 err = 4;
4929 goto error;
4930 }
e2f41b2c
AK
4931
4932 /* Check migration compatibility */
089f9d79 4933 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4934 pr_err("Unsupported migration detected");
e2f41b2c
AK
4935 if (devname)
4936 fprintf(stderr, " on %s\n", devname);
4937 else
4938 fprintf(stderr, " (IMSM).\n");
4939
4940 err = 5;
4941 goto error;
4942 }
4943
a2b97981
DW
4944 err = 0;
4945
4946 error:
4947 while (super_list) {
4948 struct intel_super *s = super_list;
4949
4950 super_list = super_list->next;
4951 free_imsm(s);
4952 }
9587c373 4953
a2b97981
DW
4954 if (err)
4955 return err;
f7e7067b 4956
cdddbdbc 4957 *sbp = super;
9587c373 4958 if (fd >= 0)
4dd2df09 4959 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4960 else
4dd2df09 4961 st->container_devnm[0] = 0;
a2b97981 4962 if (err == 0 && st->ss == NULL) {
bf5a934a 4963 st->ss = &super_imsm;
cdddbdbc
DW
4964 st->minor_version = 0;
4965 st->max_devs = IMSM_MAX_DEVICES;
4966 }
cdddbdbc
DW
4967 return 0;
4968}
2b959fbf 4969
ec50f7b6
LM
4970static int
4971get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4972 int *max, int keep_fd)
4973{
4974 struct md_list *tmpdev;
4975 int err = 0;
4976 int i = 0;
9587c373 4977
ec50f7b6
LM
4978 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4979 if (tmpdev->used != 1)
4980 continue;
4981 if (tmpdev->container == 1) {
ca9de185 4982 int lmax = 0;
ec50f7b6
LM
4983 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4984 if (fd < 0) {
e7b84f9d 4985 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4986 tmpdev->devname, strerror(errno));
4987 err = 8;
4988 goto error;
4989 }
4990 err = get_sra_super_block(fd, super_list,
4991 tmpdev->devname, &lmax,
4992 keep_fd);
4993 i += lmax;
4994 close(fd);
4995 if (err) {
4996 err = 7;
4997 goto error;
4998 }
4999 } else {
5000 int major = major(tmpdev->st_rdev);
5001 int minor = minor(tmpdev->st_rdev);
5002 err = get_super_block(super_list,
4dd2df09 5003 NULL,
ec50f7b6
LM
5004 tmpdev->devname,
5005 major, minor,
5006 keep_fd);
5007 i++;
5008 if (err) {
5009 err = 6;
5010 goto error;
5011 }
5012 }
5013 }
5014 error:
5015 *max = i;
5016 return err;
5017}
9587c373 5018
4dd2df09 5019static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
5020 int major, int minor, int keep_fd)
5021{
594dc1b8 5022 struct intel_super *s;
9587c373
LM
5023 char nm[32];
5024 int dfd = -1;
9587c373
LM
5025 int err = 0;
5026 int retry;
5027
5028 s = alloc_super();
5029 if (!s) {
5030 err = 1;
5031 goto error;
5032 }
5033
5034 sprintf(nm, "%d:%d", major, minor);
5035 dfd = dev_open(nm, O_RDWR);
5036 if (dfd < 0) {
5037 err = 2;
5038 goto error;
5039 }
5040
fa7bb6f8 5041 get_dev_sector_size(dfd, NULL, &s->sector_size);
cb8f6859 5042 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
5043 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5044
5045 /* retry the load if we might have raced against mdmon */
4dd2df09 5046 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
5047 for (retry = 0; retry < 3; retry++) {
5048 usleep(3000);
5049 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5050 if (err != 3)
5051 break;
5052 }
5053 error:
5054 if (!err) {
5055 s->next = *super_list;
5056 *super_list = s;
5057 } else {
5058 if (s)
8d67477f 5059 free_imsm(s);
36614e95 5060 if (dfd >= 0)
9587c373
LM
5061 close(dfd);
5062 }
089f9d79 5063 if (dfd >= 0 && !keep_fd)
9587c373
LM
5064 close(dfd);
5065 return err;
5066
5067}
5068
5069static int
5070get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5071{
5072 struct mdinfo *sra;
4dd2df09 5073 char *devnm;
9587c373
LM
5074 struct mdinfo *sd;
5075 int err = 0;
5076 int i = 0;
4dd2df09 5077 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
5078 if (!sra)
5079 return 1;
5080
5081 if (sra->array.major_version != -1 ||
5082 sra->array.minor_version != -2 ||
5083 strcmp(sra->text_version, "imsm") != 0) {
5084 err = 1;
5085 goto error;
5086 }
5087 /* load all mpbs */
4dd2df09 5088 devnm = fd2devnm(fd);
9587c373 5089 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 5090 if (get_super_block(super_list, devnm, devname,
9587c373
LM
5091 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5092 err = 7;
5093 goto error;
5094 }
5095 }
5096 error:
5097 sysfs_free(sra);
5098 *max = i;
5099 return err;
5100}
5101
2b959fbf
N
5102static int load_container_imsm(struct supertype *st, int fd, char *devname)
5103{
ec50f7b6 5104 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 5105}
cdddbdbc
DW
5106
5107static int load_super_imsm(struct supertype *st, int fd, char *devname)
5108{
5109 struct intel_super *super;
5110 int rv;
8a3544f8 5111 int retry;
cdddbdbc 5112
357ac106 5113 if (test_partition(fd))
691c6ee1
N
5114 /* IMSM not allowed on partitions */
5115 return 1;
5116
37424f13
DW
5117 free_super_imsm(st);
5118
49133e57 5119 super = alloc_super();
fa7bb6f8 5120 get_dev_sector_size(fd, NULL, &super->sector_size);
8d67477f
TM
5121 if (!super)
5122 return 1;
ea2bc72b
LM
5123 /* Load hba and capabilities if they exist.
5124 * But do not preclude loading metadata in case capabilities or hba are
5125 * non-compliant and ignore_hw_compat is set.
5126 */
d424212e 5127 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5128 /* no orom/efi or non-intel hba of the disk */
089f9d79 5129 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5130 if (devname)
e7b84f9d 5131 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5132 free_imsm(super);
5133 return 2;
5134 }
a2b97981 5135 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5136
8a3544f8
AP
5137 /* retry the load if we might have raced against mdmon */
5138 if (rv == 3) {
f96b1302
AP
5139 struct mdstat_ent *mdstat = NULL;
5140 char *name = fd2kname(fd);
5141
5142 if (name)
5143 mdstat = mdstat_by_component(name);
8a3544f8
AP
5144
5145 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5146 for (retry = 0; retry < 3; retry++) {
5147 usleep(3000);
5148 rv = load_and_parse_mpb(fd, super, devname, 0);
5149 if (rv != 3)
5150 break;
5151 }
5152 }
5153
5154 free_mdstat(mdstat);
5155 }
5156
cdddbdbc
DW
5157 if (rv) {
5158 if (devname)
7a862a02 5159 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5160 free_imsm(super);
5161 return rv;
5162 }
5163
5164 st->sb = super;
5165 if (st->ss == NULL) {
5166 st->ss = &super_imsm;
5167 st->minor_version = 0;
5168 st->max_devs = IMSM_MAX_DEVICES;
5169 }
8e59f3d8
AK
5170
5171 /* load migration record */
2e062e82
AK
5172 if (load_imsm_migr_rec(super, NULL) == 0) {
5173 /* Check for unsupported migration features */
5174 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5175 pr_err("Unsupported migration detected");
2e062e82
AK
5176 if (devname)
5177 fprintf(stderr, " on %s\n", devname);
5178 else
5179 fprintf(stderr, " (IMSM).\n");
5180 return 3;
5181 }
e2f41b2c
AK
5182 }
5183
cdddbdbc
DW
5184 return 0;
5185}
5186
ef6ffade
DW
5187static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5188{
5189 if (info->level == 1)
5190 return 128;
5191 return info->chunk_size >> 9;
5192}
5193
5551b113
CA
5194static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5195 unsigned long long size)
fcfd9599 5196{
4025c288 5197 if (info->level == 1)
5551b113 5198 return size * 2;
4025c288 5199 else
5551b113 5200 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5201}
5202
4d1313e9
DW
5203static void imsm_update_version_info(struct intel_super *super)
5204{
5205 /* update the version and attributes */
5206 struct imsm_super *mpb = super->anchor;
5207 char *version;
5208 struct imsm_dev *dev;
5209 struct imsm_map *map;
5210 int i;
5211
5212 for (i = 0; i < mpb->num_raid_devs; i++) {
5213 dev = get_imsm_dev(super, i);
238c0a71 5214 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5215 if (__le32_to_cpu(dev->size_high) > 0)
5216 mpb->attributes |= MPB_ATTRIB_2TB;
5217
5218 /* FIXME detect when an array spans a port multiplier */
5219 #if 0
5220 mpb->attributes |= MPB_ATTRIB_PM;
5221 #endif
5222
5223 if (mpb->num_raid_devs > 1 ||
5224 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5225 version = MPB_VERSION_ATTRIBS;
5226 switch (get_imsm_raid_level(map)) {
5227 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5228 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5229 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5230 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5231 }
5232 } else {
5233 if (map->num_members >= 5)
5234 version = MPB_VERSION_5OR6_DISK_ARRAY;
5235 else if (dev->status == DEV_CLONE_N_GO)
5236 version = MPB_VERSION_CNG;
5237 else if (get_imsm_raid_level(map) == 5)
5238 version = MPB_VERSION_RAID5;
5239 else if (map->num_members >= 3)
5240 version = MPB_VERSION_3OR4_DISK_ARRAY;
5241 else if (get_imsm_raid_level(map) == 1)
5242 version = MPB_VERSION_RAID1;
5243 else
5244 version = MPB_VERSION_RAID0;
5245 }
5246 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5247 }
5248}
5249
aa534678
DW
5250static int check_name(struct intel_super *super, char *name, int quiet)
5251{
5252 struct imsm_super *mpb = super->anchor;
5253 char *reason = NULL;
5254 int i;
5255
5256 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5257 reason = "must be 16 characters or less";
5258
5259 for (i = 0; i < mpb->num_raid_devs; i++) {
5260 struct imsm_dev *dev = get_imsm_dev(super, i);
5261
5262 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5263 reason = "already exists";
5264 break;
5265 }
5266 }
5267
5268 if (reason && !quiet)
e7b84f9d 5269 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5270
5271 return !reason;
5272}
5273
8b353278 5274static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5275 struct shape *s, char *name,
83cd1e97
N
5276 char *homehost, int *uuid,
5277 long long data_offset)
cdddbdbc 5278{
c2c087e6
DW
5279 /* We are creating a volume inside a pre-existing container.
5280 * so st->sb is already set.
5281 */
5282 struct intel_super *super = st->sb;
f36a9ecd 5283 unsigned int sector_size = super->sector_size;
949c47a0 5284 struct imsm_super *mpb = super->anchor;
ba2de7ba 5285 struct intel_dev *dv;
c2c087e6
DW
5286 struct imsm_dev *dev;
5287 struct imsm_vol *vol;
5288 struct imsm_map *map;
5289 int idx = mpb->num_raid_devs;
5290 int i;
5291 unsigned long long array_blocks;
2c092cad 5292 size_t size_old, size_new;
5551b113 5293 unsigned long long num_data_stripes;
b53bfba6
TM
5294 unsigned int data_disks;
5295 unsigned long long size_per_member;
cdddbdbc 5296
88c32bb1 5297 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5298 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5299 return 0;
5300 }
5301
2c092cad
DW
5302 /* ensure the mpb is large enough for the new data */
5303 size_old = __le32_to_cpu(mpb->mpb_size);
5304 size_new = disks_to_mpb_size(info->nr_disks);
5305 if (size_new > size_old) {
5306 void *mpb_new;
f36a9ecd 5307 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5308
f36a9ecd 5309 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5310 pr_err("could not allocate new mpb\n");
2c092cad
DW
5311 return 0;
5312 }
85337573
AO
5313 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5314 MIGR_REC_BUF_SECTORS*
5315 MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5316 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5317 free(super->buf);
5318 free(super);
ea944c8f 5319 free(mpb_new);
8e59f3d8
AK
5320 return 0;
5321 }
2c092cad
DW
5322 memcpy(mpb_new, mpb, size_old);
5323 free(mpb);
5324 mpb = mpb_new;
949c47a0 5325 super->anchor = mpb_new;
2c092cad
DW
5326 mpb->mpb_size = __cpu_to_le32(size_new);
5327 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5328 super->len = size_round;
2c092cad 5329 }
bf5a934a 5330 super->current_vol = idx;
3960e579
DW
5331
5332 /* handle 'failed_disks' by either:
5333 * a) create dummy disk entries in the table if this the first
5334 * volume in the array. We add them here as this is the only
5335 * opportunity to add them. add_to_super_imsm_volume()
5336 * handles the non-failed disks and continues incrementing
5337 * mpb->num_disks.
5338 * b) validate that 'failed_disks' matches the current number
5339 * of missing disks if the container is populated
d23fe947 5340 */
3960e579 5341 if (super->current_vol == 0) {
d23fe947 5342 mpb->num_disks = 0;
3960e579
DW
5343 for (i = 0; i < info->failed_disks; i++) {
5344 struct imsm_disk *disk;
5345
5346 mpb->num_disks++;
5347 disk = __get_imsm_disk(mpb, i);
5348 disk->status = CONFIGURED_DISK | FAILED_DISK;
5349 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5350 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5351 "missing:%d", (__u8)i);
3960e579
DW
5352 }
5353 find_missing(super);
5354 } else {
5355 int missing = 0;
5356 struct dl *d;
5357
5358 for (d = super->missing; d; d = d->next)
5359 missing++;
5360 if (info->failed_disks > missing) {
e7b84f9d 5361 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5362 return 0;
5363 }
5364 }
5a038140 5365
aa534678
DW
5366 if (!check_name(super, name, 0))
5367 return 0;
503975b9
N
5368 dv = xmalloc(sizeof(*dv));
5369 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 5370 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 5371 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5372 info->layout, info->chunk_size,
b53bfba6
TM
5373 s->size * BLOCKS_PER_KB);
5374 data_disks = get_data_disks(info->level, info->layout,
5375 info->raid_disks);
5376 array_blocks = round_size_to_mb(array_blocks, data_disks);
5377 size_per_member = array_blocks / data_disks;
979d38be 5378
fcc2c9da 5379 set_imsm_dev_size(dev, array_blocks);
1a2487c2 5380 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5381 vol = &dev->vol;
5382 vol->migr_state = 0;
1484e727 5383 set_migr_type(dev, MIGR_INIT);
3960e579 5384 vol->dirty = !info->state;
f8f603f1 5385 vol->curr_migr_unit = 0;
238c0a71 5386 map = get_imsm_map(dev, MAP_0);
5551b113 5387 set_pba_of_lba0(map, super->create_offset);
b53bfba6
TM
5388 set_blocks_per_member(map, info_to_blocks_per_member(info,
5389 size_per_member /
5390 BLOCKS_PER_KB));
ef6ffade 5391 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5392 map->failed_disk_num = ~0;
bf4442ab 5393 if (info->level > 0)
fffaf1ff
N
5394 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5395 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5396 else
5397 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5398 IMSM_T_STATE_NORMAL;
252d23c0 5399 map->ddf = 1;
ef6ffade
DW
5400
5401 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5402 free(dev);
5403 free(dv);
7a862a02 5404 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5405 return 0;
5406 }
81062a36
DW
5407
5408 map->raid_level = info->level;
4d1313e9 5409 if (info->level == 10) {
c2c087e6 5410 map->raid_level = 1;
4d1313e9 5411 map->num_domains = info->raid_disks / 2;
81062a36
DW
5412 } else if (info->level == 1)
5413 map->num_domains = info->raid_disks;
5414 else
ff596308 5415 map->num_domains = 1;
81062a36 5416
5551b113 5417 /* info->size is only int so use the 'size' parameter instead */
b53bfba6 5418 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5551b113
CA
5419 num_data_stripes /= map->num_domains;
5420 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5421
c2c087e6
DW
5422 map->num_members = info->raid_disks;
5423 for (i = 0; i < map->num_members; i++) {
5424 /* initialized in add_to_super */
4eb26970 5425 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5426 }
949c47a0 5427 mpb->num_raid_devs++;
2a24dc1b
PB
5428 mpb->num_raid_devs_created++;
5429 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
ba2de7ba 5430
b7580566 5431 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
c2462068 5432 dev->rwh_policy = RWH_MULTIPLE_OFF;
2432ce9b 5433 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
c2462068 5434 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
2432ce9b
AP
5435 } else {
5436 free(dev);
5437 free(dv);
5438 pr_err("imsm does not support consistency policy %s\n",
5439 map_num(consistency_policies, s->consistency_policy));
5440 return 0;
5441 }
5442
ba2de7ba
DW
5443 dv->dev = dev;
5444 dv->index = super->current_vol;
5445 dv->next = super->devlist;
5446 super->devlist = dv;
c2c087e6 5447
4d1313e9
DW
5448 imsm_update_version_info(super);
5449
c2c087e6 5450 return 1;
cdddbdbc
DW
5451}
5452
bf5a934a 5453static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5454 struct shape *s, char *name,
83cd1e97
N
5455 char *homehost, int *uuid,
5456 unsigned long long data_offset)
bf5a934a
DW
5457{
5458 /* This is primarily called by Create when creating a new array.
5459 * We will then get add_to_super called for each component, and then
5460 * write_init_super called to write it out to each device.
5461 * For IMSM, Create can create on fresh devices or on a pre-existing
5462 * array.
5463 * To create on a pre-existing array a different method will be called.
5464 * This one is just for fresh drives.
5465 */
5466 struct intel_super *super;
5467 struct imsm_super *mpb;
5468 size_t mpb_size;
4d1313e9 5469 char *version;
bf5a934a 5470
83cd1e97 5471 if (data_offset != INVALID_SECTORS) {
ed503f89 5472 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5473 return 0;
5474 }
5475
bf5a934a 5476 if (st->sb)
5308f117 5477 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5478 data_offset);
e683ca88
DW
5479
5480 if (info)
5481 mpb_size = disks_to_mpb_size(info->nr_disks);
5482 else
f36a9ecd 5483 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5484
49133e57 5485 super = alloc_super();
f36a9ecd
PB
5486 if (super &&
5487 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5488 free_imsm(super);
e683ca88
DW
5489 super = NULL;
5490 }
5491 if (!super) {
1ade5cc1 5492 pr_err("could not allocate superblock\n");
bf5a934a
DW
5493 return 0;
5494 }
de44e46f
PB
5495 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5496 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5497 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5498 free(super->buf);
8d67477f 5499 free_imsm(super);
8e59f3d8
AK
5500 return 0;
5501 }
e683ca88 5502 memset(super->buf, 0, mpb_size);
ef649044 5503 mpb = super->buf;
e683ca88
DW
5504 mpb->mpb_size = __cpu_to_le32(mpb_size);
5505 st->sb = super;
5506
5507 if (info == NULL) {
5508 /* zeroing superblock */
5509 return 0;
5510 }
bf5a934a 5511
4d1313e9
DW
5512 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5513
5514 version = (char *) mpb->sig;
5515 strcpy(version, MPB_SIGNATURE);
5516 version += strlen(MPB_SIGNATURE);
5517 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5518
bf5a934a
DW
5519 return 1;
5520}
5521
f2cc4f7d
AO
5522static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5523{
5524 unsigned int member_sector_size;
5525
5526 if (dl->fd < 0) {
5527 pr_err("Invalid file descriptor for %s\n", dl->devname);
5528 return 0;
5529 }
5530
5531 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5532 return 0;
5533 if (member_sector_size != super->sector_size)
5534 return 0;
5535 return 1;
5536}
5537
f20c3968 5538static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5539 int fd, char *devname)
5540{
5541 struct intel_super *super = st->sb;
d23fe947 5542 struct imsm_super *mpb = super->anchor;
3960e579 5543 struct imsm_disk *_disk;
bf5a934a
DW
5544 struct imsm_dev *dev;
5545 struct imsm_map *map;
3960e579 5546 struct dl *dl, *df;
4eb26970 5547 int slot;
bf5a934a 5548
949c47a0 5549 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5550 map = get_imsm_map(dev, MAP_0);
bf5a934a 5551
208933a7 5552 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5553 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5554 devname);
5555 return 1;
5556 }
5557
efb30e7f
DW
5558 if (fd == -1) {
5559 /* we're doing autolayout so grab the pre-marked (in
5560 * validate_geometry) raid_disk
5561 */
5562 for (dl = super->disks; dl; dl = dl->next)
5563 if (dl->raiddisk == dk->raid_disk)
5564 break;
5565 } else {
5566 for (dl = super->disks; dl ; dl = dl->next)
5567 if (dl->major == dk->major &&
5568 dl->minor == dk->minor)
5569 break;
5570 }
d23fe947 5571
208933a7 5572 if (!dl) {
e7b84f9d 5573 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5574 return 1;
208933a7 5575 }
bf5a934a 5576
f2cc4f7d
AO
5577 if (!drive_validate_sector_size(super, dl)) {
5578 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5579 return 1;
5580 }
5581
d23fe947
DW
5582 /* add a pristine spare to the metadata */
5583 if (dl->index < 0) {
5584 dl->index = super->anchor->num_disks;
5585 super->anchor->num_disks++;
5586 }
4eb26970
DW
5587 /* Check the device has not already been added */
5588 slot = get_imsm_disk_slot(map, dl->index);
5589 if (slot >= 0 &&
238c0a71 5590 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5591 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5592 devname);
5593 return 1;
5594 }
656b6b5a 5595 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5596 dl->disk.status = CONFIGURED_DISK;
d23fe947 5597
3960e579
DW
5598 /* update size of 'missing' disks to be at least as large as the
5599 * largest acitve member (we only have dummy missing disks when
5600 * creating the first volume)
5601 */
5602 if (super->current_vol == 0) {
5603 for (df = super->missing; df; df = df->next) {
5551b113
CA
5604 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5605 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5606 _disk = __get_imsm_disk(mpb, df->index);
5607 *_disk = df->disk;
5608 }
5609 }
5610
5611 /* refresh unset/failed slots to point to valid 'missing' entries */
5612 for (df = super->missing; df; df = df->next)
5613 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5614 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5615
5616 if ((ord & IMSM_ORD_REBUILD) == 0)
5617 continue;
5618 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5619 if (is_gen_migration(dev)) {
238c0a71
AK
5620 struct imsm_map *map2 = get_imsm_map(dev,
5621 MAP_1);
0a108d63 5622 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5623 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5624 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5625 slot2,
5626 MAP_1);
1ace8403
AK
5627 if ((unsigned)df->index ==
5628 ord_to_idx(ord2))
5629 set_imsm_ord_tbl_ent(map2,
0a108d63 5630 slot2,
1ace8403
AK
5631 df->index |
5632 IMSM_ORD_REBUILD);
5633 }
5634 }
3960e579
DW
5635 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5636 break;
5637 }
5638
d23fe947
DW
5639 /* if we are creating the first raid device update the family number */
5640 if (super->current_vol == 0) {
5641 __u32 sum;
5642 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5643
3960e579 5644 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5645 if (!_dev || !_disk) {
e7b84f9d 5646 pr_err("BUG mpb setup error\n");
791b666a
AW
5647 return 1;
5648 }
d23fe947
DW
5649 *_dev = *dev;
5650 *_disk = dl->disk;
148acb7b
DW
5651 sum = random32();
5652 sum += __gen_imsm_checksum(mpb);
d23fe947 5653 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5654 mpb->orig_family_num = mpb->family_num;
d23fe947 5655 }
ca0748fa 5656 super->current_disk = dl;
f20c3968 5657 return 0;
bf5a934a
DW
5658}
5659
a8619d23
AK
5660/* mark_spare()
5661 * Function marks disk as spare and restores disk serial
5662 * in case it was previously marked as failed by takeover operation
5663 * reruns:
5664 * -1 : critical error
5665 * 0 : disk is marked as spare but serial is not set
5666 * 1 : success
5667 */
5668int mark_spare(struct dl *disk)
5669{
5670 __u8 serial[MAX_RAID_SERIAL_LEN];
5671 int ret_val = -1;
5672
5673 if (!disk)
5674 return ret_val;
5675
5676 ret_val = 0;
5677 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5678 /* Restore disk serial number, because takeover marks disk
5679 * as failed and adds to serial ':0' before it becomes
5680 * a spare disk.
5681 */
5682 serialcpy(disk->serial, serial);
5683 serialcpy(disk->disk.serial, serial);
5684 ret_val = 1;
5685 }
5686 disk->disk.status = SPARE_DISK;
5687 disk->index = -1;
5688
5689 return ret_val;
5690}
88654014 5691
f20c3968 5692static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5693 int fd, char *devname,
5694 unsigned long long data_offset)
cdddbdbc 5695{
c2c087e6 5696 struct intel_super *super = st->sb;
c2c087e6
DW
5697 struct dl *dd;
5698 unsigned long long size;
fa7bb6f8 5699 unsigned int member_sector_size;
f2f27e63 5700 __u32 id;
c2c087e6
DW
5701 int rv;
5702 struct stat stb;
5703
88654014
LM
5704 /* If we are on an RAID enabled platform check that the disk is
5705 * attached to the raid controller.
5706 * We do not need to test disks attachment for container based additions,
5707 * they shall be already tested when container was created/assembled.
88c32bb1 5708 */
d424212e 5709 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5710 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5711 if (rv != 0) {
5712 dprintf("capability: %p fd: %d ret: %d\n",
5713 super->orom, fd, rv);
5714 return 1;
88c32bb1
DW
5715 }
5716
f20c3968
DW
5717 if (super->current_vol >= 0)
5718 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5719
c2c087e6 5720 fstat(fd, &stb);
503975b9 5721 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5722 dd->major = major(stb.st_rdev);
5723 dd->minor = minor(stb.st_rdev);
503975b9 5724 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5725 dd->fd = fd;
689c9bf3 5726 dd->e = NULL;
1a64be56 5727 dd->action = DISK_ADD;
c2c087e6 5728 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5729 if (rv) {
e7b84f9d 5730 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5731 if (dd->devname)
5732 free(dd->devname);
949c47a0 5733 free(dd);
0030e8d6 5734 abort();
c2c087e6 5735 }
20bee0f8
PB
5736 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5737 (super->hba->type == SYS_DEV_VMD))) {
5738 int i;
5739 char *devpath = diskfd_to_devpath(fd);
5740 char controller_path[PATH_MAX];
5741
5742 if (!devpath) {
5743 pr_err("failed to get devpath, aborting\n");
5744 if (dd->devname)
5745 free(dd->devname);
5746 free(dd);
5747 return 1;
5748 }
5749
5750 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5751 free(devpath);
5752
5753 if (devpath_to_vendor(controller_path) == 0x8086) {
5754 /*
5755 * If Intel's NVMe drive has serial ended with
5756 * "-A","-B","-1" or "-2" it means that this is "x8"
5757 * device (double drive on single PCIe card).
5758 * User should be warned about potential data loss.
5759 */
5760 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5761 /* Skip empty character at the end */
5762 if (dd->serial[i] == 0)
5763 continue;
5764
5765 if (((dd->serial[i] == 'A') ||
5766 (dd->serial[i] == 'B') ||
5767 (dd->serial[i] == '1') ||
5768 (dd->serial[i] == '2')) &&
5769 (dd->serial[i-1] == '-'))
5770 pr_err("\tThe action you are about to take may put your data at risk.\n"
5771 "\tPlease note that x8 devices may consist of two separate x4 devices "
5772 "located on a single PCIe port.\n"
5773 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5774 break;
5775 }
32716c51
PB
5776 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5777 !imsm_orom_has_tpv_support(super->orom)) {
5778 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
8b751247 5779 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
32716c51
PB
5780 free(dd->devname);
5781 free(dd);
5782 return 1;
20bee0f8
PB
5783 }
5784 }
c2c087e6 5785
c2c087e6 5786 get_dev_size(fd, NULL, &size);
fa7bb6f8
PB
5787 get_dev_sector_size(fd, NULL, &member_sector_size);
5788
5789 if (super->sector_size == 0) {
5790 /* this a first device, so sector_size is not set yet */
5791 super->sector_size = member_sector_size;
fa7bb6f8
PB
5792 }
5793
71e5411e 5794 /* clear migr_rec when adding disk to container */
85337573
AO
5795 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5796 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
de44e46f 5797 SEEK_SET) >= 0) {
466070ad 5798 if ((unsigned int)write(fd, super->migr_rec_buf,
85337573
AO
5799 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5800 MIGR_REC_BUF_SECTORS*member_sector_size)
71e5411e
PB
5801 perror("Write migr_rec failed");
5802 }
5803
c2c087e6 5804 size /= 512;
1f24f035 5805 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5806 set_total_blocks(&dd->disk, size);
5807 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5808 struct imsm_super *mpb = super->anchor;
5809 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5810 }
a8619d23 5811 mark_spare(dd);
c2c087e6 5812 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5813 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5814 else
b9f594fe 5815 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5816
5817 if (st->update_tail) {
1a64be56
LM
5818 dd->next = super->disk_mgmt_list;
5819 super->disk_mgmt_list = dd;
43dad3d6
DW
5820 } else {
5821 dd->next = super->disks;
5822 super->disks = dd;
ceaf0ee1 5823 super->updates_pending++;
43dad3d6 5824 }
f20c3968
DW
5825
5826 return 0;
cdddbdbc
DW
5827}
5828
1a64be56
LM
5829static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5830{
5831 struct intel_super *super = st->sb;
5832 struct dl *dd;
5833
5834 /* remove from super works only in mdmon - for communication
5835 * manager - monitor. Check if communication memory buffer
5836 * is prepared.
5837 */
5838 if (!st->update_tail) {
1ade5cc1 5839 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5840 return 1;
5841 }
503975b9 5842 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5843 dd->major = dk->major;
5844 dd->minor = dk->minor;
1a64be56 5845 dd->fd = -1;
a8619d23 5846 mark_spare(dd);
1a64be56
LM
5847 dd->action = DISK_REMOVE;
5848
5849 dd->next = super->disk_mgmt_list;
5850 super->disk_mgmt_list = dd;
5851
1a64be56
LM
5852 return 0;
5853}
5854
f796af5d
DW
5855static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5856
5857static union {
f36a9ecd 5858 char buf[MAX_SECTOR_SIZE];
f796af5d 5859 struct imsm_super anchor;
f36a9ecd 5860} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 5861
d23fe947
DW
5862/* spare records have their own family number and do not have any defined raid
5863 * devices
5864 */
5865static int write_super_imsm_spares(struct intel_super *super, int doclose)
5866{
d23fe947 5867 struct imsm_super *mpb = super->anchor;
f796af5d 5868 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5869 __u32 sum;
5870 struct dl *d;
5871
68641cdb
JS
5872 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5873 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5874 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5875 spare->num_disks = 1;
5876 spare->num_raid_devs = 0;
5877 spare->cache_size = mpb->cache_size;
5878 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5879
5880 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5881 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5882
5883 for (d = super->disks; d; d = d->next) {
8796fdc4 5884 if (d->index != -1)
d23fe947
DW
5885 continue;
5886
f796af5d 5887 spare->disk[0] = d->disk;
027c374f
CA
5888 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5889 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5890
f36a9ecd
PB
5891 if (super->sector_size == 4096)
5892 convert_to_4k_imsm_disk(&spare->disk[0]);
5893
f796af5d
DW
5894 sum = __gen_imsm_checksum(spare);
5895 spare->family_num = __cpu_to_le32(sum);
5896 spare->orig_family_num = 0;
5897 sum = __gen_imsm_checksum(spare);
5898 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5899
f796af5d 5900 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5901 pr_err("failed for device %d:%d %s\n",
5902 d->major, d->minor, strerror(errno));
e74255d9 5903 return 1;
d23fe947
DW
5904 }
5905 if (doclose) {
5906 close(d->fd);
5907 d->fd = -1;
5908 }
5909 }
5910
e74255d9 5911 return 0;
d23fe947
DW
5912}
5913
36988a3d 5914static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5915{
36988a3d 5916 struct intel_super *super = st->sb;
f36a9ecd 5917 unsigned int sector_size = super->sector_size;
949c47a0 5918 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5919 struct dl *d;
5920 __u32 generation;
5921 __u32 sum;
d23fe947 5922 int spares = 0;
949c47a0 5923 int i;
a48ac0a8 5924 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5925 int num_disks = 0;
146c6260 5926 int clear_migration_record = 1;
bbab0940 5927 __u32 bbm_log_size;
cdddbdbc 5928
c2c087e6
DW
5929 /* 'generation' is incremented everytime the metadata is written */
5930 generation = __le32_to_cpu(mpb->generation_num);
5931 generation++;
5932 mpb->generation_num = __cpu_to_le32(generation);
5933
148acb7b
DW
5934 /* fix up cases where previous mdadm releases failed to set
5935 * orig_family_num
5936 */
5937 if (mpb->orig_family_num == 0)
5938 mpb->orig_family_num = mpb->family_num;
5939
d23fe947 5940 for (d = super->disks; d; d = d->next) {
8796fdc4 5941 if (d->index == -1)
d23fe947 5942 spares++;
36988a3d 5943 else {
d23fe947 5944 mpb->disk[d->index] = d->disk;
36988a3d
AK
5945 num_disks++;
5946 }
d23fe947 5947 }
36988a3d 5948 for (d = super->missing; d; d = d->next) {
47ee5a45 5949 mpb->disk[d->index] = d->disk;
36988a3d
AK
5950 num_disks++;
5951 }
5952 mpb->num_disks = num_disks;
5953 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5954
949c47a0
DW
5955 for (i = 0; i < mpb->num_raid_devs; i++) {
5956 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5957 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5958 if (dev && dev2) {
5959 imsm_copy_dev(dev, dev2);
5960 mpb_size += sizeof_imsm_dev(dev, 0);
5961 }
146c6260
AK
5962 if (is_gen_migration(dev2))
5963 clear_migration_record = 0;
949c47a0 5964 }
bbab0940
TM
5965
5966 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5967
5968 if (bbm_log_size) {
5969 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5970 mpb->attributes |= MPB_ATTRIB_BBM;
5971 } else
5972 mpb->attributes &= ~MPB_ATTRIB_BBM;
5973
5974 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5975 mpb_size += bbm_log_size;
a48ac0a8 5976 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5977
bbab0940
TM
5978#ifdef DEBUG
5979 assert(super->len == 0 || mpb_size <= super->len);
5980#endif
5981
c2c087e6 5982 /* recalculate checksum */
949c47a0 5983 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5984 mpb->check_sum = __cpu_to_le32(sum);
5985
51d83f5d
AK
5986 if (super->clean_migration_record_by_mdmon) {
5987 clear_migration_record = 1;
5988 super->clean_migration_record_by_mdmon = 0;
5989 }
146c6260 5990 if (clear_migration_record)
de44e46f 5991 memset(super->migr_rec_buf, 0,
85337573 5992 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
146c6260 5993
f36a9ecd
PB
5994 if (sector_size == 4096)
5995 convert_to_4k(super);
5996
d23fe947 5997 /* write the mpb for disks that compose raid devices */
c2c087e6 5998 for (d = super->disks; d ; d = d->next) {
86c54047 5999 if (d->index < 0 || is_failed(&d->disk))
d23fe947 6000 continue;
30602f53 6001
146c6260
AK
6002 if (clear_migration_record) {
6003 unsigned long long dsize;
6004
6005 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
6006 if (lseek64(d->fd, dsize - sector_size,
6007 SEEK_SET) >= 0) {
466070ad
PB
6008 if ((unsigned int)write(d->fd,
6009 super->migr_rec_buf,
de44e46f
PB
6010 MIGR_REC_BUF_SECTORS*sector_size) !=
6011 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 6012 perror("Write migr_rec failed");
146c6260
AK
6013 }
6014 }
51d83f5d
AK
6015
6016 if (store_imsm_mpb(d->fd, mpb))
6017 fprintf(stderr,
1ade5cc1
N
6018 "failed for device %d:%d (fd: %d)%s\n",
6019 d->major, d->minor,
51d83f5d
AK
6020 d->fd, strerror(errno));
6021
c2c087e6
DW
6022 if (doclose) {
6023 close(d->fd);
6024 d->fd = -1;
6025 }
6026 }
6027
d23fe947
DW
6028 if (spares)
6029 return write_super_imsm_spares(super, doclose);
6030
e74255d9 6031 return 0;
c2c087e6
DW
6032}
6033
9b1fb677 6034static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
6035{
6036 size_t len;
6037 struct imsm_update_create_array *u;
6038 struct intel_super *super = st->sb;
9b1fb677 6039 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 6040 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
6041 struct disk_info *inf;
6042 struct imsm_disk *disk;
6043 int i;
43dad3d6 6044
54c2c1ea
DW
6045 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6046 sizeof(*inf) * map->num_members;
503975b9 6047 u = xmalloc(len);
43dad3d6 6048 u->type = update_create_array;
9b1fb677 6049 u->dev_idx = dev_idx;
43dad3d6 6050 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
6051 inf = get_disk_info(u);
6052 for (i = 0; i < map->num_members; i++) {
238c0a71 6053 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 6054
54c2c1ea 6055 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
6056 if (!disk)
6057 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
6058 serialcpy(inf[i].serial, disk->serial);
6059 }
43dad3d6
DW
6060 append_metadata_update(st, u, len);
6061
6062 return 0;
6063}
6064
1a64be56 6065static int mgmt_disk(struct supertype *st)
43dad3d6
DW
6066{
6067 struct intel_super *super = st->sb;
6068 size_t len;
1a64be56 6069 struct imsm_update_add_remove_disk *u;
43dad3d6 6070
1a64be56 6071 if (!super->disk_mgmt_list)
43dad3d6
DW
6072 return 0;
6073
6074 len = sizeof(*u);
503975b9 6075 u = xmalloc(len);
1a64be56 6076 u->type = update_add_remove_disk;
43dad3d6
DW
6077 append_metadata_update(st, u, len);
6078
6079 return 0;
6080}
2432ce9b
AP
6081
6082__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6083
e397cefe
AP
6084static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6085{
6086 struct ppl_header *ppl_hdr = buf;
6087 int ret;
6088
6089 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6090
6091 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6092 ret = -errno;
6093 perror("Failed to seek to PPL header location");
6094 return ret;
6095 }
6096
6097 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6098 ret = -errno;
6099 perror("Write PPL header failed");
6100 return ret;
6101 }
6102
6103 fsync(fd);
6104
6105 return 0;
6106}
6107
2432ce9b
AP
6108static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6109{
6110 struct intel_super *super = st->sb;
6111 void *buf;
6112 struct ppl_header *ppl_hdr;
6113 int ret;
6114
b2514242
PB
6115 /* first clear entire ppl space */
6116 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6117 if (ret)
6118 return ret;
6119
6120 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
2432ce9b
AP
6121 if (ret) {
6122 pr_err("Failed to allocate PPL header buffer\n");
e397cefe 6123 return -ret;
2432ce9b
AP
6124 }
6125
6126 memset(buf, 0, PPL_HEADER_SIZE);
6127 ppl_hdr = buf;
6128 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6129 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
b23d0750
AP
6130
6131 if (info->mismatch_cnt) {
6132 /*
6133 * We are overwriting an invalid ppl. Make one entry with wrong
6134 * checksum to prevent the kernel from skipping resync.
6135 */
6136 ppl_hdr->entries_count = __cpu_to_le32(1);
6137 ppl_hdr->entries[0].checksum = ~0;
6138 }
6139
e397cefe 6140 ret = write_ppl_header(info->ppl_sector, fd, buf);
2432ce9b
AP
6141
6142 free(buf);
6143 return ret;
6144}
6145
e397cefe
AP
6146static int is_rebuilding(struct imsm_dev *dev);
6147
2432ce9b
AP
6148static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6149 struct mdinfo *disk)
6150{
6151 struct intel_super *super = st->sb;
6152 struct dl *d;
e397cefe 6153 void *buf_orig, *buf, *buf_prev = NULL;
2432ce9b 6154 int ret = 0;
e397cefe 6155 struct ppl_header *ppl_hdr = NULL;
2432ce9b
AP
6156 __u32 crc;
6157 struct imsm_dev *dev;
2432ce9b 6158 __u32 idx;
44b6b876
PB
6159 unsigned int i;
6160 unsigned long long ppl_offset = 0;
6161 unsigned long long prev_gen_num = 0;
2432ce9b
AP
6162
6163 if (disk->disk.raid_disk < 0)
6164 return 0;
6165
2432ce9b 6166 dev = get_imsm_dev(super, info->container_member);
2fc0fc63 6167 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
2432ce9b
AP
6168 d = get_imsm_dl_disk(super, idx);
6169
6170 if (!d || d->index < 0 || is_failed(&d->disk))
e397cefe
AP
6171 return 0;
6172
6173 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6174 pr_err("Failed to allocate PPL header buffer\n");
6175 return -1;
6176 }
6177 buf = buf_orig;
2432ce9b 6178
44b6b876
PB
6179 ret = 1;
6180 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
e397cefe
AP
6181 void *tmp;
6182
44b6b876 6183 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
2432ce9b 6184
44b6b876
PB
6185 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6186 SEEK_SET) < 0) {
6187 perror("Failed to seek to PPL header location");
6188 ret = -1;
e397cefe 6189 break;
44b6b876 6190 }
2432ce9b 6191
44b6b876
PB
6192 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6193 perror("Read PPL header failed");
6194 ret = -1;
e397cefe 6195 break;
44b6b876 6196 }
2432ce9b 6197
44b6b876 6198 ppl_hdr = buf;
2432ce9b 6199
44b6b876
PB
6200 crc = __le32_to_cpu(ppl_hdr->checksum);
6201 ppl_hdr->checksum = 0;
6202
6203 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6204 dprintf("Wrong PPL header checksum on %s\n",
6205 d->devname);
e397cefe 6206 break;
44b6b876
PB
6207 }
6208
6209 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6210 /* previous was newest, it was already checked */
e397cefe 6211 break;
44b6b876
PB
6212 }
6213
6214 if ((__le32_to_cpu(ppl_hdr->signature) !=
6215 super->anchor->orig_family_num)) {
6216 dprintf("Wrong PPL header signature on %s\n",
6217 d->devname);
6218 ret = 1;
e397cefe 6219 break;
44b6b876
PB
6220 }
6221
6222 ret = 0;
6223 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
2432ce9b 6224
44b6b876
PB
6225 ppl_offset += PPL_HEADER_SIZE;
6226 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6227 ppl_offset +=
6228 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
e397cefe
AP
6229
6230 if (!buf_prev)
6231 buf_prev = buf + PPL_HEADER_SIZE;
6232 tmp = buf_prev;
6233 buf_prev = buf;
6234 buf = tmp;
2432ce9b
AP
6235 }
6236
e397cefe
AP
6237 if (buf_prev) {
6238 buf = buf_prev;
6239 ppl_hdr = buf_prev;
6240 }
2432ce9b 6241
54148aba
PB
6242 /*
6243 * Update metadata to use mutliple PPLs area (1MB).
6244 * This is done once for all RAID members
6245 */
6246 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6247 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6248 char subarray[20];
6249 struct mdinfo *member_dev;
6250
6251 sprintf(subarray, "%d", info->container_member);
6252
6253 if (mdmon_running(st->container_devnm))
6254 st->update_tail = &st->updates;
6255
6256 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6257 pr_err("Failed to update subarray %s\n",
6258 subarray);
6259 } else {
6260 if (st->update_tail)
6261 flush_metadata_updates(st);
6262 else
6263 st->ss->sync_metadata(st);
6264 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6265 for (member_dev = info->devs; member_dev;
6266 member_dev = member_dev->next)
6267 member_dev->ppl_size =
6268 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6269 }
6270 }
6271
b23d0750 6272 if (ret == 1) {
2fc0fc63
AP
6273 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6274
50b9c10d
PB
6275 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6276 (map->map_state == IMSM_T_STATE_NORMAL &&
2ec9d182 6277 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
e397cefe 6278 (is_rebuilding(dev) &&
2ec9d182
AP
6279 dev->vol.curr_migr_unit == 0 &&
6280 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
b23d0750
AP
6281 ret = st->ss->write_init_ppl(st, info, d->fd);
6282 else
6283 info->mismatch_cnt++;
e397cefe
AP
6284 } else if (ret == 0 &&
6285 ppl_hdr->entries_count == 0 &&
6286 is_rebuilding(dev) &&
6287 info->resync_start == 0) {
6288 /*
6289 * The header has no entries - add a single empty entry and
6290 * rewrite the header to prevent the kernel from going into
6291 * resync after an interrupted rebuild.
6292 */
6293 ppl_hdr->entries_count = __cpu_to_le32(1);
6294 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
b23d0750 6295 }
2432ce9b 6296
e397cefe
AP
6297 free(buf_orig);
6298
2432ce9b
AP
6299 return ret;
6300}
6301
2432ce9b
AP
6302static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6303{
6304 struct intel_super *super = st->sb;
6305 struct dl *d;
6306 int ret = 0;
6307
6308 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6309 info->array.level != 5)
6310 return 0;
6311
6312 for (d = super->disks; d ; d = d->next) {
6313 if (d->index < 0 || is_failed(&d->disk))
6314 continue;
6315
6316 ret = st->ss->write_init_ppl(st, info, d->fd);
6317 if (ret)
6318 break;
6319 }
6320
6321 return ret;
6322}
43dad3d6 6323
c2c087e6
DW
6324static int write_init_super_imsm(struct supertype *st)
6325{
9b1fb677
DW
6326 struct intel_super *super = st->sb;
6327 int current_vol = super->current_vol;
2432ce9b
AP
6328 int rv = 0;
6329 struct mdinfo info;
6330
6331 getinfo_super_imsm(st, &info, NULL);
9b1fb677
DW
6332
6333 /* we are done with current_vol reset it to point st at the container */
6334 super->current_vol = -1;
6335
8273f55e 6336 if (st->update_tail) {
43dad3d6
DW
6337 /* queue the recently created array / added disk
6338 * as a metadata update */
8273f55e 6339
43dad3d6 6340 /* determine if we are creating a volume or adding a disk */
9b1fb677 6341 if (current_vol < 0) {
1a64be56
LM
6342 /* in the mgmt (add/remove) disk case we are running
6343 * in mdmon context, so don't close fd's
43dad3d6 6344 */
2432ce9b
AP
6345 rv = mgmt_disk(st);
6346 } else {
6347 rv = write_init_ppl_imsm_all(st, &info);
6348 if (!rv)
6349 rv = create_array(st, current_vol);
6350 }
d682f344
N
6351 } else {
6352 struct dl *d;
6353 for (d = super->disks; d; d = d->next)
ba728be7 6354 Kill(d->devname, NULL, 0, -1, 1);
2432ce9b
AP
6355 if (current_vol >= 0)
6356 rv = write_init_ppl_imsm_all(st, &info);
6357 if (!rv)
6358 rv = write_super_imsm(st, 1);
d682f344 6359 }
2432ce9b
AP
6360
6361 return rv;
cdddbdbc
DW
6362}
6363
e683ca88 6364static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 6365{
e683ca88
DW
6366 struct intel_super *super = st->sb;
6367 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 6368
e683ca88 6369 if (!mpb)
ad97895e
DW
6370 return 1;
6371
f36a9ecd
PB
6372 if (super->sector_size == 4096)
6373 convert_to_4k(super);
e683ca88 6374 return store_imsm_mpb(fd, mpb);
cdddbdbc
DW
6375}
6376
cdddbdbc
DW
6377static int validate_geometry_imsm_container(struct supertype *st, int level,
6378 int layout, int raiddisks, int chunk,
af4348dd
N
6379 unsigned long long size,
6380 unsigned long long data_offset,
6381 char *dev,
2c514b71
NB
6382 unsigned long long *freesize,
6383 int verbose)
cdddbdbc 6384{
c2c087e6
DW
6385 int fd;
6386 unsigned long long ldsize;
594dc1b8 6387 struct intel_super *super;
f2f5c343 6388 int rv = 0;
cdddbdbc 6389
c2c087e6
DW
6390 if (level != LEVEL_CONTAINER)
6391 return 0;
6392 if (!dev)
6393 return 1;
6394
6395 fd = open(dev, O_RDONLY|O_EXCL, 0);
6396 if (fd < 0) {
ba728be7 6397 if (verbose > 0)
e7b84f9d 6398 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6399 dev, strerror(errno));
c2c087e6
DW
6400 return 0;
6401 }
6402 if (!get_dev_size(fd, dev, &ldsize)) {
6403 close(fd);
6404 return 0;
6405 }
f2f5c343
LM
6406
6407 /* capabilities retrieve could be possible
6408 * note that there is no fd for the disks in array.
6409 */
6410 super = alloc_super();
8d67477f
TM
6411 if (!super) {
6412 close(fd);
6413 return 0;
6414 }
fa7bb6f8
PB
6415 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6416 close(fd);
6417 free_imsm(super);
6418 return 0;
6419 }
6420
ba728be7 6421 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6422 if (rv != 0) {
6423#if DEBUG
6424 char str[256];
6425 fd2devname(fd, str);
1ade5cc1 6426 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6427 fd, str, super->orom, rv, raiddisks);
6428#endif
6429 /* no orom/efi or non-intel hba of the disk */
6430 close(fd);
6431 free_imsm(super);
6432 return 0;
6433 }
c2c087e6 6434 close(fd);
9126b9a8
CA
6435 if (super->orom) {
6436 if (raiddisks > super->orom->tds) {
6437 if (verbose)
7a862a02 6438 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
6439 raiddisks, super->orom->tds);
6440 free_imsm(super);
6441 return 0;
6442 }
6443 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6444 (ldsize >> 9) >> 32 > 0) {
6445 if (verbose)
e7b84f9d 6446 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
6447 free_imsm(super);
6448 return 0;
6449 }
f2f5c343 6450 }
c2c087e6 6451
af4348dd 6452 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 6453 free_imsm(super);
c2c087e6
DW
6454
6455 return 1;
cdddbdbc
DW
6456}
6457
0dcecb2e
DW
6458static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6459{
6460 const unsigned long long base_start = e[*idx].start;
6461 unsigned long long end = base_start + e[*idx].size;
6462 int i;
6463
6464 if (base_start == end)
6465 return 0;
6466
6467 *idx = *idx + 1;
6468 for (i = *idx; i < num_extents; i++) {
6469 /* extend overlapping extents */
6470 if (e[i].start >= base_start &&
6471 e[i].start <= end) {
6472 if (e[i].size == 0)
6473 return 0;
6474 if (e[i].start + e[i].size > end)
6475 end = e[i].start + e[i].size;
6476 } else if (e[i].start > end) {
6477 *idx = i;
6478 break;
6479 }
6480 }
6481
6482 return end - base_start;
6483}
6484
6485static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6486{
6487 /* build a composite disk with all known extents and generate a new
6488 * 'maxsize' given the "all disks in an array must share a common start
6489 * offset" constraint
6490 */
503975b9 6491 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6492 struct dl *dl;
6493 int i, j;
6494 int start_extent;
6495 unsigned long long pos;
b9d77223 6496 unsigned long long start = 0;
0dcecb2e
DW
6497 unsigned long long maxsize;
6498 unsigned long reserve;
6499
0dcecb2e
DW
6500 /* coalesce and sort all extents. also, check to see if we need to
6501 * reserve space between member arrays
6502 */
6503 j = 0;
6504 for (dl = super->disks; dl; dl = dl->next) {
6505 if (!dl->e)
6506 continue;
6507 for (i = 0; i < dl->extent_cnt; i++)
6508 e[j++] = dl->e[i];
6509 }
6510 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6511
6512 /* merge extents */
6513 i = 0;
6514 j = 0;
6515 while (i < sum_extents) {
6516 e[j].start = e[i].start;
6517 e[j].size = find_size(e, &i, sum_extents);
6518 j++;
6519 if (e[j-1].size == 0)
6520 break;
6521 }
6522
6523 pos = 0;
6524 maxsize = 0;
6525 start_extent = 0;
6526 i = 0;
6527 do {
6528 unsigned long long esize;
6529
6530 esize = e[i].start - pos;
6531 if (esize >= maxsize) {
6532 maxsize = esize;
6533 start = pos;
6534 start_extent = i;
6535 }
6536 pos = e[i].start + e[i].size;
6537 i++;
6538 } while (e[i-1].size);
6539 free(e);
6540
a7dd165b
DW
6541 if (maxsize == 0)
6542 return 0;
6543
6544 /* FIXME assumes volume at offset 0 is the first volume in a
6545 * container
6546 */
0dcecb2e
DW
6547 if (start_extent > 0)
6548 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6549 else
6550 reserve = 0;
6551
6552 if (maxsize < reserve)
a7dd165b 6553 return 0;
0dcecb2e 6554
5551b113 6555 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6556 if (start + reserve > super->create_offset)
a7dd165b 6557 return 0; /* start overflows create_offset */
0dcecb2e
DW
6558 super->create_offset = start + reserve;
6559
6560 return maxsize - reserve;
6561}
6562
88c32bb1
DW
6563static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6564{
6565 if (level < 0 || level == 6 || level == 4)
6566 return 0;
6567
6568 /* if we have an orom prevent invalid raid levels */
6569 if (orom)
6570 switch (level) {
6571 case 0: return imsm_orom_has_raid0(orom);
6572 case 1:
6573 if (raiddisks > 2)
6574 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6575 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6576 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6577 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6578 }
6579 else
6580 return 1; /* not on an Intel RAID platform so anything goes */
6581
6582 return 0;
6583}
6584
ca9de185
LM
6585static int
6586active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6587 int dpa, int verbose)
6588{
6589 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6590 struct mdstat_ent *memb;
ca9de185
LM
6591 int count = 0;
6592 int num = 0;
594dc1b8 6593 struct md_list *dv;
ca9de185
LM
6594 int found;
6595
6596 for (memb = mdstat ; memb ; memb = memb->next) {
6597 if (memb->metadata_version &&
fc54fe7a 6598 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
ca9de185
LM
6599 (strcmp(&memb->metadata_version[9], name) == 0) &&
6600 !is_subarray(memb->metadata_version+9) &&
6601 memb->members) {
6602 struct dev_member *dev = memb->members;
6603 int fd = -1;
6604 while(dev && (fd < 0)) {
503975b9
N
6605 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6606 num = sprintf(path, "%s%s", "/dev/", dev->name);
6607 if (num > 0)
6608 fd = open(path, O_RDONLY, 0);
089f9d79 6609 if (num <= 0 || fd < 0) {
676e87a8 6610 pr_vrb("Cannot open %s: %s\n",
503975b9 6611 dev->name, strerror(errno));
ca9de185 6612 }
503975b9 6613 free(path);
ca9de185
LM
6614 dev = dev->next;
6615 }
6616 found = 0;
089f9d79 6617 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6618 struct mdstat_ent *vol;
6619 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6620 if (vol->active > 0 &&
ca9de185 6621 vol->metadata_version &&
9581efb1 6622 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6623 found++;
6624 count++;
6625 }
6626 }
6627 if (*devlist && (found < dpa)) {
503975b9 6628 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6629 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6630 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6631 dv->found = found;
6632 dv->used = 0;
6633 dv->next = *devlist;
6634 *devlist = dv;
ca9de185
LM
6635 }
6636 }
6637 if (fd >= 0)
6638 close(fd);
6639 }
6640 }
6641 free_mdstat(mdstat);
6642 return count;
6643}
6644
6645#ifdef DEBUG_LOOP
6646static struct md_list*
6647get_loop_devices(void)
6648{
6649 int i;
6650 struct md_list *devlist = NULL;
594dc1b8 6651 struct md_list *dv;
ca9de185
LM
6652
6653 for(i = 0; i < 12; i++) {
503975b9
N
6654 dv = xcalloc(1, sizeof(*dv));
6655 dv->devname = xmalloc(40);
ca9de185
LM
6656 sprintf(dv->devname, "/dev/loop%d", i);
6657 dv->next = devlist;
6658 devlist = dv;
6659 }
6660 return devlist;
6661}
6662#endif
6663
6664static struct md_list*
6665get_devices(const char *hba_path)
6666{
6667 struct md_list *devlist = NULL;
594dc1b8 6668 struct md_list *dv;
ca9de185
LM
6669 struct dirent *ent;
6670 DIR *dir;
6671 int err = 0;
6672
6673#if DEBUG_LOOP
6674 devlist = get_loop_devices();
6675 return devlist;
6676#endif
6677 /* scroll through /sys/dev/block looking for devices attached to
6678 * this hba
6679 */
6680 dir = opendir("/sys/dev/block");
6681 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6682 int fd;
6683 char buf[1024];
6684 int major, minor;
6685 char *path = NULL;
6686 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6687 continue;
6688 path = devt_to_devpath(makedev(major, minor));
6689 if (!path)
6690 continue;
6691 if (!path_attached_to_hba(path, hba_path)) {
6692 free(path);
6693 path = NULL;
6694 continue;
6695 }
6696 free(path);
6697 path = NULL;
6698 fd = dev_open(ent->d_name, O_RDONLY);
6699 if (fd >= 0) {
6700 fd2devname(fd, buf);
6701 close(fd);
6702 } else {
e7b84f9d 6703 pr_err("cannot open device: %s\n",
ca9de185
LM
6704 ent->d_name);
6705 continue;
6706 }
6707
503975b9
N
6708 dv = xcalloc(1, sizeof(*dv));
6709 dv->devname = xstrdup(buf);
ca9de185
LM
6710 dv->next = devlist;
6711 devlist = dv;
6712 }
6713 if (err) {
6714 while(devlist) {
6715 dv = devlist;
6716 devlist = devlist->next;
6717 free(dv->devname);
6718 free(dv);
6719 }
6720 }
562aa102 6721 closedir(dir);
ca9de185
LM
6722 return devlist;
6723}
6724
6725static int
6726count_volumes_list(struct md_list *devlist, char *homehost,
6727 int verbose, int *found)
6728{
6729 struct md_list *tmpdev;
6730 int count = 0;
594dc1b8 6731 struct supertype *st;
ca9de185
LM
6732
6733 /* first walk the list of devices to find a consistent set
6734 * that match the criterea, if that is possible.
6735 * We flag the ones we like with 'used'.
6736 */
6737 *found = 0;
6738 st = match_metadata_desc_imsm("imsm");
6739 if (st == NULL) {
676e87a8 6740 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6741 return 0;
6742 }
6743
6744 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6745 char *devname = tmpdev->devname;
0a6bff09 6746 dev_t rdev;
ca9de185
LM
6747 struct supertype *tst;
6748 int dfd;
6749 if (tmpdev->used > 1)
6750 continue;
6751 tst = dup_super(st);
6752 if (tst == NULL) {
676e87a8 6753 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6754 goto err_1;
6755 }
6756 tmpdev->container = 0;
6757 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6758 if (dfd < 0) {
1ade5cc1 6759 dprintf("cannot open device %s: %s\n",
ca9de185
LM
6760 devname, strerror(errno));
6761 tmpdev->used = 2;
0a6bff09 6762 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
ca9de185
LM
6763 tmpdev->used = 2;
6764 } else if (must_be_container(dfd)) {
6765 struct supertype *cst;
6766 cst = super_by_fd(dfd, NULL);
6767 if (cst == NULL) {
1ade5cc1 6768 dprintf("cannot recognize container type %s\n",
ca9de185
LM
6769 devname);
6770 tmpdev->used = 2;
6771 } else if (tst->ss != st->ss) {
1ade5cc1 6772 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
6773 devname);
6774 tmpdev->used = 2;
6775 } else if (!tst->ss->load_container ||
6776 tst->ss->load_container(tst, dfd, NULL))
6777 tmpdev->used = 2;
6778 else {
6779 tmpdev->container = 1;
6780 }
6781 if (cst)
6782 cst->ss->free_super(cst);
6783 } else {
0a6bff09 6784 tmpdev->st_rdev = rdev;
ca9de185 6785 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 6786 dprintf("no RAID superblock on %s\n",
ca9de185
LM
6787 devname);
6788 tmpdev->used = 2;
6789 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 6790 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
6791 tst->ss->name, devname);
6792 tmpdev->used = 2;
6793 }
6794 }
6795 if (dfd >= 0)
6796 close(dfd);
6797 if (tmpdev->used == 2 || tmpdev->used == 4) {
6798 /* Ignore unrecognised devices during auto-assembly */
6799 goto loop;
6800 }
6801 else {
6802 struct mdinfo info;
6803 tst->ss->getinfo_super(tst, &info, NULL);
6804
6805 if (st->minor_version == -1)
6806 st->minor_version = tst->minor_version;
6807
6808 if (memcmp(info.uuid, uuid_zero,
6809 sizeof(int[4])) == 0) {
6810 /* this is a floating spare. It cannot define
6811 * an array unless there are no more arrays of
6812 * this type to be found. It can be included
6813 * in an array of this type though.
6814 */
6815 tmpdev->used = 3;
6816 goto loop;
6817 }
6818
6819 if (st->ss != tst->ss ||
6820 st->minor_version != tst->minor_version ||
6821 st->ss->compare_super(st, tst) != 0) {
6822 /* Some mismatch. If exactly one array matches this host,
6823 * we can resolve on that one.
6824 * Or, if we are auto assembling, we just ignore the second
6825 * for now.
6826 */
1ade5cc1 6827 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
6828 devname);
6829 goto loop;
6830 }
6831 tmpdev->used = 1;
6832 *found = 1;
6833 dprintf("found: devname: %s\n", devname);
6834 }
6835 loop:
6836 if (tst)
6837 tst->ss->free_super(tst);
6838 }
6839 if (*found != 0) {
6840 int err;
6841 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6842 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6843 for (iter = head; iter; iter = iter->next) {
6844 dprintf("content->text_version: %s vol\n",
6845 iter->text_version);
6846 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6847 /* do not assemble arrays with unsupported
6848 configurations */
1ade5cc1 6849 dprintf("Cannot activate member %s.\n",
ca9de185
LM
6850 iter->text_version);
6851 } else
6852 count++;
6853 }
6854 sysfs_free(head);
6855
6856 } else {
1ade5cc1 6857 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
6858 err, st->sb);
6859 }
6860 } else {
1ade5cc1 6861 dprintf("no more devices to examine\n");
ca9de185
LM
6862 }
6863
6864 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 6865 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
6866 if (count) {
6867 if (count < tmpdev->found)
6868 count = 0;
6869 else
6870 count -= tmpdev->found;
6871 }
6872 }
6873 if (tmpdev->used == 1)
6874 tmpdev->used = 4;
6875 }
6876 err_1:
6877 if (st)
6878 st->ss->free_super(st);
6879 return count;
6880}
6881
d3c11416
AO
6882static int __count_volumes(char *hba_path, int dpa, int verbose,
6883 int cmp_hba_path)
ca9de185 6884{
72a45777 6885 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 6886 int count = 0;
72a45777
PB
6887 const struct orom_entry *entry;
6888 struct devid_list *dv, *devid_list;
ca9de185 6889
d3c11416 6890 if (!hba_path)
ca9de185
LM
6891 return 0;
6892
72a45777 6893 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
6894 if (strstr(idev->path, hba_path))
6895 break;
72a45777
PB
6896 }
6897
6898 if (!idev || !idev->dev_id)
ca9de185 6899 return 0;
72a45777
PB
6900
6901 entry = get_orom_entry_by_device_id(idev->dev_id);
6902
6903 if (!entry || !entry->devid_list)
6904 return 0;
6905
6906 devid_list = entry->devid_list;
6907 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 6908 struct md_list *devlist;
d3c11416
AO
6909 struct sys_dev *device = NULL;
6910 char *hpath;
72a45777
PB
6911 int found = 0;
6912
d3c11416
AO
6913 if (cmp_hba_path)
6914 device = device_by_id_and_path(dv->devid, hba_path);
6915 else
6916 device = device_by_id(dv->devid);
6917
72a45777 6918 if (device)
d3c11416 6919 hpath = device->path;
72a45777
PB
6920 else
6921 return 0;
6922
d3c11416 6923 devlist = get_devices(hpath);
72a45777
PB
6924 /* if no intel devices return zero volumes */
6925 if (devlist == NULL)
6926 return 0;
6927
d3c11416
AO
6928 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6929 verbose);
6930 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
6931 if (devlist == NULL)
6932 return 0;
6933 do {
6934 found = 0;
6935 count += count_volumes_list(devlist,
6936 NULL,
6937 verbose,
6938 &found);
6939 dprintf("found %d count: %d\n", found, count);
6940 } while (found);
6941
d3c11416 6942 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
6943
6944 while (devlist) {
6945 struct md_list *dv = devlist;
6946 devlist = devlist->next;
6947 free(dv->devname);
6948 free(dv);
6949 }
ca9de185
LM
6950 }
6951 return count;
6952}
6953
d3c11416
AO
6954static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6955{
6956 if (!hba)
6957 return 0;
6958 if (hba->type == SYS_DEV_VMD) {
6959 struct sys_dev *dev;
6960 int count = 0;
6961
6962 for (dev = find_intel_devices(); dev; dev = dev->next) {
6963 if (dev->type == SYS_DEV_VMD)
6964 count += __count_volumes(dev->path, dpa,
6965 verbose, 1);
6966 }
6967 return count;
6968 }
6969 return __count_volumes(hba->path, dpa, verbose, 0);
6970}
6971
cd9d1ac7
DW
6972static int imsm_default_chunk(const struct imsm_orom *orom)
6973{
6974 /* up to 512 if the plaform supports it, otherwise the platform max.
6975 * 128 if no platform detected
6976 */
6977 int fs = max(7, orom ? fls(orom->sss) : 0);
6978
6979 return min(512, (1 << fs));
6980}
73408129 6981
6592ce37
DW
6982static int
6983validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6984 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6985{
660260d0
DW
6986 /* check/set platform and metadata limits/defaults */
6987 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 6988 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 6989 super->orom->dpa);
73408129
LM
6990 return 0;
6991 }
6992
5d500228 6993 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6994 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 6995 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
6996 level, raiddisks, raiddisks > 1 ? "s" : "");
6997 return 0;
6998 }
cd9d1ac7 6999
7ccc4cc4 7000 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
7001 *chunk = imsm_default_chunk(super->orom);
7002
7ccc4cc4 7003 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 7004 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 7005 return 0;
6592ce37 7006 }
cd9d1ac7 7007
6592ce37
DW
7008 if (layout != imsm_level_to_layout(level)) {
7009 if (level == 5)
676e87a8 7010 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 7011 else if (level == 10)
676e87a8 7012 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 7013 else
676e87a8 7014 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
7015 layout, level);
7016 return 0;
7017 }
2cc699af 7018
7ccc4cc4 7019 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 7020 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 7021 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
7022 return 0;
7023 }
614902f6 7024
6592ce37
DW
7025 return 1;
7026}
7027
1011e834 7028/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
7029 * FIX ME add ahci details
7030 */
8b353278 7031static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 7032 int layout, int raiddisks, int *chunk,
af4348dd
N
7033 unsigned long long size,
7034 unsigned long long data_offset,
7035 char *dev,
2c514b71
NB
7036 unsigned long long *freesize,
7037 int verbose)
cdddbdbc 7038{
9e04ac1c 7039 dev_t rdev;
c2c087e6 7040 struct intel_super *super = st->sb;
b2916f25 7041 struct imsm_super *mpb;
c2c087e6
DW
7042 struct dl *dl;
7043 unsigned long long pos = 0;
7044 unsigned long long maxsize;
7045 struct extent *e;
7046 int i;
cdddbdbc 7047
88c32bb1
DW
7048 /* We must have the container info already read in. */
7049 if (!super)
c2c087e6
DW
7050 return 0;
7051
b2916f25
JS
7052 mpb = super->anchor;
7053
2cc699af 7054 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 7055 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 7056 return 0;
d54559f0 7057 }
c2c087e6
DW
7058 if (!dev) {
7059 /* General test: make sure there is space for
2da8544a
DW
7060 * 'raiddisks' device extents of size 'size' at a given
7061 * offset
c2c087e6 7062 */
e46273eb 7063 unsigned long long minsize = size;
b7528a20 7064 unsigned long long start_offset = MaxSector;
c2c087e6
DW
7065 int dcnt = 0;
7066 if (minsize == 0)
7067 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7068 for (dl = super->disks; dl ; dl = dl->next) {
7069 int found = 0;
7070
bf5a934a 7071 pos = 0;
c2c087e6
DW
7072 i = 0;
7073 e = get_extents(super, dl);
7074 if (!e) continue;
7075 do {
7076 unsigned long long esize;
7077 esize = e[i].start - pos;
7078 if (esize >= minsize)
7079 found = 1;
b7528a20 7080 if (found && start_offset == MaxSector) {
2da8544a
DW
7081 start_offset = pos;
7082 break;
7083 } else if (found && pos != start_offset) {
7084 found = 0;
7085 break;
7086 }
c2c087e6
DW
7087 pos = e[i].start + e[i].size;
7088 i++;
7089 } while (e[i-1].size);
7090 if (found)
7091 dcnt++;
7092 free(e);
7093 }
7094 if (dcnt < raiddisks) {
2c514b71 7095 if (verbose)
7a862a02 7096 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 7097 dcnt, raiddisks);
c2c087e6
DW
7098 return 0;
7099 }
7100 return 1;
7101 }
0dcecb2e 7102
c2c087e6 7103 /* This device must be a member of the set */
9e04ac1c 7104 if (!stat_is_blkdev(dev, &rdev))
c2c087e6
DW
7105 return 0;
7106 for (dl = super->disks ; dl ; dl = dl->next) {
9e04ac1c
ZL
7107 if (dl->major == (int)major(rdev) &&
7108 dl->minor == (int)minor(rdev))
c2c087e6
DW
7109 break;
7110 }
7111 if (!dl) {
2c514b71 7112 if (verbose)
7a862a02 7113 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 7114 return 0;
a20d2ba5
DW
7115 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7116 /* If a volume is present then the current creation attempt
7117 * cannot incorporate new spares because the orom may not
7118 * understand this configuration (all member disks must be
7119 * members of each array in the container).
7120 */
7a862a02
N
7121 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7122 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 7123 return 0;
5fe62b94
WD
7124 } else if (super->orom && mpb->num_raid_devs > 0 &&
7125 mpb->num_disks != raiddisks) {
7a862a02 7126 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 7127 return 0;
c2c087e6 7128 }
0dcecb2e
DW
7129
7130 /* retrieve the largest free space block */
c2c087e6
DW
7131 e = get_extents(super, dl);
7132 maxsize = 0;
7133 i = 0;
0dcecb2e
DW
7134 if (e) {
7135 do {
7136 unsigned long long esize;
7137
7138 esize = e[i].start - pos;
7139 if (esize >= maxsize)
7140 maxsize = esize;
7141 pos = e[i].start + e[i].size;
7142 i++;
7143 } while (e[i-1].size);
7144 dl->e = e;
7145 dl->extent_cnt = i;
7146 } else {
7147 if (verbose)
e7b84f9d 7148 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
7149 dev);
7150 return 0;
7151 }
7152 if (maxsize < size) {
7153 if (verbose)
e7b84f9d 7154 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
7155 dev, maxsize, size);
7156 return 0;
7157 }
7158
7159 /* count total number of extents for merge */
7160 i = 0;
7161 for (dl = super->disks; dl; dl = dl->next)
7162 if (dl->e)
7163 i += dl->extent_cnt;
7164
7165 maxsize = merge_extents(super, i);
3baa56ab
LO
7166
7167 if (!check_env("IMSM_NO_PLATFORM") &&
7168 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7169 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
7170 return 0;
7171 }
7172
a7dd165b 7173 if (maxsize < size || maxsize == 0) {
b3071342
LD
7174 if (verbose) {
7175 if (maxsize == 0)
7a862a02 7176 pr_err("no free space left on device. Aborting...\n");
b3071342 7177 else
7a862a02 7178 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
7179 maxsize, size);
7180 }
0dcecb2e 7181 return 0;
0dcecb2e
DW
7182 }
7183
c2c087e6
DW
7184 *freesize = maxsize;
7185
ca9de185 7186 if (super->orom) {
72a45777 7187 int count = count_volumes(super->hba,
ca9de185
LM
7188 super->orom->dpa, verbose);
7189 if (super->orom->vphba <= count) {
676e87a8 7190 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7191 super->orom->vphba);
7192 return 0;
7193 }
7194 }
c2c087e6 7195 return 1;
cdddbdbc
DW
7196}
7197
13bcac90 7198static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
7199 unsigned long long size, int chunk,
7200 unsigned long long *freesize)
7201{
7202 struct intel_super *super = st->sb;
7203 struct imsm_super *mpb = super->anchor;
7204 struct dl *dl;
7205 int i;
7206 int extent_cnt;
7207 struct extent *e;
7208 unsigned long long maxsize;
7209 unsigned long long minsize;
7210 int cnt;
7211 int used;
7212
7213 /* find the largest common start free region of the possible disks */
7214 used = 0;
7215 extent_cnt = 0;
7216 cnt = 0;
7217 for (dl = super->disks; dl; dl = dl->next) {
7218 dl->raiddisk = -1;
7219
7220 if (dl->index >= 0)
7221 used++;
7222
7223 /* don't activate new spares if we are orom constrained
7224 * and there is already a volume active in the container
7225 */
7226 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7227 continue;
7228
7229 e = get_extents(super, dl);
7230 if (!e)
7231 continue;
7232 for (i = 1; e[i-1].size; i++)
7233 ;
7234 dl->e = e;
7235 dl->extent_cnt = i;
7236 extent_cnt += i;
7237 cnt++;
7238 }
7239
7240 maxsize = merge_extents(super, extent_cnt);
7241 minsize = size;
7242 if (size == 0)
612e59d8
CA
7243 /* chunk is in K */
7244 minsize = chunk * 2;
efb30e7f
DW
7245
7246 if (cnt < raiddisks ||
7247 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
7248 maxsize < minsize ||
7249 maxsize == 0) {
e7b84f9d 7250 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
7251 return 0; /* No enough free spaces large enough */
7252 }
7253
7254 if (size == 0) {
7255 size = maxsize;
7256 if (chunk) {
612e59d8
CA
7257 size /= 2 * chunk;
7258 size *= 2 * chunk;
efb30e7f 7259 }
f878b242
LM
7260 maxsize = size;
7261 }
7262 if (!check_env("IMSM_NO_PLATFORM") &&
7263 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 7264 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 7265 return 0;
efb30e7f 7266 }
efb30e7f
DW
7267 cnt = 0;
7268 for (dl = super->disks; dl; dl = dl->next)
7269 if (dl->e)
7270 dl->raiddisk = cnt++;
7271
7272 *freesize = size;
7273
13bcac90
AK
7274 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7275
efb30e7f
DW
7276 return 1;
7277}
7278
13bcac90
AK
7279static int reserve_space(struct supertype *st, int raiddisks,
7280 unsigned long long size, int chunk,
7281 unsigned long long *freesize)
7282{
7283 struct intel_super *super = st->sb;
7284 struct dl *dl;
7285 int cnt;
7286 int rv = 0;
7287
7288 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7289 if (rv) {
7290 cnt = 0;
7291 for (dl = super->disks; dl; dl = dl->next)
7292 if (dl->e)
7293 dl->raiddisk = cnt++;
7294 rv = 1;
7295 }
7296
7297 return rv;
7298}
7299
bf5a934a 7300static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 7301 int raiddisks, int *chunk, unsigned long long size,
af4348dd 7302 unsigned long long data_offset,
bf5a934a 7303 char *dev, unsigned long long *freesize,
5308f117 7304 int consistency_policy, int verbose)
bf5a934a
DW
7305{
7306 int fd, cfd;
7307 struct mdinfo *sra;
20cbe8d2 7308 int is_member = 0;
bf5a934a 7309
d54559f0
LM
7310 /* load capability
7311 * if given unused devices create a container
bf5a934a
DW
7312 * if given given devices in a container create a member volume
7313 */
7314 if (level == LEVEL_CONTAINER) {
7315 /* Must be a fresh device to add to a container */
7316 return validate_geometry_imsm_container(st, level, layout,
c21e737b 7317 raiddisks,
7ccc4cc4 7318 *chunk,
af4348dd 7319 size, data_offset,
bf5a934a
DW
7320 dev, freesize,
7321 verbose);
7322 }
9587c373 7323
8592f29d 7324 if (!dev) {
e91a3bad 7325 if (st->sb) {
ca9de185 7326 struct intel_super *super = st->sb;
e91a3bad 7327 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 7328 raiddisks, chunk, size,
e91a3bad
LM
7329 verbose))
7330 return 0;
efb30e7f
DW
7331 /* we are being asked to automatically layout a
7332 * new volume based on the current contents of
7333 * the container. If the the parameters can be
7334 * satisfied reserve_space will record the disks,
7335 * start offset, and size of the volume to be
7336 * created. add_to_super and getinfo_super
7337 * detect when autolayout is in progress.
7338 */
ca9de185
LM
7339 /* assuming that freesize is always given when array is
7340 created */
7341 if (super->orom && freesize) {
7342 int count;
72a45777 7343 count = count_volumes(super->hba,
ca9de185
LM
7344 super->orom->dpa, verbose);
7345 if (super->orom->vphba <= count) {
676e87a8 7346 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
7347 super->orom->vphba);
7348 return 0;
7349 }
7350 }
e91a3bad
LM
7351 if (freesize)
7352 return reserve_space(st, raiddisks, size,
7ccc4cc4 7353 *chunk, freesize);
8592f29d
N
7354 }
7355 return 1;
7356 }
bf5a934a
DW
7357 if (st->sb) {
7358 /* creating in a given container */
7359 return validate_geometry_imsm_volume(st, level, layout,
7360 raiddisks, chunk, size,
af4348dd 7361 data_offset,
bf5a934a
DW
7362 dev, freesize, verbose);
7363 }
7364
bf5a934a
DW
7365 /* This device needs to be a device in an 'imsm' container */
7366 fd = open(dev, O_RDONLY|O_EXCL, 0);
7367 if (fd >= 0) {
7368 if (verbose)
e7b84f9d
N
7369 pr_err("Cannot create this array on device %s\n",
7370 dev);
bf5a934a
DW
7371 close(fd);
7372 return 0;
7373 }
7374 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7375 if (verbose)
e7b84f9d 7376 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
7377 dev, strerror(errno));
7378 return 0;
7379 }
7380 /* Well, it is in use by someone, maybe an 'imsm' container. */
7381 cfd = open_container(fd);
20cbe8d2 7382 close(fd);
bf5a934a 7383 if (cfd < 0) {
bf5a934a 7384 if (verbose)
e7b84f9d 7385 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
7386 dev);
7387 return 0;
7388 }
4dd2df09 7389 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7390 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7391 strcmp(sra->text_version, "imsm") == 0)
7392 is_member = 1;
7393 sysfs_free(sra);
7394 if (is_member) {
bf5a934a
DW
7395 /* This is a member of a imsm container. Load the container
7396 * and try to create a volume
7397 */
7398 struct intel_super *super;
7399
ec50f7b6 7400 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7401 st->sb = super;
4dd2df09 7402 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7403 close(cfd);
7404 return validate_geometry_imsm_volume(st, level, layout,
7405 raiddisks, chunk,
af4348dd 7406 size, data_offset, dev,
ecbd9e81
N
7407 freesize, 1)
7408 ? 1 : -1;
bf5a934a 7409 }
20cbe8d2 7410 }
bf5a934a 7411
20cbe8d2 7412 if (verbose)
e7b84f9d 7413 pr_err("failed container membership check\n");
20cbe8d2
AW
7414
7415 close(cfd);
7416 return 0;
bf5a934a 7417}
0bd16cf2 7418
30f58b22 7419static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7420{
7421 struct intel_super *super = st->sb;
7422
30f58b22
DW
7423 if (level && *level == UnSet)
7424 *level = LEVEL_CONTAINER;
7425
7426 if (level && layout && *layout == UnSet)
7427 *layout = imsm_level_to_layout(*level);
0bd16cf2 7428
cd9d1ac7
DW
7429 if (chunk && (*chunk == UnSet || *chunk == 0))
7430 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7431}
7432
33414a01
DW
7433static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7434
7435static int kill_subarray_imsm(struct supertype *st)
7436{
7437 /* remove the subarray currently referenced by ->current_vol */
7438 __u8 i;
7439 struct intel_dev **dp;
7440 struct intel_super *super = st->sb;
7441 __u8 current_vol = super->current_vol;
7442 struct imsm_super *mpb = super->anchor;
7443
7444 if (super->current_vol < 0)
7445 return 2;
7446 super->current_vol = -1; /* invalidate subarray cursor */
7447
7448 /* block deletions that would change the uuid of active subarrays
7449 *
7450 * FIXME when immutable ids are available, but note that we'll
7451 * also need to fixup the invalidated/active subarray indexes in
7452 * mdstat
7453 */
7454 for (i = 0; i < mpb->num_raid_devs; i++) {
7455 char subarray[4];
7456
7457 if (i < current_vol)
7458 continue;
7459 sprintf(subarray, "%u", i);
4dd2df09 7460 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7461 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7462 current_vol, i);
33414a01
DW
7463
7464 return 2;
7465 }
7466 }
7467
7468 if (st->update_tail) {
503975b9 7469 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7470
33414a01
DW
7471 u->type = update_kill_array;
7472 u->dev_idx = current_vol;
7473 append_metadata_update(st, u, sizeof(*u));
7474
7475 return 0;
7476 }
7477
7478 for (dp = &super->devlist; *dp;)
7479 if ((*dp)->index == current_vol) {
7480 *dp = (*dp)->next;
7481 } else {
7482 handle_missing(super, (*dp)->dev);
7483 if ((*dp)->index > current_vol)
7484 (*dp)->index--;
7485 dp = &(*dp)->next;
7486 }
7487
7488 /* no more raid devices, all active components are now spares,
7489 * but of course failed are still failed
7490 */
7491 if (--mpb->num_raid_devs == 0) {
7492 struct dl *d;
7493
7494 for (d = super->disks; d; d = d->next)
a8619d23
AK
7495 if (d->index > -2)
7496 mark_spare(d);
33414a01
DW
7497 }
7498
7499 super->updates_pending++;
7500
7501 return 0;
7502}
aa534678 7503
a951a4f7 7504static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7505 char *update, struct mddev_ident *ident)
aa534678
DW
7506{
7507 /* update the subarray currently referenced by ->current_vol */
7508 struct intel_super *super = st->sb;
7509 struct imsm_super *mpb = super->anchor;
7510
aa534678
DW
7511 if (strcmp(update, "name") == 0) {
7512 char *name = ident->name;
a951a4f7
N
7513 char *ep;
7514 int vol;
aa534678 7515
4dd2df09 7516 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7517 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7518 return 2;
7519 }
7520
7521 if (!check_name(super, name, 0))
7522 return 2;
7523
a951a4f7
N
7524 vol = strtoul(subarray, &ep, 10);
7525 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7526 return 2;
7527
aa534678 7528 if (st->update_tail) {
503975b9 7529 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7530
aa534678 7531 u->type = update_rename_array;
a951a4f7 7532 u->dev_idx = vol;
618f4e6d
XN
7533 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7534 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7535 append_metadata_update(st, u, sizeof(*u));
7536 } else {
7537 struct imsm_dev *dev;
7538 int i;
7539
a951a4f7 7540 dev = get_imsm_dev(super, vol);
618f4e6d
XN
7541 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7542 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7543 for (i = 0; i < mpb->num_raid_devs; i++) {
7544 dev = get_imsm_dev(super, i);
7545 handle_missing(super, dev);
7546 }
7547 super->updates_pending++;
7548 }
e6e9dd3f
AP
7549 } else if (strcmp(update, "ppl") == 0 ||
7550 strcmp(update, "no-ppl") == 0) {
7551 int new_policy;
7552 char *ep;
7553 int vol = strtoul(subarray, &ep, 10);
7554
7555 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7556 return 2;
7557
7558 if (strcmp(update, "ppl") == 0)
c2462068 7559 new_policy = RWH_MULTIPLE_DISTRIBUTED;
e6e9dd3f 7560 else
c2462068 7561 new_policy = RWH_MULTIPLE_OFF;
e6e9dd3f
AP
7562
7563 if (st->update_tail) {
7564 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7565
7566 u->type = update_rwh_policy;
7567 u->dev_idx = vol;
7568 u->new_policy = new_policy;
7569 append_metadata_update(st, u, sizeof(*u));
7570 } else {
7571 struct imsm_dev *dev;
7572
7573 dev = get_imsm_dev(super, vol);
7574 dev->rwh_policy = new_policy;
7575 super->updates_pending++;
7576 }
aa534678
DW
7577 } else
7578 return 2;
7579
7580 return 0;
7581}
bf5a934a 7582
28bce06f
AK
7583static int is_gen_migration(struct imsm_dev *dev)
7584{
7534230b
AK
7585 if (dev == NULL)
7586 return 0;
7587
28bce06f
AK
7588 if (!dev->vol.migr_state)
7589 return 0;
7590
7591 if (migr_type(dev) == MIGR_GEN_MIGR)
7592 return 1;
7593
7594 return 0;
7595}
7596
1e5c6983
DW
7597static int is_rebuilding(struct imsm_dev *dev)
7598{
7599 struct imsm_map *migr_map;
7600
7601 if (!dev->vol.migr_state)
7602 return 0;
7603
7604 if (migr_type(dev) != MIGR_REBUILD)
7605 return 0;
7606
238c0a71 7607 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7608
7609 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7610 return 1;
7611 else
7612 return 0;
7613}
7614
6ce1fbf1
AK
7615static int is_initializing(struct imsm_dev *dev)
7616{
7617 struct imsm_map *migr_map;
7618
7619 if (!dev->vol.migr_state)
7620 return 0;
7621
7622 if (migr_type(dev) != MIGR_INIT)
7623 return 0;
7624
238c0a71 7625 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7626
7627 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7628 return 1;
7629
7630 return 0;
6ce1fbf1
AK
7631}
7632
c47b0ff6
AK
7633static void update_recovery_start(struct intel_super *super,
7634 struct imsm_dev *dev,
7635 struct mdinfo *array)
1e5c6983
DW
7636{
7637 struct mdinfo *rebuild = NULL;
7638 struct mdinfo *d;
7639 __u32 units;
7640
7641 if (!is_rebuilding(dev))
7642 return;
7643
7644 /* Find the rebuild target, but punt on the dual rebuild case */
7645 for (d = array->devs; d; d = d->next)
7646 if (d->recovery_start == 0) {
7647 if (rebuild)
7648 return;
7649 rebuild = d;
7650 }
7651
4363fd80
DW
7652 if (!rebuild) {
7653 /* (?) none of the disks are marked with
7654 * IMSM_ORD_REBUILD, so assume they are missing and the
7655 * disk_ord_tbl was not correctly updated
7656 */
1ade5cc1 7657 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7658 return;
7659 }
7660
1e5c6983 7661 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 7662 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7663}
7664
276d77db 7665static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 7666
00bbdbda 7667static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7668{
4f5bc454
DW
7669 /* Given a container loaded by load_super_imsm_all,
7670 * extract information about all the arrays into
7671 * an mdinfo tree.
00bbdbda 7672 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7673 *
7674 * For each imsm_dev create an mdinfo, fill it in,
7675 * then look for matching devices in super->disks
7676 * and create appropriate device mdinfo.
7677 */
7678 struct intel_super *super = st->sb;
949c47a0 7679 struct imsm_super *mpb = super->anchor;
4f5bc454 7680 struct mdinfo *rest = NULL;
00bbdbda 7681 unsigned int i;
81219e70 7682 int sb_errors = 0;
abef11a3
AK
7683 struct dl *d;
7684 int spare_disks = 0;
cdddbdbc 7685
19482bcc
AK
7686 /* do not assemble arrays when not all attributes are supported */
7687 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7688 sb_errors = 1;
7a862a02 7689 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7690 }
7691
abef11a3
AK
7692 /* count spare devices, not used in maps
7693 */
7694 for (d = super->disks; d; d = d->next)
7695 if (d->index == -1)
7696 spare_disks++;
7697
4f5bc454 7698 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7699 struct imsm_dev *dev;
7700 struct imsm_map *map;
86e3692b 7701 struct imsm_map *map2;
4f5bc454 7702 struct mdinfo *this;
a6482415 7703 int slot;
a6482415 7704 int chunk;
00bbdbda 7705 char *ep;
8b9cd157 7706 int level;
00bbdbda
N
7707
7708 if (subarray &&
7709 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7710 continue;
7711
7712 dev = get_imsm_dev(super, i);
238c0a71
AK
7713 map = get_imsm_map(dev, MAP_0);
7714 map2 = get_imsm_map(dev, MAP_1);
8b9cd157 7715 level = get_imsm_raid_level(map);
4f5bc454 7716
1ce0101c
DW
7717 /* do not publish arrays that are in the middle of an
7718 * unsupported migration
7719 */
7720 if (dev->vol.migr_state &&
28bce06f 7721 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 7722 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
7723 dev->volume);
7724 continue;
7725 }
2db86302
LM
7726 /* do not publish arrays that are not support by controller's
7727 * OROM/EFI
7728 */
1ce0101c 7729
503975b9 7730 this = xmalloc(sizeof(*this));
4f5bc454 7731
301406c9 7732 super->current_vol = i;
a5d85af7 7733 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 7734 this->next = rest;
a6482415 7735 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
7736 /* mdadm does not support all metadata features- set the bit in all arrays state */
7737 if (!validate_geometry_imsm_orom(super,
8b9cd157
MK
7738 level, /* RAID level */
7739 imsm_level_to_layout(level),
81219e70 7740 map->num_members, /* raid disks */
fcc2c9da 7741 &chunk, imsm_dev_size(dev),
81219e70 7742 1 /* verbose */)) {
7a862a02 7743 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
7744 dev->volume);
7745 this->array.state |=
7746 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7747 (1<<MD_SB_BLOCK_VOLUME);
7748 }
81219e70
LM
7749
7750 /* if array has bad blocks, set suitable bit in all arrays state */
7751 if (sb_errors)
7752 this->array.state |=
7753 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7754 (1<<MD_SB_BLOCK_VOLUME);
7755
4f5bc454 7756 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 7757 unsigned long long recovery_start;
4f5bc454
DW
7758 struct mdinfo *info_d;
7759 struct dl *d;
7760 int idx;
9a1608e5 7761 int skip;
7eef0453 7762 __u32 ord;
8b9cd157 7763 int missing = 0;
4f5bc454 7764
9a1608e5 7765 skip = 0;
238c0a71
AK
7766 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7767 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
7768 for (d = super->disks; d ; d = d->next)
7769 if (d->index == idx)
0fbd635c 7770 break;
4f5bc454 7771
1e5c6983 7772 recovery_start = MaxSector;
4f5bc454 7773 if (d == NULL)
9a1608e5 7774 skip = 1;
25ed7e59 7775 if (d && is_failed(&d->disk))
9a1608e5 7776 skip = 1;
8b9cd157 7777 if (!skip && (ord & IMSM_ORD_REBUILD))
1e5c6983 7778 recovery_start = 0;
9a1608e5 7779
1011e834 7780 /*
9a1608e5 7781 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
7782 * reset resync start to avoid a dirty-degraded
7783 * situation when performing the intial sync
9a1608e5 7784 */
8b9cd157
MK
7785 if (skip)
7786 missing++;
7787
7788 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
7789 if ((!able_to_resync(level, missing) ||
7790 recovery_start == 0))
7791 this->resync_start = MaxSector;
7792 } else {
7793 /*
7794 * FIXME handle dirty degraded
7795 */
7796 }
7797
9a1608e5
DW
7798 if (skip)
7799 continue;
4f5bc454 7800
503975b9 7801 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
7802 info_d->next = this->devs;
7803 this->devs = info_d;
7804
4f5bc454
DW
7805 info_d->disk.number = d->index;
7806 info_d->disk.major = d->major;
7807 info_d->disk.minor = d->minor;
7808 info_d->disk.raid_disk = slot;
1e5c6983 7809 info_d->recovery_start = recovery_start;
86e3692b
AK
7810 if (map2) {
7811 if (slot < map2->num_members)
7812 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7813 else
7814 this->array.spare_disks++;
86e3692b
AK
7815 } else {
7816 if (slot < map->num_members)
7817 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7818 else
7819 this->array.spare_disks++;
86e3692b 7820 }
1e5c6983
DW
7821 if (info_d->recovery_start == MaxSector)
7822 this->array.working_disks++;
4f5bc454
DW
7823
7824 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 7825 info_d->data_offset = pba_of_lba0(map);
06fb291a
PB
7826
7827 if (map->raid_level == 5) {
7828 info_d->component_size =
7829 num_data_stripes(map) *
7830 map->blocks_per_strip;
2432ce9b
AP
7831 info_d->ppl_sector = this->ppl_sector;
7832 info_d->ppl_size = this->ppl_size;
98e96bdb
AP
7833 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
7834 recovery_start == 0)
7835 this->resync_start = 0;
06fb291a
PB
7836 } else {
7837 info_d->component_size = blocks_per_member(map);
7838 }
b12796be 7839
5e46202e 7840 info_d->bb.supported = 1;
b12796be
TM
7841 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7842 info_d->data_offset,
7843 info_d->component_size,
7844 &info_d->bb);
4f5bc454 7845 }
1e5c6983 7846 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 7847 update_recovery_start(super, dev, this);
abef11a3 7848 this->array.spare_disks += spare_disks;
276d77db
AK
7849
7850 /* check for reshape */
7851 if (this->reshape_active == 1)
7852 recover_backup_imsm(st, this);
9a1608e5 7853 rest = this;
4f5bc454
DW
7854 }
7855
7856 return rest;
cdddbdbc
DW
7857}
7858
3b451610
AK
7859static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7860 int failed, int look_in_map)
c2a1e7da 7861{
3b451610
AK
7862 struct imsm_map *map;
7863
7864 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
7865
7866 if (!failed)
1011e834 7867 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 7868 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
7869
7870 switch (get_imsm_raid_level(map)) {
7871 case 0:
7872 return IMSM_T_STATE_FAILED;
7873 break;
7874 case 1:
7875 if (failed < map->num_members)
7876 return IMSM_T_STATE_DEGRADED;
7877 else
7878 return IMSM_T_STATE_FAILED;
7879 break;
7880 case 10:
7881 {
7882 /**
c92a2527
DW
7883 * check to see if any mirrors have failed, otherwise we
7884 * are degraded. Even numbered slots are mirrored on
7885 * slot+1
c2a1e7da 7886 */
c2a1e7da 7887 int i;
d9b420a5
N
7888 /* gcc -Os complains that this is unused */
7889 int insync = insync;
c2a1e7da
DW
7890
7891 for (i = 0; i < map->num_members; i++) {
238c0a71 7892 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
7893 int idx = ord_to_idx(ord);
7894 struct imsm_disk *disk;
c2a1e7da 7895
c92a2527 7896 /* reset the potential in-sync count on even-numbered
1011e834 7897 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
7898 */
7899 if ((i & 1) == 0)
7900 insync = 2;
c2a1e7da 7901
c92a2527 7902 disk = get_imsm_disk(super, idx);
25ed7e59 7903 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 7904 insync--;
c2a1e7da 7905
c92a2527
DW
7906 /* no in-sync disks left in this mirror the
7907 * array has failed
7908 */
7909 if (insync == 0)
7910 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
7911 }
7912
7913 return IMSM_T_STATE_DEGRADED;
7914 }
7915 case 5:
7916 if (failed < 2)
7917 return IMSM_T_STATE_DEGRADED;
7918 else
7919 return IMSM_T_STATE_FAILED;
7920 break;
7921 default:
7922 break;
7923 }
7924
7925 return map->map_state;
7926}
7927
3b451610
AK
7928static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7929 int look_in_map)
c2a1e7da
DW
7930{
7931 int i;
7932 int failed = 0;
7933 struct imsm_disk *disk;
d5985138
AK
7934 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7935 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 7936 struct imsm_map *map_for_loop;
0556e1a2
DW
7937 __u32 ord;
7938 int idx;
d5985138 7939 int idx_1;
c2a1e7da 7940
0556e1a2
DW
7941 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7942 * disks that are being rebuilt. New failures are recorded to
7943 * map[0]. So we look through all the disks we started with and
7944 * see if any failures are still present, or if any new ones
7945 * have arrived
0556e1a2 7946 */
d5985138
AK
7947 map_for_loop = map;
7948 if (prev && (map->num_members < prev->num_members))
7949 map_for_loop = prev;
68fe4598
LD
7950
7951 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 7952 idx_1 = -255;
238c0a71
AK
7953 /* when MAP_X is passed both maps failures are counted
7954 */
d5985138 7955 if (prev &&
089f9d79
JS
7956 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7957 i < prev->num_members) {
d5985138
AK
7958 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7959 idx_1 = ord_to_idx(ord);
c2a1e7da 7960
d5985138
AK
7961 disk = get_imsm_disk(super, idx_1);
7962 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7963 failed++;
7964 }
089f9d79
JS
7965 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7966 i < map->num_members) {
d5985138
AK
7967 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7968 idx = ord_to_idx(ord);
7969
7970 if (idx != idx_1) {
7971 disk = get_imsm_disk(super, idx);
7972 if (!disk || is_failed(disk) ||
7973 ord & IMSM_ORD_REBUILD)
7974 failed++;
7975 }
7976 }
c2a1e7da
DW
7977 }
7978
7979 return failed;
845dea95
NB
7980}
7981
97b4d0e9
DW
7982static int imsm_open_new(struct supertype *c, struct active_array *a,
7983 char *inst)
7984{
7985 struct intel_super *super = c->sb;
7986 struct imsm_super *mpb = super->anchor;
bbab0940 7987 struct imsm_update_prealloc_bb_mem u;
9587c373 7988
97b4d0e9 7989 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7990 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7991 return -ENODEV;
7992 }
7993
7994 dprintf("imsm: open_new %s\n", inst);
7995 a->info.container_member = atoi(inst);
bbab0940
TM
7996
7997 u.type = update_prealloc_badblocks_mem;
7998 imsm_update_metadata_locally(c, &u, sizeof(u));
7999
97b4d0e9
DW
8000 return 0;
8001}
8002
0c046afd
DW
8003static int is_resyncing(struct imsm_dev *dev)
8004{
8005 struct imsm_map *migr_map;
8006
8007 if (!dev->vol.migr_state)
8008 return 0;
8009
1484e727
DW
8010 if (migr_type(dev) == MIGR_INIT ||
8011 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
8012 return 1;
8013
4c9bc37b
AK
8014 if (migr_type(dev) == MIGR_GEN_MIGR)
8015 return 0;
8016
238c0a71 8017 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 8018
089f9d79
JS
8019 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8020 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
8021 return 1;
8022 else
8023 return 0;
8024}
8025
0556e1a2 8026/* return true if we recorded new information */
4c9e8c1e
TM
8027static int mark_failure(struct intel_super *super,
8028 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 8029{
0556e1a2
DW
8030 __u32 ord;
8031 int slot;
8032 struct imsm_map *map;
86c54047
DW
8033 char buf[MAX_RAID_SERIAL_LEN+3];
8034 unsigned int len, shift = 0;
0556e1a2
DW
8035
8036 /* new failures are always set in map[0] */
238c0a71 8037 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
8038
8039 slot = get_imsm_disk_slot(map, idx);
8040 if (slot < 0)
8041 return 0;
8042
8043 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 8044 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
8045 return 0;
8046
7d0c5e24
LD
8047 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8048 buf[MAX_RAID_SERIAL_LEN] = '\000';
8049 strcat(buf, ":0");
86c54047
DW
8050 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8051 shift = len - MAX_RAID_SERIAL_LEN + 1;
8052 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
8053
f2f27e63 8054 disk->status |= FAILED_DISK;
0556e1a2 8055 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
8056 /* mark failures in second map if second map exists and this disk
8057 * in this slot.
8058 * This is valid for migration, initialization and rebuild
8059 */
8060 if (dev->vol.migr_state) {
238c0a71 8061 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
8062 int slot2 = get_imsm_disk_slot(map2, idx);
8063
089f9d79 8064 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 8065 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
8066 idx | IMSM_ORD_REBUILD);
8067 }
f21e18ca 8068 if (map->failed_disk_num == 0xff)
0556e1a2 8069 map->failed_disk_num = slot;
4c9e8c1e
TM
8070
8071 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8072
0556e1a2
DW
8073 return 1;
8074}
8075
4c9e8c1e
TM
8076static void mark_missing(struct intel_super *super,
8077 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 8078{
4c9e8c1e 8079 mark_failure(super, dev, disk, idx);
0556e1a2
DW
8080
8081 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8082 return;
8083
47ee5a45
DW
8084 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8085 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8086}
8087
33414a01
DW
8088static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8089{
33414a01 8090 struct dl *dl;
33414a01
DW
8091
8092 if (!super->missing)
8093 return;
33414a01 8094
79b68f1b
PC
8095 /* When orom adds replacement for missing disk it does
8096 * not remove entry of missing disk, but just updates map with
8097 * new added disk. So it is not enough just to test if there is
8098 * any missing disk, we have to look if there are any failed disks
8099 * in map to stop migration */
8100
33414a01 8101 dprintf("imsm: mark missing\n");
3d59f0c0
AK
8102 /* end process for initialization and rebuild only
8103 */
8104 if (is_gen_migration(dev) == 0) {
fb12a745 8105 int failed = imsm_count_failed(super, dev, MAP_0);
3d59f0c0 8106
fb12a745
TM
8107 if (failed) {
8108 __u8 map_state;
8109 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8110 struct imsm_map *map1;
8111 int i, ord, ord_map1;
8112 int rebuilt = 1;
3d59f0c0 8113
fb12a745
TM
8114 for (i = 0; i < map->num_members; i++) {
8115 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8116 if (!(ord & IMSM_ORD_REBUILD))
8117 continue;
8118
8119 map1 = get_imsm_map(dev, MAP_1);
8120 if (!map1)
8121 continue;
8122
8123 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8124 if (ord_map1 & IMSM_ORD_REBUILD)
8125 rebuilt = 0;
8126 }
8127
8128 if (rebuilt) {
8129 map_state = imsm_check_degraded(super, dev,
8130 failed, MAP_0);
8131 end_migration(dev, super, map_state);
8132 }
8133 }
3d59f0c0 8134 }
33414a01 8135 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 8136 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
8137 super->updates_pending++;
8138}
8139
f3871fdc
AK
8140static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8141 long long new_size)
70bdf0dc 8142{
238c0a71 8143 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
8144 unsigned long long array_blocks;
8145 struct imsm_map *map;
8146
8147 if (used_disks == 0) {
8148 /* when problems occures
8149 * return current array_blocks value
8150 */
fcc2c9da 8151 array_blocks = imsm_dev_size(dev);
70bdf0dc
AK
8152
8153 return array_blocks;
8154 }
8155
8156 /* set array size in metadata
8157 */
f3871fdc
AK
8158 if (new_size <= 0) {
8159 /* OLCE size change is caused by added disks
8160 */
8161 map = get_imsm_map(dev, MAP_0);
8162 array_blocks = blocks_per_member(map) * used_disks;
8163 } else {
8164 /* Online Volume Size Change
8165 * Using available free space
8166 */
8167 array_blocks = new_size;
8168 }
70bdf0dc 8169
b53bfba6 8170 array_blocks = round_size_to_mb(array_blocks, used_disks);
fcc2c9da 8171 set_imsm_dev_size(dev, array_blocks);
70bdf0dc
AK
8172
8173 return array_blocks;
8174}
8175
28bce06f
AK
8176static void imsm_set_disk(struct active_array *a, int n, int state);
8177
0e2d1a4e
AK
8178static void imsm_progress_container_reshape(struct intel_super *super)
8179{
8180 /* if no device has a migr_state, but some device has a
8181 * different number of members than the previous device, start
8182 * changing the number of devices in this device to match
8183 * previous.
8184 */
8185 struct imsm_super *mpb = super->anchor;
8186 int prev_disks = -1;
8187 int i;
1dfaa380 8188 int copy_map_size;
0e2d1a4e
AK
8189
8190 for (i = 0; i < mpb->num_raid_devs; i++) {
8191 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 8192 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
8193 struct imsm_map *map2;
8194 int prev_num_members;
0e2d1a4e
AK
8195
8196 if (dev->vol.migr_state)
8197 return;
8198
8199 if (prev_disks == -1)
8200 prev_disks = map->num_members;
8201 if (prev_disks == map->num_members)
8202 continue;
8203
8204 /* OK, this array needs to enter reshape mode.
8205 * i.e it needs a migr_state
8206 */
8207
1dfaa380 8208 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
8209 prev_num_members = map->num_members;
8210 map->num_members = prev_disks;
8211 dev->vol.migr_state = 1;
8212 dev->vol.curr_migr_unit = 0;
ea672ee1 8213 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
8214 for (i = prev_num_members;
8215 i < map->num_members; i++)
8216 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 8217 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 8218 /* Copy the current map */
1dfaa380 8219 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
8220 map2->num_members = prev_num_members;
8221
f3871fdc 8222 imsm_set_array_size(dev, -1);
51d83f5d 8223 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
8224 super->updates_pending++;
8225 }
8226}
8227
aad6f216 8228/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
8229 * states are handled in imsm_set_disk() with one exception, when a
8230 * resync is stopped due to a new failure this routine will set the
8231 * 'degraded' state for the array.
8232 */
01f157d7 8233static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
8234{
8235 int inst = a->info.container_member;
8236 struct intel_super *super = a->container->sb;
949c47a0 8237 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8238 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
8239 int failed = imsm_count_failed(super, dev, MAP_0);
8240 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 8241 __u32 blocks_per_unit;
a862209d 8242
1af97990
AK
8243 if (dev->vol.migr_state &&
8244 dev->vol.migr_type == MIGR_GEN_MIGR) {
8245 /* array state change is blocked due to reshape action
aad6f216
N
8246 * We might need to
8247 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8248 * - finish the reshape (if last_checkpoint is big and action != reshape)
8249 * - update curr_migr_unit
1af97990 8250 */
aad6f216
N
8251 if (a->curr_action == reshape) {
8252 /* still reshaping, maybe update curr_migr_unit */
633b5610 8253 goto mark_checkpoint;
aad6f216
N
8254 } else {
8255 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8256 /* for some reason we aborted the reshape.
b66e591b
AK
8257 *
8258 * disable automatic metadata rollback
8259 * user action is required to recover process
aad6f216 8260 */
b66e591b 8261 if (0) {
238c0a71
AK
8262 struct imsm_map *map2 =
8263 get_imsm_map(dev, MAP_1);
8264 dev->vol.migr_state = 0;
8265 set_migr_type(dev, 0);
8266 dev->vol.curr_migr_unit = 0;
8267 memcpy(map, map2,
8268 sizeof_imsm_map(map2));
8269 super->updates_pending++;
b66e591b 8270 }
aad6f216
N
8271 }
8272 if (a->last_checkpoint >= a->info.component_size) {
8273 unsigned long long array_blocks;
8274 int used_disks;
e154ced3 8275 struct mdinfo *mdi;
aad6f216 8276
238c0a71 8277 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
8278 if (used_disks > 0) {
8279 array_blocks =
5551b113 8280 blocks_per_member(map) *
d55adef9 8281 used_disks;
b53bfba6
TM
8282 array_blocks =
8283 round_size_to_mb(array_blocks,
8284 used_disks);
d55adef9
AK
8285 a->info.custom_array_size = array_blocks;
8286 /* encourage manager to update array
8287 * size
8288 */
e154ced3 8289
d55adef9 8290 a->check_reshape = 1;
633b5610 8291 }
e154ced3
AK
8292 /* finalize online capacity expansion/reshape */
8293 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8294 imsm_set_disk(a,
8295 mdi->disk.raid_disk,
8296 mdi->curr_state);
8297
0e2d1a4e 8298 imsm_progress_container_reshape(super);
e154ced3 8299 }
aad6f216 8300 }
1af97990
AK
8301 }
8302
47ee5a45 8303 /* before we activate this array handle any missing disks */
33414a01
DW
8304 if (consistent == 2)
8305 handle_missing(super, dev);
1e5c6983 8306
0c046afd 8307 if (consistent == 2 &&
b7941fd6 8308 (!is_resync_complete(&a->info) ||
0c046afd
DW
8309 map_state != IMSM_T_STATE_NORMAL ||
8310 dev->vol.migr_state))
01f157d7 8311 consistent = 0;
272906ef 8312
b7941fd6 8313 if (is_resync_complete(&a->info)) {
0c046afd 8314 /* complete intialization / resync,
0556e1a2
DW
8315 * recovery and interrupted recovery is completed in
8316 * ->set_disk
0c046afd
DW
8317 */
8318 if (is_resyncing(dev)) {
8319 dprintf("imsm: mark resync done\n");
809da78e 8320 end_migration(dev, super, map_state);
115c3803 8321 super->updates_pending++;
484240d8 8322 a->last_checkpoint = 0;
115c3803 8323 }
b9172665
AK
8324 } else if ((!is_resyncing(dev) && !failed) &&
8325 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 8326 /* mark the start of the init process if nothing is failed */
b7941fd6 8327 dprintf("imsm: mark resync start\n");
1484e727 8328 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 8329 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 8330 else
8e59f3d8 8331 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 8332 super->updates_pending++;
115c3803 8333 }
a862209d 8334
633b5610 8335mark_checkpoint:
5b83bacf
AK
8336 /* skip checkpointing for general migration,
8337 * it is controlled in mdadm
8338 */
8339 if (is_gen_migration(dev))
8340 goto skip_mark_checkpoint;
8341
1e5c6983 8342 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 8343 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 8344 if (blocks_per_unit) {
1e5c6983
DW
8345 __u32 units32;
8346 __u64 units;
8347
4f0a7acc 8348 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
8349 units32 = units;
8350
8351 /* check that we did not overflow 32-bits, and that
8352 * curr_migr_unit needs updating
8353 */
8354 if (units32 == units &&
bfd80a56 8355 units32 != 0 &&
1e5c6983
DW
8356 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8357 dprintf("imsm: mark checkpoint (%u)\n", units32);
8358 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8359 super->updates_pending++;
8360 }
8361 }
f8f603f1 8362
5b83bacf 8363skip_mark_checkpoint:
3393c6af 8364 /* mark dirty / clean */
2432ce9b
AP
8365 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8366 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
b7941fd6 8367 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
2432ce9b
AP
8368 if (consistent) {
8369 dev->vol.dirty = RAIDVOL_CLEAN;
8370 } else {
8371 dev->vol.dirty = RAIDVOL_DIRTY;
c2462068
PB
8372 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8373 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
2432ce9b
AP
8374 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8375 }
a862209d
DW
8376 super->updates_pending++;
8377 }
28bce06f 8378
01f157d7 8379 return consistent;
a862209d
DW
8380}
8381
6f50473f
TM
8382static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8383{
8384 int inst = a->info.container_member;
8385 struct intel_super *super = a->container->sb;
8386 struct imsm_dev *dev = get_imsm_dev(super, inst);
8387 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8388
8389 if (slot > map->num_members) {
8390 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8391 slot, map->num_members - 1);
8392 return -1;
8393 }
8394
8395 if (slot < 0)
8396 return -1;
8397
8398 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8399}
8400
8d45d196 8401static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 8402{
8d45d196
DW
8403 int inst = a->info.container_member;
8404 struct intel_super *super = a->container->sb;
949c47a0 8405 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8406 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 8407 struct imsm_disk *disk;
7ce05701
LD
8408 struct mdinfo *mdi;
8409 int recovery_not_finished = 0;
0c046afd 8410 int failed;
6f50473f 8411 int ord;
0c046afd 8412 __u8 map_state;
fb12a745
TM
8413 int rebuild_done = 0;
8414 int i;
8d45d196 8415
fb12a745 8416 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
6f50473f 8417 if (ord < 0)
8d45d196
DW
8418 return;
8419
4e6e574a 8420 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 8421 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 8422
5802a811 8423 /* check for new failures */
0556e1a2 8424 if (state & DS_FAULTY) {
4c9e8c1e 8425 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 8426 super->updates_pending++;
8d45d196 8427 }
47ee5a45 8428
19859edc 8429 /* check if in_sync */
0556e1a2 8430 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 8431 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
8432
8433 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
fb12a745 8434 rebuild_done = 1;
19859edc
DW
8435 super->updates_pending++;
8436 }
8d45d196 8437
3b451610
AK
8438 failed = imsm_count_failed(super, dev, MAP_0);
8439 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 8440
0c046afd 8441 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8442 dprintf("imsm: Detected transition to state ");
8443 switch (map_state) {
8444 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8445 dprintf("normal: ");
8446 if (is_rebuilding(dev)) {
1ade5cc1 8447 dprintf_cont("while rebuilding");
7ce05701
LD
8448 /* check if recovery is really finished */
8449 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8450 if (mdi->recovery_start != MaxSector) {
8451 recovery_not_finished = 1;
8452 break;
8453 }
8454 if (recovery_not_finished) {
1ade5cc1
N
8455 dprintf_cont("\n");
8456 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8457 if (a->last_checkpoint < mdi->recovery_start) {
8458 a->last_checkpoint = mdi->recovery_start;
8459 super->updates_pending++;
8460 }
8461 break;
8462 }
94002678 8463 end_migration(dev, super, map_state);
238c0a71 8464 map = get_imsm_map(dev, MAP_0);
94002678
AK
8465 map->failed_disk_num = ~0;
8466 super->updates_pending++;
8467 a->last_checkpoint = 0;
8468 break;
8469 }
8470 if (is_gen_migration(dev)) {
1ade5cc1 8471 dprintf_cont("while general migration");
bf2f0071 8472 if (a->last_checkpoint >= a->info.component_size)
809da78e 8473 end_migration(dev, super, map_state);
94002678
AK
8474 else
8475 map->map_state = map_state;
238c0a71 8476 map = get_imsm_map(dev, MAP_0);
28bce06f 8477 map->failed_disk_num = ~0;
94002678 8478 super->updates_pending++;
bf2f0071 8479 break;
94002678
AK
8480 }
8481 break;
8482 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8483 dprintf_cont("degraded: ");
089f9d79 8484 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8485 dprintf_cont("mark degraded");
94002678
AK
8486 map->map_state = map_state;
8487 super->updates_pending++;
8488 a->last_checkpoint = 0;
8489 break;
8490 }
8491 if (is_rebuilding(dev)) {
1ade5cc1 8492 dprintf_cont("while rebuilding.");
94002678 8493 if (map->map_state != map_state) {
1ade5cc1 8494 dprintf_cont(" Map state change");
94002678
AK
8495 end_migration(dev, super, map_state);
8496 super->updates_pending++;
fb12a745
TM
8497 } else if (!rebuild_done) {
8498 break;
8499 }
8500
8501 /* check if recovery is really finished */
8502 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8503 if (mdi->recovery_start != MaxSector) {
8504 recovery_not_finished = 1;
8505 break;
8506 }
8507 if (recovery_not_finished) {
8508 dprintf_cont("\n");
8509 dprintf("Rebuild has not finished yet, state not changed");
8510 if (a->last_checkpoint < mdi->recovery_start) {
8511 a->last_checkpoint =
8512 mdi->recovery_start;
8513 super->updates_pending++;
8514 }
8515 break;
94002678 8516 }
fb12a745
TM
8517
8518 dprintf_cont(" Rebuild done, still degraded");
8519 dev->vol.migr_state = 0;
8520 set_migr_type(dev, 0);
8521 dev->vol.curr_migr_unit = 0;
8522
8523 for (i = 0; i < map->num_members; i++) {
8524 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8525
8526 if (idx & IMSM_ORD_REBUILD)
8527 map->failed_disk_num = i;
8528 }
8529 super->updates_pending++;
94002678
AK
8530 break;
8531 }
8532 if (is_gen_migration(dev)) {
1ade5cc1 8533 dprintf_cont("while general migration");
bf2f0071 8534 if (a->last_checkpoint >= a->info.component_size)
809da78e 8535 end_migration(dev, super, map_state);
94002678
AK
8536 else {
8537 map->map_state = map_state;
3b451610 8538 manage_second_map(super, dev);
94002678
AK
8539 }
8540 super->updates_pending++;
bf2f0071 8541 break;
28bce06f 8542 }
6ce1fbf1 8543 if (is_initializing(dev)) {
1ade5cc1 8544 dprintf_cont("while initialization.");
6ce1fbf1
AK
8545 map->map_state = map_state;
8546 super->updates_pending++;
8547 break;
8548 }
94002678
AK
8549 break;
8550 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8551 dprintf_cont("failed: ");
94002678 8552 if (is_gen_migration(dev)) {
1ade5cc1 8553 dprintf_cont("while general migration");
94002678
AK
8554 map->map_state = map_state;
8555 super->updates_pending++;
8556 break;
8557 }
8558 if (map->map_state != map_state) {
1ade5cc1 8559 dprintf_cont("mark failed");
94002678
AK
8560 end_migration(dev, super, map_state);
8561 super->updates_pending++;
8562 a->last_checkpoint = 0;
8563 break;
8564 }
8565 break;
8566 default:
1ade5cc1 8567 dprintf_cont("state %i\n", map_state);
5802a811 8568 }
1ade5cc1 8569 dprintf_cont("\n");
845dea95
NB
8570}
8571
f796af5d 8572static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8573{
f796af5d 8574 void *buf = mpb;
c2a1e7da
DW
8575 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8576 unsigned long long dsize;
8577 unsigned long long sectors;
f36a9ecd 8578 unsigned int sector_size;
c2a1e7da 8579
f36a9ecd 8580 get_dev_sector_size(fd, NULL, &sector_size);
c2a1e7da
DW
8581 get_dev_size(fd, NULL, &dsize);
8582
f36a9ecd 8583 if (mpb_size > sector_size) {
272f648f 8584 /* -1 to account for anchor */
f36a9ecd 8585 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8586
272f648f 8587 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8588 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8589 SEEK_SET) < 0)
272f648f 8590 return 1;
c2a1e7da 8591
f36a9ecd
PB
8592 if ((unsigned long long)write(fd, buf + sector_size,
8593 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8594 return 1;
8595 }
c2a1e7da 8596
272f648f 8597 /* first block is stored on second to last sector of the disk */
f36a9ecd 8598 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8599 return 1;
8600
466070ad 8601 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8602 return 1;
8603
c2a1e7da
DW
8604 return 0;
8605}
8606
2e735d19 8607static void imsm_sync_metadata(struct supertype *container)
845dea95 8608{
2e735d19 8609 struct intel_super *super = container->sb;
c2a1e7da 8610
1a64be56 8611 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8612 if (!super->updates_pending)
8613 return;
8614
36988a3d 8615 write_super_imsm(container, 0);
c2a1e7da
DW
8616
8617 super->updates_pending = 0;
845dea95
NB
8618}
8619
272906ef
DW
8620static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8621{
8622 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8623 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8624 struct dl *dl;
8625
8626 for (dl = super->disks; dl; dl = dl->next)
8627 if (dl->index == i)
8628 break;
8629
25ed7e59 8630 if (dl && is_failed(&dl->disk))
272906ef
DW
8631 dl = NULL;
8632
8633 if (dl)
1ade5cc1 8634 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8635
8636 return dl;
8637}
8638
a20d2ba5 8639static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8640 struct active_array *a, int activate_new,
8641 struct mdinfo *additional_test_list)
272906ef
DW
8642{
8643 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8644 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8645 struct imsm_super *mpb = super->anchor;
8646 struct imsm_map *map;
272906ef
DW
8647 unsigned long long pos;
8648 struct mdinfo *d;
8649 struct extent *ex;
a20d2ba5 8650 int i, j;
272906ef 8651 int found;
569cc43f
DW
8652 __u32 array_start = 0;
8653 __u32 array_end = 0;
272906ef 8654 struct dl *dl;
6c932028 8655 struct mdinfo *test_list;
272906ef
DW
8656
8657 for (dl = super->disks; dl; dl = dl->next) {
8658 /* If in this array, skip */
8659 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8660 if (d->state_fd >= 0 &&
8661 d->disk.major == dl->major &&
272906ef 8662 d->disk.minor == dl->minor) {
8ba77d32
AK
8663 dprintf("%x:%x already in array\n",
8664 dl->major, dl->minor);
272906ef
DW
8665 break;
8666 }
8667 if (d)
8668 continue;
6c932028
AK
8669 test_list = additional_test_list;
8670 while (test_list) {
8671 if (test_list->disk.major == dl->major &&
8672 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8673 dprintf("%x:%x already in additional test list\n",
8674 dl->major, dl->minor);
8675 break;
8676 }
6c932028 8677 test_list = test_list->next;
8ba77d32 8678 }
6c932028 8679 if (test_list)
8ba77d32 8680 continue;
272906ef 8681
e553d2a4 8682 /* skip in use or failed drives */
25ed7e59 8683 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8684 dl->index == -2) {
8685 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8686 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8687 continue;
8688 }
8689
a20d2ba5
DW
8690 /* skip pure spares when we are looking for partially
8691 * assimilated drives
8692 */
8693 if (dl->index == -1 && !activate_new)
8694 continue;
8695
f2cc4f7d
AO
8696 if (!drive_validate_sector_size(super, dl))
8697 continue;
8698
272906ef 8699 /* Does this unused device have the requisite free space?
a20d2ba5 8700 * It needs to be able to cover all member volumes
272906ef
DW
8701 */
8702 ex = get_extents(super, dl);
8703 if (!ex) {
8704 dprintf("cannot get extents\n");
8705 continue;
8706 }
a20d2ba5
DW
8707 for (i = 0; i < mpb->num_raid_devs; i++) {
8708 dev = get_imsm_dev(super, i);
238c0a71 8709 map = get_imsm_map(dev, MAP_0);
272906ef 8710
a20d2ba5
DW
8711 /* check if this disk is already a member of
8712 * this array
272906ef 8713 */
620b1713 8714 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8715 continue;
8716
8717 found = 0;
8718 j = 0;
8719 pos = 0;
5551b113 8720 array_start = pba_of_lba0(map);
329c8278 8721 array_end = array_start +
5551b113 8722 blocks_per_member(map) - 1;
a20d2ba5
DW
8723
8724 do {
8725 /* check that we can start at pba_of_lba0 with
8726 * blocks_per_member of space
8727 */
329c8278 8728 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
8729 found = 1;
8730 break;
8731 }
8732 pos = ex[j].start + ex[j].size;
8733 j++;
8734 } while (ex[j-1].size);
8735
8736 if (!found)
272906ef 8737 break;
a20d2ba5 8738 }
272906ef
DW
8739
8740 free(ex);
a20d2ba5 8741 if (i < mpb->num_raid_devs) {
329c8278
DW
8742 dprintf("%x:%x does not have %u to %u available\n",
8743 dl->major, dl->minor, array_start, array_end);
272906ef
DW
8744 /* No room */
8745 continue;
a20d2ba5
DW
8746 }
8747 return dl;
272906ef
DW
8748 }
8749
8750 return dl;
8751}
8752
95d07a2c
LM
8753static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8754{
8755 struct imsm_dev *dev2;
8756 struct imsm_map *map;
8757 struct dl *idisk;
8758 int slot;
8759 int idx;
8760 __u8 state;
8761
8762 dev2 = get_imsm_dev(cont->sb, dev_idx);
8763 if (dev2) {
238c0a71 8764 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 8765 if (state == IMSM_T_STATE_FAILED) {
238c0a71 8766 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
8767 if (!map)
8768 return 1;
8769 for (slot = 0; slot < map->num_members; slot++) {
8770 /*
8771 * Check if failed disks are deleted from intel
8772 * disk list or are marked to be deleted
8773 */
238c0a71 8774 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
8775 idisk = get_imsm_dl_disk(cont->sb, idx);
8776 /*
8777 * Do not rebuild the array if failed disks
8778 * from failed sub-array are not removed from
8779 * container.
8780 */
8781 if (idisk &&
8782 is_failed(&idisk->disk) &&
8783 (idisk->action != DISK_REMOVE))
8784 return 0;
8785 }
8786 }
8787 }
8788 return 1;
8789}
8790
88758e9d
DW
8791static struct mdinfo *imsm_activate_spare(struct active_array *a,
8792 struct metadata_update **updates)
8793{
8794 /**
d23fe947
DW
8795 * Find a device with unused free space and use it to replace a
8796 * failed/vacant region in an array. We replace failed regions one a
8797 * array at a time. The result is that a new spare disk will be added
8798 * to the first failed array and after the monitor has finished
8799 * propagating failures the remainder will be consumed.
88758e9d 8800 *
d23fe947
DW
8801 * FIXME add a capability for mdmon to request spares from another
8802 * container.
88758e9d
DW
8803 */
8804
8805 struct intel_super *super = a->container->sb;
88758e9d 8806 int inst = a->info.container_member;
949c47a0 8807 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8808 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
8809 int failed = a->info.array.raid_disks;
8810 struct mdinfo *rv = NULL;
8811 struct mdinfo *d;
8812 struct mdinfo *di;
8813 struct metadata_update *mu;
8814 struct dl *dl;
8815 struct imsm_update_activate_spare *u;
8816 int num_spares = 0;
8817 int i;
95d07a2c 8818 int allowed;
88758e9d
DW
8819
8820 for (d = a->info.devs ; d ; d = d->next) {
8821 if ((d->curr_state & DS_FAULTY) &&
8822 d->state_fd >= 0)
8823 /* wait for Removal to happen */
8824 return NULL;
8825 if (d->state_fd >= 0)
8826 failed--;
8827 }
8828
8829 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8830 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 8831
e2962bfc
AK
8832 if (imsm_reshape_blocks_arrays_changes(super))
8833 return NULL;
1af97990 8834
fc8ca064
AK
8835 /* Cannot activate another spare if rebuild is in progress already
8836 */
8837 if (is_rebuilding(dev)) {
7a862a02 8838 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
8839 return NULL;
8840 }
8841
89c67882
AK
8842 if (a->info.array.level == 4)
8843 /* No repair for takeovered array
8844 * imsm doesn't support raid4
8845 */
8846 return NULL;
8847
3b451610
AK
8848 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8849 IMSM_T_STATE_DEGRADED)
88758e9d
DW
8850 return NULL;
8851
83ca7d45
AP
8852 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8853 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8854 return NULL;
8855 }
8856
95d07a2c
LM
8857 /*
8858 * If there are any failed disks check state of the other volume.
8859 * Block rebuild if the another one is failed until failed disks
8860 * are removed from container.
8861 */
8862 if (failed) {
7a862a02 8863 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 8864 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
8865 /* check if states of the other volumes allow for rebuild */
8866 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8867 if (i != inst) {
8868 allowed = imsm_rebuild_allowed(a->container,
8869 i, failed);
8870 if (!allowed)
8871 return NULL;
8872 }
8873 }
8874 }
8875
88758e9d 8876 /* For each slot, if it is not working, find a spare */
88758e9d
DW
8877 for (i = 0; i < a->info.array.raid_disks; i++) {
8878 for (d = a->info.devs ; d ; d = d->next)
8879 if (d->disk.raid_disk == i)
8880 break;
8881 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8882 if (d && (d->state_fd >= 0))
8883 continue;
8884
272906ef 8885 /*
a20d2ba5
DW
8886 * OK, this device needs recovery. Try to re-add the
8887 * previous occupant of this slot, if this fails see if
8888 * we can continue the assimilation of a spare that was
8889 * partially assimilated, finally try to activate a new
8890 * spare.
272906ef
DW
8891 */
8892 dl = imsm_readd(super, i, a);
8893 if (!dl)
b303fe21 8894 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 8895 if (!dl)
b303fe21 8896 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
8897 if (!dl)
8898 continue;
1011e834 8899
272906ef 8900 /* found a usable disk with enough space */
503975b9 8901 di = xcalloc(1, sizeof(*di));
272906ef
DW
8902
8903 /* dl->index will be -1 in the case we are activating a
8904 * pristine spare. imsm_process_update() will create a
8905 * new index in this case. Once a disk is found to be
8906 * failed in all member arrays it is kicked from the
8907 * metadata
8908 */
8909 di->disk.number = dl->index;
d23fe947 8910
272906ef
DW
8911 /* (ab)use di->devs to store a pointer to the device
8912 * we chose
8913 */
8914 di->devs = (struct mdinfo *) dl;
8915
8916 di->disk.raid_disk = i;
8917 di->disk.major = dl->major;
8918 di->disk.minor = dl->minor;
8919 di->disk.state = 0;
d23534e4 8920 di->recovery_start = 0;
5551b113 8921 di->data_offset = pba_of_lba0(map);
272906ef
DW
8922 di->component_size = a->info.component_size;
8923 di->container_member = inst;
5e46202e 8924 di->bb.supported = 1;
2c8890e9 8925 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
2432ce9b 8926 di->ppl_sector = get_ppl_sector(super, inst);
c2462068 8927 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
2432ce9b 8928 }
148acb7b 8929 super->random = random32();
272906ef
DW
8930 di->next = rv;
8931 rv = di;
8932 num_spares++;
8933 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8934 i, di->data_offset);
88758e9d
DW
8935 }
8936
8937 if (!rv)
8938 /* No spares found */
8939 return rv;
8940 /* Now 'rv' has a list of devices to return.
8941 * Create a metadata_update record to update the
8942 * disk_ord_tbl for the array
8943 */
503975b9 8944 mu = xmalloc(sizeof(*mu));
1011e834 8945 mu->buf = xcalloc(num_spares,
503975b9 8946 sizeof(struct imsm_update_activate_spare));
88758e9d 8947 mu->space = NULL;
cb23f1f4 8948 mu->space_list = NULL;
88758e9d
DW
8949 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8950 mu->next = *updates;
8951 u = (struct imsm_update_activate_spare *) mu->buf;
8952
8953 for (di = rv ; di ; di = di->next) {
8954 u->type = update_activate_spare;
d23fe947
DW
8955 u->dl = (struct dl *) di->devs;
8956 di->devs = NULL;
88758e9d
DW
8957 u->slot = di->disk.raid_disk;
8958 u->array = inst;
8959 u->next = u + 1;
8960 u++;
8961 }
8962 (u-1)->next = NULL;
8963 *updates = mu;
8964
8965 return rv;
8966}
8967
54c2c1ea 8968static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 8969{
54c2c1ea 8970 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
8971 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8972 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
8973 struct disk_info *inf = get_disk_info(u);
8974 struct imsm_disk *disk;
8273f55e
DW
8975 int i;
8976 int j;
8273f55e 8977
54c2c1ea 8978 for (i = 0; i < map->num_members; i++) {
238c0a71 8979 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
8980 for (j = 0; j < new_map->num_members; j++)
8981 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
8982 return 1;
8983 }
8984
8985 return 0;
8986}
8987
1a64be56
LM
8988static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8989{
594dc1b8
JS
8990 struct dl *dl;
8991
1a64be56 8992 for (dl = super->disks; dl; dl = dl->next)
089f9d79 8993 if (dl->major == major && dl->minor == minor)
1a64be56
LM
8994 return dl;
8995 return NULL;
8996}
8997
8998static int remove_disk_super(struct intel_super *super, int major, int minor)
8999{
594dc1b8 9000 struct dl *prev;
1a64be56
LM
9001 struct dl *dl;
9002
9003 prev = NULL;
9004 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 9005 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
9006 /* remove */
9007 if (prev)
9008 prev->next = dl->next;
9009 else
9010 super->disks = dl->next;
9011 dl->next = NULL;
9012 __free_imsm_disk(dl);
1ade5cc1 9013 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
9014 break;
9015 }
9016 prev = dl;
9017 }
9018 return 0;
9019}
9020
f21e18ca 9021static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 9022
1a64be56
LM
9023static int add_remove_disk_update(struct intel_super *super)
9024{
9025 int check_degraded = 0;
594dc1b8
JS
9026 struct dl *disk;
9027
1a64be56
LM
9028 /* add/remove some spares to/from the metadata/contrainer */
9029 while (super->disk_mgmt_list) {
9030 struct dl *disk_cfg;
9031
9032 disk_cfg = super->disk_mgmt_list;
9033 super->disk_mgmt_list = disk_cfg->next;
9034 disk_cfg->next = NULL;
9035
9036 if (disk_cfg->action == DISK_ADD) {
9037 disk_cfg->next = super->disks;
9038 super->disks = disk_cfg;
9039 check_degraded = 1;
1ade5cc1
N
9040 dprintf("added %x:%x\n",
9041 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
9042 } else if (disk_cfg->action == DISK_REMOVE) {
9043 dprintf("Disk remove action processed: %x.%x\n",
9044 disk_cfg->major, disk_cfg->minor);
9045 disk = get_disk_super(super,
9046 disk_cfg->major,
9047 disk_cfg->minor);
9048 if (disk) {
9049 /* store action status */
9050 disk->action = DISK_REMOVE;
9051 /* remove spare disks only */
9052 if (disk->index == -1) {
9053 remove_disk_super(super,
9054 disk_cfg->major,
9055 disk_cfg->minor);
9056 }
9057 }
9058 /* release allocate disk structure */
9059 __free_imsm_disk(disk_cfg);
9060 }
9061 }
9062 return check_degraded;
9063}
9064
a29911da
PC
9065static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9066 struct intel_super *super,
9067 void ***space_list)
9068{
9069 struct intel_dev *id;
9070 void **tofree = NULL;
9071 int ret_val = 0;
9072
1ade5cc1 9073 dprintf("(enter)\n");
089f9d79 9074 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
9075 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9076 return ret_val;
9077 }
089f9d79 9078 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
9079 dprintf("imsm: Error: Memory is not allocated\n");
9080 return ret_val;
9081 }
9082
9083 for (id = super->devlist ; id; id = id->next) {
9084 if (id->index == (unsigned)u->subdev) {
9085 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9086 struct imsm_map *map;
9087 struct imsm_dev *new_dev =
9088 (struct imsm_dev *)*space_list;
238c0a71 9089 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
9090 int to_state;
9091 struct dl *new_disk;
9092
9093 if (new_dev == NULL)
9094 return ret_val;
9095 *space_list = **space_list;
9096 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 9097 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
9098 if (migr_map) {
9099 dprintf("imsm: Error: migration in progress");
9100 return ret_val;
9101 }
9102
9103 to_state = map->map_state;
9104 if ((u->new_level == 5) && (map->raid_level == 0)) {
9105 map->num_members++;
9106 /* this should not happen */
9107 if (u->new_disks[0] < 0) {
9108 map->failed_disk_num =
9109 map->num_members - 1;
9110 to_state = IMSM_T_STATE_DEGRADED;
9111 } else
9112 to_state = IMSM_T_STATE_NORMAL;
9113 }
8e59f3d8 9114 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
9115 if (u->new_level > -1)
9116 map->raid_level = u->new_level;
238c0a71 9117 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
9118 if ((u->new_level == 5) &&
9119 (migr_map->raid_level == 0)) {
9120 int ord = map->num_members - 1;
9121 migr_map->num_members--;
9122 if (u->new_disks[0] < 0)
9123 ord |= IMSM_ORD_REBUILD;
9124 set_imsm_ord_tbl_ent(map,
9125 map->num_members - 1,
9126 ord);
9127 }
9128 id->dev = new_dev;
9129 tofree = (void **)dev;
9130
4bba0439
PC
9131 /* update chunk size
9132 */
06fb291a
PB
9133 if (u->new_chunksize > 0) {
9134 unsigned long long num_data_stripes;
9135 int used_disks =
9136 imsm_num_data_members(dev, MAP_0);
9137
9138 if (used_disks == 0)
9139 return ret_val;
9140
4bba0439
PC
9141 map->blocks_per_strip =
9142 __cpu_to_le16(u->new_chunksize * 2);
06fb291a 9143 num_data_stripes =
fcc2c9da 9144 imsm_dev_size(dev) / used_disks;
06fb291a
PB
9145 num_data_stripes /= map->blocks_per_strip;
9146 num_data_stripes /= map->num_domains;
9147 set_num_data_stripes(map, num_data_stripes);
9148 }
4bba0439 9149
a29911da
PC
9150 /* add disk
9151 */
089f9d79
JS
9152 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9153 migr_map->raid_level == map->raid_level)
a29911da
PC
9154 goto skip_disk_add;
9155
9156 if (u->new_disks[0] >= 0) {
9157 /* use passes spare
9158 */
9159 new_disk = get_disk_super(super,
9160 major(u->new_disks[0]),
9161 minor(u->new_disks[0]));
7a862a02 9162 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
9163 major(u->new_disks[0]),
9164 minor(u->new_disks[0]),
9165 new_disk, new_disk->index);
9166 if (new_disk == NULL)
9167 goto error_disk_add;
9168
9169 new_disk->index = map->num_members - 1;
9170 /* slot to fill in autolayout
9171 */
9172 new_disk->raiddisk = new_disk->index;
9173 new_disk->disk.status |= CONFIGURED_DISK;
9174 new_disk->disk.status &= ~SPARE_DISK;
9175 } else
9176 goto error_disk_add;
9177
9178skip_disk_add:
9179 *tofree = *space_list;
9180 /* calculate new size
9181 */
f3871fdc 9182 imsm_set_array_size(new_dev, -1);
a29911da
PC
9183
9184 ret_val = 1;
9185 }
9186 }
9187
9188 if (tofree)
9189 *space_list = tofree;
9190 return ret_val;
9191
9192error_disk_add:
9193 dprintf("Error: imsm: Cannot find disk.\n");
9194 return ret_val;
9195}
9196
f3871fdc
AK
9197static int apply_size_change_update(struct imsm_update_size_change *u,
9198 struct intel_super *super)
9199{
9200 struct intel_dev *id;
9201 int ret_val = 0;
9202
1ade5cc1 9203 dprintf("(enter)\n");
089f9d79 9204 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
9205 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9206 return ret_val;
9207 }
9208
9209 for (id = super->devlist ; id; id = id->next) {
9210 if (id->index == (unsigned)u->subdev) {
9211 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9212 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9213 int used_disks = imsm_num_data_members(dev, MAP_0);
9214 unsigned long long blocks_per_member;
06fb291a 9215 unsigned long long num_data_stripes;
f3871fdc
AK
9216
9217 /* calculate new size
9218 */
9219 blocks_per_member = u->new_size / used_disks;
06fb291a
PB
9220 num_data_stripes = blocks_per_member /
9221 map->blocks_per_strip;
9222 num_data_stripes /= map->num_domains;
9223 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
9224 u->new_size, blocks_per_member,
9225 num_data_stripes);
f3871fdc 9226 set_blocks_per_member(map, blocks_per_member);
06fb291a 9227 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
9228 imsm_set_array_size(dev, u->new_size);
9229
9230 ret_val = 1;
9231 break;
9232 }
9233 }
9234
9235 return ret_val;
9236}
9237
061d7da3 9238static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 9239 struct intel_super *super,
061d7da3
LO
9240 struct active_array *active_array)
9241{
9242 struct imsm_super *mpb = super->anchor;
9243 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 9244 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
9245 struct imsm_map *migr_map;
9246 struct active_array *a;
9247 struct imsm_disk *disk;
9248 __u8 to_state;
9249 struct dl *dl;
9250 unsigned int found;
9251 int failed;
5961eeec 9252 int victim;
061d7da3 9253 int i;
5961eeec 9254 int second_map_created = 0;
061d7da3 9255
5961eeec 9256 for (; u; u = u->next) {
238c0a71 9257 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 9258
5961eeec 9259 if (victim < 0)
9260 return 0;
061d7da3 9261
5961eeec 9262 for (dl = super->disks; dl; dl = dl->next)
9263 if (dl == u->dl)
9264 break;
061d7da3 9265
5961eeec 9266 if (!dl) {
7a862a02 9267 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 9268 u->dl->index);
9269 return 0;
9270 }
061d7da3 9271
5961eeec 9272 /* count failures (excluding rebuilds and the victim)
9273 * to determine map[0] state
9274 */
9275 failed = 0;
9276 for (i = 0; i < map->num_members; i++) {
9277 if (i == u->slot)
9278 continue;
9279 disk = get_imsm_disk(super,
238c0a71 9280 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 9281 if (!disk || is_failed(disk))
9282 failed++;
9283 }
061d7da3 9284
5961eeec 9285 /* adding a pristine spare, assign a new index */
9286 if (dl->index < 0) {
9287 dl->index = super->anchor->num_disks;
9288 super->anchor->num_disks++;
9289 }
9290 disk = &dl->disk;
9291 disk->status |= CONFIGURED_DISK;
9292 disk->status &= ~SPARE_DISK;
9293
9294 /* mark rebuild */
238c0a71 9295 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 9296 if (!second_map_created) {
9297 second_map_created = 1;
9298 map->map_state = IMSM_T_STATE_DEGRADED;
9299 migrate(dev, super, to_state, MIGR_REBUILD);
9300 } else
9301 map->map_state = to_state;
238c0a71 9302 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 9303 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9304 set_imsm_ord_tbl_ent(migr_map, u->slot,
9305 dl->index | IMSM_ORD_REBUILD);
9306
9307 /* update the family_num to mark a new container
9308 * generation, being careful to record the existing
9309 * family_num in orig_family_num to clean up after
9310 * earlier mdadm versions that neglected to set it.
9311 */
9312 if (mpb->orig_family_num == 0)
9313 mpb->orig_family_num = mpb->family_num;
9314 mpb->family_num += super->random;
9315
9316 /* count arrays using the victim in the metadata */
9317 found = 0;
9318 for (a = active_array; a ; a = a->next) {
9319 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 9320 map = get_imsm_map(dev, MAP_0);
061d7da3 9321
5961eeec 9322 if (get_imsm_disk_slot(map, victim) >= 0)
9323 found++;
9324 }
061d7da3 9325
5961eeec 9326 /* delete the victim if it is no longer being
9327 * utilized anywhere
061d7da3 9328 */
5961eeec 9329 if (!found) {
9330 struct dl **dlp;
061d7da3 9331
5961eeec 9332 /* We know that 'manager' isn't touching anything,
9333 * so it is safe to delete
9334 */
9335 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
9336 if ((*dlp)->index == victim)
9337 break;
5961eeec 9338
9339 /* victim may be on the missing list */
9340 if (!*dlp)
9341 for (dlp = &super->missing; *dlp;
9342 dlp = &(*dlp)->next)
9343 if ((*dlp)->index == victim)
9344 break;
9345 imsm_delete(super, dlp, victim);
9346 }
061d7da3
LO
9347 }
9348
9349 return 1;
9350}
a29911da 9351
2e5dc010
N
9352static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9353 struct intel_super *super,
9354 void ***space_list)
9355{
9356 struct dl *new_disk;
9357 struct intel_dev *id;
9358 int i;
9359 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 9360 int disk_count = u->old_raid_disks;
2e5dc010
N
9361 void **tofree = NULL;
9362 int devices_to_reshape = 1;
9363 struct imsm_super *mpb = super->anchor;
9364 int ret_val = 0;
d098291a 9365 unsigned int dev_id;
2e5dc010 9366
1ade5cc1 9367 dprintf("(enter)\n");
2e5dc010
N
9368
9369 /* enable spares to use in array */
9370 for (i = 0; i < delta_disks; i++) {
9371 new_disk = get_disk_super(super,
9372 major(u->new_disks[i]),
9373 minor(u->new_disks[i]));
7a862a02 9374 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
9375 major(u->new_disks[i]), minor(u->new_disks[i]),
9376 new_disk, new_disk->index);
089f9d79
JS
9377 if (new_disk == NULL ||
9378 (new_disk->index >= 0 &&
9379 new_disk->index < u->old_raid_disks))
2e5dc010 9380 goto update_reshape_exit;
ee4beede 9381 new_disk->index = disk_count++;
2e5dc010
N
9382 /* slot to fill in autolayout
9383 */
9384 new_disk->raiddisk = new_disk->index;
9385 new_disk->disk.status |=
9386 CONFIGURED_DISK;
9387 new_disk->disk.status &= ~SPARE_DISK;
9388 }
9389
ed7333bd
AK
9390 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9391 mpb->num_raid_devs);
2e5dc010
N
9392 /* manage changes in volume
9393 */
d098291a 9394 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
9395 void **sp = *space_list;
9396 struct imsm_dev *newdev;
9397 struct imsm_map *newmap, *oldmap;
9398
d098291a
AK
9399 for (id = super->devlist ; id; id = id->next) {
9400 if (id->index == dev_id)
9401 break;
9402 }
9403 if (id == NULL)
9404 break;
2e5dc010
N
9405 if (!sp)
9406 continue;
9407 *space_list = *sp;
9408 newdev = (void*)sp;
9409 /* Copy the dev, but not (all of) the map */
9410 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
9411 oldmap = get_imsm_map(id->dev, MAP_0);
9412 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
9413 /* Copy the current map */
9414 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9415 /* update one device only
9416 */
9417 if (devices_to_reshape) {
ed7333bd
AK
9418 dprintf("imsm: modifying subdev: %i\n",
9419 id->index);
2e5dc010
N
9420 devices_to_reshape--;
9421 newdev->vol.migr_state = 1;
9422 newdev->vol.curr_migr_unit = 0;
ea672ee1 9423 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
9424 newmap->num_members = u->new_raid_disks;
9425 for (i = 0; i < delta_disks; i++) {
9426 set_imsm_ord_tbl_ent(newmap,
9427 u->old_raid_disks + i,
9428 u->old_raid_disks + i);
9429 }
9430 /* New map is correct, now need to save old map
9431 */
238c0a71 9432 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
9433 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9434
f3871fdc 9435 imsm_set_array_size(newdev, -1);
2e5dc010
N
9436 }
9437
9438 sp = (void **)id->dev;
9439 id->dev = newdev;
9440 *sp = tofree;
9441 tofree = sp;
8e59f3d8
AK
9442
9443 /* Clear migration record */
9444 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 9445 }
819bc634
AK
9446 if (tofree)
9447 *space_list = tofree;
2e5dc010
N
9448 ret_val = 1;
9449
9450update_reshape_exit:
9451
9452 return ret_val;
9453}
9454
bb025c2f 9455static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
9456 struct intel_super *super,
9457 void ***space_list)
bb025c2f
KW
9458{
9459 struct imsm_dev *dev = NULL;
8ca6df95
KW
9460 struct intel_dev *dv;
9461 struct imsm_dev *dev_new;
bb025c2f
KW
9462 struct imsm_map *map;
9463 struct dl *dm, *du;
8ca6df95 9464 int i;
bb025c2f
KW
9465
9466 for (dv = super->devlist; dv; dv = dv->next)
9467 if (dv->index == (unsigned int)u->subarray) {
9468 dev = dv->dev;
9469 break;
9470 }
9471
9472 if (dev == NULL)
9473 return 0;
9474
238c0a71 9475 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
9476
9477 if (u->direction == R10_TO_R0) {
06fb291a
PB
9478 unsigned long long num_data_stripes;
9479
9480 map->num_domains = 1;
9481 num_data_stripes = blocks_per_member(map);
9482 num_data_stripes /= map->blocks_per_strip;
9483 num_data_stripes /= map->num_domains;
9484 set_num_data_stripes(map, num_data_stripes);
9485
43d5ec18 9486 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9487 if (imsm_count_failed(super, dev, MAP_0) !=
9488 (map->num_members / 2))
43d5ec18
KW
9489 return 0;
9490
bb025c2f
KW
9491 /* iterate through devices to mark removed disks as spare */
9492 for (dm = super->disks; dm; dm = dm->next) {
9493 if (dm->disk.status & FAILED_DISK) {
9494 int idx = dm->index;
9495 /* update indexes on the disk list */
9496/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9497 the index values will end up being correct.... NB */
9498 for (du = super->disks; du; du = du->next)
9499 if (du->index > idx)
9500 du->index--;
9501 /* mark as spare disk */
a8619d23 9502 mark_spare(dm);
bb025c2f
KW
9503 }
9504 }
bb025c2f
KW
9505 /* update map */
9506 map->num_members = map->num_members / 2;
9507 map->map_state = IMSM_T_STATE_NORMAL;
9508 map->num_domains = 1;
9509 map->raid_level = 0;
9510 map->failed_disk_num = -1;
9511 }
9512
8ca6df95
KW
9513 if (u->direction == R0_TO_R10) {
9514 void **space;
9515 /* update slots in current disk list */
9516 for (dm = super->disks; dm; dm = dm->next) {
9517 if (dm->index >= 0)
9518 dm->index *= 2;
9519 }
9520 /* create new *missing* disks */
9521 for (i = 0; i < map->num_members; i++) {
9522 space = *space_list;
9523 if (!space)
9524 continue;
9525 *space_list = *space;
9526 du = (void *)space;
9527 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9528 du->fd = -1;
9529 du->minor = 0;
9530 du->major = 0;
9531 du->index = (i * 2) + 1;
9532 sprintf((char *)du->disk.serial,
9533 " MISSING_%d", du->index);
9534 sprintf((char *)du->serial,
9535 "MISSING_%d", du->index);
9536 du->next = super->missing;
9537 super->missing = du;
9538 }
9539 /* create new dev and map */
9540 space = *space_list;
9541 if (!space)
9542 return 0;
9543 *space_list = *space;
9544 dev_new = (void *)space;
9545 memcpy(dev_new, dev, sizeof(*dev));
9546 /* update new map */
238c0a71 9547 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 9548 map->num_members = map->num_members * 2;
1a2487c2 9549 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
9550 map->num_domains = 2;
9551 map->raid_level = 1;
9552 /* replace dev<->dev_new */
9553 dv->dev = dev_new;
9554 }
bb025c2f
KW
9555 /* update disk order table */
9556 for (du = super->disks; du; du = du->next)
9557 if (du->index >= 0)
9558 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9559 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9560 if (du->index >= 0) {
9561 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9562 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9563 }
bb025c2f
KW
9564
9565 return 1;
9566}
9567
e8319a19
DW
9568static void imsm_process_update(struct supertype *st,
9569 struct metadata_update *update)
9570{
9571 /**
9572 * crack open the metadata_update envelope to find the update record
9573 * update can be one of:
d195167d
AK
9574 * update_reshape_container_disks - all the arrays in the container
9575 * are being reshaped to have more devices. We need to mark
9576 * the arrays for general migration and convert selected spares
9577 * into active devices.
9578 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9579 * device in an array, update the disk_ord_tbl. If this disk is
9580 * present in all member arrays then also clear the SPARE_DISK
9581 * flag
d195167d
AK
9582 * update_create_array
9583 * update_kill_array
9584 * update_rename_array
9585 * update_add_remove_disk
e8319a19
DW
9586 */
9587 struct intel_super *super = st->sb;
4d7b1503 9588 struct imsm_super *mpb;
e8319a19
DW
9589 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9590
4d7b1503
DW
9591 /* update requires a larger buf but the allocation failed */
9592 if (super->next_len && !super->next_buf) {
9593 super->next_len = 0;
9594 return;
9595 }
9596
9597 if (super->next_buf) {
9598 memcpy(super->next_buf, super->buf, super->len);
9599 free(super->buf);
9600 super->len = super->next_len;
9601 super->buf = super->next_buf;
9602
9603 super->next_len = 0;
9604 super->next_buf = NULL;
9605 }
9606
9607 mpb = super->anchor;
9608
e8319a19 9609 switch (type) {
0ec5d470
AK
9610 case update_general_migration_checkpoint: {
9611 struct intel_dev *id;
9612 struct imsm_update_general_migration_checkpoint *u =
9613 (void *)update->buf;
9614
1ade5cc1 9615 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9616
9617 /* find device under general migration */
9618 for (id = super->devlist ; id; id = id->next) {
9619 if (is_gen_migration(id->dev)) {
9620 id->dev->vol.curr_migr_unit =
9621 __cpu_to_le32(u->curr_migr_unit);
9622 super->updates_pending++;
9623 }
9624 }
9625 break;
9626 }
bb025c2f
KW
9627 case update_takeover: {
9628 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9629 if (apply_takeover_update(u, super, &update->space_list)) {
9630 imsm_update_version_info(super);
bb025c2f 9631 super->updates_pending++;
1a2487c2 9632 }
bb025c2f
KW
9633 break;
9634 }
9635
78b10e66 9636 case update_reshape_container_disks: {
d195167d 9637 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9638 if (apply_reshape_container_disks_update(
9639 u, super, &update->space_list))
9640 super->updates_pending++;
78b10e66
N
9641 break;
9642 }
48c5303a 9643 case update_reshape_migration: {
a29911da
PC
9644 struct imsm_update_reshape_migration *u = (void *)update->buf;
9645 if (apply_reshape_migration_update(
9646 u, super, &update->space_list))
9647 super->updates_pending++;
48c5303a
PC
9648 break;
9649 }
f3871fdc
AK
9650 case update_size_change: {
9651 struct imsm_update_size_change *u = (void *)update->buf;
9652 if (apply_size_change_update(u, super))
9653 super->updates_pending++;
9654 break;
9655 }
e8319a19 9656 case update_activate_spare: {
1011e834 9657 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
9658 if (apply_update_activate_spare(u, super, st->arrays))
9659 super->updates_pending++;
8273f55e
DW
9660 break;
9661 }
9662 case update_create_array: {
9663 /* someone wants to create a new array, we need to be aware of
9664 * a few races/collisions:
9665 * 1/ 'Create' called by two separate instances of mdadm
9666 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9667 * devices that have since been assimilated via
9668 * activate_spare.
9669 * In the event this update can not be carried out mdadm will
9670 * (FIX ME) notice that its update did not take hold.
9671 */
9672 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9673 struct intel_dev *dv;
8273f55e
DW
9674 struct imsm_dev *dev;
9675 struct imsm_map *map, *new_map;
9676 unsigned long long start, end;
9677 unsigned long long new_start, new_end;
9678 int i;
54c2c1ea
DW
9679 struct disk_info *inf;
9680 struct dl *dl;
8273f55e
DW
9681
9682 /* handle racing creates: first come first serve */
9683 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 9684 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 9685 goto create_error;
8273f55e
DW
9686 }
9687
9688 /* check update is next in sequence */
9689 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
9690 dprintf("can not create array %d expected index %d\n",
9691 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 9692 goto create_error;
8273f55e
DW
9693 }
9694
238c0a71 9695 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
9696 new_start = pba_of_lba0(new_map);
9697 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 9698 inf = get_disk_info(u);
8273f55e
DW
9699
9700 /* handle activate_spare versus create race:
9701 * check to make sure that overlapping arrays do not include
9702 * overalpping disks
9703 */
9704 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 9705 dev = get_imsm_dev(super, i);
238c0a71 9706 map = get_imsm_map(dev, MAP_0);
5551b113
CA
9707 start = pba_of_lba0(map);
9708 end = start + blocks_per_member(map);
8273f55e
DW
9709 if ((new_start >= start && new_start <= end) ||
9710 (start >= new_start && start <= new_end))
54c2c1ea
DW
9711 /* overlap */;
9712 else
9713 continue;
9714
9715 if (disks_overlap(super, i, u)) {
1ade5cc1 9716 dprintf("arrays overlap\n");
ba2de7ba 9717 goto create_error;
8273f55e
DW
9718 }
9719 }
8273f55e 9720
949c47a0
DW
9721 /* check that prepare update was successful */
9722 if (!update->space) {
1ade5cc1 9723 dprintf("prepare update failed\n");
ba2de7ba 9724 goto create_error;
949c47a0
DW
9725 }
9726
54c2c1ea
DW
9727 /* check that all disks are still active before committing
9728 * changes. FIXME: could we instead handle this by creating a
9729 * degraded array? That's probably not what the user expects,
9730 * so better to drop this update on the floor.
9731 */
9732 for (i = 0; i < new_map->num_members; i++) {
9733 dl = serial_to_dl(inf[i].serial, super);
9734 if (!dl) {
1ade5cc1 9735 dprintf("disk disappeared\n");
ba2de7ba 9736 goto create_error;
54c2c1ea 9737 }
949c47a0
DW
9738 }
9739
8273f55e 9740 super->updates_pending++;
54c2c1ea
DW
9741
9742 /* convert spares to members and fixup ord_tbl */
9743 for (i = 0; i < new_map->num_members; i++) {
9744 dl = serial_to_dl(inf[i].serial, super);
9745 if (dl->index == -1) {
9746 dl->index = mpb->num_disks;
9747 mpb->num_disks++;
9748 dl->disk.status |= CONFIGURED_DISK;
9749 dl->disk.status &= ~SPARE_DISK;
9750 }
9751 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9752 }
9753
ba2de7ba
DW
9754 dv = update->space;
9755 dev = dv->dev;
949c47a0
DW
9756 update->space = NULL;
9757 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
9758 dv->index = u->dev_idx;
9759 dv->next = super->devlist;
9760 super->devlist = dv;
8273f55e 9761 mpb->num_raid_devs++;
8273f55e 9762
4d1313e9 9763 imsm_update_version_info(super);
8273f55e 9764 break;
ba2de7ba
DW
9765 create_error:
9766 /* mdmon knows how to release update->space, but not
9767 * ((struct intel_dev *) update->space)->dev
9768 */
9769 if (update->space) {
9770 dv = update->space;
9771 free(dv->dev);
9772 }
8273f55e 9773 break;
e8319a19 9774 }
33414a01
DW
9775 case update_kill_array: {
9776 struct imsm_update_kill_array *u = (void *) update->buf;
9777 int victim = u->dev_idx;
9778 struct active_array *a;
9779 struct intel_dev **dp;
9780 struct imsm_dev *dev;
9781
9782 /* sanity check that we are not affecting the uuid of
9783 * active arrays, or deleting an active array
9784 *
9785 * FIXME when immutable ids are available, but note that
9786 * we'll also need to fixup the invalidated/active
9787 * subarray indexes in mdstat
9788 */
9789 for (a = st->arrays; a; a = a->next)
9790 if (a->info.container_member >= victim)
9791 break;
9792 /* by definition if mdmon is running at least one array
9793 * is active in the container, so checking
9794 * mpb->num_raid_devs is just extra paranoia
9795 */
9796 dev = get_imsm_dev(super, victim);
9797 if (a || !dev || mpb->num_raid_devs == 1) {
9798 dprintf("failed to delete subarray-%d\n", victim);
9799 break;
9800 }
9801
9802 for (dp = &super->devlist; *dp;)
f21e18ca 9803 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
9804 *dp = (*dp)->next;
9805 } else {
f21e18ca 9806 if ((*dp)->index > (unsigned)victim)
33414a01
DW
9807 (*dp)->index--;
9808 dp = &(*dp)->next;
9809 }
9810 mpb->num_raid_devs--;
9811 super->updates_pending++;
9812 break;
9813 }
aa534678
DW
9814 case update_rename_array: {
9815 struct imsm_update_rename_array *u = (void *) update->buf;
9816 char name[MAX_RAID_SERIAL_LEN+1];
9817 int target = u->dev_idx;
9818 struct active_array *a;
9819 struct imsm_dev *dev;
9820
9821 /* sanity check that we are not affecting the uuid of
9822 * an active array
9823 */
9824 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9825 name[MAX_RAID_SERIAL_LEN] = '\0';
9826 for (a = st->arrays; a; a = a->next)
9827 if (a->info.container_member == target)
9828 break;
9829 dev = get_imsm_dev(super, u->dev_idx);
9830 if (a || !dev || !check_name(super, name, 1)) {
9831 dprintf("failed to rename subarray-%d\n", target);
9832 break;
9833 }
9834
cdbe98cd 9835 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
9836 super->updates_pending++;
9837 break;
9838 }
1a64be56 9839 case update_add_remove_disk: {
43dad3d6 9840 /* we may be able to repair some arrays if disks are
095b8088 9841 * being added, check the status of add_remove_disk
1a64be56
LM
9842 * if discs has been added.
9843 */
9844 if (add_remove_disk_update(super)) {
43dad3d6 9845 struct active_array *a;
072b727f
DW
9846
9847 super->updates_pending++;
1a64be56 9848 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
9849 a->check_degraded = 1;
9850 }
43dad3d6 9851 break;
e8319a19 9852 }
bbab0940
TM
9853 case update_prealloc_badblocks_mem:
9854 break;
e6e9dd3f
AP
9855 case update_rwh_policy: {
9856 struct imsm_update_rwh_policy *u = (void *)update->buf;
9857 int target = u->dev_idx;
9858 struct imsm_dev *dev = get_imsm_dev(super, target);
9859 if (!dev) {
9860 dprintf("could not find subarray-%d\n", target);
9861 break;
9862 }
9863
9864 if (dev->rwh_policy != u->new_policy) {
9865 dev->rwh_policy = u->new_policy;
9866 super->updates_pending++;
9867 }
9868 break;
9869 }
1a64be56 9870 default:
7a862a02 9871 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 9872 }
e8319a19 9873}
88758e9d 9874
bc0b9d34
PC
9875static struct mdinfo *get_spares_for_grow(struct supertype *st);
9876
5fe6f031
N
9877static int imsm_prepare_update(struct supertype *st,
9878 struct metadata_update *update)
8273f55e 9879{
949c47a0 9880 /**
4d7b1503
DW
9881 * Allocate space to hold new disk entries, raid-device entries or a new
9882 * mpb if necessary. The manager synchronously waits for updates to
9883 * complete in the monitor, so new mpb buffers allocated here can be
9884 * integrated by the monitor thread without worrying about live pointers
9885 * in the manager thread.
8273f55e 9886 */
095b8088 9887 enum imsm_update_type type;
4d7b1503 9888 struct intel_super *super = st->sb;
f36a9ecd 9889 unsigned int sector_size = super->sector_size;
4d7b1503
DW
9890 struct imsm_super *mpb = super->anchor;
9891 size_t buf_len;
9892 size_t len = 0;
949c47a0 9893
095b8088
N
9894 if (update->len < (int)sizeof(type))
9895 return 0;
9896
9897 type = *(enum imsm_update_type *) update->buf;
9898
949c47a0 9899 switch (type) {
0ec5d470 9900 case update_general_migration_checkpoint:
095b8088
N
9901 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9902 return 0;
1ade5cc1 9903 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 9904 break;
abedf5fc
KW
9905 case update_takeover: {
9906 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
9907 if (update->len < (int)sizeof(*u))
9908 return 0;
abedf5fc
KW
9909 if (u->direction == R0_TO_R10) {
9910 void **tail = (void **)&update->space_list;
9911 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 9912 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
9913 int num_members = map->num_members;
9914 void *space;
9915 int size, i;
abedf5fc
KW
9916 /* allocate memory for added disks */
9917 for (i = 0; i < num_members; i++) {
9918 size = sizeof(struct dl);
503975b9 9919 space = xmalloc(size);
abedf5fc
KW
9920 *tail = space;
9921 tail = space;
9922 *tail = NULL;
9923 }
9924 /* allocate memory for new device */
9925 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9926 (num_members * sizeof(__u32));
503975b9
N
9927 space = xmalloc(size);
9928 *tail = space;
9929 tail = space;
9930 *tail = NULL;
9931 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
9932 }
9933
9934 break;
9935 }
78b10e66 9936 case update_reshape_container_disks: {
d195167d
AK
9937 /* Every raid device in the container is about to
9938 * gain some more devices, and we will enter a
9939 * reconfiguration.
9940 * So each 'imsm_map' will be bigger, and the imsm_vol
9941 * will now hold 2 of them.
9942 * Thus we need new 'struct imsm_dev' allocations sized
9943 * as sizeof_imsm_dev but with more devices in both maps.
9944 */
9945 struct imsm_update_reshape *u = (void *)update->buf;
9946 struct intel_dev *dl;
9947 void **space_tail = (void**)&update->space_list;
9948
095b8088
N
9949 if (update->len < (int)sizeof(*u))
9950 return 0;
9951
1ade5cc1 9952 dprintf("for update_reshape\n");
d195167d
AK
9953
9954 for (dl = super->devlist; dl; dl = dl->next) {
9955 int size = sizeof_imsm_dev(dl->dev, 1);
9956 void *s;
d677e0b8
AK
9957 if (u->new_raid_disks > u->old_raid_disks)
9958 size += sizeof(__u32)*2*
9959 (u->new_raid_disks - u->old_raid_disks);
503975b9 9960 s = xmalloc(size);
d195167d
AK
9961 *space_tail = s;
9962 space_tail = s;
9963 *space_tail = NULL;
9964 }
9965
9966 len = disks_to_mpb_size(u->new_raid_disks);
9967 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
9968 break;
9969 }
48c5303a 9970 case update_reshape_migration: {
bc0b9d34
PC
9971 /* for migration level 0->5 we need to add disks
9972 * so the same as for container operation we will copy
9973 * device to the bigger location.
9974 * in memory prepared device and new disk area are prepared
9975 * for usage in process update
9976 */
9977 struct imsm_update_reshape_migration *u = (void *)update->buf;
9978 struct intel_dev *id;
9979 void **space_tail = (void **)&update->space_list;
9980 int size;
9981 void *s;
9982 int current_level = -1;
9983
095b8088
N
9984 if (update->len < (int)sizeof(*u))
9985 return 0;
9986
1ade5cc1 9987 dprintf("for update_reshape\n");
bc0b9d34
PC
9988
9989 /* add space for bigger array in update
9990 */
9991 for (id = super->devlist; id; id = id->next) {
9992 if (id->index == (unsigned)u->subdev) {
9993 size = sizeof_imsm_dev(id->dev, 1);
9994 if (u->new_raid_disks > u->old_raid_disks)
9995 size += sizeof(__u32)*2*
9996 (u->new_raid_disks - u->old_raid_disks);
503975b9 9997 s = xmalloc(size);
bc0b9d34
PC
9998 *space_tail = s;
9999 space_tail = s;
10000 *space_tail = NULL;
10001 break;
10002 }
10003 }
10004 if (update->space_list == NULL)
10005 break;
10006
10007 /* add space for disk in update
10008 */
10009 size = sizeof(struct dl);
503975b9 10010 s = xmalloc(size);
bc0b9d34
PC
10011 *space_tail = s;
10012 space_tail = s;
10013 *space_tail = NULL;
10014
10015 /* add spare device to update
10016 */
10017 for (id = super->devlist ; id; id = id->next)
10018 if (id->index == (unsigned)u->subdev) {
10019 struct imsm_dev *dev;
10020 struct imsm_map *map;
10021
10022 dev = get_imsm_dev(super, u->subdev);
238c0a71 10023 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
10024 current_level = map->raid_level;
10025 break;
10026 }
089f9d79 10027 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
10028 struct mdinfo *spares;
10029
10030 spares = get_spares_for_grow(st);
10031 if (spares) {
10032 struct dl *dl;
10033 struct mdinfo *dev;
10034
10035 dev = spares->devs;
10036 if (dev) {
10037 u->new_disks[0] =
10038 makedev(dev->disk.major,
10039 dev->disk.minor);
10040 dl = get_disk_super(super,
10041 dev->disk.major,
10042 dev->disk.minor);
10043 dl->index = u->old_raid_disks;
10044 dev = dev->next;
10045 }
10046 sysfs_free(spares);
10047 }
10048 }
10049 len = disks_to_mpb_size(u->new_raid_disks);
10050 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
10051 break;
10052 }
f3871fdc 10053 case update_size_change: {
095b8088
N
10054 if (update->len < (int)sizeof(struct imsm_update_size_change))
10055 return 0;
10056 break;
10057 }
10058 case update_activate_spare: {
10059 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10060 return 0;
f3871fdc
AK
10061 break;
10062 }
949c47a0
DW
10063 case update_create_array: {
10064 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 10065 struct intel_dev *dv;
54c2c1ea 10066 struct imsm_dev *dev = &u->dev;
238c0a71 10067 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
10068 struct dl *dl;
10069 struct disk_info *inf;
10070 int i;
10071 int activate = 0;
949c47a0 10072
095b8088
N
10073 if (update->len < (int)sizeof(*u))
10074 return 0;
10075
54c2c1ea
DW
10076 inf = get_disk_info(u);
10077 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 10078 /* allocate a new super->devlist entry */
503975b9
N
10079 dv = xmalloc(sizeof(*dv));
10080 dv->dev = xmalloc(len);
10081 update->space = dv;
949c47a0 10082
54c2c1ea
DW
10083 /* count how many spares will be converted to members */
10084 for (i = 0; i < map->num_members; i++) {
10085 dl = serial_to_dl(inf[i].serial, super);
10086 if (!dl) {
10087 /* hmm maybe it failed?, nothing we can do about
10088 * it here
10089 */
10090 continue;
10091 }
10092 if (count_memberships(dl, super) == 0)
10093 activate++;
10094 }
10095 len += activate * sizeof(struct imsm_disk);
949c47a0 10096 break;
095b8088
N
10097 }
10098 case update_kill_array: {
10099 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10100 return 0;
949c47a0
DW
10101 break;
10102 }
095b8088
N
10103 case update_rename_array: {
10104 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10105 return 0;
10106 break;
10107 }
10108 case update_add_remove_disk:
10109 /* no update->len needed */
10110 break;
bbab0940
TM
10111 case update_prealloc_badblocks_mem:
10112 super->extra_space += sizeof(struct bbm_log) -
10113 get_imsm_bbm_log_size(super->bbm_log);
10114 break;
e6e9dd3f
AP
10115 case update_rwh_policy: {
10116 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10117 return 0;
10118 break;
10119 }
095b8088
N
10120 default:
10121 return 0;
949c47a0 10122 }
8273f55e 10123
4d7b1503
DW
10124 /* check if we need a larger metadata buffer */
10125 if (super->next_buf)
10126 buf_len = super->next_len;
10127 else
10128 buf_len = super->len;
10129
bbab0940 10130 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
10131 /* ok we need a larger buf than what is currently allocated
10132 * if this allocation fails process_update will notice that
10133 * ->next_len is set and ->next_buf is NULL
10134 */
bbab0940
TM
10135 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10136 super->extra_space + len, sector_size);
4d7b1503
DW
10137 if (super->next_buf)
10138 free(super->next_buf);
10139
10140 super->next_len = buf_len;
f36a9ecd 10141 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
10142 memset(super->next_buf, 0, buf_len);
10143 else
4d7b1503
DW
10144 super->next_buf = NULL;
10145 }
5fe6f031 10146 return 1;
8273f55e
DW
10147}
10148
ae6aad82 10149/* must be called while manager is quiesced */
f21e18ca 10150static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
10151{
10152 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
10153 struct dl *iter;
10154 struct imsm_dev *dev;
10155 struct imsm_map *map;
4c9e8c1e 10156 unsigned int i, j, num_members;
fb12a745 10157 __u32 ord, ord_map0;
4c9e8c1e 10158 struct bbm_log *log = super->bbm_log;
ae6aad82 10159
1ade5cc1 10160 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
10161
10162 /* shift all indexes down one */
10163 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 10164 if (iter->index > (int)index)
ae6aad82 10165 iter->index--;
47ee5a45 10166 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 10167 if (iter->index > (int)index)
47ee5a45 10168 iter->index--;
ae6aad82
DW
10169
10170 for (i = 0; i < mpb->num_raid_devs; i++) {
10171 dev = get_imsm_dev(super, i);
238c0a71 10172 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
10173 num_members = map->num_members;
10174 for (j = 0; j < num_members; j++) {
10175 /* update ord entries being careful not to propagate
10176 * ord-flags to the first map
10177 */
238c0a71 10178 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
fb12a745 10179 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ae6aad82 10180
24565c9a
DW
10181 if (ord_to_idx(ord) <= index)
10182 continue;
ae6aad82 10183
238c0a71 10184 map = get_imsm_map(dev, MAP_0);
fb12a745 10185 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
238c0a71 10186 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
10187 if (map)
10188 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
10189 }
10190 }
10191
4c9e8c1e
TM
10192 for (i = 0; i < log->entry_count; i++) {
10193 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10194
10195 if (entry->disk_ordinal <= index)
10196 continue;
10197 entry->disk_ordinal--;
10198 }
10199
ae6aad82
DW
10200 mpb->num_disks--;
10201 super->updates_pending++;
24565c9a
DW
10202 if (*dlp) {
10203 struct dl *dl = *dlp;
10204
10205 *dlp = (*dlp)->next;
10206 __free_imsm_disk(dl);
10207 }
ae6aad82 10208}
9a717282
AK
10209
10210static void close_targets(int *targets, int new_disks)
10211{
10212 int i;
10213
10214 if (!targets)
10215 return;
10216
10217 for (i = 0; i < new_disks; i++) {
10218 if (targets[i] >= 0) {
10219 close(targets[i]);
10220 targets[i] = -1;
10221 }
10222 }
10223}
10224
10225static int imsm_get_allowed_degradation(int level, int raid_disks,
10226 struct intel_super *super,
10227 struct imsm_dev *dev)
10228{
10229 switch (level) {
bf5cf7c7 10230 case 1:
9a717282
AK
10231 case 10:{
10232 int ret_val = 0;
10233 struct imsm_map *map;
10234 int i;
10235
10236 ret_val = raid_disks/2;
10237 /* check map if all disks pairs not failed
10238 * in both maps
10239 */
238c0a71 10240 map = get_imsm_map(dev, MAP_0);
9a717282
AK
10241 for (i = 0; i < ret_val; i++) {
10242 int degradation = 0;
10243 if (get_imsm_disk(super, i) == NULL)
10244 degradation++;
10245 if (get_imsm_disk(super, i + 1) == NULL)
10246 degradation++;
10247 if (degradation == 2)
10248 return 0;
10249 }
238c0a71 10250 map = get_imsm_map(dev, MAP_1);
9a717282
AK
10251 /* if there is no second map
10252 * result can be returned
10253 */
10254 if (map == NULL)
10255 return ret_val;
10256 /* check degradation in second map
10257 */
10258 for (i = 0; i < ret_val; i++) {
10259 int degradation = 0;
10260 if (get_imsm_disk(super, i) == NULL)
10261 degradation++;
10262 if (get_imsm_disk(super, i + 1) == NULL)
10263 degradation++;
10264 if (degradation == 2)
10265 return 0;
10266 }
10267 return ret_val;
10268 }
10269 case 5:
10270 return 1;
10271 case 6:
10272 return 2;
10273 default:
10274 return 0;
10275 }
10276}
10277
687629c2
AK
10278/*******************************************************************************
10279 * Function: open_backup_targets
10280 * Description: Function opens file descriptors for all devices given in
10281 * info->devs
10282 * Parameters:
10283 * info : general array info
10284 * raid_disks : number of disks
10285 * raid_fds : table of device's file descriptors
9a717282
AK
10286 * super : intel super for raid10 degradation check
10287 * dev : intel device for raid10 degradation check
687629c2
AK
10288 * Returns:
10289 * 0 : success
10290 * -1 : fail
10291 ******************************************************************************/
9a717282
AK
10292int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10293 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
10294{
10295 struct mdinfo *sd;
f627f5ad 10296 int i;
9a717282 10297 int opened = 0;
f627f5ad
AK
10298
10299 for (i = 0; i < raid_disks; i++)
10300 raid_fds[i] = -1;
687629c2
AK
10301
10302 for (sd = info->devs ; sd ; sd = sd->next) {
10303 char *dn;
10304
10305 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10306 dprintf("disk is faulty!!\n");
10307 continue;
10308 }
10309
089f9d79 10310 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
687629c2
AK
10311 continue;
10312
10313 dn = map_dev(sd->disk.major,
10314 sd->disk.minor, 1);
10315 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10316 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 10317 pr_err("cannot open component\n");
9a717282 10318 continue;
687629c2 10319 }
9a717282
AK
10320 opened++;
10321 }
10322 /* check if maximum array degradation level is not exceeded
10323 */
10324 if ((raid_disks - opened) >
089f9d79
JS
10325 imsm_get_allowed_degradation(info->new_level, raid_disks,
10326 super, dev)) {
e12b3daa 10327 pr_err("Not enough disks can be opened.\n");
9a717282
AK
10328 close_targets(raid_fds, raid_disks);
10329 return -2;
687629c2
AK
10330 }
10331 return 0;
10332}
10333
d31ad643
PB
10334/*******************************************************************************
10335 * Function: validate_container_imsm
10336 * Description: This routine validates container after assemble,
10337 * eg. if devices in container are under the same controller.
10338 *
10339 * Parameters:
10340 * info : linked list with info about devices used in array
10341 * Returns:
10342 * 1 : HBA mismatch
10343 * 0 : Success
10344 ******************************************************************************/
10345int validate_container_imsm(struct mdinfo *info)
10346{
6b781d33
AP
10347 if (check_env("IMSM_NO_PLATFORM"))
10348 return 0;
d31ad643 10349
6b781d33
AP
10350 struct sys_dev *idev;
10351 struct sys_dev *hba = NULL;
10352 struct sys_dev *intel_devices = find_intel_devices();
10353 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10354 info->disk.minor));
10355
10356 for (idev = intel_devices; idev; idev = idev->next) {
10357 if (dev_path && strstr(dev_path, idev->path)) {
10358 hba = idev;
10359 break;
d31ad643 10360 }
6b781d33
AP
10361 }
10362 if (dev_path)
d31ad643
PB
10363 free(dev_path);
10364
6b781d33
AP
10365 if (!hba) {
10366 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10367 devid2kname(makedev(info->disk.major, info->disk.minor)));
10368 return 1;
10369 }
10370
10371 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10372 struct mdinfo *dev;
10373
10374 for (dev = info->next; dev; dev = dev->next) {
10375 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10376
10377 struct sys_dev *hba2 = NULL;
10378 for (idev = intel_devices; idev; idev = idev->next) {
10379 if (dev_path && strstr(dev_path, idev->path)) {
10380 hba2 = idev;
10381 break;
d31ad643
PB
10382 }
10383 }
6b781d33
AP
10384 if (dev_path)
10385 free(dev_path);
10386
10387 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10388 get_orom_by_device_id(hba2->dev_id);
10389
10390 if (hba2 && hba->type != hba2->type) {
10391 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10392 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10393 return 1;
10394 }
10395
07cb1e57 10396 if (orom != orom2) {
6b781d33
AP
10397 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10398 " This operation is not supported and can lead to data loss.\n");
10399 return 1;
10400 }
10401
10402 if (!orom) {
10403 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10404 " This operation is not supported and can lead to data loss.\n");
10405 return 1;
10406 }
d31ad643 10407 }
6b781d33 10408
d31ad643
PB
10409 return 0;
10410}
32141c17 10411
6f50473f
TM
10412/*******************************************************************************
10413* Function: imsm_record_badblock
10414* Description: This routine stores new bad block record in BBM log
10415*
10416* Parameters:
10417* a : array containing a bad block
10418* slot : disk number containing a bad block
10419* sector : bad block sector
10420* length : bad block sectors range
10421* Returns:
10422* 1 : Success
10423* 0 : Error
10424******************************************************************************/
10425static int imsm_record_badblock(struct active_array *a, int slot,
10426 unsigned long long sector, int length)
10427{
10428 struct intel_super *super = a->container->sb;
10429 int ord;
10430 int ret;
10431
10432 ord = imsm_disk_slot_to_ord(a, slot);
10433 if (ord < 0)
10434 return 0;
10435
10436 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10437 length);
10438 if (ret)
10439 super->updates_pending++;
10440
10441 return ret;
10442}
c07a5a4f
TM
10443/*******************************************************************************
10444* Function: imsm_clear_badblock
10445* Description: This routine clears bad block record from BBM log
10446*
10447* Parameters:
10448* a : array containing a bad block
10449* slot : disk number containing a bad block
10450* sector : bad block sector
10451* length : bad block sectors range
10452* Returns:
10453* 1 : Success
10454* 0 : Error
10455******************************************************************************/
10456static int imsm_clear_badblock(struct active_array *a, int slot,
10457 unsigned long long sector, int length)
10458{
10459 struct intel_super *super = a->container->sb;
10460 int ord;
10461 int ret;
10462
10463 ord = imsm_disk_slot_to_ord(a, slot);
10464 if (ord < 0)
10465 return 0;
10466
10467 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10468 if (ret)
10469 super->updates_pending++;
10470
10471 return ret;
10472}
928f1424
TM
10473/*******************************************************************************
10474* Function: imsm_get_badblocks
10475* Description: This routine get list of bad blocks for an array
10476*
10477* Parameters:
10478* a : array
10479* slot : disk number
10480* Returns:
10481* bb : structure containing bad blocks
10482* NULL : error
10483******************************************************************************/
10484static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10485{
10486 int inst = a->info.container_member;
10487 struct intel_super *super = a->container->sb;
10488 struct imsm_dev *dev = get_imsm_dev(super, inst);
10489 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10490 int ord;
10491
10492 ord = imsm_disk_slot_to_ord(a, slot);
10493 if (ord < 0)
10494 return NULL;
10495
10496 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10497 blocks_per_member(map), &super->bb);
10498
10499 return &super->bb;
10500}
27156a57
TM
10501/*******************************************************************************
10502* Function: examine_badblocks_imsm
10503* Description: Prints list of bad blocks on a disk to the standard output
10504*
10505* Parameters:
10506* st : metadata handler
10507* fd : open file descriptor for device
10508* devname : device name
10509* Returns:
10510* 0 : Success
10511* 1 : Error
10512******************************************************************************/
10513static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10514{
10515 struct intel_super *super = st->sb;
10516 struct bbm_log *log = super->bbm_log;
10517 struct dl *d = NULL;
10518 int any = 0;
10519
10520 for (d = super->disks; d ; d = d->next) {
10521 if (strcmp(d->devname, devname) == 0)
10522 break;
10523 }
10524
10525 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10526 pr_err("%s doesn't appear to be part of a raid array\n",
10527 devname);
10528 return 1;
10529 }
10530
10531 if (log != NULL) {
10532 unsigned int i;
10533 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10534
10535 for (i = 0; i < log->entry_count; i++) {
10536 if (entry[i].disk_ordinal == d->index) {
10537 unsigned long long sector = __le48_to_cpu(
10538 &entry[i].defective_block_start);
10539 int cnt = entry[i].marked_count + 1;
10540
10541 if (!any) {
10542 printf("Bad-blocks on %s:\n", devname);
10543 any = 1;
10544 }
10545
10546 printf("%20llu for %d sectors\n", sector, cnt);
10547 }
10548 }
10549 }
10550
10551 if (!any)
10552 printf("No bad-blocks list configured on %s\n", devname);
10553
10554 return 0;
10555}
687629c2
AK
10556/*******************************************************************************
10557 * Function: init_migr_record_imsm
10558 * Description: Function inits imsm migration record
10559 * Parameters:
10560 * super : imsm internal array info
10561 * dev : device under migration
10562 * info : general array info to find the smallest device
10563 * Returns:
10564 * none
10565 ******************************************************************************/
10566void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10567 struct mdinfo *info)
10568{
10569 struct intel_super *super = st->sb;
10570 struct migr_record *migr_rec = super->migr_rec;
10571 int new_data_disks;
10572 unsigned long long dsize, dev_sectors;
10573 long long unsigned min_dev_sectors = -1LLU;
10574 struct mdinfo *sd;
10575 char nm[30];
10576 int fd;
238c0a71
AK
10577 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10578 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10579 unsigned long long num_migr_units;
3ef4403c 10580 unsigned long long array_blocks;
687629c2
AK
10581
10582 memset(migr_rec, 0, sizeof(struct migr_record));
10583 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10584
10585 /* only ascending reshape supported now */
10586 migr_rec->ascending_migr = __cpu_to_le32(1);
10587
10588 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10589 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10590 migr_rec->dest_depth_per_unit *=
10591 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 10592 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
10593 migr_rec->blocks_per_unit =
10594 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10595 migr_rec->dest_depth_per_unit =
10596 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10597 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10598 num_migr_units =
10599 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10600
10601 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10602 num_migr_units++;
10603 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10604
10605 migr_rec->post_migr_vol_cap = dev->size_low;
10606 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10607
687629c2
AK
10608 /* Find the smallest dev */
10609 for (sd = info->devs ; sd ; sd = sd->next) {
10610 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10611 fd = dev_open(nm, O_RDONLY);
10612 if (fd < 0)
10613 continue;
10614 get_dev_size(fd, NULL, &dsize);
10615 dev_sectors = dsize / 512;
10616 if (dev_sectors < min_dev_sectors)
10617 min_dev_sectors = dev_sectors;
10618 close(fd);
10619 }
10620 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10621 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10622
10623 write_imsm_migr_rec(st);
10624
10625 return;
10626}
10627
10628/*******************************************************************************
10629 * Function: save_backup_imsm
10630 * Description: Function saves critical data stripes to Migration Copy Area
10631 * and updates the current migration unit status.
10632 * Use restore_stripes() to form a destination stripe,
10633 * and to write it to the Copy Area.
10634 * Parameters:
10635 * st : supertype information
aea93171 10636 * dev : imsm device that backup is saved for
687629c2
AK
10637 * info : general array info
10638 * buf : input buffer
687629c2
AK
10639 * length : length of data to backup (blocks_per_unit)
10640 * Returns:
10641 * 0 : success
10642 *, -1 : fail
10643 ******************************************************************************/
10644int save_backup_imsm(struct supertype *st,
10645 struct imsm_dev *dev,
10646 struct mdinfo *info,
10647 void *buf,
687629c2
AK
10648 int length)
10649{
10650 int rv = -1;
10651 struct intel_super *super = st->sb;
594dc1b8
JS
10652 unsigned long long *target_offsets;
10653 int *targets;
687629c2 10654 int i;
238c0a71 10655 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10656 int new_disks = map_dest->num_members;
ab724b98
AK
10657 int dest_layout = 0;
10658 int dest_chunk;
d1877f69 10659 unsigned long long start;
238c0a71 10660 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 10661
503975b9 10662 targets = xmalloc(new_disks * sizeof(int));
687629c2 10663
7e45b550
AK
10664 for (i = 0; i < new_disks; i++)
10665 targets[i] = -1;
10666
503975b9 10667 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10668
d1877f69 10669 start = info->reshape_progress * 512;
687629c2 10670 for (i = 0; i < new_disks; i++) {
687629c2
AK
10671 target_offsets[i] = (unsigned long long)
10672 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
10673 /* move back copy area adderss, it will be moved forward
10674 * in restore_stripes() using start input variable
10675 */
10676 target_offsets[i] -= start/data_disks;
687629c2
AK
10677 }
10678
9a717282
AK
10679 if (open_backup_targets(info, new_disks, targets,
10680 super, dev))
687629c2
AK
10681 goto abort;
10682
68eb8bc6 10683 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10684 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10685
687629c2
AK
10686 if (restore_stripes(targets, /* list of dest devices */
10687 target_offsets, /* migration record offsets */
10688 new_disks,
ab724b98
AK
10689 dest_chunk,
10690 map_dest->raid_level,
10691 dest_layout,
10692 -1, /* source backup file descriptor */
10693 0, /* input buf offset
10694 * always 0 buf is already offseted */
d1877f69 10695 start,
687629c2
AK
10696 length,
10697 buf) != 0) {
e7b84f9d 10698 pr_err("Error restoring stripes\n");
687629c2
AK
10699 goto abort;
10700 }
10701
10702 rv = 0;
10703
10704abort:
10705 if (targets) {
9a717282 10706 close_targets(targets, new_disks);
687629c2
AK
10707 free(targets);
10708 }
10709 free(target_offsets);
10710
10711 return rv;
10712}
10713
10714/*******************************************************************************
10715 * Function: save_checkpoint_imsm
10716 * Description: Function called for current unit status update
10717 * in the migration record. It writes it to disk.
10718 * Parameters:
10719 * super : imsm internal array info
10720 * info : general array info
10721 * Returns:
10722 * 0: success
10723 * 1: failure
0228d92c
AK
10724 * 2: failure, means no valid migration record
10725 * / no general migration in progress /
687629c2
AK
10726 ******************************************************************************/
10727int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10728{
10729 struct intel_super *super = st->sb;
f8b72ef5
AK
10730 unsigned long long blocks_per_unit;
10731 unsigned long long curr_migr_unit;
10732
2e062e82 10733 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 10734 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10735 return 1;
10736 }
10737
f8b72ef5
AK
10738 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10739 if (blocks_per_unit == 0) {
0228d92c
AK
10740 dprintf("imsm: no migration in progress.\n");
10741 return 2;
687629c2 10742 }
f8b72ef5
AK
10743 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10744 /* check if array is alligned to copy area
10745 * if it is not alligned, add one to current migration unit value
10746 * this can happend on array reshape finish only
10747 */
10748 if (info->reshape_progress % blocks_per_unit)
10749 curr_migr_unit++;
687629c2
AK
10750
10751 super->migr_rec->curr_migr_unit =
f8b72ef5 10752 __cpu_to_le32(curr_migr_unit);
687629c2
AK
10753 super->migr_rec->rec_status = __cpu_to_le32(state);
10754 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
10755 __cpu_to_le32(curr_migr_unit *
10756 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 10757 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10758 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10759 return 1;
10760 }
10761
10762 return 0;
10763}
10764
276d77db
AK
10765/*******************************************************************************
10766 * Function: recover_backup_imsm
10767 * Description: Function recovers critical data from the Migration Copy Area
10768 * while assembling an array.
10769 * Parameters:
10770 * super : imsm internal array info
10771 * info : general array info
10772 * Returns:
10773 * 0 : success (or there is no data to recover)
10774 * 1 : fail
10775 ******************************************************************************/
10776int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10777{
10778 struct intel_super *super = st->sb;
10779 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 10780 struct imsm_map *map_dest;
276d77db
AK
10781 struct intel_dev *id = NULL;
10782 unsigned long long read_offset;
10783 unsigned long long write_offset;
10784 unsigned unit_len;
10785 int *targets = NULL;
10786 int new_disks, i, err;
10787 char *buf = NULL;
10788 int retval = 1;
f36a9ecd 10789 unsigned int sector_size = super->sector_size;
276d77db
AK
10790 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10791 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 10792 char buffer[20];
6c3560c0 10793 int skipped_disks = 0;
276d77db
AK
10794
10795 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10796 if (err < 1)
10797 return 1;
10798
10799 /* recover data only during assemblation */
10800 if (strncmp(buffer, "inactive", 8) != 0)
10801 return 0;
10802 /* no data to recover */
10803 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10804 return 0;
10805 if (curr_migr_unit >= num_migr_units)
10806 return 1;
10807
10808 /* find device during reshape */
10809 for (id = super->devlist; id; id = id->next)
10810 if (is_gen_migration(id->dev))
10811 break;
10812 if (id == NULL)
10813 return 1;
10814
238c0a71 10815 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
10816 new_disks = map_dest->num_members;
10817
10818 read_offset = (unsigned long long)
10819 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10820
10821 write_offset = ((unsigned long long)
10822 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 10823 pba_of_lba0(map_dest)) * 512;
276d77db
AK
10824
10825 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 10826 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 10827 goto abort;
503975b9 10828 targets = xcalloc(new_disks, sizeof(int));
276d77db 10829
9a717282 10830 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 10831 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
10832 goto abort;
10833 }
276d77db
AK
10834
10835 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
10836 if (targets[i] < 0) {
10837 skipped_disks++;
10838 continue;
10839 }
276d77db 10840 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
10841 pr_err("Cannot seek to block: %s\n",
10842 strerror(errno));
137debce
AK
10843 skipped_disks++;
10844 continue;
276d77db 10845 }
9ec11d1a 10846 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10847 pr_err("Cannot read copy area block: %s\n",
10848 strerror(errno));
137debce
AK
10849 skipped_disks++;
10850 continue;
276d77db
AK
10851 }
10852 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
10853 pr_err("Cannot seek to block: %s\n",
10854 strerror(errno));
137debce
AK
10855 skipped_disks++;
10856 continue;
276d77db 10857 }
9ec11d1a 10858 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10859 pr_err("Cannot restore block: %s\n",
10860 strerror(errno));
137debce
AK
10861 skipped_disks++;
10862 continue;
276d77db
AK
10863 }
10864 }
10865
137debce
AK
10866 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10867 new_disks,
10868 super,
10869 id->dev)) {
7a862a02 10870 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
10871 goto abort;
10872 }
10873
befb629b
AK
10874 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10875 /* ignore error == 2, this can mean end of reshape here
10876 */
7a862a02 10877 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 10878 } else
276d77db 10879 retval = 0;
276d77db
AK
10880
10881abort:
10882 if (targets) {
10883 for (i = 0; i < new_disks; i++)
10884 if (targets[i])
10885 close(targets[i]);
10886 free(targets);
10887 }
10888 free(buf);
10889 return retval;
10890}
10891
2cda7640
ML
10892static char disk_by_path[] = "/dev/disk/by-path/";
10893
10894static const char *imsm_get_disk_controller_domain(const char *path)
10895{
2cda7640 10896 char disk_path[PATH_MAX];
96234762
LM
10897 char *drv=NULL;
10898 struct stat st;
2cda7640 10899
6d8d290a 10900 strcpy(disk_path, disk_by_path);
96234762
LM
10901 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10902 if (stat(disk_path, &st) == 0) {
10903 struct sys_dev* hba;
594dc1b8 10904 char *path;
96234762
LM
10905
10906 path = devt_to_devpath(st.st_rdev);
10907 if (path == NULL)
10908 return "unknown";
10909 hba = find_disk_attached_hba(-1, path);
10910 if (hba && hba->type == SYS_DEV_SAS)
10911 drv = "isci";
10912 else if (hba && hba->type == SYS_DEV_SATA)
10913 drv = "ahci";
c6839718
MT
10914 else if (hba && hba->type == SYS_DEV_VMD)
10915 drv = "vmd";
10916 else if (hba && hba->type == SYS_DEV_NVME)
10917 drv = "nvme";
1011e834 10918 else
96234762
LM
10919 drv = "unknown";
10920 dprintf("path: %s hba: %s attached: %s\n",
10921 path, (hba) ? hba->path : "NULL", drv);
10922 free(path);
2cda7640 10923 }
96234762 10924 return drv;
2cda7640
ML
10925}
10926
4dd2df09 10927static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 10928{
4dd2df09 10929 static char devnm[32];
78b10e66
N
10930 char subdev_name[20];
10931 struct mdstat_ent *mdstat;
10932
10933 sprintf(subdev_name, "%d", subdev);
10934 mdstat = mdstat_by_subdev(subdev_name, container);
10935 if (!mdstat)
4dd2df09 10936 return NULL;
78b10e66 10937
4dd2df09 10938 strcpy(devnm, mdstat->devnm);
78b10e66 10939 free_mdstat(mdstat);
4dd2df09 10940 return devnm;
78b10e66
N
10941}
10942
10943static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10944 struct geo_params *geo,
fbf3d202
AK
10945 int *old_raid_disks,
10946 int direction)
78b10e66 10947{
694575e7
KW
10948 /* currently we only support increasing the number of devices
10949 * for a container. This increases the number of device for each
10950 * member array. They must all be RAID0 or RAID5.
10951 */
78b10e66
N
10952 int ret_val = 0;
10953 struct mdinfo *info, *member;
10954 int devices_that_can_grow = 0;
10955
7a862a02 10956 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 10957
d04f65f4 10958 if (geo->size > 0 ||
78b10e66
N
10959 geo->level != UnSet ||
10960 geo->layout != UnSet ||
10961 geo->chunksize != 0 ||
10962 geo->raid_disks == UnSet) {
7a862a02 10963 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
10964 return ret_val;
10965 }
10966
fbf3d202 10967 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 10968 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
10969 return ret_val;
10970 }
10971
78b10e66
N
10972 info = container_content_imsm(st, NULL);
10973 for (member = info; member; member = member->next) {
4dd2df09 10974 char *result;
78b10e66
N
10975
10976 dprintf("imsm: checking device_num: %i\n",
10977 member->container_member);
10978
d7d205bd 10979 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
10980 /* we work on container for Online Capacity Expansion
10981 * only so raid_disks has to grow
10982 */
7a862a02 10983 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
10984 break;
10985 }
10986
089f9d79 10987 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
10988 /* we cannot use this container with other raid level
10989 */
7a862a02 10990 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
10991 info->array.level);
10992 break;
10993 } else {
10994 /* check for platform support
10995 * for this raid level configuration
10996 */
10997 struct intel_super *super = st->sb;
10998 if (!is_raid_level_supported(super->orom,
10999 member->array.level,
11000 geo->raid_disks)) {
7a862a02 11001 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
11002 info->array.level,
11003 geo->raid_disks,
11004 geo->raid_disks > 1 ? "s" : "");
11005 break;
11006 }
2a4a08e7
AK
11007 /* check if component size is aligned to chunk size
11008 */
11009 if (info->component_size %
11010 (info->array.chunk_size/512)) {
7a862a02 11011 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
11012 break;
11013 }
78b10e66
N
11014 }
11015
11016 if (*old_raid_disks &&
11017 info->array.raid_disks != *old_raid_disks)
11018 break;
11019 *old_raid_disks = info->array.raid_disks;
11020
11021 /* All raid5 and raid0 volumes in container
11022 * have to be ready for Online Capacity Expansion
11023 * so they need to be assembled. We have already
11024 * checked that no recovery etc is happening.
11025 */
4dd2df09
N
11026 result = imsm_find_array_devnm_by_subdev(member->container_member,
11027 st->container_devnm);
11028 if (result == NULL) {
78b10e66
N
11029 dprintf("imsm: cannot find array\n");
11030 break;
11031 }
11032 devices_that_can_grow++;
11033 }
11034 sysfs_free(info);
11035 if (!member && devices_that_can_grow)
11036 ret_val = 1;
11037
11038 if (ret_val)
1ade5cc1 11039 dprintf("Container operation allowed\n");
78b10e66 11040 else
1ade5cc1 11041 dprintf("Error: %i\n", ret_val);
78b10e66
N
11042
11043 return ret_val;
11044}
11045
11046/* Function: get_spares_for_grow
11047 * Description: Allocates memory and creates list of spare devices
1011e834 11048 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
11049 * Parameters: Pointer to the supertype structure
11050 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 11051 * NULL if fail
78b10e66
N
11052 */
11053static struct mdinfo *get_spares_for_grow(struct supertype *st)
11054{
fbfdcb06
AO
11055 struct spare_criteria sc;
11056
11057 get_spare_criteria_imsm(st, &sc);
11058 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
78b10e66
N
11059}
11060
11061/******************************************************************************
11062 * function: imsm_create_metadata_update_for_reshape
11063 * Function creates update for whole IMSM container.
11064 *
11065 ******************************************************************************/
11066static int imsm_create_metadata_update_for_reshape(
11067 struct supertype *st,
11068 struct geo_params *geo,
11069 int old_raid_disks,
11070 struct imsm_update_reshape **updatep)
11071{
11072 struct intel_super *super = st->sb;
11073 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
11074 int update_memory_size;
11075 struct imsm_update_reshape *u;
11076 struct mdinfo *spares;
78b10e66 11077 int i;
594dc1b8 11078 int delta_disks;
bbd24d86 11079 struct mdinfo *dev;
78b10e66 11080
1ade5cc1 11081 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
11082
11083 delta_disks = geo->raid_disks - old_raid_disks;
11084
11085 /* size of all update data without anchor */
11086 update_memory_size = sizeof(struct imsm_update_reshape);
11087
11088 /* now add space for spare disks that we need to add. */
11089 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11090
503975b9 11091 u = xcalloc(1, update_memory_size);
78b10e66
N
11092 u->type = update_reshape_container_disks;
11093 u->old_raid_disks = old_raid_disks;
11094 u->new_raid_disks = geo->raid_disks;
11095
11096 /* now get spare disks list
11097 */
11098 spares = get_spares_for_grow(st);
11099
d7be7d87 11100 if (spares == NULL || delta_disks > spares->array.spare_disks) {
7a862a02 11101 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 11102 i = -1;
78b10e66
N
11103 goto abort;
11104 }
11105
11106 /* we have got spares
11107 * update disk list in imsm_disk list table in anchor
11108 */
11109 dprintf("imsm: %i spares are available.\n\n",
11110 spares->array.spare_disks);
11111
bbd24d86 11112 dev = spares->devs;
78b10e66 11113 for (i = 0; i < delta_disks; i++) {
78b10e66
N
11114 struct dl *dl;
11115
bbd24d86
AK
11116 if (dev == NULL)
11117 break;
78b10e66
N
11118 u->new_disks[i] = makedev(dev->disk.major,
11119 dev->disk.minor);
11120 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
11121 dl->index = mpb->num_disks;
11122 mpb->num_disks++;
bbd24d86 11123 dev = dev->next;
78b10e66 11124 }
78b10e66
N
11125
11126abort:
11127 /* free spares
11128 */
11129 sysfs_free(spares);
11130
d677e0b8 11131 dprintf("imsm: reshape update preparation :");
78b10e66 11132 if (i == delta_disks) {
1ade5cc1 11133 dprintf_cont(" OK\n");
78b10e66
N
11134 *updatep = u;
11135 return update_memory_size;
11136 }
11137 free(u);
1ade5cc1 11138 dprintf_cont(" Error\n");
78b10e66
N
11139
11140 return 0;
11141}
11142
f3871fdc
AK
11143/******************************************************************************
11144 * function: imsm_create_metadata_update_for_size_change()
11145 * Creates update for IMSM array for array size change.
11146 *
11147 ******************************************************************************/
11148static int imsm_create_metadata_update_for_size_change(
11149 struct supertype *st,
11150 struct geo_params *geo,
11151 struct imsm_update_size_change **updatep)
11152{
11153 struct intel_super *super = st->sb;
594dc1b8
JS
11154 int update_memory_size;
11155 struct imsm_update_size_change *u;
f3871fdc 11156
1ade5cc1 11157 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
11158
11159 /* size of all update data without anchor */
11160 update_memory_size = sizeof(struct imsm_update_size_change);
11161
503975b9 11162 u = xcalloc(1, update_memory_size);
f3871fdc
AK
11163 u->type = update_size_change;
11164 u->subdev = super->current_vol;
11165 u->new_size = geo->size;
11166
11167 dprintf("imsm: reshape update preparation : OK\n");
11168 *updatep = u;
11169
11170 return update_memory_size;
11171}
11172
48c5303a
PC
11173/******************************************************************************
11174 * function: imsm_create_metadata_update_for_migration()
11175 * Creates update for IMSM array.
11176 *
11177 ******************************************************************************/
11178static int imsm_create_metadata_update_for_migration(
11179 struct supertype *st,
11180 struct geo_params *geo,
11181 struct imsm_update_reshape_migration **updatep)
11182{
11183 struct intel_super *super = st->sb;
594dc1b8
JS
11184 int update_memory_size;
11185 struct imsm_update_reshape_migration *u;
48c5303a
PC
11186 struct imsm_dev *dev;
11187 int previous_level = -1;
11188
1ade5cc1 11189 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
11190
11191 /* size of all update data without anchor */
11192 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11193
503975b9 11194 u = xcalloc(1, update_memory_size);
48c5303a
PC
11195 u->type = update_reshape_migration;
11196 u->subdev = super->current_vol;
11197 u->new_level = geo->level;
11198 u->new_layout = geo->layout;
11199 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11200 u->new_disks[0] = -1;
4bba0439 11201 u->new_chunksize = -1;
48c5303a
PC
11202
11203 dev = get_imsm_dev(super, u->subdev);
11204 if (dev) {
11205 struct imsm_map *map;
11206
238c0a71 11207 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
11208 if (map) {
11209 int current_chunk_size =
11210 __le16_to_cpu(map->blocks_per_strip) / 2;
11211
11212 if (geo->chunksize != current_chunk_size) {
11213 u->new_chunksize = geo->chunksize / 1024;
7a862a02 11214 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
11215 current_chunk_size, u->new_chunksize);
11216 }
48c5303a 11217 previous_level = map->raid_level;
4bba0439 11218 }
48c5303a 11219 }
089f9d79 11220 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
11221 struct mdinfo *spares = NULL;
11222
11223 u->new_raid_disks++;
11224 spares = get_spares_for_grow(st);
089f9d79 11225 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
11226 free(u);
11227 sysfs_free(spares);
11228 update_memory_size = 0;
565cc99e 11229 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
11230 return 0;
11231 }
11232 sysfs_free(spares);
11233 }
11234 dprintf("imsm: reshape update preparation : OK\n");
11235 *updatep = u;
11236
11237 return update_memory_size;
11238}
11239
8dd70bce
AK
11240static void imsm_update_metadata_locally(struct supertype *st,
11241 void *buf, int len)
11242{
11243 struct metadata_update mu;
11244
11245 mu.buf = buf;
11246 mu.len = len;
11247 mu.space = NULL;
11248 mu.space_list = NULL;
11249 mu.next = NULL;
5fe6f031
N
11250 if (imsm_prepare_update(st, &mu))
11251 imsm_process_update(st, &mu);
8dd70bce
AK
11252
11253 while (mu.space_list) {
11254 void **space = mu.space_list;
11255 mu.space_list = *space;
11256 free(space);
11257 }
11258}
78b10e66 11259
471bceb6 11260/***************************************************************************
694575e7 11261* Function: imsm_analyze_change
471bceb6 11262* Description: Function analyze change for single volume
1011e834 11263* and validate if transition is supported
fbf3d202
AK
11264* Parameters: Geometry parameters, supertype structure,
11265* metadata change direction (apply/rollback)
694575e7 11266* Returns: Operation type code on success, -1 if fail
471bceb6
KW
11267****************************************************************************/
11268enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
11269 struct geo_params *geo,
11270 int direction)
694575e7 11271{
471bceb6
KW
11272 struct mdinfo info;
11273 int change = -1;
11274 int check_devs = 0;
c21e737b 11275 int chunk;
67a2db32
AK
11276 /* number of added/removed disks in operation result */
11277 int devNumChange = 0;
11278 /* imsm compatible layout value for array geometry verification */
11279 int imsm_layout = -1;
7abc9871
AK
11280 int data_disks;
11281 struct imsm_dev *dev;
11282 struct intel_super *super;
d04f65f4 11283 unsigned long long current_size;
65d38cca 11284 unsigned long long free_size;
d04f65f4 11285 unsigned long long max_size;
65d38cca 11286 int rv;
471bceb6
KW
11287
11288 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
11289 if (geo->level != info.array.level && geo->level >= 0 &&
11290 geo->level != UnSet) {
471bceb6
KW
11291 switch (info.array.level) {
11292 case 0:
11293 if (geo->level == 5) {
b5347799 11294 change = CH_MIGRATION;
e13ce846 11295 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 11296 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
11297 change = -1;
11298 goto analyse_change_exit;
11299 }
67a2db32 11300 imsm_layout = geo->layout;
471bceb6 11301 check_devs = 1;
e91a3bad
LM
11302 devNumChange = 1; /* parity disk added */
11303 } else if (geo->level == 10) {
471bceb6
KW
11304 change = CH_TAKEOVER;
11305 check_devs = 1;
e91a3bad 11306 devNumChange = 2; /* two mirrors added */
67a2db32 11307 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 11308 }
dfe77a9e
KW
11309 break;
11310 case 1:
471bceb6
KW
11311 case 10:
11312 if (geo->level == 0) {
11313 change = CH_TAKEOVER;
11314 check_devs = 1;
e91a3bad 11315 devNumChange = -(geo->raid_disks/2);
67a2db32 11316 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
11317 }
11318 break;
11319 }
11320 if (change == -1) {
7a862a02 11321 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 11322 info.array.level, geo->level);
471bceb6
KW
11323 goto analyse_change_exit;
11324 }
11325 } else
11326 geo->level = info.array.level;
11327
089f9d79
JS
11328 if (geo->layout != info.array.layout &&
11329 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 11330 change = CH_MIGRATION;
089f9d79
JS
11331 if (info.array.layout == 0 && info.array.level == 5 &&
11332 geo->layout == 5) {
471bceb6 11333 /* reshape 5 -> 4 */
089f9d79
JS
11334 } else if (info.array.layout == 5 && info.array.level == 5 &&
11335 geo->layout == 0) {
471bceb6
KW
11336 /* reshape 4 -> 5 */
11337 geo->layout = 0;
11338 geo->level = 5;
11339 } else {
7a862a02 11340 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 11341 info.array.layout, geo->layout);
471bceb6
KW
11342 change = -1;
11343 goto analyse_change_exit;
11344 }
67a2db32 11345 } else {
471bceb6 11346 geo->layout = info.array.layout;
67a2db32
AK
11347 if (imsm_layout == -1)
11348 imsm_layout = info.array.layout;
11349 }
471bceb6 11350
089f9d79
JS
11351 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11352 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
11353 if (info.array.level == 10) {
11354 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11355 change = -1;
11356 goto analyse_change_exit;
1e9b2c3f
PB
11357 } else if (info.component_size % (geo->chunksize/512)) {
11358 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11359 geo->chunksize/1024, info.component_size/2);
11360 change = -1;
11361 goto analyse_change_exit;
2d2b0eb7 11362 }
b5347799 11363 change = CH_MIGRATION;
2d2b0eb7 11364 } else {
471bceb6 11365 geo->chunksize = info.array.chunk_size;
2d2b0eb7 11366 }
471bceb6 11367
c21e737b 11368 chunk = geo->chunksize / 1024;
7abc9871
AK
11369
11370 super = st->sb;
11371 dev = get_imsm_dev(super, super->current_vol);
11372 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 11373 /* compute current size per disk member
7abc9871 11374 */
c41e00b2
AK
11375 current_size = info.custom_array_size / data_disks;
11376
089f9d79 11377 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
11378 /* align component size
11379 */
11380 geo->size = imsm_component_size_aligment_check(
11381 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11382 chunk * 1024, super->sector_size,
c41e00b2 11383 geo->size * 2);
65d0b4ce 11384 if (geo->size == 0) {
7a862a02 11385 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
11386 current_size);
11387 goto analyse_change_exit;
11388 }
c41e00b2 11389 }
7abc9871 11390
089f9d79 11391 if (current_size != geo->size && geo->size > 0) {
7abc9871 11392 if (change != -1) {
7a862a02 11393 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
11394 change = -1;
11395 goto analyse_change_exit;
11396 }
11397 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 11398 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 11399 super->current_vol, st->devnm);
7abc9871
AK
11400 goto analyse_change_exit;
11401 }
65d38cca
LD
11402 /* check the maximum available size
11403 */
11404 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11405 0, chunk, &free_size);
11406 if (rv == 0)
11407 /* Cannot find maximum available space
11408 */
11409 max_size = 0;
11410 else {
11411 max_size = free_size + current_size;
11412 /* align component size
11413 */
11414 max_size = imsm_component_size_aligment_check(
11415 get_imsm_raid_level(dev->vol.map),
f36a9ecd 11416 chunk * 1024, super->sector_size,
65d38cca
LD
11417 max_size);
11418 }
d04f65f4 11419 if (geo->size == MAX_SIZE) {
b130333f
AK
11420 /* requested size change to the maximum available size
11421 */
65d38cca 11422 if (max_size == 0) {
7a862a02 11423 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
11424 change = -1;
11425 goto analyse_change_exit;
65d38cca
LD
11426 } else
11427 geo->size = max_size;
c41e00b2 11428 }
b130333f 11429
681b7ae2 11430 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
11431 /* accept size for rollback only
11432 */
11433 } else {
11434 /* round size due to metadata compatibility
11435 */
11436 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11437 << SECT_PER_MB_SHIFT;
11438 dprintf("Prepare update for size change to %llu\n",
11439 geo->size );
11440 if (current_size >= geo->size) {
7a862a02 11441 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11442 current_size, geo->size);
fbf3d202
AK
11443 goto analyse_change_exit;
11444 }
65d38cca 11445 if (max_size && geo->size > max_size) {
7a862a02 11446 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 11447 max_size, geo->size);
65d38cca
LD
11448 goto analyse_change_exit;
11449 }
7abc9871
AK
11450 }
11451 geo->size *= data_disks;
11452 geo->raid_disks = dev->vol.map->num_members;
11453 change = CH_ARRAY_SIZE;
11454 }
471bceb6
KW
11455 if (!validate_geometry_imsm(st,
11456 geo->level,
67a2db32 11457 imsm_layout,
e91a3bad 11458 geo->raid_disks + devNumChange,
c21e737b 11459 &chunk,
af4348dd 11460 geo->size, INVALID_SECTORS,
5308f117 11461 0, 0, info.consistency_policy, 1))
471bceb6
KW
11462 change = -1;
11463
11464 if (check_devs) {
11465 struct intel_super *super = st->sb;
11466 struct imsm_super *mpb = super->anchor;
11467
11468 if (mpb->num_raid_devs > 1) {
7a862a02 11469 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 11470 geo->dev_name);
471bceb6
KW
11471 change = -1;
11472 }
11473 }
11474
11475analyse_change_exit:
089f9d79
JS
11476 if (direction == ROLLBACK_METADATA_CHANGES &&
11477 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 11478 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
11479 change = -1;
11480 }
471bceb6 11481 return change;
694575e7
KW
11482}
11483
bb025c2f
KW
11484int imsm_takeover(struct supertype *st, struct geo_params *geo)
11485{
11486 struct intel_super *super = st->sb;
11487 struct imsm_update_takeover *u;
11488
503975b9 11489 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
11490
11491 u->type = update_takeover;
11492 u->subarray = super->current_vol;
11493
11494 /* 10->0 transition */
11495 if (geo->level == 0)
11496 u->direction = R10_TO_R0;
11497
0529c688
KW
11498 /* 0->10 transition */
11499 if (geo->level == 10)
11500 u->direction = R0_TO_R10;
11501
bb025c2f
KW
11502 /* update metadata locally */
11503 imsm_update_metadata_locally(st, u,
11504 sizeof(struct imsm_update_takeover));
11505 /* and possibly remotely */
11506 if (st->update_tail)
11507 append_metadata_update(st, u,
11508 sizeof(struct imsm_update_takeover));
11509 else
11510 free(u);
11511
11512 return 0;
11513}
11514
d04f65f4
N
11515static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11516 int level,
78b10e66 11517 int layout, int chunksize, int raid_disks,
41784c88 11518 int delta_disks, char *backup, char *dev,
016e00f5 11519 int direction, int verbose)
78b10e66 11520{
78b10e66
N
11521 int ret_val = 1;
11522 struct geo_params geo;
11523
1ade5cc1 11524 dprintf("(enter)\n");
78b10e66 11525
71204a50 11526 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11527
11528 geo.dev_name = dev;
4dd2df09 11529 strcpy(geo.devnm, st->devnm);
78b10e66
N
11530 geo.size = size;
11531 geo.level = level;
11532 geo.layout = layout;
11533 geo.chunksize = chunksize;
11534 geo.raid_disks = raid_disks;
41784c88
AK
11535 if (delta_disks != UnSet)
11536 geo.raid_disks += delta_disks;
78b10e66 11537
1ade5cc1
N
11538 dprintf("for level : %i\n", geo.level);
11539 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
11540
11541 if (experimental() == 0)
11542 return ret_val;
11543
4dd2df09 11544 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11545 /* On container level we can only increase number of devices. */
11546 dprintf("imsm: info: Container operation\n");
78b10e66 11547 int old_raid_disks = 0;
6dc0be30 11548
78b10e66 11549 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11550 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11551 struct imsm_update_reshape *u = NULL;
11552 int len;
11553
11554 len = imsm_create_metadata_update_for_reshape(
11555 st, &geo, old_raid_disks, &u);
11556
ed08d51c
AK
11557 if (len <= 0) {
11558 dprintf("imsm: Cannot prepare update\n");
11559 goto exit_imsm_reshape_super;
11560 }
11561
8dd70bce
AK
11562 ret_val = 0;
11563 /* update metadata locally */
11564 imsm_update_metadata_locally(st, u, len);
11565 /* and possibly remotely */
11566 if (st->update_tail)
11567 append_metadata_update(st, u, len);
11568 else
ed08d51c 11569 free(u);
8dd70bce 11570
694575e7 11571 } else {
7a862a02 11572 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11573 }
11574 } else {
11575 /* On volume level we support following operations
471bceb6
KW
11576 * - takeover: raid10 -> raid0; raid0 -> raid10
11577 * - chunk size migration
11578 * - migration: raid5 -> raid0; raid0 -> raid5
11579 */
11580 struct intel_super *super = st->sb;
11581 struct intel_dev *dev = super->devlist;
4dd2df09 11582 int change;
694575e7 11583 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11584 /* find requested device */
11585 while (dev) {
1011e834 11586 char *devnm =
4dd2df09
N
11587 imsm_find_array_devnm_by_subdev(
11588 dev->index, st->container_devnm);
11589 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11590 break;
11591 dev = dev->next;
11592 }
11593 if (dev == NULL) {
4dd2df09
N
11594 pr_err("Cannot find %s (%s) subarray\n",
11595 geo.dev_name, geo.devnm);
471bceb6
KW
11596 goto exit_imsm_reshape_super;
11597 }
11598 super->current_vol = dev->index;
fbf3d202 11599 change = imsm_analyze_change(st, &geo, direction);
694575e7 11600 switch (change) {
471bceb6 11601 case CH_TAKEOVER:
bb025c2f 11602 ret_val = imsm_takeover(st, &geo);
694575e7 11603 break;
48c5303a
PC
11604 case CH_MIGRATION: {
11605 struct imsm_update_reshape_migration *u = NULL;
11606 int len =
11607 imsm_create_metadata_update_for_migration(
11608 st, &geo, &u);
11609 if (len < 1) {
7a862a02 11610 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11611 break;
11612 }
471bceb6 11613 ret_val = 0;
48c5303a
PC
11614 /* update metadata locally */
11615 imsm_update_metadata_locally(st, u, len);
11616 /* and possibly remotely */
11617 if (st->update_tail)
11618 append_metadata_update(st, u, len);
11619 else
11620 free(u);
11621 }
11622 break;
7abc9871 11623 case CH_ARRAY_SIZE: {
f3871fdc
AK
11624 struct imsm_update_size_change *u = NULL;
11625 int len =
11626 imsm_create_metadata_update_for_size_change(
11627 st, &geo, &u);
11628 if (len < 1) {
7a862a02 11629 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11630 break;
11631 }
11632 ret_val = 0;
11633 /* update metadata locally */
11634 imsm_update_metadata_locally(st, u, len);
11635 /* and possibly remotely */
11636 if (st->update_tail)
11637 append_metadata_update(st, u, len);
11638 else
11639 free(u);
7abc9871
AK
11640 }
11641 break;
471bceb6
KW
11642 default:
11643 ret_val = 1;
694575e7 11644 }
694575e7 11645 }
78b10e66 11646
ed08d51c 11647exit_imsm_reshape_super:
78b10e66
N
11648 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11649 return ret_val;
11650}
2cda7640 11651
0febb20c
AO
11652#define COMPLETED_OK 0
11653#define COMPLETED_NONE 1
11654#define COMPLETED_DELAYED 2
11655
11656static int read_completed(int fd, unsigned long long *val)
11657{
11658 int ret;
11659 char buf[50];
11660
11661 ret = sysfs_fd_get_str(fd, buf, 50);
11662 if (ret < 0)
11663 return ret;
11664
11665 ret = COMPLETED_OK;
11666 if (strncmp(buf, "none", 4) == 0) {
11667 ret = COMPLETED_NONE;
11668 } else if (strncmp(buf, "delayed", 7) == 0) {
11669 ret = COMPLETED_DELAYED;
11670 } else {
11671 char *ep;
11672 *val = strtoull(buf, &ep, 0);
11673 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11674 ret = -1;
11675 }
11676 return ret;
11677}
11678
eee67a47
AK
11679/*******************************************************************************
11680 * Function: wait_for_reshape_imsm
11681 * Description: Function writes new sync_max value and waits until
11682 * reshape process reach new position
11683 * Parameters:
11684 * sra : general array info
eee67a47
AK
11685 * ndata : number of disks in new array's layout
11686 * Returns:
11687 * 0 : success,
11688 * 1 : there is no reshape in progress,
11689 * -1 : fail
11690 ******************************************************************************/
ae9f01f8 11691int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 11692{
85ca499c 11693 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 11694 int retry = 3;
eee67a47 11695 unsigned long long completed;
ae9f01f8
AK
11696 /* to_complete : new sync_max position */
11697 unsigned long long to_complete = sra->reshape_progress;
11698 unsigned long long position_to_set = to_complete / ndata;
eee67a47 11699
ae9f01f8 11700 if (fd < 0) {
1ade5cc1 11701 dprintf("cannot open reshape_position\n");
eee67a47 11702 return 1;
ae9f01f8 11703 }
eee67a47 11704
df2647fa
PB
11705 do {
11706 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11707 if (!retry) {
11708 dprintf("cannot read reshape_position (no reshape in progres)\n");
11709 close(fd);
11710 return 1;
11711 }
11712 usleep(30000);
11713 } else
11714 break;
11715 } while (retry--);
eee67a47 11716
85ca499c 11717 if (completed > position_to_set) {
1ade5cc1 11718 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 11719 to_complete, position_to_set);
ae9f01f8
AK
11720 close(fd);
11721 return -1;
11722 }
11723 dprintf("Position set: %llu\n", position_to_set);
11724 if (sysfs_set_num(sra, NULL, "sync_max",
11725 position_to_set) != 0) {
1ade5cc1 11726 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
11727 position_to_set);
11728 close(fd);
11729 return -1;
eee67a47
AK
11730 }
11731
eee67a47 11732 do {
0febb20c 11733 int rc;
eee67a47 11734 char action[20];
5ff3a780 11735 int timeout = 3000;
0febb20c 11736
5ff3a780 11737 sysfs_wait(fd, &timeout);
a47e44fb
AK
11738 if (sysfs_get_str(sra, NULL, "sync_action",
11739 action, 20) > 0 &&
d7d3809a 11740 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
11741 if (strncmp(action, "idle", 4) == 0)
11742 break;
d7d3809a
AP
11743 close(fd);
11744 return -1;
11745 }
0febb20c
AO
11746
11747 rc = read_completed(fd, &completed);
11748 if (rc < 0) {
1ade5cc1 11749 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
11750 close(fd);
11751 return 1;
0febb20c
AO
11752 } else if (rc == COMPLETED_NONE)
11753 break;
85ca499c 11754 } while (completed < position_to_set);
b2be2b62 11755
eee67a47
AK
11756 close(fd);
11757 return 0;
eee67a47
AK
11758}
11759
b915c95f
AK
11760/*******************************************************************************
11761 * Function: check_degradation_change
11762 * Description: Check that array hasn't become failed.
11763 * Parameters:
11764 * info : for sysfs access
11765 * sources : source disks descriptors
11766 * degraded: previous degradation level
11767 * Returns:
11768 * degradation level
11769 ******************************************************************************/
11770int check_degradation_change(struct mdinfo *info,
11771 int *sources,
11772 int degraded)
11773{
11774 unsigned long long new_degraded;
e1993023
LD
11775 int rv;
11776
11777 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 11778 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
11779 /* check each device to ensure it is still working */
11780 struct mdinfo *sd;
11781 new_degraded = 0;
11782 for (sd = info->devs ; sd ; sd = sd->next) {
11783 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11784 continue;
11785 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
11786 char sbuf[100];
11787
b915c95f 11788 if (sysfs_get_str(info,
cf52eff5 11789 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
11790 strstr(sbuf, "faulty") ||
11791 strstr(sbuf, "in_sync") == NULL) {
11792 /* this device is dead */
11793 sd->disk.state = (1<<MD_DISK_FAULTY);
11794 if (sd->disk.raid_disk >= 0 &&
11795 sources[sd->disk.raid_disk] >= 0) {
11796 close(sources[
11797 sd->disk.raid_disk]);
11798 sources[sd->disk.raid_disk] =
11799 -1;
11800 }
11801 new_degraded++;
11802 }
11803 }
11804 }
11805 }
11806
11807 return new_degraded;
11808}
11809
10f22854
AK
11810/*******************************************************************************
11811 * Function: imsm_manage_reshape
11812 * Description: Function finds array under reshape and it manages reshape
11813 * process. It creates stripes backups (if required) and sets
942e1cdb 11814 * checkpoints.
10f22854
AK
11815 * Parameters:
11816 * afd : Backup handle (nattive) - not used
11817 * sra : general array info
11818 * reshape : reshape parameters - not used
11819 * st : supertype structure
11820 * blocks : size of critical section [blocks]
11821 * fds : table of source device descriptor
11822 * offsets : start of array (offest per devices)
11823 * dests : not used
11824 * destfd : table of destination device descriptor
11825 * destoffsets : table of destination offsets (per device)
11826 * Returns:
11827 * 1 : success, reshape is done
11828 * 0 : fail
11829 ******************************************************************************/
999b4972
N
11830static int imsm_manage_reshape(
11831 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 11832 struct supertype *st, unsigned long backup_blocks,
999b4972
N
11833 int *fds, unsigned long long *offsets,
11834 int dests, int *destfd, unsigned long long *destoffsets)
11835{
10f22854
AK
11836 int ret_val = 0;
11837 struct intel_super *super = st->sb;
594dc1b8 11838 struct intel_dev *dv;
de44e46f 11839 unsigned int sector_size = super->sector_size;
10f22854 11840 struct imsm_dev *dev = NULL;
a6b6d984 11841 struct imsm_map *map_src;
10f22854
AK
11842 int migr_vol_qan = 0;
11843 int ndata, odata; /* [bytes] */
11844 int chunk; /* [bytes] */
11845 struct migr_record *migr_rec;
11846 char *buf = NULL;
11847 unsigned int buf_size; /* [bytes] */
11848 unsigned long long max_position; /* array size [bytes] */
11849 unsigned long long next_step; /* [blocks]/[bytes] */
11850 unsigned long long old_data_stripe_length;
10f22854
AK
11851 unsigned long long start_src; /* [bytes] */
11852 unsigned long long start; /* [bytes] */
11853 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 11854 int degraded = 0;
ab724b98 11855 int source_layout = 0;
10f22854 11856
79a16a9b
JS
11857 if (!sra)
11858 return ret_val;
11859
11860 if (!fds || !offsets)
10f22854
AK
11861 goto abort;
11862
11863 /* Find volume during the reshape */
11864 for (dv = super->devlist; dv; dv = dv->next) {
fc54fe7a
JS
11865 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
11866 dv->dev->vol.migr_state == 1) {
10f22854
AK
11867 dev = dv->dev;
11868 migr_vol_qan++;
11869 }
11870 }
11871 /* Only one volume can migrate at the same time */
11872 if (migr_vol_qan != 1) {
676e87a8 11873 pr_err("%s", migr_vol_qan ?
10f22854
AK
11874 "Number of migrating volumes greater than 1\n" :
11875 "There is no volume during migrationg\n");
11876 goto abort;
11877 }
11878
238c0a71 11879 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
11880 if (map_src == NULL)
11881 goto abort;
10f22854 11882
238c0a71
AK
11883 ndata = imsm_num_data_members(dev, MAP_0);
11884 odata = imsm_num_data_members(dev, MAP_1);
10f22854 11885
7b1ab482 11886 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
11887 old_data_stripe_length = odata * chunk;
11888
11889 migr_rec = super->migr_rec;
11890
10f22854
AK
11891 /* initialize migration record for start condition */
11892 if (sra->reshape_progress == 0)
11893 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
11894 else {
11895 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 11896 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
11897 goto abort;
11898 }
6a75c8ca
AK
11899 /* Save checkpoint to update migration record for current
11900 * reshape position (in md). It can be farther than current
11901 * reshape position in metadata.
11902 */
11903 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11904 /* ignore error == 2, this can mean end of reshape here
11905 */
7a862a02 11906 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
11907 goto abort;
11908 }
b2c59438 11909 }
10f22854
AK
11910
11911 /* size for data */
11912 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11913 /* extend buffer size for parity disk */
11914 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11915 /* add space for stripe aligment */
11916 buf_size += old_data_stripe_length;
de44e46f
PB
11917 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11918 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
11919 goto abort;
11920 }
11921
3ef4403c 11922 max_position = sra->component_size * ndata;
68eb8bc6 11923 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
11924
11925 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11926 __le32_to_cpu(migr_rec->num_migr_units)) {
11927 /* current reshape position [blocks] */
11928 unsigned long long current_position =
11929 __le32_to_cpu(migr_rec->blocks_per_unit)
11930 * __le32_to_cpu(migr_rec->curr_migr_unit);
11931 unsigned long long border;
11932
b915c95f
AK
11933 /* Check that array hasn't become failed.
11934 */
11935 degraded = check_degradation_change(sra, fds, degraded);
11936 if (degraded > 1) {
7a862a02 11937 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
11938 goto abort;
11939 }
11940
10f22854
AK
11941 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11942
11943 if ((current_position + next_step) > max_position)
11944 next_step = max_position - current_position;
11945
92144abf 11946 start = current_position * 512;
10f22854 11947
942e1cdb 11948 /* align reading start to old geometry */
10f22854
AK
11949 start_buf_shift = start % old_data_stripe_length;
11950 start_src = start - start_buf_shift;
11951
11952 border = (start_src / odata) - (start / ndata);
11953 border /= 512;
11954 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11955 /* save critical stripes to buf
11956 * start - start address of current unit
11957 * to backup [bytes]
11958 * start_src - start address of current unit
11959 * to backup alligned to source array
11960 * [bytes]
11961 */
594dc1b8 11962 unsigned long long next_step_filler;
10f22854
AK
11963 unsigned long long copy_length = next_step * 512;
11964
11965 /* allign copy area length to stripe in old geometry */
11966 next_step_filler = ((copy_length + start_buf_shift)
11967 % old_data_stripe_length);
11968 if (next_step_filler)
11969 next_step_filler = (old_data_stripe_length
11970 - next_step_filler);
7a862a02 11971 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
11972 start, start_src, copy_length,
11973 start_buf_shift, next_step_filler);
11974
11975 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
11976 chunk, map_src->raid_level,
11977 source_layout, 0, NULL, start_src,
10f22854
AK
11978 copy_length +
11979 next_step_filler + start_buf_shift,
11980 buf)) {
7a862a02 11981 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
11982 goto abort;
11983 }
11984 /* Convert data to destination format and store it
11985 * in backup general migration area
11986 */
11987 if (save_backup_imsm(st, dev, sra,
aea93171 11988 buf + start_buf_shift, copy_length)) {
7a862a02 11989 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
11990 goto abort;
11991 }
11992 if (save_checkpoint_imsm(st, sra,
11993 UNIT_SRC_IN_CP_AREA)) {
7a862a02 11994 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
11995 goto abort;
11996 }
8016a6d4
AK
11997 } else {
11998 /* set next step to use whole border area */
11999 border /= next_step;
12000 if (border > 1)
12001 next_step *= border;
10f22854
AK
12002 }
12003 /* When data backed up, checkpoint stored,
12004 * kick the kernel to reshape unit of data
12005 */
12006 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
12007 /* limit next step to array max position */
12008 if (next_step > max_position)
12009 next_step = max_position;
10f22854
AK
12010 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12011 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 12012 sra->reshape_progress = next_step;
10f22854
AK
12013
12014 /* wait until reshape finish */
c85338c6 12015 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
12016 dprintf("wait_for_reshape_imsm returned error!\n");
12017 goto abort;
12018 }
84d11e6c
N
12019 if (sigterm)
12020 goto abort;
10f22854 12021
0228d92c
AK
12022 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12023 /* ignore error == 2, this can mean end of reshape here
12024 */
7a862a02 12025 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
12026 goto abort;
12027 }
12028
12029 }
12030
71e5411e
PB
12031 /* clear migr_rec on disks after successful migration */
12032 struct dl *d;
12033
85337573 12034 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
71e5411e
PB
12035 for (d = super->disks; d; d = d->next) {
12036 if (d->index < 0 || is_failed(&d->disk))
12037 continue;
12038 unsigned long long dsize;
12039
12040 get_dev_size(d->fd, NULL, &dsize);
de44e46f 12041 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 12042 SEEK_SET) >= 0) {
466070ad 12043 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
12044 MIGR_REC_BUF_SECTORS*sector_size) !=
12045 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
12046 perror("Write migr_rec failed");
12047 }
12048 }
12049
10f22854
AK
12050 /* return '1' if done */
12051 ret_val = 1;
12052abort:
12053 free(buf);
942e1cdb
N
12054 /* See Grow.c: abort_reshape() for further explanation */
12055 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12056 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12057 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
12058
12059 return ret_val;
999b4972 12060}
0c21b485 12061
cdddbdbc 12062struct superswitch super_imsm = {
cdddbdbc
DW
12063 .examine_super = examine_super_imsm,
12064 .brief_examine_super = brief_examine_super_imsm,
4737ae25 12065 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 12066 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
12067 .detail_super = detail_super_imsm,
12068 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 12069 .write_init_super = write_init_super_imsm,
0e600426
N
12070 .validate_geometry = validate_geometry_imsm,
12071 .add_to_super = add_to_super_imsm,
1a64be56 12072 .remove_from_super = remove_from_super_imsm,
d665cc31 12073 .detail_platform = detail_platform_imsm,
e50cf220 12074 .export_detail_platform = export_detail_platform_imsm,
33414a01 12075 .kill_subarray = kill_subarray_imsm,
aa534678 12076 .update_subarray = update_subarray_imsm,
2b959fbf 12077 .load_container = load_container_imsm,
71204a50
N
12078 .default_geometry = default_geometry_imsm,
12079 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12080 .reshape_super = imsm_reshape_super,
12081 .manage_reshape = imsm_manage_reshape,
9e2d750d 12082 .recover_backup = recover_backup_imsm,
74db60b0 12083 .copy_metadata = copy_metadata_imsm,
27156a57 12084 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
12085 .match_home = match_home_imsm,
12086 .uuid_from_super= uuid_from_super_imsm,
12087 .getinfo_super = getinfo_super_imsm,
5c4cd5da 12088 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
12089 .update_super = update_super_imsm,
12090
12091 .avail_size = avail_size_imsm,
fbfdcb06 12092 .get_spare_criteria = get_spare_criteria_imsm,
cdddbdbc
DW
12093
12094 .compare_super = compare_super_imsm,
12095
12096 .load_super = load_super_imsm,
bf5a934a 12097 .init_super = init_super_imsm,
e683ca88 12098 .store_super = store_super_imsm,
cdddbdbc
DW
12099 .free_super = free_super_imsm,
12100 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 12101 .container_content = container_content_imsm,
0c21b485 12102 .validate_container = validate_container_imsm,
cdddbdbc 12103
2432ce9b
AP
12104 .write_init_ppl = write_init_ppl_imsm,
12105 .validate_ppl = validate_ppl_imsm,
12106
cdddbdbc 12107 .external = 1,
4cce4069 12108 .name = "imsm",
845dea95
NB
12109
12110/* for mdmon */
12111 .open_new = imsm_open_new,
ed9d66aa 12112 .set_array_state= imsm_set_array_state,
845dea95
NB
12113 .set_disk = imsm_set_disk,
12114 .sync_metadata = imsm_sync_metadata,
88758e9d 12115 .activate_spare = imsm_activate_spare,
e8319a19 12116 .process_update = imsm_process_update,
8273f55e 12117 .prepare_update = imsm_prepare_update,
6f50473f 12118 .record_bad_block = imsm_record_badblock,
c07a5a4f 12119 .clear_bad_block = imsm_clear_badblock,
928f1424 12120 .get_bad_blocks = imsm_get_badblocks,
cdddbdbc 12121};